Mark ChangeLog
[official-gcc.git] / gcc / haifa-sched.c
blob3a7f98f59fec29bebf0f6239c409880b9321c322
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
60 1. choose insn with the longest path to end of bb, ties
61 broken by
62 2. choose insn with least contribution to register pressure,
63 ties broken by
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
67 broken by
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using LOG_LINKS backward
86 dependences. LOG_LINKS are translated into INSN_DEPEND forward
87 dependences for the purpose of forward list scheduling.
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
96 utilization.
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
101 of this case.
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
127 #include "config.h"
128 #include "system.h"
129 #include "coretypes.h"
130 #include "tm.h"
131 #include "toplev.h"
132 #include "rtl.h"
133 #include "tm_p.h"
134 #include "hard-reg-set.h"
135 #include "regs.h"
136 #include "function.h"
137 #include "flags.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
140 #include "except.h"
141 #include "toplev.h"
142 #include "recog.h"
143 #include "sched-int.h"
144 #include "target.h"
145 #include "output.h"
146 #include "params.h"
148 #ifdef INSN_SCHEDULING
150 /* issue_rate is the number of insns that can be scheduled in the same
151 machine cycle. It can be defined in the config/mach/mach.h file,
152 otherwise we set it to 1. */
154 static int issue_rate;
156 /* sched-verbose controls the amount of debugging output the
157 scheduler prints. It is controlled by -fsched-verbose=N:
158 N>0 and no -DSR : the output is directed to stderr.
159 N>=10 will direct the printouts to stderr (regardless of -dSR).
160 N=1: same as -dSR.
161 N=2: bb's probabilities, detailed ready list info, unit/insn info.
162 N=3: rtl at abort point, control-flow, regions info.
163 N=5: dependences info. */
165 static int sched_verbose_param = 0;
166 int sched_verbose = 0;
168 /* Debugging file. All printouts are sent to dump, which is always set,
169 either to stderr, or to the dump listing file (-dRS). */
170 FILE *sched_dump = 0;
172 /* Highest uid before scheduling. */
173 static int old_max_uid;
175 /* fix_sched_param() is called from toplev.c upon detection
176 of the -fsched-verbose=N option. */
178 void
179 fix_sched_param (const char *param, const char *val)
181 if (!strcmp (param, "verbose"))
182 sched_verbose_param = atoi (val);
183 else
184 warning (0, "fix_sched_param: unknown param: %s", param);
187 struct haifa_insn_data *h_i_d;
189 #define LINE_NOTE(INSN) (h_i_d[INSN_UID (INSN)].line_note)
190 #define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
191 #define INTER_TICK(INSN) (h_i_d[INSN_UID (INSN)].inter_tick)
193 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
194 then it should be recalculated from scratch. */
195 #define INVALID_TICK (-(max_insn_queue_index + 1))
196 /* The minimal value of the INSN_TICK of an instruction. */
197 #define MIN_TICK (-max_insn_queue_index)
199 /* Issue points are used to distinguish between instructions in max_issue ().
200 For now, all instructions are equally good. */
201 #define ISSUE_POINTS(INSN) 1
203 /* Vector indexed by basic block number giving the starting line-number
204 for each basic block. */
205 static rtx *line_note_head;
207 /* List of important notes we must keep around. This is a pointer to the
208 last element in the list. */
209 static rtx note_list;
211 static struct spec_info_def spec_info_var;
212 /* Description of the speculative part of the scheduling.
213 If NULL - no speculation. */
214 static spec_info_t spec_info;
216 /* True, if recovery block was added during scheduling of current block.
217 Used to determine, if we need to fix INSN_TICKs. */
218 static bool added_recovery_block_p;
220 /* Counters of different types of speculative instructions. */
221 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
223 /* Pointers to GLAT data. See init_glat for more information. */
224 regset *glat_start, *glat_end;
226 /* Array used in {unlink, restore}_bb_notes. */
227 static rtx *bb_header = 0;
229 /* Number of basic_blocks. */
230 static int old_last_basic_block;
232 /* Basic block after which recovery blocks will be created. */
233 static basic_block before_recovery;
235 /* Queues, etc. */
237 /* An instruction is ready to be scheduled when all insns preceding it
238 have already been scheduled. It is important to ensure that all
239 insns which use its result will not be executed until its result
240 has been computed. An insn is maintained in one of four structures:
242 (P) the "Pending" set of insns which cannot be scheduled until
243 their dependencies have been satisfied.
244 (Q) the "Queued" set of insns that can be scheduled when sufficient
245 time has passed.
246 (R) the "Ready" list of unscheduled, uncommitted insns.
247 (S) the "Scheduled" list of insns.
249 Initially, all insns are either "Pending" or "Ready" depending on
250 whether their dependencies are satisfied.
252 Insns move from the "Ready" list to the "Scheduled" list as they
253 are committed to the schedule. As this occurs, the insns in the
254 "Pending" list have their dependencies satisfied and move to either
255 the "Ready" list or the "Queued" set depending on whether
256 sufficient time has passed to make them ready. As time passes,
257 insns move from the "Queued" set to the "Ready" list.
259 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
260 insns, i.e., those that are ready, queued, and pending.
261 The "Queued" set (Q) is implemented by the variable `insn_queue'.
262 The "Ready" list (R) is implemented by the variables `ready' and
263 `n_ready'.
264 The "Scheduled" list (S) is the new insn chain built by this pass.
266 The transition (R->S) is implemented in the scheduling loop in
267 `schedule_block' when the best insn to schedule is chosen.
268 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
269 insns move from the ready list to the scheduled list.
270 The transition (Q->R) is implemented in 'queue_to_insn' as time
271 passes or stalls are introduced. */
273 /* Implement a circular buffer to delay instructions until sufficient
274 time has passed. For the new pipeline description interface,
275 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
276 than maximal time of instruction execution computed by genattr.c on
277 the base maximal time of functional unit reservations and getting a
278 result. This is the longest time an insn may be queued. */
280 static rtx *insn_queue;
281 static int q_ptr = 0;
282 static int q_size = 0;
283 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
284 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
286 #define QUEUE_SCHEDULED (-3)
287 #define QUEUE_NOWHERE (-2)
288 #define QUEUE_READY (-1)
289 /* QUEUE_SCHEDULED - INSN is scheduled.
290 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
291 queue or ready list.
292 QUEUE_READY - INSN is in ready list.
293 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
295 #define QUEUE_INDEX(INSN) (h_i_d[INSN_UID (INSN)].queue_index)
297 /* The following variable value refers for all current and future
298 reservations of the processor units. */
299 state_t curr_state;
301 /* The following variable value is size of memory representing all
302 current and future reservations of the processor units. */
303 static size_t dfa_state_size;
305 /* The following array is used to find the best insn from ready when
306 the automaton pipeline interface is used. */
307 static char *ready_try;
309 /* Describe the ready list of the scheduler.
310 VEC holds space enough for all insns in the current region. VECLEN
311 says how many exactly.
312 FIRST is the index of the element with the highest priority; i.e. the
313 last one in the ready list, since elements are ordered by ascending
314 priority.
315 N_READY determines how many insns are on the ready list. */
317 struct ready_list
319 rtx *vec;
320 int veclen;
321 int first;
322 int n_ready;
325 /* The pointer to the ready list. */
326 static struct ready_list *readyp;
328 /* Scheduling clock. */
329 static int clock_var;
331 /* Number of instructions in current scheduling region. */
332 static int rgn_n_insns;
334 static int may_trap_exp (rtx, int);
336 /* Nonzero iff the address is comprised from at most 1 register. */
337 #define CONST_BASED_ADDRESS_P(x) \
338 (REG_P (x) \
339 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
340 || (GET_CODE (x) == LO_SUM)) \
341 && (CONSTANT_P (XEXP (x, 0)) \
342 || CONSTANT_P (XEXP (x, 1)))))
344 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
345 as found by analyzing insn's expression. */
347 static int
348 may_trap_exp (rtx x, int is_store)
350 enum rtx_code code;
352 if (x == 0)
353 return TRAP_FREE;
354 code = GET_CODE (x);
355 if (is_store)
357 if (code == MEM && may_trap_p (x))
358 return TRAP_RISKY;
359 else
360 return TRAP_FREE;
362 if (code == MEM)
364 /* The insn uses memory: a volatile load. */
365 if (MEM_VOLATILE_P (x))
366 return IRISKY;
367 /* An exception-free load. */
368 if (!may_trap_p (x))
369 return IFREE;
370 /* A load with 1 base register, to be further checked. */
371 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
372 return PFREE_CANDIDATE;
373 /* No info on the load, to be further checked. */
374 return PRISKY_CANDIDATE;
376 else
378 const char *fmt;
379 int i, insn_class = TRAP_FREE;
381 /* Neither store nor load, check if it may cause a trap. */
382 if (may_trap_p (x))
383 return TRAP_RISKY;
384 /* Recursive step: walk the insn... */
385 fmt = GET_RTX_FORMAT (code);
386 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
388 if (fmt[i] == 'e')
390 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
391 insn_class = WORST_CLASS (insn_class, tmp_class);
393 else if (fmt[i] == 'E')
395 int j;
396 for (j = 0; j < XVECLEN (x, i); j++)
398 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
399 insn_class = WORST_CLASS (insn_class, tmp_class);
400 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
401 break;
404 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
405 break;
407 return insn_class;
411 /* Classifies insn for the purpose of verifying that it can be
412 moved speculatively, by examining it's patterns, returning:
413 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
414 TRAP_FREE: non-load insn.
415 IFREE: load from a globally safe location.
416 IRISKY: volatile load.
417 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
418 being either PFREE or PRISKY. */
421 haifa_classify_insn (rtx insn)
423 rtx pat = PATTERN (insn);
424 int tmp_class = TRAP_FREE;
425 int insn_class = TRAP_FREE;
426 enum rtx_code code;
428 if (GET_CODE (pat) == PARALLEL)
430 int i, len = XVECLEN (pat, 0);
432 for (i = len - 1; i >= 0; i--)
434 code = GET_CODE (XVECEXP (pat, 0, i));
435 switch (code)
437 case CLOBBER:
438 /* Test if it is a 'store'. */
439 tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
440 break;
441 case SET:
442 /* Test if it is a store. */
443 tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
444 if (tmp_class == TRAP_RISKY)
445 break;
446 /* Test if it is a load. */
447 tmp_class
448 = WORST_CLASS (tmp_class,
449 may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)),
450 0));
451 break;
452 case COND_EXEC:
453 case TRAP_IF:
454 tmp_class = TRAP_RISKY;
455 break;
456 default:
459 insn_class = WORST_CLASS (insn_class, tmp_class);
460 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
461 break;
464 else
466 code = GET_CODE (pat);
467 switch (code)
469 case CLOBBER:
470 /* Test if it is a 'store'. */
471 tmp_class = may_trap_exp (XEXP (pat, 0), 1);
472 break;
473 case SET:
474 /* Test if it is a store. */
475 tmp_class = may_trap_exp (SET_DEST (pat), 1);
476 if (tmp_class == TRAP_RISKY)
477 break;
478 /* Test if it is a load. */
479 tmp_class =
480 WORST_CLASS (tmp_class,
481 may_trap_exp (SET_SRC (pat), 0));
482 break;
483 case COND_EXEC:
484 case TRAP_IF:
485 tmp_class = TRAP_RISKY;
486 break;
487 default:;
489 insn_class = tmp_class;
492 return insn_class;
495 /* Forward declarations. */
497 HAIFA_INLINE static int insn_cost1 (rtx, enum reg_note, rtx, rtx);
498 static int priority (rtx);
499 static int rank_for_schedule (const void *, const void *);
500 static void swap_sort (rtx *, int);
501 static void queue_insn (rtx, int);
502 static int schedule_insn (rtx);
503 static int find_set_reg_weight (rtx);
504 static void find_insn_reg_weight (basic_block);
505 static void find_insn_reg_weight1 (rtx);
506 static void adjust_priority (rtx);
507 static void advance_one_cycle (void);
509 /* Notes handling mechanism:
510 =========================
511 Generally, NOTES are saved before scheduling and restored after scheduling.
512 The scheduler distinguishes between three types of notes:
514 (1) LINE_NUMBER notes, generated and used for debugging. Here,
515 before scheduling a region, a pointer to the LINE_NUMBER note is
516 added to the insn following it (in save_line_notes()), and the note
517 is removed (in rm_line_notes() and unlink_line_notes()). After
518 scheduling the region, this pointer is used for regeneration of
519 the LINE_NUMBER note (in restore_line_notes()).
521 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
522 Before scheduling a region, a pointer to the note is added to the insn
523 that follows or precedes it. (This happens as part of the data dependence
524 computation). After scheduling an insn, the pointer contained in it is
525 used for regenerating the corresponding note (in reemit_notes).
527 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
528 these notes are put in a list (in rm_other_notes() and
529 unlink_other_notes ()). After scheduling the block, these notes are
530 inserted at the beginning of the block (in schedule_block()). */
532 static rtx unlink_other_notes (rtx, rtx);
533 static rtx unlink_line_notes (rtx, rtx);
534 static void reemit_notes (rtx);
536 static rtx *ready_lastpos (struct ready_list *);
537 static void ready_add (struct ready_list *, rtx, bool);
538 static void ready_sort (struct ready_list *);
539 static rtx ready_remove_first (struct ready_list *);
541 static void queue_to_ready (struct ready_list *);
542 static int early_queue_to_ready (state_t, struct ready_list *);
544 static void debug_ready_list (struct ready_list *);
546 static void move_insn (rtx);
548 /* The following functions are used to implement multi-pass scheduling
549 on the first cycle. */
550 static rtx ready_element (struct ready_list *, int);
551 static rtx ready_remove (struct ready_list *, int);
552 static void ready_remove_insn (rtx);
553 static int max_issue (struct ready_list *, int *, int);
555 static rtx choose_ready (struct ready_list *);
557 static void fix_inter_tick (rtx, rtx);
558 static int fix_tick_ready (rtx);
559 static void change_queue_index (rtx, int);
560 static void resolve_dep (rtx, rtx);
562 /* The following functions are used to implement scheduling of data/control
563 speculative instructions. */
565 static void extend_h_i_d (void);
566 static void extend_ready (int);
567 static void extend_global (rtx);
568 static void extend_all (rtx);
569 static void init_h_i_d (rtx);
570 static void generate_recovery_code (rtx);
571 static void process_insn_depend_be_in_spec (rtx, rtx, ds_t);
572 static void begin_speculative_block (rtx);
573 static void add_to_speculative_block (rtx);
574 static dw_t dep_weak (ds_t);
575 static edge find_fallthru_edge (basic_block);
576 static void init_before_recovery (void);
577 static basic_block create_recovery_block (void);
578 static void create_check_block_twin (rtx, bool);
579 static void fix_recovery_deps (basic_block);
580 static void associate_line_notes_with_blocks (basic_block);
581 static void change_pattern (rtx, rtx);
582 static int speculate_insn (rtx, ds_t, rtx *);
583 static void dump_new_block_header (int, basic_block, rtx, rtx);
584 static void restore_bb_notes (basic_block);
585 static void extend_bb (basic_block);
586 static void fix_jump_move (rtx);
587 static void move_block_after_check (rtx);
588 static void move_succs (VEC(edge,gc) **, basic_block);
589 static void init_glat (void);
590 static void init_glat1 (basic_block);
591 static void attach_life_info1 (basic_block);
592 static void free_glat (void);
593 static void sched_remove_insn (rtx);
594 static void clear_priorities (rtx);
595 static void add_jump_dependencies (rtx, rtx);
596 static void calc_priorities (rtx);
597 #ifdef ENABLE_CHECKING
598 static int has_edge_p (VEC(edge,gc) *, int);
599 static void check_cfg (rtx, rtx);
600 static void check_sched_flags (void);
601 #endif
603 #endif /* INSN_SCHEDULING */
605 /* Point to state used for the current scheduling pass. */
606 struct sched_info *current_sched_info;
608 #ifndef INSN_SCHEDULING
609 void
610 schedule_insns (void)
613 #else
615 /* Working copy of frontend's sched_info variable. */
616 static struct sched_info current_sched_info_var;
618 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
619 so that insns independent of the last scheduled insn will be preferred
620 over dependent instructions. */
622 static rtx last_scheduled_insn;
624 /* Compute cost of executing INSN given the dependence LINK on the insn USED.
625 This is the number of cycles between instruction issue and
626 instruction results. */
628 HAIFA_INLINE int
629 insn_cost (rtx insn, rtx link, rtx used)
631 return insn_cost1 (insn, used ? REG_NOTE_KIND (link) : REG_NOTE_MAX,
632 link, used);
635 /* Compute cost of executing INSN given the dependence on the insn USED.
636 If LINK is not NULL, then its REG_NOTE_KIND is used as a dependence type.
637 Otherwise, dependence between INSN and USED is assumed to be of type
638 DEP_TYPE. This function was introduced as a workaround for
639 targetm.adjust_cost hook.
640 This is the number of cycles between instruction issue and
641 instruction results. */
643 HAIFA_INLINE static int
644 insn_cost1 (rtx insn, enum reg_note dep_type, rtx link, rtx used)
646 int cost = INSN_COST (insn);
648 if (cost < 0)
650 /* A USE insn, or something else we don't need to
651 understand. We can't pass these directly to
652 result_ready_cost or insn_default_latency because it will
653 trigger a fatal error for unrecognizable insns. */
654 if (recog_memoized (insn) < 0)
656 INSN_COST (insn) = 0;
657 return 0;
659 else
661 cost = insn_default_latency (insn);
662 if (cost < 0)
663 cost = 0;
665 INSN_COST (insn) = cost;
669 /* In this case estimate cost without caring how insn is used. */
670 if (used == 0)
671 return cost;
673 /* A USE insn should never require the value used to be computed.
674 This allows the computation of a function's result and parameter
675 values to overlap the return and call. */
676 if (recog_memoized (used) < 0)
677 cost = 0;
678 else
680 gcc_assert (!link || dep_type == REG_NOTE_KIND (link));
682 if (INSN_CODE (insn) >= 0)
684 if (dep_type == REG_DEP_ANTI)
685 cost = 0;
686 else if (dep_type == REG_DEP_OUTPUT)
688 cost = (insn_default_latency (insn)
689 - insn_default_latency (used));
690 if (cost <= 0)
691 cost = 1;
693 else if (bypass_p (insn))
694 cost = insn_latency (insn, used);
697 if (targetm.sched.adjust_cost_2)
698 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost);
699 else
701 gcc_assert (link);
702 if (targetm.sched.adjust_cost)
703 cost = targetm.sched.adjust_cost (used, link, insn, cost);
706 if (cost < 0)
707 cost = 0;
710 return cost;
713 /* Compute the priority number for INSN. */
715 static int
716 priority (rtx insn)
718 rtx link;
720 if (! INSN_P (insn))
721 return 0;
723 if (! INSN_PRIORITY_KNOWN (insn))
725 int this_priority = 0;
727 if (INSN_DEPEND (insn) == 0)
728 this_priority = insn_cost (insn, 0, 0);
729 else
731 rtx prev_first, twin;
732 basic_block rec;
734 /* For recovery check instructions we calculate priority slightly
735 different than that of normal instructions. Instead of walking
736 through INSN_DEPEND (check) list, we walk through INSN_DEPEND list
737 of each instruction in the corresponding recovery block. */
739 rec = RECOVERY_BLOCK (insn);
740 if (!rec || rec == EXIT_BLOCK_PTR)
742 prev_first = PREV_INSN (insn);
743 twin = insn;
745 else
747 prev_first = NEXT_INSN (BB_HEAD (rec));
748 twin = PREV_INSN (BB_END (rec));
753 for (link = INSN_DEPEND (twin); link; link = XEXP (link, 1))
755 rtx next;
756 int next_priority;
758 next = XEXP (link, 0);
760 if (BLOCK_FOR_INSN (next) != rec)
762 /* Critical path is meaningful in block boundaries
763 only. */
764 if (! (*current_sched_info->contributes_to_priority)
765 (next, insn)
766 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
767 then speculative instructions will less likely be
768 scheduled. That is because the priority of
769 their producers will increase, and, thus, the
770 producers will more likely be scheduled, thus,
771 resolving the dependence. */
772 || ((current_sched_info->flags & DO_SPECULATION)
773 && (DEP_STATUS (link) & SPECULATIVE)
774 && !(spec_info->flags
775 & COUNT_SPEC_IN_CRITICAL_PATH)))
776 continue;
778 next_priority = insn_cost1 (insn,
779 twin == insn ?
780 REG_NOTE_KIND (link) :
781 REG_DEP_ANTI,
782 twin == insn ? link : 0,
783 next) + priority (next);
785 if (next_priority > this_priority)
786 this_priority = next_priority;
790 twin = PREV_INSN (twin);
792 while (twin != prev_first);
794 INSN_PRIORITY (insn) = this_priority;
795 INSN_PRIORITY_KNOWN (insn) = 1;
798 return INSN_PRIORITY (insn);
801 /* Macros and functions for keeping the priority queue sorted, and
802 dealing with queuing and dequeuing of instructions. */
804 #define SCHED_SORT(READY, N_READY) \
805 do { if ((N_READY) == 2) \
806 swap_sort (READY, N_READY); \
807 else if ((N_READY) > 2) \
808 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
809 while (0)
811 /* Returns a positive value if x is preferred; returns a negative value if
812 y is preferred. Should never return 0, since that will make the sort
813 unstable. */
815 static int
816 rank_for_schedule (const void *x, const void *y)
818 rtx tmp = *(const rtx *) y;
819 rtx tmp2 = *(const rtx *) x;
820 rtx link;
821 int tmp_class, tmp2_class, depend_count1, depend_count2;
822 int val, priority_val, weight_val, info_val;
824 /* The insn in a schedule group should be issued the first. */
825 if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
826 return SCHED_GROUP_P (tmp2) ? 1 : -1;
828 /* Prefer insn with higher priority. */
829 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
831 if (priority_val)
832 return priority_val;
834 /* Prefer speculative insn with greater dependencies weakness. */
835 if (spec_info)
837 ds_t ds1, ds2;
838 dw_t dw1, dw2;
839 int dw;
841 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
842 if (ds1)
843 dw1 = dep_weak (ds1);
844 else
845 dw1 = NO_DEP_WEAK;
847 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
848 if (ds2)
849 dw2 = dep_weak (ds2);
850 else
851 dw2 = NO_DEP_WEAK;
853 dw = dw2 - dw1;
854 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
855 return dw;
858 /* Prefer an insn with smaller contribution to registers-pressure. */
859 if (!reload_completed &&
860 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
861 return weight_val;
863 info_val = (*current_sched_info->rank) (tmp, tmp2);
864 if (info_val)
865 return info_val;
867 /* Compare insns based on their relation to the last-scheduled-insn. */
868 if (INSN_P (last_scheduled_insn))
870 /* Classify the instructions into three classes:
871 1) Data dependent on last schedule insn.
872 2) Anti/Output dependent on last scheduled insn.
873 3) Independent of last scheduled insn, or has latency of one.
874 Choose the insn from the highest numbered class if different. */
875 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
876 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
877 tmp_class = 3;
878 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
879 tmp_class = 1;
880 else
881 tmp_class = 2;
883 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
884 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
885 tmp2_class = 3;
886 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
887 tmp2_class = 1;
888 else
889 tmp2_class = 2;
891 if ((val = tmp2_class - tmp_class))
892 return val;
895 /* Prefer the insn which has more later insns that depend on it.
896 This gives the scheduler more freedom when scheduling later
897 instructions at the expense of added register pressure. */
898 depend_count1 = 0;
899 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
900 depend_count1++;
902 depend_count2 = 0;
903 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
904 depend_count2++;
906 val = depend_count2 - depend_count1;
907 if (val)
908 return val;
910 /* If insns are equally good, sort by INSN_LUID (original insn order),
911 so that we make the sort stable. This minimizes instruction movement,
912 thus minimizing sched's effect on debugging and cross-jumping. */
913 return INSN_LUID (tmp) - INSN_LUID (tmp2);
916 /* Resort the array A in which only element at index N may be out of order. */
918 HAIFA_INLINE static void
919 swap_sort (rtx *a, int n)
921 rtx insn = a[n - 1];
922 int i = n - 2;
924 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
926 a[i + 1] = a[i];
927 i -= 1;
929 a[i + 1] = insn;
932 /* Add INSN to the insn queue so that it can be executed at least
933 N_CYCLES after the currently executing insn. Preserve insns
934 chain for debugging purposes. */
936 HAIFA_INLINE static void
937 queue_insn (rtx insn, int n_cycles)
939 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
940 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
942 gcc_assert (n_cycles <= max_insn_queue_index);
944 insn_queue[next_q] = link;
945 q_size += 1;
947 if (sched_verbose >= 2)
949 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
950 (*current_sched_info->print_insn) (insn, 0));
952 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
955 QUEUE_INDEX (insn) = next_q;
958 /* Remove INSN from queue. */
959 static void
960 queue_remove (rtx insn)
962 gcc_assert (QUEUE_INDEX (insn) >= 0);
963 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
964 q_size--;
965 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
968 /* Return a pointer to the bottom of the ready list, i.e. the insn
969 with the lowest priority. */
971 HAIFA_INLINE static rtx *
972 ready_lastpos (struct ready_list *ready)
974 gcc_assert (ready->n_ready >= 1);
975 return ready->vec + ready->first - ready->n_ready + 1;
978 /* Add an element INSN to the ready list so that it ends up with the
979 lowest/highest priority depending on FIRST_P. */
981 HAIFA_INLINE static void
982 ready_add (struct ready_list *ready, rtx insn, bool first_p)
984 if (!first_p)
986 if (ready->first == ready->n_ready)
988 memmove (ready->vec + ready->veclen - ready->n_ready,
989 ready_lastpos (ready),
990 ready->n_ready * sizeof (rtx));
991 ready->first = ready->veclen - 1;
993 ready->vec[ready->first - ready->n_ready] = insn;
995 else
997 if (ready->first == ready->veclen - 1)
999 if (ready->n_ready)
1000 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1001 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1002 ready_lastpos (ready),
1003 ready->n_ready * sizeof (rtx));
1004 ready->first = ready->veclen - 2;
1006 ready->vec[++(ready->first)] = insn;
1009 ready->n_ready++;
1011 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1012 QUEUE_INDEX (insn) = QUEUE_READY;
1015 /* Remove the element with the highest priority from the ready list and
1016 return it. */
1018 HAIFA_INLINE static rtx
1019 ready_remove_first (struct ready_list *ready)
1021 rtx t;
1023 gcc_assert (ready->n_ready);
1024 t = ready->vec[ready->first--];
1025 ready->n_ready--;
1026 /* If the queue becomes empty, reset it. */
1027 if (ready->n_ready == 0)
1028 ready->first = ready->veclen - 1;
1030 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1031 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1033 return t;
1036 /* The following code implements multi-pass scheduling for the first
1037 cycle. In other words, we will try to choose ready insn which
1038 permits to start maximum number of insns on the same cycle. */
1040 /* Return a pointer to the element INDEX from the ready. INDEX for
1041 insn with the highest priority is 0, and the lowest priority has
1042 N_READY - 1. */
1044 HAIFA_INLINE static rtx
1045 ready_element (struct ready_list *ready, int index)
1047 gcc_assert (ready->n_ready && index < ready->n_ready);
1049 return ready->vec[ready->first - index];
1052 /* Remove the element INDEX from the ready list and return it. INDEX
1053 for insn with the highest priority is 0, and the lowest priority
1054 has N_READY - 1. */
1056 HAIFA_INLINE static rtx
1057 ready_remove (struct ready_list *ready, int index)
1059 rtx t;
1060 int i;
1062 if (index == 0)
1063 return ready_remove_first (ready);
1064 gcc_assert (ready->n_ready && index < ready->n_ready);
1065 t = ready->vec[ready->first - index];
1066 ready->n_ready--;
1067 for (i = index; i < ready->n_ready; i++)
1068 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1069 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1070 return t;
1073 /* Remove INSN from the ready list. */
1074 static void
1075 ready_remove_insn (rtx insn)
1077 int i;
1079 for (i = 0; i < readyp->n_ready; i++)
1080 if (ready_element (readyp, i) == insn)
1082 ready_remove (readyp, i);
1083 return;
1085 gcc_unreachable ();
1088 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1089 macro. */
1091 HAIFA_INLINE static void
1092 ready_sort (struct ready_list *ready)
1094 rtx *first = ready_lastpos (ready);
1095 SCHED_SORT (first, ready->n_ready);
1098 /* PREV is an insn that is ready to execute. Adjust its priority if that
1099 will help shorten or lengthen register lifetimes as appropriate. Also
1100 provide a hook for the target to tweek itself. */
1102 HAIFA_INLINE static void
1103 adjust_priority (rtx prev)
1105 /* ??? There used to be code here to try and estimate how an insn
1106 affected register lifetimes, but it did it by looking at REG_DEAD
1107 notes, which we removed in schedule_region. Nor did it try to
1108 take into account register pressure or anything useful like that.
1110 Revisit when we have a machine model to work with and not before. */
1112 if (targetm.sched.adjust_priority)
1113 INSN_PRIORITY (prev) =
1114 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
1117 /* Advance time on one cycle. */
1118 HAIFA_INLINE static void
1119 advance_one_cycle (void)
1121 if (targetm.sched.dfa_pre_cycle_insn)
1122 state_transition (curr_state,
1123 targetm.sched.dfa_pre_cycle_insn ());
1125 state_transition (curr_state, NULL);
1127 if (targetm.sched.dfa_post_cycle_insn)
1128 state_transition (curr_state,
1129 targetm.sched.dfa_post_cycle_insn ());
1132 /* Clock at which the previous instruction was issued. */
1133 static int last_clock_var;
1135 /* INSN is the "currently executing insn". Launch each insn which was
1136 waiting on INSN. READY is the ready list which contains the insns
1137 that are ready to fire. CLOCK is the current cycle. The function
1138 returns necessary cycle advance after issuing the insn (it is not
1139 zero for insns in a schedule group). */
1141 static int
1142 schedule_insn (rtx insn)
1144 rtx link;
1145 int advance = 0;
1147 if (sched_verbose >= 1)
1149 char buf[2048];
1151 print_insn (buf, insn, 0);
1152 buf[40] = 0;
1153 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
1155 if (recog_memoized (insn) < 0)
1156 fprintf (sched_dump, "nothing");
1157 else
1158 print_reservation (sched_dump, insn);
1159 fputc ('\n', sched_dump);
1162 /* Scheduling instruction should have all its dependencies resolved and
1163 should have been removed from the ready list. */
1164 gcc_assert (INSN_DEP_COUNT (insn) == 0);
1165 gcc_assert (!LOG_LINKS (insn));
1166 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
1168 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
1170 /* Now we can free RESOLVED_DEPS list. */
1171 if (current_sched_info->flags & USE_DEPS_LIST)
1172 free_DEPS_LIST_list (&RESOLVED_DEPS (insn));
1173 else
1174 free_INSN_LIST_list (&RESOLVED_DEPS (insn));
1176 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
1177 if (INSN_TICK (insn) > clock_var)
1178 /* INSN has been prematurely moved from the queue to the ready list.
1179 This is possible only if following flag is set. */
1180 gcc_assert (flag_sched_stalled_insns);
1182 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1183 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1184 INSN_TICK (insn) = clock_var;
1186 /* Update dependent instructions. */
1187 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
1189 rtx next = XEXP (link, 0);
1191 resolve_dep (next, insn);
1193 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
1195 int effective_cost;
1197 effective_cost = try_ready (next);
1199 if (effective_cost >= 0
1200 && SCHED_GROUP_P (next)
1201 && advance < effective_cost)
1202 advance = effective_cost;
1204 else
1205 /* Check always has only one forward dependence (to the first insn in
1206 the recovery block), therefore, this will be executed only once. */
1208 gcc_assert (XEXP (link, 1) == 0);
1209 fix_recovery_deps (RECOVERY_BLOCK (insn));
1213 /* Annotate the instruction with issue information -- TImode
1214 indicates that the instruction is expected not to be able
1215 to issue on the same cycle as the previous insn. A machine
1216 may use this information to decide how the instruction should
1217 be aligned. */
1218 if (issue_rate > 1
1219 && GET_CODE (PATTERN (insn)) != USE
1220 && GET_CODE (PATTERN (insn)) != CLOBBER)
1222 if (reload_completed)
1223 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
1224 last_clock_var = clock_var;
1227 return advance;
1230 /* Functions for handling of notes. */
1232 /* Delete notes beginning with INSN and put them in the chain
1233 of notes ended by NOTE_LIST.
1234 Returns the insn following the notes. */
1236 static rtx
1237 unlink_other_notes (rtx insn, rtx tail)
1239 rtx prev = PREV_INSN (insn);
1241 while (insn != tail && NOTE_NOT_BB_P (insn))
1243 rtx next = NEXT_INSN (insn);
1244 basic_block bb = BLOCK_FOR_INSN (insn);
1246 /* Delete the note from its current position. */
1247 if (prev)
1248 NEXT_INSN (prev) = next;
1249 if (next)
1250 PREV_INSN (next) = prev;
1252 if (bb)
1254 /* Basic block can begin with either LABEL or
1255 NOTE_INSN_BASIC_BLOCK. */
1256 gcc_assert (BB_HEAD (bb) != insn);
1258 /* Check if we are removing last insn in the BB. */
1259 if (BB_END (bb) == insn)
1260 BB_END (bb) = prev;
1263 /* See sched_analyze to see how these are handled. */
1264 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1265 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
1267 /* Insert the note at the end of the notes list. */
1268 PREV_INSN (insn) = note_list;
1269 if (note_list)
1270 NEXT_INSN (note_list) = insn;
1271 note_list = insn;
1274 insn = next;
1276 return insn;
1279 /* Delete line notes beginning with INSN. Record line-number notes so
1280 they can be reused. Returns the insn following the notes. */
1282 static rtx
1283 unlink_line_notes (rtx insn, rtx tail)
1285 rtx prev = PREV_INSN (insn);
1287 while (insn != tail && NOTE_NOT_BB_P (insn))
1289 rtx next = NEXT_INSN (insn);
1291 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
1293 basic_block bb = BLOCK_FOR_INSN (insn);
1295 /* Delete the note from its current position. */
1296 if (prev)
1297 NEXT_INSN (prev) = next;
1298 if (next)
1299 PREV_INSN (next) = prev;
1301 if (bb)
1303 /* Basic block can begin with either LABEL or
1304 NOTE_INSN_BASIC_BLOCK. */
1305 gcc_assert (BB_HEAD (bb) != insn);
1307 /* Check if we are removing last insn in the BB. */
1308 if (BB_END (bb) == insn)
1309 BB_END (bb) = prev;
1312 /* Record line-number notes so they can be reused. */
1313 LINE_NOTE (insn) = insn;
1315 else
1316 prev = insn;
1318 insn = next;
1320 return insn;
1323 /* Return the head and tail pointers of ebb starting at BEG and ending
1324 at END. */
1326 void
1327 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
1329 rtx beg_head = BB_HEAD (beg);
1330 rtx beg_tail = BB_END (beg);
1331 rtx end_head = BB_HEAD (end);
1332 rtx end_tail = BB_END (end);
1334 /* Don't include any notes or labels at the beginning of the BEG
1335 basic block, or notes at the end of the END basic blocks. */
1337 if (LABEL_P (beg_head))
1338 beg_head = NEXT_INSN (beg_head);
1340 while (beg_head != beg_tail)
1341 if (NOTE_P (beg_head))
1342 beg_head = NEXT_INSN (beg_head);
1343 else
1344 break;
1346 *headp = beg_head;
1348 if (beg == end)
1349 end_head = beg_head;
1350 else if (LABEL_P (end_head))
1351 end_head = NEXT_INSN (end_head);
1353 while (end_head != end_tail)
1354 if (NOTE_P (end_tail))
1355 end_tail = PREV_INSN (end_tail);
1356 else
1357 break;
1359 *tailp = end_tail;
1362 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1365 no_real_insns_p (rtx head, rtx tail)
1367 while (head != NEXT_INSN (tail))
1369 if (!NOTE_P (head) && !LABEL_P (head))
1370 return 0;
1371 head = NEXT_INSN (head);
1373 return 1;
1376 /* Delete line notes from one block. Save them so they can be later restored
1377 (in restore_line_notes). HEAD and TAIL are the boundaries of the
1378 block in which notes should be processed. */
1380 void
1381 rm_line_notes (rtx head, rtx tail)
1383 rtx next_tail;
1384 rtx insn;
1386 next_tail = NEXT_INSN (tail);
1387 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1389 rtx prev;
1391 /* Farm out notes, and maybe save them in NOTE_LIST.
1392 This is needed to keep the debugger from
1393 getting completely deranged. */
1394 if (NOTE_NOT_BB_P (insn))
1396 prev = insn;
1397 insn = unlink_line_notes (insn, next_tail);
1399 gcc_assert (prev != tail && prev != head && insn != next_tail);
1404 /* Save line number notes for each insn in block B. HEAD and TAIL are
1405 the boundaries of the block in which notes should be processed. */
1407 void
1408 save_line_notes (int b, rtx head, rtx tail)
1410 rtx next_tail;
1412 /* We must use the true line number for the first insn in the block
1413 that was computed and saved at the start of this pass. We can't
1414 use the current line number, because scheduling of the previous
1415 block may have changed the current line number. */
1417 rtx line = line_note_head[b];
1418 rtx insn;
1420 next_tail = NEXT_INSN (tail);
1422 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1423 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1424 line = insn;
1425 else
1426 LINE_NOTE (insn) = line;
1429 /* After a block was scheduled, insert line notes into the insns list.
1430 HEAD and TAIL are the boundaries of the block in which notes should
1431 be processed. */
1433 void
1434 restore_line_notes (rtx head, rtx tail)
1436 rtx line, note, prev, new;
1437 int added_notes = 0;
1438 rtx next_tail, insn;
1440 head = head;
1441 next_tail = NEXT_INSN (tail);
1443 /* Determine the current line-number. We want to know the current
1444 line number of the first insn of the block here, in case it is
1445 different from the true line number that was saved earlier. If
1446 different, then we need a line number note before the first insn
1447 of this block. If it happens to be the same, then we don't want to
1448 emit another line number note here. */
1449 for (line = head; line; line = PREV_INSN (line))
1450 if (NOTE_P (line) && NOTE_LINE_NUMBER (line) > 0)
1451 break;
1453 /* Walk the insns keeping track of the current line-number and inserting
1454 the line-number notes as needed. */
1455 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1456 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1457 line = insn;
1458 /* This used to emit line number notes before every non-deleted note.
1459 However, this confuses a debugger, because line notes not separated
1460 by real instructions all end up at the same address. I can find no
1461 use for line number notes before other notes, so none are emitted. */
1462 else if (!NOTE_P (insn)
1463 && INSN_UID (insn) < old_max_uid
1464 && (note = LINE_NOTE (insn)) != 0
1465 && note != line
1466 && (line == 0
1467 #ifdef USE_MAPPED_LOCATION
1468 || NOTE_SOURCE_LOCATION (note) != NOTE_SOURCE_LOCATION (line)
1469 #else
1470 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
1471 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)
1472 #endif
1475 line = note;
1476 prev = PREV_INSN (insn);
1477 if (LINE_NOTE (note))
1479 /* Re-use the original line-number note. */
1480 LINE_NOTE (note) = 0;
1481 PREV_INSN (note) = prev;
1482 NEXT_INSN (prev) = note;
1483 PREV_INSN (insn) = note;
1484 NEXT_INSN (note) = insn;
1485 set_block_for_insn (note, BLOCK_FOR_INSN (insn));
1487 else
1489 added_notes++;
1490 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
1491 #ifndef USE_MAPPED_LOCATION
1492 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
1493 #endif
1496 if (sched_verbose && added_notes)
1497 fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
1500 /* After scheduling the function, delete redundant line notes from the
1501 insns list. */
1503 void
1504 rm_redundant_line_notes (void)
1506 rtx line = 0;
1507 rtx insn = get_insns ();
1508 int active_insn = 0;
1509 int notes = 0;
1511 /* Walk the insns deleting redundant line-number notes. Many of these
1512 are already present. The remainder tend to occur at basic
1513 block boundaries. */
1514 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1515 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1517 /* If there are no active insns following, INSN is redundant. */
1518 if (active_insn == 0)
1520 notes++;
1521 SET_INSN_DELETED (insn);
1523 /* If the line number is unchanged, LINE is redundant. */
1524 else if (line
1525 #ifdef USE_MAPPED_LOCATION
1526 && NOTE_SOURCE_LOCATION (line) == NOTE_SOURCE_LOCATION (insn)
1527 #else
1528 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
1529 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn)
1530 #endif
1533 notes++;
1534 SET_INSN_DELETED (line);
1535 line = insn;
1537 else
1538 line = insn;
1539 active_insn = 0;
1541 else if (!((NOTE_P (insn)
1542 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
1543 || (NONJUMP_INSN_P (insn)
1544 && (GET_CODE (PATTERN (insn)) == USE
1545 || GET_CODE (PATTERN (insn)) == CLOBBER))))
1546 active_insn++;
1548 if (sched_verbose && notes)
1549 fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
1552 /* Delete notes between HEAD and TAIL and put them in the chain
1553 of notes ended by NOTE_LIST. */
1555 void
1556 rm_other_notes (rtx head, rtx tail)
1558 rtx next_tail;
1559 rtx insn;
1561 note_list = 0;
1562 if (head == tail && (! INSN_P (head)))
1563 return;
1565 next_tail = NEXT_INSN (tail);
1566 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1568 rtx prev;
1570 /* Farm out notes, and maybe save them in NOTE_LIST.
1571 This is needed to keep the debugger from
1572 getting completely deranged. */
1573 if (NOTE_NOT_BB_P (insn))
1575 prev = insn;
1577 insn = unlink_other_notes (insn, next_tail);
1579 gcc_assert (prev != tail && prev != head && insn != next_tail);
1584 /* Functions for computation of registers live/usage info. */
1586 /* This function looks for a new register being defined.
1587 If the destination register is already used by the source,
1588 a new register is not needed. */
1590 static int
1591 find_set_reg_weight (rtx x)
1593 if (GET_CODE (x) == CLOBBER
1594 && register_operand (SET_DEST (x), VOIDmode))
1595 return 1;
1596 if (GET_CODE (x) == SET
1597 && register_operand (SET_DEST (x), VOIDmode))
1599 if (REG_P (SET_DEST (x)))
1601 if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x)))
1602 return 1;
1603 else
1604 return 0;
1606 return 1;
1608 return 0;
1611 /* Calculate INSN_REG_WEIGHT for all insns of a block. */
1613 static void
1614 find_insn_reg_weight (basic_block bb)
1616 rtx insn, next_tail, head, tail;
1618 get_ebb_head_tail (bb, bb, &head, &tail);
1619 next_tail = NEXT_INSN (tail);
1621 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1622 find_insn_reg_weight1 (insn);
1625 /* Calculate INSN_REG_WEIGHT for single instruction.
1626 Separated from find_insn_reg_weight because of need
1627 to initialize new instruction in generate_recovery_code. */
1628 static void
1629 find_insn_reg_weight1 (rtx insn)
1631 int reg_weight = 0;
1632 rtx x;
1634 /* Handle register life information. */
1635 if (! INSN_P (insn))
1636 return;
1638 /* Increment weight for each register born here. */
1639 x = PATTERN (insn);
1640 reg_weight += find_set_reg_weight (x);
1641 if (GET_CODE (x) == PARALLEL)
1643 int j;
1644 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1646 x = XVECEXP (PATTERN (insn), 0, j);
1647 reg_weight += find_set_reg_weight (x);
1650 /* Decrement weight for each register that dies here. */
1651 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1653 if (REG_NOTE_KIND (x) == REG_DEAD
1654 || REG_NOTE_KIND (x) == REG_UNUSED)
1655 reg_weight--;
1658 INSN_REG_WEIGHT (insn) = reg_weight;
1661 /* Move insns that became ready to fire from queue to ready list. */
1663 static void
1664 queue_to_ready (struct ready_list *ready)
1666 rtx insn;
1667 rtx link;
1669 q_ptr = NEXT_Q (q_ptr);
1671 /* Add all pending insns that can be scheduled without stalls to the
1672 ready list. */
1673 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1675 insn = XEXP (link, 0);
1676 q_size -= 1;
1678 if (sched_verbose >= 2)
1679 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1680 (*current_sched_info->print_insn) (insn, 0));
1682 /* If the ready list is full, delay the insn for 1 cycle.
1683 See the comment in schedule_block for the rationale. */
1684 if (!reload_completed
1685 && ready->n_ready > MAX_SCHED_READY_INSNS
1686 && !SCHED_GROUP_P (insn))
1688 if (sched_verbose >= 2)
1689 fprintf (sched_dump, "requeued because ready full\n");
1690 queue_insn (insn, 1);
1692 else
1694 ready_add (ready, insn, false);
1695 if (sched_verbose >= 2)
1696 fprintf (sched_dump, "moving to ready without stalls\n");
1699 free_INSN_LIST_list (&insn_queue[q_ptr]);
1701 /* If there are no ready insns, stall until one is ready and add all
1702 of the pending insns at that point to the ready list. */
1703 if (ready->n_ready == 0)
1705 int stalls;
1707 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
1709 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1711 for (; link; link = XEXP (link, 1))
1713 insn = XEXP (link, 0);
1714 q_size -= 1;
1716 if (sched_verbose >= 2)
1717 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1718 (*current_sched_info->print_insn) (insn, 0));
1720 ready_add (ready, insn, false);
1721 if (sched_verbose >= 2)
1722 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1724 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
1726 advance_one_cycle ();
1728 break;
1731 advance_one_cycle ();
1734 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1735 clock_var += stalls;
1739 /* Used by early_queue_to_ready. Determines whether it is "ok" to
1740 prematurely move INSN from the queue to the ready list. Currently,
1741 if a target defines the hook 'is_costly_dependence', this function
1742 uses the hook to check whether there exist any dependences which are
1743 considered costly by the target, between INSN and other insns that
1744 have already been scheduled. Dependences are checked up to Y cycles
1745 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
1746 controlling this value.
1747 (Other considerations could be taken into account instead (or in
1748 addition) depending on user flags and target hooks. */
1750 static bool
1751 ok_for_early_queue_removal (rtx insn)
1753 int n_cycles;
1754 rtx prev_insn = last_scheduled_insn;
1756 if (targetm.sched.is_costly_dependence)
1758 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
1760 for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
1762 rtx dep_link = 0;
1763 int dep_cost;
1765 if (!NOTE_P (prev_insn))
1767 dep_link = find_insn_list (insn, INSN_DEPEND (prev_insn));
1768 if (dep_link)
1770 dep_cost = insn_cost (prev_insn, dep_link, insn) ;
1771 if (targetm.sched.is_costly_dependence (prev_insn, insn,
1772 dep_link, dep_cost,
1773 flag_sched_stalled_insns_dep - n_cycles))
1774 return false;
1778 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
1779 break;
1782 if (!prev_insn)
1783 break;
1784 prev_insn = PREV_INSN (prev_insn);
1788 return true;
1792 /* Remove insns from the queue, before they become "ready" with respect
1793 to FU latency considerations. */
1795 static int
1796 early_queue_to_ready (state_t state, struct ready_list *ready)
1798 rtx insn;
1799 rtx link;
1800 rtx next_link;
1801 rtx prev_link;
1802 bool move_to_ready;
1803 int cost;
1804 state_t temp_state = alloca (dfa_state_size);
1805 int stalls;
1806 int insns_removed = 0;
1809 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
1810 function:
1812 X == 0: There is no limit on how many queued insns can be removed
1813 prematurely. (flag_sched_stalled_insns = -1).
1815 X >= 1: Only X queued insns can be removed prematurely in each
1816 invocation. (flag_sched_stalled_insns = X).
1818 Otherwise: Early queue removal is disabled.
1819 (flag_sched_stalled_insns = 0)
1822 if (! flag_sched_stalled_insns)
1823 return 0;
1825 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
1827 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1829 if (sched_verbose > 6)
1830 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
1832 prev_link = 0;
1833 while (link)
1835 next_link = XEXP (link, 1);
1836 insn = XEXP (link, 0);
1837 if (insn && sched_verbose > 6)
1838 print_rtl_single (sched_dump, insn);
1840 memcpy (temp_state, state, dfa_state_size);
1841 if (recog_memoized (insn) < 0)
1842 /* non-negative to indicate that it's not ready
1843 to avoid infinite Q->R->Q->R... */
1844 cost = 0;
1845 else
1846 cost = state_transition (temp_state, insn);
1848 if (sched_verbose >= 6)
1849 fprintf (sched_dump, "transition cost = %d\n", cost);
1851 move_to_ready = false;
1852 if (cost < 0)
1854 move_to_ready = ok_for_early_queue_removal (insn);
1855 if (move_to_ready == true)
1857 /* move from Q to R */
1858 q_size -= 1;
1859 ready_add (ready, insn, false);
1861 if (prev_link)
1862 XEXP (prev_link, 1) = next_link;
1863 else
1864 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
1866 free_INSN_LIST_node (link);
1868 if (sched_verbose >= 2)
1869 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
1870 (*current_sched_info->print_insn) (insn, 0));
1872 insns_removed++;
1873 if (insns_removed == flag_sched_stalled_insns)
1874 /* Remove no more than flag_sched_stalled_insns insns
1875 from Q at a time. */
1876 return insns_removed;
1880 if (move_to_ready == false)
1881 prev_link = link;
1883 link = next_link;
1884 } /* while link */
1885 } /* if link */
1887 } /* for stalls.. */
1889 return insns_removed;
1893 /* Print the ready list for debugging purposes. Callable from debugger. */
1895 static void
1896 debug_ready_list (struct ready_list *ready)
1898 rtx *p;
1899 int i;
1901 if (ready->n_ready == 0)
1903 fprintf (sched_dump, "\n");
1904 return;
1907 p = ready_lastpos (ready);
1908 for (i = 0; i < ready->n_ready; i++)
1909 fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
1910 fprintf (sched_dump, "\n");
1913 /* Search INSN for REG_SAVE_NOTE note pairs for
1914 NOTE_INSN_EHREGION_{BEG,END}; and convert them back into
1915 NOTEs. The REG_SAVE_NOTE note following first one is contains the
1916 saved value for NOTE_BLOCK_NUMBER which is useful for
1917 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. */
1919 static void
1920 reemit_notes (rtx insn)
1922 rtx note, last = insn;
1924 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1926 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1928 enum insn_note note_type = INTVAL (XEXP (note, 0));
1930 last = emit_note_before (note_type, last);
1931 remove_note (insn, note);
1936 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
1937 static void
1938 move_insn (rtx insn)
1940 rtx last = last_scheduled_insn;
1942 if (PREV_INSN (insn) != last)
1944 basic_block bb;
1945 rtx note;
1946 int jump_p = 0;
1948 bb = BLOCK_FOR_INSN (insn);
1950 /* BB_HEAD is either LABEL or NOTE. */
1951 gcc_assert (BB_HEAD (bb) != insn);
1953 if (BB_END (bb) == insn)
1954 /* If this is last instruction in BB, move end marker one
1955 instruction up. */
1957 /* Jumps are always placed at the end of basic block. */
1958 jump_p = control_flow_insn_p (insn);
1960 gcc_assert (!jump_p
1961 || ((current_sched_info->flags & SCHED_RGN)
1962 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
1963 || (current_sched_info->flags & SCHED_EBB));
1965 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
1967 BB_END (bb) = PREV_INSN (insn);
1970 gcc_assert (BB_END (bb) != last);
1972 if (jump_p)
1973 /* We move the block note along with jump. */
1975 /* NT is needed for assertion below. */
1976 rtx nt = current_sched_info->next_tail;
1978 note = NEXT_INSN (insn);
1979 while (NOTE_NOT_BB_P (note) && note != nt)
1980 note = NEXT_INSN (note);
1982 if (note != nt
1983 && (LABEL_P (note)
1984 || BARRIER_P (note)))
1985 note = NEXT_INSN (note);
1987 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
1989 else
1990 note = insn;
1992 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
1993 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
1995 NEXT_INSN (note) = NEXT_INSN (last);
1996 PREV_INSN (NEXT_INSN (last)) = note;
1998 NEXT_INSN (last) = insn;
1999 PREV_INSN (insn) = last;
2001 bb = BLOCK_FOR_INSN (last);
2003 if (jump_p)
2005 fix_jump_move (insn);
2007 if (BLOCK_FOR_INSN (insn) != bb)
2008 move_block_after_check (insn);
2010 gcc_assert (BB_END (bb) == last);
2013 set_block_for_insn (insn, bb);
2015 /* Update BB_END, if needed. */
2016 if (BB_END (bb) == last)
2017 BB_END (bb) = insn;
2020 reemit_notes (insn);
2022 SCHED_GROUP_P (insn) = 0;
2025 /* The following structure describe an entry of the stack of choices. */
2026 struct choice_entry
2028 /* Ordinal number of the issued insn in the ready queue. */
2029 int index;
2030 /* The number of the rest insns whose issues we should try. */
2031 int rest;
2032 /* The number of issued essential insns. */
2033 int n;
2034 /* State after issuing the insn. */
2035 state_t state;
2038 /* The following array is used to implement a stack of choices used in
2039 function max_issue. */
2040 static struct choice_entry *choice_stack;
2042 /* The following variable value is number of essential insns issued on
2043 the current cycle. An insn is essential one if it changes the
2044 processors state. */
2045 static int cycle_issued_insns;
2047 /* The following variable value is maximal number of tries of issuing
2048 insns for the first cycle multipass insn scheduling. We define
2049 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
2050 need this constraint if all real insns (with non-negative codes)
2051 had reservations because in this case the algorithm complexity is
2052 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
2053 might be incomplete and such insn might occur. For such
2054 descriptions, the complexity of algorithm (without the constraint)
2055 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
2056 static int max_lookahead_tries;
2058 /* The following value is value of hook
2059 `first_cycle_multipass_dfa_lookahead' at the last call of
2060 `max_issue'. */
2061 static int cached_first_cycle_multipass_dfa_lookahead = 0;
2063 /* The following value is value of `issue_rate' at the last call of
2064 `sched_init'. */
2065 static int cached_issue_rate = 0;
2067 /* The following function returns maximal (or close to maximal) number
2068 of insns which can be issued on the same cycle and one of which
2069 insns is insns with the best rank (the first insn in READY). To
2070 make this function tries different samples of ready insns. READY
2071 is current queue `ready'. Global array READY_TRY reflects what
2072 insns are already issued in this try. MAX_POINTS is the sum of points
2073 of all instructions in READY. The function stops immediately,
2074 if it reached the such a solution, that all instruction can be issued.
2075 INDEX will contain index of the best insn in READY. The following
2076 function is used only for first cycle multipass scheduling. */
2077 static int
2078 max_issue (struct ready_list *ready, int *index, int max_points)
2080 int n, i, all, n_ready, best, delay, tries_num, points = -1;
2081 struct choice_entry *top;
2082 rtx insn;
2084 best = 0;
2085 memcpy (choice_stack->state, curr_state, dfa_state_size);
2086 top = choice_stack;
2087 top->rest = cached_first_cycle_multipass_dfa_lookahead;
2088 top->n = 0;
2089 n_ready = ready->n_ready;
2090 for (all = i = 0; i < n_ready; i++)
2091 if (!ready_try [i])
2092 all++;
2093 i = 0;
2094 tries_num = 0;
2095 for (;;)
2097 if (top->rest == 0 || i >= n_ready)
2099 if (top == choice_stack)
2100 break;
2101 if (best < top - choice_stack && ready_try [0])
2103 best = top - choice_stack;
2104 *index = choice_stack [1].index;
2105 points = top->n;
2106 if (top->n == max_points || best == all)
2107 break;
2109 i = top->index;
2110 ready_try [i] = 0;
2111 top--;
2112 memcpy (curr_state, top->state, dfa_state_size);
2114 else if (!ready_try [i])
2116 tries_num++;
2117 if (tries_num > max_lookahead_tries)
2118 break;
2119 insn = ready_element (ready, i);
2120 delay = state_transition (curr_state, insn);
2121 if (delay < 0)
2123 if (state_dead_lock_p (curr_state))
2124 top->rest = 0;
2125 else
2126 top->rest--;
2127 n = top->n;
2128 if (memcmp (top->state, curr_state, dfa_state_size) != 0)
2129 n += ISSUE_POINTS (insn);
2130 top++;
2131 top->rest = cached_first_cycle_multipass_dfa_lookahead;
2132 top->index = i;
2133 top->n = n;
2134 memcpy (top->state, curr_state, dfa_state_size);
2135 ready_try [i] = 1;
2136 i = -1;
2139 i++;
2141 while (top != choice_stack)
2143 ready_try [top->index] = 0;
2144 top--;
2146 memcpy (curr_state, choice_stack->state, dfa_state_size);
2148 if (sched_verbose >= 4)
2149 fprintf (sched_dump, ";;\t\tChoosed insn : %s; points: %d/%d\n",
2150 (*current_sched_info->print_insn) (ready_element (ready, *index),
2151 0),
2152 points, max_points);
2154 return best;
2157 /* The following function chooses insn from READY and modifies
2158 *N_READY and READY. The following function is used only for first
2159 cycle multipass scheduling. */
2161 static rtx
2162 choose_ready (struct ready_list *ready)
2164 int lookahead = 0;
2166 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2167 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
2168 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0)))
2169 return ready_remove_first (ready);
2170 else
2172 /* Try to choose the better insn. */
2173 int index = 0, i, n;
2174 rtx insn;
2175 int more_issue, max_points, try_data = 1, try_control = 1;
2177 if (cached_first_cycle_multipass_dfa_lookahead != lookahead)
2179 cached_first_cycle_multipass_dfa_lookahead = lookahead;
2180 max_lookahead_tries = 100;
2181 for (i = 0; i < issue_rate; i++)
2182 max_lookahead_tries *= lookahead;
2184 insn = ready_element (ready, 0);
2185 if (INSN_CODE (insn) < 0)
2186 return ready_remove_first (ready);
2188 if (spec_info
2189 && spec_info->flags & (PREFER_NON_DATA_SPEC
2190 | PREFER_NON_CONTROL_SPEC))
2192 for (i = 0, n = ready->n_ready; i < n; i++)
2194 rtx x;
2195 ds_t s;
2197 x = ready_element (ready, i);
2198 s = TODO_SPEC (x);
2200 if (spec_info->flags & PREFER_NON_DATA_SPEC
2201 && !(s & DATA_SPEC))
2203 try_data = 0;
2204 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
2205 || !try_control)
2206 break;
2209 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
2210 && !(s & CONTROL_SPEC))
2212 try_control = 0;
2213 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
2214 break;
2219 if ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2220 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC))
2221 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2222 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2223 (insn)))
2224 /* Discard speculative instruction that stands first in the ready
2225 list. */
2227 change_queue_index (insn, 1);
2228 return 0;
2231 max_points = ISSUE_POINTS (insn);
2232 more_issue = issue_rate - cycle_issued_insns - 1;
2234 for (i = 1; i < ready->n_ready; i++)
2236 insn = ready_element (ready, i);
2237 ready_try [i]
2238 = (INSN_CODE (insn) < 0
2239 || (!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2240 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC))
2241 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2242 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2243 (insn)));
2245 if (!ready_try [i] && more_issue-- > 0)
2246 max_points += ISSUE_POINTS (insn);
2249 if (max_issue (ready, &index, max_points) == 0)
2250 return ready_remove_first (ready);
2251 else
2252 return ready_remove (ready, index);
2256 /* Use forward list scheduling to rearrange insns of block pointed to by
2257 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2258 region. */
2260 void
2261 schedule_block (basic_block *target_bb, int rgn_n_insns1)
2263 struct ready_list ready;
2264 int i, first_cycle_insn_p;
2265 int can_issue_more;
2266 state_t temp_state = NULL; /* It is used for multipass scheduling. */
2267 int sort_p, advance, start_clock_var;
2269 /* Head/tail info for this block. */
2270 rtx prev_head = current_sched_info->prev_head;
2271 rtx next_tail = current_sched_info->next_tail;
2272 rtx head = NEXT_INSN (prev_head);
2273 rtx tail = PREV_INSN (next_tail);
2275 /* We used to have code to avoid getting parameters moved from hard
2276 argument registers into pseudos.
2278 However, it was removed when it proved to be of marginal benefit
2279 and caused problems because schedule_block and compute_forward_dependences
2280 had different notions of what the "head" insn was. */
2282 gcc_assert (head != tail || INSN_P (head));
2284 added_recovery_block_p = false;
2286 /* Debug info. */
2287 if (sched_verbose)
2288 dump_new_block_header (0, *target_bb, head, tail);
2290 state_reset (curr_state);
2292 /* Allocate the ready list. */
2293 readyp = &ready;
2294 ready.vec = NULL;
2295 ready_try = NULL;
2296 choice_stack = NULL;
2298 rgn_n_insns = -1;
2299 extend_ready (rgn_n_insns1 + 1);
2301 ready.first = ready.veclen - 1;
2302 ready.n_ready = 0;
2304 /* It is used for first cycle multipass scheduling. */
2305 temp_state = alloca (dfa_state_size);
2307 if (targetm.sched.md_init)
2308 targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);
2310 /* We start inserting insns after PREV_HEAD. */
2311 last_scheduled_insn = prev_head;
2313 gcc_assert (NOTE_P (last_scheduled_insn)
2314 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
2316 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2317 queue. */
2318 q_ptr = 0;
2319 q_size = 0;
2321 insn_queue = alloca ((max_insn_queue_index + 1) * sizeof (rtx));
2322 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
2324 /* Start just before the beginning of time. */
2325 clock_var = -1;
2327 /* We need queue and ready lists and clock_var be initialized
2328 in try_ready () (which is called through init_ready_list ()). */
2329 (*current_sched_info->init_ready_list) ();
2331 /* The algorithm is O(n^2) in the number of ready insns at any given
2332 time in the worst case. Before reload we are more likely to have
2333 big lists so truncate them to a reasonable size. */
2334 if (!reload_completed && ready.n_ready > MAX_SCHED_READY_INSNS)
2336 ready_sort (&ready);
2338 /* Find first free-standing insn past MAX_SCHED_READY_INSNS. */
2339 for (i = MAX_SCHED_READY_INSNS; i < ready.n_ready; i++)
2340 if (!SCHED_GROUP_P (ready_element (&ready, i)))
2341 break;
2343 if (sched_verbose >= 2)
2345 fprintf (sched_dump,
2346 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
2347 fprintf (sched_dump,
2348 ";;\t\t before reload => truncated to %d insns\n", i);
2351 /* Delay all insns past it for 1 cycle. */
2352 while (i < ready.n_ready)
2353 queue_insn (ready_remove (&ready, i), 1);
2356 /* Now we can restore basic block notes and maintain precise cfg. */
2357 restore_bb_notes (*target_bb);
2359 last_clock_var = -1;
2361 advance = 0;
2363 sort_p = TRUE;
2364 /* Loop until all the insns in BB are scheduled. */
2365 while ((*current_sched_info->schedule_more_p) ())
2369 start_clock_var = clock_var;
2371 clock_var++;
2373 advance_one_cycle ();
2375 /* Add to the ready list all pending insns that can be issued now.
2376 If there are no ready insns, increment clock until one
2377 is ready and add all pending insns at that point to the ready
2378 list. */
2379 queue_to_ready (&ready);
2381 gcc_assert (ready.n_ready);
2383 if (sched_verbose >= 2)
2385 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
2386 debug_ready_list (&ready);
2388 advance -= clock_var - start_clock_var;
2390 while (advance > 0);
2392 if (sort_p)
2394 /* Sort the ready list based on priority. */
2395 ready_sort (&ready);
2397 if (sched_verbose >= 2)
2399 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
2400 debug_ready_list (&ready);
2404 /* Allow the target to reorder the list, typically for
2405 better instruction bundling. */
2406 if (sort_p && targetm.sched.reorder
2407 && (ready.n_ready == 0
2408 || !SCHED_GROUP_P (ready_element (&ready, 0))))
2409 can_issue_more =
2410 targetm.sched.reorder (sched_dump, sched_verbose,
2411 ready_lastpos (&ready),
2412 &ready.n_ready, clock_var);
2413 else
2414 can_issue_more = issue_rate;
2416 first_cycle_insn_p = 1;
2417 cycle_issued_insns = 0;
2418 for (;;)
2420 rtx insn;
2421 int cost;
2422 bool asm_p = false;
2424 if (sched_verbose >= 2)
2426 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
2427 clock_var);
2428 debug_ready_list (&ready);
2431 if (ready.n_ready == 0
2432 && can_issue_more
2433 && reload_completed)
2435 /* Allow scheduling insns directly from the queue in case
2436 there's nothing better to do (ready list is empty) but
2437 there are still vacant dispatch slots in the current cycle. */
2438 if (sched_verbose >= 6)
2439 fprintf(sched_dump,";;\t\tSecond chance\n");
2440 memcpy (temp_state, curr_state, dfa_state_size);
2441 if (early_queue_to_ready (temp_state, &ready))
2442 ready_sort (&ready);
2445 if (ready.n_ready == 0 || !can_issue_more
2446 || state_dead_lock_p (curr_state)
2447 || !(*current_sched_info->schedule_more_p) ())
2448 break;
2450 /* Select and remove the insn from the ready list. */
2451 if (sort_p)
2453 insn = choose_ready (&ready);
2454 if (!insn)
2455 continue;
2457 else
2458 insn = ready_remove_first (&ready);
2460 if (targetm.sched.dfa_new_cycle
2461 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
2462 insn, last_clock_var,
2463 clock_var, &sort_p))
2464 /* SORT_P is used by the target to override sorting
2465 of the ready list. This is needed when the target
2466 has modified its internal structures expecting that
2467 the insn will be issued next. As we need the insn
2468 to have the highest priority (so it will be returned by
2469 the ready_remove_first call above), we invoke
2470 ready_add (&ready, insn, true).
2471 But, still, there is one issue: INSN can be later
2472 discarded by scheduler's front end through
2473 current_sched_info->can_schedule_ready_p, hence, won't
2474 be issued next. */
2476 ready_add (&ready, insn, true);
2477 break;
2480 sort_p = TRUE;
2481 memcpy (temp_state, curr_state, dfa_state_size);
2482 if (recog_memoized (insn) < 0)
2484 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
2485 || asm_noperands (PATTERN (insn)) >= 0);
2486 if (!first_cycle_insn_p && asm_p)
2487 /* This is asm insn which is tryed to be issued on the
2488 cycle not first. Issue it on the next cycle. */
2489 cost = 1;
2490 else
2491 /* A USE insn, or something else we don't need to
2492 understand. We can't pass these directly to
2493 state_transition because it will trigger a
2494 fatal error for unrecognizable insns. */
2495 cost = 0;
2497 else
2499 cost = state_transition (temp_state, insn);
2500 if (cost < 0)
2501 cost = 0;
2502 else if (cost == 0)
2503 cost = 1;
2506 if (cost >= 1)
2508 queue_insn (insn, cost);
2509 if (SCHED_GROUP_P (insn))
2511 advance = cost;
2512 break;
2515 continue;
2518 if (current_sched_info->can_schedule_ready_p
2519 && ! (*current_sched_info->can_schedule_ready_p) (insn))
2520 /* We normally get here only if we don't want to move
2521 insn from the split block. */
2523 TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
2524 continue;
2527 /* DECISION is made. */
2529 if (TODO_SPEC (insn) & SPECULATIVE)
2530 generate_recovery_code (insn);
2532 if (control_flow_insn_p (last_scheduled_insn)
2533 /* This is used to to switch basic blocks by request
2534 from scheduler front-end (actually, sched-ebb.c only).
2535 This is used to process blocks with single fallthru
2536 edge. If succeeding block has jump, it [jump] will try
2537 move at the end of current bb, thus corrupting CFG. */
2538 || current_sched_info->advance_target_bb (*target_bb, insn))
2540 *target_bb = current_sched_info->advance_target_bb
2541 (*target_bb, 0);
2543 if (sched_verbose)
2545 rtx x;
2547 x = next_real_insn (last_scheduled_insn);
2548 gcc_assert (x);
2549 dump_new_block_header (1, *target_bb, x, tail);
2552 last_scheduled_insn = bb_note (*target_bb);
2555 /* Update counters, etc in the scheduler's front end. */
2556 (*current_sched_info->begin_schedule_ready) (insn,
2557 last_scheduled_insn);
2559 move_insn (insn);
2560 last_scheduled_insn = insn;
2562 if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
2564 cycle_issued_insns++;
2565 memcpy (curr_state, temp_state, dfa_state_size);
2568 if (targetm.sched.variable_issue)
2569 can_issue_more =
2570 targetm.sched.variable_issue (sched_dump, sched_verbose,
2571 insn, can_issue_more);
2572 /* A naked CLOBBER or USE generates no instruction, so do
2573 not count them against the issue rate. */
2574 else if (GET_CODE (PATTERN (insn)) != USE
2575 && GET_CODE (PATTERN (insn)) != CLOBBER)
2576 can_issue_more--;
2578 advance = schedule_insn (insn);
2580 /* After issuing an asm insn we should start a new cycle. */
2581 if (advance == 0 && asm_p)
2582 advance = 1;
2583 if (advance != 0)
2584 break;
2586 first_cycle_insn_p = 0;
2588 /* Sort the ready list based on priority. This must be
2589 redone here, as schedule_insn may have readied additional
2590 insns that will not be sorted correctly. */
2591 if (ready.n_ready > 0)
2592 ready_sort (&ready);
2594 if (targetm.sched.reorder2
2595 && (ready.n_ready == 0
2596 || !SCHED_GROUP_P (ready_element (&ready, 0))))
2598 can_issue_more =
2599 targetm.sched.reorder2 (sched_dump, sched_verbose,
2600 ready.n_ready
2601 ? ready_lastpos (&ready) : NULL,
2602 &ready.n_ready, clock_var);
2607 /* Debug info. */
2608 if (sched_verbose)
2610 fprintf (sched_dump, ";;\tReady list (final): ");
2611 debug_ready_list (&ready);
2614 if (current_sched_info->queue_must_finish_empty)
2615 /* Sanity check -- queue must be empty now. Meaningless if region has
2616 multiple bbs. */
2617 gcc_assert (!q_size && !ready.n_ready);
2618 else
2620 /* We must maintain QUEUE_INDEX between blocks in region. */
2621 for (i = ready.n_ready - 1; i >= 0; i--)
2623 rtx x;
2625 x = ready_element (&ready, i);
2626 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2627 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
2630 if (q_size)
2631 for (i = 0; i <= max_insn_queue_index; i++)
2633 rtx link;
2634 for (link = insn_queue[i]; link; link = XEXP (link, 1))
2636 rtx x;
2638 x = XEXP (link, 0);
2639 QUEUE_INDEX (x) = QUEUE_NOWHERE;
2640 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
2642 free_INSN_LIST_list (&insn_queue[i]);
2646 if (!current_sched_info->queue_must_finish_empty
2647 || added_recovery_block_p)
2649 /* INSN_TICK (minimum clock tick at which the insn becomes
2650 ready) may be not correct for the insn in the subsequent
2651 blocks of the region. We should use a correct value of
2652 `clock_var' or modify INSN_TICK. It is better to keep
2653 clock_var value equal to 0 at the start of a basic block.
2654 Therefore we modify INSN_TICK here. */
2655 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
2658 if (targetm.sched.md_finish)
2659 targetm.sched.md_finish (sched_dump, sched_verbose);
2661 /* Update head/tail boundaries. */
2662 head = NEXT_INSN (prev_head);
2663 tail = last_scheduled_insn;
2665 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
2666 previously found among the insns. Insert them at the beginning
2667 of the insns. */
2668 if (note_list != 0)
2670 basic_block head_bb = BLOCK_FOR_INSN (head);
2671 rtx note_head = note_list;
2673 while (PREV_INSN (note_head))
2675 set_block_for_insn (note_head, head_bb);
2676 note_head = PREV_INSN (note_head);
2678 /* In the above cycle we've missed this note: */
2679 set_block_for_insn (note_head, head_bb);
2681 PREV_INSN (note_head) = PREV_INSN (head);
2682 NEXT_INSN (PREV_INSN (head)) = note_head;
2683 PREV_INSN (head) = note_list;
2684 NEXT_INSN (note_list) = head;
2685 head = note_head;
2688 /* Debugging. */
2689 if (sched_verbose)
2691 fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
2692 clock_var, INSN_UID (head));
2693 fprintf (sched_dump, ";; new tail = %d\n\n",
2694 INSN_UID (tail));
2697 current_sched_info->head = head;
2698 current_sched_info->tail = tail;
2700 free (ready.vec);
2702 free (ready_try);
2703 for (i = 0; i <= rgn_n_insns; i++)
2704 free (choice_stack [i].state);
2705 free (choice_stack);
2708 /* Set_priorities: compute priority of each insn in the block. */
2711 set_priorities (rtx head, rtx tail)
2713 rtx insn;
2714 int n_insn;
2715 int sched_max_insns_priority =
2716 current_sched_info->sched_max_insns_priority;
2717 rtx prev_head;
2719 if (head == tail && (! INSN_P (head)))
2720 return 0;
2722 n_insn = 0;
2724 prev_head = PREV_INSN (head);
2725 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
2727 if (!INSN_P (insn))
2728 continue;
2730 n_insn++;
2731 (void) priority (insn);
2733 if (INSN_PRIORITY_KNOWN (insn))
2734 sched_max_insns_priority =
2735 MAX (sched_max_insns_priority, INSN_PRIORITY (insn));
2738 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
2740 return n_insn;
2743 /* Next LUID to assign to an instruction. */
2744 static int luid;
2746 /* Initialize some global state for the scheduler. */
2748 void
2749 sched_init (void)
2751 basic_block b;
2752 rtx insn;
2753 int i;
2755 /* Switch to working copy of sched_info. */
2756 memcpy (&current_sched_info_var, current_sched_info,
2757 sizeof (current_sched_info_var));
2758 current_sched_info = &current_sched_info_var;
2760 /* Disable speculative loads in their presence if cc0 defined. */
2761 #ifdef HAVE_cc0
2762 flag_schedule_speculative_load = 0;
2763 #endif
2765 /* Set dump and sched_verbose for the desired debugging output. If no
2766 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
2767 For -fsched-verbose=N, N>=10, print everything to stderr. */
2768 sched_verbose = sched_verbose_param;
2769 if (sched_verbose_param == 0 && dump_file)
2770 sched_verbose = 1;
2771 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
2772 ? stderr : dump_file);
2774 /* Initialize SPEC_INFO. */
2775 if (targetm.sched.set_sched_flags)
2777 spec_info = &spec_info_var;
2778 targetm.sched.set_sched_flags (spec_info);
2779 if (current_sched_info->flags & DO_SPECULATION)
2780 spec_info->weakness_cutoff =
2781 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
2782 else
2783 /* So we won't read anything accidentally. */
2784 spec_info = 0;
2785 #ifdef ENABLE_CHECKING
2786 check_sched_flags ();
2787 #endif
2789 else
2790 /* So we won't read anything accidentally. */
2791 spec_info = 0;
2793 /* Initialize issue_rate. */
2794 if (targetm.sched.issue_rate)
2795 issue_rate = targetm.sched.issue_rate ();
2796 else
2797 issue_rate = 1;
2799 if (cached_issue_rate != issue_rate)
2801 cached_issue_rate = issue_rate;
2802 /* To invalidate max_lookahead_tries: */
2803 cached_first_cycle_multipass_dfa_lookahead = 0;
2806 old_max_uid = 0;
2807 h_i_d = 0;
2808 extend_h_i_d ();
2810 for (i = 0; i < old_max_uid; i++)
2812 h_i_d[i].cost = -1;
2813 h_i_d[i].todo_spec = HARD_DEP;
2814 h_i_d[i].queue_index = QUEUE_NOWHERE;
2815 h_i_d[i].tick = INVALID_TICK;
2816 h_i_d[i].inter_tick = INVALID_TICK;
2819 if (targetm.sched.init_dfa_pre_cycle_insn)
2820 targetm.sched.init_dfa_pre_cycle_insn ();
2822 if (targetm.sched.init_dfa_post_cycle_insn)
2823 targetm.sched.init_dfa_post_cycle_insn ();
2825 dfa_start ();
2826 dfa_state_size = state_size ();
2827 curr_state = xmalloc (dfa_state_size);
2829 h_i_d[0].luid = 0;
2830 luid = 1;
2831 FOR_EACH_BB (b)
2832 for (insn = BB_HEAD (b); ; insn = NEXT_INSN (insn))
2834 INSN_LUID (insn) = luid;
2836 /* Increment the next luid, unless this is a note. We don't
2837 really need separate IDs for notes and we don't want to
2838 schedule differently depending on whether or not there are
2839 line-number notes, i.e., depending on whether or not we're
2840 generating debugging information. */
2841 if (!NOTE_P (insn))
2842 ++luid;
2844 if (insn == BB_END (b))
2845 break;
2848 init_dependency_caches (luid);
2850 init_alias_analysis ();
2852 line_note_head = 0;
2853 old_last_basic_block = 0;
2854 glat_start = 0;
2855 glat_end = 0;
2856 extend_bb (0);
2858 if (current_sched_info->flags & USE_GLAT)
2859 init_glat ();
2861 /* Compute INSN_REG_WEIGHT for all blocks. We must do this before
2862 removing death notes. */
2863 FOR_EACH_BB_REVERSE (b)
2864 find_insn_reg_weight (b);
2866 if (targetm.sched.md_init_global)
2867 targetm.sched.md_init_global (sched_dump, sched_verbose, old_max_uid);
2869 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
2870 before_recovery = 0;
2872 #ifdef ENABLE_CHECKING
2873 /* This is used preferably for finding bugs in check_cfg () itself. */
2874 check_cfg (0, 0);
2875 #endif
2878 /* Free global data used during insn scheduling. */
2880 void
2881 sched_finish (void)
2883 free (h_i_d);
2884 free (curr_state);
2885 dfa_finish ();
2886 free_dependency_caches ();
2887 end_alias_analysis ();
2888 free (line_note_head);
2889 free_glat ();
2891 if (targetm.sched.md_finish_global)
2892 targetm.sched.md_finish_global (sched_dump, sched_verbose);
2894 if (spec_info && spec_info->dump)
2896 char c = reload_completed ? 'a' : 'b';
2898 fprintf (spec_info->dump,
2899 ";; %s:\n", current_function_name ());
2901 fprintf (spec_info->dump,
2902 ";; Procedure %cr-begin-data-spec motions == %d\n",
2903 c, nr_begin_data);
2904 fprintf (spec_info->dump,
2905 ";; Procedure %cr-be-in-data-spec motions == %d\n",
2906 c, nr_be_in_data);
2907 fprintf (spec_info->dump,
2908 ";; Procedure %cr-begin-control-spec motions == %d\n",
2909 c, nr_begin_control);
2910 fprintf (spec_info->dump,
2911 ";; Procedure %cr-be-in-control-spec motions == %d\n",
2912 c, nr_be_in_control);
2915 #ifdef ENABLE_CHECKING
2916 /* After reload ia64 backend clobbers CFG, so can't check anything. */
2917 if (!reload_completed)
2918 check_cfg (0, 0);
2919 #endif
2921 current_sched_info = NULL;
2924 /* Fix INSN_TICKs of the instructions in the current block as well as
2925 INSN_TICKs of their dependents.
2926 HEAD and TAIL are the begin and the end of the current scheduled block. */
2927 static void
2928 fix_inter_tick (rtx head, rtx tail)
2930 /* Set of instructions with corrected INSN_TICK. */
2931 bitmap_head processed;
2932 int next_clock = clock_var + 1;
2934 bitmap_initialize (&processed, 0);
2936 /* Iterates over scheduled instructions and fix their INSN_TICKs and
2937 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
2938 across different blocks. */
2939 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
2941 if (INSN_P (head))
2943 int tick;
2944 rtx link;
2946 tick = INSN_TICK (head);
2947 gcc_assert (tick >= MIN_TICK);
2949 /* Fix INSN_TICK of instruction from just scheduled block. */
2950 if (!bitmap_bit_p (&processed, INSN_LUID (head)))
2952 bitmap_set_bit (&processed, INSN_LUID (head));
2953 tick -= next_clock;
2955 if (tick < MIN_TICK)
2956 tick = MIN_TICK;
2958 INSN_TICK (head) = tick;
2961 for (link = INSN_DEPEND (head); link; link = XEXP (link, 1))
2963 rtx next;
2965 next = XEXP (link, 0);
2966 tick = INSN_TICK (next);
2968 if (tick != INVALID_TICK
2969 /* If NEXT has its INSN_TICK calculated, fix it.
2970 If not - it will be properly calculated from
2971 scratch later in fix_tick_ready. */
2972 && !bitmap_bit_p (&processed, INSN_LUID (next)))
2974 bitmap_set_bit (&processed, INSN_LUID (next));
2975 tick -= next_clock;
2977 if (tick < MIN_TICK)
2978 tick = MIN_TICK;
2980 if (tick > INTER_TICK (next))
2981 INTER_TICK (next) = tick;
2982 else
2983 tick = INTER_TICK (next);
2985 INSN_TICK (next) = tick;
2990 bitmap_clear (&processed);
2993 /* Check if NEXT is ready to be added to the ready or queue list.
2994 If "yes", add it to the proper list.
2995 Returns:
2996 -1 - is not ready yet,
2997 0 - added to the ready list,
2998 0 < N - queued for N cycles. */
3000 try_ready (rtx next)
3002 ds_t old_ts, *ts;
3003 rtx link;
3005 ts = &TODO_SPEC (next);
3006 old_ts = *ts;
3008 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
3009 && ((old_ts & HARD_DEP)
3010 || (old_ts & SPECULATIVE)));
3012 if (!(current_sched_info->flags & DO_SPECULATION))
3014 if (!LOG_LINKS (next))
3015 *ts &= ~HARD_DEP;
3017 else
3019 *ts &= ~SPECULATIVE & ~HARD_DEP;
3021 link = LOG_LINKS (next);
3022 if (link)
3024 /* LOG_LINKS are maintained sorted.
3025 So if DEP_STATUS of the first dep is SPECULATIVE,
3026 than all other deps are speculative too. */
3027 if (DEP_STATUS (link) & SPECULATIVE)
3029 /* Now we've got NEXT with speculative deps only.
3030 1. Look at the deps to see what we have to do.
3031 2. Check if we can do 'todo'. */
3032 *ts = DEP_STATUS (link) & SPECULATIVE;
3033 while ((link = XEXP (link, 1)))
3034 *ts = ds_merge (*ts, DEP_STATUS (link) & SPECULATIVE);
3036 if (dep_weak (*ts) < spec_info->weakness_cutoff)
3037 /* Too few points. */
3038 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3040 else
3041 *ts |= HARD_DEP;
3045 if (*ts & HARD_DEP)
3046 gcc_assert (*ts == old_ts
3047 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
3048 else if (current_sched_info->new_ready)
3049 *ts = current_sched_info->new_ready (next, *ts);
3051 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
3052 have its original pattern or changed (speculative) one. This is due
3053 to changing ebb in region scheduling.
3054 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
3055 has speculative pattern.
3057 We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
3058 control-speculative NEXT could have been discarded by sched-rgn.c
3059 (the same case as when discarded by can_schedule_ready_p ()). */
3061 if ((*ts & SPECULATIVE)
3062 /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
3063 need to change anything. */
3064 && *ts != old_ts)
3066 int res;
3067 rtx new_pat;
3069 gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
3071 res = speculate_insn (next, *ts, &new_pat);
3073 switch (res)
3075 case -1:
3076 /* It would be nice to change DEP_STATUS of all dependences,
3077 which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
3078 so we won't reanalyze anything. */
3079 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3080 break;
3082 case 0:
3083 /* We follow the rule, that every speculative insn
3084 has non-null ORIG_PAT. */
3085 if (!ORIG_PAT (next))
3086 ORIG_PAT (next) = PATTERN (next);
3087 break;
3089 case 1:
3090 if (!ORIG_PAT (next))
3091 /* If we gonna to overwrite the original pattern of insn,
3092 save it. */
3093 ORIG_PAT (next) = PATTERN (next);
3095 change_pattern (next, new_pat);
3096 break;
3098 default:
3099 gcc_unreachable ();
3103 /* We need to restore pattern only if (*ts == 0), because otherwise it is
3104 either correct (*ts & SPECULATIVE),
3105 or we simply don't care (*ts & HARD_DEP). */
3107 gcc_assert (!ORIG_PAT (next)
3108 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
3110 if (*ts & HARD_DEP)
3112 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
3113 control-speculative NEXT could have been discarded by sched-rgn.c
3114 (the same case as when discarded by can_schedule_ready_p ()). */
3115 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
3117 change_queue_index (next, QUEUE_NOWHERE);
3118 return -1;
3120 else if (!(*ts & BEGIN_SPEC) && ORIG_PAT (next) && !IS_SPECULATION_CHECK_P (next))
3121 /* We should change pattern of every previously speculative
3122 instruction - and we determine if NEXT was speculative by using
3123 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
3124 pat too, so skip them. */
3126 change_pattern (next, ORIG_PAT (next));
3127 ORIG_PAT (next) = 0;
3130 if (sched_verbose >= 2)
3132 int s = TODO_SPEC (next);
3134 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
3135 (*current_sched_info->print_insn) (next, 0));
3137 if (spec_info && spec_info->dump)
3139 if (s & BEGIN_DATA)
3140 fprintf (spec_info->dump, "; data-spec;");
3141 if (s & BEGIN_CONTROL)
3142 fprintf (spec_info->dump, "; control-spec;");
3143 if (s & BE_IN_CONTROL)
3144 fprintf (spec_info->dump, "; in-control-spec;");
3147 fprintf (sched_dump, "\n");
3150 adjust_priority (next);
3152 return fix_tick_ready (next);
3155 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
3156 static int
3157 fix_tick_ready (rtx next)
3159 rtx link;
3160 int tick, delay;
3162 link = RESOLVED_DEPS (next);
3164 if (link)
3166 int full_p;
3168 tick = INSN_TICK (next);
3169 /* if tick is not equal to INVALID_TICK, then update
3170 INSN_TICK of NEXT with the most recent resolved dependence
3171 cost. Otherwise, recalculate from scratch. */
3172 full_p = tick == INVALID_TICK;
3175 rtx pro;
3176 int tick1;
3178 pro = XEXP (link, 0);
3179 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
3181 tick1 = INSN_TICK (pro) + insn_cost (pro, link, next);
3182 if (tick1 > tick)
3183 tick = tick1;
3185 while ((link = XEXP (link, 1)) && full_p);
3187 else
3188 tick = -1;
3190 INSN_TICK (next) = tick;
3192 delay = tick - clock_var;
3193 if (delay <= 0)
3194 delay = QUEUE_READY;
3196 change_queue_index (next, delay);
3198 return delay;
3201 /* Move NEXT to the proper queue list with (DELAY >= 1),
3202 or add it to the ready list (DELAY == QUEUE_READY),
3203 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
3204 static void
3205 change_queue_index (rtx next, int delay)
3207 int i = QUEUE_INDEX (next);
3209 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
3210 && delay != 0);
3211 gcc_assert (i != QUEUE_SCHEDULED);
3213 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
3214 || (delay < 0 && delay == i))
3215 /* We have nothing to do. */
3216 return;
3218 /* Remove NEXT from wherever it is now. */
3219 if (i == QUEUE_READY)
3220 ready_remove_insn (next);
3221 else if (i >= 0)
3222 queue_remove (next);
3224 /* Add it to the proper place. */
3225 if (delay == QUEUE_READY)
3226 ready_add (readyp, next, false);
3227 else if (delay >= 1)
3228 queue_insn (next, delay);
3230 if (sched_verbose >= 2)
3232 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
3233 (*current_sched_info->print_insn) (next, 0));
3235 if (delay == QUEUE_READY)
3236 fprintf (sched_dump, " into ready\n");
3237 else if (delay >= 1)
3238 fprintf (sched_dump, " into queue with cost=%d\n", delay);
3239 else
3240 fprintf (sched_dump, " removed from ready or queue lists\n");
3244 /* INSN is being scheduled. Resolve the dependence between INSN and NEXT. */
3245 static void
3246 resolve_dep (rtx next, rtx insn)
3248 rtx dep;
3250 INSN_DEP_COUNT (next)--;
3252 dep = remove_list_elem (insn, &LOG_LINKS (next));
3253 XEXP (dep, 1) = RESOLVED_DEPS (next);
3254 RESOLVED_DEPS (next) = dep;
3256 gcc_assert ((INSN_DEP_COUNT (next) != 0 || !LOG_LINKS (next))
3257 && (LOG_LINKS (next) || INSN_DEP_COUNT (next) == 0));
3260 /* Extend H_I_D data. */
3261 static void
3262 extend_h_i_d (void)
3264 /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
3265 pseudos which do not cross calls. */
3266 int new_max_uid = get_max_uid() + 1;
3268 h_i_d = xrecalloc (h_i_d, new_max_uid, old_max_uid, sizeof (*h_i_d));
3269 old_max_uid = new_max_uid;
3271 if (targetm.sched.h_i_d_extended)
3272 targetm.sched.h_i_d_extended ();
3275 /* Extend READY, READY_TRY and CHOICE_STACK arrays.
3276 N_NEW_INSNS is the number of additional elements to allocate. */
3277 static void
3278 extend_ready (int n_new_insns)
3280 int i;
3282 readyp->veclen = rgn_n_insns + n_new_insns + 1 + issue_rate;
3283 readyp->vec = XRESIZEVEC (rtx, readyp->vec, readyp->veclen);
3285 ready_try = xrecalloc (ready_try, rgn_n_insns + n_new_insns + 1,
3286 rgn_n_insns + 1, sizeof (char));
3288 rgn_n_insns += n_new_insns;
3290 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
3291 rgn_n_insns + 1);
3293 for (i = rgn_n_insns; n_new_insns--; i--)
3294 choice_stack[i].state = xmalloc (dfa_state_size);
3297 /* Extend global scheduler structures (those, that live across calls to
3298 schedule_block) to include information about just emitted INSN. */
3299 static void
3300 extend_global (rtx insn)
3302 gcc_assert (INSN_P (insn));
3303 /* These structures have scheduler scope. */
3304 extend_h_i_d ();
3305 init_h_i_d (insn);
3307 extend_dependency_caches (1, 0);
3310 /* Extends global and local scheduler structures to include information
3311 about just emitted INSN. */
3312 static void
3313 extend_all (rtx insn)
3315 extend_global (insn);
3317 /* These structures have block scope. */
3318 extend_ready (1);
3320 (*current_sched_info->add_remove_insn) (insn, 0);
3323 /* Initialize h_i_d entry of the new INSN with default values.
3324 Values, that are not explicitly initialized here, hold zero. */
3325 static void
3326 init_h_i_d (rtx insn)
3328 INSN_LUID (insn) = luid++;
3329 INSN_COST (insn) = -1;
3330 TODO_SPEC (insn) = HARD_DEP;
3331 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
3332 INSN_TICK (insn) = INVALID_TICK;
3333 INTER_TICK (insn) = INVALID_TICK;
3334 find_insn_reg_weight1 (insn);
3337 /* Generates recovery code for INSN. */
3338 static void
3339 generate_recovery_code (rtx insn)
3341 if (TODO_SPEC (insn) & BEGIN_SPEC)
3342 begin_speculative_block (insn);
3344 /* Here we have insn with no dependencies to
3345 instructions other then CHECK_SPEC ones. */
3347 if (TODO_SPEC (insn) & BE_IN_SPEC)
3348 add_to_speculative_block (insn);
3351 /* Helper function.
3352 Tries to add speculative dependencies of type FS between instructions
3353 in LINK list and TWIN. */
3354 static void
3355 process_insn_depend_be_in_spec (rtx link, rtx twin, ds_t fs)
3357 for (; link; link = XEXP (link, 1))
3359 ds_t ds;
3360 rtx consumer;
3362 consumer = XEXP (link, 0);
3364 ds = DEP_STATUS (link);
3366 if (/* If we want to create speculative dep. */
3368 /* And we can do that because this is a true dep. */
3369 && (ds & DEP_TYPES) == DEP_TRUE)
3371 gcc_assert (!(ds & BE_IN_SPEC));
3373 if (/* If this dep can be overcome with 'begin speculation'. */
3374 ds & BEGIN_SPEC)
3375 /* Then we have a choice: keep the dep 'begin speculative'
3376 or transform it into 'be in speculative'. */
3378 if (/* In try_ready we assert that if insn once became ready
3379 it can be removed from the ready (or queue) list only
3380 due to backend decision. Hence we can't let the
3381 probability of the speculative dep to decrease. */
3382 dep_weak (ds) <= dep_weak (fs))
3383 /* Transform it to be in speculative. */
3384 ds = (ds & ~BEGIN_SPEC) | fs;
3386 else
3387 /* Mark the dep as 'be in speculative'. */
3388 ds |= fs;
3391 add_back_forw_dep (consumer, twin, REG_NOTE_KIND (link), ds);
3395 /* Generates recovery code for BEGIN speculative INSN. */
3396 static void
3397 begin_speculative_block (rtx insn)
3399 if (TODO_SPEC (insn) & BEGIN_DATA)
3400 nr_begin_data++;
3401 if (TODO_SPEC (insn) & BEGIN_CONTROL)
3402 nr_begin_control++;
3404 create_check_block_twin (insn, false);
3406 TODO_SPEC (insn) &= ~BEGIN_SPEC;
3409 /* Generates recovery code for BE_IN speculative INSN. */
3410 static void
3411 add_to_speculative_block (rtx insn)
3413 ds_t ts;
3414 rtx link, twins = NULL;
3416 ts = TODO_SPEC (insn);
3417 gcc_assert (!(ts & ~BE_IN_SPEC));
3419 if (ts & BE_IN_DATA)
3420 nr_be_in_data++;
3421 if (ts & BE_IN_CONTROL)
3422 nr_be_in_control++;
3424 TODO_SPEC (insn) &= ~BE_IN_SPEC;
3425 gcc_assert (!TODO_SPEC (insn));
3427 DONE_SPEC (insn) |= ts;
3429 /* First we convert all simple checks to branchy. */
3430 for (link = LOG_LINKS (insn); link;)
3432 rtx check;
3434 check = XEXP (link, 0);
3436 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
3438 create_check_block_twin (check, true);
3439 link = LOG_LINKS (insn);
3441 else
3442 link = XEXP (link, 1);
3445 clear_priorities (insn);
3449 rtx link, check, twin;
3450 basic_block rec;
3452 link = LOG_LINKS (insn);
3453 gcc_assert (!(DEP_STATUS (link) & BEGIN_SPEC)
3454 && (DEP_STATUS (link) & BE_IN_SPEC)
3455 && (DEP_STATUS (link) & DEP_TYPES) == DEP_TRUE);
3457 check = XEXP (link, 0);
3459 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
3460 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
3462 rec = BLOCK_FOR_INSN (check);
3464 twin = emit_insn_before (copy_rtx (PATTERN (insn)), BB_END (rec));
3465 extend_global (twin);
3467 RESOLVED_DEPS (twin) = copy_DEPS_LIST_list (RESOLVED_DEPS (insn));
3469 if (sched_verbose && spec_info->dump)
3470 /* INSN_BB (insn) isn't determined for twin insns yet.
3471 So we can't use current_sched_info->print_insn. */
3472 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
3473 INSN_UID (twin), rec->index);
3475 twins = alloc_INSN_LIST (twin, twins);
3477 /* Add dependences between TWIN and all appropriate
3478 instructions from REC. */
3481 add_back_forw_dep (twin, check, REG_DEP_TRUE, DEP_TRUE);
3485 link = XEXP (link, 1);
3486 if (link)
3488 check = XEXP (link, 0);
3489 if (BLOCK_FOR_INSN (check) == rec)
3490 break;
3492 else
3493 break;
3495 while (1);
3497 while (link);
3499 process_insn_depend_be_in_spec (INSN_DEPEND (insn), twin, ts);
3501 for (link = LOG_LINKS (insn); link;)
3503 check = XEXP (link, 0);
3505 if (BLOCK_FOR_INSN (check) == rec)
3507 delete_back_forw_dep (insn, check);
3508 link = LOG_LINKS (insn);
3510 else
3511 link = XEXP (link, 1);
3514 while (LOG_LINKS (insn));
3516 /* We can't add the dependence between insn and twin earlier because
3517 that would make twin appear in the INSN_DEPEND (insn). */
3518 while (twins)
3520 rtx twin;
3522 twin = XEXP (twins, 0);
3523 calc_priorities (twin);
3524 add_back_forw_dep (twin, insn, REG_DEP_OUTPUT, DEP_OUTPUT);
3526 twin = XEXP (twins, 1);
3527 free_INSN_LIST_node (twins);
3528 twins = twin;
3532 /* Extends and fills with zeros (only the new part) array pointed to by P. */
3533 void *
3534 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
3536 gcc_assert (new_nmemb >= old_nmemb);
3537 p = XRESIZEVAR (void, p, new_nmemb * size);
3538 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
3539 return p;
3542 /* Return the probability of speculation success for the speculation
3543 status DS. */
3544 static dw_t
3545 dep_weak (ds_t ds)
3547 ds_t res = 1, dt;
3548 int n = 0;
3550 dt = FIRST_SPEC_TYPE;
3553 if (ds & dt)
3555 res *= (ds_t) get_dep_weak (ds, dt);
3556 n++;
3559 if (dt == LAST_SPEC_TYPE)
3560 break;
3561 dt <<= SPEC_TYPE_SHIFT;
3563 while (1);
3565 gcc_assert (n);
3566 while (--n)
3567 res /= MAX_DEP_WEAK;
3569 if (res < MIN_DEP_WEAK)
3570 res = MIN_DEP_WEAK;
3572 gcc_assert (res <= MAX_DEP_WEAK);
3574 return (dw_t) res;
3577 /* Helper function.
3578 Find fallthru edge from PRED. */
3579 static edge
3580 find_fallthru_edge (basic_block pred)
3582 edge e;
3583 edge_iterator ei;
3584 basic_block succ;
3586 succ = pred->next_bb;
3587 gcc_assert (succ->prev_bb == pred);
3589 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
3591 FOR_EACH_EDGE (e, ei, pred->succs)
3592 if (e->flags & EDGE_FALLTHRU)
3594 gcc_assert (e->dest == succ);
3595 return e;
3598 else
3600 FOR_EACH_EDGE (e, ei, succ->preds)
3601 if (e->flags & EDGE_FALLTHRU)
3603 gcc_assert (e->src == pred);
3604 return e;
3608 return NULL;
3611 /* Initialize BEFORE_RECOVERY variable. */
3612 static void
3613 init_before_recovery (void)
3615 basic_block last;
3616 edge e;
3618 last = EXIT_BLOCK_PTR->prev_bb;
3619 e = find_fallthru_edge (last);
3621 if (e)
3623 /* We create two basic blocks:
3624 1. Single instruction block is inserted right after E->SRC
3625 and has jump to
3626 2. Empty block right before EXIT_BLOCK.
3627 Between these two blocks recovery blocks will be emitted. */
3629 basic_block single, empty;
3630 rtx x, label;
3632 single = create_empty_bb (last);
3633 empty = create_empty_bb (single);
3635 single->count = last->count;
3636 empty->count = last->count;
3637 single->frequency = last->frequency;
3638 empty->frequency = last->frequency;
3639 BB_COPY_PARTITION (single, last);
3640 BB_COPY_PARTITION (empty, last);
3642 redirect_edge_succ (e, single);
3643 make_single_succ_edge (single, empty, 0);
3644 make_single_succ_edge (empty, EXIT_BLOCK_PTR,
3645 EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
3647 label = block_label (empty);
3648 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
3649 JUMP_LABEL (x) = label;
3650 LABEL_NUSES (label)++;
3651 extend_global (x);
3653 emit_barrier_after (x);
3655 add_block (empty, 0);
3656 add_block (single, 0);
3658 before_recovery = single;
3660 if (sched_verbose >= 2 && spec_info->dump)
3661 fprintf (spec_info->dump,
3662 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
3663 last->index, single->index, empty->index);
3665 else
3666 before_recovery = last;
3669 /* Returns new recovery block. */
3670 static basic_block
3671 create_recovery_block (void)
3673 rtx label;
3674 rtx barrier;
3675 basic_block rec;
3677 added_recovery_block_p = true;
3679 if (!before_recovery)
3680 init_before_recovery ();
3682 barrier = get_last_bb_insn (before_recovery);
3683 gcc_assert (BARRIER_P (barrier));
3685 label = emit_label_after (gen_label_rtx (), barrier);
3687 rec = create_basic_block (label, label, before_recovery);
3689 /* Recovery block always end with an unconditional jump. */
3690 emit_barrier_after (BB_END (rec));
3692 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
3693 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
3695 if (sched_verbose && spec_info->dump)
3696 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
3697 rec->index);
3699 before_recovery = rec;
3701 return rec;
3704 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
3705 INSN is a simple check, that should be converted to branchy one. */
3706 static void
3707 create_check_block_twin (rtx insn, bool mutate_p)
3709 basic_block rec;
3710 rtx label, check, twin, link;
3711 ds_t fs;
3713 gcc_assert (ORIG_PAT (insn)
3714 && (!mutate_p
3715 || (IS_SPECULATION_SIMPLE_CHECK_P (insn)
3716 && !(TODO_SPEC (insn) & SPECULATIVE))));
3718 /* Create recovery block. */
3719 if (mutate_p || targetm.sched.needs_block_p (insn))
3721 rec = create_recovery_block ();
3722 label = BB_HEAD (rec);
3724 else
3726 rec = EXIT_BLOCK_PTR;
3727 label = 0;
3730 /* Emit CHECK. */
3731 check = targetm.sched.gen_check (insn, label, mutate_p);
3733 if (rec != EXIT_BLOCK_PTR)
3735 /* To have mem_reg alive at the beginning of second_bb,
3736 we emit check BEFORE insn, so insn after splitting
3737 insn will be at the beginning of second_bb, which will
3738 provide us with the correct life information. */
3739 check = emit_jump_insn_before (check, insn);
3740 JUMP_LABEL (check) = label;
3741 LABEL_NUSES (label)++;
3743 else
3744 check = emit_insn_before (check, insn);
3746 /* Extend data structures. */
3747 extend_all (check);
3748 RECOVERY_BLOCK (check) = rec;
3750 if (sched_verbose && spec_info->dump)
3751 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
3752 (*current_sched_info->print_insn) (check, 0));
3754 gcc_assert (ORIG_PAT (insn));
3756 /* Initialize TWIN (twin is a duplicate of original instruction
3757 in the recovery block). */
3758 if (rec != EXIT_BLOCK_PTR)
3760 rtx link;
3762 for (link = RESOLVED_DEPS (insn); link; link = XEXP (link, 1))
3763 if (DEP_STATUS (link) & DEP_OUTPUT)
3765 RESOLVED_DEPS (check) =
3766 alloc_DEPS_LIST (XEXP (link, 0), RESOLVED_DEPS (check), DEP_TRUE);
3767 PUT_REG_NOTE_KIND (RESOLVED_DEPS (check), REG_DEP_TRUE);
3770 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
3771 extend_global (twin);
3773 if (sched_verbose && spec_info->dump)
3774 /* INSN_BB (insn) isn't determined for twin insns yet.
3775 So we can't use current_sched_info->print_insn. */
3776 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
3777 INSN_UID (twin), rec->index);
3779 else
3781 ORIG_PAT (check) = ORIG_PAT (insn);
3782 HAS_INTERNAL_DEP (check) = 1;
3783 twin = check;
3784 /* ??? We probably should change all OUTPUT dependencies to
3785 (TRUE | OUTPUT). */
3788 RESOLVED_DEPS (twin) = copy_DEPS_LIST_list (RESOLVED_DEPS (insn));
3790 if (rec != EXIT_BLOCK_PTR)
3791 /* In case of branchy check, fix CFG. */
3793 basic_block first_bb, second_bb;
3794 rtx jump;
3795 edge e;
3796 int edge_flags;
3798 first_bb = BLOCK_FOR_INSN (check);
3799 e = split_block (first_bb, check);
3800 /* split_block emits note if *check == BB_END. Probably it
3801 is better to rip that note off. */
3802 gcc_assert (e->src == first_bb);
3803 second_bb = e->dest;
3805 /* This is fixing of incoming edge. */
3806 /* ??? Which other flags should be specified? */
3807 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
3808 /* Partition type is the same, if it is "unpartitioned". */
3809 edge_flags = EDGE_CROSSING;
3810 else
3811 edge_flags = 0;
3813 e = make_edge (first_bb, rec, edge_flags);
3815 add_block (second_bb, first_bb);
3817 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (second_bb)));
3818 label = block_label (second_bb);
3819 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
3820 JUMP_LABEL (jump) = label;
3821 LABEL_NUSES (label)++;
3822 extend_global (jump);
3824 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
3825 /* Partition type is the same, if it is "unpartitioned". */
3827 /* Rewritten from cfgrtl.c. */
3828 if (flag_reorder_blocks_and_partition
3829 && targetm.have_named_sections
3830 /*&& !any_condjump_p (jump)*/)
3831 /* any_condjump_p (jump) == false.
3832 We don't need the same note for the check because
3833 any_condjump_p (check) == true. */
3835 REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
3836 NULL_RTX,
3837 REG_NOTES (jump));
3839 edge_flags = EDGE_CROSSING;
3841 else
3842 edge_flags = 0;
3844 make_single_succ_edge (rec, second_bb, edge_flags);
3846 add_block (rec, EXIT_BLOCK_PTR);
3849 /* Move backward dependences from INSN to CHECK and
3850 move forward dependences from INSN to TWIN. */
3851 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3853 ds_t ds;
3855 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
3856 check --TRUE--> producer ??? or ANTI ???
3857 twin --TRUE--> producer
3858 twin --ANTI--> check
3860 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
3861 check --ANTI--> producer
3862 twin --ANTI--> producer
3863 twin --ANTI--> check
3865 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
3866 check ~~TRUE~~> producer
3867 twin ~~TRUE~~> producer
3868 twin --ANTI--> check */
3870 ds = DEP_STATUS (link);
3872 if (ds & BEGIN_SPEC)
3874 gcc_assert (!mutate_p);
3875 ds &= ~BEGIN_SPEC;
3878 if (rec != EXIT_BLOCK_PTR)
3880 add_back_forw_dep (check, XEXP (link, 0), REG_NOTE_KIND (link), ds);
3881 add_back_forw_dep (twin, XEXP (link, 0), REG_NOTE_KIND (link), ds);
3883 else
3884 add_back_forw_dep (check, XEXP (link, 0), REG_NOTE_KIND (link), ds);
3887 for (link = LOG_LINKS (insn); link;)
3888 if ((DEP_STATUS (link) & BEGIN_SPEC)
3889 || mutate_p)
3890 /* We can delete this dep only if we totally overcome it with
3891 BEGIN_SPECULATION. */
3893 delete_back_forw_dep (insn, XEXP (link, 0));
3894 link = LOG_LINKS (insn);
3896 else
3897 link = XEXP (link, 1);
3899 fs = 0;
3901 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
3902 here. */
3904 gcc_assert (!DONE_SPEC (insn));
3906 if (!mutate_p)
3908 ds_t ts = TODO_SPEC (insn);
3910 DONE_SPEC (insn) = ts & BEGIN_SPEC;
3911 CHECK_SPEC (check) = ts & BEGIN_SPEC;
3913 if (ts & BEGIN_DATA)
3914 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
3915 if (ts & BEGIN_CONTROL)
3916 fs = set_dep_weak (fs, BE_IN_CONTROL, get_dep_weak (ts, BEGIN_CONTROL));
3918 else
3919 CHECK_SPEC (check) = CHECK_SPEC (insn);
3921 /* Future speculations: call the helper. */
3922 process_insn_depend_be_in_spec (INSN_DEPEND (insn), twin, fs);
3924 if (rec != EXIT_BLOCK_PTR)
3926 /* Which types of dependencies should we use here is,
3927 generally, machine-dependent question... But, for now,
3928 it is not. */
3930 if (!mutate_p)
3932 add_back_forw_dep (check, insn, REG_DEP_TRUE, DEP_TRUE);
3933 add_back_forw_dep (twin, insn, REG_DEP_OUTPUT, DEP_OUTPUT);
3935 else
3937 if (spec_info->dump)
3938 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
3939 (*current_sched_info->print_insn) (insn, 0));
3941 for (link = INSN_DEPEND (insn); link; link = INSN_DEPEND (insn))
3942 delete_back_forw_dep (XEXP (link, 0), insn);
3944 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
3945 try_ready (check);
3947 sched_remove_insn (insn);
3950 add_back_forw_dep (twin, check, REG_DEP_ANTI, DEP_ANTI);
3952 else
3953 add_back_forw_dep (check, insn, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
3955 if (!mutate_p)
3956 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
3957 because it'll be done later in add_to_speculative_block. */
3959 clear_priorities (twin);
3960 calc_priorities (twin);
3964 /* Removes dependency between instructions in the recovery block REC
3965 and usual region instructions. It keeps inner dependences so it
3966 won't be necessary to recompute them. */
3967 static void
3968 fix_recovery_deps (basic_block rec)
3970 rtx note, insn, link, jump, ready_list = 0;
3971 bitmap_head in_ready;
3973 bitmap_initialize (&in_ready, 0);
3975 /* NOTE - a basic block note. */
3976 note = NEXT_INSN (BB_HEAD (rec));
3977 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
3978 insn = BB_END (rec);
3979 gcc_assert (JUMP_P (insn));
3980 insn = PREV_INSN (insn);
3984 for (link = INSN_DEPEND (insn); link;)
3986 rtx consumer;
3988 consumer = XEXP (link, 0);
3990 if (BLOCK_FOR_INSN (consumer) != rec)
3992 delete_back_forw_dep (consumer, insn);
3994 if (!bitmap_bit_p (&in_ready, INSN_LUID (consumer)))
3996 ready_list = alloc_INSN_LIST (consumer, ready_list);
3997 bitmap_set_bit (&in_ready, INSN_LUID (consumer));
4000 link = INSN_DEPEND (insn);
4002 else
4004 gcc_assert ((DEP_STATUS (link) & DEP_TYPES) == DEP_TRUE);
4006 link = XEXP (link, 1);
4010 insn = PREV_INSN (insn);
4012 while (insn != note);
4014 bitmap_clear (&in_ready);
4016 /* Try to add instructions to the ready or queue list. */
4017 for (link = ready_list; link; link = XEXP (link, 1))
4018 try_ready (XEXP (link, 0));
4019 free_INSN_LIST_list (&ready_list);
4021 /* Fixing jump's dependences. */
4022 insn = BB_HEAD (rec);
4023 jump = BB_END (rec);
4025 gcc_assert (LABEL_P (insn));
4026 insn = NEXT_INSN (insn);
4028 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4029 add_jump_dependencies (insn, jump);
4032 /* The function saves line notes at the beginning of block B. */
4033 static void
4034 associate_line_notes_with_blocks (basic_block b)
4036 rtx line;
4038 for (line = BB_HEAD (b); line; line = PREV_INSN (line))
4039 if (NOTE_P (line) && NOTE_LINE_NUMBER (line) > 0)
4041 line_note_head[b->index] = line;
4042 break;
4044 /* Do a forward search as well, since we won't get to see the first
4045 notes in a basic block. */
4046 for (line = BB_HEAD (b); line; line = NEXT_INSN (line))
4048 if (INSN_P (line))
4049 break;
4050 if (NOTE_P (line) && NOTE_LINE_NUMBER (line) > 0)
4051 line_note_head[b->index] = line;
4055 /* Changes pattern of the INSN to NEW_PAT. */
4056 static void
4057 change_pattern (rtx insn, rtx new_pat)
4059 int t;
4061 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
4062 gcc_assert (t);
4063 /* Invalidate INSN_COST, so it'll be recalculated. */
4064 INSN_COST (insn) = -1;
4065 /* Invalidate INSN_TICK, so it'll be recalculated. */
4066 INSN_TICK (insn) = INVALID_TICK;
4067 dfa_clear_single_insn_cache (insn);
4071 /* -1 - can't speculate,
4072 0 - for speculation with REQUEST mode it is OK to use
4073 current instruction pattern,
4074 1 - need to change pattern for *NEW_PAT to be speculative. */
4075 static int
4076 speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4078 gcc_assert (current_sched_info->flags & DO_SPECULATION
4079 && (request & SPECULATIVE));
4081 if (!NONJUMP_INSN_P (insn)
4082 || HAS_INTERNAL_DEP (insn)
4083 || SCHED_GROUP_P (insn)
4084 || side_effects_p (PATTERN (insn))
4085 || (request & spec_info->mask) != request)
4086 return -1;
4088 gcc_assert (!IS_SPECULATION_CHECK_P (insn));
4090 if (request & BE_IN_SPEC)
4092 if (may_trap_p (PATTERN (insn)))
4093 return -1;
4095 if (!(request & BEGIN_SPEC))
4096 return 0;
4099 return targetm.sched.speculate_insn (insn, request & BEGIN_SPEC, new_pat);
4102 /* Print some information about block BB, which starts with HEAD and
4103 ends with TAIL, before scheduling it.
4104 I is zero, if scheduler is about to start with the fresh ebb. */
4105 static void
4106 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
4108 if (!i)
4109 fprintf (sched_dump,
4110 ";; ======================================================\n");
4111 else
4112 fprintf (sched_dump,
4113 ";; =====================ADVANCING TO=====================\n");
4114 fprintf (sched_dump,
4115 ";; -- basic block %d from %d to %d -- %s reload\n",
4116 bb->index, INSN_UID (head), INSN_UID (tail),
4117 (reload_completed ? "after" : "before"));
4118 fprintf (sched_dump,
4119 ";; ======================================================\n");
4120 fprintf (sched_dump, "\n");
4123 /* Unlink basic block notes and labels and saves them, so they
4124 can be easily restored. We unlink basic block notes in EBB to
4125 provide back-compatibility with the previous code, as target backends
4126 assume, that there'll be only instructions between
4127 current_sched_info->{head and tail}. We restore these notes as soon
4128 as we can.
4129 FIRST (LAST) is the first (last) basic block in the ebb.
4130 NB: In usual case (FIRST == LAST) nothing is really done. */
4131 void
4132 unlink_bb_notes (basic_block first, basic_block last)
4134 /* We DON'T unlink basic block notes of the first block in the ebb. */
4135 if (first == last)
4136 return;
4138 bb_header = xmalloc (last_basic_block * sizeof (*bb_header));
4140 /* Make a sentinel. */
4141 if (last->next_bb != EXIT_BLOCK_PTR)
4142 bb_header[last->next_bb->index] = 0;
4144 first = first->next_bb;
4147 rtx prev, label, note, next;
4149 label = BB_HEAD (last);
4150 if (LABEL_P (label))
4151 note = NEXT_INSN (label);
4152 else
4153 note = label;
4154 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4156 prev = PREV_INSN (label);
4157 next = NEXT_INSN (note);
4158 gcc_assert (prev && next);
4160 NEXT_INSN (prev) = next;
4161 PREV_INSN (next) = prev;
4163 bb_header[last->index] = label;
4165 if (last == first)
4166 break;
4168 last = last->prev_bb;
4170 while (1);
4173 /* Restore basic block notes.
4174 FIRST is the first basic block in the ebb. */
4175 static void
4176 restore_bb_notes (basic_block first)
4178 if (!bb_header)
4179 return;
4181 /* We DON'T unlink basic block notes of the first block in the ebb. */
4182 first = first->next_bb;
4183 /* Remember: FIRST is actually a second basic block in the ebb. */
4185 while (first != EXIT_BLOCK_PTR
4186 && bb_header[first->index])
4188 rtx prev, label, note, next;
4190 label = bb_header[first->index];
4191 prev = PREV_INSN (label);
4192 next = NEXT_INSN (prev);
4194 if (LABEL_P (label))
4195 note = NEXT_INSN (label);
4196 else
4197 note = label;
4198 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4200 bb_header[first->index] = 0;
4202 NEXT_INSN (prev) = label;
4203 NEXT_INSN (note) = next;
4204 PREV_INSN (next) = note;
4206 first = first->next_bb;
4209 free (bb_header);
4210 bb_header = 0;
4213 /* Extend per basic block data structures of the scheduler.
4214 If BB is NULL, initialize structures for the whole CFG.
4215 Otherwise, initialize them for the just created BB. */
4216 static void
4217 extend_bb (basic_block bb)
4219 rtx insn;
4221 if (write_symbols != NO_DEBUG)
4223 /* Save-line-note-head:
4224 Determine the line-number at the start of each basic block.
4225 This must be computed and saved now, because after a basic block's
4226 predecessor has been scheduled, it is impossible to accurately
4227 determine the correct line number for the first insn of the block. */
4228 line_note_head = xrecalloc (line_note_head, last_basic_block,
4229 old_last_basic_block,
4230 sizeof (*line_note_head));
4232 if (bb)
4233 associate_line_notes_with_blocks (bb);
4234 else
4235 FOR_EACH_BB (bb)
4236 associate_line_notes_with_blocks (bb);
4239 old_last_basic_block = last_basic_block;
4241 if (current_sched_info->flags & USE_GLAT)
4243 glat_start = xrealloc (glat_start,
4244 last_basic_block * sizeof (*glat_start));
4245 glat_end = xrealloc (glat_end, last_basic_block * sizeof (*glat_end));
4248 /* The following is done to keep current_sched_info->next_tail non null. */
4250 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
4251 if (NEXT_INSN (insn) == 0
4252 || (!NOTE_P (insn)
4253 && !LABEL_P (insn)
4254 /* Don't emit a NOTE if it would end up before a BARRIER. */
4255 && !BARRIER_P (NEXT_INSN (insn))))
4257 emit_note_after (NOTE_INSN_DELETED, insn);
4258 /* Make insn to appear outside BB. */
4259 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
4263 /* Add a basic block BB to extended basic block EBB.
4264 If EBB is EXIT_BLOCK_PTR, then BB is recovery block.
4265 If EBB is NULL, then BB should be a new region. */
4266 void
4267 add_block (basic_block bb, basic_block ebb)
4269 gcc_assert (current_sched_info->flags & DETACH_LIFE_INFO
4270 && bb->il.rtl->global_live_at_start == 0
4271 && bb->il.rtl->global_live_at_end == 0);
4273 extend_bb (bb);
4275 glat_start[bb->index] = 0;
4276 glat_end[bb->index] = 0;
4278 if (current_sched_info->add_block)
4279 /* This changes only data structures of the front-end. */
4280 current_sched_info->add_block (bb, ebb);
4283 /* Helper function.
4284 Fix CFG after both in- and inter-block movement of
4285 control_flow_insn_p JUMP. */
4286 static void
4287 fix_jump_move (rtx jump)
4289 basic_block bb, jump_bb, jump_bb_next;
4291 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
4292 jump_bb = BLOCK_FOR_INSN (jump);
4293 jump_bb_next = jump_bb->next_bb;
4295 gcc_assert (current_sched_info->flags & SCHED_EBB
4296 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
4298 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
4299 /* if jump_bb_next is not empty. */
4300 BB_END (jump_bb) = BB_END (jump_bb_next);
4302 if (BB_END (bb) != PREV_INSN (jump))
4303 /* Then there are instruction after jump that should be placed
4304 to jump_bb_next. */
4305 BB_END (jump_bb_next) = BB_END (bb);
4306 else
4307 /* Otherwise jump_bb_next is empty. */
4308 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
4310 /* To make assertion in move_insn happy. */
4311 BB_END (bb) = PREV_INSN (jump);
4313 update_bb_for_insn (jump_bb_next);
4316 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
4317 static void
4318 move_block_after_check (rtx jump)
4320 basic_block bb, jump_bb, jump_bb_next;
4321 VEC(edge,gc) *t;
4323 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
4324 jump_bb = BLOCK_FOR_INSN (jump);
4325 jump_bb_next = jump_bb->next_bb;
4327 update_bb_for_insn (jump_bb);
4329 gcc_assert (IS_SPECULATION_CHECK_P (jump)
4330 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
4332 unlink_block (jump_bb_next);
4333 link_block (jump_bb_next, bb);
4335 t = bb->succs;
4336 bb->succs = 0;
4337 move_succs (&(jump_bb->succs), bb);
4338 move_succs (&(jump_bb_next->succs), jump_bb);
4339 move_succs (&t, jump_bb_next);
4341 if (current_sched_info->fix_recovery_cfg)
4342 current_sched_info->fix_recovery_cfg
4343 (bb->index, jump_bb->index, jump_bb_next->index);
4346 /* Helper function for move_block_after_check.
4347 This functions attaches edge vector pointed to by SUCCSP to
4348 block TO. */
4349 static void
4350 move_succs (VEC(edge,gc) **succsp, basic_block to)
4352 edge e;
4353 edge_iterator ei;
4355 gcc_assert (to->succs == 0);
4357 to->succs = *succsp;
4359 FOR_EACH_EDGE (e, ei, to->succs)
4360 e->src = to;
4362 *succsp = 0;
4365 /* Initialize GLAT (global_live_at_{start, end}) structures.
4366 GLAT structures are used to substitute global_live_{start, end}
4367 regsets during scheduling. This is necessary to use such functions as
4368 split_block (), as they assume consistency of register live information. */
4369 static void
4370 init_glat (void)
4372 basic_block bb;
4374 FOR_ALL_BB (bb)
4375 init_glat1 (bb);
4378 /* Helper function for init_glat. */
4379 static void
4380 init_glat1 (basic_block bb)
4382 gcc_assert (bb->il.rtl->global_live_at_start != 0
4383 && bb->il.rtl->global_live_at_end != 0);
4385 glat_start[bb->index] = bb->il.rtl->global_live_at_start;
4386 glat_end[bb->index] = bb->il.rtl->global_live_at_end;
4388 if (current_sched_info->flags & DETACH_LIFE_INFO)
4390 bb->il.rtl->global_live_at_start = 0;
4391 bb->il.rtl->global_live_at_end = 0;
4395 /* Attach reg_live_info back to basic blocks.
4396 Also save regsets, that should not have been changed during scheduling,
4397 for checking purposes (see check_reg_live). */
4398 void
4399 attach_life_info (void)
4401 basic_block bb;
4403 FOR_ALL_BB (bb)
4404 attach_life_info1 (bb);
4407 /* Helper function for attach_life_info. */
4408 static void
4409 attach_life_info1 (basic_block bb)
4411 gcc_assert (bb->il.rtl->global_live_at_start == 0
4412 && bb->il.rtl->global_live_at_end == 0);
4414 if (glat_start[bb->index])
4416 gcc_assert (glat_end[bb->index]);
4418 bb->il.rtl->global_live_at_start = glat_start[bb->index];
4419 bb->il.rtl->global_live_at_end = glat_end[bb->index];
4421 /* Make them NULL, so they won't be freed in free_glat. */
4422 glat_start[bb->index] = 0;
4423 glat_end[bb->index] = 0;
4425 #ifdef ENABLE_CHECKING
4426 if (bb->index < NUM_FIXED_BLOCKS
4427 || current_sched_info->region_head_or_leaf_p (bb, 0))
4429 glat_start[bb->index] = ALLOC_REG_SET (&reg_obstack);
4430 COPY_REG_SET (glat_start[bb->index],
4431 bb->il.rtl->global_live_at_start);
4434 if (bb->index < NUM_FIXED_BLOCKS
4435 || current_sched_info->region_head_or_leaf_p (bb, 1))
4437 glat_end[bb->index] = ALLOC_REG_SET (&reg_obstack);
4438 COPY_REG_SET (glat_end[bb->index], bb->il.rtl->global_live_at_end);
4440 #endif
4442 else
4444 gcc_assert (!glat_end[bb->index]);
4446 bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
4447 bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
4451 /* Free GLAT information. */
4452 static void
4453 free_glat (void)
4455 #ifdef ENABLE_CHECKING
4456 if (current_sched_info->flags & DETACH_LIFE_INFO)
4458 basic_block bb;
4460 FOR_ALL_BB (bb)
4462 if (glat_start[bb->index])
4463 FREE_REG_SET (glat_start[bb->index]);
4464 if (glat_end[bb->index])
4465 FREE_REG_SET (glat_end[bb->index]);
4468 #endif
4470 free (glat_start);
4471 free (glat_end);
4474 /* Remove INSN from the instruction stream.
4475 INSN should have any dependencies. */
4476 static void
4477 sched_remove_insn (rtx insn)
4479 change_queue_index (insn, QUEUE_NOWHERE);
4480 current_sched_info->add_remove_insn (insn, 1);
4481 remove_insn (insn);
4484 /* Clear priorities of all instructions, that are
4485 forward dependent on INSN. */
4486 static void
4487 clear_priorities (rtx insn)
4489 rtx link;
4491 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
4493 rtx pro;
4495 pro = XEXP (link, 0);
4496 if (INSN_PRIORITY_KNOWN (pro))
4498 INSN_PRIORITY_KNOWN (pro) = 0;
4499 clear_priorities (pro);
4504 /* Recompute priorities of instructions, whose priorities might have been
4505 changed due to changes in INSN. */
4506 static void
4507 calc_priorities (rtx insn)
4509 rtx link;
4511 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
4513 rtx pro;
4515 pro = XEXP (link, 0);
4516 if (!INSN_PRIORITY_KNOWN (pro))
4518 priority (pro);
4519 calc_priorities (pro);
4525 /* Add dependences between JUMP and other instructions in the recovery
4526 block. INSN is the first insn the recovery block. */
4527 static void
4528 add_jump_dependencies (rtx insn, rtx jump)
4532 insn = NEXT_INSN (insn);
4533 if (insn == jump)
4534 break;
4536 if (!INSN_DEPEND (insn))
4537 add_back_forw_dep (jump, insn, REG_DEP_ANTI, DEP_ANTI);
4539 while (1);
4540 gcc_assert (LOG_LINKS (jump));
4543 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
4545 bb_note (basic_block bb)
4547 rtx note;
4549 note = BB_HEAD (bb);
4550 if (LABEL_P (note))
4551 note = NEXT_INSN (note);
4553 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4554 return note;
4557 #ifdef ENABLE_CHECKING
4558 extern void debug_spec_status (ds_t);
4560 /* Dump information about the dependence status S. */
4561 void
4562 debug_spec_status (ds_t s)
4564 FILE *f = stderr;
4566 if (s & BEGIN_DATA)
4567 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak (s, BEGIN_DATA));
4568 if (s & BE_IN_DATA)
4569 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak (s, BE_IN_DATA));
4570 if (s & BEGIN_CONTROL)
4571 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak (s, BEGIN_CONTROL));
4572 if (s & BE_IN_CONTROL)
4573 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak (s, BE_IN_CONTROL));
4575 if (s & HARD_DEP)
4576 fprintf (f, "HARD_DEP; ");
4578 if (s & DEP_TRUE)
4579 fprintf (f, "DEP_TRUE; ");
4580 if (s & DEP_ANTI)
4581 fprintf (f, "DEP_ANTI; ");
4582 if (s & DEP_OUTPUT)
4583 fprintf (f, "DEP_OUTPUT; ");
4585 fprintf (f, "\n");
4588 /* Helper function for check_cfg.
4589 Return nonzero, if edge vector pointed to by EL has edge with TYPE in
4590 its flags. */
4591 static int
4592 has_edge_p (VEC(edge,gc) *el, int type)
4594 edge e;
4595 edge_iterator ei;
4597 FOR_EACH_EDGE (e, ei, el)
4598 if (e->flags & type)
4599 return 1;
4600 return 0;
4603 /* Check few properties of CFG between HEAD and TAIL.
4604 If HEAD (TAIL) is NULL check from the beginning (till the end) of the
4605 instruction stream. */
4606 static void
4607 check_cfg (rtx head, rtx tail)
4609 rtx next_tail;
4610 basic_block bb = 0;
4611 int not_first = 0, not_last;
4613 if (head == NULL)
4614 head = get_insns ();
4615 if (tail == NULL)
4616 tail = get_last_insn ();
4617 next_tail = NEXT_INSN (tail);
4621 not_last = head != tail;
4623 if (not_first)
4624 gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
4625 if (not_last)
4626 gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);
4628 if (LABEL_P (head)
4629 || (NOTE_INSN_BASIC_BLOCK_P (head)
4630 && (!not_first
4631 || (not_first && !LABEL_P (PREV_INSN (head))))))
4633 gcc_assert (bb == 0);
4634 bb = BLOCK_FOR_INSN (head);
4635 if (bb != 0)
4636 gcc_assert (BB_HEAD (bb) == head);
4637 else
4638 /* This is the case of jump table. See inside_basic_block_p (). */
4639 gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
4642 if (bb == 0)
4644 gcc_assert (!inside_basic_block_p (head));
4645 head = NEXT_INSN (head);
4647 else
4649 gcc_assert (inside_basic_block_p (head)
4650 || NOTE_P (head));
4651 gcc_assert (BLOCK_FOR_INSN (head) == bb);
4653 if (LABEL_P (head))
4655 head = NEXT_INSN (head);
4656 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
4658 else
4660 if (control_flow_insn_p (head))
4662 gcc_assert (BB_END (bb) == head);
4664 if (any_uncondjump_p (head))
4665 gcc_assert (EDGE_COUNT (bb->succs) == 1
4666 && BARRIER_P (NEXT_INSN (head)));
4667 else if (any_condjump_p (head))
4668 gcc_assert (/* Usual case. */
4669 (EDGE_COUNT (bb->succs) > 1
4670 && !BARRIER_P (NEXT_INSN (head)))
4671 /* Or jump to the next instruction. */
4672 || (EDGE_COUNT (bb->succs) == 1
4673 && (BB_HEAD (EDGE_I (bb->succs, 0)->dest)
4674 == JUMP_LABEL (head))));
4676 if (BB_END (bb) == head)
4678 if (EDGE_COUNT (bb->succs) > 1)
4679 gcc_assert (control_flow_insn_p (head)
4680 || has_edge_p (bb->succs, EDGE_COMPLEX));
4681 bb = 0;
4684 head = NEXT_INSN (head);
4688 not_first = 1;
4690 while (head != next_tail);
4692 gcc_assert (bb == 0);
4695 /* Perform a few consistency checks of flags in different data structures. */
4696 static void
4697 check_sched_flags (void)
4699 unsigned int f = current_sched_info->flags;
4701 if (flag_sched_stalled_insns)
4702 gcc_assert (!(f & DO_SPECULATION));
4703 if (f & DO_SPECULATION)
4704 gcc_assert (!flag_sched_stalled_insns
4705 && (f & DETACH_LIFE_INFO)
4706 && spec_info
4707 && spec_info->mask);
4708 if (f & DETACH_LIFE_INFO)
4709 gcc_assert (f & USE_GLAT);
4712 /* Check global_live_at_{start, end} regsets.
4713 If FATAL_P is TRUE, then abort execution at the first failure.
4714 Otherwise, print diagnostics to STDERR (this mode is for calling
4715 from debugger). */
4716 void
4717 check_reg_live (bool fatal_p)
4719 basic_block bb;
4721 FOR_ALL_BB (bb)
4723 int i;
4725 i = bb->index;
4727 if (glat_start[i])
4729 bool b = bitmap_equal_p (bb->il.rtl->global_live_at_start,
4730 glat_start[i]);
4732 if (!b)
4734 gcc_assert (!fatal_p);
4736 fprintf (stderr, ";; check_reg_live_at_start (%d) failed.\n", i);
4740 if (glat_end[i])
4742 bool b = bitmap_equal_p (bb->il.rtl->global_live_at_end,
4743 glat_end[i]);
4745 if (!b)
4747 gcc_assert (!fatal_p);
4749 fprintf (stderr, ";; check_reg_live_at_end (%d) failed.\n", i);
4754 #endif /* ENABLE_CHECKING */
4756 #endif /* INSN_SCHEDULING */