2014-08-11 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / asan.c
blob4e6f43860fa48f8eed8cba081b0916b93863bf91
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "gimple-expr.h"
31 #include "is-a.h"
32 #include "inchash.h"
33 #include "gimple.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "calls.h"
37 #include "varasm.h"
38 #include "stor-layout.h"
39 #include "tree-iterator.h"
40 #include "cgraph.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-pass.h"
44 #include "asan.h"
45 #include "gimple-pretty-print.h"
46 #include "target.h"
47 #include "expr.h"
48 #include "optabs.h"
49 #include "output.h"
50 #include "tm_p.h"
51 #include "langhooks.h"
52 #include "alloc-pool.h"
53 #include "cfgloop.h"
54 #include "gimple-builder.h"
55 #include "ubsan.h"
56 #include "predict.h"
57 #include "params.h"
58 #include "builtins.h"
60 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
61 with <2x slowdown on average.
63 The tool consists of two parts:
64 instrumentation module (this file) and a run-time library.
65 The instrumentation module adds a run-time check before every memory insn.
66 For a 8- or 16- byte load accessing address X:
67 ShadowAddr = (X >> 3) + Offset
68 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
69 if (ShadowValue)
70 __asan_report_load8(X);
71 For a load of N bytes (N=1, 2 or 4) from address X:
72 ShadowAddr = (X >> 3) + Offset
73 ShadowValue = *(char*)ShadowAddr;
74 if (ShadowValue)
75 if ((X & 7) + N - 1 > ShadowValue)
76 __asan_report_loadN(X);
77 Stores are instrumented similarly, but using __asan_report_storeN functions.
78 A call too __asan_init_vN() is inserted to the list of module CTORs.
79 N is the version number of the AddressSanitizer API. The changes between the
80 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
82 The run-time library redefines malloc (so that redzone are inserted around
83 the allocated memory) and free (so that reuse of free-ed memory is delayed),
84 provides __asan_report* and __asan_init_vN functions.
86 Read more:
87 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
89 The current implementation supports detection of out-of-bounds and
90 use-after-free in the heap, on the stack and for global variables.
92 [Protection of stack variables]
94 To understand how detection of out-of-bounds and use-after-free works
95 for stack variables, lets look at this example on x86_64 where the
96 stack grows downward:
98 int
99 foo ()
101 char a[23] = {0};
102 int b[2] = {0};
104 a[5] = 1;
105 b[1] = 2;
107 return a[5] + b[1];
110 For this function, the stack protected by asan will be organized as
111 follows, from the top of the stack to the bottom:
113 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
115 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
116 the next slot be 32 bytes aligned; this one is called Partial
117 Redzone; this 32 bytes alignment is an asan constraint]
119 Slot 3/ [24 bytes for variable 'a']
121 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
123 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
125 Slot 6/ [8 bytes for variable 'b']
127 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
128 'LEFT RedZone']
130 The 32 bytes of LEFT red zone at the bottom of the stack can be
131 decomposed as such:
133 1/ The first 8 bytes contain a magical asan number that is always
134 0x41B58AB3.
136 2/ The following 8 bytes contains a pointer to a string (to be
137 parsed at runtime by the runtime asan library), which format is
138 the following:
140 "<function-name> <space> <num-of-variables-on-the-stack>
141 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
142 <length-of-var-in-bytes> ){n} "
144 where '(...){n}' means the content inside the parenthesis occurs 'n'
145 times, with 'n' being the number of variables on the stack.
147 3/ The following 8 bytes contain the PC of the current function which
148 will be used by the run-time library to print an error message.
150 4/ The following 8 bytes are reserved for internal use by the run-time.
152 The shadow memory for that stack layout is going to look like this:
154 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
155 The F1 byte pattern is a magic number called
156 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
157 the memory for that shadow byte is part of a the LEFT red zone
158 intended to seat at the bottom of the variables on the stack.
160 - content of shadow memory 8 bytes for slots 6 and 5:
161 0xF4F4F400. The F4 byte pattern is a magic number
162 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
163 memory region for this shadow byte is a PARTIAL red zone
164 intended to pad a variable A, so that the slot following
165 {A,padding} is 32 bytes aligned.
167 Note that the fact that the least significant byte of this
168 shadow memory content is 00 means that 8 bytes of its
169 corresponding memory (which corresponds to the memory of
170 variable 'b') is addressable.
172 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
173 The F2 byte pattern is a magic number called
174 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
175 region for this shadow byte is a MIDDLE red zone intended to
176 seat between two 32 aligned slots of {variable,padding}.
178 - content of shadow memory 8 bytes for slot 3 and 2:
179 0xF4000000. This represents is the concatenation of
180 variable 'a' and the partial red zone following it, like what we
181 had for variable 'b'. The least significant 3 bytes being 00
182 means that the 3 bytes of variable 'a' are addressable.
184 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
185 The F3 byte pattern is a magic number called
186 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
187 region for this shadow byte is a RIGHT red zone intended to seat
188 at the top of the variables of the stack.
190 Note that the real variable layout is done in expand_used_vars in
191 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
192 stack variables as well as the different red zones, emits some
193 prologue code to populate the shadow memory as to poison (mark as
194 non-accessible) the regions of the red zones and mark the regions of
195 stack variables as accessible, and emit some epilogue code to
196 un-poison (mark as accessible) the regions of red zones right before
197 the function exits.
199 [Protection of global variables]
201 The basic idea is to insert a red zone between two global variables
202 and install a constructor function that calls the asan runtime to do
203 the populating of the relevant shadow memory regions at load time.
205 So the global variables are laid out as to insert a red zone between
206 them. The size of the red zones is so that each variable starts on a
207 32 bytes boundary.
209 Then a constructor function is installed so that, for each global
210 variable, it calls the runtime asan library function
211 __asan_register_globals_with an instance of this type:
213 struct __asan_global
215 // Address of the beginning of the global variable.
216 const void *__beg;
218 // Initial size of the global variable.
219 uptr __size;
221 // Size of the global variable + size of the red zone. This
222 // size is 32 bytes aligned.
223 uptr __size_with_redzone;
225 // Name of the global variable.
226 const void *__name;
228 // Name of the module where the global variable is declared.
229 const void *__module_name;
231 // 1 if it has dynamic initialization, 0 otherwise.
232 uptr __has_dynamic_init;
235 A destructor function that calls the runtime asan library function
236 _asan_unregister_globals is also installed. */
238 alias_set_type asan_shadow_set = -1;
240 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
241 alias set is used for all shadow memory accesses. */
242 static GTY(()) tree shadow_ptr_types[2];
244 /* Decl for __asan_option_detect_stack_use_after_return. */
245 static GTY(()) tree asan_detect_stack_use_after_return;
247 /* Various flags for Asan builtins. */
248 enum asan_check_flags
250 ASAN_CHECK_STORE = 1 << 0,
251 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
252 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
253 ASAN_CHECK_START_INSTRUMENTED = 1 << 3,
254 ASAN_CHECK_END_INSTRUMENTED = 1 << 4,
255 ASAN_CHECK_LAST
258 /* Hashtable support for memory references used by gimple
259 statements. */
261 /* This type represents a reference to a memory region. */
262 struct asan_mem_ref
264 /* The expression of the beginning of the memory region. */
265 tree start;
267 /* The size of the access. */
268 HOST_WIDE_INT access_size;
271 static alloc_pool asan_mem_ref_alloc_pool;
273 /* This creates the alloc pool used to store the instances of
274 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
276 static alloc_pool
277 asan_mem_ref_get_alloc_pool ()
279 if (asan_mem_ref_alloc_pool == NULL)
280 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
281 sizeof (asan_mem_ref),
282 10);
283 return asan_mem_ref_alloc_pool;
287 /* Initializes an instance of asan_mem_ref. */
289 static void
290 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
292 ref->start = start;
293 ref->access_size = access_size;
296 /* Allocates memory for an instance of asan_mem_ref into the memory
297 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
298 START is the address of (or the expression pointing to) the
299 beginning of memory reference. ACCESS_SIZE is the size of the
300 access to the referenced memory. */
302 static asan_mem_ref*
303 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
305 asan_mem_ref *ref =
306 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
308 asan_mem_ref_init (ref, start, access_size);
309 return ref;
312 /* This builds and returns a pointer to the end of the memory region
313 that starts at START and of length LEN. */
315 tree
316 asan_mem_ref_get_end (tree start, tree len)
318 if (len == NULL_TREE || integer_zerop (len))
319 return start;
321 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
324 /* Return a tree expression that represents the end of the referenced
325 memory region. Beware that this function can actually build a new
326 tree expression. */
328 tree
329 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
331 return asan_mem_ref_get_end (ref->start, len);
334 struct asan_mem_ref_hasher
335 : typed_noop_remove <asan_mem_ref>
337 typedef asan_mem_ref value_type;
338 typedef asan_mem_ref compare_type;
340 static inline hashval_t hash (const value_type *);
341 static inline bool equal (const value_type *, const compare_type *);
344 /* Hash a memory reference. */
346 inline hashval_t
347 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
349 inchash::hash hstate;
350 inchash::add_expr (mem_ref->start, hstate);
351 hstate.add_wide_int (mem_ref->access_size);
352 return hstate.end ();
355 /* Compare two memory references. We accept the length of either
356 memory references to be NULL_TREE. */
358 inline bool
359 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
360 const asan_mem_ref *m2)
362 return (m1->access_size == m2->access_size
363 && operand_equal_p (m1->start, m2->start, 0));
366 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
368 /* Returns a reference to the hash table containing memory references.
369 This function ensures that the hash table is created. Note that
370 this hash table is updated by the function
371 update_mem_ref_hash_table. */
373 static hash_table<asan_mem_ref_hasher> *
374 get_mem_ref_hash_table ()
376 if (!asan_mem_ref_ht)
377 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
379 return asan_mem_ref_ht;
382 /* Clear all entries from the memory references hash table. */
384 static void
385 empty_mem_ref_hash_table ()
387 if (asan_mem_ref_ht)
388 asan_mem_ref_ht->empty ();
391 /* Free the memory references hash table. */
393 static void
394 free_mem_ref_resources ()
396 delete asan_mem_ref_ht;
397 asan_mem_ref_ht = NULL;
399 if (asan_mem_ref_alloc_pool)
401 free_alloc_pool (asan_mem_ref_alloc_pool);
402 asan_mem_ref_alloc_pool = NULL;
406 /* Return true iff the memory reference REF has been instrumented. */
408 static bool
409 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
411 asan_mem_ref r;
412 asan_mem_ref_init (&r, ref, access_size);
414 return (get_mem_ref_hash_table ()->find (&r) != NULL);
417 /* Return true iff the memory reference REF has been instrumented. */
419 static bool
420 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
422 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
425 /* Return true iff access to memory region starting at REF and of
426 length LEN has been instrumented. */
428 static bool
429 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
431 /* First let's see if the address of the beginning of REF has been
432 instrumented. */
433 if (!has_mem_ref_been_instrumented (ref))
434 return false;
436 if (len != 0)
438 /* Let's see if the end of the region has been instrumented. */
439 if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
440 ref->access_size))
441 return false;
443 return true;
446 /* Set REF to the memory reference present in a gimple assignment
447 ASSIGNMENT. Return true upon successful completion, false
448 otherwise. */
450 static bool
451 get_mem_ref_of_assignment (const gimple assignment,
452 asan_mem_ref *ref,
453 bool *ref_is_store)
455 gcc_assert (gimple_assign_single_p (assignment));
457 if (gimple_store_p (assignment)
458 && !gimple_clobber_p (assignment))
460 ref->start = gimple_assign_lhs (assignment);
461 *ref_is_store = true;
463 else if (gimple_assign_load_p (assignment))
465 ref->start = gimple_assign_rhs1 (assignment);
466 *ref_is_store = false;
468 else
469 return false;
471 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
472 return true;
475 /* Return the memory references contained in a gimple statement
476 representing a builtin call that has to do with memory access. */
478 static bool
479 get_mem_refs_of_builtin_call (const gimple call,
480 asan_mem_ref *src0,
481 tree *src0_len,
482 bool *src0_is_store,
483 asan_mem_ref *src1,
484 tree *src1_len,
485 bool *src1_is_store,
486 asan_mem_ref *dst,
487 tree *dst_len,
488 bool *dst_is_store,
489 bool *dest_is_deref)
491 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
493 tree callee = gimple_call_fndecl (call);
494 tree source0 = NULL_TREE, source1 = NULL_TREE,
495 dest = NULL_TREE, len = NULL_TREE;
496 bool is_store = true, got_reference_p = false;
497 HOST_WIDE_INT access_size = 1;
499 switch (DECL_FUNCTION_CODE (callee))
501 /* (s, s, n) style memops. */
502 case BUILT_IN_BCMP:
503 case BUILT_IN_MEMCMP:
504 source0 = gimple_call_arg (call, 0);
505 source1 = gimple_call_arg (call, 1);
506 len = gimple_call_arg (call, 2);
507 break;
509 /* (src, dest, n) style memops. */
510 case BUILT_IN_BCOPY:
511 source0 = gimple_call_arg (call, 0);
512 dest = gimple_call_arg (call, 1);
513 len = gimple_call_arg (call, 2);
514 break;
516 /* (dest, src, n) style memops. */
517 case BUILT_IN_MEMCPY:
518 case BUILT_IN_MEMCPY_CHK:
519 case BUILT_IN_MEMMOVE:
520 case BUILT_IN_MEMMOVE_CHK:
521 case BUILT_IN_MEMPCPY:
522 case BUILT_IN_MEMPCPY_CHK:
523 dest = gimple_call_arg (call, 0);
524 source0 = gimple_call_arg (call, 1);
525 len = gimple_call_arg (call, 2);
526 break;
528 /* (dest, n) style memops. */
529 case BUILT_IN_BZERO:
530 dest = gimple_call_arg (call, 0);
531 len = gimple_call_arg (call, 1);
532 break;
534 /* (dest, x, n) style memops*/
535 case BUILT_IN_MEMSET:
536 case BUILT_IN_MEMSET_CHK:
537 dest = gimple_call_arg (call, 0);
538 len = gimple_call_arg (call, 2);
539 break;
541 case BUILT_IN_STRLEN:
542 source0 = gimple_call_arg (call, 0);
543 len = gimple_call_lhs (call);
544 break ;
546 /* And now the __atomic* and __sync builtins.
547 These are handled differently from the classical memory memory
548 access builtins above. */
550 case BUILT_IN_ATOMIC_LOAD_1:
551 case BUILT_IN_ATOMIC_LOAD_2:
552 case BUILT_IN_ATOMIC_LOAD_4:
553 case BUILT_IN_ATOMIC_LOAD_8:
554 case BUILT_IN_ATOMIC_LOAD_16:
555 is_store = false;
556 /* fall through. */
558 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
559 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
560 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
561 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
562 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
564 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
565 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
566 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
567 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
568 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
570 case BUILT_IN_SYNC_FETCH_AND_OR_1:
571 case BUILT_IN_SYNC_FETCH_AND_OR_2:
572 case BUILT_IN_SYNC_FETCH_AND_OR_4:
573 case BUILT_IN_SYNC_FETCH_AND_OR_8:
574 case BUILT_IN_SYNC_FETCH_AND_OR_16:
576 case BUILT_IN_SYNC_FETCH_AND_AND_1:
577 case BUILT_IN_SYNC_FETCH_AND_AND_2:
578 case BUILT_IN_SYNC_FETCH_AND_AND_4:
579 case BUILT_IN_SYNC_FETCH_AND_AND_8:
580 case BUILT_IN_SYNC_FETCH_AND_AND_16:
582 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
583 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
584 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
585 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
586 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
588 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
589 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
590 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
591 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
593 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
594 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
595 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
596 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
597 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
599 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
600 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
601 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
602 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
603 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
605 case BUILT_IN_SYNC_OR_AND_FETCH_1:
606 case BUILT_IN_SYNC_OR_AND_FETCH_2:
607 case BUILT_IN_SYNC_OR_AND_FETCH_4:
608 case BUILT_IN_SYNC_OR_AND_FETCH_8:
609 case BUILT_IN_SYNC_OR_AND_FETCH_16:
611 case BUILT_IN_SYNC_AND_AND_FETCH_1:
612 case BUILT_IN_SYNC_AND_AND_FETCH_2:
613 case BUILT_IN_SYNC_AND_AND_FETCH_4:
614 case BUILT_IN_SYNC_AND_AND_FETCH_8:
615 case BUILT_IN_SYNC_AND_AND_FETCH_16:
617 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
618 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
619 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
620 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
621 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
623 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
624 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
625 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
626 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
628 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
629 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
630 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
631 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
632 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
634 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
635 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
636 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
637 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
638 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
640 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
641 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
642 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
643 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
644 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
646 case BUILT_IN_SYNC_LOCK_RELEASE_1:
647 case BUILT_IN_SYNC_LOCK_RELEASE_2:
648 case BUILT_IN_SYNC_LOCK_RELEASE_4:
649 case BUILT_IN_SYNC_LOCK_RELEASE_8:
650 case BUILT_IN_SYNC_LOCK_RELEASE_16:
652 case BUILT_IN_ATOMIC_EXCHANGE_1:
653 case BUILT_IN_ATOMIC_EXCHANGE_2:
654 case BUILT_IN_ATOMIC_EXCHANGE_4:
655 case BUILT_IN_ATOMIC_EXCHANGE_8:
656 case BUILT_IN_ATOMIC_EXCHANGE_16:
658 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
659 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
660 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
661 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
662 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
664 case BUILT_IN_ATOMIC_STORE_1:
665 case BUILT_IN_ATOMIC_STORE_2:
666 case BUILT_IN_ATOMIC_STORE_4:
667 case BUILT_IN_ATOMIC_STORE_8:
668 case BUILT_IN_ATOMIC_STORE_16:
670 case BUILT_IN_ATOMIC_ADD_FETCH_1:
671 case BUILT_IN_ATOMIC_ADD_FETCH_2:
672 case BUILT_IN_ATOMIC_ADD_FETCH_4:
673 case BUILT_IN_ATOMIC_ADD_FETCH_8:
674 case BUILT_IN_ATOMIC_ADD_FETCH_16:
676 case BUILT_IN_ATOMIC_SUB_FETCH_1:
677 case BUILT_IN_ATOMIC_SUB_FETCH_2:
678 case BUILT_IN_ATOMIC_SUB_FETCH_4:
679 case BUILT_IN_ATOMIC_SUB_FETCH_8:
680 case BUILT_IN_ATOMIC_SUB_FETCH_16:
682 case BUILT_IN_ATOMIC_AND_FETCH_1:
683 case BUILT_IN_ATOMIC_AND_FETCH_2:
684 case BUILT_IN_ATOMIC_AND_FETCH_4:
685 case BUILT_IN_ATOMIC_AND_FETCH_8:
686 case BUILT_IN_ATOMIC_AND_FETCH_16:
688 case BUILT_IN_ATOMIC_NAND_FETCH_1:
689 case BUILT_IN_ATOMIC_NAND_FETCH_2:
690 case BUILT_IN_ATOMIC_NAND_FETCH_4:
691 case BUILT_IN_ATOMIC_NAND_FETCH_8:
692 case BUILT_IN_ATOMIC_NAND_FETCH_16:
694 case BUILT_IN_ATOMIC_XOR_FETCH_1:
695 case BUILT_IN_ATOMIC_XOR_FETCH_2:
696 case BUILT_IN_ATOMIC_XOR_FETCH_4:
697 case BUILT_IN_ATOMIC_XOR_FETCH_8:
698 case BUILT_IN_ATOMIC_XOR_FETCH_16:
700 case BUILT_IN_ATOMIC_OR_FETCH_1:
701 case BUILT_IN_ATOMIC_OR_FETCH_2:
702 case BUILT_IN_ATOMIC_OR_FETCH_4:
703 case BUILT_IN_ATOMIC_OR_FETCH_8:
704 case BUILT_IN_ATOMIC_OR_FETCH_16:
706 case BUILT_IN_ATOMIC_FETCH_ADD_1:
707 case BUILT_IN_ATOMIC_FETCH_ADD_2:
708 case BUILT_IN_ATOMIC_FETCH_ADD_4:
709 case BUILT_IN_ATOMIC_FETCH_ADD_8:
710 case BUILT_IN_ATOMIC_FETCH_ADD_16:
712 case BUILT_IN_ATOMIC_FETCH_SUB_1:
713 case BUILT_IN_ATOMIC_FETCH_SUB_2:
714 case BUILT_IN_ATOMIC_FETCH_SUB_4:
715 case BUILT_IN_ATOMIC_FETCH_SUB_8:
716 case BUILT_IN_ATOMIC_FETCH_SUB_16:
718 case BUILT_IN_ATOMIC_FETCH_AND_1:
719 case BUILT_IN_ATOMIC_FETCH_AND_2:
720 case BUILT_IN_ATOMIC_FETCH_AND_4:
721 case BUILT_IN_ATOMIC_FETCH_AND_8:
722 case BUILT_IN_ATOMIC_FETCH_AND_16:
724 case BUILT_IN_ATOMIC_FETCH_NAND_1:
725 case BUILT_IN_ATOMIC_FETCH_NAND_2:
726 case BUILT_IN_ATOMIC_FETCH_NAND_4:
727 case BUILT_IN_ATOMIC_FETCH_NAND_8:
728 case BUILT_IN_ATOMIC_FETCH_NAND_16:
730 case BUILT_IN_ATOMIC_FETCH_XOR_1:
731 case BUILT_IN_ATOMIC_FETCH_XOR_2:
732 case BUILT_IN_ATOMIC_FETCH_XOR_4:
733 case BUILT_IN_ATOMIC_FETCH_XOR_8:
734 case BUILT_IN_ATOMIC_FETCH_XOR_16:
736 case BUILT_IN_ATOMIC_FETCH_OR_1:
737 case BUILT_IN_ATOMIC_FETCH_OR_2:
738 case BUILT_IN_ATOMIC_FETCH_OR_4:
739 case BUILT_IN_ATOMIC_FETCH_OR_8:
740 case BUILT_IN_ATOMIC_FETCH_OR_16:
742 dest = gimple_call_arg (call, 0);
743 /* DEST represents the address of a memory location.
744 instrument_derefs wants the memory location, so lets
745 dereference the address DEST before handing it to
746 instrument_derefs. */
747 if (TREE_CODE (dest) == ADDR_EXPR)
748 dest = TREE_OPERAND (dest, 0);
749 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
750 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
751 dest, build_int_cst (TREE_TYPE (dest), 0));
752 else
753 gcc_unreachable ();
755 access_size = int_size_in_bytes (TREE_TYPE (dest));
758 default:
759 /* The other builtins memory access are not instrumented in this
760 function because they either don't have any length parameter,
761 or their length parameter is just a limit. */
762 break;
765 if (len != NULL_TREE)
767 if (source0 != NULL_TREE)
769 src0->start = source0;
770 src0->access_size = access_size;
771 *src0_len = len;
772 *src0_is_store = false;
775 if (source1 != NULL_TREE)
777 src1->start = source1;
778 src1->access_size = access_size;
779 *src1_len = len;
780 *src1_is_store = false;
783 if (dest != NULL_TREE)
785 dst->start = dest;
786 dst->access_size = access_size;
787 *dst_len = len;
788 *dst_is_store = true;
791 got_reference_p = true;
793 else if (dest)
795 dst->start = dest;
796 dst->access_size = access_size;
797 *dst_len = NULL_TREE;
798 *dst_is_store = is_store;
799 *dest_is_deref = true;
800 got_reference_p = true;
803 return got_reference_p;
806 /* Return true iff a given gimple statement has been instrumented.
807 Note that the statement is "defined" by the memory references it
808 contains. */
810 static bool
811 has_stmt_been_instrumented_p (gimple stmt)
813 if (gimple_assign_single_p (stmt))
815 bool r_is_store;
816 asan_mem_ref r;
817 asan_mem_ref_init (&r, NULL, 1);
819 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
820 return has_mem_ref_been_instrumented (&r);
822 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
824 asan_mem_ref src0, src1, dest;
825 asan_mem_ref_init (&src0, NULL, 1);
826 asan_mem_ref_init (&src1, NULL, 1);
827 asan_mem_ref_init (&dest, NULL, 1);
829 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
830 bool src0_is_store = false, src1_is_store = false,
831 dest_is_store = false, dest_is_deref = false;
832 if (get_mem_refs_of_builtin_call (stmt,
833 &src0, &src0_len, &src0_is_store,
834 &src1, &src1_len, &src1_is_store,
835 &dest, &dest_len, &dest_is_store,
836 &dest_is_deref))
838 if (src0.start != NULL_TREE
839 && !has_mem_ref_been_instrumented (&src0, src0_len))
840 return false;
842 if (src1.start != NULL_TREE
843 && !has_mem_ref_been_instrumented (&src1, src1_len))
844 return false;
846 if (dest.start != NULL_TREE
847 && !has_mem_ref_been_instrumented (&dest, dest_len))
848 return false;
850 return true;
853 return false;
856 /* Insert a memory reference into the hash table. */
858 static void
859 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
861 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
863 asan_mem_ref r;
864 asan_mem_ref_init (&r, ref, access_size);
866 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
867 if (*slot == NULL)
868 *slot = asan_mem_ref_new (ref, access_size);
871 /* Initialize shadow_ptr_types array. */
873 static void
874 asan_init_shadow_ptr_types (void)
876 asan_shadow_set = new_alias_set ();
877 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
878 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
879 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
880 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
881 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
882 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
883 initialize_sanitizer_builtins ();
886 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
888 static tree
889 asan_pp_string (pretty_printer *pp)
891 const char *buf = pp_formatted_text (pp);
892 size_t len = strlen (buf);
893 tree ret = build_string (len + 1, buf);
894 TREE_TYPE (ret)
895 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
896 build_index_type (size_int (len)));
897 TREE_READONLY (ret) = 1;
898 TREE_STATIC (ret) = 1;
899 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
902 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
904 static rtx
905 asan_shadow_cst (unsigned char shadow_bytes[4])
907 int i;
908 unsigned HOST_WIDE_INT val = 0;
909 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
910 for (i = 0; i < 4; i++)
911 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
912 << (BITS_PER_UNIT * i);
913 return gen_int_mode (val, SImode);
916 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
917 though. */
919 static void
920 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
922 rtx insn, insns, top_label, end, addr, tmp, jump;
924 start_sequence ();
925 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
926 insns = get_insns ();
927 end_sequence ();
928 for (insn = insns; insn; insn = NEXT_INSN (insn))
929 if (CALL_P (insn))
930 break;
931 if (insn == NULL_RTX)
933 emit_insn (insns);
934 return;
937 gcc_assert ((len & 3) == 0);
938 top_label = gen_label_rtx ();
939 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
940 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
941 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
942 emit_label (top_label);
944 emit_move_insn (shadow_mem, const0_rtx);
945 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
946 true, OPTAB_LIB_WIDEN);
947 if (tmp != addr)
948 emit_move_insn (addr, tmp);
949 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
950 jump = get_last_insn ();
951 gcc_assert (JUMP_P (jump));
952 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
955 void
956 asan_function_start (void)
958 section *fnsec = function_section (current_function_decl);
959 switch_to_section (fnsec);
960 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
961 current_function_funcdef_no);
964 /* Insert code to protect stack vars. The prologue sequence should be emitted
965 directly, epilogue sequence returned. BASE is the register holding the
966 stack base, against which OFFSETS array offsets are relative to, OFFSETS
967 array contains pairs of offsets in reverse order, always the end offset
968 of some gap that needs protection followed by starting offset,
969 and DECLS is an array of representative decls for each var partition.
970 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
971 elements long (OFFSETS include gap before the first variable as well
972 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
973 register which stack vars DECL_RTLs are based on. Either BASE should be
974 assigned to PBASE, when not doing use after return protection, or
975 corresponding address based on __asan_stack_malloc* return value. */
978 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
979 HOST_WIDE_INT *offsets, tree *decls, int length)
981 rtx shadow_base, shadow_mem, ret, mem, orig_base, lab;
982 char buf[30];
983 unsigned char shadow_bytes[4];
984 HOST_WIDE_INT base_offset = offsets[length - 1];
985 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
986 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
987 HOST_WIDE_INT last_offset, last_size;
988 int l;
989 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
990 tree str_cst, decl, id;
991 int use_after_return_class = -1;
993 if (shadow_ptr_types[0] == NULL_TREE)
994 asan_init_shadow_ptr_types ();
996 /* First of all, prepare the description string. */
997 pretty_printer asan_pp;
999 pp_decimal_int (&asan_pp, length / 2 - 1);
1000 pp_space (&asan_pp);
1001 for (l = length - 2; l; l -= 2)
1003 tree decl = decls[l / 2 - 1];
1004 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1005 pp_space (&asan_pp);
1006 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1007 pp_space (&asan_pp);
1008 if (DECL_P (decl) && DECL_NAME (decl))
1010 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1011 pp_space (&asan_pp);
1012 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1014 else
1015 pp_string (&asan_pp, "9 <unknown>");
1016 pp_space (&asan_pp);
1018 str_cst = asan_pp_string (&asan_pp);
1020 /* Emit the prologue sequence. */
1021 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1022 && ASAN_USE_AFTER_RETURN)
1024 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1025 /* __asan_stack_malloc_N guarantees alignment
1026 N < 6 ? (64 << N) : 4096 bytes. */
1027 if (alignb > (use_after_return_class < 6
1028 ? (64U << use_after_return_class) : 4096U))
1029 use_after_return_class = -1;
1030 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1031 base_align_bias = ((asan_frame_size + alignb - 1)
1032 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1034 /* Align base if target is STRICT_ALIGNMENT. */
1035 if (STRICT_ALIGNMENT)
1036 base = expand_binop (Pmode, and_optab, base,
1037 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1038 << ASAN_SHADOW_SHIFT)
1039 / BITS_PER_UNIT), Pmode), NULL_RTX,
1040 1, OPTAB_DIRECT);
1042 if (use_after_return_class == -1 && pbase)
1043 emit_move_insn (pbase, base);
1045 base = expand_binop (Pmode, add_optab, base,
1046 gen_int_mode (base_offset - base_align_bias, Pmode),
1047 NULL_RTX, 1, OPTAB_DIRECT);
1048 orig_base = NULL_RTX;
1049 if (use_after_return_class != -1)
1051 if (asan_detect_stack_use_after_return == NULL_TREE)
1053 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1054 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1055 integer_type_node);
1056 SET_DECL_ASSEMBLER_NAME (decl, id);
1057 TREE_ADDRESSABLE (decl) = 1;
1058 DECL_ARTIFICIAL (decl) = 1;
1059 DECL_IGNORED_P (decl) = 1;
1060 DECL_EXTERNAL (decl) = 1;
1061 TREE_STATIC (decl) = 1;
1062 TREE_PUBLIC (decl) = 1;
1063 TREE_USED (decl) = 1;
1064 asan_detect_stack_use_after_return = decl;
1066 orig_base = gen_reg_rtx (Pmode);
1067 emit_move_insn (orig_base, base);
1068 ret = expand_normal (asan_detect_stack_use_after_return);
1069 lab = gen_label_rtx ();
1070 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1071 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1072 VOIDmode, 0, lab, very_likely);
1073 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1074 use_after_return_class);
1075 ret = init_one_libfunc (buf);
1076 rtx addr = convert_memory_address (ptr_mode, base);
1077 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1078 GEN_INT (asan_frame_size
1079 + base_align_bias),
1080 TYPE_MODE (pointer_sized_int_node),
1081 addr, ptr_mode);
1082 ret = convert_memory_address (Pmode, ret);
1083 emit_move_insn (base, ret);
1084 emit_label (lab);
1085 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1086 gen_int_mode (base_align_bias
1087 - base_offset, Pmode),
1088 NULL_RTX, 1, OPTAB_DIRECT));
1090 mem = gen_rtx_MEM (ptr_mode, base);
1091 mem = adjust_address (mem, VOIDmode, base_align_bias);
1092 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1093 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1094 emit_move_insn (mem, expand_normal (str_cst));
1095 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1096 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1097 id = get_identifier (buf);
1098 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1099 VAR_DECL, id, char_type_node);
1100 SET_DECL_ASSEMBLER_NAME (decl, id);
1101 TREE_ADDRESSABLE (decl) = 1;
1102 TREE_READONLY (decl) = 1;
1103 DECL_ARTIFICIAL (decl) = 1;
1104 DECL_IGNORED_P (decl) = 1;
1105 TREE_STATIC (decl) = 1;
1106 TREE_PUBLIC (decl) = 0;
1107 TREE_USED (decl) = 1;
1108 DECL_INITIAL (decl) = decl;
1109 TREE_ASM_WRITTEN (decl) = 1;
1110 TREE_ASM_WRITTEN (id) = 1;
1111 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1112 shadow_base = expand_binop (Pmode, lshr_optab, base,
1113 GEN_INT (ASAN_SHADOW_SHIFT),
1114 NULL_RTX, 1, OPTAB_DIRECT);
1115 shadow_base
1116 = plus_constant (Pmode, shadow_base,
1117 targetm.asan_shadow_offset ()
1118 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1119 gcc_assert (asan_shadow_set != -1
1120 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1121 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1122 set_mem_alias_set (shadow_mem, asan_shadow_set);
1123 if (STRICT_ALIGNMENT)
1124 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1125 prev_offset = base_offset;
1126 for (l = length; l; l -= 2)
1128 if (l == 2)
1129 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1130 offset = offsets[l - 1];
1131 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1133 int i;
1134 HOST_WIDE_INT aoff
1135 = base_offset + ((offset - base_offset)
1136 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1137 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1138 (aoff - prev_offset)
1139 >> ASAN_SHADOW_SHIFT);
1140 prev_offset = aoff;
1141 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1142 if (aoff < offset)
1144 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1145 shadow_bytes[i] = 0;
1146 else
1147 shadow_bytes[i] = offset - aoff;
1149 else
1150 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1151 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1152 offset = aoff;
1154 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1156 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1157 (offset - prev_offset)
1158 >> ASAN_SHADOW_SHIFT);
1159 prev_offset = offset;
1160 memset (shadow_bytes, cur_shadow_byte, 4);
1161 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1162 offset += ASAN_RED_ZONE_SIZE;
1164 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1166 do_pending_stack_adjust ();
1168 /* Construct epilogue sequence. */
1169 start_sequence ();
1171 lab = NULL_RTX;
1172 if (use_after_return_class != -1)
1174 rtx lab2 = gen_label_rtx ();
1175 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1176 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1177 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1178 VOIDmode, 0, lab2, very_likely);
1179 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1180 set_mem_alias_set (shadow_mem, asan_shadow_set);
1181 mem = gen_rtx_MEM (ptr_mode, base);
1182 mem = adjust_address (mem, VOIDmode, base_align_bias);
1183 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1184 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1185 if (use_after_return_class < 5
1186 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1187 BITS_PER_UNIT, true))
1188 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1189 BITS_PER_UNIT, true, 0);
1190 else if (use_after_return_class >= 5
1191 || !set_storage_via_setmem (shadow_mem,
1192 GEN_INT (sz),
1193 gen_int_mode (c, QImode),
1194 BITS_PER_UNIT, BITS_PER_UNIT,
1195 -1, sz, sz, sz))
1197 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1198 use_after_return_class);
1199 ret = init_one_libfunc (buf);
1200 rtx addr = convert_memory_address (ptr_mode, base);
1201 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1202 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1203 GEN_INT (asan_frame_size + base_align_bias),
1204 TYPE_MODE (pointer_sized_int_node),
1205 orig_addr, ptr_mode);
1207 lab = gen_label_rtx ();
1208 emit_jump (lab);
1209 emit_label (lab2);
1212 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1213 set_mem_alias_set (shadow_mem, asan_shadow_set);
1215 if (STRICT_ALIGNMENT)
1216 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1218 prev_offset = base_offset;
1219 last_offset = base_offset;
1220 last_size = 0;
1221 for (l = length; l; l -= 2)
1223 offset = base_offset + ((offsets[l - 1] - base_offset)
1224 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1225 if (last_offset + last_size != offset)
1227 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1228 (last_offset - prev_offset)
1229 >> ASAN_SHADOW_SHIFT);
1230 prev_offset = last_offset;
1231 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1232 last_offset = offset;
1233 last_size = 0;
1235 last_size += base_offset + ((offsets[l - 2] - base_offset)
1236 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1237 - offset;
1239 if (last_size)
1241 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1242 (last_offset - prev_offset)
1243 >> ASAN_SHADOW_SHIFT);
1244 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1247 do_pending_stack_adjust ();
1248 if (lab)
1249 emit_label (lab);
1251 ret = get_insns ();
1252 end_sequence ();
1253 return ret;
1256 /* Return true if DECL, a global var, might be overridden and needs
1257 therefore a local alias. */
1259 static bool
1260 asan_needs_local_alias (tree decl)
1262 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1265 /* Return true if DECL is a VAR_DECL that should be protected
1266 by Address Sanitizer, by appending a red zone with protected
1267 shadow memory after it and aligning it to at least
1268 ASAN_RED_ZONE_SIZE bytes. */
1270 bool
1271 asan_protect_global (tree decl)
1273 if (!ASAN_GLOBALS)
1274 return false;
1276 rtx rtl, symbol;
1278 if (TREE_CODE (decl) == STRING_CST)
1280 /* Instrument all STRING_CSTs except those created
1281 by asan_pp_string here. */
1282 if (shadow_ptr_types[0] != NULL_TREE
1283 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1284 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1285 return false;
1286 return true;
1288 if (TREE_CODE (decl) != VAR_DECL
1289 /* TLS vars aren't statically protectable. */
1290 || DECL_THREAD_LOCAL_P (decl)
1291 /* Externs will be protected elsewhere. */
1292 || DECL_EXTERNAL (decl)
1293 || !DECL_RTL_SET_P (decl)
1294 /* Comdat vars pose an ABI problem, we can't know if
1295 the var that is selected by the linker will have
1296 padding or not. */
1297 || DECL_ONE_ONLY (decl)
1298 /* Similarly for common vars. People can use -fno-common. */
1299 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1300 /* Don't protect if using user section, often vars placed
1301 into user section from multiple TUs are then assumed
1302 to be an array of such vars, putting padding in there
1303 breaks this assumption. */
1304 || (DECL_SECTION_NAME (decl) != NULL
1305 && !symtab_node::get (decl)->implicit_section)
1306 || DECL_SIZE (decl) == 0
1307 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1308 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1309 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE)
1310 return false;
1312 rtl = DECL_RTL (decl);
1313 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1314 return false;
1315 symbol = XEXP (rtl, 0);
1317 if (CONSTANT_POOL_ADDRESS_P (symbol)
1318 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1319 return false;
1321 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1322 return false;
1324 #ifndef ASM_OUTPUT_DEF
1325 if (asan_needs_local_alias (decl))
1326 return false;
1327 #endif
1329 return true;
1332 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1333 IS_STORE is either 1 (for a store) or 0 (for a load). */
1335 static tree
1336 report_error_func (bool is_store, HOST_WIDE_INT size_in_bytes, int *nargs)
1338 static enum built_in_function report[2][6]
1339 = { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1340 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1341 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1342 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1343 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1344 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } };
1345 if (size_in_bytes == -1)
1347 *nargs = 2;
1348 return builtin_decl_implicit (report[is_store][5]);
1350 *nargs = 1;
1351 return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
1354 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1355 IS_STORE is either 1 (for a store) or 0 (for a load). */
1357 static tree
1358 check_func (bool is_store, int size_in_bytes, int *nargs)
1360 static enum built_in_function check[2][6]
1361 = { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1362 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1363 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1364 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1365 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1366 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } };
1367 if (size_in_bytes == -1)
1369 *nargs = 2;
1370 return builtin_decl_implicit (check[is_store][5]);
1372 *nargs = 1;
1373 return builtin_decl_implicit (check[is_store][exact_log2 (size_in_bytes)]);
1376 /* Split the current basic block and create a condition statement
1377 insertion point right before or after the statement pointed to by
1378 ITER. Return an iterator to the point at which the caller might
1379 safely insert the condition statement.
1381 THEN_BLOCK must be set to the address of an uninitialized instance
1382 of basic_block. The function will then set *THEN_BLOCK to the
1383 'then block' of the condition statement to be inserted by the
1384 caller.
1386 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1387 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1389 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1390 block' of the condition statement to be inserted by the caller.
1392 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1393 statements starting from *ITER, and *THEN_BLOCK is a new empty
1394 block.
1396 *ITER is adjusted to point to always point to the first statement
1397 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1398 same as what ITER was pointing to prior to calling this function,
1399 if BEFORE_P is true; otherwise, it is its following statement. */
1401 gimple_stmt_iterator
1402 create_cond_insert_point (gimple_stmt_iterator *iter,
1403 bool before_p,
1404 bool then_more_likely_p,
1405 bool create_then_fallthru_edge,
1406 basic_block *then_block,
1407 basic_block *fallthrough_block)
1409 gimple_stmt_iterator gsi = *iter;
1411 if (!gsi_end_p (gsi) && before_p)
1412 gsi_prev (&gsi);
1414 basic_block cur_bb = gsi_bb (*iter);
1416 edge e = split_block (cur_bb, gsi_stmt (gsi));
1418 /* Get a hold on the 'condition block', the 'then block' and the
1419 'else block'. */
1420 basic_block cond_bb = e->src;
1421 basic_block fallthru_bb = e->dest;
1422 basic_block then_bb = create_empty_bb (cond_bb);
1423 if (current_loops)
1425 add_bb_to_loop (then_bb, cond_bb->loop_father);
1426 loops_state_set (LOOPS_NEED_FIXUP);
1429 /* Set up the newly created 'then block'. */
1430 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1431 int fallthrough_probability
1432 = then_more_likely_p
1433 ? PROB_VERY_UNLIKELY
1434 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1435 e->probability = PROB_ALWAYS - fallthrough_probability;
1436 if (create_then_fallthru_edge)
1437 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1439 /* Set up the fallthrough basic block. */
1440 e = find_edge (cond_bb, fallthru_bb);
1441 e->flags = EDGE_FALSE_VALUE;
1442 e->count = cond_bb->count;
1443 e->probability = fallthrough_probability;
1445 /* Update dominance info for the newly created then_bb; note that
1446 fallthru_bb's dominance info has already been updated by
1447 split_bock. */
1448 if (dom_info_available_p (CDI_DOMINATORS))
1449 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1451 *then_block = then_bb;
1452 *fallthrough_block = fallthru_bb;
1453 *iter = gsi_start_bb (fallthru_bb);
1455 return gsi_last_bb (cond_bb);
1458 /* Insert an if condition followed by a 'then block' right before the
1459 statement pointed to by ITER. The fallthrough block -- which is the
1460 else block of the condition as well as the destination of the
1461 outcoming edge of the 'then block' -- starts with the statement
1462 pointed to by ITER.
1464 COND is the condition of the if.
1466 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1467 'then block' is higher than the probability of the edge to the
1468 fallthrough block.
1470 Upon completion of the function, *THEN_BB is set to the newly
1471 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1472 fallthrough block.
1474 *ITER is adjusted to still point to the same statement it was
1475 pointing to initially. */
1477 static void
1478 insert_if_then_before_iter (gimple cond,
1479 gimple_stmt_iterator *iter,
1480 bool then_more_likely_p,
1481 basic_block *then_bb,
1482 basic_block *fallthrough_bb)
1484 gimple_stmt_iterator cond_insert_point =
1485 create_cond_insert_point (iter,
1486 /*before_p=*/true,
1487 then_more_likely_p,
1488 /*create_then_fallthru_edge=*/true,
1489 then_bb,
1490 fallthrough_bb);
1491 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1494 /* Build
1495 (base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset (). */
1497 static tree
1498 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1499 tree base_addr, tree shadow_ptr_type)
1501 tree t, uintptr_type = TREE_TYPE (base_addr);
1502 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1503 gimple g;
1505 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1506 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1507 make_ssa_name (uintptr_type, NULL),
1508 base_addr, t);
1509 gimple_set_location (g, location);
1510 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1512 t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
1513 g = gimple_build_assign_with_ops (PLUS_EXPR,
1514 make_ssa_name (uintptr_type, NULL),
1515 gimple_assign_lhs (g), t);
1516 gimple_set_location (g, location);
1517 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1519 g = gimple_build_assign_with_ops (NOP_EXPR,
1520 make_ssa_name (shadow_ptr_type, NULL),
1521 gimple_assign_lhs (g), NULL_TREE);
1522 gimple_set_location (g, location);
1523 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1525 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1526 build_int_cst (shadow_ptr_type, 0));
1527 g = gimple_build_assign_with_ops (MEM_REF,
1528 make_ssa_name (shadow_type, NULL),
1529 t, NULL_TREE);
1530 gimple_set_location (g, location);
1531 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1532 return gimple_assign_lhs (g);
1535 /* BASE can already be an SSA_NAME; in that case, do not create a
1536 new SSA_NAME for it. */
1538 static tree
1539 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1540 bool before_p)
1542 if (TREE_CODE (base) == SSA_NAME)
1543 return base;
1544 gimple g
1545 = gimple_build_assign_with_ops (TREE_CODE (base),
1546 make_ssa_name (TREE_TYPE (base), NULL),
1547 base, NULL_TREE);
1548 gimple_set_location (g, loc);
1549 if (before_p)
1550 gsi_insert_before (iter, g, GSI_SAME_STMT);
1551 else
1552 gsi_insert_after (iter, g, GSI_NEW_STMT);
1553 return gimple_assign_lhs (g);
1556 /* Instrument the memory access instruction BASE. Insert new
1557 statements before or after ITER.
1559 Note that the memory access represented by BASE can be either an
1560 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1561 location. IS_STORE is TRUE for a store, FALSE for a load.
1562 BEFORE_P is TRUE for inserting the instrumentation code before
1563 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1564 for a scalar memory access and FALSE for memory region access.
1565 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1566 length. ALIGN tells alignment of accessed memory object.
1568 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1569 memory region have already been instrumented.
1571 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1572 statement it was pointing to prior to calling this function,
1573 otherwise, it points to the statement logically following it. */
1575 static void
1576 build_check_stmt (location_t loc, tree base, tree len,
1577 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1578 bool is_non_zero_len, bool before_p, bool is_store,
1579 bool is_scalar_access, unsigned int align = 0,
1580 bool start_instrumented = false,
1581 bool end_instrumented = false)
1583 gimple_stmt_iterator gsi = *iter;
1584 gimple g;
1586 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1588 if (start_instrumented && end_instrumented)
1590 if (!before_p)
1591 gsi_next (iter);
1592 return;
1595 gsi = *iter;
1597 base = unshare_expr (base);
1598 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1600 if (len)
1601 len = unshare_expr (len);
1602 else
1604 gcc_assert (size_in_bytes != -1);
1605 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1608 if (size_in_bytes > 1)
1610 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1611 || size_in_bytes > 16)
1612 is_scalar_access = false;
1613 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1615 /* On non-strict alignment targets, if
1616 16-byte access is just 8-byte aligned,
1617 this will result in misaligned shadow
1618 memory 2 byte load, but otherwise can
1619 be handled using one read. */
1620 if (size_in_bytes != 16
1621 || STRICT_ALIGNMENT
1622 || align < 8 * BITS_PER_UNIT)
1623 is_scalar_access = false;
1627 HOST_WIDE_INT flags = 0;
1628 if (is_store)
1629 flags |= ASAN_CHECK_STORE;
1630 if (is_non_zero_len)
1631 flags |= ASAN_CHECK_NON_ZERO_LEN;
1632 if (is_scalar_access)
1633 flags |= ASAN_CHECK_SCALAR_ACCESS;
1634 if (start_instrumented)
1635 flags |= ASAN_CHECK_START_INSTRUMENTED;
1636 if (end_instrumented)
1637 flags |= ASAN_CHECK_END_INSTRUMENTED;
1639 g = gimple_build_call_internal (IFN_ASAN_CHECK, 3,
1640 build_int_cst (integer_type_node, flags),
1641 base, len);
1642 gimple_set_location (g, loc);
1643 if (before_p)
1644 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1645 else
1647 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1648 gsi_next (&gsi);
1649 *iter = gsi;
1653 /* If T represents a memory access, add instrumentation code before ITER.
1654 LOCATION is source code location.
1655 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1657 static void
1658 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1659 location_t location, bool is_store)
1661 if (is_store && !ASAN_INSTRUMENT_WRITES)
1662 return;
1663 if (!is_store && !ASAN_INSTRUMENT_READS)
1664 return;
1666 tree type, base;
1667 HOST_WIDE_INT size_in_bytes;
1669 type = TREE_TYPE (t);
1670 switch (TREE_CODE (t))
1672 case ARRAY_REF:
1673 case COMPONENT_REF:
1674 case INDIRECT_REF:
1675 case MEM_REF:
1676 case VAR_DECL:
1677 break;
1678 /* FALLTHRU */
1679 default:
1680 return;
1683 size_in_bytes = int_size_in_bytes (type);
1684 if (size_in_bytes <= 0)
1685 return;
1687 HOST_WIDE_INT bitsize, bitpos;
1688 tree offset;
1689 enum machine_mode mode;
1690 int volatilep = 0, unsignedp = 0;
1691 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1692 &mode, &unsignedp, &volatilep, false);
1693 if (((size_in_bytes & (size_in_bytes - 1)) == 0
1694 && (bitpos % (size_in_bytes * BITS_PER_UNIT)))
1695 || bitsize != size_in_bytes * BITS_PER_UNIT)
1697 if (TREE_CODE (t) == COMPONENT_REF
1698 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1700 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1701 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1702 TREE_OPERAND (t, 0), repr,
1703 NULL_TREE), location, is_store);
1705 return;
1707 if (bitpos % BITS_PER_UNIT)
1708 return;
1710 if (TREE_CODE (inner) == VAR_DECL
1711 && offset == NULL_TREE
1712 && bitpos >= 0
1713 && DECL_SIZE (inner)
1714 && tree_fits_shwi_p (DECL_SIZE (inner))
1715 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1717 if (DECL_THREAD_LOCAL_P (inner))
1718 return;
1719 if (!TREE_STATIC (inner))
1721 /* Automatic vars in the current function will be always
1722 accessible. */
1723 if (decl_function_context (inner) == current_function_decl)
1724 return;
1726 /* Always instrument external vars, they might be dynamically
1727 initialized. */
1728 else if (!DECL_EXTERNAL (inner))
1730 /* For static vars if they are known not to be dynamically
1731 initialized, they will be always accessible. */
1732 varpool_node *vnode = varpool_node::get (inner);
1733 if (vnode && !vnode->dynamically_initialized)
1734 return;
1738 base = build_fold_addr_expr (t);
1739 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1741 unsigned int align = get_object_alignment (t);
1742 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1743 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1744 is_store, /*is_scalar_access*/true, align);
1745 update_mem_ref_hash_table (base, size_in_bytes);
1746 update_mem_ref_hash_table (t, size_in_bytes);
1751 /* Instrument an access to a contiguous memory region that starts at
1752 the address pointed to by BASE, over a length of LEN (expressed in
1753 the sizeof (*BASE) bytes). ITER points to the instruction before
1754 which the instrumentation instructions must be inserted. LOCATION
1755 is the source location that the instrumentation instructions must
1756 have. If IS_STORE is true, then the memory access is a store;
1757 otherwise, it's a load. */
1759 static void
1760 instrument_mem_region_access (tree base, tree len,
1761 gimple_stmt_iterator *iter,
1762 location_t location, bool is_store)
1764 if (!POINTER_TYPE_P (TREE_TYPE (base))
1765 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1766 || integer_zerop (len))
1767 return;
1769 /* If the beginning of the memory region has already been
1770 instrumented, do not instrument it. */
1771 bool start_instrumented = has_mem_ref_been_instrumented (base, 1);
1773 /* If the end of the memory region has already been instrumented, do
1774 not instrument it. */
1775 tree end = asan_mem_ref_get_end (base, len);
1776 bool end_instrumented = has_mem_ref_been_instrumented (end, 1);
1778 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1780 build_check_stmt (location, base, len, size_in_bytes, iter,
1781 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1782 is_store, /*is_scalar_access*/false, /*align*/0,
1783 start_instrumented, end_instrumented);
1785 update_mem_ref_hash_table (base, 1);
1786 if (size_in_bytes != -1)
1787 update_mem_ref_hash_table (end, 1);
1789 *iter = gsi_for_stmt (gsi_stmt (*iter));
1792 /* Instrument the call (to the builtin strlen function) pointed to by
1793 ITER.
1795 This function instruments the access to the first byte of the
1796 argument, right before the call. After the call it instruments the
1797 access to the last byte of the argument; it uses the result of the
1798 call to deduce the offset of that last byte.
1800 Upon completion, iff the call has actually been instrumented, this
1801 function returns TRUE and *ITER points to the statement logically
1802 following the built-in strlen function call *ITER was initially
1803 pointing to. Otherwise, the function returns FALSE and *ITER
1804 remains unchanged. */
1806 static bool
1807 instrument_strlen_call (gimple_stmt_iterator *iter)
1809 gimple call = gsi_stmt (*iter);
1810 gcc_assert (is_gimple_call (call));
1812 tree callee = gimple_call_fndecl (call);
1813 gcc_assert (is_builtin_fn (callee)
1814 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
1815 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
1817 tree len = gimple_call_lhs (call);
1818 if (len == NULL)
1819 /* Some passes might clear the return value of the strlen call;
1820 bail out in that case. Return FALSE as we are not advancing
1821 *ITER. */
1822 return false;
1823 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
1825 location_t loc = gimple_location (call);
1826 tree str_arg = gimple_call_arg (call, 0);
1827 bool start_instrumented = has_mem_ref_been_instrumented (str_arg, 1);
1829 tree cptr_type = build_pointer_type (char_type_node);
1830 gimple str_arg_ssa =
1831 gimple_build_assign_with_ops (NOP_EXPR,
1832 make_ssa_name (cptr_type, NULL),
1833 str_arg, NULL);
1834 gimple_set_location (str_arg_ssa, loc);
1835 gsi_insert_before (iter, str_arg_ssa, GSI_SAME_STMT);
1837 build_check_stmt (loc, gimple_assign_lhs (str_arg_ssa), NULL_TREE, 1, iter,
1838 /*is_non_zero_len*/true, /*before_p=*/true,
1839 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0,
1840 start_instrumented, start_instrumented);
1842 gimple g =
1843 gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
1844 make_ssa_name (cptr_type, NULL),
1845 gimple_assign_lhs (str_arg_ssa),
1846 len);
1847 gimple_set_location (g, loc);
1848 gsi_insert_after (iter, g, GSI_NEW_STMT);
1850 build_check_stmt (loc, gimple_assign_lhs (g), NULL_TREE, 1, iter,
1851 /*is_non_zero_len*/true, /*before_p=*/false,
1852 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0);
1854 return true;
1857 /* Instrument the call to a built-in memory access function that is
1858 pointed to by the iterator ITER.
1860 Upon completion, return TRUE iff *ITER has been advanced to the
1861 statement following the one it was originally pointing to. */
1863 static bool
1864 instrument_builtin_call (gimple_stmt_iterator *iter)
1866 if (!ASAN_MEMINTRIN)
1867 return false;
1869 bool iter_advanced_p = false;
1870 gimple call = gsi_stmt (*iter);
1872 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1874 tree callee = gimple_call_fndecl (call);
1875 location_t loc = gimple_location (call);
1877 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
1878 iter_advanced_p = instrument_strlen_call (iter);
1879 else
1881 asan_mem_ref src0, src1, dest;
1882 asan_mem_ref_init (&src0, NULL, 1);
1883 asan_mem_ref_init (&src1, NULL, 1);
1884 asan_mem_ref_init (&dest, NULL, 1);
1886 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1887 bool src0_is_store = false, src1_is_store = false,
1888 dest_is_store = false, dest_is_deref = false;
1890 if (get_mem_refs_of_builtin_call (call,
1891 &src0, &src0_len, &src0_is_store,
1892 &src1, &src1_len, &src1_is_store,
1893 &dest, &dest_len, &dest_is_store,
1894 &dest_is_deref))
1896 if (dest_is_deref)
1898 instrument_derefs (iter, dest.start, loc, dest_is_store);
1899 gsi_next (iter);
1900 iter_advanced_p = true;
1902 else if (src0_len || src1_len || dest_len)
1904 if (src0.start != NULL_TREE)
1905 instrument_mem_region_access (src0.start, src0_len,
1906 iter, loc, /*is_store=*/false);
1907 if (src1.start != NULL_TREE)
1908 instrument_mem_region_access (src1.start, src1_len,
1909 iter, loc, /*is_store=*/false);
1910 if (dest.start != NULL_TREE)
1911 instrument_mem_region_access (dest.start, dest_len,
1912 iter, loc, /*is_store=*/true);
1913 *iter = gsi_for_stmt (call);
1914 gsi_next (iter);
1915 iter_advanced_p = true;
1919 return iter_advanced_p;
1922 /* Instrument the assignment statement ITER if it is subject to
1923 instrumentation. Return TRUE iff instrumentation actually
1924 happened. In that case, the iterator ITER is advanced to the next
1925 logical expression following the one initially pointed to by ITER,
1926 and the relevant memory reference that which access has been
1927 instrumented is added to the memory references hash table. */
1929 static bool
1930 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1932 gimple s = gsi_stmt (*iter);
1934 gcc_assert (gimple_assign_single_p (s));
1936 tree ref_expr = NULL_TREE;
1937 bool is_store, is_instrumented = false;
1939 if (gimple_store_p (s))
1941 ref_expr = gimple_assign_lhs (s);
1942 is_store = true;
1943 instrument_derefs (iter, ref_expr,
1944 gimple_location (s),
1945 is_store);
1946 is_instrumented = true;
1949 if (gimple_assign_load_p (s))
1951 ref_expr = gimple_assign_rhs1 (s);
1952 is_store = false;
1953 instrument_derefs (iter, ref_expr,
1954 gimple_location (s),
1955 is_store);
1956 is_instrumented = true;
1959 if (is_instrumented)
1960 gsi_next (iter);
1962 return is_instrumented;
1965 /* Instrument the function call pointed to by the iterator ITER, if it
1966 is subject to instrumentation. At the moment, the only function
1967 calls that are instrumented are some built-in functions that access
1968 memory. Look at instrument_builtin_call to learn more.
1970 Upon completion return TRUE iff *ITER was advanced to the statement
1971 following the one it was originally pointing to. */
1973 static bool
1974 maybe_instrument_call (gimple_stmt_iterator *iter)
1976 gimple stmt = gsi_stmt (*iter);
1977 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
1979 if (is_builtin && instrument_builtin_call (iter))
1980 return true;
1982 if (gimple_call_noreturn_p (stmt))
1984 if (is_builtin)
1986 tree callee = gimple_call_fndecl (stmt);
1987 switch (DECL_FUNCTION_CODE (callee))
1989 case BUILT_IN_UNREACHABLE:
1990 case BUILT_IN_TRAP:
1991 /* Don't instrument these. */
1992 return false;
1995 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
1996 gimple g = gimple_build_call (decl, 0);
1997 gimple_set_location (g, gimple_location (stmt));
1998 gsi_insert_before (iter, g, GSI_SAME_STMT);
2000 return false;
2003 /* Walk each instruction of all basic block and instrument those that
2004 represent memory references: loads, stores, or function calls.
2005 In a given basic block, this function avoids instrumenting memory
2006 references that have already been instrumented. */
2008 static void
2009 transform_statements (void)
2011 basic_block bb, last_bb = NULL;
2012 gimple_stmt_iterator i;
2013 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2015 FOR_EACH_BB_FN (bb, cfun)
2017 basic_block prev_bb = bb;
2019 if (bb->index >= saved_last_basic_block) continue;
2021 /* Flush the mem ref hash table, if current bb doesn't have
2022 exactly one predecessor, or if that predecessor (skipping
2023 over asan created basic blocks) isn't the last processed
2024 basic block. Thus we effectively flush on extended basic
2025 block boundaries. */
2026 while (single_pred_p (prev_bb))
2028 prev_bb = single_pred (prev_bb);
2029 if (prev_bb->index < saved_last_basic_block)
2030 break;
2032 if (prev_bb != last_bb)
2033 empty_mem_ref_hash_table ();
2034 last_bb = bb;
2036 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2038 gimple s = gsi_stmt (i);
2040 if (has_stmt_been_instrumented_p (s))
2041 gsi_next (&i);
2042 else if (gimple_assign_single_p (s)
2043 && maybe_instrument_assignment (&i))
2044 /* Nothing to do as maybe_instrument_assignment advanced
2045 the iterator I. */;
2046 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2047 /* Nothing to do as maybe_instrument_call
2048 advanced the iterator I. */;
2049 else
2051 /* No instrumentation happened.
2053 If the current instruction is a function call that
2054 might free something, let's forget about the memory
2055 references that got instrumented. Otherwise we might
2056 miss some instrumentation opportunities. */
2057 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2058 empty_mem_ref_hash_table ();
2060 gsi_next (&i);
2064 free_mem_ref_resources ();
2067 /* Build
2068 __asan_before_dynamic_init (module_name)
2070 __asan_after_dynamic_init ()
2071 call. */
2073 tree
2074 asan_dynamic_init_call (bool after_p)
2076 tree fn = builtin_decl_implicit (after_p
2077 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2078 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2079 tree module_name_cst = NULL_TREE;
2080 if (!after_p)
2082 pretty_printer module_name_pp;
2083 pp_string (&module_name_pp, main_input_filename);
2085 if (shadow_ptr_types[0] == NULL_TREE)
2086 asan_init_shadow_ptr_types ();
2087 module_name_cst = asan_pp_string (&module_name_pp);
2088 module_name_cst = fold_convert (const_ptr_type_node,
2089 module_name_cst);
2092 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2095 /* Build
2096 struct __asan_global
2098 const void *__beg;
2099 uptr __size;
2100 uptr __size_with_redzone;
2101 const void *__name;
2102 const void *__module_name;
2103 uptr __has_dynamic_init;
2104 } type. */
2106 static tree
2107 asan_global_struct (void)
2109 static const char *field_names[6]
2110 = { "__beg", "__size", "__size_with_redzone",
2111 "__name", "__module_name", "__has_dynamic_init" };
2112 tree fields[6], ret;
2113 int i;
2115 ret = make_node (RECORD_TYPE);
2116 for (i = 0; i < 6; i++)
2118 fields[i]
2119 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2120 get_identifier (field_names[i]),
2121 (i == 0 || i == 3) ? const_ptr_type_node
2122 : pointer_sized_int_node);
2123 DECL_CONTEXT (fields[i]) = ret;
2124 if (i)
2125 DECL_CHAIN (fields[i - 1]) = fields[i];
2127 TYPE_FIELDS (ret) = fields[0];
2128 TYPE_NAME (ret) = get_identifier ("__asan_global");
2129 layout_type (ret);
2130 return ret;
2133 /* Append description of a single global DECL into vector V.
2134 TYPE is __asan_global struct type as returned by asan_global_struct. */
2136 static void
2137 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2139 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2140 unsigned HOST_WIDE_INT size;
2141 tree str_cst, module_name_cst, refdecl = decl;
2142 vec<constructor_elt, va_gc> *vinner = NULL;
2144 pretty_printer asan_pp, module_name_pp;
2146 if (DECL_NAME (decl))
2147 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2148 else
2149 pp_string (&asan_pp, "<unknown>");
2150 str_cst = asan_pp_string (&asan_pp);
2152 pp_string (&module_name_pp, main_input_filename);
2153 module_name_cst = asan_pp_string (&module_name_pp);
2155 if (asan_needs_local_alias (decl))
2157 char buf[20];
2158 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2159 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2160 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2161 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2162 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2163 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2164 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2165 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2166 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2167 TREE_STATIC (refdecl) = 1;
2168 TREE_PUBLIC (refdecl) = 0;
2169 TREE_USED (refdecl) = 1;
2170 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2173 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2174 fold_convert (const_ptr_type_node,
2175 build_fold_addr_expr (refdecl)));
2176 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2177 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2178 size += asan_red_zone_size (size);
2179 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2180 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2181 fold_convert (const_ptr_type_node, str_cst));
2182 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2183 fold_convert (const_ptr_type_node, module_name_cst));
2184 varpool_node *vnode = varpool_node::get (decl);
2185 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2186 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2187 build_int_cst (uptr, has_dynamic_init));
2188 init = build_constructor (type, vinner);
2189 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2192 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2193 void
2194 initialize_sanitizer_builtins (void)
2196 tree decl;
2198 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2199 return;
2201 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2202 tree BT_FN_VOID_PTR
2203 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2204 tree BT_FN_VOID_CONST_PTR
2205 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2206 tree BT_FN_VOID_PTR_PTR
2207 = build_function_type_list (void_type_node, ptr_type_node,
2208 ptr_type_node, NULL_TREE);
2209 tree BT_FN_VOID_PTR_PTR_PTR
2210 = build_function_type_list (void_type_node, ptr_type_node,
2211 ptr_type_node, ptr_type_node, NULL_TREE);
2212 tree BT_FN_VOID_PTR_PTRMODE
2213 = build_function_type_list (void_type_node, ptr_type_node,
2214 pointer_sized_int_node, NULL_TREE);
2215 tree BT_FN_VOID_INT
2216 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2217 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2218 tree BT_FN_IX_CONST_VPTR_INT[5];
2219 tree BT_FN_IX_VPTR_IX_INT[5];
2220 tree BT_FN_VOID_VPTR_IX_INT[5];
2221 tree vptr
2222 = build_pointer_type (build_qualified_type (void_type_node,
2223 TYPE_QUAL_VOLATILE));
2224 tree cvptr
2225 = build_pointer_type (build_qualified_type (void_type_node,
2226 TYPE_QUAL_VOLATILE
2227 |TYPE_QUAL_CONST));
2228 tree boolt
2229 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2230 int i;
2231 for (i = 0; i < 5; i++)
2233 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2234 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2235 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2236 integer_type_node, integer_type_node,
2237 NULL_TREE);
2238 BT_FN_IX_CONST_VPTR_INT[i]
2239 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2240 BT_FN_IX_VPTR_IX_INT[i]
2241 = build_function_type_list (ix, vptr, ix, integer_type_node,
2242 NULL_TREE);
2243 BT_FN_VOID_VPTR_IX_INT[i]
2244 = build_function_type_list (void_type_node, vptr, ix,
2245 integer_type_node, NULL_TREE);
2247 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2248 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2249 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2250 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2251 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2252 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2253 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2254 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2255 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2256 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2257 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2258 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2259 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2260 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2261 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2262 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2263 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2264 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2265 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2266 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2267 #undef ATTR_NOTHROW_LEAF_LIST
2268 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2269 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2270 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2271 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2272 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2273 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2274 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2275 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2276 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2277 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2278 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2279 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2280 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2281 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2282 #undef DEF_SANITIZER_BUILTIN
2283 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2284 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2285 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2286 set_call_expr_flags (decl, ATTRS); \
2287 set_builtin_decl (ENUM, decl, true);
2289 #include "sanitizer.def"
2291 #undef DEF_SANITIZER_BUILTIN
2294 /* Called via htab_traverse. Count number of emitted
2295 STRING_CSTs in the constant hash table. */
2297 static int
2298 count_string_csts (void **slot, void *data)
2300 struct constant_descriptor_tree *desc
2301 = (struct constant_descriptor_tree *) *slot;
2302 if (TREE_CODE (desc->value) == STRING_CST
2303 && TREE_ASM_WRITTEN (desc->value)
2304 && asan_protect_global (desc->value))
2305 ++*((unsigned HOST_WIDE_INT *) data);
2306 return 1;
2309 /* Helper structure to pass two parameters to
2310 add_string_csts. */
2312 struct asan_add_string_csts_data
2314 tree type;
2315 vec<constructor_elt, va_gc> *v;
2318 /* Called via htab_traverse. Call asan_add_global
2319 on emitted STRING_CSTs from the constant hash table. */
2321 static int
2322 add_string_csts (void **slot, void *data)
2324 struct constant_descriptor_tree *desc
2325 = (struct constant_descriptor_tree *) *slot;
2326 if (TREE_CODE (desc->value) == STRING_CST
2327 && TREE_ASM_WRITTEN (desc->value)
2328 && asan_protect_global (desc->value))
2330 struct asan_add_string_csts_data *aascd
2331 = (struct asan_add_string_csts_data *) data;
2332 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2333 aascd->type, aascd->v);
2335 return 1;
2338 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2339 invoke ggc_collect. */
2340 static GTY(()) tree asan_ctor_statements;
2342 /* Module-level instrumentation.
2343 - Insert __asan_init_vN() into the list of CTORs.
2344 - TODO: insert redzones around globals.
2347 void
2348 asan_finish_file (void)
2350 varpool_node *vnode;
2351 unsigned HOST_WIDE_INT gcount = 0;
2353 if (shadow_ptr_types[0] == NULL_TREE)
2354 asan_init_shadow_ptr_types ();
2355 /* Avoid instrumenting code in the asan ctors/dtors.
2356 We don't need to insert padding after the description strings,
2357 nor after .LASAN* array. */
2358 flag_sanitize &= ~SANITIZE_ADDRESS;
2360 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2361 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2362 FOR_EACH_DEFINED_VARIABLE (vnode)
2363 if (TREE_ASM_WRITTEN (vnode->decl)
2364 && asan_protect_global (vnode->decl))
2365 ++gcount;
2366 htab_t const_desc_htab = constant_pool_htab ();
2367 htab_traverse (const_desc_htab, count_string_csts, &gcount);
2368 if (gcount)
2370 tree type = asan_global_struct (), var, ctor;
2371 tree dtor_statements = NULL_TREE;
2372 vec<constructor_elt, va_gc> *v;
2373 char buf[20];
2375 type = build_array_type_nelts (type, gcount);
2376 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2377 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2378 type);
2379 TREE_STATIC (var) = 1;
2380 TREE_PUBLIC (var) = 0;
2381 DECL_ARTIFICIAL (var) = 1;
2382 DECL_IGNORED_P (var) = 1;
2383 vec_alloc (v, gcount);
2384 FOR_EACH_DEFINED_VARIABLE (vnode)
2385 if (TREE_ASM_WRITTEN (vnode->decl)
2386 && asan_protect_global (vnode->decl))
2387 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2388 struct asan_add_string_csts_data aascd;
2389 aascd.type = TREE_TYPE (type);
2390 aascd.v = v;
2391 htab_traverse (const_desc_htab, add_string_csts, &aascd);
2392 ctor = build_constructor (type, v);
2393 TREE_CONSTANT (ctor) = 1;
2394 TREE_STATIC (ctor) = 1;
2395 DECL_INITIAL (var) = ctor;
2396 varpool_node::finalize_decl (var);
2398 fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2399 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2400 append_to_statement_list (build_call_expr (fn, 2,
2401 build_fold_addr_expr (var),
2402 gcount_tree),
2403 &asan_ctor_statements);
2405 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2406 append_to_statement_list (build_call_expr (fn, 2,
2407 build_fold_addr_expr (var),
2408 gcount_tree),
2409 &dtor_statements);
2410 cgraph_build_static_cdtor ('D', dtor_statements,
2411 MAX_RESERVED_INIT_PRIORITY - 1);
2413 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2414 MAX_RESERVED_INIT_PRIORITY - 1);
2415 flag_sanitize |= SANITIZE_ADDRESS;
2418 /* Expand the ASAN_{LOAD,STORE} builtins. */
2420 static bool
2421 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2423 gimple g = gsi_stmt (*iter);
2424 location_t loc = gimple_location (g);
2426 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2427 gcc_assert (flags < ASAN_CHECK_LAST);
2428 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2429 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2430 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2431 bool start_instrumented = (flags & ASAN_CHECK_START_INSTRUMENTED) != 0;
2432 bool end_instrumented = (flags & ASAN_CHECK_END_INSTRUMENTED) != 0;
2434 tree base = gimple_call_arg (g, 1);
2435 tree len = gimple_call_arg (g, 2);
2437 HOST_WIDE_INT size_in_bytes
2438 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2440 if (use_calls)
2442 /* Instrument using callbacks. */
2443 gimple g
2444 = gimple_build_assign_with_ops (NOP_EXPR,
2445 make_ssa_name (pointer_sized_int_node,
2446 NULL),
2447 base, NULL_TREE);
2448 gimple_set_location (g, loc);
2449 gsi_insert_before (iter, g, GSI_SAME_STMT);
2450 tree base_addr = gimple_assign_lhs (g);
2452 int nargs;
2453 tree fun = check_func (is_store, size_in_bytes, &nargs);
2454 if (nargs == 1)
2455 g = gimple_build_call (fun, 1, base_addr);
2456 else
2458 gcc_assert (nargs == 2);
2459 g = gimple_build_assign_with_ops (NOP_EXPR,
2460 make_ssa_name (pointer_sized_int_node,
2461 NULL),
2462 len, NULL_TREE);
2463 gimple_set_location (g, loc);
2464 gsi_insert_before (iter, g, GSI_SAME_STMT);
2465 tree sz_arg = gimple_assign_lhs (g);
2466 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2468 gimple_set_location (g, loc);
2469 gsi_replace (iter, g, false);
2470 return false;
2473 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2475 tree uintptr_type
2476 = build_nonstandard_integer_type (TYPE_PRECISION (TREE_TYPE (base)), 1);
2478 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2479 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2481 gimple_stmt_iterator gsi = *iter;
2483 if (!is_non_zero_len)
2485 /* So, the length of the memory area to asan-protect is
2486 non-constant. Let's guard the generated instrumentation code
2487 like:
2489 if (len != 0)
2491 //asan instrumentation code goes here.
2493 // falltrough instructions, starting with *ITER. */
2495 g = gimple_build_cond (NE_EXPR,
2496 len,
2497 build_int_cst (TREE_TYPE (len), 0),
2498 NULL_TREE, NULL_TREE);
2499 gimple_set_location (g, loc);
2501 basic_block then_bb, fallthrough_bb;
2502 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
2503 &then_bb, &fallthrough_bb);
2504 /* Note that fallthrough_bb starts with the statement that was
2505 pointed to by ITER. */
2507 /* The 'then block' of the 'if (len != 0) condition is where
2508 we'll generate the asan instrumentation code now. */
2509 gsi = gsi_last_bb (then_bb);
2512 /* Get an iterator on the point where we can add the condition
2513 statement for the instrumentation. */
2514 basic_block then_bb, else_bb;
2515 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2516 /*then_more_likely_p=*/false,
2517 /*create_then_fallthru_edge=*/false,
2518 &then_bb,
2519 &else_bb);
2521 g = gimple_build_assign_with_ops (NOP_EXPR,
2522 make_ssa_name (pointer_sized_int_node,
2523 NULL),
2524 base, NULL_TREE);
2525 gimple_set_location (g, loc);
2526 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2527 tree base_addr = gimple_assign_lhs (g);
2529 tree t = NULL_TREE;
2530 if (real_size_in_bytes >= 8)
2532 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2533 shadow_ptr_type);
2534 t = shadow;
2536 else
2538 /* Slow path for 1, 2 and 4 byte accesses. */
2540 if (!start_instrumented)
2542 /* Test (shadow != 0)
2543 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2544 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2545 shadow_ptr_type);
2546 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2547 gimple_seq seq = NULL;
2548 gimple_seq_add_stmt (&seq, shadow_test);
2549 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, base_addr, 7));
2550 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2551 gimple_seq_last (seq)));
2552 if (real_size_in_bytes > 1)
2553 gimple_seq_add_stmt (&seq,
2554 build_assign (PLUS_EXPR, gimple_seq_last (seq),
2555 real_size_in_bytes - 1));
2556 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2557 gimple_seq_last (seq),
2558 shadow));
2559 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2560 gimple_seq_last (seq)));
2561 t = gimple_assign_lhs (gimple_seq_last (seq));
2562 gimple_seq_set_location (seq, loc);
2563 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2566 /* For non-constant, misaligned or otherwise weird access sizes,
2567 check first and last byte. */
2568 if (size_in_bytes == -1 && !end_instrumented)
2570 g = gimple_build_assign_with_ops (MINUS_EXPR,
2571 make_ssa_name (uintptr_type, NULL),
2572 len,
2573 build_int_cst (uintptr_type, 1));
2574 gimple_set_location (g, loc);
2575 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2576 tree last = gimple_assign_lhs (g);
2577 g = gimple_build_assign_with_ops (PLUS_EXPR,
2578 make_ssa_name (uintptr_type, NULL),
2579 base_addr,
2580 last);
2581 gimple_set_location (g, loc);
2582 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2583 tree base_end_addr = gimple_assign_lhs (g);
2585 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2586 shadow_ptr_type);
2587 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2588 gimple_seq seq = NULL;
2589 gimple_seq_add_stmt (&seq, shadow_test);
2590 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2591 base_end_addr, 7));
2592 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2593 gimple_seq_last (seq)));
2594 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2595 gimple_seq_last (seq),
2596 shadow));
2597 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2598 gimple_seq_last (seq)));
2599 if (!start_instrumented)
2600 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2601 gimple_seq_last (seq)));
2602 t = gimple_assign_lhs (gimple_seq_last (seq));
2603 gimple_seq_set_location (seq, loc);
2604 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2608 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2609 NULL_TREE, NULL_TREE);
2610 gimple_set_location (g, loc);
2611 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2613 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2614 gsi = gsi_start_bb (then_bb);
2615 int nargs;
2616 tree fun = report_error_func (is_store, size_in_bytes, &nargs);
2617 g = gimple_build_call (fun, nargs, base_addr, len);
2618 gimple_set_location (g, loc);
2619 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2621 gsi_remove (iter, true);
2622 *iter = gsi_start_bb (else_bb);
2624 return true;
2627 /* Instrument the current function. */
2629 static unsigned int
2630 asan_instrument (void)
2632 if (shadow_ptr_types[0] == NULL_TREE)
2633 asan_init_shadow_ptr_types ();
2634 transform_statements ();
2635 return 0;
2638 static bool
2639 gate_asan (void)
2641 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2642 && !lookup_attribute ("no_sanitize_address",
2643 DECL_ATTRIBUTES (current_function_decl));
2646 namespace {
2648 const pass_data pass_data_asan =
2650 GIMPLE_PASS, /* type */
2651 "asan", /* name */
2652 OPTGROUP_NONE, /* optinfo_flags */
2653 TV_NONE, /* tv_id */
2654 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2655 0, /* properties_provided */
2656 0, /* properties_destroyed */
2657 0, /* todo_flags_start */
2658 TODO_update_ssa, /* todo_flags_finish */
2661 class pass_asan : public gimple_opt_pass
2663 public:
2664 pass_asan (gcc::context *ctxt)
2665 : gimple_opt_pass (pass_data_asan, ctxt)
2668 /* opt_pass methods: */
2669 opt_pass * clone () { return new pass_asan (m_ctxt); }
2670 virtual bool gate (function *) { return gate_asan (); }
2671 virtual unsigned int execute (function *) { return asan_instrument (); }
2673 }; // class pass_asan
2675 } // anon namespace
2677 gimple_opt_pass *
2678 make_pass_asan (gcc::context *ctxt)
2680 return new pass_asan (ctxt);
2683 namespace {
2685 const pass_data pass_data_asan_O0 =
2687 GIMPLE_PASS, /* type */
2688 "asan0", /* name */
2689 OPTGROUP_NONE, /* optinfo_flags */
2690 TV_NONE, /* tv_id */
2691 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2692 0, /* properties_provided */
2693 0, /* properties_destroyed */
2694 0, /* todo_flags_start */
2695 TODO_update_ssa, /* todo_flags_finish */
2698 class pass_asan_O0 : public gimple_opt_pass
2700 public:
2701 pass_asan_O0 (gcc::context *ctxt)
2702 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2705 /* opt_pass methods: */
2706 virtual bool gate (function *) { return !optimize && gate_asan (); }
2707 virtual unsigned int execute (function *) { return asan_instrument (); }
2709 }; // class pass_asan_O0
2711 } // anon namespace
2713 gimple_opt_pass *
2714 make_pass_asan_O0 (gcc::context *ctxt)
2716 return new pass_asan_O0 (ctxt);
2719 /* Perform optimization of sanitize functions. */
2721 namespace {
2723 const pass_data pass_data_sanopt =
2725 GIMPLE_PASS, /* type */
2726 "sanopt", /* name */
2727 OPTGROUP_NONE, /* optinfo_flags */
2728 TV_NONE, /* tv_id */
2729 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2730 0, /* properties_provided */
2731 0, /* properties_destroyed */
2732 0, /* todo_flags_start */
2733 TODO_update_ssa, /* todo_flags_finish */
2736 class pass_sanopt : public gimple_opt_pass
2738 public:
2739 pass_sanopt (gcc::context *ctxt)
2740 : gimple_opt_pass (pass_data_sanopt, ctxt)
2743 /* opt_pass methods: */
2744 virtual bool gate (function *) { return flag_sanitize; }
2745 virtual unsigned int execute (function *);
2747 }; // class pass_sanopt
2749 unsigned int
2750 pass_sanopt::execute (function *fun)
2752 basic_block bb;
2754 int asan_num_accesses = 0;
2755 if (flag_sanitize & SANITIZE_ADDRESS)
2757 gimple_stmt_iterator gsi;
2758 FOR_EACH_BB_FN (bb, fun)
2759 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2761 gimple stmt = gsi_stmt (gsi);
2762 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)
2763 && gimple_call_internal_fn (stmt) == IFN_ASAN_CHECK)
2764 ++asan_num_accesses;
2768 bool use_calls = ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
2769 && asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
2771 FOR_EACH_BB_FN (bb, fun)
2773 gimple_stmt_iterator gsi;
2774 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2776 gimple stmt = gsi_stmt (gsi);
2777 bool no_next = false;
2779 if (!is_gimple_call (stmt))
2781 gsi_next (&gsi);
2782 continue;
2785 if (gimple_call_internal_p (stmt))
2787 enum internal_fn ifn = gimple_call_internal_fn (stmt);
2788 switch (ifn)
2790 case IFN_UBSAN_NULL:
2791 no_next = ubsan_expand_null_ifn (&gsi);
2792 break;
2793 case IFN_UBSAN_BOUNDS:
2794 no_next = ubsan_expand_bounds_ifn (&gsi);
2795 break;
2796 case IFN_ASAN_CHECK:
2798 no_next = asan_expand_check_ifn (&gsi, use_calls);
2799 break;
2801 default:
2802 break;
2806 if (dump_file && (dump_flags & TDF_DETAILS))
2808 fprintf (dump_file, "Optimized\n ");
2809 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2810 fprintf (dump_file, "\n");
2813 if (!no_next)
2814 gsi_next (&gsi);
2817 return 0;
2820 } // anon namespace
2822 gimple_opt_pass *
2823 make_pass_sanopt (gcc::context *ctxt)
2825 return new pass_sanopt (ctxt);
2828 #include "gt-asan.h"