Define arm_arch_core_flags in a single file
[official-gcc.git] / gcc / gcse.c
blob652ee911e5b44ee81e8707ad33673e235971f46a
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "backend.h"
139 #include "target.h"
140 #include "rtl.h"
141 #include "tree.h"
142 #include "predict.h"
143 #include "df.h"
144 #include "memmodel.h"
145 #include "tm_p.h"
146 #include "insn-config.h"
147 #include "print-rtl.h"
148 #include "regs.h"
149 #include "ira.h"
150 #include "recog.h"
151 #include "diagnostic-core.h"
152 #include "cfgrtl.h"
153 #include "cfganal.h"
154 #include "lcm.h"
155 #include "cfgcleanup.h"
156 #include "expr.h"
157 #include "params.h"
158 #include "intl.h"
159 #include "tree-pass.h"
160 #include "dbgcnt.h"
161 #include "gcse.h"
162 #include "gcse-common.h"
164 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
165 are a superset of those done by classic GCSE.
167 Two passes of copy/constant propagation are done around PRE or hoisting
168 because the first one enables more GCSE and the second one helps to clean
169 up the copies that PRE and HOIST create. This is needed more for PRE than
170 for HOIST because code hoisting will try to use an existing register
171 containing the common subexpression rather than create a new one. This is
172 harder to do for PRE because of the code motion (which HOIST doesn't do).
174 Expressions we are interested in GCSE-ing are of the form
175 (set (pseudo-reg) (expression)).
176 Function want_to_gcse_p says what these are.
178 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
179 This allows PRE to hoist expressions that are expressed in multiple insns,
180 such as complex address calculations (e.g. for PIC code, or loads with a
181 high part and a low part).
183 PRE handles moving invariant expressions out of loops (by treating them as
184 partially redundant).
186 **********************
188 We used to support multiple passes but there are diminishing returns in
189 doing so. The first pass usually makes 90% of the changes that are doable.
190 A second pass can make a few more changes made possible by the first pass.
191 Experiments show any further passes don't make enough changes to justify
192 the expense.
194 A study of spec92 using an unlimited number of passes:
195 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
196 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
197 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
199 It was found doing copy propagation between each pass enables further
200 substitutions.
202 This study was done before expressions in REG_EQUAL notes were added as
203 candidate expressions for optimization, and before the GIMPLE optimizers
204 were added. Probably, multiple passes is even less efficient now than
205 at the time when the study was conducted.
207 PRE is quite expensive in complicated functions because the DFA can take
208 a while to converge. Hence we only perform one pass.
210 **********************
212 The steps for PRE are:
214 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
216 2) Perform the data flow analysis for PRE.
218 3) Delete the redundant instructions
220 4) Insert the required copies [if any] that make the partially
221 redundant instructions fully redundant.
223 5) For other reaching expressions, insert an instruction to copy the value
224 to a newly created pseudo that will reach the redundant instruction.
226 The deletion is done first so that when we do insertions we
227 know which pseudo reg to use.
229 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
230 argue it is not. The number of iterations for the algorithm to converge
231 is typically 2-4 so I don't view it as that expensive (relatively speaking).
233 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
234 we create. To make an expression reach the place where it's redundant,
235 the result of the expression is copied to a new register, and the redundant
236 expression is deleted by replacing it with this new register. Classic GCSE
237 doesn't have this problem as much as it computes the reaching defs of
238 each register in each block and thus can try to use an existing
239 register. */
241 /* GCSE global vars. */
243 struct target_gcse default_target_gcse;
244 #if SWITCHABLE_TARGET
245 struct target_gcse *this_target_gcse = &default_target_gcse;
246 #endif
248 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
249 int flag_rerun_cse_after_global_opts;
251 /* An obstack for our working variables. */
252 static struct obstack gcse_obstack;
254 /* Hash table of expressions. */
256 struct gcse_expr
258 /* The expression. */
259 rtx expr;
260 /* Index in the available expression bitmaps. */
261 int bitmap_index;
262 /* Next entry with the same hash. */
263 struct gcse_expr *next_same_hash;
264 /* List of anticipatable occurrences in basic blocks in the function.
265 An "anticipatable occurrence" is one that is the first occurrence in the
266 basic block, the operands are not modified in the basic block prior
267 to the occurrence and the output is not used between the start of
268 the block and the occurrence. */
269 struct gcse_occr *antic_occr;
270 /* List of available occurrence in basic blocks in the function.
271 An "available occurrence" is one that is the last occurrence in the
272 basic block and the operands are not modified by following statements in
273 the basic block [including this insn]. */
274 struct gcse_occr *avail_occr;
275 /* Non-null if the computation is PRE redundant.
276 The value is the newly created pseudo-reg to record a copy of the
277 expression in all the places that reach the redundant copy. */
278 rtx reaching_reg;
279 /* Maximum distance in instructions this expression can travel.
280 We avoid moving simple expressions for more than a few instructions
281 to keep register pressure under control.
282 A value of "0" removes restrictions on how far the expression can
283 travel. */
284 int max_distance;
287 /* Occurrence of an expression.
288 There is one per basic block. If a pattern appears more than once the
289 last appearance is used [or first for anticipatable expressions]. */
291 struct gcse_occr
293 /* Next occurrence of this expression. */
294 struct gcse_occr *next;
295 /* The insn that computes the expression. */
296 rtx_insn *insn;
297 /* Nonzero if this [anticipatable] occurrence has been deleted. */
298 char deleted_p;
299 /* Nonzero if this [available] occurrence has been copied to
300 reaching_reg. */
301 /* ??? This is mutually exclusive with deleted_p, so they could share
302 the same byte. */
303 char copied_p;
306 typedef struct gcse_occr *occr_t;
308 /* Expression hash tables.
309 Each hash table is an array of buckets.
310 ??? It is known that if it were an array of entries, structure elements
311 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
312 not clear whether in the final analysis a sufficient amount of memory would
313 be saved as the size of the available expression bitmaps would be larger
314 [one could build a mapping table without holes afterwards though].
315 Someday I'll perform the computation and figure it out. */
317 struct gcse_hash_table_d
319 /* The table itself.
320 This is an array of `expr_hash_table_size' elements. */
321 struct gcse_expr **table;
323 /* Size of the hash table, in elements. */
324 unsigned int size;
326 /* Number of hash table elements. */
327 unsigned int n_elems;
330 /* Expression hash table. */
331 static struct gcse_hash_table_d expr_hash_table;
333 /* This is a list of expressions which are MEMs and will be used by load
334 or store motion.
335 Load motion tracks MEMs which aren't killed by anything except itself,
336 i.e. loads and stores to a single location.
337 We can then allow movement of these MEM refs with a little special
338 allowance. (all stores copy the same value to the reaching reg used
339 for the loads). This means all values used to store into memory must have
340 no side effects so we can re-issue the setter value. */
342 struct ls_expr
344 struct gcse_expr * expr; /* Gcse expression reference for LM. */
345 rtx pattern; /* Pattern of this mem. */
346 rtx pattern_regs; /* List of registers mentioned by the mem. */
347 vec<rtx_insn *> stores; /* INSN list of stores seen. */
348 struct ls_expr * next; /* Next in the list. */
349 int invalid; /* Invalid for some reason. */
350 int index; /* If it maps to a bitmap index. */
351 unsigned int hash_index; /* Index when in a hash table. */
352 rtx reaching_reg; /* Register to use when re-writing. */
355 /* Head of the list of load/store memory refs. */
356 static struct ls_expr * pre_ldst_mems = NULL;
358 struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
360 typedef value_type compare_type;
361 static inline hashval_t hash (const ls_expr *);
362 static inline bool equal (const ls_expr *, const ls_expr *);
365 /* Hashtable helpers. */
366 inline hashval_t
367 pre_ldst_expr_hasher::hash (const ls_expr *x)
369 int do_not_record_p = 0;
370 return
371 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
374 static int expr_equiv_p (const_rtx, const_rtx);
376 inline bool
377 pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
378 const ls_expr *ptr2)
380 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
383 /* Hashtable for the load/store memory refs. */
384 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
386 /* Bitmap containing one bit for each register in the program.
387 Used when performing GCSE to track which registers have been set since
388 the start of the basic block. */
389 static regset reg_set_bitmap;
391 /* Array, indexed by basic block number for a list of insns which modify
392 memory within that block. */
393 static vec<rtx_insn *> *modify_mem_list;
394 static bitmap modify_mem_list_set;
396 /* This array parallels modify_mem_list, except that it stores MEMs
397 being set and their canonicalized memory addresses. */
398 static vec<modify_pair> *canon_modify_mem_list;
400 /* Bitmap indexed by block numbers to record which blocks contain
401 function calls. */
402 static bitmap blocks_with_calls;
404 /* Various variables for statistics gathering. */
406 /* Memory used in a pass.
407 This isn't intended to be absolutely precise. Its intent is only
408 to keep an eye on memory usage. */
409 static int bytes_used;
411 /* GCSE substitutions made. */
412 static int gcse_subst_count;
413 /* Number of copy instructions created. */
414 static int gcse_create_count;
416 /* Doing code hoisting. */
417 static bool doing_code_hoisting_p = false;
419 /* For available exprs */
420 static sbitmap *ae_kill;
422 /* Data stored for each basic block. */
423 struct bb_data
425 /* Maximal register pressure inside basic block for given register class
426 (defined only for the pressure classes). */
427 int max_reg_pressure[N_REG_CLASSES];
428 /* Recorded register pressure of basic block before trying to hoist
429 an expression. Will be used to restore the register pressure
430 if the expression should not be hoisted. */
431 int old_pressure;
432 /* Recorded register live_in info of basic block during code hoisting
433 process. BACKUP is used to record live_in info before trying to
434 hoist an expression, and will be used to restore LIVE_IN if the
435 expression should not be hoisted. */
436 bitmap live_in, backup;
439 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
441 static basic_block curr_bb;
443 /* Current register pressure for each pressure class. */
444 static int curr_reg_pressure[N_REG_CLASSES];
447 static void compute_can_copy (void);
448 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
449 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
450 static void *gcse_alloc (unsigned long);
451 static void alloc_gcse_mem (void);
452 static void free_gcse_mem (void);
453 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
454 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
455 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
456 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
457 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
458 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
459 static int oprs_available_p (const_rtx, const rtx_insn *);
460 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
461 int, struct gcse_hash_table_d *);
462 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
463 static void record_last_reg_set_info (rtx_insn *, int);
464 static void record_last_mem_set_info (rtx_insn *);
465 static void record_last_set_info (rtx, const_rtx, void *);
466 static void compute_hash_table (struct gcse_hash_table_d *);
467 static void alloc_hash_table (struct gcse_hash_table_d *);
468 static void free_hash_table (struct gcse_hash_table_d *);
469 static void compute_hash_table_work (struct gcse_hash_table_d *);
470 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
471 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
472 struct gcse_hash_table_d *);
473 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
474 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
475 static void alloc_pre_mem (int, int);
476 static void free_pre_mem (void);
477 static struct edge_list *compute_pre_data (void);
478 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
479 basic_block);
480 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
481 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
482 static void pre_insert_copies (void);
483 static int pre_delete (void);
484 static int pre_gcse (struct edge_list *);
485 static int one_pre_gcse_pass (void);
486 static void add_label_notes (rtx, rtx_insn *);
487 static void alloc_code_hoist_mem (int, int);
488 static void free_code_hoist_mem (void);
489 static void compute_code_hoist_vbeinout (void);
490 static void compute_code_hoist_data (void);
491 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
492 sbitmap, int, int *, enum reg_class,
493 int *, bitmap, rtx_insn *);
494 static int hoist_code (void);
495 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
496 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
497 static int one_code_hoisting_pass (void);
498 static rtx_insn *process_insert_insn (struct gcse_expr *);
499 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
500 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
501 basic_block, char *);
502 static struct ls_expr * ldst_entry (rtx);
503 static void free_ldst_entry (struct ls_expr *);
504 static void free_ld_motion_mems (void);
505 static void print_ldst_list (FILE *);
506 static struct ls_expr * find_rtx_in_ldst (rtx);
507 static int simple_mem (const_rtx);
508 static void invalidate_any_buried_refs (rtx);
509 static void compute_ld_motion_mems (void);
510 static void trim_ld_motion_mems (void);
511 static void update_ld_motion_stores (struct gcse_expr *);
512 static void clear_modify_mem_tables (void);
513 static void free_modify_mem_tables (void);
515 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
516 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
518 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
519 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
521 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
522 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
524 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
525 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
527 /* Misc. utilities. */
529 #define can_copy \
530 (this_target_gcse->x_can_copy)
531 #define can_copy_init_p \
532 (this_target_gcse->x_can_copy_init_p)
534 /* Compute which modes support reg/reg copy operations. */
536 static void
537 compute_can_copy (void)
539 int i;
540 #ifndef AVOID_CCMODE_COPIES
541 rtx reg;
542 rtx_insn *insn;
543 #endif
544 memset (can_copy, 0, NUM_MACHINE_MODES);
546 start_sequence ();
547 for (i = 0; i < NUM_MACHINE_MODES; i++)
548 if (GET_MODE_CLASS (i) == MODE_CC)
550 #ifdef AVOID_CCMODE_COPIES
551 can_copy[i] = 0;
552 #else
553 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
554 insn = emit_insn (gen_rtx_SET (reg, reg));
555 if (recog (PATTERN (insn), insn, NULL) >= 0)
556 can_copy[i] = 1;
557 #endif
559 else
560 can_copy[i] = 1;
562 end_sequence ();
565 /* Returns whether the mode supports reg/reg copy operations. */
567 bool
568 can_copy_p (machine_mode mode)
570 if (! can_copy_init_p)
572 compute_can_copy ();
573 can_copy_init_p = true;
576 return can_copy[mode] != 0;
579 /* Cover function to xmalloc to record bytes allocated. */
581 static void *
582 gmalloc (size_t size)
584 bytes_used += size;
585 return xmalloc (size);
588 /* Cover function to xcalloc to record bytes allocated. */
590 static void *
591 gcalloc (size_t nelem, size_t elsize)
593 bytes_used += nelem * elsize;
594 return xcalloc (nelem, elsize);
597 /* Cover function to obstack_alloc. */
599 static void *
600 gcse_alloc (unsigned long size)
602 bytes_used += size;
603 return obstack_alloc (&gcse_obstack, size);
606 /* Allocate memory for the reg/memory set tracking tables.
607 This is called at the start of each pass. */
609 static void
610 alloc_gcse_mem (void)
612 /* Allocate vars to track sets of regs. */
613 reg_set_bitmap = ALLOC_REG_SET (NULL);
615 /* Allocate array to keep a list of insns which modify memory in each
616 basic block. The two typedefs are needed to work around the
617 pre-processor limitation with template types in macro arguments. */
618 typedef vec<rtx_insn *> vec_rtx_heap;
619 typedef vec<modify_pair> vec_modify_pair_heap;
620 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
621 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
622 last_basic_block_for_fn (cfun));
623 modify_mem_list_set = BITMAP_ALLOC (NULL);
624 blocks_with_calls = BITMAP_ALLOC (NULL);
627 /* Free memory allocated by alloc_gcse_mem. */
629 static void
630 free_gcse_mem (void)
632 FREE_REG_SET (reg_set_bitmap);
634 free_modify_mem_tables ();
635 BITMAP_FREE (modify_mem_list_set);
636 BITMAP_FREE (blocks_with_calls);
639 /* Compute the local properties of each recorded expression.
641 Local properties are those that are defined by the block, irrespective of
642 other blocks.
644 An expression is transparent in a block if its operands are not modified
645 in the block.
647 An expression is computed (locally available) in a block if it is computed
648 at least once and expression would contain the same value if the
649 computation was moved to the end of the block.
651 An expression is locally anticipatable in a block if it is computed at
652 least once and expression would contain the same value if the computation
653 was moved to the beginning of the block.
655 We call this routine for pre and code hoisting. They all compute
656 basically the same information and thus can easily share this code.
658 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
659 properties. If NULL, then it is not necessary to compute or record that
660 particular property.
662 TABLE controls which hash table to look at. */
664 static void
665 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
666 struct gcse_hash_table_d *table)
668 unsigned int i;
670 /* Initialize any bitmaps that were passed in. */
671 if (transp)
673 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
676 if (comp)
677 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
678 if (antloc)
679 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
681 for (i = 0; i < table->size; i++)
683 struct gcse_expr *expr;
685 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
687 int indx = expr->bitmap_index;
688 struct gcse_occr *occr;
690 /* The expression is transparent in this block if it is not killed.
691 We start by assuming all are transparent [none are killed], and
692 then reset the bits for those that are. */
693 if (transp)
694 compute_transp (expr->expr, indx, transp,
695 blocks_with_calls,
696 modify_mem_list_set,
697 canon_modify_mem_list);
699 /* The occurrences recorded in antic_occr are exactly those that
700 we want to set to nonzero in ANTLOC. */
701 if (antloc)
702 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
704 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
706 /* While we're scanning the table, this is a good place to
707 initialize this. */
708 occr->deleted_p = 0;
711 /* The occurrences recorded in avail_occr are exactly those that
712 we want to set to nonzero in COMP. */
713 if (comp)
714 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
716 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
718 /* While we're scanning the table, this is a good place to
719 initialize this. */
720 occr->copied_p = 0;
723 /* While we're scanning the table, this is a good place to
724 initialize this. */
725 expr->reaching_reg = 0;
730 /* Hash table support. */
732 struct reg_avail_info
734 basic_block last_bb;
735 int first_set;
736 int last_set;
739 static struct reg_avail_info *reg_avail_info;
740 static basic_block current_bb;
742 /* See whether X, the source of a set, is something we want to consider for
743 GCSE. */
745 static int
746 want_to_gcse_p (rtx x, machine_mode mode, int *max_distance_ptr)
748 #ifdef STACK_REGS
749 /* On register stack architectures, don't GCSE constants from the
750 constant pool, as the benefits are often swamped by the overhead
751 of shuffling the register stack between basic blocks. */
752 if (IS_STACK_MODE (GET_MODE (x)))
753 x = avoid_constant_pool_reference (x);
754 #endif
756 /* GCSE'ing constants:
758 We do not specifically distinguish between constant and non-constant
759 expressions in PRE and Hoist. We use set_src_cost below to limit
760 the maximum distance simple expressions can travel.
762 Nevertheless, constants are much easier to GCSE, and, hence,
763 it is easy to overdo the optimizations. Usually, excessive PRE and
764 Hoisting of constant leads to increased register pressure.
766 RA can deal with this by rematerialing some of the constants.
767 Therefore, it is important that the back-end generates sets of constants
768 in a way that allows reload rematerialize them under high register
769 pressure, i.e., a pseudo register with REG_EQUAL to constant
770 is set only once. Failing to do so will result in IRA/reload
771 spilling such constants under high register pressure instead of
772 rematerializing them. */
774 switch (GET_CODE (x))
776 case REG:
777 case SUBREG:
778 case CALL:
779 return 0;
781 CASE_CONST_ANY:
782 if (!doing_code_hoisting_p)
783 /* Do not PRE constants. */
784 return 0;
786 /* FALLTHRU */
788 default:
789 if (doing_code_hoisting_p)
790 /* PRE doesn't implement max_distance restriction. */
792 int cost;
793 int max_distance;
795 gcc_assert (!optimize_function_for_speed_p (cfun)
796 && optimize_function_for_size_p (cfun));
797 cost = set_src_cost (x, mode, 0);
799 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
801 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
802 if (max_distance == 0)
803 return 0;
805 gcc_assert (max_distance > 0);
807 else
808 max_distance = 0;
810 if (max_distance_ptr)
811 *max_distance_ptr = max_distance;
814 return can_assign_to_reg_without_clobbers_p (x, mode);
818 /* Used internally by can_assign_to_reg_without_clobbers_p. */
820 static GTY(()) rtx_insn *test_insn;
822 /* Return true if we can assign X to a pseudo register of mode MODE
823 such that the resulting insn does not result in clobbering a hard
824 register as a side-effect.
826 Additionally, if the target requires it, check that the resulting insn
827 can be copied. If it cannot, this means that X is special and probably
828 has hidden side-effects we don't want to mess with.
830 This function is typically used by code motion passes, to verify
831 that it is safe to insert an insn without worrying about clobbering
832 maybe live hard regs. */
834 bool
835 can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
837 int num_clobbers = 0;
838 int icode;
839 bool can_assign = false;
841 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
842 if (general_operand (x, mode))
843 return 1;
844 else if (GET_MODE (x) == VOIDmode)
845 return 0;
847 /* Otherwise, check if we can make a valid insn from it. First initialize
848 our test insn if we haven't already. */
849 if (test_insn == 0)
851 test_insn
852 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
853 FIRST_PSEUDO_REGISTER * 2),
854 const0_rtx));
855 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
856 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
859 /* Now make an insn like the one we would make when GCSE'ing and see if
860 valid. */
861 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
862 SET_SRC (PATTERN (test_insn)) = x;
864 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
866 /* If the test insn is valid and doesn't need clobbers, and the target also
867 has no objections, we're good. */
868 if (icode >= 0
869 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
870 && ! (targetm.cannot_copy_insn_p
871 && targetm.cannot_copy_insn_p (test_insn)))
872 can_assign = true;
874 /* Make sure test_insn doesn't have any pointers into GC space. */
875 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
877 return can_assign;
880 /* Return nonzero if the operands of expression X are unchanged from the
881 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
882 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
884 static int
885 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
887 int i, j;
888 enum rtx_code code;
889 const char *fmt;
891 if (x == 0)
892 return 1;
894 code = GET_CODE (x);
895 switch (code)
897 case REG:
899 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
901 if (info->last_bb != current_bb)
902 return 1;
903 if (avail_p)
904 return info->last_set < DF_INSN_LUID (insn);
905 else
906 return info->first_set >= DF_INSN_LUID (insn);
909 case MEM:
910 if (! flag_gcse_lm
911 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
912 x, avail_p))
913 return 0;
914 else
915 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
917 case PRE_DEC:
918 case PRE_INC:
919 case POST_DEC:
920 case POST_INC:
921 case PRE_MODIFY:
922 case POST_MODIFY:
923 return 0;
925 case PC:
926 case CC0: /*FIXME*/
927 case CONST:
928 CASE_CONST_ANY:
929 case SYMBOL_REF:
930 case LABEL_REF:
931 case ADDR_VEC:
932 case ADDR_DIFF_VEC:
933 return 1;
935 default:
936 break;
939 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
941 if (fmt[i] == 'e')
943 /* If we are about to do the last recursive call needed at this
944 level, change it into iteration. This function is called enough
945 to be worth it. */
946 if (i == 0)
947 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
949 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
950 return 0;
952 else if (fmt[i] == 'E')
953 for (j = 0; j < XVECLEN (x, i); j++)
954 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
955 return 0;
958 return 1;
961 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
963 struct mem_conflict_info
965 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
966 see if a memory store conflicts with this memory load. */
967 const_rtx mem;
969 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
970 references. */
971 bool conflict;
974 /* DEST is the output of an instruction. If it is a memory reference and
975 possibly conflicts with the load found in DATA, then communicate this
976 information back through DATA. */
978 static void
979 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
980 void *data)
982 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
984 while (GET_CODE (dest) == SUBREG
985 || GET_CODE (dest) == ZERO_EXTRACT
986 || GET_CODE (dest) == STRICT_LOW_PART)
987 dest = XEXP (dest, 0);
989 /* If DEST is not a MEM, then it will not conflict with the load. Note
990 that function calls are assumed to clobber memory, but are handled
991 elsewhere. */
992 if (! MEM_P (dest))
993 return;
995 /* If we are setting a MEM in our list of specially recognized MEMs,
996 don't mark as killed this time. */
997 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
999 if (!find_rtx_in_ldst (dest))
1000 mci->conflict = true;
1001 return;
1004 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1005 mci->conflict = true;
1008 /* Return nonzero if the expression in X (a memory reference) is killed
1009 in block BB before or after the insn with the LUID in UID_LIMIT.
1010 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1011 before UID_LIMIT.
1013 To check the entire block, set UID_LIMIT to max_uid + 1 and
1014 AVAIL_P to 0. */
1016 static int
1017 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1018 int avail_p)
1020 vec<rtx_insn *> list = modify_mem_list[bb->index];
1021 rtx_insn *setter;
1022 unsigned ix;
1024 /* If this is a readonly then we aren't going to be changing it. */
1025 if (MEM_READONLY_P (x))
1026 return 0;
1028 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1030 struct mem_conflict_info mci;
1032 /* Ignore entries in the list that do not apply. */
1033 if ((avail_p
1034 && DF_INSN_LUID (setter) < uid_limit)
1035 || (! avail_p
1036 && DF_INSN_LUID (setter) > uid_limit))
1037 continue;
1039 /* If SETTER is a call everything is clobbered. Note that calls
1040 to pure functions are never put on the list, so we need not
1041 worry about them. */
1042 if (CALL_P (setter))
1043 return 1;
1045 /* SETTER must be an INSN of some kind that sets memory. Call
1046 note_stores to examine each hunk of memory that is modified. */
1047 mci.mem = x;
1048 mci.conflict = false;
1049 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1050 if (mci.conflict)
1051 return 1;
1053 return 0;
1056 /* Return nonzero if the operands of expression X are unchanged from
1057 the start of INSN's basic block up to but not including INSN. */
1059 static int
1060 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1062 return oprs_unchanged_p (x, insn, 0);
1065 /* Return nonzero if the operands of expression X are unchanged from
1066 INSN to the end of INSN's basic block. */
1068 static int
1069 oprs_available_p (const_rtx x, const rtx_insn *insn)
1071 return oprs_unchanged_p (x, insn, 1);
1074 /* Hash expression X.
1076 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1077 indicating if a volatile operand is found or if the expression contains
1078 something we don't want to insert in the table. HASH_TABLE_SIZE is
1079 the current size of the hash table to be probed. */
1081 static unsigned int
1082 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1083 int hash_table_size)
1085 unsigned int hash;
1087 *do_not_record_p = 0;
1089 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1090 return hash % hash_table_size;
1093 /* Return nonzero if exp1 is equivalent to exp2. */
1095 static int
1096 expr_equiv_p (const_rtx x, const_rtx y)
1098 return exp_equiv_p (x, y, 0, true);
1101 /* Insert expression X in INSN in the hash TABLE.
1102 If it is already present, record it as the last occurrence in INSN's
1103 basic block.
1105 MODE is the mode of the value X is being stored into.
1106 It is only used if X is a CONST_INT.
1108 ANTIC_P is nonzero if X is an anticipatable expression.
1109 AVAIL_P is nonzero if X is an available expression.
1111 MAX_DISTANCE is the maximum distance in instructions this expression can
1112 be moved. */
1114 static void
1115 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1116 int antic_p,
1117 int avail_p, int max_distance, struct gcse_hash_table_d *table)
1119 int found, do_not_record_p;
1120 unsigned int hash;
1121 struct gcse_expr *cur_expr, *last_expr = NULL;
1122 struct gcse_occr *antic_occr, *avail_occr;
1124 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1126 /* Do not insert expression in table if it contains volatile operands,
1127 or if hash_expr determines the expression is something we don't want
1128 to or can't handle. */
1129 if (do_not_record_p)
1130 return;
1132 cur_expr = table->table[hash];
1133 found = 0;
1135 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1137 /* If the expression isn't found, save a pointer to the end of
1138 the list. */
1139 last_expr = cur_expr;
1140 cur_expr = cur_expr->next_same_hash;
1143 if (! found)
1145 cur_expr = GOBNEW (struct gcse_expr);
1146 bytes_used += sizeof (struct gcse_expr);
1147 if (table->table[hash] == NULL)
1148 /* This is the first pattern that hashed to this index. */
1149 table->table[hash] = cur_expr;
1150 else
1151 /* Add EXPR to end of this hash chain. */
1152 last_expr->next_same_hash = cur_expr;
1154 /* Set the fields of the expr element. */
1155 cur_expr->expr = x;
1156 cur_expr->bitmap_index = table->n_elems++;
1157 cur_expr->next_same_hash = NULL;
1158 cur_expr->antic_occr = NULL;
1159 cur_expr->avail_occr = NULL;
1160 gcc_assert (max_distance >= 0);
1161 cur_expr->max_distance = max_distance;
1163 else
1164 gcc_assert (cur_expr->max_distance == max_distance);
1166 /* Now record the occurrence(s). */
1167 if (antic_p)
1169 antic_occr = cur_expr->antic_occr;
1171 if (antic_occr
1172 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1173 antic_occr = NULL;
1175 if (antic_occr)
1176 /* Found another instance of the expression in the same basic block.
1177 Prefer the currently recorded one. We want the first one in the
1178 block and the block is scanned from start to end. */
1179 ; /* nothing to do */
1180 else
1182 /* First occurrence of this expression in this basic block. */
1183 antic_occr = GOBNEW (struct gcse_occr);
1184 bytes_used += sizeof (struct gcse_occr);
1185 antic_occr->insn = insn;
1186 antic_occr->next = cur_expr->antic_occr;
1187 antic_occr->deleted_p = 0;
1188 cur_expr->antic_occr = antic_occr;
1192 if (avail_p)
1194 avail_occr = cur_expr->avail_occr;
1196 if (avail_occr
1197 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1199 /* Found another instance of the expression in the same basic block.
1200 Prefer this occurrence to the currently recorded one. We want
1201 the last one in the block and the block is scanned from start
1202 to end. */
1203 avail_occr->insn = insn;
1205 else
1207 /* First occurrence of this expression in this basic block. */
1208 avail_occr = GOBNEW (struct gcse_occr);
1209 bytes_used += sizeof (struct gcse_occr);
1210 avail_occr->insn = insn;
1211 avail_occr->next = cur_expr->avail_occr;
1212 avail_occr->deleted_p = 0;
1213 cur_expr->avail_occr = avail_occr;
1218 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1220 static void
1221 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1223 rtx src = SET_SRC (set);
1224 rtx dest = SET_DEST (set);
1225 rtx note;
1227 if (GET_CODE (src) == CALL)
1228 hash_scan_call (src, insn, table);
1230 else if (REG_P (dest))
1232 unsigned int regno = REGNO (dest);
1233 int max_distance = 0;
1235 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1237 This allows us to do a single GCSE pass and still eliminate
1238 redundant constants, addresses or other expressions that are
1239 constructed with multiple instructions.
1241 However, keep the original SRC if INSN is a simple reg-reg move.
1242 In this case, there will almost always be a REG_EQUAL note on the
1243 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1244 for INSN, we miss copy propagation opportunities and we perform the
1245 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1246 do more than one PRE GCSE pass.
1248 Note that this does not impede profitable constant propagations. We
1249 "look through" reg-reg sets in lookup_avail_set. */
1250 note = find_reg_equal_equiv_note (insn);
1251 if (note != 0
1252 && REG_NOTE_KIND (note) == REG_EQUAL
1253 && !REG_P (src)
1254 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
1255 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1257 /* Only record sets of pseudo-regs in the hash table. */
1258 if (regno >= FIRST_PSEUDO_REGISTER
1259 /* Don't GCSE something if we can't do a reg/reg copy. */
1260 && can_copy_p (GET_MODE (dest))
1261 /* GCSE commonly inserts instruction after the insn. We can't
1262 do that easily for EH edges so disable GCSE on these for now. */
1263 /* ??? We can now easily create new EH landing pads at the
1264 gimple level, for splitting edges; there's no reason we
1265 can't do the same thing at the rtl level. */
1266 && !can_throw_internal (insn)
1267 /* Is SET_SRC something we want to gcse? */
1268 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1269 /* Don't CSE a nop. */
1270 && ! set_noop_p (set)
1271 /* Don't GCSE if it has attached REG_EQUIV note.
1272 At this point this only function parameters should have
1273 REG_EQUIV notes and if the argument slot is used somewhere
1274 explicitly, it means address of parameter has been taken,
1275 so we should not extend the lifetime of the pseudo. */
1276 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1278 /* An expression is not anticipatable if its operands are
1279 modified before this insn or if this is not the only SET in
1280 this insn. The latter condition does not have to mean that
1281 SRC itself is not anticipatable, but we just will not be
1282 able to handle code motion of insns with multiple sets. */
1283 int antic_p = oprs_anticipatable_p (src, insn)
1284 && !multiple_sets (insn);
1285 /* An expression is not available if its operands are
1286 subsequently modified, including this insn. It's also not
1287 available if this is a branch, because we can't insert
1288 a set after the branch. */
1289 int avail_p = (oprs_available_p (src, insn)
1290 && ! JUMP_P (insn));
1292 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1293 max_distance, table);
1296 /* In case of store we want to consider the memory value as available in
1297 the REG stored in that memory. This makes it possible to remove
1298 redundant loads from due to stores to the same location. */
1299 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1301 unsigned int regno = REGNO (src);
1302 int max_distance = 0;
1304 /* Only record sets of pseudo-regs in the hash table. */
1305 if (regno >= FIRST_PSEUDO_REGISTER
1306 /* Don't GCSE something if we can't do a reg/reg copy. */
1307 && can_copy_p (GET_MODE (src))
1308 /* GCSE commonly inserts instruction after the insn. We can't
1309 do that easily for EH edges so disable GCSE on these for now. */
1310 && !can_throw_internal (insn)
1311 /* Is SET_DEST something we want to gcse? */
1312 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1313 /* Don't CSE a nop. */
1314 && ! set_noop_p (set)
1315 /* Don't GCSE if it has attached REG_EQUIV note.
1316 At this point this only function parameters should have
1317 REG_EQUIV notes and if the argument slot is used somewhere
1318 explicitly, it means address of parameter has been taken,
1319 so we should not extend the lifetime of the pseudo. */
1320 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1321 || ! MEM_P (XEXP (note, 0))))
1323 /* Stores are never anticipatable. */
1324 int antic_p = 0;
1325 /* An expression is not available if its operands are
1326 subsequently modified, including this insn. It's also not
1327 available if this is a branch, because we can't insert
1328 a set after the branch. */
1329 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1331 /* Record the memory expression (DEST) in the hash table. */
1332 insert_expr_in_table (dest, GET_MODE (dest), insn,
1333 antic_p, avail_p, max_distance, table);
1338 static void
1339 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1340 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1342 /* Currently nothing to do. */
1345 static void
1346 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1347 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1349 /* Currently nothing to do. */
1352 /* Process INSN and add hash table entries as appropriate. */
1354 static void
1355 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1357 rtx pat = PATTERN (insn);
1358 int i;
1360 /* Pick out the sets of INSN and for other forms of instructions record
1361 what's been modified. */
1363 if (GET_CODE (pat) == SET)
1364 hash_scan_set (pat, insn, table);
1366 else if (GET_CODE (pat) == CLOBBER)
1367 hash_scan_clobber (pat, insn, table);
1369 else if (GET_CODE (pat) == CALL)
1370 hash_scan_call (pat, insn, table);
1372 else if (GET_CODE (pat) == PARALLEL)
1373 for (i = 0; i < XVECLEN (pat, 0); i++)
1375 rtx x = XVECEXP (pat, 0, i);
1377 if (GET_CODE (x) == SET)
1378 hash_scan_set (x, insn, table);
1379 else if (GET_CODE (x) == CLOBBER)
1380 hash_scan_clobber (x, insn, table);
1381 else if (GET_CODE (x) == CALL)
1382 hash_scan_call (x, insn, table);
1386 /* Dump the hash table TABLE to file FILE under the name NAME. */
1388 static void
1389 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1391 int i;
1392 /* Flattened out table, so it's printed in proper order. */
1393 struct gcse_expr **flat_table;
1394 unsigned int *hash_val;
1395 struct gcse_expr *expr;
1397 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1398 hash_val = XNEWVEC (unsigned int, table->n_elems);
1400 for (i = 0; i < (int) table->size; i++)
1401 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1403 flat_table[expr->bitmap_index] = expr;
1404 hash_val[expr->bitmap_index] = i;
1407 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1408 name, table->size, table->n_elems);
1410 for (i = 0; i < (int) table->n_elems; i++)
1411 if (flat_table[i] != 0)
1413 expr = flat_table[i];
1414 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1415 expr->bitmap_index, hash_val[i], expr->max_distance);
1416 print_rtl (file, expr->expr);
1417 fprintf (file, "\n");
1420 fprintf (file, "\n");
1422 free (flat_table);
1423 free (hash_val);
1426 /* Record register first/last/block set information for REGNO in INSN.
1428 first_set records the first place in the block where the register
1429 is set and is used to compute "anticipatability".
1431 last_set records the last place in the block where the register
1432 is set and is used to compute "availability".
1434 last_bb records the block for which first_set and last_set are
1435 valid, as a quick test to invalidate them. */
1437 static void
1438 record_last_reg_set_info (rtx_insn *insn, int regno)
1440 struct reg_avail_info *info = &reg_avail_info[regno];
1441 int luid = DF_INSN_LUID (insn);
1443 info->last_set = luid;
1444 if (info->last_bb != current_bb)
1446 info->last_bb = current_bb;
1447 info->first_set = luid;
1451 /* Record memory modification information for INSN. We do not actually care
1452 about the memory location(s) that are set, or even how they are set (consider
1453 a CALL_INSN). We merely need to record which insns modify memory. */
1455 static void
1456 record_last_mem_set_info (rtx_insn *insn)
1458 if (! flag_gcse_lm)
1459 return;
1461 record_last_mem_set_info_common (insn, modify_mem_list,
1462 canon_modify_mem_list,
1463 modify_mem_list_set,
1464 blocks_with_calls);
1467 /* Called from compute_hash_table via note_stores to handle one
1468 SET or CLOBBER in an insn. DATA is really the instruction in which
1469 the SET is taking place. */
1471 static void
1472 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1474 rtx_insn *last_set_insn = (rtx_insn *) data;
1476 if (GET_CODE (dest) == SUBREG)
1477 dest = SUBREG_REG (dest);
1479 if (REG_P (dest))
1480 record_last_reg_set_info (last_set_insn, REGNO (dest));
1481 else if (MEM_P (dest)
1482 /* Ignore pushes, they clobber nothing. */
1483 && ! push_operand (dest, GET_MODE (dest)))
1484 record_last_mem_set_info (last_set_insn);
1487 /* Top level function to create an expression hash table.
1489 Expression entries are placed in the hash table if
1490 - they are of the form (set (pseudo-reg) src),
1491 - src is something we want to perform GCSE on,
1492 - none of the operands are subsequently modified in the block
1494 Currently src must be a pseudo-reg or a const_int.
1496 TABLE is the table computed. */
1498 static void
1499 compute_hash_table_work (struct gcse_hash_table_d *table)
1501 int i;
1503 /* re-Cache any INSN_LIST nodes we have allocated. */
1504 clear_modify_mem_tables ();
1505 /* Some working arrays used to track first and last set in each block. */
1506 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1508 for (i = 0; i < max_reg_num (); ++i)
1509 reg_avail_info[i].last_bb = NULL;
1511 FOR_EACH_BB_FN (current_bb, cfun)
1513 rtx_insn *insn;
1514 unsigned int regno;
1516 /* First pass over the instructions records information used to
1517 determine when registers and memory are first and last set. */
1518 FOR_BB_INSNS (current_bb, insn)
1520 if (!NONDEBUG_INSN_P (insn))
1521 continue;
1523 if (CALL_P (insn))
1525 hard_reg_set_iterator hrsi;
1526 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1527 0, regno, hrsi)
1528 record_last_reg_set_info (insn, regno);
1530 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1531 record_last_mem_set_info (insn);
1534 note_stores (PATTERN (insn), record_last_set_info, insn);
1537 /* The next pass builds the hash table. */
1538 FOR_BB_INSNS (current_bb, insn)
1539 if (NONDEBUG_INSN_P (insn))
1540 hash_scan_insn (insn, table);
1543 free (reg_avail_info);
1544 reg_avail_info = NULL;
1547 /* Allocate space for the set/expr hash TABLE.
1548 It is used to determine the number of buckets to use. */
1550 static void
1551 alloc_hash_table (struct gcse_hash_table_d *table)
1553 int n;
1555 n = get_max_insn_count ();
1557 table->size = n / 4;
1558 if (table->size < 11)
1559 table->size = 11;
1561 /* Attempt to maintain efficient use of hash table.
1562 Making it an odd number is simplest for now.
1563 ??? Later take some measurements. */
1564 table->size |= 1;
1565 n = table->size * sizeof (struct gcse_expr *);
1566 table->table = GNEWVAR (struct gcse_expr *, n);
1569 /* Free things allocated by alloc_hash_table. */
1571 static void
1572 free_hash_table (struct gcse_hash_table_d *table)
1574 free (table->table);
1577 /* Compute the expression hash table TABLE. */
1579 static void
1580 compute_hash_table (struct gcse_hash_table_d *table)
1582 /* Initialize count of number of entries in hash table. */
1583 table->n_elems = 0;
1584 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1586 compute_hash_table_work (table);
1589 /* Expression tracking support. */
1591 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1592 static void
1593 clear_modify_mem_tables (void)
1595 unsigned i;
1596 bitmap_iterator bi;
1598 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1600 modify_mem_list[i].release ();
1601 canon_modify_mem_list[i].release ();
1603 bitmap_clear (modify_mem_list_set);
1604 bitmap_clear (blocks_with_calls);
1607 /* Release memory used by modify_mem_list_set. */
1609 static void
1610 free_modify_mem_tables (void)
1612 clear_modify_mem_tables ();
1613 free (modify_mem_list);
1614 free (canon_modify_mem_list);
1615 modify_mem_list = 0;
1616 canon_modify_mem_list = 0;
1619 /* Compute PRE+LCM working variables. */
1621 /* Local properties of expressions. */
1623 /* Nonzero for expressions that are transparent in the block. */
1624 static sbitmap *transp;
1626 /* Nonzero for expressions that are computed (available) in the block. */
1627 static sbitmap *comp;
1629 /* Nonzero for expressions that are locally anticipatable in the block. */
1630 static sbitmap *antloc;
1632 /* Nonzero for expressions where this block is an optimal computation
1633 point. */
1634 static sbitmap *pre_optimal;
1636 /* Nonzero for expressions which are redundant in a particular block. */
1637 static sbitmap *pre_redundant;
1639 /* Nonzero for expressions which should be inserted on a specific edge. */
1640 static sbitmap *pre_insert_map;
1642 /* Nonzero for expressions which should be deleted in a specific block. */
1643 static sbitmap *pre_delete_map;
1645 /* Allocate vars used for PRE analysis. */
1647 static void
1648 alloc_pre_mem (int n_blocks, int n_exprs)
1650 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1651 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1652 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1654 pre_optimal = NULL;
1655 pre_redundant = NULL;
1656 pre_insert_map = NULL;
1657 pre_delete_map = NULL;
1658 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1660 /* pre_insert and pre_delete are allocated later. */
1663 /* Free vars used for PRE analysis. */
1665 static void
1666 free_pre_mem (void)
1668 sbitmap_vector_free (transp);
1669 sbitmap_vector_free (comp);
1671 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1673 if (pre_optimal)
1674 sbitmap_vector_free (pre_optimal);
1675 if (pre_redundant)
1676 sbitmap_vector_free (pre_redundant);
1677 if (pre_insert_map)
1678 sbitmap_vector_free (pre_insert_map);
1679 if (pre_delete_map)
1680 sbitmap_vector_free (pre_delete_map);
1682 transp = comp = NULL;
1683 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1686 /* Remove certain expressions from anticipatable and transparent
1687 sets of basic blocks that have incoming abnormal edge.
1688 For PRE remove potentially trapping expressions to avoid placing
1689 them on abnormal edges. For hoisting remove memory references that
1690 can be clobbered by calls. */
1692 static void
1693 prune_expressions (bool pre_p)
1695 struct gcse_expr *expr;
1696 unsigned int ui;
1697 basic_block bb;
1699 auto_sbitmap prune_exprs (expr_hash_table.n_elems);
1700 bitmap_clear (prune_exprs);
1701 for (ui = 0; ui < expr_hash_table.size; ui++)
1703 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1705 /* Note potentially trapping expressions. */
1706 if (may_trap_p (expr->expr))
1708 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1709 continue;
1712 if (!pre_p && MEM_P (expr->expr))
1713 /* Note memory references that can be clobbered by a call.
1714 We do not split abnormal edges in hoisting, so would
1715 a memory reference get hoisted along an abnormal edge,
1716 it would be placed /before/ the call. Therefore, only
1717 constant memory references can be hoisted along abnormal
1718 edges. */
1720 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1721 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1722 continue;
1724 if (MEM_READONLY_P (expr->expr)
1725 && !MEM_VOLATILE_P (expr->expr)
1726 && MEM_NOTRAP_P (expr->expr))
1727 /* Constant memory reference, e.g., a PIC address. */
1728 continue;
1730 /* ??? Optimally, we would use interprocedural alias
1731 analysis to determine if this mem is actually killed
1732 by this call. */
1734 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1739 FOR_EACH_BB_FN (bb, cfun)
1741 edge e;
1742 edge_iterator ei;
1744 /* If the current block is the destination of an abnormal edge, we
1745 kill all trapping (for PRE) and memory (for hoist) expressions
1746 because we won't be able to properly place the instruction on
1747 the edge. So make them neither anticipatable nor transparent.
1748 This is fairly conservative.
1750 ??? For hoisting it may be necessary to check for set-and-jump
1751 instructions here, not just for abnormal edges. The general problem
1752 is that when an expression cannot not be placed right at the end of
1753 a basic block we should account for any side-effects of a subsequent
1754 jump instructions that could clobber the expression. It would
1755 be best to implement this check along the lines of
1756 should_hoist_expr_to_dom where the target block is already known
1757 and, hence, there's no need to conservatively prune expressions on
1758 "intermediate" set-and-jump instructions. */
1759 FOR_EACH_EDGE (e, ei, bb->preds)
1760 if ((e->flags & EDGE_ABNORMAL)
1761 && (pre_p || CALL_P (BB_END (e->src))))
1763 bitmap_and_compl (antloc[bb->index],
1764 antloc[bb->index], prune_exprs);
1765 bitmap_and_compl (transp[bb->index],
1766 transp[bb->index], prune_exprs);
1767 break;
1772 /* It may be necessary to insert a large number of insns on edges to
1773 make the existing occurrences of expressions fully redundant. This
1774 routine examines the set of insertions and deletions and if the ratio
1775 of insertions to deletions is too high for a particular expression, then
1776 the expression is removed from the insertion/deletion sets.
1778 N_ELEMS is the number of elements in the hash table. */
1780 static void
1781 prune_insertions_deletions (int n_elems)
1783 sbitmap_iterator sbi;
1785 /* We always use I to iterate over blocks/edges and J to iterate over
1786 expressions. */
1787 unsigned int i, j;
1789 /* Counts for the number of times an expression needs to be inserted and
1790 number of times an expression can be removed as a result. */
1791 int *insertions = GCNEWVEC (int, n_elems);
1792 int *deletions = GCNEWVEC (int, n_elems);
1794 /* Set of expressions which require too many insertions relative to
1795 the number of deletions achieved. We will prune these out of the
1796 insertion/deletion sets. */
1797 auto_sbitmap prune_exprs (n_elems);
1798 bitmap_clear (prune_exprs);
1800 /* Iterate over the edges counting the number of times each expression
1801 needs to be inserted. */
1802 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1804 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1805 insertions[j]++;
1808 /* Similarly for deletions, but those occur in blocks rather than on
1809 edges. */
1810 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1812 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1813 deletions[j]++;
1816 /* Now that we have accurate counts, iterate over the elements in the
1817 hash table and see if any need too many insertions relative to the
1818 number of evaluations that can be removed. If so, mark them in
1819 PRUNE_EXPRS. */
1820 for (j = 0; j < (unsigned) n_elems; j++)
1821 if (deletions[j]
1822 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1823 bitmap_set_bit (prune_exprs, j);
1825 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
1826 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1828 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1829 bitmap_clear_bit (pre_insert_map[i], j);
1831 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1832 bitmap_clear_bit (pre_delete_map[i], j);
1835 free (insertions);
1836 free (deletions);
1839 /* Top level routine to do the dataflow analysis needed by PRE. */
1841 static struct edge_list *
1842 compute_pre_data (void)
1844 struct edge_list *edge_list;
1845 basic_block bb;
1847 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1848 prune_expressions (true);
1849 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1851 /* Compute ae_kill for each basic block using:
1853 ~(TRANSP | COMP)
1856 FOR_EACH_BB_FN (bb, cfun)
1858 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1859 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1862 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1863 ae_kill, &pre_insert_map, &pre_delete_map);
1864 sbitmap_vector_free (antloc);
1865 antloc = NULL;
1866 sbitmap_vector_free (ae_kill);
1867 ae_kill = NULL;
1869 prune_insertions_deletions (expr_hash_table.n_elems);
1871 return edge_list;
1874 /* PRE utilities */
1876 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1877 block BB.
1879 VISITED is a pointer to a working buffer for tracking which BB's have
1880 been visited. It is NULL for the top-level call.
1882 We treat reaching expressions that go through blocks containing the same
1883 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1884 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1885 2 as not reaching. The intent is to improve the probability of finding
1886 only one reaching expression and to reduce register lifetimes by picking
1887 the closest such expression. */
1889 static int
1890 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1891 basic_block bb, char *visited)
1893 edge pred;
1894 edge_iterator ei;
1896 FOR_EACH_EDGE (pred, ei, bb->preds)
1898 basic_block pred_bb = pred->src;
1900 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1901 /* Has predecessor has already been visited? */
1902 || visited[pred_bb->index])
1903 ;/* Nothing to do. */
1905 /* Does this predecessor generate this expression? */
1906 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1908 /* Is this the occurrence we're looking for?
1909 Note that there's only one generating occurrence per block
1910 so we just need to check the block number. */
1911 if (occr_bb == pred_bb)
1912 return 1;
1914 visited[pred_bb->index] = 1;
1916 /* Ignore this predecessor if it kills the expression. */
1917 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1918 visited[pred_bb->index] = 1;
1920 /* Neither gen nor kill. */
1921 else
1923 visited[pred_bb->index] = 1;
1924 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1925 return 1;
1929 /* All paths have been checked. */
1930 return 0;
1933 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1934 memory allocated for that function is returned. */
1936 static int
1937 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1939 int rval;
1940 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1942 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1944 free (visited);
1945 return rval;
1948 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1950 static rtx_insn *
1951 process_insert_insn (struct gcse_expr *expr)
1953 rtx reg = expr->reaching_reg;
1954 /* Copy the expression to make sure we don't have any sharing issues. */
1955 rtx exp = copy_rtx (expr->expr);
1956 rtx_insn *pat;
1958 start_sequence ();
1960 /* If the expression is something that's an operand, like a constant,
1961 just copy it to a register. */
1962 if (general_operand (exp, GET_MODE (reg)))
1963 emit_move_insn (reg, exp);
1965 /* Otherwise, make a new insn to compute this expression and make sure the
1966 insn will be recognized (this also adds any needed CLOBBERs). */
1967 else
1969 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
1971 if (insn_invalid_p (insn, false))
1972 gcc_unreachable ();
1975 pat = get_insns ();
1976 end_sequence ();
1978 return pat;
1981 /* Add EXPR to the end of basic block BB.
1983 This is used by both the PRE and code hoisting. */
1985 static void
1986 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
1988 rtx_insn *insn = BB_END (bb);
1989 rtx_insn *new_insn;
1990 rtx reg = expr->reaching_reg;
1991 int regno = REGNO (reg);
1992 rtx_insn *pat, *pat_end;
1994 pat = process_insert_insn (expr);
1995 gcc_assert (pat && INSN_P (pat));
1997 pat_end = pat;
1998 while (NEXT_INSN (pat_end) != NULL_RTX)
1999 pat_end = NEXT_INSN (pat_end);
2001 /* If the last insn is a jump, insert EXPR in front [taking care to
2002 handle cc0, etc. properly]. Similarly we need to care trapping
2003 instructions in presence of non-call exceptions. */
2005 if (JUMP_P (insn)
2006 || (NONJUMP_INSN_P (insn)
2007 && (!single_succ_p (bb)
2008 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2010 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2011 if cc0 isn't set. */
2012 if (HAVE_cc0)
2014 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2015 if (note)
2016 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2017 else
2019 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2020 if (maybe_cc0_setter
2021 && INSN_P (maybe_cc0_setter)
2022 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2023 insn = maybe_cc0_setter;
2027 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2028 new_insn = emit_insn_before_noloc (pat, insn, bb);
2031 /* Likewise if the last insn is a call, as will happen in the presence
2032 of exception handling. */
2033 else if (CALL_P (insn)
2034 && (!single_succ_p (bb)
2035 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2037 /* Keeping in mind targets with small register classes and parameters
2038 in registers, we search backward and place the instructions before
2039 the first parameter is loaded. Do this for everyone for consistency
2040 and a presumption that we'll get better code elsewhere as well. */
2042 /* Since different machines initialize their parameter registers
2043 in different orders, assume nothing. Collect the set of all
2044 parameter registers. */
2045 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2047 /* If we found all the parameter loads, then we want to insert
2048 before the first parameter load.
2050 If we did not find all the parameter loads, then we might have
2051 stopped on the head of the block, which could be a CODE_LABEL.
2052 If we inserted before the CODE_LABEL, then we would be putting
2053 the insn in the wrong basic block. In that case, put the insn
2054 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2055 while (LABEL_P (insn)
2056 || NOTE_INSN_BASIC_BLOCK_P (insn))
2057 insn = NEXT_INSN (insn);
2059 new_insn = emit_insn_before_noloc (pat, insn, bb);
2061 else
2062 new_insn = emit_insn_after_noloc (pat, insn, bb);
2064 while (1)
2066 if (INSN_P (pat))
2067 add_label_notes (PATTERN (pat), new_insn);
2068 if (pat == pat_end)
2069 break;
2070 pat = NEXT_INSN (pat);
2073 gcse_create_count++;
2075 if (dump_file)
2077 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2078 bb->index, INSN_UID (new_insn));
2079 fprintf (dump_file, "copying expression %d to reg %d\n",
2080 expr->bitmap_index, regno);
2084 /* Insert partially redundant expressions on edges in the CFG to make
2085 the expressions fully redundant. */
2087 static int
2088 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2090 int e, i, j, num_edges, set_size, did_insert = 0;
2091 sbitmap *inserted;
2093 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2094 if it reaches any of the deleted expressions. */
2096 set_size = pre_insert_map[0]->size;
2097 num_edges = NUM_EDGES (edge_list);
2098 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2099 bitmap_vector_clear (inserted, num_edges);
2101 for (e = 0; e < num_edges; e++)
2103 int indx;
2104 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2106 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2108 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2110 for (j = indx;
2111 insert && j < (int) expr_hash_table.n_elems;
2112 j++, insert >>= 1)
2113 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2115 struct gcse_expr *expr = index_map[j];
2116 struct gcse_occr *occr;
2118 /* Now look at each deleted occurrence of this expression. */
2119 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2121 if (! occr->deleted_p)
2122 continue;
2124 /* Insert this expression on this edge if it would
2125 reach the deleted occurrence in BB. */
2126 if (!bitmap_bit_p (inserted[e], j))
2128 rtx_insn *insn;
2129 edge eg = INDEX_EDGE (edge_list, e);
2131 /* We can't insert anything on an abnormal and
2132 critical edge, so we insert the insn at the end of
2133 the previous block. There are several alternatives
2134 detailed in Morgans book P277 (sec 10.5) for
2135 handling this situation. This one is easiest for
2136 now. */
2138 if (eg->flags & EDGE_ABNORMAL)
2139 insert_insn_end_basic_block (index_map[j], bb);
2140 else
2142 insn = process_insert_insn (index_map[j]);
2143 insert_insn_on_edge (insn, eg);
2146 if (dump_file)
2148 fprintf (dump_file, "PRE: edge (%d,%d), ",
2149 bb->index,
2150 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2151 fprintf (dump_file, "copy expression %d\n",
2152 expr->bitmap_index);
2155 update_ld_motion_stores (expr);
2156 bitmap_set_bit (inserted[e], j);
2157 did_insert = 1;
2158 gcse_create_count++;
2165 sbitmap_vector_free (inserted);
2166 return did_insert;
2169 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2170 Given "old_reg <- expr" (INSN), instead of adding after it
2171 reaching_reg <- old_reg
2172 it's better to do the following:
2173 reaching_reg <- expr
2174 old_reg <- reaching_reg
2175 because this way copy propagation can discover additional PRE
2176 opportunities. But if this fails, we try the old way.
2177 When "expr" is a store, i.e.
2178 given "MEM <- old_reg", instead of adding after it
2179 reaching_reg <- old_reg
2180 it's better to add it before as follows:
2181 reaching_reg <- old_reg
2182 MEM <- reaching_reg. */
2184 static void
2185 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2187 rtx reg = expr->reaching_reg;
2188 int regno = REGNO (reg);
2189 int indx = expr->bitmap_index;
2190 rtx pat = PATTERN (insn);
2191 rtx set, first_set;
2192 rtx_insn *new_insn;
2193 rtx old_reg;
2194 int i;
2196 /* This block matches the logic in hash_scan_insn. */
2197 switch (GET_CODE (pat))
2199 case SET:
2200 set = pat;
2201 break;
2203 case PARALLEL:
2204 /* Search through the parallel looking for the set whose
2205 source was the expression that we're interested in. */
2206 first_set = NULL_RTX;
2207 set = NULL_RTX;
2208 for (i = 0; i < XVECLEN (pat, 0); i++)
2210 rtx x = XVECEXP (pat, 0, i);
2211 if (GET_CODE (x) == SET)
2213 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2214 may not find an equivalent expression, but in this
2215 case the PARALLEL will have a single set. */
2216 if (first_set == NULL_RTX)
2217 first_set = x;
2218 if (expr_equiv_p (SET_SRC (x), expr->expr))
2220 set = x;
2221 break;
2226 gcc_assert (first_set);
2227 if (set == NULL_RTX)
2228 set = first_set;
2229 break;
2231 default:
2232 gcc_unreachable ();
2235 if (REG_P (SET_DEST (set)))
2237 old_reg = SET_DEST (set);
2238 /* Check if we can modify the set destination in the original insn. */
2239 if (validate_change (insn, &SET_DEST (set), reg, 0))
2241 new_insn = gen_move_insn (old_reg, reg);
2242 new_insn = emit_insn_after (new_insn, insn);
2244 else
2246 new_insn = gen_move_insn (reg, old_reg);
2247 new_insn = emit_insn_after (new_insn, insn);
2250 else /* This is possible only in case of a store to memory. */
2252 old_reg = SET_SRC (set);
2253 new_insn = gen_move_insn (reg, old_reg);
2255 /* Check if we can modify the set source in the original insn. */
2256 if (validate_change (insn, &SET_SRC (set), reg, 0))
2257 new_insn = emit_insn_before (new_insn, insn);
2258 else
2259 new_insn = emit_insn_after (new_insn, insn);
2262 gcse_create_count++;
2264 if (dump_file)
2265 fprintf (dump_file,
2266 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2267 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2268 INSN_UID (insn), regno);
2271 /* Copy available expressions that reach the redundant expression
2272 to `reaching_reg'. */
2274 static void
2275 pre_insert_copies (void)
2277 unsigned int i, added_copy;
2278 struct gcse_expr *expr;
2279 struct gcse_occr *occr;
2280 struct gcse_occr *avail;
2282 /* For each available expression in the table, copy the result to
2283 `reaching_reg' if the expression reaches a deleted one.
2285 ??? The current algorithm is rather brute force.
2286 Need to do some profiling. */
2288 for (i = 0; i < expr_hash_table.size; i++)
2289 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2291 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2292 we don't want to insert a copy here because the expression may not
2293 really be redundant. So only insert an insn if the expression was
2294 deleted. This test also avoids further processing if the
2295 expression wasn't deleted anywhere. */
2296 if (expr->reaching_reg == NULL)
2297 continue;
2299 /* Set when we add a copy for that expression. */
2300 added_copy = 0;
2302 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2304 if (! occr->deleted_p)
2305 continue;
2307 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2309 rtx_insn *insn = avail->insn;
2311 /* No need to handle this one if handled already. */
2312 if (avail->copied_p)
2313 continue;
2315 /* Don't handle this one if it's a redundant one. */
2316 if (insn->deleted ())
2317 continue;
2319 /* Or if the expression doesn't reach the deleted one. */
2320 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2321 expr,
2322 BLOCK_FOR_INSN (occr->insn)))
2323 continue;
2325 added_copy = 1;
2327 /* Copy the result of avail to reaching_reg. */
2328 pre_insert_copy_insn (expr, insn);
2329 avail->copied_p = 1;
2333 if (added_copy)
2334 update_ld_motion_stores (expr);
2338 struct set_data
2340 rtx_insn *insn;
2341 const_rtx set;
2342 int nsets;
2345 /* Increment number of sets and record set in DATA. */
2347 static void
2348 record_set_data (rtx dest, const_rtx set, void *data)
2350 struct set_data *s = (struct set_data *)data;
2352 if (GET_CODE (set) == SET)
2354 /* We allow insns having multiple sets, where all but one are
2355 dead as single set insns. In the common case only a single
2356 set is present, so we want to avoid checking for REG_UNUSED
2357 notes unless necessary. */
2358 if (s->nsets == 1
2359 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2360 && !side_effects_p (s->set))
2361 s->nsets = 0;
2363 if (!s->nsets)
2365 /* Record this set. */
2366 s->nsets += 1;
2367 s->set = set;
2369 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2370 || side_effects_p (set))
2371 s->nsets += 1;
2375 static const_rtx
2376 single_set_gcse (rtx_insn *insn)
2378 struct set_data s;
2379 rtx pattern;
2381 gcc_assert (INSN_P (insn));
2383 /* Optimize common case. */
2384 pattern = PATTERN (insn);
2385 if (GET_CODE (pattern) == SET)
2386 return pattern;
2388 s.insn = insn;
2389 s.nsets = 0;
2390 note_stores (pattern, record_set_data, &s);
2392 /* Considered invariant insns have exactly one set. */
2393 gcc_assert (s.nsets == 1);
2394 return s.set;
2397 /* Emit move from SRC to DEST noting the equivalence with expression computed
2398 in INSN. */
2400 static rtx_insn *
2401 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2403 rtx_insn *new_rtx;
2404 const_rtx set = single_set_gcse (insn);
2405 rtx set2;
2406 rtx note;
2407 rtx eqv = NULL_RTX;
2409 /* This should never fail since we're creating a reg->reg copy
2410 we've verified to be valid. */
2412 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2414 /* Note the equivalence for local CSE pass. Take the note from the old
2415 set if there was one. Otherwise record the SET_SRC from the old set
2416 unless DEST is also an operand of the SET_SRC. */
2417 set2 = single_set (new_rtx);
2418 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2419 return new_rtx;
2420 if ((note = find_reg_equal_equiv_note (insn)))
2421 eqv = XEXP (note, 0);
2422 else if (! REG_P (dest)
2423 || ! reg_mentioned_p (dest, SET_SRC (set)))
2424 eqv = SET_SRC (set);
2426 if (eqv != NULL_RTX)
2427 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2429 return new_rtx;
2432 /* Delete redundant computations.
2433 Deletion is done by changing the insn to copy the `reaching_reg' of
2434 the expression into the result of the SET. It is left to later passes
2435 to propagate the copy or eliminate it.
2437 Return nonzero if a change is made. */
2439 static int
2440 pre_delete (void)
2442 unsigned int i;
2443 int changed;
2444 struct gcse_expr *expr;
2445 struct gcse_occr *occr;
2447 changed = 0;
2448 for (i = 0; i < expr_hash_table.size; i++)
2449 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2451 int indx = expr->bitmap_index;
2453 /* We only need to search antic_occr since we require ANTLOC != 0. */
2454 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2456 rtx_insn *insn = occr->insn;
2457 rtx set;
2458 basic_block bb = BLOCK_FOR_INSN (insn);
2460 /* We only delete insns that have a single_set. */
2461 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2462 && (set = single_set (insn)) != 0
2463 && dbg_cnt (pre_insn))
2465 /* Create a pseudo-reg to store the result of reaching
2466 expressions into. Get the mode for the new pseudo from
2467 the mode of the original destination pseudo. */
2468 if (expr->reaching_reg == NULL)
2469 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2471 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2472 delete_insn (insn);
2473 occr->deleted_p = 1;
2474 changed = 1;
2475 gcse_subst_count++;
2477 if (dump_file)
2479 fprintf (dump_file,
2480 "PRE: redundant insn %d (expression %d) in ",
2481 INSN_UID (insn), indx);
2482 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2483 bb->index, REGNO (expr->reaching_reg));
2489 return changed;
2492 /* Perform GCSE optimizations using PRE.
2493 This is called by one_pre_gcse_pass after all the dataflow analysis
2494 has been done.
2496 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2497 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2498 Compiler Design and Implementation.
2500 ??? A new pseudo reg is created to hold the reaching expression. The nice
2501 thing about the classical approach is that it would try to use an existing
2502 reg. If the register can't be adequately optimized [i.e. we introduce
2503 reload problems], one could add a pass here to propagate the new register
2504 through the block.
2506 ??? We don't handle single sets in PARALLELs because we're [currently] not
2507 able to copy the rest of the parallel when we insert copies to create full
2508 redundancies from partial redundancies. However, there's no reason why we
2509 can't handle PARALLELs in the cases where there are no partial
2510 redundancies. */
2512 static int
2513 pre_gcse (struct edge_list *edge_list)
2515 unsigned int i;
2516 int did_insert, changed;
2517 struct gcse_expr **index_map;
2518 struct gcse_expr *expr;
2520 /* Compute a mapping from expression number (`bitmap_index') to
2521 hash table entry. */
2523 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2524 for (i = 0; i < expr_hash_table.size; i++)
2525 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2526 index_map[expr->bitmap_index] = expr;
2528 /* Delete the redundant insns first so that
2529 - we know what register to use for the new insns and for the other
2530 ones with reaching expressions
2531 - we know which insns are redundant when we go to create copies */
2533 changed = pre_delete ();
2534 did_insert = pre_edge_insert (edge_list, index_map);
2536 /* In other places with reaching expressions, copy the expression to the
2537 specially allocated pseudo-reg that reaches the redundant expr. */
2538 pre_insert_copies ();
2539 if (did_insert)
2541 commit_edge_insertions ();
2542 changed = 1;
2545 free (index_map);
2546 return changed;
2549 /* Top level routine to perform one PRE GCSE pass.
2551 Return nonzero if a change was made. */
2553 static int
2554 one_pre_gcse_pass (void)
2556 int changed = 0;
2558 gcse_subst_count = 0;
2559 gcse_create_count = 0;
2561 /* Return if there's nothing to do, or it is too expensive. */
2562 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2563 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
2564 return 0;
2566 /* We need alias. */
2567 init_alias_analysis ();
2569 bytes_used = 0;
2570 gcc_obstack_init (&gcse_obstack);
2571 alloc_gcse_mem ();
2573 alloc_hash_table (&expr_hash_table);
2574 add_noreturn_fake_exit_edges ();
2575 if (flag_gcse_lm)
2576 compute_ld_motion_mems ();
2578 compute_hash_table (&expr_hash_table);
2579 if (flag_gcse_lm)
2580 trim_ld_motion_mems ();
2581 if (dump_file)
2582 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2584 if (expr_hash_table.n_elems > 0)
2586 struct edge_list *edge_list;
2587 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2588 edge_list = compute_pre_data ();
2589 changed |= pre_gcse (edge_list);
2590 free_edge_list (edge_list);
2591 free_pre_mem ();
2594 if (flag_gcse_lm)
2595 free_ld_motion_mems ();
2596 remove_fake_exit_edges ();
2597 free_hash_table (&expr_hash_table);
2599 free_gcse_mem ();
2600 obstack_free (&gcse_obstack, NULL);
2602 /* We are finished with alias. */
2603 end_alias_analysis ();
2605 if (dump_file)
2607 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2608 current_function_name (), n_basic_blocks_for_fn (cfun),
2609 bytes_used);
2610 fprintf (dump_file, "%d substs, %d insns created\n",
2611 gcse_subst_count, gcse_create_count);
2614 return changed;
2617 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2618 to INSN. If such notes are added to an insn which references a
2619 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2620 that note, because the following loop optimization pass requires
2621 them. */
2623 /* ??? If there was a jump optimization pass after gcse and before loop,
2624 then we would not need to do this here, because jump would add the
2625 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2627 static void
2628 add_label_notes (rtx x, rtx_insn *insn)
2630 enum rtx_code code = GET_CODE (x);
2631 int i, j;
2632 const char *fmt;
2634 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2636 /* This code used to ignore labels that referred to dispatch tables to
2637 avoid flow generating (slightly) worse code.
2639 We no longer ignore such label references (see LABEL_REF handling in
2640 mark_jump_label for additional information). */
2642 /* There's no reason for current users to emit jump-insns with
2643 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2644 notes. */
2645 gcc_assert (!JUMP_P (insn));
2646 add_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x));
2648 if (LABEL_P (label_ref_label (x)))
2649 LABEL_NUSES (label_ref_label (x))++;
2651 return;
2654 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2656 if (fmt[i] == 'e')
2657 add_label_notes (XEXP (x, i), insn);
2658 else if (fmt[i] == 'E')
2659 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2660 add_label_notes (XVECEXP (x, i, j), insn);
2664 /* Code Hoisting variables and subroutines. */
2666 /* Very busy expressions. */
2667 static sbitmap *hoist_vbein;
2668 static sbitmap *hoist_vbeout;
2670 /* ??? We could compute post dominators and run this algorithm in
2671 reverse to perform tail merging, doing so would probably be
2672 more effective than the tail merging code in jump.c.
2674 It's unclear if tail merging could be run in parallel with
2675 code hoisting. It would be nice. */
2677 /* Allocate vars used for code hoisting analysis. */
2679 static void
2680 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2682 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2683 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2684 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2686 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2687 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2690 /* Free vars used for code hoisting analysis. */
2692 static void
2693 free_code_hoist_mem (void)
2695 sbitmap_vector_free (antloc);
2696 sbitmap_vector_free (transp);
2697 sbitmap_vector_free (comp);
2699 sbitmap_vector_free (hoist_vbein);
2700 sbitmap_vector_free (hoist_vbeout);
2702 free_dominance_info (CDI_DOMINATORS);
2705 /* Compute the very busy expressions at entry/exit from each block.
2707 An expression is very busy if all paths from a given point
2708 compute the expression. */
2710 static void
2711 compute_code_hoist_vbeinout (void)
2713 int changed, passes;
2714 basic_block bb;
2716 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2717 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2719 passes = 0;
2720 changed = 1;
2722 while (changed)
2724 changed = 0;
2726 /* We scan the blocks in the reverse order to speed up
2727 the convergence. */
2728 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2730 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2732 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2733 hoist_vbein, bb);
2735 /* Include expressions in VBEout that are calculated
2736 in BB and available at its end. */
2737 bitmap_ior (hoist_vbeout[bb->index],
2738 hoist_vbeout[bb->index], comp[bb->index]);
2741 changed |= bitmap_or_and (hoist_vbein[bb->index],
2742 antloc[bb->index],
2743 hoist_vbeout[bb->index],
2744 transp[bb->index]);
2747 passes++;
2750 if (dump_file)
2752 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2754 FOR_EACH_BB_FN (bb, cfun)
2756 fprintf (dump_file, "vbein (%d): ", bb->index);
2757 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2758 fprintf (dump_file, "vbeout(%d): ", bb->index);
2759 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2764 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2766 static void
2767 compute_code_hoist_data (void)
2769 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2770 prune_expressions (false);
2771 compute_code_hoist_vbeinout ();
2772 calculate_dominance_info (CDI_DOMINATORS);
2773 if (dump_file)
2774 fprintf (dump_file, "\n");
2777 /* Update register pressure for BB when hoisting an expression from
2778 instruction FROM, if live ranges of inputs are shrunk. Also
2779 maintain live_in information if live range of register referred
2780 in FROM is shrunk.
2782 Return 0 if register pressure doesn't change, otherwise return
2783 the number by which register pressure is decreased.
2785 NOTE: Register pressure won't be increased in this function. */
2787 static int
2788 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2790 rtx dreg;
2791 rtx_insn *insn;
2792 basic_block succ_bb;
2793 df_ref use, op_ref;
2794 edge succ;
2795 edge_iterator ei;
2796 int decreased_pressure = 0;
2797 int nregs;
2798 enum reg_class pressure_class;
2800 FOR_EACH_INSN_USE (use, from)
2802 dreg = DF_REF_REAL_REG (use);
2803 /* The live range of register is shrunk only if it isn't:
2804 1. referred on any path from the end of this block to EXIT, or
2805 2. referred by insns other than FROM in this block. */
2806 FOR_EACH_EDGE (succ, ei, bb->succs)
2808 succ_bb = succ->dest;
2809 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2810 continue;
2812 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2813 break;
2815 if (succ != NULL)
2816 continue;
2818 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2819 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2821 if (!DF_REF_INSN_INFO (op_ref))
2822 continue;
2824 insn = DF_REF_INSN (op_ref);
2825 if (BLOCK_FOR_INSN (insn) == bb
2826 && NONDEBUG_INSN_P (insn) && insn != from)
2827 break;
2830 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2831 /* Decrease register pressure and update live_in information for
2832 this block. */
2833 if (!op_ref && pressure_class != NO_REGS)
2835 decreased_pressure += nregs;
2836 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2837 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2840 return decreased_pressure;
2843 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2844 flow graph, if it can reach BB unimpared. Stop the search if the
2845 expression would need to be moved more than DISTANCE instructions.
2847 DISTANCE is the number of instructions through which EXPR can be
2848 hoisted up in flow graph.
2850 BB_SIZE points to an array which contains the number of instructions
2851 for each basic block.
2853 PRESSURE_CLASS and NREGS are register class and number of hard registers
2854 for storing EXPR.
2856 HOISTED_BBS points to a bitmap indicating basic blocks through which
2857 EXPR is hoisted.
2859 FROM is the instruction from which EXPR is hoisted.
2861 It's unclear exactly what Muchnick meant by "unimpared". It seems
2862 to me that the expression must either be computed or transparent in
2863 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2864 would allow the expression to be hoisted out of loops, even if
2865 the expression wasn't a loop invariant.
2867 Contrast this to reachability for PRE where an expression is
2868 considered reachable if *any* path reaches instead of *all*
2869 paths. */
2871 static int
2872 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2873 basic_block bb, sbitmap visited, int distance,
2874 int *bb_size, enum reg_class pressure_class,
2875 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2877 unsigned int i;
2878 edge pred;
2879 edge_iterator ei;
2880 sbitmap_iterator sbi;
2881 int visited_allocated_locally = 0;
2882 int decreased_pressure = 0;
2884 if (flag_ira_hoist_pressure)
2886 /* Record old information of basic block BB when it is visited
2887 at the first time. */
2888 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2890 struct bb_data *data = BB_DATA (bb);
2891 bitmap_copy (data->backup, data->live_in);
2892 data->old_pressure = data->max_reg_pressure[pressure_class];
2894 decreased_pressure = update_bb_reg_pressure (bb, from);
2896 /* Terminate the search if distance, for which EXPR is allowed to move,
2897 is exhausted. */
2898 if (distance > 0)
2900 if (flag_ira_hoist_pressure)
2902 /* Prefer to hoist EXPR if register pressure is decreased. */
2903 if (decreased_pressure > *nregs)
2904 distance += bb_size[bb->index];
2905 /* Let EXPR be hoisted through basic block at no cost if one
2906 of following conditions is satisfied:
2908 1. The basic block has low register pressure.
2909 2. Register pressure won't be increases after hoisting EXPR.
2911 Constant expressions is handled conservatively, because
2912 hoisting constant expression aggressively results in worse
2913 code. This decision is made by the observation of CSiBE
2914 on ARM target, while it has no obvious effect on other
2915 targets like x86, x86_64, mips and powerpc. */
2916 else if (CONST_INT_P (expr->expr)
2917 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2918 >= ira_class_hard_regs_num[pressure_class]
2919 && decreased_pressure < *nregs))
2920 distance -= bb_size[bb->index];
2922 else
2923 distance -= bb_size[bb->index];
2925 if (distance <= 0)
2926 return 0;
2928 else
2929 gcc_assert (distance == 0);
2931 if (visited == NULL)
2933 visited_allocated_locally = 1;
2934 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2935 bitmap_clear (visited);
2938 FOR_EACH_EDGE (pred, ei, bb->preds)
2940 basic_block pred_bb = pred->src;
2942 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2943 break;
2944 else if (pred_bb == expr_bb)
2945 continue;
2946 else if (bitmap_bit_p (visited, pred_bb->index))
2947 continue;
2948 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2949 break;
2950 /* Not killed. */
2951 else
2953 bitmap_set_bit (visited, pred_bb->index);
2954 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2955 visited, distance, bb_size,
2956 pressure_class, nregs,
2957 hoisted_bbs, from))
2958 break;
2961 if (visited_allocated_locally)
2963 /* If EXPR can be hoisted to expr_bb, record basic blocks through
2964 which EXPR is hoisted in hoisted_bbs. */
2965 if (flag_ira_hoist_pressure && !pred)
2967 /* Record the basic block from which EXPR is hoisted. */
2968 bitmap_set_bit (visited, bb->index);
2969 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
2970 bitmap_set_bit (hoisted_bbs, i);
2972 sbitmap_free (visited);
2975 return (pred == NULL);
2978 /* Find occurrence in BB. */
2980 static struct gcse_occr *
2981 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
2983 /* Find the right occurrence of this expression. */
2984 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
2985 occr = occr->next;
2987 return occr;
2990 /* Actually perform code hoisting.
2992 The code hoisting pass can hoist multiple computations of the same
2993 expression along dominated path to a dominating basic block, like
2994 from b2/b3 to b1 as depicted below:
2996 b1 ------
2997 /\ |
2998 / \ |
2999 bx by distance
3000 / \ |
3001 / \ |
3002 b2 b3 ------
3004 Unfortunately code hoisting generally extends the live range of an
3005 output pseudo register, which increases register pressure and hurts
3006 register allocation. To address this issue, an attribute MAX_DISTANCE
3007 is computed and attached to each expression. The attribute is computed
3008 from rtx cost of the corresponding expression and it's used to control
3009 how long the expression can be hoisted up in flow graph. As the
3010 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3011 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3012 register pressure if live ranges of inputs are shrunk.
3014 Option "-fira-hoist-pressure" implements register pressure directed
3015 hoist based on upper method. The rationale is:
3016 1. Calculate register pressure for each basic block by reusing IRA
3017 facility.
3018 2. When expression is hoisted through one basic block, GCC checks
3019 the change of live ranges for inputs/output. The basic block's
3020 register pressure will be increased because of extended live
3021 range of output. However, register pressure will be decreased
3022 if the live ranges of inputs are shrunk.
3023 3. After knowing how hoisting affects register pressure, GCC prefers
3024 to hoist the expression if it can decrease register pressure, by
3025 increasing DISTANCE of the corresponding expression.
3026 4. If hoisting the expression increases register pressure, GCC checks
3027 register pressure of the basic block and decrease DISTANCE only if
3028 the register pressure is high. In other words, expression will be
3029 hoisted through at no cost if the basic block has low register
3030 pressure.
3031 5. Update register pressure information for basic blocks through
3032 which expression is hoisted. */
3034 static int
3035 hoist_code (void)
3037 basic_block bb, dominated;
3038 vec<basic_block> dom_tree_walk;
3039 unsigned int dom_tree_walk_index;
3040 vec<basic_block> domby;
3041 unsigned int i, j, k;
3042 struct gcse_expr **index_map;
3043 struct gcse_expr *expr;
3044 int *to_bb_head;
3045 int *bb_size;
3046 int changed = 0;
3047 struct bb_data *data;
3048 /* Basic blocks that have occurrences reachable from BB. */
3049 bitmap from_bbs;
3050 /* Basic blocks through which expr is hoisted. */
3051 bitmap hoisted_bbs = NULL;
3052 bitmap_iterator bi;
3054 /* Compute a mapping from expression number (`bitmap_index') to
3055 hash table entry. */
3057 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3058 for (i = 0; i < expr_hash_table.size; i++)
3059 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3060 index_map[expr->bitmap_index] = expr;
3062 /* Calculate sizes of basic blocks and note how far
3063 each instruction is from the start of its block. We then use this
3064 data to restrict distance an expression can travel. */
3066 to_bb_head = XCNEWVEC (int, get_max_uid ());
3067 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3069 FOR_EACH_BB_FN (bb, cfun)
3071 rtx_insn *insn;
3072 int to_head;
3074 to_head = 0;
3075 FOR_BB_INSNS (bb, insn)
3077 /* Don't count debug instructions to avoid them affecting
3078 decision choices. */
3079 if (NONDEBUG_INSN_P (insn))
3080 to_bb_head[INSN_UID (insn)] = to_head++;
3083 bb_size[bb->index] = to_head;
3086 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3087 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3088 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3090 from_bbs = BITMAP_ALLOC (NULL);
3091 if (flag_ira_hoist_pressure)
3092 hoisted_bbs = BITMAP_ALLOC (NULL);
3094 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3095 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3097 /* Walk over each basic block looking for potentially hoistable
3098 expressions, nothing gets hoisted from the entry block. */
3099 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3101 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3103 if (domby.length () == 0)
3104 continue;
3106 /* Examine each expression that is very busy at the exit of this
3107 block. These are the potentially hoistable expressions. */
3108 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3110 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3112 int nregs = 0;
3113 enum reg_class pressure_class = NO_REGS;
3114 /* Current expression. */
3115 struct gcse_expr *expr = index_map[i];
3116 /* Number of occurrences of EXPR that can be hoisted to BB. */
3117 int hoistable = 0;
3118 /* Occurrences reachable from BB. */
3119 vec<occr_t> occrs_to_hoist = vNULL;
3120 /* We want to insert the expression into BB only once, so
3121 note when we've inserted it. */
3122 int insn_inserted_p;
3123 occr_t occr;
3125 /* If an expression is computed in BB and is available at end of
3126 BB, hoist all occurrences dominated by BB to BB. */
3127 if (bitmap_bit_p (comp[bb->index], i))
3129 occr = find_occr_in_bb (expr->antic_occr, bb);
3131 if (occr)
3133 /* An occurrence might've been already deleted
3134 while processing a dominator of BB. */
3135 if (!occr->deleted_p)
3137 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3138 hoistable++;
3141 else
3142 hoistable++;
3145 /* We've found a potentially hoistable expression, now
3146 we look at every block BB dominates to see if it
3147 computes the expression. */
3148 FOR_EACH_VEC_ELT (domby, j, dominated)
3150 int max_distance;
3152 /* Ignore self dominance. */
3153 if (bb == dominated)
3154 continue;
3155 /* We've found a dominated block, now see if it computes
3156 the busy expression and whether or not moving that
3157 expression to the "beginning" of that block is safe. */
3158 if (!bitmap_bit_p (antloc[dominated->index], i))
3159 continue;
3161 occr = find_occr_in_bb (expr->antic_occr, dominated);
3162 gcc_assert (occr);
3164 /* An occurrence might've been already deleted
3165 while processing a dominator of BB. */
3166 if (occr->deleted_p)
3167 continue;
3168 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3170 max_distance = expr->max_distance;
3171 if (max_distance > 0)
3172 /* Adjust MAX_DISTANCE to account for the fact that
3173 OCCR won't have to travel all of DOMINATED, but
3174 only part of it. */
3175 max_distance += (bb_size[dominated->index]
3176 - to_bb_head[INSN_UID (occr->insn)]);
3178 pressure_class = get_pressure_class_and_nregs (occr->insn,
3179 &nregs);
3181 /* Note if the expression should be hoisted from the dominated
3182 block to BB if it can reach DOMINATED unimpared.
3184 Keep track of how many times this expression is hoistable
3185 from a dominated block into BB. */
3186 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3187 max_distance, bb_size,
3188 pressure_class, &nregs,
3189 hoisted_bbs, occr->insn))
3191 hoistable++;
3192 occrs_to_hoist.safe_push (occr);
3193 bitmap_set_bit (from_bbs, dominated->index);
3197 /* If we found more than one hoistable occurrence of this
3198 expression, then note it in the vector of expressions to
3199 hoist. It makes no sense to hoist things which are computed
3200 in only one BB, and doing so tends to pessimize register
3201 allocation. One could increase this value to try harder
3202 to avoid any possible code expansion due to register
3203 allocation issues; however experiments have shown that
3204 the vast majority of hoistable expressions are only movable
3205 from two successors, so raising this threshold is likely
3206 to nullify any benefit we get from code hoisting. */
3207 if (hoistable > 1 && dbg_cnt (hoist_insn))
3209 /* If (hoistable != vec::length), then there is
3210 an occurrence of EXPR in BB itself. Don't waste
3211 time looking for LCA in this case. */
3212 if ((unsigned) hoistable == occrs_to_hoist.length ())
3214 basic_block lca;
3216 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3217 from_bbs);
3218 if (lca != bb)
3219 /* Punt, it's better to hoist these occurrences to
3220 LCA. */
3221 occrs_to_hoist.release ();
3224 else
3225 /* Punt, no point hoisting a single occurrence. */
3226 occrs_to_hoist.release ();
3228 if (flag_ira_hoist_pressure
3229 && !occrs_to_hoist.is_empty ())
3231 /* Increase register pressure of basic blocks to which
3232 expr is hoisted because of extended live range of
3233 output. */
3234 data = BB_DATA (bb);
3235 data->max_reg_pressure[pressure_class] += nregs;
3236 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3238 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3239 data->max_reg_pressure[pressure_class] += nregs;
3242 else if (flag_ira_hoist_pressure)
3244 /* Restore register pressure and live_in info for basic
3245 blocks recorded in hoisted_bbs when expr will not be
3246 hoisted. */
3247 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3249 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3250 bitmap_copy (data->live_in, data->backup);
3251 data->max_reg_pressure[pressure_class]
3252 = data->old_pressure;
3256 if (flag_ira_hoist_pressure)
3257 bitmap_clear (hoisted_bbs);
3259 insn_inserted_p = 0;
3261 /* Walk through occurrences of I'th expressions we want
3262 to hoist to BB and make the transformations. */
3263 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3265 rtx_insn *insn;
3266 const_rtx set;
3268 gcc_assert (!occr->deleted_p);
3270 insn = occr->insn;
3271 set = single_set_gcse (insn);
3273 /* Create a pseudo-reg to store the result of reaching
3274 expressions into. Get the mode for the new pseudo
3275 from the mode of the original destination pseudo.
3277 It is important to use new pseudos whenever we
3278 emit a set. This will allow reload to use
3279 rematerialization for such registers. */
3280 if (!insn_inserted_p)
3281 expr->reaching_reg
3282 = gen_reg_rtx_and_attrs (SET_DEST (set));
3284 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3285 insn);
3286 delete_insn (insn);
3287 occr->deleted_p = 1;
3288 changed = 1;
3289 gcse_subst_count++;
3291 if (!insn_inserted_p)
3293 insert_insn_end_basic_block (expr, bb);
3294 insn_inserted_p = 1;
3298 occrs_to_hoist.release ();
3299 bitmap_clear (from_bbs);
3302 domby.release ();
3305 dom_tree_walk.release ();
3306 BITMAP_FREE (from_bbs);
3307 if (flag_ira_hoist_pressure)
3308 BITMAP_FREE (hoisted_bbs);
3310 free (bb_size);
3311 free (to_bb_head);
3312 free (index_map);
3314 return changed;
3317 /* Return pressure class and number of needed hard registers (through
3318 *NREGS) of register REGNO. */
3319 static enum reg_class
3320 get_regno_pressure_class (int regno, int *nregs)
3322 if (regno >= FIRST_PSEUDO_REGISTER)
3324 enum reg_class pressure_class;
3326 pressure_class = reg_allocno_class (regno);
3327 pressure_class = ira_pressure_class_translate[pressure_class];
3328 *nregs
3329 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3330 return pressure_class;
3332 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3333 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3335 *nregs = 1;
3336 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3338 else
3340 *nregs = 0;
3341 return NO_REGS;
3345 /* Return pressure class and number of hard registers (through *NREGS)
3346 for destination of INSN. */
3347 static enum reg_class
3348 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3350 rtx reg;
3351 enum reg_class pressure_class;
3352 const_rtx set = single_set_gcse (insn);
3354 reg = SET_DEST (set);
3355 if (GET_CODE (reg) == SUBREG)
3356 reg = SUBREG_REG (reg);
3357 if (MEM_P (reg))
3359 *nregs = 0;
3360 pressure_class = NO_REGS;
3362 else
3364 gcc_assert (REG_P (reg));
3365 pressure_class = reg_allocno_class (REGNO (reg));
3366 pressure_class = ira_pressure_class_translate[pressure_class];
3367 *nregs
3368 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3370 return pressure_class;
3373 /* Increase (if INCR_P) or decrease current register pressure for
3374 register REGNO. */
3375 static void
3376 change_pressure (int regno, bool incr_p)
3378 int nregs;
3379 enum reg_class pressure_class;
3381 pressure_class = get_regno_pressure_class (regno, &nregs);
3382 if (! incr_p)
3383 curr_reg_pressure[pressure_class] -= nregs;
3384 else
3386 curr_reg_pressure[pressure_class] += nregs;
3387 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3388 < curr_reg_pressure[pressure_class])
3389 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3390 = curr_reg_pressure[pressure_class];
3394 /* Calculate register pressure for each basic block by walking insns
3395 from last to first. */
3396 static void
3397 calculate_bb_reg_pressure (void)
3399 int i;
3400 unsigned int j;
3401 rtx_insn *insn;
3402 basic_block bb;
3403 bitmap curr_regs_live;
3404 bitmap_iterator bi;
3407 ira_setup_eliminable_regset ();
3408 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3409 FOR_EACH_BB_FN (bb, cfun)
3411 curr_bb = bb;
3412 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3413 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3414 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3415 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3416 for (i = 0; i < ira_pressure_classes_num; i++)
3417 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3418 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3419 change_pressure (j, true);
3421 FOR_BB_INSNS_REVERSE (bb, insn)
3423 rtx dreg;
3424 int regno;
3425 df_ref def, use;
3427 if (! NONDEBUG_INSN_P (insn))
3428 continue;
3430 FOR_EACH_INSN_DEF (def, insn)
3432 dreg = DF_REF_REAL_REG (def);
3433 gcc_assert (REG_P (dreg));
3434 regno = REGNO (dreg);
3435 if (!(DF_REF_FLAGS (def)
3436 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3438 if (bitmap_clear_bit (curr_regs_live, regno))
3439 change_pressure (regno, false);
3443 FOR_EACH_INSN_USE (use, insn)
3445 dreg = DF_REF_REAL_REG (use);
3446 gcc_assert (REG_P (dreg));
3447 regno = REGNO (dreg);
3448 if (bitmap_set_bit (curr_regs_live, regno))
3449 change_pressure (regno, true);
3453 BITMAP_FREE (curr_regs_live);
3455 if (dump_file == NULL)
3456 return;
3458 fprintf (dump_file, "\nRegister Pressure: \n");
3459 FOR_EACH_BB_FN (bb, cfun)
3461 fprintf (dump_file, " Basic block %d: \n", bb->index);
3462 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3464 enum reg_class pressure_class;
3466 pressure_class = ira_pressure_classes[i];
3467 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3468 continue;
3470 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3471 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3474 fprintf (dump_file, "\n");
3477 /* Top level routine to perform one code hoisting (aka unification) pass
3479 Return nonzero if a change was made. */
3481 static int
3482 one_code_hoisting_pass (void)
3484 int changed = 0;
3486 gcse_subst_count = 0;
3487 gcse_create_count = 0;
3489 /* Return if there's nothing to do, or it is too expensive. */
3490 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3491 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
3492 return 0;
3494 doing_code_hoisting_p = true;
3496 /* Calculate register pressure for each basic block. */
3497 if (flag_ira_hoist_pressure)
3499 regstat_init_n_sets_and_refs ();
3500 ira_set_pseudo_classes (false, dump_file);
3501 alloc_aux_for_blocks (sizeof (struct bb_data));
3502 calculate_bb_reg_pressure ();
3503 regstat_free_n_sets_and_refs ();
3506 /* We need alias. */
3507 init_alias_analysis ();
3509 bytes_used = 0;
3510 gcc_obstack_init (&gcse_obstack);
3511 alloc_gcse_mem ();
3513 alloc_hash_table (&expr_hash_table);
3514 compute_hash_table (&expr_hash_table);
3515 if (dump_file)
3516 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3518 if (expr_hash_table.n_elems > 0)
3520 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3521 expr_hash_table.n_elems);
3522 compute_code_hoist_data ();
3523 changed = hoist_code ();
3524 free_code_hoist_mem ();
3527 if (flag_ira_hoist_pressure)
3529 free_aux_for_blocks ();
3530 free_reg_info ();
3532 free_hash_table (&expr_hash_table);
3533 free_gcse_mem ();
3534 obstack_free (&gcse_obstack, NULL);
3536 /* We are finished with alias. */
3537 end_alias_analysis ();
3539 if (dump_file)
3541 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3542 current_function_name (), n_basic_blocks_for_fn (cfun),
3543 bytes_used);
3544 fprintf (dump_file, "%d substs, %d insns created\n",
3545 gcse_subst_count, gcse_create_count);
3548 doing_code_hoisting_p = false;
3550 return changed;
3553 /* Here we provide the things required to do store motion towards the exit.
3554 In order for this to be effective, gcse also needed to be taught how to
3555 move a load when it is killed only by a store to itself.
3557 int i;
3558 float a[10];
3560 void foo(float scale)
3562 for (i=0; i<10; i++)
3563 a[i] *= scale;
3566 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3567 the load out since its live around the loop, and stored at the bottom
3568 of the loop.
3570 The 'Load Motion' referred to and implemented in this file is
3571 an enhancement to gcse which when using edge based LCM, recognizes
3572 this situation and allows gcse to move the load out of the loop.
3574 Once gcse has hoisted the load, store motion can then push this
3575 load towards the exit, and we end up with no loads or stores of 'i'
3576 in the loop. */
3578 /* This will search the ldst list for a matching expression. If it
3579 doesn't find one, we create one and initialize it. */
3581 static struct ls_expr *
3582 ldst_entry (rtx x)
3584 int do_not_record_p = 0;
3585 struct ls_expr * ptr;
3586 unsigned int hash;
3587 ls_expr **slot;
3588 struct ls_expr e;
3590 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3591 NULL, /*have_reg_qty=*/false);
3593 e.pattern = x;
3594 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3595 if (*slot)
3596 return *slot;
3598 ptr = XNEW (struct ls_expr);
3600 ptr->next = pre_ldst_mems;
3601 ptr->expr = NULL;
3602 ptr->pattern = x;
3603 ptr->pattern_regs = NULL_RTX;
3604 ptr->stores.create (0);
3605 ptr->reaching_reg = NULL_RTX;
3606 ptr->invalid = 0;
3607 ptr->index = 0;
3608 ptr->hash_index = hash;
3609 pre_ldst_mems = ptr;
3610 *slot = ptr;
3612 return ptr;
3615 /* Free up an individual ldst entry. */
3617 static void
3618 free_ldst_entry (struct ls_expr * ptr)
3620 ptr->stores.release ();
3622 free (ptr);
3625 /* Free up all memory associated with the ldst list. */
3627 static void
3628 free_ld_motion_mems (void)
3630 delete pre_ldst_table;
3631 pre_ldst_table = NULL;
3633 while (pre_ldst_mems)
3635 struct ls_expr * tmp = pre_ldst_mems;
3637 pre_ldst_mems = pre_ldst_mems->next;
3639 free_ldst_entry (tmp);
3642 pre_ldst_mems = NULL;
3645 /* Dump debugging info about the ldst list. */
3647 static void
3648 print_ldst_list (FILE * file)
3650 struct ls_expr * ptr;
3652 fprintf (file, "LDST list: \n");
3654 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3656 fprintf (file, " Pattern (%3d): ", ptr->index);
3658 print_rtl (file, ptr->pattern);
3660 fprintf (file, "\n Stores : ");
3661 print_rtx_insn_vec (file, ptr->stores);
3663 fprintf (file, "\n\n");
3666 fprintf (file, "\n");
3669 /* Returns 1 if X is in the list of ldst only expressions. */
3671 static struct ls_expr *
3672 find_rtx_in_ldst (rtx x)
3674 struct ls_expr e;
3675 ls_expr **slot;
3676 if (!pre_ldst_table)
3677 return NULL;
3678 e.pattern = x;
3679 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3680 if (!slot || (*slot)->invalid)
3681 return NULL;
3682 return *slot;
3685 /* Load Motion for loads which only kill themselves. */
3687 /* Return true if x, a MEM, is a simple access with no side effects.
3688 These are the types of loads we consider for the ld_motion list,
3689 otherwise we let the usual aliasing take care of it. */
3691 static int
3692 simple_mem (const_rtx x)
3694 if (MEM_VOLATILE_P (x))
3695 return 0;
3697 if (GET_MODE (x) == BLKmode)
3698 return 0;
3700 /* If we are handling exceptions, we must be careful with memory references
3701 that may trap. If we are not, the behavior is undefined, so we may just
3702 continue. */
3703 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3704 return 0;
3706 if (side_effects_p (x))
3707 return 0;
3709 /* Do not consider function arguments passed on stack. */
3710 if (reg_mentioned_p (stack_pointer_rtx, x))
3711 return 0;
3713 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3714 return 0;
3716 return 1;
3719 /* Make sure there isn't a buried reference in this pattern anywhere.
3720 If there is, invalidate the entry for it since we're not capable
3721 of fixing it up just yet.. We have to be sure we know about ALL
3722 loads since the aliasing code will allow all entries in the
3723 ld_motion list to not-alias itself. If we miss a load, we will get
3724 the wrong value since gcse might common it and we won't know to
3725 fix it up. */
3727 static void
3728 invalidate_any_buried_refs (rtx x)
3730 const char * fmt;
3731 int i, j;
3732 struct ls_expr * ptr;
3734 /* Invalidate it in the list. */
3735 if (MEM_P (x) && simple_mem (x))
3737 ptr = ldst_entry (x);
3738 ptr->invalid = 1;
3741 /* Recursively process the insn. */
3742 fmt = GET_RTX_FORMAT (GET_CODE (x));
3744 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3746 if (fmt[i] == 'e')
3747 invalidate_any_buried_refs (XEXP (x, i));
3748 else if (fmt[i] == 'E')
3749 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3750 invalidate_any_buried_refs (XVECEXP (x, i, j));
3754 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3755 being defined as MEM loads and stores to symbols, with no side effects
3756 and no registers in the expression. For a MEM destination, we also
3757 check that the insn is still valid if we replace the destination with a
3758 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3759 which don't match this criteria, they are invalidated and trimmed out
3760 later. */
3762 static void
3763 compute_ld_motion_mems (void)
3765 struct ls_expr * ptr;
3766 basic_block bb;
3767 rtx_insn *insn;
3769 pre_ldst_mems = NULL;
3770 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3772 FOR_EACH_BB_FN (bb, cfun)
3774 FOR_BB_INSNS (bb, insn)
3776 if (NONDEBUG_INSN_P (insn))
3778 if (GET_CODE (PATTERN (insn)) == SET)
3780 rtx src = SET_SRC (PATTERN (insn));
3781 rtx dest = SET_DEST (PATTERN (insn));
3783 /* Check for a simple load. */
3784 if (MEM_P (src) && simple_mem (src))
3786 ptr = ldst_entry (src);
3787 if (!REG_P (dest))
3788 ptr->invalid = 1;
3790 else
3792 /* Make sure there isn't a buried load somewhere. */
3793 invalidate_any_buried_refs (src);
3796 /* Check for a simple load through a REG_EQUAL note. */
3797 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3798 if (note
3799 && REG_NOTE_KIND (note) == REG_EQUAL
3800 && (src_eq = XEXP (note, 0))
3801 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3802 invalidate_any_buried_refs (src_eq);
3804 /* Check for stores. Don't worry about aliased ones, they
3805 will block any movement we might do later. We only care
3806 about this exact pattern since those are the only
3807 circumstance that we will ignore the aliasing info. */
3808 if (MEM_P (dest) && simple_mem (dest))
3810 ptr = ldst_entry (dest);
3811 machine_mode src_mode = GET_MODE (src);
3812 if (! MEM_P (src)
3813 && GET_CODE (src) != ASM_OPERANDS
3814 /* Check for REG manually since want_to_gcse_p
3815 returns 0 for all REGs. */
3816 && can_assign_to_reg_without_clobbers_p (src,
3817 src_mode))
3818 ptr->stores.safe_push (insn);
3819 else
3820 ptr->invalid = 1;
3823 else
3825 /* Invalidate all MEMs in the pattern and... */
3826 invalidate_any_buried_refs (PATTERN (insn));
3828 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3829 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3830 if (note
3831 && REG_NOTE_KIND (note) == REG_EQUAL
3832 && (src_eq = XEXP (note, 0)))
3833 invalidate_any_buried_refs (src_eq);
3840 /* Remove any references that have been either invalidated or are not in the
3841 expression list for pre gcse. */
3843 static void
3844 trim_ld_motion_mems (void)
3846 struct ls_expr * * last = & pre_ldst_mems;
3847 struct ls_expr * ptr = pre_ldst_mems;
3849 while (ptr != NULL)
3851 struct gcse_expr * expr;
3853 /* Delete if entry has been made invalid. */
3854 if (! ptr->invalid)
3856 /* Delete if we cannot find this mem in the expression list. */
3857 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3859 for (expr = expr_hash_table.table[hash];
3860 expr != NULL;
3861 expr = expr->next_same_hash)
3862 if (expr_equiv_p (expr->expr, ptr->pattern))
3863 break;
3865 else
3866 expr = (struct gcse_expr *) 0;
3868 if (expr)
3870 /* Set the expression field if we are keeping it. */
3871 ptr->expr = expr;
3872 last = & ptr->next;
3873 ptr = ptr->next;
3875 else
3877 *last = ptr->next;
3878 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3879 free_ldst_entry (ptr);
3880 ptr = * last;
3884 /* Show the world what we've found. */
3885 if (dump_file && pre_ldst_mems != NULL)
3886 print_ldst_list (dump_file);
3889 /* This routine will take an expression which we are replacing with
3890 a reaching register, and update any stores that are needed if
3891 that expression is in the ld_motion list. Stores are updated by
3892 copying their SRC to the reaching register, and then storing
3893 the reaching register into the store location. These keeps the
3894 correct value in the reaching register for the loads. */
3896 static void
3897 update_ld_motion_stores (struct gcse_expr * expr)
3899 struct ls_expr * mem_ptr;
3901 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3903 /* We can try to find just the REACHED stores, but is shouldn't
3904 matter to set the reaching reg everywhere... some might be
3905 dead and should be eliminated later. */
3907 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3908 where reg is the reaching reg used in the load. We checked in
3909 compute_ld_motion_mems that we can replace (set mem expr) with
3910 (set reg expr) in that insn. */
3911 rtx_insn *insn;
3912 unsigned int i;
3913 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
3915 rtx pat = PATTERN (insn);
3916 rtx src = SET_SRC (pat);
3917 rtx reg = expr->reaching_reg;
3919 /* If we've already copied it, continue. */
3920 if (expr->reaching_reg == src)
3921 continue;
3923 if (dump_file)
3925 fprintf (dump_file, "PRE: store updated with reaching reg ");
3926 print_rtl (dump_file, reg);
3927 fprintf (dump_file, ":\n ");
3928 print_inline_rtx (dump_file, insn, 8);
3929 fprintf (dump_file, "\n");
3932 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3933 emit_insn_before (copy, insn);
3934 SET_SRC (pat) = reg;
3935 df_insn_rescan (insn);
3937 /* un-recognize this pattern since it's probably different now. */
3938 INSN_CODE (insn) = -1;
3939 gcse_create_count++;
3944 /* Return true if the graph is too expensive to optimize. PASS is the
3945 optimization about to be performed. */
3947 bool
3948 gcse_or_cprop_is_too_expensive (const char *pass)
3950 unsigned int memory_request = (n_basic_blocks_for_fn (cfun)
3951 * SBITMAP_SET_SIZE (max_reg_num ())
3952 * sizeof (SBITMAP_ELT_TYPE));
3954 /* Trying to perform global optimizations on flow graphs which have
3955 a high connectivity will take a long time and is unlikely to be
3956 particularly useful.
3958 In normal circumstances a cfg should have about twice as many
3959 edges as blocks. But we do not want to punish small functions
3960 which have a couple switch statements. Rather than simply
3961 threshold the number of blocks, uses something with a more
3962 graceful degradation. */
3963 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
3965 warning (OPT_Wdisabled_optimization,
3966 "%s: %d basic blocks and %d edges/basic block",
3967 pass, n_basic_blocks_for_fn (cfun),
3968 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
3970 return true;
3973 /* If allocating memory for the dataflow bitmaps would take up too much
3974 storage it's better just to disable the optimization. */
3975 if (memory_request > MAX_GCSE_MEMORY)
3977 warning (OPT_Wdisabled_optimization,
3978 "%s: %d basic blocks and %d registers; increase --param max-gcse-memory above %d",
3979 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
3980 memory_request);
3982 return true;
3985 return false;
3988 static unsigned int
3989 execute_rtl_pre (void)
3991 int changed;
3992 delete_unreachable_blocks ();
3993 df_analyze ();
3994 changed = one_pre_gcse_pass ();
3995 flag_rerun_cse_after_global_opts |= changed;
3996 if (changed)
3997 cleanup_cfg (0);
3998 return 0;
4001 static unsigned int
4002 execute_rtl_hoist (void)
4004 int changed;
4005 delete_unreachable_blocks ();
4006 df_analyze ();
4007 changed = one_code_hoisting_pass ();
4008 flag_rerun_cse_after_global_opts |= changed;
4009 if (changed)
4010 cleanup_cfg (0);
4011 return 0;
4014 namespace {
4016 const pass_data pass_data_rtl_pre =
4018 RTL_PASS, /* type */
4019 "rtl pre", /* name */
4020 OPTGROUP_NONE, /* optinfo_flags */
4021 TV_PRE, /* tv_id */
4022 PROP_cfglayout, /* properties_required */
4023 0, /* properties_provided */
4024 0, /* properties_destroyed */
4025 0, /* todo_flags_start */
4026 TODO_df_finish, /* todo_flags_finish */
4029 class pass_rtl_pre : public rtl_opt_pass
4031 public:
4032 pass_rtl_pre (gcc::context *ctxt)
4033 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4036 /* opt_pass methods: */
4037 virtual bool gate (function *);
4038 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4040 }; // class pass_rtl_pre
4042 /* We do not construct an accurate cfg in functions which call
4043 setjmp, so none of these passes runs if the function calls
4044 setjmp.
4045 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4047 bool
4048 pass_rtl_pre::gate (function *fun)
4050 return optimize > 0 && flag_gcse
4051 && !fun->calls_setjmp
4052 && optimize_function_for_speed_p (fun)
4053 && dbg_cnt (pre);
4056 } // anon namespace
4058 rtl_opt_pass *
4059 make_pass_rtl_pre (gcc::context *ctxt)
4061 return new pass_rtl_pre (ctxt);
4064 namespace {
4066 const pass_data pass_data_rtl_hoist =
4068 RTL_PASS, /* type */
4069 "hoist", /* name */
4070 OPTGROUP_NONE, /* optinfo_flags */
4071 TV_HOIST, /* tv_id */
4072 PROP_cfglayout, /* properties_required */
4073 0, /* properties_provided */
4074 0, /* properties_destroyed */
4075 0, /* todo_flags_start */
4076 TODO_df_finish, /* todo_flags_finish */
4079 class pass_rtl_hoist : public rtl_opt_pass
4081 public:
4082 pass_rtl_hoist (gcc::context *ctxt)
4083 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4086 /* opt_pass methods: */
4087 virtual bool gate (function *);
4088 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4090 }; // class pass_rtl_hoist
4092 bool
4093 pass_rtl_hoist::gate (function *)
4095 return optimize > 0 && flag_gcse
4096 && !cfun->calls_setjmp
4097 /* It does not make sense to run code hoisting unless we are optimizing
4098 for code size -- it rarely makes programs faster, and can make then
4099 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4100 && optimize_function_for_size_p (cfun)
4101 && dbg_cnt (hoist);
4104 } // anon namespace
4106 rtl_opt_pass *
4107 make_pass_rtl_hoist (gcc::context *ctxt)
4109 return new pass_rtl_hoist (ctxt);
4112 /* Reset all state within gcse.c so that we can rerun the compiler
4113 within the same process. For use by toplev::finalize. */
4115 void
4116 gcse_c_finalize (void)
4118 test_insn = NULL;
4121 #include "gt-gcse.h"