Define arm_arch_core_flags in a single file
[official-gcc.git] / gcc / function.c
blob0829fbe0d01315311917698b847ef27121e783be
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "regs.h"
50 #include "emit-rtl.h"
51 #include "recog.h"
52 #include "rtl-error.h"
53 #include "alias.h"
54 #include "fold-const.h"
55 #include "stor-layout.h"
56 #include "varasm.h"
57 #include "except.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "calls.h"
61 #include "expr.h"
62 #include "optabs-tree.h"
63 #include "output.h"
64 #include "langhooks.h"
65 #include "common/common-target.h"
66 #include "gimplify.h"
67 #include "tree-pass.h"
68 #include "cfgrtl.h"
69 #include "cfganal.h"
70 #include "cfgbuild.h"
71 #include "cfgcleanup.h"
72 #include "cfgexpand.h"
73 #include "shrink-wrap.h"
74 #include "toplev.h"
75 #include "rtl-iter.h"
76 #include "tree-chkp.h"
77 #include "rtl-chkp.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
81 /* So we can assign to cfun in this file. */
82 #undef cfun
84 #ifndef STACK_ALIGNMENT_NEEDED
85 #define STACK_ALIGNMENT_NEEDED 1
86 #endif
88 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
90 /* Round a value to the lowest integer less than it that is a multiple of
91 the required alignment. Avoid using division in case the value is
92 negative. Assume the alignment is a power of two. */
93 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
95 /* Similar, but round to the next highest integer that meets the
96 alignment. */
97 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
99 /* Nonzero once virtual register instantiation has been done.
100 assign_stack_local uses frame_pointer_rtx when this is nonzero.
101 calls.c:emit_library_call_value_1 uses it to set up
102 post-instantiation libcalls. */
103 int virtuals_instantiated;
105 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
106 static GTY(()) int funcdef_no;
108 /* These variables hold pointers to functions to create and destroy
109 target specific, per-function data structures. */
110 struct machine_function * (*init_machine_status) (void);
112 /* The currently compiled function. */
113 struct function *cfun = 0;
115 /* These hashes record the prologue and epilogue insns. */
117 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
119 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
120 static bool equal (rtx a, rtx b) { return a == b; }
123 static GTY((cache))
124 hash_table<insn_cache_hasher> *prologue_insn_hash;
125 static GTY((cache))
126 hash_table<insn_cache_hasher> *epilogue_insn_hash;
129 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
130 vec<tree, va_gc> *types_used_by_cur_var_decl;
132 /* Forward declarations. */
134 static struct temp_slot *find_temp_slot_from_address (rtx);
135 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
136 static void pad_below (struct args_size *, machine_mode, tree);
137 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
138 static int all_blocks (tree, tree *);
139 static tree *get_block_vector (tree, int *);
140 extern tree debug_find_var_in_block_tree (tree, tree);
141 /* We always define `record_insns' even if it's not used so that we
142 can always export `prologue_epilogue_contains'. */
143 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
144 ATTRIBUTE_UNUSED;
145 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
146 static void prepare_function_start (void);
147 static void do_clobber_return_reg (rtx, void *);
148 static void do_use_return_reg (rtx, void *);
151 /* Stack of nested functions. */
152 /* Keep track of the cfun stack. */
154 static vec<function *> function_context_stack;
156 /* Save the current context for compilation of a nested function.
157 This is called from language-specific code. */
159 void
160 push_function_context (void)
162 if (cfun == 0)
163 allocate_struct_function (NULL, false);
165 function_context_stack.safe_push (cfun);
166 set_cfun (NULL);
169 /* Restore the last saved context, at the end of a nested function.
170 This function is called from language-specific code. */
172 void
173 pop_function_context (void)
175 struct function *p = function_context_stack.pop ();
176 set_cfun (p);
177 current_function_decl = p->decl;
179 /* Reset variables that have known state during rtx generation. */
180 virtuals_instantiated = 0;
181 generating_concat_p = 1;
184 /* Clear out all parts of the state in F that can safely be discarded
185 after the function has been parsed, but not compiled, to let
186 garbage collection reclaim the memory. */
188 void
189 free_after_parsing (struct function *f)
191 f->language = 0;
194 /* Clear out all parts of the state in F that can safely be discarded
195 after the function has been compiled, to let garbage collection
196 reclaim the memory. */
198 void
199 free_after_compilation (struct function *f)
201 prologue_insn_hash = NULL;
202 epilogue_insn_hash = NULL;
204 free (crtl->emit.regno_pointer_align);
206 memset (crtl, 0, sizeof (struct rtl_data));
207 f->eh = NULL;
208 f->machine = NULL;
209 f->cfg = NULL;
210 f->curr_properties &= ~PROP_cfg;
212 regno_reg_rtx = NULL;
215 /* Return size needed for stack frame based on slots so far allocated.
216 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
217 the caller may have to do that. */
219 HOST_WIDE_INT
220 get_frame_size (void)
222 if (FRAME_GROWS_DOWNWARD)
223 return -frame_offset;
224 else
225 return frame_offset;
228 /* Issue an error message and return TRUE if frame OFFSET overflows in
229 the signed target pointer arithmetics for function FUNC. Otherwise
230 return FALSE. */
232 bool
233 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
235 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
237 if (size > (HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
238 /* Leave room for the fixed part of the frame. */
239 - 64 * UNITS_PER_WORD)
241 error_at (DECL_SOURCE_LOCATION (func),
242 "total size of local objects too large");
243 return TRUE;
246 return FALSE;
249 /* Return the minimum spill slot alignment for a register of mode MODE. */
251 unsigned int
252 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
254 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
257 /* Return stack slot alignment in bits for TYPE and MODE. */
259 static unsigned int
260 get_stack_local_alignment (tree type, machine_mode mode)
262 unsigned int alignment;
264 if (mode == BLKmode)
265 alignment = BIGGEST_ALIGNMENT;
266 else
267 alignment = GET_MODE_ALIGNMENT (mode);
269 /* Allow the frond-end to (possibly) increase the alignment of this
270 stack slot. */
271 if (! type)
272 type = lang_hooks.types.type_for_mode (mode, 0);
274 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
277 /* Determine whether it is possible to fit a stack slot of size SIZE and
278 alignment ALIGNMENT into an area in the stack frame that starts at
279 frame offset START and has a length of LENGTH. If so, store the frame
280 offset to be used for the stack slot in *POFFSET and return true;
281 return false otherwise. This function will extend the frame size when
282 given a start/length pair that lies at the end of the frame. */
284 static bool
285 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
286 HOST_WIDE_INT size, unsigned int alignment,
287 HOST_WIDE_INT *poffset)
289 HOST_WIDE_INT this_frame_offset;
290 int frame_off, frame_alignment, frame_phase;
292 /* Calculate how many bytes the start of local variables is off from
293 stack alignment. */
294 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
295 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
296 frame_phase = frame_off ? frame_alignment - frame_off : 0;
298 /* Round the frame offset to the specified alignment. */
300 /* We must be careful here, since FRAME_OFFSET might be negative and
301 division with a negative dividend isn't as well defined as we might
302 like. So we instead assume that ALIGNMENT is a power of two and
303 use logical operations which are unambiguous. */
304 if (FRAME_GROWS_DOWNWARD)
305 this_frame_offset
306 = (FLOOR_ROUND (start + length - size - frame_phase,
307 (unsigned HOST_WIDE_INT) alignment)
308 + frame_phase);
309 else
310 this_frame_offset
311 = (CEIL_ROUND (start - frame_phase,
312 (unsigned HOST_WIDE_INT) alignment)
313 + frame_phase);
315 /* See if it fits. If this space is at the edge of the frame,
316 consider extending the frame to make it fit. Our caller relies on
317 this when allocating a new slot. */
318 if (frame_offset == start && this_frame_offset < frame_offset)
319 frame_offset = this_frame_offset;
320 else if (this_frame_offset < start)
321 return false;
322 else if (start + length == frame_offset
323 && this_frame_offset + size > start + length)
324 frame_offset = this_frame_offset + size;
325 else if (this_frame_offset + size > start + length)
326 return false;
328 *poffset = this_frame_offset;
329 return true;
332 /* Create a new frame_space structure describing free space in the stack
333 frame beginning at START and ending at END, and chain it into the
334 function's frame_space_list. */
336 static void
337 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
339 struct frame_space *space = ggc_alloc<frame_space> ();
340 space->next = crtl->frame_space_list;
341 crtl->frame_space_list = space;
342 space->start = start;
343 space->length = end - start;
346 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
347 with machine mode MODE.
349 ALIGN controls the amount of alignment for the address of the slot:
350 0 means according to MODE,
351 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
352 -2 means use BITS_PER_UNIT,
353 positive specifies alignment boundary in bits.
355 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
356 alignment and ASLK_RECORD_PAD bit set if we should remember
357 extra space we allocated for alignment purposes. When we are
358 called from assign_stack_temp_for_type, it is not set so we don't
359 track the same stack slot in two independent lists.
361 We do not round to stack_boundary here. */
364 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
365 int align, int kind)
367 rtx x, addr;
368 int bigend_correction = 0;
369 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
370 unsigned int alignment, alignment_in_bits;
372 if (align == 0)
374 alignment = get_stack_local_alignment (NULL, mode);
375 alignment /= BITS_PER_UNIT;
377 else if (align == -1)
379 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
380 size = CEIL_ROUND (size, alignment);
382 else if (align == -2)
383 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
384 else
385 alignment = align / BITS_PER_UNIT;
387 alignment_in_bits = alignment * BITS_PER_UNIT;
389 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
390 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
392 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
396 if (SUPPORTS_STACK_ALIGNMENT)
398 if (crtl->stack_alignment_estimated < alignment_in_bits)
400 if (!crtl->stack_realign_processed)
401 crtl->stack_alignment_estimated = alignment_in_bits;
402 else
404 /* If stack is realigned and stack alignment value
405 hasn't been finalized, it is OK not to increase
406 stack_alignment_estimated. The bigger alignment
407 requirement is recorded in stack_alignment_needed
408 below. */
409 gcc_assert (!crtl->stack_realign_finalized);
410 if (!crtl->stack_realign_needed)
412 /* It is OK to reduce the alignment as long as the
413 requested size is 0 or the estimated stack
414 alignment >= mode alignment. */
415 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
416 || size == 0
417 || (crtl->stack_alignment_estimated
418 >= GET_MODE_ALIGNMENT (mode)));
419 alignment_in_bits = crtl->stack_alignment_estimated;
420 alignment = alignment_in_bits / BITS_PER_UNIT;
426 if (crtl->stack_alignment_needed < alignment_in_bits)
427 crtl->stack_alignment_needed = alignment_in_bits;
428 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
429 crtl->max_used_stack_slot_alignment = alignment_in_bits;
431 if (mode != BLKmode || size != 0)
433 if (kind & ASLK_RECORD_PAD)
435 struct frame_space **psp;
437 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
439 struct frame_space *space = *psp;
440 if (!try_fit_stack_local (space->start, space->length, size,
441 alignment, &slot_offset))
442 continue;
443 *psp = space->next;
444 if (slot_offset > space->start)
445 add_frame_space (space->start, slot_offset);
446 if (slot_offset + size < space->start + space->length)
447 add_frame_space (slot_offset + size,
448 space->start + space->length);
449 goto found_space;
453 else if (!STACK_ALIGNMENT_NEEDED)
455 slot_offset = frame_offset;
456 goto found_space;
459 old_frame_offset = frame_offset;
461 if (FRAME_GROWS_DOWNWARD)
463 frame_offset -= size;
464 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
466 if (kind & ASLK_RECORD_PAD)
468 if (slot_offset > frame_offset)
469 add_frame_space (frame_offset, slot_offset);
470 if (slot_offset + size < old_frame_offset)
471 add_frame_space (slot_offset + size, old_frame_offset);
474 else
476 frame_offset += size;
477 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
479 if (kind & ASLK_RECORD_PAD)
481 if (slot_offset > old_frame_offset)
482 add_frame_space (old_frame_offset, slot_offset);
483 if (slot_offset + size < frame_offset)
484 add_frame_space (slot_offset + size, frame_offset);
488 found_space:
489 /* On a big-endian machine, if we are allocating more space than we will use,
490 use the least significant bytes of those that are allocated. */
491 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
492 bigend_correction = size - GET_MODE_SIZE (mode);
494 /* If we have already instantiated virtual registers, return the actual
495 address relative to the frame pointer. */
496 if (virtuals_instantiated)
497 addr = plus_constant (Pmode, frame_pointer_rtx,
498 trunc_int_for_mode
499 (slot_offset + bigend_correction
500 + STARTING_FRAME_OFFSET, Pmode));
501 else
502 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
503 trunc_int_for_mode
504 (slot_offset + bigend_correction,
505 Pmode));
507 x = gen_rtx_MEM (mode, addr);
508 set_mem_align (x, alignment_in_bits);
509 MEM_NOTRAP_P (x) = 1;
511 vec_safe_push (stack_slot_list, x);
513 if (frame_offset_overflow (frame_offset, current_function_decl))
514 frame_offset = 0;
516 return x;
519 /* Wrap up assign_stack_local_1 with last parameter as false. */
522 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
524 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
527 /* In order to evaluate some expressions, such as function calls returning
528 structures in memory, we need to temporarily allocate stack locations.
529 We record each allocated temporary in the following structure.
531 Associated with each temporary slot is a nesting level. When we pop up
532 one level, all temporaries associated with the previous level are freed.
533 Normally, all temporaries are freed after the execution of the statement
534 in which they were created. However, if we are inside a ({...}) grouping,
535 the result may be in a temporary and hence must be preserved. If the
536 result could be in a temporary, we preserve it if we can determine which
537 one it is in. If we cannot determine which temporary may contain the
538 result, all temporaries are preserved. A temporary is preserved by
539 pretending it was allocated at the previous nesting level. */
541 struct GTY(()) temp_slot {
542 /* Points to next temporary slot. */
543 struct temp_slot *next;
544 /* Points to previous temporary slot. */
545 struct temp_slot *prev;
546 /* The rtx to used to reference the slot. */
547 rtx slot;
548 /* The size, in units, of the slot. */
549 HOST_WIDE_INT size;
550 /* The type of the object in the slot, or zero if it doesn't correspond
551 to a type. We use this to determine whether a slot can be reused.
552 It can be reused if objects of the type of the new slot will always
553 conflict with objects of the type of the old slot. */
554 tree type;
555 /* The alignment (in bits) of the slot. */
556 unsigned int align;
557 /* Nonzero if this temporary is currently in use. */
558 char in_use;
559 /* Nesting level at which this slot is being used. */
560 int level;
561 /* The offset of the slot from the frame_pointer, including extra space
562 for alignment. This info is for combine_temp_slots. */
563 HOST_WIDE_INT base_offset;
564 /* The size of the slot, including extra space for alignment. This
565 info is for combine_temp_slots. */
566 HOST_WIDE_INT full_size;
569 /* Entry for the below hash table. */
570 struct GTY((for_user)) temp_slot_address_entry {
571 hashval_t hash;
572 rtx address;
573 struct temp_slot *temp_slot;
576 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
578 static hashval_t hash (temp_slot_address_entry *);
579 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
582 /* A table of addresses that represent a stack slot. The table is a mapping
583 from address RTXen to a temp slot. */
584 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
585 static size_t n_temp_slots_in_use;
587 /* Removes temporary slot TEMP from LIST. */
589 static void
590 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
592 if (temp->next)
593 temp->next->prev = temp->prev;
594 if (temp->prev)
595 temp->prev->next = temp->next;
596 else
597 *list = temp->next;
599 temp->prev = temp->next = NULL;
602 /* Inserts temporary slot TEMP to LIST. */
604 static void
605 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
607 temp->next = *list;
608 if (*list)
609 (*list)->prev = temp;
610 temp->prev = NULL;
611 *list = temp;
614 /* Returns the list of used temp slots at LEVEL. */
616 static struct temp_slot **
617 temp_slots_at_level (int level)
619 if (level >= (int) vec_safe_length (used_temp_slots))
620 vec_safe_grow_cleared (used_temp_slots, level + 1);
622 return &(*used_temp_slots)[level];
625 /* Returns the maximal temporary slot level. */
627 static int
628 max_slot_level (void)
630 if (!used_temp_slots)
631 return -1;
633 return used_temp_slots->length () - 1;
636 /* Moves temporary slot TEMP to LEVEL. */
638 static void
639 move_slot_to_level (struct temp_slot *temp, int level)
641 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
642 insert_slot_to_list (temp, temp_slots_at_level (level));
643 temp->level = level;
646 /* Make temporary slot TEMP available. */
648 static void
649 make_slot_available (struct temp_slot *temp)
651 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
652 insert_slot_to_list (temp, &avail_temp_slots);
653 temp->in_use = 0;
654 temp->level = -1;
655 n_temp_slots_in_use--;
658 /* Compute the hash value for an address -> temp slot mapping.
659 The value is cached on the mapping entry. */
660 static hashval_t
661 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
663 int do_not_record = 0;
664 return hash_rtx (t->address, GET_MODE (t->address),
665 &do_not_record, NULL, false);
668 /* Return the hash value for an address -> temp slot mapping. */
669 hashval_t
670 temp_address_hasher::hash (temp_slot_address_entry *t)
672 return t->hash;
675 /* Compare two address -> temp slot mapping entries. */
676 bool
677 temp_address_hasher::equal (temp_slot_address_entry *t1,
678 temp_slot_address_entry *t2)
680 return exp_equiv_p (t1->address, t2->address, 0, true);
683 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
684 static void
685 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
687 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
688 t->address = address;
689 t->temp_slot = temp_slot;
690 t->hash = temp_slot_address_compute_hash (t);
691 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
694 /* Remove an address -> temp slot mapping entry if the temp slot is
695 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
697 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
699 const struct temp_slot_address_entry *t = *slot;
700 if (! t->temp_slot->in_use)
701 temp_slot_address_table->clear_slot (slot);
702 return 1;
705 /* Remove all mappings of addresses to unused temp slots. */
706 static void
707 remove_unused_temp_slot_addresses (void)
709 /* Use quicker clearing if there aren't any active temp slots. */
710 if (n_temp_slots_in_use)
711 temp_slot_address_table->traverse
712 <void *, remove_unused_temp_slot_addresses_1> (NULL);
713 else
714 temp_slot_address_table->empty ();
717 /* Find the temp slot corresponding to the object at address X. */
719 static struct temp_slot *
720 find_temp_slot_from_address (rtx x)
722 struct temp_slot *p;
723 struct temp_slot_address_entry tmp, *t;
725 /* First try the easy way:
726 See if X exists in the address -> temp slot mapping. */
727 tmp.address = x;
728 tmp.temp_slot = NULL;
729 tmp.hash = temp_slot_address_compute_hash (&tmp);
730 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
731 if (t)
732 return t->temp_slot;
734 /* If we have a sum involving a register, see if it points to a temp
735 slot. */
736 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
737 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
738 return p;
739 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
740 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
741 return p;
743 /* Last resort: Address is a virtual stack var address. */
744 if (GET_CODE (x) == PLUS
745 && XEXP (x, 0) == virtual_stack_vars_rtx
746 && CONST_INT_P (XEXP (x, 1)))
748 int i;
749 for (i = max_slot_level (); i >= 0; i--)
750 for (p = *temp_slots_at_level (i); p; p = p->next)
752 if (INTVAL (XEXP (x, 1)) >= p->base_offset
753 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
754 return p;
758 return NULL;
761 /* Allocate a temporary stack slot and record it for possible later
762 reuse.
764 MODE is the machine mode to be given to the returned rtx.
766 SIZE is the size in units of the space required. We do no rounding here
767 since assign_stack_local will do any required rounding.
769 TYPE is the type that will be used for the stack slot. */
772 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
773 tree type)
775 unsigned int align;
776 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
777 rtx slot;
779 /* If SIZE is -1 it means that somebody tried to allocate a temporary
780 of a variable size. */
781 gcc_assert (size != -1);
783 align = get_stack_local_alignment (type, mode);
785 /* Try to find an available, already-allocated temporary of the proper
786 mode which meets the size and alignment requirements. Choose the
787 smallest one with the closest alignment.
789 If assign_stack_temp is called outside of the tree->rtl expansion,
790 we cannot reuse the stack slots (that may still refer to
791 VIRTUAL_STACK_VARS_REGNUM). */
792 if (!virtuals_instantiated)
794 for (p = avail_temp_slots; p; p = p->next)
796 if (p->align >= align && p->size >= size
797 && GET_MODE (p->slot) == mode
798 && objects_must_conflict_p (p->type, type)
799 && (best_p == 0 || best_p->size > p->size
800 || (best_p->size == p->size && best_p->align > p->align)))
802 if (p->align == align && p->size == size)
804 selected = p;
805 cut_slot_from_list (selected, &avail_temp_slots);
806 best_p = 0;
807 break;
809 best_p = p;
814 /* Make our best, if any, the one to use. */
815 if (best_p)
817 selected = best_p;
818 cut_slot_from_list (selected, &avail_temp_slots);
820 /* If there are enough aligned bytes left over, make them into a new
821 temp_slot so that the extra bytes don't get wasted. Do this only
822 for BLKmode slots, so that we can be sure of the alignment. */
823 if (GET_MODE (best_p->slot) == BLKmode)
825 int alignment = best_p->align / BITS_PER_UNIT;
826 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
828 if (best_p->size - rounded_size >= alignment)
830 p = ggc_alloc<temp_slot> ();
831 p->in_use = 0;
832 p->size = best_p->size - rounded_size;
833 p->base_offset = best_p->base_offset + rounded_size;
834 p->full_size = best_p->full_size - rounded_size;
835 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
836 p->align = best_p->align;
837 p->type = best_p->type;
838 insert_slot_to_list (p, &avail_temp_slots);
840 vec_safe_push (stack_slot_list, p->slot);
842 best_p->size = rounded_size;
843 best_p->full_size = rounded_size;
848 /* If we still didn't find one, make a new temporary. */
849 if (selected == 0)
851 HOST_WIDE_INT frame_offset_old = frame_offset;
853 p = ggc_alloc<temp_slot> ();
855 /* We are passing an explicit alignment request to assign_stack_local.
856 One side effect of that is assign_stack_local will not round SIZE
857 to ensure the frame offset remains suitably aligned.
859 So for requests which depended on the rounding of SIZE, we go ahead
860 and round it now. We also make sure ALIGNMENT is at least
861 BIGGEST_ALIGNMENT. */
862 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
863 p->slot = assign_stack_local_1 (mode,
864 (mode == BLKmode
865 ? CEIL_ROUND (size,
866 (int) align
867 / BITS_PER_UNIT)
868 : size),
869 align, 0);
871 p->align = align;
873 /* The following slot size computation is necessary because we don't
874 know the actual size of the temporary slot until assign_stack_local
875 has performed all the frame alignment and size rounding for the
876 requested temporary. Note that extra space added for alignment
877 can be either above or below this stack slot depending on which
878 way the frame grows. We include the extra space if and only if it
879 is above this slot. */
880 if (FRAME_GROWS_DOWNWARD)
881 p->size = frame_offset_old - frame_offset;
882 else
883 p->size = size;
885 /* Now define the fields used by combine_temp_slots. */
886 if (FRAME_GROWS_DOWNWARD)
888 p->base_offset = frame_offset;
889 p->full_size = frame_offset_old - frame_offset;
891 else
893 p->base_offset = frame_offset_old;
894 p->full_size = frame_offset - frame_offset_old;
897 selected = p;
900 p = selected;
901 p->in_use = 1;
902 p->type = type;
903 p->level = temp_slot_level;
904 n_temp_slots_in_use++;
906 pp = temp_slots_at_level (p->level);
907 insert_slot_to_list (p, pp);
908 insert_temp_slot_address (XEXP (p->slot, 0), p);
910 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
911 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
912 vec_safe_push (stack_slot_list, slot);
914 /* If we know the alias set for the memory that will be used, use
915 it. If there's no TYPE, then we don't know anything about the
916 alias set for the memory. */
917 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
918 set_mem_align (slot, align);
920 /* If a type is specified, set the relevant flags. */
921 if (type != 0)
922 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
923 MEM_NOTRAP_P (slot) = 1;
925 return slot;
928 /* Allocate a temporary stack slot and record it for possible later
929 reuse. First two arguments are same as in preceding function. */
932 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
934 return assign_stack_temp_for_type (mode, size, NULL_TREE);
937 /* Assign a temporary.
938 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
939 and so that should be used in error messages. In either case, we
940 allocate of the given type.
941 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
942 it is 0 if a register is OK.
943 DONT_PROMOTE is 1 if we should not promote values in register
944 to wider modes. */
947 assign_temp (tree type_or_decl, int memory_required,
948 int dont_promote ATTRIBUTE_UNUSED)
950 tree type, decl;
951 machine_mode mode;
952 #ifdef PROMOTE_MODE
953 int unsignedp;
954 #endif
956 if (DECL_P (type_or_decl))
957 decl = type_or_decl, type = TREE_TYPE (decl);
958 else
959 decl = NULL, type = type_or_decl;
961 mode = TYPE_MODE (type);
962 #ifdef PROMOTE_MODE
963 unsignedp = TYPE_UNSIGNED (type);
964 #endif
966 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
967 end. See also create_tmp_var for the gimplification-time check. */
968 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
970 if (mode == BLKmode || memory_required)
972 HOST_WIDE_INT size = int_size_in_bytes (type);
973 rtx tmp;
975 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
976 problems with allocating the stack space. */
977 if (size == 0)
978 size = 1;
980 /* Unfortunately, we don't yet know how to allocate variable-sized
981 temporaries. However, sometimes we can find a fixed upper limit on
982 the size, so try that instead. */
983 else if (size == -1)
984 size = max_int_size_in_bytes (type);
986 /* The size of the temporary may be too large to fit into an integer. */
987 /* ??? Not sure this should happen except for user silliness, so limit
988 this to things that aren't compiler-generated temporaries. The
989 rest of the time we'll die in assign_stack_temp_for_type. */
990 if (decl && size == -1
991 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
993 error ("size of variable %q+D is too large", decl);
994 size = 1;
997 tmp = assign_stack_temp_for_type (mode, size, type);
998 return tmp;
1001 #ifdef PROMOTE_MODE
1002 if (! dont_promote)
1003 mode = promote_mode (type, mode, &unsignedp);
1004 #endif
1006 return gen_reg_rtx (mode);
1009 /* Combine temporary stack slots which are adjacent on the stack.
1011 This allows for better use of already allocated stack space. This is only
1012 done for BLKmode slots because we can be sure that we won't have alignment
1013 problems in this case. */
1015 static void
1016 combine_temp_slots (void)
1018 struct temp_slot *p, *q, *next, *next_q;
1019 int num_slots;
1021 /* We can't combine slots, because the information about which slot
1022 is in which alias set will be lost. */
1023 if (flag_strict_aliasing)
1024 return;
1026 /* If there are a lot of temp slots, don't do anything unless
1027 high levels of optimization. */
1028 if (! flag_expensive_optimizations)
1029 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1030 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1031 return;
1033 for (p = avail_temp_slots; p; p = next)
1035 int delete_p = 0;
1037 next = p->next;
1039 if (GET_MODE (p->slot) != BLKmode)
1040 continue;
1042 for (q = p->next; q; q = next_q)
1044 int delete_q = 0;
1046 next_q = q->next;
1048 if (GET_MODE (q->slot) != BLKmode)
1049 continue;
1051 if (p->base_offset + p->full_size == q->base_offset)
1053 /* Q comes after P; combine Q into P. */
1054 p->size += q->size;
1055 p->full_size += q->full_size;
1056 delete_q = 1;
1058 else if (q->base_offset + q->full_size == p->base_offset)
1060 /* P comes after Q; combine P into Q. */
1061 q->size += p->size;
1062 q->full_size += p->full_size;
1063 delete_p = 1;
1064 break;
1066 if (delete_q)
1067 cut_slot_from_list (q, &avail_temp_slots);
1070 /* Either delete P or advance past it. */
1071 if (delete_p)
1072 cut_slot_from_list (p, &avail_temp_slots);
1076 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1077 slot that previously was known by OLD_RTX. */
1079 void
1080 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1082 struct temp_slot *p;
1084 if (rtx_equal_p (old_rtx, new_rtx))
1085 return;
1087 p = find_temp_slot_from_address (old_rtx);
1089 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1090 NEW_RTX is a register, see if one operand of the PLUS is a
1091 temporary location. If so, NEW_RTX points into it. Otherwise,
1092 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1093 in common between them. If so, try a recursive call on those
1094 values. */
1095 if (p == 0)
1097 if (GET_CODE (old_rtx) != PLUS)
1098 return;
1100 if (REG_P (new_rtx))
1102 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1103 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1104 return;
1106 else if (GET_CODE (new_rtx) != PLUS)
1107 return;
1109 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1110 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1111 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1112 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1113 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1114 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1115 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1116 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1118 return;
1121 /* Otherwise add an alias for the temp's address. */
1122 insert_temp_slot_address (new_rtx, p);
1125 /* If X could be a reference to a temporary slot, mark that slot as
1126 belonging to the to one level higher than the current level. If X
1127 matched one of our slots, just mark that one. Otherwise, we can't
1128 easily predict which it is, so upgrade all of them.
1130 This is called when an ({...}) construct occurs and a statement
1131 returns a value in memory. */
1133 void
1134 preserve_temp_slots (rtx x)
1136 struct temp_slot *p = 0, *next;
1138 if (x == 0)
1139 return;
1141 /* If X is a register that is being used as a pointer, see if we have
1142 a temporary slot we know it points to. */
1143 if (REG_P (x) && REG_POINTER (x))
1144 p = find_temp_slot_from_address (x);
1146 /* If X is not in memory or is at a constant address, it cannot be in
1147 a temporary slot. */
1148 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1149 return;
1151 /* First see if we can find a match. */
1152 if (p == 0)
1153 p = find_temp_slot_from_address (XEXP (x, 0));
1155 if (p != 0)
1157 if (p->level == temp_slot_level)
1158 move_slot_to_level (p, temp_slot_level - 1);
1159 return;
1162 /* Otherwise, preserve all non-kept slots at this level. */
1163 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1165 next = p->next;
1166 move_slot_to_level (p, temp_slot_level - 1);
1170 /* Free all temporaries used so far. This is normally called at the
1171 end of generating code for a statement. */
1173 void
1174 free_temp_slots (void)
1176 struct temp_slot *p, *next;
1177 bool some_available = false;
1179 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1181 next = p->next;
1182 make_slot_available (p);
1183 some_available = true;
1186 if (some_available)
1188 remove_unused_temp_slot_addresses ();
1189 combine_temp_slots ();
1193 /* Push deeper into the nesting level for stack temporaries. */
1195 void
1196 push_temp_slots (void)
1198 temp_slot_level++;
1201 /* Pop a temporary nesting level. All slots in use in the current level
1202 are freed. */
1204 void
1205 pop_temp_slots (void)
1207 free_temp_slots ();
1208 temp_slot_level--;
1211 /* Initialize temporary slots. */
1213 void
1214 init_temp_slots (void)
1216 /* We have not allocated any temporaries yet. */
1217 avail_temp_slots = 0;
1218 vec_alloc (used_temp_slots, 0);
1219 temp_slot_level = 0;
1220 n_temp_slots_in_use = 0;
1222 /* Set up the table to map addresses to temp slots. */
1223 if (! temp_slot_address_table)
1224 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1225 else
1226 temp_slot_address_table->empty ();
1229 /* Functions and data structures to keep track of the values hard regs
1230 had at the start of the function. */
1232 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1233 and has_hard_reg_initial_val.. */
1234 struct GTY(()) initial_value_pair {
1235 rtx hard_reg;
1236 rtx pseudo;
1238 /* ??? This could be a VEC but there is currently no way to define an
1239 opaque VEC type. This could be worked around by defining struct
1240 initial_value_pair in function.h. */
1241 struct GTY(()) initial_value_struct {
1242 int num_entries;
1243 int max_entries;
1244 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1247 /* If a pseudo represents an initial hard reg (or expression), return
1248 it, else return NULL_RTX. */
1251 get_hard_reg_initial_reg (rtx reg)
1253 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1254 int i;
1256 if (ivs == 0)
1257 return NULL_RTX;
1259 for (i = 0; i < ivs->num_entries; i++)
1260 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1261 return ivs->entries[i].hard_reg;
1263 return NULL_RTX;
1266 /* Make sure that there's a pseudo register of mode MODE that stores the
1267 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1270 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1272 struct initial_value_struct *ivs;
1273 rtx rv;
1275 rv = has_hard_reg_initial_val (mode, regno);
1276 if (rv)
1277 return rv;
1279 ivs = crtl->hard_reg_initial_vals;
1280 if (ivs == 0)
1282 ivs = ggc_alloc<initial_value_struct> ();
1283 ivs->num_entries = 0;
1284 ivs->max_entries = 5;
1285 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1286 crtl->hard_reg_initial_vals = ivs;
1289 if (ivs->num_entries >= ivs->max_entries)
1291 ivs->max_entries += 5;
1292 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1293 ivs->max_entries);
1296 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1297 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1299 return ivs->entries[ivs->num_entries++].pseudo;
1302 /* See if get_hard_reg_initial_val has been used to create a pseudo
1303 for the initial value of hard register REGNO in mode MODE. Return
1304 the associated pseudo if so, otherwise return NULL. */
1307 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1309 struct initial_value_struct *ivs;
1310 int i;
1312 ivs = crtl->hard_reg_initial_vals;
1313 if (ivs != 0)
1314 for (i = 0; i < ivs->num_entries; i++)
1315 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1316 && REGNO (ivs->entries[i].hard_reg) == regno)
1317 return ivs->entries[i].pseudo;
1319 return NULL_RTX;
1322 unsigned int
1323 emit_initial_value_sets (void)
1325 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1326 int i;
1327 rtx_insn *seq;
1329 if (ivs == 0)
1330 return 0;
1332 start_sequence ();
1333 for (i = 0; i < ivs->num_entries; i++)
1334 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1335 seq = get_insns ();
1336 end_sequence ();
1338 emit_insn_at_entry (seq);
1339 return 0;
1342 /* Return the hardreg-pseudoreg initial values pair entry I and
1343 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1344 bool
1345 initial_value_entry (int i, rtx *hreg, rtx *preg)
1347 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1348 if (!ivs || i >= ivs->num_entries)
1349 return false;
1351 *hreg = ivs->entries[i].hard_reg;
1352 *preg = ivs->entries[i].pseudo;
1353 return true;
1356 /* These routines are responsible for converting virtual register references
1357 to the actual hard register references once RTL generation is complete.
1359 The following four variables are used for communication between the
1360 routines. They contain the offsets of the virtual registers from their
1361 respective hard registers. */
1363 static int in_arg_offset;
1364 static int var_offset;
1365 static int dynamic_offset;
1366 static int out_arg_offset;
1367 static int cfa_offset;
1369 /* In most machines, the stack pointer register is equivalent to the bottom
1370 of the stack. */
1372 #ifndef STACK_POINTER_OFFSET
1373 #define STACK_POINTER_OFFSET 0
1374 #endif
1376 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1377 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1378 #endif
1380 /* If not defined, pick an appropriate default for the offset of dynamically
1381 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1382 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1384 #ifndef STACK_DYNAMIC_OFFSET
1386 /* The bottom of the stack points to the actual arguments. If
1387 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1388 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1389 stack space for register parameters is not pushed by the caller, but
1390 rather part of the fixed stack areas and hence not included in
1391 `crtl->outgoing_args_size'. Nevertheless, we must allow
1392 for it when allocating stack dynamic objects. */
1394 #ifdef INCOMING_REG_PARM_STACK_SPACE
1395 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1396 ((ACCUMULATE_OUTGOING_ARGS \
1397 ? (crtl->outgoing_args_size \
1398 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1399 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1400 : 0) + (STACK_POINTER_OFFSET))
1401 #else
1402 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1403 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1404 + (STACK_POINTER_OFFSET))
1405 #endif
1406 #endif
1409 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1410 is a virtual register, return the equivalent hard register and set the
1411 offset indirectly through the pointer. Otherwise, return 0. */
1413 static rtx
1414 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1416 rtx new_rtx;
1417 HOST_WIDE_INT offset;
1419 if (x == virtual_incoming_args_rtx)
1421 if (stack_realign_drap)
1423 /* Replace virtual_incoming_args_rtx with internal arg
1424 pointer if DRAP is used to realign stack. */
1425 new_rtx = crtl->args.internal_arg_pointer;
1426 offset = 0;
1428 else
1429 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1431 else if (x == virtual_stack_vars_rtx)
1432 new_rtx = frame_pointer_rtx, offset = var_offset;
1433 else if (x == virtual_stack_dynamic_rtx)
1434 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1435 else if (x == virtual_outgoing_args_rtx)
1436 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1437 else if (x == virtual_cfa_rtx)
1439 #ifdef FRAME_POINTER_CFA_OFFSET
1440 new_rtx = frame_pointer_rtx;
1441 #else
1442 new_rtx = arg_pointer_rtx;
1443 #endif
1444 offset = cfa_offset;
1446 else if (x == virtual_preferred_stack_boundary_rtx)
1448 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1449 offset = 0;
1451 else
1452 return NULL_RTX;
1454 *poffset = offset;
1455 return new_rtx;
1458 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1459 registers present inside of *LOC. The expression is simplified,
1460 as much as possible, but is not to be considered "valid" in any sense
1461 implied by the target. Return true if any change is made. */
1463 static bool
1464 instantiate_virtual_regs_in_rtx (rtx *loc)
1466 if (!*loc)
1467 return false;
1468 bool changed = false;
1469 subrtx_ptr_iterator::array_type array;
1470 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1472 rtx *loc = *iter;
1473 if (rtx x = *loc)
1475 rtx new_rtx;
1476 HOST_WIDE_INT offset;
1477 switch (GET_CODE (x))
1479 case REG:
1480 new_rtx = instantiate_new_reg (x, &offset);
1481 if (new_rtx)
1483 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1484 changed = true;
1486 iter.skip_subrtxes ();
1487 break;
1489 case PLUS:
1490 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1491 if (new_rtx)
1493 XEXP (x, 0) = new_rtx;
1494 *loc = plus_constant (GET_MODE (x), x, offset, true);
1495 changed = true;
1496 iter.skip_subrtxes ();
1497 break;
1500 /* FIXME -- from old code */
1501 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1502 we can commute the PLUS and SUBREG because pointers into the
1503 frame are well-behaved. */
1504 break;
1506 default:
1507 break;
1511 return changed;
1514 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1515 matches the predicate for insn CODE operand OPERAND. */
1517 static int
1518 safe_insn_predicate (int code, int operand, rtx x)
1520 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1523 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1524 registers present inside of insn. The result will be a valid insn. */
1526 static void
1527 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1529 HOST_WIDE_INT offset;
1530 int insn_code, i;
1531 bool any_change = false;
1532 rtx set, new_rtx, x;
1533 rtx_insn *seq;
1535 /* There are some special cases to be handled first. */
1536 set = single_set (insn);
1537 if (set)
1539 /* We're allowed to assign to a virtual register. This is interpreted
1540 to mean that the underlying register gets assigned the inverse
1541 transformation. This is used, for example, in the handling of
1542 non-local gotos. */
1543 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1544 if (new_rtx)
1546 start_sequence ();
1548 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1549 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1550 gen_int_mode (-offset, GET_MODE (new_rtx)));
1551 x = force_operand (x, new_rtx);
1552 if (x != new_rtx)
1553 emit_move_insn (new_rtx, x);
1555 seq = get_insns ();
1556 end_sequence ();
1558 emit_insn_before (seq, insn);
1559 delete_insn (insn);
1560 return;
1563 /* Handle a straight copy from a virtual register by generating a
1564 new add insn. The difference between this and falling through
1565 to the generic case is avoiding a new pseudo and eliminating a
1566 move insn in the initial rtl stream. */
1567 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1568 if (new_rtx && offset != 0
1569 && REG_P (SET_DEST (set))
1570 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1572 start_sequence ();
1574 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1575 gen_int_mode (offset,
1576 GET_MODE (SET_DEST (set))),
1577 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1578 if (x != SET_DEST (set))
1579 emit_move_insn (SET_DEST (set), x);
1581 seq = get_insns ();
1582 end_sequence ();
1584 emit_insn_before (seq, insn);
1585 delete_insn (insn);
1586 return;
1589 extract_insn (insn);
1590 insn_code = INSN_CODE (insn);
1592 /* Handle a plus involving a virtual register by determining if the
1593 operands remain valid if they're modified in place. */
1594 if (GET_CODE (SET_SRC (set)) == PLUS
1595 && recog_data.n_operands >= 3
1596 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1597 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1598 && CONST_INT_P (recog_data.operand[2])
1599 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1601 offset += INTVAL (recog_data.operand[2]);
1603 /* If the sum is zero, then replace with a plain move. */
1604 if (offset == 0
1605 && REG_P (SET_DEST (set))
1606 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1608 start_sequence ();
1609 emit_move_insn (SET_DEST (set), new_rtx);
1610 seq = get_insns ();
1611 end_sequence ();
1613 emit_insn_before (seq, insn);
1614 delete_insn (insn);
1615 return;
1618 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1620 /* Using validate_change and apply_change_group here leaves
1621 recog_data in an invalid state. Since we know exactly what
1622 we want to check, do those two by hand. */
1623 if (safe_insn_predicate (insn_code, 1, new_rtx)
1624 && safe_insn_predicate (insn_code, 2, x))
1626 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1627 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1628 any_change = true;
1630 /* Fall through into the regular operand fixup loop in
1631 order to take care of operands other than 1 and 2. */
1635 else
1637 extract_insn (insn);
1638 insn_code = INSN_CODE (insn);
1641 /* In the general case, we expect virtual registers to appear only in
1642 operands, and then only as either bare registers or inside memories. */
1643 for (i = 0; i < recog_data.n_operands; ++i)
1645 x = recog_data.operand[i];
1646 switch (GET_CODE (x))
1648 case MEM:
1650 rtx addr = XEXP (x, 0);
1652 if (!instantiate_virtual_regs_in_rtx (&addr))
1653 continue;
1655 start_sequence ();
1656 x = replace_equiv_address (x, addr, true);
1657 /* It may happen that the address with the virtual reg
1658 was valid (e.g. based on the virtual stack reg, which might
1659 be acceptable to the predicates with all offsets), whereas
1660 the address now isn't anymore, for instance when the address
1661 is still offsetted, but the base reg isn't virtual-stack-reg
1662 anymore. Below we would do a force_reg on the whole operand,
1663 but this insn might actually only accept memory. Hence,
1664 before doing that last resort, try to reload the address into
1665 a register, so this operand stays a MEM. */
1666 if (!safe_insn_predicate (insn_code, i, x))
1668 addr = force_reg (GET_MODE (addr), addr);
1669 x = replace_equiv_address (x, addr, true);
1671 seq = get_insns ();
1672 end_sequence ();
1673 if (seq)
1674 emit_insn_before (seq, insn);
1676 break;
1678 case REG:
1679 new_rtx = instantiate_new_reg (x, &offset);
1680 if (new_rtx == NULL)
1681 continue;
1682 if (offset == 0)
1683 x = new_rtx;
1684 else
1686 start_sequence ();
1688 /* Careful, special mode predicates may have stuff in
1689 insn_data[insn_code].operand[i].mode that isn't useful
1690 to us for computing a new value. */
1691 /* ??? Recognize address_operand and/or "p" constraints
1692 to see if (plus new offset) is a valid before we put
1693 this through expand_simple_binop. */
1694 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1695 gen_int_mode (offset, GET_MODE (x)),
1696 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1697 seq = get_insns ();
1698 end_sequence ();
1699 emit_insn_before (seq, insn);
1701 break;
1703 case SUBREG:
1704 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1705 if (new_rtx == NULL)
1706 continue;
1707 if (offset != 0)
1709 start_sequence ();
1710 new_rtx = expand_simple_binop
1711 (GET_MODE (new_rtx), PLUS, new_rtx,
1712 gen_int_mode (offset, GET_MODE (new_rtx)),
1713 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1714 seq = get_insns ();
1715 end_sequence ();
1716 emit_insn_before (seq, insn);
1718 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1719 GET_MODE (new_rtx), SUBREG_BYTE (x));
1720 gcc_assert (x);
1721 break;
1723 default:
1724 continue;
1727 /* At this point, X contains the new value for the operand.
1728 Validate the new value vs the insn predicate. Note that
1729 asm insns will have insn_code -1 here. */
1730 if (!safe_insn_predicate (insn_code, i, x))
1732 start_sequence ();
1733 if (REG_P (x))
1735 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1736 x = copy_to_reg (x);
1738 else
1739 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1740 seq = get_insns ();
1741 end_sequence ();
1742 if (seq)
1743 emit_insn_before (seq, insn);
1746 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1747 any_change = true;
1750 if (any_change)
1752 /* Propagate operand changes into the duplicates. */
1753 for (i = 0; i < recog_data.n_dups; ++i)
1754 *recog_data.dup_loc[i]
1755 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1757 /* Force re-recognition of the instruction for validation. */
1758 INSN_CODE (insn) = -1;
1761 if (asm_noperands (PATTERN (insn)) >= 0)
1763 if (!check_asm_operands (PATTERN (insn)))
1765 error_for_asm (insn, "impossible constraint in %<asm%>");
1766 /* For asm goto, instead of fixing up all the edges
1767 just clear the template and clear input operands
1768 (asm goto doesn't have any output operands). */
1769 if (JUMP_P (insn))
1771 rtx asm_op = extract_asm_operands (PATTERN (insn));
1772 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1773 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1774 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1776 else
1777 delete_insn (insn);
1780 else
1782 if (recog_memoized (insn) < 0)
1783 fatal_insn_not_found (insn);
1787 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1788 do any instantiation required. */
1790 void
1791 instantiate_decl_rtl (rtx x)
1793 rtx addr;
1795 if (x == 0)
1796 return;
1798 /* If this is a CONCAT, recurse for the pieces. */
1799 if (GET_CODE (x) == CONCAT)
1801 instantiate_decl_rtl (XEXP (x, 0));
1802 instantiate_decl_rtl (XEXP (x, 1));
1803 return;
1806 /* If this is not a MEM, no need to do anything. Similarly if the
1807 address is a constant or a register that is not a virtual register. */
1808 if (!MEM_P (x))
1809 return;
1811 addr = XEXP (x, 0);
1812 if (CONSTANT_P (addr)
1813 || (REG_P (addr)
1814 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1815 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1816 return;
1818 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1821 /* Helper for instantiate_decls called via walk_tree: Process all decls
1822 in the given DECL_VALUE_EXPR. */
1824 static tree
1825 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1827 tree t = *tp;
1828 if (! EXPR_P (t))
1830 *walk_subtrees = 0;
1831 if (DECL_P (t))
1833 if (DECL_RTL_SET_P (t))
1834 instantiate_decl_rtl (DECL_RTL (t));
1835 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1836 && DECL_INCOMING_RTL (t))
1837 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1838 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1839 && DECL_HAS_VALUE_EXPR_P (t))
1841 tree v = DECL_VALUE_EXPR (t);
1842 walk_tree (&v, instantiate_expr, NULL, NULL);
1846 return NULL;
1849 /* Subroutine of instantiate_decls: Process all decls in the given
1850 BLOCK node and all its subblocks. */
1852 static void
1853 instantiate_decls_1 (tree let)
1855 tree t;
1857 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1859 if (DECL_RTL_SET_P (t))
1860 instantiate_decl_rtl (DECL_RTL (t));
1861 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1863 tree v = DECL_VALUE_EXPR (t);
1864 walk_tree (&v, instantiate_expr, NULL, NULL);
1868 /* Process all subblocks. */
1869 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1870 instantiate_decls_1 (t);
1873 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1874 all virtual registers in their DECL_RTL's. */
1876 static void
1877 instantiate_decls (tree fndecl)
1879 tree decl;
1880 unsigned ix;
1882 /* Process all parameters of the function. */
1883 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1885 instantiate_decl_rtl (DECL_RTL (decl));
1886 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1887 if (DECL_HAS_VALUE_EXPR_P (decl))
1889 tree v = DECL_VALUE_EXPR (decl);
1890 walk_tree (&v, instantiate_expr, NULL, NULL);
1894 if ((decl = DECL_RESULT (fndecl))
1895 && TREE_CODE (decl) == RESULT_DECL)
1897 if (DECL_RTL_SET_P (decl))
1898 instantiate_decl_rtl (DECL_RTL (decl));
1899 if (DECL_HAS_VALUE_EXPR_P (decl))
1901 tree v = DECL_VALUE_EXPR (decl);
1902 walk_tree (&v, instantiate_expr, NULL, NULL);
1906 /* Process the saved static chain if it exists. */
1907 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1908 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1909 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1911 /* Now process all variables defined in the function or its subblocks. */
1912 instantiate_decls_1 (DECL_INITIAL (fndecl));
1914 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1915 if (DECL_RTL_SET_P (decl))
1916 instantiate_decl_rtl (DECL_RTL (decl));
1917 vec_free (cfun->local_decls);
1920 /* Pass through the INSNS of function FNDECL and convert virtual register
1921 references to hard register references. */
1923 static unsigned int
1924 instantiate_virtual_regs (void)
1926 rtx_insn *insn;
1928 /* Compute the offsets to use for this function. */
1929 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1930 var_offset = STARTING_FRAME_OFFSET;
1931 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1932 out_arg_offset = STACK_POINTER_OFFSET;
1933 #ifdef FRAME_POINTER_CFA_OFFSET
1934 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1935 #else
1936 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1937 #endif
1939 /* Initialize recognition, indicating that volatile is OK. */
1940 init_recog ();
1942 /* Scan through all the insns, instantiating every virtual register still
1943 present. */
1944 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1945 if (INSN_P (insn))
1947 /* These patterns in the instruction stream can never be recognized.
1948 Fortunately, they shouldn't contain virtual registers either. */
1949 if (GET_CODE (PATTERN (insn)) == USE
1950 || GET_CODE (PATTERN (insn)) == CLOBBER
1951 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1952 continue;
1953 else if (DEBUG_INSN_P (insn))
1954 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1955 else
1956 instantiate_virtual_regs_in_insn (insn);
1958 if (insn->deleted ())
1959 continue;
1961 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1963 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1964 if (CALL_P (insn))
1965 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1968 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1969 instantiate_decls (current_function_decl);
1971 targetm.instantiate_decls ();
1973 /* Indicate that, from now on, assign_stack_local should use
1974 frame_pointer_rtx. */
1975 virtuals_instantiated = 1;
1977 return 0;
1980 namespace {
1982 const pass_data pass_data_instantiate_virtual_regs =
1984 RTL_PASS, /* type */
1985 "vregs", /* name */
1986 OPTGROUP_NONE, /* optinfo_flags */
1987 TV_NONE, /* tv_id */
1988 0, /* properties_required */
1989 0, /* properties_provided */
1990 0, /* properties_destroyed */
1991 0, /* todo_flags_start */
1992 0, /* todo_flags_finish */
1995 class pass_instantiate_virtual_regs : public rtl_opt_pass
1997 public:
1998 pass_instantiate_virtual_regs (gcc::context *ctxt)
1999 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2002 /* opt_pass methods: */
2003 virtual unsigned int execute (function *)
2005 return instantiate_virtual_regs ();
2008 }; // class pass_instantiate_virtual_regs
2010 } // anon namespace
2012 rtl_opt_pass *
2013 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2015 return new pass_instantiate_virtual_regs (ctxt);
2019 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2020 This means a type for which function calls must pass an address to the
2021 function or get an address back from the function.
2022 EXP may be a type node or an expression (whose type is tested). */
2025 aggregate_value_p (const_tree exp, const_tree fntype)
2027 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2028 int i, regno, nregs;
2029 rtx reg;
2031 if (fntype)
2032 switch (TREE_CODE (fntype))
2034 case CALL_EXPR:
2036 tree fndecl = get_callee_fndecl (fntype);
2037 if (fndecl)
2038 fntype = TREE_TYPE (fndecl);
2039 else if (CALL_EXPR_FN (fntype))
2040 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2041 else
2042 /* For internal functions, assume nothing needs to be
2043 returned in memory. */
2044 return 0;
2046 break;
2047 case FUNCTION_DECL:
2048 fntype = TREE_TYPE (fntype);
2049 break;
2050 case FUNCTION_TYPE:
2051 case METHOD_TYPE:
2052 break;
2053 case IDENTIFIER_NODE:
2054 fntype = NULL_TREE;
2055 break;
2056 default:
2057 /* We don't expect other tree types here. */
2058 gcc_unreachable ();
2061 if (VOID_TYPE_P (type))
2062 return 0;
2064 /* If a record should be passed the same as its first (and only) member
2065 don't pass it as an aggregate. */
2066 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2067 return aggregate_value_p (first_field (type), fntype);
2069 /* If the front end has decided that this needs to be passed by
2070 reference, do so. */
2071 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2072 && DECL_BY_REFERENCE (exp))
2073 return 1;
2075 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2076 if (fntype && TREE_ADDRESSABLE (fntype))
2077 return 1;
2079 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2080 and thus can't be returned in registers. */
2081 if (TREE_ADDRESSABLE (type))
2082 return 1;
2084 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2085 return 1;
2087 if (targetm.calls.return_in_memory (type, fntype))
2088 return 1;
2090 /* Make sure we have suitable call-clobbered regs to return
2091 the value in; if not, we must return it in memory. */
2092 reg = hard_function_value (type, 0, fntype, 0);
2094 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2095 it is OK. */
2096 if (!REG_P (reg))
2097 return 0;
2099 regno = REGNO (reg);
2100 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2101 for (i = 0; i < nregs; i++)
2102 if (! call_used_regs[regno + i])
2103 return 1;
2105 return 0;
2108 /* Return true if we should assign DECL a pseudo register; false if it
2109 should live on the local stack. */
2111 bool
2112 use_register_for_decl (const_tree decl)
2114 if (TREE_CODE (decl) == SSA_NAME)
2116 /* We often try to use the SSA_NAME, instead of its underlying
2117 decl, to get type information and guide decisions, to avoid
2118 differences of behavior between anonymous and named
2119 variables, but in this one case we have to go for the actual
2120 variable if there is one. The main reason is that, at least
2121 at -O0, we want to place user variables on the stack, but we
2122 don't mind using pseudos for anonymous or ignored temps.
2123 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2124 should go in pseudos, whereas their corresponding variables
2125 might have to go on the stack. So, disregarding the decl
2126 here would negatively impact debug info at -O0, enable
2127 coalescing between SSA_NAMEs that ought to get different
2128 stack/pseudo assignments, and get the incoming argument
2129 processing thoroughly confused by PARM_DECLs expected to live
2130 in stack slots but assigned to pseudos. */
2131 if (!SSA_NAME_VAR (decl))
2132 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2133 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2135 decl = SSA_NAME_VAR (decl);
2138 /* Honor volatile. */
2139 if (TREE_SIDE_EFFECTS (decl))
2140 return false;
2142 /* Honor addressability. */
2143 if (TREE_ADDRESSABLE (decl))
2144 return false;
2146 /* RESULT_DECLs are a bit special in that they're assigned without
2147 regard to use_register_for_decl, but we generally only store in
2148 them. If we coalesce their SSA NAMEs, we'd better return a
2149 result that matches the assignment in expand_function_start. */
2150 if (TREE_CODE (decl) == RESULT_DECL)
2152 /* If it's not an aggregate, we're going to use a REG or a
2153 PARALLEL containing a REG. */
2154 if (!aggregate_value_p (decl, current_function_decl))
2155 return true;
2157 /* If expand_function_start determines the return value, we'll
2158 use MEM if it's not by reference. */
2159 if (cfun->returns_pcc_struct
2160 || (targetm.calls.struct_value_rtx
2161 (TREE_TYPE (current_function_decl), 1)))
2162 return DECL_BY_REFERENCE (decl);
2164 /* Otherwise, we're taking an extra all.function_result_decl
2165 argument. It's set up in assign_parms_augmented_arg_list,
2166 under the (negated) conditions above, and then it's used to
2167 set up the RESULT_DECL rtl in assign_params, after looping
2168 over all parameters. Now, if the RESULT_DECL is not by
2169 reference, we'll use a MEM either way. */
2170 if (!DECL_BY_REFERENCE (decl))
2171 return false;
2173 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2174 the function_result_decl's assignment. Since it's a pointer,
2175 we can short-circuit a number of the tests below, and we must
2176 duplicat e them because we don't have the
2177 function_result_decl to test. */
2178 if (!targetm.calls.allocate_stack_slots_for_args ())
2179 return true;
2180 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2181 if (optimize)
2182 return true;
2183 /* We don't set DECL_REGISTER for the function_result_decl. */
2184 return false;
2187 /* Decl is implicitly addressible by bound stores and loads
2188 if it is an aggregate holding bounds. */
2189 if (chkp_function_instrumented_p (current_function_decl)
2190 && TREE_TYPE (decl)
2191 && !BOUNDED_P (decl)
2192 && chkp_type_has_pointer (TREE_TYPE (decl)))
2193 return false;
2195 /* Only register-like things go in registers. */
2196 if (DECL_MODE (decl) == BLKmode)
2197 return false;
2199 /* If -ffloat-store specified, don't put explicit float variables
2200 into registers. */
2201 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2202 propagates values across these stores, and it probably shouldn't. */
2203 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2204 return false;
2206 if (!targetm.calls.allocate_stack_slots_for_args ())
2207 return true;
2209 /* If we're not interested in tracking debugging information for
2210 this decl, then we can certainly put it in a register. */
2211 if (DECL_IGNORED_P (decl))
2212 return true;
2214 if (optimize)
2215 return true;
2217 if (!DECL_REGISTER (decl))
2218 return false;
2220 switch (TREE_CODE (TREE_TYPE (decl)))
2222 case RECORD_TYPE:
2223 case UNION_TYPE:
2224 case QUAL_UNION_TYPE:
2225 /* When not optimizing, disregard register keyword for variables with
2226 types containing methods, otherwise the methods won't be callable
2227 from the debugger. */
2228 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
2229 return false;
2230 break;
2231 default:
2232 break;
2235 return true;
2238 /* Structures to communicate between the subroutines of assign_parms.
2239 The first holds data persistent across all parameters, the second
2240 is cleared out for each parameter. */
2242 struct assign_parm_data_all
2244 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2245 should become a job of the target or otherwise encapsulated. */
2246 CUMULATIVE_ARGS args_so_far_v;
2247 cumulative_args_t args_so_far;
2248 struct args_size stack_args_size;
2249 tree function_result_decl;
2250 tree orig_fnargs;
2251 rtx_insn *first_conversion_insn;
2252 rtx_insn *last_conversion_insn;
2253 HOST_WIDE_INT pretend_args_size;
2254 HOST_WIDE_INT extra_pretend_bytes;
2255 int reg_parm_stack_space;
2258 struct assign_parm_data_one
2260 tree nominal_type;
2261 tree passed_type;
2262 rtx entry_parm;
2263 rtx stack_parm;
2264 machine_mode nominal_mode;
2265 machine_mode passed_mode;
2266 machine_mode promoted_mode;
2267 struct locate_and_pad_arg_data locate;
2268 int partial;
2269 BOOL_BITFIELD named_arg : 1;
2270 BOOL_BITFIELD passed_pointer : 1;
2271 BOOL_BITFIELD on_stack : 1;
2272 BOOL_BITFIELD loaded_in_reg : 1;
2275 struct bounds_parm_data
2277 assign_parm_data_one parm_data;
2278 tree bounds_parm;
2279 tree ptr_parm;
2280 rtx ptr_entry;
2281 int bound_no;
2284 /* A subroutine of assign_parms. Initialize ALL. */
2286 static void
2287 assign_parms_initialize_all (struct assign_parm_data_all *all)
2289 tree fntype ATTRIBUTE_UNUSED;
2291 memset (all, 0, sizeof (*all));
2293 fntype = TREE_TYPE (current_function_decl);
2295 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2296 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2297 #else
2298 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2299 current_function_decl, -1);
2300 #endif
2301 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2303 #ifdef INCOMING_REG_PARM_STACK_SPACE
2304 all->reg_parm_stack_space
2305 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2306 #endif
2309 /* If ARGS contains entries with complex types, split the entry into two
2310 entries of the component type. Return a new list of substitutions are
2311 needed, else the old list. */
2313 static void
2314 split_complex_args (vec<tree> *args)
2316 unsigned i;
2317 tree p;
2319 FOR_EACH_VEC_ELT (*args, i, p)
2321 tree type = TREE_TYPE (p);
2322 if (TREE_CODE (type) == COMPLEX_TYPE
2323 && targetm.calls.split_complex_arg (type))
2325 tree decl;
2326 tree subtype = TREE_TYPE (type);
2327 bool addressable = TREE_ADDRESSABLE (p);
2329 /* Rewrite the PARM_DECL's type with its component. */
2330 p = copy_node (p);
2331 TREE_TYPE (p) = subtype;
2332 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2333 SET_DECL_MODE (p, VOIDmode);
2334 DECL_SIZE (p) = NULL;
2335 DECL_SIZE_UNIT (p) = NULL;
2336 /* If this arg must go in memory, put it in a pseudo here.
2337 We can't allow it to go in memory as per normal parms,
2338 because the usual place might not have the imag part
2339 adjacent to the real part. */
2340 DECL_ARTIFICIAL (p) = addressable;
2341 DECL_IGNORED_P (p) = addressable;
2342 TREE_ADDRESSABLE (p) = 0;
2343 layout_decl (p, 0);
2344 (*args)[i] = p;
2346 /* Build a second synthetic decl. */
2347 decl = build_decl (EXPR_LOCATION (p),
2348 PARM_DECL, NULL_TREE, subtype);
2349 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2350 DECL_ARTIFICIAL (decl) = addressable;
2351 DECL_IGNORED_P (decl) = addressable;
2352 layout_decl (decl, 0);
2353 args->safe_insert (++i, decl);
2358 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2359 the hidden struct return argument, and (abi willing) complex args.
2360 Return the new parameter list. */
2362 static vec<tree>
2363 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2365 tree fndecl = current_function_decl;
2366 tree fntype = TREE_TYPE (fndecl);
2367 vec<tree> fnargs = vNULL;
2368 tree arg;
2370 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2371 fnargs.safe_push (arg);
2373 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2375 /* If struct value address is treated as the first argument, make it so. */
2376 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2377 && ! cfun->returns_pcc_struct
2378 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2380 tree type = build_pointer_type (TREE_TYPE (fntype));
2381 tree decl;
2383 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2384 PARM_DECL, get_identifier (".result_ptr"), type);
2385 DECL_ARG_TYPE (decl) = type;
2386 DECL_ARTIFICIAL (decl) = 1;
2387 DECL_NAMELESS (decl) = 1;
2388 TREE_CONSTANT (decl) = 1;
2389 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2390 changes, the end of the RESULT_DECL handling block in
2391 use_register_for_decl must be adjusted to match. */
2393 DECL_CHAIN (decl) = all->orig_fnargs;
2394 all->orig_fnargs = decl;
2395 fnargs.safe_insert (0, decl);
2397 all->function_result_decl = decl;
2399 /* If function is instrumented then bounds of the
2400 passed structure address is the second argument. */
2401 if (chkp_function_instrumented_p (fndecl))
2403 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2404 PARM_DECL, get_identifier (".result_bnd"),
2405 pointer_bounds_type_node);
2406 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2407 DECL_ARTIFICIAL (decl) = 1;
2408 DECL_NAMELESS (decl) = 1;
2409 TREE_CONSTANT (decl) = 1;
2411 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2412 DECL_CHAIN (all->orig_fnargs) = decl;
2413 fnargs.safe_insert (1, decl);
2417 /* If the target wants to split complex arguments into scalars, do so. */
2418 if (targetm.calls.split_complex_arg)
2419 split_complex_args (&fnargs);
2421 return fnargs;
2424 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2425 data for the parameter. Incorporate ABI specifics such as pass-by-
2426 reference and type promotion. */
2428 static void
2429 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2430 struct assign_parm_data_one *data)
2432 tree nominal_type, passed_type;
2433 machine_mode nominal_mode, passed_mode, promoted_mode;
2434 int unsignedp;
2436 memset (data, 0, sizeof (*data));
2438 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2439 if (!cfun->stdarg)
2440 data->named_arg = 1; /* No variadic parms. */
2441 else if (DECL_CHAIN (parm))
2442 data->named_arg = 1; /* Not the last non-variadic parm. */
2443 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2444 data->named_arg = 1; /* Only variadic ones are unnamed. */
2445 else
2446 data->named_arg = 0; /* Treat as variadic. */
2448 nominal_type = TREE_TYPE (parm);
2449 passed_type = DECL_ARG_TYPE (parm);
2451 /* Look out for errors propagating this far. Also, if the parameter's
2452 type is void then its value doesn't matter. */
2453 if (TREE_TYPE (parm) == error_mark_node
2454 /* This can happen after weird syntax errors
2455 or if an enum type is defined among the parms. */
2456 || TREE_CODE (parm) != PARM_DECL
2457 || passed_type == NULL
2458 || VOID_TYPE_P (nominal_type))
2460 nominal_type = passed_type = void_type_node;
2461 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2462 goto egress;
2465 /* Find mode of arg as it is passed, and mode of arg as it should be
2466 during execution of this function. */
2467 passed_mode = TYPE_MODE (passed_type);
2468 nominal_mode = TYPE_MODE (nominal_type);
2470 /* If the parm is to be passed as a transparent union or record, use the
2471 type of the first field for the tests below. We have already verified
2472 that the modes are the same. */
2473 if ((TREE_CODE (passed_type) == UNION_TYPE
2474 || TREE_CODE (passed_type) == RECORD_TYPE)
2475 && TYPE_TRANSPARENT_AGGR (passed_type))
2476 passed_type = TREE_TYPE (first_field (passed_type));
2478 /* See if this arg was passed by invisible reference. */
2479 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2480 passed_type, data->named_arg))
2482 passed_type = nominal_type = build_pointer_type (passed_type);
2483 data->passed_pointer = true;
2484 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2487 /* Find mode as it is passed by the ABI. */
2488 unsignedp = TYPE_UNSIGNED (passed_type);
2489 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2490 TREE_TYPE (current_function_decl), 0);
2492 egress:
2493 data->nominal_type = nominal_type;
2494 data->passed_type = passed_type;
2495 data->nominal_mode = nominal_mode;
2496 data->passed_mode = passed_mode;
2497 data->promoted_mode = promoted_mode;
2500 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2502 static void
2503 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2504 struct assign_parm_data_one *data, bool no_rtl)
2506 int varargs_pretend_bytes = 0;
2508 targetm.calls.setup_incoming_varargs (all->args_so_far,
2509 data->promoted_mode,
2510 data->passed_type,
2511 &varargs_pretend_bytes, no_rtl);
2513 /* If the back-end has requested extra stack space, record how much is
2514 needed. Do not change pretend_args_size otherwise since it may be
2515 nonzero from an earlier partial argument. */
2516 if (varargs_pretend_bytes > 0)
2517 all->pretend_args_size = varargs_pretend_bytes;
2520 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2521 the incoming location of the current parameter. */
2523 static void
2524 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2525 struct assign_parm_data_one *data)
2527 HOST_WIDE_INT pretend_bytes = 0;
2528 rtx entry_parm;
2529 bool in_regs;
2531 if (data->promoted_mode == VOIDmode)
2533 data->entry_parm = data->stack_parm = const0_rtx;
2534 return;
2537 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2538 data->promoted_mode,
2539 data->passed_type,
2540 data->named_arg);
2542 if (entry_parm == 0)
2543 data->promoted_mode = data->passed_mode;
2545 /* Determine parm's home in the stack, in case it arrives in the stack
2546 or we should pretend it did. Compute the stack position and rtx where
2547 the argument arrives and its size.
2549 There is one complexity here: If this was a parameter that would
2550 have been passed in registers, but wasn't only because it is
2551 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2552 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2553 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2554 as it was the previous time. */
2555 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2556 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2557 in_regs = true;
2558 #endif
2559 if (!in_regs && !data->named_arg)
2561 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2563 rtx tem;
2564 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2565 data->promoted_mode,
2566 data->passed_type, true);
2567 in_regs = tem != NULL;
2571 /* If this parameter was passed both in registers and in the stack, use
2572 the copy on the stack. */
2573 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2574 data->passed_type))
2575 entry_parm = 0;
2577 if (entry_parm)
2579 int partial;
2581 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2582 data->promoted_mode,
2583 data->passed_type,
2584 data->named_arg);
2585 data->partial = partial;
2587 /* The caller might already have allocated stack space for the
2588 register parameters. */
2589 if (partial != 0 && all->reg_parm_stack_space == 0)
2591 /* Part of this argument is passed in registers and part
2592 is passed on the stack. Ask the prologue code to extend
2593 the stack part so that we can recreate the full value.
2595 PRETEND_BYTES is the size of the registers we need to store.
2596 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2597 stack space that the prologue should allocate.
2599 Internally, gcc assumes that the argument pointer is aligned
2600 to STACK_BOUNDARY bits. This is used both for alignment
2601 optimizations (see init_emit) and to locate arguments that are
2602 aligned to more than PARM_BOUNDARY bits. We must preserve this
2603 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2604 a stack boundary. */
2606 /* We assume at most one partial arg, and it must be the first
2607 argument on the stack. */
2608 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2610 pretend_bytes = partial;
2611 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2613 /* We want to align relative to the actual stack pointer, so
2614 don't include this in the stack size until later. */
2615 all->extra_pretend_bytes = all->pretend_args_size;
2619 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2620 all->reg_parm_stack_space,
2621 entry_parm ? data->partial : 0, current_function_decl,
2622 &all->stack_args_size, &data->locate);
2624 /* Update parm_stack_boundary if this parameter is passed in the
2625 stack. */
2626 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2627 crtl->parm_stack_boundary = data->locate.boundary;
2629 /* Adjust offsets to include the pretend args. */
2630 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2631 data->locate.slot_offset.constant += pretend_bytes;
2632 data->locate.offset.constant += pretend_bytes;
2634 data->entry_parm = entry_parm;
2637 /* A subroutine of assign_parms. If there is actually space on the stack
2638 for this parm, count it in stack_args_size and return true. */
2640 static bool
2641 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2642 struct assign_parm_data_one *data)
2644 /* Bounds are never passed on the stack to keep compatibility
2645 with not instrumented code. */
2646 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2647 return false;
2648 /* Trivially true if we've no incoming register. */
2649 else if (data->entry_parm == NULL)
2651 /* Also true if we're partially in registers and partially not,
2652 since we've arranged to drop the entire argument on the stack. */
2653 else if (data->partial != 0)
2655 /* Also true if the target says that it's passed in both registers
2656 and on the stack. */
2657 else if (GET_CODE (data->entry_parm) == PARALLEL
2658 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2660 /* Also true if the target says that there's stack allocated for
2661 all register parameters. */
2662 else if (all->reg_parm_stack_space > 0)
2664 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2665 else
2666 return false;
2668 all->stack_args_size.constant += data->locate.size.constant;
2669 if (data->locate.size.var)
2670 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2672 return true;
2675 /* A subroutine of assign_parms. Given that this parameter is allocated
2676 stack space by the ABI, find it. */
2678 static void
2679 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2681 rtx offset_rtx, stack_parm;
2682 unsigned int align, boundary;
2684 /* If we're passing this arg using a reg, make its stack home the
2685 aligned stack slot. */
2686 if (data->entry_parm)
2687 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2688 else
2689 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2691 stack_parm = crtl->args.internal_arg_pointer;
2692 if (offset_rtx != const0_rtx)
2693 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2694 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2696 if (!data->passed_pointer)
2698 set_mem_attributes (stack_parm, parm, 1);
2699 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2700 while promoted mode's size is needed. */
2701 if (data->promoted_mode != BLKmode
2702 && data->promoted_mode != DECL_MODE (parm))
2704 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2705 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2707 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2708 data->promoted_mode);
2709 if (offset)
2710 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2715 boundary = data->locate.boundary;
2716 align = BITS_PER_UNIT;
2718 /* If we're padding upward, we know that the alignment of the slot
2719 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2720 intentionally forcing upward padding. Otherwise we have to come
2721 up with a guess at the alignment based on OFFSET_RTX. */
2722 if (data->locate.where_pad != downward || data->entry_parm)
2723 align = boundary;
2724 else if (CONST_INT_P (offset_rtx))
2726 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2727 align = least_bit_hwi (align);
2729 set_mem_align (stack_parm, align);
2731 if (data->entry_parm)
2732 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2734 data->stack_parm = stack_parm;
2737 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2738 always valid and contiguous. */
2740 static void
2741 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2743 rtx entry_parm = data->entry_parm;
2744 rtx stack_parm = data->stack_parm;
2746 /* If this parm was passed part in regs and part in memory, pretend it
2747 arrived entirely in memory by pushing the register-part onto the stack.
2748 In the special case of a DImode or DFmode that is split, we could put
2749 it together in a pseudoreg directly, but for now that's not worth
2750 bothering with. */
2751 if (data->partial != 0)
2753 /* Handle calls that pass values in multiple non-contiguous
2754 locations. The Irix 6 ABI has examples of this. */
2755 if (GET_CODE (entry_parm) == PARALLEL)
2756 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2757 data->passed_type,
2758 int_size_in_bytes (data->passed_type));
2759 else
2761 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2762 move_block_from_reg (REGNO (entry_parm),
2763 validize_mem (copy_rtx (stack_parm)),
2764 data->partial / UNITS_PER_WORD);
2767 entry_parm = stack_parm;
2770 /* If we didn't decide this parm came in a register, by default it came
2771 on the stack. */
2772 else if (entry_parm == NULL)
2773 entry_parm = stack_parm;
2775 /* When an argument is passed in multiple locations, we can't make use
2776 of this information, but we can save some copying if the whole argument
2777 is passed in a single register. */
2778 else if (GET_CODE (entry_parm) == PARALLEL
2779 && data->nominal_mode != BLKmode
2780 && data->passed_mode != BLKmode)
2782 size_t i, len = XVECLEN (entry_parm, 0);
2784 for (i = 0; i < len; i++)
2785 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2786 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2787 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2788 == data->passed_mode)
2789 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2791 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2792 break;
2796 data->entry_parm = entry_parm;
2799 /* A subroutine of assign_parms. Reconstitute any values which were
2800 passed in multiple registers and would fit in a single register. */
2802 static void
2803 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2805 rtx entry_parm = data->entry_parm;
2807 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2808 This can be done with register operations rather than on the
2809 stack, even if we will store the reconstituted parameter on the
2810 stack later. */
2811 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2813 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2814 emit_group_store (parmreg, entry_parm, data->passed_type,
2815 GET_MODE_SIZE (GET_MODE (entry_parm)));
2816 entry_parm = parmreg;
2819 data->entry_parm = entry_parm;
2822 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2823 always valid and properly aligned. */
2825 static void
2826 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2828 rtx stack_parm = data->stack_parm;
2830 /* If we can't trust the parm stack slot to be aligned enough for its
2831 ultimate type, don't use that slot after entry. We'll make another
2832 stack slot, if we need one. */
2833 if (stack_parm
2834 && ((STRICT_ALIGNMENT
2835 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2836 || (data->nominal_type
2837 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2838 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2839 stack_parm = NULL;
2841 /* If parm was passed in memory, and we need to convert it on entry,
2842 don't store it back in that same slot. */
2843 else if (data->entry_parm == stack_parm
2844 && data->nominal_mode != BLKmode
2845 && data->nominal_mode != data->passed_mode)
2846 stack_parm = NULL;
2848 /* If stack protection is in effect for this function, don't leave any
2849 pointers in their passed stack slots. */
2850 else if (crtl->stack_protect_guard
2851 && (flag_stack_protect == 2
2852 || data->passed_pointer
2853 || POINTER_TYPE_P (data->nominal_type)))
2854 stack_parm = NULL;
2856 data->stack_parm = stack_parm;
2859 /* A subroutine of assign_parms. Return true if the current parameter
2860 should be stored as a BLKmode in the current frame. */
2862 static bool
2863 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2865 if (data->nominal_mode == BLKmode)
2866 return true;
2867 if (GET_MODE (data->entry_parm) == BLKmode)
2868 return true;
2870 #ifdef BLOCK_REG_PADDING
2871 /* Only assign_parm_setup_block knows how to deal with register arguments
2872 that are padded at the least significant end. */
2873 if (REG_P (data->entry_parm)
2874 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2875 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2876 == (BYTES_BIG_ENDIAN ? upward : downward)))
2877 return true;
2878 #endif
2880 return false;
2883 /* A subroutine of assign_parms. Arrange for the parameter to be
2884 present and valid in DATA->STACK_RTL. */
2886 static void
2887 assign_parm_setup_block (struct assign_parm_data_all *all,
2888 tree parm, struct assign_parm_data_one *data)
2890 rtx entry_parm = data->entry_parm;
2891 rtx stack_parm = data->stack_parm;
2892 rtx target_reg = NULL_RTX;
2893 bool in_conversion_seq = false;
2894 HOST_WIDE_INT size;
2895 HOST_WIDE_INT size_stored;
2897 if (GET_CODE (entry_parm) == PARALLEL)
2898 entry_parm = emit_group_move_into_temps (entry_parm);
2900 /* If we want the parameter in a pseudo, don't use a stack slot. */
2901 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2903 tree def = ssa_default_def (cfun, parm);
2904 gcc_assert (def);
2905 machine_mode mode = promote_ssa_mode (def, NULL);
2906 rtx reg = gen_reg_rtx (mode);
2907 if (GET_CODE (reg) != CONCAT)
2908 stack_parm = reg;
2909 else
2911 target_reg = reg;
2912 /* Avoid allocating a stack slot, if there isn't one
2913 preallocated by the ABI. It might seem like we should
2914 always prefer a pseudo, but converting between
2915 floating-point and integer modes goes through the stack
2916 on various machines, so it's better to use the reserved
2917 stack slot than to risk wasting it and allocating more
2918 for the conversion. */
2919 if (stack_parm == NULL_RTX)
2921 int save = generating_concat_p;
2922 generating_concat_p = 0;
2923 stack_parm = gen_reg_rtx (mode);
2924 generating_concat_p = save;
2927 data->stack_parm = NULL;
2930 size = int_size_in_bytes (data->passed_type);
2931 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2932 if (stack_parm == 0)
2934 SET_DECL_ALIGN (parm, MAX (DECL_ALIGN (parm), BITS_PER_WORD));
2935 stack_parm = assign_stack_local (BLKmode, size_stored,
2936 DECL_ALIGN (parm));
2937 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2938 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2939 set_mem_attributes (stack_parm, parm, 1);
2942 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2943 calls that pass values in multiple non-contiguous locations. */
2944 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2946 rtx mem;
2948 /* Note that we will be storing an integral number of words.
2949 So we have to be careful to ensure that we allocate an
2950 integral number of words. We do this above when we call
2951 assign_stack_local if space was not allocated in the argument
2952 list. If it was, this will not work if PARM_BOUNDARY is not
2953 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2954 if it becomes a problem. Exception is when BLKmode arrives
2955 with arguments not conforming to word_mode. */
2957 if (data->stack_parm == 0)
2959 else if (GET_CODE (entry_parm) == PARALLEL)
2961 else
2962 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2964 mem = validize_mem (copy_rtx (stack_parm));
2966 /* Handle values in multiple non-contiguous locations. */
2967 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2968 emit_group_store (mem, entry_parm, data->passed_type, size);
2969 else if (GET_CODE (entry_parm) == PARALLEL)
2971 push_to_sequence2 (all->first_conversion_insn,
2972 all->last_conversion_insn);
2973 emit_group_store (mem, entry_parm, data->passed_type, size);
2974 all->first_conversion_insn = get_insns ();
2975 all->last_conversion_insn = get_last_insn ();
2976 end_sequence ();
2977 in_conversion_seq = true;
2980 else if (size == 0)
2983 /* If SIZE is that of a mode no bigger than a word, just use
2984 that mode's store operation. */
2985 else if (size <= UNITS_PER_WORD)
2987 machine_mode mode
2988 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2990 if (mode != BLKmode
2991 #ifdef BLOCK_REG_PADDING
2992 && (size == UNITS_PER_WORD
2993 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2994 != (BYTES_BIG_ENDIAN ? upward : downward)))
2995 #endif
2998 rtx reg;
3000 /* We are really truncating a word_mode value containing
3001 SIZE bytes into a value of mode MODE. If such an
3002 operation requires no actual instructions, we can refer
3003 to the value directly in mode MODE, otherwise we must
3004 start with the register in word_mode and explicitly
3005 convert it. */
3006 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
3007 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3008 else
3010 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3011 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3013 emit_move_insn (change_address (mem, mode, 0), reg);
3016 #ifdef BLOCK_REG_PADDING
3017 /* Storing the register in memory as a full word, as
3018 move_block_from_reg below would do, and then using the
3019 MEM in a smaller mode, has the effect of shifting right
3020 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3021 shifting must be explicit. */
3022 else if (!MEM_P (mem))
3024 rtx x;
3026 /* If the assert below fails, we should have taken the
3027 mode != BLKmode path above, unless we have downward
3028 padding of smaller-than-word arguments on a machine
3029 with little-endian bytes, which would likely require
3030 additional changes to work correctly. */
3031 gcc_checking_assert (BYTES_BIG_ENDIAN
3032 && (BLOCK_REG_PADDING (mode,
3033 data->passed_type, 1)
3034 == upward));
3036 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3038 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3039 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3040 NULL_RTX, 1);
3041 x = force_reg (word_mode, x);
3042 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3044 emit_move_insn (mem, x);
3046 #endif
3048 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3049 machine must be aligned to the left before storing
3050 to memory. Note that the previous test doesn't
3051 handle all cases (e.g. SIZE == 3). */
3052 else if (size != UNITS_PER_WORD
3053 #ifdef BLOCK_REG_PADDING
3054 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3055 == downward)
3056 #else
3057 && BYTES_BIG_ENDIAN
3058 #endif
3061 rtx tem, x;
3062 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3063 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3065 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3066 tem = change_address (mem, word_mode, 0);
3067 emit_move_insn (tem, x);
3069 else
3070 move_block_from_reg (REGNO (entry_parm), mem,
3071 size_stored / UNITS_PER_WORD);
3073 else if (!MEM_P (mem))
3075 gcc_checking_assert (size > UNITS_PER_WORD);
3076 #ifdef BLOCK_REG_PADDING
3077 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3078 data->passed_type, 0)
3079 == upward);
3080 #endif
3081 emit_move_insn (mem, entry_parm);
3083 else
3084 move_block_from_reg (REGNO (entry_parm), mem,
3085 size_stored / UNITS_PER_WORD);
3087 else if (data->stack_parm == 0)
3089 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3090 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3091 BLOCK_OP_NORMAL);
3092 all->first_conversion_insn = get_insns ();
3093 all->last_conversion_insn = get_last_insn ();
3094 end_sequence ();
3095 in_conversion_seq = true;
3098 if (target_reg)
3100 if (!in_conversion_seq)
3101 emit_move_insn (target_reg, stack_parm);
3102 else
3104 push_to_sequence2 (all->first_conversion_insn,
3105 all->last_conversion_insn);
3106 emit_move_insn (target_reg, stack_parm);
3107 all->first_conversion_insn = get_insns ();
3108 all->last_conversion_insn = get_last_insn ();
3109 end_sequence ();
3111 stack_parm = target_reg;
3114 data->stack_parm = stack_parm;
3115 set_parm_rtl (parm, stack_parm);
3118 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3119 parameter. Get it there. Perform all ABI specified conversions. */
3121 static void
3122 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3123 struct assign_parm_data_one *data)
3125 rtx parmreg, validated_mem;
3126 rtx equiv_stack_parm;
3127 machine_mode promoted_nominal_mode;
3128 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3129 bool did_conversion = false;
3130 bool need_conversion, moved;
3131 rtx rtl;
3133 /* Store the parm in a pseudoregister during the function, but we may
3134 need to do it in a wider mode. Using 2 here makes the result
3135 consistent with promote_decl_mode and thus expand_expr_real_1. */
3136 promoted_nominal_mode
3137 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3138 TREE_TYPE (current_function_decl), 2);
3140 parmreg = gen_reg_rtx (promoted_nominal_mode);
3141 if (!DECL_ARTIFICIAL (parm))
3142 mark_user_reg (parmreg);
3144 /* If this was an item that we received a pointer to,
3145 set rtl appropriately. */
3146 if (data->passed_pointer)
3148 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3149 set_mem_attributes (rtl, parm, 1);
3151 else
3152 rtl = parmreg;
3154 assign_parm_remove_parallels (data);
3156 /* Copy the value into the register, thus bridging between
3157 assign_parm_find_data_types and expand_expr_real_1. */
3159 equiv_stack_parm = data->stack_parm;
3160 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3162 need_conversion = (data->nominal_mode != data->passed_mode
3163 || promoted_nominal_mode != data->promoted_mode);
3164 moved = false;
3166 if (need_conversion
3167 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3168 && data->nominal_mode == data->passed_mode
3169 && data->nominal_mode == GET_MODE (data->entry_parm))
3171 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3172 mode, by the caller. We now have to convert it to
3173 NOMINAL_MODE, if different. However, PARMREG may be in
3174 a different mode than NOMINAL_MODE if it is being stored
3175 promoted.
3177 If ENTRY_PARM is a hard register, it might be in a register
3178 not valid for operating in its mode (e.g., an odd-numbered
3179 register for a DFmode). In that case, moves are the only
3180 thing valid, so we can't do a convert from there. This
3181 occurs when the calling sequence allow such misaligned
3182 usages.
3184 In addition, the conversion may involve a call, which could
3185 clobber parameters which haven't been copied to pseudo
3186 registers yet.
3188 First, we try to emit an insn which performs the necessary
3189 conversion. We verify that this insn does not clobber any
3190 hard registers. */
3192 enum insn_code icode;
3193 rtx op0, op1;
3195 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3196 unsignedp);
3198 op0 = parmreg;
3199 op1 = validated_mem;
3200 if (icode != CODE_FOR_nothing
3201 && insn_operand_matches (icode, 0, op0)
3202 && insn_operand_matches (icode, 1, op1))
3204 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3205 rtx_insn *insn, *insns;
3206 rtx t = op1;
3207 HARD_REG_SET hardregs;
3209 start_sequence ();
3210 /* If op1 is a hard register that is likely spilled, first
3211 force it into a pseudo, otherwise combiner might extend
3212 its lifetime too much. */
3213 if (GET_CODE (t) == SUBREG)
3214 t = SUBREG_REG (t);
3215 if (REG_P (t)
3216 && HARD_REGISTER_P (t)
3217 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3218 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3220 t = gen_reg_rtx (GET_MODE (op1));
3221 emit_move_insn (t, op1);
3223 else
3224 t = op1;
3225 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3226 data->passed_mode, unsignedp);
3227 emit_insn (pat);
3228 insns = get_insns ();
3230 moved = true;
3231 CLEAR_HARD_REG_SET (hardregs);
3232 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3234 if (INSN_P (insn))
3235 note_stores (PATTERN (insn), record_hard_reg_sets,
3236 &hardregs);
3237 if (!hard_reg_set_empty_p (hardregs))
3238 moved = false;
3241 end_sequence ();
3243 if (moved)
3245 emit_insn (insns);
3246 if (equiv_stack_parm != NULL_RTX)
3247 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3248 equiv_stack_parm);
3253 if (moved)
3254 /* Nothing to do. */
3256 else if (need_conversion)
3258 /* We did not have an insn to convert directly, or the sequence
3259 generated appeared unsafe. We must first copy the parm to a
3260 pseudo reg, and save the conversion until after all
3261 parameters have been moved. */
3263 int save_tree_used;
3264 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3266 emit_move_insn (tempreg, validated_mem);
3268 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3269 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3271 if (GET_CODE (tempreg) == SUBREG
3272 && GET_MODE (tempreg) == data->nominal_mode
3273 && REG_P (SUBREG_REG (tempreg))
3274 && data->nominal_mode == data->passed_mode
3275 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3276 && GET_MODE_SIZE (GET_MODE (tempreg))
3277 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3279 /* The argument is already sign/zero extended, so note it
3280 into the subreg. */
3281 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3282 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3285 /* TREE_USED gets set erroneously during expand_assignment. */
3286 save_tree_used = TREE_USED (parm);
3287 SET_DECL_RTL (parm, rtl);
3288 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3289 SET_DECL_RTL (parm, NULL_RTX);
3290 TREE_USED (parm) = save_tree_used;
3291 all->first_conversion_insn = get_insns ();
3292 all->last_conversion_insn = get_last_insn ();
3293 end_sequence ();
3295 did_conversion = true;
3297 else
3298 emit_move_insn (parmreg, validated_mem);
3300 /* If we were passed a pointer but the actual value can safely live
3301 in a register, retrieve it and use it directly. */
3302 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3304 /* We can't use nominal_mode, because it will have been set to
3305 Pmode above. We must use the actual mode of the parm. */
3306 if (use_register_for_decl (parm))
3308 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3309 mark_user_reg (parmreg);
3311 else
3313 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3314 TYPE_MODE (TREE_TYPE (parm)),
3315 TYPE_ALIGN (TREE_TYPE (parm)));
3316 parmreg
3317 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3318 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3319 align);
3320 set_mem_attributes (parmreg, parm, 1);
3323 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3324 the debug info in case it is not legitimate. */
3325 if (GET_MODE (parmreg) != GET_MODE (rtl))
3327 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3328 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3330 push_to_sequence2 (all->first_conversion_insn,
3331 all->last_conversion_insn);
3332 emit_move_insn (tempreg, rtl);
3333 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3334 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3335 tempreg);
3336 all->first_conversion_insn = get_insns ();
3337 all->last_conversion_insn = get_last_insn ();
3338 end_sequence ();
3340 did_conversion = true;
3342 else
3343 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3345 rtl = parmreg;
3347 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3348 now the parm. */
3349 data->stack_parm = NULL;
3352 set_parm_rtl (parm, rtl);
3354 /* Mark the register as eliminable if we did no conversion and it was
3355 copied from memory at a fixed offset, and the arg pointer was not
3356 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3357 offset formed an invalid address, such memory-equivalences as we
3358 make here would screw up life analysis for it. */
3359 if (data->nominal_mode == data->passed_mode
3360 && !did_conversion
3361 && data->stack_parm != 0
3362 && MEM_P (data->stack_parm)
3363 && data->locate.offset.var == 0
3364 && reg_mentioned_p (virtual_incoming_args_rtx,
3365 XEXP (data->stack_parm, 0)))
3367 rtx_insn *linsn = get_last_insn ();
3368 rtx_insn *sinsn;
3369 rtx set;
3371 /* Mark complex types separately. */
3372 if (GET_CODE (parmreg) == CONCAT)
3374 machine_mode submode
3375 = GET_MODE_INNER (GET_MODE (parmreg));
3376 int regnor = REGNO (XEXP (parmreg, 0));
3377 int regnoi = REGNO (XEXP (parmreg, 1));
3378 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3379 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3380 GET_MODE_SIZE (submode));
3382 /* Scan backwards for the set of the real and
3383 imaginary parts. */
3384 for (sinsn = linsn; sinsn != 0;
3385 sinsn = prev_nonnote_insn (sinsn))
3387 set = single_set (sinsn);
3388 if (set == 0)
3389 continue;
3391 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3392 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3393 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3394 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3397 else
3398 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3401 /* For pointer data type, suggest pointer register. */
3402 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3403 mark_reg_pointer (parmreg,
3404 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3407 /* A subroutine of assign_parms. Allocate stack space to hold the current
3408 parameter. Get it there. Perform all ABI specified conversions. */
3410 static void
3411 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3412 struct assign_parm_data_one *data)
3414 /* Value must be stored in the stack slot STACK_PARM during function
3415 execution. */
3416 bool to_conversion = false;
3418 assign_parm_remove_parallels (data);
3420 if (data->promoted_mode != data->nominal_mode)
3422 /* Conversion is required. */
3423 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3425 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3427 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3428 to_conversion = true;
3430 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3431 TYPE_UNSIGNED (TREE_TYPE (parm)));
3433 if (data->stack_parm)
3435 int offset = subreg_lowpart_offset (data->nominal_mode,
3436 GET_MODE (data->stack_parm));
3437 /* ??? This may need a big-endian conversion on sparc64. */
3438 data->stack_parm
3439 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3440 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3441 set_mem_offset (data->stack_parm,
3442 MEM_OFFSET (data->stack_parm) + offset);
3446 if (data->entry_parm != data->stack_parm)
3448 rtx src, dest;
3450 if (data->stack_parm == 0)
3452 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3453 GET_MODE (data->entry_parm),
3454 TYPE_ALIGN (data->passed_type));
3455 data->stack_parm
3456 = assign_stack_local (GET_MODE (data->entry_parm),
3457 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3458 align);
3459 set_mem_attributes (data->stack_parm, parm, 1);
3462 dest = validize_mem (copy_rtx (data->stack_parm));
3463 src = validize_mem (copy_rtx (data->entry_parm));
3465 if (MEM_P (src))
3467 /* Use a block move to handle potentially misaligned entry_parm. */
3468 if (!to_conversion)
3469 push_to_sequence2 (all->first_conversion_insn,
3470 all->last_conversion_insn);
3471 to_conversion = true;
3473 emit_block_move (dest, src,
3474 GEN_INT (int_size_in_bytes (data->passed_type)),
3475 BLOCK_OP_NORMAL);
3477 else
3479 if (!REG_P (src))
3480 src = force_reg (GET_MODE (src), src);
3481 emit_move_insn (dest, src);
3485 if (to_conversion)
3487 all->first_conversion_insn = get_insns ();
3488 all->last_conversion_insn = get_last_insn ();
3489 end_sequence ();
3492 set_parm_rtl (parm, data->stack_parm);
3495 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3496 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3498 static void
3499 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3500 vec<tree> fnargs)
3502 tree parm;
3503 tree orig_fnargs = all->orig_fnargs;
3504 unsigned i = 0;
3506 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3508 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3509 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3511 rtx tmp, real, imag;
3512 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3514 real = DECL_RTL (fnargs[i]);
3515 imag = DECL_RTL (fnargs[i + 1]);
3516 if (inner != GET_MODE (real))
3518 real = gen_lowpart_SUBREG (inner, real);
3519 imag = gen_lowpart_SUBREG (inner, imag);
3522 if (TREE_ADDRESSABLE (parm))
3524 rtx rmem, imem;
3525 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3526 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3527 DECL_MODE (parm),
3528 TYPE_ALIGN (TREE_TYPE (parm)));
3530 /* split_complex_arg put the real and imag parts in
3531 pseudos. Move them to memory. */
3532 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3533 set_mem_attributes (tmp, parm, 1);
3534 rmem = adjust_address_nv (tmp, inner, 0);
3535 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3536 push_to_sequence2 (all->first_conversion_insn,
3537 all->last_conversion_insn);
3538 emit_move_insn (rmem, real);
3539 emit_move_insn (imem, imag);
3540 all->first_conversion_insn = get_insns ();
3541 all->last_conversion_insn = get_last_insn ();
3542 end_sequence ();
3544 else
3545 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3546 set_parm_rtl (parm, tmp);
3548 real = DECL_INCOMING_RTL (fnargs[i]);
3549 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3550 if (inner != GET_MODE (real))
3552 real = gen_lowpart_SUBREG (inner, real);
3553 imag = gen_lowpart_SUBREG (inner, imag);
3555 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3556 set_decl_incoming_rtl (parm, tmp, false);
3557 i++;
3562 /* Load bounds of PARM from bounds table. */
3563 static void
3564 assign_parm_load_bounds (struct assign_parm_data_one *data,
3565 tree parm,
3566 rtx entry,
3567 unsigned bound_no)
3569 bitmap_iterator bi;
3570 unsigned i, offs = 0;
3571 int bnd_no = -1;
3572 rtx slot = NULL, ptr = NULL;
3574 if (parm)
3576 bitmap slots;
3577 bitmap_obstack_initialize (NULL);
3578 slots = BITMAP_ALLOC (NULL);
3579 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3580 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3582 if (bound_no)
3583 bound_no--;
3584 else
3586 bnd_no = i;
3587 break;
3590 BITMAP_FREE (slots);
3591 bitmap_obstack_release (NULL);
3594 /* We may have bounds not associated with any pointer. */
3595 if (bnd_no != -1)
3596 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3598 /* Find associated pointer. */
3599 if (bnd_no == -1)
3601 /* If bounds are not associated with any bounds,
3602 then it is passed in a register or special slot. */
3603 gcc_assert (data->entry_parm);
3604 ptr = const0_rtx;
3606 else if (MEM_P (entry))
3607 slot = adjust_address (entry, Pmode, offs);
3608 else if (REG_P (entry))
3609 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3610 else if (GET_CODE (entry) == PARALLEL)
3611 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3612 else
3613 gcc_unreachable ();
3614 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3615 data->entry_parm);
3618 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3620 static void
3621 assign_bounds (vec<bounds_parm_data> &bndargs,
3622 struct assign_parm_data_all &all,
3623 bool assign_regs, bool assign_special,
3624 bool assign_bt)
3626 unsigned i, pass;
3627 bounds_parm_data *pbdata;
3629 if (!bndargs.exists ())
3630 return;
3632 /* We make few passes to store input bounds. Firstly handle bounds
3633 passed in registers. After that we load bounds passed in special
3634 slots. Finally we load bounds from Bounds Table. */
3635 for (pass = 0; pass < 3; pass++)
3636 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3638 /* Pass 0 => regs only. */
3639 if (pass == 0
3640 && (!assign_regs
3641 ||(!pbdata->parm_data.entry_parm
3642 || GET_CODE (pbdata->parm_data.entry_parm) != REG)))
3643 continue;
3644 /* Pass 1 => slots only. */
3645 else if (pass == 1
3646 && (!assign_special
3647 || (!pbdata->parm_data.entry_parm
3648 || GET_CODE (pbdata->parm_data.entry_parm) == REG)))
3649 continue;
3650 /* Pass 2 => BT only. */
3651 else if (pass == 2
3652 && (!assign_bt
3653 || pbdata->parm_data.entry_parm))
3654 continue;
3656 if (!pbdata->parm_data.entry_parm
3657 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3658 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3659 pbdata->ptr_entry, pbdata->bound_no);
3661 set_decl_incoming_rtl (pbdata->bounds_parm,
3662 pbdata->parm_data.entry_parm, false);
3664 if (assign_parm_setup_block_p (&pbdata->parm_data))
3665 assign_parm_setup_block (&all, pbdata->bounds_parm,
3666 &pbdata->parm_data);
3667 else if (pbdata->parm_data.passed_pointer
3668 || use_register_for_decl (pbdata->bounds_parm))
3669 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3670 &pbdata->parm_data);
3671 else
3672 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3673 &pbdata->parm_data);
3677 /* Assign RTL expressions to the function's parameters. This may involve
3678 copying them into registers and using those registers as the DECL_RTL. */
3680 static void
3681 assign_parms (tree fndecl)
3683 struct assign_parm_data_all all;
3684 tree parm;
3685 vec<tree> fnargs;
3686 unsigned i, bound_no = 0;
3687 tree last_arg = NULL;
3688 rtx last_arg_entry = NULL;
3689 vec<bounds_parm_data> bndargs = vNULL;
3690 bounds_parm_data bdata;
3692 crtl->args.internal_arg_pointer
3693 = targetm.calls.internal_arg_pointer ();
3695 assign_parms_initialize_all (&all);
3696 fnargs = assign_parms_augmented_arg_list (&all);
3698 FOR_EACH_VEC_ELT (fnargs, i, parm)
3700 struct assign_parm_data_one data;
3702 /* Extract the type of PARM; adjust it according to ABI. */
3703 assign_parm_find_data_types (&all, parm, &data);
3705 /* Early out for errors and void parameters. */
3706 if (data.passed_mode == VOIDmode)
3708 SET_DECL_RTL (parm, const0_rtx);
3709 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3710 continue;
3713 /* Estimate stack alignment from parameter alignment. */
3714 if (SUPPORTS_STACK_ALIGNMENT)
3716 unsigned int align
3717 = targetm.calls.function_arg_boundary (data.promoted_mode,
3718 data.passed_type);
3719 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3720 align);
3721 if (TYPE_ALIGN (data.nominal_type) > align)
3722 align = MINIMUM_ALIGNMENT (data.nominal_type,
3723 TYPE_MODE (data.nominal_type),
3724 TYPE_ALIGN (data.nominal_type));
3725 if (crtl->stack_alignment_estimated < align)
3727 gcc_assert (!crtl->stack_realign_processed);
3728 crtl->stack_alignment_estimated = align;
3732 /* Find out where the parameter arrives in this function. */
3733 assign_parm_find_entry_rtl (&all, &data);
3735 /* Find out where stack space for this parameter might be. */
3736 if (assign_parm_is_stack_parm (&all, &data))
3738 assign_parm_find_stack_rtl (parm, &data);
3739 assign_parm_adjust_entry_rtl (&data);
3741 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3743 /* Remember where last non bounds arg was passed in case
3744 we have to load associated bounds for it from Bounds
3745 Table. */
3746 last_arg = parm;
3747 last_arg_entry = data.entry_parm;
3748 bound_no = 0;
3750 /* Record permanently how this parm was passed. */
3751 if (data.passed_pointer)
3753 rtx incoming_rtl
3754 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3755 data.entry_parm);
3756 set_decl_incoming_rtl (parm, incoming_rtl, true);
3758 else
3759 set_decl_incoming_rtl (parm, data.entry_parm, false);
3761 assign_parm_adjust_stack_rtl (&data);
3763 /* Bounds should be loaded in the particular order to
3764 have registers allocated correctly. Collect info about
3765 input bounds and load them later. */
3766 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3768 /* Expect bounds in instrumented functions only. */
3769 gcc_assert (chkp_function_instrumented_p (fndecl));
3771 bdata.parm_data = data;
3772 bdata.bounds_parm = parm;
3773 bdata.ptr_parm = last_arg;
3774 bdata.ptr_entry = last_arg_entry;
3775 bdata.bound_no = bound_no;
3776 bndargs.safe_push (bdata);
3778 else
3780 if (assign_parm_setup_block_p (&data))
3781 assign_parm_setup_block (&all, parm, &data);
3782 else if (data.passed_pointer || use_register_for_decl (parm))
3783 assign_parm_setup_reg (&all, parm, &data);
3784 else
3785 assign_parm_setup_stack (&all, parm, &data);
3788 if (cfun->stdarg && !DECL_CHAIN (parm))
3790 int pretend_bytes = 0;
3792 assign_parms_setup_varargs (&all, &data, false);
3794 if (chkp_function_instrumented_p (fndecl))
3796 /* We expect this is the last parm. Otherwise it is wrong
3797 to assign bounds right now. */
3798 gcc_assert (i == (fnargs.length () - 1));
3799 assign_bounds (bndargs, all, true, false, false);
3800 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3801 data.promoted_mode,
3802 data.passed_type,
3803 &pretend_bytes,
3804 false);
3805 assign_bounds (bndargs, all, false, true, true);
3806 bndargs.release ();
3810 /* Update info on where next arg arrives in registers. */
3811 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3812 data.passed_type, data.named_arg);
3814 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3815 bound_no++;
3818 assign_bounds (bndargs, all, true, true, true);
3819 bndargs.release ();
3821 if (targetm.calls.split_complex_arg)
3822 assign_parms_unsplit_complex (&all, fnargs);
3824 fnargs.release ();
3826 /* Output all parameter conversion instructions (possibly including calls)
3827 now that all parameters have been copied out of hard registers. */
3828 emit_insn (all.first_conversion_insn);
3830 /* Estimate reload stack alignment from scalar return mode. */
3831 if (SUPPORTS_STACK_ALIGNMENT)
3833 if (DECL_RESULT (fndecl))
3835 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3836 machine_mode mode = TYPE_MODE (type);
3838 if (mode != BLKmode
3839 && mode != VOIDmode
3840 && !AGGREGATE_TYPE_P (type))
3842 unsigned int align = GET_MODE_ALIGNMENT (mode);
3843 if (crtl->stack_alignment_estimated < align)
3845 gcc_assert (!crtl->stack_realign_processed);
3846 crtl->stack_alignment_estimated = align;
3852 /* If we are receiving a struct value address as the first argument, set up
3853 the RTL for the function result. As this might require code to convert
3854 the transmitted address to Pmode, we do this here to ensure that possible
3855 preliminary conversions of the address have been emitted already. */
3856 if (all.function_result_decl)
3858 tree result = DECL_RESULT (current_function_decl);
3859 rtx addr = DECL_RTL (all.function_result_decl);
3860 rtx x;
3862 if (DECL_BY_REFERENCE (result))
3864 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3865 x = addr;
3867 else
3869 SET_DECL_VALUE_EXPR (result,
3870 build1 (INDIRECT_REF, TREE_TYPE (result),
3871 all.function_result_decl));
3872 addr = convert_memory_address (Pmode, addr);
3873 x = gen_rtx_MEM (DECL_MODE (result), addr);
3874 set_mem_attributes (x, result, 1);
3877 DECL_HAS_VALUE_EXPR_P (result) = 1;
3879 set_parm_rtl (result, x);
3882 /* We have aligned all the args, so add space for the pretend args. */
3883 crtl->args.pretend_args_size = all.pretend_args_size;
3884 all.stack_args_size.constant += all.extra_pretend_bytes;
3885 crtl->args.size = all.stack_args_size.constant;
3887 /* Adjust function incoming argument size for alignment and
3888 minimum length. */
3890 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3891 crtl->args.size = CEIL_ROUND (crtl->args.size,
3892 PARM_BOUNDARY / BITS_PER_UNIT);
3894 if (ARGS_GROW_DOWNWARD)
3896 crtl->args.arg_offset_rtx
3897 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3898 : expand_expr (size_diffop (all.stack_args_size.var,
3899 size_int (-all.stack_args_size.constant)),
3900 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3902 else
3903 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3905 /* See how many bytes, if any, of its args a function should try to pop
3906 on return. */
3908 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3909 TREE_TYPE (fndecl),
3910 crtl->args.size);
3912 /* For stdarg.h function, save info about
3913 regs and stack space used by the named args. */
3915 crtl->args.info = all.args_so_far_v;
3917 /* Set the rtx used for the function return value. Put this in its
3918 own variable so any optimizers that need this information don't have
3919 to include tree.h. Do this here so it gets done when an inlined
3920 function gets output. */
3922 crtl->return_rtx
3923 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3924 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3926 /* If scalar return value was computed in a pseudo-reg, or was a named
3927 return value that got dumped to the stack, copy that to the hard
3928 return register. */
3929 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3931 tree decl_result = DECL_RESULT (fndecl);
3932 rtx decl_rtl = DECL_RTL (decl_result);
3934 if (REG_P (decl_rtl)
3935 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3936 : DECL_REGISTER (decl_result))
3938 rtx real_decl_rtl;
3940 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3941 fndecl, true);
3942 if (chkp_function_instrumented_p (fndecl))
3943 crtl->return_bnd
3944 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3945 fndecl, true);
3946 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3947 /* The delay slot scheduler assumes that crtl->return_rtx
3948 holds the hard register containing the return value, not a
3949 temporary pseudo. */
3950 crtl->return_rtx = real_decl_rtl;
3955 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3956 For all seen types, gimplify their sizes. */
3958 static tree
3959 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3961 tree t = *tp;
3963 *walk_subtrees = 0;
3964 if (TYPE_P (t))
3966 if (POINTER_TYPE_P (t))
3967 *walk_subtrees = 1;
3968 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3969 && !TYPE_SIZES_GIMPLIFIED (t))
3971 gimplify_type_sizes (t, (gimple_seq *) data);
3972 *walk_subtrees = 1;
3976 return NULL;
3979 /* Gimplify the parameter list for current_function_decl. This involves
3980 evaluating SAVE_EXPRs of variable sized parameters and generating code
3981 to implement callee-copies reference parameters. Returns a sequence of
3982 statements to add to the beginning of the function. */
3984 gimple_seq
3985 gimplify_parameters (void)
3987 struct assign_parm_data_all all;
3988 tree parm;
3989 gimple_seq stmts = NULL;
3990 vec<tree> fnargs;
3991 unsigned i;
3993 assign_parms_initialize_all (&all);
3994 fnargs = assign_parms_augmented_arg_list (&all);
3996 FOR_EACH_VEC_ELT (fnargs, i, parm)
3998 struct assign_parm_data_one data;
4000 /* Extract the type of PARM; adjust it according to ABI. */
4001 assign_parm_find_data_types (&all, parm, &data);
4003 /* Early out for errors and void parameters. */
4004 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
4005 continue;
4007 /* Update info on where next arg arrives in registers. */
4008 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
4009 data.passed_type, data.named_arg);
4011 /* ??? Once upon a time variable_size stuffed parameter list
4012 SAVE_EXPRs (amongst others) onto a pending sizes list. This
4013 turned out to be less than manageable in the gimple world.
4014 Now we have to hunt them down ourselves. */
4015 walk_tree_without_duplicates (&data.passed_type,
4016 gimplify_parm_type, &stmts);
4018 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
4020 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
4021 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
4024 if (data.passed_pointer)
4026 tree type = TREE_TYPE (data.passed_type);
4027 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
4028 type, data.named_arg))
4030 tree local, t;
4032 /* For constant-sized objects, this is trivial; for
4033 variable-sized objects, we have to play games. */
4034 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
4035 && !(flag_stack_check == GENERIC_STACK_CHECK
4036 && compare_tree_int (DECL_SIZE_UNIT (parm),
4037 STACK_CHECK_MAX_VAR_SIZE) > 0))
4039 local = create_tmp_var (type, get_name (parm));
4040 DECL_IGNORED_P (local) = 0;
4041 /* If PARM was addressable, move that flag over
4042 to the local copy, as its address will be taken,
4043 not the PARMs. Keep the parms address taken
4044 as we'll query that flag during gimplification. */
4045 if (TREE_ADDRESSABLE (parm))
4046 TREE_ADDRESSABLE (local) = 1;
4047 else if (TREE_CODE (type) == COMPLEX_TYPE
4048 || TREE_CODE (type) == VECTOR_TYPE)
4049 DECL_GIMPLE_REG_P (local) = 1;
4051 else
4053 tree ptr_type, addr;
4055 ptr_type = build_pointer_type (type);
4056 addr = create_tmp_reg (ptr_type, get_name (parm));
4057 DECL_IGNORED_P (addr) = 0;
4058 local = build_fold_indirect_ref (addr);
4060 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
4061 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
4062 size_int (DECL_ALIGN (parm)));
4064 /* The call has been built for a variable-sized object. */
4065 CALL_ALLOCA_FOR_VAR_P (t) = 1;
4066 t = fold_convert (ptr_type, t);
4067 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
4068 gimplify_and_add (t, &stmts);
4071 gimplify_assign (local, parm, &stmts);
4073 SET_DECL_VALUE_EXPR (parm, local);
4074 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4079 fnargs.release ();
4081 return stmts;
4084 /* Compute the size and offset from the start of the stacked arguments for a
4085 parm passed in mode PASSED_MODE and with type TYPE.
4087 INITIAL_OFFSET_PTR points to the current offset into the stacked
4088 arguments.
4090 The starting offset and size for this parm are returned in
4091 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4092 nonzero, the offset is that of stack slot, which is returned in
4093 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4094 padding required from the initial offset ptr to the stack slot.
4096 IN_REGS is nonzero if the argument will be passed in registers. It will
4097 never be set if REG_PARM_STACK_SPACE is not defined.
4099 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4100 for arguments which are passed in registers.
4102 FNDECL is the function in which the argument was defined.
4104 There are two types of rounding that are done. The first, controlled by
4105 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4106 argument list to be aligned to the specific boundary (in bits). This
4107 rounding affects the initial and starting offsets, but not the argument
4108 size.
4110 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4111 optionally rounds the size of the parm to PARM_BOUNDARY. The
4112 initial offset is not affected by this rounding, while the size always
4113 is and the starting offset may be. */
4115 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4116 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4117 callers pass in the total size of args so far as
4118 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4120 void
4121 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4122 int reg_parm_stack_space, int partial,
4123 tree fndecl ATTRIBUTE_UNUSED,
4124 struct args_size *initial_offset_ptr,
4125 struct locate_and_pad_arg_data *locate)
4127 tree sizetree;
4128 enum direction where_pad;
4129 unsigned int boundary, round_boundary;
4130 int part_size_in_regs;
4132 /* If we have found a stack parm before we reach the end of the
4133 area reserved for registers, skip that area. */
4134 if (! in_regs)
4136 if (reg_parm_stack_space > 0)
4138 if (initial_offset_ptr->var)
4140 initial_offset_ptr->var
4141 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4142 ssize_int (reg_parm_stack_space));
4143 initial_offset_ptr->constant = 0;
4145 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4146 initial_offset_ptr->constant = reg_parm_stack_space;
4150 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4152 sizetree
4153 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4154 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4155 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4156 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4157 type);
4158 locate->where_pad = where_pad;
4160 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4161 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4162 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4164 locate->boundary = boundary;
4166 if (SUPPORTS_STACK_ALIGNMENT)
4168 /* stack_alignment_estimated can't change after stack has been
4169 realigned. */
4170 if (crtl->stack_alignment_estimated < boundary)
4172 if (!crtl->stack_realign_processed)
4173 crtl->stack_alignment_estimated = boundary;
4174 else
4176 /* If stack is realigned and stack alignment value
4177 hasn't been finalized, it is OK not to increase
4178 stack_alignment_estimated. The bigger alignment
4179 requirement is recorded in stack_alignment_needed
4180 below. */
4181 gcc_assert (!crtl->stack_realign_finalized
4182 && crtl->stack_realign_needed);
4187 /* Remember if the outgoing parameter requires extra alignment on the
4188 calling function side. */
4189 if (crtl->stack_alignment_needed < boundary)
4190 crtl->stack_alignment_needed = boundary;
4191 if (crtl->preferred_stack_boundary < boundary)
4192 crtl->preferred_stack_boundary = boundary;
4194 if (ARGS_GROW_DOWNWARD)
4196 locate->slot_offset.constant = -initial_offset_ptr->constant;
4197 if (initial_offset_ptr->var)
4198 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4199 initial_offset_ptr->var);
4202 tree s2 = sizetree;
4203 if (where_pad != none
4204 && (!tree_fits_uhwi_p (sizetree)
4205 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4206 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4207 SUB_PARM_SIZE (locate->slot_offset, s2);
4210 locate->slot_offset.constant += part_size_in_regs;
4212 if (!in_regs || reg_parm_stack_space > 0)
4213 pad_to_arg_alignment (&locate->slot_offset, boundary,
4214 &locate->alignment_pad);
4216 locate->size.constant = (-initial_offset_ptr->constant
4217 - locate->slot_offset.constant);
4218 if (initial_offset_ptr->var)
4219 locate->size.var = size_binop (MINUS_EXPR,
4220 size_binop (MINUS_EXPR,
4221 ssize_int (0),
4222 initial_offset_ptr->var),
4223 locate->slot_offset.var);
4225 /* Pad_below needs the pre-rounded size to know how much to pad
4226 below. */
4227 locate->offset = locate->slot_offset;
4228 if (where_pad == downward)
4229 pad_below (&locate->offset, passed_mode, sizetree);
4232 else
4234 if (!in_regs || reg_parm_stack_space > 0)
4235 pad_to_arg_alignment (initial_offset_ptr, boundary,
4236 &locate->alignment_pad);
4237 locate->slot_offset = *initial_offset_ptr;
4239 #ifdef PUSH_ROUNDING
4240 if (passed_mode != BLKmode)
4241 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4242 #endif
4244 /* Pad_below needs the pre-rounded size to know how much to pad below
4245 so this must be done before rounding up. */
4246 locate->offset = locate->slot_offset;
4247 if (where_pad == downward)
4248 pad_below (&locate->offset, passed_mode, sizetree);
4250 if (where_pad != none
4251 && (!tree_fits_uhwi_p (sizetree)
4252 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4253 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4255 ADD_PARM_SIZE (locate->size, sizetree);
4257 locate->size.constant -= part_size_in_regs;
4260 #ifdef FUNCTION_ARG_OFFSET
4261 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4262 #endif
4265 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4266 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4268 static void
4269 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4270 struct args_size *alignment_pad)
4272 tree save_var = NULL_TREE;
4273 HOST_WIDE_INT save_constant = 0;
4274 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4275 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4277 #ifdef SPARC_STACK_BOUNDARY_HACK
4278 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4279 the real alignment of %sp. However, when it does this, the
4280 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4281 if (SPARC_STACK_BOUNDARY_HACK)
4282 sp_offset = 0;
4283 #endif
4285 if (boundary > PARM_BOUNDARY)
4287 save_var = offset_ptr->var;
4288 save_constant = offset_ptr->constant;
4291 alignment_pad->var = NULL_TREE;
4292 alignment_pad->constant = 0;
4294 if (boundary > BITS_PER_UNIT)
4296 if (offset_ptr->var)
4298 tree sp_offset_tree = ssize_int (sp_offset);
4299 tree offset = size_binop (PLUS_EXPR,
4300 ARGS_SIZE_TREE (*offset_ptr),
4301 sp_offset_tree);
4302 tree rounded;
4303 if (ARGS_GROW_DOWNWARD)
4304 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4305 else
4306 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4308 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4309 /* ARGS_SIZE_TREE includes constant term. */
4310 offset_ptr->constant = 0;
4311 if (boundary > PARM_BOUNDARY)
4312 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4313 save_var);
4315 else
4317 offset_ptr->constant = -sp_offset +
4318 (ARGS_GROW_DOWNWARD
4319 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
4320 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));
4322 if (boundary > PARM_BOUNDARY)
4323 alignment_pad->constant = offset_ptr->constant - save_constant;
4328 static void
4329 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4331 if (passed_mode != BLKmode)
4333 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4334 offset_ptr->constant
4335 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4336 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4337 - GET_MODE_SIZE (passed_mode));
4339 else
4341 if (TREE_CODE (sizetree) != INTEGER_CST
4342 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4344 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4345 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4346 /* Add it in. */
4347 ADD_PARM_SIZE (*offset_ptr, s2);
4348 SUB_PARM_SIZE (*offset_ptr, sizetree);
4354 /* True if register REGNO was alive at a place where `setjmp' was
4355 called and was set more than once or is an argument. Such regs may
4356 be clobbered by `longjmp'. */
4358 static bool
4359 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4361 /* There appear to be cases where some local vars never reach the
4362 backend but have bogus regnos. */
4363 if (regno >= max_reg_num ())
4364 return false;
4366 return ((REG_N_SETS (regno) > 1
4367 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4368 regno))
4369 && REGNO_REG_SET_P (setjmp_crosses, regno));
4372 /* Walk the tree of blocks describing the binding levels within a
4373 function and warn about variables the might be killed by setjmp or
4374 vfork. This is done after calling flow_analysis before register
4375 allocation since that will clobber the pseudo-regs to hard
4376 regs. */
4378 static void
4379 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4381 tree decl, sub;
4383 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4385 if (VAR_P (decl)
4386 && DECL_RTL_SET_P (decl)
4387 && REG_P (DECL_RTL (decl))
4388 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4389 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4390 " %<longjmp%> or %<vfork%>", decl);
4393 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4394 setjmp_vars_warning (setjmp_crosses, sub);
4397 /* Do the appropriate part of setjmp_vars_warning
4398 but for arguments instead of local variables. */
4400 static void
4401 setjmp_args_warning (bitmap setjmp_crosses)
4403 tree decl;
4404 for (decl = DECL_ARGUMENTS (current_function_decl);
4405 decl; decl = DECL_CHAIN (decl))
4406 if (DECL_RTL (decl) != 0
4407 && REG_P (DECL_RTL (decl))
4408 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4409 warning (OPT_Wclobbered,
4410 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4411 decl);
4414 /* Generate warning messages for variables live across setjmp. */
4416 void
4417 generate_setjmp_warnings (void)
4419 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4421 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4422 || bitmap_empty_p (setjmp_crosses))
4423 return;
4425 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4426 setjmp_args_warning (setjmp_crosses);
4430 /* Reverse the order of elements in the fragment chain T of blocks,
4431 and return the new head of the chain (old last element).
4432 In addition to that clear BLOCK_SAME_RANGE flags when needed
4433 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4434 its super fragment origin. */
4436 static tree
4437 block_fragments_nreverse (tree t)
4439 tree prev = 0, block, next, prev_super = 0;
4440 tree super = BLOCK_SUPERCONTEXT (t);
4441 if (BLOCK_FRAGMENT_ORIGIN (super))
4442 super = BLOCK_FRAGMENT_ORIGIN (super);
4443 for (block = t; block; block = next)
4445 next = BLOCK_FRAGMENT_CHAIN (block);
4446 BLOCK_FRAGMENT_CHAIN (block) = prev;
4447 if ((prev && !BLOCK_SAME_RANGE (prev))
4448 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4449 != prev_super))
4450 BLOCK_SAME_RANGE (block) = 0;
4451 prev_super = BLOCK_SUPERCONTEXT (block);
4452 BLOCK_SUPERCONTEXT (block) = super;
4453 prev = block;
4455 t = BLOCK_FRAGMENT_ORIGIN (t);
4456 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4457 != prev_super)
4458 BLOCK_SAME_RANGE (t) = 0;
4459 BLOCK_SUPERCONTEXT (t) = super;
4460 return prev;
4463 /* Reverse the order of elements in the chain T of blocks,
4464 and return the new head of the chain (old last element).
4465 Also do the same on subblocks and reverse the order of elements
4466 in BLOCK_FRAGMENT_CHAIN as well. */
4468 static tree
4469 blocks_nreverse_all (tree t)
4471 tree prev = 0, block, next;
4472 for (block = t; block; block = next)
4474 next = BLOCK_CHAIN (block);
4475 BLOCK_CHAIN (block) = prev;
4476 if (BLOCK_FRAGMENT_CHAIN (block)
4477 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4479 BLOCK_FRAGMENT_CHAIN (block)
4480 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4481 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4482 BLOCK_SAME_RANGE (block) = 0;
4484 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4485 prev = block;
4487 return prev;
4491 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4492 and create duplicate blocks. */
4493 /* ??? Need an option to either create block fragments or to create
4494 abstract origin duplicates of a source block. It really depends
4495 on what optimization has been performed. */
4497 void
4498 reorder_blocks (void)
4500 tree block = DECL_INITIAL (current_function_decl);
4502 if (block == NULL_TREE)
4503 return;
4505 auto_vec<tree, 10> block_stack;
4507 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4508 clear_block_marks (block);
4510 /* Prune the old trees away, so that they don't get in the way. */
4511 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4512 BLOCK_CHAIN (block) = NULL_TREE;
4514 /* Recreate the block tree from the note nesting. */
4515 reorder_blocks_1 (get_insns (), block, &block_stack);
4516 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4519 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4521 void
4522 clear_block_marks (tree block)
4524 while (block)
4526 TREE_ASM_WRITTEN (block) = 0;
4527 clear_block_marks (BLOCK_SUBBLOCKS (block));
4528 block = BLOCK_CHAIN (block);
4532 static void
4533 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4534 vec<tree> *p_block_stack)
4536 rtx_insn *insn;
4537 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4539 for (insn = insns; insn; insn = NEXT_INSN (insn))
4541 if (NOTE_P (insn))
4543 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4545 tree block = NOTE_BLOCK (insn);
4546 tree origin;
4548 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4549 origin = block;
4551 if (prev_end)
4552 BLOCK_SAME_RANGE (prev_end) = 0;
4553 prev_end = NULL_TREE;
4555 /* If we have seen this block before, that means it now
4556 spans multiple address regions. Create a new fragment. */
4557 if (TREE_ASM_WRITTEN (block))
4559 tree new_block = copy_node (block);
4561 BLOCK_SAME_RANGE (new_block) = 0;
4562 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4563 BLOCK_FRAGMENT_CHAIN (new_block)
4564 = BLOCK_FRAGMENT_CHAIN (origin);
4565 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4567 NOTE_BLOCK (insn) = new_block;
4568 block = new_block;
4571 if (prev_beg == current_block && prev_beg)
4572 BLOCK_SAME_RANGE (block) = 1;
4574 prev_beg = origin;
4576 BLOCK_SUBBLOCKS (block) = 0;
4577 TREE_ASM_WRITTEN (block) = 1;
4578 /* When there's only one block for the entire function,
4579 current_block == block and we mustn't do this, it
4580 will cause infinite recursion. */
4581 if (block != current_block)
4583 tree super;
4584 if (block != origin)
4585 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4586 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4587 (origin))
4588 == current_block);
4589 if (p_block_stack->is_empty ())
4590 super = current_block;
4591 else
4593 super = p_block_stack->last ();
4594 gcc_assert (super == current_block
4595 || BLOCK_FRAGMENT_ORIGIN (super)
4596 == current_block);
4598 BLOCK_SUPERCONTEXT (block) = super;
4599 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4600 BLOCK_SUBBLOCKS (current_block) = block;
4601 current_block = origin;
4603 p_block_stack->safe_push (block);
4605 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4607 NOTE_BLOCK (insn) = p_block_stack->pop ();
4608 current_block = BLOCK_SUPERCONTEXT (current_block);
4609 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4610 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4611 prev_beg = NULL_TREE;
4612 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4613 ? NOTE_BLOCK (insn) : NULL_TREE;
4616 else
4618 prev_beg = NULL_TREE;
4619 if (prev_end)
4620 BLOCK_SAME_RANGE (prev_end) = 0;
4621 prev_end = NULL_TREE;
4626 /* Reverse the order of elements in the chain T of blocks,
4627 and return the new head of the chain (old last element). */
4629 tree
4630 blocks_nreverse (tree t)
4632 tree prev = 0, block, next;
4633 for (block = t; block; block = next)
4635 next = BLOCK_CHAIN (block);
4636 BLOCK_CHAIN (block) = prev;
4637 prev = block;
4639 return prev;
4642 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4643 by modifying the last node in chain 1 to point to chain 2. */
4645 tree
4646 block_chainon (tree op1, tree op2)
4648 tree t1;
4650 if (!op1)
4651 return op2;
4652 if (!op2)
4653 return op1;
4655 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4656 continue;
4657 BLOCK_CHAIN (t1) = op2;
4659 #ifdef ENABLE_TREE_CHECKING
4661 tree t2;
4662 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4663 gcc_assert (t2 != t1);
4665 #endif
4667 return op1;
4670 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4671 non-NULL, list them all into VECTOR, in a depth-first preorder
4672 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4673 blocks. */
4675 static int
4676 all_blocks (tree block, tree *vector)
4678 int n_blocks = 0;
4680 while (block)
4682 TREE_ASM_WRITTEN (block) = 0;
4684 /* Record this block. */
4685 if (vector)
4686 vector[n_blocks] = block;
4688 ++n_blocks;
4690 /* Record the subblocks, and their subblocks... */
4691 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4692 vector ? vector + n_blocks : 0);
4693 block = BLOCK_CHAIN (block);
4696 return n_blocks;
4699 /* Return a vector containing all the blocks rooted at BLOCK. The
4700 number of elements in the vector is stored in N_BLOCKS_P. The
4701 vector is dynamically allocated; it is the caller's responsibility
4702 to call `free' on the pointer returned. */
4704 static tree *
4705 get_block_vector (tree block, int *n_blocks_p)
4707 tree *block_vector;
4709 *n_blocks_p = all_blocks (block, NULL);
4710 block_vector = XNEWVEC (tree, *n_blocks_p);
4711 all_blocks (block, block_vector);
4713 return block_vector;
4716 static GTY(()) int next_block_index = 2;
4718 /* Set BLOCK_NUMBER for all the blocks in FN. */
4720 void
4721 number_blocks (tree fn)
4723 int i;
4724 int n_blocks;
4725 tree *block_vector;
4727 /* For SDB and XCOFF debugging output, we start numbering the blocks
4728 from 1 within each function, rather than keeping a running
4729 count. */
4730 #if SDB_DEBUGGING_INFO || defined (XCOFF_DEBUGGING_INFO)
4731 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4732 next_block_index = 1;
4733 #endif
4735 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4737 /* The top-level BLOCK isn't numbered at all. */
4738 for (i = 1; i < n_blocks; ++i)
4739 /* We number the blocks from two. */
4740 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4742 free (block_vector);
4744 return;
4747 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4749 DEBUG_FUNCTION tree
4750 debug_find_var_in_block_tree (tree var, tree block)
4752 tree t;
4754 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4755 if (t == var)
4756 return block;
4758 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4760 tree ret = debug_find_var_in_block_tree (var, t);
4761 if (ret)
4762 return ret;
4765 return NULL_TREE;
4768 /* Keep track of whether we're in a dummy function context. If we are,
4769 we don't want to invoke the set_current_function hook, because we'll
4770 get into trouble if the hook calls target_reinit () recursively or
4771 when the initial initialization is not yet complete. */
4773 static bool in_dummy_function;
4775 /* Invoke the target hook when setting cfun. Update the optimization options
4776 if the function uses different options than the default. */
4778 static void
4779 invoke_set_current_function_hook (tree fndecl)
4781 if (!in_dummy_function)
4783 tree opts = ((fndecl)
4784 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4785 : optimization_default_node);
4787 if (!opts)
4788 opts = optimization_default_node;
4790 /* Change optimization options if needed. */
4791 if (optimization_current_node != opts)
4793 optimization_current_node = opts;
4794 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4797 targetm.set_current_function (fndecl);
4798 this_fn_optabs = this_target_optabs;
4800 if (opts != optimization_default_node)
4802 init_tree_optimization_optabs (opts);
4803 if (TREE_OPTIMIZATION_OPTABS (opts))
4804 this_fn_optabs = (struct target_optabs *)
4805 TREE_OPTIMIZATION_OPTABS (opts);
4810 /* cfun should never be set directly; use this function. */
4812 void
4813 set_cfun (struct function *new_cfun)
4815 if (cfun != new_cfun)
4817 cfun = new_cfun;
4818 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4819 redirect_edge_var_map_empty ();
4823 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4825 static vec<function *> cfun_stack;
4827 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4828 current_function_decl accordingly. */
4830 void
4831 push_cfun (struct function *new_cfun)
4833 gcc_assert ((!cfun && !current_function_decl)
4834 || (cfun && current_function_decl == cfun->decl));
4835 cfun_stack.safe_push (cfun);
4836 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4837 set_cfun (new_cfun);
4840 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4842 void
4843 pop_cfun (void)
4845 struct function *new_cfun = cfun_stack.pop ();
4846 /* When in_dummy_function, we do have a cfun but current_function_decl is
4847 NULL. We also allow pushing NULL cfun and subsequently changing
4848 current_function_decl to something else and have both restored by
4849 pop_cfun. */
4850 gcc_checking_assert (in_dummy_function
4851 || !cfun
4852 || current_function_decl == cfun->decl);
4853 set_cfun (new_cfun);
4854 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4857 /* Return value of funcdef and increase it. */
4859 get_next_funcdef_no (void)
4861 return funcdef_no++;
4864 /* Return value of funcdef. */
4866 get_last_funcdef_no (void)
4868 return funcdef_no;
4871 /* Allocate a function structure for FNDECL and set its contents
4872 to the defaults. Set cfun to the newly-allocated object.
4873 Some of the helper functions invoked during initialization assume
4874 that cfun has already been set. Therefore, assign the new object
4875 directly into cfun and invoke the back end hook explicitly at the
4876 very end, rather than initializing a temporary and calling set_cfun
4877 on it.
4879 ABSTRACT_P is true if this is a function that will never be seen by
4880 the middle-end. Such functions are front-end concepts (like C++
4881 function templates) that do not correspond directly to functions
4882 placed in object files. */
4884 void
4885 allocate_struct_function (tree fndecl, bool abstract_p)
4887 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4889 cfun = ggc_cleared_alloc<function> ();
4891 init_eh_for_function ();
4893 if (init_machine_status)
4894 cfun->machine = (*init_machine_status) ();
4896 #ifdef OVERRIDE_ABI_FORMAT
4897 OVERRIDE_ABI_FORMAT (fndecl);
4898 #endif
4900 if (fndecl != NULL_TREE)
4902 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4903 cfun->decl = fndecl;
4904 current_function_funcdef_no = get_next_funcdef_no ();
4907 invoke_set_current_function_hook (fndecl);
4909 if (fndecl != NULL_TREE)
4911 tree result = DECL_RESULT (fndecl);
4913 if (!abstract_p)
4915 /* Now that we have activated any function-specific attributes
4916 that might affect layout, particularly vector modes, relayout
4917 each of the parameters and the result. */
4918 relayout_decl (result);
4919 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4920 parm = DECL_CHAIN (parm))
4921 relayout_decl (parm);
4923 /* Similarly relayout the function decl. */
4924 targetm.target_option.relayout_function (fndecl);
4927 if (!abstract_p && aggregate_value_p (result, fndecl))
4929 #ifdef PCC_STATIC_STRUCT_RETURN
4930 cfun->returns_pcc_struct = 1;
4931 #endif
4932 cfun->returns_struct = 1;
4935 cfun->stdarg = stdarg_p (fntype);
4937 /* Assume all registers in stdarg functions need to be saved. */
4938 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4939 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4941 /* ??? This could be set on a per-function basis by the front-end
4942 but is this worth the hassle? */
4943 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4944 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4946 if (!profile_flag && !flag_instrument_function_entry_exit)
4947 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4951 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4952 instead of just setting it. */
4954 void
4955 push_struct_function (tree fndecl)
4957 /* When in_dummy_function we might be in the middle of a pop_cfun and
4958 current_function_decl and cfun may not match. */
4959 gcc_assert (in_dummy_function
4960 || (!cfun && !current_function_decl)
4961 || (cfun && current_function_decl == cfun->decl));
4962 cfun_stack.safe_push (cfun);
4963 current_function_decl = fndecl;
4964 allocate_struct_function (fndecl, false);
4967 /* Reset crtl and other non-struct-function variables to defaults as
4968 appropriate for emitting rtl at the start of a function. */
4970 static void
4971 prepare_function_start (void)
4973 gcc_assert (!get_last_insn ());
4974 init_temp_slots ();
4975 init_emit ();
4976 init_varasm_status ();
4977 init_expr ();
4978 default_rtl_profile ();
4980 if (flag_stack_usage_info)
4982 cfun->su = ggc_cleared_alloc<stack_usage> ();
4983 cfun->su->static_stack_size = -1;
4986 cse_not_expected = ! optimize;
4988 /* Caller save not needed yet. */
4989 caller_save_needed = 0;
4991 /* We haven't done register allocation yet. */
4992 reg_renumber = 0;
4994 /* Indicate that we have not instantiated virtual registers yet. */
4995 virtuals_instantiated = 0;
4997 /* Indicate that we want CONCATs now. */
4998 generating_concat_p = 1;
5000 /* Indicate we have no need of a frame pointer yet. */
5001 frame_pointer_needed = 0;
5004 void
5005 push_dummy_function (bool with_decl)
5007 tree fn_decl, fn_type, fn_result_decl;
5009 gcc_assert (!in_dummy_function);
5010 in_dummy_function = true;
5012 if (with_decl)
5014 fn_type = build_function_type_list (void_type_node, NULL_TREE);
5015 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
5016 fn_type);
5017 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
5018 NULL_TREE, void_type_node);
5019 DECL_RESULT (fn_decl) = fn_result_decl;
5021 else
5022 fn_decl = NULL_TREE;
5024 push_struct_function (fn_decl);
5027 /* Initialize the rtl expansion mechanism so that we can do simple things
5028 like generate sequences. This is used to provide a context during global
5029 initialization of some passes. You must call expand_dummy_function_end
5030 to exit this context. */
5032 void
5033 init_dummy_function_start (void)
5035 push_dummy_function (false);
5036 prepare_function_start ();
5039 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5040 and initialize static variables for generating RTL for the statements
5041 of the function. */
5043 void
5044 init_function_start (tree subr)
5046 /* Initialize backend, if needed. */
5047 initialize_rtl ();
5049 prepare_function_start ();
5050 decide_function_section (subr);
5052 /* Warn if this value is an aggregate type,
5053 regardless of which calling convention we are using for it. */
5054 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5055 warning (OPT_Waggregate_return, "function returns an aggregate");
5058 /* Expand code to verify the stack_protect_guard. This is invoked at
5059 the end of a function to be protected. */
5061 void
5062 stack_protect_epilogue (void)
5064 tree guard_decl = targetm.stack_protect_guard ();
5065 rtx_code_label *label = gen_label_rtx ();
5066 rtx x, y;
5067 rtx_insn *seq;
5069 x = expand_normal (crtl->stack_protect_guard);
5070 if (guard_decl)
5071 y = expand_normal (guard_decl);
5072 else
5073 y = const0_rtx;
5075 /* Allow the target to compare Y with X without leaking either into
5076 a register. */
5077 if (targetm.have_stack_protect_test ()
5078 && ((seq = targetm.gen_stack_protect_test (x, y, label)) != NULL_RTX))
5079 emit_insn (seq);
5080 else
5081 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5083 /* The noreturn predictor has been moved to the tree level. The rtl-level
5084 predictors estimate this branch about 20%, which isn't enough to get
5085 things moved out of line. Since this is the only extant case of adding
5086 a noreturn function at the rtl level, it doesn't seem worth doing ought
5087 except adding the prediction by hand. */
5088 rtx_insn *tmp = get_last_insn ();
5089 if (JUMP_P (tmp))
5090 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5092 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5093 free_temp_slots ();
5094 emit_label (label);
5097 /* Start the RTL for a new function, and set variables used for
5098 emitting RTL.
5099 SUBR is the FUNCTION_DECL node.
5100 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5101 the function's parameters, which must be run at any return statement. */
5103 void
5104 expand_function_start (tree subr)
5106 /* Make sure volatile mem refs aren't considered
5107 valid operands of arithmetic insns. */
5108 init_recog_no_volatile ();
5110 crtl->profile
5111 = (profile_flag
5112 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5114 crtl->limit_stack
5115 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5117 /* Make the label for return statements to jump to. Do not special
5118 case machines with special return instructions -- they will be
5119 handled later during jump, ifcvt, or epilogue creation. */
5120 return_label = gen_label_rtx ();
5122 /* Initialize rtx used to return the value. */
5123 /* Do this before assign_parms so that we copy the struct value address
5124 before any library calls that assign parms might generate. */
5126 /* Decide whether to return the value in memory or in a register. */
5127 tree res = DECL_RESULT (subr);
5128 if (aggregate_value_p (res, subr))
5130 /* Returning something that won't go in a register. */
5131 rtx value_address = 0;
5133 #ifdef PCC_STATIC_STRUCT_RETURN
5134 if (cfun->returns_pcc_struct)
5136 int size = int_size_in_bytes (TREE_TYPE (res));
5137 value_address = assemble_static_space (size);
5139 else
5140 #endif
5142 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5143 /* Expect to be passed the address of a place to store the value.
5144 If it is passed as an argument, assign_parms will take care of
5145 it. */
5146 if (sv)
5148 value_address = gen_reg_rtx (Pmode);
5149 emit_move_insn (value_address, sv);
5152 if (value_address)
5154 rtx x = value_address;
5155 if (!DECL_BY_REFERENCE (res))
5157 x = gen_rtx_MEM (DECL_MODE (res), x);
5158 set_mem_attributes (x, res, 1);
5160 set_parm_rtl (res, x);
5163 else if (DECL_MODE (res) == VOIDmode)
5164 /* If return mode is void, this decl rtl should not be used. */
5165 set_parm_rtl (res, NULL_RTX);
5166 else
5168 /* Compute the return values into a pseudo reg, which we will copy
5169 into the true return register after the cleanups are done. */
5170 tree return_type = TREE_TYPE (res);
5172 /* If we may coalesce this result, make sure it has the expected mode
5173 in case it was promoted. But we need not bother about BLKmode. */
5174 machine_mode promoted_mode
5175 = flag_tree_coalesce_vars && is_gimple_reg (res)
5176 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5177 : BLKmode;
5179 if (promoted_mode != BLKmode)
5180 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5181 else if (TYPE_MODE (return_type) != BLKmode
5182 && targetm.calls.return_in_msb (return_type))
5183 /* expand_function_end will insert the appropriate padding in
5184 this case. Use the return value's natural (unpadded) mode
5185 within the function proper. */
5186 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5187 else
5189 /* In order to figure out what mode to use for the pseudo, we
5190 figure out what the mode of the eventual return register will
5191 actually be, and use that. */
5192 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5194 /* Structures that are returned in registers are not
5195 aggregate_value_p, so we may see a PARALLEL or a REG. */
5196 if (REG_P (hard_reg))
5197 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5198 else
5200 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5201 set_parm_rtl (res, gen_group_rtx (hard_reg));
5205 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5206 result to the real return register(s). */
5207 DECL_REGISTER (res) = 1;
5209 if (chkp_function_instrumented_p (current_function_decl))
5211 tree return_type = TREE_TYPE (res);
5212 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5213 subr, 1);
5214 SET_DECL_BOUNDS_RTL (res, bounds);
5218 /* Initialize rtx for parameters and local variables.
5219 In some cases this requires emitting insns. */
5220 assign_parms (subr);
5222 /* If function gets a static chain arg, store it. */
5223 if (cfun->static_chain_decl)
5225 tree parm = cfun->static_chain_decl;
5226 rtx local, chain;
5227 rtx_insn *insn;
5228 int unsignedp;
5230 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5231 chain = targetm.calls.static_chain (current_function_decl, true);
5233 set_decl_incoming_rtl (parm, chain, false);
5234 set_parm_rtl (parm, local);
5235 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5237 if (GET_MODE (local) != GET_MODE (chain))
5239 convert_move (local, chain, unsignedp);
5240 insn = get_last_insn ();
5242 else
5243 insn = emit_move_insn (local, chain);
5245 /* Mark the register as eliminable, similar to parameters. */
5246 if (MEM_P (chain)
5247 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5248 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5250 /* If we aren't optimizing, save the static chain onto the stack. */
5251 if (!optimize)
5253 tree saved_static_chain_decl
5254 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5255 DECL_NAME (parm), TREE_TYPE (parm));
5256 rtx saved_static_chain_rtx
5257 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5258 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5259 emit_move_insn (saved_static_chain_rtx, chain);
5260 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5261 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5265 /* If the function receives a non-local goto, then store the
5266 bits we need to restore the frame pointer. */
5267 if (cfun->nonlocal_goto_save_area)
5269 tree t_save;
5270 rtx r_save;
5272 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5273 gcc_assert (DECL_RTL_SET_P (var));
5275 t_save = build4 (ARRAY_REF,
5276 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5277 cfun->nonlocal_goto_save_area,
5278 integer_zero_node, NULL_TREE, NULL_TREE);
5279 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5280 gcc_assert (GET_MODE (r_save) == Pmode);
5282 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5283 update_nonlocal_goto_save_area ();
5286 /* The following was moved from init_function_start.
5287 The move is supposed to make sdb output more accurate. */
5288 /* Indicate the beginning of the function body,
5289 as opposed to parm setup. */
5290 emit_note (NOTE_INSN_FUNCTION_BEG);
5292 gcc_assert (NOTE_P (get_last_insn ()));
5294 parm_birth_insn = get_last_insn ();
5296 if (crtl->profile)
5298 #ifdef PROFILE_HOOK
5299 PROFILE_HOOK (current_function_funcdef_no);
5300 #endif
5303 /* If we are doing generic stack checking, the probe should go here. */
5304 if (flag_stack_check == GENERIC_STACK_CHECK)
5305 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5308 void
5309 pop_dummy_function (void)
5311 pop_cfun ();
5312 in_dummy_function = false;
5315 /* Undo the effects of init_dummy_function_start. */
5316 void
5317 expand_dummy_function_end (void)
5319 gcc_assert (in_dummy_function);
5321 /* End any sequences that failed to be closed due to syntax errors. */
5322 while (in_sequence_p ())
5323 end_sequence ();
5325 /* Outside function body, can't compute type's actual size
5326 until next function's body starts. */
5328 free_after_parsing (cfun);
5329 free_after_compilation (cfun);
5330 pop_dummy_function ();
5333 /* Helper for diddle_return_value. */
5335 void
5336 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5338 if (! outgoing)
5339 return;
5341 if (REG_P (outgoing))
5342 (*doit) (outgoing, arg);
5343 else if (GET_CODE (outgoing) == PARALLEL)
5345 int i;
5347 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5349 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5351 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5352 (*doit) (x, arg);
5357 /* Call DOIT for each hard register used as a return value from
5358 the current function. */
5360 void
5361 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5363 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5364 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5367 static void
5368 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5370 emit_clobber (reg);
5373 void
5374 clobber_return_register (void)
5376 diddle_return_value (do_clobber_return_reg, NULL);
5378 /* In case we do use pseudo to return value, clobber it too. */
5379 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5381 tree decl_result = DECL_RESULT (current_function_decl);
5382 rtx decl_rtl = DECL_RTL (decl_result);
5383 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5385 do_clobber_return_reg (decl_rtl, NULL);
5390 static void
5391 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5393 emit_use (reg);
5396 static void
5397 use_return_register (void)
5399 diddle_return_value (do_use_return_reg, NULL);
5402 /* Set the location of the insn chain starting at INSN to LOC. */
5404 static void
5405 set_insn_locations (rtx_insn *insn, int loc)
5407 while (insn != NULL)
5409 if (INSN_P (insn))
5410 INSN_LOCATION (insn) = loc;
5411 insn = NEXT_INSN (insn);
5415 /* Generate RTL for the end of the current function. */
5417 void
5418 expand_function_end (void)
5420 /* If arg_pointer_save_area was referenced only from a nested
5421 function, we will not have initialized it yet. Do that now. */
5422 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5423 get_arg_pointer_save_area ();
5425 /* If we are doing generic stack checking and this function makes calls,
5426 do a stack probe at the start of the function to ensure we have enough
5427 space for another stack frame. */
5428 if (flag_stack_check == GENERIC_STACK_CHECK)
5430 rtx_insn *insn, *seq;
5432 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5433 if (CALL_P (insn))
5435 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5436 start_sequence ();
5437 if (STACK_CHECK_MOVING_SP)
5438 anti_adjust_stack_and_probe (max_frame_size, true);
5439 else
5440 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5441 seq = get_insns ();
5442 end_sequence ();
5443 set_insn_locations (seq, prologue_location);
5444 emit_insn_before (seq, stack_check_probe_note);
5445 break;
5449 /* End any sequences that failed to be closed due to syntax errors. */
5450 while (in_sequence_p ())
5451 end_sequence ();
5453 clear_pending_stack_adjust ();
5454 do_pending_stack_adjust ();
5456 /* Output a linenumber for the end of the function.
5457 SDB depends on this. */
5458 set_curr_insn_location (input_location);
5460 /* Before the return label (if any), clobber the return
5461 registers so that they are not propagated live to the rest of
5462 the function. This can only happen with functions that drop
5463 through; if there had been a return statement, there would
5464 have either been a return rtx, or a jump to the return label.
5466 We delay actual code generation after the current_function_value_rtx
5467 is computed. */
5468 rtx_insn *clobber_after = get_last_insn ();
5470 /* Output the label for the actual return from the function. */
5471 emit_label (return_label);
5473 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5475 /* Let except.c know where it should emit the call to unregister
5476 the function context for sjlj exceptions. */
5477 if (flag_exceptions)
5478 sjlj_emit_function_exit_after (get_last_insn ());
5480 else
5482 /* We want to ensure that instructions that may trap are not
5483 moved into the epilogue by scheduling, because we don't
5484 always emit unwind information for the epilogue. */
5485 if (cfun->can_throw_non_call_exceptions)
5486 emit_insn (gen_blockage ());
5489 /* If this is an implementation of throw, do what's necessary to
5490 communicate between __builtin_eh_return and the epilogue. */
5491 expand_eh_return ();
5493 /* If scalar return value was computed in a pseudo-reg, or was a named
5494 return value that got dumped to the stack, copy that to the hard
5495 return register. */
5496 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5498 tree decl_result = DECL_RESULT (current_function_decl);
5499 rtx decl_rtl = DECL_RTL (decl_result);
5501 if (REG_P (decl_rtl)
5502 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5503 : DECL_REGISTER (decl_result))
5505 rtx real_decl_rtl = crtl->return_rtx;
5507 /* This should be set in assign_parms. */
5508 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5510 /* If this is a BLKmode structure being returned in registers,
5511 then use the mode computed in expand_return. Note that if
5512 decl_rtl is memory, then its mode may have been changed,
5513 but that crtl->return_rtx has not. */
5514 if (GET_MODE (real_decl_rtl) == BLKmode)
5515 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5517 /* If a non-BLKmode return value should be padded at the least
5518 significant end of the register, shift it left by the appropriate
5519 amount. BLKmode results are handled using the group load/store
5520 machinery. */
5521 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5522 && REG_P (real_decl_rtl)
5523 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5525 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5526 REGNO (real_decl_rtl)),
5527 decl_rtl);
5528 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5530 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5532 /* If expand_function_start has created a PARALLEL for decl_rtl,
5533 move the result to the real return registers. Otherwise, do
5534 a group load from decl_rtl for a named return. */
5535 if (GET_CODE (decl_rtl) == PARALLEL)
5536 emit_group_move (real_decl_rtl, decl_rtl);
5537 else
5538 emit_group_load (real_decl_rtl, decl_rtl,
5539 TREE_TYPE (decl_result),
5540 int_size_in_bytes (TREE_TYPE (decl_result)));
5542 /* In the case of complex integer modes smaller than a word, we'll
5543 need to generate some non-trivial bitfield insertions. Do that
5544 on a pseudo and not the hard register. */
5545 else if (GET_CODE (decl_rtl) == CONCAT
5546 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5547 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5549 int old_generating_concat_p;
5550 rtx tmp;
5552 old_generating_concat_p = generating_concat_p;
5553 generating_concat_p = 0;
5554 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5555 generating_concat_p = old_generating_concat_p;
5557 emit_move_insn (tmp, decl_rtl);
5558 emit_move_insn (real_decl_rtl, tmp);
5560 /* If a named return value dumped decl_return to memory, then
5561 we may need to re-do the PROMOTE_MODE signed/unsigned
5562 extension. */
5563 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5565 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5566 promote_function_mode (TREE_TYPE (decl_result),
5567 GET_MODE (decl_rtl), &unsignedp,
5568 TREE_TYPE (current_function_decl), 1);
5570 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5572 else
5573 emit_move_insn (real_decl_rtl, decl_rtl);
5577 /* If returning a structure, arrange to return the address of the value
5578 in a place where debuggers expect to find it.
5580 If returning a structure PCC style,
5581 the caller also depends on this value.
5582 And cfun->returns_pcc_struct is not necessarily set. */
5583 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5584 && !targetm.calls.omit_struct_return_reg)
5586 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5587 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5588 rtx outgoing;
5590 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5591 type = TREE_TYPE (type);
5592 else
5593 value_address = XEXP (value_address, 0);
5595 outgoing = targetm.calls.function_value (build_pointer_type (type),
5596 current_function_decl, true);
5598 /* Mark this as a function return value so integrate will delete the
5599 assignment and USE below when inlining this function. */
5600 REG_FUNCTION_VALUE_P (outgoing) = 1;
5602 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5603 value_address = convert_memory_address (GET_MODE (outgoing),
5604 value_address);
5606 emit_move_insn (outgoing, value_address);
5608 /* Show return register used to hold result (in this case the address
5609 of the result. */
5610 crtl->return_rtx = outgoing;
5613 /* Emit the actual code to clobber return register. Don't emit
5614 it if clobber_after is a barrier, then the previous basic block
5615 certainly doesn't fall thru into the exit block. */
5616 if (!BARRIER_P (clobber_after))
5618 start_sequence ();
5619 clobber_return_register ();
5620 rtx_insn *seq = get_insns ();
5621 end_sequence ();
5623 emit_insn_after (seq, clobber_after);
5626 /* Output the label for the naked return from the function. */
5627 if (naked_return_label)
5628 emit_label (naked_return_label);
5630 /* @@@ This is a kludge. We want to ensure that instructions that
5631 may trap are not moved into the epilogue by scheduling, because
5632 we don't always emit unwind information for the epilogue. */
5633 if (cfun->can_throw_non_call_exceptions
5634 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5635 emit_insn (gen_blockage ());
5637 /* If stack protection is enabled for this function, check the guard. */
5638 if (crtl->stack_protect_guard && targetm.stack_protect_runtime_enabled_p ())
5639 stack_protect_epilogue ();
5641 /* If we had calls to alloca, and this machine needs
5642 an accurate stack pointer to exit the function,
5643 insert some code to save and restore the stack pointer. */
5644 if (! EXIT_IGNORE_STACK
5645 && cfun->calls_alloca)
5647 rtx tem = 0;
5649 start_sequence ();
5650 emit_stack_save (SAVE_FUNCTION, &tem);
5651 rtx_insn *seq = get_insns ();
5652 end_sequence ();
5653 emit_insn_before (seq, parm_birth_insn);
5655 emit_stack_restore (SAVE_FUNCTION, tem);
5658 /* ??? This should no longer be necessary since stupid is no longer with
5659 us, but there are some parts of the compiler (eg reload_combine, and
5660 sh mach_dep_reorg) that still try and compute their own lifetime info
5661 instead of using the general framework. */
5662 use_return_register ();
5666 get_arg_pointer_save_area (void)
5668 rtx ret = arg_pointer_save_area;
5670 if (! ret)
5672 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5673 arg_pointer_save_area = ret;
5676 if (! crtl->arg_pointer_save_area_init)
5678 /* Save the arg pointer at the beginning of the function. The
5679 generated stack slot may not be a valid memory address, so we
5680 have to check it and fix it if necessary. */
5681 start_sequence ();
5682 emit_move_insn (validize_mem (copy_rtx (ret)),
5683 crtl->args.internal_arg_pointer);
5684 rtx_insn *seq = get_insns ();
5685 end_sequence ();
5687 push_topmost_sequence ();
5688 emit_insn_after (seq, entry_of_function ());
5689 pop_topmost_sequence ();
5691 crtl->arg_pointer_save_area_init = true;
5694 return ret;
5697 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5698 for the first time. */
5700 static void
5701 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5703 rtx_insn *tmp;
5704 hash_table<insn_cache_hasher> *hash = *hashp;
5706 if (hash == NULL)
5707 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5709 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5711 rtx *slot = hash->find_slot (tmp, INSERT);
5712 gcc_assert (*slot == NULL);
5713 *slot = tmp;
5717 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5718 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5719 insn, then record COPY as well. */
5721 void
5722 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5724 hash_table<insn_cache_hasher> *hash;
5725 rtx *slot;
5727 hash = epilogue_insn_hash;
5728 if (!hash || !hash->find (insn))
5730 hash = prologue_insn_hash;
5731 if (!hash || !hash->find (insn))
5732 return;
5735 slot = hash->find_slot (copy, INSERT);
5736 gcc_assert (*slot == NULL);
5737 *slot = copy;
5740 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5741 we can be running after reorg, SEQUENCE rtl is possible. */
5743 static bool
5744 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5746 if (hash == NULL)
5747 return false;
5749 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5751 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5752 int i;
5753 for (i = seq->len () - 1; i >= 0; i--)
5754 if (hash->find (seq->element (i)))
5755 return true;
5756 return false;
5759 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5763 prologue_contains (const rtx_insn *insn)
5765 return contains (insn, prologue_insn_hash);
5769 epilogue_contains (const rtx_insn *insn)
5771 return contains (insn, epilogue_insn_hash);
5775 prologue_epilogue_contains (const rtx_insn *insn)
5777 if (contains (insn, prologue_insn_hash))
5778 return 1;
5779 if (contains (insn, epilogue_insn_hash))
5780 return 1;
5781 return 0;
5784 void
5785 record_prologue_seq (rtx_insn *seq)
5787 record_insns (seq, NULL, &prologue_insn_hash);
5790 void
5791 record_epilogue_seq (rtx_insn *seq)
5793 record_insns (seq, NULL, &epilogue_insn_hash);
5796 /* Set JUMP_LABEL for a return insn. */
5798 void
5799 set_return_jump_label (rtx_insn *returnjump)
5801 rtx pat = PATTERN (returnjump);
5802 if (GET_CODE (pat) == PARALLEL)
5803 pat = XVECEXP (pat, 0, 0);
5804 if (ANY_RETURN_P (pat))
5805 JUMP_LABEL (returnjump) = pat;
5806 else
5807 JUMP_LABEL (returnjump) = ret_rtx;
5810 /* Return a sequence to be used as the split prologue for the current
5811 function, or NULL. */
5813 static rtx_insn *
5814 make_split_prologue_seq (void)
5816 if (!flag_split_stack
5817 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5818 return NULL;
5820 start_sequence ();
5821 emit_insn (targetm.gen_split_stack_prologue ());
5822 rtx_insn *seq = get_insns ();
5823 end_sequence ();
5825 record_insns (seq, NULL, &prologue_insn_hash);
5826 set_insn_locations (seq, prologue_location);
5828 return seq;
5831 /* Return a sequence to be used as the prologue for the current function,
5832 or NULL. */
5834 static rtx_insn *
5835 make_prologue_seq (void)
5837 if (!targetm.have_prologue ())
5838 return NULL;
5840 start_sequence ();
5841 rtx_insn *seq = targetm.gen_prologue ();
5842 emit_insn (seq);
5844 /* Insert an explicit USE for the frame pointer
5845 if the profiling is on and the frame pointer is required. */
5846 if (crtl->profile && frame_pointer_needed)
5847 emit_use (hard_frame_pointer_rtx);
5849 /* Retain a map of the prologue insns. */
5850 record_insns (seq, NULL, &prologue_insn_hash);
5851 emit_note (NOTE_INSN_PROLOGUE_END);
5853 /* Ensure that instructions are not moved into the prologue when
5854 profiling is on. The call to the profiling routine can be
5855 emitted within the live range of a call-clobbered register. */
5856 if (!targetm.profile_before_prologue () && crtl->profile)
5857 emit_insn (gen_blockage ());
5859 seq = get_insns ();
5860 end_sequence ();
5861 set_insn_locations (seq, prologue_location);
5863 return seq;
5866 /* Return a sequence to be used as the epilogue for the current function,
5867 or NULL. */
5869 static rtx_insn *
5870 make_epilogue_seq (void)
5872 if (!targetm.have_epilogue ())
5873 return NULL;
5875 start_sequence ();
5876 emit_note (NOTE_INSN_EPILOGUE_BEG);
5877 rtx_insn *seq = targetm.gen_epilogue ();
5878 if (seq)
5879 emit_jump_insn (seq);
5881 /* Retain a map of the epilogue insns. */
5882 record_insns (seq, NULL, &epilogue_insn_hash);
5883 set_insn_locations (seq, epilogue_location);
5885 seq = get_insns ();
5886 rtx_insn *returnjump = get_last_insn ();
5887 end_sequence ();
5889 if (JUMP_P (returnjump))
5890 set_return_jump_label (returnjump);
5892 return seq;
5896 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5897 this into place with notes indicating where the prologue ends and where
5898 the epilogue begins. Update the basic block information when possible.
5900 Notes on epilogue placement:
5901 There are several kinds of edges to the exit block:
5902 * a single fallthru edge from LAST_BB
5903 * possibly, edges from blocks containing sibcalls
5904 * possibly, fake edges from infinite loops
5906 The epilogue is always emitted on the fallthru edge from the last basic
5907 block in the function, LAST_BB, into the exit block.
5909 If LAST_BB is empty except for a label, it is the target of every
5910 other basic block in the function that ends in a return. If a
5911 target has a return or simple_return pattern (possibly with
5912 conditional variants), these basic blocks can be changed so that a
5913 return insn is emitted into them, and their target is adjusted to
5914 the real exit block.
5916 Notes on shrink wrapping: We implement a fairly conservative
5917 version of shrink-wrapping rather than the textbook one. We only
5918 generate a single prologue and a single epilogue. This is
5919 sufficient to catch a number of interesting cases involving early
5920 exits.
5922 First, we identify the blocks that require the prologue to occur before
5923 them. These are the ones that modify a call-saved register, or reference
5924 any of the stack or frame pointer registers. To simplify things, we then
5925 mark everything reachable from these blocks as also requiring a prologue.
5926 This takes care of loops automatically, and avoids the need to examine
5927 whether MEMs reference the frame, since it is sufficient to check for
5928 occurrences of the stack or frame pointer.
5930 We then compute the set of blocks for which the need for a prologue
5931 is anticipatable (borrowing terminology from the shrink-wrapping
5932 description in Muchnick's book). These are the blocks which either
5933 require a prologue themselves, or those that have only successors
5934 where the prologue is anticipatable. The prologue needs to be
5935 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5936 is not. For the moment, we ensure that only one such edge exists.
5938 The epilogue is placed as described above, but we make a
5939 distinction between inserting return and simple_return patterns
5940 when modifying other blocks that end in a return. Blocks that end
5941 in a sibcall omit the sibcall_epilogue if the block is not in
5942 ANTIC. */
5944 void
5945 thread_prologue_and_epilogue_insns (void)
5947 df_analyze ();
5949 /* Can't deal with multiple successors of the entry block at the
5950 moment. Function should always have at least one entry
5951 point. */
5952 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5954 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5955 edge orig_entry_edge = entry_edge;
5957 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
5958 rtx_insn *prologue_seq = make_prologue_seq ();
5959 rtx_insn *epilogue_seq = make_epilogue_seq ();
5961 /* Try to perform a kind of shrink-wrapping, making sure the
5962 prologue/epilogue is emitted only around those parts of the
5963 function that require it. */
5964 try_shrink_wrapping (&entry_edge, prologue_seq);
5966 /* If the target can handle splitting the prologue/epilogue into separate
5967 components, try to shrink-wrap these components separately. */
5968 try_shrink_wrapping_separate (entry_edge->dest);
5970 /* If that did anything for any component we now need the generate the
5971 "main" prologue again. Because some targets require some of these
5972 to be called in a specific order (i386 requires the split prologue
5973 to be first, for example), we create all three sequences again here.
5974 If this does not work for some target, that target should not enable
5975 separate shrink-wrapping. */
5976 if (crtl->shrink_wrapped_separate)
5978 split_prologue_seq = make_split_prologue_seq ();
5979 prologue_seq = make_prologue_seq ();
5980 epilogue_seq = make_epilogue_seq ();
5983 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5985 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5986 this marker for the splits of EH_RETURN patterns, and nothing else
5987 uses the flag in the meantime. */
5988 epilogue_completed = 1;
5990 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5991 some targets, these get split to a special version of the epilogue
5992 code. In order to be able to properly annotate these with unwind
5993 info, try to split them now. If we get a valid split, drop an
5994 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5995 edge e;
5996 edge_iterator ei;
5997 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5999 rtx_insn *prev, *last, *trial;
6001 if (e->flags & EDGE_FALLTHRU)
6002 continue;
6003 last = BB_END (e->src);
6004 if (!eh_returnjump_p (last))
6005 continue;
6007 prev = PREV_INSN (last);
6008 trial = try_split (PATTERN (last), last, 1);
6009 if (trial == last)
6010 continue;
6012 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6013 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6016 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6018 if (exit_fallthru_edge)
6020 if (epilogue_seq)
6022 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6023 commit_edge_insertions ();
6025 /* The epilogue insns we inserted may cause the exit edge to no longer
6026 be fallthru. */
6027 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6029 if (((e->flags & EDGE_FALLTHRU) != 0)
6030 && returnjump_p (BB_END (e->src)))
6031 e->flags &= ~EDGE_FALLTHRU;
6034 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6036 /* We have a fall-through edge to the exit block, the source is not
6037 at the end of the function, and there will be an assembler epilogue
6038 at the end of the function.
6039 We can't use force_nonfallthru here, because that would try to
6040 use return. Inserting a jump 'by hand' is extremely messy, so
6041 we take advantage of cfg_layout_finalize using
6042 fixup_fallthru_exit_predecessor. */
6043 cfg_layout_initialize (0);
6044 basic_block cur_bb;
6045 FOR_EACH_BB_FN (cur_bb, cfun)
6046 if (cur_bb->index >= NUM_FIXED_BLOCKS
6047 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6048 cur_bb->aux = cur_bb->next_bb;
6049 cfg_layout_finalize ();
6053 /* Insert the prologue. */
6055 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6057 if (split_prologue_seq || prologue_seq)
6059 if (split_prologue_seq)
6060 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6062 if (prologue_seq)
6063 insert_insn_on_edge (prologue_seq, entry_edge);
6065 commit_edge_insertions ();
6067 /* Look for basic blocks within the prologue insns. */
6068 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6069 bitmap_clear (blocks);
6070 bitmap_set_bit (blocks, entry_edge->dest->index);
6071 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6072 find_many_sub_basic_blocks (blocks);
6075 default_rtl_profile ();
6077 /* Emit sibling epilogues before any sibling call sites. */
6078 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6079 (e = ei_safe_edge (ei));
6080 ei_next (&ei))
6082 /* Skip those already handled, the ones that run without prologue. */
6083 if (e->flags & EDGE_IGNORE)
6085 e->flags &= ~EDGE_IGNORE;
6086 continue;
6089 rtx_insn *insn = BB_END (e->src);
6091 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6092 continue;
6094 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6096 start_sequence ();
6097 emit_note (NOTE_INSN_EPILOGUE_BEG);
6098 emit_insn (ep_seq);
6099 rtx_insn *seq = get_insns ();
6100 end_sequence ();
6102 /* Retain a map of the epilogue insns. Used in life analysis to
6103 avoid getting rid of sibcall epilogue insns. Do this before we
6104 actually emit the sequence. */
6105 record_insns (seq, NULL, &epilogue_insn_hash);
6106 set_insn_locations (seq, epilogue_location);
6108 emit_insn_before (seq, insn);
6112 if (epilogue_seq)
6114 rtx_insn *insn, *next;
6116 /* Similarly, move any line notes that appear after the epilogue.
6117 There is no need, however, to be quite so anal about the existence
6118 of such a note. Also possibly move
6119 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6120 info generation. */
6121 for (insn = epilogue_seq; insn; insn = next)
6123 next = NEXT_INSN (insn);
6124 if (NOTE_P (insn)
6125 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6126 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6130 /* Threading the prologue and epilogue changes the artificial refs
6131 in the entry and exit blocks. */
6132 epilogue_completed = 1;
6133 df_update_entry_exit_and_calls ();
6136 /* Reposition the prologue-end and epilogue-begin notes after
6137 instruction scheduling. */
6139 void
6140 reposition_prologue_and_epilogue_notes (void)
6142 if (!targetm.have_prologue ()
6143 && !targetm.have_epilogue ()
6144 && !targetm.have_sibcall_epilogue ())
6145 return;
6147 /* Since the hash table is created on demand, the fact that it is
6148 non-null is a signal that it is non-empty. */
6149 if (prologue_insn_hash != NULL)
6151 size_t len = prologue_insn_hash->elements ();
6152 rtx_insn *insn, *last = NULL, *note = NULL;
6154 /* Scan from the beginning until we reach the last prologue insn. */
6155 /* ??? While we do have the CFG intact, there are two problems:
6156 (1) The prologue can contain loops (typically probing the stack),
6157 which means that the end of the prologue isn't in the first bb.
6158 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6159 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6161 if (NOTE_P (insn))
6163 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6164 note = insn;
6166 else if (contains (insn, prologue_insn_hash))
6168 last = insn;
6169 if (--len == 0)
6170 break;
6174 if (last)
6176 if (note == NULL)
6178 /* Scan forward looking for the PROLOGUE_END note. It should
6179 be right at the beginning of the block, possibly with other
6180 insn notes that got moved there. */
6181 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6183 if (NOTE_P (note)
6184 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6185 break;
6189 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6190 if (LABEL_P (last))
6191 last = NEXT_INSN (last);
6192 reorder_insns (note, note, last);
6196 if (epilogue_insn_hash != NULL)
6198 edge_iterator ei;
6199 edge e;
6201 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6203 rtx_insn *insn, *first = NULL, *note = NULL;
6204 basic_block bb = e->src;
6206 /* Scan from the beginning until we reach the first epilogue insn. */
6207 FOR_BB_INSNS (bb, insn)
6209 if (NOTE_P (insn))
6211 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6213 note = insn;
6214 if (first != NULL)
6215 break;
6218 else if (first == NULL && contains (insn, epilogue_insn_hash))
6220 first = insn;
6221 if (note != NULL)
6222 break;
6226 if (note)
6228 /* If the function has a single basic block, and no real
6229 epilogue insns (e.g. sibcall with no cleanup), the
6230 epilogue note can get scheduled before the prologue
6231 note. If we have frame related prologue insns, having
6232 them scanned during the epilogue will result in a crash.
6233 In this case re-order the epilogue note to just before
6234 the last insn in the block. */
6235 if (first == NULL)
6236 first = BB_END (bb);
6238 if (PREV_INSN (first) != note)
6239 reorder_insns (note, note, PREV_INSN (first));
6245 /* Returns the name of function declared by FNDECL. */
6246 const char *
6247 fndecl_name (tree fndecl)
6249 if (fndecl == NULL)
6250 return "(nofn)";
6251 return lang_hooks.decl_printable_name (fndecl, 2);
6254 /* Returns the name of function FN. */
6255 const char *
6256 function_name (struct function *fn)
6258 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6259 return fndecl_name (fndecl);
6262 /* Returns the name of the current function. */
6263 const char *
6264 current_function_name (void)
6266 return function_name (cfun);
6270 static unsigned int
6271 rest_of_handle_check_leaf_regs (void)
6273 #ifdef LEAF_REGISTERS
6274 crtl->uses_only_leaf_regs
6275 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6276 #endif
6277 return 0;
6280 /* Insert a TYPE into the used types hash table of CFUN. */
6282 static void
6283 used_types_insert_helper (tree type, struct function *func)
6285 if (type != NULL && func != NULL)
6287 if (func->used_types_hash == NULL)
6288 func->used_types_hash = hash_set<tree>::create_ggc (37);
6290 func->used_types_hash->add (type);
6294 /* Given a type, insert it into the used hash table in cfun. */
6295 void
6296 used_types_insert (tree t)
6298 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6299 if (TYPE_NAME (t))
6300 break;
6301 else
6302 t = TREE_TYPE (t);
6303 if (TREE_CODE (t) == ERROR_MARK)
6304 return;
6305 if (TYPE_NAME (t) == NULL_TREE
6306 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6307 t = TYPE_MAIN_VARIANT (t);
6308 if (debug_info_level > DINFO_LEVEL_NONE)
6310 if (cfun)
6311 used_types_insert_helper (t, cfun);
6312 else
6314 /* So this might be a type referenced by a global variable.
6315 Record that type so that we can later decide to emit its
6316 debug information. */
6317 vec_safe_push (types_used_by_cur_var_decl, t);
6322 /* Helper to Hash a struct types_used_by_vars_entry. */
6324 static hashval_t
6325 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6327 gcc_assert (entry && entry->var_decl && entry->type);
6329 return iterative_hash_object (entry->type,
6330 iterative_hash_object (entry->var_decl, 0));
6333 /* Hash function of the types_used_by_vars_entry hash table. */
6335 hashval_t
6336 used_type_hasher::hash (types_used_by_vars_entry *entry)
6338 return hash_types_used_by_vars_entry (entry);
6341 /*Equality function of the types_used_by_vars_entry hash table. */
6343 bool
6344 used_type_hasher::equal (types_used_by_vars_entry *e1,
6345 types_used_by_vars_entry *e2)
6347 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6350 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6352 void
6353 types_used_by_var_decl_insert (tree type, tree var_decl)
6355 if (type != NULL && var_decl != NULL)
6357 types_used_by_vars_entry **slot;
6358 struct types_used_by_vars_entry e;
6359 e.var_decl = var_decl;
6360 e.type = type;
6361 if (types_used_by_vars_hash == NULL)
6362 types_used_by_vars_hash
6363 = hash_table<used_type_hasher>::create_ggc (37);
6365 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6366 if (*slot == NULL)
6368 struct types_used_by_vars_entry *entry;
6369 entry = ggc_alloc<types_used_by_vars_entry> ();
6370 entry->type = type;
6371 entry->var_decl = var_decl;
6372 *slot = entry;
6377 namespace {
6379 const pass_data pass_data_leaf_regs =
6381 RTL_PASS, /* type */
6382 "*leaf_regs", /* name */
6383 OPTGROUP_NONE, /* optinfo_flags */
6384 TV_NONE, /* tv_id */
6385 0, /* properties_required */
6386 0, /* properties_provided */
6387 0, /* properties_destroyed */
6388 0, /* todo_flags_start */
6389 0, /* todo_flags_finish */
6392 class pass_leaf_regs : public rtl_opt_pass
6394 public:
6395 pass_leaf_regs (gcc::context *ctxt)
6396 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6399 /* opt_pass methods: */
6400 virtual unsigned int execute (function *)
6402 return rest_of_handle_check_leaf_regs ();
6405 }; // class pass_leaf_regs
6407 } // anon namespace
6409 rtl_opt_pass *
6410 make_pass_leaf_regs (gcc::context *ctxt)
6412 return new pass_leaf_regs (ctxt);
6415 static unsigned int
6416 rest_of_handle_thread_prologue_and_epilogue (void)
6418 /* prepare_shrink_wrap is sensitive to the block structure of the control
6419 flow graph, so clean it up first. */
6420 if (optimize)
6421 cleanup_cfg (0);
6423 /* On some machines, the prologue and epilogue code, or parts thereof,
6424 can be represented as RTL. Doing so lets us schedule insns between
6425 it and the rest of the code and also allows delayed branch
6426 scheduling to operate in the epilogue. */
6427 thread_prologue_and_epilogue_insns ();
6429 /* Some non-cold blocks may now be only reachable from cold blocks.
6430 Fix that up. */
6431 fixup_partitions ();
6433 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6434 see PR57320. */
6435 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6437 /* The stack usage info is finalized during prologue expansion. */
6438 if (flag_stack_usage_info)
6439 output_stack_usage ();
6441 return 0;
6444 namespace {
6446 const pass_data pass_data_thread_prologue_and_epilogue =
6448 RTL_PASS, /* type */
6449 "pro_and_epilogue", /* name */
6450 OPTGROUP_NONE, /* optinfo_flags */
6451 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6452 0, /* properties_required */
6453 0, /* properties_provided */
6454 0, /* properties_destroyed */
6455 0, /* todo_flags_start */
6456 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6459 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6461 public:
6462 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6463 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6466 /* opt_pass methods: */
6467 virtual unsigned int execute (function *)
6469 return rest_of_handle_thread_prologue_and_epilogue ();
6472 }; // class pass_thread_prologue_and_epilogue
6474 } // anon namespace
6476 rtl_opt_pass *
6477 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6479 return new pass_thread_prologue_and_epilogue (ctxt);
6483 /* This mini-pass fixes fall-out from SSA in asm statements that have
6484 in-out constraints. Say you start with
6486 orig = inout;
6487 asm ("": "+mr" (inout));
6488 use (orig);
6490 which is transformed very early to use explicit output and match operands:
6492 orig = inout;
6493 asm ("": "=mr" (inout) : "0" (inout));
6494 use (orig);
6496 Or, after SSA and copyprop,
6498 asm ("": "=mr" (inout_2) : "0" (inout_1));
6499 use (inout_1);
6501 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6502 they represent two separate values, so they will get different pseudo
6503 registers during expansion. Then, since the two operands need to match
6504 per the constraints, but use different pseudo registers, reload can
6505 only register a reload for these operands. But reloads can only be
6506 satisfied by hardregs, not by memory, so we need a register for this
6507 reload, just because we are presented with non-matching operands.
6508 So, even though we allow memory for this operand, no memory can be
6509 used for it, just because the two operands don't match. This can
6510 cause reload failures on register-starved targets.
6512 So it's a symptom of reload not being able to use memory for reloads
6513 or, alternatively it's also a symptom of both operands not coming into
6514 reload as matching (in which case the pseudo could go to memory just
6515 fine, as the alternative allows it, and no reload would be necessary).
6516 We fix the latter problem here, by transforming
6518 asm ("": "=mr" (inout_2) : "0" (inout_1));
6520 back to
6522 inout_2 = inout_1;
6523 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6525 static void
6526 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6528 int i;
6529 bool changed = false;
6530 rtx op = SET_SRC (p_sets[0]);
6531 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6532 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6533 bool *output_matched = XALLOCAVEC (bool, noutputs);
6535 memset (output_matched, 0, noutputs * sizeof (bool));
6536 for (i = 0; i < ninputs; i++)
6538 rtx input, output;
6539 rtx_insn *insns;
6540 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6541 char *end;
6542 int match, j;
6544 if (*constraint == '%')
6545 constraint++;
6547 match = strtoul (constraint, &end, 10);
6548 if (end == constraint)
6549 continue;
6551 gcc_assert (match < noutputs);
6552 output = SET_DEST (p_sets[match]);
6553 input = RTVEC_ELT (inputs, i);
6554 /* Only do the transformation for pseudos. */
6555 if (! REG_P (output)
6556 || rtx_equal_p (output, input)
6557 || (GET_MODE (input) != VOIDmode
6558 && GET_MODE (input) != GET_MODE (output)))
6559 continue;
6561 /* We can't do anything if the output is also used as input,
6562 as we're going to overwrite it. */
6563 for (j = 0; j < ninputs; j++)
6564 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6565 break;
6566 if (j != ninputs)
6567 continue;
6569 /* Avoid changing the same input several times. For
6570 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6571 only change in once (to out1), rather than changing it
6572 first to out1 and afterwards to out2. */
6573 if (i > 0)
6575 for (j = 0; j < noutputs; j++)
6576 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6577 break;
6578 if (j != noutputs)
6579 continue;
6581 output_matched[match] = true;
6583 start_sequence ();
6584 emit_move_insn (output, input);
6585 insns = get_insns ();
6586 end_sequence ();
6587 emit_insn_before (insns, insn);
6589 /* Now replace all mentions of the input with output. We can't
6590 just replace the occurrence in inputs[i], as the register might
6591 also be used in some other input (or even in an address of an
6592 output), which would mean possibly increasing the number of
6593 inputs by one (namely 'output' in addition), which might pose
6594 a too complicated problem for reload to solve. E.g. this situation:
6596 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6598 Here 'input' is used in two occurrences as input (once for the
6599 input operand, once for the address in the second output operand).
6600 If we would replace only the occurrence of the input operand (to
6601 make the matching) we would be left with this:
6603 output = input
6604 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6606 Now we suddenly have two different input values (containing the same
6607 value, but different pseudos) where we formerly had only one.
6608 With more complicated asms this might lead to reload failures
6609 which wouldn't have happen without this pass. So, iterate over
6610 all operands and replace all occurrences of the register used. */
6611 for (j = 0; j < noutputs; j++)
6612 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6613 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6614 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6615 input, output);
6616 for (j = 0; j < ninputs; j++)
6617 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6618 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6619 input, output);
6621 changed = true;
6624 if (changed)
6625 df_insn_rescan (insn);
6628 /* Add the decl D to the local_decls list of FUN. */
6630 void
6631 add_local_decl (struct function *fun, tree d)
6633 gcc_assert (VAR_P (d));
6634 vec_safe_push (fun->local_decls, d);
6637 namespace {
6639 const pass_data pass_data_match_asm_constraints =
6641 RTL_PASS, /* type */
6642 "asmcons", /* name */
6643 OPTGROUP_NONE, /* optinfo_flags */
6644 TV_NONE, /* tv_id */
6645 0, /* properties_required */
6646 0, /* properties_provided */
6647 0, /* properties_destroyed */
6648 0, /* todo_flags_start */
6649 0, /* todo_flags_finish */
6652 class pass_match_asm_constraints : public rtl_opt_pass
6654 public:
6655 pass_match_asm_constraints (gcc::context *ctxt)
6656 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6659 /* opt_pass methods: */
6660 virtual unsigned int execute (function *);
6662 }; // class pass_match_asm_constraints
6664 unsigned
6665 pass_match_asm_constraints::execute (function *fun)
6667 basic_block bb;
6668 rtx_insn *insn;
6669 rtx pat, *p_sets;
6670 int noutputs;
6672 if (!crtl->has_asm_statement)
6673 return 0;
6675 df_set_flags (DF_DEFER_INSN_RESCAN);
6676 FOR_EACH_BB_FN (bb, fun)
6678 FOR_BB_INSNS (bb, insn)
6680 if (!INSN_P (insn))
6681 continue;
6683 pat = PATTERN (insn);
6684 if (GET_CODE (pat) == PARALLEL)
6685 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6686 else if (GET_CODE (pat) == SET)
6687 p_sets = &PATTERN (insn), noutputs = 1;
6688 else
6689 continue;
6691 if (GET_CODE (*p_sets) == SET
6692 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6693 match_asm_constraints_1 (insn, p_sets, noutputs);
6697 return TODO_df_finish;
6700 } // anon namespace
6702 rtl_opt_pass *
6703 make_pass_match_asm_constraints (gcc::context *ctxt)
6705 return new pass_match_asm_constraints (ctxt);
6709 #include "gt-function.h"