Daily bump.
[official-gcc.git] / gcc / modulo-sched.c
blob619ea04c2e78252e123fca189c9891d58692275c
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "params.h"
43 #include "ddg.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46 #include "loop-unroll.h"
48 #ifdef INSN_SCHEDULING
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx_insn *insn;
161 /* Holds the partial schedule as an array of II rows. Each entry of the
162 array points to a linked list of PS_INSNs, which represents the
163 instructions that are scheduled for that row. */
164 struct partial_schedule
166 int ii; /* Number of rows in the partial schedule. */
167 int history; /* Threshold for conflict checking using DFA. */
169 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
170 ps_insn_ptr *rows;
172 /* All the moves added for this partial schedule. Index X has
173 a ps_insn id of X + g->num_nodes. */
174 vec<ps_reg_move_info> reg_moves;
176 /* rows_length[i] holds the number of instructions in the row.
177 It is used only (as an optimization) to back off quickly from
178 trying to schedule a node in a full row; that is, to avoid running
179 through futile DFA state transitions. */
180 int *rows_length;
182 /* The earliest absolute cycle of an insn in the partial schedule. */
183 int min_cycle;
185 /* The latest absolute cycle of an insn in the partial schedule. */
186 int max_cycle;
188 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
190 int stage_count; /* The stage count of the partial schedule. */
194 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
195 static void free_partial_schedule (partial_schedule_ptr);
196 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
197 void print_partial_schedule (partial_schedule_ptr, FILE *);
198 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
199 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
200 int, int, sbitmap, sbitmap);
201 static void rotate_partial_schedule (partial_schedule_ptr, int);
202 void set_row_column_for_ps (partial_schedule_ptr);
203 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
204 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
207 /* This page defines constants and structures for the modulo scheduling
208 driver. */
210 static int sms_order_nodes (ddg_ptr, int, int *, int *);
211 static void set_node_sched_params (ddg_ptr);
212 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
213 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
214 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
215 rtx, rtx);
216 static int calculate_stage_count (partial_schedule_ptr, int);
217 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
218 int, int, sbitmap, sbitmap, sbitmap);
219 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
220 sbitmap, int, int *, int *, int *);
221 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
222 sbitmap, int *, sbitmap, sbitmap);
223 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
225 #define NODE_ASAP(node) ((node)->aux.count)
227 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
228 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
229 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
230 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
231 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
233 /* The scheduling parameters held for each node. */
234 typedef struct node_sched_params
236 int time; /* The absolute scheduling cycle. */
238 int row; /* Holds time % ii. */
239 int stage; /* Holds time / ii. */
241 /* The column of a node inside the ps. If nodes u, v are on the same row,
242 u will precede v if column (u) < column (v). */
243 int column;
244 } *node_sched_params_ptr;
246 /* The following three functions are copied from the current scheduler
247 code in order to use sched_analyze() for computing the dependencies.
248 They are used when initializing the sched_info structure. */
249 static const char *
250 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
252 static char tmp[80];
254 sprintf (tmp, "i%4d", INSN_UID (insn));
255 return tmp;
258 static void
259 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
260 regset used ATTRIBUTE_UNUSED)
264 static struct common_sched_info_def sms_common_sched_info;
266 static struct sched_deps_info_def sms_sched_deps_info =
268 compute_jump_reg_dependencies,
269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
270 NULL,
271 0, 0, 0
274 static struct haifa_sched_info sms_sched_info =
276 NULL,
277 NULL,
278 NULL,
279 NULL,
280 NULL,
281 sms_print_insn,
282 NULL,
283 NULL, /* insn_finishes_block_p */
284 NULL, NULL,
285 NULL, NULL,
286 0, 0,
288 NULL, NULL, NULL, NULL,
289 NULL, NULL,
293 /* Partial schedule instruction ID in PS is a register move. Return
294 information about it. */
295 static struct ps_reg_move_info *
296 ps_reg_move (partial_schedule_ptr ps, int id)
298 gcc_checking_assert (id >= ps->g->num_nodes);
299 return &ps->reg_moves[id - ps->g->num_nodes];
302 /* Return the rtl instruction that is being scheduled by partial schedule
303 instruction ID, which belongs to schedule PS. */
304 static rtx_insn *
305 ps_rtl_insn (partial_schedule_ptr ps, int id)
307 if (id < ps->g->num_nodes)
308 return ps->g->nodes[id].insn;
309 else
310 return ps_reg_move (ps, id)->insn;
313 /* Partial schedule instruction ID, which belongs to PS, occurred in
314 the original (unscheduled) loop. Return the first instruction
315 in the loop that was associated with ps_rtl_insn (PS, ID).
316 If the instruction had some notes before it, this is the first
317 of those notes. */
318 static rtx_insn *
319 ps_first_note (partial_schedule_ptr ps, int id)
321 gcc_assert (id < ps->g->num_nodes);
322 return ps->g->nodes[id].first_note;
325 /* Return the number of consecutive stages that are occupied by
326 partial schedule instruction ID in PS. */
327 static int
328 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
330 if (id < ps->g->num_nodes)
331 return 1;
332 else
333 return ps_reg_move (ps, id)->num_consecutive_stages;
336 /* Given HEAD and TAIL which are the first and last insns in a loop;
337 return the register which controls the loop. Return zero if it has
338 more than one occurrence in the loop besides the control part or the
339 do-loop pattern is not of the form we expect. */
340 static rtx
341 doloop_register_get (rtx_insn *head, rtx_insn *tail)
343 rtx reg, condition;
344 rtx_insn *insn, *first_insn_not_to_check;
346 if (!JUMP_P (tail))
347 return NULL_RTX;
349 if (!targetm.code_for_doloop_end)
350 return NULL_RTX;
352 /* TODO: Free SMS's dependence on doloop_condition_get. */
353 condition = doloop_condition_get (tail);
354 if (! condition)
355 return NULL_RTX;
357 if (REG_P (XEXP (condition, 0)))
358 reg = XEXP (condition, 0);
359 else if (GET_CODE (XEXP (condition, 0)) == PLUS
360 && REG_P (XEXP (XEXP (condition, 0), 0)))
361 reg = XEXP (XEXP (condition, 0), 0);
362 else
363 gcc_unreachable ();
365 /* Check that the COUNT_REG has no other occurrences in the loop
366 until the decrement. We assume the control part consists of
367 either a single (parallel) branch-on-count or a (non-parallel)
368 branch immediately preceded by a single (decrement) insn. */
369 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
370 : prev_nondebug_insn (tail));
372 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
373 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
375 if (dump_file)
377 fprintf (dump_file, "SMS count_reg found ");
378 print_rtl_single (dump_file, reg);
379 fprintf (dump_file, " outside control in insn:\n");
380 print_rtl_single (dump_file, insn);
383 return NULL_RTX;
386 return reg;
389 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
390 that the number of iterations is a compile-time constant. If so,
391 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
392 this constant. Otherwise return 0. */
393 static rtx_insn *
394 const_iteration_count (rtx count_reg, basic_block pre_header,
395 int64_t * count)
397 rtx_insn *insn;
398 rtx_insn *head, *tail;
400 if (! pre_header)
401 return NULL;
403 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
405 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
406 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
407 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
409 rtx pat = single_set (insn);
411 if (CONST_INT_P (SET_SRC (pat)))
413 *count = INTVAL (SET_SRC (pat));
414 return insn;
417 return NULL;
420 return NULL;
423 /* A very simple resource-based lower bound on the initiation interval.
424 ??? Improve the accuracy of this bound by considering the
425 utilization of various units. */
426 static int
427 res_MII (ddg_ptr g)
429 if (targetm.sched.sms_res_mii)
430 return targetm.sched.sms_res_mii (g);
432 return ((g->num_nodes - g->num_debug) / issue_rate);
436 /* A vector that contains the sched data for each ps_insn. */
437 static vec<node_sched_params> node_sched_param_vec;
439 /* Allocate sched_params for each node and initialize it. */
440 static void
441 set_node_sched_params (ddg_ptr g)
443 node_sched_param_vec.truncate (0);
444 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
447 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
448 static void
449 extend_node_sched_params (partial_schedule_ptr ps)
451 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
452 + ps->reg_moves.length ());
455 /* Update the sched_params (time, row and stage) for node U using the II,
456 the CYCLE of U and MIN_CYCLE.
457 We're not simply taking the following
458 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
459 because the stages may not be aligned on cycle 0. */
460 static void
461 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
463 int sc_until_cycle_zero;
464 int stage;
466 SCHED_TIME (u) = cycle;
467 SCHED_ROW (u) = SMODULO (cycle, ii);
469 /* The calculation of stage count is done adding the number
470 of stages before cycle zero and after cycle zero. */
471 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
473 if (SCHED_TIME (u) < 0)
475 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
476 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
478 else
480 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
481 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
485 static void
486 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
488 int i;
490 if (! file)
491 return;
492 for (i = 0; i < num_nodes; i++)
494 node_sched_params_ptr nsp = SCHED_PARAMS (i);
496 fprintf (file, "Node = %d; INSN = %d\n", i,
497 INSN_UID (ps_rtl_insn (ps, i)));
498 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
499 fprintf (file, " time = %d:\n", nsp->time);
500 fprintf (file, " stage = %d:\n", nsp->stage);
504 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
505 static void
506 set_columns_for_row (partial_schedule_ptr ps, int row)
508 ps_insn_ptr cur_insn;
509 int column;
511 column = 0;
512 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
513 SCHED_COLUMN (cur_insn->id) = column++;
516 /* Set SCHED_COLUMN for each instruction in PS. */
517 static void
518 set_columns_for_ps (partial_schedule_ptr ps)
520 int row;
522 for (row = 0; row < ps->ii; row++)
523 set_columns_for_row (ps, row);
526 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
527 Its single predecessor has already been scheduled, as has its
528 ddg node successors. (The move may have also another move as its
529 successor, in which case that successor will be scheduled later.)
531 The move is part of a chain that satisfies register dependencies
532 between a producing ddg node and various consuming ddg nodes.
533 If some of these dependencies have a distance of 1 (meaning that
534 the use is upward-exposed) then DISTANCE1_USES is nonnull and
535 contains the set of uses with distance-1 dependencies.
536 DISTANCE1_USES is null otherwise.
538 MUST_FOLLOW is a scratch bitmap that is big enough to hold
539 all current ps_insn ids.
541 Return true on success. */
542 static bool
543 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
544 sbitmap distance1_uses, sbitmap must_follow)
546 unsigned int u;
547 int this_time, this_distance, this_start, this_end, this_latency;
548 int start, end, c, ii;
549 sbitmap_iterator sbi;
550 ps_reg_move_info *move;
551 rtx_insn *this_insn;
552 ps_insn_ptr psi;
554 move = ps_reg_move (ps, i_reg_move);
555 ii = ps->ii;
556 if (dump_file)
558 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
559 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
560 PS_MIN_CYCLE (ps));
561 print_rtl_single (dump_file, move->insn);
562 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
563 fprintf (dump_file, "=========== =========== =====\n");
566 start = INT_MIN;
567 end = INT_MAX;
569 /* For dependencies of distance 1 between a producer ddg node A
570 and consumer ddg node B, we have a chain of dependencies:
572 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
574 where Mi is the ith move. For dependencies of distance 0 between
575 a producer ddg node A and consumer ddg node C, we have a chain of
576 dependencies:
578 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
580 where Mi' occupies the same position as Mi but occurs a stage later.
581 We can only schedule each move once, so if we have both types of
582 chain, we model the second as:
584 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
586 First handle the dependencies between the previously-scheduled
587 predecessor and the move. */
588 this_insn = ps_rtl_insn (ps, move->def);
589 this_latency = insn_latency (this_insn, move->insn);
590 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
591 this_time = SCHED_TIME (move->def) - this_distance * ii;
592 this_start = this_time + this_latency;
593 this_end = this_time + ii;
594 if (dump_file)
595 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
596 this_start, this_end, SCHED_TIME (move->def),
597 INSN_UID (this_insn), this_latency, this_distance,
598 INSN_UID (move->insn));
600 if (start < this_start)
601 start = this_start;
602 if (end > this_end)
603 end = this_end;
605 /* Handle the dependencies between the move and previously-scheduled
606 successors. */
607 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
609 this_insn = ps_rtl_insn (ps, u);
610 this_latency = insn_latency (move->insn, this_insn);
611 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
612 this_distance = -1;
613 else
614 this_distance = 0;
615 this_time = SCHED_TIME (u) + this_distance * ii;
616 this_start = this_time - ii;
617 this_end = this_time - this_latency;
618 if (dump_file)
619 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
620 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
621 this_latency, this_distance, INSN_UID (this_insn));
623 if (start < this_start)
624 start = this_start;
625 if (end > this_end)
626 end = this_end;
629 if (dump_file)
631 fprintf (dump_file, "----------- ----------- -----\n");
632 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
635 bitmap_clear (must_follow);
636 bitmap_set_bit (must_follow, move->def);
638 start = MAX (start, end - (ii - 1));
639 for (c = end; c >= start; c--)
641 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
642 move->uses, must_follow);
643 if (psi)
645 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
646 if (dump_file)
647 fprintf (dump_file, "\nScheduled register move INSN %d at"
648 " time %d, row %d\n\n", INSN_UID (move->insn), c,
649 SCHED_ROW (i_reg_move));
650 return true;
654 if (dump_file)
655 fprintf (dump_file, "\nNo available slot\n\n");
657 return false;
661 Breaking intra-loop register anti-dependences:
662 Each intra-loop register anti-dependence implies a cross-iteration true
663 dependence of distance 1. Therefore, we can remove such false dependencies
664 and figure out if the partial schedule broke them by checking if (for a
665 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
666 if so generate a register move. The number of such moves is equal to:
667 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
668 nreg_moves = ----------------------------------- + 1 - { dependence.
669 ii { 1 if not.
671 static bool
672 schedule_reg_moves (partial_schedule_ptr ps)
674 ddg_ptr g = ps->g;
675 int ii = ps->ii;
676 int i;
678 for (i = 0; i < g->num_nodes; i++)
680 ddg_node_ptr u = &g->nodes[i];
681 ddg_edge_ptr e;
682 int nreg_moves = 0, i_reg_move;
683 rtx prev_reg, old_reg;
684 int first_move;
685 int distances[2];
686 sbitmap distance1_uses;
687 rtx set = single_set (u->insn);
689 /* Skip instructions that do not set a register. */
690 if ((set && !REG_P (SET_DEST (set))))
691 continue;
693 /* Compute the number of reg_moves needed for u, by looking at life
694 ranges started at u (excluding self-loops). */
695 distances[0] = distances[1] = false;
696 for (e = u->out; e; e = e->next_out)
697 if (e->type == TRUE_DEP && e->dest != e->src)
699 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
700 - SCHED_TIME (e->src->cuid)) / ii;
702 if (e->distance == 1)
703 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
704 - SCHED_TIME (e->src->cuid) + ii) / ii;
706 /* If dest precedes src in the schedule of the kernel, then dest
707 will read before src writes and we can save one reg_copy. */
708 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
709 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
710 nreg_moves4e--;
712 if (nreg_moves4e >= 1)
714 /* !single_set instructions are not supported yet and
715 thus we do not except to encounter them in the loop
716 except from the doloop part. For the latter case
717 we assume no regmoves are generated as the doloop
718 instructions are tied to the branch with an edge. */
719 gcc_assert (set);
720 /* If the instruction contains auto-inc register then
721 validate that the regmov is being generated for the
722 target regsiter rather then the inc'ed register. */
723 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
726 if (nreg_moves4e)
728 gcc_assert (e->distance < 2);
729 distances[e->distance] = true;
731 nreg_moves = MAX (nreg_moves, nreg_moves4e);
734 if (nreg_moves == 0)
735 continue;
737 /* Create NREG_MOVES register moves. */
738 first_move = ps->reg_moves.length ();
739 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
740 extend_node_sched_params (ps);
742 /* Record the moves associated with this node. */
743 first_move += ps->g->num_nodes;
745 /* Generate each move. */
746 old_reg = prev_reg = SET_DEST (single_set (u->insn));
747 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
749 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
751 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
752 move->uses = sbitmap_alloc (first_move + nreg_moves);
753 move->old_reg = old_reg;
754 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
755 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
756 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
757 bitmap_clear (move->uses);
759 prev_reg = move->new_reg;
762 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
764 if (distance1_uses)
765 bitmap_clear (distance1_uses);
767 /* Every use of the register defined by node may require a different
768 copy of this register, depending on the time the use is scheduled.
769 Record which uses require which move results. */
770 for (e = u->out; e; e = e->next_out)
771 if (e->type == TRUE_DEP && e->dest != e->src)
773 int dest_copy = (SCHED_TIME (e->dest->cuid)
774 - SCHED_TIME (e->src->cuid)) / ii;
776 if (e->distance == 1)
777 dest_copy = (SCHED_TIME (e->dest->cuid)
778 - SCHED_TIME (e->src->cuid) + ii) / ii;
780 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
781 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
782 dest_copy--;
784 if (dest_copy)
786 ps_reg_move_info *move;
788 move = ps_reg_move (ps, first_move + dest_copy - 1);
789 bitmap_set_bit (move->uses, e->dest->cuid);
790 if (e->distance == 1)
791 bitmap_set_bit (distance1_uses, e->dest->cuid);
795 auto_sbitmap must_follow (first_move + nreg_moves);
796 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
797 if (!schedule_reg_move (ps, first_move + i_reg_move,
798 distance1_uses, must_follow))
799 break;
800 if (distance1_uses)
801 sbitmap_free (distance1_uses);
802 if (i_reg_move < nreg_moves)
803 return false;
805 return true;
808 /* Emit the moves associatied with PS. Apply the substitutions
809 associated with them. */
810 static void
811 apply_reg_moves (partial_schedule_ptr ps)
813 ps_reg_move_info *move;
814 int i;
816 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
818 unsigned int i_use;
819 sbitmap_iterator sbi;
821 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
823 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
824 df_insn_rescan (ps->g->nodes[i_use].insn);
829 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
830 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
831 will move to cycle zero. */
832 static void
833 reset_sched_times (partial_schedule_ptr ps, int amount)
835 int row;
836 int ii = ps->ii;
837 ps_insn_ptr crr_insn;
839 for (row = 0; row < ii; row++)
840 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
842 int u = crr_insn->id;
843 int normalized_time = SCHED_TIME (u) - amount;
844 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
846 if (dump_file)
848 /* Print the scheduling times after the rotation. */
849 rtx_insn *insn = ps_rtl_insn (ps, u);
851 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
852 "crr_insn->cycle=%d, min_cycle=%d", u,
853 INSN_UID (insn), normalized_time, new_min_cycle);
854 if (JUMP_P (insn))
855 fprintf (dump_file, " (branch)");
856 fprintf (dump_file, "\n");
859 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
860 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
862 crr_insn->cycle = normalized_time;
863 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
867 /* Permute the insns according to their order in PS, from row 0 to
868 row ii-1, and position them right before LAST. This schedules
869 the insns of the loop kernel. */
870 static void
871 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
873 int ii = ps->ii;
874 int row;
875 ps_insn_ptr ps_ij;
877 for (row = 0; row < ii ; row++)
878 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
880 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
882 if (PREV_INSN (last) != insn)
884 if (ps_ij->id < ps->g->num_nodes)
885 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
886 PREV_INSN (last));
887 else
888 add_insn_before (insn, last, NULL);
893 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
894 respectively only if cycle C falls on the border of the scheduling
895 window boundaries marked by START and END cycles. STEP is the
896 direction of the window. */
897 static inline void
898 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
899 sbitmap *tmp_precede, sbitmap must_precede, int c,
900 int start, int end, int step)
902 *tmp_precede = NULL;
903 *tmp_follow = NULL;
905 if (c == start)
907 if (step == 1)
908 *tmp_precede = must_precede;
909 else /* step == -1. */
910 *tmp_follow = must_follow;
912 if (c == end - step)
914 if (step == 1)
915 *tmp_follow = must_follow;
916 else /* step == -1. */
917 *tmp_precede = must_precede;
922 /* Return True if the branch can be moved to row ii-1 while
923 normalizing the partial schedule PS to start from cycle zero and thus
924 optimize the SC. Otherwise return False. */
925 static bool
926 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
928 int amount = PS_MIN_CYCLE (ps);
929 int start, end, step;
930 int ii = ps->ii;
931 bool ok = false;
932 int stage_count, stage_count_curr;
934 /* Compare the SC after normalization and SC after bringing the branch
935 to row ii-1. If they are equal just bail out. */
936 stage_count = calculate_stage_count (ps, amount);
937 stage_count_curr =
938 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
940 if (stage_count == stage_count_curr)
942 if (dump_file)
943 fprintf (dump_file, "SMS SC already optimized.\n");
945 return false;
948 if (dump_file)
950 fprintf (dump_file, "SMS Trying to optimize branch location\n");
951 fprintf (dump_file, "SMS partial schedule before trial:\n");
952 print_partial_schedule (ps, dump_file);
955 /* First, normalize the partial scheduling. */
956 reset_sched_times (ps, amount);
957 rotate_partial_schedule (ps, amount);
958 if (dump_file)
960 fprintf (dump_file,
961 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
962 ii, stage_count);
963 print_partial_schedule (ps, dump_file);
966 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
967 return true;
969 auto_sbitmap sched_nodes (g->num_nodes);
970 bitmap_ones (sched_nodes);
972 /* Calculate the new placement of the branch. It should be in row
973 ii-1 and fall into it's scheduling window. */
974 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
975 &step, &end) == 0)
977 bool success;
978 ps_insn_ptr next_ps_i;
979 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
980 int row = SMODULO (branch_cycle, ps->ii);
981 int num_splits = 0;
982 sbitmap tmp_precede, tmp_follow;
983 int min_cycle, c;
985 if (dump_file)
986 fprintf (dump_file, "\nTrying to schedule node %d "
987 "INSN = %d in (%d .. %d) step %d\n",
988 g->closing_branch->cuid,
989 (INSN_UID (g->closing_branch->insn)), start, end, step);
991 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
992 if (step == 1)
994 c = start + ii - SMODULO (start, ii) - 1;
995 gcc_assert (c >= start);
996 if (c >= end)
998 if (dump_file)
999 fprintf (dump_file,
1000 "SMS failed to schedule branch at cycle: %d\n", c);
1001 return false;
1004 else
1006 c = start - SMODULO (start, ii) - 1;
1007 gcc_assert (c <= start);
1009 if (c <= end)
1011 if (dump_file)
1012 fprintf (dump_file,
1013 "SMS failed to schedule branch at cycle: %d\n", c);
1014 return false;
1018 auto_sbitmap must_precede (g->num_nodes);
1019 auto_sbitmap must_follow (g->num_nodes);
1021 /* Try to schedule the branch is it's new cycle. */
1022 calculate_must_precede_follow (g->closing_branch, start, end,
1023 step, ii, sched_nodes,
1024 must_precede, must_follow);
1026 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1027 must_precede, c, start, end, step);
1029 /* Find the element in the partial schedule related to the closing
1030 branch so we can remove it from it's current cycle. */
1031 for (next_ps_i = ps->rows[row];
1032 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1033 if (next_ps_i->id == g->closing_branch->cuid)
1034 break;
1036 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1037 remove_node_from_ps (ps, next_ps_i);
1038 success =
1039 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1040 sched_nodes, &num_splits,
1041 tmp_precede, tmp_follow);
1042 gcc_assert (num_splits == 0);
1043 if (!success)
1045 if (dump_file)
1046 fprintf (dump_file,
1047 "SMS failed to schedule branch at cycle: %d, "
1048 "bringing it back to cycle %d\n", c, branch_cycle);
1050 /* The branch was failed to be placed in row ii - 1.
1051 Put it back in it's original place in the partial
1052 schedualing. */
1053 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1054 must_precede, branch_cycle, start, end,
1055 step);
1056 success =
1057 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1058 branch_cycle, sched_nodes,
1059 &num_splits, tmp_precede,
1060 tmp_follow);
1061 gcc_assert (success && (num_splits == 0));
1062 ok = false;
1064 else
1066 /* The branch is placed in row ii - 1. */
1067 if (dump_file)
1068 fprintf (dump_file,
1069 "SMS success in moving branch to cycle %d\n", c);
1071 update_node_sched_params (g->closing_branch->cuid, ii, c,
1072 PS_MIN_CYCLE (ps));
1073 ok = true;
1076 /* This might have been added to a new first stage. */
1077 if (PS_MIN_CYCLE (ps) < min_cycle)
1078 reset_sched_times (ps, 0);
1081 return ok;
1084 static void
1085 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1086 int to_stage, rtx count_reg)
1088 int row;
1089 ps_insn_ptr ps_ij;
1091 for (row = 0; row < ps->ii; row++)
1092 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1094 int u = ps_ij->id;
1095 int first_u, last_u;
1096 rtx_insn *u_insn;
1098 /* Do not duplicate any insn which refers to count_reg as it
1099 belongs to the control part.
1100 The closing branch is scheduled as well and thus should
1101 be ignored.
1102 TODO: This should be done by analyzing the control part of
1103 the loop. */
1104 u_insn = ps_rtl_insn (ps, u);
1105 if (reg_mentioned_p (count_reg, u_insn)
1106 || JUMP_P (u_insn))
1107 continue;
1109 first_u = SCHED_STAGE (u);
1110 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1111 if (from_stage <= last_u && to_stage >= first_u)
1113 if (u < ps->g->num_nodes)
1114 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1115 else
1116 emit_insn (copy_rtx (PATTERN (u_insn)));
1122 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1123 static void
1124 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1125 rtx count_reg, rtx count_init)
1127 int i;
1128 int last_stage = PS_STAGE_COUNT (ps) - 1;
1129 edge e;
1131 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1132 start_sequence ();
1134 if (!count_init)
1136 /* Generate instructions at the beginning of the prolog to
1137 adjust the loop count by STAGE_COUNT. If loop count is constant
1138 (count_init), this constant is adjusted by STAGE_COUNT in
1139 generate_prolog_epilog function. */
1140 rtx sub_reg = NULL_RTX;
1142 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1143 gen_int_mode (last_stage,
1144 GET_MODE (count_reg)),
1145 count_reg, 1, OPTAB_DIRECT);
1146 gcc_assert (REG_P (sub_reg));
1147 if (REGNO (sub_reg) != REGNO (count_reg))
1148 emit_move_insn (count_reg, sub_reg);
1151 for (i = 0; i < last_stage; i++)
1152 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1154 /* Put the prolog on the entry edge. */
1155 e = loop_preheader_edge (loop);
1156 split_edge_and_insert (e, get_insns ());
1157 if (!flag_resched_modulo_sched)
1158 e->dest->flags |= BB_DISABLE_SCHEDULE;
1160 end_sequence ();
1162 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1163 start_sequence ();
1165 for (i = 0; i < last_stage; i++)
1166 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1168 /* Put the epilogue on the exit edge. */
1169 gcc_assert (single_exit (loop));
1170 e = single_exit (loop);
1171 split_edge_and_insert (e, get_insns ());
1172 if (!flag_resched_modulo_sched)
1173 e->dest->flags |= BB_DISABLE_SCHEDULE;
1175 end_sequence ();
1178 /* Mark LOOP as software pipelined so the later
1179 scheduling passes don't touch it. */
1180 static void
1181 mark_loop_unsched (struct loop *loop)
1183 unsigned i;
1184 basic_block *bbs = get_loop_body (loop);
1186 for (i = 0; i < loop->num_nodes; i++)
1187 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1189 free (bbs);
1192 /* Return true if all the BBs of the loop are empty except the
1193 loop header. */
1194 static bool
1195 loop_single_full_bb_p (struct loop *loop)
1197 unsigned i;
1198 basic_block *bbs = get_loop_body (loop);
1200 for (i = 0; i < loop->num_nodes ; i++)
1202 rtx_insn *head, *tail;
1203 bool empty_bb = true;
1205 if (bbs[i] == loop->header)
1206 continue;
1208 /* Make sure that basic blocks other than the header
1209 have only notes labels or jumps. */
1210 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1211 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1213 if (NOTE_P (head) || LABEL_P (head)
1214 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1215 continue;
1216 empty_bb = false;
1217 break;
1220 if (! empty_bb)
1222 free (bbs);
1223 return false;
1226 free (bbs);
1227 return true;
1230 /* Dump file:line from INSN's location info to dump_file. */
1232 static void
1233 dump_insn_location (rtx_insn *insn)
1235 if (dump_file && INSN_HAS_LOCATION (insn))
1237 expanded_location xloc = insn_location (insn);
1238 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1242 /* A simple loop from SMS point of view; it is a loop that is composed of
1243 either a single basic block or two BBs - a header and a latch. */
1244 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1245 && (EDGE_COUNT (loop->latch->preds) == 1) \
1246 && (EDGE_COUNT (loop->latch->succs) == 1))
1248 /* Return true if the loop is in its canonical form and false if not.
1249 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1250 static bool
1251 loop_canon_p (struct loop *loop)
1254 if (loop->inner || !loop_outer (loop))
1256 if (dump_file)
1257 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1258 return false;
1261 if (!single_exit (loop))
1263 if (dump_file)
1265 rtx_insn *insn = BB_END (loop->header);
1267 fprintf (dump_file, "SMS loop many exits");
1268 dump_insn_location (insn);
1269 fprintf (dump_file, "\n");
1271 return false;
1274 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1276 if (dump_file)
1278 rtx_insn *insn = BB_END (loop->header);
1280 fprintf (dump_file, "SMS loop many BBs.");
1281 dump_insn_location (insn);
1282 fprintf (dump_file, "\n");
1284 return false;
1287 return true;
1290 /* If there are more than one entry for the loop,
1291 make it one by splitting the first entry edge and
1292 redirecting the others to the new BB. */
1293 static void
1294 canon_loop (struct loop *loop)
1296 edge e;
1297 edge_iterator i;
1299 /* Avoid annoying special cases of edges going to exit
1300 block. */
1301 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1302 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1303 split_edge (e);
1305 if (loop->latch == loop->header
1306 || EDGE_COUNT (loop->latch->succs) > 1)
1308 FOR_EACH_EDGE (e, i, loop->header->preds)
1309 if (e->src == loop->latch)
1310 break;
1311 split_edge (e);
1315 /* Setup infos. */
1316 static void
1317 setup_sched_infos (void)
1319 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1320 sizeof (sms_common_sched_info));
1321 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1322 common_sched_info = &sms_common_sched_info;
1324 sched_deps_info = &sms_sched_deps_info;
1325 current_sched_info = &sms_sched_info;
1328 /* Probability in % that the sms-ed loop rolls enough so that optimized
1329 version may be entered. Just a guess. */
1330 #define PROB_SMS_ENOUGH_ITERATIONS 80
1332 /* Used to calculate the upper bound of ii. */
1333 #define MAXII_FACTOR 2
1335 /* Main entry point, perform SMS scheduling on the loops of the function
1336 that consist of single basic blocks. */
1337 static void
1338 sms_schedule (void)
1340 rtx_insn *insn;
1341 ddg_ptr *g_arr, g;
1342 int * node_order;
1343 int maxii, max_asap;
1344 partial_schedule_ptr ps;
1345 basic_block bb = NULL;
1346 struct loop *loop;
1347 basic_block condition_bb = NULL;
1348 edge latch_edge;
1349 gcov_type trip_count = 0;
1351 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1352 | LOOPS_HAVE_RECORDED_EXITS);
1353 if (number_of_loops (cfun) <= 1)
1355 loop_optimizer_finalize ();
1356 return; /* There are no loops to schedule. */
1359 /* Initialize issue_rate. */
1360 if (targetm.sched.issue_rate)
1362 int temp = reload_completed;
1364 reload_completed = 1;
1365 issue_rate = targetm.sched.issue_rate ();
1366 reload_completed = temp;
1368 else
1369 issue_rate = 1;
1371 /* Initialize the scheduler. */
1372 setup_sched_infos ();
1373 haifa_sched_init ();
1375 /* Allocate memory to hold the DDG array one entry for each loop.
1376 We use loop->num as index into this array. */
1377 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1379 if (dump_file)
1381 fprintf (dump_file, "\n\nSMS analysis phase\n");
1382 fprintf (dump_file, "===================\n\n");
1385 /* Build DDGs for all the relevant loops and hold them in G_ARR
1386 indexed by the loop index. */
1387 FOR_EACH_LOOP (loop, 0)
1389 rtx_insn *head, *tail;
1390 rtx count_reg;
1392 /* For debugging. */
1393 if (dbg_cnt (sms_sched_loop) == false)
1395 if (dump_file)
1396 fprintf (dump_file, "SMS reached max limit... \n");
1398 break;
1401 if (dump_file)
1403 rtx_insn *insn = BB_END (loop->header);
1405 fprintf (dump_file, "SMS loop num: %d", loop->num);
1406 dump_insn_location (insn);
1407 fprintf (dump_file, "\n");
1410 if (! loop_canon_p (loop))
1411 continue;
1413 if (! loop_single_full_bb_p (loop))
1415 if (dump_file)
1416 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1417 continue;
1420 bb = loop->header;
1422 get_ebb_head_tail (bb, bb, &head, &tail);
1423 latch_edge = loop_latch_edge (loop);
1424 gcc_assert (single_exit (loop));
1425 if (single_exit (loop)->count)
1426 trip_count = latch_edge->count / single_exit (loop)->count;
1428 /* Perform SMS only on loops that their average count is above threshold. */
1430 if ( latch_edge->count
1431 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1433 if (dump_file)
1435 dump_insn_location (tail);
1436 fprintf (dump_file, "\nSMS single-bb-loop\n");
1437 if (profile_info && flag_branch_probabilities)
1439 fprintf (dump_file, "SMS loop-count ");
1440 fprintf (dump_file, "%" PRId64,
1441 (int64_t) bb->count);
1442 fprintf (dump_file, "\n");
1443 fprintf (dump_file, "SMS trip-count ");
1444 fprintf (dump_file, "%" PRId64,
1445 (int64_t) trip_count);
1446 fprintf (dump_file, "\n");
1447 fprintf (dump_file, "SMS profile-sum-max ");
1448 fprintf (dump_file, "%" PRId64,
1449 (int64_t) profile_info->sum_max);
1450 fprintf (dump_file, "\n");
1453 continue;
1456 /* Make sure this is a doloop. */
1457 if ( !(count_reg = doloop_register_get (head, tail)))
1459 if (dump_file)
1460 fprintf (dump_file, "SMS doloop_register_get failed\n");
1461 continue;
1464 /* Don't handle BBs with calls or barriers
1465 or !single_set with the exception of instructions that include
1466 count_reg---these instructions are part of the control part
1467 that do-loop recognizes.
1468 ??? Should handle insns defining subregs. */
1469 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1471 rtx set;
1473 if (CALL_P (insn)
1474 || BARRIER_P (insn)
1475 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1476 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1477 && !reg_mentioned_p (count_reg, insn))
1478 || (INSN_P (insn) && (set = single_set (insn))
1479 && GET_CODE (SET_DEST (set)) == SUBREG))
1480 break;
1483 if (insn != NEXT_INSN (tail))
1485 if (dump_file)
1487 if (CALL_P (insn))
1488 fprintf (dump_file, "SMS loop-with-call\n");
1489 else if (BARRIER_P (insn))
1490 fprintf (dump_file, "SMS loop-with-barrier\n");
1491 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1492 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1493 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1494 else
1495 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1496 print_rtl_single (dump_file, insn);
1499 continue;
1502 /* Always schedule the closing branch with the rest of the
1503 instructions. The branch is rotated to be in row ii-1 at the
1504 end of the scheduling procedure to make sure it's the last
1505 instruction in the iteration. */
1506 if (! (g = create_ddg (bb, 1)))
1508 if (dump_file)
1509 fprintf (dump_file, "SMS create_ddg failed\n");
1510 continue;
1513 g_arr[loop->num] = g;
1514 if (dump_file)
1515 fprintf (dump_file, "...OK\n");
1518 if (dump_file)
1520 fprintf (dump_file, "\nSMS transformation phase\n");
1521 fprintf (dump_file, "=========================\n\n");
1524 /* We don't want to perform SMS on new loops - created by versioning. */
1525 FOR_EACH_LOOP (loop, 0)
1527 rtx_insn *head, *tail;
1528 rtx count_reg;
1529 rtx_insn *count_init;
1530 int mii, rec_mii, stage_count, min_cycle;
1531 int64_t loop_count = 0;
1532 bool opt_sc_p;
1534 if (! (g = g_arr[loop->num]))
1535 continue;
1537 if (dump_file)
1539 rtx_insn *insn = BB_END (loop->header);
1541 fprintf (dump_file, "SMS loop num: %d", loop->num);
1542 dump_insn_location (insn);
1543 fprintf (dump_file, "\n");
1545 print_ddg (dump_file, g);
1548 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1550 latch_edge = loop_latch_edge (loop);
1551 gcc_assert (single_exit (loop));
1552 if (single_exit (loop)->count)
1553 trip_count = latch_edge->count / single_exit (loop)->count;
1555 if (dump_file)
1557 dump_insn_location (tail);
1558 fprintf (dump_file, "\nSMS single-bb-loop\n");
1559 if (profile_info && flag_branch_probabilities)
1561 fprintf (dump_file, "SMS loop-count ");
1562 fprintf (dump_file, "%" PRId64,
1563 (int64_t) bb->count);
1564 fprintf (dump_file, "\n");
1565 fprintf (dump_file, "SMS profile-sum-max ");
1566 fprintf (dump_file, "%" PRId64,
1567 (int64_t) profile_info->sum_max);
1568 fprintf (dump_file, "\n");
1570 fprintf (dump_file, "SMS doloop\n");
1571 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1572 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1573 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1577 /* In case of th loop have doloop register it gets special
1578 handling. */
1579 count_init = NULL;
1580 if ((count_reg = doloop_register_get (head, tail)))
1582 basic_block pre_header;
1584 pre_header = loop_preheader_edge (loop)->src;
1585 count_init = const_iteration_count (count_reg, pre_header,
1586 &loop_count);
1588 gcc_assert (count_reg);
1590 if (dump_file && count_init)
1592 fprintf (dump_file, "SMS const-doloop ");
1593 fprintf (dump_file, "%" PRId64,
1594 loop_count);
1595 fprintf (dump_file, "\n");
1598 node_order = XNEWVEC (int, g->num_nodes);
1600 mii = 1; /* Need to pass some estimate of mii. */
1601 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1602 mii = MAX (res_MII (g), rec_mii);
1603 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1605 if (dump_file)
1606 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1607 rec_mii, mii, maxii);
1609 for (;;)
1611 set_node_sched_params (g);
1613 stage_count = 0;
1614 opt_sc_p = false;
1615 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1617 if (ps)
1619 /* Try to achieve optimized SC by normalizing the partial
1620 schedule (having the cycles start from cycle zero).
1621 The branch location must be placed in row ii-1 in the
1622 final scheduling. If failed, shift all instructions to
1623 position the branch in row ii-1. */
1624 opt_sc_p = optimize_sc (ps, g);
1625 if (opt_sc_p)
1626 stage_count = calculate_stage_count (ps, 0);
1627 else
1629 /* Bring the branch to cycle ii-1. */
1630 int amount = (SCHED_TIME (g->closing_branch->cuid)
1631 - (ps->ii - 1));
1633 if (dump_file)
1634 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1636 stage_count = calculate_stage_count (ps, amount);
1639 gcc_assert (stage_count >= 1);
1642 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1643 1 means that there is no interleaving between iterations thus
1644 we let the scheduling passes do the job in this case. */
1645 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1646 || (count_init && (loop_count <= stage_count))
1647 || (flag_branch_probabilities && (trip_count <= stage_count)))
1649 if (dump_file)
1651 fprintf (dump_file, "SMS failed... \n");
1652 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1653 " loop-count=", stage_count);
1654 fprintf (dump_file, "%" PRId64, loop_count);
1655 fprintf (dump_file, ", trip-count=");
1656 fprintf (dump_file, "%" PRId64, trip_count);
1657 fprintf (dump_file, ")\n");
1659 break;
1662 if (!opt_sc_p)
1664 /* Rotate the partial schedule to have the branch in row ii-1. */
1665 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1667 reset_sched_times (ps, amount);
1668 rotate_partial_schedule (ps, amount);
1671 set_columns_for_ps (ps);
1673 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1674 if (!schedule_reg_moves (ps))
1676 mii = ps->ii + 1;
1677 free_partial_schedule (ps);
1678 continue;
1681 /* Moves that handle incoming values might have been added
1682 to a new first stage. Bump the stage count if so.
1684 ??? Perhaps we could consider rotating the schedule here
1685 instead? */
1686 if (PS_MIN_CYCLE (ps) < min_cycle)
1688 reset_sched_times (ps, 0);
1689 stage_count++;
1692 /* The stage count should now be correct without rotation. */
1693 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1694 PS_STAGE_COUNT (ps) = stage_count;
1696 canon_loop (loop);
1698 if (dump_file)
1700 dump_insn_location (tail);
1701 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1702 ps->ii, stage_count);
1703 print_partial_schedule (ps, dump_file);
1706 /* case the BCT count is not known , Do loop-versioning */
1707 if (count_reg && ! count_init)
1709 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1710 gen_int_mode (stage_count,
1711 GET_MODE (count_reg)));
1712 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1713 * REG_BR_PROB_BASE) / 100;
1715 loop_version (loop, comp_rtx, &condition_bb,
1716 prob, prob, REG_BR_PROB_BASE - prob,
1717 true);
1720 /* Set new iteration count of loop kernel. */
1721 if (count_reg && count_init)
1722 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1723 - stage_count + 1);
1725 /* Now apply the scheduled kernel to the RTL of the loop. */
1726 permute_partial_schedule (ps, g->closing_branch->first_note);
1728 /* Mark this loop as software pipelined so the later
1729 scheduling passes don't touch it. */
1730 if (! flag_resched_modulo_sched)
1731 mark_loop_unsched (loop);
1733 /* The life-info is not valid any more. */
1734 df_set_bb_dirty (g->bb);
1736 apply_reg_moves (ps);
1737 if (dump_file)
1738 print_node_sched_params (dump_file, g->num_nodes, ps);
1739 /* Generate prolog and epilog. */
1740 generate_prolog_epilog (ps, loop, count_reg, count_init);
1741 break;
1744 free_partial_schedule (ps);
1745 node_sched_param_vec.release ();
1746 free (node_order);
1747 free_ddg (g);
1750 free (g_arr);
1752 /* Release scheduler data, needed until now because of DFA. */
1753 haifa_sched_finish ();
1754 loop_optimizer_finalize ();
1757 /* The SMS scheduling algorithm itself
1758 -----------------------------------
1759 Input: 'O' an ordered list of insns of a loop.
1760 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1762 'Q' is the empty Set
1763 'PS' is the partial schedule; it holds the currently scheduled nodes with
1764 their cycle/slot.
1765 'PSP' previously scheduled predecessors.
1766 'PSS' previously scheduled successors.
1767 't(u)' the cycle where u is scheduled.
1768 'l(u)' is the latency of u.
1769 'd(v,u)' is the dependence distance from v to u.
1770 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1771 the node ordering phase.
1772 'check_hardware_resources_conflicts(u, PS, c)'
1773 run a trace around cycle/slot through DFA model
1774 to check resource conflicts involving instruction u
1775 at cycle c given the partial schedule PS.
1776 'add_to_partial_schedule_at_time(u, PS, c)'
1777 Add the node/instruction u to the partial schedule
1778 PS at time c.
1779 'calculate_register_pressure(PS)'
1780 Given a schedule of instructions, calculate the register
1781 pressure it implies. One implementation could be the
1782 maximum number of overlapping live ranges.
1783 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1784 registers available in the hardware.
1786 1. II = MII.
1787 2. PS = empty list
1788 3. for each node u in O in pre-computed order
1789 4. if (PSP(u) != Q && PSS(u) == Q) then
1790 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1791 6. start = Early_start; end = Early_start + II - 1; step = 1
1792 11. else if (PSP(u) == Q && PSS(u) != Q) then
1793 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1794 13. start = Late_start; end = Late_start - II + 1; step = -1
1795 14. else if (PSP(u) != Q && PSS(u) != Q) then
1796 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1797 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1798 17. start = Early_start;
1799 18. end = min(Early_start + II - 1 , Late_start);
1800 19. step = 1
1801 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1802 21. start = ASAP(u); end = start + II - 1; step = 1
1803 22. endif
1805 23. success = false
1806 24. for (c = start ; c != end ; c += step)
1807 25. if check_hardware_resources_conflicts(u, PS, c) then
1808 26. add_to_partial_schedule_at_time(u, PS, c)
1809 27. success = true
1810 28. break
1811 29. endif
1812 30. endfor
1813 31. if (success == false) then
1814 32. II = II + 1
1815 33. if (II > maxII) then
1816 34. finish - failed to schedule
1817 35. endif
1818 36. goto 2.
1819 37. endif
1820 38. endfor
1821 39. if (calculate_register_pressure(PS) > maxRP) then
1822 40. goto 32.
1823 41. endif
1824 42. compute epilogue & prologue
1825 43. finish - succeeded to schedule
1827 ??? The algorithm restricts the scheduling window to II cycles.
1828 In rare cases, it may be better to allow windows of II+1 cycles.
1829 The window would then start and end on the same row, but with
1830 different "must precede" and "must follow" requirements. */
1832 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1833 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1834 set to 0 to save compile time. */
1835 #define DFA_HISTORY SMS_DFA_HISTORY
1837 /* A threshold for the number of repeated unsuccessful attempts to insert
1838 an empty row, before we flush the partial schedule and start over. */
1839 #define MAX_SPLIT_NUM 10
1840 /* Given the partial schedule PS, this function calculates and returns the
1841 cycles in which we can schedule the node with the given index I.
1842 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1843 noticed that there are several cases in which we fail to SMS the loop
1844 because the sched window of a node is empty due to tight data-deps. In
1845 such cases we want to unschedule some of the predecessors/successors
1846 until we get non-empty scheduling window. It returns -1 if the
1847 scheduling window is empty and zero otherwise. */
1849 static int
1850 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1851 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1852 int *end_p)
1854 int start, step, end;
1855 int early_start, late_start;
1856 ddg_edge_ptr e;
1857 auto_sbitmap psp (ps->g->num_nodes);
1858 auto_sbitmap pss (ps->g->num_nodes);
1859 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1860 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1861 int psp_not_empty;
1862 int pss_not_empty;
1863 int count_preds;
1864 int count_succs;
1866 /* 1. compute sched window for u (start, end, step). */
1867 bitmap_clear (psp);
1868 bitmap_clear (pss);
1869 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1870 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1872 /* We first compute a forward range (start <= end), then decide whether
1873 to reverse it. */
1874 early_start = INT_MIN;
1875 late_start = INT_MAX;
1876 start = INT_MIN;
1877 end = INT_MAX;
1878 step = 1;
1880 count_preds = 0;
1881 count_succs = 0;
1883 if (dump_file && (psp_not_empty || pss_not_empty))
1885 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1886 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1887 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1888 "start", "early start", "late start", "end", "time");
1889 fprintf (dump_file, "=========== =========== =========== ==========="
1890 " =====\n");
1892 /* Calculate early_start and limit end. Both bounds are inclusive. */
1893 if (psp_not_empty)
1894 for (e = u_node->in; e != 0; e = e->next_in)
1896 int v = e->src->cuid;
1898 if (bitmap_bit_p (sched_nodes, v))
1900 int p_st = SCHED_TIME (v);
1901 int earliest = p_st + e->latency - (e->distance * ii);
1902 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1904 if (dump_file)
1906 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1907 "", earliest, "", latest, p_st);
1908 print_ddg_edge (dump_file, e);
1909 fprintf (dump_file, "\n");
1912 early_start = MAX (early_start, earliest);
1913 end = MIN (end, latest);
1915 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1916 count_preds++;
1920 /* Calculate late_start and limit start. Both bounds are inclusive. */
1921 if (pss_not_empty)
1922 for (e = u_node->out; e != 0; e = e->next_out)
1924 int v = e->dest->cuid;
1926 if (bitmap_bit_p (sched_nodes, v))
1928 int s_st = SCHED_TIME (v);
1929 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1930 int latest = s_st - e->latency + (e->distance * ii);
1932 if (dump_file)
1934 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1935 earliest, "", latest, "", s_st);
1936 print_ddg_edge (dump_file, e);
1937 fprintf (dump_file, "\n");
1940 start = MAX (start, earliest);
1941 late_start = MIN (late_start, latest);
1943 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1944 count_succs++;
1948 if (dump_file && (psp_not_empty || pss_not_empty))
1950 fprintf (dump_file, "----------- ----------- ----------- -----------"
1951 " -----\n");
1952 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1953 start, early_start, late_start, end, "",
1954 "(max, max, min, min)");
1957 /* Get a target scheduling window no bigger than ii. */
1958 if (early_start == INT_MIN && late_start == INT_MAX)
1959 early_start = NODE_ASAP (u_node);
1960 else if (early_start == INT_MIN)
1961 early_start = late_start - (ii - 1);
1962 late_start = MIN (late_start, early_start + (ii - 1));
1964 /* Apply memory dependence limits. */
1965 start = MAX (start, early_start);
1966 end = MIN (end, late_start);
1968 if (dump_file && (psp_not_empty || pss_not_empty))
1969 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1970 "", start, end, "", "");
1972 /* If there are at least as many successors as predecessors, schedule the
1973 node close to its successors. */
1974 if (pss_not_empty && count_succs >= count_preds)
1976 std::swap (start, end);
1977 step = -1;
1980 /* Now that we've finalized the window, make END an exclusive rather
1981 than an inclusive bound. */
1982 end += step;
1984 *start_p = start;
1985 *step_p = step;
1986 *end_p = end;
1988 if ((start >= end && step == 1) || (start <= end && step == -1))
1990 if (dump_file)
1991 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1992 start, end, step);
1993 return -1;
1996 return 0;
1999 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2000 node currently been scheduled. At the end of the calculation
2001 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2002 U_NODE which are (1) already scheduled in the first/last row of
2003 U_NODE's scheduling window, (2) whose dependence inequality with U
2004 becomes an equality when U is scheduled in this same row, and (3)
2005 whose dependence latency is zero.
2007 The first and last rows are calculated using the following parameters:
2008 START/END rows - The cycles that begins/ends the traversal on the window;
2009 searching for an empty cycle to schedule U_NODE.
2010 STEP - The direction in which we traverse the window.
2011 II - The initiation interval. */
2013 static void
2014 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2015 int step, int ii, sbitmap sched_nodes,
2016 sbitmap must_precede, sbitmap must_follow)
2018 ddg_edge_ptr e;
2019 int first_cycle_in_window, last_cycle_in_window;
2021 gcc_assert (must_precede && must_follow);
2023 /* Consider the following scheduling window:
2024 {first_cycle_in_window, first_cycle_in_window+1, ...,
2025 last_cycle_in_window}. If step is 1 then the following will be
2026 the order we traverse the window: {start=first_cycle_in_window,
2027 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2028 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2029 end=first_cycle_in_window-1} if step is -1. */
2030 first_cycle_in_window = (step == 1) ? start : end - step;
2031 last_cycle_in_window = (step == 1) ? end - step : start;
2033 bitmap_clear (must_precede);
2034 bitmap_clear (must_follow);
2036 if (dump_file)
2037 fprintf (dump_file, "\nmust_precede: ");
2039 /* Instead of checking if:
2040 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2041 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2042 first_cycle_in_window)
2043 && e->latency == 0
2044 we use the fact that latency is non-negative:
2045 SCHED_TIME (e->src) - (e->distance * ii) <=
2046 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2047 first_cycle_in_window
2048 and check only if
2049 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2050 for (e = u_node->in; e != 0; e = e->next_in)
2051 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2052 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2053 first_cycle_in_window))
2055 if (dump_file)
2056 fprintf (dump_file, "%d ", e->src->cuid);
2058 bitmap_set_bit (must_precede, e->src->cuid);
2061 if (dump_file)
2062 fprintf (dump_file, "\nmust_follow: ");
2064 /* Instead of checking if:
2065 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2066 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2067 last_cycle_in_window)
2068 && e->latency == 0
2069 we use the fact that latency is non-negative:
2070 SCHED_TIME (e->dest) + (e->distance * ii) >=
2071 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2072 last_cycle_in_window
2073 and check only if
2074 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2075 for (e = u_node->out; e != 0; e = e->next_out)
2076 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2077 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2078 last_cycle_in_window))
2080 if (dump_file)
2081 fprintf (dump_file, "%d ", e->dest->cuid);
2083 bitmap_set_bit (must_follow, e->dest->cuid);
2086 if (dump_file)
2087 fprintf (dump_file, "\n");
2090 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2091 parameters to decide if that's possible:
2092 PS - The partial schedule.
2093 U - The serial number of U_NODE.
2094 NUM_SPLITS - The number of row splits made so far.
2095 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2096 the first row of the scheduling window)
2097 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2098 last row of the scheduling window) */
2100 static bool
2101 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2102 int u, int cycle, sbitmap sched_nodes,
2103 int *num_splits, sbitmap must_precede,
2104 sbitmap must_follow)
2106 ps_insn_ptr psi;
2107 bool success = 0;
2109 verify_partial_schedule (ps, sched_nodes);
2110 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2111 if (psi)
2113 SCHED_TIME (u) = cycle;
2114 bitmap_set_bit (sched_nodes, u);
2115 success = 1;
2116 *num_splits = 0;
2117 if (dump_file)
2118 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2122 return success;
2125 /* This function implements the scheduling algorithm for SMS according to the
2126 above algorithm. */
2127 static partial_schedule_ptr
2128 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2130 int ii = mii;
2131 int i, c, success, num_splits = 0;
2132 int flush_and_start_over = true;
2133 int num_nodes = g->num_nodes;
2134 int start, end, step; /* Place together into one struct? */
2135 auto_sbitmap sched_nodes (num_nodes);
2136 auto_sbitmap must_precede (num_nodes);
2137 auto_sbitmap must_follow (num_nodes);
2138 auto_sbitmap tobe_scheduled (num_nodes);
2140 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2142 bitmap_ones (tobe_scheduled);
2143 bitmap_clear (sched_nodes);
2145 while (flush_and_start_over && (ii < maxii))
2148 if (dump_file)
2149 fprintf (dump_file, "Starting with ii=%d\n", ii);
2150 flush_and_start_over = false;
2151 bitmap_clear (sched_nodes);
2153 for (i = 0; i < num_nodes; i++)
2155 int u = nodes_order[i];
2156 ddg_node_ptr u_node = &ps->g->nodes[u];
2157 rtx_insn *insn = u_node->insn;
2159 if (!NONDEBUG_INSN_P (insn))
2161 bitmap_clear_bit (tobe_scheduled, u);
2162 continue;
2165 if (bitmap_bit_p (sched_nodes, u))
2166 continue;
2168 /* Try to get non-empty scheduling window. */
2169 success = 0;
2170 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2171 &step, &end) == 0)
2173 if (dump_file)
2174 fprintf (dump_file, "\nTrying to schedule node %d "
2175 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2176 (g->nodes[u].insn)), start, end, step);
2178 gcc_assert ((step > 0 && start < end)
2179 || (step < 0 && start > end));
2181 calculate_must_precede_follow (u_node, start, end, step, ii,
2182 sched_nodes, must_precede,
2183 must_follow);
2185 for (c = start; c != end; c += step)
2187 sbitmap tmp_precede, tmp_follow;
2189 set_must_precede_follow (&tmp_follow, must_follow,
2190 &tmp_precede, must_precede,
2191 c, start, end, step);
2192 success =
2193 try_scheduling_node_in_cycle (ps, u, c,
2194 sched_nodes,
2195 &num_splits, tmp_precede,
2196 tmp_follow);
2197 if (success)
2198 break;
2201 verify_partial_schedule (ps, sched_nodes);
2203 if (!success)
2205 int split_row;
2207 if (ii++ == maxii)
2208 break;
2210 if (num_splits >= MAX_SPLIT_NUM)
2212 num_splits = 0;
2213 flush_and_start_over = true;
2214 verify_partial_schedule (ps, sched_nodes);
2215 reset_partial_schedule (ps, ii);
2216 verify_partial_schedule (ps, sched_nodes);
2217 break;
2220 num_splits++;
2221 /* The scheduling window is exclusive of 'end'
2222 whereas compute_split_window() expects an inclusive,
2223 ordered range. */
2224 if (step == 1)
2225 split_row = compute_split_row (sched_nodes, start, end - 1,
2226 ps->ii, u_node);
2227 else
2228 split_row = compute_split_row (sched_nodes, end + 1, start,
2229 ps->ii, u_node);
2231 ps_insert_empty_row (ps, split_row, sched_nodes);
2232 i--; /* Go back and retry node i. */
2234 if (dump_file)
2235 fprintf (dump_file, "num_splits=%d\n", num_splits);
2238 /* ??? If (success), check register pressure estimates. */
2239 } /* Continue with next node. */
2240 } /* While flush_and_start_over. */
2241 if (ii >= maxii)
2243 free_partial_schedule (ps);
2244 ps = NULL;
2246 else
2247 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2249 return ps;
2252 /* This function inserts a new empty row into PS at the position
2253 according to SPLITROW, keeping all already scheduled instructions
2254 intact and updating their SCHED_TIME and cycle accordingly. */
2255 static void
2256 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2257 sbitmap sched_nodes)
2259 ps_insn_ptr crr_insn;
2260 ps_insn_ptr *rows_new;
2261 int ii = ps->ii;
2262 int new_ii = ii + 1;
2263 int row;
2264 int *rows_length_new;
2266 verify_partial_schedule (ps, sched_nodes);
2268 /* We normalize sched_time and rotate ps to have only non-negative sched
2269 times, for simplicity of updating cycles after inserting new row. */
2270 split_row -= ps->min_cycle;
2271 split_row = SMODULO (split_row, ii);
2272 if (dump_file)
2273 fprintf (dump_file, "split_row=%d\n", split_row);
2275 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2276 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2278 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2279 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2280 for (row = 0; row < split_row; row++)
2282 rows_new[row] = ps->rows[row];
2283 rows_length_new[row] = ps->rows_length[row];
2284 ps->rows[row] = NULL;
2285 for (crr_insn = rows_new[row];
2286 crr_insn; crr_insn = crr_insn->next_in_row)
2288 int u = crr_insn->id;
2289 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2291 SCHED_TIME (u) = new_time;
2292 crr_insn->cycle = new_time;
2293 SCHED_ROW (u) = new_time % new_ii;
2294 SCHED_STAGE (u) = new_time / new_ii;
2299 rows_new[split_row] = NULL;
2301 for (row = split_row; row < ii; row++)
2303 rows_new[row + 1] = ps->rows[row];
2304 rows_length_new[row + 1] = ps->rows_length[row];
2305 ps->rows[row] = NULL;
2306 for (crr_insn = rows_new[row + 1];
2307 crr_insn; crr_insn = crr_insn->next_in_row)
2309 int u = crr_insn->id;
2310 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2312 SCHED_TIME (u) = new_time;
2313 crr_insn->cycle = new_time;
2314 SCHED_ROW (u) = new_time % new_ii;
2315 SCHED_STAGE (u) = new_time / new_ii;
2319 /* Updating ps. */
2320 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2321 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2322 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2323 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2324 free (ps->rows);
2325 ps->rows = rows_new;
2326 free (ps->rows_length);
2327 ps->rows_length = rows_length_new;
2328 ps->ii = new_ii;
2329 gcc_assert (ps->min_cycle >= 0);
2331 verify_partial_schedule (ps, sched_nodes);
2333 if (dump_file)
2334 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2335 ps->max_cycle);
2338 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2339 UP which are the boundaries of it's scheduling window; compute using
2340 SCHED_NODES and II a row in the partial schedule that can be split
2341 which will separate a critical predecessor from a critical successor
2342 thereby expanding the window, and return it. */
2343 static int
2344 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2345 ddg_node_ptr u_node)
2347 ddg_edge_ptr e;
2348 int lower = INT_MIN, upper = INT_MAX;
2349 int crit_pred = -1;
2350 int crit_succ = -1;
2351 int crit_cycle;
2353 for (e = u_node->in; e != 0; e = e->next_in)
2355 int v = e->src->cuid;
2357 if (bitmap_bit_p (sched_nodes, v)
2358 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2359 if (SCHED_TIME (v) > lower)
2361 crit_pred = v;
2362 lower = SCHED_TIME (v);
2366 if (crit_pred >= 0)
2368 crit_cycle = SCHED_TIME (crit_pred) + 1;
2369 return SMODULO (crit_cycle, ii);
2372 for (e = u_node->out; e != 0; e = e->next_out)
2374 int v = e->dest->cuid;
2376 if (bitmap_bit_p (sched_nodes, v)
2377 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2378 if (SCHED_TIME (v) < upper)
2380 crit_succ = v;
2381 upper = SCHED_TIME (v);
2385 if (crit_succ >= 0)
2387 crit_cycle = SCHED_TIME (crit_succ);
2388 return SMODULO (crit_cycle, ii);
2391 if (dump_file)
2392 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2394 return SMODULO ((low + up + 1) / 2, ii);
2397 static void
2398 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2400 int row;
2401 ps_insn_ptr crr_insn;
2403 for (row = 0; row < ps->ii; row++)
2405 int length = 0;
2407 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2409 int u = crr_insn->id;
2411 length++;
2412 gcc_assert (bitmap_bit_p (sched_nodes, u));
2413 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2414 popcount (sched_nodes) == number of insns in ps. */
2415 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2416 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2419 gcc_assert (ps->rows_length[row] == length);
2424 /* This page implements the algorithm for ordering the nodes of a DDG
2425 for modulo scheduling, activated through the
2426 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2428 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2429 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2430 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2431 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2432 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2433 #define DEPTH(x) (ASAP ((x)))
2435 typedef struct node_order_params * nopa;
2437 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2438 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2439 static nopa calculate_order_params (ddg_ptr, int, int *);
2440 static int find_max_asap (ddg_ptr, sbitmap);
2441 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2442 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2444 enum sms_direction {BOTTOMUP, TOPDOWN};
2446 struct node_order_params
2448 int asap;
2449 int alap;
2450 int height;
2453 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2454 static void
2455 check_nodes_order (int *node_order, int num_nodes)
2457 int i;
2458 auto_sbitmap tmp (num_nodes);
2460 bitmap_clear (tmp);
2462 if (dump_file)
2463 fprintf (dump_file, "SMS final nodes order: \n");
2465 for (i = 0; i < num_nodes; i++)
2467 int u = node_order[i];
2469 if (dump_file)
2470 fprintf (dump_file, "%d ", u);
2471 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2473 bitmap_set_bit (tmp, u);
2476 if (dump_file)
2477 fprintf (dump_file, "\n");
2480 /* Order the nodes of G for scheduling and pass the result in
2481 NODE_ORDER. Also set aux.count of each node to ASAP.
2482 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2483 static int
2484 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2486 int i;
2487 int rec_mii = 0;
2488 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2490 nopa nops = calculate_order_params (g, mii, pmax_asap);
2492 if (dump_file)
2493 print_sccs (dump_file, sccs, g);
2495 order_nodes_of_sccs (sccs, node_order);
2497 if (sccs->num_sccs > 0)
2498 /* First SCC has the largest recurrence_length. */
2499 rec_mii = sccs->sccs[0]->recurrence_length;
2501 /* Save ASAP before destroying node_order_params. */
2502 for (i = 0; i < g->num_nodes; i++)
2504 ddg_node_ptr v = &g->nodes[i];
2505 v->aux.count = ASAP (v);
2508 free (nops);
2509 free_ddg_all_sccs (sccs);
2510 check_nodes_order (node_order, g->num_nodes);
2512 return rec_mii;
2515 static void
2516 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2518 int i, pos = 0;
2519 ddg_ptr g = all_sccs->ddg;
2520 int num_nodes = g->num_nodes;
2521 auto_sbitmap prev_sccs (num_nodes);
2522 auto_sbitmap on_path (num_nodes);
2523 auto_sbitmap tmp (num_nodes);
2524 auto_sbitmap ones (num_nodes);
2526 bitmap_clear (prev_sccs);
2527 bitmap_ones (ones);
2529 /* Perform the node ordering starting from the SCC with the highest recMII.
2530 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2531 for (i = 0; i < all_sccs->num_sccs; i++)
2533 ddg_scc_ptr scc = all_sccs->sccs[i];
2535 /* Add nodes on paths from previous SCCs to the current SCC. */
2536 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2537 bitmap_ior (tmp, scc->nodes, on_path);
2539 /* Add nodes on paths from the current SCC to previous SCCs. */
2540 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2541 bitmap_ior (tmp, tmp, on_path);
2543 /* Remove nodes of previous SCCs from current extended SCC. */
2544 bitmap_and_compl (tmp, tmp, prev_sccs);
2546 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2547 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2550 /* Handle the remaining nodes that do not belong to any scc. Each call
2551 to order_nodes_in_scc handles a single connected component. */
2552 while (pos < g->num_nodes)
2554 bitmap_and_compl (tmp, ones, prev_sccs);
2555 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2559 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2560 static struct node_order_params *
2561 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2563 int u;
2564 int max_asap;
2565 int num_nodes = g->num_nodes;
2566 ddg_edge_ptr e;
2567 /* Allocate a place to hold ordering params for each node in the DDG. */
2568 nopa node_order_params_arr;
2570 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2571 node_order_params_arr = (nopa) xcalloc (num_nodes,
2572 sizeof (struct node_order_params));
2574 /* Set the aux pointer of each node to point to its order_params structure. */
2575 for (u = 0; u < num_nodes; u++)
2576 g->nodes[u].aux.info = &node_order_params_arr[u];
2578 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2579 calculate ASAP, ALAP, mobility, distance, and height for each node
2580 in the dependence (direct acyclic) graph. */
2582 /* We assume that the nodes in the array are in topological order. */
2584 max_asap = 0;
2585 for (u = 0; u < num_nodes; u++)
2587 ddg_node_ptr u_node = &g->nodes[u];
2589 ASAP (u_node) = 0;
2590 for (e = u_node->in; e; e = e->next_in)
2591 if (e->distance == 0)
2592 ASAP (u_node) = MAX (ASAP (u_node),
2593 ASAP (e->src) + e->latency);
2594 max_asap = MAX (max_asap, ASAP (u_node));
2597 for (u = num_nodes - 1; u > -1; u--)
2599 ddg_node_ptr u_node = &g->nodes[u];
2601 ALAP (u_node) = max_asap;
2602 HEIGHT (u_node) = 0;
2603 for (e = u_node->out; e; e = e->next_out)
2604 if (e->distance == 0)
2606 ALAP (u_node) = MIN (ALAP (u_node),
2607 ALAP (e->dest) - e->latency);
2608 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2609 HEIGHT (e->dest) + e->latency);
2612 if (dump_file)
2614 fprintf (dump_file, "\nOrder params\n");
2615 for (u = 0; u < num_nodes; u++)
2617 ddg_node_ptr u_node = &g->nodes[u];
2619 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2620 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2624 *pmax_asap = max_asap;
2625 return node_order_params_arr;
2628 static int
2629 find_max_asap (ddg_ptr g, sbitmap nodes)
2631 unsigned int u = 0;
2632 int max_asap = -1;
2633 int result = -1;
2634 sbitmap_iterator sbi;
2636 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2638 ddg_node_ptr u_node = &g->nodes[u];
2640 if (max_asap < ASAP (u_node))
2642 max_asap = ASAP (u_node);
2643 result = u;
2646 return result;
2649 static int
2650 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2652 unsigned int u = 0;
2653 int max_hv = -1;
2654 int min_mob = INT_MAX;
2655 int result = -1;
2656 sbitmap_iterator sbi;
2658 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2660 ddg_node_ptr u_node = &g->nodes[u];
2662 if (max_hv < HEIGHT (u_node))
2664 max_hv = HEIGHT (u_node);
2665 min_mob = MOB (u_node);
2666 result = u;
2668 else if ((max_hv == HEIGHT (u_node))
2669 && (min_mob > MOB (u_node)))
2671 min_mob = MOB (u_node);
2672 result = u;
2675 return result;
2678 static int
2679 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2681 unsigned int u = 0;
2682 int max_dv = -1;
2683 int min_mob = INT_MAX;
2684 int result = -1;
2685 sbitmap_iterator sbi;
2687 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2689 ddg_node_ptr u_node = &g->nodes[u];
2691 if (max_dv < DEPTH (u_node))
2693 max_dv = DEPTH (u_node);
2694 min_mob = MOB (u_node);
2695 result = u;
2697 else if ((max_dv == DEPTH (u_node))
2698 && (min_mob > MOB (u_node)))
2700 min_mob = MOB (u_node);
2701 result = u;
2704 return result;
2707 /* Places the nodes of SCC into the NODE_ORDER array starting
2708 at position POS, according to the SMS ordering algorithm.
2709 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2710 the NODE_ORDER array, starting from position zero. */
2711 static int
2712 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2713 int * node_order, int pos)
2715 enum sms_direction dir;
2716 int num_nodes = g->num_nodes;
2717 auto_sbitmap workset (num_nodes);
2718 auto_sbitmap tmp (num_nodes);
2719 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2720 auto_sbitmap predecessors (num_nodes);
2721 auto_sbitmap successors (num_nodes);
2723 bitmap_clear (predecessors);
2724 find_predecessors (predecessors, g, nodes_ordered);
2726 bitmap_clear (successors);
2727 find_successors (successors, g, nodes_ordered);
2729 bitmap_clear (tmp);
2730 if (bitmap_and (tmp, predecessors, scc))
2732 bitmap_copy (workset, tmp);
2733 dir = BOTTOMUP;
2735 else if (bitmap_and (tmp, successors, scc))
2737 bitmap_copy (workset, tmp);
2738 dir = TOPDOWN;
2740 else
2742 int u;
2744 bitmap_clear (workset);
2745 if ((u = find_max_asap (g, scc)) >= 0)
2746 bitmap_set_bit (workset, u);
2747 dir = BOTTOMUP;
2750 bitmap_clear (zero_bitmap);
2751 while (!bitmap_equal_p (workset, zero_bitmap))
2753 int v;
2754 ddg_node_ptr v_node;
2755 sbitmap v_node_preds;
2756 sbitmap v_node_succs;
2758 if (dir == TOPDOWN)
2760 while (!bitmap_equal_p (workset, zero_bitmap))
2762 v = find_max_hv_min_mob (g, workset);
2763 v_node = &g->nodes[v];
2764 node_order[pos++] = v;
2765 v_node_succs = NODE_SUCCESSORS (v_node);
2766 bitmap_and (tmp, v_node_succs, scc);
2768 /* Don't consider the already ordered successors again. */
2769 bitmap_and_compl (tmp, tmp, nodes_ordered);
2770 bitmap_ior (workset, workset, tmp);
2771 bitmap_clear_bit (workset, v);
2772 bitmap_set_bit (nodes_ordered, v);
2774 dir = BOTTOMUP;
2775 bitmap_clear (predecessors);
2776 find_predecessors (predecessors, g, nodes_ordered);
2777 bitmap_and (workset, predecessors, scc);
2779 else
2781 while (!bitmap_equal_p (workset, zero_bitmap))
2783 v = find_max_dv_min_mob (g, workset);
2784 v_node = &g->nodes[v];
2785 node_order[pos++] = v;
2786 v_node_preds = NODE_PREDECESSORS (v_node);
2787 bitmap_and (tmp, v_node_preds, scc);
2789 /* Don't consider the already ordered predecessors again. */
2790 bitmap_and_compl (tmp, tmp, nodes_ordered);
2791 bitmap_ior (workset, workset, tmp);
2792 bitmap_clear_bit (workset, v);
2793 bitmap_set_bit (nodes_ordered, v);
2795 dir = TOPDOWN;
2796 bitmap_clear (successors);
2797 find_successors (successors, g, nodes_ordered);
2798 bitmap_and (workset, successors, scc);
2801 sbitmap_free (zero_bitmap);
2802 return pos;
2806 /* This page contains functions for manipulating partial-schedules during
2807 modulo scheduling. */
2809 /* Create a partial schedule and allocate a memory to hold II rows. */
2811 static partial_schedule_ptr
2812 create_partial_schedule (int ii, ddg_ptr g, int history)
2814 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2815 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2816 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2817 ps->reg_moves.create (0);
2818 ps->ii = ii;
2819 ps->history = history;
2820 ps->min_cycle = INT_MAX;
2821 ps->max_cycle = INT_MIN;
2822 ps->g = g;
2824 return ps;
2827 /* Free the PS_INSNs in rows array of the given partial schedule.
2828 ??? Consider caching the PS_INSN's. */
2829 static void
2830 free_ps_insns (partial_schedule_ptr ps)
2832 int i;
2834 for (i = 0; i < ps->ii; i++)
2836 while (ps->rows[i])
2838 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2840 free (ps->rows[i]);
2841 ps->rows[i] = ps_insn;
2843 ps->rows[i] = NULL;
2847 /* Free all the memory allocated to the partial schedule. */
2849 static void
2850 free_partial_schedule (partial_schedule_ptr ps)
2852 ps_reg_move_info *move;
2853 unsigned int i;
2855 if (!ps)
2856 return;
2858 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2859 sbitmap_free (move->uses);
2860 ps->reg_moves.release ();
2862 free_ps_insns (ps);
2863 free (ps->rows);
2864 free (ps->rows_length);
2865 free (ps);
2868 /* Clear the rows array with its PS_INSNs, and create a new one with
2869 NEW_II rows. */
2871 static void
2872 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2874 if (!ps)
2875 return;
2876 free_ps_insns (ps);
2877 if (new_ii == ps->ii)
2878 return;
2879 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2880 * sizeof (ps_insn_ptr));
2881 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2882 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2883 memset (ps->rows_length, 0, new_ii * sizeof (int));
2884 ps->ii = new_ii;
2885 ps->min_cycle = INT_MAX;
2886 ps->max_cycle = INT_MIN;
2889 /* Prints the partial schedule as an ii rows array, for each rows
2890 print the ids of the insns in it. */
2891 void
2892 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2894 int i;
2896 for (i = 0; i < ps->ii; i++)
2898 ps_insn_ptr ps_i = ps->rows[i];
2900 fprintf (dump, "\n[ROW %d ]: ", i);
2901 while (ps_i)
2903 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2905 if (JUMP_P (insn))
2906 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2907 else
2908 fprintf (dump, "%d, ", INSN_UID (insn));
2910 ps_i = ps_i->next_in_row;
2915 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2916 static ps_insn_ptr
2917 create_ps_insn (int id, int cycle)
2919 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2921 ps_i->id = id;
2922 ps_i->next_in_row = NULL;
2923 ps_i->prev_in_row = NULL;
2924 ps_i->cycle = cycle;
2926 return ps_i;
2930 /* Removes the given PS_INSN from the partial schedule. */
2931 static void
2932 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2934 int row;
2936 gcc_assert (ps && ps_i);
2938 row = SMODULO (ps_i->cycle, ps->ii);
2939 if (! ps_i->prev_in_row)
2941 gcc_assert (ps_i == ps->rows[row]);
2942 ps->rows[row] = ps_i->next_in_row;
2943 if (ps->rows[row])
2944 ps->rows[row]->prev_in_row = NULL;
2946 else
2948 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2949 if (ps_i->next_in_row)
2950 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2953 ps->rows_length[row] -= 1;
2954 free (ps_i);
2955 return;
2958 /* Unlike what literature describes for modulo scheduling (which focuses
2959 on VLIW machines) the order of the instructions inside a cycle is
2960 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2961 where the current instruction should go relative to the already
2962 scheduled instructions in the given cycle. Go over these
2963 instructions and find the first possible column to put it in. */
2964 static bool
2965 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2966 sbitmap must_precede, sbitmap must_follow)
2968 ps_insn_ptr next_ps_i;
2969 ps_insn_ptr first_must_follow = NULL;
2970 ps_insn_ptr last_must_precede = NULL;
2971 ps_insn_ptr last_in_row = NULL;
2972 int row;
2974 if (! ps_i)
2975 return false;
2977 row = SMODULO (ps_i->cycle, ps->ii);
2979 /* Find the first must follow and the last must precede
2980 and insert the node immediately after the must precede
2981 but make sure that it there is no must follow after it. */
2982 for (next_ps_i = ps->rows[row];
2983 next_ps_i;
2984 next_ps_i = next_ps_i->next_in_row)
2986 if (must_follow
2987 && bitmap_bit_p (must_follow, next_ps_i->id)
2988 && ! first_must_follow)
2989 first_must_follow = next_ps_i;
2990 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
2992 /* If we have already met a node that must follow, then
2993 there is no possible column. */
2994 if (first_must_follow)
2995 return false;
2996 else
2997 last_must_precede = next_ps_i;
2999 /* The closing branch must be the last in the row. */
3000 if (must_precede
3001 && bitmap_bit_p (must_precede, next_ps_i->id)
3002 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3003 return false;
3005 last_in_row = next_ps_i;
3008 /* The closing branch is scheduled as well. Make sure there is no
3009 dependent instruction after it as the branch should be the last
3010 instruction in the row. */
3011 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3013 if (first_must_follow)
3014 return false;
3015 if (last_in_row)
3017 /* Make the branch the last in the row. New instructions
3018 will be inserted at the beginning of the row or after the
3019 last must_precede instruction thus the branch is guaranteed
3020 to remain the last instruction in the row. */
3021 last_in_row->next_in_row = ps_i;
3022 ps_i->prev_in_row = last_in_row;
3023 ps_i->next_in_row = NULL;
3025 else
3026 ps->rows[row] = ps_i;
3027 return true;
3030 /* Now insert the node after INSERT_AFTER_PSI. */
3032 if (! last_must_precede)
3034 ps_i->next_in_row = ps->rows[row];
3035 ps_i->prev_in_row = NULL;
3036 if (ps_i->next_in_row)
3037 ps_i->next_in_row->prev_in_row = ps_i;
3038 ps->rows[row] = ps_i;
3040 else
3042 ps_i->next_in_row = last_must_precede->next_in_row;
3043 last_must_precede->next_in_row = ps_i;
3044 ps_i->prev_in_row = last_must_precede;
3045 if (ps_i->next_in_row)
3046 ps_i->next_in_row->prev_in_row = ps_i;
3049 return true;
3052 /* Advances the PS_INSN one column in its current row; returns false
3053 in failure and true in success. Bit N is set in MUST_FOLLOW if
3054 the node with cuid N must be come after the node pointed to by
3055 PS_I when scheduled in the same cycle. */
3056 static int
3057 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3058 sbitmap must_follow)
3060 ps_insn_ptr prev, next;
3061 int row;
3063 if (!ps || !ps_i)
3064 return false;
3066 row = SMODULO (ps_i->cycle, ps->ii);
3068 if (! ps_i->next_in_row)
3069 return false;
3071 /* Check if next_in_row is dependent on ps_i, both having same sched
3072 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3073 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3074 return false;
3076 /* Advance PS_I over its next_in_row in the doubly linked list. */
3077 prev = ps_i->prev_in_row;
3078 next = ps_i->next_in_row;
3080 if (ps_i == ps->rows[row])
3081 ps->rows[row] = next;
3083 ps_i->next_in_row = next->next_in_row;
3085 if (next->next_in_row)
3086 next->next_in_row->prev_in_row = ps_i;
3088 next->next_in_row = ps_i;
3089 ps_i->prev_in_row = next;
3091 next->prev_in_row = prev;
3092 if (prev)
3093 prev->next_in_row = next;
3095 return true;
3098 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3099 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3100 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3101 before/after (respectively) the node pointed to by PS_I when scheduled
3102 in the same cycle. */
3103 static ps_insn_ptr
3104 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3105 sbitmap must_precede, sbitmap must_follow)
3107 ps_insn_ptr ps_i;
3108 int row = SMODULO (cycle, ps->ii);
3110 if (ps->rows_length[row] >= issue_rate)
3111 return NULL;
3113 ps_i = create_ps_insn (id, cycle);
3115 /* Finds and inserts PS_I according to MUST_FOLLOW and
3116 MUST_PRECEDE. */
3117 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3119 free (ps_i);
3120 return NULL;
3123 ps->rows_length[row] += 1;
3124 return ps_i;
3127 /* Advance time one cycle. Assumes DFA is being used. */
3128 static void
3129 advance_one_cycle (void)
3131 if (targetm.sched.dfa_pre_cycle_insn)
3132 state_transition (curr_state,
3133 targetm.sched.dfa_pre_cycle_insn ());
3135 state_transition (curr_state, NULL);
3137 if (targetm.sched.dfa_post_cycle_insn)
3138 state_transition (curr_state,
3139 targetm.sched.dfa_post_cycle_insn ());
3144 /* Checks if PS has resource conflicts according to DFA, starting from
3145 FROM cycle to TO cycle; returns true if there are conflicts and false
3146 if there are no conflicts. Assumes DFA is being used. */
3147 static int
3148 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3150 int cycle;
3152 state_reset (curr_state);
3154 for (cycle = from; cycle <= to; cycle++)
3156 ps_insn_ptr crr_insn;
3157 /* Holds the remaining issue slots in the current row. */
3158 int can_issue_more = issue_rate;
3160 /* Walk through the DFA for the current row. */
3161 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3162 crr_insn;
3163 crr_insn = crr_insn->next_in_row)
3165 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3167 if (!NONDEBUG_INSN_P (insn))
3168 continue;
3170 /* Check if there is room for the current insn. */
3171 if (!can_issue_more || state_dead_lock_p (curr_state))
3172 return true;
3174 /* Update the DFA state and return with failure if the DFA found
3175 resource conflicts. */
3176 if (state_transition (curr_state, insn) >= 0)
3177 return true;
3179 if (targetm.sched.variable_issue)
3180 can_issue_more =
3181 targetm.sched.variable_issue (sched_dump, sched_verbose,
3182 insn, can_issue_more);
3183 /* A naked CLOBBER or USE generates no instruction, so don't
3184 let them consume issue slots. */
3185 else if (GET_CODE (PATTERN (insn)) != USE
3186 && GET_CODE (PATTERN (insn)) != CLOBBER)
3187 can_issue_more--;
3190 /* Advance the DFA to the next cycle. */
3191 advance_one_cycle ();
3193 return false;
3196 /* Checks if the given node causes resource conflicts when added to PS at
3197 cycle C. If not the node is added to PS and returned; otherwise zero
3198 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3199 cuid N must be come before/after (respectively) the node pointed to by
3200 PS_I when scheduled in the same cycle. */
3201 ps_insn_ptr
3202 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3203 int c, sbitmap must_precede,
3204 sbitmap must_follow)
3206 int has_conflicts = 0;
3207 ps_insn_ptr ps_i;
3209 /* First add the node to the PS, if this succeeds check for
3210 conflicts, trying different issue slots in the same row. */
3211 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3212 return NULL; /* Failed to insert the node at the given cycle. */
3214 has_conflicts = ps_has_conflicts (ps, c, c)
3215 || (ps->history > 0
3216 && ps_has_conflicts (ps,
3217 c - ps->history,
3218 c + ps->history));
3220 /* Try different issue slots to find one that the given node can be
3221 scheduled in without conflicts. */
3222 while (has_conflicts)
3224 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3225 break;
3226 has_conflicts = ps_has_conflicts (ps, c, c)
3227 || (ps->history > 0
3228 && ps_has_conflicts (ps,
3229 c - ps->history,
3230 c + ps->history));
3233 if (has_conflicts)
3235 remove_node_from_ps (ps, ps_i);
3236 return NULL;
3239 ps->min_cycle = MIN (ps->min_cycle, c);
3240 ps->max_cycle = MAX (ps->max_cycle, c);
3241 return ps_i;
3244 /* Calculate the stage count of the partial schedule PS. The calculation
3245 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3247 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3249 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3250 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3251 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3253 /* The calculation of stage count is done adding the number of stages
3254 before cycle zero and after cycle zero. */
3255 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3257 return stage_count;
3260 /* Rotate the rows of PS such that insns scheduled at time
3261 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3262 void
3263 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3265 int i, row, backward_rotates;
3266 int last_row = ps->ii - 1;
3268 if (start_cycle == 0)
3269 return;
3271 backward_rotates = SMODULO (start_cycle, ps->ii);
3273 /* Revisit later and optimize this into a single loop. */
3274 for (i = 0; i < backward_rotates; i++)
3276 ps_insn_ptr first_row = ps->rows[0];
3277 int first_row_length = ps->rows_length[0];
3279 for (row = 0; row < last_row; row++)
3281 ps->rows[row] = ps->rows[row + 1];
3282 ps->rows_length[row] = ps->rows_length[row + 1];
3285 ps->rows[last_row] = first_row;
3286 ps->rows_length[last_row] = first_row_length;
3289 ps->max_cycle -= start_cycle;
3290 ps->min_cycle -= start_cycle;
3293 #endif /* INSN_SCHEDULING */
3295 /* Run instruction scheduler. */
3296 /* Perform SMS module scheduling. */
3298 namespace {
3300 const pass_data pass_data_sms =
3302 RTL_PASS, /* type */
3303 "sms", /* name */
3304 OPTGROUP_NONE, /* optinfo_flags */
3305 TV_SMS, /* tv_id */
3306 0, /* properties_required */
3307 0, /* properties_provided */
3308 0, /* properties_destroyed */
3309 0, /* todo_flags_start */
3310 TODO_df_finish, /* todo_flags_finish */
3313 class pass_sms : public rtl_opt_pass
3315 public:
3316 pass_sms (gcc::context *ctxt)
3317 : rtl_opt_pass (pass_data_sms, ctxt)
3320 /* opt_pass methods: */
3321 virtual bool gate (function *)
3323 return (optimize > 0 && flag_modulo_sched);
3326 virtual unsigned int execute (function *);
3328 }; // class pass_sms
3330 unsigned int
3331 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3333 #ifdef INSN_SCHEDULING
3334 basic_block bb;
3336 /* Collect loop information to be used in SMS. */
3337 cfg_layout_initialize (0);
3338 sms_schedule ();
3340 /* Update the life information, because we add pseudos. */
3341 max_regno = max_reg_num ();
3343 /* Finalize layout changes. */
3344 FOR_EACH_BB_FN (bb, fun)
3345 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3346 bb->aux = bb->next_bb;
3347 free_dominance_info (CDI_DOMINATORS);
3348 cfg_layout_finalize ();
3349 #endif /* INSN_SCHEDULING */
3350 return 0;
3353 } // anon namespace
3355 rtl_opt_pass *
3356 make_pass_sms (gcc::context *ctxt)
3358 return new pass_sms (ctxt);