1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
38 #include "coretypes.h"
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
54 #include "basic-block.h"
57 #include "langhooks.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static GTY(()) int label_num
= 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num
;
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num
;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers
;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
92 rtx global_rtl
[GR_MAX
];
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
100 rtx (*gen_lowpart
) (enum machine_mode mode
, rtx x
) = gen_lowpart_general
;
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
110 REAL_VALUE_TYPE dconst0
;
111 REAL_VALUE_TYPE dconst1
;
112 REAL_VALUE_TYPE dconst2
;
113 REAL_VALUE_TYPE dconst3
;
114 REAL_VALUE_TYPE dconst10
;
115 REAL_VALUE_TYPE dconstm1
;
116 REAL_VALUE_TYPE dconstm2
;
117 REAL_VALUE_TYPE dconsthalf
;
118 REAL_VALUE_TYPE dconstthird
;
119 REAL_VALUE_TYPE dconstpi
;
120 REAL_VALUE_TYPE dconste
;
122 /* All references to the following fixed hard registers go through
123 these unique rtl objects. On machines where the frame-pointer and
124 arg-pointer are the same register, they use the same unique object.
126 After register allocation, other rtl objects which used to be pseudo-regs
127 may be clobbered to refer to the frame-pointer register.
128 But references that were originally to the frame-pointer can be
129 distinguished from the others because they contain frame_pointer_rtx.
131 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
132 tricky: until register elimination has taken place hard_frame_pointer_rtx
133 should be used if it is being set, and frame_pointer_rtx otherwise. After
134 register elimination hard_frame_pointer_rtx should always be used.
135 On machines where the two registers are same (most) then these are the
138 In an inline procedure, the stack and frame pointer rtxs may not be
139 used for anything else. */
140 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
141 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
142 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
144 /* This is used to implement __builtin_return_address for some machines.
145 See for instance the MIPS port. */
146 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
148 /* We make one copy of (const_int C) where C is in
149 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
150 to save space during the compilation and simplify comparisons of
153 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
155 /* A hash table storing CONST_INTs whose absolute value is greater
156 than MAX_SAVED_CONST_INT. */
158 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
159 htab_t const_int_htab
;
161 /* A hash table storing memory attribute structures. */
162 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
163 htab_t mem_attrs_htab
;
165 /* A hash table storing register attribute structures. */
166 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
167 htab_t reg_attrs_htab
;
169 /* A hash table storing all CONST_DOUBLEs. */
170 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
171 htab_t const_double_htab
;
173 #define first_insn (cfun->emit->x_first_insn)
174 #define last_insn (cfun->emit->x_last_insn)
175 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
176 #define last_location (cfun->emit->x_last_location)
177 #define first_label_num (cfun->emit->x_first_label_num)
179 static rtx
make_jump_insn_raw (rtx
);
180 static rtx
make_call_insn_raw (rtx
);
181 static rtx
find_line_note (rtx
);
182 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
183 static void unshare_all_decls (tree
);
184 static void reset_used_decls (tree
);
185 static void mark_label_nuses (rtx
);
186 static hashval_t
const_int_htab_hash (const void *);
187 static int const_int_htab_eq (const void *, const void *);
188 static hashval_t
const_double_htab_hash (const void *);
189 static int const_double_htab_eq (const void *, const void *);
190 static rtx
lookup_const_double (rtx
);
191 static hashval_t
mem_attrs_htab_hash (const void *);
192 static int mem_attrs_htab_eq (const void *, const void *);
193 static mem_attrs
*get_mem_attrs (HOST_WIDE_INT
, tree
, rtx
, rtx
, unsigned int,
195 static hashval_t
reg_attrs_htab_hash (const void *);
196 static int reg_attrs_htab_eq (const void *, const void *);
197 static reg_attrs
*get_reg_attrs (tree
, int);
198 static tree
component_ref_for_mem_expr (tree
);
199 static rtx
gen_const_vector_0 (enum machine_mode
);
200 static rtx
gen_complex_constant_part (enum machine_mode
, rtx
, int);
201 static void copy_rtx_if_shared_1 (rtx
*orig
);
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability
= -1;
207 /* Returns a hash code for X (which is a really a CONST_INT). */
210 const_int_htab_hash (const void *x
)
212 return (hashval_t
) INTVAL ((rtx
) x
);
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
220 const_int_htab_eq (const void *x
, const void *y
)
222 return (INTVAL ((rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 const_double_htab_hash (const void *x
)
232 if (GET_MODE (value
) == VOIDmode
)
233 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
236 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h
^= GET_MODE (value
);
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
246 const_double_htab_eq (const void *x
, const void *y
)
248 rtx a
= (rtx
)x
, b
= (rtx
)y
;
250 if (GET_MODE (a
) != GET_MODE (b
))
252 if (GET_MODE (a
) == VOIDmode
)
253 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
254 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
257 CONST_DOUBLE_REAL_VALUE (b
));
260 /* Returns a hash code for X (which is a really a mem_attrs *). */
263 mem_attrs_htab_hash (const void *x
)
265 mem_attrs
*p
= (mem_attrs
*) x
;
267 return (p
->alias
^ (p
->align
* 1000)
268 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
269 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
273 /* Returns nonzero if the value represented by X (which is really a
274 mem_attrs *) is the same as that given by Y (which is also really a
278 mem_attrs_htab_eq (const void *x
, const void *y
)
280 mem_attrs
*p
= (mem_attrs
*) x
;
281 mem_attrs
*q
= (mem_attrs
*) y
;
283 return (p
->alias
== q
->alias
&& p
->expr
== q
->expr
&& p
->offset
== q
->offset
284 && p
->size
== q
->size
&& p
->align
== q
->align
);
287 /* Allocate a new mem_attrs structure and insert it into the hash table if
288 one identical to it is not already in the table. We are doing this for
292 get_mem_attrs (HOST_WIDE_INT alias
, tree expr
, rtx offset
, rtx size
,
293 unsigned int align
, enum machine_mode mode
)
298 /* If everything is the default, we can just return zero.
299 This must match what the corresponding MEM_* macros return when the
300 field is not present. */
301 if (alias
== 0 && expr
== 0 && offset
== 0
303 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
304 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
305 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
310 attrs
.offset
= offset
;
314 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
317 *slot
= ggc_alloc (sizeof (mem_attrs
));
318 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
324 /* Returns a hash code for X (which is a really a reg_attrs *). */
327 reg_attrs_htab_hash (const void *x
)
329 reg_attrs
*p
= (reg_attrs
*) x
;
331 return ((p
->offset
* 1000) ^ (long) p
->decl
);
334 /* Returns nonzero if the value represented by X (which is really a
335 reg_attrs *) is the same as that given by Y (which is also really a
339 reg_attrs_htab_eq (const void *x
, const void *y
)
341 reg_attrs
*p
= (reg_attrs
*) x
;
342 reg_attrs
*q
= (reg_attrs
*) y
;
344 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
346 /* Allocate a new reg_attrs structure and insert it into the hash table if
347 one identical to it is not already in the table. We are doing this for
351 get_reg_attrs (tree decl
, int offset
)
356 /* If everything is the default, we can just return zero. */
357 if (decl
== 0 && offset
== 0)
361 attrs
.offset
= offset
;
363 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
366 *slot
= ggc_alloc (sizeof (reg_attrs
));
367 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
373 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
374 don't attempt to share with the various global pieces of rtl (such as
375 frame_pointer_rtx). */
378 gen_raw_REG (enum machine_mode mode
, int regno
)
380 rtx x
= gen_rtx_raw_REG (mode
, regno
);
381 ORIGINAL_REGNO (x
) = regno
;
385 /* There are some RTL codes that require special attention; the generation
386 functions do the raw handling. If you add to this list, modify
387 special_rtx in gengenrtl.c as well. */
390 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
394 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
395 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
397 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
398 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
399 return const_true_rtx
;
402 /* Look up the CONST_INT in the hash table. */
403 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
404 (hashval_t
) arg
, INSERT
);
406 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
412 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
414 return GEN_INT (trunc_int_for_mode (c
, mode
));
417 /* CONST_DOUBLEs might be created from pairs of integers, or from
418 REAL_VALUE_TYPEs. Also, their length is known only at run time,
419 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
421 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
422 hash table. If so, return its counterpart; otherwise add it
423 to the hash table and return it. */
425 lookup_const_double (rtx real
)
427 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
434 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
435 VALUE in mode MODE. */
437 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
439 rtx real
= rtx_alloc (CONST_DOUBLE
);
440 PUT_MODE (real
, mode
);
442 memcpy (&CONST_DOUBLE_LOW (real
), &value
, sizeof (REAL_VALUE_TYPE
));
444 return lookup_const_double (real
);
447 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
448 of ints: I0 is the low-order word and I1 is the high-order word.
449 Do not use this routine for non-integer modes; convert to
450 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
453 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
458 if (mode
!= VOIDmode
)
461 if (GET_MODE_CLASS (mode
) != MODE_INT
462 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
463 /* We can get a 0 for an error mark. */
464 && GET_MODE_CLASS (mode
) != MODE_VECTOR_INT
465 && GET_MODE_CLASS (mode
) != MODE_VECTOR_FLOAT
)
468 /* We clear out all bits that don't belong in MODE, unless they and
469 our sign bit are all one. So we get either a reasonable negative
470 value or a reasonable unsigned value for this mode. */
471 width
= GET_MODE_BITSIZE (mode
);
472 if (width
< HOST_BITS_PER_WIDE_INT
473 && ((i0
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
474 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
475 i0
&= ((HOST_WIDE_INT
) 1 << width
) - 1, i1
= 0;
476 else if (width
== HOST_BITS_PER_WIDE_INT
477 && ! (i1
== ~0 && i0
< 0))
479 else if (width
> 2 * HOST_BITS_PER_WIDE_INT
)
480 /* We cannot represent this value as a constant. */
483 /* If this would be an entire word for the target, but is not for
484 the host, then sign-extend on the host so that the number will
485 look the same way on the host that it would on the target.
487 For example, when building a 64 bit alpha hosted 32 bit sparc
488 targeted compiler, then we want the 32 bit unsigned value -1 to be
489 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
490 The latter confuses the sparc backend. */
492 if (width
< HOST_BITS_PER_WIDE_INT
493 && (i0
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
494 i0
|= ((HOST_WIDE_INT
) (-1) << width
);
496 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
499 ??? Strictly speaking, this is wrong if we create a CONST_INT for
500 a large unsigned constant with the size of MODE being
501 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
502 in a wider mode. In that case we will mis-interpret it as a
505 Unfortunately, the only alternative is to make a CONST_DOUBLE for
506 any constant in any mode if it is an unsigned constant larger
507 than the maximum signed integer in an int on the host. However,
508 doing this will break everyone that always expects to see a
509 CONST_INT for SImode and smaller.
511 We have always been making CONST_INTs in this case, so nothing
512 new is being broken. */
514 if (width
<= HOST_BITS_PER_WIDE_INT
)
515 i1
= (i0
< 0) ? ~(HOST_WIDE_INT
) 0 : 0;
518 /* If this integer fits in one word, return a CONST_INT. */
519 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
522 /* We use VOIDmode for integers. */
523 value
= rtx_alloc (CONST_DOUBLE
);
524 PUT_MODE (value
, VOIDmode
);
526 CONST_DOUBLE_LOW (value
) = i0
;
527 CONST_DOUBLE_HIGH (value
) = i1
;
529 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
530 XWINT (value
, i
) = 0;
532 return lookup_const_double (value
);
536 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
538 /* In case the MD file explicitly references the frame pointer, have
539 all such references point to the same frame pointer. This is
540 used during frame pointer elimination to distinguish the explicit
541 references to these registers from pseudos that happened to be
544 If we have eliminated the frame pointer or arg pointer, we will
545 be using it as a normal register, for example as a spill
546 register. In such cases, we might be accessing it in a mode that
547 is not Pmode and therefore cannot use the pre-allocated rtx.
549 Also don't do this when we are making new REGs in reload, since
550 we don't want to get confused with the real pointers. */
552 if (mode
== Pmode
&& !reload_in_progress
)
554 if (regno
== FRAME_POINTER_REGNUM
555 && (!reload_completed
|| frame_pointer_needed
))
556 return frame_pointer_rtx
;
557 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
558 if (regno
== HARD_FRAME_POINTER_REGNUM
559 && (!reload_completed
|| frame_pointer_needed
))
560 return hard_frame_pointer_rtx
;
562 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
563 if (regno
== ARG_POINTER_REGNUM
)
564 return arg_pointer_rtx
;
566 #ifdef RETURN_ADDRESS_POINTER_REGNUM
567 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
568 return return_address_pointer_rtx
;
570 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
571 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
572 return pic_offset_table_rtx
;
573 if (regno
== STACK_POINTER_REGNUM
)
574 return stack_pointer_rtx
;
578 /* If the per-function register table has been set up, try to re-use
579 an existing entry in that table to avoid useless generation of RTL.
581 This code is disabled for now until we can fix the various backends
582 which depend on having non-shared hard registers in some cases. Long
583 term we want to re-enable this code as it can significantly cut down
584 on the amount of useless RTL that gets generated.
586 We'll also need to fix some code that runs after reload that wants to
587 set ORIGINAL_REGNO. */
592 && regno
< FIRST_PSEUDO_REGISTER
593 && reg_raw_mode
[regno
] == mode
)
594 return regno_reg_rtx
[regno
];
597 return gen_raw_REG (mode
, regno
);
601 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
603 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
605 /* This field is not cleared by the mere allocation of the rtx, so
613 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
615 /* This is the most common failure type.
616 Catch it early so we can see who does it. */
617 if ((offset
% GET_MODE_SIZE (mode
)) != 0)
620 /* This check isn't usable right now because combine will
621 throw arbitrary crap like a CALL into a SUBREG in
622 gen_lowpart_for_combine so we must just eat it. */
624 /* Check for this too. */
625 if (offset
>= GET_MODE_SIZE (GET_MODE (reg
)))
628 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
631 /* Generate a SUBREG representing the least-significant part of REG if MODE
632 is smaller than mode of REG, otherwise paradoxical SUBREG. */
635 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
637 enum machine_mode inmode
;
639 inmode
= GET_MODE (reg
);
640 if (inmode
== VOIDmode
)
642 return gen_rtx_SUBREG (mode
, reg
,
643 subreg_lowpart_offset (mode
, inmode
));
646 /* gen_rtvec (n, [rt1, ..., rtn])
648 ** This routine creates an rtvec and stores within it the
649 ** pointers to rtx's which are its arguments.
654 gen_rtvec (int n
, ...)
663 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
665 vector
= alloca (n
* sizeof (rtx
));
667 for (i
= 0; i
< n
; i
++)
668 vector
[i
] = va_arg (p
, rtx
);
670 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
674 return gen_rtvec_v (save_n
, vector
);
678 gen_rtvec_v (int n
, rtx
*argp
)
684 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
686 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
688 for (i
= 0; i
< n
; i
++)
689 rt_val
->elem
[i
] = *argp
++;
694 /* Generate a REG rtx for a new pseudo register of mode MODE.
695 This pseudo is assigned the next sequential register number. */
698 gen_reg_rtx (enum machine_mode mode
)
700 struct function
*f
= cfun
;
703 /* Don't let anything called after initial flow analysis create new
708 if (generating_concat_p
709 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
710 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
712 /* For complex modes, don't make a single pseudo.
713 Instead, make a CONCAT of two pseudos.
714 This allows noncontiguous allocation of the real and imaginary parts,
715 which makes much better code. Besides, allocating DCmode
716 pseudos overstrains reload on some machines like the 386. */
717 rtx realpart
, imagpart
;
718 enum machine_mode partmode
= GET_MODE_INNER (mode
);
720 realpart
= gen_reg_rtx (partmode
);
721 imagpart
= gen_reg_rtx (partmode
);
722 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
725 /* Make sure regno_pointer_align, and regno_reg_rtx are large
726 enough to have an element for this pseudo reg number. */
728 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
730 int old_size
= f
->emit
->regno_pointer_align_length
;
734 new = ggc_realloc (f
->emit
->regno_pointer_align
, old_size
* 2);
735 memset (new + old_size
, 0, old_size
);
736 f
->emit
->regno_pointer_align
= (unsigned char *) new;
738 new1
= ggc_realloc (f
->emit
->x_regno_reg_rtx
,
739 old_size
* 2 * sizeof (rtx
));
740 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
741 regno_reg_rtx
= new1
;
743 f
->emit
->regno_pointer_align_length
= old_size
* 2;
746 val
= gen_raw_REG (mode
, reg_rtx_no
);
747 regno_reg_rtx
[reg_rtx_no
++] = val
;
751 /* Generate a register with same attributes as REG,
752 but offsetted by OFFSET. */
755 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
, int offset
)
757 rtx
new = gen_rtx_REG (mode
, regno
);
758 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg
),
759 REG_OFFSET (reg
) + offset
);
763 /* Set the decl for MEM to DECL. */
766 set_reg_attrs_from_mem (rtx reg
, rtx mem
)
768 if (MEM_OFFSET (mem
) && GET_CODE (MEM_OFFSET (mem
)) == CONST_INT
)
770 = get_reg_attrs (MEM_EXPR (mem
), INTVAL (MEM_OFFSET (mem
)));
773 /* Set the register attributes for registers contained in PARM_RTX.
774 Use needed values from memory attributes of MEM. */
777 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
779 if (GET_CODE (parm_rtx
) == REG
)
780 set_reg_attrs_from_mem (parm_rtx
, mem
);
781 else if (GET_CODE (parm_rtx
) == PARALLEL
)
783 /* Check for a NULL entry in the first slot, used to indicate that the
784 parameter goes both on the stack and in registers. */
785 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
786 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
788 rtx x
= XVECEXP (parm_rtx
, 0, i
);
789 if (GET_CODE (XEXP (x
, 0)) == REG
)
790 REG_ATTRS (XEXP (x
, 0))
791 = get_reg_attrs (MEM_EXPR (mem
),
792 INTVAL (XEXP (x
, 1)));
797 /* Assign the RTX X to declaration T. */
799 set_decl_rtl (tree t
, rtx x
)
801 DECL_CHECK (t
)->decl
.rtl
= x
;
805 /* For register, we maintain the reverse information too. */
806 if (GET_CODE (x
) == REG
)
807 REG_ATTRS (x
) = get_reg_attrs (t
, 0);
808 else if (GET_CODE (x
) == SUBREG
)
809 REG_ATTRS (SUBREG_REG (x
))
810 = get_reg_attrs (t
, -SUBREG_BYTE (x
));
811 if (GET_CODE (x
) == CONCAT
)
813 if (REG_P (XEXP (x
, 0)))
814 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
815 if (REG_P (XEXP (x
, 1)))
816 REG_ATTRS (XEXP (x
, 1))
817 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
819 if (GET_CODE (x
) == PARALLEL
)
822 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
824 rtx y
= XVECEXP (x
, 0, i
);
825 if (REG_P (XEXP (y
, 0)))
826 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
831 /* Assign the RTX X to parameter declaration T. */
833 set_decl_incoming_rtl (tree t
, rtx x
)
835 DECL_INCOMING_RTL (t
) = x
;
839 /* For register, we maintain the reverse information too. */
840 if (GET_CODE (x
) == REG
)
841 REG_ATTRS (x
) = get_reg_attrs (t
, 0);
842 else if (GET_CODE (x
) == SUBREG
)
843 REG_ATTRS (SUBREG_REG (x
))
844 = get_reg_attrs (t
, -SUBREG_BYTE (x
));
845 if (GET_CODE (x
) == CONCAT
)
847 if (REG_P (XEXP (x
, 0)))
848 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
849 if (REG_P (XEXP (x
, 1)))
850 REG_ATTRS (XEXP (x
, 1))
851 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
853 if (GET_CODE (x
) == PARALLEL
)
857 /* Check for a NULL entry, used to indicate that the parameter goes
858 both on the stack and in registers. */
859 if (XEXP (XVECEXP (x
, 0, 0), 0))
864 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
866 rtx y
= XVECEXP (x
, 0, i
);
867 if (REG_P (XEXP (y
, 0)))
868 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
873 /* Identify REG (which may be a CONCAT) as a user register. */
876 mark_user_reg (rtx reg
)
878 if (GET_CODE (reg
) == CONCAT
)
880 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
881 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
883 else if (GET_CODE (reg
) == REG
)
884 REG_USERVAR_P (reg
) = 1;
889 /* Identify REG as a probable pointer register and show its alignment
890 as ALIGN, if nonzero. */
893 mark_reg_pointer (rtx reg
, int align
)
895 if (! REG_POINTER (reg
))
897 REG_POINTER (reg
) = 1;
900 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
902 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
903 /* We can no-longer be sure just how aligned this pointer is. */
904 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
907 /* Return 1 plus largest pseudo reg number used in the current function. */
915 /* Return 1 + the largest label number used so far in the current function. */
920 if (last_label_num
&& label_num
== base_label_num
)
921 return last_label_num
;
925 /* Return first label number used in this function (if any were used). */
928 get_first_label_num (void)
930 return first_label_num
;
933 /* Return the final regno of X, which is a SUBREG of a hard
936 subreg_hard_regno (rtx x
, int check_mode
)
938 enum machine_mode mode
= GET_MODE (x
);
939 unsigned int byte_offset
, base_regno
, final_regno
;
940 rtx reg
= SUBREG_REG (x
);
942 /* This is where we attempt to catch illegal subregs
943 created by the compiler. */
944 if (GET_CODE (x
) != SUBREG
945 || GET_CODE (reg
) != REG
)
947 base_regno
= REGNO (reg
);
948 if (base_regno
>= FIRST_PSEUDO_REGISTER
)
950 if (check_mode
&& ! HARD_REGNO_MODE_OK (base_regno
, GET_MODE (reg
)))
952 #ifdef ENABLE_CHECKING
953 if (!subreg_offset_representable_p (REGNO (reg
), GET_MODE (reg
),
954 SUBREG_BYTE (x
), mode
))
957 /* Catch non-congruent offsets too. */
958 byte_offset
= SUBREG_BYTE (x
);
959 if ((byte_offset
% GET_MODE_SIZE (mode
)) != 0)
962 final_regno
= subreg_regno (x
);
967 /* Return a value representing some low-order bits of X, where the number
968 of low-order bits is given by MODE. Note that no conversion is done
969 between floating-point and fixed-point values, rather, the bit
970 representation is returned.
972 This function handles the cases in common between gen_lowpart, below,
973 and two variants in cse.c and combine.c. These are the cases that can
974 be safely handled at all points in the compilation.
976 If this is not a case we can handle, return 0. */
979 gen_lowpart_common (enum machine_mode mode
, rtx x
)
981 int msize
= GET_MODE_SIZE (mode
);
984 enum machine_mode innermode
;
986 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
987 so we have to make one up. Yuk. */
988 innermode
= GET_MODE (x
);
989 if (GET_CODE (x
) == CONST_INT
&& msize
<= HOST_BITS_PER_WIDE_INT
)
990 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
991 else if (innermode
== VOIDmode
)
992 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
994 xsize
= GET_MODE_SIZE (innermode
);
996 if (innermode
== VOIDmode
|| innermode
== BLKmode
)
999 if (innermode
== mode
)
1002 /* MODE must occupy no more words than the mode of X. */
1003 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1004 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1007 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1008 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
&& msize
> xsize
)
1011 offset
= subreg_lowpart_offset (mode
, innermode
);
1013 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1014 && (GET_MODE_CLASS (mode
) == MODE_INT
1015 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1017 /* If we are getting the low-order part of something that has been
1018 sign- or zero-extended, we can either just use the object being
1019 extended or make a narrower extension. If we want an even smaller
1020 piece than the size of the object being extended, call ourselves
1023 This case is used mostly by combine and cse. */
1025 if (GET_MODE (XEXP (x
, 0)) == mode
)
1027 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1028 return gen_lowpart_common (mode
, XEXP (x
, 0));
1029 else if (msize
< xsize
)
1030 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1032 else if (GET_CODE (x
) == SUBREG
|| GET_CODE (x
) == REG
1033 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1034 || GET_CODE (x
) == CONST_DOUBLE
|| GET_CODE (x
) == CONST_INT
)
1035 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1037 /* Otherwise, we can't do this. */
1041 /* Return the constant real or imaginary part (which has mode MODE)
1042 of a complex value X. The IMAGPART_P argument determines whether
1043 the real or complex component should be returned. This function
1044 returns NULL_RTX if the component isn't a constant. */
1047 gen_complex_constant_part (enum machine_mode mode
, rtx x
, int imagpart_p
)
1051 if (GET_CODE (x
) == MEM
1052 && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
1054 decl
= SYMBOL_REF_DECL (XEXP (x
, 0));
1055 if (decl
!= NULL_TREE
&& TREE_CODE (decl
) == COMPLEX_CST
)
1057 part
= imagpart_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
1058 if (TREE_CODE (part
) == REAL_CST
1059 || TREE_CODE (part
) == INTEGER_CST
)
1060 return expand_expr (part
, NULL_RTX
, mode
, 0);
1066 /* Return the real part (which has mode MODE) of a complex value X.
1067 This always comes at the low address in memory. */
1070 gen_realpart (enum machine_mode mode
, rtx x
)
1074 /* Handle complex constants. */
1075 part
= gen_complex_constant_part (mode
, x
, 0);
1076 if (part
!= NULL_RTX
)
1079 if (WORDS_BIG_ENDIAN
1080 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1082 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1084 ("can't access real part of complex value in hard register");
1085 else if (WORDS_BIG_ENDIAN
)
1086 return gen_highpart (mode
, x
);
1088 return gen_lowpart (mode
, x
);
1091 /* Return the imaginary part (which has mode MODE) of a complex value X.
1092 This always comes at the high address in memory. */
1095 gen_imagpart (enum machine_mode mode
, rtx x
)
1099 /* Handle complex constants. */
1100 part
= gen_complex_constant_part (mode
, x
, 1);
1101 if (part
!= NULL_RTX
)
1104 if (WORDS_BIG_ENDIAN
)
1105 return gen_lowpart (mode
, x
);
1106 else if (! WORDS_BIG_ENDIAN
1107 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1109 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1111 ("can't access imaginary part of complex value in hard register");
1113 return gen_highpart (mode
, x
);
1116 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1117 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1118 least-significant part of X.
1119 MODE specifies how big a part of X to return;
1120 it usually should not be larger than a word.
1121 If X is a MEM whose address is a QUEUED, the value may be so also. */
1124 gen_lowpart_general (enum machine_mode mode
, rtx x
)
1126 rtx result
= gen_lowpart_common (mode
, x
);
1130 else if (GET_CODE (x
) == REG
)
1132 /* Must be a hard reg that's not valid in MODE. */
1133 result
= gen_lowpart_common (mode
, copy_to_reg (x
));
1138 else if (GET_CODE (x
) == MEM
)
1140 /* The only additional case we can do is MEM. */
1143 /* The following exposes the use of "x" to CSE. */
1144 if (GET_MODE_SIZE (GET_MODE (x
)) <= UNITS_PER_WORD
1145 && SCALAR_INT_MODE_P (GET_MODE (x
))
1146 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
1147 GET_MODE_BITSIZE (GET_MODE (x
)))
1148 && ! no_new_pseudos
)
1149 return gen_lowpart (mode
, force_reg (GET_MODE (x
), x
));
1151 if (WORDS_BIG_ENDIAN
)
1152 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
1153 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1155 if (BYTES_BIG_ENDIAN
)
1156 /* Adjust the address so that the address-after-the-data
1158 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
1159 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
1161 return adjust_address (x
, mode
, offset
);
1163 else if (GET_CODE (x
) == ADDRESSOF
)
1164 return gen_lowpart (mode
, force_reg (GET_MODE (x
), x
));
1169 /* Like `gen_lowpart', but refer to the most significant part.
1170 This is used to access the imaginary part of a complex number. */
1173 gen_highpart (enum machine_mode mode
, rtx x
)
1175 unsigned int msize
= GET_MODE_SIZE (mode
);
1178 /* This case loses if X is a subreg. To catch bugs early,
1179 complain if an invalid MODE is used even in other cases. */
1180 if (msize
> UNITS_PER_WORD
1181 && msize
!= (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)))
1184 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1185 subreg_highpart_offset (mode
, GET_MODE (x
)));
1187 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1188 the target if we have a MEM. gen_highpart must return a valid operand,
1189 emitting code if necessary to do so. */
1190 if (result
!= NULL_RTX
&& GET_CODE (result
) == MEM
)
1191 result
= validize_mem (result
);
1198 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1199 be VOIDmode constant. */
1201 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1203 if (GET_MODE (exp
) != VOIDmode
)
1205 if (GET_MODE (exp
) != innermode
)
1207 return gen_highpart (outermode
, exp
);
1209 return simplify_gen_subreg (outermode
, exp
, innermode
,
1210 subreg_highpart_offset (outermode
, innermode
));
1213 /* Return offset in bytes to get OUTERMODE low part
1214 of the value in mode INNERMODE stored in memory in target format. */
1217 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1219 unsigned int offset
= 0;
1220 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1224 if (WORDS_BIG_ENDIAN
)
1225 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1226 if (BYTES_BIG_ENDIAN
)
1227 offset
+= difference
% UNITS_PER_WORD
;
1233 /* Return offset in bytes to get OUTERMODE high part
1234 of the value in mode INNERMODE stored in memory in target format. */
1236 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1238 unsigned int offset
= 0;
1239 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1241 if (GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
1246 if (! WORDS_BIG_ENDIAN
)
1247 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1248 if (! BYTES_BIG_ENDIAN
)
1249 offset
+= difference
% UNITS_PER_WORD
;
1255 /* Return 1 iff X, assumed to be a SUBREG,
1256 refers to the least significant part of its containing reg.
1257 If X is not a SUBREG, always return 1 (it is its own low part!). */
1260 subreg_lowpart_p (rtx x
)
1262 if (GET_CODE (x
) != SUBREG
)
1264 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1267 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1268 == SUBREG_BYTE (x
));
1271 /* Return subword OFFSET of operand OP.
1272 The word number, OFFSET, is interpreted as the word number starting
1273 at the low-order address. OFFSET 0 is the low-order word if not
1274 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1276 If we cannot extract the required word, we return zero. Otherwise,
1277 an rtx corresponding to the requested word will be returned.
1279 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1280 reload has completed, a valid address will always be returned. After
1281 reload, if a valid address cannot be returned, we return zero.
1283 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1284 it is the responsibility of the caller.
1286 MODE is the mode of OP in case it is a CONST_INT.
1288 ??? This is still rather broken for some cases. The problem for the
1289 moment is that all callers of this thing provide no 'goal mode' to
1290 tell us to work with. This exists because all callers were written
1291 in a word based SUBREG world.
1292 Now use of this function can be deprecated by simplify_subreg in most
1297 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1299 if (mode
== VOIDmode
)
1300 mode
= GET_MODE (op
);
1302 if (mode
== VOIDmode
)
1305 /* If OP is narrower than a word, fail. */
1307 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1310 /* If we want a word outside OP, return zero. */
1312 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1315 /* Form a new MEM at the requested address. */
1316 if (GET_CODE (op
) == MEM
)
1318 rtx
new = adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1320 if (! validate_address
)
1323 else if (reload_completed
)
1325 if (! strict_memory_address_p (word_mode
, XEXP (new, 0)))
1329 return replace_equiv_address (new, XEXP (new, 0));
1332 /* Rest can be handled by simplify_subreg. */
1333 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1336 /* Similar to `operand_subword', but never return 0. If we can't extract
1337 the required subword, put OP into a register and try again. If that fails,
1338 abort. We always validate the address in this case.
1340 MODE is the mode of OP, in case it is CONST_INT. */
1343 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1345 rtx result
= operand_subword (op
, offset
, 1, mode
);
1350 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1352 /* If this is a register which can not be accessed by words, copy it
1353 to a pseudo register. */
1354 if (GET_CODE (op
) == REG
)
1355 op
= copy_to_reg (op
);
1357 op
= force_reg (mode
, op
);
1360 result
= operand_subword (op
, offset
, 1, mode
);
1367 /* Given a compare instruction, swap the operands.
1368 A test instruction is changed into a compare of 0 against the operand. */
1371 reverse_comparison (rtx insn
)
1373 rtx body
= PATTERN (insn
);
1376 if (GET_CODE (body
) == SET
)
1377 comp
= SET_SRC (body
);
1379 comp
= SET_SRC (XVECEXP (body
, 0, 0));
1381 if (GET_CODE (comp
) == COMPARE
)
1383 rtx op0
= XEXP (comp
, 0);
1384 rtx op1
= XEXP (comp
, 1);
1385 XEXP (comp
, 0) = op1
;
1386 XEXP (comp
, 1) = op0
;
1390 rtx
new = gen_rtx_COMPARE (VOIDmode
,
1391 CONST0_RTX (GET_MODE (comp
)), comp
);
1392 if (GET_CODE (body
) == SET
)
1393 SET_SRC (body
) = new;
1395 SET_SRC (XVECEXP (body
, 0, 0)) = new;
1399 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1400 or (2) a component ref of something variable. Represent the later with
1401 a NULL expression. */
1404 component_ref_for_mem_expr (tree ref
)
1406 tree inner
= TREE_OPERAND (ref
, 0);
1408 if (TREE_CODE (inner
) == COMPONENT_REF
)
1409 inner
= component_ref_for_mem_expr (inner
);
1412 /* Now remove any conversions: they don't change what the underlying
1413 object is. Likewise for SAVE_EXPR. */
1414 while (TREE_CODE (inner
) == NOP_EXPR
|| TREE_CODE (inner
) == CONVERT_EXPR
1415 || TREE_CODE (inner
) == NON_LVALUE_EXPR
1416 || TREE_CODE (inner
) == VIEW_CONVERT_EXPR
1417 || TREE_CODE (inner
) == SAVE_EXPR
)
1418 inner
= TREE_OPERAND (inner
, 0);
1420 if (! DECL_P (inner
))
1424 if (inner
== TREE_OPERAND (ref
, 0))
1427 return build (COMPONENT_REF
, TREE_TYPE (ref
), inner
,
1428 TREE_OPERAND (ref
, 1));
1431 /* Returns 1 if both MEM_EXPR can be considered equal
1435 mem_expr_equal_p (tree expr1
, tree expr2
)
1440 if (! expr1
|| ! expr2
)
1443 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1446 if (TREE_CODE (expr1
) == COMPONENT_REF
)
1448 mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1449 TREE_OPERAND (expr2
, 0))
1450 && mem_expr_equal_p (TREE_OPERAND (expr1
, 1), /* field decl */
1451 TREE_OPERAND (expr2
, 1));
1453 if (TREE_CODE (expr1
) == INDIRECT_REF
)
1454 return mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1455 TREE_OPERAND (expr2
, 0));
1457 /* Decls with different pointers can't be equal. */
1461 abort(); /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1462 have been resolved here. */
1465 /* Given REF, a MEM, and T, either the type of X or the expression
1466 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1467 if we are making a new object of this type. BITPOS is nonzero if
1468 there is an offset outstanding on T that will be applied later. */
1471 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1472 HOST_WIDE_INT bitpos
)
1474 HOST_WIDE_INT alias
= MEM_ALIAS_SET (ref
);
1475 tree expr
= MEM_EXPR (ref
);
1476 rtx offset
= MEM_OFFSET (ref
);
1477 rtx size
= MEM_SIZE (ref
);
1478 unsigned int align
= MEM_ALIGN (ref
);
1479 HOST_WIDE_INT apply_bitpos
= 0;
1482 /* It can happen that type_for_mode was given a mode for which there
1483 is no language-level type. In which case it returns NULL, which
1488 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1489 if (type
== error_mark_node
)
1492 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1493 wrong answer, as it assumes that DECL_RTL already has the right alias
1494 info. Callers should not set DECL_RTL until after the call to
1495 set_mem_attributes. */
1496 if (DECL_P (t
) && ref
== DECL_RTL_IF_SET (t
))
1499 /* Get the alias set from the expression or type (perhaps using a
1500 front-end routine) and use it. */
1501 alias
= get_alias_set (t
);
1503 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1504 MEM_IN_STRUCT_P (ref
) = AGGREGATE_TYPE_P (type
);
1505 RTX_UNCHANGING_P (ref
)
1506 |= ((lang_hooks
.honor_readonly
1507 && (TYPE_READONLY (type
) || (t
!= type
&& TREE_READONLY (t
))))
1508 || (! TYPE_P (t
) && TREE_CONSTANT (t
)));
1509 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1511 /* If we are making an object of this type, or if this is a DECL, we know
1512 that it is a scalar if the type is not an aggregate. */
1513 if ((objectp
|| DECL_P (t
)) && ! AGGREGATE_TYPE_P (type
))
1514 MEM_SCALAR_P (ref
) = 1;
1516 /* We can set the alignment from the type if we are making an object,
1517 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1518 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1519 align
= MAX (align
, TYPE_ALIGN (type
));
1521 /* If the size is known, we can set that. */
1522 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1523 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1525 /* If T is not a type, we may be able to deduce some more information about
1529 maybe_set_unchanging (ref
, t
);
1530 if (TREE_THIS_VOLATILE (t
))
1531 MEM_VOLATILE_P (ref
) = 1;
1533 /* Now remove any conversions: they don't change what the underlying
1534 object is. Likewise for SAVE_EXPR. */
1535 while (TREE_CODE (t
) == NOP_EXPR
|| TREE_CODE (t
) == CONVERT_EXPR
1536 || TREE_CODE (t
) == NON_LVALUE_EXPR
1537 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1538 || TREE_CODE (t
) == SAVE_EXPR
)
1539 t
= TREE_OPERAND (t
, 0);
1541 /* If this expression can't be addressed (e.g., it contains a reference
1542 to a non-addressable field), show we don't change its alias set. */
1543 if (! can_address_p (t
))
1544 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1546 /* If this is a decl, set the attributes of the MEM from it. */
1550 offset
= const0_rtx
;
1551 apply_bitpos
= bitpos
;
1552 size
= (DECL_SIZE_UNIT (t
)
1553 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1554 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1555 align
= DECL_ALIGN (t
);
1558 /* If this is a constant, we know the alignment. */
1559 else if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'c')
1561 align
= TYPE_ALIGN (type
);
1562 #ifdef CONSTANT_ALIGNMENT
1563 align
= CONSTANT_ALIGNMENT (t
, align
);
1567 /* If this is a field reference and not a bit-field, record it. */
1568 /* ??? There is some information that can be gleened from bit-fields,
1569 such as the word offset in the structure that might be modified.
1570 But skip it for now. */
1571 else if (TREE_CODE (t
) == COMPONENT_REF
1572 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1574 expr
= component_ref_for_mem_expr (t
);
1575 offset
= const0_rtx
;
1576 apply_bitpos
= bitpos
;
1577 /* ??? Any reason the field size would be different than
1578 the size we got from the type? */
1581 /* If this is an array reference, look for an outer field reference. */
1582 else if (TREE_CODE (t
) == ARRAY_REF
)
1584 tree off_tree
= size_zero_node
;
1585 /* We can't modify t, because we use it at the end of the
1591 tree index
= TREE_OPERAND (t2
, 1);
1592 tree array
= TREE_OPERAND (t2
, 0);
1593 tree domain
= TYPE_DOMAIN (TREE_TYPE (array
));
1594 tree low_bound
= (domain
? TYPE_MIN_VALUE (domain
) : 0);
1595 tree unit_size
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array
)));
1597 /* We assume all arrays have sizes that are a multiple of a byte.
1598 First subtract the lower bound, if any, in the type of the
1599 index, then convert to sizetype and multiply by the size of the
1601 if (low_bound
!= 0 && ! integer_zerop (low_bound
))
1602 index
= fold (build (MINUS_EXPR
, TREE_TYPE (index
),
1605 /* If the index has a self-referential type, instantiate it;
1606 likewise for the component size. */
1607 index
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (index
, t2
);
1608 unit_size
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (unit_size
, array
);
1610 = fold (build (PLUS_EXPR
, sizetype
,
1611 fold (build (MULT_EXPR
, sizetype
,
1614 t2
= TREE_OPERAND (t2
, 0);
1616 while (TREE_CODE (t2
) == ARRAY_REF
);
1622 if (host_integerp (off_tree
, 1))
1624 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1625 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1626 align
= DECL_ALIGN (t2
);
1627 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1629 offset
= GEN_INT (ioff
);
1630 apply_bitpos
= bitpos
;
1633 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1635 expr
= component_ref_for_mem_expr (t2
);
1636 if (host_integerp (off_tree
, 1))
1638 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1639 apply_bitpos
= bitpos
;
1641 /* ??? Any reason the field size would be different than
1642 the size we got from the type? */
1644 else if (flag_argument_noalias
> 1
1645 && TREE_CODE (t2
) == INDIRECT_REF
1646 && TREE_CODE (TREE_OPERAND (t2
, 0)) == PARM_DECL
)
1653 /* If this is a Fortran indirect argument reference, record the
1655 else if (flag_argument_noalias
> 1
1656 && TREE_CODE (t
) == INDIRECT_REF
1657 && TREE_CODE (TREE_OPERAND (t
, 0)) == PARM_DECL
)
1664 /* If we modified OFFSET based on T, then subtract the outstanding
1665 bit position offset. Similarly, increase the size of the accessed
1666 object to contain the negative offset. */
1669 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1671 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1674 /* Now set the attributes we computed above. */
1676 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1678 /* If this is already known to be a scalar or aggregate, we are done. */
1679 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1682 /* If it is a reference into an aggregate, this is part of an aggregate.
1683 Otherwise we don't know. */
1684 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1685 || TREE_CODE (t
) == ARRAY_RANGE_REF
1686 || TREE_CODE (t
) == BIT_FIELD_REF
)
1687 MEM_IN_STRUCT_P (ref
) = 1;
1691 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1693 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1696 /* Set the decl for MEM to DECL. */
1699 set_mem_attrs_from_reg (rtx mem
, rtx reg
)
1702 = get_mem_attrs (MEM_ALIAS_SET (mem
), REG_EXPR (reg
),
1703 GEN_INT (REG_OFFSET (reg
)),
1704 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1707 /* Set the alias set of MEM to SET. */
1710 set_mem_alias_set (rtx mem
, HOST_WIDE_INT set
)
1712 #ifdef ENABLE_CHECKING
1713 /* If the new and old alias sets don't conflict, something is wrong. */
1714 if (!alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)))
1718 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1719 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1723 /* Set the alignment of MEM to ALIGN bits. */
1726 set_mem_align (rtx mem
, unsigned int align
)
1728 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1729 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1733 /* Set the expr for MEM to EXPR. */
1736 set_mem_expr (rtx mem
, tree expr
)
1739 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1740 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1743 /* Set the offset of MEM to OFFSET. */
1746 set_mem_offset (rtx mem
, rtx offset
)
1748 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1749 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1753 /* Set the size of MEM to SIZE. */
1756 set_mem_size (rtx mem
, rtx size
)
1758 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1759 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1763 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1764 and its address changed to ADDR. (VOIDmode means don't change the mode.
1765 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1766 returned memory location is required to be valid. The memory
1767 attributes are not changed. */
1770 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1774 if (GET_CODE (memref
) != MEM
)
1776 if (mode
== VOIDmode
)
1777 mode
= GET_MODE (memref
);
1779 addr
= XEXP (memref
, 0);
1780 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1781 && (!validate
|| memory_address_p (mode
, addr
)))
1786 if (reload_in_progress
|| reload_completed
)
1788 if (! memory_address_p (mode
, addr
))
1792 addr
= memory_address (mode
, addr
);
1795 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1798 new = gen_rtx_MEM (mode
, addr
);
1799 MEM_COPY_ATTRIBUTES (new, memref
);
1803 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1804 way we are changing MEMREF, so we only preserve the alias set. */
1807 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1809 rtx
new = change_address_1 (memref
, mode
, addr
, 1), size
;
1810 enum machine_mode mmode
= GET_MODE (new);
1813 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1814 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1816 /* If there are no changes, just return the original memory reference. */
1819 if (MEM_ATTRS (memref
) == 0
1820 || (MEM_EXPR (memref
) == NULL
1821 && MEM_OFFSET (memref
) == NULL
1822 && MEM_SIZE (memref
) == size
1823 && MEM_ALIGN (memref
) == align
))
1826 new = gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1827 MEM_COPY_ATTRIBUTES (new, memref
);
1831 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
, mmode
);
1836 /* Return a memory reference like MEMREF, but with its mode changed
1837 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1838 nonzero, the memory address is forced to be valid.
1839 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1840 and caller is responsible for adjusting MEMREF base register. */
1843 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1844 int validate
, int adjust
)
1846 rtx addr
= XEXP (memref
, 0);
1848 rtx memoffset
= MEM_OFFSET (memref
);
1850 unsigned int memalign
= MEM_ALIGN (memref
);
1852 /* If there are no changes, just return the original memory reference. */
1853 if (mode
== GET_MODE (memref
) && !offset
1854 && (!validate
|| memory_address_p (mode
, addr
)))
1857 /* ??? Prefer to create garbage instead of creating shared rtl.
1858 This may happen even if offset is nonzero -- consider
1859 (plus (plus reg reg) const_int) -- so do this always. */
1860 addr
= copy_rtx (addr
);
1864 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1865 object, we can merge it into the LO_SUM. */
1866 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1868 && (unsigned HOST_WIDE_INT
) offset
1869 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1870 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
1871 plus_constant (XEXP (addr
, 1), offset
));
1873 addr
= plus_constant (addr
, offset
);
1876 new = change_address_1 (memref
, mode
, addr
, validate
);
1878 /* Compute the new values of the memory attributes due to this adjustment.
1879 We add the offsets and update the alignment. */
1881 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
1883 /* Compute the new alignment by taking the MIN of the alignment and the
1884 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1889 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
1891 /* We can compute the size in a number of ways. */
1892 if (GET_MODE (new) != BLKmode
)
1893 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1894 else if (MEM_SIZE (memref
))
1895 size
= plus_constant (MEM_SIZE (memref
), -offset
);
1897 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
1898 memoffset
, size
, memalign
, GET_MODE (new));
1900 /* At some point, we should validate that this offset is within the object,
1901 if all the appropriate values are known. */
1905 /* Return a memory reference like MEMREF, but with its mode changed
1906 to MODE and its address changed to ADDR, which is assumed to be
1907 MEMREF offseted by OFFSET bytes. If VALIDATE is
1908 nonzero, the memory address is forced to be valid. */
1911 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
1912 HOST_WIDE_INT offset
, int validate
)
1914 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
1915 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
1918 /* Return a memory reference like MEMREF, but whose address is changed by
1919 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1920 known to be in OFFSET (possibly 1). */
1923 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
1925 rtx
new, addr
= XEXP (memref
, 0);
1927 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1929 /* At this point we don't know _why_ the address is invalid. It
1930 could have secondary memory references, multiplies or anything.
1932 However, if we did go and rearrange things, we can wind up not
1933 being able to recognize the magic around pic_offset_table_rtx.
1934 This stuff is fragile, and is yet another example of why it is
1935 bad to expose PIC machinery too early. */
1936 if (! memory_address_p (GET_MODE (memref
), new)
1937 && GET_CODE (addr
) == PLUS
1938 && XEXP (addr
, 0) == pic_offset_table_rtx
)
1940 addr
= force_reg (GET_MODE (addr
), addr
);
1941 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1944 update_temp_slot_address (XEXP (memref
, 0), new);
1945 new = change_address_1 (memref
, VOIDmode
, new, 1);
1947 /* If there are no changes, just return the original memory reference. */
1951 /* Update the alignment to reflect the offset. Reset the offset, which
1954 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
1955 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
1960 /* Return a memory reference like MEMREF, but with its address changed to
1961 ADDR. The caller is asserting that the actual piece of memory pointed
1962 to is the same, just the form of the address is being changed, such as
1963 by putting something into a register. */
1966 replace_equiv_address (rtx memref
, rtx addr
)
1968 /* change_address_1 copies the memory attribute structure without change
1969 and that's exactly what we want here. */
1970 update_temp_slot_address (XEXP (memref
, 0), addr
);
1971 return change_address_1 (memref
, VOIDmode
, addr
, 1);
1974 /* Likewise, but the reference is not required to be valid. */
1977 replace_equiv_address_nv (rtx memref
, rtx addr
)
1979 return change_address_1 (memref
, VOIDmode
, addr
, 0);
1982 /* Return a memory reference like MEMREF, but with its mode widened to
1983 MODE and offset by OFFSET. This would be used by targets that e.g.
1984 cannot issue QImode memory operations and have to use SImode memory
1985 operations plus masking logic. */
1988 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
1990 rtx
new = adjust_address_1 (memref
, mode
, offset
, 1, 1);
1991 tree expr
= MEM_EXPR (new);
1992 rtx memoffset
= MEM_OFFSET (new);
1993 unsigned int size
= GET_MODE_SIZE (mode
);
1995 /* If there are no changes, just return the original memory reference. */
1999 /* If we don't know what offset we were at within the expression, then
2000 we can't know if we've overstepped the bounds. */
2006 if (TREE_CODE (expr
) == COMPONENT_REF
)
2008 tree field
= TREE_OPERAND (expr
, 1);
2010 if (! DECL_SIZE_UNIT (field
))
2016 /* Is the field at least as large as the access? If so, ok,
2017 otherwise strip back to the containing structure. */
2018 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2019 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2020 && INTVAL (memoffset
) >= 0)
2023 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
2029 expr
= TREE_OPERAND (expr
, 0);
2030 memoffset
= (GEN_INT (INTVAL (memoffset
)
2031 + tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
2032 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2035 /* Similarly for the decl. */
2036 else if (DECL_P (expr
)
2037 && DECL_SIZE_UNIT (expr
)
2038 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2039 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2040 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2044 /* The widened memory access overflows the expression, which means
2045 that it could alias another expression. Zap it. */
2052 memoffset
= NULL_RTX
;
2054 /* The widened memory may alias other stuff, so zap the alias set. */
2055 /* ??? Maybe use get_alias_set on any remaining expression. */
2057 MEM_ATTRS (new) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2058 MEM_ALIGN (new), mode
);
2063 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2066 gen_label_rtx (void)
2068 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2069 NULL
, label_num
++, NULL
);
2072 /* For procedure integration. */
2074 /* Install new pointers to the first and last insns in the chain.
2075 Also, set cur_insn_uid to one higher than the last in use.
2076 Used for an inline-procedure after copying the insn chain. */
2079 set_new_first_and_last_insn (rtx first
, rtx last
)
2087 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2088 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2093 /* Set the last label number found in the current function.
2094 This is used when belatedly compiling an inline function. */
2097 set_new_last_label_num (int last
)
2099 base_label_num
= label_num
;
2100 last_label_num
= last
;
2103 /* Restore all variables describing the current status from the structure *P.
2104 This is used after a nested function. */
2107 restore_emit_status (struct function
*p ATTRIBUTE_UNUSED
)
2112 /* Go through all the RTL insn bodies and copy any invalid shared
2113 structure. This routine should only be called once. */
2116 unshare_all_rtl (tree fndecl
, rtx insn
)
2120 /* Make sure that virtual parameters are not shared. */
2121 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
2122 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2124 /* Make sure that virtual stack slots are not shared. */
2125 unshare_all_decls (DECL_INITIAL (fndecl
));
2127 /* Unshare just about everything else. */
2128 unshare_all_rtl_in_chain (insn
);
2130 /* Make sure the addresses of stack slots found outside the insn chain
2131 (such as, in DECL_RTL of a variable) are not shared
2132 with the insn chain.
2134 This special care is necessary when the stack slot MEM does not
2135 actually appear in the insn chain. If it does appear, its address
2136 is unshared from all else at that point. */
2137 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2140 /* Go through all the RTL insn bodies and copy any invalid shared
2141 structure, again. This is a fairly expensive thing to do so it
2142 should be done sparingly. */
2145 unshare_all_rtl_again (rtx insn
)
2150 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2153 reset_used_flags (PATTERN (p
));
2154 reset_used_flags (REG_NOTES (p
));
2155 reset_used_flags (LOG_LINKS (p
));
2158 /* Make sure that virtual stack slots are not shared. */
2159 reset_used_decls (DECL_INITIAL (cfun
->decl
));
2161 /* Make sure that virtual parameters are not shared. */
2162 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2163 reset_used_flags (DECL_RTL (decl
));
2165 reset_used_flags (stack_slot_list
);
2167 unshare_all_rtl (cfun
->decl
, insn
);
2170 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2171 Recursively does the same for subexpressions. */
2174 verify_rtx_sharing (rtx orig
, rtx insn
)
2179 const char *format_ptr
;
2184 code
= GET_CODE (x
);
2186 /* These types may be freely shared. */
2202 /* SCRATCH must be shared because they represent distinct values. */
2204 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2209 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2210 a LABEL_REF, it isn't sharable. */
2211 if (GET_CODE (XEXP (x
, 0)) == PLUS
2212 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2213 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2218 /* A MEM is allowed to be shared if its address is constant. */
2219 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2220 || reload_completed
|| reload_in_progress
)
2229 /* This rtx may not be shared. If it has already been seen,
2230 replace it with a copy of itself. */
2232 if (RTX_FLAG (x
, used
))
2234 error ("Invalid rtl sharing found in the insn");
2236 error ("Shared rtx");
2240 RTX_FLAG (x
, used
) = 1;
2242 /* Now scan the subexpressions recursively. */
2244 format_ptr
= GET_RTX_FORMAT (code
);
2246 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2248 switch (*format_ptr
++)
2251 verify_rtx_sharing (XEXP (x
, i
), insn
);
2255 if (XVEC (x
, i
) != NULL
)
2258 int len
= XVECLEN (x
, i
);
2260 for (j
= 0; j
< len
; j
++)
2262 /* We allow sharing of ASM_OPERANDS inside single instruction. */
2263 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2264 && GET_CODE (SET_SRC (XVECEXP (x
, i
, j
))) == ASM_OPERANDS
)
2265 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2267 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2276 /* Go through all the RTL insn bodies and check that there is no unexpected
2277 sharing in between the subexpressions. */
2280 verify_rtl_sharing (void)
2284 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2287 reset_used_flags (PATTERN (p
));
2288 reset_used_flags (REG_NOTES (p
));
2289 reset_used_flags (LOG_LINKS (p
));
2292 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2295 verify_rtx_sharing (PATTERN (p
), p
);
2296 verify_rtx_sharing (REG_NOTES (p
), p
);
2297 verify_rtx_sharing (LOG_LINKS (p
), p
);
2301 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2302 Assumes the mark bits are cleared at entry. */
2305 unshare_all_rtl_in_chain (rtx insn
)
2307 for (; insn
; insn
= NEXT_INSN (insn
))
2310 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2311 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2312 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
2316 /* Go through all virtual stack slots of a function and copy any
2317 shared structure. */
2319 unshare_all_decls (tree blk
)
2323 /* Copy shared decls. */
2324 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2325 if (DECL_RTL_SET_P (t
))
2326 SET_DECL_RTL (t
, copy_rtx_if_shared (DECL_RTL (t
)));
2328 /* Now process sub-blocks. */
2329 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2330 unshare_all_decls (t
);
2333 /* Go through all virtual stack slots of a function and mark them as
2336 reset_used_decls (tree blk
)
2341 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2342 if (DECL_RTL_SET_P (t
))
2343 reset_used_flags (DECL_RTL (t
));
2345 /* Now process sub-blocks. */
2346 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2347 reset_used_decls (t
);
2350 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2351 placed in the result directly, rather than being copied. MAY_SHARE is
2352 either a MEM of an EXPR_LIST of MEMs. */
2355 copy_most_rtx (rtx orig
, rtx may_share
)
2360 const char *format_ptr
;
2362 if (orig
== may_share
2363 || (GET_CODE (may_share
) == EXPR_LIST
2364 && in_expr_list_p (may_share
, orig
)))
2367 code
= GET_CODE (orig
);
2385 copy
= rtx_alloc (code
);
2386 PUT_MODE (copy
, GET_MODE (orig
));
2387 RTX_FLAG (copy
, in_struct
) = RTX_FLAG (orig
, in_struct
);
2388 RTX_FLAG (copy
, volatil
) = RTX_FLAG (orig
, volatil
);
2389 RTX_FLAG (copy
, unchanging
) = RTX_FLAG (orig
, unchanging
);
2390 RTX_FLAG (copy
, integrated
) = RTX_FLAG (orig
, integrated
);
2391 RTX_FLAG (copy
, frame_related
) = RTX_FLAG (orig
, frame_related
);
2393 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
2395 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
2397 switch (*format_ptr
++)
2400 XEXP (copy
, i
) = XEXP (orig
, i
);
2401 if (XEXP (orig
, i
) != NULL
&& XEXP (orig
, i
) != may_share
)
2402 XEXP (copy
, i
) = copy_most_rtx (XEXP (orig
, i
), may_share
);
2406 XEXP (copy
, i
) = XEXP (orig
, i
);
2411 XVEC (copy
, i
) = XVEC (orig
, i
);
2412 if (XVEC (orig
, i
) != NULL
)
2414 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
2415 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
2416 XVECEXP (copy
, i
, j
)
2417 = copy_most_rtx (XVECEXP (orig
, i
, j
), may_share
);
2422 XWINT (copy
, i
) = XWINT (orig
, i
);
2427 XINT (copy
, i
) = XINT (orig
, i
);
2431 XTREE (copy
, i
) = XTREE (orig
, i
);
2436 XSTR (copy
, i
) = XSTR (orig
, i
);
2440 X0ANY (copy
, i
) = X0ANY (orig
, i
);
2450 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2451 Recursively does the same for subexpressions. Uses
2452 copy_rtx_if_shared_1 to reduce stack space. */
2455 copy_rtx_if_shared (rtx orig
)
2457 copy_rtx_if_shared_1 (&orig
);
2461 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2462 use. Recursively does the same for subexpressions. */
2465 copy_rtx_if_shared_1 (rtx
*orig1
)
2471 const char *format_ptr
;
2475 /* Repeat is used to turn tail-recursion into iteration. */
2482 code
= GET_CODE (x
);
2484 /* These types may be freely shared. */
2499 /* SCRATCH must be shared because they represent distinct values. */
2502 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2507 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2508 a LABEL_REF, it isn't sharable. */
2509 if (GET_CODE (XEXP (x
, 0)) == PLUS
2510 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2511 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2520 /* The chain of insns is not being copied. */
2527 /* This rtx may not be shared. If it has already been seen,
2528 replace it with a copy of itself. */
2530 if (RTX_FLAG (x
, used
))
2534 copy
= rtx_alloc (code
);
2535 memcpy (copy
, x
, RTX_SIZE (code
));
2539 RTX_FLAG (x
, used
) = 1;
2541 /* Now scan the subexpressions recursively.
2542 We can store any replaced subexpressions directly into X
2543 since we know X is not shared! Any vectors in X
2544 must be copied if X was copied. */
2546 format_ptr
= GET_RTX_FORMAT (code
);
2547 length
= GET_RTX_LENGTH (code
);
2550 for (i
= 0; i
< length
; i
++)
2552 switch (*format_ptr
++)
2556 copy_rtx_if_shared_1 (last_ptr
);
2557 last_ptr
= &XEXP (x
, i
);
2561 if (XVEC (x
, i
) != NULL
)
2564 int len
= XVECLEN (x
, i
);
2566 /* Copy the vector iff I copied the rtx and the length
2568 if (copied
&& len
> 0)
2569 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2571 /* Call recursively on all inside the vector. */
2572 for (j
= 0; j
< len
; j
++)
2575 copy_rtx_if_shared_1 (last_ptr
);
2576 last_ptr
= &XVECEXP (x
, i
, j
);
2591 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2592 to look for shared sub-parts. */
2595 reset_used_flags (rtx x
)
2599 const char *format_ptr
;
2602 /* Repeat is used to turn tail-recursion into iteration. */
2607 code
= GET_CODE (x
);
2609 /* These types may be freely shared so we needn't do any resetting
2631 /* The chain of insns is not being copied. */
2638 RTX_FLAG (x
, used
) = 0;
2640 format_ptr
= GET_RTX_FORMAT (code
);
2641 length
= GET_RTX_LENGTH (code
);
2643 for (i
= 0; i
< length
; i
++)
2645 switch (*format_ptr
++)
2653 reset_used_flags (XEXP (x
, i
));
2657 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2658 reset_used_flags (XVECEXP (x
, i
, j
));
2664 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2665 to look for shared sub-parts. */
2668 set_used_flags (rtx x
)
2672 const char *format_ptr
;
2677 code
= GET_CODE (x
);
2679 /* These types may be freely shared so we needn't do any resetting
2701 /* The chain of insns is not being copied. */
2708 RTX_FLAG (x
, used
) = 1;
2710 format_ptr
= GET_RTX_FORMAT (code
);
2711 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2713 switch (*format_ptr
++)
2716 set_used_flags (XEXP (x
, i
));
2720 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2721 set_used_flags (XVECEXP (x
, i
, j
));
2727 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2728 Return X or the rtx for the pseudo reg the value of X was copied into.
2729 OTHER must be valid as a SET_DEST. */
2732 make_safe_from (rtx x
, rtx other
)
2735 switch (GET_CODE (other
))
2738 other
= SUBREG_REG (other
);
2740 case STRICT_LOW_PART
:
2743 other
= XEXP (other
, 0);
2749 if ((GET_CODE (other
) == MEM
2751 && GET_CODE (x
) != REG
2752 && GET_CODE (x
) != SUBREG
)
2753 || (GET_CODE (other
) == REG
2754 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2755 || reg_mentioned_p (other
, x
))))
2757 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2758 emit_move_insn (temp
, x
);
2764 /* Emission of insns (adding them to the doubly-linked list). */
2766 /* Return the first insn of the current sequence or current function. */
2774 /* Specify a new insn as the first in the chain. */
2777 set_first_insn (rtx insn
)
2779 if (PREV_INSN (insn
) != 0)
2784 /* Return the last insn emitted in current sequence or current function. */
2787 get_last_insn (void)
2792 /* Specify a new insn as the last in the chain. */
2795 set_last_insn (rtx insn
)
2797 if (NEXT_INSN (insn
) != 0)
2802 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2805 get_last_insn_anywhere (void)
2807 struct sequence_stack
*stack
;
2810 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2811 if (stack
->last
!= 0)
2816 /* Return the first nonnote insn emitted in current sequence or current
2817 function. This routine looks inside SEQUENCEs. */
2820 get_first_nonnote_insn (void)
2822 rtx insn
= first_insn
;
2826 insn
= next_insn (insn
);
2827 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2834 /* Return the last nonnote insn emitted in current sequence or current
2835 function. This routine looks inside SEQUENCEs. */
2838 get_last_nonnote_insn (void)
2840 rtx insn
= last_insn
;
2844 insn
= previous_insn (insn
);
2845 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2852 /* Return a number larger than any instruction's uid in this function. */
2857 return cur_insn_uid
;
2860 /* Renumber instructions so that no instruction UIDs are wasted. */
2863 renumber_insns (FILE *stream
)
2867 /* If we're not supposed to renumber instructions, don't. */
2868 if (!flag_renumber_insns
)
2871 /* If there aren't that many instructions, then it's not really
2872 worth renumbering them. */
2873 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2878 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2881 fprintf (stream
, "Renumbering insn %d to %d\n",
2882 INSN_UID (insn
), cur_insn_uid
);
2883 INSN_UID (insn
) = cur_insn_uid
++;
2887 /* Return the next insn. If it is a SEQUENCE, return the first insn
2891 next_insn (rtx insn
)
2895 insn
= NEXT_INSN (insn
);
2896 if (insn
&& GET_CODE (insn
) == INSN
2897 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2898 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2904 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2908 previous_insn (rtx insn
)
2912 insn
= PREV_INSN (insn
);
2913 if (insn
&& GET_CODE (insn
) == INSN
2914 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2915 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2921 /* Return the next insn after INSN that is not a NOTE. This routine does not
2922 look inside SEQUENCEs. */
2925 next_nonnote_insn (rtx insn
)
2929 insn
= NEXT_INSN (insn
);
2930 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2937 /* Return the previous insn before INSN that is not a NOTE. This routine does
2938 not look inside SEQUENCEs. */
2941 prev_nonnote_insn (rtx insn
)
2945 insn
= PREV_INSN (insn
);
2946 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2953 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2954 or 0, if there is none. This routine does not look inside
2958 next_real_insn (rtx insn
)
2962 insn
= NEXT_INSN (insn
);
2963 if (insn
== 0 || GET_CODE (insn
) == INSN
2964 || GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
)
2971 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2972 or 0, if there is none. This routine does not look inside
2976 prev_real_insn (rtx insn
)
2980 insn
= PREV_INSN (insn
);
2981 if (insn
== 0 || GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
2982 || GET_CODE (insn
) == JUMP_INSN
)
2989 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2990 This routine does not look inside SEQUENCEs. */
2993 last_call_insn (void)
2997 for (insn
= get_last_insn ();
2998 insn
&& GET_CODE (insn
) != CALL_INSN
;
2999 insn
= PREV_INSN (insn
))
3005 /* Find the next insn after INSN that really does something. This routine
3006 does not look inside SEQUENCEs. Until reload has completed, this is the
3007 same as next_real_insn. */
3010 active_insn_p (rtx insn
)
3012 return (GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
3013 || (GET_CODE (insn
) == INSN
3014 && (! reload_completed
3015 || (GET_CODE (PATTERN (insn
)) != USE
3016 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3020 next_active_insn (rtx insn
)
3024 insn
= NEXT_INSN (insn
);
3025 if (insn
== 0 || active_insn_p (insn
))
3032 /* Find the last insn before INSN that really does something. This routine
3033 does not look inside SEQUENCEs. Until reload has completed, this is the
3034 same as prev_real_insn. */
3037 prev_active_insn (rtx insn
)
3041 insn
= PREV_INSN (insn
);
3042 if (insn
== 0 || active_insn_p (insn
))
3049 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3052 next_label (rtx insn
)
3056 insn
= NEXT_INSN (insn
);
3057 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
3064 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3067 prev_label (rtx insn
)
3071 insn
= PREV_INSN (insn
);
3072 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
3080 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3081 and REG_CC_USER notes so we can find it. */
3084 link_cc0_insns (rtx insn
)
3086 rtx user
= next_nonnote_insn (insn
);
3088 if (GET_CODE (user
) == INSN
&& GET_CODE (PATTERN (user
)) == SEQUENCE
)
3089 user
= XVECEXP (PATTERN (user
), 0, 0);
3091 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
3093 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
3096 /* Return the next insn that uses CC0 after INSN, which is assumed to
3097 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3098 applied to the result of this function should yield INSN).
3100 Normally, this is simply the next insn. However, if a REG_CC_USER note
3101 is present, it contains the insn that uses CC0.
3103 Return 0 if we can't find the insn. */
3106 next_cc0_user (rtx insn
)
3108 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3111 return XEXP (note
, 0);
3113 insn
= next_nonnote_insn (insn
);
3114 if (insn
&& GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3115 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3117 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3123 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3124 note, it is the previous insn. */
3127 prev_cc0_setter (rtx insn
)
3129 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3132 return XEXP (note
, 0);
3134 insn
= prev_nonnote_insn (insn
);
3135 if (! sets_cc0_p (PATTERN (insn
)))
3142 /* Increment the label uses for all labels present in rtx. */
3145 mark_label_nuses (rtx x
)
3151 code
= GET_CODE (x
);
3152 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3153 LABEL_NUSES (XEXP (x
, 0))++;
3155 fmt
= GET_RTX_FORMAT (code
);
3156 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3159 mark_label_nuses (XEXP (x
, i
));
3160 else if (fmt
[i
] == 'E')
3161 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3162 mark_label_nuses (XVECEXP (x
, i
, j
));
3167 /* Try splitting insns that can be split for better scheduling.
3168 PAT is the pattern which might split.
3169 TRIAL is the insn providing PAT.
3170 LAST is nonzero if we should return the last insn of the sequence produced.
3172 If this routine succeeds in splitting, it returns the first or last
3173 replacement insn depending on the value of LAST. Otherwise, it
3174 returns TRIAL. If the insn to be returned can be split, it will be. */
3177 try_split (rtx pat
, rtx trial
, int last
)
3179 rtx before
= PREV_INSN (trial
);
3180 rtx after
= NEXT_INSN (trial
);
3181 int has_barrier
= 0;
3185 rtx insn_last
, insn
;
3188 if (any_condjump_p (trial
)
3189 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3190 split_branch_probability
= INTVAL (XEXP (note
, 0));
3191 probability
= split_branch_probability
;
3193 seq
= split_insns (pat
, trial
);
3195 split_branch_probability
= -1;
3197 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3198 We may need to handle this specially. */
3199 if (after
&& GET_CODE (after
) == BARRIER
)
3202 after
= NEXT_INSN (after
);
3208 /* Avoid infinite loop if any insn of the result matches
3209 the original pattern. */
3213 if (INSN_P (insn_last
)
3214 && rtx_equal_p (PATTERN (insn_last
), pat
))
3216 if (!NEXT_INSN (insn_last
))
3218 insn_last
= NEXT_INSN (insn_last
);
3222 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3224 if (GET_CODE (insn
) == JUMP_INSN
)
3226 mark_jump_label (PATTERN (insn
), insn
, 0);
3228 if (probability
!= -1
3229 && any_condjump_p (insn
)
3230 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3232 /* We can preserve the REG_BR_PROB notes only if exactly
3233 one jump is created, otherwise the machine description
3234 is responsible for this step using
3235 split_branch_probability variable. */
3239 = gen_rtx_EXPR_LIST (REG_BR_PROB
,
3240 GEN_INT (probability
),
3246 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3247 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3248 if (GET_CODE (trial
) == CALL_INSN
)
3250 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3251 if (GET_CODE (insn
) == CALL_INSN
)
3253 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3256 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3257 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3261 /* Copy notes, particularly those related to the CFG. */
3262 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3264 switch (REG_NOTE_KIND (note
))
3268 while (insn
!= NULL_RTX
)
3270 if (GET_CODE (insn
) == CALL_INSN
3271 || (flag_non_call_exceptions
3272 && may_trap_p (PATTERN (insn
))))
3274 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3277 insn
= PREV_INSN (insn
);
3283 case REG_ALWAYS_RETURN
:
3285 while (insn
!= NULL_RTX
)
3287 if (GET_CODE (insn
) == CALL_INSN
)
3289 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3292 insn
= PREV_INSN (insn
);
3296 case REG_NON_LOCAL_GOTO
:
3298 while (insn
!= NULL_RTX
)
3300 if (GET_CODE (insn
) == JUMP_INSN
)
3302 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3305 insn
= PREV_INSN (insn
);
3314 /* If there are LABELS inside the split insns increment the
3315 usage count so we don't delete the label. */
3316 if (GET_CODE (trial
) == INSN
)
3319 while (insn
!= NULL_RTX
)
3321 if (GET_CODE (insn
) == INSN
)
3322 mark_label_nuses (PATTERN (insn
));
3324 insn
= PREV_INSN (insn
);
3328 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3330 delete_insn (trial
);
3332 emit_barrier_after (tem
);
3334 /* Recursively call try_split for each new insn created; by the
3335 time control returns here that insn will be fully split, so
3336 set LAST and continue from the insn after the one returned.
3337 We can't use next_active_insn here since AFTER may be a note.
3338 Ignore deleted insns, which can be occur if not optimizing. */
3339 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3340 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3341 tem
= try_split (PATTERN (tem
), tem
, 1);
3343 /* Return either the first or the last insn, depending on which was
3346 ? (after
? PREV_INSN (after
) : last_insn
)
3347 : NEXT_INSN (before
);
3350 /* Make and return an INSN rtx, initializing all its slots.
3351 Store PATTERN in the pattern slots. */
3354 make_insn_raw (rtx pattern
)
3358 insn
= rtx_alloc (INSN
);
3360 INSN_UID (insn
) = cur_insn_uid
++;
3361 PATTERN (insn
) = pattern
;
3362 INSN_CODE (insn
) = -1;
3363 LOG_LINKS (insn
) = NULL
;
3364 REG_NOTES (insn
) = NULL
;
3365 INSN_LOCATOR (insn
) = 0;
3366 BLOCK_FOR_INSN (insn
) = NULL
;
3368 #ifdef ENABLE_RTL_CHECKING
3371 && (returnjump_p (insn
)
3372 || (GET_CODE (insn
) == SET
3373 && SET_DEST (insn
) == pc_rtx
)))
3375 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3383 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3386 make_jump_insn_raw (rtx pattern
)
3390 insn
= rtx_alloc (JUMP_INSN
);
3391 INSN_UID (insn
) = cur_insn_uid
++;
3393 PATTERN (insn
) = pattern
;
3394 INSN_CODE (insn
) = -1;
3395 LOG_LINKS (insn
) = NULL
;
3396 REG_NOTES (insn
) = NULL
;
3397 JUMP_LABEL (insn
) = NULL
;
3398 INSN_LOCATOR (insn
) = 0;
3399 BLOCK_FOR_INSN (insn
) = NULL
;
3404 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3407 make_call_insn_raw (rtx pattern
)
3411 insn
= rtx_alloc (CALL_INSN
);
3412 INSN_UID (insn
) = cur_insn_uid
++;
3414 PATTERN (insn
) = pattern
;
3415 INSN_CODE (insn
) = -1;
3416 LOG_LINKS (insn
) = NULL
;
3417 REG_NOTES (insn
) = NULL
;
3418 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3419 INSN_LOCATOR (insn
) = 0;
3420 BLOCK_FOR_INSN (insn
) = NULL
;
3425 /* Add INSN to the end of the doubly-linked list.
3426 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3431 PREV_INSN (insn
) = last_insn
;
3432 NEXT_INSN (insn
) = 0;
3434 if (NULL
!= last_insn
)
3435 NEXT_INSN (last_insn
) = insn
;
3437 if (NULL
== first_insn
)
3443 /* Add INSN into the doubly-linked list after insn AFTER. This and
3444 the next should be the only functions called to insert an insn once
3445 delay slots have been filled since only they know how to update a
3449 add_insn_after (rtx insn
, rtx after
)
3451 rtx next
= NEXT_INSN (after
);
3454 if (optimize
&& INSN_DELETED_P (after
))
3457 NEXT_INSN (insn
) = next
;
3458 PREV_INSN (insn
) = after
;
3462 PREV_INSN (next
) = insn
;
3463 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
3464 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3466 else if (last_insn
== after
)
3470 struct sequence_stack
*stack
= seq_stack
;
3471 /* Scan all pending sequences too. */
3472 for (; stack
; stack
= stack
->next
)
3473 if (after
== stack
->last
)
3483 if (GET_CODE (after
) != BARRIER
3484 && GET_CODE (insn
) != BARRIER
3485 && (bb
= BLOCK_FOR_INSN (after
)))
3487 set_block_for_insn (insn
, bb
);
3489 bb
->flags
|= BB_DIRTY
;
3490 /* Should not happen as first in the BB is always
3491 either NOTE or LABEL. */
3492 if (BB_END (bb
) == after
3493 /* Avoid clobbering of structure when creating new BB. */
3494 && GET_CODE (insn
) != BARRIER
3495 && (GET_CODE (insn
) != NOTE
3496 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3500 NEXT_INSN (after
) = insn
;
3501 if (GET_CODE (after
) == INSN
&& GET_CODE (PATTERN (after
)) == SEQUENCE
)
3503 rtx sequence
= PATTERN (after
);
3504 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3508 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3509 the previous should be the only functions called to insert an insn once
3510 delay slots have been filled since only they know how to update a
3514 add_insn_before (rtx insn
, rtx before
)
3516 rtx prev
= PREV_INSN (before
);
3519 if (optimize
&& INSN_DELETED_P (before
))
3522 PREV_INSN (insn
) = prev
;
3523 NEXT_INSN (insn
) = before
;
3527 NEXT_INSN (prev
) = insn
;
3528 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3530 rtx sequence
= PATTERN (prev
);
3531 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3534 else if (first_insn
== before
)
3538 struct sequence_stack
*stack
= seq_stack
;
3539 /* Scan all pending sequences too. */
3540 for (; stack
; stack
= stack
->next
)
3541 if (before
== stack
->first
)
3543 stack
->first
= insn
;
3551 if (GET_CODE (before
) != BARRIER
3552 && GET_CODE (insn
) != BARRIER
3553 && (bb
= BLOCK_FOR_INSN (before
)))
3555 set_block_for_insn (insn
, bb
);
3557 bb
->flags
|= BB_DIRTY
;
3558 /* Should not happen as first in the BB is always
3559 either NOTE or LABEl. */
3560 if (BB_HEAD (bb
) == insn
3561 /* Avoid clobbering of structure when creating new BB. */
3562 && GET_CODE (insn
) != BARRIER
3563 && (GET_CODE (insn
) != NOTE
3564 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3568 PREV_INSN (before
) = insn
;
3569 if (GET_CODE (before
) == INSN
&& GET_CODE (PATTERN (before
)) == SEQUENCE
)
3570 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3573 /* Remove an insn from its doubly-linked list. This function knows how
3574 to handle sequences. */
3576 remove_insn (rtx insn
)
3578 rtx next
= NEXT_INSN (insn
);
3579 rtx prev
= PREV_INSN (insn
);
3584 NEXT_INSN (prev
) = next
;
3585 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3587 rtx sequence
= PATTERN (prev
);
3588 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3591 else if (first_insn
== insn
)
3595 struct sequence_stack
*stack
= seq_stack
;
3596 /* Scan all pending sequences too. */
3597 for (; stack
; stack
= stack
->next
)
3598 if (insn
== stack
->first
)
3600 stack
->first
= next
;
3610 PREV_INSN (next
) = prev
;
3611 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
3612 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3614 else if (last_insn
== insn
)
3618 struct sequence_stack
*stack
= seq_stack
;
3619 /* Scan all pending sequences too. */
3620 for (; stack
; stack
= stack
->next
)
3621 if (insn
== stack
->last
)
3630 if (GET_CODE (insn
) != BARRIER
3631 && (bb
= BLOCK_FOR_INSN (insn
)))
3634 bb
->flags
|= BB_DIRTY
;
3635 if (BB_HEAD (bb
) == insn
)
3637 /* Never ever delete the basic block note without deleting whole
3639 if (GET_CODE (insn
) == NOTE
)
3641 BB_HEAD (bb
) = next
;
3643 if (BB_END (bb
) == insn
)
3648 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3651 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3653 if (! call_insn
|| GET_CODE (call_insn
) != CALL_INSN
)
3656 /* Put the register usage information on the CALL. If there is already
3657 some usage information, put ours at the end. */
3658 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3662 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3663 link
= XEXP (link
, 1))
3666 XEXP (link
, 1) = call_fusage
;
3669 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3672 /* Delete all insns made since FROM.
3673 FROM becomes the new last instruction. */
3676 delete_insns_since (rtx from
)
3681 NEXT_INSN (from
) = 0;
3685 /* This function is deprecated, please use sequences instead.
3687 Move a consecutive bunch of insns to a different place in the chain.
3688 The insns to be moved are those between FROM and TO.
3689 They are moved to a new position after the insn AFTER.
3690 AFTER must not be FROM or TO or any insn in between.
3692 This function does not know about SEQUENCEs and hence should not be
3693 called after delay-slot filling has been done. */
3696 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3698 /* Splice this bunch out of where it is now. */
3699 if (PREV_INSN (from
))
3700 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3702 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3703 if (last_insn
== to
)
3704 last_insn
= PREV_INSN (from
);
3705 if (first_insn
== from
)
3706 first_insn
= NEXT_INSN (to
);
3708 /* Make the new neighbors point to it and it to them. */
3709 if (NEXT_INSN (after
))
3710 PREV_INSN (NEXT_INSN (after
)) = to
;
3712 NEXT_INSN (to
) = NEXT_INSN (after
);
3713 PREV_INSN (from
) = after
;
3714 NEXT_INSN (after
) = from
;
3715 if (after
== last_insn
)
3719 /* Same as function above, but take care to update BB boundaries. */
3721 reorder_insns (rtx from
, rtx to
, rtx after
)
3723 rtx prev
= PREV_INSN (from
);
3724 basic_block bb
, bb2
;
3726 reorder_insns_nobb (from
, to
, after
);
3728 if (GET_CODE (after
) != BARRIER
3729 && (bb
= BLOCK_FOR_INSN (after
)))
3732 bb
->flags
|= BB_DIRTY
;
3734 if (GET_CODE (from
) != BARRIER
3735 && (bb2
= BLOCK_FOR_INSN (from
)))
3737 if (BB_END (bb2
) == to
)
3738 BB_END (bb2
) = prev
;
3739 bb2
->flags
|= BB_DIRTY
;
3742 if (BB_END (bb
) == after
)
3745 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3746 set_block_for_insn (x
, bb
);
3750 /* Return the line note insn preceding INSN. */
3753 find_line_note (rtx insn
)
3755 if (no_line_numbers
)
3758 for (; insn
; insn
= PREV_INSN (insn
))
3759 if (GET_CODE (insn
) == NOTE
3760 && NOTE_LINE_NUMBER (insn
) >= 0)
3766 /* Remove unnecessary notes from the instruction stream. */
3769 remove_unnecessary_notes (void)
3771 rtx block_stack
= NULL_RTX
;
3772 rtx eh_stack
= NULL_RTX
;
3777 /* We must not remove the first instruction in the function because
3778 the compiler depends on the first instruction being a note. */
3779 for (insn
= NEXT_INSN (get_insns ()); insn
; insn
= next
)
3781 /* Remember what's next. */
3782 next
= NEXT_INSN (insn
);
3784 /* We're only interested in notes. */
3785 if (GET_CODE (insn
) != NOTE
)
3788 switch (NOTE_LINE_NUMBER (insn
))
3790 case NOTE_INSN_DELETED
:
3791 case NOTE_INSN_LOOP_END_TOP_COND
:
3795 case NOTE_INSN_EH_REGION_BEG
:
3796 eh_stack
= alloc_INSN_LIST (insn
, eh_stack
);
3799 case NOTE_INSN_EH_REGION_END
:
3800 /* Too many end notes. */
3801 if (eh_stack
== NULL_RTX
)
3803 /* Mismatched nesting. */
3804 if (NOTE_EH_HANDLER (XEXP (eh_stack
, 0)) != NOTE_EH_HANDLER (insn
))
3807 eh_stack
= XEXP (eh_stack
, 1);
3808 free_INSN_LIST_node (tmp
);
3811 case NOTE_INSN_BLOCK_BEG
:
3812 /* By now, all notes indicating lexical blocks should have
3813 NOTE_BLOCK filled in. */
3814 if (NOTE_BLOCK (insn
) == NULL_TREE
)
3816 block_stack
= alloc_INSN_LIST (insn
, block_stack
);
3819 case NOTE_INSN_BLOCK_END
:
3820 /* Too many end notes. */
3821 if (block_stack
== NULL_RTX
)
3823 /* Mismatched nesting. */
3824 if (NOTE_BLOCK (XEXP (block_stack
, 0)) != NOTE_BLOCK (insn
))
3827 block_stack
= XEXP (block_stack
, 1);
3828 free_INSN_LIST_node (tmp
);
3830 /* Scan back to see if there are any non-note instructions
3831 between INSN and the beginning of this block. If not,
3832 then there is no PC range in the generated code that will
3833 actually be in this block, so there's no point in
3834 remembering the existence of the block. */
3835 for (tmp
= PREV_INSN (insn
); tmp
; tmp
= PREV_INSN (tmp
))
3837 /* This block contains a real instruction. Note that we
3838 don't include labels; if the only thing in the block
3839 is a label, then there are still no PC values that
3840 lie within the block. */
3844 /* We're only interested in NOTEs. */
3845 if (GET_CODE (tmp
) != NOTE
)
3848 if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_BEG
)
3850 /* We just verified that this BLOCK matches us with
3851 the block_stack check above. Never delete the
3852 BLOCK for the outermost scope of the function; we
3853 can refer to names from that scope even if the
3854 block notes are messed up. */
3855 if (! is_body_block (NOTE_BLOCK (insn
))
3856 && (*debug_hooks
->ignore_block
) (NOTE_BLOCK (insn
)))
3863 else if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_END
)
3864 /* There's a nested block. We need to leave the
3865 current block in place since otherwise the debugger
3866 wouldn't be able to show symbols from our block in
3867 the nested block. */
3873 /* Too many begin notes. */
3874 if (block_stack
|| eh_stack
)
3879 /* Emit insn(s) of given code and pattern
3880 at a specified place within the doubly-linked list.
3882 All of the emit_foo global entry points accept an object
3883 X which is either an insn list or a PATTERN of a single
3886 There are thus a few canonical ways to generate code and
3887 emit it at a specific place in the instruction stream. For
3888 example, consider the instruction named SPOT and the fact that
3889 we would like to emit some instructions before SPOT. We might
3893 ... emit the new instructions ...
3894 insns_head = get_insns ();
3897 emit_insn_before (insns_head, SPOT);
3899 It used to be common to generate SEQUENCE rtl instead, but that
3900 is a relic of the past which no longer occurs. The reason is that
3901 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3902 generated would almost certainly die right after it was created. */
3904 /* Make X be output before the instruction BEFORE. */
3907 emit_insn_before (rtx x
, rtx before
)
3912 #ifdef ENABLE_RTL_CHECKING
3913 if (before
== NULL_RTX
)
3920 switch (GET_CODE (x
))
3931 rtx next
= NEXT_INSN (insn
);
3932 add_insn_before (insn
, before
);
3938 #ifdef ENABLE_RTL_CHECKING
3945 last
= make_insn_raw (x
);
3946 add_insn_before (last
, before
);
3953 /* Make an instruction with body X and code JUMP_INSN
3954 and output it before the instruction BEFORE. */
3957 emit_jump_insn_before (rtx x
, rtx before
)
3959 rtx insn
, last
= NULL_RTX
;
3961 #ifdef ENABLE_RTL_CHECKING
3962 if (before
== NULL_RTX
)
3966 switch (GET_CODE (x
))
3977 rtx next
= NEXT_INSN (insn
);
3978 add_insn_before (insn
, before
);
3984 #ifdef ENABLE_RTL_CHECKING
3991 last
= make_jump_insn_raw (x
);
3992 add_insn_before (last
, before
);
3999 /* Make an instruction with body X and code CALL_INSN
4000 and output it before the instruction BEFORE. */
4003 emit_call_insn_before (rtx x
, rtx before
)
4005 rtx last
= NULL_RTX
, insn
;
4007 #ifdef ENABLE_RTL_CHECKING
4008 if (before
== NULL_RTX
)
4012 switch (GET_CODE (x
))
4023 rtx next
= NEXT_INSN (insn
);
4024 add_insn_before (insn
, before
);
4030 #ifdef ENABLE_RTL_CHECKING
4037 last
= make_call_insn_raw (x
);
4038 add_insn_before (last
, before
);
4045 /* Make an insn of code BARRIER
4046 and output it before the insn BEFORE. */
4049 emit_barrier_before (rtx before
)
4051 rtx insn
= rtx_alloc (BARRIER
);
4053 INSN_UID (insn
) = cur_insn_uid
++;
4055 add_insn_before (insn
, before
);
4059 /* Emit the label LABEL before the insn BEFORE. */
4062 emit_label_before (rtx label
, rtx before
)
4064 /* This can be called twice for the same label as a result of the
4065 confusion that follows a syntax error! So make it harmless. */
4066 if (INSN_UID (label
) == 0)
4068 INSN_UID (label
) = cur_insn_uid
++;
4069 add_insn_before (label
, before
);
4075 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4078 emit_note_before (int subtype
, rtx before
)
4080 rtx note
= rtx_alloc (NOTE
);
4081 INSN_UID (note
) = cur_insn_uid
++;
4082 NOTE_SOURCE_FILE (note
) = 0;
4083 NOTE_LINE_NUMBER (note
) = subtype
;
4084 BLOCK_FOR_INSN (note
) = NULL
;
4086 add_insn_before (note
, before
);
4090 /* Helper for emit_insn_after, handles lists of instructions
4093 static rtx
emit_insn_after_1 (rtx
, rtx
);
4096 emit_insn_after_1 (rtx first
, rtx after
)
4102 if (GET_CODE (after
) != BARRIER
4103 && (bb
= BLOCK_FOR_INSN (after
)))
4105 bb
->flags
|= BB_DIRTY
;
4106 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4107 if (GET_CODE (last
) != BARRIER
)
4108 set_block_for_insn (last
, bb
);
4109 if (GET_CODE (last
) != BARRIER
)
4110 set_block_for_insn (last
, bb
);
4111 if (BB_END (bb
) == after
)
4115 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4118 after_after
= NEXT_INSN (after
);
4120 NEXT_INSN (after
) = first
;
4121 PREV_INSN (first
) = after
;
4122 NEXT_INSN (last
) = after_after
;
4124 PREV_INSN (after_after
) = last
;
4126 if (after
== last_insn
)
4131 /* Make X be output after the insn AFTER. */
4134 emit_insn_after (rtx x
, rtx after
)
4138 #ifdef ENABLE_RTL_CHECKING
4139 if (after
== NULL_RTX
)
4146 switch (GET_CODE (x
))
4154 last
= emit_insn_after_1 (x
, after
);
4157 #ifdef ENABLE_RTL_CHECKING
4164 last
= make_insn_raw (x
);
4165 add_insn_after (last
, after
);
4172 /* Similar to emit_insn_after, except that line notes are to be inserted so
4173 as to act as if this insn were at FROM. */
4176 emit_insn_after_with_line_notes (rtx x
, rtx after
, rtx from
)
4178 rtx from_line
= find_line_note (from
);
4179 rtx after_line
= find_line_note (after
);
4180 rtx insn
= emit_insn_after (x
, after
);
4183 emit_note_copy_after (from_line
, after
);
4186 emit_note_copy_after (after_line
, insn
);
4189 /* Make an insn of code JUMP_INSN with body X
4190 and output it after the insn AFTER. */
4193 emit_jump_insn_after (rtx x
, rtx after
)
4197 #ifdef ENABLE_RTL_CHECKING
4198 if (after
== NULL_RTX
)
4202 switch (GET_CODE (x
))
4210 last
= emit_insn_after_1 (x
, after
);
4213 #ifdef ENABLE_RTL_CHECKING
4220 last
= make_jump_insn_raw (x
);
4221 add_insn_after (last
, after
);
4228 /* Make an instruction with body X and code CALL_INSN
4229 and output it after the instruction AFTER. */
4232 emit_call_insn_after (rtx x
, rtx after
)
4236 #ifdef ENABLE_RTL_CHECKING
4237 if (after
== NULL_RTX
)
4241 switch (GET_CODE (x
))
4249 last
= emit_insn_after_1 (x
, after
);
4252 #ifdef ENABLE_RTL_CHECKING
4259 last
= make_call_insn_raw (x
);
4260 add_insn_after (last
, after
);
4267 /* Make an insn of code BARRIER
4268 and output it after the insn AFTER. */
4271 emit_barrier_after (rtx after
)
4273 rtx insn
= rtx_alloc (BARRIER
);
4275 INSN_UID (insn
) = cur_insn_uid
++;
4277 add_insn_after (insn
, after
);
4281 /* Emit the label LABEL after the insn AFTER. */
4284 emit_label_after (rtx label
, rtx after
)
4286 /* This can be called twice for the same label
4287 as a result of the confusion that follows a syntax error!
4288 So make it harmless. */
4289 if (INSN_UID (label
) == 0)
4291 INSN_UID (label
) = cur_insn_uid
++;
4292 add_insn_after (label
, after
);
4298 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4301 emit_note_after (int subtype
, rtx after
)
4303 rtx note
= rtx_alloc (NOTE
);
4304 INSN_UID (note
) = cur_insn_uid
++;
4305 NOTE_SOURCE_FILE (note
) = 0;
4306 NOTE_LINE_NUMBER (note
) = subtype
;
4307 BLOCK_FOR_INSN (note
) = NULL
;
4308 add_insn_after (note
, after
);
4312 /* Emit a copy of note ORIG after the insn AFTER. */
4315 emit_note_copy_after (rtx orig
, rtx after
)
4319 if (NOTE_LINE_NUMBER (orig
) >= 0 && no_line_numbers
)
4325 note
= rtx_alloc (NOTE
);
4326 INSN_UID (note
) = cur_insn_uid
++;
4327 NOTE_LINE_NUMBER (note
) = NOTE_LINE_NUMBER (orig
);
4328 NOTE_DATA (note
) = NOTE_DATA (orig
);
4329 BLOCK_FOR_INSN (note
) = NULL
;
4330 add_insn_after (note
, after
);
4334 /* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
4336 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4338 rtx last
= emit_insn_after (pattern
, after
);
4340 if (pattern
== NULL_RTX
)
4343 after
= NEXT_INSN (after
);
4346 if (active_insn_p (after
))
4347 INSN_LOCATOR (after
) = loc
;
4350 after
= NEXT_INSN (after
);
4355 /* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
4357 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4359 rtx last
= emit_jump_insn_after (pattern
, after
);
4361 if (pattern
== NULL_RTX
)
4364 after
= NEXT_INSN (after
);
4367 if (active_insn_p (after
))
4368 INSN_LOCATOR (after
) = loc
;
4371 after
= NEXT_INSN (after
);
4376 /* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
4378 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4380 rtx last
= emit_call_insn_after (pattern
, after
);
4382 if (pattern
== NULL_RTX
)
4385 after
= NEXT_INSN (after
);
4388 if (active_insn_p (after
))
4389 INSN_LOCATOR (after
) = loc
;
4392 after
= NEXT_INSN (after
);
4397 /* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
4399 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4401 rtx first
= PREV_INSN (before
);
4402 rtx last
= emit_insn_before (pattern
, before
);
4404 if (pattern
== NULL_RTX
)
4407 first
= NEXT_INSN (first
);
4410 if (active_insn_p (first
))
4411 INSN_LOCATOR (first
) = loc
;
4414 first
= NEXT_INSN (first
);
4419 /* Take X and emit it at the end of the doubly-linked
4422 Returns the last insn emitted. */
4427 rtx last
= last_insn
;
4433 switch (GET_CODE (x
))
4444 rtx next
= NEXT_INSN (insn
);
4451 #ifdef ENABLE_RTL_CHECKING
4458 last
= make_insn_raw (x
);
4466 /* Make an insn of code JUMP_INSN with pattern X
4467 and add it to the end of the doubly-linked list. */
4470 emit_jump_insn (rtx x
)
4472 rtx last
= NULL_RTX
, insn
;
4474 switch (GET_CODE (x
))
4485 rtx next
= NEXT_INSN (insn
);
4492 #ifdef ENABLE_RTL_CHECKING
4499 last
= make_jump_insn_raw (x
);
4507 /* Make an insn of code CALL_INSN with pattern X
4508 and add it to the end of the doubly-linked list. */
4511 emit_call_insn (rtx x
)
4515 switch (GET_CODE (x
))
4523 insn
= emit_insn (x
);
4526 #ifdef ENABLE_RTL_CHECKING
4533 insn
= make_call_insn_raw (x
);
4541 /* Add the label LABEL to the end of the doubly-linked list. */
4544 emit_label (rtx label
)
4546 /* This can be called twice for the same label
4547 as a result of the confusion that follows a syntax error!
4548 So make it harmless. */
4549 if (INSN_UID (label
) == 0)
4551 INSN_UID (label
) = cur_insn_uid
++;
4557 /* Make an insn of code BARRIER
4558 and add it to the end of the doubly-linked list. */
4563 rtx barrier
= rtx_alloc (BARRIER
);
4564 INSN_UID (barrier
) = cur_insn_uid
++;
4569 /* Make line numbering NOTE insn for LOCATION add it to the end
4570 of the doubly-linked list, but only if line-numbers are desired for
4571 debugging info and it doesn't match the previous one. */
4574 emit_line_note (location_t location
)
4578 set_file_and_line_for_stmt (location
);
4580 if (location
.file
&& last_location
.file
4581 && !strcmp (location
.file
, last_location
.file
)
4582 && location
.line
== last_location
.line
)
4584 last_location
= location
;
4586 if (no_line_numbers
)
4592 note
= emit_note (location
.line
);
4593 NOTE_SOURCE_FILE (note
) = location
.file
;
4598 /* Emit a copy of note ORIG. */
4601 emit_note_copy (rtx orig
)
4605 if (NOTE_LINE_NUMBER (orig
) >= 0 && no_line_numbers
)
4611 note
= rtx_alloc (NOTE
);
4613 INSN_UID (note
) = cur_insn_uid
++;
4614 NOTE_DATA (note
) = NOTE_DATA (orig
);
4615 NOTE_LINE_NUMBER (note
) = NOTE_LINE_NUMBER (orig
);
4616 BLOCK_FOR_INSN (note
) = NULL
;
4622 /* Make an insn of code NOTE or type NOTE_NO
4623 and add it to the end of the doubly-linked list. */
4626 emit_note (int note_no
)
4630 note
= rtx_alloc (NOTE
);
4631 INSN_UID (note
) = cur_insn_uid
++;
4632 NOTE_LINE_NUMBER (note
) = note_no
;
4633 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4634 BLOCK_FOR_INSN (note
) = NULL
;
4639 /* Cause next statement to emit a line note even if the line number
4643 force_next_line_note (void)
4645 last_location
.line
= -1;
4648 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4649 note of this type already exists, remove it first. */
4652 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4654 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4660 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4661 has multiple sets (some callers assume single_set
4662 means the insn only has one set, when in fact it
4663 means the insn only has one * useful * set). */
4664 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4671 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4672 It serves no useful purpose and breaks eliminate_regs. */
4673 if (GET_CODE (datum
) == ASM_OPERANDS
)
4683 XEXP (note
, 0) = datum
;
4687 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
4688 return REG_NOTES (insn
);
4691 /* Return an indication of which type of insn should have X as a body.
4692 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4695 classify_insn (rtx x
)
4697 if (GET_CODE (x
) == CODE_LABEL
)
4699 if (GET_CODE (x
) == CALL
)
4701 if (GET_CODE (x
) == RETURN
)
4703 if (GET_CODE (x
) == SET
)
4705 if (SET_DEST (x
) == pc_rtx
)
4707 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4712 if (GET_CODE (x
) == PARALLEL
)
4715 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4716 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4718 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4719 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4721 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4722 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4728 /* Emit the rtl pattern X as an appropriate kind of insn.
4729 If X is a label, it is simply added into the insn chain. */
4734 enum rtx_code code
= classify_insn (x
);
4736 if (code
== CODE_LABEL
)
4737 return emit_label (x
);
4738 else if (code
== INSN
)
4739 return emit_insn (x
);
4740 else if (code
== JUMP_INSN
)
4742 rtx insn
= emit_jump_insn (x
);
4743 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4744 return emit_barrier ();
4747 else if (code
== CALL_INSN
)
4748 return emit_call_insn (x
);
4753 /* Space for free sequence stack entries. */
4754 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
4756 /* Begin emitting insns to a sequence which can be packaged in an
4757 RTL_EXPR. If this sequence will contain something that might cause
4758 the compiler to pop arguments to function calls (because those
4759 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4760 details), use do_pending_stack_adjust before calling this function.
4761 That will ensure that the deferred pops are not accidentally
4762 emitted in the middle of this sequence. */
4765 start_sequence (void)
4767 struct sequence_stack
*tem
;
4769 if (free_sequence_stack
!= NULL
)
4771 tem
= free_sequence_stack
;
4772 free_sequence_stack
= tem
->next
;
4775 tem
= ggc_alloc (sizeof (struct sequence_stack
));
4777 tem
->next
= seq_stack
;
4778 tem
->first
= first_insn
;
4779 tem
->last
= last_insn
;
4780 tem
->sequence_rtl_expr
= seq_rtl_expr
;
4788 /* Similarly, but indicate that this sequence will be placed in T, an
4789 RTL_EXPR. See the documentation for start_sequence for more
4790 information about how to use this function. */
4793 start_sequence_for_rtl_expr (tree t
)
4800 /* Set up the insn chain starting with FIRST as the current sequence,
4801 saving the previously current one. See the documentation for
4802 start_sequence for more information about how to use this function. */
4805 push_to_sequence (rtx first
)
4811 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4817 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4820 push_to_full_sequence (rtx first
, rtx last
)
4825 /* We really should have the end of the insn chain here. */
4826 if (last
&& NEXT_INSN (last
))
4830 /* Set up the outer-level insn chain
4831 as the current sequence, saving the previously current one. */
4834 push_topmost_sequence (void)
4836 struct sequence_stack
*stack
, *top
= NULL
;
4840 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4843 first_insn
= top
->first
;
4844 last_insn
= top
->last
;
4845 seq_rtl_expr
= top
->sequence_rtl_expr
;
4848 /* After emitting to the outer-level insn chain, update the outer-level
4849 insn chain, and restore the previous saved state. */
4852 pop_topmost_sequence (void)
4854 struct sequence_stack
*stack
, *top
= NULL
;
4856 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4859 top
->first
= first_insn
;
4860 top
->last
= last_insn
;
4861 /* ??? Why don't we save seq_rtl_expr here? */
4866 /* After emitting to a sequence, restore previous saved state.
4868 To get the contents of the sequence just made, you must call
4869 `get_insns' *before* calling here.
4871 If the compiler might have deferred popping arguments while
4872 generating this sequence, and this sequence will not be immediately
4873 inserted into the instruction stream, use do_pending_stack_adjust
4874 before calling get_insns. That will ensure that the deferred
4875 pops are inserted into this sequence, and not into some random
4876 location in the instruction stream. See INHIBIT_DEFER_POP for more
4877 information about deferred popping of arguments. */
4882 struct sequence_stack
*tem
= seq_stack
;
4884 first_insn
= tem
->first
;
4885 last_insn
= tem
->last
;
4886 seq_rtl_expr
= tem
->sequence_rtl_expr
;
4887 seq_stack
= tem
->next
;
4889 memset (tem
, 0, sizeof (*tem
));
4890 tem
->next
= free_sequence_stack
;
4891 free_sequence_stack
= tem
;
4894 /* Return 1 if currently emitting into a sequence. */
4897 in_sequence_p (void)
4899 return seq_stack
!= 0;
4902 /* Put the various virtual registers into REGNO_REG_RTX. */
4905 init_virtual_regs (struct emit_status
*es
)
4907 rtx
*ptr
= es
->x_regno_reg_rtx
;
4908 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
4909 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
4910 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
4911 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
4912 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
4916 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4917 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
4918 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
4919 static int copy_insn_n_scratches
;
4921 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4922 copied an ASM_OPERANDS.
4923 In that case, it is the original input-operand vector. */
4924 static rtvec orig_asm_operands_vector
;
4926 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4927 copied an ASM_OPERANDS.
4928 In that case, it is the copied input-operand vector. */
4929 static rtvec copy_asm_operands_vector
;
4931 /* Likewise for the constraints vector. */
4932 static rtvec orig_asm_constraints_vector
;
4933 static rtvec copy_asm_constraints_vector
;
4935 /* Recursively create a new copy of an rtx for copy_insn.
4936 This function differs from copy_rtx in that it handles SCRATCHes and
4937 ASM_OPERANDs properly.
4938 Normally, this function is not used directly; use copy_insn as front end.
4939 However, you could first copy an insn pattern with copy_insn and then use
4940 this function afterwards to properly copy any REG_NOTEs containing
4944 copy_insn_1 (rtx orig
)
4949 const char *format_ptr
;
4951 code
= GET_CODE (orig
);
4967 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
4972 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
4973 if (copy_insn_scratch_in
[i
] == orig
)
4974 return copy_insn_scratch_out
[i
];
4978 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4979 a LABEL_REF, it isn't sharable. */
4980 if (GET_CODE (XEXP (orig
, 0)) == PLUS
4981 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
4982 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
4986 /* A MEM with a constant address is not sharable. The problem is that
4987 the constant address may need to be reloaded. If the mem is shared,
4988 then reloading one copy of this mem will cause all copies to appear
4989 to have been reloaded. */
4995 copy
= rtx_alloc (code
);
4997 /* Copy the various flags, and other information. We assume that
4998 all fields need copying, and then clear the fields that should
4999 not be copied. That is the sensible default behavior, and forces
5000 us to explicitly document why we are *not* copying a flag. */
5001 memcpy (copy
, orig
, RTX_HDR_SIZE
);
5003 /* We do not copy the USED flag, which is used as a mark bit during
5004 walks over the RTL. */
5005 RTX_FLAG (copy
, used
) = 0;
5007 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5010 RTX_FLAG (copy
, jump
) = 0;
5011 RTX_FLAG (copy
, call
) = 0;
5012 RTX_FLAG (copy
, frame_related
) = 0;
5015 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5017 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5019 copy
->u
.fld
[i
] = orig
->u
.fld
[i
];
5020 switch (*format_ptr
++)
5023 if (XEXP (orig
, i
) != NULL
)
5024 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5029 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5030 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5031 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5032 XVEC (copy
, i
) = copy_asm_operands_vector
;
5033 else if (XVEC (orig
, i
) != NULL
)
5035 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5036 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5037 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5048 /* These are left unchanged. */
5056 if (code
== SCRATCH
)
5058 i
= copy_insn_n_scratches
++;
5059 if (i
>= MAX_RECOG_OPERANDS
)
5061 copy_insn_scratch_in
[i
] = orig
;
5062 copy_insn_scratch_out
[i
] = copy
;
5064 else if (code
== ASM_OPERANDS
)
5066 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5067 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5068 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5069 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5075 /* Create a new copy of an rtx.
5076 This function differs from copy_rtx in that it handles SCRATCHes and
5077 ASM_OPERANDs properly.
5078 INSN doesn't really have to be a full INSN; it could be just the
5081 copy_insn (rtx insn
)
5083 copy_insn_n_scratches
= 0;
5084 orig_asm_operands_vector
= 0;
5085 orig_asm_constraints_vector
= 0;
5086 copy_asm_operands_vector
= 0;
5087 copy_asm_constraints_vector
= 0;
5088 return copy_insn_1 (insn
);
5091 /* Initialize data structures and variables in this file
5092 before generating rtl for each function. */
5097 struct function
*f
= cfun
;
5099 f
->emit
= ggc_alloc (sizeof (struct emit_status
));
5102 seq_rtl_expr
= NULL
;
5104 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5105 last_location
.line
= 0;
5106 last_location
.file
= 0;
5107 first_label_num
= label_num
;
5111 /* Init the tables that describe all the pseudo regs. */
5113 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5115 f
->emit
->regno_pointer_align
5116 = ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
5117 * sizeof (unsigned char));
5120 = ggc_alloc (f
->emit
->regno_pointer_align_length
* sizeof (rtx
));
5122 /* Put copies of all the hard registers into regno_reg_rtx. */
5123 memcpy (regno_reg_rtx
,
5124 static_regno_reg_rtx
,
5125 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5127 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5128 init_virtual_regs (f
->emit
);
5130 /* Indicate that the virtual registers and stack locations are
5132 REG_POINTER (stack_pointer_rtx
) = 1;
5133 REG_POINTER (frame_pointer_rtx
) = 1;
5134 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5135 REG_POINTER (arg_pointer_rtx
) = 1;
5137 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5138 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5139 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5140 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5141 REG_POINTER (virtual_cfa_rtx
) = 1;
5143 #ifdef STACK_BOUNDARY
5144 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5145 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5146 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5147 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5149 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5150 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5151 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5152 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5153 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5156 #ifdef INIT_EXPANDERS
5161 /* Generate the constant 0. */
5164 gen_const_vector_0 (enum machine_mode mode
)
5169 enum machine_mode inner
;
5171 units
= GET_MODE_NUNITS (mode
);
5172 inner
= GET_MODE_INNER (mode
);
5174 v
= rtvec_alloc (units
);
5176 /* We need to call this function after we to set CONST0_RTX first. */
5177 if (!CONST0_RTX (inner
))
5180 for (i
= 0; i
< units
; ++i
)
5181 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
5183 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5187 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5188 all elements are zero. */
5190 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5192 rtx inner_zero
= CONST0_RTX (GET_MODE_INNER (mode
));
5195 for (i
= GET_MODE_NUNITS (mode
) - 1; i
>= 0; i
--)
5196 if (RTVEC_ELT (v
, i
) != inner_zero
)
5197 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5198 return CONST0_RTX (mode
);
5201 /* Create some permanent unique rtl objects shared between all functions.
5202 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5205 init_emit_once (int line_numbers
)
5208 enum machine_mode mode
;
5209 enum machine_mode double_mode
;
5211 /* We need reg_raw_mode, so initialize the modes now. */
5212 init_reg_modes_once ();
5214 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5216 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5217 const_int_htab_eq
, NULL
);
5219 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5220 const_double_htab_eq
, NULL
);
5222 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5223 mem_attrs_htab_eq
, NULL
);
5224 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5225 reg_attrs_htab_eq
, NULL
);
5227 no_line_numbers
= ! line_numbers
;
5229 /* Compute the word and byte modes. */
5231 byte_mode
= VOIDmode
;
5232 word_mode
= VOIDmode
;
5233 double_mode
= VOIDmode
;
5235 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5236 mode
= GET_MODE_WIDER_MODE (mode
))
5238 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5239 && byte_mode
== VOIDmode
)
5242 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5243 && word_mode
== VOIDmode
)
5247 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5248 mode
= GET_MODE_WIDER_MODE (mode
))
5250 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5251 && double_mode
== VOIDmode
)
5255 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5257 /* Assign register numbers to the globally defined register rtx.
5258 This must be done at runtime because the register number field
5259 is in a union and some compilers can't initialize unions. */
5261 pc_rtx
= gen_rtx_PC (VOIDmode
);
5262 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5263 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5264 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5265 if (hard_frame_pointer_rtx
== 0)
5266 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
5267 HARD_FRAME_POINTER_REGNUM
);
5268 if (arg_pointer_rtx
== 0)
5269 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5270 virtual_incoming_args_rtx
=
5271 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5272 virtual_stack_vars_rtx
=
5273 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5274 virtual_stack_dynamic_rtx
=
5275 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5276 virtual_outgoing_args_rtx
=
5277 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5278 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5280 /* Initialize RTL for commonly used hard registers. These are
5281 copied into regno_reg_rtx as we begin to compile each function. */
5282 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5283 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5285 #ifdef INIT_EXPANDERS
5286 /* This is to initialize {init|mark|free}_machine_status before the first
5287 call to push_function_context_to. This is needed by the Chill front
5288 end which calls push_function_context_to before the first call to
5289 init_function_start. */
5293 /* Create the unique rtx's for certain rtx codes and operand values. */
5295 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5296 tries to use these variables. */
5297 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5298 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5299 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5301 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5302 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5303 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5305 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5307 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5308 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5309 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5310 REAL_VALUE_FROM_INT (dconst3
, 3, 0, double_mode
);
5311 REAL_VALUE_FROM_INT (dconst10
, 10, 0, double_mode
);
5312 REAL_VALUE_FROM_INT (dconstm1
, -1, -1, double_mode
);
5313 REAL_VALUE_FROM_INT (dconstm2
, -2, -1, double_mode
);
5315 dconsthalf
= dconst1
;
5316 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5318 real_arithmetic (&dconstthird
, RDIV_EXPR
, &dconst1
, &dconst3
);
5320 /* Initialize mathematical constants for constant folding builtins.
5321 These constants need to be given to at least 160 bits precision. */
5322 real_from_string (&dconstpi
,
5323 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5324 real_from_string (&dconste
,
5325 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5327 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5329 REAL_VALUE_TYPE
*r
=
5330 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5332 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5333 mode
= GET_MODE_WIDER_MODE (mode
))
5334 const_tiny_rtx
[i
][(int) mode
] =
5335 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5337 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5339 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5340 mode
= GET_MODE_WIDER_MODE (mode
))
5341 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5343 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5345 mode
= GET_MODE_WIDER_MODE (mode
))
5346 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5349 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5351 mode
= GET_MODE_WIDER_MODE (mode
))
5352 const_tiny_rtx
[0][(int) mode
] = gen_const_vector_0 (mode
);
5354 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5356 mode
= GET_MODE_WIDER_MODE (mode
))
5357 const_tiny_rtx
[0][(int) mode
] = gen_const_vector_0 (mode
);
5359 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5360 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5361 const_tiny_rtx
[0][i
] = const0_rtx
;
5363 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5364 if (STORE_FLAG_VALUE
== 1)
5365 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5367 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5368 return_address_pointer_rtx
5369 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5372 #ifdef STATIC_CHAIN_REGNUM
5373 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
5375 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5376 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
5377 static_chain_incoming_rtx
5378 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
5381 static_chain_incoming_rtx
= static_chain_rtx
;
5385 static_chain_rtx
= STATIC_CHAIN
;
5387 #ifdef STATIC_CHAIN_INCOMING
5388 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
5390 static_chain_incoming_rtx
= static_chain_rtx
;
5394 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5395 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5398 /* Query and clear/ restore no_line_numbers. This is used by the
5399 switch / case handling in stmt.c to give proper line numbers in
5400 warnings about unreachable code. */
5403 force_line_numbers (void)
5405 int old
= no_line_numbers
;
5407 no_line_numbers
= 0;
5409 force_next_line_note ();
5414 restore_line_number_status (int old_value
)
5416 no_line_numbers
= old_value
;
5419 /* Produce exact duplicate of insn INSN after AFTER.
5420 Care updating of libcall regions if present. */
5423 emit_copy_of_insn_after (rtx insn
, rtx after
)
5426 rtx note1
, note2
, link
;
5428 switch (GET_CODE (insn
))
5431 new = emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5435 new = emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5439 new = emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5440 if (CALL_INSN_FUNCTION_USAGE (insn
))
5441 CALL_INSN_FUNCTION_USAGE (new)
5442 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5443 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn
);
5444 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn
);
5451 /* Update LABEL_NUSES. */
5452 mark_jump_label (PATTERN (new), new, 0);
5454 INSN_LOCATOR (new) = INSN_LOCATOR (insn
);
5456 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5458 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5459 if (REG_NOTE_KIND (link
) != REG_LABEL
)
5461 if (GET_CODE (link
) == EXPR_LIST
)
5463 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link
),
5468 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link
),
5473 /* Fix the libcall sequences. */
5474 if ((note1
= find_reg_note (new, REG_RETVAL
, NULL_RTX
)) != NULL
)
5477 while ((note2
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)) == NULL
)
5479 XEXP (note1
, 0) = p
;
5480 XEXP (note2
, 0) = new;
5482 INSN_CODE (new) = INSN_CODE (insn
);
5486 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5488 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5490 if (hard_reg_clobbers
[mode
][regno
])
5491 return hard_reg_clobbers
[mode
][regno
];
5493 return (hard_reg_clobbers
[mode
][regno
] =
5494 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5497 #include "gt-emit-rtl.h"