1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
39 #include "coretypes.h"
46 #include "hard-reg-set.h"
48 #include "insn-config.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
63 #include "diagnostic.h"
66 #include "langhooks.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
98 # define DWARF2_FRAME_INFO 0
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
109 /* Decide whether we want to emit frame unwind information for the current
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols
== DWARF2_DEBUG
119 || write_symbols
== VMS_AND_DWARF2_DEBUG
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions
&& ! USING_SJLJ_EXCEPTIONS
)))
129 /* The size of the target's pointer type. */
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx
,gc
) *used_rtx_array
;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
142 static GTY(()) VEC(tree
,gc
) *incomplete_types
;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree
,gc
) *decl_scope_table
;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section
*debug_info_section
;
153 static GTY(()) section
*debug_abbrev_section
;
154 static GTY(()) section
*debug_aranges_section
;
155 static GTY(()) section
*debug_macinfo_section
;
156 static GTY(()) section
*debug_line_section
;
157 static GTY(()) section
*debug_loc_section
;
158 static GTY(()) section
*debug_pubnames_section
;
159 static GTY(()) section
*debug_str_section
;
160 static GTY(()) section
*debug_ranges_section
;
161 static GTY(()) section
*debug_frame_section
;
163 /* How to start an assembler comment. */
164 #ifndef ASM_COMMENT_START
165 #define ASM_COMMENT_START ";#"
168 typedef struct dw_cfi_struct
*dw_cfi_ref
;
169 typedef struct dw_fde_struct
*dw_fde_ref
;
170 typedef union dw_cfi_oprnd_struct
*dw_cfi_oprnd_ref
;
172 /* Call frames are described using a sequence of Call Frame
173 Information instructions. The register number, offset
174 and address fields are provided as possible operands;
175 their use is selected by the opcode field. */
177 enum dw_cfi_oprnd_type
{
179 dw_cfi_oprnd_reg_num
,
185 typedef union dw_cfi_oprnd_struct
GTY(())
187 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num
;
188 HOST_WIDE_INT
GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset
;
189 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr
;
190 struct dw_loc_descr_struct
* GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc
;
194 typedef struct dw_cfi_struct
GTY(())
196 dw_cfi_ref dw_cfi_next
;
197 enum dwarf_call_frame_info dw_cfi_opc
;
198 dw_cfi_oprnd
GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
200 dw_cfi_oprnd
GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
205 /* This is how we define the location of the CFA. We use to handle it
206 as REG + OFFSET all the time, but now it can be more complex.
207 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
208 Instead of passing around REG and OFFSET, we pass a copy
209 of this structure. */
210 typedef struct cfa_loc
GTY(())
212 HOST_WIDE_INT offset
;
213 HOST_WIDE_INT base_offset
;
215 int indirect
; /* 1 if CFA is accessed via a dereference. */
218 /* All call frame descriptions (FDE's) in the GCC generated DWARF
219 refer to a single Common Information Entry (CIE), defined at
220 the beginning of the .debug_frame section. This use of a single
221 CIE obviates the need to keep track of multiple CIE's
222 in the DWARF generation routines below. */
224 typedef struct dw_fde_struct
GTY(())
227 const char *dw_fde_begin
;
228 const char *dw_fde_current_label
;
229 const char *dw_fde_end
;
230 const char *dw_fde_hot_section_label
;
231 const char *dw_fde_hot_section_end_label
;
232 const char *dw_fde_unlikely_section_label
;
233 const char *dw_fde_unlikely_section_end_label
;
234 bool dw_fde_switched_sections
;
235 dw_cfi_ref dw_fde_cfi
;
236 unsigned funcdef_number
;
237 unsigned all_throwers_are_sibcalls
: 1;
238 unsigned nothrow
: 1;
239 unsigned uses_eh_lsda
: 1;
243 /* Maximum size (in bytes) of an artificially generated label. */
244 #define MAX_ARTIFICIAL_LABEL_BYTES 30
246 /* The size of addresses as they appear in the Dwarf 2 data.
247 Some architectures use word addresses to refer to code locations,
248 but Dwarf 2 info always uses byte addresses. On such machines,
249 Dwarf 2 addresses need to be larger than the architecture's
251 #ifndef DWARF2_ADDR_SIZE
252 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
255 /* The size in bytes of a DWARF field indicating an offset or length
256 relative to a debug info section, specified to be 4 bytes in the
257 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
260 #ifndef DWARF_OFFSET_SIZE
261 #define DWARF_OFFSET_SIZE 4
264 /* According to the (draft) DWARF 3 specification, the initial length
265 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
266 bytes are 0xffffffff, followed by the length stored in the next 8
269 However, the SGI/MIPS ABI uses an initial length which is equal to
270 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
272 #ifndef DWARF_INITIAL_LENGTH_SIZE
273 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
276 #define DWARF_VERSION 2
278 /* Round SIZE up to the nearest BOUNDARY. */
279 #define DWARF_ROUND(SIZE,BOUNDARY) \
280 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
282 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
283 #ifndef DWARF_CIE_DATA_ALIGNMENT
284 #ifdef STACK_GROWS_DOWNWARD
285 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
287 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
291 /* CIE identifier. */
292 #if HOST_BITS_PER_WIDE_INT >= 64
293 #define DWARF_CIE_ID \
294 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
296 #define DWARF_CIE_ID DW_CIE_ID
299 /* A pointer to the base of a table that contains frame description
300 information for each routine. */
301 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table
;
303 /* Number of elements currently allocated for fde_table. */
304 static GTY(()) unsigned fde_table_allocated
;
306 /* Number of elements in fde_table currently in use. */
307 static GTY(()) unsigned fde_table_in_use
;
309 /* Size (in elements) of increments by which we may expand the
311 #define FDE_TABLE_INCREMENT 256
313 /* A list of call frame insns for the CIE. */
314 static GTY(()) dw_cfi_ref cie_cfi_head
;
316 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
317 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
318 attribute that accelerates the lookup of the FDE associated
319 with the subprogram. This variable holds the table index of the FDE
320 associated with the current function (body) definition. */
321 static unsigned current_funcdef_fde
;
324 struct indirect_string_node
GTY(())
327 unsigned int refcount
;
332 static GTY ((param_is (struct indirect_string_node
))) htab_t debug_str_hash
;
334 static GTY(()) int dw2_string_counter
;
335 static GTY(()) unsigned long dwarf2out_cfi_label_num
;
337 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
339 /* Forward declarations for functions defined in this file. */
341 static char *stripattributes (const char *);
342 static const char *dwarf_cfi_name (unsigned);
343 static dw_cfi_ref
new_cfi (void);
344 static void add_cfi (dw_cfi_ref
*, dw_cfi_ref
);
345 static void add_fde_cfi (const char *, dw_cfi_ref
);
346 static void lookup_cfa_1 (dw_cfi_ref
, dw_cfa_location
*);
347 static void lookup_cfa (dw_cfa_location
*);
348 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT
);
349 static void initial_return_save (rtx
);
350 static HOST_WIDE_INT
stack_adjust_offset (rtx
);
351 static void output_cfi (dw_cfi_ref
, dw_fde_ref
, int);
352 static void output_call_frame_info (int);
353 static void dwarf2out_stack_adjust (rtx
, bool);
354 static void flush_queued_reg_saves (void);
355 static bool clobbers_queued_reg_save (rtx
);
356 static void dwarf2out_frame_debug_expr (rtx
, const char *);
358 /* Support for complex CFA locations. */
359 static void output_cfa_loc (dw_cfi_ref
);
360 static void get_cfa_from_loc_descr (dw_cfa_location
*,
361 struct dw_loc_descr_struct
*);
362 static struct dw_loc_descr_struct
*build_cfa_loc
363 (dw_cfa_location
*, HOST_WIDE_INT
);
364 static void def_cfa_1 (const char *, dw_cfa_location
*);
366 /* How to start an assembler comment. */
367 #ifndef ASM_COMMENT_START
368 #define ASM_COMMENT_START ";#"
371 /* Data and reference forms for relocatable data. */
372 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
373 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
375 #ifndef DEBUG_FRAME_SECTION
376 #define DEBUG_FRAME_SECTION ".debug_frame"
379 #ifndef FUNC_BEGIN_LABEL
380 #define FUNC_BEGIN_LABEL "LFB"
383 #ifndef FUNC_END_LABEL
384 #define FUNC_END_LABEL "LFE"
387 #ifndef FRAME_BEGIN_LABEL
388 #define FRAME_BEGIN_LABEL "Lframe"
390 #define CIE_AFTER_SIZE_LABEL "LSCIE"
391 #define CIE_END_LABEL "LECIE"
392 #define FDE_LABEL "LSFDE"
393 #define FDE_AFTER_SIZE_LABEL "LASFDE"
394 #define FDE_END_LABEL "LEFDE"
395 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
396 #define LINE_NUMBER_END_LABEL "LELT"
397 #define LN_PROLOG_AS_LABEL "LASLTP"
398 #define LN_PROLOG_END_LABEL "LELTP"
399 #define DIE_LABEL_PREFIX "DW"
401 /* The DWARF 2 CFA column which tracks the return address. Normally this
402 is the column for PC, or the first column after all of the hard
404 #ifndef DWARF_FRAME_RETURN_COLUMN
406 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
408 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
412 /* The mapping from gcc register number to DWARF 2 CFA column number. By
413 default, we just provide columns for all registers. */
414 #ifndef DWARF_FRAME_REGNUM
415 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
418 /* Hook used by __throw. */
421 expand_builtin_dwarf_sp_column (void)
423 unsigned int dwarf_regnum
= DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
);
424 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum
, 1));
427 /* Return a pointer to a copy of the section string name S with all
428 attributes stripped off, and an asterisk prepended (for assemble_name). */
431 stripattributes (const char *s
)
433 char *stripped
= XNEWVEC (char, strlen (s
) + 2);
438 while (*s
&& *s
!= ',')
445 /* Generate code to initialize the register size table. */
448 expand_builtin_init_dwarf_reg_sizes (tree address
)
451 enum machine_mode mode
= TYPE_MODE (char_type_node
);
452 rtx addr
= expand_normal (address
);
453 rtx mem
= gen_rtx_MEM (BLKmode
, addr
);
454 bool wrote_return_column
= false;
456 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
458 int rnum
= DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i
), 1);
460 if (rnum
< DWARF_FRAME_REGISTERS
)
462 HOST_WIDE_INT offset
= rnum
* GET_MODE_SIZE (mode
);
463 enum machine_mode save_mode
= reg_raw_mode
[i
];
466 if (HARD_REGNO_CALL_PART_CLOBBERED (i
, save_mode
))
467 save_mode
= choose_hard_reg_mode (i
, 1, true);
468 if (DWARF_FRAME_REGNUM (i
) == DWARF_FRAME_RETURN_COLUMN
)
470 if (save_mode
== VOIDmode
)
472 wrote_return_column
= true;
474 size
= GET_MODE_SIZE (save_mode
);
478 emit_move_insn (adjust_address (mem
, mode
, offset
),
479 gen_int_mode (size
, mode
));
483 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
484 gcc_assert (wrote_return_column
);
485 i
= DWARF_ALT_FRAME_RETURN_COLUMN
;
486 wrote_return_column
= false;
488 i
= DWARF_FRAME_RETURN_COLUMN
;
491 if (! wrote_return_column
)
493 enum machine_mode save_mode
= Pmode
;
494 HOST_WIDE_INT offset
= i
* GET_MODE_SIZE (mode
);
495 HOST_WIDE_INT size
= GET_MODE_SIZE (save_mode
);
496 emit_move_insn (adjust_address (mem
, mode
, offset
), GEN_INT (size
));
500 /* Convert a DWARF call frame info. operation to its string name */
503 dwarf_cfi_name (unsigned int cfi_opc
)
507 case DW_CFA_advance_loc
:
508 return "DW_CFA_advance_loc";
510 return "DW_CFA_offset";
512 return "DW_CFA_restore";
516 return "DW_CFA_set_loc";
517 case DW_CFA_advance_loc1
:
518 return "DW_CFA_advance_loc1";
519 case DW_CFA_advance_loc2
:
520 return "DW_CFA_advance_loc2";
521 case DW_CFA_advance_loc4
:
522 return "DW_CFA_advance_loc4";
523 case DW_CFA_offset_extended
:
524 return "DW_CFA_offset_extended";
525 case DW_CFA_restore_extended
:
526 return "DW_CFA_restore_extended";
527 case DW_CFA_undefined
:
528 return "DW_CFA_undefined";
529 case DW_CFA_same_value
:
530 return "DW_CFA_same_value";
531 case DW_CFA_register
:
532 return "DW_CFA_register";
533 case DW_CFA_remember_state
:
534 return "DW_CFA_remember_state";
535 case DW_CFA_restore_state
:
536 return "DW_CFA_restore_state";
538 return "DW_CFA_def_cfa";
539 case DW_CFA_def_cfa_register
:
540 return "DW_CFA_def_cfa_register";
541 case DW_CFA_def_cfa_offset
:
542 return "DW_CFA_def_cfa_offset";
545 case DW_CFA_def_cfa_expression
:
546 return "DW_CFA_def_cfa_expression";
547 case DW_CFA_expression
:
548 return "DW_CFA_expression";
549 case DW_CFA_offset_extended_sf
:
550 return "DW_CFA_offset_extended_sf";
551 case DW_CFA_def_cfa_sf
:
552 return "DW_CFA_def_cfa_sf";
553 case DW_CFA_def_cfa_offset_sf
:
554 return "DW_CFA_def_cfa_offset_sf";
556 /* SGI/MIPS specific */
557 case DW_CFA_MIPS_advance_loc8
:
558 return "DW_CFA_MIPS_advance_loc8";
561 case DW_CFA_GNU_window_save
:
562 return "DW_CFA_GNU_window_save";
563 case DW_CFA_GNU_args_size
:
564 return "DW_CFA_GNU_args_size";
565 case DW_CFA_GNU_negative_offset_extended
:
566 return "DW_CFA_GNU_negative_offset_extended";
569 return "DW_CFA_<unknown>";
573 /* Return a pointer to a newly allocated Call Frame Instruction. */
575 static inline dw_cfi_ref
578 dw_cfi_ref cfi
= ggc_alloc (sizeof (dw_cfi_node
));
580 cfi
->dw_cfi_next
= NULL
;
581 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= 0;
582 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= 0;
587 /* Add a Call Frame Instruction to list of instructions. */
590 add_cfi (dw_cfi_ref
*list_head
, dw_cfi_ref cfi
)
594 /* Find the end of the chain. */
595 for (p
= list_head
; (*p
) != NULL
; p
= &(*p
)->dw_cfi_next
)
601 /* Generate a new label for the CFI info to refer to. */
604 dwarf2out_cfi_label (void)
606 static char label
[20];
608 ASM_GENERATE_INTERNAL_LABEL (label
, "LCFI", dwarf2out_cfi_label_num
++);
609 ASM_OUTPUT_LABEL (asm_out_file
, label
);
613 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
614 or to the CIE if LABEL is NULL. */
617 add_fde_cfi (const char *label
, dw_cfi_ref cfi
)
621 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
624 label
= dwarf2out_cfi_label ();
626 if (fde
->dw_fde_current_label
== NULL
627 || strcmp (label
, fde
->dw_fde_current_label
) != 0)
631 label
= xstrdup (label
);
633 /* Set the location counter to the new label. */
635 /* If we have a current label, advance from there, otherwise
636 set the location directly using set_loc. */
637 xcfi
->dw_cfi_opc
= fde
->dw_fde_current_label
638 ? DW_CFA_advance_loc4
640 xcfi
->dw_cfi_oprnd1
.dw_cfi_addr
= label
;
641 add_cfi (&fde
->dw_fde_cfi
, xcfi
);
643 fde
->dw_fde_current_label
= label
;
646 add_cfi (&fde
->dw_fde_cfi
, cfi
);
650 add_cfi (&cie_cfi_head
, cfi
);
653 /* Subroutine of lookup_cfa. */
656 lookup_cfa_1 (dw_cfi_ref cfi
, dw_cfa_location
*loc
)
658 switch (cfi
->dw_cfi_opc
)
660 case DW_CFA_def_cfa_offset
:
661 loc
->offset
= cfi
->dw_cfi_oprnd1
.dw_cfi_offset
;
663 case DW_CFA_def_cfa_offset_sf
:
665 = cfi
->dw_cfi_oprnd1
.dw_cfi_offset
* DWARF_CIE_DATA_ALIGNMENT
;
667 case DW_CFA_def_cfa_register
:
668 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
671 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
672 loc
->offset
= cfi
->dw_cfi_oprnd2
.dw_cfi_offset
;
674 case DW_CFA_def_cfa_sf
:
675 loc
->reg
= cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
;
677 = cfi
->dw_cfi_oprnd2
.dw_cfi_offset
* DWARF_CIE_DATA_ALIGNMENT
;
679 case DW_CFA_def_cfa_expression
:
680 get_cfa_from_loc_descr (loc
, cfi
->dw_cfi_oprnd1
.dw_cfi_loc
);
687 /* Find the previous value for the CFA. */
690 lookup_cfa (dw_cfa_location
*loc
)
694 loc
->reg
= INVALID_REGNUM
;
697 loc
->base_offset
= 0;
699 for (cfi
= cie_cfi_head
; cfi
; cfi
= cfi
->dw_cfi_next
)
700 lookup_cfa_1 (cfi
, loc
);
702 if (fde_table_in_use
)
704 dw_fde_ref fde
= &fde_table
[fde_table_in_use
- 1];
705 for (cfi
= fde
->dw_fde_cfi
; cfi
; cfi
= cfi
->dw_cfi_next
)
706 lookup_cfa_1 (cfi
, loc
);
710 /* The current rule for calculating the DWARF2 canonical frame address. */
711 static dw_cfa_location cfa
;
713 /* The register used for saving registers to the stack, and its offset
715 static dw_cfa_location cfa_store
;
717 /* The running total of the size of arguments pushed onto the stack. */
718 static HOST_WIDE_INT args_size
;
720 /* The last args_size we actually output. */
721 static HOST_WIDE_INT old_args_size
;
723 /* Entry point to update the canonical frame address (CFA).
724 LABEL is passed to add_fde_cfi. The value of CFA is now to be
725 calculated from REG+OFFSET. */
728 dwarf2out_def_cfa (const char *label
, unsigned int reg
, HOST_WIDE_INT offset
)
735 def_cfa_1 (label
, &loc
);
738 /* Determine if two dw_cfa_location structures define the same data. */
741 cfa_equal_p (const dw_cfa_location
*loc1
, const dw_cfa_location
*loc2
)
743 return (loc1
->reg
== loc2
->reg
744 && loc1
->offset
== loc2
->offset
745 && loc1
->indirect
== loc2
->indirect
746 && (loc1
->indirect
== 0
747 || loc1
->base_offset
== loc2
->base_offset
));
750 /* This routine does the actual work. The CFA is now calculated from
751 the dw_cfa_location structure. */
754 def_cfa_1 (const char *label
, dw_cfa_location
*loc_p
)
757 dw_cfa_location old_cfa
, loc
;
762 if (cfa_store
.reg
== loc
.reg
&& loc
.indirect
== 0)
763 cfa_store
.offset
= loc
.offset
;
765 loc
.reg
= DWARF_FRAME_REGNUM (loc
.reg
);
766 lookup_cfa (&old_cfa
);
768 /* If nothing changed, no need to issue any call frame instructions. */
769 if (cfa_equal_p (&loc
, &old_cfa
))
774 if (loc
.reg
== old_cfa
.reg
&& !loc
.indirect
)
776 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
777 the CFA register did not change but the offset did. */
780 HOST_WIDE_INT f_offset
= loc
.offset
/ DWARF_CIE_DATA_ALIGNMENT
;
781 gcc_assert (f_offset
* DWARF_CIE_DATA_ALIGNMENT
== loc
.offset
);
783 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset_sf
;
784 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= f_offset
;
788 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_offset
;
789 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= loc
.offset
;
793 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
794 else if (loc
.offset
== old_cfa
.offset
795 && old_cfa
.reg
!= INVALID_REGNUM
798 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
799 indicating the CFA register has changed to <register> but the
800 offset has not changed. */
801 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_register
;
802 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
806 else if (loc
.indirect
== 0)
808 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
809 indicating the CFA register has changed to <register> with
810 the specified offset. */
813 HOST_WIDE_INT f_offset
= loc
.offset
/ DWARF_CIE_DATA_ALIGNMENT
;
814 gcc_assert (f_offset
* DWARF_CIE_DATA_ALIGNMENT
== loc
.offset
);
816 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_sf
;
817 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
818 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= f_offset
;
822 cfi
->dw_cfi_opc
= DW_CFA_def_cfa
;
823 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= loc
.reg
;
824 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= loc
.offset
;
829 /* Construct a DW_CFA_def_cfa_expression instruction to
830 calculate the CFA using a full location expression since no
831 register-offset pair is available. */
832 struct dw_loc_descr_struct
*loc_list
;
834 cfi
->dw_cfi_opc
= DW_CFA_def_cfa_expression
;
835 loc_list
= build_cfa_loc (&loc
, 0);
836 cfi
->dw_cfi_oprnd1
.dw_cfi_loc
= loc_list
;
839 add_fde_cfi (label
, cfi
);
842 /* Add the CFI for saving a register. REG is the CFA column number.
843 LABEL is passed to add_fde_cfi.
844 If SREG is -1, the register is saved at OFFSET from the CFA;
845 otherwise it is saved in SREG. */
848 reg_save (const char *label
, unsigned int reg
, unsigned int sreg
, HOST_WIDE_INT offset
)
850 dw_cfi_ref cfi
= new_cfi ();
852 cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
= reg
;
854 if (sreg
== INVALID_REGNUM
)
857 /* The register number won't fit in 6 bits, so we have to use
859 cfi
->dw_cfi_opc
= DW_CFA_offset_extended
;
861 cfi
->dw_cfi_opc
= DW_CFA_offset
;
863 #ifdef ENABLE_CHECKING
865 /* If we get an offset that is not a multiple of
866 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
867 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
869 HOST_WIDE_INT check_offset
= offset
/ DWARF_CIE_DATA_ALIGNMENT
;
871 gcc_assert (check_offset
* DWARF_CIE_DATA_ALIGNMENT
== offset
);
874 offset
/= DWARF_CIE_DATA_ALIGNMENT
;
876 cfi
->dw_cfi_opc
= DW_CFA_offset_extended_sf
;
878 cfi
->dw_cfi_oprnd2
.dw_cfi_offset
= offset
;
880 else if (sreg
== reg
)
881 cfi
->dw_cfi_opc
= DW_CFA_same_value
;
884 cfi
->dw_cfi_opc
= DW_CFA_register
;
885 cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
= sreg
;
888 add_fde_cfi (label
, cfi
);
891 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
892 This CFI tells the unwinder that it needs to restore the window registers
893 from the previous frame's window save area.
895 ??? Perhaps we should note in the CIE where windows are saved (instead of
896 assuming 0(cfa)) and what registers are in the window. */
899 dwarf2out_window_save (const char *label
)
901 dw_cfi_ref cfi
= new_cfi ();
903 cfi
->dw_cfi_opc
= DW_CFA_GNU_window_save
;
904 add_fde_cfi (label
, cfi
);
907 /* Add a CFI to update the running total of the size of arguments
908 pushed onto the stack. */
911 dwarf2out_args_size (const char *label
, HOST_WIDE_INT size
)
915 if (size
== old_args_size
)
918 old_args_size
= size
;
921 cfi
->dw_cfi_opc
= DW_CFA_GNU_args_size
;
922 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
= size
;
923 add_fde_cfi (label
, cfi
);
926 /* Entry point for saving a register to the stack. REG is the GCC register
927 number. LABEL and OFFSET are passed to reg_save. */
930 dwarf2out_reg_save (const char *label
, unsigned int reg
, HOST_WIDE_INT offset
)
932 reg_save (label
, DWARF_FRAME_REGNUM (reg
), INVALID_REGNUM
, offset
);
935 /* Entry point for saving the return address in the stack.
936 LABEL and OFFSET are passed to reg_save. */
939 dwarf2out_return_save (const char *label
, HOST_WIDE_INT offset
)
941 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, INVALID_REGNUM
, offset
);
944 /* Entry point for saving the return address in a register.
945 LABEL and SREG are passed to reg_save. */
948 dwarf2out_return_reg (const char *label
, unsigned int sreg
)
950 reg_save (label
, DWARF_FRAME_RETURN_COLUMN
, DWARF_FRAME_REGNUM (sreg
), 0);
953 /* Record the initial position of the return address. RTL is
954 INCOMING_RETURN_ADDR_RTX. */
957 initial_return_save (rtx rtl
)
959 unsigned int reg
= INVALID_REGNUM
;
960 HOST_WIDE_INT offset
= 0;
962 switch (GET_CODE (rtl
))
965 /* RA is in a register. */
966 reg
= DWARF_FRAME_REGNUM (REGNO (rtl
));
970 /* RA is on the stack. */
972 switch (GET_CODE (rtl
))
975 gcc_assert (REGNO (rtl
) == STACK_POINTER_REGNUM
);
980 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
981 offset
= INTVAL (XEXP (rtl
, 1));
985 gcc_assert (REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
);
986 offset
= -INTVAL (XEXP (rtl
, 1));
996 /* The return address is at some offset from any value we can
997 actually load. For instance, on the SPARC it is in %i7+8. Just
998 ignore the offset for now; it doesn't matter for unwinding frames. */
999 gcc_assert (GET_CODE (XEXP (rtl
, 1)) == CONST_INT
);
1000 initial_return_save (XEXP (rtl
, 0));
1007 if (reg
!= DWARF_FRAME_RETURN_COLUMN
)
1008 reg_save (NULL
, DWARF_FRAME_RETURN_COLUMN
, reg
, offset
- cfa
.offset
);
1011 /* Given a SET, calculate the amount of stack adjustment it
1014 static HOST_WIDE_INT
1015 stack_adjust_offset (rtx pattern
)
1017 rtx src
= SET_SRC (pattern
);
1018 rtx dest
= SET_DEST (pattern
);
1019 HOST_WIDE_INT offset
= 0;
1022 if (dest
== stack_pointer_rtx
)
1024 /* (set (reg sp) (plus (reg sp) (const_int))) */
1025 code
= GET_CODE (src
);
1026 if (! (code
== PLUS
|| code
== MINUS
)
1027 || XEXP (src
, 0) != stack_pointer_rtx
1028 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1031 offset
= INTVAL (XEXP (src
, 1));
1035 else if (MEM_P (dest
))
1037 /* (set (mem (pre_dec (reg sp))) (foo)) */
1038 src
= XEXP (dest
, 0);
1039 code
= GET_CODE (src
);
1045 if (XEXP (src
, 0) == stack_pointer_rtx
)
1047 rtx val
= XEXP (XEXP (src
, 1), 1);
1048 /* We handle only adjustments by constant amount. */
1049 gcc_assert (GET_CODE (XEXP (src
, 1)) == PLUS
1050 && GET_CODE (val
) == CONST_INT
);
1051 offset
= -INTVAL (val
);
1058 if (XEXP (src
, 0) == stack_pointer_rtx
)
1060 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1067 if (XEXP (src
, 0) == stack_pointer_rtx
)
1069 offset
= -GET_MODE_SIZE (GET_MODE (dest
));
1084 /* Check INSN to see if it looks like a push or a stack adjustment, and
1085 make a note of it if it does. EH uses this information to find out how
1086 much extra space it needs to pop off the stack. */
1089 dwarf2out_stack_adjust (rtx insn
, bool after_p
)
1091 HOST_WIDE_INT offset
;
1095 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1096 with this function. Proper support would require all frame-related
1097 insns to be marked, and to be able to handle saving state around
1098 epilogues textually in the middle of the function. */
1099 if (prologue_epilogue_contains (insn
) || sibcall_epilogue_contains (insn
))
1102 /* If only calls can throw, and we have a frame pointer,
1103 save up adjustments until we see the CALL_INSN. */
1104 if (!flag_asynchronous_unwind_tables
&& cfa
.reg
!= STACK_POINTER_REGNUM
)
1106 if (CALL_P (insn
) && !after_p
)
1108 /* Extract the size of the args from the CALL rtx itself. */
1109 insn
= PATTERN (insn
);
1110 if (GET_CODE (insn
) == PARALLEL
)
1111 insn
= XVECEXP (insn
, 0, 0);
1112 if (GET_CODE (insn
) == SET
)
1113 insn
= SET_SRC (insn
);
1114 gcc_assert (GET_CODE (insn
) == CALL
);
1115 dwarf2out_args_size ("", INTVAL (XEXP (insn
, 1)));
1120 if (CALL_P (insn
) && !after_p
)
1122 if (!flag_asynchronous_unwind_tables
)
1123 dwarf2out_args_size ("", args_size
);
1126 else if (BARRIER_P (insn
))
1128 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1129 the compiler will have already emitted a stack adjustment, but
1130 doesn't bother for calls to noreturn functions. */
1131 #ifdef STACK_GROWS_DOWNWARD
1132 offset
= -args_size
;
1137 else if (GET_CODE (PATTERN (insn
)) == SET
)
1138 offset
= stack_adjust_offset (PATTERN (insn
));
1139 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1140 || GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1142 /* There may be stack adjustments inside compound insns. Search
1144 for (offset
= 0, i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
1145 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1146 offset
+= stack_adjust_offset (XVECEXP (PATTERN (insn
), 0, i
));
1154 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1155 cfa
.offset
+= offset
;
1157 #ifndef STACK_GROWS_DOWNWARD
1161 args_size
+= offset
;
1165 label
= dwarf2out_cfi_label ();
1166 def_cfa_1 (label
, &cfa
);
1167 if (flag_asynchronous_unwind_tables
)
1168 dwarf2out_args_size (label
, args_size
);
1173 /* We delay emitting a register save until either (a) we reach the end
1174 of the prologue or (b) the register is clobbered. This clusters
1175 register saves so that there are fewer pc advances. */
1177 struct queued_reg_save
GTY(())
1179 struct queued_reg_save
*next
;
1181 HOST_WIDE_INT cfa_offset
;
1185 static GTY(()) struct queued_reg_save
*queued_reg_saves
;
1187 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1188 struct reg_saved_in_data
GTY(()) {
1193 /* A list of registers saved in other registers.
1194 The list intentionally has a small maximum capacity of 4; if your
1195 port needs more than that, you might consider implementing a
1196 more efficient data structure. */
1197 static GTY(()) struct reg_saved_in_data regs_saved_in_regs
[4];
1198 static GTY(()) size_t num_regs_saved_in_regs
;
1200 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1201 static const char *last_reg_save_label
;
1203 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1204 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1207 queue_reg_save (const char *label
, rtx reg
, rtx sreg
, HOST_WIDE_INT offset
)
1209 struct queued_reg_save
*q
;
1211 /* Duplicates waste space, but it's also necessary to remove them
1212 for correctness, since the queue gets output in reverse
1214 for (q
= queued_reg_saves
; q
!= NULL
; q
= q
->next
)
1215 if (REGNO (q
->reg
) == REGNO (reg
))
1220 q
= ggc_alloc (sizeof (*q
));
1221 q
->next
= queued_reg_saves
;
1222 queued_reg_saves
= q
;
1226 q
->cfa_offset
= offset
;
1227 q
->saved_reg
= sreg
;
1229 last_reg_save_label
= label
;
1232 /* Output all the entries in QUEUED_REG_SAVES. */
1235 flush_queued_reg_saves (void)
1237 struct queued_reg_save
*q
;
1239 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1242 unsigned int reg
, sreg
;
1244 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1245 if (REGNO (regs_saved_in_regs
[i
].orig_reg
) == REGNO (q
->reg
))
1247 if (q
->saved_reg
&& i
== num_regs_saved_in_regs
)
1249 gcc_assert (i
!= ARRAY_SIZE (regs_saved_in_regs
));
1250 num_regs_saved_in_regs
++;
1252 if (i
!= num_regs_saved_in_regs
)
1254 regs_saved_in_regs
[i
].orig_reg
= q
->reg
;
1255 regs_saved_in_regs
[i
].saved_in_reg
= q
->saved_reg
;
1258 reg
= DWARF_FRAME_REGNUM (REGNO (q
->reg
));
1260 sreg
= DWARF_FRAME_REGNUM (REGNO (q
->saved_reg
));
1262 sreg
= INVALID_REGNUM
;
1263 reg_save (last_reg_save_label
, reg
, sreg
, q
->cfa_offset
);
1266 queued_reg_saves
= NULL
;
1267 last_reg_save_label
= NULL
;
1270 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1271 location for? Or, does it clobber a register which we've previously
1272 said that some other register is saved in, and for which we now
1273 have a new location for? */
1276 clobbers_queued_reg_save (rtx insn
)
1278 struct queued_reg_save
*q
;
1280 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1283 if (modified_in_p (q
->reg
, insn
))
1285 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1286 if (REGNO (q
->reg
) == REGNO (regs_saved_in_regs
[i
].orig_reg
)
1287 && modified_in_p (regs_saved_in_regs
[i
].saved_in_reg
, insn
))
1294 /* Entry point for saving the first register into the second. */
1297 dwarf2out_reg_save_reg (const char *label
, rtx reg
, rtx sreg
)
1300 unsigned int regno
, sregno
;
1302 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1303 if (REGNO (regs_saved_in_regs
[i
].orig_reg
) == REGNO (reg
))
1305 if (i
== num_regs_saved_in_regs
)
1307 gcc_assert (i
!= ARRAY_SIZE (regs_saved_in_regs
));
1308 num_regs_saved_in_regs
++;
1310 regs_saved_in_regs
[i
].orig_reg
= reg
;
1311 regs_saved_in_regs
[i
].saved_in_reg
= sreg
;
1313 regno
= DWARF_FRAME_REGNUM (REGNO (reg
));
1314 sregno
= DWARF_FRAME_REGNUM (REGNO (sreg
));
1315 reg_save (label
, regno
, sregno
, 0);
1318 /* What register, if any, is currently saved in REG? */
1321 reg_saved_in (rtx reg
)
1323 unsigned int regn
= REGNO (reg
);
1325 struct queued_reg_save
*q
;
1327 for (q
= queued_reg_saves
; q
; q
= q
->next
)
1328 if (q
->saved_reg
&& regn
== REGNO (q
->saved_reg
))
1331 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1332 if (regs_saved_in_regs
[i
].saved_in_reg
1333 && regn
== REGNO (regs_saved_in_regs
[i
].saved_in_reg
))
1334 return regs_saved_in_regs
[i
].orig_reg
;
1340 /* A temporary register holding an integral value used in adjusting SP
1341 or setting up the store_reg. The "offset" field holds the integer
1342 value, not an offset. */
1343 static dw_cfa_location cfa_temp
;
1345 /* Record call frame debugging information for an expression EXPR,
1346 which either sets SP or FP (adjusting how we calculate the frame
1347 address) or saves a register to the stack or another register.
1348 LABEL indicates the address of EXPR.
1350 This function encodes a state machine mapping rtxes to actions on
1351 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1352 users need not read the source code.
1354 The High-Level Picture
1356 Changes in the register we use to calculate the CFA: Currently we
1357 assume that if you copy the CFA register into another register, we
1358 should take the other one as the new CFA register; this seems to
1359 work pretty well. If it's wrong for some target, it's simple
1360 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1362 Changes in the register we use for saving registers to the stack:
1363 This is usually SP, but not always. Again, we deduce that if you
1364 copy SP into another register (and SP is not the CFA register),
1365 then the new register is the one we will be using for register
1366 saves. This also seems to work.
1368 Register saves: There's not much guesswork about this one; if
1369 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1370 register save, and the register used to calculate the destination
1371 had better be the one we think we're using for this purpose.
1372 It's also assumed that a copy from a call-saved register to another
1373 register is saving that register if RTX_FRAME_RELATED_P is set on
1374 that instruction. If the copy is from a call-saved register to
1375 the *same* register, that means that the register is now the same
1376 value as in the caller.
1378 Except: If the register being saved is the CFA register, and the
1379 offset is nonzero, we are saving the CFA, so we assume we have to
1380 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1381 the intent is to save the value of SP from the previous frame.
1383 In addition, if a register has previously been saved to a different
1386 Invariants / Summaries of Rules
1388 cfa current rule for calculating the CFA. It usually
1389 consists of a register and an offset.
1390 cfa_store register used by prologue code to save things to the stack
1391 cfa_store.offset is the offset from the value of
1392 cfa_store.reg to the actual CFA
1393 cfa_temp register holding an integral value. cfa_temp.offset
1394 stores the value, which will be used to adjust the
1395 stack pointer. cfa_temp is also used like cfa_store,
1396 to track stores to the stack via fp or a temp reg.
1398 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1399 with cfa.reg as the first operand changes the cfa.reg and its
1400 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1403 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1404 expression yielding a constant. This sets cfa_temp.reg
1405 and cfa_temp.offset.
1407 Rule 5: Create a new register cfa_store used to save items to the
1410 Rules 10-14: Save a register to the stack. Define offset as the
1411 difference of the original location and cfa_store's
1412 location (or cfa_temp's location if cfa_temp is used).
1416 "{a,b}" indicates a choice of a xor b.
1417 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1420 (set <reg1> <reg2>:cfa.reg)
1421 effects: cfa.reg = <reg1>
1422 cfa.offset unchanged
1423 cfa_temp.reg = <reg1>
1424 cfa_temp.offset = cfa.offset
1427 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1428 {<const_int>,<reg>:cfa_temp.reg}))
1429 effects: cfa.reg = sp if fp used
1430 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1431 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1432 if cfa_store.reg==sp
1435 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1436 effects: cfa.reg = fp
1437 cfa_offset += +/- <const_int>
1440 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1441 constraints: <reg1> != fp
1443 effects: cfa.reg = <reg1>
1444 cfa_temp.reg = <reg1>
1445 cfa_temp.offset = cfa.offset
1448 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1449 constraints: <reg1> != fp
1451 effects: cfa_store.reg = <reg1>
1452 cfa_store.offset = cfa.offset - cfa_temp.offset
1455 (set <reg> <const_int>)
1456 effects: cfa_temp.reg = <reg>
1457 cfa_temp.offset = <const_int>
1460 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1461 effects: cfa_temp.reg = <reg1>
1462 cfa_temp.offset |= <const_int>
1465 (set <reg> (high <exp>))
1469 (set <reg> (lo_sum <exp> <const_int>))
1470 effects: cfa_temp.reg = <reg>
1471 cfa_temp.offset = <const_int>
1474 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1475 effects: cfa_store.offset -= <const_int>
1476 cfa.offset = cfa_store.offset if cfa.reg == sp
1478 cfa.base_offset = -cfa_store.offset
1481 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1482 effects: cfa_store.offset += -/+ mode_size(mem)
1483 cfa.offset = cfa_store.offset if cfa.reg == sp
1485 cfa.base_offset = -cfa_store.offset
1488 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1491 effects: cfa.reg = <reg1>
1492 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1495 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1496 effects: cfa.reg = <reg1>
1497 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1500 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1501 effects: cfa.reg = <reg1>
1502 cfa.base_offset = -cfa_temp.offset
1503 cfa_temp.offset -= mode_size(mem)
1506 (set <reg> {unspec, unspec_volatile})
1507 effects: target-dependent */
1510 dwarf2out_frame_debug_expr (rtx expr
, const char *label
)
1513 HOST_WIDE_INT offset
;
1515 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1516 the PARALLEL independently. The first element is always processed if
1517 it is a SET. This is for backward compatibility. Other elements
1518 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1519 flag is set in them. */
1520 if (GET_CODE (expr
) == PARALLEL
|| GET_CODE (expr
) == SEQUENCE
)
1523 int limit
= XVECLEN (expr
, 0);
1525 for (par_index
= 0; par_index
< limit
; par_index
++)
1526 if (GET_CODE (XVECEXP (expr
, 0, par_index
)) == SET
1527 && (RTX_FRAME_RELATED_P (XVECEXP (expr
, 0, par_index
))
1529 dwarf2out_frame_debug_expr (XVECEXP (expr
, 0, par_index
), label
);
1534 gcc_assert (GET_CODE (expr
) == SET
);
1536 src
= SET_SRC (expr
);
1537 dest
= SET_DEST (expr
);
1541 rtx rsi
= reg_saved_in (src
);
1546 switch (GET_CODE (dest
))
1549 switch (GET_CODE (src
))
1551 /* Setting FP from SP. */
1553 if (cfa
.reg
== (unsigned) REGNO (src
))
1556 /* Update the CFA rule wrt SP or FP. Make sure src is
1557 relative to the current CFA register.
1559 We used to require that dest be either SP or FP, but the
1560 ARM copies SP to a temporary register, and from there to
1561 FP. So we just rely on the backends to only set
1562 RTX_FRAME_RELATED_P on appropriate insns. */
1563 cfa
.reg
= REGNO (dest
);
1564 cfa_temp
.reg
= cfa
.reg
;
1565 cfa_temp
.offset
= cfa
.offset
;
1569 /* Saving a register in a register. */
1570 gcc_assert (!fixed_regs
[REGNO (dest
)]
1571 /* For the SPARC and its register window. */
1572 || (DWARF_FRAME_REGNUM (REGNO (src
))
1573 == DWARF_FRAME_RETURN_COLUMN
));
1574 queue_reg_save (label
, src
, dest
, 0);
1581 if (dest
== stack_pointer_rtx
)
1585 switch (GET_CODE (XEXP (src
, 1)))
1588 offset
= INTVAL (XEXP (src
, 1));
1591 gcc_assert ((unsigned) REGNO (XEXP (src
, 1))
1593 offset
= cfa_temp
.offset
;
1599 if (XEXP (src
, 0) == hard_frame_pointer_rtx
)
1601 /* Restoring SP from FP in the epilogue. */
1602 gcc_assert (cfa
.reg
== (unsigned) HARD_FRAME_POINTER_REGNUM
);
1603 cfa
.reg
= STACK_POINTER_REGNUM
;
1605 else if (GET_CODE (src
) == LO_SUM
)
1606 /* Assume we've set the source reg of the LO_SUM from sp. */
1609 gcc_assert (XEXP (src
, 0) == stack_pointer_rtx
);
1611 if (GET_CODE (src
) != MINUS
)
1613 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1614 cfa
.offset
+= offset
;
1615 if (cfa_store
.reg
== STACK_POINTER_REGNUM
)
1616 cfa_store
.offset
+= offset
;
1618 else if (dest
== hard_frame_pointer_rtx
)
1621 /* Either setting the FP from an offset of the SP,
1622 or adjusting the FP */
1623 gcc_assert (frame_pointer_needed
);
1625 gcc_assert (REG_P (XEXP (src
, 0))
1626 && (unsigned) REGNO (XEXP (src
, 0)) == cfa
.reg
1627 && GET_CODE (XEXP (src
, 1)) == CONST_INT
);
1628 offset
= INTVAL (XEXP (src
, 1));
1629 if (GET_CODE (src
) != MINUS
)
1631 cfa
.offset
+= offset
;
1632 cfa
.reg
= HARD_FRAME_POINTER_REGNUM
;
1636 gcc_assert (GET_CODE (src
) != MINUS
);
1639 if (REG_P (XEXP (src
, 0))
1640 && REGNO (XEXP (src
, 0)) == cfa
.reg
1641 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1643 /* Setting a temporary CFA register that will be copied
1644 into the FP later on. */
1645 offset
= - INTVAL (XEXP (src
, 1));
1646 cfa
.offset
+= offset
;
1647 cfa
.reg
= REGNO (dest
);
1648 /* Or used to save regs to the stack. */
1649 cfa_temp
.reg
= cfa
.reg
;
1650 cfa_temp
.offset
= cfa
.offset
;
1654 else if (REG_P (XEXP (src
, 0))
1655 && REGNO (XEXP (src
, 0)) == cfa_temp
.reg
1656 && XEXP (src
, 1) == stack_pointer_rtx
)
1658 /* Setting a scratch register that we will use instead
1659 of SP for saving registers to the stack. */
1660 gcc_assert (cfa
.reg
== STACK_POINTER_REGNUM
);
1661 cfa_store
.reg
= REGNO (dest
);
1662 cfa_store
.offset
= cfa
.offset
- cfa_temp
.offset
;
1666 else if (GET_CODE (src
) == LO_SUM
1667 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1669 cfa_temp
.reg
= REGNO (dest
);
1670 cfa_temp
.offset
= INTVAL (XEXP (src
, 1));
1679 cfa_temp
.reg
= REGNO (dest
);
1680 cfa_temp
.offset
= INTVAL (src
);
1685 gcc_assert (REG_P (XEXP (src
, 0))
1686 && (unsigned) REGNO (XEXP (src
, 0)) == cfa_temp
.reg
1687 && GET_CODE (XEXP (src
, 1)) == CONST_INT
);
1689 if ((unsigned) REGNO (dest
) != cfa_temp
.reg
)
1690 cfa_temp
.reg
= REGNO (dest
);
1691 cfa_temp
.offset
|= INTVAL (XEXP (src
, 1));
1694 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1695 which will fill in all of the bits. */
1702 case UNSPEC_VOLATILE
:
1703 gcc_assert (targetm
.dwarf_handle_frame_unspec
);
1704 targetm
.dwarf_handle_frame_unspec (label
, expr
, XINT (src
, 1));
1711 def_cfa_1 (label
, &cfa
);
1715 gcc_assert (REG_P (src
));
1717 /* Saving a register to the stack. Make sure dest is relative to the
1719 switch (GET_CODE (XEXP (dest
, 0)))
1724 /* We can't handle variable size modifications. */
1725 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest
, 0), 1), 1))
1727 offset
= -INTVAL (XEXP (XEXP (XEXP (dest
, 0), 1), 1));
1729 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1730 && cfa_store
.reg
== STACK_POINTER_REGNUM
);
1732 cfa_store
.offset
+= offset
;
1733 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1734 cfa
.offset
= cfa_store
.offset
;
1736 offset
= -cfa_store
.offset
;
1742 offset
= GET_MODE_SIZE (GET_MODE (dest
));
1743 if (GET_CODE (XEXP (dest
, 0)) == PRE_INC
)
1746 gcc_assert (REGNO (XEXP (XEXP (dest
, 0), 0)) == STACK_POINTER_REGNUM
1747 && cfa_store
.reg
== STACK_POINTER_REGNUM
);
1749 cfa_store
.offset
+= offset
;
1750 if (cfa
.reg
== STACK_POINTER_REGNUM
)
1751 cfa
.offset
= cfa_store
.offset
;
1753 offset
= -cfa_store
.offset
;
1757 /* With an offset. */
1764 gcc_assert (GET_CODE (XEXP (XEXP (dest
, 0), 1)) == CONST_INT
1765 && REG_P (XEXP (XEXP (dest
, 0), 0)));
1766 offset
= INTVAL (XEXP (XEXP (dest
, 0), 1));
1767 if (GET_CODE (XEXP (dest
, 0)) == MINUS
)
1770 regno
= REGNO (XEXP (XEXP (dest
, 0), 0));
1772 if (cfa_store
.reg
== (unsigned) regno
)
1773 offset
-= cfa_store
.offset
;
1776 gcc_assert (cfa_temp
.reg
== (unsigned) regno
);
1777 offset
-= cfa_temp
.offset
;
1783 /* Without an offset. */
1786 int regno
= REGNO (XEXP (dest
, 0));
1788 if (cfa_store
.reg
== (unsigned) regno
)
1789 offset
= -cfa_store
.offset
;
1792 gcc_assert (cfa_temp
.reg
== (unsigned) regno
);
1793 offset
= -cfa_temp
.offset
;
1800 gcc_assert (cfa_temp
.reg
1801 == (unsigned) REGNO (XEXP (XEXP (dest
, 0), 0)));
1802 offset
= -cfa_temp
.offset
;
1803 cfa_temp
.offset
-= GET_MODE_SIZE (GET_MODE (dest
));
1810 if (REGNO (src
) != STACK_POINTER_REGNUM
1811 && REGNO (src
) != HARD_FRAME_POINTER_REGNUM
1812 && (unsigned) REGNO (src
) == cfa
.reg
)
1814 /* We're storing the current CFA reg into the stack. */
1816 if (cfa
.offset
== 0)
1818 /* If the source register is exactly the CFA, assume
1819 we're saving SP like any other register; this happens
1821 def_cfa_1 (label
, &cfa
);
1822 queue_reg_save (label
, stack_pointer_rtx
, NULL_RTX
, offset
);
1827 /* Otherwise, we'll need to look in the stack to
1828 calculate the CFA. */
1829 rtx x
= XEXP (dest
, 0);
1833 gcc_assert (REG_P (x
));
1835 cfa
.reg
= REGNO (x
);
1836 cfa
.base_offset
= offset
;
1838 def_cfa_1 (label
, &cfa
);
1843 def_cfa_1 (label
, &cfa
);
1844 queue_reg_save (label
, src
, NULL_RTX
, offset
);
1852 /* Record call frame debugging information for INSN, which either
1853 sets SP or FP (adjusting how we calculate the frame address) or saves a
1854 register to the stack. If INSN is NULL_RTX, initialize our state.
1856 If AFTER_P is false, we're being called before the insn is emitted,
1857 otherwise after. Call instructions get invoked twice. */
1860 dwarf2out_frame_debug (rtx insn
, bool after_p
)
1865 if (insn
== NULL_RTX
)
1869 /* Flush any queued register saves. */
1870 flush_queued_reg_saves ();
1872 /* Set up state for generating call frame debug info. */
1875 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM
));
1877 cfa
.reg
= STACK_POINTER_REGNUM
;
1880 cfa_temp
.offset
= 0;
1882 for (i
= 0; i
< num_regs_saved_in_regs
; i
++)
1884 regs_saved_in_regs
[i
].orig_reg
= NULL_RTX
;
1885 regs_saved_in_regs
[i
].saved_in_reg
= NULL_RTX
;
1887 num_regs_saved_in_regs
= 0;
1891 if (!NONJUMP_INSN_P (insn
) || clobbers_queued_reg_save (insn
))
1892 flush_queued_reg_saves ();
1894 if (! RTX_FRAME_RELATED_P (insn
))
1896 if (!ACCUMULATE_OUTGOING_ARGS
)
1897 dwarf2out_stack_adjust (insn
, after_p
);
1901 label
= dwarf2out_cfi_label ();
1902 src
= find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
);
1904 insn
= XEXP (src
, 0);
1906 insn
= PATTERN (insn
);
1908 dwarf2out_frame_debug_expr (insn
, label
);
1913 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1914 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1915 (enum dwarf_call_frame_info cfi
);
1917 static enum dw_cfi_oprnd_type
1918 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi
)
1923 case DW_CFA_GNU_window_save
:
1924 return dw_cfi_oprnd_unused
;
1926 case DW_CFA_set_loc
:
1927 case DW_CFA_advance_loc1
:
1928 case DW_CFA_advance_loc2
:
1929 case DW_CFA_advance_loc4
:
1930 case DW_CFA_MIPS_advance_loc8
:
1931 return dw_cfi_oprnd_addr
;
1934 case DW_CFA_offset_extended
:
1935 case DW_CFA_def_cfa
:
1936 case DW_CFA_offset_extended_sf
:
1937 case DW_CFA_def_cfa_sf
:
1938 case DW_CFA_restore_extended
:
1939 case DW_CFA_undefined
:
1940 case DW_CFA_same_value
:
1941 case DW_CFA_def_cfa_register
:
1942 case DW_CFA_register
:
1943 return dw_cfi_oprnd_reg_num
;
1945 case DW_CFA_def_cfa_offset
:
1946 case DW_CFA_GNU_args_size
:
1947 case DW_CFA_def_cfa_offset_sf
:
1948 return dw_cfi_oprnd_offset
;
1950 case DW_CFA_def_cfa_expression
:
1951 case DW_CFA_expression
:
1952 return dw_cfi_oprnd_loc
;
1959 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1960 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1961 (enum dwarf_call_frame_info cfi
);
1963 static enum dw_cfi_oprnd_type
1964 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi
)
1968 case DW_CFA_def_cfa
:
1969 case DW_CFA_def_cfa_sf
:
1971 case DW_CFA_offset_extended_sf
:
1972 case DW_CFA_offset_extended
:
1973 return dw_cfi_oprnd_offset
;
1975 case DW_CFA_register
:
1976 return dw_cfi_oprnd_reg_num
;
1979 return dw_cfi_oprnd_unused
;
1983 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1985 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1986 switch to the data section instead, and write out a synthetic label
1990 switch_to_eh_frame_section (void)
1994 #ifdef EH_FRAME_SECTION_NAME
1995 if (eh_frame_section
== 0)
1999 if (EH_TABLES_CAN_BE_READ_ONLY
)
2005 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2007 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2009 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2011 flags
= ((! flag_pic
2012 || ((fde_encoding
& 0x70) != DW_EH_PE_absptr
2013 && (fde_encoding
& 0x70) != DW_EH_PE_aligned
2014 && (per_encoding
& 0x70) != DW_EH_PE_absptr
2015 && (per_encoding
& 0x70) != DW_EH_PE_aligned
2016 && (lsda_encoding
& 0x70) != DW_EH_PE_absptr
2017 && (lsda_encoding
& 0x70) != DW_EH_PE_aligned
))
2018 ? 0 : SECTION_WRITE
);
2021 flags
= SECTION_WRITE
;
2022 eh_frame_section
= get_section (EH_FRAME_SECTION_NAME
, flags
, NULL
);
2026 if (eh_frame_section
)
2027 switch_to_section (eh_frame_section
);
2030 /* We have no special eh_frame section. Put the information in
2031 the data section and emit special labels to guide collect2. */
2032 switch_to_section (data_section
);
2033 label
= get_file_function_name ('F');
2034 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
2035 targetm
.asm_out
.globalize_label (asm_out_file
,
2036 IDENTIFIER_POINTER (label
));
2037 ASM_OUTPUT_LABEL (asm_out_file
, IDENTIFIER_POINTER (label
));
2041 /* Output a Call Frame Information opcode and its operand(s). */
2044 output_cfi (dw_cfi_ref cfi
, dw_fde_ref fde
, int for_eh
)
2047 if (cfi
->dw_cfi_opc
== DW_CFA_advance_loc
)
2048 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
2049 | (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
& 0x3f)),
2050 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX
,
2051 cfi
->dw_cfi_oprnd1
.dw_cfi_offset
);
2052 else if (cfi
->dw_cfi_opc
== DW_CFA_offset
)
2054 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2055 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
2056 "DW_CFA_offset, column 0x%lx", r
);
2057 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
2059 else if (cfi
->dw_cfi_opc
== DW_CFA_restore
)
2061 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2062 dw2_asm_output_data (1, (cfi
->dw_cfi_opc
| (r
& 0x3f)),
2063 "DW_CFA_restore, column 0x%lx", r
);
2067 dw2_asm_output_data (1, cfi
->dw_cfi_opc
,
2068 "%s", dwarf_cfi_name (cfi
->dw_cfi_opc
));
2070 switch (cfi
->dw_cfi_opc
)
2072 case DW_CFA_set_loc
:
2074 dw2_asm_output_encoded_addr_rtx (
2075 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2076 gen_rtx_SYMBOL_REF (Pmode
, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
),
2079 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
2080 cfi
->dw_cfi_oprnd1
.dw_cfi_addr
, NULL
);
2081 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
2084 case DW_CFA_advance_loc1
:
2085 dw2_asm_output_delta (1, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
2086 fde
->dw_fde_current_label
, NULL
);
2087 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
2090 case DW_CFA_advance_loc2
:
2091 dw2_asm_output_delta (2, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
2092 fde
->dw_fde_current_label
, NULL
);
2093 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
2096 case DW_CFA_advance_loc4
:
2097 dw2_asm_output_delta (4, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
2098 fde
->dw_fde_current_label
, NULL
);
2099 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
2102 case DW_CFA_MIPS_advance_loc8
:
2103 dw2_asm_output_delta (8, cfi
->dw_cfi_oprnd1
.dw_cfi_addr
,
2104 fde
->dw_fde_current_label
, NULL
);
2105 fde
->dw_fde_current_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
2108 case DW_CFA_offset_extended
:
2109 case DW_CFA_def_cfa
:
2110 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2111 dw2_asm_output_data_uleb128 (r
, NULL
);
2112 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
2115 case DW_CFA_offset_extended_sf
:
2116 case DW_CFA_def_cfa_sf
:
2117 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2118 dw2_asm_output_data_uleb128 (r
, NULL
);
2119 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd2
.dw_cfi_offset
, NULL
);
2122 case DW_CFA_restore_extended
:
2123 case DW_CFA_undefined
:
2124 case DW_CFA_same_value
:
2125 case DW_CFA_def_cfa_register
:
2126 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2127 dw2_asm_output_data_uleb128 (r
, NULL
);
2130 case DW_CFA_register
:
2131 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd1
.dw_cfi_reg_num
, for_eh
);
2132 dw2_asm_output_data_uleb128 (r
, NULL
);
2133 r
= DWARF2_FRAME_REG_OUT (cfi
->dw_cfi_oprnd2
.dw_cfi_reg_num
, for_eh
);
2134 dw2_asm_output_data_uleb128 (r
, NULL
);
2137 case DW_CFA_def_cfa_offset
:
2138 case DW_CFA_GNU_args_size
:
2139 dw2_asm_output_data_uleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
2142 case DW_CFA_def_cfa_offset_sf
:
2143 dw2_asm_output_data_sleb128 (cfi
->dw_cfi_oprnd1
.dw_cfi_offset
, NULL
);
2146 case DW_CFA_GNU_window_save
:
2149 case DW_CFA_def_cfa_expression
:
2150 case DW_CFA_expression
:
2151 output_cfa_loc (cfi
);
2154 case DW_CFA_GNU_negative_offset_extended
:
2155 /* Obsoleted by DW_CFA_offset_extended_sf. */
2164 /* Output the call frame information used to record information
2165 that relates to calculating the frame pointer, and records the
2166 location of saved registers. */
2169 output_call_frame_info (int for_eh
)
2174 char l1
[20], l2
[20], section_start_label
[20];
2175 bool any_lsda_needed
= false;
2176 char augmentation
[6];
2177 int augmentation_size
;
2178 int fde_encoding
= DW_EH_PE_absptr
;
2179 int per_encoding
= DW_EH_PE_absptr
;
2180 int lsda_encoding
= DW_EH_PE_absptr
;
2183 /* Don't emit a CIE if there won't be any FDEs. */
2184 if (fde_table_in_use
== 0)
2187 /* If we make FDEs linkonce, we may have to emit an empty label for
2188 an FDE that wouldn't otherwise be emitted. We want to avoid
2189 having an FDE kept around when the function it refers to is
2190 discarded. Example where this matters: a primary function
2191 template in C++ requires EH information, but an explicit
2192 specialization doesn't. */
2193 if (TARGET_USES_WEAK_UNWIND_INFO
2194 && ! flag_asynchronous_unwind_tables
2196 for (i
= 0; i
< fde_table_in_use
; i
++)
2197 if ((fde_table
[i
].nothrow
|| fde_table
[i
].all_throwers_are_sibcalls
)
2198 && !fde_table
[i
].uses_eh_lsda
2199 && ! DECL_WEAK (fde_table
[i
].decl
))
2200 targetm
.asm_out
.unwind_label (asm_out_file
, fde_table
[i
].decl
,
2201 for_eh
, /* empty */ 1);
2203 /* If we don't have any functions we'll want to unwind out of, don't
2204 emit any EH unwind information. Note that if exceptions aren't
2205 enabled, we won't have collected nothrow information, and if we
2206 asked for asynchronous tables, we always want this info. */
2209 bool any_eh_needed
= !flag_exceptions
|| flag_asynchronous_unwind_tables
;
2211 for (i
= 0; i
< fde_table_in_use
; i
++)
2212 if (fde_table
[i
].uses_eh_lsda
)
2213 any_eh_needed
= any_lsda_needed
= true;
2214 else if (TARGET_USES_WEAK_UNWIND_INFO
&& DECL_WEAK (fde_table
[i
].decl
))
2215 any_eh_needed
= true;
2216 else if (! fde_table
[i
].nothrow
2217 && ! fde_table
[i
].all_throwers_are_sibcalls
)
2218 any_eh_needed
= true;
2220 if (! any_eh_needed
)
2224 /* We're going to be generating comments, so turn on app. */
2229 switch_to_eh_frame_section ();
2232 if (!debug_frame_section
)
2233 debug_frame_section
= get_section (DEBUG_FRAME_SECTION
,
2234 SECTION_DEBUG
, NULL
);
2235 switch_to_section (debug_frame_section
);
2238 ASM_GENERATE_INTERNAL_LABEL (section_start_label
, FRAME_BEGIN_LABEL
, for_eh
);
2239 ASM_OUTPUT_LABEL (asm_out_file
, section_start_label
);
2241 /* Output the CIE. */
2242 ASM_GENERATE_INTERNAL_LABEL (l1
, CIE_AFTER_SIZE_LABEL
, for_eh
);
2243 ASM_GENERATE_INTERNAL_LABEL (l2
, CIE_END_LABEL
, for_eh
);
2244 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4 && !for_eh
)
2245 dw2_asm_output_data (4, 0xffffffff,
2246 "Initial length escape value indicating 64-bit DWARF extension");
2247 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
2248 "Length of Common Information Entry");
2249 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
2251 /* Now that the CIE pointer is PC-relative for EH,
2252 use 0 to identify the CIE. */
2253 dw2_asm_output_data ((for_eh
? 4 : DWARF_OFFSET_SIZE
),
2254 (for_eh
? 0 : DWARF_CIE_ID
),
2255 "CIE Identifier Tag");
2257 dw2_asm_output_data (1, DW_CIE_VERSION
, "CIE Version");
2259 augmentation
[0] = 0;
2260 augmentation_size
= 0;
2266 z Indicates that a uleb128 is present to size the
2267 augmentation section.
2268 L Indicates the encoding (and thus presence) of
2269 an LSDA pointer in the FDE augmentation.
2270 R Indicates a non-default pointer encoding for
2272 P Indicates the presence of an encoding + language
2273 personality routine in the CIE augmentation. */
2275 fde_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2276 per_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2277 lsda_encoding
= ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2279 p
= augmentation
+ 1;
2280 if (eh_personality_libfunc
)
2283 augmentation_size
+= 1 + size_of_encoded_value (per_encoding
);
2285 if (any_lsda_needed
)
2288 augmentation_size
+= 1;
2290 if (fde_encoding
!= DW_EH_PE_absptr
)
2293 augmentation_size
+= 1;
2295 if (p
> augmentation
+ 1)
2297 augmentation
[0] = 'z';
2301 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2302 if (eh_personality_libfunc
&& per_encoding
== DW_EH_PE_aligned
)
2304 int offset
= ( 4 /* Length */
2306 + 1 /* CIE version */
2307 + strlen (augmentation
) + 1 /* Augmentation */
2308 + size_of_uleb128 (1) /* Code alignment */
2309 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT
)
2311 + 1 /* Augmentation size */
2312 + 1 /* Personality encoding */ );
2313 int pad
= -offset
& (PTR_SIZE
- 1);
2315 augmentation_size
+= pad
;
2317 /* Augmentations should be small, so there's scarce need to
2318 iterate for a solution. Die if we exceed one uleb128 byte. */
2319 gcc_assert (size_of_uleb128 (augmentation_size
) == 1);
2323 dw2_asm_output_nstring (augmentation
, -1, "CIE Augmentation");
2324 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2325 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT
,
2326 "CIE Data Alignment Factor");
2328 return_reg
= DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN
, for_eh
);
2329 if (DW_CIE_VERSION
== 1)
2330 dw2_asm_output_data (1, return_reg
, "CIE RA Column");
2332 dw2_asm_output_data_uleb128 (return_reg
, "CIE RA Column");
2334 if (augmentation
[0])
2336 dw2_asm_output_data_uleb128 (augmentation_size
, "Augmentation size");
2337 if (eh_personality_libfunc
)
2339 dw2_asm_output_data (1, per_encoding
, "Personality (%s)",
2340 eh_data_format_name (per_encoding
));
2341 dw2_asm_output_encoded_addr_rtx (per_encoding
,
2342 eh_personality_libfunc
,
2346 if (any_lsda_needed
)
2347 dw2_asm_output_data (1, lsda_encoding
, "LSDA Encoding (%s)",
2348 eh_data_format_name (lsda_encoding
));
2350 if (fde_encoding
!= DW_EH_PE_absptr
)
2351 dw2_asm_output_data (1, fde_encoding
, "FDE Encoding (%s)",
2352 eh_data_format_name (fde_encoding
));
2355 for (cfi
= cie_cfi_head
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2356 output_cfi (cfi
, NULL
, for_eh
);
2358 /* Pad the CIE out to an address sized boundary. */
2359 ASM_OUTPUT_ALIGN (asm_out_file
,
2360 floor_log2 (for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
));
2361 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2363 /* Loop through all of the FDE's. */
2364 for (i
= 0; i
< fde_table_in_use
; i
++)
2366 fde
= &fde_table
[i
];
2368 /* Don't emit EH unwind info for leaf functions that don't need it. */
2369 if (for_eh
&& !flag_asynchronous_unwind_tables
&& flag_exceptions
2370 && (fde
->nothrow
|| fde
->all_throwers_are_sibcalls
)
2371 && ! (TARGET_USES_WEAK_UNWIND_INFO
&& DECL_WEAK (fde_table
[i
].decl
))
2372 && !fde
->uses_eh_lsda
)
2375 targetm
.asm_out
.unwind_label (asm_out_file
, fde
->decl
, for_eh
, /* empty */ 0);
2376 targetm
.asm_out
.internal_label (asm_out_file
, FDE_LABEL
, for_eh
+ i
* 2);
2377 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_AFTER_SIZE_LABEL
, for_eh
+ i
* 2);
2378 ASM_GENERATE_INTERNAL_LABEL (l2
, FDE_END_LABEL
, for_eh
+ i
* 2);
2379 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4 && !for_eh
)
2380 dw2_asm_output_data (4, 0xffffffff,
2381 "Initial length escape value indicating 64-bit DWARF extension");
2382 dw2_asm_output_delta (for_eh
? 4 : DWARF_OFFSET_SIZE
, l2
, l1
,
2384 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
2387 dw2_asm_output_delta (4, l1
, section_start_label
, "FDE CIE offset");
2389 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, section_start_label
,
2390 debug_frame_section
, "FDE CIE offset");
2394 rtx sym_ref
= gen_rtx_SYMBOL_REF (Pmode
, fde
->dw_fde_begin
);
2395 SYMBOL_REF_FLAGS (sym_ref
) |= SYMBOL_FLAG_LOCAL
;
2396 dw2_asm_output_encoded_addr_rtx (fde_encoding
,
2399 "FDE initial location");
2400 if (fde
->dw_fde_switched_sections
)
2402 rtx sym_ref2
= gen_rtx_SYMBOL_REF (Pmode
,
2403 fde
->dw_fde_unlikely_section_label
);
2404 rtx sym_ref3
= gen_rtx_SYMBOL_REF (Pmode
,
2405 fde
->dw_fde_hot_section_label
);
2406 SYMBOL_REF_FLAGS (sym_ref2
) |= SYMBOL_FLAG_LOCAL
;
2407 SYMBOL_REF_FLAGS (sym_ref3
) |= SYMBOL_FLAG_LOCAL
;
2408 dw2_asm_output_encoded_addr_rtx (fde_encoding
, sym_ref3
, false,
2409 "FDE initial location");
2410 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
2411 fde
->dw_fde_hot_section_end_label
,
2412 fde
->dw_fde_hot_section_label
,
2413 "FDE address range");
2414 dw2_asm_output_encoded_addr_rtx (fde_encoding
, sym_ref2
, false,
2415 "FDE initial location");
2416 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
2417 fde
->dw_fde_unlikely_section_end_label
,
2418 fde
->dw_fde_unlikely_section_label
,
2419 "FDE address range");
2422 dw2_asm_output_delta (size_of_encoded_value (fde_encoding
),
2423 fde
->dw_fde_end
, fde
->dw_fde_begin
,
2424 "FDE address range");
2428 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, fde
->dw_fde_begin
,
2429 "FDE initial location");
2430 if (fde
->dw_fde_switched_sections
)
2432 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
2433 fde
->dw_fde_hot_section_label
,
2434 "FDE initial location");
2435 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
2436 fde
->dw_fde_hot_section_end_label
,
2437 fde
->dw_fde_hot_section_label
,
2438 "FDE address range");
2439 dw2_asm_output_addr (DWARF2_ADDR_SIZE
,
2440 fde
->dw_fde_unlikely_section_label
,
2441 "FDE initial location");
2442 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
2443 fde
->dw_fde_unlikely_section_end_label
,
2444 fde
->dw_fde_unlikely_section_label
,
2445 "FDE address range");
2448 dw2_asm_output_delta (DWARF2_ADDR_SIZE
,
2449 fde
->dw_fde_end
, fde
->dw_fde_begin
,
2450 "FDE address range");
2453 if (augmentation
[0])
2455 if (any_lsda_needed
)
2457 int size
= size_of_encoded_value (lsda_encoding
);
2459 if (lsda_encoding
== DW_EH_PE_aligned
)
2461 int offset
= ( 4 /* Length */
2462 + 4 /* CIE offset */
2463 + 2 * size_of_encoded_value (fde_encoding
)
2464 + 1 /* Augmentation size */ );
2465 int pad
= -offset
& (PTR_SIZE
- 1);
2468 gcc_assert (size_of_uleb128 (size
) == 1);
2471 dw2_asm_output_data_uleb128 (size
, "Augmentation size");
2473 if (fde
->uses_eh_lsda
)
2475 ASM_GENERATE_INTERNAL_LABEL (l1
, "LLSDA",
2476 fde
->funcdef_number
);
2477 dw2_asm_output_encoded_addr_rtx (
2478 lsda_encoding
, gen_rtx_SYMBOL_REF (Pmode
, l1
),
2479 false, "Language Specific Data Area");
2483 if (lsda_encoding
== DW_EH_PE_aligned
)
2484 ASM_OUTPUT_ALIGN (asm_out_file
, floor_log2 (PTR_SIZE
));
2486 (size_of_encoded_value (lsda_encoding
), 0,
2487 "Language Specific Data Area (none)");
2491 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2494 /* Loop through the Call Frame Instructions associated with
2496 fde
->dw_fde_current_label
= fde
->dw_fde_begin
;
2497 for (cfi
= fde
->dw_fde_cfi
; cfi
!= NULL
; cfi
= cfi
->dw_cfi_next
)
2498 output_cfi (cfi
, fde
, for_eh
);
2500 /* Pad the FDE out to an address sized boundary. */
2501 ASM_OUTPUT_ALIGN (asm_out_file
,
2502 floor_log2 ((for_eh
? PTR_SIZE
: DWARF2_ADDR_SIZE
)));
2503 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
2506 if (for_eh
&& targetm
.terminate_dw2_eh_frame_info
)
2507 dw2_asm_output_data (4, 0, "End of Table");
2508 #ifdef MIPS_DEBUGGING_INFO
2509 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2510 get a value of 0. Putting .align 0 after the label fixes it. */
2511 ASM_OUTPUT_ALIGN (asm_out_file
, 0);
2514 /* Turn off app to make assembly quicker. */
2519 /* Output a marker (i.e. a label) for the beginning of a function, before
2523 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED
,
2524 const char *file ATTRIBUTE_UNUSED
)
2526 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2530 current_function_func_begin_label
= NULL
;
2532 #ifdef TARGET_UNWIND_INFO
2533 /* ??? current_function_func_begin_label is also used by except.c
2534 for call-site information. We must emit this label if it might
2536 if ((! flag_exceptions
|| USING_SJLJ_EXCEPTIONS
)
2537 && ! dwarf2out_do_frame ())
2540 if (! dwarf2out_do_frame ())
2544 switch_to_section (function_section (current_function_decl
));
2545 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_BEGIN_LABEL
,
2546 current_function_funcdef_no
);
2547 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, FUNC_BEGIN_LABEL
,
2548 current_function_funcdef_no
);
2549 dup_label
= xstrdup (label
);
2550 current_function_func_begin_label
= dup_label
;
2552 #ifdef TARGET_UNWIND_INFO
2553 /* We can elide the fde allocation if we're not emitting debug info. */
2554 if (! dwarf2out_do_frame ())
2558 /* Expand the fde table if necessary. */
2559 if (fde_table_in_use
== fde_table_allocated
)
2561 fde_table_allocated
+= FDE_TABLE_INCREMENT
;
2562 fde_table
= ggc_realloc (fde_table
,
2563 fde_table_allocated
* sizeof (dw_fde_node
));
2564 memset (fde_table
+ fde_table_in_use
, 0,
2565 FDE_TABLE_INCREMENT
* sizeof (dw_fde_node
));
2568 /* Record the FDE associated with this function. */
2569 current_funcdef_fde
= fde_table_in_use
;
2571 /* Add the new FDE at the end of the fde_table. */
2572 fde
= &fde_table
[fde_table_in_use
++];
2573 fde
->decl
= current_function_decl
;
2574 fde
->dw_fde_begin
= dup_label
;
2575 fde
->dw_fde_current_label
= dup_label
;
2576 fde
->dw_fde_hot_section_label
= NULL
;
2577 fde
->dw_fde_hot_section_end_label
= NULL
;
2578 fde
->dw_fde_unlikely_section_label
= NULL
;
2579 fde
->dw_fde_unlikely_section_end_label
= NULL
;
2580 fde
->dw_fde_switched_sections
= false;
2581 fde
->dw_fde_end
= NULL
;
2582 fde
->dw_fde_cfi
= NULL
;
2583 fde
->funcdef_number
= current_function_funcdef_no
;
2584 fde
->nothrow
= TREE_NOTHROW (current_function_decl
);
2585 fde
->uses_eh_lsda
= cfun
->uses_eh_lsda
;
2586 fde
->all_throwers_are_sibcalls
= cfun
->all_throwers_are_sibcalls
;
2588 args_size
= old_args_size
= 0;
2590 /* We only want to output line number information for the genuine dwarf2
2591 prologue case, not the eh frame case. */
2592 #ifdef DWARF2_DEBUGGING_INFO
2594 dwarf2out_source_line (line
, file
);
2598 /* Output a marker (i.e. a label) for the absolute end of the generated code
2599 for a function definition. This gets called *after* the epilogue code has
2603 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED
,
2604 const char *file ATTRIBUTE_UNUSED
)
2607 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
2609 /* Output a label to mark the endpoint of the code generated for this
2611 ASM_GENERATE_INTERNAL_LABEL (label
, FUNC_END_LABEL
,
2612 current_function_funcdef_no
);
2613 ASM_OUTPUT_LABEL (asm_out_file
, label
);
2614 fde
= &fde_table
[fde_table_in_use
- 1];
2615 fde
->dw_fde_end
= xstrdup (label
);
2619 dwarf2out_frame_init (void)
2621 /* Allocate the initial hunk of the fde_table. */
2622 fde_table
= ggc_alloc_cleared (FDE_TABLE_INCREMENT
* sizeof (dw_fde_node
));
2623 fde_table_allocated
= FDE_TABLE_INCREMENT
;
2624 fde_table_in_use
= 0;
2626 /* Generate the CFA instructions common to all FDE's. Do it now for the
2627 sake of lookup_cfa. */
2629 /* On entry, the Canonical Frame Address is at SP. */
2630 dwarf2out_def_cfa (NULL
, STACK_POINTER_REGNUM
, INCOMING_FRAME_SP_OFFSET
);
2632 #ifdef DWARF2_UNWIND_INFO
2633 if (DWARF2_UNWIND_INFO
)
2634 initial_return_save (INCOMING_RETURN_ADDR_RTX
);
2639 dwarf2out_frame_finish (void)
2641 /* Output call frame information. */
2642 if (DWARF2_FRAME_INFO
)
2643 output_call_frame_info (0);
2645 #ifndef TARGET_UNWIND_INFO
2646 /* Output another copy for the unwinder. */
2647 if (! USING_SJLJ_EXCEPTIONS
&& (flag_unwind_tables
|| flag_exceptions
))
2648 output_call_frame_info (1);
2653 /* And now, the subset of the debugging information support code necessary
2654 for emitting location expressions. */
2656 /* Data about a single source file. */
2657 struct dwarf_file_data
GTY(())
2659 const char * filename
;
2663 /* We need some way to distinguish DW_OP_addr with a direct symbol
2664 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2665 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2668 typedef struct dw_val_struct
*dw_val_ref
;
2669 typedef struct die_struct
*dw_die_ref
;
2670 typedef struct dw_loc_descr_struct
*dw_loc_descr_ref
;
2671 typedef struct dw_loc_list_struct
*dw_loc_list_ref
;
2673 /* Each DIE may have a series of attribute/value pairs. Values
2674 can take on several forms. The forms that are used in this
2675 implementation are listed below. */
2680 dw_val_class_offset
,
2682 dw_val_class_loc_list
,
2683 dw_val_class_range_list
,
2685 dw_val_class_unsigned_const
,
2686 dw_val_class_long_long
,
2689 dw_val_class_die_ref
,
2690 dw_val_class_fde_ref
,
2691 dw_val_class_lbl_id
,
2692 dw_val_class_lineptr
,
2694 dw_val_class_macptr
,
2698 /* Describe a double word constant value. */
2699 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2701 typedef struct dw_long_long_struct
GTY(())
2708 /* Describe a floating point constant value, or a vector constant value. */
2710 typedef struct dw_vec_struct
GTY(())
2712 unsigned char * GTY((length ("%h.length"))) array
;
2718 /* The dw_val_node describes an attribute's value, as it is
2719 represented internally. */
2721 typedef struct dw_val_struct
GTY(())
2723 enum dw_val_class val_class
;
2724 union dw_val_struct_union
2726 rtx
GTY ((tag ("dw_val_class_addr"))) val_addr
;
2727 unsigned HOST_WIDE_INT
GTY ((tag ("dw_val_class_offset"))) val_offset
;
2728 dw_loc_list_ref
GTY ((tag ("dw_val_class_loc_list"))) val_loc_list
;
2729 dw_loc_descr_ref
GTY ((tag ("dw_val_class_loc"))) val_loc
;
2730 HOST_WIDE_INT
GTY ((default)) val_int
;
2731 unsigned HOST_WIDE_INT
GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned
;
2732 dw_long_long_const
GTY ((tag ("dw_val_class_long_long"))) val_long_long
;
2733 dw_vec_const
GTY ((tag ("dw_val_class_vec"))) val_vec
;
2734 struct dw_val_die_union
2738 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref
;
2739 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index
;
2740 struct indirect_string_node
* GTY ((tag ("dw_val_class_str"))) val_str
;
2741 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id
;
2742 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag
;
2743 struct dwarf_file_data
* GTY ((tag ("dw_val_class_file"))) val_file
;
2745 GTY ((desc ("%1.val_class"))) v
;
2749 /* Locations in memory are described using a sequence of stack machine
2752 typedef struct dw_loc_descr_struct
GTY(())
2754 dw_loc_descr_ref dw_loc_next
;
2755 enum dwarf_location_atom dw_loc_opc
;
2756 dw_val_node dw_loc_oprnd1
;
2757 dw_val_node dw_loc_oprnd2
;
2762 /* Location lists are ranges + location descriptions for that range,
2763 so you can track variables that are in different places over
2764 their entire life. */
2765 typedef struct dw_loc_list_struct
GTY(())
2767 dw_loc_list_ref dw_loc_next
;
2768 const char *begin
; /* Label for begin address of range */
2769 const char *end
; /* Label for end address of range */
2770 char *ll_symbol
; /* Label for beginning of location list.
2771 Only on head of list */
2772 const char *section
; /* Section this loclist is relative to */
2773 dw_loc_descr_ref expr
;
2776 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2778 static const char *dwarf_stack_op_name (unsigned);
2779 static dw_loc_descr_ref
new_loc_descr (enum dwarf_location_atom
,
2780 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
);
2781 static void add_loc_descr (dw_loc_descr_ref
*, dw_loc_descr_ref
);
2782 static unsigned long size_of_loc_descr (dw_loc_descr_ref
);
2783 static unsigned long size_of_locs (dw_loc_descr_ref
);
2784 static void output_loc_operands (dw_loc_descr_ref
);
2785 static void output_loc_sequence (dw_loc_descr_ref
);
2787 /* Convert a DWARF stack opcode into its string name. */
2790 dwarf_stack_op_name (unsigned int op
)
2795 case INTERNAL_DW_OP_tls_addr
:
2796 return "DW_OP_addr";
2798 return "DW_OP_deref";
2800 return "DW_OP_const1u";
2802 return "DW_OP_const1s";
2804 return "DW_OP_const2u";
2806 return "DW_OP_const2s";
2808 return "DW_OP_const4u";
2810 return "DW_OP_const4s";
2812 return "DW_OP_const8u";
2814 return "DW_OP_const8s";
2816 return "DW_OP_constu";
2818 return "DW_OP_consts";
2822 return "DW_OP_drop";
2824 return "DW_OP_over";
2826 return "DW_OP_pick";
2828 return "DW_OP_swap";
2832 return "DW_OP_xderef";
2840 return "DW_OP_minus";
2852 return "DW_OP_plus";
2853 case DW_OP_plus_uconst
:
2854 return "DW_OP_plus_uconst";
2860 return "DW_OP_shra";
2878 return "DW_OP_skip";
2880 return "DW_OP_lit0";
2882 return "DW_OP_lit1";
2884 return "DW_OP_lit2";
2886 return "DW_OP_lit3";
2888 return "DW_OP_lit4";
2890 return "DW_OP_lit5";
2892 return "DW_OP_lit6";
2894 return "DW_OP_lit7";
2896 return "DW_OP_lit8";
2898 return "DW_OP_lit9";
2900 return "DW_OP_lit10";
2902 return "DW_OP_lit11";
2904 return "DW_OP_lit12";
2906 return "DW_OP_lit13";
2908 return "DW_OP_lit14";
2910 return "DW_OP_lit15";
2912 return "DW_OP_lit16";
2914 return "DW_OP_lit17";
2916 return "DW_OP_lit18";
2918 return "DW_OP_lit19";
2920 return "DW_OP_lit20";
2922 return "DW_OP_lit21";
2924 return "DW_OP_lit22";
2926 return "DW_OP_lit23";
2928 return "DW_OP_lit24";
2930 return "DW_OP_lit25";
2932 return "DW_OP_lit26";
2934 return "DW_OP_lit27";
2936 return "DW_OP_lit28";
2938 return "DW_OP_lit29";
2940 return "DW_OP_lit30";
2942 return "DW_OP_lit31";
2944 return "DW_OP_reg0";
2946 return "DW_OP_reg1";
2948 return "DW_OP_reg2";
2950 return "DW_OP_reg3";
2952 return "DW_OP_reg4";
2954 return "DW_OP_reg5";
2956 return "DW_OP_reg6";
2958 return "DW_OP_reg7";
2960 return "DW_OP_reg8";
2962 return "DW_OP_reg9";
2964 return "DW_OP_reg10";
2966 return "DW_OP_reg11";
2968 return "DW_OP_reg12";
2970 return "DW_OP_reg13";
2972 return "DW_OP_reg14";
2974 return "DW_OP_reg15";
2976 return "DW_OP_reg16";
2978 return "DW_OP_reg17";
2980 return "DW_OP_reg18";
2982 return "DW_OP_reg19";
2984 return "DW_OP_reg20";
2986 return "DW_OP_reg21";
2988 return "DW_OP_reg22";
2990 return "DW_OP_reg23";
2992 return "DW_OP_reg24";
2994 return "DW_OP_reg25";
2996 return "DW_OP_reg26";
2998 return "DW_OP_reg27";
3000 return "DW_OP_reg28";
3002 return "DW_OP_reg29";
3004 return "DW_OP_reg30";
3006 return "DW_OP_reg31";
3008 return "DW_OP_breg0";
3010 return "DW_OP_breg1";
3012 return "DW_OP_breg2";
3014 return "DW_OP_breg3";
3016 return "DW_OP_breg4";
3018 return "DW_OP_breg5";
3020 return "DW_OP_breg6";
3022 return "DW_OP_breg7";
3024 return "DW_OP_breg8";
3026 return "DW_OP_breg9";
3028 return "DW_OP_breg10";
3030 return "DW_OP_breg11";
3032 return "DW_OP_breg12";
3034 return "DW_OP_breg13";
3036 return "DW_OP_breg14";
3038 return "DW_OP_breg15";
3040 return "DW_OP_breg16";
3042 return "DW_OP_breg17";
3044 return "DW_OP_breg18";
3046 return "DW_OP_breg19";
3048 return "DW_OP_breg20";
3050 return "DW_OP_breg21";
3052 return "DW_OP_breg22";
3054 return "DW_OP_breg23";
3056 return "DW_OP_breg24";
3058 return "DW_OP_breg25";
3060 return "DW_OP_breg26";
3062 return "DW_OP_breg27";
3064 return "DW_OP_breg28";
3066 return "DW_OP_breg29";
3068 return "DW_OP_breg30";
3070 return "DW_OP_breg31";
3072 return "DW_OP_regx";
3074 return "DW_OP_fbreg";
3076 return "DW_OP_bregx";
3078 return "DW_OP_piece";
3079 case DW_OP_deref_size
:
3080 return "DW_OP_deref_size";
3081 case DW_OP_xderef_size
:
3082 return "DW_OP_xderef_size";
3085 case DW_OP_push_object_address
:
3086 return "DW_OP_push_object_address";
3088 return "DW_OP_call2";
3090 return "DW_OP_call4";
3091 case DW_OP_call_ref
:
3092 return "DW_OP_call_ref";
3093 case DW_OP_GNU_push_tls_address
:
3094 return "DW_OP_GNU_push_tls_address";
3096 return "OP_<unknown>";
3100 /* Return a pointer to a newly allocated location description. Location
3101 descriptions are simple expression terms that can be strung
3102 together to form more complicated location (address) descriptions. */
3104 static inline dw_loc_descr_ref
3105 new_loc_descr (enum dwarf_location_atom op
, unsigned HOST_WIDE_INT oprnd1
,
3106 unsigned HOST_WIDE_INT oprnd2
)
3108 dw_loc_descr_ref descr
= ggc_alloc_cleared (sizeof (dw_loc_descr_node
));
3110 descr
->dw_loc_opc
= op
;
3111 descr
->dw_loc_oprnd1
.val_class
= dw_val_class_unsigned_const
;
3112 descr
->dw_loc_oprnd1
.v
.val_unsigned
= oprnd1
;
3113 descr
->dw_loc_oprnd2
.val_class
= dw_val_class_unsigned_const
;
3114 descr
->dw_loc_oprnd2
.v
.val_unsigned
= oprnd2
;
3119 /* Add a location description term to a location description expression. */
3122 add_loc_descr (dw_loc_descr_ref
*list_head
, dw_loc_descr_ref descr
)
3124 dw_loc_descr_ref
*d
;
3126 /* Find the end of the chain. */
3127 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
3133 /* Return the size of a location descriptor. */
3135 static unsigned long
3136 size_of_loc_descr (dw_loc_descr_ref loc
)
3138 unsigned long size
= 1;
3140 switch (loc
->dw_loc_opc
)
3143 case INTERNAL_DW_OP_tls_addr
:
3144 size
+= DWARF2_ADDR_SIZE
;
3163 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3166 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
3171 case DW_OP_plus_uconst
:
3172 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3210 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
3213 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3216 size
+= size_of_sleb128 (loc
->dw_loc_oprnd1
.v
.val_int
);
3219 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3220 size
+= size_of_sleb128 (loc
->dw_loc_oprnd2
.v
.val_int
);
3223 size
+= size_of_uleb128 (loc
->dw_loc_oprnd1
.v
.val_unsigned
);
3225 case DW_OP_deref_size
:
3226 case DW_OP_xderef_size
:
3235 case DW_OP_call_ref
:
3236 size
+= DWARF2_ADDR_SIZE
;
3245 /* Return the size of a series of location descriptors. */
3247 static unsigned long
3248 size_of_locs (dw_loc_descr_ref loc
)
3253 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3254 field, to avoid writing to a PCH file. */
3255 for (size
= 0, l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
3257 if (l
->dw_loc_opc
== DW_OP_skip
|| l
->dw_loc_opc
== DW_OP_bra
)
3259 size
+= size_of_loc_descr (l
);
3264 for (size
= 0, l
= loc
; l
!= NULL
; l
= l
->dw_loc_next
)
3266 l
->dw_loc_addr
= size
;
3267 size
+= size_of_loc_descr (l
);
3273 /* Output location description stack opcode's operands (if any). */
3276 output_loc_operands (dw_loc_descr_ref loc
)
3278 dw_val_ref val1
= &loc
->dw_loc_oprnd1
;
3279 dw_val_ref val2
= &loc
->dw_loc_oprnd2
;
3281 switch (loc
->dw_loc_opc
)
3283 #ifdef DWARF2_DEBUGGING_INFO
3285 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, val1
->v
.val_addr
, NULL
);
3289 dw2_asm_output_data (2, val1
->v
.val_int
, NULL
);
3293 dw2_asm_output_data (4, val1
->v
.val_int
, NULL
);
3297 gcc_assert (HOST_BITS_PER_LONG
>= 64);
3298 dw2_asm_output_data (8, val1
->v
.val_int
, NULL
);
3305 gcc_assert (val1
->val_class
== dw_val_class_loc
);
3306 offset
= val1
->v
.val_loc
->dw_loc_addr
- (loc
->dw_loc_addr
+ 3);
3308 dw2_asm_output_data (2, offset
, NULL
);
3321 /* We currently don't make any attempt to make sure these are
3322 aligned properly like we do for the main unwind info, so
3323 don't support emitting things larger than a byte if we're
3324 only doing unwinding. */
3329 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3332 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3335 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3338 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3340 case DW_OP_plus_uconst
:
3341 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3375 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3378 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3381 dw2_asm_output_data_sleb128 (val1
->v
.val_int
, NULL
);
3384 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3385 dw2_asm_output_data_sleb128 (val2
->v
.val_int
, NULL
);
3388 dw2_asm_output_data_uleb128 (val1
->v
.val_unsigned
, NULL
);
3390 case DW_OP_deref_size
:
3391 case DW_OP_xderef_size
:
3392 dw2_asm_output_data (1, val1
->v
.val_int
, NULL
);
3395 case INTERNAL_DW_OP_tls_addr
:
3396 if (targetm
.asm_out
.output_dwarf_dtprel
)
3398 targetm
.asm_out
.output_dwarf_dtprel (asm_out_file
,
3401 fputc ('\n', asm_out_file
);
3408 /* Other codes have no operands. */
3413 /* Output a sequence of location operations. */
3416 output_loc_sequence (dw_loc_descr_ref loc
)
3418 for (; loc
!= NULL
; loc
= loc
->dw_loc_next
)
3420 /* Output the opcode. */
3421 dw2_asm_output_data (1, loc
->dw_loc_opc
,
3422 "%s", dwarf_stack_op_name (loc
->dw_loc_opc
));
3424 /* Output the operand(s) (if any). */
3425 output_loc_operands (loc
);
3429 /* This routine will generate the correct assembly data for a location
3430 description based on a cfi entry with a complex address. */
3433 output_cfa_loc (dw_cfi_ref cfi
)
3435 dw_loc_descr_ref loc
;
3438 /* Output the size of the block. */
3439 loc
= cfi
->dw_cfi_oprnd1
.dw_cfi_loc
;
3440 size
= size_of_locs (loc
);
3441 dw2_asm_output_data_uleb128 (size
, NULL
);
3443 /* Now output the operations themselves. */
3444 output_loc_sequence (loc
);
3447 /* This function builds a dwarf location descriptor sequence from a
3448 dw_cfa_location, adding the given OFFSET to the result of the
3451 static struct dw_loc_descr_struct
*
3452 build_cfa_loc (dw_cfa_location
*cfa
, HOST_WIDE_INT offset
)
3454 struct dw_loc_descr_struct
*head
, *tmp
;
3456 offset
+= cfa
->offset
;
3460 if (cfa
->base_offset
)
3463 head
= new_loc_descr (DW_OP_breg0
+ cfa
->reg
, cfa
->base_offset
, 0);
3465 head
= new_loc_descr (DW_OP_bregx
, cfa
->reg
, cfa
->base_offset
);
3467 else if (cfa
->reg
<= 31)
3468 head
= new_loc_descr (DW_OP_reg0
+ cfa
->reg
, 0, 0);
3470 head
= new_loc_descr (DW_OP_regx
, cfa
->reg
, 0);
3472 head
->dw_loc_oprnd1
.val_class
= dw_val_class_const
;
3473 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
3474 add_loc_descr (&head
, tmp
);
3477 tmp
= new_loc_descr (DW_OP_plus_uconst
, offset
, 0);
3478 add_loc_descr (&head
, tmp
);
3485 head
= new_loc_descr (DW_OP_reg0
+ cfa
->reg
, 0, 0);
3487 head
= new_loc_descr (DW_OP_regx
, cfa
->reg
, 0);
3488 else if (cfa
->reg
<= 31)
3489 head
= new_loc_descr (DW_OP_breg0
+ cfa
->reg
, offset
, 0);
3491 head
= new_loc_descr (DW_OP_bregx
, cfa
->reg
, offset
);
3497 /* This function fills in aa dw_cfa_location structure from a dwarf location
3498 descriptor sequence. */
3501 get_cfa_from_loc_descr (dw_cfa_location
*cfa
, struct dw_loc_descr_struct
*loc
)
3503 struct dw_loc_descr_struct
*ptr
;
3505 cfa
->base_offset
= 0;
3509 for (ptr
= loc
; ptr
!= NULL
; ptr
= ptr
->dw_loc_next
)
3511 enum dwarf_location_atom op
= ptr
->dw_loc_opc
;
3547 cfa
->reg
= op
- DW_OP_reg0
;
3550 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3584 cfa
->reg
= op
- DW_OP_breg0
;
3585 cfa
->base_offset
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3588 cfa
->reg
= ptr
->dw_loc_oprnd1
.v
.val_int
;
3589 cfa
->base_offset
= ptr
->dw_loc_oprnd2
.v
.val_int
;
3594 case DW_OP_plus_uconst
:
3595 cfa
->offset
= ptr
->dw_loc_oprnd1
.v
.val_unsigned
;
3598 internal_error ("DW_LOC_OP %s not implemented",
3599 dwarf_stack_op_name (ptr
->dw_loc_opc
));
3603 #endif /* .debug_frame support */
3605 /* And now, the support for symbolic debugging information. */
3606 #ifdef DWARF2_DEBUGGING_INFO
3608 /* .debug_str support. */
3609 static int output_indirect_string (void **, void *);
3611 static void dwarf2out_init (const char *);
3612 static void dwarf2out_finish (const char *);
3613 static void dwarf2out_define (unsigned int, const char *);
3614 static void dwarf2out_undef (unsigned int, const char *);
3615 static void dwarf2out_start_source_file (unsigned, const char *);
3616 static void dwarf2out_end_source_file (unsigned);
3617 static void dwarf2out_begin_block (unsigned, unsigned);
3618 static void dwarf2out_end_block (unsigned, unsigned);
3619 static bool dwarf2out_ignore_block (tree
);
3620 static void dwarf2out_global_decl (tree
);
3621 static void dwarf2out_type_decl (tree
, int);
3622 static void dwarf2out_imported_module_or_decl (tree
, tree
);
3623 static void dwarf2out_abstract_function (tree
);
3624 static void dwarf2out_var_location (rtx
);
3625 static void dwarf2out_begin_function (tree
);
3626 static void dwarf2out_switch_text_section (void);
3628 /* The debug hooks structure. */
3630 const struct gcc_debug_hooks dwarf2_debug_hooks
=
3636 dwarf2out_start_source_file
,
3637 dwarf2out_end_source_file
,
3638 dwarf2out_begin_block
,
3639 dwarf2out_end_block
,
3640 dwarf2out_ignore_block
,
3641 dwarf2out_source_line
,
3642 dwarf2out_begin_prologue
,
3643 debug_nothing_int_charstar
, /* end_prologue */
3644 dwarf2out_end_epilogue
,
3645 dwarf2out_begin_function
,
3646 debug_nothing_int
, /* end_function */
3647 dwarf2out_decl
, /* function_decl */
3648 dwarf2out_global_decl
,
3649 dwarf2out_type_decl
, /* type_decl */
3650 dwarf2out_imported_module_or_decl
,
3651 debug_nothing_tree
, /* deferred_inline_function */
3652 /* The DWARF 2 backend tries to reduce debugging bloat by not
3653 emitting the abstract description of inline functions until
3654 something tries to reference them. */
3655 dwarf2out_abstract_function
, /* outlining_inline_function */
3656 debug_nothing_rtx
, /* label */
3657 debug_nothing_int
, /* handle_pch */
3658 dwarf2out_var_location
,
3659 dwarf2out_switch_text_section
,
3660 1 /* start_end_main_source_file */
3664 /* NOTE: In the comments in this file, many references are made to
3665 "Debugging Information Entries". This term is abbreviated as `DIE'
3666 throughout the remainder of this file. */
3668 /* An internal representation of the DWARF output is built, and then
3669 walked to generate the DWARF debugging info. The walk of the internal
3670 representation is done after the entire program has been compiled.
3671 The types below are used to describe the internal representation. */
3673 /* Various DIE's use offsets relative to the beginning of the
3674 .debug_info section to refer to each other. */
3676 typedef long int dw_offset
;
3678 /* Define typedefs here to avoid circular dependencies. */
3680 typedef struct dw_attr_struct
*dw_attr_ref
;
3681 typedef struct dw_line_info_struct
*dw_line_info_ref
;
3682 typedef struct dw_separate_line_info_struct
*dw_separate_line_info_ref
;
3683 typedef struct pubname_struct
*pubname_ref
;
3684 typedef struct dw_ranges_struct
*dw_ranges_ref
;
3686 /* Each entry in the line_info_table maintains the file and
3687 line number associated with the label generated for that
3688 entry. The label gives the PC value associated with
3689 the line number entry. */
3691 typedef struct dw_line_info_struct
GTY(())
3693 unsigned long dw_file_num
;
3694 unsigned long dw_line_num
;
3698 /* Line information for functions in separate sections; each one gets its
3700 typedef struct dw_separate_line_info_struct
GTY(())
3702 unsigned long dw_file_num
;
3703 unsigned long dw_line_num
;
3704 unsigned long function
;
3706 dw_separate_line_info_entry
;
3708 /* Each DIE attribute has a field specifying the attribute kind,
3709 a link to the next attribute in the chain, and an attribute value.
3710 Attributes are typically linked below the DIE they modify. */
3712 typedef struct dw_attr_struct
GTY(())
3714 enum dwarf_attribute dw_attr
;
3715 dw_val_node dw_attr_val
;
3719 DEF_VEC_O(dw_attr_node
);
3720 DEF_VEC_ALLOC_O(dw_attr_node
,gc
);
3722 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3723 The children of each node form a circular list linked by
3724 die_sib. die_child points to the node *before* the "first" child node. */
3726 typedef struct die_struct
GTY(())
3728 enum dwarf_tag die_tag
;
3730 VEC(dw_attr_node
,gc
) * die_attr
;
3731 dw_die_ref die_parent
;
3732 dw_die_ref die_child
;
3734 dw_die_ref die_definition
; /* ref from a specification to its definition */
3735 dw_offset die_offset
;
3736 unsigned long die_abbrev
;
3738 /* Die is used and must not be pruned as unused. */
3739 int die_perennial_p
;
3740 unsigned int decl_id
;
3744 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3745 #define FOR_EACH_CHILD(die, c, expr) do { \
3746 c = die->die_child; \
3750 } while (c != die->die_child); \
3753 /* The pubname structure */
3755 typedef struct pubname_struct
GTY(())
3762 struct dw_ranges_struct
GTY(())
3767 /* The limbo die list structure. */
3768 typedef struct limbo_die_struct
GTY(())
3772 struct limbo_die_struct
*next
;
3776 /* How to start an assembler comment. */
3777 #ifndef ASM_COMMENT_START
3778 #define ASM_COMMENT_START ";#"
3781 /* Define a macro which returns nonzero for a TYPE_DECL which was
3782 implicitly generated for a tagged type.
3784 Note that unlike the gcc front end (which generates a NULL named
3785 TYPE_DECL node for each complete tagged type, each array type, and
3786 each function type node created) the g++ front end generates a
3787 _named_ TYPE_DECL node for each tagged type node created.
3788 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3789 generate a DW_TAG_typedef DIE for them. */
3791 #define TYPE_DECL_IS_STUB(decl) \
3792 (DECL_NAME (decl) == NULL_TREE \
3793 || (DECL_ARTIFICIAL (decl) \
3794 && is_tagged_type (TREE_TYPE (decl)) \
3795 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3796 /* This is necessary for stub decls that \
3797 appear in nested inline functions. */ \
3798 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3799 && (decl_ultimate_origin (decl) \
3800 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3802 /* Information concerning the compilation unit's programming
3803 language, and compiler version. */
3805 /* Fixed size portion of the DWARF compilation unit header. */
3806 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3807 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3809 /* Fixed size portion of public names info. */
3810 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3812 /* Fixed size portion of the address range info. */
3813 #define DWARF_ARANGES_HEADER_SIZE \
3814 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3815 DWARF2_ADDR_SIZE * 2) \
3816 - DWARF_INITIAL_LENGTH_SIZE)
3818 /* Size of padding portion in the address range info. It must be
3819 aligned to twice the pointer size. */
3820 #define DWARF_ARANGES_PAD_SIZE \
3821 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3822 DWARF2_ADDR_SIZE * 2) \
3823 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3825 /* Use assembler line directives if available. */
3826 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3827 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3828 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3830 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3834 /* Minimum line offset in a special line info. opcode.
3835 This value was chosen to give a reasonable range of values. */
3836 #define DWARF_LINE_BASE -10
3838 /* First special line opcode - leave room for the standard opcodes. */
3839 #define DWARF_LINE_OPCODE_BASE 10
3841 /* Range of line offsets in a special line info. opcode. */
3842 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3844 /* Flag that indicates the initial value of the is_stmt_start flag.
3845 In the present implementation, we do not mark any lines as
3846 the beginning of a source statement, because that information
3847 is not made available by the GCC front-end. */
3848 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3850 #ifdef DWARF2_DEBUGGING_INFO
3851 /* This location is used by calc_die_sizes() to keep track
3852 the offset of each DIE within the .debug_info section. */
3853 static unsigned long next_die_offset
;
3856 /* Record the root of the DIE's built for the current compilation unit. */
3857 static GTY(()) dw_die_ref comp_unit_die
;
3859 /* A list of DIEs with a NULL parent waiting to be relocated. */
3860 static GTY(()) limbo_die_node
*limbo_die_list
;
3862 /* Filenames referenced by this compilation unit. */
3863 static GTY((param_is (struct dwarf_file_data
))) htab_t file_table
;
3865 /* A hash table of references to DIE's that describe declarations.
3866 The key is a DECL_UID() which is a unique number identifying each decl. */
3867 static GTY ((param_is (struct die_struct
))) htab_t decl_die_table
;
3869 /* Node of the variable location list. */
3870 struct var_loc_node
GTY ((chain_next ("%h.next")))
3872 rtx
GTY (()) var_loc_note
;
3873 const char * GTY (()) label
;
3874 const char * GTY (()) section_label
;
3875 struct var_loc_node
* GTY (()) next
;
3878 /* Variable location list. */
3879 struct var_loc_list_def
GTY (())
3881 struct var_loc_node
* GTY (()) first
;
3883 /* Do not mark the last element of the chained list because
3884 it is marked through the chain. */
3885 struct var_loc_node
* GTY ((skip ("%h"))) last
;
3887 /* DECL_UID of the variable decl. */
3888 unsigned int decl_id
;
3890 typedef struct var_loc_list_def var_loc_list
;
3893 /* Table of decl location linked lists. */
3894 static GTY ((param_is (var_loc_list
))) htab_t decl_loc_table
;
3896 /* A pointer to the base of a list of references to DIE's that
3897 are uniquely identified by their tag, presence/absence of
3898 children DIE's, and list of attribute/value pairs. */
3899 static GTY((length ("abbrev_die_table_allocated")))
3900 dw_die_ref
*abbrev_die_table
;
3902 /* Number of elements currently allocated for abbrev_die_table. */
3903 static GTY(()) unsigned abbrev_die_table_allocated
;
3905 /* Number of elements in type_die_table currently in use. */
3906 static GTY(()) unsigned abbrev_die_table_in_use
;
3908 /* Size (in elements) of increments by which we may expand the
3909 abbrev_die_table. */
3910 #define ABBREV_DIE_TABLE_INCREMENT 256
3912 /* A pointer to the base of a table that contains line information
3913 for each source code line in .text in the compilation unit. */
3914 static GTY((length ("line_info_table_allocated")))
3915 dw_line_info_ref line_info_table
;
3917 /* Number of elements currently allocated for line_info_table. */
3918 static GTY(()) unsigned line_info_table_allocated
;
3920 /* Number of elements in line_info_table currently in use. */
3921 static GTY(()) unsigned line_info_table_in_use
;
3923 /* True if the compilation unit places functions in more than one section. */
3924 static GTY(()) bool have_multiple_function_sections
= false;
3926 /* A pointer to the base of a table that contains line information
3927 for each source code line outside of .text in the compilation unit. */
3928 static GTY ((length ("separate_line_info_table_allocated")))
3929 dw_separate_line_info_ref separate_line_info_table
;
3931 /* Number of elements currently allocated for separate_line_info_table. */
3932 static GTY(()) unsigned separate_line_info_table_allocated
;
3934 /* Number of elements in separate_line_info_table currently in use. */
3935 static GTY(()) unsigned separate_line_info_table_in_use
;
3937 /* Size (in elements) of increments by which we may expand the
3939 #define LINE_INFO_TABLE_INCREMENT 1024
3941 /* A pointer to the base of a table that contains a list of publicly
3942 accessible names. */
3943 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table
;
3945 /* Number of elements currently allocated for pubname_table. */
3946 static GTY(()) unsigned pubname_table_allocated
;
3948 /* Number of elements in pubname_table currently in use. */
3949 static GTY(()) unsigned pubname_table_in_use
;
3951 /* Size (in elements) of increments by which we may expand the
3953 #define PUBNAME_TABLE_INCREMENT 64
3955 /* Array of dies for which we should generate .debug_arange info. */
3956 static GTY((length ("arange_table_allocated"))) dw_die_ref
*arange_table
;
3958 /* Number of elements currently allocated for arange_table. */
3959 static GTY(()) unsigned arange_table_allocated
;
3961 /* Number of elements in arange_table currently in use. */
3962 static GTY(()) unsigned arange_table_in_use
;
3964 /* Size (in elements) of increments by which we may expand the
3966 #define ARANGE_TABLE_INCREMENT 64
3968 /* Array of dies for which we should generate .debug_ranges info. */
3969 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table
;
3971 /* Number of elements currently allocated for ranges_table. */
3972 static GTY(()) unsigned ranges_table_allocated
;
3974 /* Number of elements in ranges_table currently in use. */
3975 static GTY(()) unsigned ranges_table_in_use
;
3977 /* Size (in elements) of increments by which we may expand the
3979 #define RANGES_TABLE_INCREMENT 64
3981 /* Whether we have location lists that need outputting */
3982 static GTY(()) bool have_location_lists
;
3984 /* Unique label counter. */
3985 static GTY(()) unsigned int loclabel_num
;
3987 #ifdef DWARF2_DEBUGGING_INFO
3988 /* Record whether the function being analyzed contains inlined functions. */
3989 static int current_function_has_inlines
;
3991 #if 0 && defined (MIPS_DEBUGGING_INFO)
3992 static int comp_unit_has_inlines
;
3995 /* The last file entry emitted by maybe_emit_file(). */
3996 static GTY(()) struct dwarf_file_data
* last_emitted_file
;
3998 /* Number of internal labels generated by gen_internal_sym(). */
3999 static GTY(()) int label_num
;
4001 /* Cached result of previous call to lookup_filename. */
4002 static GTY(()) struct dwarf_file_data
* file_table_last_lookup
;
4004 #ifdef DWARF2_DEBUGGING_INFO
4006 /* Offset from the "steady-state frame pointer" to the frame base,
4007 within the current function. */
4008 static HOST_WIDE_INT frame_pointer_fb_offset
;
4010 /* Forward declarations for functions defined in this file. */
4012 static int is_pseudo_reg (rtx
);
4013 static tree
type_main_variant (tree
);
4014 static int is_tagged_type (tree
);
4015 static const char *dwarf_tag_name (unsigned);
4016 static const char *dwarf_attr_name (unsigned);
4017 static const char *dwarf_form_name (unsigned);
4018 static tree
decl_ultimate_origin (tree
);
4019 static tree
block_ultimate_origin (tree
);
4020 static tree
decl_class_context (tree
);
4021 static void add_dwarf_attr (dw_die_ref
, dw_attr_ref
);
4022 static inline enum dw_val_class
AT_class (dw_attr_ref
);
4023 static void add_AT_flag (dw_die_ref
, enum dwarf_attribute
, unsigned);
4024 static inline unsigned AT_flag (dw_attr_ref
);
4025 static void add_AT_int (dw_die_ref
, enum dwarf_attribute
, HOST_WIDE_INT
);
4026 static inline HOST_WIDE_INT
AT_int (dw_attr_ref
);
4027 static void add_AT_unsigned (dw_die_ref
, enum dwarf_attribute
, unsigned HOST_WIDE_INT
);
4028 static inline unsigned HOST_WIDE_INT
AT_unsigned (dw_attr_ref
);
4029 static void add_AT_long_long (dw_die_ref
, enum dwarf_attribute
, unsigned long,
4031 static inline void add_AT_vec (dw_die_ref
, enum dwarf_attribute
, unsigned int,
4032 unsigned int, unsigned char *);
4033 static hashval_t
debug_str_do_hash (const void *);
4034 static int debug_str_eq (const void *, const void *);
4035 static void add_AT_string (dw_die_ref
, enum dwarf_attribute
, const char *);
4036 static inline const char *AT_string (dw_attr_ref
);
4037 static int AT_string_form (dw_attr_ref
);
4038 static void add_AT_die_ref (dw_die_ref
, enum dwarf_attribute
, dw_die_ref
);
4039 static void add_AT_specification (dw_die_ref
, dw_die_ref
);
4040 static inline dw_die_ref
AT_ref (dw_attr_ref
);
4041 static inline int AT_ref_external (dw_attr_ref
);
4042 static inline void set_AT_ref_external (dw_attr_ref
, int);
4043 static void add_AT_fde_ref (dw_die_ref
, enum dwarf_attribute
, unsigned);
4044 static void add_AT_loc (dw_die_ref
, enum dwarf_attribute
, dw_loc_descr_ref
);
4045 static inline dw_loc_descr_ref
AT_loc (dw_attr_ref
);
4046 static void add_AT_loc_list (dw_die_ref
, enum dwarf_attribute
,
4048 static inline dw_loc_list_ref
AT_loc_list (dw_attr_ref
);
4049 static void add_AT_addr (dw_die_ref
, enum dwarf_attribute
, rtx
);
4050 static inline rtx
AT_addr (dw_attr_ref
);
4051 static void add_AT_lbl_id (dw_die_ref
, enum dwarf_attribute
, const char *);
4052 static void add_AT_lineptr (dw_die_ref
, enum dwarf_attribute
, const char *);
4053 static void add_AT_macptr (dw_die_ref
, enum dwarf_attribute
, const char *);
4054 static void add_AT_offset (dw_die_ref
, enum dwarf_attribute
,
4055 unsigned HOST_WIDE_INT
);
4056 static void add_AT_range_list (dw_die_ref
, enum dwarf_attribute
,
4058 static inline const char *AT_lbl (dw_attr_ref
);
4059 static dw_attr_ref
get_AT (dw_die_ref
, enum dwarf_attribute
);
4060 static const char *get_AT_low_pc (dw_die_ref
);
4061 static const char *get_AT_hi_pc (dw_die_ref
);
4062 static const char *get_AT_string (dw_die_ref
, enum dwarf_attribute
);
4063 static int get_AT_flag (dw_die_ref
, enum dwarf_attribute
);
4064 static unsigned get_AT_unsigned (dw_die_ref
, enum dwarf_attribute
);
4065 static inline dw_die_ref
get_AT_ref (dw_die_ref
, enum dwarf_attribute
);
4066 static bool is_c_family (void);
4067 static bool is_cxx (void);
4068 static bool is_java (void);
4069 static bool is_fortran (void);
4070 static bool is_ada (void);
4071 static void remove_AT (dw_die_ref
, enum dwarf_attribute
);
4072 static void remove_child_TAG (dw_die_ref
, enum dwarf_tag
);
4073 static void add_child_die (dw_die_ref
, dw_die_ref
);
4074 static dw_die_ref
new_die (enum dwarf_tag
, dw_die_ref
, tree
);
4075 static dw_die_ref
lookup_type_die (tree
);
4076 static void equate_type_number_to_die (tree
, dw_die_ref
);
4077 static hashval_t
decl_die_table_hash (const void *);
4078 static int decl_die_table_eq (const void *, const void *);
4079 static dw_die_ref
lookup_decl_die (tree
);
4080 static hashval_t
decl_loc_table_hash (const void *);
4081 static int decl_loc_table_eq (const void *, const void *);
4082 static var_loc_list
*lookup_decl_loc (tree
);
4083 static void equate_decl_number_to_die (tree
, dw_die_ref
);
4084 static void add_var_loc_to_decl (tree
, struct var_loc_node
*);
4085 static void print_spaces (FILE *);
4086 static void print_die (dw_die_ref
, FILE *);
4087 static void print_dwarf_line_table (FILE *);
4088 static dw_die_ref
push_new_compile_unit (dw_die_ref
, dw_die_ref
);
4089 static dw_die_ref
pop_compile_unit (dw_die_ref
);
4090 static void loc_checksum (dw_loc_descr_ref
, struct md5_ctx
*);
4091 static void attr_checksum (dw_attr_ref
, struct md5_ctx
*, int *);
4092 static void die_checksum (dw_die_ref
, struct md5_ctx
*, int *);
4093 static int same_loc_p (dw_loc_descr_ref
, dw_loc_descr_ref
, int *);
4094 static int same_dw_val_p (dw_val_node
*, dw_val_node
*, int *);
4095 static int same_attr_p (dw_attr_ref
, dw_attr_ref
, int *);
4096 static int same_die_p (dw_die_ref
, dw_die_ref
, int *);
4097 static int same_die_p_wrap (dw_die_ref
, dw_die_ref
);
4098 static void compute_section_prefix (dw_die_ref
);
4099 static int is_type_die (dw_die_ref
);
4100 static int is_comdat_die (dw_die_ref
);
4101 static int is_symbol_die (dw_die_ref
);
4102 static void assign_symbol_names (dw_die_ref
);
4103 static void break_out_includes (dw_die_ref
);
4104 static hashval_t
htab_cu_hash (const void *);
4105 static int htab_cu_eq (const void *, const void *);
4106 static void htab_cu_del (void *);
4107 static int check_duplicate_cu (dw_die_ref
, htab_t
, unsigned *);
4108 static void record_comdat_symbol_number (dw_die_ref
, htab_t
, unsigned);
4109 static void add_sibling_attributes (dw_die_ref
);
4110 static void build_abbrev_table (dw_die_ref
);
4111 static void output_location_lists (dw_die_ref
);
4112 static int constant_size (long unsigned);
4113 static unsigned long size_of_die (dw_die_ref
);
4114 static void calc_die_sizes (dw_die_ref
);
4115 static void mark_dies (dw_die_ref
);
4116 static void unmark_dies (dw_die_ref
);
4117 static void unmark_all_dies (dw_die_ref
);
4118 static unsigned long size_of_pubnames (void);
4119 static unsigned long size_of_aranges (void);
4120 static enum dwarf_form
value_format (dw_attr_ref
);
4121 static void output_value_format (dw_attr_ref
);
4122 static void output_abbrev_section (void);
4123 static void output_die_symbol (dw_die_ref
);
4124 static void output_die (dw_die_ref
);
4125 static void output_compilation_unit_header (void);
4126 static void output_comp_unit (dw_die_ref
, int);
4127 static const char *dwarf2_name (tree
, int);
4128 static void add_pubname (tree
, dw_die_ref
);
4129 static void output_pubnames (void);
4130 static void add_arange (tree
, dw_die_ref
);
4131 static void output_aranges (void);
4132 static unsigned int add_ranges (tree
);
4133 static void output_ranges (void);
4134 static void output_line_info (void);
4135 static void output_file_names (void);
4136 static dw_die_ref
base_type_die (tree
);
4137 static tree
root_type (tree
);
4138 static int is_base_type (tree
);
4139 static bool is_subrange_type (tree
);
4140 static dw_die_ref
subrange_type_die (tree
, dw_die_ref
);
4141 static dw_die_ref
modified_type_die (tree
, int, int, dw_die_ref
);
4142 static int type_is_enum (tree
);
4143 static unsigned int dbx_reg_number (rtx
);
4144 static void add_loc_descr_op_piece (dw_loc_descr_ref
*, int);
4145 static dw_loc_descr_ref
reg_loc_descriptor (rtx
);
4146 static dw_loc_descr_ref
one_reg_loc_descriptor (unsigned int);
4147 static dw_loc_descr_ref
multiple_reg_loc_descriptor (rtx
, rtx
);
4148 static dw_loc_descr_ref
int_loc_descriptor (HOST_WIDE_INT
);
4149 static dw_loc_descr_ref
based_loc_descr (rtx
, HOST_WIDE_INT
);
4150 static int is_based_loc (rtx
);
4151 static dw_loc_descr_ref
mem_loc_descriptor (rtx
, enum machine_mode mode
);
4152 static dw_loc_descr_ref
concat_loc_descriptor (rtx
, rtx
);
4153 static dw_loc_descr_ref
loc_descriptor (rtx
);
4154 static dw_loc_descr_ref
loc_descriptor_from_tree_1 (tree
, int);
4155 static dw_loc_descr_ref
loc_descriptor_from_tree (tree
);
4156 static HOST_WIDE_INT
ceiling (HOST_WIDE_INT
, unsigned int);
4157 static tree
field_type (tree
);
4158 static unsigned int simple_type_align_in_bits (tree
);
4159 static unsigned int simple_decl_align_in_bits (tree
);
4160 static unsigned HOST_WIDE_INT
simple_type_size_in_bits (tree
);
4161 static HOST_WIDE_INT
field_byte_offset (tree
);
4162 static void add_AT_location_description (dw_die_ref
, enum dwarf_attribute
,
4164 static void add_data_member_location_attribute (dw_die_ref
, tree
);
4165 static void add_const_value_attribute (dw_die_ref
, rtx
);
4166 static void insert_int (HOST_WIDE_INT
, unsigned, unsigned char *);
4167 static HOST_WIDE_INT
extract_int (const unsigned char *, unsigned);
4168 static void insert_float (rtx
, unsigned char *);
4169 static rtx
rtl_for_decl_location (tree
);
4170 static void add_location_or_const_value_attribute (dw_die_ref
, tree
,
4171 enum dwarf_attribute
);
4172 static void tree_add_const_value_attribute (dw_die_ref
, tree
);
4173 static void add_name_attribute (dw_die_ref
, const char *);
4174 static void add_comp_dir_attribute (dw_die_ref
);
4175 static void add_bound_info (dw_die_ref
, enum dwarf_attribute
, tree
);
4176 static void add_subscript_info (dw_die_ref
, tree
);
4177 static void add_byte_size_attribute (dw_die_ref
, tree
);
4178 static void add_bit_offset_attribute (dw_die_ref
, tree
);
4179 static void add_bit_size_attribute (dw_die_ref
, tree
);
4180 static void add_prototyped_attribute (dw_die_ref
, tree
);
4181 static void add_abstract_origin_attribute (dw_die_ref
, tree
);
4182 static void add_pure_or_virtual_attribute (dw_die_ref
, tree
);
4183 static void add_src_coords_attributes (dw_die_ref
, tree
);
4184 static void add_name_and_src_coords_attributes (dw_die_ref
, tree
);
4185 static void push_decl_scope (tree
);
4186 static void pop_decl_scope (void);
4187 static dw_die_ref
scope_die_for (tree
, dw_die_ref
);
4188 static inline int local_scope_p (dw_die_ref
);
4189 static inline int class_or_namespace_scope_p (dw_die_ref
);
4190 static void add_type_attribute (dw_die_ref
, tree
, int, int, dw_die_ref
);
4191 static void add_calling_convention_attribute (dw_die_ref
, tree
);
4192 static const char *type_tag (tree
);
4193 static tree
member_declared_type (tree
);
4195 static const char *decl_start_label (tree
);
4197 static void gen_array_type_die (tree
, dw_die_ref
);
4199 static void gen_entry_point_die (tree
, dw_die_ref
);
4201 static void gen_inlined_enumeration_type_die (tree
, dw_die_ref
);
4202 static void gen_inlined_structure_type_die (tree
, dw_die_ref
);
4203 static void gen_inlined_union_type_die (tree
, dw_die_ref
);
4204 static dw_die_ref
gen_enumeration_type_die (tree
, dw_die_ref
);
4205 static dw_die_ref
gen_formal_parameter_die (tree
, dw_die_ref
);
4206 static void gen_unspecified_parameters_die (tree
, dw_die_ref
);
4207 static void gen_formal_types_die (tree
, dw_die_ref
);
4208 static void gen_subprogram_die (tree
, dw_die_ref
);
4209 static void gen_variable_die (tree
, dw_die_ref
);
4210 static void gen_label_die (tree
, dw_die_ref
);
4211 static void gen_lexical_block_die (tree
, dw_die_ref
, int);
4212 static void gen_inlined_subroutine_die (tree
, dw_die_ref
, int);
4213 static void gen_field_die (tree
, dw_die_ref
);
4214 static void gen_ptr_to_mbr_type_die (tree
, dw_die_ref
);
4215 static dw_die_ref
gen_compile_unit_die (const char *);
4216 static void gen_inheritance_die (tree
, tree
, dw_die_ref
);
4217 static void gen_member_die (tree
, dw_die_ref
);
4218 static void gen_struct_or_union_type_die (tree
, dw_die_ref
);
4219 static void gen_subroutine_type_die (tree
, dw_die_ref
);
4220 static void gen_typedef_die (tree
, dw_die_ref
);
4221 static void gen_type_die (tree
, dw_die_ref
);
4222 static void gen_tagged_type_instantiation_die (tree
, dw_die_ref
);
4223 static void gen_block_die (tree
, dw_die_ref
, int);
4224 static void decls_for_scope (tree
, dw_die_ref
, int);
4225 static int is_redundant_typedef (tree
);
4226 static void gen_namespace_die (tree
);
4227 static void gen_decl_die (tree
, dw_die_ref
);
4228 static dw_die_ref
force_decl_die (tree
);
4229 static dw_die_ref
force_type_die (tree
);
4230 static dw_die_ref
setup_namespace_context (tree
, dw_die_ref
);
4231 static void declare_in_namespace (tree
, dw_die_ref
);
4232 static struct dwarf_file_data
* lookup_filename (const char *);
4233 static void retry_incomplete_types (void);
4234 static void gen_type_die_for_member (tree
, tree
, dw_die_ref
);
4235 static void splice_child_die (dw_die_ref
, dw_die_ref
);
4236 static int file_info_cmp (const void *, const void *);
4237 static dw_loc_list_ref
new_loc_list (dw_loc_descr_ref
, const char *,
4238 const char *, const char *, unsigned);
4239 static void add_loc_descr_to_loc_list (dw_loc_list_ref
*, dw_loc_descr_ref
,
4240 const char *, const char *,
4242 static void output_loc_list (dw_loc_list_ref
);
4243 static char *gen_internal_sym (const char *);
4245 static void prune_unmark_dies (dw_die_ref
);
4246 static void prune_unused_types_mark (dw_die_ref
, int);
4247 static void prune_unused_types_walk (dw_die_ref
);
4248 static void prune_unused_types_walk_attribs (dw_die_ref
);
4249 static void prune_unused_types_prune (dw_die_ref
);
4250 static void prune_unused_types (void);
4251 static int maybe_emit_file (struct dwarf_file_data
*fd
);
4253 /* Section names used to hold DWARF debugging information. */
4254 #ifndef DEBUG_INFO_SECTION
4255 #define DEBUG_INFO_SECTION ".debug_info"
4257 #ifndef DEBUG_ABBREV_SECTION
4258 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4260 #ifndef DEBUG_ARANGES_SECTION
4261 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4263 #ifndef DEBUG_MACINFO_SECTION
4264 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4266 #ifndef DEBUG_LINE_SECTION
4267 #define DEBUG_LINE_SECTION ".debug_line"
4269 #ifndef DEBUG_LOC_SECTION
4270 #define DEBUG_LOC_SECTION ".debug_loc"
4272 #ifndef DEBUG_PUBNAMES_SECTION
4273 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4275 #ifndef DEBUG_STR_SECTION
4276 #define DEBUG_STR_SECTION ".debug_str"
4278 #ifndef DEBUG_RANGES_SECTION
4279 #define DEBUG_RANGES_SECTION ".debug_ranges"
4282 /* Standard ELF section names for compiled code and data. */
4283 #ifndef TEXT_SECTION_NAME
4284 #define TEXT_SECTION_NAME ".text"
4287 /* Section flags for .debug_str section. */
4288 #define DEBUG_STR_SECTION_FLAGS \
4289 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4290 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4293 /* Labels we insert at beginning sections we can reference instead of
4294 the section names themselves. */
4296 #ifndef TEXT_SECTION_LABEL
4297 #define TEXT_SECTION_LABEL "Ltext"
4299 #ifndef COLD_TEXT_SECTION_LABEL
4300 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4302 #ifndef DEBUG_LINE_SECTION_LABEL
4303 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4305 #ifndef DEBUG_INFO_SECTION_LABEL
4306 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4308 #ifndef DEBUG_ABBREV_SECTION_LABEL
4309 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4311 #ifndef DEBUG_LOC_SECTION_LABEL
4312 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4314 #ifndef DEBUG_RANGES_SECTION_LABEL
4315 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4317 #ifndef DEBUG_MACINFO_SECTION_LABEL
4318 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4321 /* Definitions of defaults for formats and names of various special
4322 (artificial) labels which may be generated within this file (when the -g
4323 options is used and DWARF2_DEBUGGING_INFO is in effect.
4324 If necessary, these may be overridden from within the tm.h file, but
4325 typically, overriding these defaults is unnecessary. */
4327 static char text_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4328 static char text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4329 static char cold_text_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4330 static char cold_end_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4331 static char abbrev_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4332 static char debug_info_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4333 static char debug_line_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4334 static char macinfo_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4335 static char loc_section_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
4336 static char ranges_section_label
[2 * MAX_ARTIFICIAL_LABEL_BYTES
];
4338 #ifndef TEXT_END_LABEL
4339 #define TEXT_END_LABEL "Letext"
4341 #ifndef COLD_END_LABEL
4342 #define COLD_END_LABEL "Letext_cold"
4344 #ifndef BLOCK_BEGIN_LABEL
4345 #define BLOCK_BEGIN_LABEL "LBB"
4347 #ifndef BLOCK_END_LABEL
4348 #define BLOCK_END_LABEL "LBE"
4350 #ifndef LINE_CODE_LABEL
4351 #define LINE_CODE_LABEL "LM"
4353 #ifndef SEPARATE_LINE_CODE_LABEL
4354 #define SEPARATE_LINE_CODE_LABEL "LSM"
4357 /* We allow a language front-end to designate a function that is to be
4358 called to "demangle" any name before it is put into a DIE. */
4360 static const char *(*demangle_name_func
) (const char *);
4363 dwarf2out_set_demangle_name_func (const char *(*func
) (const char *))
4365 demangle_name_func
= func
;
4368 /* Test if rtl node points to a pseudo register. */
4371 is_pseudo_reg (rtx rtl
)
4373 return ((REG_P (rtl
) && REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
4374 || (GET_CODE (rtl
) == SUBREG
4375 && REGNO (SUBREG_REG (rtl
)) >= FIRST_PSEUDO_REGISTER
));
4378 /* Return a reference to a type, with its const and volatile qualifiers
4382 type_main_variant (tree type
)
4384 type
= TYPE_MAIN_VARIANT (type
);
4386 /* ??? There really should be only one main variant among any group of
4387 variants of a given type (and all of the MAIN_VARIANT values for all
4388 members of the group should point to that one type) but sometimes the C
4389 front-end messes this up for array types, so we work around that bug
4391 if (TREE_CODE (type
) == ARRAY_TYPE
)
4392 while (type
!= TYPE_MAIN_VARIANT (type
))
4393 type
= TYPE_MAIN_VARIANT (type
);
4398 /* Return nonzero if the given type node represents a tagged type. */
4401 is_tagged_type (tree type
)
4403 enum tree_code code
= TREE_CODE (type
);
4405 return (code
== RECORD_TYPE
|| code
== UNION_TYPE
4406 || code
== QUAL_UNION_TYPE
|| code
== ENUMERAL_TYPE
);
4409 /* Convert a DIE tag into its string name. */
4412 dwarf_tag_name (unsigned int tag
)
4416 case DW_TAG_padding
:
4417 return "DW_TAG_padding";
4418 case DW_TAG_array_type
:
4419 return "DW_TAG_array_type";
4420 case DW_TAG_class_type
:
4421 return "DW_TAG_class_type";
4422 case DW_TAG_entry_point
:
4423 return "DW_TAG_entry_point";
4424 case DW_TAG_enumeration_type
:
4425 return "DW_TAG_enumeration_type";
4426 case DW_TAG_formal_parameter
:
4427 return "DW_TAG_formal_parameter";
4428 case DW_TAG_imported_declaration
:
4429 return "DW_TAG_imported_declaration";
4431 return "DW_TAG_label";
4432 case DW_TAG_lexical_block
:
4433 return "DW_TAG_lexical_block";
4435 return "DW_TAG_member";
4436 case DW_TAG_pointer_type
:
4437 return "DW_TAG_pointer_type";
4438 case DW_TAG_reference_type
:
4439 return "DW_TAG_reference_type";
4440 case DW_TAG_compile_unit
:
4441 return "DW_TAG_compile_unit";
4442 case DW_TAG_string_type
:
4443 return "DW_TAG_string_type";
4444 case DW_TAG_structure_type
:
4445 return "DW_TAG_structure_type";
4446 case DW_TAG_subroutine_type
:
4447 return "DW_TAG_subroutine_type";
4448 case DW_TAG_typedef
:
4449 return "DW_TAG_typedef";
4450 case DW_TAG_union_type
:
4451 return "DW_TAG_union_type";
4452 case DW_TAG_unspecified_parameters
:
4453 return "DW_TAG_unspecified_parameters";
4454 case DW_TAG_variant
:
4455 return "DW_TAG_variant";
4456 case DW_TAG_common_block
:
4457 return "DW_TAG_common_block";
4458 case DW_TAG_common_inclusion
:
4459 return "DW_TAG_common_inclusion";
4460 case DW_TAG_inheritance
:
4461 return "DW_TAG_inheritance";
4462 case DW_TAG_inlined_subroutine
:
4463 return "DW_TAG_inlined_subroutine";
4465 return "DW_TAG_module";
4466 case DW_TAG_ptr_to_member_type
:
4467 return "DW_TAG_ptr_to_member_type";
4468 case DW_TAG_set_type
:
4469 return "DW_TAG_set_type";
4470 case DW_TAG_subrange_type
:
4471 return "DW_TAG_subrange_type";
4472 case DW_TAG_with_stmt
:
4473 return "DW_TAG_with_stmt";
4474 case DW_TAG_access_declaration
:
4475 return "DW_TAG_access_declaration";
4476 case DW_TAG_base_type
:
4477 return "DW_TAG_base_type";
4478 case DW_TAG_catch_block
:
4479 return "DW_TAG_catch_block";
4480 case DW_TAG_const_type
:
4481 return "DW_TAG_const_type";
4482 case DW_TAG_constant
:
4483 return "DW_TAG_constant";
4484 case DW_TAG_enumerator
:
4485 return "DW_TAG_enumerator";
4486 case DW_TAG_file_type
:
4487 return "DW_TAG_file_type";
4489 return "DW_TAG_friend";
4490 case DW_TAG_namelist
:
4491 return "DW_TAG_namelist";
4492 case DW_TAG_namelist_item
:
4493 return "DW_TAG_namelist_item";
4494 case DW_TAG_namespace
:
4495 return "DW_TAG_namespace";
4496 case DW_TAG_packed_type
:
4497 return "DW_TAG_packed_type";
4498 case DW_TAG_subprogram
:
4499 return "DW_TAG_subprogram";
4500 case DW_TAG_template_type_param
:
4501 return "DW_TAG_template_type_param";
4502 case DW_TAG_template_value_param
:
4503 return "DW_TAG_template_value_param";
4504 case DW_TAG_thrown_type
:
4505 return "DW_TAG_thrown_type";
4506 case DW_TAG_try_block
:
4507 return "DW_TAG_try_block";
4508 case DW_TAG_variant_part
:
4509 return "DW_TAG_variant_part";
4510 case DW_TAG_variable
:
4511 return "DW_TAG_variable";
4512 case DW_TAG_volatile_type
:
4513 return "DW_TAG_volatile_type";
4514 case DW_TAG_imported_module
:
4515 return "DW_TAG_imported_module";
4516 case DW_TAG_MIPS_loop
:
4517 return "DW_TAG_MIPS_loop";
4518 case DW_TAG_format_label
:
4519 return "DW_TAG_format_label";
4520 case DW_TAG_function_template
:
4521 return "DW_TAG_function_template";
4522 case DW_TAG_class_template
:
4523 return "DW_TAG_class_template";
4524 case DW_TAG_GNU_BINCL
:
4525 return "DW_TAG_GNU_BINCL";
4526 case DW_TAG_GNU_EINCL
:
4527 return "DW_TAG_GNU_EINCL";
4529 return "DW_TAG_<unknown>";
4533 /* Convert a DWARF attribute code into its string name. */
4536 dwarf_attr_name (unsigned int attr
)
4541 return "DW_AT_sibling";
4542 case DW_AT_location
:
4543 return "DW_AT_location";
4545 return "DW_AT_name";
4546 case DW_AT_ordering
:
4547 return "DW_AT_ordering";
4548 case DW_AT_subscr_data
:
4549 return "DW_AT_subscr_data";
4550 case DW_AT_byte_size
:
4551 return "DW_AT_byte_size";
4552 case DW_AT_bit_offset
:
4553 return "DW_AT_bit_offset";
4554 case DW_AT_bit_size
:
4555 return "DW_AT_bit_size";
4556 case DW_AT_element_list
:
4557 return "DW_AT_element_list";
4558 case DW_AT_stmt_list
:
4559 return "DW_AT_stmt_list";
4561 return "DW_AT_low_pc";
4563 return "DW_AT_high_pc";
4564 case DW_AT_language
:
4565 return "DW_AT_language";
4567 return "DW_AT_member";
4569 return "DW_AT_discr";
4570 case DW_AT_discr_value
:
4571 return "DW_AT_discr_value";
4572 case DW_AT_visibility
:
4573 return "DW_AT_visibility";
4575 return "DW_AT_import";
4576 case DW_AT_string_length
:
4577 return "DW_AT_string_length";
4578 case DW_AT_common_reference
:
4579 return "DW_AT_common_reference";
4580 case DW_AT_comp_dir
:
4581 return "DW_AT_comp_dir";
4582 case DW_AT_const_value
:
4583 return "DW_AT_const_value";
4584 case DW_AT_containing_type
:
4585 return "DW_AT_containing_type";
4586 case DW_AT_default_value
:
4587 return "DW_AT_default_value";
4589 return "DW_AT_inline";
4590 case DW_AT_is_optional
:
4591 return "DW_AT_is_optional";
4592 case DW_AT_lower_bound
:
4593 return "DW_AT_lower_bound";
4594 case DW_AT_producer
:
4595 return "DW_AT_producer";
4596 case DW_AT_prototyped
:
4597 return "DW_AT_prototyped";
4598 case DW_AT_return_addr
:
4599 return "DW_AT_return_addr";
4600 case DW_AT_start_scope
:
4601 return "DW_AT_start_scope";
4602 case DW_AT_stride_size
:
4603 return "DW_AT_stride_size";
4604 case DW_AT_upper_bound
:
4605 return "DW_AT_upper_bound";
4606 case DW_AT_abstract_origin
:
4607 return "DW_AT_abstract_origin";
4608 case DW_AT_accessibility
:
4609 return "DW_AT_accessibility";
4610 case DW_AT_address_class
:
4611 return "DW_AT_address_class";
4612 case DW_AT_artificial
:
4613 return "DW_AT_artificial";
4614 case DW_AT_base_types
:
4615 return "DW_AT_base_types";
4616 case DW_AT_calling_convention
:
4617 return "DW_AT_calling_convention";
4619 return "DW_AT_count";
4620 case DW_AT_data_member_location
:
4621 return "DW_AT_data_member_location";
4622 case DW_AT_decl_column
:
4623 return "DW_AT_decl_column";
4624 case DW_AT_decl_file
:
4625 return "DW_AT_decl_file";
4626 case DW_AT_decl_line
:
4627 return "DW_AT_decl_line";
4628 case DW_AT_declaration
:
4629 return "DW_AT_declaration";
4630 case DW_AT_discr_list
:
4631 return "DW_AT_discr_list";
4632 case DW_AT_encoding
:
4633 return "DW_AT_encoding";
4634 case DW_AT_external
:
4635 return "DW_AT_external";
4636 case DW_AT_frame_base
:
4637 return "DW_AT_frame_base";
4639 return "DW_AT_friend";
4640 case DW_AT_identifier_case
:
4641 return "DW_AT_identifier_case";
4642 case DW_AT_macro_info
:
4643 return "DW_AT_macro_info";
4644 case DW_AT_namelist_items
:
4645 return "DW_AT_namelist_items";
4646 case DW_AT_priority
:
4647 return "DW_AT_priority";
4649 return "DW_AT_segment";
4650 case DW_AT_specification
:
4651 return "DW_AT_specification";
4652 case DW_AT_static_link
:
4653 return "DW_AT_static_link";
4655 return "DW_AT_type";
4656 case DW_AT_use_location
:
4657 return "DW_AT_use_location";
4658 case DW_AT_variable_parameter
:
4659 return "DW_AT_variable_parameter";
4660 case DW_AT_virtuality
:
4661 return "DW_AT_virtuality";
4662 case DW_AT_vtable_elem_location
:
4663 return "DW_AT_vtable_elem_location";
4665 case DW_AT_allocated
:
4666 return "DW_AT_allocated";
4667 case DW_AT_associated
:
4668 return "DW_AT_associated";
4669 case DW_AT_data_location
:
4670 return "DW_AT_data_location";
4672 return "DW_AT_stride";
4673 case DW_AT_entry_pc
:
4674 return "DW_AT_entry_pc";
4675 case DW_AT_use_UTF8
:
4676 return "DW_AT_use_UTF8";
4677 case DW_AT_extension
:
4678 return "DW_AT_extension";
4680 return "DW_AT_ranges";
4681 case DW_AT_trampoline
:
4682 return "DW_AT_trampoline";
4683 case DW_AT_call_column
:
4684 return "DW_AT_call_column";
4685 case DW_AT_call_file
:
4686 return "DW_AT_call_file";
4687 case DW_AT_call_line
:
4688 return "DW_AT_call_line";
4690 case DW_AT_MIPS_fde
:
4691 return "DW_AT_MIPS_fde";
4692 case DW_AT_MIPS_loop_begin
:
4693 return "DW_AT_MIPS_loop_begin";
4694 case DW_AT_MIPS_tail_loop_begin
:
4695 return "DW_AT_MIPS_tail_loop_begin";
4696 case DW_AT_MIPS_epilog_begin
:
4697 return "DW_AT_MIPS_epilog_begin";
4698 case DW_AT_MIPS_loop_unroll_factor
:
4699 return "DW_AT_MIPS_loop_unroll_factor";
4700 case DW_AT_MIPS_software_pipeline_depth
:
4701 return "DW_AT_MIPS_software_pipeline_depth";
4702 case DW_AT_MIPS_linkage_name
:
4703 return "DW_AT_MIPS_linkage_name";
4704 case DW_AT_MIPS_stride
:
4705 return "DW_AT_MIPS_stride";
4706 case DW_AT_MIPS_abstract_name
:
4707 return "DW_AT_MIPS_abstract_name";
4708 case DW_AT_MIPS_clone_origin
:
4709 return "DW_AT_MIPS_clone_origin";
4710 case DW_AT_MIPS_has_inlines
:
4711 return "DW_AT_MIPS_has_inlines";
4713 case DW_AT_sf_names
:
4714 return "DW_AT_sf_names";
4715 case DW_AT_src_info
:
4716 return "DW_AT_src_info";
4717 case DW_AT_mac_info
:
4718 return "DW_AT_mac_info";
4719 case DW_AT_src_coords
:
4720 return "DW_AT_src_coords";
4721 case DW_AT_body_begin
:
4722 return "DW_AT_body_begin";
4723 case DW_AT_body_end
:
4724 return "DW_AT_body_end";
4725 case DW_AT_GNU_vector
:
4726 return "DW_AT_GNU_vector";
4728 case DW_AT_VMS_rtnbeg_pd_address
:
4729 return "DW_AT_VMS_rtnbeg_pd_address";
4732 return "DW_AT_<unknown>";
4736 /* Convert a DWARF value form code into its string name. */
4739 dwarf_form_name (unsigned int form
)
4744 return "DW_FORM_addr";
4745 case DW_FORM_block2
:
4746 return "DW_FORM_block2";
4747 case DW_FORM_block4
:
4748 return "DW_FORM_block4";
4750 return "DW_FORM_data2";
4752 return "DW_FORM_data4";
4754 return "DW_FORM_data8";
4755 case DW_FORM_string
:
4756 return "DW_FORM_string";
4758 return "DW_FORM_block";
4759 case DW_FORM_block1
:
4760 return "DW_FORM_block1";
4762 return "DW_FORM_data1";
4764 return "DW_FORM_flag";
4766 return "DW_FORM_sdata";
4768 return "DW_FORM_strp";
4770 return "DW_FORM_udata";
4771 case DW_FORM_ref_addr
:
4772 return "DW_FORM_ref_addr";
4774 return "DW_FORM_ref1";
4776 return "DW_FORM_ref2";
4778 return "DW_FORM_ref4";
4780 return "DW_FORM_ref8";
4781 case DW_FORM_ref_udata
:
4782 return "DW_FORM_ref_udata";
4783 case DW_FORM_indirect
:
4784 return "DW_FORM_indirect";
4786 return "DW_FORM_<unknown>";
4790 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4791 instance of an inlined instance of a decl which is local to an inline
4792 function, so we have to trace all of the way back through the origin chain
4793 to find out what sort of node actually served as the original seed for the
4797 decl_ultimate_origin (tree decl
)
4799 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl
), TS_DECL_COMMON
))
4802 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4803 nodes in the function to point to themselves; ignore that if
4804 we're trying to output the abstract instance of this function. */
4805 if (DECL_ABSTRACT (decl
) && DECL_ABSTRACT_ORIGIN (decl
) == decl
)
4808 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4809 most distant ancestor, this should never happen. */
4810 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl
)));
4812 return DECL_ABSTRACT_ORIGIN (decl
);
4815 /* Determine the "ultimate origin" of a block. The block may be an inlined
4816 instance of an inlined instance of a block which is local to an inline
4817 function, so we have to trace all of the way back through the origin chain
4818 to find out what sort of node actually served as the original seed for the
4822 block_ultimate_origin (tree block
)
4824 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
4826 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4827 nodes in the function to point to themselves; ignore that if
4828 we're trying to output the abstract instance of this function. */
4829 if (BLOCK_ABSTRACT (block
) && immediate_origin
== block
)
4832 if (immediate_origin
== NULL_TREE
)
4837 tree lookahead
= immediate_origin
;
4841 ret_val
= lookahead
;
4842 lookahead
= (TREE_CODE (ret_val
) == BLOCK
4843 ? BLOCK_ABSTRACT_ORIGIN (ret_val
) : NULL
);
4845 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
4847 /* The block's abstract origin chain may not be the *ultimate* origin of
4848 the block. It could lead to a DECL that has an abstract origin set.
4849 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4850 will give us if it has one). Note that DECL's abstract origins are
4851 supposed to be the most distant ancestor (or so decl_ultimate_origin
4852 claims), so we don't need to loop following the DECL origins. */
4853 if (DECL_P (ret_val
))
4854 return DECL_ORIGIN (ret_val
);
4860 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4861 of a virtual function may refer to a base class, so we check the 'this'
4865 decl_class_context (tree decl
)
4867 tree context
= NULL_TREE
;
4869 if (TREE_CODE (decl
) != FUNCTION_DECL
|| ! DECL_VINDEX (decl
))
4870 context
= DECL_CONTEXT (decl
);
4872 context
= TYPE_MAIN_VARIANT
4873 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4875 if (context
&& !TYPE_P (context
))
4876 context
= NULL_TREE
;
4881 /* Add an attribute/value pair to a DIE. */
4884 add_dwarf_attr (dw_die_ref die
, dw_attr_ref attr
)
4886 /* Maybe this should be an assert? */
4890 if (die
->die_attr
== NULL
)
4891 die
->die_attr
= VEC_alloc (dw_attr_node
, gc
, 1);
4892 VEC_safe_push (dw_attr_node
, gc
, die
->die_attr
, attr
);
4895 static inline enum dw_val_class
4896 AT_class (dw_attr_ref a
)
4898 return a
->dw_attr_val
.val_class
;
4901 /* Add a flag value attribute to a DIE. */
4904 add_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int flag
)
4908 attr
.dw_attr
= attr_kind
;
4909 attr
.dw_attr_val
.val_class
= dw_val_class_flag
;
4910 attr
.dw_attr_val
.v
.val_flag
= flag
;
4911 add_dwarf_attr (die
, &attr
);
4914 static inline unsigned
4915 AT_flag (dw_attr_ref a
)
4917 gcc_assert (a
&& AT_class (a
) == dw_val_class_flag
);
4918 return a
->dw_attr_val
.v
.val_flag
;
4921 /* Add a signed integer attribute value to a DIE. */
4924 add_AT_int (dw_die_ref die
, enum dwarf_attribute attr_kind
, HOST_WIDE_INT int_val
)
4928 attr
.dw_attr
= attr_kind
;
4929 attr
.dw_attr_val
.val_class
= dw_val_class_const
;
4930 attr
.dw_attr_val
.v
.val_int
= int_val
;
4931 add_dwarf_attr (die
, &attr
);
4934 static inline HOST_WIDE_INT
4935 AT_int (dw_attr_ref a
)
4937 gcc_assert (a
&& AT_class (a
) == dw_val_class_const
);
4938 return a
->dw_attr_val
.v
.val_int
;
4941 /* Add an unsigned integer attribute value to a DIE. */
4944 add_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4945 unsigned HOST_WIDE_INT unsigned_val
)
4949 attr
.dw_attr
= attr_kind
;
4950 attr
.dw_attr_val
.val_class
= dw_val_class_unsigned_const
;
4951 attr
.dw_attr_val
.v
.val_unsigned
= unsigned_val
;
4952 add_dwarf_attr (die
, &attr
);
4955 static inline unsigned HOST_WIDE_INT
4956 AT_unsigned (dw_attr_ref a
)
4958 gcc_assert (a
&& AT_class (a
) == dw_val_class_unsigned_const
);
4959 return a
->dw_attr_val
.v
.val_unsigned
;
4962 /* Add an unsigned double integer attribute value to a DIE. */
4965 add_AT_long_long (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4966 long unsigned int val_hi
, long unsigned int val_low
)
4970 attr
.dw_attr
= attr_kind
;
4971 attr
.dw_attr_val
.val_class
= dw_val_class_long_long
;
4972 attr
.dw_attr_val
.v
.val_long_long
.hi
= val_hi
;
4973 attr
.dw_attr_val
.v
.val_long_long
.low
= val_low
;
4974 add_dwarf_attr (die
, &attr
);
4977 /* Add a floating point attribute value to a DIE and return it. */
4980 add_AT_vec (dw_die_ref die
, enum dwarf_attribute attr_kind
,
4981 unsigned int length
, unsigned int elt_size
, unsigned char *array
)
4985 attr
.dw_attr
= attr_kind
;
4986 attr
.dw_attr_val
.val_class
= dw_val_class_vec
;
4987 attr
.dw_attr_val
.v
.val_vec
.length
= length
;
4988 attr
.dw_attr_val
.v
.val_vec
.elt_size
= elt_size
;
4989 attr
.dw_attr_val
.v
.val_vec
.array
= array
;
4990 add_dwarf_attr (die
, &attr
);
4993 /* Hash and equality functions for debug_str_hash. */
4996 debug_str_do_hash (const void *x
)
4998 return htab_hash_string (((const struct indirect_string_node
*)x
)->str
);
5002 debug_str_eq (const void *x1
, const void *x2
)
5004 return strcmp ((((const struct indirect_string_node
*)x1
)->str
),
5005 (const char *)x2
) == 0;
5008 /* Add a string attribute value to a DIE. */
5011 add_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *str
)
5014 struct indirect_string_node
*node
;
5017 if (! debug_str_hash
)
5018 debug_str_hash
= htab_create_ggc (10, debug_str_do_hash
,
5019 debug_str_eq
, NULL
);
5021 slot
= htab_find_slot_with_hash (debug_str_hash
, str
,
5022 htab_hash_string (str
), INSERT
);
5024 *slot
= ggc_alloc_cleared (sizeof (struct indirect_string_node
));
5025 node
= (struct indirect_string_node
*) *slot
;
5026 node
->str
= ggc_strdup (str
);
5029 attr
.dw_attr
= attr_kind
;
5030 attr
.dw_attr_val
.val_class
= dw_val_class_str
;
5031 attr
.dw_attr_val
.v
.val_str
= node
;
5032 add_dwarf_attr (die
, &attr
);
5035 static inline const char *
5036 AT_string (dw_attr_ref a
)
5038 gcc_assert (a
&& AT_class (a
) == dw_val_class_str
);
5039 return a
->dw_attr_val
.v
.val_str
->str
;
5042 /* Find out whether a string should be output inline in DIE
5043 or out-of-line in .debug_str section. */
5046 AT_string_form (dw_attr_ref a
)
5048 struct indirect_string_node
*node
;
5052 gcc_assert (a
&& AT_class (a
) == dw_val_class_str
);
5054 node
= a
->dw_attr_val
.v
.val_str
;
5058 len
= strlen (node
->str
) + 1;
5060 /* If the string is shorter or equal to the size of the reference, it is
5061 always better to put it inline. */
5062 if (len
<= DWARF_OFFSET_SIZE
|| node
->refcount
== 0)
5063 return node
->form
= DW_FORM_string
;
5065 /* If we cannot expect the linker to merge strings in .debug_str
5066 section, only put it into .debug_str if it is worth even in this
5068 if ((debug_str_section
->common
.flags
& SECTION_MERGE
) == 0
5069 && (len
- DWARF_OFFSET_SIZE
) * node
->refcount
<= len
)
5070 return node
->form
= DW_FORM_string
;
5072 ASM_GENERATE_INTERNAL_LABEL (label
, "LASF", dw2_string_counter
);
5073 ++dw2_string_counter
;
5074 node
->label
= xstrdup (label
);
5076 return node
->form
= DW_FORM_strp
;
5079 /* Add a DIE reference attribute value to a DIE. */
5082 add_AT_die_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_die_ref targ_die
)
5086 attr
.dw_attr
= attr_kind
;
5087 attr
.dw_attr_val
.val_class
= dw_val_class_die_ref
;
5088 attr
.dw_attr_val
.v
.val_die_ref
.die
= targ_die
;
5089 attr
.dw_attr_val
.v
.val_die_ref
.external
= 0;
5090 add_dwarf_attr (die
, &attr
);
5093 /* Add an AT_specification attribute to a DIE, and also make the back
5094 pointer from the specification to the definition. */
5097 add_AT_specification (dw_die_ref die
, dw_die_ref targ_die
)
5099 add_AT_die_ref (die
, DW_AT_specification
, targ_die
);
5100 gcc_assert (!targ_die
->die_definition
);
5101 targ_die
->die_definition
= die
;
5104 static inline dw_die_ref
5105 AT_ref (dw_attr_ref a
)
5107 gcc_assert (a
&& AT_class (a
) == dw_val_class_die_ref
);
5108 return a
->dw_attr_val
.v
.val_die_ref
.die
;
5112 AT_ref_external (dw_attr_ref a
)
5114 if (a
&& AT_class (a
) == dw_val_class_die_ref
)
5115 return a
->dw_attr_val
.v
.val_die_ref
.external
;
5121 set_AT_ref_external (dw_attr_ref a
, int i
)
5123 gcc_assert (a
&& AT_class (a
) == dw_val_class_die_ref
);
5124 a
->dw_attr_val
.v
.val_die_ref
.external
= i
;
5127 /* Add an FDE reference attribute value to a DIE. */
5130 add_AT_fde_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
, unsigned int targ_fde
)
5134 attr
.dw_attr
= attr_kind
;
5135 attr
.dw_attr_val
.val_class
= dw_val_class_fde_ref
;
5136 attr
.dw_attr_val
.v
.val_fde_index
= targ_fde
;
5137 add_dwarf_attr (die
, &attr
);
5140 /* Add a location description attribute value to a DIE. */
5143 add_AT_loc (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_descr_ref loc
)
5147 attr
.dw_attr
= attr_kind
;
5148 attr
.dw_attr_val
.val_class
= dw_val_class_loc
;
5149 attr
.dw_attr_val
.v
.val_loc
= loc
;
5150 add_dwarf_attr (die
, &attr
);
5153 static inline dw_loc_descr_ref
5154 AT_loc (dw_attr_ref a
)
5156 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc
);
5157 return a
->dw_attr_val
.v
.val_loc
;
5161 add_AT_loc_list (dw_die_ref die
, enum dwarf_attribute attr_kind
, dw_loc_list_ref loc_list
)
5165 attr
.dw_attr
= attr_kind
;
5166 attr
.dw_attr_val
.val_class
= dw_val_class_loc_list
;
5167 attr
.dw_attr_val
.v
.val_loc_list
= loc_list
;
5168 add_dwarf_attr (die
, &attr
);
5169 have_location_lists
= true;
5172 static inline dw_loc_list_ref
5173 AT_loc_list (dw_attr_ref a
)
5175 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc_list
);
5176 return a
->dw_attr_val
.v
.val_loc_list
;
5179 /* Add an address constant attribute value to a DIE. */
5182 add_AT_addr (dw_die_ref die
, enum dwarf_attribute attr_kind
, rtx addr
)
5186 attr
.dw_attr
= attr_kind
;
5187 attr
.dw_attr_val
.val_class
= dw_val_class_addr
;
5188 attr
.dw_attr_val
.v
.val_addr
= addr
;
5189 add_dwarf_attr (die
, &attr
);
5192 /* Get the RTX from to an address DIE attribute. */
5195 AT_addr (dw_attr_ref a
)
5197 gcc_assert (a
&& AT_class (a
) == dw_val_class_addr
);
5198 return a
->dw_attr_val
.v
.val_addr
;
5201 /* Add a file attribute value to a DIE. */
5204 add_AT_file (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5205 struct dwarf_file_data
*fd
)
5209 attr
.dw_attr
= attr_kind
;
5210 attr
.dw_attr_val
.val_class
= dw_val_class_file
;
5211 attr
.dw_attr_val
.v
.val_file
= fd
;
5212 add_dwarf_attr (die
, &attr
);
5215 /* Get the dwarf_file_data from a file DIE attribute. */
5217 static inline struct dwarf_file_data
*
5218 AT_file (dw_attr_ref a
)
5220 gcc_assert (a
&& AT_class (a
) == dw_val_class_file
);
5221 return a
->dw_attr_val
.v
.val_file
;
5224 /* Add a label identifier attribute value to a DIE. */
5227 add_AT_lbl_id (dw_die_ref die
, enum dwarf_attribute attr_kind
, const char *lbl_id
)
5231 attr
.dw_attr
= attr_kind
;
5232 attr
.dw_attr_val
.val_class
= dw_val_class_lbl_id
;
5233 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (lbl_id
);
5234 add_dwarf_attr (die
, &attr
);
5237 /* Add a section offset attribute value to a DIE, an offset into the
5238 debug_line section. */
5241 add_AT_lineptr (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5246 attr
.dw_attr
= attr_kind
;
5247 attr
.dw_attr_val
.val_class
= dw_val_class_lineptr
;
5248 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
5249 add_dwarf_attr (die
, &attr
);
5252 /* Add a section offset attribute value to a DIE, an offset into the
5253 debug_macinfo section. */
5256 add_AT_macptr (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5261 attr
.dw_attr
= attr_kind
;
5262 attr
.dw_attr_val
.val_class
= dw_val_class_macptr
;
5263 attr
.dw_attr_val
.v
.val_lbl_id
= xstrdup (label
);
5264 add_dwarf_attr (die
, &attr
);
5267 /* Add an offset attribute value to a DIE. */
5270 add_AT_offset (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5271 unsigned HOST_WIDE_INT offset
)
5275 attr
.dw_attr
= attr_kind
;
5276 attr
.dw_attr_val
.val_class
= dw_val_class_offset
;
5277 attr
.dw_attr_val
.v
.val_offset
= offset
;
5278 add_dwarf_attr (die
, &attr
);
5281 /* Add an range_list attribute value to a DIE. */
5284 add_AT_range_list (dw_die_ref die
, enum dwarf_attribute attr_kind
,
5285 long unsigned int offset
)
5289 attr
.dw_attr
= attr_kind
;
5290 attr
.dw_attr_val
.val_class
= dw_val_class_range_list
;
5291 attr
.dw_attr_val
.v
.val_offset
= offset
;
5292 add_dwarf_attr (die
, &attr
);
5295 static inline const char *
5296 AT_lbl (dw_attr_ref a
)
5298 gcc_assert (a
&& (AT_class (a
) == dw_val_class_lbl_id
5299 || AT_class (a
) == dw_val_class_lineptr
5300 || AT_class (a
) == dw_val_class_macptr
));
5301 return a
->dw_attr_val
.v
.val_lbl_id
;
5304 /* Get the attribute of type attr_kind. */
5307 get_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5311 dw_die_ref spec
= NULL
;
5316 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
5317 if (a
->dw_attr
== attr_kind
)
5319 else if (a
->dw_attr
== DW_AT_specification
5320 || a
->dw_attr
== DW_AT_abstract_origin
)
5324 return get_AT (spec
, attr_kind
);
5329 /* Return the "low pc" attribute value, typically associated with a subprogram
5330 DIE. Return null if the "low pc" attribute is either not present, or if it
5331 cannot be represented as an assembler label identifier. */
5333 static inline const char *
5334 get_AT_low_pc (dw_die_ref die
)
5336 dw_attr_ref a
= get_AT (die
, DW_AT_low_pc
);
5338 return a
? AT_lbl (a
) : NULL
;
5341 /* Return the "high pc" attribute value, typically associated with a subprogram
5342 DIE. Return null if the "high pc" attribute is either not present, or if it
5343 cannot be represented as an assembler label identifier. */
5345 static inline const char *
5346 get_AT_hi_pc (dw_die_ref die
)
5348 dw_attr_ref a
= get_AT (die
, DW_AT_high_pc
);
5350 return a
? AT_lbl (a
) : NULL
;
5353 /* Return the value of the string attribute designated by ATTR_KIND, or
5354 NULL if it is not present. */
5356 static inline const char *
5357 get_AT_string (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5359 dw_attr_ref a
= get_AT (die
, attr_kind
);
5361 return a
? AT_string (a
) : NULL
;
5364 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5365 if it is not present. */
5368 get_AT_flag (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5370 dw_attr_ref a
= get_AT (die
, attr_kind
);
5372 return a
? AT_flag (a
) : 0;
5375 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5376 if it is not present. */
5378 static inline unsigned
5379 get_AT_unsigned (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5381 dw_attr_ref a
= get_AT (die
, attr_kind
);
5383 return a
? AT_unsigned (a
) : 0;
5386 static inline dw_die_ref
5387 get_AT_ref (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5389 dw_attr_ref a
= get_AT (die
, attr_kind
);
5391 return a
? AT_ref (a
) : NULL
;
5394 static inline struct dwarf_file_data
*
5395 get_AT_file (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5397 dw_attr_ref a
= get_AT (die
, attr_kind
);
5399 return a
? AT_file (a
) : NULL
;
5402 /* Return TRUE if the language is C or C++. */
5407 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5409 return (lang
== DW_LANG_C
|| lang
== DW_LANG_C89
|| lang
== DW_LANG_ObjC
5410 || lang
== DW_LANG_C99
5411 || lang
== DW_LANG_C_plus_plus
|| lang
== DW_LANG_ObjC_plus_plus
);
5414 /* Return TRUE if the language is C++. */
5419 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5421 return lang
== DW_LANG_C_plus_plus
|| lang
== DW_LANG_ObjC_plus_plus
;
5424 /* Return TRUE if the language is Fortran. */
5429 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5431 return (lang
== DW_LANG_Fortran77
5432 || lang
== DW_LANG_Fortran90
5433 || lang
== DW_LANG_Fortran95
);
5436 /* Return TRUE if the language is Java. */
5441 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5443 return lang
== DW_LANG_Java
;
5446 /* Return TRUE if the language is Ada. */
5451 unsigned int lang
= get_AT_unsigned (comp_unit_die
, DW_AT_language
);
5453 return lang
== DW_LANG_Ada95
|| lang
== DW_LANG_Ada83
;
5456 /* Remove the specified attribute if present. */
5459 remove_AT (dw_die_ref die
, enum dwarf_attribute attr_kind
)
5467 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
5468 if (a
->dw_attr
== attr_kind
)
5470 if (AT_class (a
) == dw_val_class_str
)
5471 if (a
->dw_attr_val
.v
.val_str
->refcount
)
5472 a
->dw_attr_val
.v
.val_str
->refcount
--;
5474 /* VEC_ordered_remove should help reduce the number of abbrevs
5476 VEC_ordered_remove (dw_attr_node
, die
->die_attr
, ix
);
5481 /* Remove CHILD from its parent. PREV must have the property that
5482 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5485 remove_child_with_prev (dw_die_ref child
, dw_die_ref prev
)
5487 gcc_assert (child
->die_parent
== prev
->die_parent
);
5488 gcc_assert (prev
->die_sib
== child
);
5491 gcc_assert (child
->die_parent
->die_child
== child
);
5495 prev
->die_sib
= child
->die_sib
;
5496 if (child
->die_parent
->die_child
== child
)
5497 child
->die_parent
->die_child
= prev
;
5500 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5504 remove_child_TAG (dw_die_ref die
, enum dwarf_tag tag
)
5510 dw_die_ref prev
= c
;
5512 while (c
->die_tag
== tag
)
5514 remove_child_with_prev (c
, prev
);
5515 /* Might have removed every child. */
5516 if (c
== c
->die_sib
)
5520 } while (c
!= die
->die_child
);
5523 /* Add a CHILD_DIE as the last child of DIE. */
5526 add_child_die (dw_die_ref die
, dw_die_ref child_die
)
5528 /* FIXME this should probably be an assert. */
5529 if (! die
|| ! child_die
)
5531 gcc_assert (die
!= child_die
);
5533 child_die
->die_parent
= die
;
5536 child_die
->die_sib
= die
->die_child
->die_sib
;
5537 die
->die_child
->die_sib
= child_die
;
5540 child_die
->die_sib
= child_die
;
5541 die
->die_child
= child_die
;
5544 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5545 is the specification, to the end of PARENT's list of children.
5546 This is done by removing and re-adding it. */
5549 splice_child_die (dw_die_ref parent
, dw_die_ref child
)
5553 /* We want the declaration DIE from inside the class, not the
5554 specification DIE at toplevel. */
5555 if (child
->die_parent
!= parent
)
5557 dw_die_ref tmp
= get_AT_ref (child
, DW_AT_specification
);
5563 gcc_assert (child
->die_parent
== parent
5564 || (child
->die_parent
5565 == get_AT_ref (parent
, DW_AT_specification
)));
5567 for (p
= child
->die_parent
->die_child
; ; p
= p
->die_sib
)
5568 if (p
->die_sib
== child
)
5570 remove_child_with_prev (child
, p
);
5574 add_child_die (parent
, child
);
5577 /* Return a pointer to a newly created DIE node. */
5579 static inline dw_die_ref
5580 new_die (enum dwarf_tag tag_value
, dw_die_ref parent_die
, tree t
)
5582 dw_die_ref die
= ggc_alloc_cleared (sizeof (die_node
));
5584 die
->die_tag
= tag_value
;
5586 if (parent_die
!= NULL
)
5587 add_child_die (parent_die
, die
);
5590 limbo_die_node
*limbo_node
;
5592 limbo_node
= ggc_alloc_cleared (sizeof (limbo_die_node
));
5593 limbo_node
->die
= die
;
5594 limbo_node
->created_for
= t
;
5595 limbo_node
->next
= limbo_die_list
;
5596 limbo_die_list
= limbo_node
;
5602 /* Return the DIE associated with the given type specifier. */
5604 static inline dw_die_ref
5605 lookup_type_die (tree type
)
5607 return TYPE_SYMTAB_DIE (type
);
5610 /* Equate a DIE to a given type specifier. */
5613 equate_type_number_to_die (tree type
, dw_die_ref type_die
)
5615 TYPE_SYMTAB_DIE (type
) = type_die
;
5618 /* Returns a hash value for X (which really is a die_struct). */
5621 decl_die_table_hash (const void *x
)
5623 return (hashval_t
) ((const dw_die_ref
) x
)->decl_id
;
5626 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5629 decl_die_table_eq (const void *x
, const void *y
)
5631 return (((const dw_die_ref
) x
)->decl_id
== DECL_UID ((const tree
) y
));
5634 /* Return the DIE associated with a given declaration. */
5636 static inline dw_die_ref
5637 lookup_decl_die (tree decl
)
5639 return htab_find_with_hash (decl_die_table
, decl
, DECL_UID (decl
));
5642 /* Returns a hash value for X (which really is a var_loc_list). */
5645 decl_loc_table_hash (const void *x
)
5647 return (hashval_t
) ((const var_loc_list
*) x
)->decl_id
;
5650 /* Return nonzero if decl_id of var_loc_list X is the same as
5654 decl_loc_table_eq (const void *x
, const void *y
)
5656 return (((const var_loc_list
*) x
)->decl_id
== DECL_UID ((const tree
) y
));
5659 /* Return the var_loc list associated with a given declaration. */
5661 static inline var_loc_list
*
5662 lookup_decl_loc (tree decl
)
5664 return htab_find_with_hash (decl_loc_table
, decl
, DECL_UID (decl
));
5667 /* Equate a DIE to a particular declaration. */
5670 equate_decl_number_to_die (tree decl
, dw_die_ref decl_die
)
5672 unsigned int decl_id
= DECL_UID (decl
);
5675 slot
= htab_find_slot_with_hash (decl_die_table
, decl
, decl_id
, INSERT
);
5677 decl_die
->decl_id
= decl_id
;
5680 /* Add a variable location node to the linked list for DECL. */
5683 add_var_loc_to_decl (tree decl
, struct var_loc_node
*loc
)
5685 unsigned int decl_id
= DECL_UID (decl
);
5689 slot
= htab_find_slot_with_hash (decl_loc_table
, decl
, decl_id
, INSERT
);
5692 temp
= ggc_alloc_cleared (sizeof (var_loc_list
));
5693 temp
->decl_id
= decl_id
;
5701 /* If the current location is the same as the end of the list,
5702 we have nothing to do. */
5703 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp
->last
->var_loc_note
),
5704 NOTE_VAR_LOCATION_LOC (loc
->var_loc_note
)))
5706 /* Add LOC to the end of list and update LAST. */
5707 temp
->last
->next
= loc
;
5711 /* Do not add empty location to the beginning of the list. */
5712 else if (NOTE_VAR_LOCATION_LOC (loc
->var_loc_note
) != NULL_RTX
)
5719 /* Keep track of the number of spaces used to indent the
5720 output of the debugging routines that print the structure of
5721 the DIE internal representation. */
5722 static int print_indent
;
5724 /* Indent the line the number of spaces given by print_indent. */
5727 print_spaces (FILE *outfile
)
5729 fprintf (outfile
, "%*s", print_indent
, "");
5732 /* Print the information associated with a given DIE, and its children.
5733 This routine is a debugging aid only. */
5736 print_die (dw_die_ref die
, FILE *outfile
)
5742 print_spaces (outfile
);
5743 fprintf (outfile
, "DIE %4lu: %s\n",
5744 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
5745 print_spaces (outfile
);
5746 fprintf (outfile
, " abbrev id: %lu", die
->die_abbrev
);
5747 fprintf (outfile
, " offset: %lu\n", die
->die_offset
);
5749 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
5751 print_spaces (outfile
);
5752 fprintf (outfile
, " %s: ", dwarf_attr_name (a
->dw_attr
));
5754 switch (AT_class (a
))
5756 case dw_val_class_addr
:
5757 fprintf (outfile
, "address");
5759 case dw_val_class_offset
:
5760 fprintf (outfile
, "offset");
5762 case dw_val_class_loc
:
5763 fprintf (outfile
, "location descriptor");
5765 case dw_val_class_loc_list
:
5766 fprintf (outfile
, "location list -> label:%s",
5767 AT_loc_list (a
)->ll_symbol
);
5769 case dw_val_class_range_list
:
5770 fprintf (outfile
, "range list");
5772 case dw_val_class_const
:
5773 fprintf (outfile
, HOST_WIDE_INT_PRINT_DEC
, AT_int (a
));
5775 case dw_val_class_unsigned_const
:
5776 fprintf (outfile
, HOST_WIDE_INT_PRINT_UNSIGNED
, AT_unsigned (a
));
5778 case dw_val_class_long_long
:
5779 fprintf (outfile
, "constant (%lu,%lu)",
5780 a
->dw_attr_val
.v
.val_long_long
.hi
,
5781 a
->dw_attr_val
.v
.val_long_long
.low
);
5783 case dw_val_class_vec
:
5784 fprintf (outfile
, "floating-point or vector constant");
5786 case dw_val_class_flag
:
5787 fprintf (outfile
, "%u", AT_flag (a
));
5789 case dw_val_class_die_ref
:
5790 if (AT_ref (a
) != NULL
)
5792 if (AT_ref (a
)->die_symbol
)
5793 fprintf (outfile
, "die -> label: %s", AT_ref (a
)->die_symbol
);
5795 fprintf (outfile
, "die -> %lu", AT_ref (a
)->die_offset
);
5798 fprintf (outfile
, "die -> <null>");
5800 case dw_val_class_lbl_id
:
5801 case dw_val_class_lineptr
:
5802 case dw_val_class_macptr
:
5803 fprintf (outfile
, "label: %s", AT_lbl (a
));
5805 case dw_val_class_str
:
5806 if (AT_string (a
) != NULL
)
5807 fprintf (outfile
, "\"%s\"", AT_string (a
));
5809 fprintf (outfile
, "<null>");
5811 case dw_val_class_file
:
5812 fprintf (outfile
, "\"%s\" (%d)", AT_file (a
)->filename
,
5813 AT_file (a
)->emitted_number
);
5819 fprintf (outfile
, "\n");
5822 if (die
->die_child
!= NULL
)
5825 FOR_EACH_CHILD (die
, c
, print_die (c
, outfile
));
5828 if (print_indent
== 0)
5829 fprintf (outfile
, "\n");
5832 /* Print the contents of the source code line number correspondence table.
5833 This routine is a debugging aid only. */
5836 print_dwarf_line_table (FILE *outfile
)
5839 dw_line_info_ref line_info
;
5841 fprintf (outfile
, "\n\nDWARF source line information\n");
5842 for (i
= 1; i
< line_info_table_in_use
; i
++)
5844 line_info
= &line_info_table
[i
];
5845 fprintf (outfile
, "%5d: %4ld %6ld\n", i
,
5846 line_info
->dw_file_num
,
5847 line_info
->dw_line_num
);
5850 fprintf (outfile
, "\n\n");
5853 /* Print the information collected for a given DIE. */
5856 debug_dwarf_die (dw_die_ref die
)
5858 print_die (die
, stderr
);
5861 /* Print all DWARF information collected for the compilation unit.
5862 This routine is a debugging aid only. */
5868 print_die (comp_unit_die
, stderr
);
5869 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
5870 print_dwarf_line_table (stderr
);
5873 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5874 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5875 DIE that marks the start of the DIEs for this include file. */
5878 push_new_compile_unit (dw_die_ref old_unit
, dw_die_ref bincl_die
)
5880 const char *filename
= get_AT_string (bincl_die
, DW_AT_name
);
5881 dw_die_ref new_unit
= gen_compile_unit_die (filename
);
5883 new_unit
->die_sib
= old_unit
;
5887 /* Close an include-file CU and reopen the enclosing one. */
5890 pop_compile_unit (dw_die_ref old_unit
)
5892 dw_die_ref new_unit
= old_unit
->die_sib
;
5894 old_unit
->die_sib
= NULL
;
5898 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5899 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5901 /* Calculate the checksum of a location expression. */
5904 loc_checksum (dw_loc_descr_ref loc
, struct md5_ctx
*ctx
)
5906 CHECKSUM (loc
->dw_loc_opc
);
5907 CHECKSUM (loc
->dw_loc_oprnd1
);
5908 CHECKSUM (loc
->dw_loc_oprnd2
);
5911 /* Calculate the checksum of an attribute. */
5914 attr_checksum (dw_attr_ref at
, struct md5_ctx
*ctx
, int *mark
)
5916 dw_loc_descr_ref loc
;
5919 CHECKSUM (at
->dw_attr
);
5921 /* We don't care that this was compiled with a different compiler
5922 snapshot; if the output is the same, that's what matters. */
5923 if (at
->dw_attr
== DW_AT_producer
)
5926 switch (AT_class (at
))
5928 case dw_val_class_const
:
5929 CHECKSUM (at
->dw_attr_val
.v
.val_int
);
5931 case dw_val_class_unsigned_const
:
5932 CHECKSUM (at
->dw_attr_val
.v
.val_unsigned
);
5934 case dw_val_class_long_long
:
5935 CHECKSUM (at
->dw_attr_val
.v
.val_long_long
);
5937 case dw_val_class_vec
:
5938 CHECKSUM (at
->dw_attr_val
.v
.val_vec
);
5940 case dw_val_class_flag
:
5941 CHECKSUM (at
->dw_attr_val
.v
.val_flag
);
5943 case dw_val_class_str
:
5944 CHECKSUM_STRING (AT_string (at
));
5947 case dw_val_class_addr
:
5949 gcc_assert (GET_CODE (r
) == SYMBOL_REF
);
5950 CHECKSUM_STRING (XSTR (r
, 0));
5953 case dw_val_class_offset
:
5954 CHECKSUM (at
->dw_attr_val
.v
.val_offset
);
5957 case dw_val_class_loc
:
5958 for (loc
= AT_loc (at
); loc
; loc
= loc
->dw_loc_next
)
5959 loc_checksum (loc
, ctx
);
5962 case dw_val_class_die_ref
:
5963 die_checksum (AT_ref (at
), ctx
, mark
);
5966 case dw_val_class_fde_ref
:
5967 case dw_val_class_lbl_id
:
5968 case dw_val_class_lineptr
:
5969 case dw_val_class_macptr
:
5972 case dw_val_class_file
:
5973 CHECKSUM_STRING (AT_file (at
)->filename
);
5981 /* Calculate the checksum of a DIE. */
5984 die_checksum (dw_die_ref die
, struct md5_ctx
*ctx
, int *mark
)
5990 /* To avoid infinite recursion. */
5993 CHECKSUM (die
->die_mark
);
5996 die
->die_mark
= ++(*mark
);
5998 CHECKSUM (die
->die_tag
);
6000 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
6001 attr_checksum (a
, ctx
, mark
);
6003 FOR_EACH_CHILD (die
, c
, die_checksum (c
, ctx
, mark
));
6007 #undef CHECKSUM_STRING
6009 /* Do the location expressions look same? */
6011 same_loc_p (dw_loc_descr_ref loc1
, dw_loc_descr_ref loc2
, int *mark
)
6013 return loc1
->dw_loc_opc
== loc2
->dw_loc_opc
6014 && same_dw_val_p (&loc1
->dw_loc_oprnd1
, &loc2
->dw_loc_oprnd1
, mark
)
6015 && same_dw_val_p (&loc1
->dw_loc_oprnd2
, &loc2
->dw_loc_oprnd2
, mark
);
6018 /* Do the values look the same? */
6020 same_dw_val_p (dw_val_node
*v1
, dw_val_node
*v2
, int *mark
)
6022 dw_loc_descr_ref loc1
, loc2
;
6025 if (v1
->val_class
!= v2
->val_class
)
6028 switch (v1
->val_class
)
6030 case dw_val_class_const
:
6031 return v1
->v
.val_int
== v2
->v
.val_int
;
6032 case dw_val_class_unsigned_const
:
6033 return v1
->v
.val_unsigned
== v2
->v
.val_unsigned
;
6034 case dw_val_class_long_long
:
6035 return v1
->v
.val_long_long
.hi
== v2
->v
.val_long_long
.hi
6036 && v1
->v
.val_long_long
.low
== v2
->v
.val_long_long
.low
;
6037 case dw_val_class_vec
:
6038 if (v1
->v
.val_vec
.length
!= v2
->v
.val_vec
.length
6039 || v1
->v
.val_vec
.elt_size
!= v2
->v
.val_vec
.elt_size
)
6041 if (memcmp (v1
->v
.val_vec
.array
, v2
->v
.val_vec
.array
,
6042 v1
->v
.val_vec
.length
* v1
->v
.val_vec
.elt_size
))
6045 case dw_val_class_flag
:
6046 return v1
->v
.val_flag
== v2
->v
.val_flag
;
6047 case dw_val_class_str
:
6048 return !strcmp(v1
->v
.val_str
->str
, v2
->v
.val_str
->str
);
6050 case dw_val_class_addr
:
6051 r1
= v1
->v
.val_addr
;
6052 r2
= v2
->v
.val_addr
;
6053 if (GET_CODE (r1
) != GET_CODE (r2
))
6055 gcc_assert (GET_CODE (r1
) == SYMBOL_REF
);
6056 return !strcmp (XSTR (r1
, 0), XSTR (r2
, 0));
6058 case dw_val_class_offset
:
6059 return v1
->v
.val_offset
== v2
->v
.val_offset
;
6061 case dw_val_class_loc
:
6062 for (loc1
= v1
->v
.val_loc
, loc2
= v2
->v
.val_loc
;
6064 loc1
= loc1
->dw_loc_next
, loc2
= loc2
->dw_loc_next
)
6065 if (!same_loc_p (loc1
, loc2
, mark
))
6067 return !loc1
&& !loc2
;
6069 case dw_val_class_die_ref
:
6070 return same_die_p (v1
->v
.val_die_ref
.die
, v2
->v
.val_die_ref
.die
, mark
);
6072 case dw_val_class_fde_ref
:
6073 case dw_val_class_lbl_id
:
6074 case dw_val_class_lineptr
:
6075 case dw_val_class_macptr
:
6078 case dw_val_class_file
:
6079 return v1
->v
.val_file
== v2
->v
.val_file
;
6086 /* Do the attributes look the same? */
6089 same_attr_p (dw_attr_ref at1
, dw_attr_ref at2
, int *mark
)
6091 if (at1
->dw_attr
!= at2
->dw_attr
)
6094 /* We don't care that this was compiled with a different compiler
6095 snapshot; if the output is the same, that's what matters. */
6096 if (at1
->dw_attr
== DW_AT_producer
)
6099 return same_dw_val_p (&at1
->dw_attr_val
, &at2
->dw_attr_val
, mark
);
6102 /* Do the dies look the same? */
6105 same_die_p (dw_die_ref die1
, dw_die_ref die2
, int *mark
)
6111 /* To avoid infinite recursion. */
6113 return die1
->die_mark
== die2
->die_mark
;
6114 die1
->die_mark
= die2
->die_mark
= ++(*mark
);
6116 if (die1
->die_tag
!= die2
->die_tag
)
6119 if (VEC_length (dw_attr_node
, die1
->die_attr
)
6120 != VEC_length (dw_attr_node
, die2
->die_attr
))
6123 for (ix
= 0; VEC_iterate (dw_attr_node
, die1
->die_attr
, ix
, a1
); ix
++)
6124 if (!same_attr_p (a1
, VEC_index (dw_attr_node
, die2
->die_attr
, ix
), mark
))
6127 c1
= die1
->die_child
;
6128 c2
= die2
->die_child
;
6137 if (!same_die_p (c1
, c2
, mark
))
6141 if (c1
== die1
->die_child
)
6143 if (c2
== die2
->die_child
)
6153 /* Do the dies look the same? Wrapper around same_die_p. */
6156 same_die_p_wrap (dw_die_ref die1
, dw_die_ref die2
)
6159 int ret
= same_die_p (die1
, die2
, &mark
);
6161 unmark_all_dies (die1
);
6162 unmark_all_dies (die2
);
6167 /* The prefix to attach to symbols on DIEs in the current comdat debug
6169 static char *comdat_symbol_id
;
6171 /* The index of the current symbol within the current comdat CU. */
6172 static unsigned int comdat_symbol_number
;
6174 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6175 children, and set comdat_symbol_id accordingly. */
6178 compute_section_prefix (dw_die_ref unit_die
)
6180 const char *die_name
= get_AT_string (unit_die
, DW_AT_name
);
6181 const char *base
= die_name
? lbasename (die_name
) : "anonymous";
6182 char *name
= alloca (strlen (base
) + 64);
6185 unsigned char checksum
[16];
6188 /* Compute the checksum of the DIE, then append part of it as hex digits to
6189 the name filename of the unit. */
6191 md5_init_ctx (&ctx
);
6193 die_checksum (unit_die
, &ctx
, &mark
);
6194 unmark_all_dies (unit_die
);
6195 md5_finish_ctx (&ctx
, checksum
);
6197 sprintf (name
, "%s.", base
);
6198 clean_symbol_name (name
);
6200 p
= name
+ strlen (name
);
6201 for (i
= 0; i
< 4; i
++)
6203 sprintf (p
, "%.2x", checksum
[i
]);
6207 comdat_symbol_id
= unit_die
->die_symbol
= xstrdup (name
);
6208 comdat_symbol_number
= 0;
6211 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6214 is_type_die (dw_die_ref die
)
6216 switch (die
->die_tag
)
6218 case DW_TAG_array_type
:
6219 case DW_TAG_class_type
:
6220 case DW_TAG_enumeration_type
:
6221 case DW_TAG_pointer_type
:
6222 case DW_TAG_reference_type
:
6223 case DW_TAG_string_type
:
6224 case DW_TAG_structure_type
:
6225 case DW_TAG_subroutine_type
:
6226 case DW_TAG_union_type
:
6227 case DW_TAG_ptr_to_member_type
:
6228 case DW_TAG_set_type
:
6229 case DW_TAG_subrange_type
:
6230 case DW_TAG_base_type
:
6231 case DW_TAG_const_type
:
6232 case DW_TAG_file_type
:
6233 case DW_TAG_packed_type
:
6234 case DW_TAG_volatile_type
:
6235 case DW_TAG_typedef
:
6242 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6243 Basically, we want to choose the bits that are likely to be shared between
6244 compilations (types) and leave out the bits that are specific to individual
6245 compilations (functions). */
6248 is_comdat_die (dw_die_ref c
)
6250 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6251 we do for stabs. The advantage is a greater likelihood of sharing between
6252 objects that don't include headers in the same order (and therefore would
6253 put the base types in a different comdat). jason 8/28/00 */
6255 if (c
->die_tag
== DW_TAG_base_type
)
6258 if (c
->die_tag
== DW_TAG_pointer_type
6259 || c
->die_tag
== DW_TAG_reference_type
6260 || c
->die_tag
== DW_TAG_const_type
6261 || c
->die_tag
== DW_TAG_volatile_type
)
6263 dw_die_ref t
= get_AT_ref (c
, DW_AT_type
);
6265 return t
? is_comdat_die (t
) : 0;
6268 return is_type_die (c
);
6271 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6272 compilation unit. */
6275 is_symbol_die (dw_die_ref c
)
6277 return (is_type_die (c
)
6278 || (get_AT (c
, DW_AT_declaration
)
6279 && !get_AT (c
, DW_AT_specification
))
6280 || c
->die_tag
== DW_TAG_namespace
);
6284 gen_internal_sym (const char *prefix
)
6288 ASM_GENERATE_INTERNAL_LABEL (buf
, prefix
, label_num
++);
6289 return xstrdup (buf
);
6292 /* Assign symbols to all worthy DIEs under DIE. */
6295 assign_symbol_names (dw_die_ref die
)
6299 if (is_symbol_die (die
))
6301 if (comdat_symbol_id
)
6303 char *p
= alloca (strlen (comdat_symbol_id
) + 64);
6305 sprintf (p
, "%s.%s.%x", DIE_LABEL_PREFIX
,
6306 comdat_symbol_id
, comdat_symbol_number
++);
6307 die
->die_symbol
= xstrdup (p
);
6310 die
->die_symbol
= gen_internal_sym ("LDIE");
6313 FOR_EACH_CHILD (die
, c
, assign_symbol_names (c
));
6316 struct cu_hash_table_entry
6319 unsigned min_comdat_num
, max_comdat_num
;
6320 struct cu_hash_table_entry
*next
;
6323 /* Routines to manipulate hash table of CUs. */
6325 htab_cu_hash (const void *of
)
6327 const struct cu_hash_table_entry
*entry
= of
;
6329 return htab_hash_string (entry
->cu
->die_symbol
);
6333 htab_cu_eq (const void *of1
, const void *of2
)
6335 const struct cu_hash_table_entry
*entry1
= of1
;
6336 const struct die_struct
*entry2
= of2
;
6338 return !strcmp (entry1
->cu
->die_symbol
, entry2
->die_symbol
);
6342 htab_cu_del (void *what
)
6344 struct cu_hash_table_entry
*next
, *entry
= what
;
6354 /* Check whether we have already seen this CU and set up SYM_NUM
6357 check_duplicate_cu (dw_die_ref cu
, htab_t htable
, unsigned int *sym_num
)
6359 struct cu_hash_table_entry dummy
;
6360 struct cu_hash_table_entry
**slot
, *entry
, *last
= &dummy
;
6362 dummy
.max_comdat_num
= 0;
6364 slot
= (struct cu_hash_table_entry
**)
6365 htab_find_slot_with_hash (htable
, cu
, htab_hash_string (cu
->die_symbol
),
6369 for (; entry
; last
= entry
, entry
= entry
->next
)
6371 if (same_die_p_wrap (cu
, entry
->cu
))
6377 *sym_num
= entry
->min_comdat_num
;
6381 entry
= XCNEW (struct cu_hash_table_entry
);
6383 entry
->min_comdat_num
= *sym_num
= last
->max_comdat_num
;
6384 entry
->next
= *slot
;
6390 /* Record SYM_NUM to record of CU in HTABLE. */
6392 record_comdat_symbol_number (dw_die_ref cu
, htab_t htable
, unsigned int sym_num
)
6394 struct cu_hash_table_entry
**slot
, *entry
;
6396 slot
= (struct cu_hash_table_entry
**)
6397 htab_find_slot_with_hash (htable
, cu
, htab_hash_string (cu
->die_symbol
),
6401 entry
->max_comdat_num
= sym_num
;
6404 /* Traverse the DIE (which is always comp_unit_die), and set up
6405 additional compilation units for each of the include files we see
6406 bracketed by BINCL/EINCL. */
6409 break_out_includes (dw_die_ref die
)
6412 dw_die_ref unit
= NULL
;
6413 limbo_die_node
*node
, **pnode
;
6414 htab_t cu_hash_table
;
6418 dw_die_ref prev
= c
;
6420 while (c
->die_tag
== DW_TAG_GNU_BINCL
|| c
->die_tag
== DW_TAG_GNU_EINCL
6421 || (unit
&& is_comdat_die (c
)))
6423 dw_die_ref next
= c
->die_sib
;
6425 /* This DIE is for a secondary CU; remove it from the main one. */
6426 remove_child_with_prev (c
, prev
);
6428 if (c
->die_tag
== DW_TAG_GNU_BINCL
)
6429 unit
= push_new_compile_unit (unit
, c
);
6430 else if (c
->die_tag
== DW_TAG_GNU_EINCL
)
6431 unit
= pop_compile_unit (unit
);
6433 add_child_die (unit
, c
);
6435 if (c
== die
->die_child
)
6438 } while (c
!= die
->die_child
);
6441 /* We can only use this in debugging, since the frontend doesn't check
6442 to make sure that we leave every include file we enter. */
6446 assign_symbol_names (die
);
6447 cu_hash_table
= htab_create (10, htab_cu_hash
, htab_cu_eq
, htab_cu_del
);
6448 for (node
= limbo_die_list
, pnode
= &limbo_die_list
;
6454 compute_section_prefix (node
->die
);
6455 is_dupl
= check_duplicate_cu (node
->die
, cu_hash_table
,
6456 &comdat_symbol_number
);
6457 assign_symbol_names (node
->die
);
6459 *pnode
= node
->next
;
6462 pnode
= &node
->next
;
6463 record_comdat_symbol_number (node
->die
, cu_hash_table
,
6464 comdat_symbol_number
);
6467 htab_delete (cu_hash_table
);
6470 /* Traverse the DIE and add a sibling attribute if it may have the
6471 effect of speeding up access to siblings. To save some space,
6472 avoid generating sibling attributes for DIE's without children. */
6475 add_sibling_attributes (dw_die_ref die
)
6479 if (! die
->die_child
)
6482 if (die
->die_parent
&& die
!= die
->die_parent
->die_child
)
6483 add_AT_die_ref (die
, DW_AT_sibling
, die
->die_sib
);
6485 FOR_EACH_CHILD (die
, c
, add_sibling_attributes (c
));
6488 /* Output all location lists for the DIE and its children. */
6491 output_location_lists (dw_die_ref die
)
6497 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
6498 if (AT_class (a
) == dw_val_class_loc_list
)
6499 output_loc_list (AT_loc_list (a
));
6501 FOR_EACH_CHILD (die
, c
, output_location_lists (c
));
6504 /* The format of each DIE (and its attribute value pairs) is encoded in an
6505 abbreviation table. This routine builds the abbreviation table and assigns
6506 a unique abbreviation id for each abbreviation entry. The children of each
6507 die are visited recursively. */
6510 build_abbrev_table (dw_die_ref die
)
6512 unsigned long abbrev_id
;
6513 unsigned int n_alloc
;
6518 /* Scan the DIE references, and mark as external any that refer to
6519 DIEs from other CUs (i.e. those which are not marked). */
6520 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
6521 if (AT_class (a
) == dw_val_class_die_ref
6522 && AT_ref (a
)->die_mark
== 0)
6524 gcc_assert (AT_ref (a
)->die_symbol
);
6526 set_AT_ref_external (a
, 1);
6529 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6531 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6532 dw_attr_ref die_a
, abbrev_a
;
6536 if (abbrev
->die_tag
!= die
->die_tag
)
6538 if ((abbrev
->die_child
!= NULL
) != (die
->die_child
!= NULL
))
6541 if (VEC_length (dw_attr_node
, abbrev
->die_attr
)
6542 != VEC_length (dw_attr_node
, die
->die_attr
))
6545 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, die_a
); ix
++)
6547 abbrev_a
= VEC_index (dw_attr_node
, abbrev
->die_attr
, ix
);
6548 if ((abbrev_a
->dw_attr
!= die_a
->dw_attr
)
6549 || (value_format (abbrev_a
) != value_format (die_a
)))
6559 if (abbrev_id
>= abbrev_die_table_in_use
)
6561 if (abbrev_die_table_in_use
>= abbrev_die_table_allocated
)
6563 n_alloc
= abbrev_die_table_allocated
+ ABBREV_DIE_TABLE_INCREMENT
;
6564 abbrev_die_table
= ggc_realloc (abbrev_die_table
,
6565 sizeof (dw_die_ref
) * n_alloc
);
6567 memset (&abbrev_die_table
[abbrev_die_table_allocated
], 0,
6568 (n_alloc
- abbrev_die_table_allocated
) * sizeof (dw_die_ref
));
6569 abbrev_die_table_allocated
= n_alloc
;
6572 ++abbrev_die_table_in_use
;
6573 abbrev_die_table
[abbrev_id
] = die
;
6576 die
->die_abbrev
= abbrev_id
;
6577 FOR_EACH_CHILD (die
, c
, build_abbrev_table (c
));
6580 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6583 constant_size (long unsigned int value
)
6590 log
= floor_log2 (value
);
6593 log
= 1 << (floor_log2 (log
) + 1);
6598 /* Return the size of a DIE as it is represented in the
6599 .debug_info section. */
6601 static unsigned long
6602 size_of_die (dw_die_ref die
)
6604 unsigned long size
= 0;
6608 size
+= size_of_uleb128 (die
->die_abbrev
);
6609 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
6611 switch (AT_class (a
))
6613 case dw_val_class_addr
:
6614 size
+= DWARF2_ADDR_SIZE
;
6616 case dw_val_class_offset
:
6617 size
+= DWARF_OFFSET_SIZE
;
6619 case dw_val_class_loc
:
6621 unsigned long lsize
= size_of_locs (AT_loc (a
));
6624 size
+= constant_size (lsize
);
6628 case dw_val_class_loc_list
:
6629 size
+= DWARF_OFFSET_SIZE
;
6631 case dw_val_class_range_list
:
6632 size
+= DWARF_OFFSET_SIZE
;
6634 case dw_val_class_const
:
6635 size
+= size_of_sleb128 (AT_int (a
));
6637 case dw_val_class_unsigned_const
:
6638 size
+= constant_size (AT_unsigned (a
));
6640 case dw_val_class_long_long
:
6641 size
+= 1 + 2*HOST_BITS_PER_LONG
/HOST_BITS_PER_CHAR
; /* block */
6643 case dw_val_class_vec
:
6644 size
+= 1 + (a
->dw_attr_val
.v
.val_vec
.length
6645 * a
->dw_attr_val
.v
.val_vec
.elt_size
); /* block */
6647 case dw_val_class_flag
:
6650 case dw_val_class_die_ref
:
6651 if (AT_ref_external (a
))
6652 size
+= DWARF2_ADDR_SIZE
;
6654 size
+= DWARF_OFFSET_SIZE
;
6656 case dw_val_class_fde_ref
:
6657 size
+= DWARF_OFFSET_SIZE
;
6659 case dw_val_class_lbl_id
:
6660 size
+= DWARF2_ADDR_SIZE
;
6662 case dw_val_class_lineptr
:
6663 case dw_val_class_macptr
:
6664 size
+= DWARF_OFFSET_SIZE
;
6666 case dw_val_class_str
:
6667 if (AT_string_form (a
) == DW_FORM_strp
)
6668 size
+= DWARF_OFFSET_SIZE
;
6670 size
+= strlen (a
->dw_attr_val
.v
.val_str
->str
) + 1;
6672 case dw_val_class_file
:
6673 size
+= constant_size (maybe_emit_file (a
->dw_attr_val
.v
.val_file
));
6683 /* Size the debugging information associated with a given DIE. Visits the
6684 DIE's children recursively. Updates the global variable next_die_offset, on
6685 each time through. Uses the current value of next_die_offset to update the
6686 die_offset field in each DIE. */
6689 calc_die_sizes (dw_die_ref die
)
6693 die
->die_offset
= next_die_offset
;
6694 next_die_offset
+= size_of_die (die
);
6696 FOR_EACH_CHILD (die
, c
, calc_die_sizes (c
));
6698 if (die
->die_child
!= NULL
)
6699 /* Count the null byte used to terminate sibling lists. */
6700 next_die_offset
+= 1;
6703 /* Set the marks for a die and its children. We do this so
6704 that we know whether or not a reference needs to use FORM_ref_addr; only
6705 DIEs in the same CU will be marked. We used to clear out the offset
6706 and use that as the flag, but ran into ordering problems. */
6709 mark_dies (dw_die_ref die
)
6713 gcc_assert (!die
->die_mark
);
6716 FOR_EACH_CHILD (die
, c
, mark_dies (c
));
6719 /* Clear the marks for a die and its children. */
6722 unmark_dies (dw_die_ref die
)
6726 gcc_assert (die
->die_mark
);
6729 FOR_EACH_CHILD (die
, c
, unmark_dies (c
));
6732 /* Clear the marks for a die, its children and referred dies. */
6735 unmark_all_dies (dw_die_ref die
)
6745 FOR_EACH_CHILD (die
, c
, unmark_all_dies (c
));
6747 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
6748 if (AT_class (a
) == dw_val_class_die_ref
)
6749 unmark_all_dies (AT_ref (a
));
6752 /* Return the size of the .debug_pubnames table generated for the
6753 compilation unit. */
6755 static unsigned long
6756 size_of_pubnames (void)
6761 size
= DWARF_PUBNAMES_HEADER_SIZE
;
6762 for (i
= 0; i
< pubname_table_in_use
; i
++)
6764 pubname_ref p
= &pubname_table
[i
];
6765 size
+= DWARF_OFFSET_SIZE
+ strlen (p
->name
) + 1;
6768 size
+= DWARF_OFFSET_SIZE
;
6772 /* Return the size of the information in the .debug_aranges section. */
6774 static unsigned long
6775 size_of_aranges (void)
6779 size
= DWARF_ARANGES_HEADER_SIZE
;
6781 /* Count the address/length pair for this compilation unit. */
6782 size
+= 2 * DWARF2_ADDR_SIZE
;
6783 size
+= 2 * DWARF2_ADDR_SIZE
* arange_table_in_use
;
6785 /* Count the two zero words used to terminated the address range table. */
6786 size
+= 2 * DWARF2_ADDR_SIZE
;
6790 /* Select the encoding of an attribute value. */
6792 static enum dwarf_form
6793 value_format (dw_attr_ref a
)
6795 switch (a
->dw_attr_val
.val_class
)
6797 case dw_val_class_addr
:
6798 return DW_FORM_addr
;
6799 case dw_val_class_range_list
:
6800 case dw_val_class_offset
:
6801 case dw_val_class_loc_list
:
6802 switch (DWARF_OFFSET_SIZE
)
6805 return DW_FORM_data4
;
6807 return DW_FORM_data8
;
6811 case dw_val_class_loc
:
6812 switch (constant_size (size_of_locs (AT_loc (a
))))
6815 return DW_FORM_block1
;
6817 return DW_FORM_block2
;
6821 case dw_val_class_const
:
6822 return DW_FORM_sdata
;
6823 case dw_val_class_unsigned_const
:
6824 switch (constant_size (AT_unsigned (a
)))
6827 return DW_FORM_data1
;
6829 return DW_FORM_data2
;
6831 return DW_FORM_data4
;
6833 return DW_FORM_data8
;
6837 case dw_val_class_long_long
:
6838 return DW_FORM_block1
;
6839 case dw_val_class_vec
:
6840 return DW_FORM_block1
;
6841 case dw_val_class_flag
:
6842 return DW_FORM_flag
;
6843 case dw_val_class_die_ref
:
6844 if (AT_ref_external (a
))
6845 return DW_FORM_ref_addr
;
6848 case dw_val_class_fde_ref
:
6849 return DW_FORM_data
;
6850 case dw_val_class_lbl_id
:
6851 return DW_FORM_addr
;
6852 case dw_val_class_lineptr
:
6853 case dw_val_class_macptr
:
6854 return DW_FORM_data
;
6855 case dw_val_class_str
:
6856 return AT_string_form (a
);
6857 case dw_val_class_file
:
6858 switch (constant_size (maybe_emit_file (a
->dw_attr_val
.v
.val_file
)))
6861 return DW_FORM_data1
;
6863 return DW_FORM_data2
;
6865 return DW_FORM_data4
;
6875 /* Output the encoding of an attribute value. */
6878 output_value_format (dw_attr_ref a
)
6880 enum dwarf_form form
= value_format (a
);
6882 dw2_asm_output_data_uleb128 (form
, "(%s)", dwarf_form_name (form
));
6885 /* Output the .debug_abbrev section which defines the DIE abbreviation
6889 output_abbrev_section (void)
6891 unsigned long abbrev_id
;
6893 for (abbrev_id
= 1; abbrev_id
< abbrev_die_table_in_use
; ++abbrev_id
)
6895 dw_die_ref abbrev
= abbrev_die_table
[abbrev_id
];
6899 dw2_asm_output_data_uleb128 (abbrev_id
, "(abbrev code)");
6900 dw2_asm_output_data_uleb128 (abbrev
->die_tag
, "(TAG: %s)",
6901 dwarf_tag_name (abbrev
->die_tag
));
6903 if (abbrev
->die_child
!= NULL
)
6904 dw2_asm_output_data (1, DW_children_yes
, "DW_children_yes");
6906 dw2_asm_output_data (1, DW_children_no
, "DW_children_no");
6908 for (ix
= 0; VEC_iterate (dw_attr_node
, abbrev
->die_attr
, ix
, a_attr
);
6911 dw2_asm_output_data_uleb128 (a_attr
->dw_attr
, "(%s)",
6912 dwarf_attr_name (a_attr
->dw_attr
));
6913 output_value_format (a_attr
);
6916 dw2_asm_output_data (1, 0, NULL
);
6917 dw2_asm_output_data (1, 0, NULL
);
6920 /* Terminate the table. */
6921 dw2_asm_output_data (1, 0, NULL
);
6924 /* Output a symbol we can use to refer to this DIE from another CU. */
6927 output_die_symbol (dw_die_ref die
)
6929 char *sym
= die
->die_symbol
;
6934 if (strncmp (sym
, DIE_LABEL_PREFIX
, sizeof (DIE_LABEL_PREFIX
) - 1) == 0)
6935 /* We make these global, not weak; if the target doesn't support
6936 .linkonce, it doesn't support combining the sections, so debugging
6938 targetm
.asm_out
.globalize_label (asm_out_file
, sym
);
6940 ASM_OUTPUT_LABEL (asm_out_file
, sym
);
6943 /* Return a new location list, given the begin and end range, and the
6944 expression. gensym tells us whether to generate a new internal symbol for
6945 this location list node, which is done for the head of the list only. */
6947 static inline dw_loc_list_ref
6948 new_loc_list (dw_loc_descr_ref expr
, const char *begin
, const char *end
,
6949 const char *section
, unsigned int gensym
)
6951 dw_loc_list_ref retlist
= ggc_alloc_cleared (sizeof (dw_loc_list_node
));
6953 retlist
->begin
= begin
;
6955 retlist
->expr
= expr
;
6956 retlist
->section
= section
;
6958 retlist
->ll_symbol
= gen_internal_sym ("LLST");
6963 /* Add a location description expression to a location list. */
6966 add_loc_descr_to_loc_list (dw_loc_list_ref
*list_head
, dw_loc_descr_ref descr
,
6967 const char *begin
, const char *end
,
6968 const char *section
)
6972 /* Find the end of the chain. */
6973 for (d
= list_head
; (*d
) != NULL
; d
= &(*d
)->dw_loc_next
)
6976 /* Add a new location list node to the list. */
6977 *d
= new_loc_list (descr
, begin
, end
, section
, 0);
6981 dwarf2out_switch_text_section (void)
6987 fde
= &fde_table
[fde_table_in_use
- 1];
6988 fde
->dw_fde_switched_sections
= true;
6989 fde
->dw_fde_hot_section_label
= cfun
->hot_section_label
;
6990 fde
->dw_fde_hot_section_end_label
= cfun
->hot_section_end_label
;
6991 fde
->dw_fde_unlikely_section_label
= cfun
->cold_section_label
;
6992 fde
->dw_fde_unlikely_section_end_label
= cfun
->cold_section_end_label
;
6993 have_multiple_function_sections
= true;
6995 /* Reset the current label on switching text sections, so that we
6996 don't attempt to advance_loc4 between labels in different sections. */
6997 fde
->dw_fde_current_label
= NULL
;
7000 /* Output the location list given to us. */
7003 output_loc_list (dw_loc_list_ref list_head
)
7005 dw_loc_list_ref curr
= list_head
;
7007 ASM_OUTPUT_LABEL (asm_out_file
, list_head
->ll_symbol
);
7009 /* Walk the location list, and output each range + expression. */
7010 for (curr
= list_head
; curr
!= NULL
; curr
= curr
->dw_loc_next
)
7013 if (!have_multiple_function_sections
)
7015 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->begin
, curr
->section
,
7016 "Location list begin address (%s)",
7017 list_head
->ll_symbol
);
7018 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, curr
->end
, curr
->section
,
7019 "Location list end address (%s)",
7020 list_head
->ll_symbol
);
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->begin
,
7025 "Location list begin address (%s)",
7026 list_head
->ll_symbol
);
7027 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, curr
->end
,
7028 "Location list end address (%s)",
7029 list_head
->ll_symbol
);
7031 size
= size_of_locs (curr
->expr
);
7033 /* Output the block length for this list of location operations. */
7034 gcc_assert (size
<= 0xffff);
7035 dw2_asm_output_data (2, size
, "%s", "Location expression size");
7037 output_loc_sequence (curr
->expr
);
7040 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
7041 "Location list terminator begin (%s)",
7042 list_head
->ll_symbol
);
7043 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0,
7044 "Location list terminator end (%s)",
7045 list_head
->ll_symbol
);
7048 /* Output the DIE and its attributes. Called recursively to generate
7049 the definitions of each child DIE. */
7052 output_die (dw_die_ref die
)
7059 /* If someone in another CU might refer to us, set up a symbol for
7060 them to point to. */
7061 if (die
->die_symbol
)
7062 output_die_symbol (die
);
7064 dw2_asm_output_data_uleb128 (die
->die_abbrev
, "(DIE (0x%lx) %s)",
7065 die
->die_offset
, dwarf_tag_name (die
->die_tag
));
7067 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
7069 const char *name
= dwarf_attr_name (a
->dw_attr
);
7071 switch (AT_class (a
))
7073 case dw_val_class_addr
:
7074 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
, AT_addr (a
), "%s", name
);
7077 case dw_val_class_offset
:
7078 dw2_asm_output_data (DWARF_OFFSET_SIZE
, a
->dw_attr_val
.v
.val_offset
,
7082 case dw_val_class_range_list
:
7084 char *p
= strchr (ranges_section_label
, '\0');
7086 sprintf (p
, "+" HOST_WIDE_INT_PRINT_HEX
,
7087 a
->dw_attr_val
.v
.val_offset
);
7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, ranges_section_label
,
7089 debug_ranges_section
, "%s", name
);
7094 case dw_val_class_loc
:
7095 size
= size_of_locs (AT_loc (a
));
7097 /* Output the block length for this list of location operations. */
7098 dw2_asm_output_data (constant_size (size
), size
, "%s", name
);
7100 output_loc_sequence (AT_loc (a
));
7103 case dw_val_class_const
:
7104 /* ??? It would be slightly more efficient to use a scheme like is
7105 used for unsigned constants below, but gdb 4.x does not sign
7106 extend. Gdb 5.x does sign extend. */
7107 dw2_asm_output_data_sleb128 (AT_int (a
), "%s", name
);
7110 case dw_val_class_unsigned_const
:
7111 dw2_asm_output_data (constant_size (AT_unsigned (a
)),
7112 AT_unsigned (a
), "%s", name
);
7115 case dw_val_class_long_long
:
7117 unsigned HOST_WIDE_INT first
, second
;
7119 dw2_asm_output_data (1,
7120 2 * HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
7123 if (WORDS_BIG_ENDIAN
)
7125 first
= a
->dw_attr_val
.v
.val_long_long
.hi
;
7126 second
= a
->dw_attr_val
.v
.val_long_long
.low
;
7130 first
= a
->dw_attr_val
.v
.val_long_long
.low
;
7131 second
= a
->dw_attr_val
.v
.val_long_long
.hi
;
7134 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
7135 first
, "long long constant");
7136 dw2_asm_output_data (HOST_BITS_PER_LONG
/ HOST_BITS_PER_CHAR
,
7141 case dw_val_class_vec
:
7143 unsigned int elt_size
= a
->dw_attr_val
.v
.val_vec
.elt_size
;
7144 unsigned int len
= a
->dw_attr_val
.v
.val_vec
.length
;
7148 dw2_asm_output_data (1, len
* elt_size
, "%s", name
);
7149 if (elt_size
> sizeof (HOST_WIDE_INT
))
7154 for (i
= 0, p
= a
->dw_attr_val
.v
.val_vec
.array
;
7157 dw2_asm_output_data (elt_size
, extract_int (p
, elt_size
),
7158 "fp or vector constant word %u", i
);
7162 case dw_val_class_flag
:
7163 dw2_asm_output_data (1, AT_flag (a
), "%s", name
);
7166 case dw_val_class_loc_list
:
7168 char *sym
= AT_loc_list (a
)->ll_symbol
;
7171 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, sym
, debug_loc_section
,
7176 case dw_val_class_die_ref
:
7177 if (AT_ref_external (a
))
7179 char *sym
= AT_ref (a
)->die_symbol
;
7182 dw2_asm_output_offset (DWARF2_ADDR_SIZE
, sym
, debug_info_section
,
7187 gcc_assert (AT_ref (a
)->die_offset
);
7188 dw2_asm_output_data (DWARF_OFFSET_SIZE
, AT_ref (a
)->die_offset
,
7193 case dw_val_class_fde_ref
:
7197 ASM_GENERATE_INTERNAL_LABEL (l1
, FDE_LABEL
,
7198 a
->dw_attr_val
.v
.val_fde_index
* 2);
7199 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, l1
, debug_frame_section
,
7204 case dw_val_class_lbl_id
:
7205 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, AT_lbl (a
), "%s", name
);
7208 case dw_val_class_lineptr
:
7209 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
),
7210 debug_line_section
, "%s", name
);
7213 case dw_val_class_macptr
:
7214 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, AT_lbl (a
),
7215 debug_macinfo_section
, "%s", name
);
7218 case dw_val_class_str
:
7219 if (AT_string_form (a
) == DW_FORM_strp
)
7220 dw2_asm_output_offset (DWARF_OFFSET_SIZE
,
7221 a
->dw_attr_val
.v
.val_str
->label
,
7223 "%s: \"%s\"", name
, AT_string (a
));
7225 dw2_asm_output_nstring (AT_string (a
), -1, "%s", name
);
7228 case dw_val_class_file
:
7230 int f
= maybe_emit_file (a
->dw_attr_val
.v
.val_file
);
7232 dw2_asm_output_data (constant_size (f
), f
, "%s (%s)", name
,
7233 a
->dw_attr_val
.v
.val_file
->filename
);
7242 FOR_EACH_CHILD (die
, c
, output_die (c
));
7244 /* Add null byte to terminate sibling list. */
7245 if (die
->die_child
!= NULL
)
7246 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7250 /* Output the compilation unit that appears at the beginning of the
7251 .debug_info section, and precedes the DIE descriptions. */
7254 output_compilation_unit_header (void)
7256 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7257 dw2_asm_output_data (4, 0xffffffff,
7258 "Initial length escape value indicating 64-bit DWARF extension");
7259 dw2_asm_output_data (DWARF_OFFSET_SIZE
,
7260 next_die_offset
- DWARF_INITIAL_LENGTH_SIZE
,
7261 "Length of Compilation Unit Info");
7262 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF version number");
7263 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, abbrev_section_label
,
7264 debug_abbrev_section
,
7265 "Offset Into Abbrev. Section");
7266 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Pointer Size (in bytes)");
7269 /* Output the compilation unit DIE and its children. */
7272 output_comp_unit (dw_die_ref die
, int output_if_empty
)
7274 const char *secname
;
7277 /* Unless we are outputting main CU, we may throw away empty ones. */
7278 if (!output_if_empty
&& die
->die_child
== NULL
)
7281 /* Even if there are no children of this DIE, we must output the information
7282 about the compilation unit. Otherwise, on an empty translation unit, we
7283 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7284 will then complain when examining the file. First mark all the DIEs in
7285 this CU so we know which get local refs. */
7288 build_abbrev_table (die
);
7290 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7291 next_die_offset
= DWARF_COMPILE_UNIT_HEADER_SIZE
;
7292 calc_die_sizes (die
);
7294 oldsym
= die
->die_symbol
;
7297 tmp
= alloca (strlen (oldsym
) + 24);
7299 sprintf (tmp
, ".gnu.linkonce.wi.%s", oldsym
);
7301 die
->die_symbol
= NULL
;
7302 switch_to_section (get_section (secname
, SECTION_DEBUG
, NULL
));
7305 switch_to_section (debug_info_section
);
7307 /* Output debugging information. */
7308 output_compilation_unit_header ();
7311 /* Leave the marks on the main CU, so we can check them in
7316 die
->die_symbol
= oldsym
;
7320 /* Return the DWARF2/3 pubname associated with a decl. */
7323 dwarf2_name (tree decl
, int scope
)
7325 return lang_hooks
.dwarf_name (decl
, scope
? 1 : 0);
7328 /* Add a new entry to .debug_pubnames if appropriate. */
7331 add_pubname (tree decl
, dw_die_ref die
)
7335 if (! TREE_PUBLIC (decl
))
7338 if (pubname_table_in_use
== pubname_table_allocated
)
7340 pubname_table_allocated
+= PUBNAME_TABLE_INCREMENT
;
7342 = ggc_realloc (pubname_table
,
7343 (pubname_table_allocated
* sizeof (pubname_entry
)));
7344 memset (pubname_table
+ pubname_table_in_use
, 0,
7345 PUBNAME_TABLE_INCREMENT
* sizeof (pubname_entry
));
7348 p
= &pubname_table
[pubname_table_in_use
++];
7350 p
->name
= xstrdup (dwarf2_name (decl
, 1));
7353 /* Output the public names table used to speed up access to externally
7354 visible names. For now, only generate entries for externally
7355 visible procedures. */
7358 output_pubnames (void)
7361 unsigned long pubnames_length
= size_of_pubnames ();
7363 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7364 dw2_asm_output_data (4, 0xffffffff,
7365 "Initial length escape value indicating 64-bit DWARF extension");
7366 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pubnames_length
,
7367 "Length of Public Names Info");
7368 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7369 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
7371 "Offset of Compilation Unit Info");
7372 dw2_asm_output_data (DWARF_OFFSET_SIZE
, next_die_offset
,
7373 "Compilation Unit Length");
7375 for (i
= 0; i
< pubname_table_in_use
; i
++)
7377 pubname_ref pub
= &pubname_table
[i
];
7379 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7380 gcc_assert (pub
->die
->die_mark
);
7382 dw2_asm_output_data (DWARF_OFFSET_SIZE
, pub
->die
->die_offset
,
7385 dw2_asm_output_nstring (pub
->name
, -1, "external name");
7388 dw2_asm_output_data (DWARF_OFFSET_SIZE
, 0, NULL
);
7391 /* Add a new entry to .debug_aranges if appropriate. */
7394 add_arange (tree decl
, dw_die_ref die
)
7396 if (! DECL_SECTION_NAME (decl
))
7399 if (arange_table_in_use
== arange_table_allocated
)
7401 arange_table_allocated
+= ARANGE_TABLE_INCREMENT
;
7402 arange_table
= ggc_realloc (arange_table
,
7403 (arange_table_allocated
7404 * sizeof (dw_die_ref
)));
7405 memset (arange_table
+ arange_table_in_use
, 0,
7406 ARANGE_TABLE_INCREMENT
* sizeof (dw_die_ref
));
7409 arange_table
[arange_table_in_use
++] = die
;
7412 /* Output the information that goes into the .debug_aranges table.
7413 Namely, define the beginning and ending address range of the
7414 text section generated for this compilation unit. */
7417 output_aranges (void)
7420 unsigned long aranges_length
= size_of_aranges ();
7422 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7423 dw2_asm_output_data (4, 0xffffffff,
7424 "Initial length escape value indicating 64-bit DWARF extension");
7425 dw2_asm_output_data (DWARF_OFFSET_SIZE
, aranges_length
,
7426 "Length of Address Ranges Info");
7427 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7428 dw2_asm_output_offset (DWARF_OFFSET_SIZE
, debug_info_section_label
,
7430 "Offset of Compilation Unit Info");
7431 dw2_asm_output_data (1, DWARF2_ADDR_SIZE
, "Size of Address");
7432 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7434 /* We need to align to twice the pointer size here. */
7435 if (DWARF_ARANGES_PAD_SIZE
)
7437 /* Pad using a 2 byte words so that padding is correct for any
7439 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7440 2 * DWARF2_ADDR_SIZE
);
7441 for (i
= 2; i
< (unsigned) DWARF_ARANGES_PAD_SIZE
; i
+= 2)
7442 dw2_asm_output_data (2, 0, NULL
);
7445 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_section_label
, "Address");
7446 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, text_end_label
,
7447 text_section_label
, "Length");
7448 if (flag_reorder_blocks_and_partition
)
7450 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, cold_text_section_label
,
7452 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, cold_end_label
,
7453 cold_text_section_label
, "Length");
7456 for (i
= 0; i
< arange_table_in_use
; i
++)
7458 dw_die_ref die
= arange_table
[i
];
7460 /* We shouldn't see aranges for DIEs outside of the main CU. */
7461 gcc_assert (die
->die_mark
);
7463 if (die
->die_tag
== DW_TAG_subprogram
)
7465 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, get_AT_low_pc (die
),
7467 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, get_AT_hi_pc (die
),
7468 get_AT_low_pc (die
), "Length");
7472 /* A static variable; extract the symbol from DW_AT_location.
7473 Note that this code isn't currently hit, as we only emit
7474 aranges for functions (jason 9/23/99). */
7475 dw_attr_ref a
= get_AT (die
, DW_AT_location
);
7476 dw_loc_descr_ref loc
;
7478 gcc_assert (a
&& AT_class (a
) == dw_val_class_loc
);
7481 gcc_assert (loc
->dw_loc_opc
== DW_OP_addr
);
7483 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE
,
7484 loc
->dw_loc_oprnd1
.v
.val_addr
, "Address");
7485 dw2_asm_output_data (DWARF2_ADDR_SIZE
,
7486 get_AT_unsigned (die
, DW_AT_byte_size
),
7491 /* Output the terminator words. */
7492 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7493 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7496 /* Add a new entry to .debug_ranges. Return the offset at which it
7500 add_ranges (tree block
)
7502 unsigned int in_use
= ranges_table_in_use
;
7504 if (in_use
== ranges_table_allocated
)
7506 ranges_table_allocated
+= RANGES_TABLE_INCREMENT
;
7508 = ggc_realloc (ranges_table
, (ranges_table_allocated
7509 * sizeof (struct dw_ranges_struct
)));
7510 memset (ranges_table
+ ranges_table_in_use
, 0,
7511 RANGES_TABLE_INCREMENT
* sizeof (struct dw_ranges_struct
));
7514 ranges_table
[in_use
].block_num
= (block
? BLOCK_NUMBER (block
) : 0);
7515 ranges_table_in_use
= in_use
+ 1;
7517 return in_use
* 2 * DWARF2_ADDR_SIZE
;
7521 output_ranges (void)
7524 static const char *const start_fmt
= "Offset 0x%x";
7525 const char *fmt
= start_fmt
;
7527 for (i
= 0; i
< ranges_table_in_use
; i
++)
7529 int block_num
= ranges_table
[i
].block_num
;
7533 char blabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
7534 char elabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
7536 ASM_GENERATE_INTERNAL_LABEL (blabel
, BLOCK_BEGIN_LABEL
, block_num
);
7537 ASM_GENERATE_INTERNAL_LABEL (elabel
, BLOCK_END_LABEL
, block_num
);
7539 /* If all code is in the text section, then the compilation
7540 unit base address defaults to DW_AT_low_pc, which is the
7541 base of the text section. */
7542 if (!have_multiple_function_sections
)
7544 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, blabel
,
7546 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7547 dw2_asm_output_delta (DWARF2_ADDR_SIZE
, elabel
,
7548 text_section_label
, NULL
);
7551 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7552 compilation unit base address to zero, which allows us to
7553 use absolute addresses, and not worry about whether the
7554 target supports cross-section arithmetic. */
7557 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, blabel
,
7558 fmt
, i
* 2 * DWARF2_ADDR_SIZE
);
7559 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, elabel
, NULL
);
7566 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7567 dw2_asm_output_data (DWARF2_ADDR_SIZE
, 0, NULL
);
7573 /* Data structure containing information about input files. */
7576 const char *path
; /* Complete file name. */
7577 const char *fname
; /* File name part. */
7578 int length
; /* Length of entire string. */
7579 struct dwarf_file_data
* file_idx
; /* Index in input file table. */
7580 int dir_idx
; /* Index in directory table. */
7583 /* Data structure containing information about directories with source
7587 const char *path
; /* Path including directory name. */
7588 int length
; /* Path length. */
7589 int prefix
; /* Index of directory entry which is a prefix. */
7590 int count
; /* Number of files in this directory. */
7591 int dir_idx
; /* Index of directory used as base. */
7594 /* Callback function for file_info comparison. We sort by looking at
7595 the directories in the path. */
7598 file_info_cmp (const void *p1
, const void *p2
)
7600 const struct file_info
*s1
= p1
;
7601 const struct file_info
*s2
= p2
;
7605 /* Take care of file names without directories. We need to make sure that
7606 we return consistent values to qsort since some will get confused if
7607 we return the same value when identical operands are passed in opposite
7608 orders. So if neither has a directory, return 0 and otherwise return
7609 1 or -1 depending on which one has the directory. */
7610 if ((s1
->path
== s1
->fname
|| s2
->path
== s2
->fname
))
7611 return (s2
->path
== s2
->fname
) - (s1
->path
== s1
->fname
);
7613 cp1
= (unsigned char *) s1
->path
;
7614 cp2
= (unsigned char *) s2
->path
;
7620 /* Reached the end of the first path? If so, handle like above. */
7621 if ((cp1
== (unsigned char *) s1
->fname
)
7622 || (cp2
== (unsigned char *) s2
->fname
))
7623 return ((cp2
== (unsigned char *) s2
->fname
)
7624 - (cp1
== (unsigned char *) s1
->fname
));
7626 /* Character of current path component the same? */
7627 else if (*cp1
!= *cp2
)
7632 struct file_name_acquire_data
7634 struct file_info
*files
;
7639 /* Traversal function for the hash table. */
7642 file_name_acquire (void ** slot
, void *data
)
7644 struct file_name_acquire_data
*fnad
= data
;
7645 struct dwarf_file_data
*d
= *slot
;
7646 struct file_info
*fi
;
7649 gcc_assert (fnad
->max_files
>= d
->emitted_number
);
7651 if (! d
->emitted_number
)
7654 gcc_assert (fnad
->max_files
!= fnad
->used_files
);
7656 fi
= fnad
->files
+ fnad
->used_files
++;
7658 /* Skip all leading "./". */
7660 while (f
[0] == '.' && f
[1] == '/')
7663 /* Create a new array entry. */
7665 fi
->length
= strlen (f
);
7668 /* Search for the file name part. */
7669 f
= strrchr (f
, '/');
7670 fi
->fname
= f
== NULL
? fi
->path
: f
+ 1;
7674 /* Output the directory table and the file name table. We try to minimize
7675 the total amount of memory needed. A heuristic is used to avoid large
7676 slowdowns with many input files. */
7679 output_file_names (void)
7681 struct file_name_acquire_data fnad
;
7683 struct file_info
*files
;
7684 struct dir_info
*dirs
;
7693 if (!last_emitted_file
)
7695 dw2_asm_output_data (1, 0, "End directory table");
7696 dw2_asm_output_data (1, 0, "End file name table");
7700 numfiles
= last_emitted_file
->emitted_number
;
7702 /* Allocate the various arrays we need. */
7703 files
= alloca (numfiles
* sizeof (struct file_info
));
7704 dirs
= alloca (numfiles
* sizeof (struct dir_info
));
7707 fnad
.used_files
= 0;
7708 fnad
.max_files
= numfiles
;
7709 htab_traverse (file_table
, file_name_acquire
, &fnad
);
7710 gcc_assert (fnad
.used_files
== fnad
.max_files
);
7712 qsort (files
, numfiles
, sizeof (files
[0]), file_info_cmp
);
7714 /* Find all the different directories used. */
7715 dirs
[0].path
= files
[0].path
;
7716 dirs
[0].length
= files
[0].fname
- files
[0].path
;
7717 dirs
[0].prefix
= -1;
7719 dirs
[0].dir_idx
= 0;
7720 files
[0].dir_idx
= 0;
7723 for (i
= 1; i
< numfiles
; i
++)
7724 if (files
[i
].fname
- files
[i
].path
== dirs
[ndirs
- 1].length
7725 && memcmp (dirs
[ndirs
- 1].path
, files
[i
].path
,
7726 dirs
[ndirs
- 1].length
) == 0)
7728 /* Same directory as last entry. */
7729 files
[i
].dir_idx
= ndirs
- 1;
7730 ++dirs
[ndirs
- 1].count
;
7736 /* This is a new directory. */
7737 dirs
[ndirs
].path
= files
[i
].path
;
7738 dirs
[ndirs
].length
= files
[i
].fname
- files
[i
].path
;
7739 dirs
[ndirs
].count
= 1;
7740 dirs
[ndirs
].dir_idx
= ndirs
;
7741 files
[i
].dir_idx
= ndirs
;
7743 /* Search for a prefix. */
7744 dirs
[ndirs
].prefix
= -1;
7745 for (j
= 0; j
< ndirs
; j
++)
7746 if (dirs
[j
].length
< dirs
[ndirs
].length
7747 && dirs
[j
].length
> 1
7748 && (dirs
[ndirs
].prefix
== -1
7749 || dirs
[j
].length
> dirs
[dirs
[ndirs
].prefix
].length
)
7750 && memcmp (dirs
[j
].path
, dirs
[ndirs
].path
, dirs
[j
].length
) == 0)
7751 dirs
[ndirs
].prefix
= j
;
7756 /* Now to the actual work. We have to find a subset of the directories which
7757 allow expressing the file name using references to the directory table
7758 with the least amount of characters. We do not do an exhaustive search
7759 where we would have to check out every combination of every single
7760 possible prefix. Instead we use a heuristic which provides nearly optimal
7761 results in most cases and never is much off. */
7762 saved
= alloca (ndirs
* sizeof (int));
7763 savehere
= alloca (ndirs
* sizeof (int));
7765 memset (saved
, '\0', ndirs
* sizeof (saved
[0]));
7766 for (i
= 0; i
< ndirs
; i
++)
7771 /* We can always save some space for the current directory. But this
7772 does not mean it will be enough to justify adding the directory. */
7773 savehere
[i
] = dirs
[i
].length
;
7774 total
= (savehere
[i
] - saved
[i
]) * dirs
[i
].count
;
7776 for (j
= i
+ 1; j
< ndirs
; j
++)
7779 if (saved
[j
] < dirs
[i
].length
)
7781 /* Determine whether the dirs[i] path is a prefix of the
7786 while (k
!= -1 && k
!= (int) i
)
7791 /* Yes it is. We can possibly save some memory by
7792 writing the filenames in dirs[j] relative to
7794 savehere
[j
] = dirs
[i
].length
;
7795 total
+= (savehere
[j
] - saved
[j
]) * dirs
[j
].count
;
7800 /* Check whether we can save enough to justify adding the dirs[i]
7802 if (total
> dirs
[i
].length
+ 1)
7804 /* It's worthwhile adding. */
7805 for (j
= i
; j
< ndirs
; j
++)
7806 if (savehere
[j
] > 0)
7808 /* Remember how much we saved for this directory so far. */
7809 saved
[j
] = savehere
[j
];
7811 /* Remember the prefix directory. */
7812 dirs
[j
].dir_idx
= i
;
7817 /* Emit the directory name table. */
7819 idx_offset
= dirs
[0].length
> 0 ? 1 : 0;
7820 for (i
= 1 - idx_offset
; i
< ndirs
; i
++)
7821 dw2_asm_output_nstring (dirs
[i
].path
, dirs
[i
].length
- 1,
7822 "Directory Entry: 0x%x", i
+ idx_offset
);
7824 dw2_asm_output_data (1, 0, "End directory table");
7826 /* We have to emit them in the order of emitted_number since that's
7827 used in the debug info generation. To do this efficiently we
7828 generate a back-mapping of the indices first. */
7829 backmap
= alloca (numfiles
* sizeof (int));
7830 for (i
= 0; i
< numfiles
; i
++)
7831 backmap
[files
[i
].file_idx
->emitted_number
- 1] = i
;
7833 /* Now write all the file names. */
7834 for (i
= 0; i
< numfiles
; i
++)
7836 int file_idx
= backmap
[i
];
7837 int dir_idx
= dirs
[files
[file_idx
].dir_idx
].dir_idx
;
7839 dw2_asm_output_nstring (files
[file_idx
].path
+ dirs
[dir_idx
].length
, -1,
7840 "File Entry: 0x%x", (unsigned) i
+ 1);
7842 /* Include directory index. */
7843 dw2_asm_output_data_uleb128 (dir_idx
+ idx_offset
, NULL
);
7845 /* Modification time. */
7846 dw2_asm_output_data_uleb128 (0, NULL
);
7848 /* File length in bytes. */
7849 dw2_asm_output_data_uleb128 (0, NULL
);
7852 dw2_asm_output_data (1, 0, "End file name table");
7856 /* Output the source line number correspondence information. This
7857 information goes into the .debug_line section. */
7860 output_line_info (void)
7862 char l1
[20], l2
[20], p1
[20], p2
[20];
7863 char line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
7864 char prev_line_label
[MAX_ARTIFICIAL_LABEL_BYTES
];
7867 unsigned long lt_index
;
7868 unsigned long current_line
;
7871 unsigned long current_file
;
7872 unsigned long function
;
7874 ASM_GENERATE_INTERNAL_LABEL (l1
, LINE_NUMBER_BEGIN_LABEL
, 0);
7875 ASM_GENERATE_INTERNAL_LABEL (l2
, LINE_NUMBER_END_LABEL
, 0);
7876 ASM_GENERATE_INTERNAL_LABEL (p1
, LN_PROLOG_AS_LABEL
, 0);
7877 ASM_GENERATE_INTERNAL_LABEL (p2
, LN_PROLOG_END_LABEL
, 0);
7879 if (DWARF_INITIAL_LENGTH_SIZE
- DWARF_OFFSET_SIZE
== 4)
7880 dw2_asm_output_data (4, 0xffffffff,
7881 "Initial length escape value indicating 64-bit DWARF extension");
7882 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, l2
, l1
,
7883 "Length of Source Line Info");
7884 ASM_OUTPUT_LABEL (asm_out_file
, l1
);
7886 dw2_asm_output_data (2, DWARF_VERSION
, "DWARF Version");
7887 dw2_asm_output_delta (DWARF_OFFSET_SIZE
, p2
, p1
, "Prolog Length");
7888 ASM_OUTPUT_LABEL (asm_out_file
, p1
);
7890 /* Define the architecture-dependent minimum instruction length (in
7891 bytes). In this implementation of DWARF, this field is used for
7892 information purposes only. Since GCC generates assembly language,
7893 we have no a priori knowledge of how many instruction bytes are
7894 generated for each source line, and therefore can use only the
7895 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7896 commands. Accordingly, we fix this as `1', which is "correct
7897 enough" for all architectures, and don't let the target override. */
7898 dw2_asm_output_data (1, 1,
7899 "Minimum Instruction Length");
7901 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START
,
7902 "Default is_stmt_start flag");
7903 dw2_asm_output_data (1, DWARF_LINE_BASE
,
7904 "Line Base Value (Special Opcodes)");
7905 dw2_asm_output_data (1, DWARF_LINE_RANGE
,
7906 "Line Range Value (Special Opcodes)");
7907 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
,
7908 "Special Opcode Base");
7910 for (opc
= 1; opc
< DWARF_LINE_OPCODE_BASE
; opc
++)
7914 case DW_LNS_advance_pc
:
7915 case DW_LNS_advance_line
:
7916 case DW_LNS_set_file
:
7917 case DW_LNS_set_column
:
7918 case DW_LNS_fixed_advance_pc
:
7926 dw2_asm_output_data (1, n_op_args
, "opcode: 0x%x has %d args",
7930 /* Write out the information about the files we use. */
7931 output_file_names ();
7932 ASM_OUTPUT_LABEL (asm_out_file
, p2
);
7934 /* We used to set the address register to the first location in the text
7935 section here, but that didn't accomplish anything since we already
7936 have a line note for the opening brace of the first function. */
7938 /* Generate the line number to PC correspondence table, encoded as
7939 a series of state machine operations. */
7943 if (cfun
&& in_cold_section_p
)
7944 strcpy (prev_line_label
, cfun
->cold_section_label
);
7946 strcpy (prev_line_label
, text_section_label
);
7947 for (lt_index
= 1; lt_index
< line_info_table_in_use
; ++lt_index
)
7949 dw_line_info_ref line_info
= &line_info_table
[lt_index
];
7952 /* Disable this optimization for now; GDB wants to see two line notes
7953 at the beginning of a function so it can find the end of the
7956 /* Don't emit anything for redundant notes. Just updating the
7957 address doesn't accomplish anything, because we already assume
7958 that anything after the last address is this line. */
7959 if (line_info
->dw_line_num
== current_line
7960 && line_info
->dw_file_num
== current_file
)
7964 /* Emit debug info for the address of the current line.
7966 Unfortunately, we have little choice here currently, and must always
7967 use the most general form. GCC does not know the address delta
7968 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7969 attributes which will give an upper bound on the address range. We
7970 could perhaps use length attributes to determine when it is safe to
7971 use DW_LNS_fixed_advance_pc. */
7973 ASM_GENERATE_INTERNAL_LABEL (line_label
, LINE_CODE_LABEL
, lt_index
);
7976 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7977 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
7978 "DW_LNS_fixed_advance_pc");
7979 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
7983 /* This can handle any delta. This takes
7984 4+DWARF2_ADDR_SIZE bytes. */
7985 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7986 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
7987 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
7988 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
7991 strcpy (prev_line_label
, line_label
);
7993 /* Emit debug info for the source file of the current line, if
7994 different from the previous line. */
7995 if (line_info
->dw_file_num
!= current_file
)
7997 current_file
= line_info
->dw_file_num
;
7998 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
7999 dw2_asm_output_data_uleb128 (current_file
, "%lu", current_file
);
8002 /* Emit debug info for the current line number, choosing the encoding
8003 that uses the least amount of space. */
8004 if (line_info
->dw_line_num
!= current_line
)
8006 line_offset
= line_info
->dw_line_num
- current_line
;
8007 line_delta
= line_offset
- DWARF_LINE_BASE
;
8008 current_line
= line_info
->dw_line_num
;
8009 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
8010 /* This can handle deltas from -10 to 234, using the current
8011 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8013 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
8014 "line %lu", current_line
);
8017 /* This can handle any delta. This takes at least 4 bytes,
8018 depending on the value being encoded. */
8019 dw2_asm_output_data (1, DW_LNS_advance_line
,
8020 "advance to line %lu", current_line
);
8021 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
8022 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
8026 /* We still need to start a new row, so output a copy insn. */
8027 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
8030 /* Emit debug info for the address of the end of the function. */
8033 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
8034 "DW_LNS_fixed_advance_pc");
8035 dw2_asm_output_delta (2, text_end_label
, prev_line_label
, NULL
);
8039 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8040 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
8041 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
8042 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, text_end_label
, NULL
);
8045 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8046 dw2_asm_output_data_uleb128 (1, NULL
);
8047 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
8052 for (lt_index
= 0; lt_index
< separate_line_info_table_in_use
;)
8054 dw_separate_line_info_ref line_info
8055 = &separate_line_info_table
[lt_index
];
8058 /* Don't emit anything for redundant notes. */
8059 if (line_info
->dw_line_num
== current_line
8060 && line_info
->dw_file_num
== current_file
8061 && line_info
->function
== function
)
8065 /* Emit debug info for the address of the current line. If this is
8066 a new function, or the first line of a function, then we need
8067 to handle it differently. */
8068 ASM_GENERATE_INTERNAL_LABEL (line_label
, SEPARATE_LINE_CODE_LABEL
,
8070 if (function
!= line_info
->function
)
8072 function
= line_info
->function
;
8074 /* Set the address register to the first line in the function. */
8075 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8076 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
8077 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
8078 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
8082 /* ??? See the DW_LNS_advance_pc comment above. */
8085 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
8086 "DW_LNS_fixed_advance_pc");
8087 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
8091 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8092 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
8093 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
8094 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
8098 strcpy (prev_line_label
, line_label
);
8100 /* Emit debug info for the source file of the current line, if
8101 different from the previous line. */
8102 if (line_info
->dw_file_num
!= current_file
)
8104 current_file
= line_info
->dw_file_num
;
8105 dw2_asm_output_data (1, DW_LNS_set_file
, "DW_LNS_set_file");
8106 dw2_asm_output_data_uleb128 (current_file
, "%lu", current_file
);
8109 /* Emit debug info for the current line number, choosing the encoding
8110 that uses the least amount of space. */
8111 if (line_info
->dw_line_num
!= current_line
)
8113 line_offset
= line_info
->dw_line_num
- current_line
;
8114 line_delta
= line_offset
- DWARF_LINE_BASE
;
8115 current_line
= line_info
->dw_line_num
;
8116 if (line_delta
>= 0 && line_delta
< (DWARF_LINE_RANGE
- 1))
8117 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE
+ line_delta
,
8118 "line %lu", current_line
);
8121 dw2_asm_output_data (1, DW_LNS_advance_line
,
8122 "advance to line %lu", current_line
);
8123 dw2_asm_output_data_sleb128 (line_offset
, NULL
);
8124 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
8128 dw2_asm_output_data (1, DW_LNS_copy
, "DW_LNS_copy");
8136 /* If we're done with a function, end its sequence. */
8137 if (lt_index
== separate_line_info_table_in_use
8138 || separate_line_info_table
[lt_index
].function
!= function
)
8143 /* Emit debug info for the address of the end of the function. */
8144 ASM_GENERATE_INTERNAL_LABEL (line_label
, FUNC_END_LABEL
, function
);
8147 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc
,
8148 "DW_LNS_fixed_advance_pc");
8149 dw2_asm_output_delta (2, line_label
, prev_line_label
, NULL
);
8153 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8154 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE
, NULL
);
8155 dw2_asm_output_data (1, DW_LNE_set_address
, NULL
);
8156 dw2_asm_output_addr (DWARF2_ADDR_SIZE
, line_label
, NULL
);
8159 /* Output the marker for the end of this sequence. */
8160 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8161 dw2_asm_output_data_uleb128 (1, NULL
);
8162 dw2_asm_output_data (1, DW_LNE_end_sequence
, NULL
);
8166 /* Output the marker for the end of the line number info. */
8167 ASM_OUTPUT_LABEL (asm_out_file
, l2
);
8170 /* Given a pointer to a tree node for some base type, return a pointer to
8171 a DIE that describes the given type.
8173 This routine must only be called for GCC type nodes that correspond to
8174 Dwarf base (fundamental) types. */
8177 base_type_die (tree type
)
8179 dw_die_ref base_type_result
;
8180 enum dwarf_type encoding
;
8182 if (TREE_CODE (type
) == ERROR_MARK
|| TREE_CODE (type
) == VOID_TYPE
)
8185 switch (TREE_CODE (type
))
8188 if (TYPE_STRING_FLAG (type
))
8190 if (TYPE_UNSIGNED (type
))
8191 encoding
= DW_ATE_unsigned_char
;
8193 encoding
= DW_ATE_signed_char
;
8195 else if (TYPE_UNSIGNED (type
))
8196 encoding
= DW_ATE_unsigned
;
8198 encoding
= DW_ATE_signed
;
8202 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type
)))
8203 encoding
= DW_ATE_decimal_float
;
8205 encoding
= DW_ATE_float
;
8208 /* Dwarf2 doesn't know anything about complex ints, so use
8209 a user defined type for it. */
8211 if (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
)
8212 encoding
= DW_ATE_complex_float
;
8214 encoding
= DW_ATE_lo_user
;
8218 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8219 encoding
= DW_ATE_boolean
;
8223 /* No other TREE_CODEs are Dwarf fundamental types. */
8227 base_type_result
= new_die (DW_TAG_base_type
, comp_unit_die
, type
);
8229 /* This probably indicates a bug. */
8230 if (! TYPE_NAME (type
))
8231 add_name_attribute (base_type_result
, "__unknown__");
8233 add_AT_unsigned (base_type_result
, DW_AT_byte_size
,
8234 int_size_in_bytes (type
));
8235 add_AT_unsigned (base_type_result
, DW_AT_encoding
, encoding
);
8237 return base_type_result
;
8240 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8241 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8242 a given type is generally the same as the given type, except that if the
8243 given type is a pointer or reference type, then the root type of the given
8244 type is the root type of the "basis" type for the pointer or reference
8245 type. (This definition of the "root" type is recursive.) Also, the root
8246 type of a `const' qualified type or a `volatile' qualified type is the
8247 root type of the given type without the qualifiers. */
8250 root_type (tree type
)
8252 if (TREE_CODE (type
) == ERROR_MARK
)
8253 return error_mark_node
;
8255 switch (TREE_CODE (type
))
8258 return error_mark_node
;
8261 case REFERENCE_TYPE
:
8262 return type_main_variant (root_type (TREE_TYPE (type
)));
8265 return type_main_variant (type
);
8269 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8270 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8273 is_base_type (tree type
)
8275 switch (TREE_CODE (type
))
8288 case QUAL_UNION_TYPE
:
8293 case REFERENCE_TYPE
:
8306 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8307 node, return the size in bits for the type if it is a constant, or else
8308 return the alignment for the type if the type's size is not constant, or
8309 else return BITS_PER_WORD if the type actually turns out to be an
8312 static inline unsigned HOST_WIDE_INT
8313 simple_type_size_in_bits (tree type
)
8315 if (TREE_CODE (type
) == ERROR_MARK
)
8316 return BITS_PER_WORD
;
8317 else if (TYPE_SIZE (type
) == NULL_TREE
)
8319 else if (host_integerp (TYPE_SIZE (type
), 1))
8320 return tree_low_cst (TYPE_SIZE (type
), 1);
8322 return TYPE_ALIGN (type
);
8325 /* Return true if the debug information for the given type should be
8326 emitted as a subrange type. */
8329 is_subrange_type (tree type
)
8331 tree subtype
= TREE_TYPE (type
);
8333 /* Subrange types are identified by the fact that they are integer
8334 types, and that they have a subtype which is either an integer type
8335 or an enumeral type. */
8337 if (TREE_CODE (type
) != INTEGER_TYPE
8338 || subtype
== NULL_TREE
)
8341 if (TREE_CODE (subtype
) != INTEGER_TYPE
8342 && TREE_CODE (subtype
) != ENUMERAL_TYPE
)
8345 if (TREE_CODE (type
) == TREE_CODE (subtype
)
8346 && int_size_in_bytes (type
) == int_size_in_bytes (subtype
)
8347 && TYPE_MIN_VALUE (type
) != NULL
8348 && TYPE_MIN_VALUE (subtype
) != NULL
8349 && tree_int_cst_equal (TYPE_MIN_VALUE (type
), TYPE_MIN_VALUE (subtype
))
8350 && TYPE_MAX_VALUE (type
) != NULL
8351 && TYPE_MAX_VALUE (subtype
) != NULL
8352 && tree_int_cst_equal (TYPE_MAX_VALUE (type
), TYPE_MAX_VALUE (subtype
)))
8354 /* The type and its subtype have the same representation. If in
8355 addition the two types also have the same name, then the given
8356 type is not a subrange type, but rather a plain base type. */
8357 /* FIXME: brobecker/2004-03-22:
8358 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8359 therefore be sufficient to check the TYPE_SIZE node pointers
8360 rather than checking the actual size. Unfortunately, we have
8361 found some cases, such as in the Ada "integer" type, where
8362 this is not the case. Until this problem is solved, we need to
8363 keep checking the actual size. */
8364 tree type_name
= TYPE_NAME (type
);
8365 tree subtype_name
= TYPE_NAME (subtype
);
8367 if (type_name
!= NULL
&& TREE_CODE (type_name
) == TYPE_DECL
)
8368 type_name
= DECL_NAME (type_name
);
8370 if (subtype_name
!= NULL
&& TREE_CODE (subtype_name
) == TYPE_DECL
)
8371 subtype_name
= DECL_NAME (subtype_name
);
8373 if (type_name
== subtype_name
)
8380 /* Given a pointer to a tree node for a subrange type, return a pointer
8381 to a DIE that describes the given type. */
8384 subrange_type_die (tree type
, dw_die_ref context_die
)
8386 dw_die_ref subrange_die
;
8387 const HOST_WIDE_INT size_in_bytes
= int_size_in_bytes (type
);
8389 if (context_die
== NULL
)
8390 context_die
= comp_unit_die
;
8392 subrange_die
= new_die (DW_TAG_subrange_type
, context_die
, type
);
8394 if (int_size_in_bytes (TREE_TYPE (type
)) != size_in_bytes
)
8396 /* The size of the subrange type and its base type do not match,
8397 so we need to generate a size attribute for the subrange type. */
8398 add_AT_unsigned (subrange_die
, DW_AT_byte_size
, size_in_bytes
);
8401 if (TYPE_MIN_VALUE (type
) != NULL
)
8402 add_bound_info (subrange_die
, DW_AT_lower_bound
,
8403 TYPE_MIN_VALUE (type
));
8404 if (TYPE_MAX_VALUE (type
) != NULL
)
8405 add_bound_info (subrange_die
, DW_AT_upper_bound
,
8406 TYPE_MAX_VALUE (type
));
8408 return subrange_die
;
8411 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8412 entry that chains various modifiers in front of the given type. */
8415 modified_type_die (tree type
, int is_const_type
, int is_volatile_type
,
8416 dw_die_ref context_die
)
8418 enum tree_code code
= TREE_CODE (type
);
8419 dw_die_ref mod_type_die
;
8420 dw_die_ref sub_die
= NULL
;
8421 tree item_type
= NULL
;
8422 tree qualified_type
;
8425 if (code
== ERROR_MARK
)
8428 /* See if we already have the appropriately qualified variant of
8431 = get_qualified_type (type
,
8432 ((is_const_type
? TYPE_QUAL_CONST
: 0)
8433 | (is_volatile_type
? TYPE_QUAL_VOLATILE
: 0)));
8435 /* If we do, then we can just use its DIE, if it exists. */
8438 mod_type_die
= lookup_type_die (qualified_type
);
8440 return mod_type_die
;
8443 name
= qualified_type
? TYPE_NAME (qualified_type
) : NULL
;
8445 /* Handle C typedef types. */
8446 if (name
&& TREE_CODE (name
) == TYPE_DECL
&& DECL_ORIGINAL_TYPE (name
))
8448 tree dtype
= TREE_TYPE (name
);
8450 if (qualified_type
== dtype
)
8452 /* For a named type, use the typedef. */
8453 gen_type_die (qualified_type
, context_die
);
8454 return lookup_type_die (qualified_type
);
8456 else if (is_const_type
< TYPE_READONLY (dtype
)
8457 || is_volatile_type
< TYPE_VOLATILE (dtype
)
8458 || (is_const_type
<= TYPE_READONLY (dtype
)
8459 && is_volatile_type
<= TYPE_VOLATILE (dtype
)
8460 && DECL_ORIGINAL_TYPE (name
) != type
))
8461 /* cv-unqualified version of named type. Just use the unnamed
8462 type to which it refers. */
8463 return modified_type_die (DECL_ORIGINAL_TYPE (name
),
8464 is_const_type
, is_volatile_type
,
8466 /* Else cv-qualified version of named type; fall through. */
8471 mod_type_die
= new_die (DW_TAG_const_type
, comp_unit_die
, type
);
8472 sub_die
= modified_type_die (type
, 0, is_volatile_type
, context_die
);
8474 else if (is_volatile_type
)
8476 mod_type_die
= new_die (DW_TAG_volatile_type
, comp_unit_die
, type
);
8477 sub_die
= modified_type_die (type
, 0, 0, context_die
);
8479 else if (code
== POINTER_TYPE
)
8481 mod_type_die
= new_die (DW_TAG_pointer_type
, comp_unit_die
, type
);
8482 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
8483 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
8484 item_type
= TREE_TYPE (type
);
8486 else if (code
== REFERENCE_TYPE
)
8488 mod_type_die
= new_die (DW_TAG_reference_type
, comp_unit_die
, type
);
8489 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
,
8490 simple_type_size_in_bits (type
) / BITS_PER_UNIT
);
8491 item_type
= TREE_TYPE (type
);
8493 else if (is_subrange_type (type
))
8495 mod_type_die
= subrange_type_die (type
, context_die
);
8496 item_type
= TREE_TYPE (type
);
8498 else if (is_base_type (type
))
8499 mod_type_die
= base_type_die (type
);
8502 gen_type_die (type
, context_die
);
8504 /* We have to get the type_main_variant here (and pass that to the
8505 `lookup_type_die' routine) because the ..._TYPE node we have
8506 might simply be a *copy* of some original type node (where the
8507 copy was created to help us keep track of typedef names) and
8508 that copy might have a different TYPE_UID from the original
8510 if (TREE_CODE (type
) != VECTOR_TYPE
)
8511 return lookup_type_die (type_main_variant (type
));
8513 /* Vectors have the debugging information in the type,
8514 not the main variant. */
8515 return lookup_type_die (type
);
8518 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8519 don't output a DW_TAG_typedef, since there isn't one in the
8520 user's program; just attach a DW_AT_name to the type. */
8522 && (TREE_CODE (name
) != TYPE_DECL
|| TREE_TYPE (name
) == qualified_type
))
8524 if (TREE_CODE (name
) == TYPE_DECL
)
8525 /* Could just call add_name_and_src_coords_attributes here,
8526 but since this is a builtin type it doesn't have any
8527 useful source coordinates anyway. */
8528 name
= DECL_NAME (name
);
8529 add_name_attribute (mod_type_die
, IDENTIFIER_POINTER (name
));
8533 equate_type_number_to_die (qualified_type
, mod_type_die
);
8536 /* We must do this after the equate_type_number_to_die call, in case
8537 this is a recursive type. This ensures that the modified_type_die
8538 recursion will terminate even if the type is recursive. Recursive
8539 types are possible in Ada. */
8540 sub_die
= modified_type_die (item_type
,
8541 TYPE_READONLY (item_type
),
8542 TYPE_VOLATILE (item_type
),
8545 if (sub_die
!= NULL
)
8546 add_AT_die_ref (mod_type_die
, DW_AT_type
, sub_die
);
8548 return mod_type_die
;
8551 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8552 an enumerated type. */
8555 type_is_enum (tree type
)
8557 return TREE_CODE (type
) == ENUMERAL_TYPE
;
8560 /* Return the DBX register number described by a given RTL node. */
8563 dbx_reg_number (rtx rtl
)
8565 unsigned regno
= REGNO (rtl
);
8567 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
8569 #ifdef LEAF_REG_REMAP
8570 if (current_function_uses_only_leaf_regs
)
8572 int leaf_reg
= LEAF_REG_REMAP (regno
);
8574 regno
= (unsigned) leaf_reg
;
8578 return DBX_REGISTER_NUMBER (regno
);
8581 /* Optionally add a DW_OP_piece term to a location description expression.
8582 DW_OP_piece is only added if the location description expression already
8583 doesn't end with DW_OP_piece. */
8586 add_loc_descr_op_piece (dw_loc_descr_ref
*list_head
, int size
)
8588 dw_loc_descr_ref loc
;
8590 if (*list_head
!= NULL
)
8592 /* Find the end of the chain. */
8593 for (loc
= *list_head
; loc
->dw_loc_next
!= NULL
; loc
= loc
->dw_loc_next
)
8596 if (loc
->dw_loc_opc
!= DW_OP_piece
)
8597 loc
->dw_loc_next
= new_loc_descr (DW_OP_piece
, size
, 0);
8601 /* Return a location descriptor that designates a machine register or
8602 zero if there is none. */
8604 static dw_loc_descr_ref
8605 reg_loc_descriptor (rtx rtl
)
8609 if (REGNO (rtl
) >= FIRST_PSEUDO_REGISTER
)
8612 regs
= targetm
.dwarf_register_span (rtl
);
8614 if (hard_regno_nregs
[REGNO (rtl
)][GET_MODE (rtl
)] > 1 || regs
)
8615 return multiple_reg_loc_descriptor (rtl
, regs
);
8617 return one_reg_loc_descriptor (dbx_reg_number (rtl
));
8620 /* Return a location descriptor that designates a machine register for
8621 a given hard register number. */
8623 static dw_loc_descr_ref
8624 one_reg_loc_descriptor (unsigned int regno
)
8627 return new_loc_descr (DW_OP_reg0
+ regno
, 0, 0);
8629 return new_loc_descr (DW_OP_regx
, regno
, 0);
8632 /* Given an RTL of a register, return a location descriptor that
8633 designates a value that spans more than one register. */
8635 static dw_loc_descr_ref
8636 multiple_reg_loc_descriptor (rtx rtl
, rtx regs
)
8640 dw_loc_descr_ref loc_result
= NULL
;
8643 #ifdef LEAF_REG_REMAP
8644 if (current_function_uses_only_leaf_regs
)
8646 int leaf_reg
= LEAF_REG_REMAP (reg
);
8648 reg
= (unsigned) leaf_reg
;
8651 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg
) == dbx_reg_number (rtl
));
8652 nregs
= hard_regno_nregs
[REGNO (rtl
)][GET_MODE (rtl
)];
8654 /* Simple, contiguous registers. */
8655 if (regs
== NULL_RTX
)
8657 size
= GET_MODE_SIZE (GET_MODE (rtl
)) / nregs
;
8664 t
= one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg
));
8665 add_loc_descr (&loc_result
, t
);
8666 add_loc_descr_op_piece (&loc_result
, size
);
8672 /* Now onto stupid register sets in non contiguous locations. */
8674 gcc_assert (GET_CODE (regs
) == PARALLEL
);
8676 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
8679 for (i
= 0; i
< XVECLEN (regs
, 0); ++i
)
8683 t
= one_reg_loc_descriptor (REGNO (XVECEXP (regs
, 0, i
)));
8684 add_loc_descr (&loc_result
, t
);
8685 size
= GET_MODE_SIZE (GET_MODE (XVECEXP (regs
, 0, 0)));
8686 add_loc_descr_op_piece (&loc_result
, size
);
8691 /* Return a location descriptor that designates a constant. */
8693 static dw_loc_descr_ref
8694 int_loc_descriptor (HOST_WIDE_INT i
)
8696 enum dwarf_location_atom op
;
8698 /* Pick the smallest representation of a constant, rather than just
8699 defaulting to the LEB encoding. */
8703 op
= DW_OP_lit0
+ i
;
8706 else if (i
<= 0xffff)
8708 else if (HOST_BITS_PER_WIDE_INT
== 32
8718 else if (i
>= -0x8000)
8720 else if (HOST_BITS_PER_WIDE_INT
== 32
8721 || i
>= -0x80000000)
8727 return new_loc_descr (op
, i
, 0);
8730 /* Return a location descriptor that designates a base+offset location. */
8732 static dw_loc_descr_ref
8733 based_loc_descr (rtx reg
, HOST_WIDE_INT offset
)
8737 /* We only use "frame base" when we're sure we're talking about the
8738 post-prologue local stack frame. We do this by *not* running
8739 register elimination until this point, and recognizing the special
8740 argument pointer and soft frame pointer rtx's. */
8741 if (reg
== arg_pointer_rtx
|| reg
== frame_pointer_rtx
)
8743 rtx elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
8747 if (GET_CODE (elim
) == PLUS
)
8749 offset
+= INTVAL (XEXP (elim
, 1));
8750 elim
= XEXP (elim
, 0);
8752 gcc_assert (elim
== (frame_pointer_needed
? hard_frame_pointer_rtx
8753 : stack_pointer_rtx
));
8754 offset
+= frame_pointer_fb_offset
;
8756 return new_loc_descr (DW_OP_fbreg
, offset
, 0);
8760 regno
= dbx_reg_number (reg
);
8762 return new_loc_descr (DW_OP_breg0
+ regno
, offset
, 0);
8764 return new_loc_descr (DW_OP_bregx
, regno
, offset
);
8767 /* Return true if this RTL expression describes a base+offset calculation. */
8770 is_based_loc (rtx rtl
)
8772 return (GET_CODE (rtl
) == PLUS
8773 && ((REG_P (XEXP (rtl
, 0))
8774 && REGNO (XEXP (rtl
, 0)) < FIRST_PSEUDO_REGISTER
8775 && GET_CODE (XEXP (rtl
, 1)) == CONST_INT
)));
8778 /* The following routine converts the RTL for a variable or parameter
8779 (resident in memory) into an equivalent Dwarf representation of a
8780 mechanism for getting the address of that same variable onto the top of a
8781 hypothetical "address evaluation" stack.
8783 When creating memory location descriptors, we are effectively transforming
8784 the RTL for a memory-resident object into its Dwarf postfix expression
8785 equivalent. This routine recursively descends an RTL tree, turning
8786 it into Dwarf postfix code as it goes.
8788 MODE is the mode of the memory reference, needed to handle some
8789 autoincrement addressing modes.
8791 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8792 location list for RTL.
8794 Return 0 if we can't represent the location. */
8796 static dw_loc_descr_ref
8797 mem_loc_descriptor (rtx rtl
, enum machine_mode mode
)
8799 dw_loc_descr_ref mem_loc_result
= NULL
;
8800 enum dwarf_location_atom op
;
8802 /* Note that for a dynamically sized array, the location we will generate a
8803 description of here will be the lowest numbered location which is
8804 actually within the array. That's *not* necessarily the same as the
8805 zeroth element of the array. */
8807 rtl
= targetm
.delegitimize_address (rtl
);
8809 switch (GET_CODE (rtl
))
8814 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8815 just fall into the SUBREG code. */
8817 /* ... fall through ... */
8820 /* The case of a subreg may arise when we have a local (register)
8821 variable or a formal (register) parameter which doesn't quite fill
8822 up an entire register. For now, just assume that it is
8823 legitimate to make the Dwarf info refer to the whole register which
8824 contains the given subreg. */
8825 rtl
= XEXP (rtl
, 0);
8827 /* ... fall through ... */
8830 /* Whenever a register number forms a part of the description of the
8831 method for calculating the (dynamic) address of a memory resident
8832 object, DWARF rules require the register number be referred to as
8833 a "base register". This distinction is not based in any way upon
8834 what category of register the hardware believes the given register
8835 belongs to. This is strictly DWARF terminology we're dealing with
8836 here. Note that in cases where the location of a memory-resident
8837 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8838 OP_CONST (0)) the actual DWARF location descriptor that we generate
8839 may just be OP_BASEREG (basereg). This may look deceptively like
8840 the object in question was allocated to a register (rather than in
8841 memory) so DWARF consumers need to be aware of the subtle
8842 distinction between OP_REG and OP_BASEREG. */
8843 if (REGNO (rtl
) < FIRST_PSEUDO_REGISTER
)
8844 mem_loc_result
= based_loc_descr (rtl
, 0);
8848 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
));
8849 if (mem_loc_result
!= 0)
8850 add_loc_descr (&mem_loc_result
, new_loc_descr (DW_OP_deref
, 0, 0));
8854 rtl
= XEXP (rtl
, 1);
8856 /* ... fall through ... */
8859 /* Some ports can transform a symbol ref into a label ref, because
8860 the symbol ref is too far away and has to be dumped into a constant
8864 /* Alternatively, the symbol in the constant pool might be referenced
8865 by a different symbol. */
8866 if (GET_CODE (rtl
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (rtl
))
8869 rtx tmp
= get_pool_constant_mark (rtl
, &marked
);
8871 if (GET_CODE (tmp
) == SYMBOL_REF
)
8874 if (CONSTANT_POOL_ADDRESS_P (tmp
))
8875 get_pool_constant_mark (tmp
, &marked
);
8880 /* If all references to this pool constant were optimized away,
8881 it was not output and thus we can't represent it.
8882 FIXME: might try to use DW_OP_const_value here, though
8883 DW_OP_piece complicates it. */
8888 mem_loc_result
= new_loc_descr (DW_OP_addr
, 0, 0);
8889 mem_loc_result
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
8890 mem_loc_result
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
8891 VEC_safe_push (rtx
, gc
, used_rtx_array
, rtl
);
8895 /* Extract the PLUS expression nested inside and fall into
8897 rtl
= XEXP (rtl
, 1);
8902 /* Turn these into a PLUS expression and fall into the PLUS code
8904 rtl
= gen_rtx_PLUS (word_mode
, XEXP (rtl
, 0),
8905 GEN_INT (GET_CODE (rtl
) == PRE_INC
8906 ? GET_MODE_UNIT_SIZE (mode
)
8907 : -GET_MODE_UNIT_SIZE (mode
)));
8909 /* ... fall through ... */
8913 if (is_based_loc (rtl
))
8914 mem_loc_result
= based_loc_descr (XEXP (rtl
, 0),
8915 INTVAL (XEXP (rtl
, 1)));
8918 mem_loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), mode
);
8919 if (mem_loc_result
== 0)
8922 if (GET_CODE (XEXP (rtl
, 1)) == CONST_INT
8923 && INTVAL (XEXP (rtl
, 1)) >= 0)
8924 add_loc_descr (&mem_loc_result
,
8925 new_loc_descr (DW_OP_plus_uconst
,
8926 INTVAL (XEXP (rtl
, 1)), 0));
8929 add_loc_descr (&mem_loc_result
,
8930 mem_loc_descriptor (XEXP (rtl
, 1), mode
));
8931 add_loc_descr (&mem_loc_result
,
8932 new_loc_descr (DW_OP_plus
, 0, 0));
8937 /* If a pseudo-reg is optimized away, it is possible for it to
8938 be replaced with a MEM containing a multiply or shift. */
8957 dw_loc_descr_ref op0
= mem_loc_descriptor (XEXP (rtl
, 0), mode
);
8958 dw_loc_descr_ref op1
= mem_loc_descriptor (XEXP (rtl
, 1), mode
);
8960 if (op0
== 0 || op1
== 0)
8963 mem_loc_result
= op0
;
8964 add_loc_descr (&mem_loc_result
, op1
);
8965 add_loc_descr (&mem_loc_result
, new_loc_descr (op
, 0, 0));
8970 mem_loc_result
= int_loc_descriptor (INTVAL (rtl
));
8977 return mem_loc_result
;
8980 /* Return a descriptor that describes the concatenation of two locations.
8981 This is typically a complex variable. */
8983 static dw_loc_descr_ref
8984 concat_loc_descriptor (rtx x0
, rtx x1
)
8986 dw_loc_descr_ref cc_loc_result
= NULL
;
8987 dw_loc_descr_ref x0_ref
= loc_descriptor (x0
);
8988 dw_loc_descr_ref x1_ref
= loc_descriptor (x1
);
8990 if (x0_ref
== 0 || x1_ref
== 0)
8993 cc_loc_result
= x0_ref
;
8994 add_loc_descr_op_piece (&cc_loc_result
, GET_MODE_SIZE (GET_MODE (x0
)));
8996 add_loc_descr (&cc_loc_result
, x1_ref
);
8997 add_loc_descr_op_piece (&cc_loc_result
, GET_MODE_SIZE (GET_MODE (x1
)));
8999 return cc_loc_result
;
9002 /* Output a proper Dwarf location descriptor for a variable or parameter
9003 which is either allocated in a register or in a memory location. For a
9004 register, we just generate an OP_REG and the register number. For a
9005 memory location we provide a Dwarf postfix expression describing how to
9006 generate the (dynamic) address of the object onto the address stack.
9008 If we don't know how to describe it, return 0. */
9010 static dw_loc_descr_ref
9011 loc_descriptor (rtx rtl
)
9013 dw_loc_descr_ref loc_result
= NULL
;
9015 switch (GET_CODE (rtl
))
9018 /* The case of a subreg may arise when we have a local (register)
9019 variable or a formal (register) parameter which doesn't quite fill
9020 up an entire register. For now, just assume that it is
9021 legitimate to make the Dwarf info refer to the whole register which
9022 contains the given subreg. */
9023 rtl
= SUBREG_REG (rtl
);
9025 /* ... fall through ... */
9028 loc_result
= reg_loc_descriptor (rtl
);
9032 loc_result
= mem_loc_descriptor (XEXP (rtl
, 0), GET_MODE (rtl
));
9036 loc_result
= concat_loc_descriptor (XEXP (rtl
, 0), XEXP (rtl
, 1));
9041 if (GET_CODE (XEXP (rtl
, 1)) != PARALLEL
)
9043 loc_result
= loc_descriptor (XEXP (XEXP (rtl
, 1), 0));
9047 rtl
= XEXP (rtl
, 1);
9052 rtvec par_elems
= XVEC (rtl
, 0);
9053 int num_elem
= GET_NUM_ELEM (par_elems
);
9054 enum machine_mode mode
;
9057 /* Create the first one, so we have something to add to. */
9058 loc_result
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, 0), 0));
9059 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, 0), 0));
9060 add_loc_descr_op_piece (&loc_result
, GET_MODE_SIZE (mode
));
9061 for (i
= 1; i
< num_elem
; i
++)
9063 dw_loc_descr_ref temp
;
9065 temp
= loc_descriptor (XEXP (RTVEC_ELT (par_elems
, i
), 0));
9066 add_loc_descr (&loc_result
, temp
);
9067 mode
= GET_MODE (XEXP (RTVEC_ELT (par_elems
, i
), 0));
9068 add_loc_descr_op_piece (&loc_result
, GET_MODE_SIZE (mode
));
9080 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9081 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9082 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9083 top-level invocation, and we require the address of LOC; is 0 if we require
9084 the value of LOC. */
9086 static dw_loc_descr_ref
9087 loc_descriptor_from_tree_1 (tree loc
, int want_address
)
9089 dw_loc_descr_ref ret
, ret1
;
9090 int have_address
= 0;
9091 enum dwarf_location_atom op
;
9093 /* ??? Most of the time we do not take proper care for sign/zero
9094 extending the values properly. Hopefully this won't be a real
9097 switch (TREE_CODE (loc
))
9102 case PLACEHOLDER_EXPR
:
9103 /* This case involves extracting fields from an object to determine the
9104 position of other fields. We don't try to encode this here. The
9105 only user of this is Ada, which encodes the needed information using
9106 the names of types. */
9112 case PREINCREMENT_EXPR
:
9113 case PREDECREMENT_EXPR
:
9114 case POSTINCREMENT_EXPR
:
9115 case POSTDECREMENT_EXPR
:
9116 /* There are no opcodes for these operations. */
9120 /* If we already want an address, there's nothing we can do. */
9124 /* Otherwise, process the argument and look for the address. */
9125 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 1);
9128 if (DECL_THREAD_LOCAL_P (loc
))
9132 /* If this is not defined, we have no way to emit the data. */
9133 if (!targetm
.asm_out
.output_dwarf_dtprel
)
9136 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9137 look up addresses of objects in the current module. */
9138 if (DECL_EXTERNAL (loc
))
9141 rtl
= rtl_for_decl_location (loc
);
9142 if (rtl
== NULL_RTX
)
9147 rtl
= XEXP (rtl
, 0);
9148 if (! CONSTANT_P (rtl
))
9151 ret
= new_loc_descr (INTERNAL_DW_OP_tls_addr
, 0, 0);
9152 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
9153 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
9155 ret1
= new_loc_descr (DW_OP_GNU_push_tls_address
, 0, 0);
9156 add_loc_descr (&ret
, ret1
);
9164 if (DECL_HAS_VALUE_EXPR_P (loc
))
9165 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc
),
9172 rtx rtl
= rtl_for_decl_location (loc
);
9174 if (rtl
== NULL_RTX
)
9176 else if (GET_CODE (rtl
) == CONST_INT
)
9178 HOST_WIDE_INT val
= INTVAL (rtl
);
9179 if (TYPE_UNSIGNED (TREE_TYPE (loc
)))
9180 val
&= GET_MODE_MASK (DECL_MODE (loc
));
9181 ret
= int_loc_descriptor (val
);
9183 else if (GET_CODE (rtl
) == CONST_STRING
)
9185 else if (CONSTANT_P (rtl
))
9187 ret
= new_loc_descr (DW_OP_addr
, 0, 0);
9188 ret
->dw_loc_oprnd1
.val_class
= dw_val_class_addr
;
9189 ret
->dw_loc_oprnd1
.v
.val_addr
= rtl
;
9193 enum machine_mode mode
;
9195 /* Certain constructs can only be represented at top-level. */
9196 if (want_address
== 2)
9197 return loc_descriptor (rtl
);
9199 mode
= GET_MODE (rtl
);
9202 rtl
= XEXP (rtl
, 0);
9205 ret
= mem_loc_descriptor (rtl
, mode
);
9211 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9216 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 1), want_address
);
9220 case NON_LVALUE_EXPR
:
9221 case VIEW_CONVERT_EXPR
:
9224 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), want_address
);
9229 case ARRAY_RANGE_REF
:
9232 HOST_WIDE_INT bitsize
, bitpos
, bytepos
;
9233 enum machine_mode mode
;
9235 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (loc
));
9237 obj
= get_inner_reference (loc
, &bitsize
, &bitpos
, &offset
, &mode
,
9238 &unsignedp
, &volatilep
, false);
9243 ret
= loc_descriptor_from_tree_1 (obj
, 1);
9245 || bitpos
% BITS_PER_UNIT
!= 0 || bitsize
% BITS_PER_UNIT
!= 0)
9248 if (offset
!= NULL_TREE
)
9250 /* Variable offset. */
9251 add_loc_descr (&ret
, loc_descriptor_from_tree_1 (offset
, 0));
9252 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
9255 bytepos
= bitpos
/ BITS_PER_UNIT
;
9257 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus_uconst
, bytepos
, 0));
9258 else if (bytepos
< 0)
9260 add_loc_descr (&ret
, int_loc_descriptor (bytepos
));
9261 add_loc_descr (&ret
, new_loc_descr (DW_OP_plus
, 0, 0));
9269 if (host_integerp (loc
, 0))
9270 ret
= int_loc_descriptor (tree_low_cst (loc
, 0));
9277 /* Get an RTL for this, if something has been emitted. */
9278 rtx rtl
= lookup_constant_def (loc
);
9279 enum machine_mode mode
;
9281 if (!rtl
|| !MEM_P (rtl
))
9283 mode
= GET_MODE (rtl
);
9284 rtl
= XEXP (rtl
, 0);
9285 ret
= mem_loc_descriptor (rtl
, mode
);
9290 case TRUTH_AND_EXPR
:
9291 case TRUTH_ANDIF_EXPR
:
9296 case TRUTH_XOR_EXPR
:
9302 case TRUTH_ORIF_EXPR
:
9307 case FLOOR_DIV_EXPR
:
9309 case ROUND_DIV_EXPR
:
9310 case TRUNC_DIV_EXPR
:
9318 case FLOOR_MOD_EXPR
:
9320 case ROUND_MOD_EXPR
:
9321 case TRUNC_MOD_EXPR
:
9334 op
= (TYPE_UNSIGNED (TREE_TYPE (loc
)) ? DW_OP_shr
: DW_OP_shra
);
9338 if (TREE_CODE (TREE_OPERAND (loc
, 1)) == INTEGER_CST
9339 && host_integerp (TREE_OPERAND (loc
, 1), 0))
9341 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9345 add_loc_descr (&ret
,
9346 new_loc_descr (DW_OP_plus_uconst
,
9347 tree_low_cst (TREE_OPERAND (loc
, 1),
9357 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9364 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9371 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9378 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc
, 0))))
9393 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9394 ret1
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 1), 0);
9395 if (ret
== 0 || ret1
== 0)
9398 add_loc_descr (&ret
, ret1
);
9399 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
9402 case TRUTH_NOT_EXPR
:
9416 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9420 add_loc_descr (&ret
, new_loc_descr (op
, 0, 0));
9426 const enum tree_code code
=
9427 TREE_CODE (loc
) == MIN_EXPR
? GT_EXPR
: LT_EXPR
;
9429 loc
= build3 (COND_EXPR
, TREE_TYPE (loc
),
9430 build2 (code
, integer_type_node
,
9431 TREE_OPERAND (loc
, 0), TREE_OPERAND (loc
, 1)),
9432 TREE_OPERAND (loc
, 1), TREE_OPERAND (loc
, 0));
9435 /* ... fall through ... */
9439 dw_loc_descr_ref lhs
9440 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 1), 0);
9441 dw_loc_descr_ref rhs
9442 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 2), 0);
9443 dw_loc_descr_ref bra_node
, jump_node
, tmp
;
9445 ret
= loc_descriptor_from_tree_1 (TREE_OPERAND (loc
, 0), 0);
9446 if (ret
== 0 || lhs
== 0 || rhs
== 0)
9449 bra_node
= new_loc_descr (DW_OP_bra
, 0, 0);
9450 add_loc_descr (&ret
, bra_node
);
9452 add_loc_descr (&ret
, rhs
);
9453 jump_node
= new_loc_descr (DW_OP_skip
, 0, 0);
9454 add_loc_descr (&ret
, jump_node
);
9456 add_loc_descr (&ret
, lhs
);
9457 bra_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
9458 bra_node
->dw_loc_oprnd1
.v
.val_loc
= lhs
;
9460 /* ??? Need a node to point the skip at. Use a nop. */
9461 tmp
= new_loc_descr (DW_OP_nop
, 0, 0);
9462 add_loc_descr (&ret
, tmp
);
9463 jump_node
->dw_loc_oprnd1
.val_class
= dw_val_class_loc
;
9464 jump_node
->dw_loc_oprnd1
.v
.val_loc
= tmp
;
9468 case FIX_TRUNC_EXPR
:
9470 case FIX_FLOOR_EXPR
:
9471 case FIX_ROUND_EXPR
:
9475 /* Leave front-end specific codes as simply unknown. This comes
9476 up, for instance, with the C STMT_EXPR. */
9477 if ((unsigned int) TREE_CODE (loc
)
9478 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
9481 #ifdef ENABLE_CHECKING
9482 /* Otherwise this is a generic code; we should just lists all of
9483 these explicitly. We forgot one. */
9486 /* In a release build, we want to degrade gracefully: better to
9487 generate incomplete debugging information than to crash. */
9492 /* Show if we can't fill the request for an address. */
9493 if (want_address
&& !have_address
)
9496 /* If we've got an address and don't want one, dereference. */
9497 if (!want_address
&& have_address
&& ret
)
9499 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (loc
));
9501 if (size
> DWARF2_ADDR_SIZE
|| size
== -1)
9503 else if (size
== DWARF2_ADDR_SIZE
)
9506 op
= DW_OP_deref_size
;
9508 add_loc_descr (&ret
, new_loc_descr (op
, size
, 0));
9514 static inline dw_loc_descr_ref
9515 loc_descriptor_from_tree (tree loc
)
9517 return loc_descriptor_from_tree_1 (loc
, 2);
9520 /* Given a value, round it up to the lowest multiple of `boundary'
9521 which is not less than the value itself. */
9523 static inline HOST_WIDE_INT
9524 ceiling (HOST_WIDE_INT value
, unsigned int boundary
)
9526 return (((value
+ boundary
- 1) / boundary
) * boundary
);
9529 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9530 pointer to the declared type for the relevant field variable, or return
9531 `integer_type_node' if the given node turns out to be an
9535 field_type (tree decl
)
9539 if (TREE_CODE (decl
) == ERROR_MARK
)
9540 return integer_type_node
;
9542 type
= DECL_BIT_FIELD_TYPE (decl
);
9543 if (type
== NULL_TREE
)
9544 type
= TREE_TYPE (decl
);
9549 /* Given a pointer to a tree node, return the alignment in bits for
9550 it, or else return BITS_PER_WORD if the node actually turns out to
9551 be an ERROR_MARK node. */
9553 static inline unsigned
9554 simple_type_align_in_bits (tree type
)
9556 return (TREE_CODE (type
) != ERROR_MARK
) ? TYPE_ALIGN (type
) : BITS_PER_WORD
;
9559 static inline unsigned
9560 simple_decl_align_in_bits (tree decl
)
9562 return (TREE_CODE (decl
) != ERROR_MARK
) ? DECL_ALIGN (decl
) : BITS_PER_WORD
;
9565 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9566 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9567 or return 0 if we are unable to determine what that offset is, either
9568 because the argument turns out to be a pointer to an ERROR_MARK node, or
9569 because the offset is actually variable. (We can't handle the latter case
9572 static HOST_WIDE_INT
9573 field_byte_offset (tree decl
)
9575 unsigned int type_align_in_bits
;
9576 unsigned int decl_align_in_bits
;
9577 unsigned HOST_WIDE_INT type_size_in_bits
;
9578 HOST_WIDE_INT object_offset_in_bits
;
9580 tree field_size_tree
;
9581 HOST_WIDE_INT bitpos_int
;
9582 HOST_WIDE_INT deepest_bitpos
;
9583 unsigned HOST_WIDE_INT field_size_in_bits
;
9585 if (TREE_CODE (decl
) == ERROR_MARK
)
9588 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
);
9590 type
= field_type (decl
);
9591 field_size_tree
= DECL_SIZE (decl
);
9593 /* The size could be unspecified if there was an error, or for
9594 a flexible array member. */
9595 if (! field_size_tree
)
9596 field_size_tree
= bitsize_zero_node
;
9598 /* We cannot yet cope with fields whose positions are variable, so
9599 for now, when we see such things, we simply return 0. Someday, we may
9600 be able to handle such cases, but it will be damn difficult. */
9601 if (! host_integerp (bit_position (decl
), 0))
9604 bitpos_int
= int_bit_position (decl
);
9606 /* If we don't know the size of the field, pretend it's a full word. */
9607 if (host_integerp (field_size_tree
, 1))
9608 field_size_in_bits
= tree_low_cst (field_size_tree
, 1);
9610 field_size_in_bits
= BITS_PER_WORD
;
9612 type_size_in_bits
= simple_type_size_in_bits (type
);
9613 type_align_in_bits
= simple_type_align_in_bits (type
);
9614 decl_align_in_bits
= simple_decl_align_in_bits (decl
);
9616 /* The GCC front-end doesn't make any attempt to keep track of the starting
9617 bit offset (relative to the start of the containing structure type) of the
9618 hypothetical "containing object" for a bit-field. Thus, when computing
9619 the byte offset value for the start of the "containing object" of a
9620 bit-field, we must deduce this information on our own. This can be rather
9621 tricky to do in some cases. For example, handling the following structure
9622 type definition when compiling for an i386/i486 target (which only aligns
9623 long long's to 32-bit boundaries) can be very tricky:
9625 struct S { int field1; long long field2:31; };
9627 Fortunately, there is a simple rule-of-thumb which can be used in such
9628 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9629 structure shown above. It decides to do this based upon one simple rule
9630 for bit-field allocation. GCC allocates each "containing object" for each
9631 bit-field at the first (i.e. lowest addressed) legitimate alignment
9632 boundary (based upon the required minimum alignment for the declared type
9633 of the field) which it can possibly use, subject to the condition that
9634 there is still enough available space remaining in the containing object
9635 (when allocated at the selected point) to fully accommodate all of the
9636 bits of the bit-field itself.
9638 This simple rule makes it obvious why GCC allocates 8 bytes for each
9639 object of the structure type shown above. When looking for a place to
9640 allocate the "containing object" for `field2', the compiler simply tries
9641 to allocate a 64-bit "containing object" at each successive 32-bit
9642 boundary (starting at zero) until it finds a place to allocate that 64-
9643 bit field such that at least 31 contiguous (and previously unallocated)
9644 bits remain within that selected 64 bit field. (As it turns out, for the
9645 example above, the compiler finds it is OK to allocate the "containing
9646 object" 64-bit field at bit-offset zero within the structure type.)
9648 Here we attempt to work backwards from the limited set of facts we're
9649 given, and we try to deduce from those facts, where GCC must have believed
9650 that the containing object started (within the structure type). The value
9651 we deduce is then used (by the callers of this routine) to generate
9652 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9653 and, in the case of DW_AT_location, regular fields as well). */
9655 /* Figure out the bit-distance from the start of the structure to the
9656 "deepest" bit of the bit-field. */
9657 deepest_bitpos
= bitpos_int
+ field_size_in_bits
;
9659 /* This is the tricky part. Use some fancy footwork to deduce where the
9660 lowest addressed bit of the containing object must be. */
9661 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
9663 /* Round up to type_align by default. This works best for bitfields. */
9664 object_offset_in_bits
+= type_align_in_bits
- 1;
9665 object_offset_in_bits
/= type_align_in_bits
;
9666 object_offset_in_bits
*= type_align_in_bits
;
9668 if (object_offset_in_bits
> bitpos_int
)
9670 /* Sigh, the decl must be packed. */
9671 object_offset_in_bits
= deepest_bitpos
- type_size_in_bits
;
9673 /* Round up to decl_align instead. */
9674 object_offset_in_bits
+= decl_align_in_bits
- 1;
9675 object_offset_in_bits
/= decl_align_in_bits
;
9676 object_offset_in_bits
*= decl_align_in_bits
;
9679 return object_offset_in_bits
/ BITS_PER_UNIT
;
9682 /* The following routines define various Dwarf attributes and any data
9683 associated with them. */
9685 /* Add a location description attribute value to a DIE.
9687 This emits location attributes suitable for whole variables and
9688 whole parameters. Note that the location attributes for struct fields are
9689 generated by the routine `data_member_location_attribute' below. */
9692 add_AT_location_description (dw_die_ref die
, enum dwarf_attribute attr_kind
,
9693 dw_loc_descr_ref descr
)
9696 add_AT_loc (die
, attr_kind
, descr
);
9699 /* Attach the specialized form of location attribute used for data members of
9700 struct and union types. In the special case of a FIELD_DECL node which
9701 represents a bit-field, the "offset" part of this special location
9702 descriptor must indicate the distance in bytes from the lowest-addressed
9703 byte of the containing struct or union type to the lowest-addressed byte of
9704 the "containing object" for the bit-field. (See the `field_byte_offset'
9707 For any given bit-field, the "containing object" is a hypothetical object
9708 (of some integral or enum type) within which the given bit-field lives. The
9709 type of this hypothetical "containing object" is always the same as the
9710 declared type of the individual bit-field itself (for GCC anyway... the
9711 DWARF spec doesn't actually mandate this). Note that it is the size (in
9712 bytes) of the hypothetical "containing object" which will be given in the
9713 DW_AT_byte_size attribute for this bit-field. (See the
9714 `byte_size_attribute' function below.) It is also used when calculating the
9715 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9719 add_data_member_location_attribute (dw_die_ref die
, tree decl
)
9721 HOST_WIDE_INT offset
;
9722 dw_loc_descr_ref loc_descr
= 0;
9724 if (TREE_CODE (decl
) == TREE_BINFO
)
9726 /* We're working on the TAG_inheritance for a base class. */
9727 if (BINFO_VIRTUAL_P (decl
) && is_cxx ())
9729 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9730 aren't at a fixed offset from all (sub)objects of the same
9731 type. We need to extract the appropriate offset from our
9732 vtable. The following dwarf expression means
9734 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9736 This is specific to the V3 ABI, of course. */
9738 dw_loc_descr_ref tmp
;
9740 /* Make a copy of the object address. */
9741 tmp
= new_loc_descr (DW_OP_dup
, 0, 0);
9742 add_loc_descr (&loc_descr
, tmp
);
9744 /* Extract the vtable address. */
9745 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
9746 add_loc_descr (&loc_descr
, tmp
);
9748 /* Calculate the address of the offset. */
9749 offset
= tree_low_cst (BINFO_VPTR_FIELD (decl
), 0);
9750 gcc_assert (offset
< 0);
9752 tmp
= int_loc_descriptor (-offset
);
9753 add_loc_descr (&loc_descr
, tmp
);
9754 tmp
= new_loc_descr (DW_OP_minus
, 0, 0);
9755 add_loc_descr (&loc_descr
, tmp
);
9757 /* Extract the offset. */
9758 tmp
= new_loc_descr (DW_OP_deref
, 0, 0);
9759 add_loc_descr (&loc_descr
, tmp
);
9761 /* Add it to the object address. */
9762 tmp
= new_loc_descr (DW_OP_plus
, 0, 0);
9763 add_loc_descr (&loc_descr
, tmp
);
9766 offset
= tree_low_cst (BINFO_OFFSET (decl
), 0);
9769 offset
= field_byte_offset (decl
);
9773 enum dwarf_location_atom op
;
9775 /* The DWARF2 standard says that we should assume that the structure
9776 address is already on the stack, so we can specify a structure field
9777 address by using DW_OP_plus_uconst. */
9779 #ifdef MIPS_DEBUGGING_INFO
9780 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9781 operator correctly. It works only if we leave the offset on the
9785 op
= DW_OP_plus_uconst
;
9788 loc_descr
= new_loc_descr (op
, offset
, 0);
9791 add_AT_loc (die
, DW_AT_data_member_location
, loc_descr
);
9794 /* Writes integer values to dw_vec_const array. */
9797 insert_int (HOST_WIDE_INT val
, unsigned int size
, unsigned char *dest
)
9801 *dest
++ = val
& 0xff;
9807 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9809 static HOST_WIDE_INT
9810 extract_int (const unsigned char *src
, unsigned int size
)
9812 HOST_WIDE_INT val
= 0;
9818 val
|= *--src
& 0xff;
9824 /* Writes floating point values to dw_vec_const array. */
9827 insert_float (rtx rtl
, unsigned char *array
)
9833 REAL_VALUE_FROM_CONST_DOUBLE (rv
, rtl
);
9834 real_to_target (val
, &rv
, GET_MODE (rtl
));
9836 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9837 for (i
= 0; i
< GET_MODE_SIZE (GET_MODE (rtl
)) / 4; i
++)
9839 insert_int (val
[i
], 4, array
);
9844 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9845 does not have a "location" either in memory or in a register. These
9846 things can arise in GNU C when a constant is passed as an actual parameter
9847 to an inlined function. They can also arise in C++ where declared
9848 constants do not necessarily get memory "homes". */
9851 add_const_value_attribute (dw_die_ref die
, rtx rtl
)
9853 switch (GET_CODE (rtl
))
9857 HOST_WIDE_INT val
= INTVAL (rtl
);
9860 add_AT_int (die
, DW_AT_const_value
, val
);
9862 add_AT_unsigned (die
, DW_AT_const_value
, (unsigned HOST_WIDE_INT
) val
);
9867 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9868 floating-point constant. A CONST_DOUBLE is used whenever the
9869 constant requires more than one word in order to be adequately
9870 represented. We output CONST_DOUBLEs as blocks. */
9872 enum machine_mode mode
= GET_MODE (rtl
);
9874 if (SCALAR_FLOAT_MODE_P (mode
))
9876 unsigned int length
= GET_MODE_SIZE (mode
);
9877 unsigned char *array
= ggc_alloc (length
);
9879 insert_float (rtl
, array
);
9880 add_AT_vec (die
, DW_AT_const_value
, length
/ 4, 4, array
);
9884 /* ??? We really should be using HOST_WIDE_INT throughout. */
9885 gcc_assert (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
);
9887 add_AT_long_long (die
, DW_AT_const_value
,
9888 CONST_DOUBLE_HIGH (rtl
), CONST_DOUBLE_LOW (rtl
));
9895 enum machine_mode mode
= GET_MODE (rtl
);
9896 unsigned int elt_size
= GET_MODE_UNIT_SIZE (mode
);
9897 unsigned int length
= CONST_VECTOR_NUNITS (rtl
);
9898 unsigned char *array
= ggc_alloc (length
* elt_size
);
9902 switch (GET_MODE_CLASS (mode
))
9904 case MODE_VECTOR_INT
:
9905 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
9907 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
9908 HOST_WIDE_INT lo
, hi
;
9910 switch (GET_CODE (elt
))
9918 lo
= CONST_DOUBLE_LOW (elt
);
9919 hi
= CONST_DOUBLE_HIGH (elt
);
9926 if (elt_size
<= sizeof (HOST_WIDE_INT
))
9927 insert_int (lo
, elt_size
, p
);
9930 unsigned char *p0
= p
;
9931 unsigned char *p1
= p
+ sizeof (HOST_WIDE_INT
);
9933 gcc_assert (elt_size
== 2 * sizeof (HOST_WIDE_INT
));
9934 if (WORDS_BIG_ENDIAN
)
9939 insert_int (lo
, sizeof (HOST_WIDE_INT
), p0
);
9940 insert_int (hi
, sizeof (HOST_WIDE_INT
), p1
);
9945 case MODE_VECTOR_FLOAT
:
9946 for (i
= 0, p
= array
; i
< length
; i
++, p
+= elt_size
)
9948 rtx elt
= CONST_VECTOR_ELT (rtl
, i
);
9949 insert_float (elt
, p
);
9957 add_AT_vec (die
, DW_AT_const_value
, length
, elt_size
, array
);
9962 add_AT_string (die
, DW_AT_const_value
, XSTR (rtl
, 0));
9968 add_AT_addr (die
, DW_AT_const_value
, rtl
);
9969 VEC_safe_push (rtx
, gc
, used_rtx_array
, rtl
);
9973 /* In cases where an inlined instance of an inline function is passed
9974 the address of an `auto' variable (which is local to the caller) we
9975 can get a situation where the DECL_RTL of the artificial local
9976 variable (for the inlining) which acts as a stand-in for the
9977 corresponding formal parameter (of the inline function) will look
9978 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9979 exactly a compile-time constant expression, but it isn't the address
9980 of the (artificial) local variable either. Rather, it represents the
9981 *value* which the artificial local variable always has during its
9982 lifetime. We currently have no way to represent such quasi-constant
9983 values in Dwarf, so for now we just punt and generate nothing. */
9987 /* No other kinds of rtx should be possible here. */
9993 /* Determine whether the evaluation of EXPR references any variables
9994 or functions which aren't otherwise used (and therefore may not be
9997 reference_to_unused (tree
* tp
, int * walk_subtrees
,
9998 void * data ATTRIBUTE_UNUSED
)
10000 if (! EXPR_P (*tp
) && ! CONSTANT_CLASS_P (*tp
))
10001 *walk_subtrees
= 0;
10003 if (DECL_P (*tp
) && ! TREE_PUBLIC (*tp
) && ! TREE_USED (*tp
)
10004 && ! TREE_ASM_WRITTEN (*tp
))
10006 else if (!flag_unit_at_a_time
)
10008 else if (!cgraph_global_info_ready
10009 && (TREE_CODE (*tp
) == VAR_DECL
|| TREE_CODE (*tp
) == FUNCTION_DECL
))
10010 gcc_unreachable ();
10011 else if (DECL_P (*tp
) && TREE_CODE (*tp
) == VAR_DECL
)
10013 struct cgraph_varpool_node
*node
= cgraph_varpool_node (*tp
);
10017 else if (DECL_P (*tp
) && TREE_CODE (*tp
) == FUNCTION_DECL
10018 && (!DECL_EXTERNAL (*tp
) || DECL_DECLARED_INLINE_P (*tp
)))
10020 struct cgraph_node
*node
= cgraph_node (*tp
);
10028 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10029 for use in a later add_const_value_attribute call. */
10032 rtl_for_decl_init (tree init
, tree type
)
10034 rtx rtl
= NULL_RTX
;
10036 /* If a variable is initialized with a string constant without embedded
10037 zeros, build CONST_STRING. */
10038 if (TREE_CODE (init
) == STRING_CST
&& TREE_CODE (type
) == ARRAY_TYPE
)
10040 tree enttype
= TREE_TYPE (type
);
10041 tree domain
= TYPE_DOMAIN (type
);
10042 enum machine_mode mode
= TYPE_MODE (enttype
);
10044 if (GET_MODE_CLASS (mode
) == MODE_INT
&& GET_MODE_SIZE (mode
) == 1
10046 && integer_zerop (TYPE_MIN_VALUE (domain
))
10047 && compare_tree_int (TYPE_MAX_VALUE (domain
),
10048 TREE_STRING_LENGTH (init
) - 1) == 0
10049 && ((size_t) TREE_STRING_LENGTH (init
)
10050 == strlen (TREE_STRING_POINTER (init
)) + 1))
10051 rtl
= gen_rtx_CONST_STRING (VOIDmode
,
10052 ggc_strdup (TREE_STRING_POINTER (init
)));
10054 /* Other aggregates, and complex values, could be represented using
10056 else if (AGGREGATE_TYPE_P (type
) || TREE_CODE (type
) == COMPLEX_TYPE
)
10058 /* Vectors only work if their mode is supported by the target.
10059 FIXME: generic vectors ought to work too. */
10060 else if (TREE_CODE (type
) == VECTOR_TYPE
&& TYPE_MODE (type
) == BLKmode
)
10062 /* If the initializer is something that we know will expand into an
10063 immediate RTL constant, expand it now. We must be careful not to
10064 reference variables which won't be output. */
10065 else if (initializer_constant_valid_p (init
, type
)
10066 && ! walk_tree (&init
, reference_to_unused
, NULL
, NULL
))
10068 rtl
= expand_expr (init
, NULL_RTX
, VOIDmode
, EXPAND_INITIALIZER
);
10070 /* If expand_expr returns a MEM, it wasn't immediate. */
10071 gcc_assert (!rtl
|| !MEM_P (rtl
));
10077 /* Generate RTL for the variable DECL to represent its location. */
10080 rtl_for_decl_location (tree decl
)
10084 /* Here we have to decide where we are going to say the parameter "lives"
10085 (as far as the debugger is concerned). We only have a couple of
10086 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10088 DECL_RTL normally indicates where the parameter lives during most of the
10089 activation of the function. If optimization is enabled however, this
10090 could be either NULL or else a pseudo-reg. Both of those cases indicate
10091 that the parameter doesn't really live anywhere (as far as the code
10092 generation parts of GCC are concerned) during most of the function's
10093 activation. That will happen (for example) if the parameter is never
10094 referenced within the function.
10096 We could just generate a location descriptor here for all non-NULL
10097 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10098 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10099 where DECL_RTL is NULL or is a pseudo-reg.
10101 Note however that we can only get away with using DECL_INCOMING_RTL as
10102 a backup substitute for DECL_RTL in certain limited cases. In cases
10103 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10104 we can be sure that the parameter was passed using the same type as it is
10105 declared to have within the function, and that its DECL_INCOMING_RTL
10106 points us to a place where a value of that type is passed.
10108 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10109 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10110 because in these cases DECL_INCOMING_RTL points us to a value of some
10111 type which is *different* from the type of the parameter itself. Thus,
10112 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10113 such cases, the debugger would end up (for example) trying to fetch a
10114 `float' from a place which actually contains the first part of a
10115 `double'. That would lead to really incorrect and confusing
10116 output at debug-time.
10118 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10119 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10120 are a couple of exceptions however. On little-endian machines we can
10121 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10122 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10123 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10124 when (on a little-endian machine) a non-prototyped function has a
10125 parameter declared to be of type `short' or `char'. In such cases,
10126 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10127 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10128 passed `int' value. If the debugger then uses that address to fetch
10129 a `short' or a `char' (on a little-endian machine) the result will be
10130 the correct data, so we allow for such exceptional cases below.
10132 Note that our goal here is to describe the place where the given formal
10133 parameter lives during most of the function's activation (i.e. between the
10134 end of the prologue and the start of the epilogue). We'll do that as best
10135 as we can. Note however that if the given formal parameter is modified
10136 sometime during the execution of the function, then a stack backtrace (at
10137 debug-time) will show the function as having been called with the *new*
10138 value rather than the value which was originally passed in. This happens
10139 rarely enough that it is not a major problem, but it *is* a problem, and
10140 I'd like to fix it.
10142 A future version of dwarf2out.c may generate two additional attributes for
10143 any given DW_TAG_formal_parameter DIE which will describe the "passed
10144 type" and the "passed location" for the given formal parameter in addition
10145 to the attributes we now generate to indicate the "declared type" and the
10146 "active location" for each parameter. This additional set of attributes
10147 could be used by debuggers for stack backtraces. Separately, note that
10148 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10149 This happens (for example) for inlined-instances of inline function formal
10150 parameters which are never referenced. This really shouldn't be
10151 happening. All PARM_DECL nodes should get valid non-NULL
10152 DECL_INCOMING_RTL values. FIXME. */
10154 /* Use DECL_RTL as the "location" unless we find something better. */
10155 rtl
= DECL_RTL_IF_SET (decl
);
10157 /* When generating abstract instances, ignore everything except
10158 constants, symbols living in memory, and symbols living in
10159 fixed registers. */
10160 if (! reload_completed
)
10163 && (CONSTANT_P (rtl
)
10165 && CONSTANT_P (XEXP (rtl
, 0)))
10167 && TREE_CODE (decl
) == VAR_DECL
10168 && TREE_STATIC (decl
))))
10170 rtl
= targetm
.delegitimize_address (rtl
);
10175 else if (TREE_CODE (decl
) == PARM_DECL
)
10177 if (rtl
== NULL_RTX
|| is_pseudo_reg (rtl
))
10179 tree declared_type
= TREE_TYPE (decl
);
10180 tree passed_type
= DECL_ARG_TYPE (decl
);
10181 enum machine_mode dmode
= TYPE_MODE (declared_type
);
10182 enum machine_mode pmode
= TYPE_MODE (passed_type
);
10184 /* This decl represents a formal parameter which was optimized out.
10185 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10186 all cases where (rtl == NULL_RTX) just below. */
10187 if (dmode
== pmode
)
10188 rtl
= DECL_INCOMING_RTL (decl
);
10189 else if (SCALAR_INT_MODE_P (dmode
)
10190 && GET_MODE_SIZE (dmode
) <= GET_MODE_SIZE (pmode
)
10191 && DECL_INCOMING_RTL (decl
))
10193 rtx inc
= DECL_INCOMING_RTL (decl
);
10196 else if (MEM_P (inc
))
10198 if (BYTES_BIG_ENDIAN
)
10199 rtl
= adjust_address_nv (inc
, dmode
,
10200 GET_MODE_SIZE (pmode
)
10201 - GET_MODE_SIZE (dmode
));
10208 /* If the parm was passed in registers, but lives on the stack, then
10209 make a big endian correction if the mode of the type of the
10210 parameter is not the same as the mode of the rtl. */
10211 /* ??? This is the same series of checks that are made in dbxout.c before
10212 we reach the big endian correction code there. It isn't clear if all
10213 of these checks are necessary here, but keeping them all is the safe
10215 else if (MEM_P (rtl
)
10216 && XEXP (rtl
, 0) != const0_rtx
10217 && ! CONSTANT_P (XEXP (rtl
, 0))
10218 /* Not passed in memory. */
10219 && !MEM_P (DECL_INCOMING_RTL (decl
))
10220 /* Not passed by invisible reference. */
10221 && (!REG_P (XEXP (rtl
, 0))
10222 || REGNO (XEXP (rtl
, 0)) == HARD_FRAME_POINTER_REGNUM
10223 || REGNO (XEXP (rtl
, 0)) == STACK_POINTER_REGNUM
10224 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10225 || REGNO (XEXP (rtl
, 0)) == ARG_POINTER_REGNUM
10228 /* Big endian correction check. */
10229 && BYTES_BIG_ENDIAN
10230 && TYPE_MODE (TREE_TYPE (decl
)) != GET_MODE (rtl
)
10231 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)))
10234 int offset
= (UNITS_PER_WORD
10235 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
))));
10237 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
10238 plus_constant (XEXP (rtl
, 0), offset
));
10241 else if (TREE_CODE (decl
) == VAR_DECL
10244 && GET_MODE (rtl
) != TYPE_MODE (TREE_TYPE (decl
))
10245 && BYTES_BIG_ENDIAN
)
10247 int rsize
= GET_MODE_SIZE (GET_MODE (rtl
));
10248 int dsize
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl
)));
10250 /* If a variable is declared "register" yet is smaller than
10251 a register, then if we store the variable to memory, it
10252 looks like we're storing a register-sized value, when in
10253 fact we are not. We need to adjust the offset of the
10254 storage location to reflect the actual value's bytes,
10255 else gdb will not be able to display it. */
10257 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl
)),
10258 plus_constant (XEXP (rtl
, 0), rsize
-dsize
));
10261 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10262 and will have been substituted directly into all expressions that use it.
10263 C does not have such a concept, but C++ and other languages do. */
10264 if (!rtl
&& TREE_CODE (decl
) == VAR_DECL
&& DECL_INITIAL (decl
))
10265 rtl
= rtl_for_decl_init (DECL_INITIAL (decl
), TREE_TYPE (decl
));
10268 rtl
= targetm
.delegitimize_address (rtl
);
10270 /* If we don't look past the constant pool, we risk emitting a
10271 reference to a constant pool entry that isn't referenced from
10272 code, and thus is not emitted. */
10274 rtl
= avoid_constant_pool_reference (rtl
);
10279 /* We need to figure out what section we should use as the base for the
10280 address ranges where a given location is valid.
10281 1. If this particular DECL has a section associated with it, use that.
10282 2. If this function has a section associated with it, use that.
10283 3. Otherwise, use the text section.
10284 XXX: If you split a variable across multiple sections, we won't notice. */
10286 static const char *
10287 secname_for_decl (tree decl
)
10289 const char *secname
;
10291 if (VAR_OR_FUNCTION_DECL_P (decl
) && DECL_SECTION_NAME (decl
))
10293 tree sectree
= DECL_SECTION_NAME (decl
);
10294 secname
= TREE_STRING_POINTER (sectree
);
10296 else if (current_function_decl
&& DECL_SECTION_NAME (current_function_decl
))
10298 tree sectree
= DECL_SECTION_NAME (current_function_decl
);
10299 secname
= TREE_STRING_POINTER (sectree
);
10301 else if (cfun
&& in_cold_section_p
)
10302 secname
= cfun
->cold_section_label
;
10304 secname
= text_section_label
;
10309 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10310 data attribute for a variable or a parameter. We generate the
10311 DW_AT_const_value attribute only in those cases where the given variable
10312 or parameter does not have a true "location" either in memory or in a
10313 register. This can happen (for example) when a constant is passed as an
10314 actual argument in a call to an inline function. (It's possible that
10315 these things can crop up in other ways also.) Note that one type of
10316 constant value which can be passed into an inlined function is a constant
10317 pointer. This can happen for example if an actual argument in an inlined
10318 function call evaluates to a compile-time constant address. */
10321 add_location_or_const_value_attribute (dw_die_ref die
, tree decl
,
10322 enum dwarf_attribute attr
)
10325 dw_loc_descr_ref descr
;
10326 var_loc_list
*loc_list
;
10327 struct var_loc_node
*node
;
10328 if (TREE_CODE (decl
) == ERROR_MARK
)
10331 gcc_assert (TREE_CODE (decl
) == VAR_DECL
|| TREE_CODE (decl
) == PARM_DECL
10332 || TREE_CODE (decl
) == RESULT_DECL
);
10334 /* See if we possibly have multiple locations for this variable. */
10335 loc_list
= lookup_decl_loc (decl
);
10337 /* If it truly has multiple locations, the first and last node will
10339 if (loc_list
&& loc_list
->first
!= loc_list
->last
)
10341 const char *endname
, *secname
;
10342 dw_loc_list_ref list
;
10345 /* Now that we know what section we are using for a base,
10346 actually construct the list of locations.
10347 The first location information is what is passed to the
10348 function that creates the location list, and the remaining
10349 locations just get added on to that list.
10350 Note that we only know the start address for a location
10351 (IE location changes), so to build the range, we use
10352 the range [current location start, next location start].
10353 This means we have to special case the last node, and generate
10354 a range of [last location start, end of function label]. */
10356 node
= loc_list
->first
;
10357 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
10358 secname
= secname_for_decl (decl
);
10360 list
= new_loc_list (loc_descriptor (varloc
),
10361 node
->label
, node
->next
->label
, secname
, 1);
10364 for (; node
->next
; node
= node
->next
)
10365 if (NOTE_VAR_LOCATION_LOC (node
->var_loc_note
) != NULL_RTX
)
10367 /* The variable has a location between NODE->LABEL and
10368 NODE->NEXT->LABEL. */
10369 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
10370 add_loc_descr_to_loc_list (&list
, loc_descriptor (varloc
),
10371 node
->label
, node
->next
->label
, secname
);
10374 /* If the variable has a location at the last label
10375 it keeps its location until the end of function. */
10376 if (NOTE_VAR_LOCATION_LOC (node
->var_loc_note
) != NULL_RTX
)
10378 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
10380 varloc
= NOTE_VAR_LOCATION (node
->var_loc_note
);
10381 if (!current_function_decl
)
10382 endname
= text_end_label
;
10385 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
10386 current_function_funcdef_no
);
10387 endname
= ggc_strdup (label_id
);
10389 add_loc_descr_to_loc_list (&list
, loc_descriptor (varloc
),
10390 node
->label
, endname
, secname
);
10393 /* Finally, add the location list to the DIE, and we are done. */
10394 add_AT_loc_list (die
, attr
, list
);
10398 /* Try to get some constant RTL for this decl, and use that as the value of
10401 rtl
= rtl_for_decl_location (decl
);
10402 if (rtl
&& (CONSTANT_P (rtl
) || GET_CODE (rtl
) == CONST_STRING
))
10404 add_const_value_attribute (die
, rtl
);
10408 /* If we have tried to generate the location otherwise, and it
10409 didn't work out (we wouldn't be here if we did), and we have a one entry
10410 location list, try generating a location from that. */
10411 if (loc_list
&& loc_list
->first
)
10413 node
= loc_list
->first
;
10414 descr
= loc_descriptor (NOTE_VAR_LOCATION (node
->var_loc_note
));
10417 add_AT_location_description (die
, attr
, descr
);
10422 /* We couldn't get any rtl, so try directly generating the location
10423 description from the tree. */
10424 descr
= loc_descriptor_from_tree (decl
);
10427 add_AT_location_description (die
, attr
, descr
);
10430 /* None of that worked, so it must not really have a location;
10431 try adding a constant value attribute from the DECL_INITIAL. */
10432 tree_add_const_value_attribute (die
, decl
);
10435 /* If we don't have a copy of this variable in memory for some reason (such
10436 as a C++ member constant that doesn't have an out-of-line definition),
10437 we should tell the debugger about the constant value. */
10440 tree_add_const_value_attribute (dw_die_ref var_die
, tree decl
)
10442 tree init
= DECL_INITIAL (decl
);
10443 tree type
= TREE_TYPE (decl
);
10446 if (TREE_READONLY (decl
) && ! TREE_THIS_VOLATILE (decl
) && init
)
10451 rtl
= rtl_for_decl_init (init
, type
);
10453 add_const_value_attribute (var_die
, rtl
);
10456 /* Convert the CFI instructions for the current function into a
10457 location list. This is used for DW_AT_frame_base when we targeting
10458 a dwarf2 consumer that does not support the dwarf3
10459 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10462 static dw_loc_list_ref
10463 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset
)
10466 dw_loc_list_ref list
, *list_tail
;
10468 dw_cfa_location last_cfa
, next_cfa
;
10469 const char *start_label
, *last_label
, *section
;
10471 fde
= &fde_table
[fde_table_in_use
- 1];
10473 section
= secname_for_decl (current_function_decl
);
10477 next_cfa
.reg
= INVALID_REGNUM
;
10478 next_cfa
.offset
= 0;
10479 next_cfa
.indirect
= 0;
10480 next_cfa
.base_offset
= 0;
10482 start_label
= fde
->dw_fde_begin
;
10484 /* ??? Bald assumption that the CIE opcode list does not contain
10485 advance opcodes. */
10486 for (cfi
= cie_cfi_head
; cfi
; cfi
= cfi
->dw_cfi_next
)
10487 lookup_cfa_1 (cfi
, &next_cfa
);
10489 last_cfa
= next_cfa
;
10490 last_label
= start_label
;
10492 for (cfi
= fde
->dw_fde_cfi
; cfi
; cfi
= cfi
->dw_cfi_next
)
10493 switch (cfi
->dw_cfi_opc
)
10495 case DW_CFA_set_loc
:
10496 case DW_CFA_advance_loc1
:
10497 case DW_CFA_advance_loc2
:
10498 case DW_CFA_advance_loc4
:
10499 if (!cfa_equal_p (&last_cfa
, &next_cfa
))
10501 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
10502 start_label
, last_label
, section
,
10505 list_tail
= &(*list_tail
)->dw_loc_next
;
10506 last_cfa
= next_cfa
;
10507 start_label
= last_label
;
10509 last_label
= cfi
->dw_cfi_oprnd1
.dw_cfi_addr
;
10512 case DW_CFA_advance_loc
:
10513 /* The encoding is complex enough that we should never emit this. */
10514 case DW_CFA_remember_state
:
10515 case DW_CFA_restore_state
:
10516 /* We don't handle these two in this function. It would be possible
10517 if it were to be required. */
10518 gcc_unreachable ();
10521 lookup_cfa_1 (cfi
, &next_cfa
);
10525 if (!cfa_equal_p (&last_cfa
, &next_cfa
))
10527 *list_tail
= new_loc_list (build_cfa_loc (&last_cfa
, offset
),
10528 start_label
, last_label
, section
,
10530 list_tail
= &(*list_tail
)->dw_loc_next
;
10531 start_label
= last_label
;
10533 *list_tail
= new_loc_list (build_cfa_loc (&next_cfa
, offset
),
10534 start_label
, fde
->dw_fde_end
, section
,
10540 /* Compute a displacement from the "steady-state frame pointer" to the
10541 frame base (often the same as the CFA), and store it in
10542 frame_pointer_fb_offset. OFFSET is added to the displacement
10543 before the latter is negated. */
10546 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset
)
10550 #ifdef FRAME_POINTER_CFA_OFFSET
10551 reg
= frame_pointer_rtx
;
10552 offset
+= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
10554 reg
= arg_pointer_rtx
;
10555 offset
+= ARG_POINTER_CFA_OFFSET (current_function_decl
);
10558 elim
= eliminate_regs (reg
, VOIDmode
, NULL_RTX
);
10559 if (GET_CODE (elim
) == PLUS
)
10561 offset
+= INTVAL (XEXP (elim
, 1));
10562 elim
= XEXP (elim
, 0);
10564 gcc_assert (elim
== (frame_pointer_needed
? hard_frame_pointer_rtx
10565 : stack_pointer_rtx
));
10567 frame_pointer_fb_offset
= -offset
;
10570 /* Generate a DW_AT_name attribute given some string value to be included as
10571 the value of the attribute. */
10574 add_name_attribute (dw_die_ref die
, const char *name_string
)
10576 if (name_string
!= NULL
&& *name_string
!= 0)
10578 if (demangle_name_func
)
10579 name_string
= (*demangle_name_func
) (name_string
);
10581 add_AT_string (die
, DW_AT_name
, name_string
);
10585 /* Generate a DW_AT_comp_dir attribute for DIE. */
10588 add_comp_dir_attribute (dw_die_ref die
)
10590 const char *wd
= get_src_pwd ();
10592 add_AT_string (die
, DW_AT_comp_dir
, wd
);
10595 /* Given a tree node describing an array bound (either lower or upper) output
10596 a representation for that bound. */
10599 add_bound_info (dw_die_ref subrange_die
, enum dwarf_attribute bound_attr
, tree bound
)
10601 switch (TREE_CODE (bound
))
10606 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10608 if (! host_integerp (bound
, 0)
10609 || (bound_attr
== DW_AT_lower_bound
10610 && (((is_c_family () || is_java ()) && integer_zerop (bound
))
10611 || (is_fortran () && integer_onep (bound
)))))
10612 /* Use the default. */
10615 add_AT_unsigned (subrange_die
, bound_attr
, tree_low_cst (bound
, 0));
10620 case NON_LVALUE_EXPR
:
10621 case VIEW_CONVERT_EXPR
:
10622 add_bound_info (subrange_die
, bound_attr
, TREE_OPERAND (bound
, 0));
10632 dw_die_ref decl_die
= lookup_decl_die (bound
);
10634 /* ??? Can this happen, or should the variable have been bound
10635 first? Probably it can, since I imagine that we try to create
10636 the types of parameters in the order in which they exist in
10637 the list, and won't have created a forward reference to a
10638 later parameter. */
10639 if (decl_die
!= NULL
)
10640 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
10646 /* Otherwise try to create a stack operation procedure to
10647 evaluate the value of the array bound. */
10649 dw_die_ref ctx
, decl_die
;
10650 dw_loc_descr_ref loc
;
10652 loc
= loc_descriptor_from_tree (bound
);
10656 if (current_function_decl
== 0)
10657 ctx
= comp_unit_die
;
10659 ctx
= lookup_decl_die (current_function_decl
);
10661 decl_die
= new_die (DW_TAG_variable
, ctx
, bound
);
10662 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
10663 add_type_attribute (decl_die
, TREE_TYPE (bound
), 1, 0, ctx
);
10664 add_AT_loc (decl_die
, DW_AT_location
, loc
);
10666 add_AT_die_ref (subrange_die
, bound_attr
, decl_die
);
10672 /* Note that the block of subscript information for an array type also
10673 includes information about the element type of type given array type. */
10676 add_subscript_info (dw_die_ref type_die
, tree type
)
10678 #ifndef MIPS_DEBUGGING_INFO
10679 unsigned dimension_number
;
10682 dw_die_ref subrange_die
;
10684 /* The GNU compilers represent multidimensional array types as sequences of
10685 one dimensional array types whose element types are themselves array
10686 types. Here we squish that down, so that each multidimensional array
10687 type gets only one array_type DIE in the Dwarf debugging info. The draft
10688 Dwarf specification say that we are allowed to do this kind of
10689 compression in C (because there is no difference between an array or
10690 arrays and a multidimensional array in C) but for other source languages
10691 (e.g. Ada) we probably shouldn't do this. */
10693 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10694 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10695 We work around this by disabling this feature. See also
10696 gen_array_type_die. */
10697 #ifndef MIPS_DEBUGGING_INFO
10698 for (dimension_number
= 0;
10699 TREE_CODE (type
) == ARRAY_TYPE
;
10700 type
= TREE_TYPE (type
), dimension_number
++)
10703 tree domain
= TYPE_DOMAIN (type
);
10705 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10706 and (in GNU C only) variable bounds. Handle all three forms
10708 subrange_die
= new_die (DW_TAG_subrange_type
, type_die
, NULL
);
10711 /* We have an array type with specified bounds. */
10712 lower
= TYPE_MIN_VALUE (domain
);
10713 upper
= TYPE_MAX_VALUE (domain
);
10715 /* Define the index type. */
10716 if (TREE_TYPE (domain
))
10718 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10719 TREE_TYPE field. We can't emit debug info for this
10720 because it is an unnamed integral type. */
10721 if (TREE_CODE (domain
) == INTEGER_TYPE
10722 && TYPE_NAME (domain
) == NULL_TREE
10723 && TREE_CODE (TREE_TYPE (domain
)) == INTEGER_TYPE
10724 && TYPE_NAME (TREE_TYPE (domain
)) == NULL_TREE
)
10727 add_type_attribute (subrange_die
, TREE_TYPE (domain
), 0, 0,
10731 /* ??? If upper is NULL, the array has unspecified length,
10732 but it does have a lower bound. This happens with Fortran
10734 Since the debugger is definitely going to need to know N
10735 to produce useful results, go ahead and output the lower
10736 bound solo, and hope the debugger can cope. */
10738 add_bound_info (subrange_die
, DW_AT_lower_bound
, lower
);
10740 add_bound_info (subrange_die
, DW_AT_upper_bound
, upper
);
10743 /* Otherwise we have an array type with an unspecified length. The
10744 DWARF-2 spec does not say how to handle this; let's just leave out the
10750 add_byte_size_attribute (dw_die_ref die
, tree tree_node
)
10754 switch (TREE_CODE (tree_node
))
10759 case ENUMERAL_TYPE
:
10762 case QUAL_UNION_TYPE
:
10763 size
= int_size_in_bytes (tree_node
);
10766 /* For a data member of a struct or union, the DW_AT_byte_size is
10767 generally given as the number of bytes normally allocated for an
10768 object of the *declared* type of the member itself. This is true
10769 even for bit-fields. */
10770 size
= simple_type_size_in_bits (field_type (tree_node
)) / BITS_PER_UNIT
;
10773 gcc_unreachable ();
10776 /* Note that `size' might be -1 when we get to this point. If it is, that
10777 indicates that the byte size of the entity in question is variable. We
10778 have no good way of expressing this fact in Dwarf at the present time,
10779 so just let the -1 pass on through. */
10780 add_AT_unsigned (die
, DW_AT_byte_size
, size
);
10783 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10784 which specifies the distance in bits from the highest order bit of the
10785 "containing object" for the bit-field to the highest order bit of the
10788 For any given bit-field, the "containing object" is a hypothetical object
10789 (of some integral or enum type) within which the given bit-field lives. The
10790 type of this hypothetical "containing object" is always the same as the
10791 declared type of the individual bit-field itself. The determination of the
10792 exact location of the "containing object" for a bit-field is rather
10793 complicated. It's handled by the `field_byte_offset' function (above).
10795 Note that it is the size (in bytes) of the hypothetical "containing object"
10796 which will be given in the DW_AT_byte_size attribute for this bit-field.
10797 (See `byte_size_attribute' above). */
10800 add_bit_offset_attribute (dw_die_ref die
, tree decl
)
10802 HOST_WIDE_INT object_offset_in_bytes
= field_byte_offset (decl
);
10803 tree type
= DECL_BIT_FIELD_TYPE (decl
);
10804 HOST_WIDE_INT bitpos_int
;
10805 HOST_WIDE_INT highest_order_object_bit_offset
;
10806 HOST_WIDE_INT highest_order_field_bit_offset
;
10807 HOST_WIDE_INT
unsigned bit_offset
;
10809 /* Must be a field and a bit field. */
10810 gcc_assert (type
&& TREE_CODE (decl
) == FIELD_DECL
);
10812 /* We can't yet handle bit-fields whose offsets are variable, so if we
10813 encounter such things, just return without generating any attribute
10814 whatsoever. Likewise for variable or too large size. */
10815 if (! host_integerp (bit_position (decl
), 0)
10816 || ! host_integerp (DECL_SIZE (decl
), 1))
10819 bitpos_int
= int_bit_position (decl
);
10821 /* Note that the bit offset is always the distance (in bits) from the
10822 highest-order bit of the "containing object" to the highest-order bit of
10823 the bit-field itself. Since the "high-order end" of any object or field
10824 is different on big-endian and little-endian machines, the computation
10825 below must take account of these differences. */
10826 highest_order_object_bit_offset
= object_offset_in_bytes
* BITS_PER_UNIT
;
10827 highest_order_field_bit_offset
= bitpos_int
;
10829 if (! BYTES_BIG_ENDIAN
)
10831 highest_order_field_bit_offset
+= tree_low_cst (DECL_SIZE (decl
), 0);
10832 highest_order_object_bit_offset
+= simple_type_size_in_bits (type
);
10836 = (! BYTES_BIG_ENDIAN
10837 ? highest_order_object_bit_offset
- highest_order_field_bit_offset
10838 : highest_order_field_bit_offset
- highest_order_object_bit_offset
);
10840 add_AT_unsigned (die
, DW_AT_bit_offset
, bit_offset
);
10843 /* For a FIELD_DECL node which represents a bit field, output an attribute
10844 which specifies the length in bits of the given field. */
10847 add_bit_size_attribute (dw_die_ref die
, tree decl
)
10849 /* Must be a field and a bit field. */
10850 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
10851 && DECL_BIT_FIELD_TYPE (decl
));
10853 if (host_integerp (DECL_SIZE (decl
), 1))
10854 add_AT_unsigned (die
, DW_AT_bit_size
, tree_low_cst (DECL_SIZE (decl
), 1));
10857 /* If the compiled language is ANSI C, then add a 'prototyped'
10858 attribute, if arg types are given for the parameters of a function. */
10861 add_prototyped_attribute (dw_die_ref die
, tree func_type
)
10863 if (get_AT_unsigned (comp_unit_die
, DW_AT_language
) == DW_LANG_C89
10864 && TYPE_ARG_TYPES (func_type
) != NULL
)
10865 add_AT_flag (die
, DW_AT_prototyped
, 1);
10868 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10869 by looking in either the type declaration or object declaration
10873 add_abstract_origin_attribute (dw_die_ref die
, tree origin
)
10875 dw_die_ref origin_die
= NULL
;
10877 if (TREE_CODE (origin
) != FUNCTION_DECL
)
10879 /* We may have gotten separated from the block for the inlined
10880 function, if we're in an exception handler or some such; make
10881 sure that the abstract function has been written out.
10883 Doing this for nested functions is wrong, however; functions are
10884 distinct units, and our context might not even be inline. */
10888 fn
= TYPE_STUB_DECL (fn
);
10890 fn
= decl_function_context (fn
);
10892 dwarf2out_abstract_function (fn
);
10895 if (DECL_P (origin
))
10896 origin_die
= lookup_decl_die (origin
);
10897 else if (TYPE_P (origin
))
10898 origin_die
= lookup_type_die (origin
);
10900 /* XXX: Functions that are never lowered don't always have correct block
10901 trees (in the case of java, they simply have no block tree, in some other
10902 languages). For these functions, there is nothing we can really do to
10903 output correct debug info for inlined functions in all cases. Rather
10904 than die, we'll just produce deficient debug info now, in that we will
10905 have variables without a proper abstract origin. In the future, when all
10906 functions are lowered, we should re-add a gcc_assert (origin_die)
10910 add_AT_die_ref (die
, DW_AT_abstract_origin
, origin_die
);
10913 /* We do not currently support the pure_virtual attribute. */
10916 add_pure_or_virtual_attribute (dw_die_ref die
, tree func_decl
)
10918 if (DECL_VINDEX (func_decl
))
10920 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
10922 if (host_integerp (DECL_VINDEX (func_decl
), 0))
10923 add_AT_loc (die
, DW_AT_vtable_elem_location
,
10924 new_loc_descr (DW_OP_constu
,
10925 tree_low_cst (DECL_VINDEX (func_decl
), 0),
10928 /* GNU extension: Record what type this method came from originally. */
10929 if (debug_info_level
> DINFO_LEVEL_TERSE
)
10930 add_AT_die_ref (die
, DW_AT_containing_type
,
10931 lookup_type_die (DECL_CONTEXT (func_decl
)));
10935 /* Add source coordinate attributes for the given decl. */
10938 add_src_coords_attributes (dw_die_ref die
, tree decl
)
10940 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
10942 add_AT_file (die
, DW_AT_decl_file
, lookup_filename (s
.file
));
10943 add_AT_unsigned (die
, DW_AT_decl_line
, s
.line
);
10946 /* Add a DW_AT_name attribute and source coordinate attribute for the
10947 given decl, but only if it actually has a name. */
10950 add_name_and_src_coords_attributes (dw_die_ref die
, tree decl
)
10954 decl_name
= DECL_NAME (decl
);
10955 if (decl_name
!= NULL
&& IDENTIFIER_POINTER (decl_name
) != NULL
)
10957 add_name_attribute (die
, dwarf2_name (decl
, 0));
10958 if (! DECL_ARTIFICIAL (decl
))
10959 add_src_coords_attributes (die
, decl
);
10961 if ((TREE_CODE (decl
) == FUNCTION_DECL
|| TREE_CODE (decl
) == VAR_DECL
)
10962 && TREE_PUBLIC (decl
)
10963 && DECL_ASSEMBLER_NAME (decl
) != DECL_NAME (decl
)
10964 && !DECL_ABSTRACT (decl
)
10965 && !(TREE_CODE (decl
) == VAR_DECL
&& DECL_REGISTER (decl
)))
10966 add_AT_string (die
, DW_AT_MIPS_linkage_name
,
10967 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)));
10970 #ifdef VMS_DEBUGGING_INFO
10971 /* Get the function's name, as described by its RTL. This may be different
10972 from the DECL_NAME name used in the source file. */
10973 if (TREE_CODE (decl
) == FUNCTION_DECL
&& TREE_ASM_WRITTEN (decl
))
10975 add_AT_addr (die
, DW_AT_VMS_rtnbeg_pd_address
,
10976 XEXP (DECL_RTL (decl
), 0));
10977 VEC_safe_push (tree
, gc
, used_rtx_array
, XEXP (DECL_RTL (decl
), 0));
10982 /* Push a new declaration scope. */
10985 push_decl_scope (tree scope
)
10987 VEC_safe_push (tree
, gc
, decl_scope_table
, scope
);
10990 /* Pop a declaration scope. */
10993 pop_decl_scope (void)
10995 VEC_pop (tree
, decl_scope_table
);
10998 /* Return the DIE for the scope that immediately contains this type.
10999 Non-named types get global scope. Named types nested in other
11000 types get their containing scope if it's open, or global scope
11001 otherwise. All other types (i.e. function-local named types) get
11002 the current active scope. */
11005 scope_die_for (tree t
, dw_die_ref context_die
)
11007 dw_die_ref scope_die
= NULL
;
11008 tree containing_scope
;
11011 /* Non-types always go in the current scope. */
11012 gcc_assert (TYPE_P (t
));
11014 containing_scope
= TYPE_CONTEXT (t
);
11016 /* Use the containing namespace if it was passed in (for a declaration). */
11017 if (containing_scope
&& TREE_CODE (containing_scope
) == NAMESPACE_DECL
)
11019 if (context_die
== lookup_decl_die (containing_scope
))
11022 containing_scope
= NULL_TREE
;
11025 /* Ignore function type "scopes" from the C frontend. They mean that
11026 a tagged type is local to a parmlist of a function declarator, but
11027 that isn't useful to DWARF. */
11028 if (containing_scope
&& TREE_CODE (containing_scope
) == FUNCTION_TYPE
)
11029 containing_scope
= NULL_TREE
;
11031 if (containing_scope
== NULL_TREE
)
11032 scope_die
= comp_unit_die
;
11033 else if (TYPE_P (containing_scope
))
11035 /* For types, we can just look up the appropriate DIE. But
11036 first we check to see if we're in the middle of emitting it
11037 so we know where the new DIE should go. */
11038 for (i
= VEC_length (tree
, decl_scope_table
) - 1; i
>= 0; --i
)
11039 if (VEC_index (tree
, decl_scope_table
, i
) == containing_scope
)
11044 gcc_assert (debug_info_level
<= DINFO_LEVEL_TERSE
11045 || TREE_ASM_WRITTEN (containing_scope
));
11047 /* If none of the current dies are suitable, we get file scope. */
11048 scope_die
= comp_unit_die
;
11051 scope_die
= lookup_type_die (containing_scope
);
11054 scope_die
= context_die
;
11059 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11062 local_scope_p (dw_die_ref context_die
)
11064 for (; context_die
; context_die
= context_die
->die_parent
)
11065 if (context_die
->die_tag
== DW_TAG_inlined_subroutine
11066 || context_die
->die_tag
== DW_TAG_subprogram
)
11072 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11073 whether or not to treat a DIE in this context as a declaration. */
11076 class_or_namespace_scope_p (dw_die_ref context_die
)
11078 return (context_die
11079 && (context_die
->die_tag
== DW_TAG_structure_type
11080 || context_die
->die_tag
== DW_TAG_union_type
11081 || context_die
->die_tag
== DW_TAG_namespace
));
11084 /* Many forms of DIEs require a "type description" attribute. This
11085 routine locates the proper "type descriptor" die for the type given
11086 by 'type', and adds a DW_AT_type attribute below the given die. */
11089 add_type_attribute (dw_die_ref object_die
, tree type
, int decl_const
,
11090 int decl_volatile
, dw_die_ref context_die
)
11092 enum tree_code code
= TREE_CODE (type
);
11093 dw_die_ref type_die
= NULL
;
11095 /* ??? If this type is an unnamed subrange type of an integral or
11096 floating-point type, use the inner type. This is because we have no
11097 support for unnamed types in base_type_die. This can happen if this is
11098 an Ada subrange type. Correct solution is emit a subrange type die. */
11099 if ((code
== INTEGER_TYPE
|| code
== REAL_TYPE
)
11100 && TREE_TYPE (type
) != 0 && TYPE_NAME (type
) == 0)
11101 type
= TREE_TYPE (type
), code
= TREE_CODE (type
);
11103 if (code
== ERROR_MARK
11104 /* Handle a special case. For functions whose return type is void, we
11105 generate *no* type attribute. (Note that no object may have type
11106 `void', so this only applies to function return types). */
11107 || code
== VOID_TYPE
)
11110 type_die
= modified_type_die (type
,
11111 decl_const
|| TYPE_READONLY (type
),
11112 decl_volatile
|| TYPE_VOLATILE (type
),
11115 if (type_die
!= NULL
)
11116 add_AT_die_ref (object_die
, DW_AT_type
, type_die
);
11119 /* Given an object die, add the calling convention attribute for the
11120 function call type. */
11122 add_calling_convention_attribute (dw_die_ref subr_die
, tree type
)
11124 enum dwarf_calling_convention value
= DW_CC_normal
;
11126 value
= targetm
.dwarf_calling_convention (type
);
11128 /* Only add the attribute if the backend requests it, and
11129 is not DW_CC_normal. */
11130 if (value
&& (value
!= DW_CC_normal
))
11131 add_AT_unsigned (subr_die
, DW_AT_calling_convention
, value
);
11134 /* Given a tree pointer to a struct, class, union, or enum type node, return
11135 a pointer to the (string) tag name for the given type, or zero if the type
11136 was declared without a tag. */
11138 static const char *
11139 type_tag (tree type
)
11141 const char *name
= 0;
11143 if (TYPE_NAME (type
) != 0)
11147 /* Find the IDENTIFIER_NODE for the type name. */
11148 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
11149 t
= TYPE_NAME (type
);
11151 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11152 a TYPE_DECL node, regardless of whether or not a `typedef' was
11154 else if (TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
11155 && ! DECL_IGNORED_P (TYPE_NAME (type
)))
11156 t
= DECL_NAME (TYPE_NAME (type
));
11158 /* Now get the name as a string, or invent one. */
11160 name
= IDENTIFIER_POINTER (t
);
11163 return (name
== 0 || *name
== '\0') ? 0 : name
;
11166 /* Return the type associated with a data member, make a special check
11167 for bit field types. */
11170 member_declared_type (tree member
)
11172 return (DECL_BIT_FIELD_TYPE (member
)
11173 ? DECL_BIT_FIELD_TYPE (member
) : TREE_TYPE (member
));
11176 /* Get the decl's label, as described by its RTL. This may be different
11177 from the DECL_NAME name used in the source file. */
11180 static const char *
11181 decl_start_label (tree decl
)
11184 const char *fnname
;
11186 x
= DECL_RTL (decl
);
11187 gcc_assert (MEM_P (x
));
11190 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
11192 fnname
= XSTR (x
, 0);
11197 /* These routines generate the internal representation of the DIE's for
11198 the compilation unit. Debugging information is collected by walking
11199 the declaration trees passed in from dwarf2out_decl(). */
11202 gen_array_type_die (tree type
, dw_die_ref context_die
)
11204 dw_die_ref scope_die
= scope_die_for (type
, context_die
);
11205 dw_die_ref array_die
;
11208 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11209 the inner array type comes before the outer array type. Thus we must
11210 call gen_type_die before we call new_die. See below also. */
11211 #ifdef MIPS_DEBUGGING_INFO
11212 gen_type_die (TREE_TYPE (type
), context_die
);
11215 array_die
= new_die (DW_TAG_array_type
, scope_die
, type
);
11216 add_name_attribute (array_die
, type_tag (type
));
11217 equate_type_number_to_die (type
, array_die
);
11219 if (TREE_CODE (type
) == VECTOR_TYPE
)
11221 /* The frontend feeds us a representation for the vector as a struct
11222 containing an array. Pull out the array type. */
11223 type
= TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type
)));
11224 add_AT_flag (array_die
, DW_AT_GNU_vector
, 1);
11228 /* We default the array ordering. SDB will probably do
11229 the right things even if DW_AT_ordering is not present. It's not even
11230 an issue until we start to get into multidimensional arrays anyway. If
11231 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11232 then we'll have to put the DW_AT_ordering attribute back in. (But if
11233 and when we find out that we need to put these in, we will only do so
11234 for multidimensional arrays. */
11235 add_AT_unsigned (array_die
, DW_AT_ordering
, DW_ORD_row_major
);
11238 #ifdef MIPS_DEBUGGING_INFO
11239 /* The SGI compilers handle arrays of unknown bound by setting
11240 AT_declaration and not emitting any subrange DIEs. */
11241 if (! TYPE_DOMAIN (type
))
11242 add_AT_flag (array_die
, DW_AT_declaration
, 1);
11245 add_subscript_info (array_die
, type
);
11247 /* Add representation of the type of the elements of this array type. */
11248 element_type
= TREE_TYPE (type
);
11250 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11251 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11252 We work around this by disabling this feature. See also
11253 add_subscript_info. */
11254 #ifndef MIPS_DEBUGGING_INFO
11255 while (TREE_CODE (element_type
) == ARRAY_TYPE
)
11256 element_type
= TREE_TYPE (element_type
);
11258 gen_type_die (element_type
, context_die
);
11261 add_type_attribute (array_die
, element_type
, 0, 0, context_die
);
11266 gen_entry_point_die (tree decl
, dw_die_ref context_die
)
11268 tree origin
= decl_ultimate_origin (decl
);
11269 dw_die_ref decl_die
= new_die (DW_TAG_entry_point
, context_die
, decl
);
11271 if (origin
!= NULL
)
11272 add_abstract_origin_attribute (decl_die
, origin
);
11275 add_name_and_src_coords_attributes (decl_die
, decl
);
11276 add_type_attribute (decl_die
, TREE_TYPE (TREE_TYPE (decl
)),
11277 0, 0, context_die
);
11280 if (DECL_ABSTRACT (decl
))
11281 equate_decl_number_to_die (decl
, decl_die
);
11283 add_AT_lbl_id (decl_die
, DW_AT_low_pc
, decl_start_label (decl
));
11287 /* Walk through the list of incomplete types again, trying once more to
11288 emit full debugging info for them. */
11291 retry_incomplete_types (void)
11295 for (i
= VEC_length (tree
, incomplete_types
) - 1; i
>= 0; i
--)
11296 gen_type_die (VEC_index (tree
, incomplete_types
, i
), comp_unit_die
);
11299 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11302 gen_inlined_enumeration_type_die (tree type
, dw_die_ref context_die
)
11304 dw_die_ref type_die
= new_die (DW_TAG_enumeration_type
, context_die
, type
);
11306 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11307 be incomplete and such types are not marked. */
11308 add_abstract_origin_attribute (type_die
, type
);
11311 /* Generate a DIE to represent an inlined instance of a structure type. */
11314 gen_inlined_structure_type_die (tree type
, dw_die_ref context_die
)
11316 dw_die_ref type_die
= new_die (DW_TAG_structure_type
, context_die
, type
);
11318 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11319 be incomplete and such types are not marked. */
11320 add_abstract_origin_attribute (type_die
, type
);
11323 /* Generate a DIE to represent an inlined instance of a union type. */
11326 gen_inlined_union_type_die (tree type
, dw_die_ref context_die
)
11328 dw_die_ref type_die
= new_die (DW_TAG_union_type
, context_die
, type
);
11330 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11331 be incomplete and such types are not marked. */
11332 add_abstract_origin_attribute (type_die
, type
);
11335 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11336 include all of the information about the enumeration values also. Each
11337 enumerated type name/value is listed as a child of the enumerated type
11341 gen_enumeration_type_die (tree type
, dw_die_ref context_die
)
11343 dw_die_ref type_die
= lookup_type_die (type
);
11345 if (type_die
== NULL
)
11347 type_die
= new_die (DW_TAG_enumeration_type
,
11348 scope_die_for (type
, context_die
), type
);
11349 equate_type_number_to_die (type
, type_die
);
11350 add_name_attribute (type_die
, type_tag (type
));
11352 else if (! TYPE_SIZE (type
))
11355 remove_AT (type_die
, DW_AT_declaration
);
11357 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11358 given enum type is incomplete, do not generate the DW_AT_byte_size
11359 attribute or the DW_AT_element_list attribute. */
11360 if (TYPE_SIZE (type
))
11364 TREE_ASM_WRITTEN (type
) = 1;
11365 add_byte_size_attribute (type_die
, type
);
11366 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
11367 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
11369 /* If the first reference to this type was as the return type of an
11370 inline function, then it may not have a parent. Fix this now. */
11371 if (type_die
->die_parent
== NULL
)
11372 add_child_die (scope_die_for (type
, context_die
), type_die
);
11374 for (link
= TYPE_VALUES (type
);
11375 link
!= NULL
; link
= TREE_CHAIN (link
))
11377 dw_die_ref enum_die
= new_die (DW_TAG_enumerator
, type_die
, link
);
11378 tree value
= TREE_VALUE (link
);
11380 add_name_attribute (enum_die
,
11381 IDENTIFIER_POINTER (TREE_PURPOSE (link
)));
11383 if (host_integerp (value
, TYPE_UNSIGNED (TREE_TYPE (value
))))
11384 /* DWARF2 does not provide a way of indicating whether or
11385 not enumeration constants are signed or unsigned. GDB
11386 always assumes the values are signed, so we output all
11387 values as if they were signed. That means that
11388 enumeration constants with very large unsigned values
11389 will appear to have negative values in the debugger. */
11390 add_AT_int (enum_die
, DW_AT_const_value
,
11391 tree_low_cst (value
, tree_int_cst_sgn (value
) > 0));
11395 add_AT_flag (type_die
, DW_AT_declaration
, 1);
11400 /* Generate a DIE to represent either a real live formal parameter decl or to
11401 represent just the type of some formal parameter position in some function
11404 Note that this routine is a bit unusual because its argument may be a
11405 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11406 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11407 node. If it's the former then this function is being called to output a
11408 DIE to represent a formal parameter object (or some inlining thereof). If
11409 it's the latter, then this function is only being called to output a
11410 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11411 argument type of some subprogram type. */
11414 gen_formal_parameter_die (tree node
, dw_die_ref context_die
)
11416 dw_die_ref parm_die
11417 = new_die (DW_TAG_formal_parameter
, context_die
, node
);
11420 switch (TREE_CODE_CLASS (TREE_CODE (node
)))
11422 case tcc_declaration
:
11423 origin
= decl_ultimate_origin (node
);
11424 if (origin
!= NULL
)
11425 add_abstract_origin_attribute (parm_die
, origin
);
11428 add_name_and_src_coords_attributes (parm_die
, node
);
11429 add_type_attribute (parm_die
, TREE_TYPE (node
),
11430 TREE_READONLY (node
),
11431 TREE_THIS_VOLATILE (node
),
11433 if (DECL_ARTIFICIAL (node
))
11434 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
11437 equate_decl_number_to_die (node
, parm_die
);
11438 if (! DECL_ABSTRACT (node
))
11439 add_location_or_const_value_attribute (parm_die
, node
, DW_AT_location
);
11444 /* We were called with some kind of a ..._TYPE node. */
11445 add_type_attribute (parm_die
, node
, 0, 0, context_die
);
11449 gcc_unreachable ();
11455 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11456 at the end of an (ANSI prototyped) formal parameters list. */
11459 gen_unspecified_parameters_die (tree decl_or_type
, dw_die_ref context_die
)
11461 new_die (DW_TAG_unspecified_parameters
, context_die
, decl_or_type
);
11464 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11465 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11466 parameters as specified in some function type specification (except for
11467 those which appear as part of a function *definition*). */
11470 gen_formal_types_die (tree function_or_method_type
, dw_die_ref context_die
)
11473 tree formal_type
= NULL
;
11474 tree first_parm_type
;
11477 if (TREE_CODE (function_or_method_type
) == FUNCTION_DECL
)
11479 arg
= DECL_ARGUMENTS (function_or_method_type
);
11480 function_or_method_type
= TREE_TYPE (function_or_method_type
);
11485 first_parm_type
= TYPE_ARG_TYPES (function_or_method_type
);
11487 /* Make our first pass over the list of formal parameter types and output a
11488 DW_TAG_formal_parameter DIE for each one. */
11489 for (link
= first_parm_type
; link
; )
11491 dw_die_ref parm_die
;
11493 formal_type
= TREE_VALUE (link
);
11494 if (formal_type
== void_type_node
)
11497 /* Output a (nameless) DIE to represent the formal parameter itself. */
11498 parm_die
= gen_formal_parameter_die (formal_type
, context_die
);
11499 if ((TREE_CODE (function_or_method_type
) == METHOD_TYPE
11500 && link
== first_parm_type
)
11501 || (arg
&& DECL_ARTIFICIAL (arg
)))
11502 add_AT_flag (parm_die
, DW_AT_artificial
, 1);
11504 link
= TREE_CHAIN (link
);
11506 arg
= TREE_CHAIN (arg
);
11509 /* If this function type has an ellipsis, add a
11510 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11511 if (formal_type
!= void_type_node
)
11512 gen_unspecified_parameters_die (function_or_method_type
, context_die
);
11514 /* Make our second (and final) pass over the list of formal parameter types
11515 and output DIEs to represent those types (as necessary). */
11516 for (link
= TYPE_ARG_TYPES (function_or_method_type
);
11517 link
&& TREE_VALUE (link
);
11518 link
= TREE_CHAIN (link
))
11519 gen_type_die (TREE_VALUE (link
), context_die
);
11522 /* We want to generate the DIE for TYPE so that we can generate the
11523 die for MEMBER, which has been defined; we will need to refer back
11524 to the member declaration nested within TYPE. If we're trying to
11525 generate minimal debug info for TYPE, processing TYPE won't do the
11526 trick; we need to attach the member declaration by hand. */
11529 gen_type_die_for_member (tree type
, tree member
, dw_die_ref context_die
)
11531 gen_type_die (type
, context_die
);
11533 /* If we're trying to avoid duplicate debug info, we may not have
11534 emitted the member decl for this function. Emit it now. */
11535 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))
11536 && ! lookup_decl_die (member
))
11538 dw_die_ref type_die
;
11539 gcc_assert (!decl_ultimate_origin (member
));
11541 push_decl_scope (type
);
11542 type_die
= lookup_type_die (type
);
11543 if (TREE_CODE (member
) == FUNCTION_DECL
)
11544 gen_subprogram_die (member
, type_die
);
11545 else if (TREE_CODE (member
) == FIELD_DECL
)
11547 /* Ignore the nameless fields that are used to skip bits but handle
11548 C++ anonymous unions and structs. */
11549 if (DECL_NAME (member
) != NULL_TREE
11550 || TREE_CODE (TREE_TYPE (member
)) == UNION_TYPE
11551 || TREE_CODE (TREE_TYPE (member
)) == RECORD_TYPE
)
11553 gen_type_die (member_declared_type (member
), type_die
);
11554 gen_field_die (member
, type_die
);
11558 gen_variable_die (member
, type_die
);
11564 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11565 may later generate inlined and/or out-of-line instances of. */
11568 dwarf2out_abstract_function (tree decl
)
11570 dw_die_ref old_die
;
11572 struct function
*save_cfun
;
11574 int was_abstract
= DECL_ABSTRACT (decl
);
11576 /* Make sure we have the actual abstract inline, not a clone. */
11577 decl
= DECL_ORIGIN (decl
);
11579 old_die
= lookup_decl_die (decl
);
11580 if (old_die
&& get_AT (old_die
, DW_AT_inline
))
11581 /* We've already generated the abstract instance. */
11584 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11585 we don't get confused by DECL_ABSTRACT. */
11586 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11588 context
= decl_class_context (decl
);
11590 gen_type_die_for_member
11591 (context
, decl
, decl_function_context (decl
) ? NULL
: comp_unit_die
);
11594 /* Pretend we've just finished compiling this function. */
11595 save_fn
= current_function_decl
;
11597 current_function_decl
= decl
;
11598 cfun
= DECL_STRUCT_FUNCTION (decl
);
11600 set_decl_abstract_flags (decl
, 1);
11601 dwarf2out_decl (decl
);
11602 if (! was_abstract
)
11603 set_decl_abstract_flags (decl
, 0);
11605 current_function_decl
= save_fn
;
11609 /* Helper function of premark_used_types() which gets called through
11610 htab_traverse_resize().
11612 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11613 marked as unused by prune_unused_types. */
11615 premark_used_types_helper (void **slot
, void *data ATTRIBUTE_UNUSED
)
11621 die
= lookup_type_die (type
);
11623 die
->die_perennial_p
= 1;
11627 /* Mark all members of used_types_hash as perennial. */
11629 premark_used_types (void)
11631 if (cfun
&& cfun
->used_types_hash
)
11632 htab_traverse (cfun
->used_types_hash
, premark_used_types_helper
, NULL
);
11635 /* Generate a DIE to represent a declared function (either file-scope or
11639 gen_subprogram_die (tree decl
, dw_die_ref context_die
)
11641 char label_id
[MAX_ARTIFICIAL_LABEL_BYTES
];
11642 tree origin
= decl_ultimate_origin (decl
);
11643 dw_die_ref subr_die
;
11646 dw_die_ref old_die
= lookup_decl_die (decl
);
11647 int declaration
= (current_function_decl
!= decl
11648 || class_or_namespace_scope_p (context_die
));
11650 premark_used_types ();
11652 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11653 started to generate the abstract instance of an inline, decided to output
11654 its containing class, and proceeded to emit the declaration of the inline
11655 from the member list for the class. If so, DECLARATION takes priority;
11656 we'll get back to the abstract instance when done with the class. */
11658 /* The class-scope declaration DIE must be the primary DIE. */
11659 if (origin
&& declaration
&& class_or_namespace_scope_p (context_die
))
11662 gcc_assert (!old_die
);
11665 /* Now that the C++ front end lazily declares artificial member fns, we
11666 might need to retrofit the declaration into its class. */
11667 if (!declaration
&& !origin
&& !old_die
11668 && DECL_CONTEXT (decl
) && TYPE_P (DECL_CONTEXT (decl
))
11669 && !class_or_namespace_scope_p (context_die
)
11670 && debug_info_level
> DINFO_LEVEL_TERSE
)
11671 old_die
= force_decl_die (decl
);
11673 if (origin
!= NULL
)
11675 gcc_assert (!declaration
|| local_scope_p (context_die
));
11677 /* Fixup die_parent for the abstract instance of a nested
11678 inline function. */
11679 if (old_die
&& old_die
->die_parent
== NULL
)
11680 add_child_die (context_die
, old_die
);
11682 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
11683 add_abstract_origin_attribute (subr_die
, origin
);
11687 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
11688 struct dwarf_file_data
* file_index
= lookup_filename (s
.file
);
11690 if (!get_AT_flag (old_die
, DW_AT_declaration
)
11691 /* We can have a normal definition following an inline one in the
11692 case of redefinition of GNU C extern inlines.
11693 It seems reasonable to use AT_specification in this case. */
11694 && !get_AT (old_die
, DW_AT_inline
))
11696 /* Detect and ignore this case, where we are trying to output
11697 something we have already output. */
11701 /* If the definition comes from the same place as the declaration,
11702 maybe use the old DIE. We always want the DIE for this function
11703 that has the *_pc attributes to be under comp_unit_die so the
11704 debugger can find it. We also need to do this for abstract
11705 instances of inlines, since the spec requires the out-of-line copy
11706 to have the same parent. For local class methods, this doesn't
11707 apply; we just use the old DIE. */
11708 if ((old_die
->die_parent
== comp_unit_die
|| context_die
== NULL
)
11709 && (DECL_ARTIFICIAL (decl
)
11710 || (get_AT_file (old_die
, DW_AT_decl_file
) == file_index
11711 && (get_AT_unsigned (old_die
, DW_AT_decl_line
)
11712 == (unsigned) s
.line
))))
11714 subr_die
= old_die
;
11716 /* Clear out the declaration attribute and the formal parameters.
11717 Do not remove all children, because it is possible that this
11718 declaration die was forced using force_decl_die(). In such
11719 cases die that forced declaration die (e.g. TAG_imported_module)
11720 is one of the children that we do not want to remove. */
11721 remove_AT (subr_die
, DW_AT_declaration
);
11722 remove_child_TAG (subr_die
, DW_TAG_formal_parameter
);
11726 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
11727 add_AT_specification (subr_die
, old_die
);
11728 if (get_AT_file (old_die
, DW_AT_decl_file
) != file_index
)
11729 add_AT_file (subr_die
, DW_AT_decl_file
, file_index
);
11730 if (get_AT_unsigned (old_die
, DW_AT_decl_line
) != (unsigned) s
.line
)
11731 add_AT_unsigned (subr_die
, DW_AT_decl_line
, s
.line
);
11736 subr_die
= new_die (DW_TAG_subprogram
, context_die
, decl
);
11738 if (TREE_PUBLIC (decl
))
11739 add_AT_flag (subr_die
, DW_AT_external
, 1);
11741 add_name_and_src_coords_attributes (subr_die
, decl
);
11742 if (debug_info_level
> DINFO_LEVEL_TERSE
)
11744 add_prototyped_attribute (subr_die
, TREE_TYPE (decl
));
11745 add_type_attribute (subr_die
, TREE_TYPE (TREE_TYPE (decl
)),
11746 0, 0, context_die
);
11749 add_pure_or_virtual_attribute (subr_die
, decl
);
11750 if (DECL_ARTIFICIAL (decl
))
11751 add_AT_flag (subr_die
, DW_AT_artificial
, 1);
11753 if (TREE_PROTECTED (decl
))
11754 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
11755 else if (TREE_PRIVATE (decl
))
11756 add_AT_unsigned (subr_die
, DW_AT_accessibility
, DW_ACCESS_private
);
11761 if (!old_die
|| !get_AT (old_die
, DW_AT_inline
))
11763 add_AT_flag (subr_die
, DW_AT_declaration
, 1);
11765 /* The first time we see a member function, it is in the context of
11766 the class to which it belongs. We make sure of this by emitting
11767 the class first. The next time is the definition, which is
11768 handled above. The two may come from the same source text.
11770 Note that force_decl_die() forces function declaration die. It is
11771 later reused to represent definition. */
11772 equate_decl_number_to_die (decl
, subr_die
);
11775 else if (DECL_ABSTRACT (decl
))
11777 if (DECL_DECLARED_INLINE_P (decl
))
11779 if (cgraph_function_possibly_inlined_p (decl
))
11780 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_inlined
);
11782 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_declared_not_inlined
);
11786 if (cgraph_function_possibly_inlined_p (decl
))
11787 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_inlined
);
11789 add_AT_unsigned (subr_die
, DW_AT_inline
, DW_INL_not_inlined
);
11792 equate_decl_number_to_die (decl
, subr_die
);
11794 else if (!DECL_EXTERNAL (decl
))
11796 HOST_WIDE_INT cfa_fb_offset
;
11798 if (!old_die
|| !get_AT (old_die
, DW_AT_inline
))
11799 equate_decl_number_to_die (decl
, subr_die
);
11801 if (!flag_reorder_blocks_and_partition
)
11803 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_BEGIN_LABEL
,
11804 current_function_funcdef_no
);
11805 add_AT_lbl_id (subr_die
, DW_AT_low_pc
, label_id
);
11806 ASM_GENERATE_INTERNAL_LABEL (label_id
, FUNC_END_LABEL
,
11807 current_function_funcdef_no
);
11808 add_AT_lbl_id (subr_die
, DW_AT_high_pc
, label_id
);
11810 add_pubname (decl
, subr_die
);
11811 add_arange (decl
, subr_die
);
11814 { /* Do nothing for now; maybe need to duplicate die, one for
11815 hot section and ond for cold section, then use the hot/cold
11816 section begin/end labels to generate the aranges... */
11818 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11819 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11820 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11821 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11823 add_pubname (decl, subr_die);
11824 add_arange (decl, subr_die);
11825 add_arange (decl, subr_die);
11829 #ifdef MIPS_DEBUGGING_INFO
11830 /* Add a reference to the FDE for this routine. */
11831 add_AT_fde_ref (subr_die
, DW_AT_MIPS_fde
, current_funcdef_fde
);
11834 cfa_fb_offset
= CFA_FRAME_BASE_OFFSET (decl
);
11836 /* We define the "frame base" as the function's CFA. This is more
11837 convenient for several reasons: (1) It's stable across the prologue
11838 and epilogue, which makes it better than just a frame pointer,
11839 (2) With dwarf3, there exists a one-byte encoding that allows us
11840 to reference the .debug_frame data by proxy, but failing that,
11841 (3) We can at least reuse the code inspection and interpretation
11842 code that determines the CFA position at various points in the
11844 /* ??? Use some command-line or configury switch to enable the use
11845 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11846 consumers that understand it; fall back to "pure" dwarf2 and
11847 convert the CFA data into a location list. */
11849 dw_loc_list_ref list
= convert_cfa_to_fb_loc_list (cfa_fb_offset
);
11850 if (list
->dw_loc_next
)
11851 add_AT_loc_list (subr_die
, DW_AT_frame_base
, list
);
11853 add_AT_loc (subr_die
, DW_AT_frame_base
, list
->expr
);
11856 /* Compute a displacement from the "steady-state frame pointer" to
11857 the CFA. The former is what all stack slots and argument slots
11858 will reference in the rtl; the later is what we've told the
11859 debugger about. We'll need to adjust all frame_base references
11860 by this displacement. */
11861 compute_frame_pointer_to_fb_displacement (cfa_fb_offset
);
11863 if (cfun
->static_chain_decl
)
11864 add_AT_location_description (subr_die
, DW_AT_static_link
,
11865 loc_descriptor_from_tree (cfun
->static_chain_decl
));
11868 /* Now output descriptions of the arguments for this function. This gets
11869 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11870 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11871 `...' at the end of the formal parameter list. In order to find out if
11872 there was a trailing ellipsis or not, we must instead look at the type
11873 associated with the FUNCTION_DECL. This will be a node of type
11874 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11875 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11876 an ellipsis at the end. */
11878 /* In the case where we are describing a mere function declaration, all we
11879 need to do here (and all we *can* do here) is to describe the *types* of
11880 its formal parameters. */
11881 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
11883 else if (declaration
)
11884 gen_formal_types_die (decl
, subr_die
);
11887 /* Generate DIEs to represent all known formal parameters. */
11888 tree arg_decls
= DECL_ARGUMENTS (decl
);
11891 /* When generating DIEs, generate the unspecified_parameters DIE
11892 instead if we come across the arg "__builtin_va_alist" */
11893 for (parm
= arg_decls
; parm
; parm
= TREE_CHAIN (parm
))
11894 if (TREE_CODE (parm
) == PARM_DECL
)
11896 if (DECL_NAME (parm
)
11897 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm
)),
11898 "__builtin_va_alist"))
11899 gen_unspecified_parameters_die (parm
, subr_die
);
11901 gen_decl_die (parm
, subr_die
);
11904 /* Decide whether we need an unspecified_parameters DIE at the end.
11905 There are 2 more cases to do this for: 1) the ansi ... declaration -
11906 this is detectable when the end of the arg list is not a
11907 void_type_node 2) an unprototyped function declaration (not a
11908 definition). This just means that we have no info about the
11909 parameters at all. */
11910 fn_arg_types
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
11911 if (fn_arg_types
!= NULL
)
11913 /* This is the prototyped case, check for.... */
11914 if (TREE_VALUE (tree_last (fn_arg_types
)) != void_type_node
)
11915 gen_unspecified_parameters_die (decl
, subr_die
);
11917 else if (DECL_INITIAL (decl
) == NULL_TREE
)
11918 gen_unspecified_parameters_die (decl
, subr_die
);
11921 /* Output Dwarf info for all of the stuff within the body of the function
11922 (if it has one - it may be just a declaration). */
11923 outer_scope
= DECL_INITIAL (decl
);
11925 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11926 a function. This BLOCK actually represents the outermost binding contour
11927 for the function, i.e. the contour in which the function's formal
11928 parameters and labels get declared. Curiously, it appears that the front
11929 end doesn't actually put the PARM_DECL nodes for the current function onto
11930 the BLOCK_VARS list for this outer scope, but are strung off of the
11931 DECL_ARGUMENTS list for the function instead.
11933 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11934 the LABEL_DECL nodes for the function however, and we output DWARF info
11935 for those in decls_for_scope. Just within the `outer_scope' there will be
11936 a BLOCK node representing the function's outermost pair of curly braces,
11937 and any blocks used for the base and member initializers of a C++
11938 constructor function. */
11939 if (! declaration
&& TREE_CODE (outer_scope
) != ERROR_MARK
)
11941 /* Emit a DW_TAG_variable DIE for a named return value. */
11942 if (DECL_NAME (DECL_RESULT (decl
)))
11943 gen_decl_die (DECL_RESULT (decl
), subr_die
);
11945 current_function_has_inlines
= 0;
11946 decls_for_scope (outer_scope
, subr_die
, 0);
11948 #if 0 && defined (MIPS_DEBUGGING_INFO)
11949 if (current_function_has_inlines
)
11951 add_AT_flag (subr_die
, DW_AT_MIPS_has_inlines
, 1);
11952 if (! comp_unit_has_inlines
)
11954 add_AT_flag (comp_unit_die
, DW_AT_MIPS_has_inlines
, 1);
11955 comp_unit_has_inlines
= 1;
11960 /* Add the calling convention attribute if requested. */
11961 add_calling_convention_attribute (subr_die
, TREE_TYPE (decl
));
11965 /* Generate a DIE to represent a declared data object. */
11968 gen_variable_die (tree decl
, dw_die_ref context_die
)
11970 tree origin
= decl_ultimate_origin (decl
);
11971 dw_die_ref var_die
= new_die (DW_TAG_variable
, context_die
, decl
);
11973 dw_die_ref old_die
= lookup_decl_die (decl
);
11974 int declaration
= (DECL_EXTERNAL (decl
)
11975 /* If DECL is COMDAT and has not actually been
11976 emitted, we cannot take its address; there
11977 might end up being no definition anywhere in
11978 the program. For example, consider the C++
11982 struct S { static const int i = 7; };
11987 int f() { return S<int>::i; }
11989 Here, S<int>::i is not DECL_EXTERNAL, but no
11990 definition is required, so the compiler will
11991 not emit a definition. */
11992 || (TREE_CODE (decl
) == VAR_DECL
11993 && DECL_COMDAT (decl
) && !TREE_ASM_WRITTEN (decl
))
11994 || class_or_namespace_scope_p (context_die
));
11996 if (origin
!= NULL
)
11997 add_abstract_origin_attribute (var_die
, origin
);
11999 /* Loop unrolling can create multiple blocks that refer to the same
12000 static variable, so we must test for the DW_AT_declaration flag.
12002 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12003 copy decls and set the DECL_ABSTRACT flag on them instead of
12006 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12008 ??? The declare_in_namespace support causes us to get two DIEs for one
12009 variable, both of which are declarations. We want to avoid considering
12010 one to be a specification, so we must test that this DIE is not a
12012 else if (old_die
&& TREE_STATIC (decl
) && ! declaration
12013 && get_AT_flag (old_die
, DW_AT_declaration
) == 1)
12015 /* This is a definition of a C++ class level static. */
12016 add_AT_specification (var_die
, old_die
);
12017 if (DECL_NAME (decl
))
12019 expanded_location s
= expand_location (DECL_SOURCE_LOCATION (decl
));
12020 struct dwarf_file_data
* file_index
= lookup_filename (s
.file
);
12022 if (get_AT_file (old_die
, DW_AT_decl_file
) != file_index
)
12023 add_AT_file (var_die
, DW_AT_decl_file
, file_index
);
12025 if (get_AT_unsigned (old_die
, DW_AT_decl_line
) != (unsigned) s
.line
)
12027 add_AT_unsigned (var_die
, DW_AT_decl_line
, s
.line
);
12032 add_name_and_src_coords_attributes (var_die
, decl
);
12033 add_type_attribute (var_die
, TREE_TYPE (decl
), TREE_READONLY (decl
),
12034 TREE_THIS_VOLATILE (decl
), context_die
);
12036 if (TREE_PUBLIC (decl
))
12037 add_AT_flag (var_die
, DW_AT_external
, 1);
12039 if (DECL_ARTIFICIAL (decl
))
12040 add_AT_flag (var_die
, DW_AT_artificial
, 1);
12042 if (TREE_PROTECTED (decl
))
12043 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
12044 else if (TREE_PRIVATE (decl
))
12045 add_AT_unsigned (var_die
, DW_AT_accessibility
, DW_ACCESS_private
);
12049 add_AT_flag (var_die
, DW_AT_declaration
, 1);
12051 if (DECL_ABSTRACT (decl
) || declaration
)
12052 equate_decl_number_to_die (decl
, var_die
);
12054 if (! declaration
&& ! DECL_ABSTRACT (decl
))
12056 add_location_or_const_value_attribute (var_die
, decl
, DW_AT_location
);
12057 add_pubname (decl
, var_die
);
12060 tree_add_const_value_attribute (var_die
, decl
);
12063 /* Generate a DIE to represent a label identifier. */
12066 gen_label_die (tree decl
, dw_die_ref context_die
)
12068 tree origin
= decl_ultimate_origin (decl
);
12069 dw_die_ref lbl_die
= new_die (DW_TAG_label
, context_die
, decl
);
12071 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
12073 if (origin
!= NULL
)
12074 add_abstract_origin_attribute (lbl_die
, origin
);
12076 add_name_and_src_coords_attributes (lbl_die
, decl
);
12078 if (DECL_ABSTRACT (decl
))
12079 equate_decl_number_to_die (decl
, lbl_die
);
12082 insn
= DECL_RTL_IF_SET (decl
);
12084 /* Deleted labels are programmer specified labels which have been
12085 eliminated because of various optimizations. We still emit them
12086 here so that it is possible to put breakpoints on them. */
12090 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED_LABEL
))))
12092 /* When optimization is enabled (via -O) some parts of the compiler
12093 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12094 represent source-level labels which were explicitly declared by
12095 the user. This really shouldn't be happening though, so catch
12096 it if it ever does happen. */
12097 gcc_assert (!INSN_DELETED_P (insn
));
12099 ASM_GENERATE_INTERNAL_LABEL (label
, "L", CODE_LABEL_NUMBER (insn
));
12100 add_AT_lbl_id (lbl_die
, DW_AT_low_pc
, label
);
12105 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12106 attributes to the DIE for a block STMT, to describe where the inlined
12107 function was called from. This is similar to add_src_coords_attributes. */
12110 add_call_src_coords_attributes (tree stmt
, dw_die_ref die
)
12112 expanded_location s
= expand_location (BLOCK_SOURCE_LOCATION (stmt
));
12114 add_AT_file (die
, DW_AT_call_file
, lookup_filename (s
.file
));
12115 add_AT_unsigned (die
, DW_AT_call_line
, s
.line
);
12118 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12119 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12122 add_high_low_attributes (tree stmt
, dw_die_ref die
)
12124 char label
[MAX_ARTIFICIAL_LABEL_BYTES
];
12126 if (BLOCK_FRAGMENT_CHAIN (stmt
))
12130 add_AT_range_list (die
, DW_AT_ranges
, add_ranges (stmt
));
12132 chain
= BLOCK_FRAGMENT_CHAIN (stmt
);
12135 add_ranges (chain
);
12136 chain
= BLOCK_FRAGMENT_CHAIN (chain
);
12143 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_BEGIN_LABEL
,
12144 BLOCK_NUMBER (stmt
));
12145 add_AT_lbl_id (die
, DW_AT_low_pc
, label
);
12146 ASM_GENERATE_INTERNAL_LABEL (label
, BLOCK_END_LABEL
,
12147 BLOCK_NUMBER (stmt
));
12148 add_AT_lbl_id (die
, DW_AT_high_pc
, label
);
12152 /* Generate a DIE for a lexical block. */
12155 gen_lexical_block_die (tree stmt
, dw_die_ref context_die
, int depth
)
12157 dw_die_ref stmt_die
= new_die (DW_TAG_lexical_block
, context_die
, stmt
);
12159 if (! BLOCK_ABSTRACT (stmt
))
12160 add_high_low_attributes (stmt
, stmt_die
);
12162 decls_for_scope (stmt
, stmt_die
, depth
);
12165 /* Generate a DIE for an inlined subprogram. */
12168 gen_inlined_subroutine_die (tree stmt
, dw_die_ref context_die
, int depth
)
12170 tree decl
= block_ultimate_origin (stmt
);
12172 /* Emit info for the abstract instance first, if we haven't yet. We
12173 must emit this even if the block is abstract, otherwise when we
12174 emit the block below (or elsewhere), we may end up trying to emit
12175 a die whose origin die hasn't been emitted, and crashing. */
12176 dwarf2out_abstract_function (decl
);
12178 if (! BLOCK_ABSTRACT (stmt
))
12180 dw_die_ref subr_die
12181 = new_die (DW_TAG_inlined_subroutine
, context_die
, stmt
);
12183 add_abstract_origin_attribute (subr_die
, decl
);
12184 add_high_low_attributes (stmt
, subr_die
);
12185 add_call_src_coords_attributes (stmt
, subr_die
);
12187 decls_for_scope (stmt
, subr_die
, depth
);
12188 current_function_has_inlines
= 1;
12191 /* We may get here if we're the outer block of function A that was
12192 inlined into function B that was inlined into function C. When
12193 generating debugging info for C, dwarf2out_abstract_function(B)
12194 would mark all inlined blocks as abstract, including this one.
12195 So, we wouldn't (and shouldn't) expect labels to be generated
12196 for this one. Instead, just emit debugging info for
12197 declarations within the block. This is particularly important
12198 in the case of initializers of arguments passed from B to us:
12199 if they're statement expressions containing declarations, we
12200 wouldn't generate dies for their abstract variables, and then,
12201 when generating dies for the real variables, we'd die (pun
12203 gen_lexical_block_die (stmt
, context_die
, depth
);
12206 /* Generate a DIE for a field in a record, or structure. */
12209 gen_field_die (tree decl
, dw_die_ref context_die
)
12211 dw_die_ref decl_die
;
12213 if (TREE_TYPE (decl
) == error_mark_node
)
12216 decl_die
= new_die (DW_TAG_member
, context_die
, decl
);
12217 add_name_and_src_coords_attributes (decl_die
, decl
);
12218 add_type_attribute (decl_die
, member_declared_type (decl
),
12219 TREE_READONLY (decl
), TREE_THIS_VOLATILE (decl
),
12222 if (DECL_BIT_FIELD_TYPE (decl
))
12224 add_byte_size_attribute (decl_die
, decl
);
12225 add_bit_size_attribute (decl_die
, decl
);
12226 add_bit_offset_attribute (decl_die
, decl
);
12229 if (TREE_CODE (DECL_FIELD_CONTEXT (decl
)) != UNION_TYPE
)
12230 add_data_member_location_attribute (decl_die
, decl
);
12232 if (DECL_ARTIFICIAL (decl
))
12233 add_AT_flag (decl_die
, DW_AT_artificial
, 1);
12235 if (TREE_PROTECTED (decl
))
12236 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_protected
);
12237 else if (TREE_PRIVATE (decl
))
12238 add_AT_unsigned (decl_die
, DW_AT_accessibility
, DW_ACCESS_private
);
12240 /* Equate decl number to die, so that we can look up this decl later on. */
12241 equate_decl_number_to_die (decl
, decl_die
);
12245 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12246 Use modified_type_die instead.
12247 We keep this code here just in case these types of DIEs may be needed to
12248 represent certain things in other languages (e.g. Pascal) someday. */
12251 gen_pointer_type_die (tree type
, dw_die_ref context_die
)
12254 = new_die (DW_TAG_pointer_type
, scope_die_for (type
, context_die
), type
);
12256 equate_type_number_to_die (type
, ptr_die
);
12257 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
12258 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
12261 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12262 Use modified_type_die instead.
12263 We keep this code here just in case these types of DIEs may be needed to
12264 represent certain things in other languages (e.g. Pascal) someday. */
12267 gen_reference_type_die (tree type
, dw_die_ref context_die
)
12270 = new_die (DW_TAG_reference_type
, scope_die_for (type
, context_die
), type
);
12272 equate_type_number_to_die (type
, ref_die
);
12273 add_type_attribute (ref_die
, TREE_TYPE (type
), 0, 0, context_die
);
12274 add_AT_unsigned (mod_type_die
, DW_AT_byte_size
, PTR_SIZE
);
12278 /* Generate a DIE for a pointer to a member type. */
12281 gen_ptr_to_mbr_type_die (tree type
, dw_die_ref context_die
)
12284 = new_die (DW_TAG_ptr_to_member_type
,
12285 scope_die_for (type
, context_die
), type
);
12287 equate_type_number_to_die (type
, ptr_die
);
12288 add_AT_die_ref (ptr_die
, DW_AT_containing_type
,
12289 lookup_type_die (TYPE_OFFSET_BASETYPE (type
)));
12290 add_type_attribute (ptr_die
, TREE_TYPE (type
), 0, 0, context_die
);
12293 /* Generate the DIE for the compilation unit. */
12296 gen_compile_unit_die (const char *filename
)
12299 char producer
[250];
12300 const char *language_string
= lang_hooks
.name
;
12303 die
= new_die (DW_TAG_compile_unit
, NULL
, NULL
);
12307 add_name_attribute (die
, filename
);
12308 /* Don't add cwd for <built-in>. */
12309 if (filename
[0] != DIR_SEPARATOR
&& filename
[0] != '<')
12310 add_comp_dir_attribute (die
);
12313 sprintf (producer
, "%s %s", language_string
, version_string
);
12315 #ifdef MIPS_DEBUGGING_INFO
12316 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12317 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12318 not appear in the producer string, the debugger reaches the conclusion
12319 that the object file is stripped and has no debugging information.
12320 To get the MIPS/SGI debugger to believe that there is debugging
12321 information in the object file, we add a -g to the producer string. */
12322 if (debug_info_level
> DINFO_LEVEL_TERSE
)
12323 strcat (producer
, " -g");
12326 add_AT_string (die
, DW_AT_producer
, producer
);
12328 if (strcmp (language_string
, "GNU C++") == 0)
12329 language
= DW_LANG_C_plus_plus
;
12330 else if (strcmp (language_string
, "GNU Ada") == 0)
12331 language
= DW_LANG_Ada95
;
12332 else if (strcmp (language_string
, "GNU F77") == 0)
12333 language
= DW_LANG_Fortran77
;
12334 else if (strcmp (language_string
, "GNU F95") == 0)
12335 language
= DW_LANG_Fortran95
;
12336 else if (strcmp (language_string
, "GNU Pascal") == 0)
12337 language
= DW_LANG_Pascal83
;
12338 else if (strcmp (language_string
, "GNU Java") == 0)
12339 language
= DW_LANG_Java
;
12340 else if (strcmp (language_string
, "GNU Objective-C") == 0)
12341 language
= DW_LANG_ObjC
;
12342 else if (strcmp (language_string
, "GNU Objective-C++") == 0)
12343 language
= DW_LANG_ObjC_plus_plus
;
12345 language
= DW_LANG_C89
;
12347 add_AT_unsigned (die
, DW_AT_language
, language
);
12351 /* Generate the DIE for a base class. */
12354 gen_inheritance_die (tree binfo
, tree access
, dw_die_ref context_die
)
12356 dw_die_ref die
= new_die (DW_TAG_inheritance
, context_die
, binfo
);
12358 add_type_attribute (die
, BINFO_TYPE (binfo
), 0, 0, context_die
);
12359 add_data_member_location_attribute (die
, binfo
);
12361 if (BINFO_VIRTUAL_P (binfo
))
12362 add_AT_unsigned (die
, DW_AT_virtuality
, DW_VIRTUALITY_virtual
);
12364 if (access
== access_public_node
)
12365 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_public
);
12366 else if (access
== access_protected_node
)
12367 add_AT_unsigned (die
, DW_AT_accessibility
, DW_ACCESS_protected
);
12370 /* Generate a DIE for a class member. */
12373 gen_member_die (tree type
, dw_die_ref context_die
)
12376 tree binfo
= TYPE_BINFO (type
);
12379 /* If this is not an incomplete type, output descriptions of each of its
12380 members. Note that as we output the DIEs necessary to represent the
12381 members of this record or union type, we will also be trying to output
12382 DIEs to represent the *types* of those members. However the `type'
12383 function (above) will specifically avoid generating type DIEs for member
12384 types *within* the list of member DIEs for this (containing) type except
12385 for those types (of members) which are explicitly marked as also being
12386 members of this (containing) type themselves. The g++ front- end can
12387 force any given type to be treated as a member of some other (containing)
12388 type by setting the TYPE_CONTEXT of the given (member) type to point to
12389 the TREE node representing the appropriate (containing) type. */
12391 /* First output info about the base classes. */
12394 VEC(tree
,gc
) *accesses
= BINFO_BASE_ACCESSES (binfo
);
12398 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base
); i
++)
12399 gen_inheritance_die (base
,
12400 (accesses
? VEC_index (tree
, accesses
, i
)
12401 : access_public_node
), context_die
);
12404 /* Now output info about the data members and type members. */
12405 for (member
= TYPE_FIELDS (type
); member
; member
= TREE_CHAIN (member
))
12407 /* If we thought we were generating minimal debug info for TYPE
12408 and then changed our minds, some of the member declarations
12409 may have already been defined. Don't define them again, but
12410 do put them in the right order. */
12412 child
= lookup_decl_die (member
);
12414 splice_child_die (context_die
, child
);
12416 gen_decl_die (member
, context_die
);
12419 /* Now output info about the function members (if any). */
12420 for (member
= TYPE_METHODS (type
); member
; member
= TREE_CHAIN (member
))
12422 /* Don't include clones in the member list. */
12423 if (DECL_ABSTRACT_ORIGIN (member
))
12426 child
= lookup_decl_die (member
);
12428 splice_child_die (context_die
, child
);
12430 gen_decl_die (member
, context_die
);
12434 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12435 is set, we pretend that the type was never defined, so we only get the
12436 member DIEs needed by later specification DIEs. */
12439 gen_struct_or_union_type_die (tree type
, dw_die_ref context_die
)
12441 dw_die_ref type_die
= lookup_type_die (type
);
12442 dw_die_ref scope_die
= 0;
12444 int complete
= (TYPE_SIZE (type
)
12445 && (! TYPE_STUB_DECL (type
)
12446 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
))));
12447 int ns_decl
= (context_die
&& context_die
->die_tag
== DW_TAG_namespace
);
12449 if (type_die
&& ! complete
)
12452 if (TYPE_CONTEXT (type
) != NULL_TREE
12453 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
12454 || TREE_CODE (TYPE_CONTEXT (type
)) == NAMESPACE_DECL
))
12457 scope_die
= scope_die_for (type
, context_die
);
12459 if (! type_die
|| (nested
&& scope_die
== comp_unit_die
))
12460 /* First occurrence of type or toplevel definition of nested class. */
12462 dw_die_ref old_die
= type_die
;
12464 type_die
= new_die (TREE_CODE (type
) == RECORD_TYPE
12465 ? DW_TAG_structure_type
: DW_TAG_union_type
,
12467 equate_type_number_to_die (type
, type_die
);
12469 add_AT_specification (type_die
, old_die
);
12471 add_name_attribute (type_die
, type_tag (type
));
12474 remove_AT (type_die
, DW_AT_declaration
);
12476 /* If this type has been completed, then give it a byte_size attribute and
12477 then give a list of members. */
12478 if (complete
&& !ns_decl
)
12480 /* Prevent infinite recursion in cases where the type of some member of
12481 this type is expressed in terms of this type itself. */
12482 TREE_ASM_WRITTEN (type
) = 1;
12483 add_byte_size_attribute (type_die
, type
);
12484 if (TYPE_STUB_DECL (type
) != NULL_TREE
)
12485 add_src_coords_attributes (type_die
, TYPE_STUB_DECL (type
));
12487 /* If the first reference to this type was as the return type of an
12488 inline function, then it may not have a parent. Fix this now. */
12489 if (type_die
->die_parent
== NULL
)
12490 add_child_die (scope_die
, type_die
);
12492 push_decl_scope (type
);
12493 gen_member_die (type
, type_die
);
12496 /* GNU extension: Record what type our vtable lives in. */
12497 if (TYPE_VFIELD (type
))
12499 tree vtype
= DECL_FCONTEXT (TYPE_VFIELD (type
));
12501 gen_type_die (vtype
, context_die
);
12502 add_AT_die_ref (type_die
, DW_AT_containing_type
,
12503 lookup_type_die (vtype
));
12508 add_AT_flag (type_die
, DW_AT_declaration
, 1);
12510 /* We don't need to do this for function-local types. */
12511 if (TYPE_STUB_DECL (type
)
12512 && ! decl_function_context (TYPE_STUB_DECL (type
)))
12513 VEC_safe_push (tree
, gc
, incomplete_types
, type
);
12517 /* Generate a DIE for a subroutine _type_. */
12520 gen_subroutine_type_die (tree type
, dw_die_ref context_die
)
12522 tree return_type
= TREE_TYPE (type
);
12523 dw_die_ref subr_die
12524 = new_die (DW_TAG_subroutine_type
,
12525 scope_die_for (type
, context_die
), type
);
12527 equate_type_number_to_die (type
, subr_die
);
12528 add_prototyped_attribute (subr_die
, type
);
12529 add_type_attribute (subr_die
, return_type
, 0, 0, context_die
);
12530 gen_formal_types_die (type
, subr_die
);
12533 /* Generate a DIE for a type definition. */
12536 gen_typedef_die (tree decl
, dw_die_ref context_die
)
12538 dw_die_ref type_die
;
12541 if (TREE_ASM_WRITTEN (decl
))
12544 TREE_ASM_WRITTEN (decl
) = 1;
12545 type_die
= new_die (DW_TAG_typedef
, context_die
, decl
);
12546 origin
= decl_ultimate_origin (decl
);
12547 if (origin
!= NULL
)
12548 add_abstract_origin_attribute (type_die
, origin
);
12553 add_name_and_src_coords_attributes (type_die
, decl
);
12554 if (DECL_ORIGINAL_TYPE (decl
))
12556 type
= DECL_ORIGINAL_TYPE (decl
);
12558 gcc_assert (type
!= TREE_TYPE (decl
));
12559 equate_type_number_to_die (TREE_TYPE (decl
), type_die
);
12562 type
= TREE_TYPE (decl
);
12564 add_type_attribute (type_die
, type
, TREE_READONLY (decl
),
12565 TREE_THIS_VOLATILE (decl
), context_die
);
12568 if (DECL_ABSTRACT (decl
))
12569 equate_decl_number_to_die (decl
, type_die
);
12572 /* Generate a type description DIE. */
12575 gen_type_die (tree type
, dw_die_ref context_die
)
12579 if (type
== NULL_TREE
|| type
== error_mark_node
)
12582 if (TYPE_NAME (type
) && TREE_CODE (TYPE_NAME (type
)) == TYPE_DECL
12583 && DECL_ORIGINAL_TYPE (TYPE_NAME (type
)))
12585 if (TREE_ASM_WRITTEN (type
))
12588 /* Prevent broken recursion; we can't hand off to the same type. */
12589 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type
)) != type
);
12591 TREE_ASM_WRITTEN (type
) = 1;
12592 gen_decl_die (TYPE_NAME (type
), context_die
);
12596 /* We are going to output a DIE to represent the unqualified version
12597 of this type (i.e. without any const or volatile qualifiers) so
12598 get the main variant (i.e. the unqualified version) of this type
12599 now. (Vectors are special because the debugging info is in the
12600 cloned type itself). */
12601 if (TREE_CODE (type
) != VECTOR_TYPE
)
12602 type
= type_main_variant (type
);
12604 if (TREE_ASM_WRITTEN (type
))
12607 switch (TREE_CODE (type
))
12613 case REFERENCE_TYPE
:
12614 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12615 ensures that the gen_type_die recursion will terminate even if the
12616 type is recursive. Recursive types are possible in Ada. */
12617 /* ??? We could perhaps do this for all types before the switch
12619 TREE_ASM_WRITTEN (type
) = 1;
12621 /* For these types, all that is required is that we output a DIE (or a
12622 set of DIEs) to represent the "basis" type. */
12623 gen_type_die (TREE_TYPE (type
), context_die
);
12627 /* This code is used for C++ pointer-to-data-member types.
12628 Output a description of the relevant class type. */
12629 gen_type_die (TYPE_OFFSET_BASETYPE (type
), context_die
);
12631 /* Output a description of the type of the object pointed to. */
12632 gen_type_die (TREE_TYPE (type
), context_die
);
12634 /* Now output a DIE to represent this pointer-to-data-member type
12636 gen_ptr_to_mbr_type_die (type
, context_die
);
12639 case FUNCTION_TYPE
:
12640 /* Force out return type (in case it wasn't forced out already). */
12641 gen_type_die (TREE_TYPE (type
), context_die
);
12642 gen_subroutine_type_die (type
, context_die
);
12646 /* Force out return type (in case it wasn't forced out already). */
12647 gen_type_die (TREE_TYPE (type
), context_die
);
12648 gen_subroutine_type_die (type
, context_die
);
12652 gen_array_type_die (type
, context_die
);
12656 gen_array_type_die (type
, context_die
);
12659 case ENUMERAL_TYPE
:
12662 case QUAL_UNION_TYPE
:
12663 /* If this is a nested type whose containing class hasn't been written
12664 out yet, writing it out will cover this one, too. This does not apply
12665 to instantiations of member class templates; they need to be added to
12666 the containing class as they are generated. FIXME: This hurts the
12667 idea of combining type decls from multiple TUs, since we can't predict
12668 what set of template instantiations we'll get. */
12669 if (TYPE_CONTEXT (type
)
12670 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type
))
12671 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type
)))
12673 gen_type_die (TYPE_CONTEXT (type
), context_die
);
12675 if (TREE_ASM_WRITTEN (type
))
12678 /* If that failed, attach ourselves to the stub. */
12679 push_decl_scope (TYPE_CONTEXT (type
));
12680 context_die
= lookup_type_die (TYPE_CONTEXT (type
));
12685 declare_in_namespace (type
, context_die
);
12689 if (TREE_CODE (type
) == ENUMERAL_TYPE
)
12691 /* This might have been written out by the call to
12692 declare_in_namespace. */
12693 if (!TREE_ASM_WRITTEN (type
))
12694 gen_enumeration_type_die (type
, context_die
);
12697 gen_struct_or_union_type_die (type
, context_die
);
12702 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12703 it up if it is ever completed. gen_*_type_die will set it for us
12704 when appropriate. */
12712 /* No DIEs needed for fundamental types. */
12716 /* No Dwarf representation currently defined. */
12720 gcc_unreachable ();
12723 TREE_ASM_WRITTEN (type
) = 1;
12726 /* Generate a DIE for a tagged type instantiation. */
12729 gen_tagged_type_instantiation_die (tree type
, dw_die_ref context_die
)
12731 if (type
== NULL_TREE
|| type
== error_mark_node
)
12734 /* We are going to output a DIE to represent the unqualified version of
12735 this type (i.e. without any const or volatile qualifiers) so make sure
12736 that we have the main variant (i.e. the unqualified version) of this
12738 gcc_assert (type
== type_main_variant (type
));
12740 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12741 an instance of an unresolved type. */
12743 switch (TREE_CODE (type
))
12748 case ENUMERAL_TYPE
:
12749 gen_inlined_enumeration_type_die (type
, context_die
);
12753 gen_inlined_structure_type_die (type
, context_die
);
12757 case QUAL_UNION_TYPE
:
12758 gen_inlined_union_type_die (type
, context_die
);
12762 gcc_unreachable ();
12766 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12767 things which are local to the given block. */
12770 gen_block_die (tree stmt
, dw_die_ref context_die
, int depth
)
12772 int must_output_die
= 0;
12775 enum tree_code origin_code
;
12777 /* Ignore blocks that are NULL. */
12778 if (stmt
== NULL_TREE
)
12781 /* If the block is one fragment of a non-contiguous block, do not
12782 process the variables, since they will have been done by the
12783 origin block. Do process subblocks. */
12784 if (BLOCK_FRAGMENT_ORIGIN (stmt
))
12788 for (sub
= BLOCK_SUBBLOCKS (stmt
); sub
; sub
= BLOCK_CHAIN (sub
))
12789 gen_block_die (sub
, context_die
, depth
+ 1);
12794 /* Determine the "ultimate origin" of this block. This block may be an
12795 inlined instance of an inlined instance of inline function, so we have
12796 to trace all of the way back through the origin chain to find out what
12797 sort of node actually served as the original seed for the creation of
12798 the current block. */
12799 origin
= block_ultimate_origin (stmt
);
12800 origin_code
= (origin
!= NULL
) ? TREE_CODE (origin
) : ERROR_MARK
;
12802 /* Determine if we need to output any Dwarf DIEs at all to represent this
12804 if (origin_code
== FUNCTION_DECL
)
12805 /* The outer scopes for inlinings *must* always be represented. We
12806 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12807 must_output_die
= 1;
12810 /* In the case where the current block represents an inlining of the
12811 "body block" of an inline function, we must *NOT* output any DIE for
12812 this block because we have already output a DIE to represent the whole
12813 inlined function scope and the "body block" of any function doesn't
12814 really represent a different scope according to ANSI C rules. So we
12815 check here to make sure that this block does not represent a "body
12816 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12817 if (! is_body_block (origin
? origin
: stmt
))
12819 /* Determine if this block directly contains any "significant"
12820 local declarations which we will need to output DIEs for. */
12821 if (debug_info_level
> DINFO_LEVEL_TERSE
)
12822 /* We are not in terse mode so *any* local declaration counts
12823 as being a "significant" one. */
12824 must_output_die
= (BLOCK_VARS (stmt
) != NULL
12825 && (TREE_USED (stmt
)
12826 || TREE_ASM_WRITTEN (stmt
)
12827 || BLOCK_ABSTRACT (stmt
)));
12829 /* We are in terse mode, so only local (nested) function
12830 definitions count as "significant" local declarations. */
12831 for (decl
= BLOCK_VARS (stmt
);
12832 decl
!= NULL
; decl
= TREE_CHAIN (decl
))
12833 if (TREE_CODE (decl
) == FUNCTION_DECL
12834 && DECL_INITIAL (decl
))
12836 must_output_die
= 1;
12842 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12843 DIE for any block which contains no significant local declarations at
12844 all. Rather, in such cases we just call `decls_for_scope' so that any
12845 needed Dwarf info for any sub-blocks will get properly generated. Note
12846 that in terse mode, our definition of what constitutes a "significant"
12847 local declaration gets restricted to include only inlined function
12848 instances and local (nested) function definitions. */
12849 if (must_output_die
)
12851 if (origin_code
== FUNCTION_DECL
)
12852 gen_inlined_subroutine_die (stmt
, context_die
, depth
);
12854 gen_lexical_block_die (stmt
, context_die
, depth
);
12857 decls_for_scope (stmt
, context_die
, depth
);
12860 /* Generate all of the decls declared within a given scope and (recursively)
12861 all of its sub-blocks. */
12864 decls_for_scope (tree stmt
, dw_die_ref context_die
, int depth
)
12869 /* Ignore NULL blocks. */
12870 if (stmt
== NULL_TREE
)
12873 if (TREE_USED (stmt
))
12875 /* Output the DIEs to represent all of the data objects and typedefs
12876 declared directly within this block but not within any nested
12877 sub-blocks. Also, nested function and tag DIEs have been
12878 generated with a parent of NULL; fix that up now. */
12879 for (decl
= BLOCK_VARS (stmt
); decl
!= NULL
; decl
= TREE_CHAIN (decl
))
12883 if (TREE_CODE (decl
) == FUNCTION_DECL
)
12884 die
= lookup_decl_die (decl
);
12885 else if (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
))
12886 die
= lookup_type_die (TREE_TYPE (decl
));
12890 if (die
!= NULL
&& die
->die_parent
== NULL
)
12891 add_child_die (context_die
, die
);
12892 /* Do not produce debug information for static variables since
12893 these might be optimized out. We are called for these later
12894 in cgraph_varpool_analyze_pending_decls. */
12895 if (TREE_CODE (decl
) == VAR_DECL
&& TREE_STATIC (decl
))
12898 gen_decl_die (decl
, context_die
);
12902 /* If we're at -g1, we're not interested in subblocks. */
12903 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
12906 /* Output the DIEs to represent all sub-blocks (and the items declared
12907 therein) of this block. */
12908 for (subblocks
= BLOCK_SUBBLOCKS (stmt
);
12910 subblocks
= BLOCK_CHAIN (subblocks
))
12911 gen_block_die (subblocks
, context_die
, depth
+ 1);
12914 /* Is this a typedef we can avoid emitting? */
12917 is_redundant_typedef (tree decl
)
12919 if (TYPE_DECL_IS_STUB (decl
))
12922 if (DECL_ARTIFICIAL (decl
)
12923 && DECL_CONTEXT (decl
)
12924 && is_tagged_type (DECL_CONTEXT (decl
))
12925 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl
))) == TYPE_DECL
12926 && DECL_NAME (decl
) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl
))))
12927 /* Also ignore the artificial member typedef for the class name. */
12933 /* Returns the DIE for decl. A DIE will always be returned. */
12936 force_decl_die (tree decl
)
12938 dw_die_ref decl_die
;
12939 unsigned saved_external_flag
;
12940 tree save_fn
= NULL_TREE
;
12941 decl_die
= lookup_decl_die (decl
);
12944 dw_die_ref context_die
;
12945 tree decl_context
= DECL_CONTEXT (decl
);
12948 /* Find die that represents this context. */
12949 if (TYPE_P (decl_context
))
12950 context_die
= force_type_die (decl_context
);
12952 context_die
= force_decl_die (decl_context
);
12955 context_die
= comp_unit_die
;
12957 decl_die
= lookup_decl_die (decl
);
12961 switch (TREE_CODE (decl
))
12963 case FUNCTION_DECL
:
12964 /* Clear current_function_decl, so that gen_subprogram_die thinks
12965 that this is a declaration. At this point, we just want to force
12966 declaration die. */
12967 save_fn
= current_function_decl
;
12968 current_function_decl
= NULL_TREE
;
12969 gen_subprogram_die (decl
, context_die
);
12970 current_function_decl
= save_fn
;
12974 /* Set external flag to force declaration die. Restore it after
12975 gen_decl_die() call. */
12976 saved_external_flag
= DECL_EXTERNAL (decl
);
12977 DECL_EXTERNAL (decl
) = 1;
12978 gen_decl_die (decl
, context_die
);
12979 DECL_EXTERNAL (decl
) = saved_external_flag
;
12982 case NAMESPACE_DECL
:
12983 dwarf2out_decl (decl
);
12987 gcc_unreachable ();
12990 /* We should be able to find the DIE now. */
12992 decl_die
= lookup_decl_die (decl
);
12993 gcc_assert (decl_die
);
12999 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
13000 always returned. */
13003 force_type_die (tree type
)
13005 dw_die_ref type_die
;
13007 type_die
= lookup_type_die (type
);
13010 dw_die_ref context_die
;
13011 if (TYPE_CONTEXT (type
))
13013 if (TYPE_P (TYPE_CONTEXT (type
)))
13014 context_die
= force_type_die (TYPE_CONTEXT (type
));
13016 context_die
= force_decl_die (TYPE_CONTEXT (type
));
13019 context_die
= comp_unit_die
;
13021 type_die
= lookup_type_die (type
);
13024 gen_type_die (type
, context_die
);
13025 type_die
= lookup_type_die (type
);
13026 gcc_assert (type_die
);
13031 /* Force out any required namespaces to be able to output DECL,
13032 and return the new context_die for it, if it's changed. */
13035 setup_namespace_context (tree thing
, dw_die_ref context_die
)
13037 tree context
= (DECL_P (thing
)
13038 ? DECL_CONTEXT (thing
) : TYPE_CONTEXT (thing
));
13039 if (context
&& TREE_CODE (context
) == NAMESPACE_DECL
)
13040 /* Force out the namespace. */
13041 context_die
= force_decl_die (context
);
13043 return context_die
;
13046 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13047 type) within its namespace, if appropriate.
13049 For compatibility with older debuggers, namespace DIEs only contain
13050 declarations; all definitions are emitted at CU scope. */
13053 declare_in_namespace (tree thing
, dw_die_ref context_die
)
13055 dw_die_ref ns_context
;
13057 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13060 /* If this decl is from an inlined function, then don't try to emit it in its
13061 namespace, as we will get confused. It would have already been emitted
13062 when the abstract instance of the inline function was emitted anyways. */
13063 if (DECL_P (thing
) && DECL_ABSTRACT_ORIGIN (thing
))
13066 ns_context
= setup_namespace_context (thing
, context_die
);
13068 if (ns_context
!= context_die
)
13070 if (DECL_P (thing
))
13071 gen_decl_die (thing
, ns_context
);
13073 gen_type_die (thing
, ns_context
);
13077 /* Generate a DIE for a namespace or namespace alias. */
13080 gen_namespace_die (tree decl
)
13082 dw_die_ref context_die
= setup_namespace_context (decl
, comp_unit_die
);
13084 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13085 they are an alias of. */
13086 if (DECL_ABSTRACT_ORIGIN (decl
) == NULL
)
13088 /* Output a real namespace. */
13089 dw_die_ref namespace_die
13090 = new_die (DW_TAG_namespace
, context_die
, decl
);
13091 add_name_and_src_coords_attributes (namespace_die
, decl
);
13092 equate_decl_number_to_die (decl
, namespace_die
);
13096 /* Output a namespace alias. */
13098 /* Force out the namespace we are an alias of, if necessary. */
13099 dw_die_ref origin_die
13100 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl
));
13102 /* Now create the namespace alias DIE. */
13103 dw_die_ref namespace_die
13104 = new_die (DW_TAG_imported_declaration
, context_die
, decl
);
13105 add_name_and_src_coords_attributes (namespace_die
, decl
);
13106 add_AT_die_ref (namespace_die
, DW_AT_import
, origin_die
);
13107 equate_decl_number_to_die (decl
, namespace_die
);
13111 /* Generate Dwarf debug information for a decl described by DECL. */
13114 gen_decl_die (tree decl
, dw_die_ref context_die
)
13118 if (DECL_P (decl
) && DECL_IGNORED_P (decl
))
13121 switch (TREE_CODE (decl
))
13127 /* The individual enumerators of an enum type get output when we output
13128 the Dwarf representation of the relevant enum type itself. */
13131 case FUNCTION_DECL
:
13132 /* Don't output any DIEs to represent mere function declarations,
13133 unless they are class members or explicit block externs. */
13134 if (DECL_INITIAL (decl
) == NULL_TREE
&& DECL_CONTEXT (decl
) == NULL_TREE
13135 && (current_function_decl
== NULL_TREE
|| DECL_ARTIFICIAL (decl
)))
13140 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13141 on local redeclarations of global functions. That seems broken. */
13142 if (current_function_decl
!= decl
)
13143 /* This is only a declaration. */;
13146 /* If we're emitting a clone, emit info for the abstract instance. */
13147 if (DECL_ORIGIN (decl
) != decl
)
13148 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl
));
13150 /* If we're emitting an out-of-line copy of an inline function,
13151 emit info for the abstract instance and set up to refer to it. */
13152 else if (cgraph_function_possibly_inlined_p (decl
)
13153 && ! DECL_ABSTRACT (decl
)
13154 && ! class_or_namespace_scope_p (context_die
)
13155 /* dwarf2out_abstract_function won't emit a die if this is just
13156 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13157 that case, because that works only if we have a die. */
13158 && DECL_INITIAL (decl
) != NULL_TREE
)
13160 dwarf2out_abstract_function (decl
);
13161 set_decl_origin_self (decl
);
13164 /* Otherwise we're emitting the primary DIE for this decl. */
13165 else if (debug_info_level
> DINFO_LEVEL_TERSE
)
13167 /* Before we describe the FUNCTION_DECL itself, make sure that we
13168 have described its return type. */
13169 gen_type_die (TREE_TYPE (TREE_TYPE (decl
)), context_die
);
13171 /* And its virtual context. */
13172 if (DECL_VINDEX (decl
) != NULL_TREE
)
13173 gen_type_die (DECL_CONTEXT (decl
), context_die
);
13175 /* And its containing type. */
13176 origin
= decl_class_context (decl
);
13177 if (origin
!= NULL_TREE
)
13178 gen_type_die_for_member (origin
, decl
, context_die
);
13180 /* And its containing namespace. */
13181 declare_in_namespace (decl
, context_die
);
13184 /* Now output a DIE to represent the function itself. */
13185 gen_subprogram_die (decl
, context_die
);
13189 /* If we are in terse mode, don't generate any DIEs to represent any
13190 actual typedefs. */
13191 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13194 /* In the special case of a TYPE_DECL node representing the declaration
13195 of some type tag, if the given TYPE_DECL is marked as having been
13196 instantiated from some other (original) TYPE_DECL node (e.g. one which
13197 was generated within the original definition of an inline function) we
13198 have to generate a special (abbreviated) DW_TAG_structure_type,
13199 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13200 if (TYPE_DECL_IS_STUB (decl
) && decl_ultimate_origin (decl
) != NULL_TREE
)
13202 gen_tagged_type_instantiation_die (TREE_TYPE (decl
), context_die
);
13206 if (is_redundant_typedef (decl
))
13207 gen_type_die (TREE_TYPE (decl
), context_die
);
13209 /* Output a DIE to represent the typedef itself. */
13210 gen_typedef_die (decl
, context_die
);
13214 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
13215 gen_label_die (decl
, context_die
);
13220 /* If we are in terse mode, don't generate any DIEs to represent any
13221 variable declarations or definitions. */
13222 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13225 /* Output any DIEs that are needed to specify the type of this data
13227 gen_type_die (TREE_TYPE (decl
), context_die
);
13229 /* And its containing type. */
13230 origin
= decl_class_context (decl
);
13231 if (origin
!= NULL_TREE
)
13232 gen_type_die_for_member (origin
, decl
, context_die
);
13234 /* And its containing namespace. */
13235 declare_in_namespace (decl
, context_die
);
13237 /* Now output the DIE to represent the data object itself. This gets
13238 complicated because of the possibility that the VAR_DECL really
13239 represents an inlined instance of a formal parameter for an inline
13241 origin
= decl_ultimate_origin (decl
);
13242 if (origin
!= NULL_TREE
&& TREE_CODE (origin
) == PARM_DECL
)
13243 gen_formal_parameter_die (decl
, context_die
);
13245 gen_variable_die (decl
, context_die
);
13249 /* Ignore the nameless fields that are used to skip bits but handle C++
13250 anonymous unions and structs. */
13251 if (DECL_NAME (decl
) != NULL_TREE
13252 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
13253 || TREE_CODE (TREE_TYPE (decl
)) == RECORD_TYPE
)
13255 gen_type_die (member_declared_type (decl
), context_die
);
13256 gen_field_die (decl
, context_die
);
13261 gen_type_die (TREE_TYPE (decl
), context_die
);
13262 gen_formal_parameter_die (decl
, context_die
);
13265 case NAMESPACE_DECL
:
13266 gen_namespace_die (decl
);
13270 /* Probably some frontend-internal decl. Assume we don't care. */
13271 gcc_assert ((int)TREE_CODE (decl
) > NUM_TREE_CODES
);
13276 /* Output debug information for global decl DECL. Called from toplev.c after
13277 compilation proper has finished. */
13280 dwarf2out_global_decl (tree decl
)
13282 /* Output DWARF2 information for file-scope tentative data object
13283 declarations, file-scope (extern) function declarations (which had no
13284 corresponding body) and file-scope tagged type declarations and
13285 definitions which have not yet been forced out. */
13286 if (TREE_CODE (decl
) != FUNCTION_DECL
|| !DECL_INITIAL (decl
))
13287 dwarf2out_decl (decl
);
13290 /* Output debug information for type decl DECL. Called from toplev.c
13291 and from language front ends (to record built-in types). */
13293 dwarf2out_type_decl (tree decl
, int local
)
13296 dwarf2out_decl (decl
);
13299 /* Output debug information for imported module or decl. */
13302 dwarf2out_imported_module_or_decl (tree decl
, tree context
)
13304 dw_die_ref imported_die
, at_import_die
;
13305 dw_die_ref scope_die
;
13306 expanded_location xloc
;
13308 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13313 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13314 We need decl DIE for reference and scope die. First, get DIE for the decl
13317 /* Get the scope die for decl context. Use comp_unit_die for global module
13318 or decl. If die is not found for non globals, force new die. */
13320 scope_die
= comp_unit_die
;
13321 else if (TYPE_P (context
))
13322 scope_die
= force_type_die (context
);
13324 scope_die
= force_decl_die (context
);
13326 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13327 if (TREE_CODE (decl
) == TYPE_DECL
|| TREE_CODE (decl
) == CONST_DECL
)
13329 if (is_base_type (TREE_TYPE (decl
)))
13330 at_import_die
= base_type_die (TREE_TYPE (decl
));
13332 at_import_die
= force_type_die (TREE_TYPE (decl
));
13336 at_import_die
= lookup_decl_die (decl
);
13337 if (!at_import_die
)
13339 /* If we're trying to avoid duplicate debug info, we may not have
13340 emitted the member decl for this field. Emit it now. */
13341 if (TREE_CODE (decl
) == FIELD_DECL
)
13343 tree type
= DECL_CONTEXT (decl
);
13344 dw_die_ref type_context_die
;
13346 if (TYPE_CONTEXT (type
))
13347 if (TYPE_P (TYPE_CONTEXT (type
)))
13348 type_context_die
= force_type_die (TYPE_CONTEXT (type
));
13350 type_context_die
= force_decl_die (TYPE_CONTEXT (type
));
13352 type_context_die
= comp_unit_die
;
13353 gen_type_die_for_member (type
, decl
, type_context_die
);
13355 at_import_die
= force_decl_die (decl
);
13359 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13360 if (TREE_CODE (decl
) == NAMESPACE_DECL
)
13361 imported_die
= new_die (DW_TAG_imported_module
, scope_die
, context
);
13363 imported_die
= new_die (DW_TAG_imported_declaration
, scope_die
, context
);
13365 xloc
= expand_location (input_location
);
13366 add_AT_file (imported_die
, DW_AT_decl_file
, lookup_filename (xloc
.file
));
13367 add_AT_unsigned (imported_die
, DW_AT_decl_line
, xloc
.line
);
13368 add_AT_die_ref (imported_die
, DW_AT_import
, at_import_die
);
13371 /* Write the debugging output for DECL. */
13374 dwarf2out_decl (tree decl
)
13376 dw_die_ref context_die
= comp_unit_die
;
13378 switch (TREE_CODE (decl
))
13383 case FUNCTION_DECL
:
13384 /* What we would really like to do here is to filter out all mere
13385 file-scope declarations of file-scope functions which are never
13386 referenced later within this translation unit (and keep all of ones
13387 that *are* referenced later on) but we aren't clairvoyant, so we have
13388 no idea which functions will be referenced in the future (i.e. later
13389 on within the current translation unit). So here we just ignore all
13390 file-scope function declarations which are not also definitions. If
13391 and when the debugger needs to know something about these functions,
13392 it will have to hunt around and find the DWARF information associated
13393 with the definition of the function.
13395 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13396 nodes represent definitions and which ones represent mere
13397 declarations. We have to check DECL_INITIAL instead. That's because
13398 the C front-end supports some weird semantics for "extern inline"
13399 function definitions. These can get inlined within the current
13400 translation unit (and thus, we need to generate Dwarf info for their
13401 abstract instances so that the Dwarf info for the concrete inlined
13402 instances can have something to refer to) but the compiler never
13403 generates any out-of-lines instances of such things (despite the fact
13404 that they *are* definitions).
13406 The important point is that the C front-end marks these "extern
13407 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13408 them anyway. Note that the C++ front-end also plays some similar games
13409 for inline function definitions appearing within include files which
13410 also contain `#pragma interface' pragmas. */
13411 if (DECL_INITIAL (decl
) == NULL_TREE
)
13414 /* If we're a nested function, initially use a parent of NULL; if we're
13415 a plain function, this will be fixed up in decls_for_scope. If
13416 we're a method, it will be ignored, since we already have a DIE. */
13417 if (decl_function_context (decl
)
13418 /* But if we're in terse mode, we don't care about scope. */
13419 && debug_info_level
> DINFO_LEVEL_TERSE
)
13420 context_die
= NULL
;
13424 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13425 declaration and if the declaration was never even referenced from
13426 within this entire compilation unit. We suppress these DIEs in
13427 order to save space in the .debug section (by eliminating entries
13428 which are probably useless). Note that we must not suppress
13429 block-local extern declarations (whether used or not) because that
13430 would screw-up the debugger's name lookup mechanism and cause it to
13431 miss things which really ought to be in scope at a given point. */
13432 if (DECL_EXTERNAL (decl
) && !TREE_USED (decl
))
13435 /* For local statics lookup proper context die. */
13436 if (TREE_STATIC (decl
) && decl_function_context (decl
))
13437 context_die
= lookup_decl_die (DECL_CONTEXT (decl
));
13439 /* If we are in terse mode, don't generate any DIEs to represent any
13440 variable declarations or definitions. */
13441 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13445 case NAMESPACE_DECL
:
13446 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13448 if (lookup_decl_die (decl
) != NULL
)
13453 /* Don't emit stubs for types unless they are needed by other DIEs. */
13454 if (TYPE_DECL_SUPPRESS_DEBUG (decl
))
13457 /* Don't bother trying to generate any DIEs to represent any of the
13458 normal built-in types for the language we are compiling. */
13459 if (DECL_IS_BUILTIN (decl
))
13461 /* OK, we need to generate one for `bool' so GDB knows what type
13462 comparisons have. */
13464 && TREE_CODE (TREE_TYPE (decl
)) == BOOLEAN_TYPE
13465 && ! DECL_IGNORED_P (decl
))
13466 modified_type_die (TREE_TYPE (decl
), 0, 0, NULL
);
13471 /* If we are in terse mode, don't generate any DIEs for types. */
13472 if (debug_info_level
<= DINFO_LEVEL_TERSE
)
13475 /* If we're a function-scope tag, initially use a parent of NULL;
13476 this will be fixed up in decls_for_scope. */
13477 if (decl_function_context (decl
))
13478 context_die
= NULL
;
13486 gen_decl_die (decl
, context_die
);
13489 /* Output a marker (i.e. a label) for the beginning of the generated code for
13490 a lexical block. */
13493 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED
,
13494 unsigned int blocknum
)
13496 switch_to_section (current_function_section ());
13497 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_BEGIN_LABEL
, blocknum
);
13500 /* Output a marker (i.e. a label) for the end of the generated code for a
13504 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED
, unsigned int blocknum
)
13506 switch_to_section (current_function_section ());
13507 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, BLOCK_END_LABEL
, blocknum
);
13510 /* Returns nonzero if it is appropriate not to emit any debugging
13511 information for BLOCK, because it doesn't contain any instructions.
13513 Don't allow this for blocks with nested functions or local classes
13514 as we would end up with orphans, and in the presence of scheduling
13515 we may end up calling them anyway. */
13518 dwarf2out_ignore_block (tree block
)
13522 for (decl
= BLOCK_VARS (block
); decl
; decl
= TREE_CHAIN (decl
))
13523 if (TREE_CODE (decl
) == FUNCTION_DECL
13524 || (TREE_CODE (decl
) == TYPE_DECL
&& TYPE_DECL_IS_STUB (decl
)))
13530 /* Hash table routines for file_hash. */
13533 file_table_eq (const void *p1_p
, const void *p2_p
)
13535 const struct dwarf_file_data
* p1
= p1_p
;
13536 const char * p2
= p2_p
;
13537 return strcmp (p1
->filename
, p2
) == 0;
13541 file_table_hash (const void *p_p
)
13543 const struct dwarf_file_data
* p
= p_p
;
13544 return htab_hash_string (p
->filename
);
13547 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13548 dwarf2out.c) and return its "index". The index of each (known) filename is
13549 just a unique number which is associated with only that one filename. We
13550 need such numbers for the sake of generating labels (in the .debug_sfnames
13551 section) and references to those files numbers (in the .debug_srcinfo
13552 and.debug_macinfo sections). If the filename given as an argument is not
13553 found in our current list, add it to the list and assign it the next
13554 available unique index number. In order to speed up searches, we remember
13555 the index of the filename was looked up last. This handles the majority of
13558 static struct dwarf_file_data
*
13559 lookup_filename (const char *file_name
)
13562 struct dwarf_file_data
* created
;
13564 /* Check to see if the file name that was searched on the previous
13565 call matches this file name. If so, return the index. */
13566 if (file_table_last_lookup
13567 && (file_name
== file_table_last_lookup
->filename
13568 || strcmp (file_table_last_lookup
->filename
, file_name
) == 0))
13569 return file_table_last_lookup
;
13571 /* Didn't match the previous lookup, search the table. */
13572 slot
= htab_find_slot_with_hash (file_table
, file_name
,
13573 htab_hash_string (file_name
), INSERT
);
13577 created
= ggc_alloc (sizeof (struct dwarf_file_data
));
13578 created
->filename
= file_name
;
13579 created
->emitted_number
= 0;
13584 /* If the assembler will construct the file table, then translate the compiler
13585 internal file table number into the assembler file table number, and emit
13586 a .file directive if we haven't already emitted one yet. The file table
13587 numbers are different because we prune debug info for unused variables and
13588 types, which may include filenames. */
13591 maybe_emit_file (struct dwarf_file_data
* fd
)
13593 if (! fd
->emitted_number
)
13595 if (last_emitted_file
)
13596 fd
->emitted_number
= last_emitted_file
->emitted_number
+ 1;
13598 fd
->emitted_number
= 1;
13599 last_emitted_file
= fd
;
13601 if (DWARF2_ASM_LINE_DEBUG_INFO
)
13603 fprintf (asm_out_file
, "\t.file %u ", fd
->emitted_number
);
13604 output_quoted_string (asm_out_file
, fd
->filename
);
13605 fputc ('\n', asm_out_file
);
13609 return fd
->emitted_number
;
13612 /* Called by the final INSN scan whenever we see a var location. We
13613 use it to drop labels in the right places, and throw the location in
13614 our lookup table. */
13617 dwarf2out_var_location (rtx loc_note
)
13619 char loclabel
[MAX_ARTIFICIAL_LABEL_BYTES
];
13620 struct var_loc_node
*newloc
;
13622 static rtx last_insn
;
13623 static const char *last_label
;
13626 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note
)))
13628 prev_insn
= PREV_INSN (loc_note
);
13630 newloc
= ggc_alloc_cleared (sizeof (struct var_loc_node
));
13631 /* If the insn we processed last time is the previous insn
13632 and it is also a var location note, use the label we emitted
13634 if (last_insn
!= NULL_RTX
13635 && last_insn
== prev_insn
13636 && NOTE_P (prev_insn
)
13637 && NOTE_LINE_NUMBER (prev_insn
) == NOTE_INSN_VAR_LOCATION
)
13639 newloc
->label
= last_label
;
13643 ASM_GENERATE_INTERNAL_LABEL (loclabel
, "LVL", loclabel_num
);
13644 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LVL", loclabel_num
);
13646 newloc
->label
= ggc_strdup (loclabel
);
13648 newloc
->var_loc_note
= loc_note
;
13649 newloc
->next
= NULL
;
13651 if (cfun
&& in_cold_section_p
)
13652 newloc
->section_label
= cfun
->cold_section_label
;
13654 newloc
->section_label
= text_section_label
;
13656 last_insn
= loc_note
;
13657 last_label
= newloc
->label
;
13658 decl
= NOTE_VAR_LOCATION_DECL (loc_note
);
13659 add_var_loc_to_decl (decl
, newloc
);
13662 /* We need to reset the locations at the beginning of each
13663 function. We can't do this in the end_function hook, because the
13664 declarations that use the locations won't have been output when
13665 that hook is called. Also compute have_multiple_function_sections here. */
13668 dwarf2out_begin_function (tree fun
)
13670 htab_empty (decl_loc_table
);
13672 if (function_section (fun
) != text_section
)
13673 have_multiple_function_sections
= true;
13676 /* Output a label to mark the beginning of a source code line entry
13677 and record information relating to this source line, in
13678 'line_info_table' for later output of the .debug_line section. */
13681 dwarf2out_source_line (unsigned int line
, const char *filename
)
13683 if (debug_info_level
>= DINFO_LEVEL_NORMAL
13686 int file_num
= maybe_emit_file (lookup_filename (filename
));
13688 switch_to_section (current_function_section ());
13690 /* If requested, emit something human-readable. */
13691 if (flag_debug_asm
)
13692 fprintf (asm_out_file
, "\t%s %s:%d\n", ASM_COMMENT_START
,
13695 if (DWARF2_ASM_LINE_DEBUG_INFO
)
13697 /* Emit the .loc directive understood by GNU as. */
13698 fprintf (asm_out_file
, "\t.loc %d %d 0\n", file_num
, line
);
13700 /* Indicate that line number info exists. */
13701 line_info_table_in_use
++;
13703 else if (function_section (current_function_decl
) != text_section
)
13705 dw_separate_line_info_ref line_info
;
13706 targetm
.asm_out
.internal_label (asm_out_file
,
13707 SEPARATE_LINE_CODE_LABEL
,
13708 separate_line_info_table_in_use
);
13710 /* Expand the line info table if necessary. */
13711 if (separate_line_info_table_in_use
13712 == separate_line_info_table_allocated
)
13714 separate_line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
13715 separate_line_info_table
13716 = ggc_realloc (separate_line_info_table
,
13717 separate_line_info_table_allocated
13718 * sizeof (dw_separate_line_info_entry
));
13719 memset (separate_line_info_table
13720 + separate_line_info_table_in_use
,
13722 (LINE_INFO_TABLE_INCREMENT
13723 * sizeof (dw_separate_line_info_entry
)));
13726 /* Add the new entry at the end of the line_info_table. */
13728 = &separate_line_info_table
[separate_line_info_table_in_use
++];
13729 line_info
->dw_file_num
= file_num
;
13730 line_info
->dw_line_num
= line
;
13731 line_info
->function
= current_function_funcdef_no
;
13735 dw_line_info_ref line_info
;
13737 targetm
.asm_out
.internal_label (asm_out_file
, LINE_CODE_LABEL
,
13738 line_info_table_in_use
);
13740 /* Expand the line info table if necessary. */
13741 if (line_info_table_in_use
== line_info_table_allocated
)
13743 line_info_table_allocated
+= LINE_INFO_TABLE_INCREMENT
;
13745 = ggc_realloc (line_info_table
,
13746 (line_info_table_allocated
13747 * sizeof (dw_line_info_entry
)));
13748 memset (line_info_table
+ line_info_table_in_use
, 0,
13749 LINE_INFO_TABLE_INCREMENT
* sizeof (dw_line_info_entry
));
13752 /* Add the new entry at the end of the line_info_table. */
13753 line_info
= &line_info_table
[line_info_table_in_use
++];
13754 line_info
->dw_file_num
= file_num
;
13755 line_info
->dw_line_num
= line
;
13760 /* Record the beginning of a new source file. */
13763 dwarf2out_start_source_file (unsigned int lineno
, const char *filename
)
13765 if (flag_eliminate_dwarf2_dups
)
13767 /* Record the beginning of the file for break_out_includes. */
13768 dw_die_ref bincl_die
;
13770 bincl_die
= new_die (DW_TAG_GNU_BINCL
, comp_unit_die
, NULL
);
13771 add_AT_string (bincl_die
, DW_AT_name
, filename
);
13774 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13776 int file_num
= maybe_emit_file (lookup_filename (filename
));
13778 switch_to_section (debug_macinfo_section
);
13779 dw2_asm_output_data (1, DW_MACINFO_start_file
, "Start new file");
13780 dw2_asm_output_data_uleb128 (lineno
, "Included from line number %d",
13783 dw2_asm_output_data_uleb128 (file_num
, "file %s", filename
);
13787 /* Record the end of a source file. */
13790 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED
)
13792 if (flag_eliminate_dwarf2_dups
)
13793 /* Record the end of the file for break_out_includes. */
13794 new_die (DW_TAG_GNU_EINCL
, comp_unit_die
, NULL
);
13796 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13798 switch_to_section (debug_macinfo_section
);
13799 dw2_asm_output_data (1, DW_MACINFO_end_file
, "End file");
13803 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13804 the tail part of the directive line, i.e. the part which is past the
13805 initial whitespace, #, whitespace, directive-name, whitespace part. */
13808 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED
,
13809 const char *buffer ATTRIBUTE_UNUSED
)
13811 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13813 switch_to_section (debug_macinfo_section
);
13814 dw2_asm_output_data (1, DW_MACINFO_define
, "Define macro");
13815 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
13816 dw2_asm_output_nstring (buffer
, -1, "The macro");
13820 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13821 the tail part of the directive line, i.e. the part which is past the
13822 initial whitespace, #, whitespace, directive-name, whitespace part. */
13825 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED
,
13826 const char *buffer ATTRIBUTE_UNUSED
)
13828 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13830 switch_to_section (debug_macinfo_section
);
13831 dw2_asm_output_data (1, DW_MACINFO_undef
, "Undefine macro");
13832 dw2_asm_output_data_uleb128 (lineno
, "At line number %d", lineno
);
13833 dw2_asm_output_nstring (buffer
, -1, "The macro");
13837 /* Set up for Dwarf output at the start of compilation. */
13840 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED
)
13842 /* Allocate the file_table. */
13843 file_table
= htab_create_ggc (50, file_table_hash
,
13844 file_table_eq
, NULL
);
13846 /* Allocate the decl_die_table. */
13847 decl_die_table
= htab_create_ggc (10, decl_die_table_hash
,
13848 decl_die_table_eq
, NULL
);
13850 /* Allocate the decl_loc_table. */
13851 decl_loc_table
= htab_create_ggc (10, decl_loc_table_hash
,
13852 decl_loc_table_eq
, NULL
);
13854 /* Allocate the initial hunk of the decl_scope_table. */
13855 decl_scope_table
= VEC_alloc (tree
, gc
, 256);
13857 /* Allocate the initial hunk of the abbrev_die_table. */
13858 abbrev_die_table
= ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13859 * sizeof (dw_die_ref
));
13860 abbrev_die_table_allocated
= ABBREV_DIE_TABLE_INCREMENT
;
13861 /* Zero-th entry is allocated, but unused. */
13862 abbrev_die_table_in_use
= 1;
13864 /* Allocate the initial hunk of the line_info_table. */
13865 line_info_table
= ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13866 * sizeof (dw_line_info_entry
));
13867 line_info_table_allocated
= LINE_INFO_TABLE_INCREMENT
;
13869 /* Zero-th entry is allocated, but unused. */
13870 line_info_table_in_use
= 1;
13872 /* Generate the initial DIE for the .debug section. Note that the (string)
13873 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13874 will (typically) be a relative pathname and that this pathname should be
13875 taken as being relative to the directory from which the compiler was
13876 invoked when the given (base) source file was compiled. We will fill
13877 in this value in dwarf2out_finish. */
13878 comp_unit_die
= gen_compile_unit_die (NULL
);
13880 incomplete_types
= VEC_alloc (tree
, gc
, 64);
13882 used_rtx_array
= VEC_alloc (rtx
, gc
, 32);
13884 debug_info_section
= get_section (DEBUG_INFO_SECTION
,
13885 SECTION_DEBUG
, NULL
);
13886 debug_abbrev_section
= get_section (DEBUG_ABBREV_SECTION
,
13887 SECTION_DEBUG
, NULL
);
13888 debug_aranges_section
= get_section (DEBUG_ARANGES_SECTION
,
13889 SECTION_DEBUG
, NULL
);
13890 debug_macinfo_section
= get_section (DEBUG_MACINFO_SECTION
,
13891 SECTION_DEBUG
, NULL
);
13892 debug_line_section
= get_section (DEBUG_LINE_SECTION
,
13893 SECTION_DEBUG
, NULL
);
13894 debug_loc_section
= get_section (DEBUG_LOC_SECTION
,
13895 SECTION_DEBUG
, NULL
);
13896 debug_pubnames_section
= get_section (DEBUG_PUBNAMES_SECTION
,
13897 SECTION_DEBUG
, NULL
);
13898 debug_str_section
= get_section (DEBUG_STR_SECTION
,
13899 DEBUG_STR_SECTION_FLAGS
, NULL
);
13900 debug_ranges_section
= get_section (DEBUG_RANGES_SECTION
,
13901 SECTION_DEBUG
, NULL
);
13902 debug_frame_section
= get_section (DEBUG_FRAME_SECTION
,
13903 SECTION_DEBUG
, NULL
);
13905 ASM_GENERATE_INTERNAL_LABEL (text_end_label
, TEXT_END_LABEL
, 0);
13906 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label
,
13907 DEBUG_ABBREV_SECTION_LABEL
, 0);
13908 ASM_GENERATE_INTERNAL_LABEL (text_section_label
, TEXT_SECTION_LABEL
, 0);
13909 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label
,
13910 COLD_TEXT_SECTION_LABEL
, 0);
13911 ASM_GENERATE_INTERNAL_LABEL (cold_end_label
, COLD_END_LABEL
, 0);
13913 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label
,
13914 DEBUG_INFO_SECTION_LABEL
, 0);
13915 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label
,
13916 DEBUG_LINE_SECTION_LABEL
, 0);
13917 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label
,
13918 DEBUG_RANGES_SECTION_LABEL
, 0);
13919 switch_to_section (debug_abbrev_section
);
13920 ASM_OUTPUT_LABEL (asm_out_file
, abbrev_section_label
);
13921 switch_to_section (debug_info_section
);
13922 ASM_OUTPUT_LABEL (asm_out_file
, debug_info_section_label
);
13923 switch_to_section (debug_line_section
);
13924 ASM_OUTPUT_LABEL (asm_out_file
, debug_line_section_label
);
13926 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
13928 switch_to_section (debug_macinfo_section
);
13929 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label
,
13930 DEBUG_MACINFO_SECTION_LABEL
, 0);
13931 ASM_OUTPUT_LABEL (asm_out_file
, macinfo_section_label
);
13934 switch_to_section (text_section
);
13935 ASM_OUTPUT_LABEL (asm_out_file
, text_section_label
);
13936 if (flag_reorder_blocks_and_partition
)
13938 switch_to_section (unlikely_text_section ());
13939 ASM_OUTPUT_LABEL (asm_out_file
, cold_text_section_label
);
13943 /* A helper function for dwarf2out_finish called through
13944 ht_forall. Emit one queued .debug_str string. */
13947 output_indirect_string (void **h
, void *v ATTRIBUTE_UNUSED
)
13949 struct indirect_string_node
*node
= (struct indirect_string_node
*) *h
;
13951 if (node
->form
== DW_FORM_strp
)
13953 switch_to_section (debug_str_section
);
13954 ASM_OUTPUT_LABEL (asm_out_file
, node
->label
);
13955 assemble_string (node
->str
, strlen (node
->str
) + 1);
13961 #if ENABLE_ASSERT_CHECKING
13962 /* Verify that all marks are clear. */
13965 verify_marks_clear (dw_die_ref die
)
13969 gcc_assert (! die
->die_mark
);
13970 FOR_EACH_CHILD (die
, c
, verify_marks_clear (c
));
13972 #endif /* ENABLE_ASSERT_CHECKING */
13974 /* Clear the marks for a die and its children.
13975 Be cool if the mark isn't set. */
13978 prune_unmark_dies (dw_die_ref die
)
13984 FOR_EACH_CHILD (die
, c
, prune_unmark_dies (c
));
13987 /* Given DIE that we're marking as used, find any other dies
13988 it references as attributes and mark them as used. */
13991 prune_unused_types_walk_attribs (dw_die_ref die
)
13996 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
13998 if (a
->dw_attr_val
.val_class
== dw_val_class_die_ref
)
14000 /* A reference to another DIE.
14001 Make sure that it will get emitted. */
14002 prune_unused_types_mark (a
->dw_attr_val
.v
.val_die_ref
.die
, 1);
14004 /* Set the string's refcount to 0 so that prune_unused_types_mark
14005 accounts properly for it. */
14006 if (AT_class (a
) == dw_val_class_str
)
14007 a
->dw_attr_val
.v
.val_str
->refcount
= 0;
14012 /* Mark DIE as being used. If DOKIDS is true, then walk down
14013 to DIE's children. */
14016 prune_unused_types_mark (dw_die_ref die
, int dokids
)
14020 if (die
->die_mark
== 0)
14022 /* We haven't done this node yet. Mark it as used. */
14025 /* We also have to mark its parents as used.
14026 (But we don't want to mark our parents' kids due to this.) */
14027 if (die
->die_parent
)
14028 prune_unused_types_mark (die
->die_parent
, 0);
14030 /* Mark any referenced nodes. */
14031 prune_unused_types_walk_attribs (die
);
14033 /* If this node is a specification,
14034 also mark the definition, if it exists. */
14035 if (get_AT_flag (die
, DW_AT_declaration
) && die
->die_definition
)
14036 prune_unused_types_mark (die
->die_definition
, 1);
14039 if (dokids
&& die
->die_mark
!= 2)
14041 /* We need to walk the children, but haven't done so yet.
14042 Remember that we've walked the kids. */
14045 /* If this is an array type, we need to make sure our
14046 kids get marked, even if they're types. */
14047 if (die
->die_tag
== DW_TAG_array_type
)
14048 FOR_EACH_CHILD (die
, c
, prune_unused_types_mark (c
, 1));
14050 FOR_EACH_CHILD (die
, c
, prune_unused_types_walk (c
));
14055 /* Walk the tree DIE and mark types that we actually use. */
14058 prune_unused_types_walk (dw_die_ref die
)
14062 /* Don't do anything if this node is already marked. */
14066 switch (die
->die_tag
) {
14067 case DW_TAG_const_type
:
14068 case DW_TAG_packed_type
:
14069 case DW_TAG_pointer_type
:
14070 case DW_TAG_reference_type
:
14071 case DW_TAG_volatile_type
:
14072 case DW_TAG_typedef
:
14073 case DW_TAG_array_type
:
14074 case DW_TAG_structure_type
:
14075 case DW_TAG_union_type
:
14076 case DW_TAG_class_type
:
14077 case DW_TAG_friend
:
14078 case DW_TAG_variant_part
:
14079 case DW_TAG_enumeration_type
:
14080 case DW_TAG_subroutine_type
:
14081 case DW_TAG_string_type
:
14082 case DW_TAG_set_type
:
14083 case DW_TAG_subrange_type
:
14084 case DW_TAG_ptr_to_member_type
:
14085 case DW_TAG_file_type
:
14086 if (die
->die_perennial_p
)
14089 /* It's a type node --- don't mark it. */
14093 /* Mark everything else. */
14099 /* Now, mark any dies referenced from here. */
14100 prune_unused_types_walk_attribs (die
);
14102 /* Mark children. */
14103 FOR_EACH_CHILD (die
, c
, prune_unused_types_walk (c
));
14106 /* Increment the string counts on strings referred to from DIE's
14110 prune_unused_types_update_strings (dw_die_ref die
)
14115 for (ix
= 0; VEC_iterate (dw_attr_node
, die
->die_attr
, ix
, a
); ix
++)
14116 if (AT_class (a
) == dw_val_class_str
)
14118 struct indirect_string_node
*s
= a
->dw_attr_val
.v
.val_str
;
14120 /* Avoid unnecessarily putting strings that are used less than
14121 twice in the hash table. */
14123 == ((DEBUG_STR_SECTION_FLAGS
& SECTION_MERGE
) ? 1 : 2))
14126 slot
= htab_find_slot_with_hash (debug_str_hash
, s
->str
,
14127 htab_hash_string (s
->str
),
14129 gcc_assert (*slot
== NULL
);
14135 /* Remove from the tree DIE any dies that aren't marked. */
14138 prune_unused_types_prune (dw_die_ref die
)
14142 gcc_assert (die
->die_mark
);
14143 prune_unused_types_update_strings (die
);
14145 if (! die
->die_child
)
14148 c
= die
->die_child
;
14150 dw_die_ref prev
= c
;
14151 for (c
= c
->die_sib
; ! c
->die_mark
; c
= c
->die_sib
)
14152 if (c
== die
->die_child
)
14154 /* No marked children between 'prev' and the end of the list. */
14156 /* No marked children at all. */
14157 die
->die_child
= NULL
;
14160 prev
->die_sib
= c
->die_sib
;
14161 die
->die_child
= prev
;
14166 if (c
!= prev
->die_sib
)
14168 prune_unused_types_prune (c
);
14169 } while (c
!= die
->die_child
);
14173 /* Remove dies representing declarations that we never use. */
14176 prune_unused_types (void)
14179 limbo_die_node
*node
;
14181 #if ENABLE_ASSERT_CHECKING
14182 /* All the marks should already be clear. */
14183 verify_marks_clear (comp_unit_die
);
14184 for (node
= limbo_die_list
; node
; node
= node
->next
)
14185 verify_marks_clear (node
->die
);
14186 #endif /* ENABLE_ASSERT_CHECKING */
14188 /* Set the mark on nodes that are actually used. */
14189 prune_unused_types_walk (comp_unit_die
);
14190 for (node
= limbo_die_list
; node
; node
= node
->next
)
14191 prune_unused_types_walk (node
->die
);
14193 /* Also set the mark on nodes referenced from the
14194 pubname_table or arange_table. */
14195 for (i
= 0; i
< pubname_table_in_use
; i
++)
14196 prune_unused_types_mark (pubname_table
[i
].die
, 1);
14197 for (i
= 0; i
< arange_table_in_use
; i
++)
14198 prune_unused_types_mark (arange_table
[i
], 1);
14200 /* Get rid of nodes that aren't marked; and update the string counts. */
14201 if (debug_str_hash
)
14202 htab_empty (debug_str_hash
);
14203 prune_unused_types_prune (comp_unit_die
);
14204 for (node
= limbo_die_list
; node
; node
= node
->next
)
14205 prune_unused_types_prune (node
->die
);
14207 /* Leave the marks clear. */
14208 prune_unmark_dies (comp_unit_die
);
14209 for (node
= limbo_die_list
; node
; node
= node
->next
)
14210 prune_unmark_dies (node
->die
);
14213 /* Set the parameter to true if there are any relative pathnames in
14216 file_table_relative_p (void ** slot
, void *param
)
14219 struct dwarf_file_data
*d
= *slot
;
14220 if (d
->emitted_number
&& d
->filename
[0] != DIR_SEPARATOR
)
14228 /* Output stuff that dwarf requires at the end of every file,
14229 and generate the DWARF-2 debugging info. */
14232 dwarf2out_finish (const char *filename
)
14234 limbo_die_node
*node
, *next_node
;
14235 dw_die_ref die
= 0;
14237 /* Add the name for the main input file now. We delayed this from
14238 dwarf2out_init to avoid complications with PCH. */
14239 add_name_attribute (comp_unit_die
, filename
);
14240 if (filename
[0] != DIR_SEPARATOR
)
14241 add_comp_dir_attribute (comp_unit_die
);
14242 else if (get_AT (comp_unit_die
, DW_AT_comp_dir
) == NULL
)
14245 htab_traverse (file_table
, file_table_relative_p
, &p
);
14247 add_comp_dir_attribute (comp_unit_die
);
14250 /* Traverse the limbo die list, and add parent/child links. The only
14251 dies without parents that should be here are concrete instances of
14252 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14253 For concrete instances, we can get the parent die from the abstract
14255 for (node
= limbo_die_list
; node
; node
= next_node
)
14257 next_node
= node
->next
;
14260 if (die
->die_parent
== NULL
)
14262 dw_die_ref origin
= get_AT_ref (die
, DW_AT_abstract_origin
);
14265 add_child_die (origin
->die_parent
, die
);
14266 else if (die
== comp_unit_die
)
14268 else if (errorcount
> 0 || sorrycount
> 0)
14269 /* It's OK to be confused by errors in the input. */
14270 add_child_die (comp_unit_die
, die
);
14273 /* In certain situations, the lexical block containing a
14274 nested function can be optimized away, which results
14275 in the nested function die being orphaned. Likewise
14276 with the return type of that nested function. Force
14277 this to be a child of the containing function.
14279 It may happen that even the containing function got fully
14280 inlined and optimized out. In that case we are lost and
14281 assign the empty child. This should not be big issue as
14282 the function is likely unreachable too. */
14283 tree context
= NULL_TREE
;
14285 gcc_assert (node
->created_for
);
14287 if (DECL_P (node
->created_for
))
14288 context
= DECL_CONTEXT (node
->created_for
);
14289 else if (TYPE_P (node
->created_for
))
14290 context
= TYPE_CONTEXT (node
->created_for
);
14292 gcc_assert (context
&& TREE_CODE (context
) == FUNCTION_DECL
);
14294 origin
= lookup_decl_die (context
);
14296 add_child_die (origin
, die
);
14298 add_child_die (comp_unit_die
, die
);
14303 limbo_die_list
= NULL
;
14305 /* Walk through the list of incomplete types again, trying once more to
14306 emit full debugging info for them. */
14307 retry_incomplete_types ();
14309 if (flag_eliminate_unused_debug_types
)
14310 prune_unused_types ();
14312 /* Generate separate CUs for each of the include files we've seen.
14313 They will go into limbo_die_list. */
14314 if (flag_eliminate_dwarf2_dups
)
14315 break_out_includes (comp_unit_die
);
14317 /* Traverse the DIE's and add add sibling attributes to those DIE's
14318 that have children. */
14319 add_sibling_attributes (comp_unit_die
);
14320 for (node
= limbo_die_list
; node
; node
= node
->next
)
14321 add_sibling_attributes (node
->die
);
14323 /* Output a terminator label for the .text section. */
14324 switch_to_section (text_section
);
14325 targetm
.asm_out
.internal_label (asm_out_file
, TEXT_END_LABEL
, 0);
14326 if (flag_reorder_blocks_and_partition
)
14328 switch_to_section (unlikely_text_section ());
14329 targetm
.asm_out
.internal_label (asm_out_file
, COLD_END_LABEL
, 0);
14332 /* We can only use the low/high_pc attributes if all of the code was
14334 if (!have_multiple_function_sections
)
14336 add_AT_lbl_id (comp_unit_die
, DW_AT_low_pc
, text_section_label
);
14337 add_AT_lbl_id (comp_unit_die
, DW_AT_high_pc
, text_end_label
);
14340 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14341 "base address". Use zero so that these addresses become absolute. */
14342 else if (have_location_lists
|| ranges_table_in_use
)
14343 add_AT_addr (comp_unit_die
, DW_AT_entry_pc
, const0_rtx
);
14345 /* Output location list section if necessary. */
14346 if (have_location_lists
)
14348 /* Output the location lists info. */
14349 switch_to_section (debug_loc_section
);
14350 ASM_GENERATE_INTERNAL_LABEL (loc_section_label
,
14351 DEBUG_LOC_SECTION_LABEL
, 0);
14352 ASM_OUTPUT_LABEL (asm_out_file
, loc_section_label
);
14353 output_location_lists (die
);
14356 if (debug_info_level
>= DINFO_LEVEL_NORMAL
)
14357 add_AT_lineptr (comp_unit_die
, DW_AT_stmt_list
,
14358 debug_line_section_label
);
14360 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
14361 add_AT_macptr (comp_unit_die
, DW_AT_macro_info
, macinfo_section_label
);
14363 /* Output all of the compilation units. We put the main one last so that
14364 the offsets are available to output_pubnames. */
14365 for (node
= limbo_die_list
; node
; node
= node
->next
)
14366 output_comp_unit (node
->die
, 0);
14368 output_comp_unit (comp_unit_die
, 0);
14370 /* Output the abbreviation table. */
14371 switch_to_section (debug_abbrev_section
);
14372 output_abbrev_section ();
14374 /* Output public names table if necessary. */
14375 if (pubname_table_in_use
)
14377 switch_to_section (debug_pubnames_section
);
14378 output_pubnames ();
14381 /* Output the address range information. We only put functions in the arange
14382 table, so don't write it out if we don't have any. */
14383 if (fde_table_in_use
)
14385 switch_to_section (debug_aranges_section
);
14389 /* Output ranges section if necessary. */
14390 if (ranges_table_in_use
)
14392 switch_to_section (debug_ranges_section
);
14393 ASM_OUTPUT_LABEL (asm_out_file
, ranges_section_label
);
14397 /* Output the source line correspondence table. We must do this
14398 even if there is no line information. Otherwise, on an empty
14399 translation unit, we will generate a present, but empty,
14400 .debug_info section. IRIX 6.5 `nm' will then complain when
14401 examining the file. This is done late so that any filenames
14402 used by the debug_info section are marked as 'used'. */
14403 if (! DWARF2_ASM_LINE_DEBUG_INFO
)
14405 switch_to_section (debug_line_section
);
14406 output_line_info ();
14409 /* Have to end the macro section. */
14410 if (debug_info_level
>= DINFO_LEVEL_VERBOSE
)
14412 switch_to_section (debug_macinfo_section
);
14413 dw2_asm_output_data (1, 0, "End compilation unit");
14416 /* If we emitted any DW_FORM_strp form attribute, output the string
14418 if (debug_str_hash
)
14419 htab_traverse (debug_str_hash
, output_indirect_string
, NULL
);
14423 /* This should never be used, but its address is needed for comparisons. */
14424 const struct gcc_debug_hooks dwarf2_debug_hooks
;
14426 #endif /* DWARF2_DEBUGGING_INFO */
14428 #include "gt-dwarf2out.h"