* dwarf2out.c (modified_type_die, gen_reference_type_die): Use
[official-gcc.git] / gcc / resource.c
blob1ee87c017afe7754d2b42b139d64ff1a3464b332
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "function.h"
30 #include "regs.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "resource.h"
34 #include "except.h"
35 #include "insn-attr.h"
36 #include "params.h"
37 #include "df.h"
39 /* This structure is used to record liveness information at the targets or
40 fallthrough insns of branches. We will most likely need the information
41 at targets again, so save them in a hash table rather than recomputing them
42 each time. */
44 struct target_info
46 int uid; /* INSN_UID of target. */
47 struct target_info *next; /* Next info for same hash bucket. */
48 HARD_REG_SET live_regs; /* Registers live at target. */
49 int block; /* Basic block number containing target. */
50 int bb_tick; /* Generation count of basic block info. */
53 #define TARGET_HASH_PRIME 257
55 /* Indicates what resources are required at the beginning of the epilogue. */
56 static struct resources start_of_epilogue_needs;
58 /* Indicates what resources are required at function end. */
59 static struct resources end_of_function_needs;
61 /* Define the hash table itself. */
62 static struct target_info **target_hash_table = NULL;
64 /* For each basic block, we maintain a generation number of its basic
65 block info, which is updated each time we move an insn from the
66 target of a jump. This is the generation number indexed by block
67 number. */
69 static int *bb_ticks;
71 /* Marks registers possibly live at the current place being scanned by
72 mark_target_live_regs. Also used by update_live_status. */
74 static HARD_REG_SET current_live_regs;
76 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
77 Also only used by the next two functions. */
79 static HARD_REG_SET pending_dead_regs;
81 static void update_live_status (rtx, const_rtx, void *);
82 static int find_basic_block (rtx, int);
83 static rtx next_insn_no_annul (rtx);
84 static rtx find_dead_or_set_registers (rtx, struct resources*,
85 rtx*, int, struct resources,
86 struct resources);
88 /* Utility function called from mark_target_live_regs via note_stores.
89 It deadens any CLOBBERed registers and livens any SET registers. */
91 static void
92 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
94 int first_regno, last_regno;
95 int i;
97 if (!REG_P (dest)
98 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99 return;
101 if (GET_CODE (dest) == SUBREG)
103 first_regno = subreg_regno (dest);
104 last_regno = first_regno + subreg_nregs (dest);
107 else
109 first_regno = REGNO (dest);
110 last_regno = END_HARD_REGNO (dest);
113 if (GET_CODE (x) == CLOBBER)
114 for (i = first_regno; i < last_regno; i++)
115 CLEAR_HARD_REG_BIT (current_live_regs, i);
116 else
117 for (i = first_regno; i < last_regno; i++)
119 SET_HARD_REG_BIT (current_live_regs, i);
120 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
124 /* Find the number of the basic block with correct live register
125 information that starts closest to INSN. Return -1 if we couldn't
126 find such a basic block or the beginning is more than
127 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
128 an unlimited search.
130 The delay slot filling code destroys the control-flow graph so,
131 instead of finding the basic block containing INSN, we search
132 backwards toward a BARRIER where the live register information is
133 correct. */
135 static int
136 find_basic_block (rtx insn, int search_limit)
138 /* Scan backwards to the previous BARRIER. Then see if we can find a
139 label that starts a basic block. Return the basic block number. */
140 for (insn = prev_nonnote_insn (insn);
141 insn && !BARRIER_P (insn) && search_limit != 0;
142 insn = prev_nonnote_insn (insn), --search_limit)
145 /* The closest BARRIER is too far away. */
146 if (search_limit == 0)
147 return -1;
149 /* The start of the function. */
150 else if (insn == 0)
151 return ENTRY_BLOCK_PTR->next_bb->index;
153 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
154 anything other than a CODE_LABEL or note, we can't find this code. */
155 for (insn = next_nonnote_insn (insn);
156 insn && LABEL_P (insn);
157 insn = next_nonnote_insn (insn))
158 if (BLOCK_FOR_INSN (insn))
159 return BLOCK_FOR_INSN (insn)->index;
161 return -1;
164 /* Similar to next_insn, but ignores insns in the delay slots of
165 an annulled branch. */
167 static rtx
168 next_insn_no_annul (rtx insn)
170 if (insn)
172 /* If INSN is an annulled branch, skip any insns from the target
173 of the branch. */
174 if (INSN_P (insn)
175 && INSN_ANNULLED_BRANCH_P (insn)
176 && NEXT_INSN (PREV_INSN (insn)) != insn)
178 rtx next = NEXT_INSN (insn);
179 enum rtx_code code = GET_CODE (next);
181 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182 && INSN_FROM_TARGET_P (next))
184 insn = next;
185 next = NEXT_INSN (insn);
186 code = GET_CODE (next);
190 insn = NEXT_INSN (insn);
191 if (insn && NONJUMP_INSN_P (insn)
192 && GET_CODE (PATTERN (insn)) == SEQUENCE)
193 insn = XVECEXP (PATTERN (insn), 0, 0);
196 return insn;
199 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
201 is TRUE, resources used by the called routine will be included for
202 CALL_INSNs. */
204 void
205 mark_referenced_resources (rtx x, struct resources *res,
206 bool include_delayed_effects)
208 enum rtx_code code = GET_CODE (x);
209 int i, j;
210 unsigned int r;
211 const char *format_ptr;
213 /* Handle leaf items for which we set resource flags. Also, special-case
214 CALL, SET and CLOBBER operators. */
215 switch (code)
217 case CONST:
218 case CONST_INT:
219 case CONST_DOUBLE:
220 case CONST_FIXED:
221 case CONST_VECTOR:
222 case PC:
223 case SYMBOL_REF:
224 case LABEL_REF:
225 return;
227 case SUBREG:
228 if (!REG_P (SUBREG_REG (x)))
229 mark_referenced_resources (SUBREG_REG (x), res, false);
230 else
232 unsigned int regno = subreg_regno (x);
233 unsigned int last_regno = regno + subreg_nregs (x);
235 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
236 for (r = regno; r < last_regno; r++)
237 SET_HARD_REG_BIT (res->regs, r);
239 return;
241 case REG:
242 gcc_assert (HARD_REGISTER_P (x));
243 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
244 return;
246 case MEM:
247 /* If this memory shouldn't change, it really isn't referencing
248 memory. */
249 if (MEM_READONLY_P (x))
250 res->unch_memory = 1;
251 else
252 res->memory = 1;
253 res->volatil |= MEM_VOLATILE_P (x);
255 /* Mark registers used to access memory. */
256 mark_referenced_resources (XEXP (x, 0), res, false);
257 return;
259 case CC0:
260 res->cc = 1;
261 return;
263 case UNSPEC_VOLATILE:
264 case TRAP_IF:
265 case ASM_INPUT:
266 /* Traditional asm's are always volatile. */
267 res->volatil = 1;
268 break;
270 case ASM_OPERANDS:
271 res->volatil |= MEM_VOLATILE_P (x);
273 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
274 We can not just fall through here since then we would be confused
275 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
276 traditional asms unlike their normal usage. */
278 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
279 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
280 return;
282 case CALL:
283 /* The first operand will be a (MEM (xxx)) but doesn't really reference
284 memory. The second operand may be referenced, though. */
285 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
286 mark_referenced_resources (XEXP (x, 1), res, false);
287 return;
289 case SET:
290 /* Usually, the first operand of SET is set, not referenced. But
291 registers used to access memory are referenced. SET_DEST is
292 also referenced if it is a ZERO_EXTRACT. */
294 mark_referenced_resources (SET_SRC (x), res, false);
296 x = SET_DEST (x);
297 if (GET_CODE (x) == ZERO_EXTRACT
298 || GET_CODE (x) == STRICT_LOW_PART)
299 mark_referenced_resources (x, res, false);
300 else if (GET_CODE (x) == SUBREG)
301 x = SUBREG_REG (x);
302 if (MEM_P (x))
303 mark_referenced_resources (XEXP (x, 0), res, false);
304 return;
306 case CLOBBER:
307 return;
309 case CALL_INSN:
310 if (include_delayed_effects)
312 /* A CALL references memory, the frame pointer if it exists, the
313 stack pointer, any global registers and any registers given in
314 USE insns immediately in front of the CALL.
316 However, we may have moved some of the parameter loading insns
317 into the delay slot of this CALL. If so, the USE's for them
318 don't count and should be skipped. */
319 rtx insn = PREV_INSN (x);
320 rtx sequence = 0;
321 int seq_size = 0;
322 int i;
324 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
325 if (NEXT_INSN (insn) != x)
327 sequence = PATTERN (NEXT_INSN (insn));
328 seq_size = XVECLEN (sequence, 0);
329 gcc_assert (GET_CODE (sequence) == SEQUENCE);
332 res->memory = 1;
333 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
334 if (frame_pointer_needed)
336 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
337 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
338 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
339 #endif
342 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
343 if (global_regs[i])
344 SET_HARD_REG_BIT (res->regs, i);
346 /* Check for a REG_SETJMP. If it exists, then we must
347 assume that this call can need any register.
349 This is done to be more conservative about how we handle setjmp.
350 We assume that they both use and set all registers. Using all
351 registers ensures that a register will not be considered dead
352 just because it crosses a setjmp call. A register should be
353 considered dead only if the setjmp call returns nonzero. */
354 if (find_reg_note (x, REG_SETJMP, NULL))
355 SET_HARD_REG_SET (res->regs);
358 rtx link;
360 for (link = CALL_INSN_FUNCTION_USAGE (x);
361 link;
362 link = XEXP (link, 1))
363 if (GET_CODE (XEXP (link, 0)) == USE)
365 for (i = 1; i < seq_size; i++)
367 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
368 if (GET_CODE (slot_pat) == SET
369 && rtx_equal_p (SET_DEST (slot_pat),
370 XEXP (XEXP (link, 0), 0)))
371 break;
373 if (i >= seq_size)
374 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
375 res, false);
380 /* ... fall through to other INSN processing ... */
382 case INSN:
383 case JUMP_INSN:
385 #ifdef INSN_REFERENCES_ARE_DELAYED
386 if (! include_delayed_effects
387 && INSN_REFERENCES_ARE_DELAYED (x))
388 return;
389 #endif
391 /* No special processing, just speed up. */
392 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
393 return;
395 default:
396 break;
399 /* Process each sub-expression and flag what it needs. */
400 format_ptr = GET_RTX_FORMAT (code);
401 for (i = 0; i < GET_RTX_LENGTH (code); i++)
402 switch (*format_ptr++)
404 case 'e':
405 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
406 break;
408 case 'E':
409 for (j = 0; j < XVECLEN (x, i); j++)
410 mark_referenced_resources (XVECEXP (x, i, j), res,
411 include_delayed_effects);
412 break;
416 /* A subroutine of mark_target_live_regs. Search forward from TARGET
417 looking for registers that are set before they are used. These are dead.
418 Stop after passing a few conditional jumps, and/or a small
419 number of unconditional branches. */
421 static rtx
422 find_dead_or_set_registers (rtx target, struct resources *res,
423 rtx *jump_target, int jump_count,
424 struct resources set, struct resources needed)
426 HARD_REG_SET scratch;
427 rtx insn, next;
428 rtx jump_insn = 0;
429 int i;
431 for (insn = target; insn; insn = next)
433 rtx this_jump_insn = insn;
435 next = NEXT_INSN (insn);
437 /* If this instruction can throw an exception, then we don't
438 know where we might end up next. That means that we have to
439 assume that whatever we have already marked as live really is
440 live. */
441 if (can_throw_internal (insn))
442 break;
444 switch (GET_CODE (insn))
446 case CODE_LABEL:
447 /* After a label, any pending dead registers that weren't yet
448 used can be made dead. */
449 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
450 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
451 CLEAR_HARD_REG_SET (pending_dead_regs);
453 continue;
455 case BARRIER:
456 case NOTE:
457 continue;
459 case INSN:
460 if (GET_CODE (PATTERN (insn)) == USE)
462 /* If INSN is a USE made by update_block, we care about the
463 underlying insn. Any registers set by the underlying insn
464 are live since the insn is being done somewhere else. */
465 if (INSN_P (XEXP (PATTERN (insn), 0)))
466 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
467 MARK_SRC_DEST_CALL);
469 /* All other USE insns are to be ignored. */
470 continue;
472 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
473 continue;
474 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
476 /* An unconditional jump can be used to fill the delay slot
477 of a call, so search for a JUMP_INSN in any position. */
478 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
480 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
481 if (JUMP_P (this_jump_insn))
482 break;
486 default:
487 break;
490 if (JUMP_P (this_jump_insn))
492 if (jump_count++ < 10)
494 if (any_uncondjump_p (this_jump_insn)
495 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
497 next = JUMP_LABEL (this_jump_insn);
498 if (jump_insn == 0)
500 jump_insn = insn;
501 if (jump_target)
502 *jump_target = JUMP_LABEL (this_jump_insn);
505 else if (any_condjump_p (this_jump_insn))
507 struct resources target_set, target_res;
508 struct resources fallthrough_res;
510 /* We can handle conditional branches here by following
511 both paths, and then IOR the results of the two paths
512 together, which will give us registers that are dead
513 on both paths. Since this is expensive, we give it
514 a much higher cost than unconditional branches. The
515 cost was chosen so that we will follow at most 1
516 conditional branch. */
518 jump_count += 4;
519 if (jump_count >= 10)
520 break;
522 mark_referenced_resources (insn, &needed, true);
524 /* For an annulled branch, mark_set_resources ignores slots
525 filled by instructions from the target. This is correct
526 if the branch is not taken. Since we are following both
527 paths from the branch, we must also compute correct info
528 if the branch is taken. We do this by inverting all of
529 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
530 and then inverting the INSN_FROM_TARGET_P bits again. */
532 if (GET_CODE (PATTERN (insn)) == SEQUENCE
533 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
535 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
536 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
537 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
539 target_set = set;
540 mark_set_resources (insn, &target_set, 0,
541 MARK_SRC_DEST_CALL);
543 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
544 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
545 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
547 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
549 else
551 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
552 target_set = set;
555 target_res = *res;
556 COPY_HARD_REG_SET (scratch, target_set.regs);
557 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
558 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
560 fallthrough_res = *res;
561 COPY_HARD_REG_SET (scratch, set.regs);
562 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
563 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
565 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
566 &target_res, 0, jump_count,
567 target_set, needed);
568 find_dead_or_set_registers (next,
569 &fallthrough_res, 0, jump_count,
570 set, needed);
571 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
572 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
573 break;
575 else
576 break;
578 else
580 /* Don't try this optimization if we expired our jump count
581 above, since that would mean there may be an infinite loop
582 in the function being compiled. */
583 jump_insn = 0;
584 break;
588 mark_referenced_resources (insn, &needed, true);
589 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
591 COPY_HARD_REG_SET (scratch, set.regs);
592 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
593 AND_COMPL_HARD_REG_SET (res->regs, scratch);
596 return jump_insn;
599 /* Given X, a part of an insn, and a pointer to a `struct resource',
600 RES, indicate which resources are modified by the insn. If
601 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
602 set by the called routine.
604 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
605 objects are being referenced instead of set.
607 We never mark the insn as modifying the condition code unless it explicitly
608 SETs CC0 even though this is not totally correct. The reason for this is
609 that we require a SET of CC0 to immediately precede the reference to CC0.
610 So if some other insn sets CC0 as a side-effect, we know it cannot affect
611 our computation and thus may be placed in a delay slot. */
613 void
614 mark_set_resources (rtx x, struct resources *res, int in_dest,
615 enum mark_resource_type mark_type)
617 enum rtx_code code;
618 int i, j;
619 unsigned int r;
620 const char *format_ptr;
622 restart:
624 code = GET_CODE (x);
626 switch (code)
628 case NOTE:
629 case BARRIER:
630 case CODE_LABEL:
631 case USE:
632 case CONST_INT:
633 case CONST_DOUBLE:
634 case CONST_FIXED:
635 case CONST_VECTOR:
636 case LABEL_REF:
637 case SYMBOL_REF:
638 case CONST:
639 case PC:
640 /* These don't set any resources. */
641 return;
643 case CC0:
644 if (in_dest)
645 res->cc = 1;
646 return;
648 case CALL_INSN:
649 /* Called routine modifies the condition code, memory, any registers
650 that aren't saved across calls, global registers and anything
651 explicitly CLOBBERed immediately after the CALL_INSN. */
653 if (mark_type == MARK_SRC_DEST_CALL)
655 rtx link;
657 res->cc = res->memory = 1;
659 IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
661 for (link = CALL_INSN_FUNCTION_USAGE (x);
662 link; link = XEXP (link, 1))
663 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
664 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
665 MARK_SRC_DEST);
667 /* Check for a REG_SETJMP. If it exists, then we must
668 assume that this call can clobber any register. */
669 if (find_reg_note (x, REG_SETJMP, NULL))
670 SET_HARD_REG_SET (res->regs);
673 /* ... and also what its RTL says it modifies, if anything. */
675 case JUMP_INSN:
676 case INSN:
678 /* An insn consisting of just a CLOBBER (or USE) is just for flow
679 and doesn't actually do anything, so we ignore it. */
681 #ifdef INSN_SETS_ARE_DELAYED
682 if (mark_type != MARK_SRC_DEST_CALL
683 && INSN_SETS_ARE_DELAYED (x))
684 return;
685 #endif
687 x = PATTERN (x);
688 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
689 goto restart;
690 return;
692 case SET:
693 /* If the source of a SET is a CALL, this is actually done by
694 the called routine. So only include it if we are to include the
695 effects of the calling routine. */
697 mark_set_resources (SET_DEST (x), res,
698 (mark_type == MARK_SRC_DEST_CALL
699 || GET_CODE (SET_SRC (x)) != CALL),
700 mark_type);
702 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
703 return;
705 case CLOBBER:
706 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
707 return;
709 case SEQUENCE:
710 for (i = 0; i < XVECLEN (x, 0); i++)
711 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
712 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
713 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
714 return;
716 case POST_INC:
717 case PRE_INC:
718 case POST_DEC:
719 case PRE_DEC:
720 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
721 return;
723 case PRE_MODIFY:
724 case POST_MODIFY:
725 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
726 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
727 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
728 return;
730 case SIGN_EXTRACT:
731 case ZERO_EXTRACT:
732 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
733 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
734 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
735 return;
737 case MEM:
738 if (in_dest)
740 res->memory = 1;
741 res->unch_memory |= MEM_READONLY_P (x);
742 res->volatil |= MEM_VOLATILE_P (x);
745 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
746 return;
748 case SUBREG:
749 if (in_dest)
751 if (!REG_P (SUBREG_REG (x)))
752 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
753 else
755 unsigned int regno = subreg_regno (x);
756 unsigned int last_regno = regno + subreg_nregs (x);
758 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
759 for (r = regno; r < last_regno; r++)
760 SET_HARD_REG_BIT (res->regs, r);
763 return;
765 case REG:
766 if (in_dest)
768 gcc_assert (HARD_REGISTER_P (x));
769 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
771 return;
773 case UNSPEC_VOLATILE:
774 case ASM_INPUT:
775 /* Traditional asm's are always volatile. */
776 res->volatil = 1;
777 return;
779 case TRAP_IF:
780 res->volatil = 1;
781 break;
783 case ASM_OPERANDS:
784 res->volatil |= MEM_VOLATILE_P (x);
786 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
787 We can not just fall through here since then we would be confused
788 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
789 traditional asms unlike their normal usage. */
791 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
792 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
793 MARK_SRC_DEST);
794 return;
796 default:
797 break;
800 /* Process each sub-expression and flag what it needs. */
801 format_ptr = GET_RTX_FORMAT (code);
802 for (i = 0; i < GET_RTX_LENGTH (code); i++)
803 switch (*format_ptr++)
805 case 'e':
806 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
807 break;
809 case 'E':
810 for (j = 0; j < XVECLEN (x, i); j++)
811 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
812 break;
816 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
818 static bool
819 return_insn_p (const_rtx insn)
821 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
822 return true;
824 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
825 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
827 return false;
830 /* Set the resources that are live at TARGET.
832 If TARGET is zero, we refer to the end of the current function and can
833 return our precomputed value.
835 Otherwise, we try to find out what is live by consulting the basic block
836 information. This is tricky, because we must consider the actions of
837 reload and jump optimization, which occur after the basic block information
838 has been computed.
840 Accordingly, we proceed as follows::
842 We find the previous BARRIER and look at all immediately following labels
843 (with no intervening active insns) to see if any of them start a basic
844 block. If we hit the start of the function first, we use block 0.
846 Once we have found a basic block and a corresponding first insn, we can
847 accurately compute the live status (by starting at a label following a
848 BARRIER, we are immune to actions taken by reload and jump.) Then we
849 scan all insns between that point and our target. For each CLOBBER (or
850 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
851 registers are dead. For a SET, mark them as live.
853 We have to be careful when using REG_DEAD notes because they are not
854 updated by such things as find_equiv_reg. So keep track of registers
855 marked as dead that haven't been assigned to, and mark them dead at the
856 next CODE_LABEL since reload and jump won't propagate values across labels.
858 If we cannot find the start of a basic block (should be a very rare
859 case, if it can happen at all), mark everything as potentially live.
861 Next, scan forward from TARGET looking for things set or clobbered
862 before they are used. These are not live.
864 Because we can be called many times on the same target, save our results
865 in a hash table indexed by INSN_UID. This is only done if the function
866 init_resource_info () was invoked before we are called. */
868 void
869 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
871 int b = -1;
872 unsigned int i;
873 struct target_info *tinfo = NULL;
874 rtx insn;
875 rtx jump_insn = 0;
876 rtx jump_target;
877 HARD_REG_SET scratch;
878 struct resources set, needed;
880 /* Handle end of function. */
881 if (target == 0)
883 *res = end_of_function_needs;
884 return;
887 /* Handle return insn. */
888 else if (return_insn_p (target))
890 *res = end_of_function_needs;
891 mark_referenced_resources (target, res, false);
892 return;
895 /* We have to assume memory is needed, but the CC isn't. */
896 res->memory = 1;
897 res->volatil = res->unch_memory = 0;
898 res->cc = 0;
900 /* See if we have computed this value already. */
901 if (target_hash_table != NULL)
903 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
904 tinfo; tinfo = tinfo->next)
905 if (tinfo->uid == INSN_UID (target))
906 break;
908 /* Start by getting the basic block number. If we have saved
909 information, we can get it from there unless the insn at the
910 start of the basic block has been deleted. */
911 if (tinfo && tinfo->block != -1
912 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
913 b = tinfo->block;
916 if (b == -1)
917 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
919 if (target_hash_table != NULL)
921 if (tinfo)
923 /* If the information is up-to-date, use it. Otherwise, we will
924 update it below. */
925 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
927 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
928 return;
931 else
933 /* Allocate a place to put our results and chain it into the
934 hash table. */
935 tinfo = XNEW (struct target_info);
936 tinfo->uid = INSN_UID (target);
937 tinfo->block = b;
938 tinfo->next
939 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
940 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
944 CLEAR_HARD_REG_SET (pending_dead_regs);
946 /* If we found a basic block, get the live registers from it and update
947 them with anything set or killed between its start and the insn before
948 TARGET; this custom life analysis is really about registers so we need
949 to use the LR problem. Otherwise, we must assume everything is live. */
950 if (b != -1)
952 regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
953 rtx start_insn, stop_insn;
955 /* Compute hard regs live at start of block. */
956 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
958 /* Get starting and ending insn, handling the case where each might
959 be a SEQUENCE. */
960 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
961 insns : BB_HEAD (BASIC_BLOCK (b)));
962 stop_insn = target;
964 if (NONJUMP_INSN_P (start_insn)
965 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
966 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
968 if (NONJUMP_INSN_P (stop_insn)
969 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
970 stop_insn = next_insn (PREV_INSN (stop_insn));
972 for (insn = start_insn; insn != stop_insn;
973 insn = next_insn_no_annul (insn))
975 rtx link;
976 rtx real_insn = insn;
977 enum rtx_code code = GET_CODE (insn);
979 if (DEBUG_INSN_P (insn))
980 continue;
982 /* If this insn is from the target of a branch, it isn't going to
983 be used in the sequel. If it is used in both cases, this
984 test will not be true. */
985 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
986 && INSN_FROM_TARGET_P (insn))
987 continue;
989 /* If this insn is a USE made by update_block, we care about the
990 underlying insn. */
991 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
992 && INSN_P (XEXP (PATTERN (insn), 0)))
993 real_insn = XEXP (PATTERN (insn), 0);
995 if (CALL_P (real_insn))
997 /* CALL clobbers all call-used regs that aren't fixed except
998 sp, ap, and fp. Do this before setting the result of the
999 call live. */
1000 AND_COMPL_HARD_REG_SET (current_live_regs,
1001 regs_invalidated_by_call);
1003 /* A CALL_INSN sets any global register live, since it may
1004 have been modified by the call. */
1005 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1006 if (global_regs[i])
1007 SET_HARD_REG_BIT (current_live_regs, i);
1010 /* Mark anything killed in an insn to be deadened at the next
1011 label. Ignore USE insns; the only REG_DEAD notes will be for
1012 parameters. But they might be early. A CALL_INSN will usually
1013 clobber registers used for parameters. It isn't worth bothering
1014 with the unlikely case when it won't. */
1015 if ((NONJUMP_INSN_P (real_insn)
1016 && GET_CODE (PATTERN (real_insn)) != USE
1017 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1018 || JUMP_P (real_insn)
1019 || CALL_P (real_insn))
1021 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1022 if (REG_NOTE_KIND (link) == REG_DEAD
1023 && REG_P (XEXP (link, 0))
1024 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1025 add_to_hard_reg_set (&pending_dead_regs,
1026 GET_MODE (XEXP (link, 0)),
1027 REGNO (XEXP (link, 0)));
1029 note_stores (PATTERN (real_insn), update_live_status, NULL);
1031 /* If any registers were unused after this insn, kill them.
1032 These notes will always be accurate. */
1033 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1034 if (REG_NOTE_KIND (link) == REG_UNUSED
1035 && REG_P (XEXP (link, 0))
1036 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1037 remove_from_hard_reg_set (&current_live_regs,
1038 GET_MODE (XEXP (link, 0)),
1039 REGNO (XEXP (link, 0)));
1042 else if (LABEL_P (real_insn))
1044 basic_block bb;
1046 /* A label clobbers the pending dead registers since neither
1047 reload nor jump will propagate a value across a label. */
1048 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1049 CLEAR_HARD_REG_SET (pending_dead_regs);
1051 /* We must conservatively assume that all registers that used
1052 to be live here still are. The fallthrough edge may have
1053 left a live register uninitialized. */
1054 bb = BLOCK_FOR_INSN (real_insn);
1055 if (bb)
1057 HARD_REG_SET extra_live;
1059 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1060 IOR_HARD_REG_SET (current_live_regs, extra_live);
1064 /* The beginning of the epilogue corresponds to the end of the
1065 RTL chain when there are no epilogue insns. Certain resources
1066 are implicitly required at that point. */
1067 else if (NOTE_P (real_insn)
1068 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1069 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1072 COPY_HARD_REG_SET (res->regs, current_live_regs);
1073 if (tinfo != NULL)
1075 tinfo->block = b;
1076 tinfo->bb_tick = bb_ticks[b];
1079 else
1080 /* We didn't find the start of a basic block. Assume everything
1081 in use. This should happen only extremely rarely. */
1082 SET_HARD_REG_SET (res->regs);
1084 CLEAR_RESOURCE (&set);
1085 CLEAR_RESOURCE (&needed);
1087 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1088 set, needed);
1090 /* If we hit an unconditional branch, we have another way of finding out
1091 what is live: we can see what is live at the branch target and include
1092 anything used but not set before the branch. We add the live
1093 resources found using the test below to those found until now. */
1095 if (jump_insn)
1097 struct resources new_resources;
1098 rtx stop_insn = next_active_insn (jump_insn);
1100 mark_target_live_regs (insns, next_active_insn (jump_target),
1101 &new_resources);
1102 CLEAR_RESOURCE (&set);
1103 CLEAR_RESOURCE (&needed);
1105 /* Include JUMP_INSN in the needed registers. */
1106 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1108 mark_referenced_resources (insn, &needed, true);
1110 COPY_HARD_REG_SET (scratch, needed.regs);
1111 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1112 IOR_HARD_REG_SET (new_resources.regs, scratch);
1114 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1117 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1120 if (tinfo != NULL)
1122 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1126 /* Initialize the resources required by mark_target_live_regs ().
1127 This should be invoked before the first call to mark_target_live_regs. */
1129 void
1130 init_resource_info (rtx epilogue_insn)
1132 int i;
1133 basic_block bb;
1135 /* Indicate what resources are required to be valid at the end of the current
1136 function. The condition code never is and memory always is. If the
1137 frame pointer is needed, it is and so is the stack pointer unless
1138 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
1139 stack pointer is. Registers used to return the function value are
1140 needed. Registers holding global variables are needed. */
1142 end_of_function_needs.cc = 0;
1143 end_of_function_needs.memory = 1;
1144 end_of_function_needs.unch_memory = 0;
1145 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1147 if (frame_pointer_needed)
1149 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1150 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1151 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1152 #endif
1153 if (! EXIT_IGNORE_STACK
1154 || current_function_sp_is_unchanging)
1155 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1157 else
1158 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1160 if (crtl->return_rtx != 0)
1161 mark_referenced_resources (crtl->return_rtx,
1162 &end_of_function_needs, true);
1164 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1165 if (global_regs[i]
1166 #ifdef EPILOGUE_USES
1167 || EPILOGUE_USES (i)
1168 #endif
1170 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1172 /* The registers required to be live at the end of the function are
1173 represented in the flow information as being dead just prior to
1174 reaching the end of the function. For example, the return of a value
1175 might be represented by a USE of the return register immediately
1176 followed by an unconditional jump to the return label where the
1177 return label is the end of the RTL chain. The end of the RTL chain
1178 is then taken to mean that the return register is live.
1180 This sequence is no longer maintained when epilogue instructions are
1181 added to the RTL chain. To reconstruct the original meaning, the
1182 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1183 point where these registers become live (start_of_epilogue_needs).
1184 If epilogue instructions are present, the registers set by those
1185 instructions won't have been processed by flow. Thus, those
1186 registers are additionally required at the end of the RTL chain
1187 (end_of_function_needs). */
1189 start_of_epilogue_needs = end_of_function_needs;
1191 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1193 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1194 MARK_SRC_DEST_CALL);
1195 if (return_insn_p (epilogue_insn))
1196 break;
1199 /* Allocate and initialize the tables used by mark_target_live_regs. */
1200 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1201 bb_ticks = XCNEWVEC (int, last_basic_block);
1203 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1204 FOR_EACH_BB (bb)
1205 if (LABEL_P (BB_HEAD (bb)))
1206 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1209 /* Free up the resources allocated to mark_target_live_regs (). This
1210 should be invoked after the last call to mark_target_live_regs (). */
1212 void
1213 free_resource_info (void)
1215 basic_block bb;
1217 if (target_hash_table != NULL)
1219 int i;
1221 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1223 struct target_info *ti = target_hash_table[i];
1225 while (ti)
1227 struct target_info *next = ti->next;
1228 free (ti);
1229 ti = next;
1233 free (target_hash_table);
1234 target_hash_table = NULL;
1237 if (bb_ticks != NULL)
1239 free (bb_ticks);
1240 bb_ticks = NULL;
1243 FOR_EACH_BB (bb)
1244 if (LABEL_P (BB_HEAD (bb)))
1245 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1248 /* Clear any hashed information that we have stored for INSN. */
1250 void
1251 clear_hashed_info_for_insn (rtx insn)
1253 struct target_info *tinfo;
1255 if (target_hash_table != NULL)
1257 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1258 tinfo; tinfo = tinfo->next)
1259 if (tinfo->uid == INSN_UID (insn))
1260 break;
1262 if (tinfo)
1263 tinfo->block = -1;
1267 /* Increment the tick count for the basic block that contains INSN. */
1269 void
1270 incr_ticks_for_insn (rtx insn)
1272 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1274 if (b != -1)
1275 bb_ticks[b]++;
1278 /* Add TRIAL to the set of resources used at the end of the current
1279 function. */
1280 void
1281 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1283 mark_referenced_resources (trial, &end_of_function_needs,
1284 include_delayed_effects);