acinclude.m4 (GLIBCPP_ENABLE_CHEADERS): Use glibcpp_srcdir when setting C_INCLUDE_DIR.
[official-gcc.git] / gcc / gcse.c
blobeecd0d84247b671890fa7e266fd006bcb5c78a0e
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - dead store elimination
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "toplev.h"
150 #include "rtl.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "real.h"
156 #include "insn-config.h"
157 #include "recog.h"
158 #include "basic-block.h"
159 #include "output.h"
160 #include "function.h"
161 #include "expr.h"
162 #include "ggc.h"
163 #include "params.h"
165 #include "obstack.h"
166 #define obstack_chunk_alloc gmalloc
167 #define obstack_chunk_free free
169 /* Propagate flow information through back edges and thus enable PRE's
170 moving loop invariant calculations out of loops.
172 Originally this tended to create worse overall code, but several
173 improvements during the development of PRE seem to have made following
174 back edges generally a win.
176 Note much of the loop invariant code motion done here would normally
177 be done by loop.c, which has more heuristics for when to move invariants
178 out of loops. At some point we might need to move some of those
179 heuristics into gcse.c. */
180 #define FOLLOW_BACK_EDGES 1
182 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
183 are a superset of those done by GCSE.
185 We perform the following steps:
187 1) Compute basic block information.
189 2) Compute table of places where registers are set.
191 3) Perform copy/constant propagation.
193 4) Perform global cse.
195 5) Perform another pass of copy/constant propagation.
197 Two passes of copy/constant propagation are done because the first one
198 enables more GCSE and the second one helps to clean up the copies that
199 GCSE creates. This is needed more for PRE than for Classic because Classic
200 GCSE will try to use an existing register containing the common
201 subexpression rather than create a new one. This is harder to do for PRE
202 because of the code motion (which Classic GCSE doesn't do).
204 Expressions we are interested in GCSE-ing are of the form
205 (set (pseudo-reg) (expression)).
206 Function want_to_gcse_p says what these are.
208 PRE handles moving invariant expressions out of loops (by treating them as
209 partially redundant).
211 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
212 assignment) based GVN (global value numbering). L. T. Simpson's paper
213 (Rice University) on value numbering is a useful reference for this.
215 **********************
217 We used to support multiple passes but there are diminishing returns in
218 doing so. The first pass usually makes 90% of the changes that are doable.
219 A second pass can make a few more changes made possible by the first pass.
220 Experiments show any further passes don't make enough changes to justify
221 the expense.
223 A study of spec92 using an unlimited number of passes:
224 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
225 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
226 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
228 It was found doing copy propagation between each pass enables further
229 substitutions.
231 PRE is quite expensive in complicated functions because the DFA can take
232 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
233 be modified if one wants to experiment.
235 **********************
237 The steps for PRE are:
239 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
241 2) Perform the data flow analysis for PRE.
243 3) Delete the redundant instructions
245 4) Insert the required copies [if any] that make the partially
246 redundant instructions fully redundant.
248 5) For other reaching expressions, insert an instruction to copy the value
249 to a newly created pseudo that will reach the redundant instruction.
251 The deletion is done first so that when we do insertions we
252 know which pseudo reg to use.
254 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
255 argue it is not. The number of iterations for the algorithm to converge
256 is typically 2-4 so I don't view it as that expensive (relatively speaking).
258 PRE GCSE depends heavily on the second CSE pass to clean up the copies
259 we create. To make an expression reach the place where it's redundant,
260 the result of the expression is copied to a new register, and the redundant
261 expression is deleted by replacing it with this new register. Classic GCSE
262 doesn't have this problem as much as it computes the reaching defs of
263 each register in each block and thus can try to use an existing register.
265 **********************
267 A fair bit of simplicity is created by creating small functions for simple
268 tasks, even when the function is only called in one place. This may
269 measurably slow things down [or may not] by creating more function call
270 overhead than is necessary. The source is laid out so that it's trivial
271 to make the affected functions inline so that one can measure what speed
272 up, if any, can be achieved, and maybe later when things settle things can
273 be rearranged.
275 Help stamp out big monolithic functions! */
277 /* GCSE global vars. */
279 /* -dG dump file. */
280 static FILE *gcse_file;
282 /* Note whether or not we should run jump optimization after gcse. We
283 want to do this for two cases.
285 * If we changed any jumps via cprop.
287 * If we added any labels via edge splitting. */
289 static int run_jump_opt_after_gcse;
291 /* Bitmaps are normally not included in debugging dumps.
292 However it's useful to be able to print them from GDB.
293 We could create special functions for this, but it's simpler to
294 just allow passing stderr to the dump_foo fns. Since stderr can
295 be a macro, we store a copy here. */
296 static FILE *debug_stderr;
298 /* An obstack for our working variables. */
299 static struct obstack gcse_obstack;
301 /* Non-zero for each mode that supports (set (reg) (reg)).
302 This is trivially true for integer and floating point values.
303 It may or may not be true for condition codes. */
304 static char can_copy_p[(int) NUM_MACHINE_MODES];
306 /* Non-zero if can_copy_p has been initialized. */
307 static int can_copy_init_p;
309 struct reg_use {rtx reg_rtx; };
311 /* Hash table of expressions. */
313 struct expr
315 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
316 rtx expr;
317 /* Index in the available expression bitmaps. */
318 int bitmap_index;
319 /* Next entry with the same hash. */
320 struct expr *next_same_hash;
321 /* List of anticipatable occurrences in basic blocks in the function.
322 An "anticipatable occurrence" is one that is the first occurrence in the
323 basic block, the operands are not modified in the basic block prior
324 to the occurrence and the output is not used between the start of
325 the block and the occurrence. */
326 struct occr *antic_occr;
327 /* List of available occurrence in basic blocks in the function.
328 An "available occurrence" is one that is the last occurrence in the
329 basic block and the operands are not modified by following statements in
330 the basic block [including this insn]. */
331 struct occr *avail_occr;
332 /* Non-null if the computation is PRE redundant.
333 The value is the newly created pseudo-reg to record a copy of the
334 expression in all the places that reach the redundant copy. */
335 rtx reaching_reg;
338 /* Occurrence of an expression.
339 There is one per basic block. If a pattern appears more than once the
340 last appearance is used [or first for anticipatable expressions]. */
342 struct occr
344 /* Next occurrence of this expression. */
345 struct occr *next;
346 /* The insn that computes the expression. */
347 rtx insn;
348 /* Non-zero if this [anticipatable] occurrence has been deleted. */
349 char deleted_p;
350 /* Non-zero if this [available] occurrence has been copied to
351 reaching_reg. */
352 /* ??? This is mutually exclusive with deleted_p, so they could share
353 the same byte. */
354 char copied_p;
357 /* Expression and copy propagation hash tables.
358 Each hash table is an array of buckets.
359 ??? It is known that if it were an array of entries, structure elements
360 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
361 not clear whether in the final analysis a sufficient amount of memory would
362 be saved as the size of the available expression bitmaps would be larger
363 [one could build a mapping table without holes afterwards though].
364 Someday I'll perform the computation and figure it out. */
366 /* Total size of the expression hash table, in elements. */
367 static unsigned int expr_hash_table_size;
369 /* The table itself.
370 This is an array of `expr_hash_table_size' elements. */
371 static struct expr **expr_hash_table;
373 /* Total size of the copy propagation hash table, in elements. */
374 static unsigned int set_hash_table_size;
376 /* The table itself.
377 This is an array of `set_hash_table_size' elements. */
378 static struct expr **set_hash_table;
380 /* Mapping of uids to cuids.
381 Only real insns get cuids. */
382 static int *uid_cuid;
384 /* Highest UID in UID_CUID. */
385 static int max_uid;
387 /* Get the cuid of an insn. */
388 #ifdef ENABLE_CHECKING
389 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
390 #else
391 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
392 #endif
394 /* Number of cuids. */
395 static int max_cuid;
397 /* Mapping of cuids to insns. */
398 static rtx *cuid_insn;
400 /* Get insn from cuid. */
401 #define CUID_INSN(CUID) (cuid_insn[CUID])
403 /* Maximum register number in function prior to doing gcse + 1.
404 Registers created during this pass have regno >= max_gcse_regno.
405 This is named with "gcse" to not collide with global of same name. */
406 static unsigned int max_gcse_regno;
408 /* Maximum number of cse-able expressions found. */
409 static int n_exprs;
411 /* Maximum number of assignments for copy propagation found. */
412 static int n_sets;
414 /* Table of registers that are modified.
416 For each register, each element is a list of places where the pseudo-reg
417 is set.
419 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
420 requires knowledge of which blocks kill which regs [and thus could use
421 a bitmap instead of the lists `reg_set_table' uses].
423 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
424 num-regs) [however perhaps it may be useful to keep the data as is]. One
425 advantage of recording things this way is that `reg_set_table' is fairly
426 sparse with respect to pseudo regs but for hard regs could be fairly dense
427 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
428 up functions like compute_transp since in the case of pseudo-regs we only
429 need to iterate over the number of times a pseudo-reg is set, not over the
430 number of basic blocks [clearly there is a bit of a slow down in the cases
431 where a pseudo is set more than once in a block, however it is believed
432 that the net effect is to speed things up]. This isn't done for hard-regs
433 because recording call-clobbered hard-regs in `reg_set_table' at each
434 function call can consume a fair bit of memory, and iterating over
435 hard-regs stored this way in compute_transp will be more expensive. */
437 typedef struct reg_set
439 /* The next setting of this register. */
440 struct reg_set *next;
441 /* The insn where it was set. */
442 rtx insn;
443 } reg_set;
445 static reg_set **reg_set_table;
447 /* Size of `reg_set_table'.
448 The table starts out at max_gcse_regno + slop, and is enlarged as
449 necessary. */
450 static int reg_set_table_size;
452 /* Amount to grow `reg_set_table' by when it's full. */
453 #define REG_SET_TABLE_SLOP 100
455 /* This is a list of expressions which are MEMs and will be used by load
456 or store motion.
457 Load motion tracks MEMs which aren't killed by
458 anything except itself. (ie, loads and stores to a single location).
459 We can then allow movement of these MEM refs with a little special
460 allowance. (all stores copy the same value to the reaching reg used
461 for the loads). This means all values used to store into memory must have
462 no side effects so we can re-issue the setter value.
463 Store Motion uses this structure as an expression table to track stores
464 which look interesting, and might be moveable towards the exit block. */
466 struct ls_expr
468 struct expr * expr; /* Gcse expression reference for LM. */
469 rtx pattern; /* Pattern of this mem. */
470 rtx loads; /* INSN list of loads seen. */
471 rtx stores; /* INSN list of stores seen. */
472 struct ls_expr * next; /* Next in the list. */
473 int invalid; /* Invalid for some reason. */
474 int index; /* If it maps to a bitmap index. */
475 int hash_index; /* Index when in a hash table. */
476 rtx reaching_reg; /* Register to use when re-writing. */
479 /* Head of the list of load/store memory refs. */
480 static struct ls_expr * pre_ldst_mems = NULL;
482 /* Bitmap containing one bit for each register in the program.
483 Used when performing GCSE to track which registers have been set since
484 the start of the basic block. */
485 static sbitmap reg_set_bitmap;
487 /* For each block, a bitmap of registers set in the block.
488 This is used by expr_killed_p and compute_transp.
489 It is computed during hash table computation and not by compute_sets
490 as it includes registers added since the last pass (or between cprop and
491 gcse) and it's currently not easy to realloc sbitmap vectors. */
492 static sbitmap *reg_set_in_block;
494 /* Array, indexed by basic block number for a list of insns which modify
495 memory within that block. */
496 static rtx * modify_mem_list;
498 /* This array parallels modify_mem_list, but is kept canonicalized. */
499 static rtx * canon_modify_mem_list;
501 /* For each block, non-zero if memory is set in that block.
502 This is computed during hash table computation and is used by
503 expr_killed_p and compute_transp.
504 ??? Handling of memory is very simple, we don't make any attempt
505 to optimize things (later).
506 ??? This can be computed by compute_sets since the information
507 doesn't change. */
508 static char *mem_set_in_block;
510 /* Various variables for statistics gathering. */
512 /* Memory used in a pass.
513 This isn't intended to be absolutely precise. Its intent is only
514 to keep an eye on memory usage. */
515 static int bytes_used;
517 /* GCSE substitutions made. */
518 static int gcse_subst_count;
519 /* Number of copy instructions created. */
520 static int gcse_create_count;
521 /* Number of constants propagated. */
522 static int const_prop_count;
523 /* Number of copys propagated. */
524 static int copy_prop_count;
526 /* These variables are used by classic GCSE.
527 Normally they'd be defined a bit later, but `rd_gen' needs to
528 be declared sooner. */
530 /* Each block has a bitmap of each type.
531 The length of each blocks bitmap is:
533 max_cuid - for reaching definitions
534 n_exprs - for available expressions
536 Thus we view the bitmaps as 2 dimensional arrays. i.e.
537 rd_kill[block_num][cuid_num]
538 ae_kill[block_num][expr_num] */
540 /* For reaching defs */
541 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
543 /* for available exprs */
544 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
546 /* Objects of this type are passed around by the null-pointer check
547 removal routines. */
548 struct null_pointer_info
550 /* The basic block being processed. */
551 int current_block;
552 /* The first register to be handled in this pass. */
553 unsigned int min_reg;
554 /* One greater than the last register to be handled in this pass. */
555 unsigned int max_reg;
556 sbitmap *nonnull_local;
557 sbitmap *nonnull_killed;
560 static void compute_can_copy PARAMS ((void));
561 static char *gmalloc PARAMS ((unsigned int));
562 static char *grealloc PARAMS ((char *, unsigned int));
563 static char *gcse_alloc PARAMS ((unsigned long));
564 static void alloc_gcse_mem PARAMS ((rtx));
565 static void free_gcse_mem PARAMS ((void));
566 static void alloc_reg_set_mem PARAMS ((int));
567 static void free_reg_set_mem PARAMS ((void));
568 static int get_bitmap_width PARAMS ((int, int, int));
569 static void record_one_set PARAMS ((int, rtx));
570 static void record_set_info PARAMS ((rtx, rtx, void *));
571 static void compute_sets PARAMS ((rtx));
572 static void hash_scan_insn PARAMS ((rtx, int, int));
573 static void hash_scan_set PARAMS ((rtx, rtx, int));
574 static void hash_scan_clobber PARAMS ((rtx, rtx));
575 static void hash_scan_call PARAMS ((rtx, rtx));
576 static int want_to_gcse_p PARAMS ((rtx));
577 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
578 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
579 static int oprs_available_p PARAMS ((rtx, rtx));
580 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
581 int, int));
582 static void insert_set_in_table PARAMS ((rtx, rtx));
583 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
584 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
585 static unsigned int hash_string_1 PARAMS ((const char *));
586 static unsigned int hash_set PARAMS ((int, int));
587 static int expr_equiv_p PARAMS ((rtx, rtx));
588 static void record_last_reg_set_info PARAMS ((rtx, int));
589 static void record_last_mem_set_info PARAMS ((rtx));
590 static void record_last_set_info PARAMS ((rtx, rtx, void *));
591 static void compute_hash_table PARAMS ((int));
592 static void alloc_set_hash_table PARAMS ((int));
593 static void free_set_hash_table PARAMS ((void));
594 static void compute_set_hash_table PARAMS ((void));
595 static void alloc_expr_hash_table PARAMS ((unsigned int));
596 static void free_expr_hash_table PARAMS ((void));
597 static void compute_expr_hash_table PARAMS ((void));
598 static void dump_hash_table PARAMS ((FILE *, const char *, struct expr **,
599 int, int));
600 static struct expr *lookup_expr PARAMS ((rtx));
601 static struct expr *lookup_set PARAMS ((unsigned int, rtx));
602 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
603 static void reset_opr_set_tables PARAMS ((void));
604 static int oprs_not_set_p PARAMS ((rtx, rtx));
605 static void mark_call PARAMS ((rtx));
606 static void mark_set PARAMS ((rtx, rtx));
607 static void mark_clobber PARAMS ((rtx, rtx));
608 static void mark_oprs_set PARAMS ((rtx));
609 static void alloc_cprop_mem PARAMS ((int, int));
610 static void free_cprop_mem PARAMS ((void));
611 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
612 static void compute_transpout PARAMS ((void));
613 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
614 int));
615 static void compute_cprop_data PARAMS ((void));
616 static void find_used_regs PARAMS ((rtx *, void *));
617 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
618 static struct expr *find_avail_set PARAMS ((int, rtx));
619 static int cprop_jump PARAMS ((rtx, rtx, rtx));
620 #ifdef HAVE_cc0
621 static int cprop_cc0_jump PARAMS ((rtx, struct reg_use *, rtx));
622 #endif
623 static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
624 static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
625 static void canon_list_insert PARAMS ((rtx, rtx, void *));
626 static int cprop_insn PARAMS ((rtx, int));
627 static int cprop PARAMS ((int));
628 static int one_cprop_pass PARAMS ((int, int));
629 static void alloc_pre_mem PARAMS ((int, int));
630 static void free_pre_mem PARAMS ((void));
631 static void compute_pre_data PARAMS ((void));
632 static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
633 basic_block));
634 static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
635 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
636 static void pre_insert_copies PARAMS ((void));
637 static int pre_delete PARAMS ((void));
638 static int pre_gcse PARAMS ((void));
639 static int one_pre_gcse_pass PARAMS ((int));
640 static void add_label_notes PARAMS ((rtx, rtx));
641 static void alloc_code_hoist_mem PARAMS ((int, int));
642 static void free_code_hoist_mem PARAMS ((void));
643 static void compute_code_hoist_vbeinout PARAMS ((void));
644 static void compute_code_hoist_data PARAMS ((void));
645 static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
646 char *));
647 static void hoist_code PARAMS ((void));
648 static int one_code_hoisting_pass PARAMS ((void));
649 static void alloc_rd_mem PARAMS ((int, int));
650 static void free_rd_mem PARAMS ((void));
651 static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
652 static void compute_kill_rd PARAMS ((void));
653 static void compute_rd PARAMS ((void));
654 static void alloc_avail_expr_mem PARAMS ((int, int));
655 static void free_avail_expr_mem PARAMS ((void));
656 static void compute_ae_gen PARAMS ((void));
657 static int expr_killed_p PARAMS ((rtx, basic_block));
658 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *));
659 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
660 basic_block, int));
661 static rtx computing_insn PARAMS ((struct expr *, rtx));
662 static int def_reaches_here_p PARAMS ((rtx, rtx));
663 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
664 static int handle_avail_expr PARAMS ((rtx, struct expr *));
665 static int classic_gcse PARAMS ((void));
666 static int one_classic_gcse_pass PARAMS ((int));
667 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
668 static void delete_null_pointer_checks_1 PARAMS ((varray_type *, unsigned int *,
669 sbitmap *, sbitmap *,
670 struct null_pointer_info *));
671 static rtx process_insert_insn PARAMS ((struct expr *));
672 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
673 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
674 basic_block, int, char *));
675 static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
676 basic_block, char *));
677 static struct ls_expr * ldst_entry PARAMS ((rtx));
678 static void free_ldst_entry PARAMS ((struct ls_expr *));
679 static void free_ldst_mems PARAMS ((void));
680 static void print_ldst_list PARAMS ((FILE *));
681 static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
682 static int enumerate_ldsts PARAMS ((void));
683 static inline struct ls_expr * first_ls_expr PARAMS ((void));
684 static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
685 static int simple_mem PARAMS ((rtx));
686 static void invalidate_any_buried_refs PARAMS ((rtx));
687 static void compute_ld_motion_mems PARAMS ((void));
688 static void trim_ld_motion_mems PARAMS ((void));
689 static void update_ld_motion_stores PARAMS ((struct expr *));
690 static void reg_set_info PARAMS ((rtx, rtx, void *));
691 static int store_ops_ok PARAMS ((rtx, basic_block));
692 static void find_moveable_store PARAMS ((rtx));
693 static int compute_store_table PARAMS ((void));
694 static int load_kills_store PARAMS ((rtx, rtx));
695 static int find_loads PARAMS ((rtx, rtx));
696 static int store_killed_in_insn PARAMS ((rtx, rtx));
697 static int store_killed_after PARAMS ((rtx, rtx, basic_block));
698 static int store_killed_before PARAMS ((rtx, rtx, basic_block));
699 static void build_store_vectors PARAMS ((void));
700 static void insert_insn_start_bb PARAMS ((rtx, basic_block));
701 static int insert_store PARAMS ((struct ls_expr *, edge));
702 static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
703 static void delete_store PARAMS ((struct ls_expr *,
704 basic_block));
705 static void free_store_memory PARAMS ((void));
706 static void store_motion PARAMS ((void));
708 /* Entry point for global common subexpression elimination.
709 F is the first instruction in the function. */
712 gcse_main (f, file)
713 rtx f;
714 FILE *file;
716 int changed, pass;
717 /* Bytes used at start of pass. */
718 int initial_bytes_used;
719 /* Maximum number of bytes used by a pass. */
720 int max_pass_bytes;
721 /* Point to release obstack data from for each pass. */
722 char *gcse_obstack_bottom;
724 /* Insertion of instructions on edges can create new basic blocks; we
725 need the original basic block count so that we can properly deallocate
726 arrays sized on the number of basic blocks originally in the cfg. */
727 int orig_bb_count;
728 /* We do not construct an accurate cfg in functions which call
729 setjmp, so just punt to be safe. */
730 if (current_function_calls_setjmp)
731 return 0;
733 /* Assume that we do not need to run jump optimizations after gcse. */
734 run_jump_opt_after_gcse = 0;
736 /* For calling dump_foo fns from gdb. */
737 debug_stderr = stderr;
738 gcse_file = file;
740 /* Identify the basic block information for this function, including
741 successors and predecessors. */
742 max_gcse_regno = max_reg_num ();
744 if (file)
745 dump_flow_info (file);
747 orig_bb_count = n_basic_blocks;
748 /* Return if there's nothing to do. */
749 if (n_basic_blocks <= 1)
750 return 0;
752 /* Trying to perform global optimizations on flow graphs which have
753 a high connectivity will take a long time and is unlikely to be
754 particularly useful.
756 In normal circumstances a cfg should have about twice as many edges
757 as blocks. But we do not want to punish small functions which have
758 a couple switch statements. So we require a relatively large number
759 of basic blocks and the ratio of edges to blocks to be high. */
760 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
762 if (warn_disabled_optimization)
763 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
764 n_basic_blocks, n_edges / n_basic_blocks);
765 return 0;
768 /* If allocating memory for the cprop bitmap would take up too much
769 storage it's better just to disable the optimization. */
770 if ((n_basic_blocks
771 * SBITMAP_SET_SIZE (max_gcse_regno)
772 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
774 if (warn_disabled_optimization)
775 warning ("GCSE disabled: %d basic blocks and %d registers",
776 n_basic_blocks, max_gcse_regno);
778 return 0;
781 /* See what modes support reg/reg copy operations. */
782 if (! can_copy_init_p)
784 compute_can_copy ();
785 can_copy_init_p = 1;
788 gcc_obstack_init (&gcse_obstack);
789 bytes_used = 0;
791 /* We need alias. */
792 init_alias_analysis ();
793 /* Record where pseudo-registers are set. This data is kept accurate
794 during each pass. ??? We could also record hard-reg information here
795 [since it's unchanging], however it is currently done during hash table
796 computation.
798 It may be tempting to compute MEM set information here too, but MEM sets
799 will be subject to code motion one day and thus we need to compute
800 information about memory sets when we build the hash tables. */
802 alloc_reg_set_mem (max_gcse_regno);
803 compute_sets (f);
805 pass = 0;
806 initial_bytes_used = bytes_used;
807 max_pass_bytes = 0;
808 gcse_obstack_bottom = gcse_alloc (1);
809 changed = 1;
810 while (changed && pass < MAX_GCSE_PASSES)
812 changed = 0;
813 if (file)
814 fprintf (file, "GCSE pass %d\n\n", pass + 1);
816 /* Initialize bytes_used to the space for the pred/succ lists,
817 and the reg_set_table data. */
818 bytes_used = initial_bytes_used;
820 /* Each pass may create new registers, so recalculate each time. */
821 max_gcse_regno = max_reg_num ();
823 alloc_gcse_mem (f);
825 /* Don't allow constant propagation to modify jumps
826 during this pass. */
827 changed = one_cprop_pass (pass + 1, 0);
829 if (optimize_size)
830 changed |= one_classic_gcse_pass (pass + 1);
831 else
833 changed |= one_pre_gcse_pass (pass + 1);
834 /* We may have just created new basic blocks. Release and
835 recompute various things which are sized on the number of
836 basic blocks. */
837 if (changed)
839 int i;
841 for (i = 0; i < orig_bb_count; i++)
843 if (modify_mem_list[i])
844 free_INSN_LIST_list (modify_mem_list + i);
845 if (canon_modify_mem_list[i])
846 free_INSN_LIST_list (canon_modify_mem_list + i);
848 modify_mem_list
849 = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx *));
850 canon_modify_mem_list
851 = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx *));
852 memset ((char *) modify_mem_list, 0, n_basic_blocks * sizeof (rtx *));
853 memset ((char *) canon_modify_mem_list, 0, n_basic_blocks * sizeof (rtx *));
854 orig_bb_count = n_basic_blocks;
856 free_reg_set_mem ();
857 alloc_reg_set_mem (max_reg_num ());
858 compute_sets (f);
859 run_jump_opt_after_gcse = 1;
862 if (max_pass_bytes < bytes_used)
863 max_pass_bytes = bytes_used;
865 /* Free up memory, then reallocate for code hoisting. We can
866 not re-use the existing allocated memory because the tables
867 will not have info for the insns or registers created by
868 partial redundancy elimination. */
869 free_gcse_mem ();
871 /* It does not make sense to run code hoisting unless we optimizing
872 for code size -- it rarely makes programs faster, and can make
873 them bigger if we did partial redundancy elimination (when optimizing
874 for space, we use a classic gcse algorithm instead of partial
875 redundancy algorithms). */
876 if (optimize_size)
878 max_gcse_regno = max_reg_num ();
879 alloc_gcse_mem (f);
880 changed |= one_code_hoisting_pass ();
881 free_gcse_mem ();
883 if (max_pass_bytes < bytes_used)
884 max_pass_bytes = bytes_used;
887 if (file)
889 fprintf (file, "\n");
890 fflush (file);
893 obstack_free (&gcse_obstack, gcse_obstack_bottom);
894 pass++;
897 /* Do one last pass of copy propagation, including cprop into
898 conditional jumps. */
900 max_gcse_regno = max_reg_num ();
901 alloc_gcse_mem (f);
902 /* This time, go ahead and allow cprop to alter jumps. */
903 one_cprop_pass (pass + 1, 1);
904 free_gcse_mem ();
906 if (file)
908 fprintf (file, "GCSE of %s: %d basic blocks, ",
909 current_function_name, n_basic_blocks);
910 fprintf (file, "%d pass%s, %d bytes\n\n",
911 pass, pass > 1 ? "es" : "", max_pass_bytes);
914 obstack_free (&gcse_obstack, NULL);
915 free_reg_set_mem ();
916 /* We are finished with alias. */
917 end_alias_analysis ();
918 allocate_reg_info (max_reg_num (), FALSE, FALSE);
920 if (!optimize_size && flag_gcse_sm)
921 store_motion ();
922 /* Record where pseudo-registers are set. */
923 return run_jump_opt_after_gcse;
926 /* Misc. utilities. */
928 /* Compute which modes support reg/reg copy operations. */
930 static void
931 compute_can_copy ()
933 int i;
934 #ifndef AVOID_CCMODE_COPIES
935 rtx reg,insn;
936 #endif
937 memset (can_copy_p, 0, NUM_MACHINE_MODES);
939 start_sequence ();
940 for (i = 0; i < NUM_MACHINE_MODES; i++)
941 if (GET_MODE_CLASS (i) == MODE_CC)
943 #ifdef AVOID_CCMODE_COPIES
944 can_copy_p[i] = 0;
945 #else
946 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
947 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
948 if (recog (PATTERN (insn), insn, NULL) >= 0)
949 can_copy_p[i] = 1;
950 #endif
952 else
953 can_copy_p[i] = 1;
955 end_sequence ();
958 /* Cover function to xmalloc to record bytes allocated. */
960 static char *
961 gmalloc (size)
962 unsigned int size;
964 bytes_used += size;
965 return xmalloc (size);
968 /* Cover function to xrealloc.
969 We don't record the additional size since we don't know it.
970 It won't affect memory usage stats much anyway. */
972 static char *
973 grealloc (ptr, size)
974 char *ptr;
975 unsigned int size;
977 return xrealloc (ptr, size);
980 /* Cover function to obstack_alloc.
981 We don't need to record the bytes allocated here since
982 obstack_chunk_alloc is set to gmalloc. */
984 static char *
985 gcse_alloc (size)
986 unsigned long size;
988 return (char *) obstack_alloc (&gcse_obstack, size);
991 /* Allocate memory for the cuid mapping array,
992 and reg/memory set tracking tables.
994 This is called at the start of each pass. */
996 static void
997 alloc_gcse_mem (f)
998 rtx f;
1000 int i,n;
1001 rtx insn;
1003 /* Find the largest UID and create a mapping from UIDs to CUIDs.
1004 CUIDs are like UIDs except they increase monotonically, have no gaps,
1005 and only apply to real insns. */
1007 max_uid = get_max_uid ();
1008 n = (max_uid + 1) * sizeof (int);
1009 uid_cuid = (int *) gmalloc (n);
1010 memset ((char *) uid_cuid, 0, n);
1011 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1013 if (INSN_P (insn))
1014 uid_cuid[INSN_UID (insn)] = i++;
1015 else
1016 uid_cuid[INSN_UID (insn)] = i;
1019 /* Create a table mapping cuids to insns. */
1021 max_cuid = i;
1022 n = (max_cuid + 1) * sizeof (rtx);
1023 cuid_insn = (rtx *) gmalloc (n);
1024 memset ((char *) cuid_insn, 0, n);
1025 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1026 if (INSN_P (insn))
1027 CUID_INSN (i++) = insn;
1029 /* Allocate vars to track sets of regs. */
1030 reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);
1032 /* Allocate vars to track sets of regs, memory per block. */
1033 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
1034 max_gcse_regno);
1035 mem_set_in_block = (char *) gmalloc (n_basic_blocks);
1036 /* Allocate array to keep a list of insns which modify memory in each
1037 basic block. */
1038 modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx *));
1039 canon_modify_mem_list = (rtx *) gmalloc (n_basic_blocks * sizeof (rtx *));
1040 memset ((char *) modify_mem_list, 0, n_basic_blocks * sizeof (rtx *));
1041 memset ((char *) canon_modify_mem_list, 0, n_basic_blocks * sizeof (rtx *));
1044 /* Free memory allocated by alloc_gcse_mem. */
1046 static void
1047 free_gcse_mem ()
1049 free (uid_cuid);
1050 free (cuid_insn);
1052 free (reg_set_bitmap);
1054 sbitmap_vector_free (reg_set_in_block);
1055 free (mem_set_in_block);
1056 /* re-Cache any INSN_LIST nodes we have allocated. */
1058 int i;
1060 for (i = 0; i < n_basic_blocks; i++)
1062 if (modify_mem_list[i])
1063 free_INSN_LIST_list (modify_mem_list + i);
1064 if (canon_modify_mem_list[i])
1065 free_INSN_LIST_list (canon_modify_mem_list + i);
1068 free (modify_mem_list);
1069 free (canon_modify_mem_list);
1070 modify_mem_list = 0;
1071 canon_modify_mem_list = 0;
1075 /* Many of the global optimization algorithms work by solving dataflow
1076 equations for various expressions. Initially, some local value is
1077 computed for each expression in each block. Then, the values across the
1078 various blocks are combined (by following flow graph edges) to arrive at
1079 global values. Conceptually, each set of equations is independent. We
1080 may therefore solve all the equations in parallel, solve them one at a
1081 time, or pick any intermediate approach.
1083 When you're going to need N two-dimensional bitmaps, each X (say, the
1084 number of blocks) by Y (say, the number of expressions), call this
1085 function. It's not important what X and Y represent; only that Y
1086 correspond to the things that can be done in parallel. This function will
1087 return an appropriate chunking factor C; you should solve C sets of
1088 equations in parallel. By going through this function, we can easily
1089 trade space against time; by solving fewer equations in parallel we use
1090 less space. */
1092 static int
1093 get_bitmap_width (n, x, y)
1094 int n;
1095 int x;
1096 int y;
1098 /* It's not really worth figuring out *exactly* how much memory will
1099 be used by a particular choice. The important thing is to get
1100 something approximately right. */
1101 size_t max_bitmap_memory = 10 * 1024 * 1024;
1103 /* The number of bytes we'd use for a single column of minimum
1104 width. */
1105 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1107 /* Often, it's reasonable just to solve all the equations in
1108 parallel. */
1109 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1110 return y;
1112 /* Otherwise, pick the largest width we can, without going over the
1113 limit. */
1114 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1115 / column_size);
1118 /* Compute the local properties of each recorded expression.
1120 Local properties are those that are defined by the block, irrespective of
1121 other blocks.
1123 An expression is transparent in a block if its operands are not modified
1124 in the block.
1126 An expression is computed (locally available) in a block if it is computed
1127 at least once and expression would contain the same value if the
1128 computation was moved to the end of the block.
1130 An expression is locally anticipatable in a block if it is computed at
1131 least once and expression would contain the same value if the computation
1132 was moved to the beginning of the block.
1134 We call this routine for cprop, pre and code hoisting. They all compute
1135 basically the same information and thus can easily share this code.
1137 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1138 properties. If NULL, then it is not necessary to compute or record that
1139 particular property.
1141 SETP controls which hash table to look at. If zero, this routine looks at
1142 the expr hash table; if nonzero this routine looks at the set hash table.
1143 Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1144 ABSALTERED. */
1146 static void
1147 compute_local_properties (transp, comp, antloc, setp)
1148 sbitmap *transp;
1149 sbitmap *comp;
1150 sbitmap *antloc;
1151 int setp;
1153 unsigned int i, hash_table_size;
1154 struct expr **hash_table;
1156 /* Initialize any bitmaps that were passed in. */
1157 if (transp)
1159 if (setp)
1160 sbitmap_vector_zero (transp, n_basic_blocks);
1161 else
1162 sbitmap_vector_ones (transp, n_basic_blocks);
1165 if (comp)
1166 sbitmap_vector_zero (comp, n_basic_blocks);
1167 if (antloc)
1168 sbitmap_vector_zero (antloc, n_basic_blocks);
1170 /* We use the same code for cprop, pre and hoisting. For cprop
1171 we care about the set hash table, for pre and hoisting we
1172 care about the expr hash table. */
1173 hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
1174 hash_table = setp ? set_hash_table : expr_hash_table;
1176 for (i = 0; i < hash_table_size; i++)
1178 struct expr *expr;
1180 for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
1182 int indx = expr->bitmap_index;
1183 struct occr *occr;
1185 /* The expression is transparent in this block if it is not killed.
1186 We start by assuming all are transparent [none are killed], and
1187 then reset the bits for those that are. */
1188 if (transp)
1189 compute_transp (expr->expr, indx, transp, setp);
1191 /* The occurrences recorded in antic_occr are exactly those that
1192 we want to set to non-zero in ANTLOC. */
1193 if (antloc)
1194 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1196 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1198 /* While we're scanning the table, this is a good place to
1199 initialize this. */
1200 occr->deleted_p = 0;
1203 /* The occurrences recorded in avail_occr are exactly those that
1204 we want to set to non-zero in COMP. */
1205 if (comp)
1206 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1208 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1210 /* While we're scanning the table, this is a good place to
1211 initialize this. */
1212 occr->copied_p = 0;
1215 /* While we're scanning the table, this is a good place to
1216 initialize this. */
1217 expr->reaching_reg = 0;
1222 /* Register set information.
1224 `reg_set_table' records where each register is set or otherwise
1225 modified. */
1227 static struct obstack reg_set_obstack;
1229 static void
1230 alloc_reg_set_mem (n_regs)
1231 int n_regs;
1233 unsigned int n;
1235 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1236 n = reg_set_table_size * sizeof (struct reg_set *);
1237 reg_set_table = (struct reg_set **) gmalloc (n);
1238 memset ((char *) reg_set_table, 0, n);
1240 gcc_obstack_init (&reg_set_obstack);
1243 static void
1244 free_reg_set_mem ()
1246 free (reg_set_table);
1247 obstack_free (&reg_set_obstack, NULL);
1250 /* Record REGNO in the reg_set table. */
1252 static void
1253 record_one_set (regno, insn)
1254 int regno;
1255 rtx insn;
1257 /* Allocate a new reg_set element and link it onto the list. */
1258 struct reg_set *new_reg_info;
1260 /* If the table isn't big enough, enlarge it. */
1261 if (regno >= reg_set_table_size)
1263 int new_size = regno + REG_SET_TABLE_SLOP;
1265 reg_set_table
1266 = (struct reg_set **) grealloc ((char *) reg_set_table,
1267 new_size * sizeof (struct reg_set *));
1268 memset ((char *) (reg_set_table + reg_set_table_size), 0,
1269 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1270 reg_set_table_size = new_size;
1273 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1274 sizeof (struct reg_set));
1275 bytes_used += sizeof (struct reg_set);
1276 new_reg_info->insn = insn;
1277 new_reg_info->next = reg_set_table[regno];
1278 reg_set_table[regno] = new_reg_info;
1281 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1282 an insn. The DATA is really the instruction in which the SET is
1283 occurring. */
1285 static void
1286 record_set_info (dest, setter, data)
1287 rtx dest, setter ATTRIBUTE_UNUSED;
1288 void *data;
1290 rtx record_set_insn = (rtx) data;
1292 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1293 record_one_set (REGNO (dest), record_set_insn);
1296 /* Scan the function and record each set of each pseudo-register.
1298 This is called once, at the start of the gcse pass. See the comments for
1299 `reg_set_table' for further documenation. */
1301 static void
1302 compute_sets (f)
1303 rtx f;
1305 rtx insn;
1307 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1308 if (INSN_P (insn))
1309 note_stores (PATTERN (insn), record_set_info, insn);
1312 /* Hash table support. */
1314 /* For each register, the cuid of the first/last insn in the block to set it,
1315 or -1 if not set. */
1316 #define NEVER_SET -1
1317 static int *reg_first_set;
1318 static int *reg_last_set;
1320 /* While computing "first/last set" info, this is the CUID of first/last insn
1321 to set memory or -1 if not set. `mem_last_set' is also used when
1322 performing GCSE to record whether memory has been set since the beginning
1323 of the block.
1325 Note that handling of memory is very simple, we don't make any attempt
1326 to optimize things (later). */
1327 static int mem_first_set;
1328 static int mem_last_set;
1330 /* See whether X, the source of a set, is something we want to consider for
1331 GCSE. */
1333 static int
1334 want_to_gcse_p (x)
1335 rtx x;
1337 static rtx test_insn = 0;
1338 int num_clobbers = 0;
1339 int icode;
1341 switch (GET_CODE (x))
1343 case REG:
1344 case SUBREG:
1345 case CONST_INT:
1346 case CONST_DOUBLE:
1347 case CALL:
1348 return 0;
1350 default:
1351 break;
1354 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1355 if (general_operand (x, GET_MODE (x)))
1356 return 1;
1357 else if (GET_MODE (x) == VOIDmode)
1358 return 0;
1360 /* Otherwise, check if we can make a valid insn from it. First initialize
1361 our test insn if we haven't already. */
1362 if (test_insn == 0)
1364 test_insn
1365 = make_insn_raw (gen_rtx_SET (VOIDmode,
1366 gen_rtx_REG (word_mode,
1367 FIRST_PSEUDO_REGISTER * 2),
1368 const0_rtx));
1369 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1370 ggc_add_rtx_root (&test_insn, 1);
1373 /* Now make an insn like the one we would make when GCSE'ing and see if
1374 valid. */
1375 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1376 SET_SRC (PATTERN (test_insn)) = x;
1377 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1378 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1381 /* Return non-zero if the operands of expression X are unchanged from the
1382 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1383 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1385 static int
1386 oprs_unchanged_p (x, insn, avail_p)
1387 rtx x, insn;
1388 int avail_p;
1390 int i, j;
1391 enum rtx_code code;
1392 const char *fmt;
1394 if (x == 0)
1395 return 1;
1397 code = GET_CODE (x);
1398 switch (code)
1400 case REG:
1401 if (avail_p)
1402 return (reg_last_set[REGNO (x)] == NEVER_SET
1403 || reg_last_set[REGNO (x)] < INSN_CUID (insn));
1404 else
1405 return (reg_first_set[REGNO (x)] == NEVER_SET
1406 || reg_first_set[REGNO (x)] >= INSN_CUID (insn));
1408 case MEM:
1409 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn), INSN_CUID (insn),
1410 x, avail_p))
1411 return 0;
1412 if (avail_p && mem_last_set != NEVER_SET
1413 && mem_last_set >= INSN_CUID (insn))
1414 return 0;
1415 else if (! avail_p && mem_first_set != NEVER_SET
1416 && mem_first_set < INSN_CUID (insn))
1417 return 0;
1418 else
1419 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1421 case PRE_DEC:
1422 case PRE_INC:
1423 case POST_DEC:
1424 case POST_INC:
1425 case PRE_MODIFY:
1426 case POST_MODIFY:
1427 return 0;
1429 case PC:
1430 case CC0: /*FIXME*/
1431 case CONST:
1432 case CONST_INT:
1433 case CONST_DOUBLE:
1434 case SYMBOL_REF:
1435 case LABEL_REF:
1436 case ADDR_VEC:
1437 case ADDR_DIFF_VEC:
1438 return 1;
1440 default:
1441 break;
1444 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1446 if (fmt[i] == 'e')
1448 /* If we are about to do the last recursive call needed at this
1449 level, change it into iteration. This function is called enough
1450 to be worth it. */
1451 if (i == 0)
1452 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1454 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1455 return 0;
1457 else if (fmt[i] == 'E')
1458 for (j = 0; j < XVECLEN (x, i); j++)
1459 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1460 return 0;
1463 return 1;
1466 /* Used for communication between mems_conflict_for_gcse_p and
1467 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1468 conflict between two memory references. */
1469 static int gcse_mems_conflict_p;
1471 /* Used for communication between mems_conflict_for_gcse_p and
1472 load_killed_in_block_p. A memory reference for a load instruction,
1473 mems_conflict_for_gcse_p will see if a memory store conflicts with
1474 this memory load. */
1475 static rtx gcse_mem_operand;
1477 /* DEST is the output of an instruction. If it is a memory reference, and
1478 possibly conflicts with the load found in gcse_mem_operand, then set
1479 gcse_mems_conflict_p to a nonzero value. */
1481 static void
1482 mems_conflict_for_gcse_p (dest, setter, data)
1483 rtx dest, setter ATTRIBUTE_UNUSED;
1484 void *data ATTRIBUTE_UNUSED;
1486 while (GET_CODE (dest) == SUBREG
1487 || GET_CODE (dest) == ZERO_EXTRACT
1488 || GET_CODE (dest) == SIGN_EXTRACT
1489 || GET_CODE (dest) == STRICT_LOW_PART)
1490 dest = XEXP (dest, 0);
1492 /* If DEST is not a MEM, then it will not conflict with the load. Note
1493 that function calls are assumed to clobber memory, but are handled
1494 elsewhere. */
1495 if (GET_CODE (dest) != MEM)
1496 return;
1498 /* If we are setting a MEM in our list of specially recognized MEMs,
1499 don't mark as killed this time. */
1501 if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
1503 if (!find_rtx_in_ldst (dest))
1504 gcse_mems_conflict_p = 1;
1505 return;
1508 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1509 rtx_addr_varies_p))
1510 gcse_mems_conflict_p = 1;
1513 /* Return nonzero if the expression in X (a memory reference) is killed
1514 in block BB before or after the insn with the CUID in UID_LIMIT.
1515 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1516 before UID_LIMIT.
1518 To check the entire block, set UID_LIMIT to max_uid + 1 and
1519 AVAIL_P to 0. */
1521 static int
1522 load_killed_in_block_p (bb, uid_limit, x, avail_p)
1523 basic_block bb;
1524 int uid_limit;
1525 rtx x;
1526 int avail_p;
1528 rtx list_entry = modify_mem_list[bb->index];
1529 while (list_entry)
1531 rtx setter;
1532 /* Ignore entries in the list that do not apply. */
1533 if ((avail_p
1534 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1535 || (! avail_p
1536 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1538 list_entry = XEXP (list_entry, 1);
1539 continue;
1542 setter = XEXP (list_entry, 0);
1544 /* If SETTER is a call everything is clobbered. Note that calls
1545 to pure functions are never put on the list, so we need not
1546 worry about them. */
1547 if (GET_CODE (setter) == CALL_INSN)
1548 return 1;
1550 /* SETTER must be an INSN of some kind that sets memory. Call
1551 note_stores to examine each hunk of memory that is modified.
1553 The note_stores interface is pretty limited, so we have to
1554 communicate via global variables. Yuk. */
1555 gcse_mem_operand = x;
1556 gcse_mems_conflict_p = 0;
1557 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1558 if (gcse_mems_conflict_p)
1559 return 1;
1560 list_entry = XEXP (list_entry, 1);
1562 return 0;
1565 /* Return non-zero if the operands of expression X are unchanged from
1566 the start of INSN's basic block up to but not including INSN. */
1568 static int
1569 oprs_anticipatable_p (x, insn)
1570 rtx x, insn;
1572 return oprs_unchanged_p (x, insn, 0);
1575 /* Return non-zero if the operands of expression X are unchanged from
1576 INSN to the end of INSN's basic block. */
1578 static int
1579 oprs_available_p (x, insn)
1580 rtx x, insn;
1582 return oprs_unchanged_p (x, insn, 1);
1585 /* Hash expression X.
1587 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1588 indicating if a volatile operand is found or if the expression contains
1589 something we don't want to insert in the table.
1591 ??? One might want to merge this with canon_hash. Later. */
1593 static unsigned int
1594 hash_expr (x, mode, do_not_record_p, hash_table_size)
1595 rtx x;
1596 enum machine_mode mode;
1597 int *do_not_record_p;
1598 int hash_table_size;
1600 unsigned int hash;
1602 *do_not_record_p = 0;
1604 hash = hash_expr_1 (x, mode, do_not_record_p);
1605 return hash % hash_table_size;
1608 /* Hash a string. Just add its bytes up. */
1610 static inline unsigned
1611 hash_string_1 (ps)
1612 const char *ps;
1614 unsigned hash = 0;
1615 const unsigned char *p = (const unsigned char *)ps;
1617 if (p)
1618 while (*p)
1619 hash += *p++;
1621 return hash;
1624 /* Subroutine of hash_expr to do the actual work. */
1626 static unsigned int
1627 hash_expr_1 (x, mode, do_not_record_p)
1628 rtx x;
1629 enum machine_mode mode;
1630 int *do_not_record_p;
1632 int i, j;
1633 unsigned hash = 0;
1634 enum rtx_code code;
1635 const char *fmt;
1637 /* Used to turn recursion into iteration. We can't rely on GCC's
1638 tail-recursion eliminatio since we need to keep accumulating values
1639 in HASH. */
1641 if (x == 0)
1642 return hash;
1644 repeat:
1645 code = GET_CODE (x);
1646 switch (code)
1648 case REG:
1649 hash += ((unsigned int) REG << 7) + REGNO (x);
1650 return hash;
1652 case CONST_INT:
1653 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1654 + (unsigned int) INTVAL (x));
1655 return hash;
1657 case CONST_DOUBLE:
1658 /* This is like the general case, except that it only counts
1659 the integers representing the constant. */
1660 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1661 if (GET_MODE (x) != VOIDmode)
1662 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1663 hash += (unsigned int) XWINT (x, i);
1664 else
1665 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1666 + (unsigned int) CONST_DOUBLE_HIGH (x));
1667 return hash;
1669 /* Assume there is only one rtx object for any given label. */
1670 case LABEL_REF:
1671 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1672 differences and differences between each stage's debugging dumps. */
1673 hash += (((unsigned int) LABEL_REF << 7)
1674 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1675 return hash;
1677 case SYMBOL_REF:
1679 /* Don't hash on the symbol's address to avoid bootstrap differences.
1680 Different hash values may cause expressions to be recorded in
1681 different orders and thus different registers to be used in the
1682 final assembler. This also avoids differences in the dump files
1683 between various stages. */
1684 unsigned int h = 0;
1685 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1687 while (*p)
1688 h += (h << 7) + *p++; /* ??? revisit */
1690 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1691 return hash;
1694 case MEM:
1695 if (MEM_VOLATILE_P (x))
1697 *do_not_record_p = 1;
1698 return 0;
1701 hash += (unsigned int) MEM;
1702 hash += MEM_ALIAS_SET (x);
1703 x = XEXP (x, 0);
1704 goto repeat;
1706 case PRE_DEC:
1707 case PRE_INC:
1708 case POST_DEC:
1709 case POST_INC:
1710 case PC:
1711 case CC0:
1712 case CALL:
1713 case UNSPEC_VOLATILE:
1714 *do_not_record_p = 1;
1715 return 0;
1717 case ASM_OPERANDS:
1718 if (MEM_VOLATILE_P (x))
1720 *do_not_record_p = 1;
1721 return 0;
1723 else
1725 /* We don't want to take the filename and line into account. */
1726 hash += (unsigned) code + (unsigned) GET_MODE (x)
1727 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1728 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1729 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1731 if (ASM_OPERANDS_INPUT_LENGTH (x))
1733 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1735 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1736 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1737 do_not_record_p)
1738 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1739 (x, i)));
1742 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1743 x = ASM_OPERANDS_INPUT (x, 0);
1744 mode = GET_MODE (x);
1745 goto repeat;
1747 return hash;
1750 default:
1751 break;
1754 hash += (unsigned) code + (unsigned) GET_MODE (x);
1755 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1757 if (fmt[i] == 'e')
1759 /* If we are about to do the last recursive call
1760 needed at this level, change it into iteration.
1761 This function is called enough to be worth it. */
1762 if (i == 0)
1764 x = XEXP (x, i);
1765 goto repeat;
1768 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1769 if (*do_not_record_p)
1770 return 0;
1773 else if (fmt[i] == 'E')
1774 for (j = 0; j < XVECLEN (x, i); j++)
1776 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1777 if (*do_not_record_p)
1778 return 0;
1781 else if (fmt[i] == 's')
1782 hash += hash_string_1 (XSTR (x, i));
1783 else if (fmt[i] == 'i')
1784 hash += (unsigned int) XINT (x, i);
1785 else
1786 abort ();
1789 return hash;
1792 /* Hash a set of register REGNO.
1794 Sets are hashed on the register that is set. This simplifies the PRE copy
1795 propagation code.
1797 ??? May need to make things more elaborate. Later, as necessary. */
1799 static unsigned int
1800 hash_set (regno, hash_table_size)
1801 int regno;
1802 int hash_table_size;
1804 unsigned int hash;
1806 hash = regno;
1807 return hash % hash_table_size;
1810 /* Return non-zero if exp1 is equivalent to exp2.
1811 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1813 static int
1814 expr_equiv_p (x, y)
1815 rtx x, y;
1817 register int i, j;
1818 register enum rtx_code code;
1819 register const char *fmt;
1821 if (x == y)
1822 return 1;
1824 if (x == 0 || y == 0)
1825 return x == y;
1827 code = GET_CODE (x);
1828 if (code != GET_CODE (y))
1829 return 0;
1831 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1832 if (GET_MODE (x) != GET_MODE (y))
1833 return 0;
1835 switch (code)
1837 case PC:
1838 case CC0:
1839 return x == y;
1841 case CONST_INT:
1842 return INTVAL (x) == INTVAL (y);
1844 case LABEL_REF:
1845 return XEXP (x, 0) == XEXP (y, 0);
1847 case SYMBOL_REF:
1848 return XSTR (x, 0) == XSTR (y, 0);
1850 case REG:
1851 return REGNO (x) == REGNO (y);
1853 case MEM:
1854 /* Can't merge two expressions in different alias sets, since we can
1855 decide that the expression is transparent in a block when it isn't,
1856 due to it being set with the different alias set. */
1857 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1858 return 0;
1859 break;
1861 /* For commutative operations, check both orders. */
1862 case PLUS:
1863 case MULT:
1864 case AND:
1865 case IOR:
1866 case XOR:
1867 case NE:
1868 case EQ:
1869 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1870 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1871 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1872 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1874 case ASM_OPERANDS:
1875 /* We don't use the generic code below because we want to
1876 disregard filename and line numbers. */
1878 /* A volatile asm isn't equivalent to any other. */
1879 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1880 return 0;
1882 if (GET_MODE (x) != GET_MODE (y)
1883 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1884 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1885 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1886 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1887 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1888 return 0;
1890 if (ASM_OPERANDS_INPUT_LENGTH (x))
1892 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1893 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1894 ASM_OPERANDS_INPUT (y, i))
1895 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1896 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1897 return 0;
1900 return 1;
1902 default:
1903 break;
1906 /* Compare the elements. If any pair of corresponding elements
1907 fail to match, return 0 for the whole thing. */
1909 fmt = GET_RTX_FORMAT (code);
1910 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1912 switch (fmt[i])
1914 case 'e':
1915 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1916 return 0;
1917 break;
1919 case 'E':
1920 if (XVECLEN (x, i) != XVECLEN (y, i))
1921 return 0;
1922 for (j = 0; j < XVECLEN (x, i); j++)
1923 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1924 return 0;
1925 break;
1927 case 's':
1928 if (strcmp (XSTR (x, i), XSTR (y, i)))
1929 return 0;
1930 break;
1932 case 'i':
1933 if (XINT (x, i) != XINT (y, i))
1934 return 0;
1935 break;
1937 case 'w':
1938 if (XWINT (x, i) != XWINT (y, i))
1939 return 0;
1940 break;
1942 case '0':
1943 break;
1945 default:
1946 abort ();
1950 return 1;
1953 /* Insert expression X in INSN in the hash table.
1954 If it is already present, record it as the last occurrence in INSN's
1955 basic block.
1957 MODE is the mode of the value X is being stored into.
1958 It is only used if X is a CONST_INT.
1960 ANTIC_P is non-zero if X is an anticipatable expression.
1961 AVAIL_P is non-zero if X is an available expression. */
1963 static void
1964 insert_expr_in_table (x, mode, insn, antic_p, avail_p)
1965 rtx x;
1966 enum machine_mode mode;
1967 rtx insn;
1968 int antic_p, avail_p;
1970 int found, do_not_record_p;
1971 unsigned int hash;
1972 struct expr *cur_expr, *last_expr = NULL;
1973 struct occr *antic_occr, *avail_occr;
1974 struct occr *last_occr = NULL;
1976 hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
1978 /* Do not insert expression in table if it contains volatile operands,
1979 or if hash_expr determines the expression is something we don't want
1980 to or can't handle. */
1981 if (do_not_record_p)
1982 return;
1984 cur_expr = expr_hash_table[hash];
1985 found = 0;
1987 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1989 /* If the expression isn't found, save a pointer to the end of
1990 the list. */
1991 last_expr = cur_expr;
1992 cur_expr = cur_expr->next_same_hash;
1995 if (! found)
1997 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1998 bytes_used += sizeof (struct expr);
1999 if (expr_hash_table[hash] == NULL)
2000 /* This is the first pattern that hashed to this index. */
2001 expr_hash_table[hash] = cur_expr;
2002 else
2003 /* Add EXPR to end of this hash chain. */
2004 last_expr->next_same_hash = cur_expr;
2006 /* Set the fields of the expr element. */
2007 cur_expr->expr = x;
2008 cur_expr->bitmap_index = n_exprs++;
2009 cur_expr->next_same_hash = NULL;
2010 cur_expr->antic_occr = NULL;
2011 cur_expr->avail_occr = NULL;
2014 /* Now record the occurrence(s). */
2015 if (antic_p)
2017 antic_occr = cur_expr->antic_occr;
2019 /* Search for another occurrence in the same basic block. */
2020 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2022 /* If an occurrence isn't found, save a pointer to the end of
2023 the list. */
2024 last_occr = antic_occr;
2025 antic_occr = antic_occr->next;
2028 if (antic_occr)
2029 /* Found another instance of the expression in the same basic block.
2030 Prefer the currently recorded one. We want the first one in the
2031 block and the block is scanned from start to end. */
2032 ; /* nothing to do */
2033 else
2035 /* First occurrence of this expression in this basic block. */
2036 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2037 bytes_used += sizeof (struct occr);
2038 /* First occurrence of this expression in any block? */
2039 if (cur_expr->antic_occr == NULL)
2040 cur_expr->antic_occr = antic_occr;
2041 else
2042 last_occr->next = antic_occr;
2044 antic_occr->insn = insn;
2045 antic_occr->next = NULL;
2049 if (avail_p)
2051 avail_occr = cur_expr->avail_occr;
2053 /* Search for another occurrence in the same basic block. */
2054 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2056 /* If an occurrence isn't found, save a pointer to the end of
2057 the list. */
2058 last_occr = avail_occr;
2059 avail_occr = avail_occr->next;
2062 if (avail_occr)
2063 /* Found another instance of the expression in the same basic block.
2064 Prefer this occurrence to the currently recorded one. We want
2065 the last one in the block and the block is scanned from start
2066 to end. */
2067 avail_occr->insn = insn;
2068 else
2070 /* First occurrence of this expression in this basic block. */
2071 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2072 bytes_used += sizeof (struct occr);
2074 /* First occurrence of this expression in any block? */
2075 if (cur_expr->avail_occr == NULL)
2076 cur_expr->avail_occr = avail_occr;
2077 else
2078 last_occr->next = avail_occr;
2080 avail_occr->insn = insn;
2081 avail_occr->next = NULL;
2086 /* Insert pattern X in INSN in the hash table.
2087 X is a SET of a reg to either another reg or a constant.
2088 If it is already present, record it as the last occurrence in INSN's
2089 basic block. */
2091 static void
2092 insert_set_in_table (x, insn)
2093 rtx x;
2094 rtx insn;
2096 int found;
2097 unsigned int hash;
2098 struct expr *cur_expr, *last_expr = NULL;
2099 struct occr *cur_occr, *last_occr = NULL;
2101 if (GET_CODE (x) != SET
2102 || GET_CODE (SET_DEST (x)) != REG)
2103 abort ();
2105 hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
2107 cur_expr = set_hash_table[hash];
2108 found = 0;
2110 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2112 /* If the expression isn't found, save a pointer to the end of
2113 the list. */
2114 last_expr = cur_expr;
2115 cur_expr = cur_expr->next_same_hash;
2118 if (! found)
2120 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2121 bytes_used += sizeof (struct expr);
2122 if (set_hash_table[hash] == NULL)
2123 /* This is the first pattern that hashed to this index. */
2124 set_hash_table[hash] = cur_expr;
2125 else
2126 /* Add EXPR to end of this hash chain. */
2127 last_expr->next_same_hash = cur_expr;
2129 /* Set the fields of the expr element.
2130 We must copy X because it can be modified when copy propagation is
2131 performed on its operands. */
2132 cur_expr->expr = copy_rtx (x);
2133 cur_expr->bitmap_index = n_sets++;
2134 cur_expr->next_same_hash = NULL;
2135 cur_expr->antic_occr = NULL;
2136 cur_expr->avail_occr = NULL;
2139 /* Now record the occurrence. */
2140 cur_occr = cur_expr->avail_occr;
2142 /* Search for another occurrence in the same basic block. */
2143 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2145 /* If an occurrence isn't found, save a pointer to the end of
2146 the list. */
2147 last_occr = cur_occr;
2148 cur_occr = cur_occr->next;
2151 if (cur_occr)
2152 /* Found another instance of the expression in the same basic block.
2153 Prefer this occurrence to the currently recorded one. We want the
2154 last one in the block and the block is scanned from start to end. */
2155 cur_occr->insn = insn;
2156 else
2158 /* First occurrence of this expression in this basic block. */
2159 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2160 bytes_used += sizeof (struct occr);
2162 /* First occurrence of this expression in any block? */
2163 if (cur_expr->avail_occr == NULL)
2164 cur_expr->avail_occr = cur_occr;
2165 else
2166 last_occr->next = cur_occr;
2168 cur_occr->insn = insn;
2169 cur_occr->next = NULL;
2173 /* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
2174 non-zero, this is for the assignment hash table, otherwise it is for the
2175 expression hash table. */
2177 static void
2178 hash_scan_set (pat, insn, set_p)
2179 rtx pat, insn;
2180 int set_p;
2182 rtx src = SET_SRC (pat);
2183 rtx dest = SET_DEST (pat);
2184 rtx note;
2186 if (GET_CODE (src) == CALL)
2187 hash_scan_call (src, insn);
2189 else if (GET_CODE (dest) == REG)
2191 unsigned int regno = REGNO (dest);
2192 rtx tmp;
2194 /* If this is a single set and we are doing constant propagation,
2195 see if a REG_NOTE shows this equivalent to a constant. */
2196 if (set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2197 && CONSTANT_P (XEXP (note, 0)))
2198 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2200 /* Only record sets of pseudo-regs in the hash table. */
2201 if (! set_p
2202 && regno >= FIRST_PSEUDO_REGISTER
2203 /* Don't GCSE something if we can't do a reg/reg copy. */
2204 && can_copy_p [GET_MODE (dest)]
2205 /* Is SET_SRC something we want to gcse? */
2206 && want_to_gcse_p (src)
2207 /* Don't CSE a nop. */
2208 && ! set_noop_p (pat)
2209 /* Don't GCSE if it has attached REG_EQUIV note.
2210 At this point this only function parameters should have
2211 REG_EQUIV notes and if the argument slot is used somewhere
2212 explicitely, it means address of parameter has been taken,
2213 so we should not extend the lifetime of the pseudo. */
2214 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2215 || GET_CODE (XEXP (note, 0)) != MEM))
2217 /* An expression is not anticipatable if its operands are
2218 modified before this insn or if this is not the only SET in
2219 this insn. */
2220 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2221 /* An expression is not available if its operands are
2222 subsequently modified, including this insn. */
2223 int avail_p = oprs_available_p (src, insn);
2225 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
2228 /* Record sets for constant/copy propagation. */
2229 else if (set_p
2230 && regno >= FIRST_PSEUDO_REGISTER
2231 && ((GET_CODE (src) == REG
2232 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2233 && can_copy_p [GET_MODE (dest)]
2234 && REGNO (src) != regno)
2235 || GET_CODE (src) == CONST_INT
2236 || GET_CODE (src) == SYMBOL_REF
2237 || GET_CODE (src) == CONST_DOUBLE)
2238 /* A copy is not available if its src or dest is subsequently
2239 modified. Here we want to search from INSN+1 on, but
2240 oprs_available_p searches from INSN on. */
2241 && (insn == BLOCK_END (BLOCK_NUM (insn))
2242 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2243 && oprs_available_p (pat, tmp))))
2244 insert_set_in_table (pat, insn);
2248 static void
2249 hash_scan_clobber (x, insn)
2250 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2252 /* Currently nothing to do. */
2255 static void
2256 hash_scan_call (x, insn)
2257 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2259 /* Currently nothing to do. */
2262 /* Process INSN and add hash table entries as appropriate.
2264 Only available expressions that set a single pseudo-reg are recorded.
2266 Single sets in a PARALLEL could be handled, but it's an extra complication
2267 that isn't dealt with right now. The trick is handling the CLOBBERs that
2268 are also in the PARALLEL. Later.
2270 If SET_P is non-zero, this is for the assignment hash table,
2271 otherwise it is for the expression hash table.
2272 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2273 not record any expressions. */
2275 static void
2276 hash_scan_insn (insn, set_p, in_libcall_block)
2277 rtx insn;
2278 int set_p;
2279 int in_libcall_block;
2281 rtx pat = PATTERN (insn);
2282 int i;
2284 if (in_libcall_block)
2285 return;
2287 /* Pick out the sets of INSN and for other forms of instructions record
2288 what's been modified. */
2290 if (GET_CODE (pat) == SET)
2291 hash_scan_set (pat, insn, set_p);
2292 else if (GET_CODE (pat) == PARALLEL)
2293 for (i = 0; i < XVECLEN (pat, 0); i++)
2295 rtx x = XVECEXP (pat, 0, i);
2297 if (GET_CODE (x) == SET)
2298 hash_scan_set (x, insn, set_p);
2299 else if (GET_CODE (x) == CLOBBER)
2300 hash_scan_clobber (x, insn);
2301 else if (GET_CODE (x) == CALL)
2302 hash_scan_call (x, insn);
2305 else if (GET_CODE (pat) == CLOBBER)
2306 hash_scan_clobber (pat, insn);
2307 else if (GET_CODE (pat) == CALL)
2308 hash_scan_call (pat, insn);
2311 static void
2312 dump_hash_table (file, name, table, table_size, total_size)
2313 FILE *file;
2314 const char *name;
2315 struct expr **table;
2316 int table_size, total_size;
2318 int i;
2319 /* Flattened out table, so it's printed in proper order. */
2320 struct expr **flat_table;
2321 unsigned int *hash_val;
2322 struct expr *expr;
2324 flat_table
2325 = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
2326 hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
2328 for (i = 0; i < table_size; i++)
2329 for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
2331 flat_table[expr->bitmap_index] = expr;
2332 hash_val[expr->bitmap_index] = i;
2335 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2336 name, table_size, total_size);
2338 for (i = 0; i < total_size; i++)
2339 if (flat_table[i] != 0)
2341 expr = flat_table[i];
2342 fprintf (file, "Index %d (hash value %d)\n ",
2343 expr->bitmap_index, hash_val[i]);
2344 print_rtl (file, expr->expr);
2345 fprintf (file, "\n");
2348 fprintf (file, "\n");
2350 free (flat_table);
2351 free (hash_val);
2354 /* Record register first/last/block set information for REGNO in INSN.
2356 reg_first_set records the first place in the block where the register
2357 is set and is used to compute "anticipatability".
2359 reg_last_set records the last place in the block where the register
2360 is set and is used to compute "availability".
2362 reg_set_in_block records whether the register is set in the block
2363 and is used to compute "transparency". */
2365 static void
2366 record_last_reg_set_info (insn, regno)
2367 rtx insn;
2368 int regno;
2370 if (reg_first_set[regno] == NEVER_SET)
2371 reg_first_set[regno] = INSN_CUID (insn);
2373 reg_last_set[regno] = INSN_CUID (insn);
2374 SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
2378 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2379 Note we store a pair of elements in the list, so they have to be
2380 taken off pairwise. */
2382 static void
2383 canon_list_insert (dest, unused1, v_insn)
2384 rtx dest ATTRIBUTE_UNUSED;
2385 rtx unused1 ATTRIBUTE_UNUSED;
2386 void * v_insn;
2388 rtx dest_addr, insn;
2390 while (GET_CODE (dest) == SUBREG
2391 || GET_CODE (dest) == ZERO_EXTRACT
2392 || GET_CODE (dest) == SIGN_EXTRACT
2393 || GET_CODE (dest) == STRICT_LOW_PART)
2394 dest = XEXP (dest, 0);
2396 /* If DEST is not a MEM, then it will not conflict with a load. Note
2397 that function calls are assumed to clobber memory, but are handled
2398 elsewhere. */
2400 if (GET_CODE (dest) != MEM)
2401 return;
2403 dest_addr = get_addr (XEXP (dest, 0));
2404 dest_addr = canon_rtx (dest_addr);
2405 insn = (rtx) v_insn;
2407 canon_modify_mem_list[BLOCK_NUM (insn)] =
2408 alloc_INSN_LIST (dest_addr, canon_modify_mem_list[BLOCK_NUM (insn)]);
2409 canon_modify_mem_list[BLOCK_NUM (insn)] =
2410 alloc_INSN_LIST (dest, canon_modify_mem_list[BLOCK_NUM (insn)]);
2413 /* Record memory first/last/block set information for INSN. */
2414 /* Record memory modification information for INSN. We do not actually care
2415 about the memory location(s) that are set, or even how they are set (consider
2416 a CALL_INSN). We merely need to record which insns modify memory. */
2418 static void
2419 record_last_mem_set_info (insn)
2420 rtx insn;
2422 if (mem_first_set == NEVER_SET)
2423 mem_first_set = INSN_CUID (insn);
2425 mem_last_set = INSN_CUID (insn);
2426 mem_set_in_block[BLOCK_NUM (insn)] = 1;
2427 modify_mem_list[BLOCK_NUM (insn)] =
2428 alloc_INSN_LIST (insn, modify_mem_list[BLOCK_NUM (insn)]);
2430 if (GET_CODE (insn) == CALL_INSN)
2432 /* Note that traversals of this loop (other than for free-ing)
2433 will break after encountering a CALL_INSN. So, there's no
2434 need to insert a pair of items, as canon_list_insert does. */
2435 canon_modify_mem_list[BLOCK_NUM (insn)] =
2436 alloc_INSN_LIST (insn, canon_modify_mem_list[BLOCK_NUM (insn)]);
2438 else
2439 note_stores (PATTERN (insn), canon_list_insert, (void*)insn );
2442 /* Called from compute_hash_table via note_stores to handle one
2443 SET or CLOBBER in an insn. DATA is really the instruction in which
2444 the SET is taking place. */
2446 static void
2447 record_last_set_info (dest, setter, data)
2448 rtx dest, setter ATTRIBUTE_UNUSED;
2449 void *data;
2451 rtx last_set_insn = (rtx) data;
2453 if (GET_CODE (dest) == SUBREG)
2454 dest = SUBREG_REG (dest);
2456 if (GET_CODE (dest) == REG)
2457 record_last_reg_set_info (last_set_insn, REGNO (dest));
2458 else if (GET_CODE (dest) == MEM
2459 /* Ignore pushes, they clobber nothing. */
2460 && ! push_operand (dest, GET_MODE (dest)))
2461 record_last_mem_set_info (last_set_insn);
2464 /* Top level function to create an expression or assignment hash table.
2466 Expression entries are placed in the hash table if
2467 - they are of the form (set (pseudo-reg) src),
2468 - src is something we want to perform GCSE on,
2469 - none of the operands are subsequently modified in the block
2471 Assignment entries are placed in the hash table if
2472 - they are of the form (set (pseudo-reg) src),
2473 - src is something we want to perform const/copy propagation on,
2474 - none of the operands or target are subsequently modified in the block
2476 Currently src must be a pseudo-reg or a const_int.
2478 F is the first insn.
2479 SET_P is non-zero for computing the assignment hash table. */
2481 static void
2482 compute_hash_table (set_p)
2483 int set_p;
2485 int bb;
2487 /* While we compute the hash table we also compute a bit array of which
2488 registers are set in which blocks.
2489 We also compute which blocks set memory, in the absence of aliasing
2490 support [which is TODO].
2491 ??? This isn't needed during const/copy propagation, but it's cheap to
2492 compute. Later. */
2493 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
2494 memset ((char *) mem_set_in_block, 0, n_basic_blocks);
2496 /* re-Cache any INSN_LIST nodes we have allocated. */
2498 int i;
2499 for (i = 0; i < n_basic_blocks; i++)
2501 if (modify_mem_list[i])
2502 free_INSN_LIST_list (modify_mem_list + i);
2503 if (canon_modify_mem_list[i])
2504 free_INSN_LIST_list (canon_modify_mem_list + i);
2507 /* Some working arrays used to track first and last set in each block. */
2508 /* ??? One could use alloca here, but at some size a threshold is crossed
2509 beyond which one should use malloc. Are we at that threshold here? */
2510 reg_first_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
2511 reg_last_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
2513 for (bb = 0; bb < n_basic_blocks; bb++)
2515 rtx insn;
2516 unsigned int regno;
2517 int in_libcall_block;
2518 unsigned int i;
2520 /* First pass over the instructions records information used to
2521 determine when registers and memory are first and last set.
2522 ??? The mem_set_in_block and hard-reg reg_set_in_block computation
2523 could be moved to compute_sets since they currently don't change. */
2525 for (i = 0; i < max_gcse_regno; i++)
2526 reg_first_set[i] = reg_last_set[i] = NEVER_SET;
2528 mem_first_set = NEVER_SET;
2529 mem_last_set = NEVER_SET;
2531 for (insn = BLOCK_HEAD (bb);
2532 insn && insn != NEXT_INSN (BLOCK_END (bb));
2533 insn = NEXT_INSN (insn))
2535 #ifdef NON_SAVING_SETJMP
2536 if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
2537 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
2539 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2540 record_last_reg_set_info (insn, regno);
2541 continue;
2543 #endif
2545 if (! INSN_P (insn))
2546 continue;
2548 if (GET_CODE (insn) == CALL_INSN)
2550 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2551 if ((call_used_regs[regno]
2552 && regno != STACK_POINTER_REGNUM
2553 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2554 && regno != HARD_FRAME_POINTER_REGNUM
2555 #endif
2556 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2557 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2558 #endif
2559 #if !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
2560 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2561 #endif
2563 && regno != FRAME_POINTER_REGNUM)
2564 || global_regs[regno])
2565 record_last_reg_set_info (insn, regno);
2567 if (! CONST_CALL_P (insn))
2568 record_last_mem_set_info (insn);
2571 note_stores (PATTERN (insn), record_last_set_info, insn);
2574 /* The next pass builds the hash table. */
2576 for (insn = BLOCK_HEAD (bb), in_libcall_block = 0;
2577 insn && insn != NEXT_INSN (BLOCK_END (bb));
2578 insn = NEXT_INSN (insn))
2579 if (INSN_P (insn))
2581 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2582 in_libcall_block = 1;
2583 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
2584 in_libcall_block = 0;
2585 hash_scan_insn (insn, set_p, in_libcall_block);
2589 free (reg_first_set);
2590 free (reg_last_set);
2592 /* Catch bugs early. */
2593 reg_first_set = reg_last_set = 0;
2596 /* Allocate space for the set hash table.
2597 N_INSNS is the number of instructions in the function.
2598 It is used to determine the number of buckets to use. */
2600 static void
2601 alloc_set_hash_table (n_insns)
2602 int n_insns;
2604 int n;
2606 set_hash_table_size = n_insns / 4;
2607 if (set_hash_table_size < 11)
2608 set_hash_table_size = 11;
2610 /* Attempt to maintain efficient use of hash table.
2611 Making it an odd number is simplest for now.
2612 ??? Later take some measurements. */
2613 set_hash_table_size |= 1;
2614 n = set_hash_table_size * sizeof (struct expr *);
2615 set_hash_table = (struct expr **) gmalloc (n);
2618 /* Free things allocated by alloc_set_hash_table. */
2620 static void
2621 free_set_hash_table ()
2623 free (set_hash_table);
2626 /* Compute the hash table for doing copy/const propagation. */
2628 static void
2629 compute_set_hash_table ()
2631 /* Initialize count of number of entries in hash table. */
2632 n_sets = 0;
2633 memset ((char *) set_hash_table, 0,
2634 set_hash_table_size * sizeof (struct expr *));
2636 compute_hash_table (1);
2639 /* Allocate space for the expression hash table.
2640 N_INSNS is the number of instructions in the function.
2641 It is used to determine the number of buckets to use. */
2643 static void
2644 alloc_expr_hash_table (n_insns)
2645 unsigned int n_insns;
2647 int n;
2649 expr_hash_table_size = n_insns / 2;
2650 /* Make sure the amount is usable. */
2651 if (expr_hash_table_size < 11)
2652 expr_hash_table_size = 11;
2654 /* Attempt to maintain efficient use of hash table.
2655 Making it an odd number is simplest for now.
2656 ??? Later take some measurements. */
2657 expr_hash_table_size |= 1;
2658 n = expr_hash_table_size * sizeof (struct expr *);
2659 expr_hash_table = (struct expr **) gmalloc (n);
2662 /* Free things allocated by alloc_expr_hash_table. */
2664 static void
2665 free_expr_hash_table ()
2667 free (expr_hash_table);
2670 /* Compute the hash table for doing GCSE. */
2672 static void
2673 compute_expr_hash_table ()
2675 /* Initialize count of number of entries in hash table. */
2676 n_exprs = 0;
2677 memset ((char *) expr_hash_table, 0,
2678 expr_hash_table_size * sizeof (struct expr *));
2680 compute_hash_table (0);
2683 /* Expression tracking support. */
2685 /* Lookup pattern PAT in the expression table.
2686 The result is a pointer to the table entry, or NULL if not found. */
2688 static struct expr *
2689 lookup_expr (pat)
2690 rtx pat;
2692 int do_not_record_p;
2693 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2694 expr_hash_table_size);
2695 struct expr *expr;
2697 if (do_not_record_p)
2698 return NULL;
2700 expr = expr_hash_table[hash];
2702 while (expr && ! expr_equiv_p (expr->expr, pat))
2703 expr = expr->next_same_hash;
2705 return expr;
2708 /* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
2709 matches it, otherwise return the first entry for REGNO. The result is a
2710 pointer to the table entry, or NULL if not found. */
2712 static struct expr *
2713 lookup_set (regno, pat)
2714 unsigned int regno;
2715 rtx pat;
2717 unsigned int hash = hash_set (regno, set_hash_table_size);
2718 struct expr *expr;
2720 expr = set_hash_table[hash];
2722 if (pat)
2724 while (expr && ! expr_equiv_p (expr->expr, pat))
2725 expr = expr->next_same_hash;
2727 else
2729 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2730 expr = expr->next_same_hash;
2733 return expr;
2736 /* Return the next entry for REGNO in list EXPR. */
2738 static struct expr *
2739 next_set (regno, expr)
2740 unsigned int regno;
2741 struct expr *expr;
2744 expr = expr->next_same_hash;
2745 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2747 return expr;
2750 /* Reset tables used to keep track of what's still available [since the
2751 start of the block]. */
2753 static void
2754 reset_opr_set_tables ()
2756 /* Maintain a bitmap of which regs have been set since beginning of
2757 the block. */
2758 sbitmap_zero (reg_set_bitmap);
2760 /* Also keep a record of the last instruction to modify memory.
2761 For now this is very trivial, we only record whether any memory
2762 location has been modified. */
2763 mem_last_set = 0;
2765 int i;
2767 /* re-Cache any INSN_LIST nodes we have allocated. */
2768 for (i = 0; i < n_basic_blocks; i++)
2770 if (modify_mem_list[i])
2771 free_INSN_LIST_list (modify_mem_list + i);
2772 if (canon_modify_mem_list[i])
2773 free_INSN_LIST_list (canon_modify_mem_list + i);
2778 /* Return non-zero if the operands of X are not set before INSN in
2779 INSN's basic block. */
2781 static int
2782 oprs_not_set_p (x, insn)
2783 rtx x, insn;
2785 int i, j;
2786 enum rtx_code code;
2787 const char *fmt;
2789 if (x == 0)
2790 return 1;
2792 code = GET_CODE (x);
2793 switch (code)
2795 case PC:
2796 case CC0:
2797 case CONST:
2798 case CONST_INT:
2799 case CONST_DOUBLE:
2800 case SYMBOL_REF:
2801 case LABEL_REF:
2802 case ADDR_VEC:
2803 case ADDR_DIFF_VEC:
2804 return 1;
2806 case MEM:
2807 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2808 INSN_CUID (insn), x, 0))
2809 return 0;
2810 if (mem_last_set != 0)
2811 return 0;
2812 else
2813 return oprs_not_set_p (XEXP (x, 0), insn);
2815 case REG:
2816 return ! TEST_BIT (reg_set_bitmap, REGNO (x));
2818 default:
2819 break;
2822 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2824 if (fmt[i] == 'e')
2826 /* If we are about to do the last recursive call
2827 needed at this level, change it into iteration.
2828 This function is called enough to be worth it. */
2829 if (i == 0)
2830 return oprs_not_set_p (XEXP (x, i), insn);
2832 if (! oprs_not_set_p (XEXP (x, i), insn))
2833 return 0;
2835 else if (fmt[i] == 'E')
2836 for (j = 0; j < XVECLEN (x, i); j++)
2837 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2838 return 0;
2841 return 1;
2844 /* Mark things set by a CALL. */
2846 static void
2847 mark_call (insn)
2848 rtx insn;
2850 mem_last_set = INSN_CUID (insn);
2851 if (! CONST_CALL_P (insn))
2852 record_last_mem_set_info (insn);
2855 /* Mark things set by a SET. */
2857 static void
2858 mark_set (pat, insn)
2859 rtx pat, insn;
2861 rtx dest = SET_DEST (pat);
2863 while (GET_CODE (dest) == SUBREG
2864 || GET_CODE (dest) == ZERO_EXTRACT
2865 || GET_CODE (dest) == SIGN_EXTRACT
2866 || GET_CODE (dest) == STRICT_LOW_PART)
2867 dest = XEXP (dest, 0);
2869 if (GET_CODE (dest) == REG)
2870 SET_BIT (reg_set_bitmap, REGNO (dest));
2871 else if (GET_CODE (dest) == MEM)
2872 record_last_mem_set_info (insn);
2874 if (GET_CODE (dest) == REG)
2875 SET_BIT (reg_set_bitmap, REGNO (dest));
2876 else if (GET_CODE (dest) == MEM)
2877 mem_last_set = INSN_CUID (insn);
2879 if (GET_CODE (SET_SRC (pat)) == CALL)
2880 mark_call (insn);
2883 /* Record things set by a CLOBBER. */
2885 static void
2886 mark_clobber (pat, insn)
2887 rtx pat, insn;
2889 rtx clob = XEXP (pat, 0);
2891 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2892 clob = XEXP (clob, 0);
2894 if (GET_CODE (clob) == REG)
2895 SET_BIT (reg_set_bitmap, REGNO (clob));
2896 else
2897 mem_last_set = INSN_CUID (insn);
2898 if (GET_CODE (clob) == REG)
2899 SET_BIT (reg_set_bitmap, REGNO (clob));
2900 else
2901 record_last_mem_set_info (insn);
2904 /* Record things set by INSN.
2905 This data is used by oprs_not_set_p. */
2907 static void
2908 mark_oprs_set (insn)
2909 rtx insn;
2911 rtx pat = PATTERN (insn);
2912 int i;
2914 if (GET_CODE (pat) == SET)
2915 mark_set (pat, insn);
2916 else if (GET_CODE (pat) == PARALLEL)
2917 for (i = 0; i < XVECLEN (pat, 0); i++)
2919 rtx x = XVECEXP (pat, 0, i);
2921 if (GET_CODE (x) == SET)
2922 mark_set (x, insn);
2923 else if (GET_CODE (x) == CLOBBER)
2924 mark_clobber (x, insn);
2925 else if (GET_CODE (x) == CALL)
2926 mark_call (insn);
2929 else if (GET_CODE (pat) == CLOBBER)
2930 mark_clobber (pat, insn);
2931 else if (GET_CODE (pat) == CALL)
2932 mark_call (insn);
2936 /* Classic GCSE reaching definition support. */
2938 /* Allocate reaching def variables. */
2940 static void
2941 alloc_rd_mem (n_blocks, n_insns)
2942 int n_blocks, n_insns;
2944 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2945 sbitmap_vector_zero (rd_kill, n_basic_blocks);
2947 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2948 sbitmap_vector_zero (rd_gen, n_basic_blocks);
2950 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2951 sbitmap_vector_zero (reaching_defs, n_basic_blocks);
2953 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2954 sbitmap_vector_zero (rd_out, n_basic_blocks);
2957 /* Free reaching def variables. */
2959 static void
2960 free_rd_mem ()
2962 sbitmap_vector_free (rd_kill);
2963 sbitmap_vector_free (rd_gen);
2964 sbitmap_vector_free (reaching_defs);
2965 sbitmap_vector_free (rd_out);
2968 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2970 static void
2971 handle_rd_kill_set (insn, regno, bb)
2972 rtx insn;
2973 int regno;
2974 basic_block bb;
2976 struct reg_set *this_reg;
2978 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2979 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2980 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2983 /* Compute the set of kill's for reaching definitions. */
2985 static void
2986 compute_kill_rd ()
2988 int bb, cuid;
2989 unsigned int regno;
2990 int i;
2992 /* For each block
2993 For each set bit in `gen' of the block (i.e each insn which
2994 generates a definition in the block)
2995 Call the reg set by the insn corresponding to that bit regx
2996 Look at the linked list starting at reg_set_table[regx]
2997 For each setting of regx in the linked list, which is not in
2998 this block
2999 Set the bit in `kill' corresponding to that insn. */
3000 for (bb = 0; bb < n_basic_blocks; bb++)
3001 for (cuid = 0; cuid < max_cuid; cuid++)
3002 if (TEST_BIT (rd_gen[bb], cuid))
3004 rtx insn = CUID_INSN (cuid);
3005 rtx pat = PATTERN (insn);
3007 if (GET_CODE (insn) == CALL_INSN)
3009 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
3011 if ((call_used_regs[regno]
3012 && regno != STACK_POINTER_REGNUM
3013 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3014 && regno != HARD_FRAME_POINTER_REGNUM
3015 #endif
3016 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
3017 && ! (regno == ARG_POINTER_REGNUM
3018 && fixed_regs[regno])
3019 #endif
3020 #if !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
3021 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
3022 #endif
3023 && regno != FRAME_POINTER_REGNUM)
3024 || global_regs[regno])
3025 handle_rd_kill_set (insn, regno, BASIC_BLOCK (bb));
3029 if (GET_CODE (pat) == PARALLEL)
3031 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
3033 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
3035 if ((code == SET || code == CLOBBER)
3036 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
3037 handle_rd_kill_set (insn,
3038 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
3039 BASIC_BLOCK (bb));
3042 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
3043 /* Each setting of this register outside of this block
3044 must be marked in the set of kills in this block. */
3045 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), BASIC_BLOCK (bb));
3049 /* Compute the reaching definitions as in
3050 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
3051 Chapter 10. It is the same algorithm as used for computing available
3052 expressions but applied to the gens and kills of reaching definitions. */
3054 static void
3055 compute_rd ()
3057 int bb, changed, passes;
3059 for (bb = 0; bb < n_basic_blocks; bb++)
3060 sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
3062 passes = 0;
3063 changed = 1;
3064 while (changed)
3066 changed = 0;
3067 for (bb = 0; bb < n_basic_blocks; bb++)
3069 sbitmap_union_of_preds (reaching_defs[bb], rd_out, bb);
3070 changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
3071 reaching_defs[bb], rd_kill[bb]);
3073 passes++;
3076 if (gcse_file)
3077 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3080 /* Classic GCSE available expression support. */
3082 /* Allocate memory for available expression computation. */
3084 static void
3085 alloc_avail_expr_mem (n_blocks, n_exprs)
3086 int n_blocks, n_exprs;
3088 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3089 sbitmap_vector_zero (ae_kill, n_basic_blocks);
3091 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3092 sbitmap_vector_zero (ae_gen, n_basic_blocks);
3094 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3095 sbitmap_vector_zero (ae_in, n_basic_blocks);
3097 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3098 sbitmap_vector_zero (ae_out, n_basic_blocks);
3101 static void
3102 free_avail_expr_mem ()
3104 sbitmap_vector_free (ae_kill);
3105 sbitmap_vector_free (ae_gen);
3106 sbitmap_vector_free (ae_in);
3107 sbitmap_vector_free (ae_out);
3110 /* Compute the set of available expressions generated in each basic block. */
3112 static void
3113 compute_ae_gen ()
3115 unsigned int i;
3116 struct expr *expr;
3117 struct occr *occr;
3119 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3120 This is all we have to do because an expression is not recorded if it
3121 is not available, and the only expressions we want to work with are the
3122 ones that are recorded. */
3123 for (i = 0; i < expr_hash_table_size; i++)
3124 for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
3125 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3126 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3129 /* Return non-zero if expression X is killed in BB. */
3131 static int
3132 expr_killed_p (x, bb)
3133 rtx x;
3134 basic_block bb;
3136 int i, j;
3137 enum rtx_code code;
3138 const char *fmt;
3140 if (x == 0)
3141 return 1;
3143 code = GET_CODE (x);
3144 switch (code)
3146 case REG:
3147 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3149 case MEM:
3150 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3151 return 1;
3152 if (mem_set_in_block[bb->index])
3153 return 1;
3154 else
3155 return expr_killed_p (XEXP (x, 0), bb);
3157 case PC:
3158 case CC0: /*FIXME*/
3159 case CONST:
3160 case CONST_INT:
3161 case CONST_DOUBLE:
3162 case SYMBOL_REF:
3163 case LABEL_REF:
3164 case ADDR_VEC:
3165 case ADDR_DIFF_VEC:
3166 return 0;
3168 default:
3169 break;
3172 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3174 if (fmt[i] == 'e')
3176 /* If we are about to do the last recursive call
3177 needed at this level, change it into iteration.
3178 This function is called enough to be worth it. */
3179 if (i == 0)
3180 return expr_killed_p (XEXP (x, i), bb);
3181 else if (expr_killed_p (XEXP (x, i), bb))
3182 return 1;
3184 else if (fmt[i] == 'E')
3185 for (j = 0; j < XVECLEN (x, i); j++)
3186 if (expr_killed_p (XVECEXP (x, i, j), bb))
3187 return 1;
3190 return 0;
3193 /* Compute the set of available expressions killed in each basic block. */
3195 static void
3196 compute_ae_kill (ae_gen, ae_kill)
3197 sbitmap *ae_gen, *ae_kill;
3199 int bb;
3200 unsigned int i;
3201 struct expr *expr;
3203 for (bb = 0; bb < n_basic_blocks; bb++)
3204 for (i = 0; i < expr_hash_table_size; i++)
3205 for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
3207 /* Skip EXPR if generated in this block. */
3208 if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
3209 continue;
3211 if (expr_killed_p (expr->expr, BASIC_BLOCK (bb)))
3212 SET_BIT (ae_kill[bb], expr->bitmap_index);
3216 /* Actually perform the Classic GCSE optimizations. */
3218 /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
3220 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
3221 as a positive reach. We want to do this when there are two computations
3222 of the expression in the block.
3224 VISITED is a pointer to a working buffer for tracking which BB's have
3225 been visited. It is NULL for the top-level call.
3227 We treat reaching expressions that go through blocks containing the same
3228 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3229 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3230 2 as not reaching. The intent is to improve the probability of finding
3231 only one reaching expression and to reduce register lifetimes by picking
3232 the closest such expression. */
3234 static int
3235 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
3236 struct occr *occr;
3237 struct expr *expr;
3238 basic_block bb;
3239 int check_self_loop;
3240 char *visited;
3242 edge pred;
3244 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3246 basic_block pred_bb = pred->src;
3248 if (visited[pred_bb->index])
3249 /* This predecessor has already been visited. Nothing to do. */
3251 else if (pred_bb == bb)
3253 /* BB loops on itself. */
3254 if (check_self_loop
3255 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3256 && BLOCK_NUM (occr->insn) == pred_bb->index)
3257 return 1;
3259 visited[pred_bb->index] = 1;
3262 /* Ignore this predecessor if it kills the expression. */
3263 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3264 visited[pred_bb->index] = 1;
3266 /* Does this predecessor generate this expression? */
3267 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3269 /* Is this the occurrence we're looking for?
3270 Note that there's only one generating occurrence per block
3271 so we just need to check the block number. */
3272 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3273 return 1;
3275 visited[pred_bb->index] = 1;
3278 /* Neither gen nor kill. */
3279 else
3281 visited[pred_bb->index] = 1;
3282 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3283 visited))
3285 return 1;
3289 /* All paths have been checked. */
3290 return 0;
3293 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3294 memory allocated for that function is returned. */
3296 static int
3297 expr_reaches_here_p (occr, expr, bb, check_self_loop)
3298 struct occr *occr;
3299 struct expr *expr;
3300 basic_block bb;
3301 int check_self_loop;
3303 int rval;
3304 char *visited = (char *) xcalloc (n_basic_blocks, 1);
3306 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3308 free (visited);
3309 return rval;
3312 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3313 If there is more than one such instruction, return NULL.
3315 Called only by handle_avail_expr. */
3317 static rtx
3318 computing_insn (expr, insn)
3319 struct expr *expr;
3320 rtx insn;
3322 basic_block bb = BLOCK_FOR_INSN (insn);
3324 if (expr->avail_occr->next == NULL)
3326 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3327 /* The available expression is actually itself
3328 (i.e. a loop in the flow graph) so do nothing. */
3329 return NULL;
3331 /* (FIXME) Case that we found a pattern that was created by
3332 a substitution that took place. */
3333 return expr->avail_occr->insn;
3335 else
3337 /* Pattern is computed more than once.
3338 Search backwards from this insn to see how many of these
3339 computations actually reach this insn. */
3340 struct occr *occr;
3341 rtx insn_computes_expr = NULL;
3342 int can_reach = 0;
3344 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3346 if (BLOCK_FOR_INSN (occr->insn) == bb)
3348 /* The expression is generated in this block.
3349 The only time we care about this is when the expression
3350 is generated later in the block [and thus there's a loop].
3351 We let the normal cse pass handle the other cases. */
3352 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3353 && expr_reaches_here_p (occr, expr, bb, 1))
3355 can_reach++;
3356 if (can_reach > 1)
3357 return NULL;
3359 insn_computes_expr = occr->insn;
3362 else if (expr_reaches_here_p (occr, expr, bb, 0))
3364 can_reach++;
3365 if (can_reach > 1)
3366 return NULL;
3368 insn_computes_expr = occr->insn;
3372 if (insn_computes_expr == NULL)
3373 abort ();
3375 return insn_computes_expr;
3379 /* Return non-zero if the definition in DEF_INSN can reach INSN.
3380 Only called by can_disregard_other_sets. */
3382 static int
3383 def_reaches_here_p (insn, def_insn)
3384 rtx insn, def_insn;
3386 rtx reg;
3388 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3389 return 1;
3391 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3393 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3395 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3396 return 1;
3397 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3398 reg = XEXP (PATTERN (def_insn), 0);
3399 else if (GET_CODE (PATTERN (def_insn)) == SET)
3400 reg = SET_DEST (PATTERN (def_insn));
3401 else
3402 abort ();
3404 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3406 else
3407 return 0;
3410 return 0;
3413 /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
3414 value returned is the number of definitions that reach INSN. Returning a
3415 value of zero means that [maybe] more than one definition reaches INSN and
3416 the caller can't perform whatever optimization it is trying. i.e. it is
3417 always safe to return zero. */
3419 static int
3420 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3421 struct reg_set **addr_this_reg;
3422 rtx insn;
3423 int for_combine;
3425 int number_of_reaching_defs = 0;
3426 struct reg_set *this_reg;
3428 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3429 if (def_reaches_here_p (insn, this_reg->insn))
3431 number_of_reaching_defs++;
3432 /* Ignore parallels for now. */
3433 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3434 return 0;
3436 if (!for_combine
3437 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3438 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3439 SET_SRC (PATTERN (insn)))))
3440 /* A setting of the reg to a different value reaches INSN. */
3441 return 0;
3443 if (number_of_reaching_defs > 1)
3445 /* If in this setting the value the register is being set to is
3446 equal to the previous value the register was set to and this
3447 setting reaches the insn we are trying to do the substitution
3448 on then we are ok. */
3449 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3450 return 0;
3451 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3452 SET_SRC (PATTERN (insn))))
3453 return 0;
3456 *addr_this_reg = this_reg;
3459 return number_of_reaching_defs;
3462 /* Expression computed by insn is available and the substitution is legal,
3463 so try to perform the substitution.
3465 The result is non-zero if any changes were made. */
3467 static int
3468 handle_avail_expr (insn, expr)
3469 rtx insn;
3470 struct expr *expr;
3472 rtx pat, insn_computes_expr, expr_set;
3473 rtx to;
3474 struct reg_set *this_reg;
3475 int found_setting, use_src;
3476 int changed = 0;
3478 /* We only handle the case where one computation of the expression
3479 reaches this instruction. */
3480 insn_computes_expr = computing_insn (expr, insn);
3481 if (insn_computes_expr == NULL)
3482 return 0;
3483 expr_set = single_set (insn_computes_expr);
3484 if (!expr_set)
3485 abort ();
3487 found_setting = 0;
3488 use_src = 0;
3490 /* At this point we know only one computation of EXPR outside of this
3491 block reaches this insn. Now try to find a register that the
3492 expression is computed into. */
3493 if (GET_CODE (SET_SRC (expr_set)) == REG)
3495 /* This is the case when the available expression that reaches
3496 here has already been handled as an available expression. */
3497 unsigned int regnum_for_replacing
3498 = REGNO (SET_SRC (expr_set));
3500 /* If the register was created by GCSE we can't use `reg_set_table',
3501 however we know it's set only once. */
3502 if (regnum_for_replacing >= max_gcse_regno
3503 /* If the register the expression is computed into is set only once,
3504 or only one set reaches this insn, we can use it. */
3505 || (((this_reg = reg_set_table[regnum_for_replacing]),
3506 this_reg->next == NULL)
3507 || can_disregard_other_sets (&this_reg, insn, 0)))
3509 use_src = 1;
3510 found_setting = 1;
3514 if (!found_setting)
3516 unsigned int regnum_for_replacing
3517 = REGNO (SET_DEST (expr_set));
3519 /* This shouldn't happen. */
3520 if (regnum_for_replacing >= max_gcse_regno)
3521 abort ();
3523 this_reg = reg_set_table[regnum_for_replacing];
3525 /* If the register the expression is computed into is set only once,
3526 or only one set reaches this insn, use it. */
3527 if (this_reg->next == NULL
3528 || can_disregard_other_sets (&this_reg, insn, 0))
3529 found_setting = 1;
3532 if (found_setting)
3534 pat = PATTERN (insn);
3535 if (use_src)
3536 to = SET_SRC (expr_set);
3537 else
3538 to = SET_DEST (expr_set);
3539 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3541 /* We should be able to ignore the return code from validate_change but
3542 to play it safe we check. */
3543 if (changed)
3545 gcse_subst_count++;
3546 if (gcse_file != NULL)
3548 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3549 INSN_UID (insn));
3550 fprintf (gcse_file, " reg %d %s insn %d\n",
3551 REGNO (to), use_src ? "from" : "set in",
3552 INSN_UID (insn_computes_expr));
3557 /* The register that the expr is computed into is set more than once. */
3558 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3560 /* Insert an insn after insnx that copies the reg set in insnx
3561 into a new pseudo register call this new register REGN.
3562 From insnb until end of basic block or until REGB is set
3563 replace all uses of REGB with REGN. */
3564 rtx new_insn;
3566 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
3568 /* Generate the new insn. */
3569 /* ??? If the change fails, we return 0, even though we created
3570 an insn. I think this is ok. */
3571 new_insn
3572 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3573 SET_DEST (expr_set)),
3574 insn_computes_expr);
3576 /* Keep block number table up to date. */
3577 set_block_for_new_insns (new_insn, BLOCK_FOR_INSN (insn_computes_expr));
3579 /* Keep register set table up to date. */
3580 record_one_set (REGNO (to), new_insn);
3582 gcse_create_count++;
3583 if (gcse_file != NULL)
3585 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3586 INSN_UID (NEXT_INSN (insn_computes_expr)),
3587 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3588 fprintf (gcse_file, ", computed in insn %d,\n",
3589 INSN_UID (insn_computes_expr));
3590 fprintf (gcse_file, " into newly allocated reg %d\n",
3591 REGNO (to));
3594 pat = PATTERN (insn);
3596 /* Do register replacement for INSN. */
3597 changed = validate_change (insn, &SET_SRC (pat),
3598 SET_DEST (PATTERN
3599 (NEXT_INSN (insn_computes_expr))),
3602 /* We should be able to ignore the return code from validate_change but
3603 to play it safe we check. */
3604 if (changed)
3606 gcse_subst_count++;
3607 if (gcse_file != NULL)
3609 fprintf (gcse_file,
3610 "GCSE: Replacing the source in insn %d with reg %d ",
3611 INSN_UID (insn),
3612 REGNO (SET_DEST (PATTERN (NEXT_INSN
3613 (insn_computes_expr)))));
3614 fprintf (gcse_file, "set in insn %d\n",
3615 INSN_UID (insn_computes_expr));
3620 return changed;
3623 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3624 the dataflow analysis has been done.
3626 The result is non-zero if a change was made. */
3628 static int
3629 classic_gcse ()
3631 int bb, changed;
3632 rtx insn;
3634 /* Note we start at block 1. */
3636 changed = 0;
3637 for (bb = 1; bb < n_basic_blocks; bb++)
3639 /* Reset tables used to keep track of what's still valid [since the
3640 start of the block]. */
3641 reset_opr_set_tables ();
3643 for (insn = BLOCK_HEAD (bb);
3644 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
3645 insn = NEXT_INSN (insn))
3647 /* Is insn of form (set (pseudo-reg) ...)? */
3648 if (GET_CODE (insn) == INSN
3649 && GET_CODE (PATTERN (insn)) == SET
3650 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3651 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3653 rtx pat = PATTERN (insn);
3654 rtx src = SET_SRC (pat);
3655 struct expr *expr;
3657 if (want_to_gcse_p (src)
3658 /* Is the expression recorded? */
3659 && ((expr = lookup_expr (src)) != NULL)
3660 /* Is the expression available [at the start of the
3661 block]? */
3662 && TEST_BIT (ae_in[bb], expr->bitmap_index)
3663 /* Are the operands unchanged since the start of the
3664 block? */
3665 && oprs_not_set_p (src, insn))
3666 changed |= handle_avail_expr (insn, expr);
3669 /* Keep track of everything modified by this insn. */
3670 /* ??? Need to be careful w.r.t. mods done to INSN. */
3671 if (INSN_P (insn))
3672 mark_oprs_set (insn);
3676 return changed;
3679 /* Top level routine to perform one classic GCSE pass.
3681 Return non-zero if a change was made. */
3683 static int
3684 one_classic_gcse_pass (pass)
3685 int pass;
3687 int changed = 0;
3689 gcse_subst_count = 0;
3690 gcse_create_count = 0;
3692 alloc_expr_hash_table (max_cuid);
3693 alloc_rd_mem (n_basic_blocks, max_cuid);
3694 compute_expr_hash_table ();
3695 if (gcse_file)
3696 dump_hash_table (gcse_file, "Expression", expr_hash_table,
3697 expr_hash_table_size, n_exprs);
3699 if (n_exprs > 0)
3701 compute_kill_rd ();
3702 compute_rd ();
3703 alloc_avail_expr_mem (n_basic_blocks, n_exprs);
3704 compute_ae_gen ();
3705 compute_ae_kill (ae_gen, ae_kill);
3706 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3707 changed = classic_gcse ();
3708 free_avail_expr_mem ();
3711 free_rd_mem ();
3712 free_expr_hash_table ();
3714 if (gcse_file)
3716 fprintf (gcse_file, "\n");
3717 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3718 current_function_name, pass, bytes_used, gcse_subst_count);
3719 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3722 return changed;
3725 /* Compute copy/constant propagation working variables. */
3727 /* Local properties of assignments. */
3728 static sbitmap *cprop_pavloc;
3729 static sbitmap *cprop_absaltered;
3731 /* Global properties of assignments (computed from the local properties). */
3732 static sbitmap *cprop_avin;
3733 static sbitmap *cprop_avout;
3735 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3736 basic blocks. N_SETS is the number of sets. */
3738 static void
3739 alloc_cprop_mem (n_blocks, n_sets)
3740 int n_blocks, n_sets;
3742 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3743 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3745 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3746 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3749 /* Free vars used by copy/const propagation. */
3751 static void
3752 free_cprop_mem ()
3754 sbitmap_vector_free (cprop_pavloc);
3755 sbitmap_vector_free (cprop_absaltered);
3756 sbitmap_vector_free (cprop_avin);
3757 sbitmap_vector_free (cprop_avout);
3760 /* For each block, compute whether X is transparent. X is either an
3761 expression or an assignment [though we don't care which, for this context
3762 an assignment is treated as an expression]. For each block where an
3763 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3764 bit in BMAP. */
3766 static void
3767 compute_transp (x, indx, bmap, set_p)
3768 rtx x;
3769 int indx;
3770 sbitmap *bmap;
3771 int set_p;
3773 int bb, i, j;
3774 enum rtx_code code;
3775 reg_set *r;
3776 const char *fmt;
3778 /* repeat is used to turn tail-recursion into iteration since GCC
3779 can't do it when there's no return value. */
3780 repeat:
3782 if (x == 0)
3783 return;
3785 code = GET_CODE (x);
3786 switch (code)
3788 case REG:
3789 if (set_p)
3791 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3793 for (bb = 0; bb < n_basic_blocks; bb++)
3794 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3795 SET_BIT (bmap[bb], indx);
3797 else
3799 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3800 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3803 else
3805 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3807 for (bb = 0; bb < n_basic_blocks; bb++)
3808 if (TEST_BIT (reg_set_in_block[bb], REGNO (x)))
3809 RESET_BIT (bmap[bb], indx);
3811 else
3813 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3814 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3818 return;
3820 case MEM:
3821 for (bb = 0; bb < n_basic_blocks; bb++)
3823 rtx list_entry = canon_modify_mem_list[bb];
3825 while (list_entry)
3827 rtx dest, dest_addr;
3829 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3831 if (set_p)
3832 SET_BIT (bmap[bb], indx);
3833 else
3834 RESET_BIT (bmap[bb], indx);
3835 break;
3837 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3838 Examine each hunk of memory that is modified. */
3840 dest = XEXP (list_entry, 0);
3841 list_entry = XEXP (list_entry, 1);
3842 dest_addr = XEXP (list_entry, 0);
3844 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3845 x, rtx_addr_varies_p))
3847 if (set_p)
3848 SET_BIT (bmap[bb], indx);
3849 else
3850 RESET_BIT (bmap[bb], indx);
3851 break;
3853 list_entry = XEXP (list_entry, 1);
3856 if (set_p)
3858 for (bb = 0; bb < n_basic_blocks; bb++)
3859 if (mem_set_in_block[bb])
3860 SET_BIT (bmap[bb], indx);
3862 else
3864 for (bb = 0; bb < n_basic_blocks; bb++)
3865 if (mem_set_in_block[bb])
3866 RESET_BIT (bmap[bb], indx);
3869 x = XEXP (x, 0);
3870 goto repeat;
3872 case PC:
3873 case CC0: /*FIXME*/
3874 case CONST:
3875 case CONST_INT:
3876 case CONST_DOUBLE:
3877 case SYMBOL_REF:
3878 case LABEL_REF:
3879 case ADDR_VEC:
3880 case ADDR_DIFF_VEC:
3881 return;
3883 default:
3884 break;
3887 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3889 if (fmt[i] == 'e')
3891 /* If we are about to do the last recursive call
3892 needed at this level, change it into iteration.
3893 This function is called enough to be worth it. */
3894 if (i == 0)
3896 x = XEXP (x, i);
3897 goto repeat;
3900 compute_transp (XEXP (x, i), indx, bmap, set_p);
3902 else if (fmt[i] == 'E')
3903 for (j = 0; j < XVECLEN (x, i); j++)
3904 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3908 /* Top level routine to do the dataflow analysis needed by copy/const
3909 propagation. */
3911 static void
3912 compute_cprop_data ()
3914 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
3915 compute_available (cprop_pavloc, cprop_absaltered,
3916 cprop_avout, cprop_avin);
3919 /* Copy/constant propagation. */
3921 /* Maximum number of register uses in an insn that we handle. */
3922 #define MAX_USES 8
3924 /* Table of uses found in an insn.
3925 Allocated statically to avoid alloc/free complexity and overhead. */
3926 static struct reg_use reg_use_table[MAX_USES];
3928 /* Index into `reg_use_table' while building it. */
3929 static int reg_use_count;
3931 /* Set up a list of register numbers used in INSN. The found uses are stored
3932 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3933 and contains the number of uses in the table upon exit.
3935 ??? If a register appears multiple times we will record it multiple times.
3936 This doesn't hurt anything but it will slow things down. */
3938 static void
3939 find_used_regs (xptr, data)
3940 rtx *xptr;
3941 void *data ATTRIBUTE_UNUSED;
3943 int i, j;
3944 enum rtx_code code;
3945 const char *fmt;
3946 rtx x = *xptr;
3948 /* repeat is used to turn tail-recursion into iteration since GCC
3949 can't do it when there's no return value. */
3950 repeat:
3951 if (x == 0)
3952 return;
3954 code = GET_CODE (x);
3955 if (REG_P (x))
3957 if (reg_use_count == MAX_USES)
3958 return;
3960 reg_use_table[reg_use_count].reg_rtx = x;
3961 reg_use_count++;
3964 /* Recursively scan the operands of this expression. */
3966 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3968 if (fmt[i] == 'e')
3970 /* If we are about to do the last recursive call
3971 needed at this level, change it into iteration.
3972 This function is called enough to be worth it. */
3973 if (i == 0)
3975 x = XEXP (x, 0);
3976 goto repeat;
3979 find_used_regs (&XEXP (x, i), data);
3981 else if (fmt[i] == 'E')
3982 for (j = 0; j < XVECLEN (x, i); j++)
3983 find_used_regs (&XVECEXP (x, i, j), data);
3987 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3988 Returns non-zero is successful. */
3990 static int
3991 try_replace_reg (from, to, insn)
3992 rtx from, to, insn;
3994 rtx note = find_reg_equal_equiv_note (insn);
3995 rtx src = 0;
3996 int success = 0;
3997 rtx set = single_set (insn);
3999 success = validate_replace_src (from, to, insn);
4001 /* If above failed and this is a single set, try to simplify the source of
4002 the set given our substitution. We could perhaps try this for multiple
4003 SETs, but it probably won't buy us anything. */
4004 if (!success && set != 0)
4006 src = simplify_replace_rtx (SET_SRC (set), from, to);
4008 if (!rtx_equal_p (src, SET_SRC (set))
4009 && validate_change (insn, &SET_SRC (set), src, 0))
4010 success = 1;
4013 /* If we've failed to do replacement, have a single SET, and don't already
4014 have a note, add a REG_EQUAL note to not lose information. */
4015 if (!success && note == 0 && set != 0)
4016 note = REG_NOTES (insn)
4017 = gen_rtx_EXPR_LIST (REG_EQUAL, src, REG_NOTES (insn));
4019 /* If there is already a NOTE, update the expression in it with our
4020 replacement. */
4021 else if (note != 0)
4022 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
4024 /* REG_EQUAL may get simplified into register.
4025 We don't allow that. Remove that note. This code ought
4026 not to hapen, because previous code ought to syntetize
4027 reg-reg move, but be on the safe side. */
4028 if (note && REG_P (XEXP (note, 0)))
4029 remove_note (insn, note);
4031 return success;
4034 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
4035 NULL no such set is found. */
4037 static struct expr *
4038 find_avail_set (regno, insn)
4039 int regno;
4040 rtx insn;
4042 /* SET1 contains the last set found that can be returned to the caller for
4043 use in a substitution. */
4044 struct expr *set1 = 0;
4046 /* Loops are not possible here. To get a loop we would need two sets
4047 available at the start of the block containing INSN. ie we would
4048 need two sets like this available at the start of the block:
4050 (set (reg X) (reg Y))
4051 (set (reg Y) (reg X))
4053 This can not happen since the set of (reg Y) would have killed the
4054 set of (reg X) making it unavailable at the start of this block. */
4055 while (1)
4057 rtx src;
4058 struct expr *set = lookup_set (regno, NULL_RTX);
4060 /* Find a set that is available at the start of the block
4061 which contains INSN. */
4062 while (set)
4064 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
4065 break;
4066 set = next_set (regno, set);
4069 /* If no available set was found we've reached the end of the
4070 (possibly empty) copy chain. */
4071 if (set == 0)
4072 break;
4074 if (GET_CODE (set->expr) != SET)
4075 abort ();
4077 src = SET_SRC (set->expr);
4079 /* We know the set is available.
4080 Now check that SRC is ANTLOC (i.e. none of the source operands
4081 have changed since the start of the block).
4083 If the source operand changed, we may still use it for the next
4084 iteration of this loop, but we may not use it for substitutions. */
4086 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
4087 set1 = set;
4089 /* If the source of the set is anything except a register, then
4090 we have reached the end of the copy chain. */
4091 if (GET_CODE (src) != REG)
4092 break;
4094 /* Follow the copy chain, ie start another iteration of the loop
4095 and see if we have an available copy into SRC. */
4096 regno = REGNO (src);
4099 /* SET1 holds the last set that was available and anticipatable at
4100 INSN. */
4101 return set1;
4104 /* Subroutine of cprop_insn that tries to propagate constants into
4105 JUMP_INSNS. INSN must be a conditional jump. FROM is what we will try to
4106 replace, SRC is the constant we will try to substitute for it. Returns
4107 nonzero if a change was made. We know INSN has just a SET. */
4109 static int
4110 cprop_jump (insn, from, src)
4111 rtx insn;
4112 rtx from;
4113 rtx src;
4115 rtx set = PATTERN (insn);
4116 rtx new = simplify_replace_rtx (SET_SRC (set), from, src);
4118 /* If no simplification can be made, then try the next
4119 register. */
4120 if (rtx_equal_p (new, SET_SRC (set)))
4121 return 0;
4123 /* If this is now a no-op leave it that way, but update LABEL_NUSED if
4124 necessary. */
4125 if (new == pc_rtx)
4127 SET_SRC (set) = new;
4129 if (JUMP_LABEL (insn) != 0)
4130 --LABEL_NUSES (JUMP_LABEL (insn));
4133 /* Otherwise, this must be a valid instruction. */
4134 else if (! validate_change (insn, &SET_SRC (set), new, 0))
4135 return 0;
4137 /* If this has turned into an unconditional jump,
4138 then put a barrier after it so that the unreachable
4139 code will be deleted. */
4140 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4141 emit_barrier_after (insn);
4143 run_jump_opt_after_gcse = 1;
4145 const_prop_count++;
4146 if (gcse_file != NULL)
4148 fprintf (gcse_file,
4149 "CONST-PROP: Replacing reg %d in insn %d with constant ",
4150 REGNO (from), INSN_UID (insn));
4151 print_rtl (gcse_file, src);
4152 fprintf (gcse_file, "\n");
4155 return 1;
4158 #ifdef HAVE_cc0
4160 /* Subroutine of cprop_insn that tries to propagate constants into JUMP_INSNS
4161 for machines that have CC0. INSN is a single set that stores into CC0;
4162 the insn following it is a conditional jump. REG_USED is the use we will
4163 try to replace, SRC is the constant we will try to substitute for it.
4164 Returns nonzero if a change was made. */
4166 static int
4167 cprop_cc0_jump (insn, reg_used, src)
4168 rtx insn;
4169 struct reg_use *reg_used;
4170 rtx src;
4172 /* First substitute in the SET_SRC of INSN, then substitute that for
4173 CC0 in JUMP. */
4174 rtx jump = NEXT_INSN (insn);
4175 rtx new_src = simplify_replace_rtx (SET_SRC (PATTERN (insn)),
4176 reg_used->reg_rtx, src);
4178 if (! cprop_jump (jump, cc0_rtx, new_src))
4179 return 0;
4181 /* If we succeeded, delete the cc0 setter. */
4182 PUT_CODE (insn, NOTE);
4183 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
4184 NOTE_SOURCE_FILE (insn) = 0;
4186 return 1;
4188 #endif
4190 /* Perform constant and copy propagation on INSN.
4191 The result is non-zero if a change was made. */
4193 static int
4194 cprop_insn (insn, alter_jumps)
4195 rtx insn;
4196 int alter_jumps;
4198 struct reg_use *reg_used;
4199 int changed = 0;
4200 rtx note;
4202 if (!INSN_P (insn))
4203 return 0;
4205 reg_use_count = 0;
4206 note_uses (&PATTERN (insn), find_used_regs, NULL);
4208 note = find_reg_equal_equiv_note (insn);
4210 /* We may win even when propagating constants into notes. */
4211 if (note)
4212 find_used_regs (&XEXP (note, 0), NULL);
4214 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4215 reg_used++, reg_use_count--)
4217 unsigned int regno = REGNO (reg_used->reg_rtx);
4218 rtx pat, src;
4219 struct expr *set;
4221 /* Ignore registers created by GCSE.
4222 We do this because ... */
4223 if (regno >= max_gcse_regno)
4224 continue;
4226 /* If the register has already been set in this block, there's
4227 nothing we can do. */
4228 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4229 continue;
4231 /* Find an assignment that sets reg_used and is available
4232 at the start of the block. */
4233 set = find_avail_set (regno, insn);
4234 if (! set)
4235 continue;
4237 pat = set->expr;
4238 /* ??? We might be able to handle PARALLELs. Later. */
4239 if (GET_CODE (pat) != SET)
4240 abort ();
4242 src = SET_SRC (pat);
4244 /* Constant propagation. */
4245 if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE
4246 || GET_CODE (src) == SYMBOL_REF)
4248 /* Handle normal insns first. */
4249 if (GET_CODE (insn) == INSN
4250 && try_replace_reg (reg_used->reg_rtx, src, insn))
4252 changed = 1;
4253 const_prop_count++;
4254 if (gcse_file != NULL)
4256 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
4257 regno);
4258 fprintf (gcse_file, "insn %d with constant ",
4259 INSN_UID (insn));
4260 print_rtl (gcse_file, src);
4261 fprintf (gcse_file, "\n");
4264 /* The original insn setting reg_used may or may not now be
4265 deletable. We leave the deletion to flow. */
4268 /* Try to propagate a CONST_INT into a conditional jump.
4269 We're pretty specific about what we will handle in this
4270 code, we can extend this as necessary over time.
4272 Right now the insn in question must look like
4273 (set (pc) (if_then_else ...)) */
4274 else if (alter_jumps
4275 && GET_CODE (insn) == JUMP_INSN
4276 && condjump_p (insn)
4277 && ! simplejump_p (insn))
4278 changed |= cprop_jump (insn, reg_used->reg_rtx, src);
4280 #ifdef HAVE_cc0
4281 /* Similar code for machines that use a pair of CC0 setter and
4282 conditional jump insn. */
4283 else if (alter_jumps
4284 && GET_CODE (PATTERN (insn)) == SET
4285 && SET_DEST (PATTERN (insn)) == cc0_rtx
4286 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
4287 && condjump_p (NEXT_INSN (insn))
4288 && ! simplejump_p (NEXT_INSN (insn))
4289 && cprop_cc0_jump (insn, reg_used, src))
4291 changed = 1;
4292 break;
4294 #endif
4296 else if (GET_CODE (src) == REG
4297 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4298 && REGNO (src) != regno)
4300 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4302 changed = 1;
4303 copy_prop_count++;
4304 if (gcse_file != NULL)
4306 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
4307 regno, INSN_UID (insn));
4308 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4311 /* The original insn setting reg_used may or may not now be
4312 deletable. We leave the deletion to flow. */
4313 /* FIXME: If it turns out that the insn isn't deletable,
4314 then we may have unnecessarily extended register lifetimes
4315 and made things worse. */
4320 return changed;
4323 /* Forward propagate copies. This includes copies and constants. Return
4324 non-zero if a change was made. */
4326 static int
4327 cprop (alter_jumps)
4328 int alter_jumps;
4330 int bb, changed;
4331 rtx insn;
4333 /* Note we start at block 1. */
4335 changed = 0;
4336 for (bb = 1; bb < n_basic_blocks; bb++)
4338 /* Reset tables used to keep track of what's still valid [since the
4339 start of the block]. */
4340 reset_opr_set_tables ();
4342 for (insn = BLOCK_HEAD (bb);
4343 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
4344 insn = NEXT_INSN (insn))
4345 if (INSN_P (insn))
4347 changed |= cprop_insn (insn, alter_jumps);
4349 /* Keep track of everything modified by this insn. */
4350 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4351 call mark_oprs_set if we turned the insn into a NOTE. */
4352 if (GET_CODE (insn) != NOTE)
4353 mark_oprs_set (insn);
4357 if (gcse_file != NULL)
4358 fprintf (gcse_file, "\n");
4360 return changed;
4363 /* Perform one copy/constant propagation pass.
4364 F is the first insn in the function.
4365 PASS is the pass count. */
4367 static int
4368 one_cprop_pass (pass, alter_jumps)
4369 int pass;
4370 int alter_jumps;
4372 int changed = 0;
4374 const_prop_count = 0;
4375 copy_prop_count = 0;
4377 alloc_set_hash_table (max_cuid);
4378 compute_set_hash_table ();
4379 if (gcse_file)
4380 dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
4381 n_sets);
4382 if (n_sets > 0)
4384 alloc_cprop_mem (n_basic_blocks, n_sets);
4385 compute_cprop_data ();
4386 changed = cprop (alter_jumps);
4387 free_cprop_mem ();
4390 free_set_hash_table ();
4392 if (gcse_file)
4394 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4395 current_function_name, pass, bytes_used);
4396 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4397 const_prop_count, copy_prop_count);
4400 return changed;
4403 /* Compute PRE+LCM working variables. */
4405 /* Local properties of expressions. */
4406 /* Nonzero for expressions that are transparent in the block. */
4407 static sbitmap *transp;
4409 /* Nonzero for expressions that are transparent at the end of the block.
4410 This is only zero for expressions killed by abnormal critical edge
4411 created by a calls. */
4412 static sbitmap *transpout;
4414 /* Nonzero for expressions that are computed (available) in the block. */
4415 static sbitmap *comp;
4417 /* Nonzero for expressions that are locally anticipatable in the block. */
4418 static sbitmap *antloc;
4420 /* Nonzero for expressions where this block is an optimal computation
4421 point. */
4422 static sbitmap *pre_optimal;
4424 /* Nonzero for expressions which are redundant in a particular block. */
4425 static sbitmap *pre_redundant;
4427 /* Nonzero for expressions which should be inserted on a specific edge. */
4428 static sbitmap *pre_insert_map;
4430 /* Nonzero for expressions which should be deleted in a specific block. */
4431 static sbitmap *pre_delete_map;
4433 /* Contains the edge_list returned by pre_edge_lcm. */
4434 static struct edge_list *edge_list;
4436 /* Redundant insns. */
4437 static sbitmap pre_redundant_insns;
4439 /* Allocate vars used for PRE analysis. */
4441 static void
4442 alloc_pre_mem (n_blocks, n_exprs)
4443 int n_blocks, n_exprs;
4445 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4446 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4447 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4449 pre_optimal = NULL;
4450 pre_redundant = NULL;
4451 pre_insert_map = NULL;
4452 pre_delete_map = NULL;
4453 ae_in = NULL;
4454 ae_out = NULL;
4455 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4457 /* pre_insert and pre_delete are allocated later. */
4460 /* Free vars used for PRE analysis. */
4462 static void
4463 free_pre_mem ()
4465 sbitmap_vector_free (transp);
4466 sbitmap_vector_free (comp);
4468 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4470 if (pre_optimal)
4471 sbitmap_vector_free (pre_optimal);
4472 if (pre_redundant)
4473 sbitmap_vector_free (pre_redundant);
4474 if (pre_insert_map)
4475 sbitmap_vector_free (pre_insert_map);
4476 if (pre_delete_map)
4477 sbitmap_vector_free (pre_delete_map);
4478 if (ae_in)
4479 sbitmap_vector_free (ae_in);
4480 if (ae_out)
4481 sbitmap_vector_free (ae_out);
4483 transp = comp = NULL;
4484 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4485 ae_in = ae_out = NULL;
4488 /* Top level routine to do the dataflow analysis needed by PRE. */
4490 static void
4491 compute_pre_data ()
4493 sbitmap trapping_expr;
4494 int i;
4495 unsigned int ui;
4497 compute_local_properties (transp, comp, antloc, 0);
4498 sbitmap_vector_zero (ae_kill, n_basic_blocks);
4500 /* Collect expressions which might trap. */
4501 trapping_expr = sbitmap_alloc (n_exprs);
4502 sbitmap_zero (trapping_expr);
4503 for (ui = 0; ui < expr_hash_table_size; ui++)
4505 struct expr *e;
4506 for (e = expr_hash_table[ui]; e != NULL; e = e->next_same_hash)
4507 if (may_trap_p (e->expr))
4508 SET_BIT (trapping_expr, e->bitmap_index);
4511 /* Compute ae_kill for each basic block using:
4513 ~(TRANSP | COMP)
4515 This is significantly faster than compute_ae_kill. */
4517 for (i = 0; i < n_basic_blocks; i++)
4519 edge e;
4521 /* If the current block is the destination of an abnormal edge, we
4522 kill all trapping expressions because we won't be able to properly
4523 place the instruction on the edge. So make them neither
4524 anticipatable nor transparent. This is fairly conservative. */
4525 for (e = BASIC_BLOCK (i)->pred; e ; e = e->pred_next)
4526 if (e->flags & EDGE_ABNORMAL)
4528 sbitmap_difference (antloc[i], antloc[i], trapping_expr);
4529 sbitmap_difference (transp[i], transp[i], trapping_expr);
4530 break;
4533 sbitmap_a_or_b (ae_kill[i], transp[i], comp[i]);
4534 sbitmap_not (ae_kill[i], ae_kill[i]);
4537 edge_list = pre_edge_lcm (gcse_file, n_exprs, transp, comp, antloc,
4538 ae_kill, &pre_insert_map, &pre_delete_map);
4539 sbitmap_vector_free (antloc);
4540 antloc = NULL;
4541 sbitmap_vector_free (ae_kill);
4542 ae_kill = NULL;
4543 free (trapping_expr);
4546 /* PRE utilities */
4548 /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4549 block BB.
4551 VISITED is a pointer to a working buffer for tracking which BB's have
4552 been visited. It is NULL for the top-level call.
4554 We treat reaching expressions that go through blocks containing the same
4555 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4556 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4557 2 as not reaching. The intent is to improve the probability of finding
4558 only one reaching expression and to reduce register lifetimes by picking
4559 the closest such expression. */
4561 static int
4562 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4563 basic_block occr_bb;
4564 struct expr *expr;
4565 basic_block bb;
4566 char *visited;
4568 edge pred;
4570 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4572 basic_block pred_bb = pred->src;
4574 if (pred->src == ENTRY_BLOCK_PTR
4575 /* Has predecessor has already been visited? */
4576 || visited[pred_bb->index])
4577 ;/* Nothing to do. */
4579 /* Does this predecessor generate this expression? */
4580 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
4582 /* Is this the occurrence we're looking for?
4583 Note that there's only one generating occurrence per block
4584 so we just need to check the block number. */
4585 if (occr_bb == pred_bb)
4586 return 1;
4588 visited[pred_bb->index] = 1;
4590 /* Ignore this predecessor if it kills the expression. */
4591 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4592 visited[pred_bb->index] = 1;
4594 /* Neither gen nor kill. */
4595 else
4597 visited[pred_bb->index] = 1;
4598 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4599 return 1;
4603 /* All paths have been checked. */
4604 return 0;
4607 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4608 memory allocated for that function is returned. */
4610 static int
4611 pre_expr_reaches_here_p (occr_bb, expr, bb)
4612 basic_block occr_bb;
4613 struct expr *expr;
4614 basic_block bb;
4616 int rval;
4617 char *visited = (char *) xcalloc (n_basic_blocks, 1);
4619 rval = pre_expr_reaches_here_p_work(occr_bb, expr, bb, visited);
4621 free (visited);
4622 return rval;
4626 /* Given an expr, generate RTL which we can insert at the end of a BB,
4627 or on an edge. Set the block number of any insns generated to
4628 the value of BB. */
4630 static rtx
4631 process_insert_insn (expr)
4632 struct expr *expr;
4634 rtx reg = expr->reaching_reg;
4635 rtx exp = copy_rtx (expr->expr);
4636 rtx pat;
4638 start_sequence ();
4640 /* If the expression is something that's an operand, like a constant,
4641 just copy it to a register. */
4642 if (general_operand (exp, GET_MODE (reg)))
4643 emit_move_insn (reg, exp);
4645 /* Otherwise, make a new insn to compute this expression and make sure the
4646 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4647 expression to make sure we don't have any sharing issues. */
4648 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4649 abort ();
4651 pat = gen_sequence ();
4652 end_sequence ();
4654 return pat;
4657 /* Add EXPR to the end of basic block BB.
4659 This is used by both the PRE and code hoisting.
4661 For PRE, we want to verify that the expr is either transparent
4662 or locally anticipatable in the target block. This check makes
4663 no sense for code hoisting. */
4665 static void
4666 insert_insn_end_bb (expr, bb, pre)
4667 struct expr *expr;
4668 basic_block bb;
4669 int pre;
4671 rtx insn = bb->end;
4672 rtx new_insn;
4673 rtx reg = expr->reaching_reg;
4674 int regno = REGNO (reg);
4675 rtx pat;
4676 int i;
4678 pat = process_insert_insn (expr);
4680 /* If the last insn is a jump, insert EXPR in front [taking care to
4681 handle cc0, etc. properly]. */
4683 if (GET_CODE (insn) == JUMP_INSN)
4685 #ifdef HAVE_cc0
4686 rtx note;
4687 #endif
4689 /* If this is a jump table, then we can't insert stuff here. Since
4690 we know the previous real insn must be the tablejump, we insert
4691 the new instruction just before the tablejump. */
4692 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4693 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4694 insn = prev_real_insn (insn);
4696 #ifdef HAVE_cc0
4697 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4698 if cc0 isn't set. */
4699 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4700 if (note)
4701 insn = XEXP (note, 0);
4702 else
4704 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4705 if (maybe_cc0_setter
4706 && INSN_P (maybe_cc0_setter)
4707 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4708 insn = maybe_cc0_setter;
4710 #endif
4711 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4712 new_insn = emit_block_insn_before (pat, insn, bb);
4715 /* Likewise if the last insn is a call, as will happen in the presence
4716 of exception handling. */
4717 else if (GET_CODE (insn) == CALL_INSN)
4719 HARD_REG_SET parm_regs;
4720 int nparm_regs;
4721 rtx p;
4723 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4724 we search backward and place the instructions before the first
4725 parameter is loaded. Do this for everyone for consistency and a
4726 presumtion that we'll get better code elsewhere as well.
4728 It should always be the case that we can put these instructions
4729 anywhere in the basic block with performing PRE optimizations.
4730 Check this. */
4732 if (pre
4733 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4734 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4735 abort ();
4737 /* Since different machines initialize their parameter registers
4738 in different orders, assume nothing. Collect the set of all
4739 parameter registers. */
4740 CLEAR_HARD_REG_SET (parm_regs);
4741 nparm_regs = 0;
4742 for (p = CALL_INSN_FUNCTION_USAGE (insn); p ; p = XEXP (p, 1))
4743 if (GET_CODE (XEXP (p, 0)) == USE
4744 && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
4746 if (REGNO (XEXP (XEXP (p, 0), 0)) >= FIRST_PSEUDO_REGISTER)
4747 abort ();
4749 /* We only care about registers which can hold function
4750 arguments. */
4751 if (! FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4752 continue;
4754 SET_HARD_REG_BIT (parm_regs, REGNO (XEXP (XEXP (p, 0), 0)));
4755 nparm_regs++;
4758 /* Search backward for the first set of a register in this set. */
4759 while (nparm_regs && bb->head != insn)
4761 insn = PREV_INSN (insn);
4762 p = single_set (insn);
4763 if (p && GET_CODE (SET_DEST (p)) == REG
4764 && REGNO (SET_DEST (p)) < FIRST_PSEUDO_REGISTER
4765 && TEST_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p))))
4767 CLEAR_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p)));
4768 nparm_regs--;
4772 /* If we found all the parameter loads, then we want to insert
4773 before the first parameter load.
4775 If we did not find all the parameter loads, then we might have
4776 stopped on the head of the block, which could be a CODE_LABEL.
4777 If we inserted before the CODE_LABEL, then we would be putting
4778 the insn in the wrong basic block. In that case, put the insn
4779 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4780 while (GET_CODE (insn) == CODE_LABEL
4781 || NOTE_INSN_BASIC_BLOCK_P (insn))
4782 insn = NEXT_INSN (insn);
4784 new_insn = emit_block_insn_before (pat, insn, bb);
4786 else
4788 new_insn = emit_insn_after (pat, insn);
4789 bb->end = new_insn;
4792 /* Keep block number table up to date.
4793 Note, PAT could be a multiple insn sequence, we have to make
4794 sure that each insn in the sequence is handled. */
4795 if (GET_CODE (pat) == SEQUENCE)
4797 for (i = 0; i < XVECLEN (pat, 0); i++)
4799 rtx insn = XVECEXP (pat, 0, i);
4801 set_block_for_insn (insn, bb);
4802 if (INSN_P (insn))
4803 add_label_notes (PATTERN (insn), new_insn);
4805 note_stores (PATTERN (insn), record_set_info, insn);
4808 else
4810 add_label_notes (SET_SRC (pat), new_insn);
4811 set_block_for_new_insns (new_insn, bb);
4813 /* Keep register set table up to date. */
4814 record_one_set (regno, new_insn);
4817 gcse_create_count++;
4819 if (gcse_file)
4821 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4822 bb->index, INSN_UID (new_insn));
4823 fprintf (gcse_file, "copying expression %d to reg %d\n",
4824 expr->bitmap_index, regno);
4828 /* Insert partially redundant expressions on edges in the CFG to make
4829 the expressions fully redundant. */
4831 static int
4832 pre_edge_insert (edge_list, index_map)
4833 struct edge_list *edge_list;
4834 struct expr **index_map;
4836 int e, i, j, num_edges, set_size, did_insert = 0;
4837 sbitmap *inserted;
4839 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4840 if it reaches any of the deleted expressions. */
4842 set_size = pre_insert_map[0]->size;
4843 num_edges = NUM_EDGES (edge_list);
4844 inserted = sbitmap_vector_alloc (num_edges, n_exprs);
4845 sbitmap_vector_zero (inserted, num_edges);
4847 for (e = 0; e < num_edges; e++)
4849 int indx;
4850 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4852 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4854 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4856 for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
4857 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4859 struct expr *expr = index_map[j];
4860 struct occr *occr;
4862 /* Now look at each deleted occurence of this expression. */
4863 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4865 if (! occr->deleted_p)
4866 continue;
4868 /* Insert this expression on this edge if if it would
4869 reach the deleted occurence in BB. */
4870 if (!TEST_BIT (inserted[e], j))
4872 rtx insn;
4873 edge eg = INDEX_EDGE (edge_list, e);
4875 /* We can't insert anything on an abnormal and
4876 critical edge, so we insert the insn at the end of
4877 the previous block. There are several alternatives
4878 detailed in Morgans book P277 (sec 10.5) for
4879 handling this situation. This one is easiest for
4880 now. */
4882 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
4883 insert_insn_end_bb (index_map[j], bb, 0);
4884 else
4886 insn = process_insert_insn (index_map[j]);
4887 insert_insn_on_edge (insn, eg);
4890 if (gcse_file)
4892 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4893 bb->index,
4894 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4895 fprintf (gcse_file, "copy expression %d\n",
4896 expr->bitmap_index);
4899 update_ld_motion_stores (expr);
4900 SET_BIT (inserted[e], j);
4901 did_insert = 1;
4902 gcse_create_count++;
4909 sbitmap_vector_free (inserted);
4910 return did_insert;
4913 /* Copy the result of INSN to REG. INDX is the expression number. */
4915 static void
4916 pre_insert_copy_insn (expr, insn)
4917 struct expr *expr;
4918 rtx insn;
4920 rtx reg = expr->reaching_reg;
4921 int regno = REGNO (reg);
4922 int indx = expr->bitmap_index;
4923 rtx set = single_set (insn);
4924 rtx new_insn;
4925 basic_block bb = BLOCK_FOR_INSN (insn);
4927 if (!set)
4928 abort ();
4930 new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn);
4932 /* Keep block number table up to date. */
4933 set_block_for_new_insns (new_insn, bb);
4935 /* Keep register set table up to date. */
4936 record_one_set (regno, new_insn);
4937 if (insn == bb->end)
4938 bb->end = new_insn;
4940 gcse_create_count++;
4942 if (gcse_file)
4943 fprintf (gcse_file,
4944 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4945 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4946 INSN_UID (insn), regno);
4949 /* Copy available expressions that reach the redundant expression
4950 to `reaching_reg'. */
4952 static void
4953 pre_insert_copies ()
4955 unsigned int i;
4956 struct expr *expr;
4957 struct occr *occr;
4958 struct occr *avail;
4960 /* For each available expression in the table, copy the result to
4961 `reaching_reg' if the expression reaches a deleted one.
4963 ??? The current algorithm is rather brute force.
4964 Need to do some profiling. */
4966 for (i = 0; i < expr_hash_table_size; i++)
4967 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4969 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4970 we don't want to insert a copy here because the expression may not
4971 really be redundant. So only insert an insn if the expression was
4972 deleted. This test also avoids further processing if the
4973 expression wasn't deleted anywhere. */
4974 if (expr->reaching_reg == NULL)
4975 continue;
4977 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4979 if (! occr->deleted_p)
4980 continue;
4982 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4984 rtx insn = avail->insn;
4986 /* No need to handle this one if handled already. */
4987 if (avail->copied_p)
4988 continue;
4990 /* Don't handle this one if it's a redundant one. */
4991 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4992 continue;
4994 /* Or if the expression doesn't reach the deleted one. */
4995 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4996 expr,
4997 BLOCK_FOR_INSN (occr->insn)))
4998 continue;
5000 /* Copy the result of avail to reaching_reg. */
5001 pre_insert_copy_insn (expr, insn);
5002 avail->copied_p = 1;
5008 /* Delete redundant computations.
5009 Deletion is done by changing the insn to copy the `reaching_reg' of
5010 the expression into the result of the SET. It is left to later passes
5011 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5013 Returns non-zero if a change is made. */
5015 static int
5016 pre_delete ()
5018 unsigned int i;
5019 int changed;
5020 struct expr *expr;
5021 struct occr *occr;
5023 changed = 0;
5024 for (i = 0; i < expr_hash_table_size; i++)
5025 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5027 int indx = expr->bitmap_index;
5029 /* We only need to search antic_occr since we require
5030 ANTLOC != 0. */
5032 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5034 rtx insn = occr->insn;
5035 rtx set;
5036 basic_block bb = BLOCK_FOR_INSN (insn);
5038 if (TEST_BIT (pre_delete_map[bb->index], indx))
5040 set = single_set (insn);
5041 if (! set)
5042 abort ();
5044 /* Create a pseudo-reg to store the result of reaching
5045 expressions into. Get the mode for the new pseudo from
5046 the mode of the original destination pseudo. */
5047 if (expr->reaching_reg == NULL)
5048 expr->reaching_reg
5049 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5051 /* In theory this should never fail since we're creating
5052 a reg->reg copy.
5054 However, on the x86 some of the movXX patterns actually
5055 contain clobbers of scratch regs. This may cause the
5056 insn created by validate_change to not match any pattern
5057 and thus cause validate_change to fail. */
5058 if (validate_change (insn, &SET_SRC (set),
5059 expr->reaching_reg, 0))
5061 occr->deleted_p = 1;
5062 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
5063 changed = 1;
5064 gcse_subst_count++;
5067 if (gcse_file)
5069 fprintf (gcse_file,
5070 "PRE: redundant insn %d (expression %d) in ",
5071 INSN_UID (insn), indx);
5072 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
5073 bb->index, REGNO (expr->reaching_reg));
5079 return changed;
5082 /* Perform GCSE optimizations using PRE.
5083 This is called by one_pre_gcse_pass after all the dataflow analysis
5084 has been done.
5086 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5087 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5088 Compiler Design and Implementation.
5090 ??? A new pseudo reg is created to hold the reaching expression. The nice
5091 thing about the classical approach is that it would try to use an existing
5092 reg. If the register can't be adequately optimized [i.e. we introduce
5093 reload problems], one could add a pass here to propagate the new register
5094 through the block.
5096 ??? We don't handle single sets in PARALLELs because we're [currently] not
5097 able to copy the rest of the parallel when we insert copies to create full
5098 redundancies from partial redundancies. However, there's no reason why we
5099 can't handle PARALLELs in the cases where there are no partial
5100 redundancies. */
5102 static int
5103 pre_gcse ()
5105 unsigned int i;
5106 int did_insert, changed;
5107 struct expr **index_map;
5108 struct expr *expr;
5110 /* Compute a mapping from expression number (`bitmap_index') to
5111 hash table entry. */
5113 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5114 for (i = 0; i < expr_hash_table_size; i++)
5115 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5116 index_map[expr->bitmap_index] = expr;
5118 /* Reset bitmap used to track which insns are redundant. */
5119 pre_redundant_insns = sbitmap_alloc (max_cuid);
5120 sbitmap_zero (pre_redundant_insns);
5122 /* Delete the redundant insns first so that
5123 - we know what register to use for the new insns and for the other
5124 ones with reaching expressions
5125 - we know which insns are redundant when we go to create copies */
5127 changed = pre_delete ();
5129 did_insert = pre_edge_insert (edge_list, index_map);
5131 /* In other places with reaching expressions, copy the expression to the
5132 specially allocated pseudo-reg that reaches the redundant expr. */
5133 pre_insert_copies ();
5134 if (did_insert)
5136 commit_edge_insertions ();
5137 changed = 1;
5140 free (index_map);
5141 free (pre_redundant_insns);
5142 return changed;
5145 /* Top level routine to perform one PRE GCSE pass.
5147 Return non-zero if a change was made. */
5149 static int
5150 one_pre_gcse_pass (pass)
5151 int pass;
5153 int changed = 0;
5155 gcse_subst_count = 0;
5156 gcse_create_count = 0;
5158 alloc_expr_hash_table (max_cuid);
5159 add_noreturn_fake_exit_edges ();
5160 if (flag_gcse_lm)
5161 compute_ld_motion_mems ();
5163 compute_expr_hash_table ();
5164 trim_ld_motion_mems ();
5165 if (gcse_file)
5166 dump_hash_table (gcse_file, "Expression", expr_hash_table,
5167 expr_hash_table_size, n_exprs);
5169 if (n_exprs > 0)
5171 alloc_pre_mem (n_basic_blocks, n_exprs);
5172 compute_pre_data ();
5173 changed |= pre_gcse ();
5174 free_edge_list (edge_list);
5175 free_pre_mem ();
5178 free_ldst_mems ();
5179 remove_fake_edges ();
5180 free_expr_hash_table ();
5182 if (gcse_file)
5184 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5185 current_function_name, pass, bytes_used);
5186 fprintf (gcse_file, "%d substs, %d insns created\n",
5187 gcse_subst_count, gcse_create_count);
5190 return changed;
5193 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5194 If notes are added to an insn which references a CODE_LABEL, the
5195 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5196 because the following loop optimization pass requires them. */
5198 /* ??? This is very similar to the loop.c add_label_notes function. We
5199 could probably share code here. */
5201 /* ??? If there was a jump optimization pass after gcse and before loop,
5202 then we would not need to do this here, because jump would add the
5203 necessary REG_LABEL notes. */
5205 static void
5206 add_label_notes (x, insn)
5207 rtx x;
5208 rtx insn;
5210 enum rtx_code code = GET_CODE (x);
5211 int i, j;
5212 const char *fmt;
5214 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5216 /* This code used to ignore labels that referred to dispatch tables to
5217 avoid flow generating (slighly) worse code.
5219 We no longer ignore such label references (see LABEL_REF handling in
5220 mark_jump_label for additional information). */
5222 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
5223 REG_NOTES (insn));
5224 if (LABEL_P (XEXP (x, 0)))
5225 LABEL_NUSES (XEXP (x, 0))++;
5226 return;
5229 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5231 if (fmt[i] == 'e')
5232 add_label_notes (XEXP (x, i), insn);
5233 else if (fmt[i] == 'E')
5234 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5235 add_label_notes (XVECEXP (x, i, j), insn);
5239 /* Compute transparent outgoing information for each block.
5241 An expression is transparent to an edge unless it is killed by
5242 the edge itself. This can only happen with abnormal control flow,
5243 when the edge is traversed through a call. This happens with
5244 non-local labels and exceptions.
5246 This would not be necessary if we split the edge. While this is
5247 normally impossible for abnormal critical edges, with some effort
5248 it should be possible with exception handling, since we still have
5249 control over which handler should be invoked. But due to increased
5250 EH table sizes, this may not be worthwhile. */
5252 static void
5253 compute_transpout ()
5255 int bb;
5256 unsigned int i;
5257 struct expr *expr;
5259 sbitmap_vector_ones (transpout, n_basic_blocks);
5261 for (bb = 0; bb < n_basic_blocks; ++bb)
5263 /* Note that flow inserted a nop a the end of basic blocks that
5264 end in call instructions for reasons other than abnormal
5265 control flow. */
5266 if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
5267 continue;
5269 for (i = 0; i < expr_hash_table_size; i++)
5270 for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
5271 if (GET_CODE (expr->expr) == MEM)
5273 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5274 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5275 continue;
5277 /* ??? Optimally, we would use interprocedural alias
5278 analysis to determine if this mem is actually killed
5279 by this call. */
5280 RESET_BIT (transpout[bb], expr->bitmap_index);
5285 /* Removal of useless null pointer checks */
5287 /* Called via note_stores. X is set by SETTER. If X is a register we must
5288 invalidate nonnull_local and set nonnull_killed. DATA is really a
5289 `null_pointer_info *'.
5291 We ignore hard registers. */
5293 static void
5294 invalidate_nonnull_info (x, setter, data)
5295 rtx x;
5296 rtx setter ATTRIBUTE_UNUSED;
5297 void *data;
5299 unsigned int regno;
5300 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5302 while (GET_CODE (x) == SUBREG)
5303 x = SUBREG_REG (x);
5305 /* Ignore anything that is not a register or is a hard register. */
5306 if (GET_CODE (x) != REG
5307 || REGNO (x) < npi->min_reg
5308 || REGNO (x) >= npi->max_reg)
5309 return;
5311 regno = REGNO (x) - npi->min_reg;
5313 RESET_BIT (npi->nonnull_local[npi->current_block], regno);
5314 SET_BIT (npi->nonnull_killed[npi->current_block], regno);
5317 /* Do null-pointer check elimination for the registers indicated in
5318 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5319 they are not our responsibility to free. */
5321 static void
5322 delete_null_pointer_checks_1 (delete_list, block_reg, nonnull_avin,
5323 nonnull_avout, npi)
5324 varray_type *delete_list;
5325 unsigned int *block_reg;
5326 sbitmap *nonnull_avin;
5327 sbitmap *nonnull_avout;
5328 struct null_pointer_info *npi;
5330 int bb;
5331 int current_block;
5332 sbitmap *nonnull_local = npi->nonnull_local;
5333 sbitmap *nonnull_killed = npi->nonnull_killed;
5335 /* Compute local properties, nonnull and killed. A register will have
5336 the nonnull property if at the end of the current block its value is
5337 known to be nonnull. The killed property indicates that somewhere in
5338 the block any information we had about the register is killed.
5340 Note that a register can have both properties in a single block. That
5341 indicates that it's killed, then later in the block a new value is
5342 computed. */
5343 sbitmap_vector_zero (nonnull_local, n_basic_blocks);
5344 sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
5346 for (current_block = 0; current_block < n_basic_blocks; current_block++)
5348 rtx insn, stop_insn;
5350 /* Set the current block for invalidate_nonnull_info. */
5351 npi->current_block = current_block;
5353 /* Scan each insn in the basic block looking for memory references and
5354 register sets. */
5355 stop_insn = NEXT_INSN (BLOCK_END (current_block));
5356 for (insn = BLOCK_HEAD (current_block);
5357 insn != stop_insn;
5358 insn = NEXT_INSN (insn))
5360 rtx set;
5361 rtx reg;
5363 /* Ignore anything that is not a normal insn. */
5364 if (! INSN_P (insn))
5365 continue;
5367 /* Basically ignore anything that is not a simple SET. We do have
5368 to make sure to invalidate nonnull_local and set nonnull_killed
5369 for such insns though. */
5370 set = single_set (insn);
5371 if (!set)
5373 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5374 continue;
5377 /* See if we've got a useable memory load. We handle it first
5378 in case it uses its address register as a dest (which kills
5379 the nonnull property). */
5380 if (GET_CODE (SET_SRC (set)) == MEM
5381 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5382 && REGNO (reg) >= npi->min_reg
5383 && REGNO (reg) < npi->max_reg)
5384 SET_BIT (nonnull_local[current_block],
5385 REGNO (reg) - npi->min_reg);
5387 /* Now invalidate stuff clobbered by this insn. */
5388 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5390 /* And handle stores, we do these last since any sets in INSN can
5391 not kill the nonnull property if it is derived from a MEM
5392 appearing in a SET_DEST. */
5393 if (GET_CODE (SET_DEST (set)) == MEM
5394 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5395 && REGNO (reg) >= npi->min_reg
5396 && REGNO (reg) < npi->max_reg)
5397 SET_BIT (nonnull_local[current_block],
5398 REGNO (reg) - npi->min_reg);
5402 /* Now compute global properties based on the local properties. This
5403 is a classic global availablity algorithm. */
5404 compute_available (nonnull_local, nonnull_killed,
5405 nonnull_avout, nonnull_avin);
5407 /* Now look at each bb and see if it ends with a compare of a value
5408 against zero. */
5409 for (bb = 0; bb < n_basic_blocks; bb++)
5411 rtx last_insn = BLOCK_END (bb);
5412 rtx condition, earliest;
5413 int compare_and_branch;
5415 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5416 since BLOCK_REG[BB] is zero if this block did not end with a
5417 comparison against zero, this condition works. */
5418 if (block_reg[bb] < npi->min_reg
5419 || block_reg[bb] >= npi->max_reg)
5420 continue;
5422 /* LAST_INSN is a conditional jump. Get its condition. */
5423 condition = get_condition (last_insn, &earliest);
5425 /* If we can't determine the condition then skip. */
5426 if (! condition)
5427 continue;
5429 /* Is the register known to have a nonzero value? */
5430 if (!TEST_BIT (nonnull_avout[bb], block_reg[bb] - npi->min_reg))
5431 continue;
5433 /* Try to compute whether the compare/branch at the loop end is one or
5434 two instructions. */
5435 if (earliest == last_insn)
5436 compare_and_branch = 1;
5437 else if (earliest == prev_nonnote_insn (last_insn))
5438 compare_and_branch = 2;
5439 else
5440 continue;
5442 /* We know the register in this comparison is nonnull at exit from
5443 this block. We can optimize this comparison. */
5444 if (GET_CODE (condition) == NE)
5446 rtx new_jump;
5448 new_jump = emit_jump_insn_before (gen_jump (JUMP_LABEL (last_insn)),
5449 last_insn);
5450 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5451 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5452 emit_barrier_after (new_jump);
5454 if (!*delete_list)
5455 VARRAY_RTX_INIT (*delete_list, 10, "delete_list");
5457 VARRAY_PUSH_RTX (*delete_list, last_insn);
5458 if (compare_and_branch == 2)
5459 VARRAY_PUSH_RTX (*delete_list, earliest);
5461 /* Don't check this block again. (Note that BLOCK_END is
5462 invalid here; we deleted the last instruction in the
5463 block.) */
5464 block_reg[bb] = 0;
5468 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5469 at compile time.
5471 This is conceptually similar to global constant/copy propagation and
5472 classic global CSE (it even uses the same dataflow equations as cprop).
5474 If a register is used as memory address with the form (mem (reg)), then we
5475 know that REG can not be zero at that point in the program. Any instruction
5476 which sets REG "kills" this property.
5478 So, if every path leading to a conditional branch has an available memory
5479 reference of that form, then we know the register can not have the value
5480 zero at the conditional branch.
5482 So we merely need to compute the local properies and propagate that data
5483 around the cfg, then optimize where possible.
5485 We run this pass two times. Once before CSE, then again after CSE. This
5486 has proven to be the most profitable approach. It is rare for new
5487 optimization opportunities of this nature to appear after the first CSE
5488 pass.
5490 This could probably be integrated with global cprop with a little work. */
5492 void
5493 delete_null_pointer_checks (f)
5494 rtx f ATTRIBUTE_UNUSED;
5496 sbitmap *nonnull_avin, *nonnull_avout;
5497 unsigned int *block_reg;
5498 varray_type delete_list = NULL;
5499 int bb;
5500 int reg;
5501 int regs_per_pass;
5502 int max_reg;
5503 unsigned int i;
5504 struct null_pointer_info npi;
5506 /* If we have only a single block, then there's nothing to do. */
5507 if (n_basic_blocks <= 1)
5508 return;
5510 /* Trying to perform global optimizations on flow graphs which have
5511 a high connectivity will take a long time and is unlikely to be
5512 particularly useful.
5514 In normal circumstances a cfg should have about twice as many edges
5515 as blocks. But we do not want to punish small functions which have
5516 a couple switch statements. So we require a relatively large number
5517 of basic blocks and the ratio of edges to blocks to be high. */
5518 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5519 return;
5521 /* We need four bitmaps, each with a bit for each register in each
5522 basic block. */
5523 max_reg = max_reg_num ();
5524 regs_per_pass = get_bitmap_width (4, n_basic_blocks, max_reg);
5526 /* Allocate bitmaps to hold local and global properties. */
5527 npi.nonnull_local = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5528 npi.nonnull_killed = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5529 nonnull_avin = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5530 nonnull_avout = sbitmap_vector_alloc (n_basic_blocks, regs_per_pass);
5532 /* Go through the basic blocks, seeing whether or not each block
5533 ends with a conditional branch whose condition is a comparison
5534 against zero. Record the register compared in BLOCK_REG. */
5535 block_reg = (unsigned int *) xcalloc (n_basic_blocks, sizeof (int));
5536 for (bb = 0; bb < n_basic_blocks; bb++)
5538 rtx last_insn = BLOCK_END (bb);
5539 rtx condition, earliest, reg;
5541 /* We only want conditional branches. */
5542 if (GET_CODE (last_insn) != JUMP_INSN
5543 || !any_condjump_p (last_insn)
5544 || !onlyjump_p (last_insn))
5545 continue;
5547 /* LAST_INSN is a conditional jump. Get its condition. */
5548 condition = get_condition (last_insn, &earliest);
5550 /* If we were unable to get the condition, or it is not a equality
5551 comparison against zero then there's nothing we can do. */
5552 if (!condition
5553 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5554 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5555 || (XEXP (condition, 1)
5556 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5557 continue;
5559 /* We must be checking a register against zero. */
5560 reg = XEXP (condition, 0);
5561 if (GET_CODE (reg) != REG)
5562 continue;
5564 block_reg[bb] = REGNO (reg);
5567 /* Go through the algorithm for each block of registers. */
5568 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5570 npi.min_reg = reg;
5571 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5572 delete_null_pointer_checks_1 (&delete_list, block_reg, nonnull_avin,
5573 nonnull_avout, &npi);
5576 /* Now delete the instructions all at once. This breaks the CFG. */
5577 if (delete_list)
5579 for (i = 0; i < VARRAY_ACTIVE_SIZE (delete_list); i++)
5580 delete_insn (VARRAY_RTX (delete_list, i));
5581 VARRAY_FREE (delete_list);
5584 /* Free the table of registers compared at the end of every block. */
5585 free (block_reg);
5587 /* Free bitmaps. */
5588 sbitmap_vector_free (npi.nonnull_local);
5589 sbitmap_vector_free (npi.nonnull_killed);
5590 sbitmap_vector_free (nonnull_avin);
5591 sbitmap_vector_free (nonnull_avout);
5594 /* Code Hoisting variables and subroutines. */
5596 /* Very busy expressions. */
5597 static sbitmap *hoist_vbein;
5598 static sbitmap *hoist_vbeout;
5600 /* Hoistable expressions. */
5601 static sbitmap *hoist_exprs;
5603 /* Dominator bitmaps. */
5604 static sbitmap *dominators;
5606 /* ??? We could compute post dominators and run this algorithm in
5607 reverse to to perform tail merging, doing so would probably be
5608 more effective than the tail merging code in jump.c.
5610 It's unclear if tail merging could be run in parallel with
5611 code hoisting. It would be nice. */
5613 /* Allocate vars used for code hoisting analysis. */
5615 static void
5616 alloc_code_hoist_mem (n_blocks, n_exprs)
5617 int n_blocks, n_exprs;
5619 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5620 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5621 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5623 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5624 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5625 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5626 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5628 dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
5631 /* Free vars used for code hoisting analysis. */
5633 static void
5634 free_code_hoist_mem ()
5636 sbitmap_vector_free (antloc);
5637 sbitmap_vector_free (transp);
5638 sbitmap_vector_free (comp);
5640 sbitmap_vector_free (hoist_vbein);
5641 sbitmap_vector_free (hoist_vbeout);
5642 sbitmap_vector_free (hoist_exprs);
5643 sbitmap_vector_free (transpout);
5645 sbitmap_vector_free (dominators);
5648 /* Compute the very busy expressions at entry/exit from each block.
5650 An expression is very busy if all paths from a given point
5651 compute the expression. */
5653 static void
5654 compute_code_hoist_vbeinout ()
5656 int bb, changed, passes;
5658 sbitmap_vector_zero (hoist_vbeout, n_basic_blocks);
5659 sbitmap_vector_zero (hoist_vbein, n_basic_blocks);
5661 passes = 0;
5662 changed = 1;
5664 while (changed)
5666 changed = 0;
5668 /* We scan the blocks in the reverse order to speed up
5669 the convergence. */
5670 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
5672 changed |= sbitmap_a_or_b_and_c (hoist_vbein[bb], antloc[bb],
5673 hoist_vbeout[bb], transp[bb]);
5674 if (bb != n_basic_blocks - 1)
5675 sbitmap_intersection_of_succs (hoist_vbeout[bb], hoist_vbein, bb);
5678 passes++;
5681 if (gcse_file)
5682 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5685 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5687 static void
5688 compute_code_hoist_data ()
5690 compute_local_properties (transp, comp, antloc, 0);
5691 compute_transpout ();
5692 compute_code_hoist_vbeinout ();
5693 calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
5694 if (gcse_file)
5695 fprintf (gcse_file, "\n");
5698 /* Determine if the expression identified by EXPR_INDEX would
5699 reach BB unimpared if it was placed at the end of EXPR_BB.
5701 It's unclear exactly what Muchnick meant by "unimpared". It seems
5702 to me that the expression must either be computed or transparent in
5703 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5704 would allow the expression to be hoisted out of loops, even if
5705 the expression wasn't a loop invariant.
5707 Contrast this to reachability for PRE where an expression is
5708 considered reachable if *any* path reaches instead of *all*
5709 paths. */
5711 static int
5712 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
5713 basic_block expr_bb;
5714 int expr_index;
5715 basic_block bb;
5716 char *visited;
5718 edge pred;
5719 int visited_allocated_locally = 0;
5722 if (visited == NULL)
5724 visited_allocated_locally = 1;
5725 visited = xcalloc (n_basic_blocks, 1);
5728 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
5730 basic_block pred_bb = pred->src;
5732 if (pred->src == ENTRY_BLOCK_PTR)
5733 break;
5734 else if (visited[pred_bb->index])
5735 continue;
5737 /* Does this predecessor generate this expression? */
5738 else if (TEST_BIT (comp[pred_bb->index], expr_index))
5739 break;
5740 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
5741 break;
5743 /* Not killed. */
5744 else
5746 visited[pred_bb->index] = 1;
5747 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5748 pred_bb, visited))
5749 break;
5752 if (visited_allocated_locally)
5753 free (visited);
5755 return (pred == NULL);
5758 /* Actually perform code hoisting. */
5760 static void
5761 hoist_code ()
5763 int bb, dominated;
5764 unsigned int i;
5765 struct expr **index_map;
5766 struct expr *expr;
5768 sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
5770 /* Compute a mapping from expression number (`bitmap_index') to
5771 hash table entry. */
5773 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5774 for (i = 0; i < expr_hash_table_size; i++)
5775 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5776 index_map[expr->bitmap_index] = expr;
5778 /* Walk over each basic block looking for potentially hoistable
5779 expressions, nothing gets hoisted from the entry block. */
5780 for (bb = 0; bb < n_basic_blocks; bb++)
5782 int found = 0;
5783 int insn_inserted_p;
5785 /* Examine each expression that is very busy at the exit of this
5786 block. These are the potentially hoistable expressions. */
5787 for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
5789 int hoistable = 0;
5791 if (TEST_BIT (hoist_vbeout[bb], i) && TEST_BIT (transpout[bb], i))
5793 /* We've found a potentially hoistable expression, now
5794 we look at every block BB dominates to see if it
5795 computes the expression. */
5796 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5798 /* Ignore self dominance. */
5799 if (bb == dominated
5800 || ! TEST_BIT (dominators[dominated], bb))
5801 continue;
5803 /* We've found a dominated block, now see if it computes
5804 the busy expression and whether or not moving that
5805 expression to the "beginning" of that block is safe. */
5806 if (!TEST_BIT (antloc[dominated], i))
5807 continue;
5809 /* Note if the expression would reach the dominated block
5810 unimpared if it was placed at the end of BB.
5812 Keep track of how many times this expression is hoistable
5813 from a dominated block into BB. */
5814 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb), i,
5815 BASIC_BLOCK (dominated), NULL))
5816 hoistable++;
5819 /* If we found more than one hoistable occurence of this
5820 expression, then note it in the bitmap of expressions to
5821 hoist. It makes no sense to hoist things which are computed
5822 in only one BB, and doing so tends to pessimize register
5823 allocation. One could increase this value to try harder
5824 to avoid any possible code expansion due to register
5825 allocation issues; however experiments have shown that
5826 the vast majority of hoistable expressions are only movable
5827 from two successors, so raising this threshhold is likely
5828 to nullify any benefit we get from code hoisting. */
5829 if (hoistable > 1)
5831 SET_BIT (hoist_exprs[bb], i);
5832 found = 1;
5837 /* If we found nothing to hoist, then quit now. */
5838 if (! found)
5839 continue;
5841 /* Loop over all the hoistable expressions. */
5842 for (i = 0; i < hoist_exprs[bb]->n_bits; i++)
5844 /* We want to insert the expression into BB only once, so
5845 note when we've inserted it. */
5846 insn_inserted_p = 0;
5848 /* These tests should be the same as the tests above. */
5849 if (TEST_BIT (hoist_vbeout[bb], i))
5851 /* We've found a potentially hoistable expression, now
5852 we look at every block BB dominates to see if it
5853 computes the expression. */
5854 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5856 /* Ignore self dominance. */
5857 if (bb == dominated
5858 || ! TEST_BIT (dominators[dominated], bb))
5859 continue;
5861 /* We've found a dominated block, now see if it computes
5862 the busy expression and whether or not moving that
5863 expression to the "beginning" of that block is safe. */
5864 if (!TEST_BIT (antloc[dominated], i))
5865 continue;
5867 /* The expression is computed in the dominated block and
5868 it would be safe to compute it at the start of the
5869 dominated block. Now we have to determine if the
5870 expresion would reach the dominated block if it was
5871 placed at the end of BB. */
5872 if (hoist_expr_reaches_here_p (BASIC_BLOCK (bb), i,
5873 BASIC_BLOCK (dominated), NULL))
5875 struct expr *expr = index_map[i];
5876 struct occr *occr = expr->antic_occr;
5877 rtx insn;
5878 rtx set;
5880 /* Find the right occurence of this expression. */
5881 while (BLOCK_NUM (occr->insn) != dominated && occr)
5882 occr = occr->next;
5884 /* Should never happen. */
5885 if (!occr)
5886 abort ();
5888 insn = occr->insn;
5890 set = single_set (insn);
5891 if (! set)
5892 abort ();
5894 /* Create a pseudo-reg to store the result of reaching
5895 expressions into. Get the mode for the new pseudo
5896 from the mode of the original destination pseudo. */
5897 if (expr->reaching_reg == NULL)
5898 expr->reaching_reg
5899 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5901 /* In theory this should never fail since we're creating
5902 a reg->reg copy.
5904 However, on the x86 some of the movXX patterns
5905 actually contain clobbers of scratch regs. This may
5906 cause the insn created by validate_change to not
5907 match any pattern and thus cause validate_change to
5908 fail. */
5909 if (validate_change (insn, &SET_SRC (set),
5910 expr->reaching_reg, 0))
5912 occr->deleted_p = 1;
5913 if (!insn_inserted_p)
5915 insert_insn_end_bb (index_map[i],
5916 BASIC_BLOCK (bb), 0);
5917 insn_inserted_p = 1;
5926 free (index_map);
5929 /* Top level routine to perform one code hoisting (aka unification) pass
5931 Return non-zero if a change was made. */
5933 static int
5934 one_code_hoisting_pass ()
5936 int changed = 0;
5938 alloc_expr_hash_table (max_cuid);
5939 compute_expr_hash_table ();
5940 if (gcse_file)
5941 dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
5942 expr_hash_table_size, n_exprs);
5944 if (n_exprs > 0)
5946 alloc_code_hoist_mem (n_basic_blocks, n_exprs);
5947 compute_code_hoist_data ();
5948 hoist_code ();
5949 free_code_hoist_mem ();
5952 free_expr_hash_table ();
5954 return changed;
5957 /* Here we provide the things required to do store motion towards
5958 the exit. In order for this to be effective, gcse also needed to
5959 be taught how to move a load when it is kill only by a store to itself.
5961 int i;
5962 float a[10];
5964 void foo(float scale)
5966 for (i=0; i<10; i++)
5967 a[i] *= scale;
5970 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5971 the load out since its live around the loop, and stored at the bottom
5972 of the loop.
5974 The 'Load Motion' referred to and implemented in this file is
5975 an enhancement to gcse which when using edge based lcm, recognizes
5976 this situation and allows gcse to move the load out of the loop.
5978 Once gcse has hoisted the load, store motion can then push this
5979 load towards the exit, and we end up with no loads or stores of 'i'
5980 in the loop. */
5982 /* This will search the ldst list for a matching expresion. If it
5983 doesn't find one, we create one and initialize it. */
5985 static struct ls_expr *
5986 ldst_entry (x)
5987 rtx x;
5989 struct ls_expr * ptr;
5991 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5992 if (expr_equiv_p (ptr->pattern, x))
5993 break;
5995 if (!ptr)
5997 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
5999 ptr->next = pre_ldst_mems;
6000 ptr->expr = NULL;
6001 ptr->pattern = x;
6002 ptr->loads = NULL_RTX;
6003 ptr->stores = NULL_RTX;
6004 ptr->reaching_reg = NULL_RTX;
6005 ptr->invalid = 0;
6006 ptr->index = 0;
6007 ptr->hash_index = 0;
6008 pre_ldst_mems = ptr;
6011 return ptr;
6014 /* Free up an individual ldst entry. */
6016 static void
6017 free_ldst_entry (ptr)
6018 struct ls_expr * ptr;
6020 free_INSN_LIST_list (& ptr->loads);
6021 free_INSN_LIST_list (& ptr->stores);
6023 free (ptr);
6026 /* Free up all memory associated with the ldst list. */
6028 static void
6029 free_ldst_mems ()
6031 while (pre_ldst_mems)
6033 struct ls_expr * tmp = pre_ldst_mems;
6035 pre_ldst_mems = pre_ldst_mems->next;
6037 free_ldst_entry (tmp);
6040 pre_ldst_mems = NULL;
6043 /* Dump debugging info about the ldst list. */
6045 static void
6046 print_ldst_list (file)
6047 FILE * file;
6049 struct ls_expr * ptr;
6051 fprintf (file, "LDST list: \n");
6053 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6055 fprintf (file, " Pattern (%3d): ", ptr->index);
6057 print_rtl (file, ptr->pattern);
6059 fprintf (file, "\n Loads : ");
6061 if (ptr->loads)
6062 print_rtl (file, ptr->loads);
6063 else
6064 fprintf (file, "(nil)");
6066 fprintf (file, "\n Stores : ");
6068 if (ptr->stores)
6069 print_rtl (file, ptr->stores);
6070 else
6071 fprintf (file, "(nil)");
6073 fprintf (file, "\n\n");
6076 fprintf (file, "\n");
6079 /* Returns 1 if X is in the list of ldst only expressions. */
6081 static struct ls_expr *
6082 find_rtx_in_ldst (x)
6083 rtx x;
6085 struct ls_expr * ptr;
6087 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6088 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6089 return ptr;
6091 return NULL;
6094 /* Assign each element of the list of mems a monotonically increasing value. */
6096 static int
6097 enumerate_ldsts ()
6099 struct ls_expr * ptr;
6100 int n = 0;
6102 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6103 ptr->index = n++;
6105 return n;
6108 /* Return first item in the list. */
6110 static inline struct ls_expr *
6111 first_ls_expr ()
6113 return pre_ldst_mems;
6116 /* Return the next item in ther list after the specified one. */
6118 static inline struct ls_expr *
6119 next_ls_expr (ptr)
6120 struct ls_expr * ptr;
6122 return ptr->next;
6125 /* Load Motion for loads which only kill themselves. */
6127 /* Return true if x is a simple MEM operation, with no registers or
6128 side effects. These are the types of loads we consider for the
6129 ld_motion list, otherwise we let the usual aliasing take care of it. */
6131 static int
6132 simple_mem (x)
6133 rtx x;
6135 if (GET_CODE (x) != MEM)
6136 return 0;
6138 if (MEM_VOLATILE_P (x))
6139 return 0;
6141 if (GET_MODE (x) == BLKmode)
6142 return 0;
6144 if (!rtx_varies_p (XEXP (x, 0), 0))
6145 return 1;
6147 return 0;
6150 /* Make sure there isn't a buried reference in this pattern anywhere.
6151 If there is, invalidate the entry for it since we're not capable
6152 of fixing it up just yet.. We have to be sure we know about ALL
6153 loads since the aliasing code will allow all entries in the
6154 ld_motion list to not-alias itself. If we miss a load, we will get
6155 the wrong value since gcse might common it and we won't know to
6156 fix it up. */
6158 static void
6159 invalidate_any_buried_refs (x)
6160 rtx x;
6162 const char * fmt;
6163 int i,j;
6164 struct ls_expr * ptr;
6166 /* Invalidate it in the list. */
6167 if (GET_CODE (x) == MEM && simple_mem (x))
6169 ptr = ldst_entry (x);
6170 ptr->invalid = 1;
6173 /* Recursively process the insn. */
6174 fmt = GET_RTX_FORMAT (GET_CODE (x));
6176 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6178 if (fmt[i] == 'e')
6179 invalidate_any_buried_refs (XEXP (x, i));
6180 else if (fmt[i] == 'E')
6181 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6182 invalidate_any_buried_refs (XVECEXP (x, i, j));
6186 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6187 being defined as MEM loads and stores to symbols, with no
6188 side effects and no registers in the expression. If there are any
6189 uses/defs which dont match this criteria, it is invalidated and
6190 trimmed out later. */
6192 static void
6193 compute_ld_motion_mems ()
6195 struct ls_expr * ptr;
6196 int bb;
6197 rtx insn;
6199 pre_ldst_mems = NULL;
6201 for (bb = 0; bb < n_basic_blocks; bb++)
6203 for (insn = BLOCK_HEAD (bb);
6204 insn && insn != NEXT_INSN (BLOCK_END (bb));
6205 insn = NEXT_INSN (insn))
6207 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6209 if (GET_CODE (PATTERN (insn)) == SET)
6211 rtx src = SET_SRC (PATTERN (insn));
6212 rtx dest = SET_DEST (PATTERN (insn));
6214 /* Check for a simple LOAD... */
6215 if (GET_CODE (src) == MEM && simple_mem (src))
6217 ptr = ldst_entry (src);
6218 if (GET_CODE (dest) == REG)
6219 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6220 else
6221 ptr->invalid = 1;
6223 else
6225 /* Make sure there isn't a buried load somewhere. */
6226 invalidate_any_buried_refs (src);
6229 /* Check for stores. Don't worry about aliased ones, they
6230 will block any movement we might do later. We only care
6231 about this exact pattern since those are the only
6232 circumstance that we will ignore the aliasing info. */
6233 if (GET_CODE (dest) == MEM && simple_mem (dest))
6235 ptr = ldst_entry (dest);
6237 if (GET_CODE (src) != MEM
6238 && GET_CODE (src) != ASM_OPERANDS)
6239 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6240 else
6241 ptr->invalid = 1;
6244 else
6245 invalidate_any_buried_refs (PATTERN (insn));
6251 /* Remove any references that have been either invalidated or are not in the
6252 expression list for pre gcse. */
6254 static void
6255 trim_ld_motion_mems ()
6257 struct ls_expr * last = NULL;
6258 struct ls_expr * ptr = first_ls_expr ();
6260 while (ptr != NULL)
6262 int del = ptr->invalid;
6263 struct expr * expr = NULL;
6265 /* Delete if entry has been made invalid. */
6266 if (!del)
6268 unsigned int i;
6270 del = 1;
6271 /* Delete if we cannot find this mem in the expression list. */
6272 for (i = 0; i < expr_hash_table_size && del; i++)
6274 for (expr = expr_hash_table[i];
6275 expr != NULL;
6276 expr = expr->next_same_hash)
6277 if (expr_equiv_p (expr->expr, ptr->pattern))
6279 del = 0;
6280 break;
6285 if (del)
6287 if (last != NULL)
6289 last->next = ptr->next;
6290 free_ldst_entry (ptr);
6291 ptr = last->next;
6293 else
6295 pre_ldst_mems = pre_ldst_mems->next;
6296 free_ldst_entry (ptr);
6297 ptr = pre_ldst_mems;
6300 else
6302 /* Set the expression field if we are keeping it. */
6303 last = ptr;
6304 ptr->expr = expr;
6305 ptr = ptr->next;
6309 /* Show the world what we've found. */
6310 if (gcse_file && pre_ldst_mems != NULL)
6311 print_ldst_list (gcse_file);
6314 /* This routine will take an expression which we are replacing with
6315 a reaching register, and update any stores that are needed if
6316 that expression is in the ld_motion list. Stores are updated by
6317 copying their SRC to the reaching register, and then storeing
6318 the reaching register into the store location. These keeps the
6319 correct value in the reaching register for the loads. */
6321 static void
6322 update_ld_motion_stores (expr)
6323 struct expr * expr;
6325 struct ls_expr * mem_ptr;
6327 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6329 /* We can try to find just the REACHED stores, but is shouldn't
6330 matter to set the reaching reg everywhere... some might be
6331 dead and should be eliminated later. */
6333 /* We replace SET mem = expr with
6334 SET reg = expr
6335 SET mem = reg , where reg is the
6336 reaching reg used in the load. */
6337 rtx list = mem_ptr->stores;
6339 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6341 rtx insn = XEXP (list, 0);
6342 rtx pat = PATTERN (insn);
6343 rtx src = SET_SRC (pat);
6344 rtx reg = expr->reaching_reg;
6345 rtx copy, new;
6347 /* If we've already copied it, continue. */
6348 if (expr->reaching_reg == src)
6349 continue;
6351 if (gcse_file)
6353 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6354 print_rtl (gcse_file, expr->reaching_reg);
6355 fprintf (gcse_file, ":\n ");
6356 print_inline_rtx (gcse_file, insn, 8);
6357 fprintf (gcse_file, "\n");
6360 copy = gen_move_insn ( reg, SET_SRC (pat));
6361 new = emit_insn_before (copy, insn);
6362 record_one_set (REGNO (reg), new);
6363 set_block_for_new_insns (new, BLOCK_FOR_INSN (insn));
6364 SET_SRC (pat) = reg;
6366 /* un-recognize this pattern since it's probably different now. */
6367 INSN_CODE (insn) = -1;
6368 gcse_create_count++;
6373 /* Store motion code. */
6375 /* This is used to communicate the target bitvector we want to use in the
6376 reg_set_info routine when called via the note_stores mechanism. */
6377 static sbitmap * regvec;
6379 /* Used in computing the reverse edge graph bit vectors. */
6380 static sbitmap * st_antloc;
6382 /* Global holding the number of store expressions we are dealing with. */
6383 static int num_stores;
6385 /* Checks to set if we need to mark a register set. Called from note_stores. */
6387 static void
6388 reg_set_info (dest, setter, data)
6389 rtx dest, setter ATTRIBUTE_UNUSED;
6390 void * data ATTRIBUTE_UNUSED;
6392 if (GET_CODE (dest) == SUBREG)
6393 dest = SUBREG_REG (dest);
6395 if (GET_CODE (dest) == REG)
6396 SET_BIT (*regvec, REGNO (dest));
6399 /* Return non-zero if the register operands of expression X are killed
6400 anywhere in basic block BB. */
6402 static int
6403 store_ops_ok (x, bb)
6404 rtx x;
6405 basic_block bb;
6407 int i;
6408 enum rtx_code code;
6409 const char * fmt;
6411 /* Repeat is used to turn tail-recursion into iteration. */
6412 repeat:
6414 if (x == 0)
6415 return 1;
6417 code = GET_CODE (x);
6418 switch (code)
6420 case REG:
6421 /* If a reg has changed after us in this
6422 block, the operand has been killed. */
6423 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
6425 case MEM:
6426 x = XEXP (x, 0);
6427 goto repeat;
6429 case PRE_DEC:
6430 case PRE_INC:
6431 case POST_DEC:
6432 case POST_INC:
6433 return 0;
6435 case PC:
6436 case CC0: /*FIXME*/
6437 case CONST:
6438 case CONST_INT:
6439 case CONST_DOUBLE:
6440 case SYMBOL_REF:
6441 case LABEL_REF:
6442 case ADDR_VEC:
6443 case ADDR_DIFF_VEC:
6444 return 1;
6446 default:
6447 break;
6450 i = GET_RTX_LENGTH (code) - 1;
6451 fmt = GET_RTX_FORMAT (code);
6453 for (; i >= 0; i--)
6455 if (fmt[i] == 'e')
6457 rtx tem = XEXP (x, i);
6459 /* If we are about to do the last recursive call
6460 needed at this level, change it into iteration.
6461 This function is called enough to be worth it. */
6462 if (i == 0)
6464 x = tem;
6465 goto repeat;
6468 if (! store_ops_ok (tem, bb))
6469 return 0;
6471 else if (fmt[i] == 'E')
6473 int j;
6475 for (j = 0; j < XVECLEN (x, i); j++)
6477 if (! store_ops_ok (XVECEXP (x, i, j), bb))
6478 return 0;
6483 return 1;
6486 /* Determine whether insn is MEM store pattern that we will consider moving. */
6488 static void
6489 find_moveable_store (insn)
6490 rtx insn;
6492 struct ls_expr * ptr;
6493 rtx dest = PATTERN (insn);
6495 if (GET_CODE (dest) != SET
6496 || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
6497 return;
6499 dest = SET_DEST (dest);
6501 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6502 || GET_MODE (dest) == BLKmode)
6503 return;
6505 if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
6506 return;
6508 if (rtx_varies_p (XEXP (dest, 0), 0))
6509 return;
6511 ptr = ldst_entry (dest);
6512 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6515 /* Perform store motion. Much like gcse, except we move expressions the
6516 other way by looking at the flowgraph in reverse. */
6518 static int
6519 compute_store_table ()
6521 int bb, ret;
6522 unsigned regno;
6523 rtx insn, pat;
6525 max_gcse_regno = max_reg_num ();
6527 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
6528 max_gcse_regno);
6529 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
6530 pre_ldst_mems = 0;
6532 /* Find all the stores we care about. */
6533 for (bb = 0; bb < n_basic_blocks; bb++)
6535 regvec = & (reg_set_in_block[bb]);
6536 for (insn = BLOCK_END (bb);
6537 insn && insn != PREV_INSN (BLOCK_HEAD (bb));
6538 insn = PREV_INSN (insn))
6540 #ifdef NON_SAVING_SETJMP
6541 if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
6542 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
6544 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6545 SET_BIT (reg_set_in_block[bb], regno);
6546 continue;
6548 #endif
6549 /* Ignore anything that is not a normal insn. */
6550 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6551 continue;
6553 if (GET_CODE (insn) == CALL_INSN)
6555 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6556 if ((call_used_regs[regno]
6557 && regno != STACK_POINTER_REGNUM
6558 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
6559 && regno != HARD_FRAME_POINTER_REGNUM
6560 #endif
6561 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
6562 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
6563 #endif
6564 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
6565 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
6566 #endif
6568 && regno != FRAME_POINTER_REGNUM)
6569 || global_regs[regno])
6570 SET_BIT (reg_set_in_block[bb], regno);
6573 pat = PATTERN (insn);
6574 note_stores (pat, reg_set_info, NULL);
6576 /* Now that we've marked regs, look for stores. */
6577 if (GET_CODE (pat) == SET)
6578 find_moveable_store (insn);
6582 ret = enumerate_ldsts ();
6584 if (gcse_file)
6586 fprintf (gcse_file, "Store Motion Expressions.\n");
6587 print_ldst_list (gcse_file);
6590 return ret;
6593 /* Check to see if the load X is aliased with STORE_PATTERN. */
6595 static int
6596 load_kills_store (x, store_pattern)
6597 rtx x, store_pattern;
6599 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
6600 return 1;
6601 return 0;
6604 /* Go through the entire insn X, looking for any loads which might alias
6605 STORE_PATTERN. Return 1 if found. */
6607 static int
6608 find_loads (x, store_pattern)
6609 rtx x, store_pattern;
6611 const char * fmt;
6612 int i,j;
6613 int ret = 0;
6615 if (GET_CODE (x) == SET)
6616 x = SET_SRC (x);
6618 if (GET_CODE (x) == MEM)
6620 if (load_kills_store (x, store_pattern))
6621 return 1;
6624 /* Recursively process the insn. */
6625 fmt = GET_RTX_FORMAT (GET_CODE (x));
6627 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6629 if (fmt[i] == 'e')
6630 ret |= find_loads (XEXP (x, i), store_pattern);
6631 else if (fmt[i] == 'E')
6632 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6633 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
6635 return ret;
6638 /* Check if INSN kills the store pattern X (is aliased with it).
6639 Return 1 if it it does. */
6641 static int
6642 store_killed_in_insn (x, insn)
6643 rtx x, insn;
6645 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6646 return 0;
6648 if (GET_CODE (insn) == CALL_INSN)
6650 if (CONST_CALL_P (insn))
6651 return 0;
6652 else
6653 return 1;
6656 if (GET_CODE (PATTERN (insn)) == SET)
6658 rtx pat = PATTERN (insn);
6659 /* Check for memory stores to aliased objects. */
6660 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
6661 /* pretend its a load and check for aliasing. */
6662 if (find_loads (SET_DEST (pat), x))
6663 return 1;
6664 return find_loads (SET_SRC (pat), x);
6666 else
6667 return find_loads (PATTERN (insn), x);
6670 /* Returns 1 if the expression X is loaded or clobbered on or after INSN
6671 within basic block BB. */
6673 static int
6674 store_killed_after (x, insn, bb)
6675 rtx x, insn;
6676 basic_block bb;
6678 rtx last = bb->end;
6680 if (insn == last)
6681 return 0;
6683 /* Check if the register operands of the store are OK in this block.
6684 Note that if registers are changed ANYWHERE in the block, we'll
6685 decide we can't move it, regardless of whether it changed above
6686 or below the store. This could be improved by checking the register
6687 operands while lookinng for aliasing in each insn. */
6688 if (!store_ops_ok (XEXP (x, 0), bb))
6689 return 1;
6691 for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
6692 if (store_killed_in_insn (x, insn))
6693 return 1;
6695 return 0;
6698 /* Returns 1 if the expression X is loaded or clobbered on or before INSN
6699 within basic block BB. */
6700 static int
6701 store_killed_before (x, insn, bb)
6702 rtx x, insn;
6703 basic_block bb;
6705 rtx first = bb->head;
6707 if (insn == first)
6708 return store_killed_in_insn (x, insn);
6710 /* Check if the register operands of the store are OK in this block.
6711 Note that if registers are changed ANYWHERE in the block, we'll
6712 decide we can't move it, regardless of whether it changed above
6713 or below the store. This could be improved by checking the register
6714 operands while lookinng for aliasing in each insn. */
6715 if (!store_ops_ok (XEXP (x, 0), bb))
6716 return 1;
6718 for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
6719 if (store_killed_in_insn (x, insn))
6720 return 1;
6722 return 0;
6725 #define ANTIC_STORE_LIST(x) ((x)->loads)
6726 #define AVAIL_STORE_LIST(x) ((x)->stores)
6728 /* Given the table of available store insns at the end of blocks,
6729 determine which ones are not killed by aliasing, and generate
6730 the appropriate vectors for gen and killed. */
6731 static void
6732 build_store_vectors ()
6734 basic_block bb;
6735 int b;
6736 rtx insn, st;
6737 struct ls_expr * ptr;
6739 /* Build the gen_vector. This is any store in the table which is not killed
6740 by aliasing later in its block. */
6741 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6742 sbitmap_vector_zero (ae_gen, n_basic_blocks);
6744 st_antloc = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6745 sbitmap_vector_zero (st_antloc, n_basic_blocks);
6747 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6749 /* Put all the stores into either the antic list, or the avail list,
6750 or both. */
6751 rtx store_list = ptr->stores;
6752 ptr->stores = NULL_RTX;
6754 for (st = store_list; st != NULL; st = XEXP (st, 1))
6756 insn = XEXP (st, 0);
6757 bb = BLOCK_FOR_INSN (insn);
6759 if (!store_killed_after (ptr->pattern, insn, bb))
6761 /* If we've already seen an availale expression in this block,
6762 we can delete the one we saw already (It occurs earlier in
6763 the block), and replace it with this one). We'll copy the
6764 old SRC expression to an unused register in case there
6765 are any side effects. */
6766 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6768 /* Find previous store. */
6769 rtx st;
6770 for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
6771 if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
6772 break;
6773 if (st)
6775 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6776 if (gcse_file)
6777 fprintf(gcse_file, "Removing redundant store:\n");
6778 replace_store_insn (r, XEXP (st, 0), bb);
6779 XEXP (st, 0) = insn;
6780 continue;
6783 SET_BIT (ae_gen[bb->index], ptr->index);
6784 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6785 AVAIL_STORE_LIST (ptr));
6788 if (!store_killed_before (ptr->pattern, insn, bb))
6790 SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
6791 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6792 ANTIC_STORE_LIST (ptr));
6796 /* Free the original list of store insns. */
6797 free_INSN_LIST_list (&store_list);
6800 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6801 sbitmap_vector_zero (ae_kill, n_basic_blocks);
6803 transp = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks, num_stores);
6804 sbitmap_vector_zero (transp, n_basic_blocks);
6806 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6807 for (b = 0; b < n_basic_blocks; b++)
6809 if (store_killed_after (ptr->pattern, BLOCK_HEAD (b), BASIC_BLOCK (b)))
6811 /* The anticipatable expression is not killed if it's gen'd. */
6813 We leave this check out for now. If we have a code sequence
6814 in a block which looks like:
6815 ST MEMa = x
6816 L y = MEMa
6817 ST MEMa = z
6818 We should flag this as having an ANTIC expression, NOT
6819 transparent, NOT killed, and AVAIL.
6820 Unfortunately, since we haven't re-written all loads to
6821 use the reaching reg, we'll end up doing an incorrect
6822 Load in the middle here if we push the store down. It happens in
6823 gcc.c-torture/execute/960311-1.c with -O3
6824 If we always kill it in this case, we'll sometimes do
6825 uneccessary work, but it shouldn't actually hurt anything.
6826 if (!TEST_BIT (ae_gen[b], ptr->index)). */
6827 SET_BIT (ae_kill[b], ptr->index);
6829 else
6830 SET_BIT (transp[b], ptr->index);
6833 /* Any block with no exits calls some non-returning function, so
6834 we better mark the store killed here, or we might not store to
6835 it at all. If we knew it was abort, we wouldn't have to store,
6836 but we don't know that for sure. */
6837 if (gcse_file)
6839 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
6840 print_ldst_list (gcse_file);
6841 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, n_basic_blocks);
6842 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, n_basic_blocks);
6843 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, n_basic_blocks);
6844 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, n_basic_blocks);
6848 /* Insert an instruction at the begining of a basic block, and update
6849 the BLOCK_HEAD if needed. */
6851 static void
6852 insert_insn_start_bb (insn, bb)
6853 rtx insn;
6854 basic_block bb;
6856 /* Insert at start of successor block. */
6857 rtx prev = PREV_INSN (bb->head);
6858 rtx before = bb->head;
6859 while (before != 0)
6861 if (GET_CODE (before) != CODE_LABEL
6862 && (GET_CODE (before) != NOTE
6863 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6864 break;
6865 prev = before;
6866 if (prev == bb->end)
6867 break;
6868 before = NEXT_INSN (before);
6871 insn = emit_insn_after (insn, prev);
6873 if (prev == bb->end)
6874 bb->end = insn;
6876 set_block_for_new_insns (insn, bb);
6878 if (gcse_file)
6880 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6881 bb->index);
6882 print_inline_rtx (gcse_file, insn, 6);
6883 fprintf (gcse_file, "\n");
6887 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6888 the memory reference, and E is the edge to insert it on. Returns non-zero
6889 if an edge insertion was performed. */
6891 static int
6892 insert_store (expr, e)
6893 struct ls_expr * expr;
6894 edge e;
6896 rtx reg, insn;
6897 basic_block bb;
6898 edge tmp;
6900 /* We did all the deleted before this insert, so if we didn't delete a
6901 store, then we haven't set the reaching reg yet either. */
6902 if (expr->reaching_reg == NULL_RTX)
6903 return 0;
6905 reg = expr->reaching_reg;
6906 insn = gen_move_insn (expr->pattern, reg);
6908 /* If we are inserting this expression on ALL predecessor edges of a BB,
6909 insert it at the start of the BB, and reset the insert bits on the other
6910 edges so we don;t try to insert it on the other edges. */
6911 bb = e->dest;
6912 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6914 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6915 if (index == EDGE_INDEX_NO_EDGE)
6916 abort ();
6917 if (! TEST_BIT (pre_insert_map[index], expr->index))
6918 break;
6921 /* If tmp is NULL, we found an insertion on every edge, blank the
6922 insertion vector for these edges, and insert at the start of the BB. */
6923 if (!tmp && bb != EXIT_BLOCK_PTR)
6925 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
6927 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6928 RESET_BIT (pre_insert_map[index], expr->index);
6930 insert_insn_start_bb (insn, bb);
6931 return 0;
6934 /* We can't insert on this edge, so we'll insert at the head of the
6935 successors block. See Morgan, sec 10.5. */
6936 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
6938 insert_insn_start_bb (insn, bb);
6939 return 0;
6942 insert_insn_on_edge (insn, e);
6944 if (gcse_file)
6946 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6947 e->src->index, e->dest->index);
6948 print_inline_rtx (gcse_file, insn, 6);
6949 fprintf (gcse_file, "\n");
6952 return 1;
6955 /* This routine will replace a store with a SET to a specified register. */
6957 static void
6958 replace_store_insn (reg, del, bb)
6959 rtx reg, del;
6960 basic_block bb;
6962 rtx insn;
6964 insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
6965 insn = emit_insn_after (insn, del);
6966 set_block_for_new_insns (insn, bb);
6968 if (gcse_file)
6970 fprintf (gcse_file,
6971 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6972 print_inline_rtx (gcse_file, del, 6);
6973 fprintf(gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6974 print_inline_rtx (gcse_file, insn, 6);
6975 fprintf(gcse_file, "\n");
6978 if (bb->end == del)
6979 bb->end = insn;
6981 if (bb->head == del)
6982 bb->head = insn;
6984 delete_insn (del);
6988 /* Delete a store, but copy the value that would have been stored into
6989 the reaching_reg for later storing. */
6991 static void
6992 delete_store (expr, bb)
6993 struct ls_expr * expr;
6994 basic_block bb;
6996 rtx reg, i, del;
6998 if (expr->reaching_reg == NULL_RTX)
6999 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
7002 /* If there is more than 1 store, the earlier ones will be dead,
7003 but it doesn't hurt to replace them here. */
7004 reg = expr->reaching_reg;
7006 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
7008 del = XEXP (i, 0);
7009 if (BLOCK_FOR_INSN (del) == bb)
7011 /* We know there is only one since we deleted redundant
7012 ones during the available computation. */
7013 replace_store_insn (reg, del, bb);
7014 break;
7019 /* Free memory used by store motion. */
7021 static void
7022 free_store_memory ()
7024 free_ldst_mems ();
7026 if (ae_gen)
7027 sbitmap_vector_free (ae_gen);
7028 if (ae_kill)
7029 sbitmap_vector_free (ae_kill);
7030 if (transp)
7031 sbitmap_vector_free (transp);
7032 if (st_antloc)
7033 sbitmap_vector_free (st_antloc);
7034 if (pre_insert_map)
7035 sbitmap_vector_free (pre_insert_map);
7036 if (pre_delete_map)
7037 sbitmap_vector_free (pre_delete_map);
7038 if (reg_set_in_block)
7039 sbitmap_vector_free (reg_set_in_block);
7041 ae_gen = ae_kill = transp = st_antloc = NULL;
7042 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
7045 /* Perform store motion. Much like gcse, except we move expressions the
7046 other way by looking at the flowgraph in reverse. */
7048 static void
7049 store_motion ()
7051 int x;
7052 struct ls_expr * ptr;
7053 int update_flow = 0;
7055 if (gcse_file)
7057 fprintf (gcse_file, "before store motion\n");
7058 print_rtl (gcse_file, get_insns ());
7062 init_alias_analysis ();
7064 /* Find all the stores that are live to the end of their block. */
7065 num_stores = compute_store_table ();
7066 if (num_stores == 0)
7068 sbitmap_vector_free (reg_set_in_block);
7069 end_alias_analysis ();
7070 return;
7073 /* Now compute whats actually available to move. */
7074 add_noreturn_fake_exit_edges ();
7075 build_store_vectors ();
7077 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
7078 st_antloc, ae_kill, &pre_insert_map,
7079 &pre_delete_map);
7081 /* Now we want to insert the new stores which are going to be needed. */
7082 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7084 for (x = 0; x < n_basic_blocks; x++)
7085 if (TEST_BIT (pre_delete_map[x], ptr->index))
7086 delete_store (ptr, BASIC_BLOCK (x));
7088 for (x = 0; x < NUM_EDGES (edge_list); x++)
7089 if (TEST_BIT (pre_insert_map[x], ptr->index))
7090 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
7093 if (update_flow)
7094 commit_edge_insertions ();
7096 free_store_memory ();
7097 free_edge_list (edge_list);
7098 remove_fake_edges ();
7099 end_alias_analysis ();