http://gcc.gnu.org/ml/gcc-patches/2008-02/msg01094.html
[official-gcc.git] / gcc / real.c
blob38f18a8462a173895ed57ca7f91fbd6776b2bf66
1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "toplev.h"
29 #include "real.h"
30 #include "tm_p.h"
31 #include "dfp.h"
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
37 Specifically
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
41 where
42 s = sign (+- 1)
43 b = base or radix, here always 2
44 e = exponent
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
50 range [0.5, 1.0).
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
56 in a normalized form.
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 27.
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits. */
70 /* Used to classify two numbers simultaneously. */
71 #define CLASS2(A, B) ((A) << 2 | (B))
73 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
74 #error "Some constant folding done by hand to avoid shift count warnings"
75 #endif
77 static void get_zero (REAL_VALUE_TYPE *, int);
78 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
79 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
80 static void get_inf (REAL_VALUE_TYPE *, int);
81 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
82 const REAL_VALUE_TYPE *, unsigned int);
83 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
84 unsigned int);
85 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
86 unsigned int);
87 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
88 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
89 const REAL_VALUE_TYPE *);
90 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 const REAL_VALUE_TYPE *, int);
92 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
93 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
94 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
95 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
96 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
97 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
98 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
99 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
100 const REAL_VALUE_TYPE *);
101 static void normalize (REAL_VALUE_TYPE *);
103 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
104 const REAL_VALUE_TYPE *, int);
105 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
106 const REAL_VALUE_TYPE *);
107 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
108 const REAL_VALUE_TYPE *);
109 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
110 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
112 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
114 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
115 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
116 static const REAL_VALUE_TYPE * real_digit (int);
117 static void times_pten (REAL_VALUE_TYPE *, int);
119 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
121 /* Initialize R with a positive zero. */
123 static inline void
124 get_zero (REAL_VALUE_TYPE *r, int sign)
126 memset (r, 0, sizeof (*r));
127 r->sign = sign;
130 /* Initialize R with the canonical quiet NaN. */
132 static inline void
133 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
135 memset (r, 0, sizeof (*r));
136 r->cl = rvc_nan;
137 r->sign = sign;
138 r->canonical = 1;
141 static inline void
142 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
144 memset (r, 0, sizeof (*r));
145 r->cl = rvc_nan;
146 r->sign = sign;
147 r->signalling = 1;
148 r->canonical = 1;
151 static inline void
152 get_inf (REAL_VALUE_TYPE *r, int sign)
154 memset (r, 0, sizeof (*r));
155 r->cl = rvc_inf;
156 r->sign = sign;
160 /* Right-shift the significand of A by N bits; put the result in the
161 significand of R. If any one bits are shifted out, return true. */
163 static bool
164 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
165 unsigned int n)
167 unsigned long sticky = 0;
168 unsigned int i, ofs = 0;
170 if (n >= HOST_BITS_PER_LONG)
172 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
173 sticky |= a->sig[i];
174 n &= HOST_BITS_PER_LONG - 1;
177 if (n != 0)
179 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
180 for (i = 0; i < SIGSZ; ++i)
182 r->sig[i]
183 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
184 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
185 << (HOST_BITS_PER_LONG - n)));
188 else
190 for (i = 0; ofs + i < SIGSZ; ++i)
191 r->sig[i] = a->sig[ofs + i];
192 for (; i < SIGSZ; ++i)
193 r->sig[i] = 0;
196 return sticky != 0;
199 /* Right-shift the significand of A by N bits; put the result in the
200 significand of R. */
202 static void
203 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
204 unsigned int n)
206 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
208 n &= HOST_BITS_PER_LONG - 1;
209 if (n != 0)
211 for (i = 0; i < SIGSZ; ++i)
213 r->sig[i]
214 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
215 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
216 << (HOST_BITS_PER_LONG - n)));
219 else
221 for (i = 0; ofs + i < SIGSZ; ++i)
222 r->sig[i] = a->sig[ofs + i];
223 for (; i < SIGSZ; ++i)
224 r->sig[i] = 0;
228 /* Left-shift the significand of A by N bits; put the result in the
229 significand of R. */
231 static void
232 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
233 unsigned int n)
235 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
237 n &= HOST_BITS_PER_LONG - 1;
238 if (n == 0)
240 for (i = 0; ofs + i < SIGSZ; ++i)
241 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
242 for (; i < SIGSZ; ++i)
243 r->sig[SIGSZ-1-i] = 0;
245 else
246 for (i = 0; i < SIGSZ; ++i)
248 r->sig[SIGSZ-1-i]
249 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
250 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
251 >> (HOST_BITS_PER_LONG - n)));
255 /* Likewise, but N is specialized to 1. */
257 static inline void
258 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
260 unsigned int i;
262 for (i = SIGSZ - 1; i > 0; --i)
263 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
264 r->sig[0] = a->sig[0] << 1;
267 /* Add the significands of A and B, placing the result in R. Return
268 true if there was carry out of the most significant word. */
270 static inline bool
271 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
272 const REAL_VALUE_TYPE *b)
274 bool carry = false;
275 int i;
277 for (i = 0; i < SIGSZ; ++i)
279 unsigned long ai = a->sig[i];
280 unsigned long ri = ai + b->sig[i];
282 if (carry)
284 carry = ri < ai;
285 carry |= ++ri == 0;
287 else
288 carry = ri < ai;
290 r->sig[i] = ri;
293 return carry;
296 /* Subtract the significands of A and B, placing the result in R. CARRY is
297 true if there's a borrow incoming to the least significant word.
298 Return true if there was borrow out of the most significant word. */
300 static inline bool
301 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
302 const REAL_VALUE_TYPE *b, int carry)
304 int i;
306 for (i = 0; i < SIGSZ; ++i)
308 unsigned long ai = a->sig[i];
309 unsigned long ri = ai - b->sig[i];
311 if (carry)
313 carry = ri > ai;
314 carry |= ~--ri == 0;
316 else
317 carry = ri > ai;
319 r->sig[i] = ri;
322 return carry;
325 /* Negate the significand A, placing the result in R. */
327 static inline void
328 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
330 bool carry = true;
331 int i;
333 for (i = 0; i < SIGSZ; ++i)
335 unsigned long ri, ai = a->sig[i];
337 if (carry)
339 if (ai)
341 ri = -ai;
342 carry = false;
344 else
345 ri = ai;
347 else
348 ri = ~ai;
350 r->sig[i] = ri;
354 /* Compare significands. Return tri-state vs zero. */
356 static inline int
357 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
359 int i;
361 for (i = SIGSZ - 1; i >= 0; --i)
363 unsigned long ai = a->sig[i];
364 unsigned long bi = b->sig[i];
366 if (ai > bi)
367 return 1;
368 if (ai < bi)
369 return -1;
372 return 0;
375 /* Return true if A is nonzero. */
377 static inline int
378 cmp_significand_0 (const REAL_VALUE_TYPE *a)
380 int i;
382 for (i = SIGSZ - 1; i >= 0; --i)
383 if (a->sig[i])
384 return 1;
386 return 0;
389 /* Set bit N of the significand of R. */
391 static inline void
392 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
394 r->sig[n / HOST_BITS_PER_LONG]
395 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
398 /* Clear bit N of the significand of R. */
400 static inline void
401 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
403 r->sig[n / HOST_BITS_PER_LONG]
404 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
407 /* Test bit N of the significand of R. */
409 static inline bool
410 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
412 /* ??? Compiler bug here if we return this expression directly.
413 The conversion to bool strips the "&1" and we wind up testing
414 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
415 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
416 return t;
419 /* Clear bits 0..N-1 of the significand of R. */
421 static void
422 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
424 int i, w = n / HOST_BITS_PER_LONG;
426 for (i = 0; i < w; ++i)
427 r->sig[i] = 0;
429 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
432 /* Divide the significands of A and B, placing the result in R. Return
433 true if the division was inexact. */
435 static inline bool
436 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
437 const REAL_VALUE_TYPE *b)
439 REAL_VALUE_TYPE u;
440 int i, bit = SIGNIFICAND_BITS - 1;
441 unsigned long msb, inexact;
443 u = *a;
444 memset (r->sig, 0, sizeof (r->sig));
446 msb = 0;
447 goto start;
450 msb = u.sig[SIGSZ-1] & SIG_MSB;
451 lshift_significand_1 (&u, &u);
452 start:
453 if (msb || cmp_significands (&u, b) >= 0)
455 sub_significands (&u, &u, b, 0);
456 set_significand_bit (r, bit);
459 while (--bit >= 0);
461 for (i = 0, inexact = 0; i < SIGSZ; i++)
462 inexact |= u.sig[i];
464 return inexact != 0;
467 /* Adjust the exponent and significand of R such that the most
468 significant bit is set. We underflow to zero and overflow to
469 infinity here, without denormals. (The intermediate representation
470 exponent is large enough to handle target denormals normalized.) */
472 static void
473 normalize (REAL_VALUE_TYPE *r)
475 int shift = 0, exp;
476 int i, j;
478 if (r->decimal)
479 return;
481 /* Find the first word that is nonzero. */
482 for (i = SIGSZ - 1; i >= 0; i--)
483 if (r->sig[i] == 0)
484 shift += HOST_BITS_PER_LONG;
485 else
486 break;
488 /* Zero significand flushes to zero. */
489 if (i < 0)
491 r->cl = rvc_zero;
492 SET_REAL_EXP (r, 0);
493 return;
496 /* Find the first bit that is nonzero. */
497 for (j = 0; ; j++)
498 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
499 break;
500 shift += j;
502 if (shift > 0)
504 exp = REAL_EXP (r) - shift;
505 if (exp > MAX_EXP)
506 get_inf (r, r->sign);
507 else if (exp < -MAX_EXP)
508 get_zero (r, r->sign);
509 else
511 SET_REAL_EXP (r, exp);
512 lshift_significand (r, r, shift);
517 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
518 result may be inexact due to a loss of precision. */
520 static bool
521 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
522 const REAL_VALUE_TYPE *b, int subtract_p)
524 int dexp, sign, exp;
525 REAL_VALUE_TYPE t;
526 bool inexact = false;
528 /* Determine if we need to add or subtract. */
529 sign = a->sign;
530 subtract_p = (sign ^ b->sign) ^ subtract_p;
532 switch (CLASS2 (a->cl, b->cl))
534 case CLASS2 (rvc_zero, rvc_zero):
535 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
536 get_zero (r, sign & !subtract_p);
537 return false;
539 case CLASS2 (rvc_zero, rvc_normal):
540 case CLASS2 (rvc_zero, rvc_inf):
541 case CLASS2 (rvc_zero, rvc_nan):
542 /* 0 + ANY = ANY. */
543 case CLASS2 (rvc_normal, rvc_nan):
544 case CLASS2 (rvc_inf, rvc_nan):
545 case CLASS2 (rvc_nan, rvc_nan):
546 /* ANY + NaN = NaN. */
547 case CLASS2 (rvc_normal, rvc_inf):
548 /* R + Inf = Inf. */
549 *r = *b;
550 r->sign = sign ^ subtract_p;
551 return false;
553 case CLASS2 (rvc_normal, rvc_zero):
554 case CLASS2 (rvc_inf, rvc_zero):
555 case CLASS2 (rvc_nan, rvc_zero):
556 /* ANY + 0 = ANY. */
557 case CLASS2 (rvc_nan, rvc_normal):
558 case CLASS2 (rvc_nan, rvc_inf):
559 /* NaN + ANY = NaN. */
560 case CLASS2 (rvc_inf, rvc_normal):
561 /* Inf + R = Inf. */
562 *r = *a;
563 return false;
565 case CLASS2 (rvc_inf, rvc_inf):
566 if (subtract_p)
567 /* Inf - Inf = NaN. */
568 get_canonical_qnan (r, 0);
569 else
570 /* Inf + Inf = Inf. */
571 *r = *a;
572 return false;
574 case CLASS2 (rvc_normal, rvc_normal):
575 break;
577 default:
578 gcc_unreachable ();
581 /* Swap the arguments such that A has the larger exponent. */
582 dexp = REAL_EXP (a) - REAL_EXP (b);
583 if (dexp < 0)
585 const REAL_VALUE_TYPE *t;
586 t = a, a = b, b = t;
587 dexp = -dexp;
588 sign ^= subtract_p;
590 exp = REAL_EXP (a);
592 /* If the exponents are not identical, we need to shift the
593 significand of B down. */
594 if (dexp > 0)
596 /* If the exponents are too far apart, the significands
597 do not overlap, which makes the subtraction a noop. */
598 if (dexp >= SIGNIFICAND_BITS)
600 *r = *a;
601 r->sign = sign;
602 return true;
605 inexact |= sticky_rshift_significand (&t, b, dexp);
606 b = &t;
609 if (subtract_p)
611 if (sub_significands (r, a, b, inexact))
613 /* We got a borrow out of the subtraction. That means that
614 A and B had the same exponent, and B had the larger
615 significand. We need to swap the sign and negate the
616 significand. */
617 sign ^= 1;
618 neg_significand (r, r);
621 else
623 if (add_significands (r, a, b))
625 /* We got carry out of the addition. This means we need to
626 shift the significand back down one bit and increase the
627 exponent. */
628 inexact |= sticky_rshift_significand (r, r, 1);
629 r->sig[SIGSZ-1] |= SIG_MSB;
630 if (++exp > MAX_EXP)
632 get_inf (r, sign);
633 return true;
638 r->cl = rvc_normal;
639 r->sign = sign;
640 SET_REAL_EXP (r, exp);
641 /* Zero out the remaining fields. */
642 r->signalling = 0;
643 r->canonical = 0;
644 r->decimal = 0;
646 /* Re-normalize the result. */
647 normalize (r);
649 /* Special case: if the subtraction results in zero, the result
650 is positive. */
651 if (r->cl == rvc_zero)
652 r->sign = 0;
653 else
654 r->sig[0] |= inexact;
656 return inexact;
659 /* Calculate R = A * B. Return true if the result may be inexact. */
661 static bool
662 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
663 const REAL_VALUE_TYPE *b)
665 REAL_VALUE_TYPE u, t, *rr;
666 unsigned int i, j, k;
667 int sign = a->sign ^ b->sign;
668 bool inexact = false;
670 switch (CLASS2 (a->cl, b->cl))
672 case CLASS2 (rvc_zero, rvc_zero):
673 case CLASS2 (rvc_zero, rvc_normal):
674 case CLASS2 (rvc_normal, rvc_zero):
675 /* +-0 * ANY = 0 with appropriate sign. */
676 get_zero (r, sign);
677 return false;
679 case CLASS2 (rvc_zero, rvc_nan):
680 case CLASS2 (rvc_normal, rvc_nan):
681 case CLASS2 (rvc_inf, rvc_nan):
682 case CLASS2 (rvc_nan, rvc_nan):
683 /* ANY * NaN = NaN. */
684 *r = *b;
685 r->sign = sign;
686 return false;
688 case CLASS2 (rvc_nan, rvc_zero):
689 case CLASS2 (rvc_nan, rvc_normal):
690 case CLASS2 (rvc_nan, rvc_inf):
691 /* NaN * ANY = NaN. */
692 *r = *a;
693 r->sign = sign;
694 return false;
696 case CLASS2 (rvc_zero, rvc_inf):
697 case CLASS2 (rvc_inf, rvc_zero):
698 /* 0 * Inf = NaN */
699 get_canonical_qnan (r, sign);
700 return false;
702 case CLASS2 (rvc_inf, rvc_inf):
703 case CLASS2 (rvc_normal, rvc_inf):
704 case CLASS2 (rvc_inf, rvc_normal):
705 /* Inf * Inf = Inf, R * Inf = Inf */
706 get_inf (r, sign);
707 return false;
709 case CLASS2 (rvc_normal, rvc_normal):
710 break;
712 default:
713 gcc_unreachable ();
716 if (r == a || r == b)
717 rr = &t;
718 else
719 rr = r;
720 get_zero (rr, 0);
722 /* Collect all the partial products. Since we don't have sure access
723 to a widening multiply, we split each long into two half-words.
725 Consider the long-hand form of a four half-word multiplication:
727 A B C D
728 * E F G H
729 --------------
730 DE DF DG DH
731 CE CF CG CH
732 BE BF BG BH
733 AE AF AG AH
735 We construct partial products of the widened half-word products
736 that are known to not overlap, e.g. DF+DH. Each such partial
737 product is given its proper exponent, which allows us to sum them
738 and obtain the finished product. */
740 for (i = 0; i < SIGSZ * 2; ++i)
742 unsigned long ai = a->sig[i / 2];
743 if (i & 1)
744 ai >>= HOST_BITS_PER_LONG / 2;
745 else
746 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
748 if (ai == 0)
749 continue;
751 for (j = 0; j < 2; ++j)
753 int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
754 + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
756 if (exp > MAX_EXP)
758 get_inf (r, sign);
759 return true;
761 if (exp < -MAX_EXP)
763 /* Would underflow to zero, which we shouldn't bother adding. */
764 inexact = true;
765 continue;
768 memset (&u, 0, sizeof (u));
769 u.cl = rvc_normal;
770 SET_REAL_EXP (&u, exp);
772 for (k = j; k < SIGSZ * 2; k += 2)
774 unsigned long bi = b->sig[k / 2];
775 if (k & 1)
776 bi >>= HOST_BITS_PER_LONG / 2;
777 else
778 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
780 u.sig[k / 2] = ai * bi;
783 normalize (&u);
784 inexact |= do_add (rr, rr, &u, 0);
788 rr->sign = sign;
789 if (rr != r)
790 *r = t;
792 return inexact;
795 /* Calculate R = A / B. Return true if the result may be inexact. */
797 static bool
798 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
799 const REAL_VALUE_TYPE *b)
801 int exp, sign = a->sign ^ b->sign;
802 REAL_VALUE_TYPE t, *rr;
803 bool inexact;
805 switch (CLASS2 (a->cl, b->cl))
807 case CLASS2 (rvc_zero, rvc_zero):
808 /* 0 / 0 = NaN. */
809 case CLASS2 (rvc_inf, rvc_inf):
810 /* Inf / Inf = NaN. */
811 get_canonical_qnan (r, sign);
812 return false;
814 case CLASS2 (rvc_zero, rvc_normal):
815 case CLASS2 (rvc_zero, rvc_inf):
816 /* 0 / ANY = 0. */
817 case CLASS2 (rvc_normal, rvc_inf):
818 /* R / Inf = 0. */
819 get_zero (r, sign);
820 return false;
822 case CLASS2 (rvc_normal, rvc_zero):
823 /* R / 0 = Inf. */
824 case CLASS2 (rvc_inf, rvc_zero):
825 /* Inf / 0 = Inf. */
826 get_inf (r, sign);
827 return false;
829 case CLASS2 (rvc_zero, rvc_nan):
830 case CLASS2 (rvc_normal, rvc_nan):
831 case CLASS2 (rvc_inf, rvc_nan):
832 case CLASS2 (rvc_nan, rvc_nan):
833 /* ANY / NaN = NaN. */
834 *r = *b;
835 r->sign = sign;
836 return false;
838 case CLASS2 (rvc_nan, rvc_zero):
839 case CLASS2 (rvc_nan, rvc_normal):
840 case CLASS2 (rvc_nan, rvc_inf):
841 /* NaN / ANY = NaN. */
842 *r = *a;
843 r->sign = sign;
844 return false;
846 case CLASS2 (rvc_inf, rvc_normal):
847 /* Inf / R = Inf. */
848 get_inf (r, sign);
849 return false;
851 case CLASS2 (rvc_normal, rvc_normal):
852 break;
854 default:
855 gcc_unreachable ();
858 if (r == a || r == b)
859 rr = &t;
860 else
861 rr = r;
863 /* Make sure all fields in the result are initialized. */
864 get_zero (rr, 0);
865 rr->cl = rvc_normal;
866 rr->sign = sign;
868 exp = REAL_EXP (a) - REAL_EXP (b) + 1;
869 if (exp > MAX_EXP)
871 get_inf (r, sign);
872 return true;
874 if (exp < -MAX_EXP)
876 get_zero (r, sign);
877 return true;
879 SET_REAL_EXP (rr, exp);
881 inexact = div_significands (rr, a, b);
883 /* Re-normalize the result. */
884 normalize (rr);
885 rr->sig[0] |= inexact;
887 if (rr != r)
888 *r = t;
890 return inexact;
893 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
894 one of the two operands is a NaN. */
896 static int
897 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
898 int nan_result)
900 int ret;
902 switch (CLASS2 (a->cl, b->cl))
904 case CLASS2 (rvc_zero, rvc_zero):
905 /* Sign of zero doesn't matter for compares. */
906 return 0;
908 case CLASS2 (rvc_inf, rvc_zero):
909 case CLASS2 (rvc_inf, rvc_normal):
910 case CLASS2 (rvc_normal, rvc_zero):
911 return (a->sign ? -1 : 1);
913 case CLASS2 (rvc_inf, rvc_inf):
914 return -a->sign - -b->sign;
916 case CLASS2 (rvc_zero, rvc_normal):
917 case CLASS2 (rvc_zero, rvc_inf):
918 case CLASS2 (rvc_normal, rvc_inf):
919 return (b->sign ? 1 : -1);
921 case CLASS2 (rvc_zero, rvc_nan):
922 case CLASS2 (rvc_normal, rvc_nan):
923 case CLASS2 (rvc_inf, rvc_nan):
924 case CLASS2 (rvc_nan, rvc_nan):
925 case CLASS2 (rvc_nan, rvc_zero):
926 case CLASS2 (rvc_nan, rvc_normal):
927 case CLASS2 (rvc_nan, rvc_inf):
928 return nan_result;
930 case CLASS2 (rvc_normal, rvc_normal):
931 break;
933 default:
934 gcc_unreachable ();
937 if (a->sign != b->sign)
938 return -a->sign - -b->sign;
940 if (a->decimal || b->decimal)
941 return decimal_do_compare (a, b, nan_result);
943 if (REAL_EXP (a) > REAL_EXP (b))
944 ret = 1;
945 else if (REAL_EXP (a) < REAL_EXP (b))
946 ret = -1;
947 else
948 ret = cmp_significands (a, b);
950 return (a->sign ? -ret : ret);
953 /* Return A truncated to an integral value toward zero. */
955 static void
956 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
958 *r = *a;
960 switch (r->cl)
962 case rvc_zero:
963 case rvc_inf:
964 case rvc_nan:
965 break;
967 case rvc_normal:
968 if (r->decimal)
970 decimal_do_fix_trunc (r, a);
971 return;
973 if (REAL_EXP (r) <= 0)
974 get_zero (r, r->sign);
975 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
976 clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
977 break;
979 default:
980 gcc_unreachable ();
984 /* Perform the binary or unary operation described by CODE.
985 For a unary operation, leave OP1 NULL. This function returns
986 true if the result may be inexact due to loss of precision. */
988 bool
989 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
990 const REAL_VALUE_TYPE *op1)
992 enum tree_code code = icode;
994 if (op0->decimal || (op1 && op1->decimal))
995 return decimal_real_arithmetic (r, icode, op0, op1);
997 switch (code)
999 case PLUS_EXPR:
1000 return do_add (r, op0, op1, 0);
1002 case MINUS_EXPR:
1003 return do_add (r, op0, op1, 1);
1005 case MULT_EXPR:
1006 return do_multiply (r, op0, op1);
1008 case RDIV_EXPR:
1009 return do_divide (r, op0, op1);
1011 case MIN_EXPR:
1012 if (op1->cl == rvc_nan)
1013 *r = *op1;
1014 else if (do_compare (op0, op1, -1) < 0)
1015 *r = *op0;
1016 else
1017 *r = *op1;
1018 break;
1020 case MAX_EXPR:
1021 if (op1->cl == rvc_nan)
1022 *r = *op1;
1023 else if (do_compare (op0, op1, 1) < 0)
1024 *r = *op1;
1025 else
1026 *r = *op0;
1027 break;
1029 case NEGATE_EXPR:
1030 *r = *op0;
1031 r->sign ^= 1;
1032 break;
1034 case ABS_EXPR:
1035 *r = *op0;
1036 r->sign = 0;
1037 break;
1039 case FIX_TRUNC_EXPR:
1040 do_fix_trunc (r, op0);
1041 break;
1043 default:
1044 gcc_unreachable ();
1046 return false;
1049 /* Legacy. Similar, but return the result directly. */
1051 REAL_VALUE_TYPE
1052 real_arithmetic2 (int icode, const REAL_VALUE_TYPE *op0,
1053 const REAL_VALUE_TYPE *op1)
1055 REAL_VALUE_TYPE r;
1056 real_arithmetic (&r, icode, op0, op1);
1057 return r;
1060 bool
1061 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1062 const REAL_VALUE_TYPE *op1)
1064 enum tree_code code = icode;
1066 switch (code)
1068 case LT_EXPR:
1069 return do_compare (op0, op1, 1) < 0;
1070 case LE_EXPR:
1071 return do_compare (op0, op1, 1) <= 0;
1072 case GT_EXPR:
1073 return do_compare (op0, op1, -1) > 0;
1074 case GE_EXPR:
1075 return do_compare (op0, op1, -1) >= 0;
1076 case EQ_EXPR:
1077 return do_compare (op0, op1, -1) == 0;
1078 case NE_EXPR:
1079 return do_compare (op0, op1, -1) != 0;
1080 case UNORDERED_EXPR:
1081 return op0->cl == rvc_nan || op1->cl == rvc_nan;
1082 case ORDERED_EXPR:
1083 return op0->cl != rvc_nan && op1->cl != rvc_nan;
1084 case UNLT_EXPR:
1085 return do_compare (op0, op1, -1) < 0;
1086 case UNLE_EXPR:
1087 return do_compare (op0, op1, -1) <= 0;
1088 case UNGT_EXPR:
1089 return do_compare (op0, op1, 1) > 0;
1090 case UNGE_EXPR:
1091 return do_compare (op0, op1, 1) >= 0;
1092 case UNEQ_EXPR:
1093 return do_compare (op0, op1, 0) == 0;
1094 case LTGT_EXPR:
1095 return do_compare (op0, op1, 0) != 0;
1097 default:
1098 gcc_unreachable ();
1102 /* Return floor log2(R). */
1105 real_exponent (const REAL_VALUE_TYPE *r)
1107 switch (r->cl)
1109 case rvc_zero:
1110 return 0;
1111 case rvc_inf:
1112 case rvc_nan:
1113 return (unsigned int)-1 >> 1;
1114 case rvc_normal:
1115 return REAL_EXP (r);
1116 default:
1117 gcc_unreachable ();
1121 /* R = OP0 * 2**EXP. */
1123 void
1124 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1126 *r = *op0;
1127 switch (r->cl)
1129 case rvc_zero:
1130 case rvc_inf:
1131 case rvc_nan:
1132 break;
1134 case rvc_normal:
1135 exp += REAL_EXP (op0);
1136 if (exp > MAX_EXP)
1137 get_inf (r, r->sign);
1138 else if (exp < -MAX_EXP)
1139 get_zero (r, r->sign);
1140 else
1141 SET_REAL_EXP (r, exp);
1142 break;
1144 default:
1145 gcc_unreachable ();
1149 /* Determine whether a floating-point value X is infinite. */
1151 bool
1152 real_isinf (const REAL_VALUE_TYPE *r)
1154 return (r->cl == rvc_inf);
1157 /* Determine whether a floating-point value X is a NaN. */
1159 bool
1160 real_isnan (const REAL_VALUE_TYPE *r)
1162 return (r->cl == rvc_nan);
1165 /* Determine whether a floating-point value X is finite. */
1167 bool
1168 real_isfinite (const REAL_VALUE_TYPE *r)
1170 return (r->cl != rvc_nan) && (r->cl != rvc_inf);
1173 /* Determine whether a floating-point value X is negative. */
1175 bool
1176 real_isneg (const REAL_VALUE_TYPE *r)
1178 return r->sign;
1181 /* Determine whether a floating-point value X is minus zero. */
1183 bool
1184 real_isnegzero (const REAL_VALUE_TYPE *r)
1186 return r->sign && r->cl == rvc_zero;
1189 /* Compare two floating-point objects for bitwise identity. */
1191 bool
1192 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1194 int i;
1196 if (a->cl != b->cl)
1197 return false;
1198 if (a->sign != b->sign)
1199 return false;
1201 switch (a->cl)
1203 case rvc_zero:
1204 case rvc_inf:
1205 return true;
1207 case rvc_normal:
1208 if (a->decimal != b->decimal)
1209 return false;
1210 if (REAL_EXP (a) != REAL_EXP (b))
1211 return false;
1212 break;
1214 case rvc_nan:
1215 if (a->signalling != b->signalling)
1216 return false;
1217 /* The significand is ignored for canonical NaNs. */
1218 if (a->canonical || b->canonical)
1219 return a->canonical == b->canonical;
1220 break;
1222 default:
1223 gcc_unreachable ();
1226 for (i = 0; i < SIGSZ; ++i)
1227 if (a->sig[i] != b->sig[i])
1228 return false;
1230 return true;
1233 /* Try to change R into its exact multiplicative inverse in machine
1234 mode MODE. Return true if successful. */
1236 bool
1237 exact_real_inverse (enum machine_mode mode, REAL_VALUE_TYPE *r)
1239 const REAL_VALUE_TYPE *one = real_digit (1);
1240 REAL_VALUE_TYPE u;
1241 int i;
1243 if (r->cl != rvc_normal)
1244 return false;
1246 /* Check for a power of two: all significand bits zero except the MSB. */
1247 for (i = 0; i < SIGSZ-1; ++i)
1248 if (r->sig[i] != 0)
1249 return false;
1250 if (r->sig[SIGSZ-1] != SIG_MSB)
1251 return false;
1253 /* Find the inverse and truncate to the required mode. */
1254 do_divide (&u, one, r);
1255 real_convert (&u, mode, &u);
1257 /* The rounding may have overflowed. */
1258 if (u.cl != rvc_normal)
1259 return false;
1260 for (i = 0; i < SIGSZ-1; ++i)
1261 if (u.sig[i] != 0)
1262 return false;
1263 if (u.sig[SIGSZ-1] != SIG_MSB)
1264 return false;
1266 *r = u;
1267 return true;
1270 /* Render R as an integer. */
1272 HOST_WIDE_INT
1273 real_to_integer (const REAL_VALUE_TYPE *r)
1275 unsigned HOST_WIDE_INT i;
1277 switch (r->cl)
1279 case rvc_zero:
1280 underflow:
1281 return 0;
1283 case rvc_inf:
1284 case rvc_nan:
1285 overflow:
1286 i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1287 if (!r->sign)
1288 i--;
1289 return i;
1291 case rvc_normal:
1292 if (r->decimal)
1293 return decimal_real_to_integer (r);
1295 if (REAL_EXP (r) <= 0)
1296 goto underflow;
1297 /* Only force overflow for unsigned overflow. Signed overflow is
1298 undefined, so it doesn't matter what we return, and some callers
1299 expect to be able to use this routine for both signed and
1300 unsigned conversions. */
1301 if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1302 goto overflow;
1304 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1305 i = r->sig[SIGSZ-1];
1306 else
1308 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1309 i = r->sig[SIGSZ-1];
1310 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1311 i |= r->sig[SIGSZ-2];
1314 i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1316 if (r->sign)
1317 i = -i;
1318 return i;
1320 default:
1321 gcc_unreachable ();
1325 /* Likewise, but to an integer pair, HI+LOW. */
1327 void
1328 real_to_integer2 (HOST_WIDE_INT *plow, HOST_WIDE_INT *phigh,
1329 const REAL_VALUE_TYPE *r)
1331 REAL_VALUE_TYPE t;
1332 HOST_WIDE_INT low, high;
1333 int exp;
1335 switch (r->cl)
1337 case rvc_zero:
1338 underflow:
1339 low = high = 0;
1340 break;
1342 case rvc_inf:
1343 case rvc_nan:
1344 overflow:
1345 high = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1346 if (r->sign)
1347 low = 0;
1348 else
1350 high--;
1351 low = -1;
1353 break;
1355 case rvc_normal:
1356 if (r->decimal)
1358 decimal_real_to_integer2 (plow, phigh, r);
1359 return;
1362 exp = REAL_EXP (r);
1363 if (exp <= 0)
1364 goto underflow;
1365 /* Only force overflow for unsigned overflow. Signed overflow is
1366 undefined, so it doesn't matter what we return, and some callers
1367 expect to be able to use this routine for both signed and
1368 unsigned conversions. */
1369 if (exp > 2*HOST_BITS_PER_WIDE_INT)
1370 goto overflow;
1372 rshift_significand (&t, r, 2*HOST_BITS_PER_WIDE_INT - exp);
1373 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1375 high = t.sig[SIGSZ-1];
1376 low = t.sig[SIGSZ-2];
1378 else
1380 gcc_assert (HOST_BITS_PER_WIDE_INT == 2*HOST_BITS_PER_LONG);
1381 high = t.sig[SIGSZ-1];
1382 high = high << (HOST_BITS_PER_LONG - 1) << 1;
1383 high |= t.sig[SIGSZ-2];
1385 low = t.sig[SIGSZ-3];
1386 low = low << (HOST_BITS_PER_LONG - 1) << 1;
1387 low |= t.sig[SIGSZ-4];
1390 if (r->sign)
1392 if (low == 0)
1393 high = -high;
1394 else
1395 low = -low, high = ~high;
1397 break;
1399 default:
1400 gcc_unreachable ();
1403 *plow = low;
1404 *phigh = high;
1407 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1408 of NUM / DEN. Return the quotient and place the remainder in NUM.
1409 It is expected that NUM / DEN are close enough that the quotient is
1410 small. */
1412 static unsigned long
1413 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1415 unsigned long q, msb;
1416 int expn = REAL_EXP (num), expd = REAL_EXP (den);
1418 if (expn < expd)
1419 return 0;
1421 q = msb = 0;
1422 goto start;
1425 msb = num->sig[SIGSZ-1] & SIG_MSB;
1426 q <<= 1;
1427 lshift_significand_1 (num, num);
1428 start:
1429 if (msb || cmp_significands (num, den) >= 0)
1431 sub_significands (num, num, den, 0);
1432 q |= 1;
1435 while (--expn >= expd);
1437 SET_REAL_EXP (num, expd);
1438 normalize (num);
1440 return q;
1443 /* Render R as a decimal floating point constant. Emit DIGITS significant
1444 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1445 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1446 zeros. */
1448 #define M_LOG10_2 0.30102999566398119521
1450 void
1451 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1452 size_t digits, int crop_trailing_zeros)
1454 const REAL_VALUE_TYPE *one, *ten;
1455 REAL_VALUE_TYPE r, pten, u, v;
1456 int dec_exp, cmp_one, digit;
1457 size_t max_digits;
1458 char *p, *first, *last;
1459 bool sign;
1461 r = *r_orig;
1462 switch (r.cl)
1464 case rvc_zero:
1465 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1466 return;
1467 case rvc_normal:
1468 break;
1469 case rvc_inf:
1470 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1471 return;
1472 case rvc_nan:
1473 /* ??? Print the significand as well, if not canonical? */
1474 strcpy (str, (r.sign ? "-NaN" : "+NaN"));
1475 return;
1476 default:
1477 gcc_unreachable ();
1480 if (r.decimal)
1482 decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
1483 return;
1486 /* Bound the number of digits printed by the size of the representation. */
1487 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1488 if (digits == 0 || digits > max_digits)
1489 digits = max_digits;
1491 /* Estimate the decimal exponent, and compute the length of the string it
1492 will print as. Be conservative and add one to account for possible
1493 overflow or rounding error. */
1494 dec_exp = REAL_EXP (&r) * M_LOG10_2;
1495 for (max_digits = 1; dec_exp ; max_digits++)
1496 dec_exp /= 10;
1498 /* Bound the number of digits printed by the size of the output buffer. */
1499 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1500 gcc_assert (max_digits <= buf_size);
1501 if (digits > max_digits)
1502 digits = max_digits;
1504 one = real_digit (1);
1505 ten = ten_to_ptwo (0);
1507 sign = r.sign;
1508 r.sign = 0;
1510 dec_exp = 0;
1511 pten = *one;
1513 cmp_one = do_compare (&r, one, 0);
1514 if (cmp_one > 0)
1516 int m;
1518 /* Number is greater than one. Convert significand to an integer
1519 and strip trailing decimal zeros. */
1521 u = r;
1522 SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1524 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1525 m = floor_log2 (max_digits);
1527 /* Iterate over the bits of the possible powers of 10 that might
1528 be present in U and eliminate them. That is, if we find that
1529 10**2**M divides U evenly, keep the division and increase
1530 DEC_EXP by 2**M. */
1533 REAL_VALUE_TYPE t;
1535 do_divide (&t, &u, ten_to_ptwo (m));
1536 do_fix_trunc (&v, &t);
1537 if (cmp_significands (&v, &t) == 0)
1539 u = t;
1540 dec_exp += 1 << m;
1543 while (--m >= 0);
1545 /* Revert the scaling to integer that we performed earlier. */
1546 SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1547 - (SIGNIFICAND_BITS - 1));
1548 r = u;
1550 /* Find power of 10. Do this by dividing out 10**2**M when
1551 this is larger than the current remainder. Fill PTEN with
1552 the power of 10 that we compute. */
1553 if (REAL_EXP (&r) > 0)
1555 m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1558 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1559 if (do_compare (&u, ptentwo, 0) >= 0)
1561 do_divide (&u, &u, ptentwo);
1562 do_multiply (&pten, &pten, ptentwo);
1563 dec_exp += 1 << m;
1566 while (--m >= 0);
1568 else
1569 /* We managed to divide off enough tens in the above reduction
1570 loop that we've now got a negative exponent. Fall into the
1571 less-than-one code to compute the proper value for PTEN. */
1572 cmp_one = -1;
1574 if (cmp_one < 0)
1576 int m;
1578 /* Number is less than one. Pad significand with leading
1579 decimal zeros. */
1581 v = r;
1582 while (1)
1584 /* Stop if we'd shift bits off the bottom. */
1585 if (v.sig[0] & 7)
1586 break;
1588 do_multiply (&u, &v, ten);
1590 /* Stop if we're now >= 1. */
1591 if (REAL_EXP (&u) > 0)
1592 break;
1594 v = u;
1595 dec_exp -= 1;
1597 r = v;
1599 /* Find power of 10. Do this by multiplying in P=10**2**M when
1600 the current remainder is smaller than 1/P. Fill PTEN with the
1601 power of 10 that we compute. */
1602 m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1605 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1606 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1608 if (do_compare (&v, ptenmtwo, 0) <= 0)
1610 do_multiply (&v, &v, ptentwo);
1611 do_multiply (&pten, &pten, ptentwo);
1612 dec_exp -= 1 << m;
1615 while (--m >= 0);
1617 /* Invert the positive power of 10 that we've collected so far. */
1618 do_divide (&pten, one, &pten);
1621 p = str;
1622 if (sign)
1623 *p++ = '-';
1624 first = p++;
1626 /* At this point, PTEN should contain the nearest power of 10 smaller
1627 than R, such that this division produces the first digit.
1629 Using a divide-step primitive that returns the complete integral
1630 remainder avoids the rounding error that would be produced if
1631 we were to use do_divide here and then simply multiply by 10 for
1632 each subsequent digit. */
1634 digit = rtd_divmod (&r, &pten);
1636 /* Be prepared for error in that division via underflow ... */
1637 if (digit == 0 && cmp_significand_0 (&r))
1639 /* Multiply by 10 and try again. */
1640 do_multiply (&r, &r, ten);
1641 digit = rtd_divmod (&r, &pten);
1642 dec_exp -= 1;
1643 gcc_assert (digit != 0);
1646 /* ... or overflow. */
1647 if (digit == 10)
1649 *p++ = '1';
1650 if (--digits > 0)
1651 *p++ = '0';
1652 dec_exp += 1;
1654 else
1656 gcc_assert (digit <= 10);
1657 *p++ = digit + '0';
1660 /* Generate subsequent digits. */
1661 while (--digits > 0)
1663 do_multiply (&r, &r, ten);
1664 digit = rtd_divmod (&r, &pten);
1665 *p++ = digit + '0';
1667 last = p;
1669 /* Generate one more digit with which to do rounding. */
1670 do_multiply (&r, &r, ten);
1671 digit = rtd_divmod (&r, &pten);
1673 /* Round the result. */
1674 if (digit == 5)
1676 /* Round to nearest. If R is nonzero there are additional
1677 nonzero digits to be extracted. */
1678 if (cmp_significand_0 (&r))
1679 digit++;
1680 /* Round to even. */
1681 else if ((p[-1] - '0') & 1)
1682 digit++;
1684 if (digit > 5)
1686 while (p > first)
1688 digit = *--p;
1689 if (digit == '9')
1690 *p = '0';
1691 else
1693 *p = digit + 1;
1694 break;
1698 /* Carry out of the first digit. This means we had all 9's and
1699 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1700 if (p == first)
1702 first[1] = '1';
1703 dec_exp++;
1707 /* Insert the decimal point. */
1708 first[0] = first[1];
1709 first[1] = '.';
1711 /* If requested, drop trailing zeros. Never crop past "1.0". */
1712 if (crop_trailing_zeros)
1713 while (last > first + 3 && last[-1] == '0')
1714 last--;
1716 /* Append the exponent. */
1717 sprintf (last, "e%+d", dec_exp);
1720 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1721 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1722 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1723 strip trailing zeros. */
1725 void
1726 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1727 size_t digits, int crop_trailing_zeros)
1729 int i, j, exp = REAL_EXP (r);
1730 char *p, *first;
1731 char exp_buf[16];
1732 size_t max_digits;
1734 switch (r->cl)
1736 case rvc_zero:
1737 exp = 0;
1738 break;
1739 case rvc_normal:
1740 break;
1741 case rvc_inf:
1742 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1743 return;
1744 case rvc_nan:
1745 /* ??? Print the significand as well, if not canonical? */
1746 strcpy (str, (r->sign ? "-NaN" : "+NaN"));
1747 return;
1748 default:
1749 gcc_unreachable ();
1752 if (r->decimal)
1754 /* Hexadecimal format for decimal floats is not interesting. */
1755 strcpy (str, "N/A");
1756 return;
1759 if (digits == 0)
1760 digits = SIGNIFICAND_BITS / 4;
1762 /* Bound the number of digits printed by the size of the output buffer. */
1764 sprintf (exp_buf, "p%+d", exp);
1765 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1766 gcc_assert (max_digits <= buf_size);
1767 if (digits > max_digits)
1768 digits = max_digits;
1770 p = str;
1771 if (r->sign)
1772 *p++ = '-';
1773 *p++ = '0';
1774 *p++ = 'x';
1775 *p++ = '0';
1776 *p++ = '.';
1777 first = p;
1779 for (i = SIGSZ - 1; i >= 0; --i)
1780 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1782 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1783 if (--digits == 0)
1784 goto out;
1787 out:
1788 if (crop_trailing_zeros)
1789 while (p > first + 1 && p[-1] == '0')
1790 p--;
1792 sprintf (p, "p%+d", exp);
1795 /* Initialize R from a decimal or hexadecimal string. The string is
1796 assumed to have been syntax checked already. Return -1 if the
1797 value underflows, +1 if overflows, and 0 otherwise. */
1800 real_from_string (REAL_VALUE_TYPE *r, const char *str)
1802 int exp = 0;
1803 bool sign = false;
1805 get_zero (r, 0);
1807 if (*str == '-')
1809 sign = true;
1810 str++;
1812 else if (*str == '+')
1813 str++;
1815 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
1817 /* Hexadecimal floating point. */
1818 int pos = SIGNIFICAND_BITS - 4, d;
1820 str += 2;
1822 while (*str == '0')
1823 str++;
1824 while (1)
1826 d = hex_value (*str);
1827 if (d == _hex_bad)
1828 break;
1829 if (pos >= 0)
1831 r->sig[pos / HOST_BITS_PER_LONG]
1832 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1833 pos -= 4;
1835 else if (d)
1836 /* Ensure correct rounding by setting last bit if there is
1837 a subsequent nonzero digit. */
1838 r->sig[0] |= 1;
1839 exp += 4;
1840 str++;
1842 if (*str == '.')
1844 str++;
1845 if (pos == SIGNIFICAND_BITS - 4)
1847 while (*str == '0')
1848 str++, exp -= 4;
1850 while (1)
1852 d = hex_value (*str);
1853 if (d == _hex_bad)
1854 break;
1855 if (pos >= 0)
1857 r->sig[pos / HOST_BITS_PER_LONG]
1858 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1859 pos -= 4;
1861 else if (d)
1862 /* Ensure correct rounding by setting last bit if there is
1863 a subsequent nonzero digit. */
1864 r->sig[0] |= 1;
1865 str++;
1869 /* If the mantissa is zero, ignore the exponent. */
1870 if (!cmp_significand_0 (r))
1871 goto is_a_zero;
1873 if (*str == 'p' || *str == 'P')
1875 bool exp_neg = false;
1877 str++;
1878 if (*str == '-')
1880 exp_neg = true;
1881 str++;
1883 else if (*str == '+')
1884 str++;
1886 d = 0;
1887 while (ISDIGIT (*str))
1889 d *= 10;
1890 d += *str - '0';
1891 if (d > MAX_EXP)
1893 /* Overflowed the exponent. */
1894 if (exp_neg)
1895 goto underflow;
1896 else
1897 goto overflow;
1899 str++;
1901 if (exp_neg)
1902 d = -d;
1904 exp += d;
1907 r->cl = rvc_normal;
1908 SET_REAL_EXP (r, exp);
1910 normalize (r);
1912 else
1914 /* Decimal floating point. */
1915 const REAL_VALUE_TYPE *ten = ten_to_ptwo (0);
1916 int d;
1918 while (*str == '0')
1919 str++;
1920 while (ISDIGIT (*str))
1922 d = *str++ - '0';
1923 do_multiply (r, r, ten);
1924 if (d)
1925 do_add (r, r, real_digit (d), 0);
1927 if (*str == '.')
1929 str++;
1930 if (r->cl == rvc_zero)
1932 while (*str == '0')
1933 str++, exp--;
1935 while (ISDIGIT (*str))
1937 d = *str++ - '0';
1938 do_multiply (r, r, ten);
1939 if (d)
1940 do_add (r, r, real_digit (d), 0);
1941 exp--;
1945 /* If the mantissa is zero, ignore the exponent. */
1946 if (r->cl == rvc_zero)
1947 goto is_a_zero;
1949 if (*str == 'e' || *str == 'E')
1951 bool exp_neg = false;
1953 str++;
1954 if (*str == '-')
1956 exp_neg = true;
1957 str++;
1959 else if (*str == '+')
1960 str++;
1962 d = 0;
1963 while (ISDIGIT (*str))
1965 d *= 10;
1966 d += *str - '0';
1967 if (d > MAX_EXP)
1969 /* Overflowed the exponent. */
1970 if (exp_neg)
1971 goto underflow;
1972 else
1973 goto overflow;
1975 str++;
1977 if (exp_neg)
1978 d = -d;
1979 exp += d;
1982 if (exp)
1983 times_pten (r, exp);
1986 r->sign = sign;
1987 return 0;
1989 is_a_zero:
1990 get_zero (r, sign);
1991 return 0;
1993 underflow:
1994 get_zero (r, sign);
1995 return -1;
1997 overflow:
1998 get_inf (r, sign);
1999 return 1;
2002 /* Legacy. Similar, but return the result directly. */
2004 REAL_VALUE_TYPE
2005 real_from_string2 (const char *s, enum machine_mode mode)
2007 REAL_VALUE_TYPE r;
2009 real_from_string (&r, s);
2010 if (mode != VOIDmode)
2011 real_convert (&r, mode, &r);
2013 return r;
2016 /* Initialize R from string S and desired MODE. */
2018 void
2019 real_from_string3 (REAL_VALUE_TYPE *r, const char *s, enum machine_mode mode)
2021 if (DECIMAL_FLOAT_MODE_P (mode))
2022 decimal_real_from_string (r, s);
2023 else
2024 real_from_string (r, s);
2026 if (mode != VOIDmode)
2027 real_convert (r, mode, r);
2030 /* Initialize R from the integer pair HIGH+LOW. */
2032 void
2033 real_from_integer (REAL_VALUE_TYPE *r, enum machine_mode mode,
2034 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high,
2035 int unsigned_p)
2037 if (low == 0 && high == 0)
2038 get_zero (r, 0);
2039 else
2041 memset (r, 0, sizeof (*r));
2042 r->cl = rvc_normal;
2043 r->sign = high < 0 && !unsigned_p;
2044 SET_REAL_EXP (r, 2 * HOST_BITS_PER_WIDE_INT);
2046 if (r->sign)
2048 high = ~high;
2049 if (low == 0)
2050 high += 1;
2051 else
2052 low = -low;
2055 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
2057 r->sig[SIGSZ-1] = high;
2058 r->sig[SIGSZ-2] = low;
2060 else
2062 gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
2063 r->sig[SIGSZ-1] = high >> (HOST_BITS_PER_LONG - 1) >> 1;
2064 r->sig[SIGSZ-2] = high;
2065 r->sig[SIGSZ-3] = low >> (HOST_BITS_PER_LONG - 1) >> 1;
2066 r->sig[SIGSZ-4] = low;
2069 normalize (r);
2072 if (mode != VOIDmode)
2073 real_convert (r, mode, r);
2076 /* Returns 10**2**N. */
2078 static const REAL_VALUE_TYPE *
2079 ten_to_ptwo (int n)
2081 static REAL_VALUE_TYPE tens[EXP_BITS];
2083 gcc_assert (n >= 0);
2084 gcc_assert (n < EXP_BITS);
2086 if (tens[n].cl == rvc_zero)
2088 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2090 HOST_WIDE_INT t = 10;
2091 int i;
2093 for (i = 0; i < n; ++i)
2094 t *= t;
2096 real_from_integer (&tens[n], VOIDmode, t, 0, 1);
2098 else
2100 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2101 do_multiply (&tens[n], t, t);
2105 return &tens[n];
2108 /* Returns 10**(-2**N). */
2110 static const REAL_VALUE_TYPE *
2111 ten_to_mptwo (int n)
2113 static REAL_VALUE_TYPE tens[EXP_BITS];
2115 gcc_assert (n >= 0);
2116 gcc_assert (n < EXP_BITS);
2118 if (tens[n].cl == rvc_zero)
2119 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2121 return &tens[n];
2124 /* Returns N. */
2126 static const REAL_VALUE_TYPE *
2127 real_digit (int n)
2129 static REAL_VALUE_TYPE num[10];
2131 gcc_assert (n >= 0);
2132 gcc_assert (n <= 9);
2134 if (n > 0 && num[n].cl == rvc_zero)
2135 real_from_integer (&num[n], VOIDmode, n, 0, 1);
2137 return &num[n];
2140 /* Multiply R by 10**EXP. */
2142 static void
2143 times_pten (REAL_VALUE_TYPE *r, int exp)
2145 REAL_VALUE_TYPE pten, *rr;
2146 bool negative = (exp < 0);
2147 int i;
2149 if (negative)
2151 exp = -exp;
2152 pten = *real_digit (1);
2153 rr = &pten;
2155 else
2156 rr = r;
2158 for (i = 0; exp > 0; ++i, exp >>= 1)
2159 if (exp & 1)
2160 do_multiply (rr, rr, ten_to_ptwo (i));
2162 if (negative)
2163 do_divide (r, r, &pten);
2166 /* Fills R with +Inf. */
2168 void
2169 real_inf (REAL_VALUE_TYPE *r)
2171 get_inf (r, 0);
2174 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2175 we force a QNaN, else we force an SNaN. The string, if not empty,
2176 is parsed as a number and placed in the significand. Return true
2177 if the string was successfully parsed. */
2179 bool
2180 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2181 enum machine_mode mode)
2183 const struct real_format *fmt;
2185 fmt = REAL_MODE_FORMAT (mode);
2186 gcc_assert (fmt);
2188 if (*str == 0)
2190 if (quiet)
2191 get_canonical_qnan (r, 0);
2192 else
2193 get_canonical_snan (r, 0);
2195 else
2197 int base = 10, d;
2199 memset (r, 0, sizeof (*r));
2200 r->cl = rvc_nan;
2202 /* Parse akin to strtol into the significand of R. */
2204 while (ISSPACE (*str))
2205 str++;
2206 if (*str == '-')
2207 str++;
2208 else if (*str == '+')
2209 str++;
2210 if (*str == '0')
2212 str++;
2213 if (*str == 'x' || *str == 'X')
2215 base = 16;
2216 str++;
2218 else
2219 base = 8;
2222 while ((d = hex_value (*str)) < base)
2224 REAL_VALUE_TYPE u;
2226 switch (base)
2228 case 8:
2229 lshift_significand (r, r, 3);
2230 break;
2231 case 16:
2232 lshift_significand (r, r, 4);
2233 break;
2234 case 10:
2235 lshift_significand_1 (&u, r);
2236 lshift_significand (r, r, 3);
2237 add_significands (r, r, &u);
2238 break;
2239 default:
2240 gcc_unreachable ();
2243 get_zero (&u, 0);
2244 u.sig[0] = d;
2245 add_significands (r, r, &u);
2247 str++;
2250 /* Must have consumed the entire string for success. */
2251 if (*str != 0)
2252 return false;
2254 /* Shift the significand into place such that the bits
2255 are in the most significant bits for the format. */
2256 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2258 /* Our MSB is always unset for NaNs. */
2259 r->sig[SIGSZ-1] &= ~SIG_MSB;
2261 /* Force quiet or signalling NaN. */
2262 r->signalling = !quiet;
2265 return true;
2268 /* Fills R with the largest finite value representable in mode MODE.
2269 If SIGN is nonzero, R is set to the most negative finite value. */
2271 void
2272 real_maxval (REAL_VALUE_TYPE *r, int sign, enum machine_mode mode)
2274 const struct real_format *fmt;
2275 int np2;
2277 fmt = REAL_MODE_FORMAT (mode);
2278 gcc_assert (fmt);
2279 memset (r, 0, sizeof (*r));
2281 if (fmt->b == 10)
2282 decimal_real_maxval (r, sign, mode);
2283 else
2285 r->cl = rvc_normal;
2286 r->sign = sign;
2287 SET_REAL_EXP (r, fmt->emax);
2289 np2 = SIGNIFICAND_BITS - fmt->p;
2290 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2291 clear_significand_below (r, np2);
2293 if (fmt->pnan < fmt->p)
2294 /* This is an IBM extended double format made up of two IEEE
2295 doubles. The value of the long double is the sum of the
2296 values of the two parts. The most significant part is
2297 required to be the value of the long double rounded to the
2298 nearest double. Rounding means we need a slightly smaller
2299 value for LDBL_MAX. */
2300 clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan);
2304 /* Fills R with 2**N. */
2306 void
2307 real_2expN (REAL_VALUE_TYPE *r, int n, enum machine_mode fmode)
2309 memset (r, 0, sizeof (*r));
2311 n++;
2312 if (n > MAX_EXP)
2313 r->cl = rvc_inf;
2314 else if (n < -MAX_EXP)
2316 else
2318 r->cl = rvc_normal;
2319 SET_REAL_EXP (r, n);
2320 r->sig[SIGSZ-1] = SIG_MSB;
2322 if (DECIMAL_FLOAT_MODE_P (fmode))
2323 decimal_real_convert (r, fmode, r);
2327 static void
2328 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2330 int p2, np2, i, w;
2331 unsigned long sticky;
2332 bool guard, lsb;
2333 int emin2m1, emax2;
2335 if (r->decimal)
2337 if (fmt->b == 10)
2339 decimal_round_for_format (fmt, r);
2340 return;
2342 /* FIXME. We can come here via fp_easy_constant
2343 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2344 investigated whether this convert needs to be here, or
2345 something else is missing. */
2346 decimal_real_convert (r, DFmode, r);
2349 p2 = fmt->p;
2350 emin2m1 = fmt->emin - 1;
2351 emax2 = fmt->emax;
2353 np2 = SIGNIFICAND_BITS - p2;
2354 switch (r->cl)
2356 underflow:
2357 get_zero (r, r->sign);
2358 case rvc_zero:
2359 if (!fmt->has_signed_zero)
2360 r->sign = 0;
2361 return;
2363 overflow:
2364 get_inf (r, r->sign);
2365 case rvc_inf:
2366 return;
2368 case rvc_nan:
2369 clear_significand_below (r, np2);
2370 return;
2372 case rvc_normal:
2373 break;
2375 default:
2376 gcc_unreachable ();
2379 /* Check the range of the exponent. If we're out of range,
2380 either underflow or overflow. */
2381 if (REAL_EXP (r) > emax2)
2382 goto overflow;
2383 else if (REAL_EXP (r) <= emin2m1)
2385 int diff;
2387 if (!fmt->has_denorm)
2389 /* Don't underflow completely until we've had a chance to round. */
2390 if (REAL_EXP (r) < emin2m1)
2391 goto underflow;
2393 else
2395 diff = emin2m1 - REAL_EXP (r) + 1;
2396 if (diff > p2)
2397 goto underflow;
2399 /* De-normalize the significand. */
2400 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2401 SET_REAL_EXP (r, REAL_EXP (r) + diff);
2405 /* There are P2 true significand bits, followed by one guard bit,
2406 followed by one sticky bit, followed by stuff. Fold nonzero
2407 stuff into the sticky bit. */
2409 sticky = 0;
2410 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2411 sticky |= r->sig[i];
2412 sticky |=
2413 r->sig[w] & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2415 guard = test_significand_bit (r, np2 - 1);
2416 lsb = test_significand_bit (r, np2);
2418 /* Round to even. */
2419 if (guard && (sticky || lsb))
2421 REAL_VALUE_TYPE u;
2422 get_zero (&u, 0);
2423 set_significand_bit (&u, np2);
2425 if (add_significands (r, r, &u))
2427 /* Overflow. Means the significand had been all ones, and
2428 is now all zeros. Need to increase the exponent, and
2429 possibly re-normalize it. */
2430 SET_REAL_EXP (r, REAL_EXP (r) + 1);
2431 if (REAL_EXP (r) > emax2)
2432 goto overflow;
2433 r->sig[SIGSZ-1] = SIG_MSB;
2437 /* Catch underflow that we deferred until after rounding. */
2438 if (REAL_EXP (r) <= emin2m1)
2439 goto underflow;
2441 /* Clear out trailing garbage. */
2442 clear_significand_below (r, np2);
2445 /* Extend or truncate to a new mode. */
2447 void
2448 real_convert (REAL_VALUE_TYPE *r, enum machine_mode mode,
2449 const REAL_VALUE_TYPE *a)
2451 const struct real_format *fmt;
2453 fmt = REAL_MODE_FORMAT (mode);
2454 gcc_assert (fmt);
2456 *r = *a;
2458 if (a->decimal || fmt->b == 10)
2459 decimal_real_convert (r, mode, a);
2461 round_for_format (fmt, r);
2463 /* round_for_format de-normalizes denormals. Undo just that part. */
2464 if (r->cl == rvc_normal)
2465 normalize (r);
2468 /* Legacy. Likewise, except return the struct directly. */
2470 REAL_VALUE_TYPE
2471 real_value_truncate (enum machine_mode mode, REAL_VALUE_TYPE a)
2473 REAL_VALUE_TYPE r;
2474 real_convert (&r, mode, &a);
2475 return r;
2478 /* Return true if truncating to MODE is exact. */
2480 bool
2481 exact_real_truncate (enum machine_mode mode, const REAL_VALUE_TYPE *a)
2483 const struct real_format *fmt;
2484 REAL_VALUE_TYPE t;
2485 int emin2m1;
2487 fmt = REAL_MODE_FORMAT (mode);
2488 gcc_assert (fmt);
2490 /* Don't allow conversion to denormals. */
2491 emin2m1 = fmt->emin - 1;
2492 if (REAL_EXP (a) <= emin2m1)
2493 return false;
2495 /* After conversion to the new mode, the value must be identical. */
2496 real_convert (&t, mode, a);
2497 return real_identical (&t, a);
2500 /* Write R to the given target format. Place the words of the result
2501 in target word order in BUF. There are always 32 bits in each
2502 long, no matter the size of the host long.
2504 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2506 long
2507 real_to_target_fmt (long *buf, const REAL_VALUE_TYPE *r_orig,
2508 const struct real_format *fmt)
2510 REAL_VALUE_TYPE r;
2511 long buf1;
2513 r = *r_orig;
2514 round_for_format (fmt, &r);
2516 if (!buf)
2517 buf = &buf1;
2518 (*fmt->encode) (fmt, buf, &r);
2520 return *buf;
2523 /* Similar, but look up the format from MODE. */
2525 long
2526 real_to_target (long *buf, const REAL_VALUE_TYPE *r, enum machine_mode mode)
2528 const struct real_format *fmt;
2530 fmt = REAL_MODE_FORMAT (mode);
2531 gcc_assert (fmt);
2533 return real_to_target_fmt (buf, r, fmt);
2536 /* Read R from the given target format. Read the words of the result
2537 in target word order in BUF. There are always 32 bits in each
2538 long, no matter the size of the host long. */
2540 void
2541 real_from_target_fmt (REAL_VALUE_TYPE *r, const long *buf,
2542 const struct real_format *fmt)
2544 (*fmt->decode) (fmt, r, buf);
2547 /* Similar, but look up the format from MODE. */
2549 void
2550 real_from_target (REAL_VALUE_TYPE *r, const long *buf, enum machine_mode mode)
2552 const struct real_format *fmt;
2554 fmt = REAL_MODE_FORMAT (mode);
2555 gcc_assert (fmt);
2557 (*fmt->decode) (fmt, r, buf);
2560 /* Return the number of bits of the largest binary value that the
2561 significand of MODE will hold. */
2562 /* ??? Legacy. Should get access to real_format directly. */
2565 significand_size (enum machine_mode mode)
2567 const struct real_format *fmt;
2569 fmt = REAL_MODE_FORMAT (mode);
2570 if (fmt == NULL)
2571 return 0;
2573 if (fmt->b == 10)
2575 /* Return the size in bits of the largest binary value that can be
2576 held by the decimal coefficient for this mode. This is one more
2577 than the number of bits required to hold the largest coefficient
2578 of this mode. */
2579 double log2_10 = 3.3219281;
2580 return fmt->p * log2_10;
2582 return fmt->p;
2585 /* Return a hash value for the given real value. */
2586 /* ??? The "unsigned int" return value is intended to be hashval_t,
2587 but I didn't want to pull hashtab.h into real.h. */
2589 unsigned int
2590 real_hash (const REAL_VALUE_TYPE *r)
2592 unsigned int h;
2593 size_t i;
2595 h = r->cl | (r->sign << 2);
2596 switch (r->cl)
2598 case rvc_zero:
2599 case rvc_inf:
2600 return h;
2602 case rvc_normal:
2603 h |= REAL_EXP (r) << 3;
2604 break;
2606 case rvc_nan:
2607 if (r->signalling)
2608 h ^= (unsigned int)-1;
2609 if (r->canonical)
2610 return h;
2611 break;
2613 default:
2614 gcc_unreachable ();
2617 if (sizeof(unsigned long) > sizeof(unsigned int))
2618 for (i = 0; i < SIGSZ; ++i)
2620 unsigned long s = r->sig[i];
2621 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2623 else
2624 for (i = 0; i < SIGSZ; ++i)
2625 h ^= r->sig[i];
2627 return h;
2630 /* IEEE single-precision format. */
2632 static void encode_ieee_single (const struct real_format *fmt,
2633 long *, const REAL_VALUE_TYPE *);
2634 static void decode_ieee_single (const struct real_format *,
2635 REAL_VALUE_TYPE *, const long *);
2637 static void
2638 encode_ieee_single (const struct real_format *fmt, long *buf,
2639 const REAL_VALUE_TYPE *r)
2641 unsigned long image, sig, exp;
2642 unsigned long sign = r->sign;
2643 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2645 image = sign << 31;
2646 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2648 switch (r->cl)
2650 case rvc_zero:
2651 break;
2653 case rvc_inf:
2654 if (fmt->has_inf)
2655 image |= 255 << 23;
2656 else
2657 image |= 0x7fffffff;
2658 break;
2660 case rvc_nan:
2661 if (fmt->has_nans)
2663 if (r->canonical)
2664 sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
2665 if (r->signalling == fmt->qnan_msb_set)
2666 sig &= ~(1 << 22);
2667 else
2668 sig |= 1 << 22;
2669 if (sig == 0)
2670 sig = 1 << 21;
2672 image |= 255 << 23;
2673 image |= sig;
2675 else
2676 image |= 0x7fffffff;
2677 break;
2679 case rvc_normal:
2680 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2681 whereas the intermediate representation is 0.F x 2**exp.
2682 Which means we're off by one. */
2683 if (denormal)
2684 exp = 0;
2685 else
2686 exp = REAL_EXP (r) + 127 - 1;
2687 image |= exp << 23;
2688 image |= sig;
2689 break;
2691 default:
2692 gcc_unreachable ();
2695 buf[0] = image;
2698 static void
2699 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2700 const long *buf)
2702 unsigned long image = buf[0] & 0xffffffff;
2703 bool sign = (image >> 31) & 1;
2704 int exp = (image >> 23) & 0xff;
2706 memset (r, 0, sizeof (*r));
2707 image <<= HOST_BITS_PER_LONG - 24;
2708 image &= ~SIG_MSB;
2710 if (exp == 0)
2712 if (image && fmt->has_denorm)
2714 r->cl = rvc_normal;
2715 r->sign = sign;
2716 SET_REAL_EXP (r, -126);
2717 r->sig[SIGSZ-1] = image << 1;
2718 normalize (r);
2720 else if (fmt->has_signed_zero)
2721 r->sign = sign;
2723 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
2725 if (image)
2727 r->cl = rvc_nan;
2728 r->sign = sign;
2729 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
2730 ^ fmt->qnan_msb_set);
2731 r->sig[SIGSZ-1] = image;
2733 else
2735 r->cl = rvc_inf;
2736 r->sign = sign;
2739 else
2741 r->cl = rvc_normal;
2742 r->sign = sign;
2743 SET_REAL_EXP (r, exp - 127 + 1);
2744 r->sig[SIGSZ-1] = image | SIG_MSB;
2748 const struct real_format ieee_single_format =
2750 encode_ieee_single,
2751 decode_ieee_single,
2755 -125,
2756 128,
2759 true,
2760 true,
2761 true,
2762 true,
2763 true,
2764 false
2767 const struct real_format mips_single_format =
2769 encode_ieee_single,
2770 decode_ieee_single,
2774 -125,
2775 128,
2778 true,
2779 true,
2780 true,
2781 true,
2782 false,
2783 true
2786 const struct real_format motorola_single_format =
2788 encode_ieee_single,
2789 decode_ieee_single,
2793 -125,
2794 128,
2797 true,
2798 true,
2799 true,
2800 true,
2801 true,
2802 true
2805 /* IEEE double-precision format. */
2807 static void encode_ieee_double (const struct real_format *fmt,
2808 long *, const REAL_VALUE_TYPE *);
2809 static void decode_ieee_double (const struct real_format *,
2810 REAL_VALUE_TYPE *, const long *);
2812 static void
2813 encode_ieee_double (const struct real_format *fmt, long *buf,
2814 const REAL_VALUE_TYPE *r)
2816 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
2817 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2819 image_hi = r->sign << 31;
2820 image_lo = 0;
2822 if (HOST_BITS_PER_LONG == 64)
2824 sig_hi = r->sig[SIGSZ-1];
2825 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
2826 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
2828 else
2830 sig_hi = r->sig[SIGSZ-1];
2831 sig_lo = r->sig[SIGSZ-2];
2832 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
2833 sig_hi = (sig_hi >> 11) & 0xfffff;
2836 switch (r->cl)
2838 case rvc_zero:
2839 break;
2841 case rvc_inf:
2842 if (fmt->has_inf)
2843 image_hi |= 2047 << 20;
2844 else
2846 image_hi |= 0x7fffffff;
2847 image_lo = 0xffffffff;
2849 break;
2851 case rvc_nan:
2852 if (fmt->has_nans)
2854 if (r->canonical)
2856 if (fmt->canonical_nan_lsbs_set)
2858 sig_hi = (1 << 19) - 1;
2859 sig_lo = 0xffffffff;
2861 else
2863 sig_hi = 0;
2864 sig_lo = 0;
2867 if (r->signalling == fmt->qnan_msb_set)
2868 sig_hi &= ~(1 << 19);
2869 else
2870 sig_hi |= 1 << 19;
2871 if (sig_hi == 0 && sig_lo == 0)
2872 sig_hi = 1 << 18;
2874 image_hi |= 2047 << 20;
2875 image_hi |= sig_hi;
2876 image_lo = sig_lo;
2878 else
2880 image_hi |= 0x7fffffff;
2881 image_lo = 0xffffffff;
2883 break;
2885 case rvc_normal:
2886 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2887 whereas the intermediate representation is 0.F x 2**exp.
2888 Which means we're off by one. */
2889 if (denormal)
2890 exp = 0;
2891 else
2892 exp = REAL_EXP (r) + 1023 - 1;
2893 image_hi |= exp << 20;
2894 image_hi |= sig_hi;
2895 image_lo = sig_lo;
2896 break;
2898 default:
2899 gcc_unreachable ();
2902 if (FLOAT_WORDS_BIG_ENDIAN)
2903 buf[0] = image_hi, buf[1] = image_lo;
2904 else
2905 buf[0] = image_lo, buf[1] = image_hi;
2908 static void
2909 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2910 const long *buf)
2912 unsigned long image_hi, image_lo;
2913 bool sign;
2914 int exp;
2916 if (FLOAT_WORDS_BIG_ENDIAN)
2917 image_hi = buf[0], image_lo = buf[1];
2918 else
2919 image_lo = buf[0], image_hi = buf[1];
2920 image_lo &= 0xffffffff;
2921 image_hi &= 0xffffffff;
2923 sign = (image_hi >> 31) & 1;
2924 exp = (image_hi >> 20) & 0x7ff;
2926 memset (r, 0, sizeof (*r));
2928 image_hi <<= 32 - 21;
2929 image_hi |= image_lo >> 21;
2930 image_hi &= 0x7fffffff;
2931 image_lo <<= 32 - 21;
2933 if (exp == 0)
2935 if ((image_hi || image_lo) && fmt->has_denorm)
2937 r->cl = rvc_normal;
2938 r->sign = sign;
2939 SET_REAL_EXP (r, -1022);
2940 if (HOST_BITS_PER_LONG == 32)
2942 image_hi = (image_hi << 1) | (image_lo >> 31);
2943 image_lo <<= 1;
2944 r->sig[SIGSZ-1] = image_hi;
2945 r->sig[SIGSZ-2] = image_lo;
2947 else
2949 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
2950 r->sig[SIGSZ-1] = image_hi;
2952 normalize (r);
2954 else if (fmt->has_signed_zero)
2955 r->sign = sign;
2957 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
2959 if (image_hi || image_lo)
2961 r->cl = rvc_nan;
2962 r->sign = sign;
2963 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
2964 if (HOST_BITS_PER_LONG == 32)
2966 r->sig[SIGSZ-1] = image_hi;
2967 r->sig[SIGSZ-2] = image_lo;
2969 else
2970 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
2972 else
2974 r->cl = rvc_inf;
2975 r->sign = sign;
2978 else
2980 r->cl = rvc_normal;
2981 r->sign = sign;
2982 SET_REAL_EXP (r, exp - 1023 + 1);
2983 if (HOST_BITS_PER_LONG == 32)
2985 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
2986 r->sig[SIGSZ-2] = image_lo;
2988 else
2989 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
2993 const struct real_format ieee_double_format =
2995 encode_ieee_double,
2996 decode_ieee_double,
3000 -1021,
3001 1024,
3004 true,
3005 true,
3006 true,
3007 true,
3008 true,
3009 false
3012 const struct real_format mips_double_format =
3014 encode_ieee_double,
3015 decode_ieee_double,
3019 -1021,
3020 1024,
3023 true,
3024 true,
3025 true,
3026 true,
3027 false,
3028 true
3031 const struct real_format motorola_double_format =
3033 encode_ieee_double,
3034 decode_ieee_double,
3038 -1021,
3039 1024,
3042 true,
3043 true,
3044 true,
3045 true,
3046 true,
3047 true
3050 /* IEEE extended real format. This comes in three flavors: Intel's as
3051 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3052 12- and 16-byte images may be big- or little endian; Motorola's is
3053 always big endian. */
3055 /* Helper subroutine which converts from the internal format to the
3056 12-byte little-endian Intel format. Functions below adjust this
3057 for the other possible formats. */
3058 static void
3059 encode_ieee_extended (const struct real_format *fmt, long *buf,
3060 const REAL_VALUE_TYPE *r)
3062 unsigned long image_hi, sig_hi, sig_lo;
3063 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3065 image_hi = r->sign << 15;
3066 sig_hi = sig_lo = 0;
3068 switch (r->cl)
3070 case rvc_zero:
3071 break;
3073 case rvc_inf:
3074 if (fmt->has_inf)
3076 image_hi |= 32767;
3078 /* Intel requires the explicit integer bit to be set, otherwise
3079 it considers the value a "pseudo-infinity". Motorola docs
3080 say it doesn't care. */
3081 sig_hi = 0x80000000;
3083 else
3085 image_hi |= 32767;
3086 sig_lo = sig_hi = 0xffffffff;
3088 break;
3090 case rvc_nan:
3091 if (fmt->has_nans)
3093 image_hi |= 32767;
3094 if (r->canonical)
3096 if (fmt->canonical_nan_lsbs_set)
3098 sig_hi = (1 << 30) - 1;
3099 sig_lo = 0xffffffff;
3102 else if (HOST_BITS_PER_LONG == 32)
3104 sig_hi = r->sig[SIGSZ-1];
3105 sig_lo = r->sig[SIGSZ-2];
3107 else
3109 sig_lo = r->sig[SIGSZ-1];
3110 sig_hi = sig_lo >> 31 >> 1;
3111 sig_lo &= 0xffffffff;
3113 if (r->signalling == fmt->qnan_msb_set)
3114 sig_hi &= ~(1 << 30);
3115 else
3116 sig_hi |= 1 << 30;
3117 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
3118 sig_hi = 1 << 29;
3120 /* Intel requires the explicit integer bit to be set, otherwise
3121 it considers the value a "pseudo-nan". Motorola docs say it
3122 doesn't care. */
3123 sig_hi |= 0x80000000;
3125 else
3127 image_hi |= 32767;
3128 sig_lo = sig_hi = 0xffffffff;
3130 break;
3132 case rvc_normal:
3134 int exp = REAL_EXP (r);
3136 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3137 whereas the intermediate representation is 0.F x 2**exp.
3138 Which means we're off by one.
3140 Except for Motorola, which consider exp=0 and explicit
3141 integer bit set to continue to be normalized. In theory
3142 this discrepancy has been taken care of by the difference
3143 in fmt->emin in round_for_format. */
3145 if (denormal)
3146 exp = 0;
3147 else
3149 exp += 16383 - 1;
3150 gcc_assert (exp >= 0);
3152 image_hi |= exp;
3154 if (HOST_BITS_PER_LONG == 32)
3156 sig_hi = r->sig[SIGSZ-1];
3157 sig_lo = r->sig[SIGSZ-2];
3159 else
3161 sig_lo = r->sig[SIGSZ-1];
3162 sig_hi = sig_lo >> 31 >> 1;
3163 sig_lo &= 0xffffffff;
3166 break;
3168 default:
3169 gcc_unreachable ();
3172 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3175 /* Convert from the internal format to the 12-byte Motorola format
3176 for an IEEE extended real. */
3177 static void
3178 encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3179 const REAL_VALUE_TYPE *r)
3181 long intermed[3];
3182 encode_ieee_extended (fmt, intermed, r);
3184 /* Motorola chips are assumed always to be big-endian. Also, the
3185 padding in a Motorola extended real goes between the exponent and
3186 the mantissa. At this point the mantissa is entirely within
3187 elements 0 and 1 of intermed, and the exponent entirely within
3188 element 2, so all we have to do is swap the order around, and
3189 shift element 2 left 16 bits. */
3190 buf[0] = intermed[2] << 16;
3191 buf[1] = intermed[1];
3192 buf[2] = intermed[0];
3195 /* Convert from the internal format to the 12-byte Intel format for
3196 an IEEE extended real. */
3197 static void
3198 encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3199 const REAL_VALUE_TYPE *r)
3201 if (FLOAT_WORDS_BIG_ENDIAN)
3203 /* All the padding in an Intel-format extended real goes at the high
3204 end, which in this case is after the mantissa, not the exponent.
3205 Therefore we must shift everything down 16 bits. */
3206 long intermed[3];
3207 encode_ieee_extended (fmt, intermed, r);
3208 buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3209 buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3210 buf[2] = (intermed[0] << 16);
3212 else
3213 /* encode_ieee_extended produces what we want directly. */
3214 encode_ieee_extended (fmt, buf, r);
3217 /* Convert from the internal format to the 16-byte Intel format for
3218 an IEEE extended real. */
3219 static void
3220 encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3221 const REAL_VALUE_TYPE *r)
3223 /* All the padding in an Intel-format extended real goes at the high end. */
3224 encode_ieee_extended_intel_96 (fmt, buf, r);
3225 buf[3] = 0;
3228 /* As above, we have a helper function which converts from 12-byte
3229 little-endian Intel format to internal format. Functions below
3230 adjust for the other possible formats. */
3231 static void
3232 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3233 const long *buf)
3235 unsigned long image_hi, sig_hi, sig_lo;
3236 bool sign;
3237 int exp;
3239 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3240 sig_lo &= 0xffffffff;
3241 sig_hi &= 0xffffffff;
3242 image_hi &= 0xffffffff;
3244 sign = (image_hi >> 15) & 1;
3245 exp = image_hi & 0x7fff;
3247 memset (r, 0, sizeof (*r));
3249 if (exp == 0)
3251 if ((sig_hi || sig_lo) && fmt->has_denorm)
3253 r->cl = rvc_normal;
3254 r->sign = sign;
3256 /* When the IEEE format contains a hidden bit, we know that
3257 it's zero at this point, and so shift up the significand
3258 and decrease the exponent to match. In this case, Motorola
3259 defines the explicit integer bit to be valid, so we don't
3260 know whether the msb is set or not. */
3261 SET_REAL_EXP (r, fmt->emin);
3262 if (HOST_BITS_PER_LONG == 32)
3264 r->sig[SIGSZ-1] = sig_hi;
3265 r->sig[SIGSZ-2] = sig_lo;
3267 else
3268 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3270 normalize (r);
3272 else if (fmt->has_signed_zero)
3273 r->sign = sign;
3275 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3277 /* See above re "pseudo-infinities" and "pseudo-nans".
3278 Short summary is that the MSB will likely always be
3279 set, and that we don't care about it. */
3280 sig_hi &= 0x7fffffff;
3282 if (sig_hi || sig_lo)
3284 r->cl = rvc_nan;
3285 r->sign = sign;
3286 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3287 if (HOST_BITS_PER_LONG == 32)
3289 r->sig[SIGSZ-1] = sig_hi;
3290 r->sig[SIGSZ-2] = sig_lo;
3292 else
3293 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3295 else
3297 r->cl = rvc_inf;
3298 r->sign = sign;
3301 else
3303 r->cl = rvc_normal;
3304 r->sign = sign;
3305 SET_REAL_EXP (r, exp - 16383 + 1);
3306 if (HOST_BITS_PER_LONG == 32)
3308 r->sig[SIGSZ-1] = sig_hi;
3309 r->sig[SIGSZ-2] = sig_lo;
3311 else
3312 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3316 /* Convert from the internal format to the 12-byte Motorola format
3317 for an IEEE extended real. */
3318 static void
3319 decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3320 const long *buf)
3322 long intermed[3];
3324 /* Motorola chips are assumed always to be big-endian. Also, the
3325 padding in a Motorola extended real goes between the exponent and
3326 the mantissa; remove it. */
3327 intermed[0] = buf[2];
3328 intermed[1] = buf[1];
3329 intermed[2] = (unsigned long)buf[0] >> 16;
3331 decode_ieee_extended (fmt, r, intermed);
3334 /* Convert from the internal format to the 12-byte Intel format for
3335 an IEEE extended real. */
3336 static void
3337 decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3338 const long *buf)
3340 if (FLOAT_WORDS_BIG_ENDIAN)
3342 /* All the padding in an Intel-format extended real goes at the high
3343 end, which in this case is after the mantissa, not the exponent.
3344 Therefore we must shift everything up 16 bits. */
3345 long intermed[3];
3347 intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3348 intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3349 intermed[2] = ((unsigned long)buf[0] >> 16);
3351 decode_ieee_extended (fmt, r, intermed);
3353 else
3354 /* decode_ieee_extended produces what we want directly. */
3355 decode_ieee_extended (fmt, r, buf);
3358 /* Convert from the internal format to the 16-byte Intel format for
3359 an IEEE extended real. */
3360 static void
3361 decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3362 const long *buf)
3364 /* All the padding in an Intel-format extended real goes at the high end. */
3365 decode_ieee_extended_intel_96 (fmt, r, buf);
3368 const struct real_format ieee_extended_motorola_format =
3370 encode_ieee_extended_motorola,
3371 decode_ieee_extended_motorola,
3375 -16382,
3376 16384,
3379 true,
3380 true,
3381 true,
3382 true,
3383 true,
3384 true
3387 const struct real_format ieee_extended_intel_96_format =
3389 encode_ieee_extended_intel_96,
3390 decode_ieee_extended_intel_96,
3394 -16381,
3395 16384,
3398 true,
3399 true,
3400 true,
3401 true,
3402 true,
3403 false
3406 const struct real_format ieee_extended_intel_128_format =
3408 encode_ieee_extended_intel_128,
3409 decode_ieee_extended_intel_128,
3413 -16381,
3414 16384,
3417 true,
3418 true,
3419 true,
3420 true,
3421 true,
3422 false
3425 /* The following caters to i386 systems that set the rounding precision
3426 to 53 bits instead of 64, e.g. FreeBSD. */
3427 const struct real_format ieee_extended_intel_96_round_53_format =
3429 encode_ieee_extended_intel_96,
3430 decode_ieee_extended_intel_96,
3434 -16381,
3435 16384,
3438 true,
3439 true,
3440 true,
3441 true,
3442 true,
3443 false
3446 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3447 numbers whose sum is equal to the extended precision value. The number
3448 with greater magnitude is first. This format has the same magnitude
3449 range as an IEEE double precision value, but effectively 106 bits of
3450 significand precision. Infinity and NaN are represented by their IEEE
3451 double precision value stored in the first number, the second number is
3452 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3454 static void encode_ibm_extended (const struct real_format *fmt,
3455 long *, const REAL_VALUE_TYPE *);
3456 static void decode_ibm_extended (const struct real_format *,
3457 REAL_VALUE_TYPE *, const long *);
3459 static void
3460 encode_ibm_extended (const struct real_format *fmt, long *buf,
3461 const REAL_VALUE_TYPE *r)
3463 REAL_VALUE_TYPE u, normr, v;
3464 const struct real_format *base_fmt;
3466 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3468 /* Renormlize R before doing any arithmetic on it. */
3469 normr = *r;
3470 if (normr.cl == rvc_normal)
3471 normalize (&normr);
3473 /* u = IEEE double precision portion of significand. */
3474 u = normr;
3475 round_for_format (base_fmt, &u);
3476 encode_ieee_double (base_fmt, &buf[0], &u);
3478 if (u.cl == rvc_normal)
3480 do_add (&v, &normr, &u, 1);
3481 /* Call round_for_format since we might need to denormalize. */
3482 round_for_format (base_fmt, &v);
3483 encode_ieee_double (base_fmt, &buf[2], &v);
3485 else
3487 /* Inf, NaN, 0 are all representable as doubles, so the
3488 least-significant part can be 0.0. */
3489 buf[2] = 0;
3490 buf[3] = 0;
3494 static void
3495 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3496 const long *buf)
3498 REAL_VALUE_TYPE u, v;
3499 const struct real_format *base_fmt;
3501 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3502 decode_ieee_double (base_fmt, &u, &buf[0]);
3504 if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3506 decode_ieee_double (base_fmt, &v, &buf[2]);
3507 do_add (r, &u, &v, 0);
3509 else
3510 *r = u;
3513 const struct real_format ibm_extended_format =
3515 encode_ibm_extended,
3516 decode_ibm_extended,
3518 53 + 53,
3520 -1021 + 53,
3521 1024,
3522 127,
3524 true,
3525 true,
3526 true,
3527 true,
3528 true,
3529 false
3532 const struct real_format mips_extended_format =
3534 encode_ibm_extended,
3535 decode_ibm_extended,
3537 53 + 53,
3539 -1021 + 53,
3540 1024,
3541 127,
3543 true,
3544 true,
3545 true,
3546 true,
3547 false,
3548 true
3552 /* IEEE quad precision format. */
3554 static void encode_ieee_quad (const struct real_format *fmt,
3555 long *, const REAL_VALUE_TYPE *);
3556 static void decode_ieee_quad (const struct real_format *,
3557 REAL_VALUE_TYPE *, const long *);
3559 static void
3560 encode_ieee_quad (const struct real_format *fmt, long *buf,
3561 const REAL_VALUE_TYPE *r)
3563 unsigned long image3, image2, image1, image0, exp;
3564 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3565 REAL_VALUE_TYPE u;
3567 image3 = r->sign << 31;
3568 image2 = 0;
3569 image1 = 0;
3570 image0 = 0;
3572 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3574 switch (r->cl)
3576 case rvc_zero:
3577 break;
3579 case rvc_inf:
3580 if (fmt->has_inf)
3581 image3 |= 32767 << 16;
3582 else
3584 image3 |= 0x7fffffff;
3585 image2 = 0xffffffff;
3586 image1 = 0xffffffff;
3587 image0 = 0xffffffff;
3589 break;
3591 case rvc_nan:
3592 if (fmt->has_nans)
3594 image3 |= 32767 << 16;
3596 if (r->canonical)
3598 if (fmt->canonical_nan_lsbs_set)
3600 image3 |= 0x7fff;
3601 image2 = image1 = image0 = 0xffffffff;
3604 else if (HOST_BITS_PER_LONG == 32)
3606 image0 = u.sig[0];
3607 image1 = u.sig[1];
3608 image2 = u.sig[2];
3609 image3 |= u.sig[3] & 0xffff;
3611 else
3613 image0 = u.sig[0];
3614 image1 = image0 >> 31 >> 1;
3615 image2 = u.sig[1];
3616 image3 |= (image2 >> 31 >> 1) & 0xffff;
3617 image0 &= 0xffffffff;
3618 image2 &= 0xffffffff;
3620 if (r->signalling == fmt->qnan_msb_set)
3621 image3 &= ~0x8000;
3622 else
3623 image3 |= 0x8000;
3624 if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
3625 image3 |= 0x4000;
3627 else
3629 image3 |= 0x7fffffff;
3630 image2 = 0xffffffff;
3631 image1 = 0xffffffff;
3632 image0 = 0xffffffff;
3634 break;
3636 case rvc_normal:
3637 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3638 whereas the intermediate representation is 0.F x 2**exp.
3639 Which means we're off by one. */
3640 if (denormal)
3641 exp = 0;
3642 else
3643 exp = REAL_EXP (r) + 16383 - 1;
3644 image3 |= exp << 16;
3646 if (HOST_BITS_PER_LONG == 32)
3648 image0 = u.sig[0];
3649 image1 = u.sig[1];
3650 image2 = u.sig[2];
3651 image3 |= u.sig[3] & 0xffff;
3653 else
3655 image0 = u.sig[0];
3656 image1 = image0 >> 31 >> 1;
3657 image2 = u.sig[1];
3658 image3 |= (image2 >> 31 >> 1) & 0xffff;
3659 image0 &= 0xffffffff;
3660 image2 &= 0xffffffff;
3662 break;
3664 default:
3665 gcc_unreachable ();
3668 if (FLOAT_WORDS_BIG_ENDIAN)
3670 buf[0] = image3;
3671 buf[1] = image2;
3672 buf[2] = image1;
3673 buf[3] = image0;
3675 else
3677 buf[0] = image0;
3678 buf[1] = image1;
3679 buf[2] = image2;
3680 buf[3] = image3;
3684 static void
3685 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3686 const long *buf)
3688 unsigned long image3, image2, image1, image0;
3689 bool sign;
3690 int exp;
3692 if (FLOAT_WORDS_BIG_ENDIAN)
3694 image3 = buf[0];
3695 image2 = buf[1];
3696 image1 = buf[2];
3697 image0 = buf[3];
3699 else
3701 image0 = buf[0];
3702 image1 = buf[1];
3703 image2 = buf[2];
3704 image3 = buf[3];
3706 image0 &= 0xffffffff;
3707 image1 &= 0xffffffff;
3708 image2 &= 0xffffffff;
3710 sign = (image3 >> 31) & 1;
3711 exp = (image3 >> 16) & 0x7fff;
3712 image3 &= 0xffff;
3714 memset (r, 0, sizeof (*r));
3716 if (exp == 0)
3718 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
3720 r->cl = rvc_normal;
3721 r->sign = sign;
3723 SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
3724 if (HOST_BITS_PER_LONG == 32)
3726 r->sig[0] = image0;
3727 r->sig[1] = image1;
3728 r->sig[2] = image2;
3729 r->sig[3] = image3;
3731 else
3733 r->sig[0] = (image1 << 31 << 1) | image0;
3734 r->sig[1] = (image3 << 31 << 1) | image2;
3737 normalize (r);
3739 else if (fmt->has_signed_zero)
3740 r->sign = sign;
3742 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3744 if (image3 | image2 | image1 | image0)
3746 r->cl = rvc_nan;
3747 r->sign = sign;
3748 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
3750 if (HOST_BITS_PER_LONG == 32)
3752 r->sig[0] = image0;
3753 r->sig[1] = image1;
3754 r->sig[2] = image2;
3755 r->sig[3] = image3;
3757 else
3759 r->sig[0] = (image1 << 31 << 1) | image0;
3760 r->sig[1] = (image3 << 31 << 1) | image2;
3762 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3764 else
3766 r->cl = rvc_inf;
3767 r->sign = sign;
3770 else
3772 r->cl = rvc_normal;
3773 r->sign = sign;
3774 SET_REAL_EXP (r, exp - 16383 + 1);
3776 if (HOST_BITS_PER_LONG == 32)
3778 r->sig[0] = image0;
3779 r->sig[1] = image1;
3780 r->sig[2] = image2;
3781 r->sig[3] = image3;
3783 else
3785 r->sig[0] = (image1 << 31 << 1) | image0;
3786 r->sig[1] = (image3 << 31 << 1) | image2;
3788 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3789 r->sig[SIGSZ-1] |= SIG_MSB;
3793 const struct real_format ieee_quad_format =
3795 encode_ieee_quad,
3796 decode_ieee_quad,
3798 113,
3799 113,
3800 -16381,
3801 16384,
3802 127,
3803 127,
3804 true,
3805 true,
3806 true,
3807 true,
3808 true,
3809 false
3812 const struct real_format mips_quad_format =
3814 encode_ieee_quad,
3815 decode_ieee_quad,
3817 113,
3818 113,
3819 -16381,
3820 16384,
3821 127,
3822 127,
3823 true,
3824 true,
3825 true,
3826 true,
3827 false,
3828 true
3831 /* Descriptions of VAX floating point formats can be found beginning at
3833 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3835 The thing to remember is that they're almost IEEE, except for word
3836 order, exponent bias, and the lack of infinities, nans, and denormals.
3838 We don't implement the H_floating format here, simply because neither
3839 the VAX or Alpha ports use it. */
3841 static void encode_vax_f (const struct real_format *fmt,
3842 long *, const REAL_VALUE_TYPE *);
3843 static void decode_vax_f (const struct real_format *,
3844 REAL_VALUE_TYPE *, const long *);
3845 static void encode_vax_d (const struct real_format *fmt,
3846 long *, const REAL_VALUE_TYPE *);
3847 static void decode_vax_d (const struct real_format *,
3848 REAL_VALUE_TYPE *, const long *);
3849 static void encode_vax_g (const struct real_format *fmt,
3850 long *, const REAL_VALUE_TYPE *);
3851 static void decode_vax_g (const struct real_format *,
3852 REAL_VALUE_TYPE *, const long *);
3854 static void
3855 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3856 const REAL_VALUE_TYPE *r)
3858 unsigned long sign, exp, sig, image;
3860 sign = r->sign << 15;
3862 switch (r->cl)
3864 case rvc_zero:
3865 image = 0;
3866 break;
3868 case rvc_inf:
3869 case rvc_nan:
3870 image = 0xffff7fff | sign;
3871 break;
3873 case rvc_normal:
3874 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
3875 exp = REAL_EXP (r) + 128;
3877 image = (sig << 16) & 0xffff0000;
3878 image |= sign;
3879 image |= exp << 7;
3880 image |= sig >> 16;
3881 break;
3883 default:
3884 gcc_unreachable ();
3887 buf[0] = image;
3890 static void
3891 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
3892 REAL_VALUE_TYPE *r, const long *buf)
3894 unsigned long image = buf[0] & 0xffffffff;
3895 int exp = (image >> 7) & 0xff;
3897 memset (r, 0, sizeof (*r));
3899 if (exp != 0)
3901 r->cl = rvc_normal;
3902 r->sign = (image >> 15) & 1;
3903 SET_REAL_EXP (r, exp - 128);
3905 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
3906 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
3910 static void
3911 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3912 const REAL_VALUE_TYPE *r)
3914 unsigned long image0, image1, sign = r->sign << 15;
3916 switch (r->cl)
3918 case rvc_zero:
3919 image0 = image1 = 0;
3920 break;
3922 case rvc_inf:
3923 case rvc_nan:
3924 image0 = 0xffff7fff | sign;
3925 image1 = 0xffffffff;
3926 break;
3928 case rvc_normal:
3929 /* Extract the significand into straight hi:lo. */
3930 if (HOST_BITS_PER_LONG == 64)
3932 image0 = r->sig[SIGSZ-1];
3933 image1 = (image0 >> (64 - 56)) & 0xffffffff;
3934 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
3936 else
3938 image0 = r->sig[SIGSZ-1];
3939 image1 = r->sig[SIGSZ-2];
3940 image1 = (image0 << 24) | (image1 >> 8);
3941 image0 = (image0 >> 8) & 0xffffff;
3944 /* Rearrange the half-words of the significand to match the
3945 external format. */
3946 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
3947 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
3949 /* Add the sign and exponent. */
3950 image0 |= sign;
3951 image0 |= (REAL_EXP (r) + 128) << 7;
3952 break;
3954 default:
3955 gcc_unreachable ();
3958 if (FLOAT_WORDS_BIG_ENDIAN)
3959 buf[0] = image1, buf[1] = image0;
3960 else
3961 buf[0] = image0, buf[1] = image1;
3964 static void
3965 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
3966 REAL_VALUE_TYPE *r, const long *buf)
3968 unsigned long image0, image1;
3969 int exp;
3971 if (FLOAT_WORDS_BIG_ENDIAN)
3972 image1 = buf[0], image0 = buf[1];
3973 else
3974 image0 = buf[0], image1 = buf[1];
3975 image0 &= 0xffffffff;
3976 image1 &= 0xffffffff;
3978 exp = (image0 >> 7) & 0xff;
3980 memset (r, 0, sizeof (*r));
3982 if (exp != 0)
3984 r->cl = rvc_normal;
3985 r->sign = (image0 >> 15) & 1;
3986 SET_REAL_EXP (r, exp - 128);
3988 /* Rearrange the half-words of the external format into
3989 proper ascending order. */
3990 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
3991 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
3993 if (HOST_BITS_PER_LONG == 64)
3995 image0 = (image0 << 31 << 1) | image1;
3996 image0 <<= 64 - 56;
3997 image0 |= SIG_MSB;
3998 r->sig[SIGSZ-1] = image0;
4000 else
4002 r->sig[SIGSZ-1] = image0;
4003 r->sig[SIGSZ-2] = image1;
4004 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
4005 r->sig[SIGSZ-1] |= SIG_MSB;
4010 static void
4011 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4012 const REAL_VALUE_TYPE *r)
4014 unsigned long image0, image1, sign = r->sign << 15;
4016 switch (r->cl)
4018 case rvc_zero:
4019 image0 = image1 = 0;
4020 break;
4022 case rvc_inf:
4023 case rvc_nan:
4024 image0 = 0xffff7fff | sign;
4025 image1 = 0xffffffff;
4026 break;
4028 case rvc_normal:
4029 /* Extract the significand into straight hi:lo. */
4030 if (HOST_BITS_PER_LONG == 64)
4032 image0 = r->sig[SIGSZ-1];
4033 image1 = (image0 >> (64 - 53)) & 0xffffffff;
4034 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
4036 else
4038 image0 = r->sig[SIGSZ-1];
4039 image1 = r->sig[SIGSZ-2];
4040 image1 = (image0 << 21) | (image1 >> 11);
4041 image0 = (image0 >> 11) & 0xfffff;
4044 /* Rearrange the half-words of the significand to match the
4045 external format. */
4046 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
4047 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4049 /* Add the sign and exponent. */
4050 image0 |= sign;
4051 image0 |= (REAL_EXP (r) + 1024) << 4;
4052 break;
4054 default:
4055 gcc_unreachable ();
4058 if (FLOAT_WORDS_BIG_ENDIAN)
4059 buf[0] = image1, buf[1] = image0;
4060 else
4061 buf[0] = image0, buf[1] = image1;
4064 static void
4065 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
4066 REAL_VALUE_TYPE *r, const long *buf)
4068 unsigned long image0, image1;
4069 int exp;
4071 if (FLOAT_WORDS_BIG_ENDIAN)
4072 image1 = buf[0], image0 = buf[1];
4073 else
4074 image0 = buf[0], image1 = buf[1];
4075 image0 &= 0xffffffff;
4076 image1 &= 0xffffffff;
4078 exp = (image0 >> 4) & 0x7ff;
4080 memset (r, 0, sizeof (*r));
4082 if (exp != 0)
4084 r->cl = rvc_normal;
4085 r->sign = (image0 >> 15) & 1;
4086 SET_REAL_EXP (r, exp - 1024);
4088 /* Rearrange the half-words of the external format into
4089 proper ascending order. */
4090 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
4091 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4093 if (HOST_BITS_PER_LONG == 64)
4095 image0 = (image0 << 31 << 1) | image1;
4096 image0 <<= 64 - 53;
4097 image0 |= SIG_MSB;
4098 r->sig[SIGSZ-1] = image0;
4100 else
4102 r->sig[SIGSZ-1] = image0;
4103 r->sig[SIGSZ-2] = image1;
4104 lshift_significand (r, r, 64 - 53);
4105 r->sig[SIGSZ-1] |= SIG_MSB;
4110 const struct real_format vax_f_format =
4112 encode_vax_f,
4113 decode_vax_f,
4117 -127,
4118 127,
4121 false,
4122 false,
4123 false,
4124 false,
4125 false,
4126 false
4129 const struct real_format vax_d_format =
4131 encode_vax_d,
4132 decode_vax_d,
4136 -127,
4137 127,
4140 false,
4141 false,
4142 false,
4143 false,
4144 false,
4145 false
4148 const struct real_format vax_g_format =
4150 encode_vax_g,
4151 decode_vax_g,
4155 -1023,
4156 1023,
4159 false,
4160 false,
4161 false,
4162 false,
4163 false,
4164 false
4167 /* Encode real R into a single precision DFP value in BUF. */
4168 static void
4169 encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4170 long *buf ATTRIBUTE_UNUSED,
4171 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4173 encode_decimal32 (fmt, buf, r);
4176 /* Decode a single precision DFP value in BUF into a real R. */
4177 static void
4178 decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4179 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4180 const long *buf ATTRIBUTE_UNUSED)
4182 decode_decimal32 (fmt, r, buf);
4185 /* Encode real R into a double precision DFP value in BUF. */
4186 static void
4187 encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4188 long *buf ATTRIBUTE_UNUSED,
4189 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4191 encode_decimal64 (fmt, buf, r);
4194 /* Decode a double precision DFP value in BUF into a real R. */
4195 static void
4196 decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4197 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4198 const long *buf ATTRIBUTE_UNUSED)
4200 decode_decimal64 (fmt, r, buf);
4203 /* Encode real R into a quad precision DFP value in BUF. */
4204 static void
4205 encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4206 long *buf ATTRIBUTE_UNUSED,
4207 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4209 encode_decimal128 (fmt, buf, r);
4212 /* Decode a quad precision DFP value in BUF into a real R. */
4213 static void
4214 decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4215 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4216 const long *buf ATTRIBUTE_UNUSED)
4218 decode_decimal128 (fmt, r, buf);
4221 /* Single precision decimal floating point (IEEE 754R). */
4222 const struct real_format decimal_single_format =
4224 encode_decimal_single,
4225 decode_decimal_single,
4226 10,
4229 -95,
4233 true,
4234 true,
4235 true,
4236 true,
4237 true,
4238 false
4241 /* Double precision decimal floating point (IEEE 754R). */
4242 const struct real_format decimal_double_format =
4244 encode_decimal_double,
4245 decode_decimal_double,
4249 -383,
4250 384,
4253 true,
4254 true,
4255 true,
4256 true,
4257 true,
4258 false
4261 /* Quad precision decimal floating point (IEEE 754R). */
4262 const struct real_format decimal_quad_format =
4264 encode_decimal_quad,
4265 decode_decimal_quad,
4269 -6143,
4270 6144,
4271 127,
4272 127,
4273 true,
4274 true,
4275 true,
4276 true,
4277 true,
4278 false
4281 /* A synthetic "format" for internal arithmetic. It's the size of the
4282 internal significand minus the two bits needed for proper rounding.
4283 The encode and decode routines exist only to satisfy our paranoia
4284 harness. */
4286 static void encode_internal (const struct real_format *fmt,
4287 long *, const REAL_VALUE_TYPE *);
4288 static void decode_internal (const struct real_format *,
4289 REAL_VALUE_TYPE *, const long *);
4291 static void
4292 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4293 const REAL_VALUE_TYPE *r)
4295 memcpy (buf, r, sizeof (*r));
4298 static void
4299 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
4300 REAL_VALUE_TYPE *r, const long *buf)
4302 memcpy (r, buf, sizeof (*r));
4305 const struct real_format real_internal_format =
4307 encode_internal,
4308 decode_internal,
4310 SIGNIFICAND_BITS - 2,
4311 SIGNIFICAND_BITS - 2,
4312 -MAX_EXP,
4313 MAX_EXP,
4316 true,
4317 true,
4318 false,
4319 true,
4320 true,
4321 false
4324 /* Calculate the square root of X in mode MODE, and store the result
4325 in R. Return TRUE if the operation does not raise an exception.
4326 For details see "High Precision Division and Square Root",
4327 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4328 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4330 bool
4331 real_sqrt (REAL_VALUE_TYPE *r, enum machine_mode mode,
4332 const REAL_VALUE_TYPE *x)
4334 static REAL_VALUE_TYPE halfthree;
4335 static bool init = false;
4336 REAL_VALUE_TYPE h, t, i;
4337 int iter, exp;
4339 /* sqrt(-0.0) is -0.0. */
4340 if (real_isnegzero (x))
4342 *r = *x;
4343 return false;
4346 /* Negative arguments return NaN. */
4347 if (real_isneg (x))
4349 get_canonical_qnan (r, 0);
4350 return false;
4353 /* Infinity and NaN return themselves. */
4354 if (!real_isfinite (x))
4356 *r = *x;
4357 return false;
4360 if (!init)
4362 do_add (&halfthree, &dconst1, &dconsthalf, 0);
4363 init = true;
4366 /* Initial guess for reciprocal sqrt, i. */
4367 exp = real_exponent (x);
4368 real_ldexp (&i, &dconst1, -exp/2);
4370 /* Newton's iteration for reciprocal sqrt, i. */
4371 for (iter = 0; iter < 16; iter++)
4373 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4374 do_multiply (&t, x, &i);
4375 do_multiply (&h, &t, &i);
4376 do_multiply (&t, &h, &dconsthalf);
4377 do_add (&h, &halfthree, &t, 1);
4378 do_multiply (&t, &i, &h);
4380 /* Check for early convergence. */
4381 if (iter >= 6 && real_identical (&i, &t))
4382 break;
4384 /* ??? Unroll loop to avoid copying. */
4385 i = t;
4388 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4389 do_multiply (&t, x, &i);
4390 do_multiply (&h, &t, &i);
4391 do_add (&i, &dconst1, &h, 1);
4392 do_multiply (&h, &t, &i);
4393 do_multiply (&i, &dconsthalf, &h);
4394 do_add (&h, &t, &i, 0);
4396 /* ??? We need a Tuckerman test to get the last bit. */
4398 real_convert (r, mode, &h);
4399 return true;
4402 /* Calculate X raised to the integer exponent N in mode MODE and store
4403 the result in R. Return true if the result may be inexact due to
4404 loss of precision. The algorithm is the classic "left-to-right binary
4405 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4406 Algorithms", "The Art of Computer Programming", Volume 2. */
4408 bool
4409 real_powi (REAL_VALUE_TYPE *r, enum machine_mode mode,
4410 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
4412 unsigned HOST_WIDE_INT bit;
4413 REAL_VALUE_TYPE t;
4414 bool inexact = false;
4415 bool init = false;
4416 bool neg;
4417 int i;
4419 if (n == 0)
4421 *r = dconst1;
4422 return false;
4424 else if (n < 0)
4426 /* Don't worry about overflow, from now on n is unsigned. */
4427 neg = true;
4428 n = -n;
4430 else
4431 neg = false;
4433 t = *x;
4434 bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
4435 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
4437 if (init)
4439 inexact |= do_multiply (&t, &t, &t);
4440 if (n & bit)
4441 inexact |= do_multiply (&t, &t, x);
4443 else if (n & bit)
4444 init = true;
4445 bit >>= 1;
4448 if (neg)
4449 inexact |= do_divide (&t, &dconst1, &t);
4451 real_convert (r, mode, &t);
4452 return inexact;
4455 /* Round X to the nearest integer not larger in absolute value, i.e.
4456 towards zero, placing the result in R in mode MODE. */
4458 void
4459 real_trunc (REAL_VALUE_TYPE *r, enum machine_mode mode,
4460 const REAL_VALUE_TYPE *x)
4462 do_fix_trunc (r, x);
4463 if (mode != VOIDmode)
4464 real_convert (r, mode, r);
4467 /* Round X to the largest integer not greater in value, i.e. round
4468 down, placing the result in R in mode MODE. */
4470 void
4471 real_floor (REAL_VALUE_TYPE *r, enum machine_mode mode,
4472 const REAL_VALUE_TYPE *x)
4474 REAL_VALUE_TYPE t;
4476 do_fix_trunc (&t, x);
4477 if (! real_identical (&t, x) && x->sign)
4478 do_add (&t, &t, &dconstm1, 0);
4479 if (mode != VOIDmode)
4480 real_convert (r, mode, &t);
4481 else
4482 *r = t;
4485 /* Round X to the smallest integer not less then argument, i.e. round
4486 up, placing the result in R in mode MODE. */
4488 void
4489 real_ceil (REAL_VALUE_TYPE *r, enum machine_mode mode,
4490 const REAL_VALUE_TYPE *x)
4492 REAL_VALUE_TYPE t;
4494 do_fix_trunc (&t, x);
4495 if (! real_identical (&t, x) && ! x->sign)
4496 do_add (&t, &t, &dconst1, 0);
4497 if (mode != VOIDmode)
4498 real_convert (r, mode, &t);
4499 else
4500 *r = t;
4503 /* Round X to the nearest integer, but round halfway cases away from
4504 zero. */
4506 void
4507 real_round (REAL_VALUE_TYPE *r, enum machine_mode mode,
4508 const REAL_VALUE_TYPE *x)
4510 do_add (r, x, &dconsthalf, x->sign);
4511 do_fix_trunc (r, r);
4512 if (mode != VOIDmode)
4513 real_convert (r, mode, r);
4516 /* Set the sign of R to the sign of X. */
4518 void
4519 real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
4521 r->sign = x->sign;
4524 /* Convert from REAL_VALUE_TYPE to MPFR. The caller is responsible
4525 for initializing and clearing the MPFR parameter. */
4527 void
4528 mpfr_from_real (mpfr_ptr m, const REAL_VALUE_TYPE *r, mp_rnd_t rndmode)
4530 /* We use a string as an intermediate type. */
4531 char buf[128];
4532 int ret;
4534 /* Take care of Infinity and NaN. */
4535 if (r->cl == rvc_inf)
4537 mpfr_set_inf (m, r->sign == 1 ? -1 : 1);
4538 return;
4541 if (r->cl == rvc_nan)
4543 mpfr_set_nan (m);
4544 return;
4547 real_to_hexadecimal (buf, r, sizeof (buf), 0, 1);
4548 /* mpfr_set_str() parses hexadecimal floats from strings in the same
4549 format that GCC will output them. Nothing extra is needed. */
4550 ret = mpfr_set_str (m, buf, 16, rndmode);
4551 gcc_assert (ret == 0);
4554 /* Convert from MPFR to REAL_VALUE_TYPE, for a given type TYPE and rounding
4555 mode RNDMODE. TYPE is only relevant if M is a NaN. */
4557 void
4558 real_from_mpfr (REAL_VALUE_TYPE *r, mpfr_srcptr m, tree type, mp_rnd_t rndmode)
4560 /* We use a string as an intermediate type. */
4561 char buf[128], *rstr;
4562 mp_exp_t exp;
4564 /* Take care of Infinity and NaN. */
4565 if (mpfr_inf_p (m))
4567 real_inf (r);
4568 if (mpfr_sgn (m) < 0)
4569 *r = REAL_VALUE_NEGATE (*r);
4570 return;
4573 if (mpfr_nan_p (m))
4575 real_nan (r, "", 1, TYPE_MODE (type));
4576 return;
4579 rstr = mpfr_get_str (NULL, &exp, 16, 0, m, rndmode);
4581 /* The additional 12 chars add space for the sprintf below. This
4582 leaves 6 digits for the exponent which is supposedly enough. */
4583 gcc_assert (rstr != NULL && strlen (rstr) < sizeof (buf) - 12);
4585 /* REAL_VALUE_ATOF expects the exponent for mantissa * 2**exp,
4586 mpfr_get_str returns the exponent for mantissa * 16**exp, adjust
4587 for that. */
4588 exp *= 4;
4590 if (rstr[0] == '-')
4591 sprintf (buf, "-0x.%sp%d", &rstr[1], (int) exp);
4592 else
4593 sprintf (buf, "0x.%sp%d", rstr, (int) exp);
4595 mpfr_free_str (rstr);
4597 real_from_string (r, buf);
4600 /* Check whether the real constant value given is an integer. */
4602 bool
4603 real_isinteger (const REAL_VALUE_TYPE *c, enum machine_mode mode)
4605 REAL_VALUE_TYPE cint;
4607 real_trunc (&cint, mode, c);
4608 return real_identical (c, &cint);
4611 /* Write into BUF the maximum representable finite floating-point
4612 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
4613 float string. LEN is the size of BUF, and the buffer must be large
4614 enough to contain the resulting string. */
4616 void
4617 get_max_float (const struct real_format *fmt, char *buf, size_t len)
4619 int i, n;
4620 char *p;
4622 strcpy (buf, "0x0.");
4623 n = fmt->p;
4624 for (i = 0, p = buf + 4; i + 3 < n; i += 4)
4625 *p++ = 'f';
4626 if (i < n)
4627 *p++ = "08ce"[n - i];
4628 sprintf (p, "p%d", fmt->emax);
4629 if (fmt->pnan < fmt->p)
4631 /* This is an IBM extended double format made up of two IEEE
4632 doubles. The value of the long double is the sum of the
4633 values of the two parts. The most significant part is
4634 required to be the value of the long double rounded to the
4635 nearest double. Rounding means we need a slightly smaller
4636 value for LDBL_MAX. */
4637 buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
4640 gcc_assert (strlen (buf) < len);