* ipa-devirt.c (get_polymorphic_call_info): Fix offset calculatoin
[official-gcc.git] / gcc / var-tracking.c
blob8eb86bf4feb2b170f2e5c6cf2288385cfb12f746
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 /* Type of micro operation. */
130 enum micro_operation_type
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
174 /* Type of micro operation. */
175 enum micro_operation_type type;
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx insn;
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
214 return dv && !dv_is_decl_p (dv);
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
237 return dv;
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
250 /* The rtx of register. */
251 rtx loc;
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
263 /* Next element in the chain. */
264 struct location_chain_def *next;
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
269 /* The "value" stored in this location. */
270 rtx set_src;
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
339 union variable_aux
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
373 /* Reference count. */
374 int refcount;
376 /* Number of variable parts. */
377 char n_var_parts;
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
435 typedef unsigned int dvuid;
437 /* Return the uid of DV. */
439 static inline dvuid
440 dv_uid (decl_or_value dv)
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
448 /* Compute the hash from the uid. */
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
453 return uid;
456 /* The hash function for a mask table in a shared_htab chain. */
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
461 return dv_uid2hash (dv_uid (dv));
464 static void variable_htab_free (void *);
466 /* Variable hashtable helpers. */
468 struct variable_hasher
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
483 return dv_htab_hash (v->dv);
486 /* Compare the declaration of variable X with declaration Y. */
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
498 inline void
499 variable_hasher::remove (value_type *var)
501 variable_htab_free (var);
504 typedef hash_table <variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
511 /* The instruction which the note will be emitted before/after. */
512 rtx insn;
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
517 /* The variables and values active at this point. */
518 variable_table_type vars;
519 } emit_note_data;
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
525 /* Reference count. */
526 int refcount;
528 /* Actual hash table. */
529 variable_table_type htab;
530 } *shared_hash;
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
541 /* Variable locations. */
542 shared_hash vars;
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
565 /* Has the block been visited in DFS? */
566 bool visited;
568 /* Has the block been flooded in VTA? */
569 bool flooded;
571 } *variable_tracking_info;
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type changed_variables;
594 /* Shall notes be emitted? */
595 static bool emit_notes;
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type dropped_values;
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type, variable_table_type);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
707 static void
708 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
709 HOST_WIDE_INT *post)
711 rtx src = SET_SRC (pattern);
712 rtx dest = SET_DEST (pattern);
713 enum rtx_code code;
715 if (dest == stack_pointer_rtx)
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code = GET_CODE (src);
719 if (! (code == PLUS || code == MINUS)
720 || XEXP (src, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src, 1)))
722 return;
724 if (code == MINUS)
725 *post += INTVAL (XEXP (src, 1));
726 else
727 *post -= INTVAL (XEXP (src, 1));
729 else if (MEM_P (dest))
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src = XEXP (dest, 0);
733 code = GET_CODE (src);
735 switch (code)
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 if (XEXP (src, 0) == stack_pointer_rtx)
741 rtx val = XEXP (XEXP (src, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
744 CONST_INT_P (val));
746 if (code == PRE_MODIFY)
747 *pre -= INTVAL (val);
748 else
749 *post -= INTVAL (val);
750 break;
752 return;
754 case PRE_DEC:
755 if (XEXP (src, 0) == stack_pointer_rtx)
757 *pre += GET_MODE_SIZE (GET_MODE (dest));
758 break;
760 return;
762 case POST_DEC:
763 if (XEXP (src, 0) == stack_pointer_rtx)
765 *post += GET_MODE_SIZE (GET_MODE (dest));
766 break;
768 return;
770 case PRE_INC:
771 if (XEXP (src, 0) == stack_pointer_rtx)
773 *pre -= GET_MODE_SIZE (GET_MODE (dest));
774 break;
776 return;
778 case POST_INC:
779 if (XEXP (src, 0) == stack_pointer_rtx)
781 *post -= GET_MODE_SIZE (GET_MODE (dest));
782 break;
784 return;
786 default:
787 return;
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
795 static void
796 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
797 HOST_WIDE_INT *post)
799 rtx pattern;
801 *pre = 0;
802 *post = 0;
804 pattern = PATTERN (insn);
805 if (RTX_FRAME_RELATED_P (insn))
807 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
808 if (expr)
809 pattern = XEXP (expr, 0);
812 if (GET_CODE (pattern) == SET)
813 stack_adjust_offset_pre_post (pattern, pre, post);
814 else if (GET_CODE (pattern) == PARALLEL
815 || GET_CODE (pattern) == SEQUENCE)
817 int i;
819 /* There may be stack adjustments inside compound insns. Search
820 for them. */
821 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
823 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
831 static bool
832 vt_stack_adjustments (void)
834 edge_iterator *stack;
835 int sp;
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
840 INCOMING_FRAME_SP_OFFSET;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
842 INCOMING_FRAME_SP_OFFSET;
844 /* Allocate stack for back-tracking up CFG. */
845 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
846 sp = 0;
848 /* Push the first edge on to the stack. */
849 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
851 while (sp)
853 edge_iterator ei;
854 basic_block src;
855 basic_block dest;
857 /* Look at the edge on the top of the stack. */
858 ei = stack[sp - 1];
859 src = ei_edge (ei)->src;
860 dest = ei_edge (ei)->dest;
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest)->visited)
865 rtx insn;
866 HOST_WIDE_INT pre, post, offset;
867 VTI (dest)->visited = true;
868 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
870 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
871 for (insn = BB_HEAD (dest);
872 insn != NEXT_INSN (BB_END (dest));
873 insn = NEXT_INSN (insn))
874 if (INSN_P (insn))
876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
877 offset += pre + post;
880 VTI (dest)->out.stack_adjust = offset;
882 if (EDGE_COUNT (dest->succs) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack[sp++] = ei_start (dest->succs);
887 else
889 /* Check whether the adjustments on the edges are the same. */
890 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
892 free (stack);
893 return false;
896 if (! ei_one_before_end_p (ei))
897 /* Go to the next edge. */
898 ei_next (&stack[sp - 1]);
899 else
900 /* Return to previous level if there are no more edges. */
901 sp--;
905 free (stack);
906 return true;
909 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
910 hard_frame_pointer_rtx is being mapped to it and offset for it. */
911 static rtx cfa_base_rtx;
912 static HOST_WIDE_INT cfa_base_offset;
914 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
915 or hard_frame_pointer_rtx. */
917 static inline rtx
918 compute_cfa_pointer (HOST_WIDE_INT adjustment)
920 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
923 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
924 or -1 if the replacement shouldn't be done. */
925 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
927 /* Data for adjust_mems callback. */
929 struct adjust_mem_data
931 bool store;
932 enum machine_mode mem_mode;
933 HOST_WIDE_INT stack_adjust;
934 rtx side_effects;
937 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
938 transformation of wider mode arithmetics to narrower mode,
939 -1 if it is suitable and subexpressions shouldn't be
940 traversed and 0 if it is suitable and subexpressions should
941 be traversed. Called through for_each_rtx. */
943 static int
944 use_narrower_mode_test (rtx *loc, void *data)
946 rtx subreg = (rtx) data;
948 if (CONSTANT_P (*loc))
949 return -1;
950 switch (GET_CODE (*loc))
952 case REG:
953 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
954 return 1;
955 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
956 *loc, subreg_lowpart_offset (GET_MODE (subreg),
957 GET_MODE (*loc))))
958 return 1;
959 return -1;
960 case PLUS:
961 case MINUS:
962 case MULT:
963 return 0;
964 case ASHIFT:
965 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
966 return 1;
967 else
968 return -1;
969 default:
970 return 1;
974 /* Transform X into narrower mode MODE from wider mode WMODE. */
976 static rtx
977 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
979 rtx op0, op1;
980 if (CONSTANT_P (x))
981 return lowpart_subreg (mode, x, wmode);
982 switch (GET_CODE (x))
984 case REG:
985 return lowpart_subreg (mode, x, wmode);
986 case PLUS:
987 case MINUS:
988 case MULT:
989 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
990 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
991 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
992 case ASHIFT:
993 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
994 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
995 default:
996 gcc_unreachable ();
1000 /* Helper function for adjusting used MEMs. */
1002 static rtx
1003 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1005 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1006 rtx mem, addr = loc, tem;
1007 enum machine_mode mem_mode_save;
1008 bool store_save;
1009 switch (GET_CODE (loc))
1011 case REG:
1012 /* Don't do any sp or fp replacements outside of MEM addresses
1013 on the LHS. */
1014 if (amd->mem_mode == VOIDmode && amd->store)
1015 return loc;
1016 if (loc == stack_pointer_rtx
1017 && !frame_pointer_needed
1018 && cfa_base_rtx)
1019 return compute_cfa_pointer (amd->stack_adjust);
1020 else if (loc == hard_frame_pointer_rtx
1021 && frame_pointer_needed
1022 && hard_frame_pointer_adjustment != -1
1023 && cfa_base_rtx)
1024 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1025 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1026 return loc;
1027 case MEM:
1028 mem = loc;
1029 if (!amd->store)
1031 mem = targetm.delegitimize_address (mem);
1032 if (mem != loc && !MEM_P (mem))
1033 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1036 addr = XEXP (mem, 0);
1037 mem_mode_save = amd->mem_mode;
1038 amd->mem_mode = GET_MODE (mem);
1039 store_save = amd->store;
1040 amd->store = false;
1041 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1042 amd->store = store_save;
1043 amd->mem_mode = mem_mode_save;
1044 if (mem == loc)
1045 addr = targetm.delegitimize_address (addr);
1046 if (addr != XEXP (mem, 0))
1047 mem = replace_equiv_address_nv (mem, addr);
1048 if (!amd->store)
1049 mem = avoid_constant_pool_reference (mem);
1050 return mem;
1051 case PRE_INC:
1052 case PRE_DEC:
1053 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1054 gen_int_mode (GET_CODE (loc) == PRE_INC
1055 ? GET_MODE_SIZE (amd->mem_mode)
1056 : -GET_MODE_SIZE (amd->mem_mode),
1057 GET_MODE (loc)));
1058 case POST_INC:
1059 case POST_DEC:
1060 if (addr == loc)
1061 addr = XEXP (loc, 0);
1062 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1063 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1064 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1065 gen_int_mode ((GET_CODE (loc) == PRE_INC
1066 || GET_CODE (loc) == POST_INC)
1067 ? GET_MODE_SIZE (amd->mem_mode)
1068 : -GET_MODE_SIZE (amd->mem_mode),
1069 GET_MODE (loc)));
1070 amd->side_effects = alloc_EXPR_LIST (0,
1071 gen_rtx_SET (VOIDmode,
1072 XEXP (loc, 0),
1073 tem),
1074 amd->side_effects);
1075 return addr;
1076 case PRE_MODIFY:
1077 addr = XEXP (loc, 1);
1078 case POST_MODIFY:
1079 if (addr == loc)
1080 addr = XEXP (loc, 0);
1081 gcc_assert (amd->mem_mode != VOIDmode);
1082 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1083 amd->side_effects = alloc_EXPR_LIST (0,
1084 gen_rtx_SET (VOIDmode,
1085 XEXP (loc, 0),
1086 XEXP (loc, 1)),
1087 amd->side_effects);
1088 return addr;
1089 case SUBREG:
1090 /* First try without delegitimization of whole MEMs and
1091 avoid_constant_pool_reference, which is more likely to succeed. */
1092 store_save = amd->store;
1093 amd->store = true;
1094 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1095 data);
1096 amd->store = store_save;
1097 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1098 if (mem == SUBREG_REG (loc))
1100 tem = loc;
1101 goto finish_subreg;
1103 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1104 GET_MODE (SUBREG_REG (loc)),
1105 SUBREG_BYTE (loc));
1106 if (tem)
1107 goto finish_subreg;
1108 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1109 GET_MODE (SUBREG_REG (loc)),
1110 SUBREG_BYTE (loc));
1111 if (tem == NULL_RTX)
1112 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1113 finish_subreg:
1114 if (MAY_HAVE_DEBUG_INSNS
1115 && GET_CODE (tem) == SUBREG
1116 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1117 || GET_CODE (SUBREG_REG (tem)) == MINUS
1118 || GET_CODE (SUBREG_REG (tem)) == MULT
1119 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1120 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1121 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1122 && GET_MODE_SIZE (GET_MODE (tem))
1123 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1124 && subreg_lowpart_p (tem)
1125 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1126 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1127 GET_MODE (SUBREG_REG (tem)));
1128 return tem;
1129 case ASM_OPERANDS:
1130 /* Don't do any replacements in second and following
1131 ASM_OPERANDS of inline-asm with multiple sets.
1132 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1133 and ASM_OPERANDS_LABEL_VEC need to be equal between
1134 all the ASM_OPERANDs in the insn and adjust_insn will
1135 fix this up. */
1136 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1137 return loc;
1138 break;
1139 default:
1140 break;
1142 return NULL_RTX;
1145 /* Helper function for replacement of uses. */
1147 static void
1148 adjust_mem_uses (rtx *x, void *data)
1150 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1151 if (new_x != *x)
1152 validate_change (NULL_RTX, x, new_x, true);
1155 /* Helper function for replacement of stores. */
1157 static void
1158 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1160 if (MEM_P (loc))
1162 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1163 adjust_mems, data);
1164 if (new_dest != SET_DEST (expr))
1166 rtx xexpr = CONST_CAST_RTX (expr);
1167 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1172 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1173 replace them with their value in the insn and add the side-effects
1174 as other sets to the insn. */
1176 static void
1177 adjust_insn (basic_block bb, rtx insn)
1179 struct adjust_mem_data amd;
1180 rtx set;
1182 #ifdef HAVE_window_save
1183 /* If the target machine has an explicit window save instruction, the
1184 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1185 if (RTX_FRAME_RELATED_P (insn)
1186 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1188 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1189 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1190 parm_reg_t *p;
1192 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1194 XVECEXP (rtl, 0, i * 2)
1195 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1196 /* Do not clobber the attached DECL, but only the REG. */
1197 XVECEXP (rtl, 0, i * 2 + 1)
1198 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1199 gen_raw_REG (GET_MODE (p->outgoing),
1200 REGNO (p->outgoing)));
1203 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1204 return;
1206 #endif
1208 amd.mem_mode = VOIDmode;
1209 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1210 amd.side_effects = NULL_RTX;
1212 amd.store = true;
1213 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1215 amd.store = false;
1216 if (GET_CODE (PATTERN (insn)) == PARALLEL
1217 && asm_noperands (PATTERN (insn)) > 0
1218 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1220 rtx body, set0;
1221 int i;
1223 /* inline-asm with multiple sets is tiny bit more complicated,
1224 because the 3 vectors in ASM_OPERANDS need to be shared between
1225 all ASM_OPERANDS in the instruction. adjust_mems will
1226 not touch ASM_OPERANDS other than the first one, asm_noperands
1227 test above needs to be called before that (otherwise it would fail)
1228 and afterwards this code fixes it up. */
1229 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1230 body = PATTERN (insn);
1231 set0 = XVECEXP (body, 0, 0);
1232 gcc_checking_assert (GET_CODE (set0) == SET
1233 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1234 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1235 for (i = 1; i < XVECLEN (body, 0); i++)
1236 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1237 break;
1238 else
1240 set = XVECEXP (body, 0, i);
1241 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1242 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1243 == i);
1244 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1245 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1246 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1247 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1248 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1249 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1251 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1252 ASM_OPERANDS_INPUT_VEC (newsrc)
1253 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1254 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1255 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1256 ASM_OPERANDS_LABEL_VEC (newsrc)
1257 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1258 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1262 else
1263 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1265 /* For read-only MEMs containing some constant, prefer those
1266 constants. */
1267 set = single_set (insn);
1268 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1270 rtx note = find_reg_equal_equiv_note (insn);
1272 if (note && CONSTANT_P (XEXP (note, 0)))
1273 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1276 if (amd.side_effects)
1278 rtx *pat, new_pat, s;
1279 int i, oldn, newn;
1281 pat = &PATTERN (insn);
1282 if (GET_CODE (*pat) == COND_EXEC)
1283 pat = &COND_EXEC_CODE (*pat);
1284 if (GET_CODE (*pat) == PARALLEL)
1285 oldn = XVECLEN (*pat, 0);
1286 else
1287 oldn = 1;
1288 for (s = amd.side_effects, newn = 0; s; newn++)
1289 s = XEXP (s, 1);
1290 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1291 if (GET_CODE (*pat) == PARALLEL)
1292 for (i = 0; i < oldn; i++)
1293 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1294 else
1295 XVECEXP (new_pat, 0, 0) = *pat;
1296 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1297 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1298 free_EXPR_LIST_list (&amd.side_effects);
1299 validate_change (NULL_RTX, pat, new_pat, true);
1303 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1304 static inline rtx
1305 dv_as_rtx (decl_or_value dv)
1307 tree decl;
1309 if (dv_is_value_p (dv))
1310 return dv_as_value (dv);
1312 decl = dv_as_decl (dv);
1314 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1315 return DECL_RTL_KNOWN_SET (decl);
1318 /* Return nonzero if a decl_or_value must not have more than one
1319 variable part. The returned value discriminates among various
1320 kinds of one-part DVs ccording to enum onepart_enum. */
1321 static inline onepart_enum_t
1322 dv_onepart_p (decl_or_value dv)
1324 tree decl;
1326 if (!MAY_HAVE_DEBUG_INSNS)
1327 return NOT_ONEPART;
1329 if (dv_is_value_p (dv))
1330 return ONEPART_VALUE;
1332 decl = dv_as_decl (dv);
1334 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1335 return ONEPART_DEXPR;
1337 if (target_for_debug_bind (decl) != NULL_TREE)
1338 return ONEPART_VDECL;
1340 return NOT_ONEPART;
1343 /* Return the variable pool to be used for a dv of type ONEPART. */
1344 static inline alloc_pool
1345 onepart_pool (onepart_enum_t onepart)
1347 return onepart ? valvar_pool : var_pool;
1350 /* Build a decl_or_value out of a decl. */
1351 static inline decl_or_value
1352 dv_from_decl (tree decl)
1354 decl_or_value dv;
1355 dv = decl;
1356 gcc_checking_assert (dv_is_decl_p (dv));
1357 return dv;
1360 /* Build a decl_or_value out of a value. */
1361 static inline decl_or_value
1362 dv_from_value (rtx value)
1364 decl_or_value dv;
1365 dv = value;
1366 gcc_checking_assert (dv_is_value_p (dv));
1367 return dv;
1370 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1371 static inline decl_or_value
1372 dv_from_rtx (rtx x)
1374 decl_or_value dv;
1376 switch (GET_CODE (x))
1378 case DEBUG_EXPR:
1379 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1380 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1381 break;
1383 case VALUE:
1384 dv = dv_from_value (x);
1385 break;
1387 default:
1388 gcc_unreachable ();
1391 return dv;
1394 extern void debug_dv (decl_or_value dv);
1396 DEBUG_FUNCTION void
1397 debug_dv (decl_or_value dv)
1399 if (dv_is_value_p (dv))
1400 debug_rtx (dv_as_value (dv));
1401 else
1402 debug_generic_stmt (dv_as_decl (dv));
1405 static void loc_exp_dep_clear (variable var);
1407 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1409 static void
1410 variable_htab_free (void *elem)
1412 int i;
1413 variable var = (variable) elem;
1414 location_chain node, next;
1416 gcc_checking_assert (var->refcount > 0);
1418 var->refcount--;
1419 if (var->refcount > 0)
1420 return;
1422 for (i = 0; i < var->n_var_parts; i++)
1424 for (node = var->var_part[i].loc_chain; node; node = next)
1426 next = node->next;
1427 pool_free (loc_chain_pool, node);
1429 var->var_part[i].loc_chain = NULL;
1431 if (var->onepart && VAR_LOC_1PAUX (var))
1433 loc_exp_dep_clear (var);
1434 if (VAR_LOC_DEP_LST (var))
1435 VAR_LOC_DEP_LST (var)->pprev = NULL;
1436 XDELETE (VAR_LOC_1PAUX (var));
1437 /* These may be reused across functions, so reset
1438 e.g. NO_LOC_P. */
1439 if (var->onepart == ONEPART_DEXPR)
1440 set_dv_changed (var->dv, true);
1442 pool_free (onepart_pool (var->onepart), var);
1445 /* Initialize the set (array) SET of attrs to empty lists. */
1447 static void
1448 init_attrs_list_set (attrs *set)
1450 int i;
1452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1453 set[i] = NULL;
1456 /* Make the list *LISTP empty. */
1458 static void
1459 attrs_list_clear (attrs *listp)
1461 attrs list, next;
1463 for (list = *listp; list; list = next)
1465 next = list->next;
1466 pool_free (attrs_pool, list);
1468 *listp = NULL;
1471 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1473 static attrs
1474 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1476 for (; list; list = list->next)
1477 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1478 return list;
1479 return NULL;
1482 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1484 static void
1485 attrs_list_insert (attrs *listp, decl_or_value dv,
1486 HOST_WIDE_INT offset, rtx loc)
1488 attrs list;
1490 list = (attrs) pool_alloc (attrs_pool);
1491 list->loc = loc;
1492 list->dv = dv;
1493 list->offset = offset;
1494 list->next = *listp;
1495 *listp = list;
1498 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1500 static void
1501 attrs_list_copy (attrs *dstp, attrs src)
1503 attrs n;
1505 attrs_list_clear (dstp);
1506 for (; src; src = src->next)
1508 n = (attrs) pool_alloc (attrs_pool);
1509 n->loc = src->loc;
1510 n->dv = src->dv;
1511 n->offset = src->offset;
1512 n->next = *dstp;
1513 *dstp = n;
1517 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1519 static void
1520 attrs_list_union (attrs *dstp, attrs src)
1522 for (; src; src = src->next)
1524 if (!attrs_list_member (*dstp, src->dv, src->offset))
1525 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1529 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1530 *DSTP. */
1532 static void
1533 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1535 gcc_assert (!*dstp);
1536 for (; src; src = src->next)
1538 if (!dv_onepart_p (src->dv))
1539 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1541 for (src = src2; src; src = src->next)
1543 if (!dv_onepart_p (src->dv)
1544 && !attrs_list_member (*dstp, src->dv, src->offset))
1545 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1549 /* Shared hashtable support. */
1551 /* Return true if VARS is shared. */
1553 static inline bool
1554 shared_hash_shared (shared_hash vars)
1556 return vars->refcount > 1;
1559 /* Return the hash table for VARS. */
1561 static inline variable_table_type
1562 shared_hash_htab (shared_hash vars)
1564 return vars->htab;
1567 /* Return true if VAR is shared, or maybe because VARS is shared. */
1569 static inline bool
1570 shared_var_p (variable var, shared_hash vars)
1572 /* Don't count an entry in the changed_variables table as a duplicate. */
1573 return ((var->refcount > 1 + (int) var->in_changed_variables)
1574 || shared_hash_shared (vars));
1577 /* Copy variables into a new hash table. */
1579 static shared_hash
1580 shared_hash_unshare (shared_hash vars)
1582 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1583 gcc_assert (vars->refcount > 1);
1584 new_vars->refcount = 1;
1585 new_vars->htab.create (vars->htab.elements () + 3);
1586 vars_copy (new_vars->htab, vars->htab);
1587 vars->refcount--;
1588 return new_vars;
1591 /* Increment reference counter on VARS and return it. */
1593 static inline shared_hash
1594 shared_hash_copy (shared_hash vars)
1596 vars->refcount++;
1597 return vars;
1600 /* Decrement reference counter and destroy hash table if not shared
1601 anymore. */
1603 static void
1604 shared_hash_destroy (shared_hash vars)
1606 gcc_checking_assert (vars->refcount > 0);
1607 if (--vars->refcount == 0)
1609 vars->htab.dispose ();
1610 pool_free (shared_hash_pool, vars);
1614 /* Unshare *PVARS if shared and return slot for DV. If INS is
1615 INSERT, insert it if not already present. */
1617 static inline variable_def **
1618 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1619 hashval_t dvhash, enum insert_option ins)
1621 if (shared_hash_shared (*pvars))
1622 *pvars = shared_hash_unshare (*pvars);
1623 return shared_hash_htab (*pvars).find_slot_with_hash (dv, dvhash, ins);
1626 static inline variable_def **
1627 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1628 enum insert_option ins)
1630 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1633 /* Return slot for DV, if it is already present in the hash table.
1634 If it is not present, insert it only VARS is not shared, otherwise
1635 return NULL. */
1637 static inline variable_def **
1638 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1640 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash,
1641 shared_hash_shared (vars)
1642 ? NO_INSERT : INSERT);
1645 static inline variable_def **
1646 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1648 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1651 /* Return slot for DV only if it is already present in the hash table. */
1653 static inline variable_def **
1654 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1655 hashval_t dvhash)
1657 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash, NO_INSERT);
1660 static inline variable_def **
1661 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1663 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1666 /* Return variable for DV or NULL if not already present in the hash
1667 table. */
1669 static inline variable
1670 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1672 return shared_hash_htab (vars).find_with_hash (dv, dvhash);
1675 static inline variable
1676 shared_hash_find (shared_hash vars, decl_or_value dv)
1678 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1681 /* Return true if TVAL is better than CVAL as a canonival value. We
1682 choose lowest-numbered VALUEs, using the RTX address as a
1683 tie-breaker. The idea is to arrange them into a star topology,
1684 such that all of them are at most one step away from the canonical
1685 value, and the canonical value has backlinks to all of them, in
1686 addition to all the actual locations. We don't enforce this
1687 topology throughout the entire dataflow analysis, though.
1690 static inline bool
1691 canon_value_cmp (rtx tval, rtx cval)
1693 return !cval
1694 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1697 static bool dst_can_be_shared;
1699 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1701 static variable_def **
1702 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1703 enum var_init_status initialized)
1705 variable new_var;
1706 int i;
1708 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1709 new_var->dv = var->dv;
1710 new_var->refcount = 1;
1711 var->refcount--;
1712 new_var->n_var_parts = var->n_var_parts;
1713 new_var->onepart = var->onepart;
1714 new_var->in_changed_variables = false;
1716 if (! flag_var_tracking_uninit)
1717 initialized = VAR_INIT_STATUS_INITIALIZED;
1719 for (i = 0; i < var->n_var_parts; i++)
1721 location_chain node;
1722 location_chain *nextp;
1724 if (i == 0 && var->onepart)
1726 /* One-part auxiliary data is only used while emitting
1727 notes, so propagate it to the new variable in the active
1728 dataflow set. If we're not emitting notes, this will be
1729 a no-op. */
1730 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1731 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1732 VAR_LOC_1PAUX (var) = NULL;
1734 else
1735 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1736 nextp = &new_var->var_part[i].loc_chain;
1737 for (node = var->var_part[i].loc_chain; node; node = node->next)
1739 location_chain new_lc;
1741 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1742 new_lc->next = NULL;
1743 if (node->init > initialized)
1744 new_lc->init = node->init;
1745 else
1746 new_lc->init = initialized;
1747 if (node->set_src && !(MEM_P (node->set_src)))
1748 new_lc->set_src = node->set_src;
1749 else
1750 new_lc->set_src = NULL;
1751 new_lc->loc = node->loc;
1753 *nextp = new_lc;
1754 nextp = &new_lc->next;
1757 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1760 dst_can_be_shared = false;
1761 if (shared_hash_shared (set->vars))
1762 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1763 else if (set->traversed_vars && set->vars != set->traversed_vars)
1764 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1765 *slot = new_var;
1766 if (var->in_changed_variables)
1768 variable_def **cslot
1769 = changed_variables.find_slot_with_hash (var->dv,
1770 dv_htab_hash (var->dv), NO_INSERT);
1771 gcc_assert (*cslot == (void *) var);
1772 var->in_changed_variables = false;
1773 variable_htab_free (var);
1774 *cslot = new_var;
1775 new_var->in_changed_variables = true;
1777 return slot;
1780 /* Copy all variables from hash table SRC to hash table DST. */
1782 static void
1783 vars_copy (variable_table_type dst, variable_table_type src)
1785 variable_iterator_type hi;
1786 variable var;
1788 FOR_EACH_HASH_TABLE_ELEMENT (src, var, variable, hi)
1790 variable_def **dstp;
1791 var->refcount++;
1792 dstp = dst.find_slot_with_hash (var->dv, dv_htab_hash (var->dv), INSERT);
1793 *dstp = var;
1797 /* Map a decl to its main debug decl. */
1799 static inline tree
1800 var_debug_decl (tree decl)
1802 if (decl && TREE_CODE (decl) == VAR_DECL
1803 && DECL_HAS_DEBUG_EXPR_P (decl))
1805 tree debugdecl = DECL_DEBUG_EXPR (decl);
1806 if (DECL_P (debugdecl))
1807 decl = debugdecl;
1810 return decl;
1813 /* Set the register LOC to contain DV, OFFSET. */
1815 static void
1816 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1817 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1818 enum insert_option iopt)
1820 attrs node;
1821 bool decl_p = dv_is_decl_p (dv);
1823 if (decl_p)
1824 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1826 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1827 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1828 && node->offset == offset)
1829 break;
1830 if (!node)
1831 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1832 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1835 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1837 static void
1838 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1839 rtx set_src)
1841 tree decl = REG_EXPR (loc);
1842 HOST_WIDE_INT offset = REG_OFFSET (loc);
1844 var_reg_decl_set (set, loc, initialized,
1845 dv_from_decl (decl), offset, set_src, INSERT);
1848 static enum var_init_status
1849 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1851 variable var;
1852 int i;
1853 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1855 if (! flag_var_tracking_uninit)
1856 return VAR_INIT_STATUS_INITIALIZED;
1858 var = shared_hash_find (set->vars, dv);
1859 if (var)
1861 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1863 location_chain nextp;
1864 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1865 if (rtx_equal_p (nextp->loc, loc))
1867 ret_val = nextp->init;
1868 break;
1873 return ret_val;
1876 /* Delete current content of register LOC in dataflow set SET and set
1877 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1878 MODIFY is true, any other live copies of the same variable part are
1879 also deleted from the dataflow set, otherwise the variable part is
1880 assumed to be copied from another location holding the same
1881 part. */
1883 static void
1884 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1885 enum var_init_status initialized, rtx set_src)
1887 tree decl = REG_EXPR (loc);
1888 HOST_WIDE_INT offset = REG_OFFSET (loc);
1889 attrs node, next;
1890 attrs *nextp;
1892 decl = var_debug_decl (decl);
1894 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1895 initialized = get_init_value (set, loc, dv_from_decl (decl));
1897 nextp = &set->regs[REGNO (loc)];
1898 for (node = *nextp; node; node = next)
1900 next = node->next;
1901 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1903 delete_variable_part (set, node->loc, node->dv, node->offset);
1904 pool_free (attrs_pool, node);
1905 *nextp = next;
1907 else
1909 node->loc = loc;
1910 nextp = &node->next;
1913 if (modify)
1914 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1915 var_reg_set (set, loc, initialized, set_src);
1918 /* Delete the association of register LOC in dataflow set SET with any
1919 variables that aren't onepart. If CLOBBER is true, also delete any
1920 other live copies of the same variable part, and delete the
1921 association with onepart dvs too. */
1923 static void
1924 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1926 attrs *nextp = &set->regs[REGNO (loc)];
1927 attrs node, next;
1929 if (clobber)
1931 tree decl = REG_EXPR (loc);
1932 HOST_WIDE_INT offset = REG_OFFSET (loc);
1934 decl = var_debug_decl (decl);
1936 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1939 for (node = *nextp; node; node = next)
1941 next = node->next;
1942 if (clobber || !dv_onepart_p (node->dv))
1944 delete_variable_part (set, node->loc, node->dv, node->offset);
1945 pool_free (attrs_pool, node);
1946 *nextp = next;
1948 else
1949 nextp = &node->next;
1953 /* Delete content of register with number REGNO in dataflow set SET. */
1955 static void
1956 var_regno_delete (dataflow_set *set, int regno)
1958 attrs *reg = &set->regs[regno];
1959 attrs node, next;
1961 for (node = *reg; node; node = next)
1963 next = node->next;
1964 delete_variable_part (set, node->loc, node->dv, node->offset);
1965 pool_free (attrs_pool, node);
1967 *reg = NULL;
1970 /* Return true if I is the negated value of a power of two. */
1971 static bool
1972 negative_power_of_two_p (HOST_WIDE_INT i)
1974 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1975 return x == (x & -x);
1978 /* Strip constant offsets and alignments off of LOC. Return the base
1979 expression. */
1981 static rtx
1982 vt_get_canonicalize_base (rtx loc)
1984 while ((GET_CODE (loc) == PLUS
1985 || GET_CODE (loc) == AND)
1986 && GET_CODE (XEXP (loc, 1)) == CONST_INT
1987 && (GET_CODE (loc) != AND
1988 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
1989 loc = XEXP (loc, 0);
1991 return loc;
1994 /* This caches canonicalized addresses for VALUEs, computed using
1995 information in the global cselib table. */
1996 static struct pointer_map_t *global_get_addr_cache;
1998 /* This caches canonicalized addresses for VALUEs, computed using
1999 information from the global cache and information pertaining to a
2000 basic block being analyzed. */
2001 static struct pointer_map_t *local_get_addr_cache;
2003 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2005 /* Return the canonical address for LOC, that must be a VALUE, using a
2006 cached global equivalence or computing it and storing it in the
2007 global cache. */
2009 static rtx
2010 get_addr_from_global_cache (rtx const loc)
2012 rtx x;
2013 void **slot;
2015 gcc_checking_assert (GET_CODE (loc) == VALUE);
2017 slot = pointer_map_insert (global_get_addr_cache, loc);
2018 if (*slot)
2019 return (rtx)*slot;
2021 x = canon_rtx (get_addr (loc));
2023 /* Tentative, avoiding infinite recursion. */
2024 *slot = x;
2026 if (x != loc)
2028 rtx nx = vt_canonicalize_addr (NULL, x);
2029 if (nx != x)
2031 /* The table may have moved during recursion, recompute
2032 SLOT. */
2033 slot = pointer_map_contains (global_get_addr_cache, loc);
2034 *slot = x = nx;
2038 return x;
2041 /* Return the canonical address for LOC, that must be a VALUE, using a
2042 cached local equivalence or computing it and storing it in the
2043 local cache. */
2045 static rtx
2046 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2048 rtx x;
2049 void **slot;
2050 decl_or_value dv;
2051 variable var;
2052 location_chain l;
2054 gcc_checking_assert (GET_CODE (loc) == VALUE);
2056 slot = pointer_map_insert (local_get_addr_cache, loc);
2057 if (*slot)
2058 return (rtx)*slot;
2060 x = get_addr_from_global_cache (loc);
2062 /* Tentative, avoiding infinite recursion. */
2063 *slot = x;
2065 /* Recurse to cache local expansion of X, or if we need to search
2066 for a VALUE in the expansion. */
2067 if (x != loc)
2069 rtx nx = vt_canonicalize_addr (set, x);
2070 if (nx != x)
2072 slot = pointer_map_contains (local_get_addr_cache, loc);
2073 *slot = x = nx;
2075 return x;
2078 dv = dv_from_rtx (x);
2079 var = shared_hash_find (set->vars, dv);
2080 if (!var)
2081 return x;
2083 /* Look for an improved equivalent expression. */
2084 for (l = var->var_part[0].loc_chain; l; l = l->next)
2086 rtx base = vt_get_canonicalize_base (l->loc);
2087 if (GET_CODE (base) == VALUE
2088 && canon_value_cmp (base, loc))
2090 rtx nx = vt_canonicalize_addr (set, l->loc);
2091 if (x != nx)
2093 slot = pointer_map_contains (local_get_addr_cache, loc);
2094 *slot = x = nx;
2096 break;
2100 return x;
2103 /* Canonicalize LOC using equivalences from SET in addition to those
2104 in the cselib static table. It expects a VALUE-based expression,
2105 and it will only substitute VALUEs with other VALUEs or
2106 function-global equivalences, so that, if two addresses have base
2107 VALUEs that are locally or globally related in ways that
2108 memrefs_conflict_p cares about, they will both canonicalize to
2109 expressions that have the same base VALUE.
2111 The use of VALUEs as canonical base addresses enables the canonical
2112 RTXs to remain unchanged globally, if they resolve to a constant,
2113 or throughout a basic block otherwise, so that they can be cached
2114 and the cache needs not be invalidated when REGs, MEMs or such
2115 change. */
2117 static rtx
2118 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2120 HOST_WIDE_INT ofst = 0;
2121 enum machine_mode mode = GET_MODE (oloc);
2122 rtx loc = oloc;
2123 rtx x;
2124 bool retry = true;
2126 while (retry)
2128 while (GET_CODE (loc) == PLUS
2129 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2131 ofst += INTVAL (XEXP (loc, 1));
2132 loc = XEXP (loc, 0);
2135 /* Alignment operations can't normally be combined, so just
2136 canonicalize the base and we're done. We'll normally have
2137 only one stack alignment anyway. */
2138 if (GET_CODE (loc) == AND
2139 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2140 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2142 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2143 if (x != XEXP (loc, 0))
2144 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2145 retry = false;
2148 if (GET_CODE (loc) == VALUE)
2150 if (set)
2151 loc = get_addr_from_local_cache (set, loc);
2152 else
2153 loc = get_addr_from_global_cache (loc);
2155 /* Consolidate plus_constants. */
2156 while (ofst && GET_CODE (loc) == PLUS
2157 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2159 ofst += INTVAL (XEXP (loc, 1));
2160 loc = XEXP (loc, 0);
2163 retry = false;
2165 else
2167 x = canon_rtx (loc);
2168 if (retry)
2169 retry = (x != loc);
2170 loc = x;
2174 /* Add OFST back in. */
2175 if (ofst)
2177 /* Don't build new RTL if we can help it. */
2178 if (GET_CODE (oloc) == PLUS
2179 && XEXP (oloc, 0) == loc
2180 && INTVAL (XEXP (oloc, 1)) == ofst)
2181 return oloc;
2183 loc = plus_constant (mode, loc, ofst);
2186 return loc;
2189 /* Return true iff there's a true dependence between MLOC and LOC.
2190 MADDR must be a canonicalized version of MLOC's address. */
2192 static inline bool
2193 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2195 if (GET_CODE (loc) != MEM)
2196 return false;
2198 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2199 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2200 return false;
2202 return true;
2205 /* Hold parameters for the hashtab traversal function
2206 drop_overlapping_mem_locs, see below. */
2208 struct overlapping_mems
2210 dataflow_set *set;
2211 rtx loc, addr;
2214 /* Remove all MEMs that overlap with COMS->LOC from the location list
2215 of a hash table entry for a value. COMS->ADDR must be a
2216 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2217 canonicalized itself. */
2220 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2222 dataflow_set *set = coms->set;
2223 rtx mloc = coms->loc, addr = coms->addr;
2224 variable var = *slot;
2226 if (var->onepart == ONEPART_VALUE)
2228 location_chain loc, *locp;
2229 bool changed = false;
2230 rtx cur_loc;
2232 gcc_assert (var->n_var_parts == 1);
2234 if (shared_var_p (var, set->vars))
2236 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2237 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2238 break;
2240 if (!loc)
2241 return 1;
2243 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2244 var = *slot;
2245 gcc_assert (var->n_var_parts == 1);
2248 if (VAR_LOC_1PAUX (var))
2249 cur_loc = VAR_LOC_FROM (var);
2250 else
2251 cur_loc = var->var_part[0].cur_loc;
2253 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2254 loc; loc = *locp)
2256 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2258 locp = &loc->next;
2259 continue;
2262 *locp = loc->next;
2263 /* If we have deleted the location which was last emitted
2264 we have to emit new location so add the variable to set
2265 of changed variables. */
2266 if (cur_loc == loc->loc)
2268 changed = true;
2269 var->var_part[0].cur_loc = NULL;
2270 if (VAR_LOC_1PAUX (var))
2271 VAR_LOC_FROM (var) = NULL;
2273 pool_free (loc_chain_pool, loc);
2276 if (!var->var_part[0].loc_chain)
2278 var->n_var_parts--;
2279 changed = true;
2281 if (changed)
2282 variable_was_changed (var, set);
2285 return 1;
2288 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2290 static void
2291 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2293 struct overlapping_mems coms;
2295 gcc_checking_assert (GET_CODE (loc) == MEM);
2297 coms.set = set;
2298 coms.loc = canon_rtx (loc);
2299 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2301 set->traversed_vars = set->vars;
2302 shared_hash_htab (set->vars)
2303 .traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2304 set->traversed_vars = NULL;
2307 /* Set the location of DV, OFFSET as the MEM LOC. */
2309 static void
2310 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2311 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2312 enum insert_option iopt)
2314 if (dv_is_decl_p (dv))
2315 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2317 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2320 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2321 SET to LOC.
2322 Adjust the address first if it is stack pointer based. */
2324 static void
2325 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2326 rtx set_src)
2328 tree decl = MEM_EXPR (loc);
2329 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2331 var_mem_decl_set (set, loc, initialized,
2332 dv_from_decl (decl), offset, set_src, INSERT);
2335 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2336 dataflow set SET to LOC. If MODIFY is true, any other live copies
2337 of the same variable part are also deleted from the dataflow set,
2338 otherwise the variable part is assumed to be copied from another
2339 location holding the same part.
2340 Adjust the address first if it is stack pointer based. */
2342 static void
2343 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2344 enum var_init_status initialized, rtx set_src)
2346 tree decl = MEM_EXPR (loc);
2347 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2349 clobber_overlapping_mems (set, loc);
2350 decl = var_debug_decl (decl);
2352 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2353 initialized = get_init_value (set, loc, dv_from_decl (decl));
2355 if (modify)
2356 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2357 var_mem_set (set, loc, initialized, set_src);
2360 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2361 true, also delete any other live copies of the same variable part.
2362 Adjust the address first if it is stack pointer based. */
2364 static void
2365 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2367 tree decl = MEM_EXPR (loc);
2368 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2370 clobber_overlapping_mems (set, loc);
2371 decl = var_debug_decl (decl);
2372 if (clobber)
2373 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2374 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2377 /* Return true if LOC should not be expanded for location expressions,
2378 or used in them. */
2380 static inline bool
2381 unsuitable_loc (rtx loc)
2383 switch (GET_CODE (loc))
2385 case PC:
2386 case SCRATCH:
2387 case CC0:
2388 case ASM_INPUT:
2389 case ASM_OPERANDS:
2390 return true;
2392 default:
2393 return false;
2397 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2398 bound to it. */
2400 static inline void
2401 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2403 if (REG_P (loc))
2405 if (modified)
2406 var_regno_delete (set, REGNO (loc));
2407 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2408 dv_from_value (val), 0, NULL_RTX, INSERT);
2410 else if (MEM_P (loc))
2412 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2414 if (modified)
2415 clobber_overlapping_mems (set, loc);
2417 if (l && GET_CODE (l->loc) == VALUE)
2418 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2420 /* If this MEM is a global constant, we don't need it in the
2421 dynamic tables. ??? We should test this before emitting the
2422 micro-op in the first place. */
2423 while (l)
2424 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2425 break;
2426 else
2427 l = l->next;
2429 if (!l)
2430 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2431 dv_from_value (val), 0, NULL_RTX, INSERT);
2433 else
2435 /* Other kinds of equivalences are necessarily static, at least
2436 so long as we do not perform substitutions while merging
2437 expressions. */
2438 gcc_unreachable ();
2439 set_variable_part (set, loc, dv_from_value (val), 0,
2440 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2444 /* Bind a value to a location it was just stored in. If MODIFIED
2445 holds, assume the location was modified, detaching it from any
2446 values bound to it. */
2448 static void
2449 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2451 cselib_val *v = CSELIB_VAL_PTR (val);
2453 gcc_assert (cselib_preserved_value_p (v));
2455 if (dump_file)
2457 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2458 print_inline_rtx (dump_file, loc, 0);
2459 fprintf (dump_file, " evaluates to ");
2460 print_inline_rtx (dump_file, val, 0);
2461 if (v->locs)
2463 struct elt_loc_list *l;
2464 for (l = v->locs; l; l = l->next)
2466 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2467 print_inline_rtx (dump_file, l->loc, 0);
2470 fprintf (dump_file, "\n");
2473 gcc_checking_assert (!unsuitable_loc (loc));
2475 val_bind (set, val, loc, modified);
2478 /* Clear (canonical address) slots that reference X. */
2480 static bool
2481 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
2482 void **slot, void *x)
2484 if (vt_get_canonicalize_base ((rtx)*slot) == x)
2485 *slot = NULL;
2486 return true;
2489 /* Reset this node, detaching all its equivalences. Return the slot
2490 in the variable hash table that holds dv, if there is one. */
2492 static void
2493 val_reset (dataflow_set *set, decl_or_value dv)
2495 variable var = shared_hash_find (set->vars, dv) ;
2496 location_chain node;
2497 rtx cval;
2499 if (!var || !var->n_var_parts)
2500 return;
2502 gcc_assert (var->n_var_parts == 1);
2504 if (var->onepart == ONEPART_VALUE)
2506 rtx x = dv_as_value (dv);
2507 void **slot;
2509 /* Relationships in the global cache don't change, so reset the
2510 local cache entry only. */
2511 slot = pointer_map_contains (local_get_addr_cache, x);
2512 if (slot)
2514 /* If the value resolved back to itself, odds are that other
2515 values may have cached it too. These entries now refer
2516 to the old X, so detach them too. Entries that used the
2517 old X but resolved to something else remain ok as long as
2518 that something else isn't also reset. */
2519 if (*slot == x)
2520 pointer_map_traverse (local_get_addr_cache,
2521 local_get_addr_clear_given_value, x);
2522 *slot = NULL;
2526 cval = NULL;
2527 for (node = var->var_part[0].loc_chain; node; node = node->next)
2528 if (GET_CODE (node->loc) == VALUE
2529 && canon_value_cmp (node->loc, cval))
2530 cval = node->loc;
2532 for (node = var->var_part[0].loc_chain; node; node = node->next)
2533 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2535 /* Redirect the equivalence link to the new canonical
2536 value, or simply remove it if it would point at
2537 itself. */
2538 if (cval)
2539 set_variable_part (set, cval, dv_from_value (node->loc),
2540 0, node->init, node->set_src, NO_INSERT);
2541 delete_variable_part (set, dv_as_value (dv),
2542 dv_from_value (node->loc), 0);
2545 if (cval)
2547 decl_or_value cdv = dv_from_value (cval);
2549 /* Keep the remaining values connected, accummulating links
2550 in the canonical value. */
2551 for (node = var->var_part[0].loc_chain; node; node = node->next)
2553 if (node->loc == cval)
2554 continue;
2555 else if (GET_CODE (node->loc) == REG)
2556 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2557 node->set_src, NO_INSERT);
2558 else if (GET_CODE (node->loc) == MEM)
2559 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2560 node->set_src, NO_INSERT);
2561 else
2562 set_variable_part (set, node->loc, cdv, 0,
2563 node->init, node->set_src, NO_INSERT);
2567 /* We remove this last, to make sure that the canonical value is not
2568 removed to the point of requiring reinsertion. */
2569 if (cval)
2570 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2572 clobber_variable_part (set, NULL, dv, 0, NULL);
2575 /* Find the values in a given location and map the val to another
2576 value, if it is unique, or add the location as one holding the
2577 value. */
2579 static void
2580 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2582 decl_or_value dv = dv_from_value (val);
2584 if (dump_file && (dump_flags & TDF_DETAILS))
2586 if (insn)
2587 fprintf (dump_file, "%i: ", INSN_UID (insn));
2588 else
2589 fprintf (dump_file, "head: ");
2590 print_inline_rtx (dump_file, val, 0);
2591 fputs (" is at ", dump_file);
2592 print_inline_rtx (dump_file, loc, 0);
2593 fputc ('\n', dump_file);
2596 val_reset (set, dv);
2598 gcc_checking_assert (!unsuitable_loc (loc));
2600 if (REG_P (loc))
2602 attrs node, found = NULL;
2604 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2605 if (dv_is_value_p (node->dv)
2606 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2608 found = node;
2610 /* Map incoming equivalences. ??? Wouldn't it be nice if
2611 we just started sharing the location lists? Maybe a
2612 circular list ending at the value itself or some
2613 such. */
2614 set_variable_part (set, dv_as_value (node->dv),
2615 dv_from_value (val), node->offset,
2616 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2617 set_variable_part (set, val, node->dv, node->offset,
2618 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2621 /* If we didn't find any equivalence, we need to remember that
2622 this value is held in the named register. */
2623 if (found)
2624 return;
2626 /* ??? Attempt to find and merge equivalent MEMs or other
2627 expressions too. */
2629 val_bind (set, val, loc, false);
2632 /* Initialize dataflow set SET to be empty.
2633 VARS_SIZE is the initial size of hash table VARS. */
2635 static void
2636 dataflow_set_init (dataflow_set *set)
2638 init_attrs_list_set (set->regs);
2639 set->vars = shared_hash_copy (empty_shared_hash);
2640 set->stack_adjust = 0;
2641 set->traversed_vars = NULL;
2644 /* Delete the contents of dataflow set SET. */
2646 static void
2647 dataflow_set_clear (dataflow_set *set)
2649 int i;
2651 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2652 attrs_list_clear (&set->regs[i]);
2654 shared_hash_destroy (set->vars);
2655 set->vars = shared_hash_copy (empty_shared_hash);
2658 /* Copy the contents of dataflow set SRC to DST. */
2660 static void
2661 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2663 int i;
2665 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2666 attrs_list_copy (&dst->regs[i], src->regs[i]);
2668 shared_hash_destroy (dst->vars);
2669 dst->vars = shared_hash_copy (src->vars);
2670 dst->stack_adjust = src->stack_adjust;
2673 /* Information for merging lists of locations for a given offset of variable.
2675 struct variable_union_info
2677 /* Node of the location chain. */
2678 location_chain lc;
2680 /* The sum of positions in the input chains. */
2681 int pos;
2683 /* The position in the chain of DST dataflow set. */
2684 int pos_dst;
2687 /* Buffer for location list sorting and its allocated size. */
2688 static struct variable_union_info *vui_vec;
2689 static int vui_allocated;
2691 /* Compare function for qsort, order the structures by POS element. */
2693 static int
2694 variable_union_info_cmp_pos (const void *n1, const void *n2)
2696 const struct variable_union_info *const i1 =
2697 (const struct variable_union_info *) n1;
2698 const struct variable_union_info *const i2 =
2699 ( const struct variable_union_info *) n2;
2701 if (i1->pos != i2->pos)
2702 return i1->pos - i2->pos;
2704 return (i1->pos_dst - i2->pos_dst);
2707 /* Compute union of location parts of variable *SLOT and the same variable
2708 from hash table DATA. Compute "sorted" union of the location chains
2709 for common offsets, i.e. the locations of a variable part are sorted by
2710 a priority where the priority is the sum of the positions in the 2 chains
2711 (if a location is only in one list the position in the second list is
2712 defined to be larger than the length of the chains).
2713 When we are updating the location parts the newest location is in the
2714 beginning of the chain, so when we do the described "sorted" union
2715 we keep the newest locations in the beginning. */
2717 static int
2718 variable_union (variable src, dataflow_set *set)
2720 variable dst;
2721 variable_def **dstp;
2722 int i, j, k;
2724 dstp = shared_hash_find_slot (set->vars, src->dv);
2725 if (!dstp || !*dstp)
2727 src->refcount++;
2729 dst_can_be_shared = false;
2730 if (!dstp)
2731 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2733 *dstp = src;
2735 /* Continue traversing the hash table. */
2736 return 1;
2738 else
2739 dst = *dstp;
2741 gcc_assert (src->n_var_parts);
2742 gcc_checking_assert (src->onepart == dst->onepart);
2744 /* We can combine one-part variables very efficiently, because their
2745 entries are in canonical order. */
2746 if (src->onepart)
2748 location_chain *nodep, dnode, snode;
2750 gcc_assert (src->n_var_parts == 1
2751 && dst->n_var_parts == 1);
2753 snode = src->var_part[0].loc_chain;
2754 gcc_assert (snode);
2756 restart_onepart_unshared:
2757 nodep = &dst->var_part[0].loc_chain;
2758 dnode = *nodep;
2759 gcc_assert (dnode);
2761 while (snode)
2763 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2765 if (r > 0)
2767 location_chain nnode;
2769 if (shared_var_p (dst, set->vars))
2771 dstp = unshare_variable (set, dstp, dst,
2772 VAR_INIT_STATUS_INITIALIZED);
2773 dst = *dstp;
2774 goto restart_onepart_unshared;
2777 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2778 nnode->loc = snode->loc;
2779 nnode->init = snode->init;
2780 if (!snode->set_src || MEM_P (snode->set_src))
2781 nnode->set_src = NULL;
2782 else
2783 nnode->set_src = snode->set_src;
2784 nnode->next = dnode;
2785 dnode = nnode;
2787 else if (r == 0)
2788 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2790 if (r >= 0)
2791 snode = snode->next;
2793 nodep = &dnode->next;
2794 dnode = *nodep;
2797 return 1;
2800 gcc_checking_assert (!src->onepart);
2802 /* Count the number of location parts, result is K. */
2803 for (i = 0, j = 0, k = 0;
2804 i < src->n_var_parts && j < dst->n_var_parts; k++)
2806 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2808 i++;
2809 j++;
2811 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2812 i++;
2813 else
2814 j++;
2816 k += src->n_var_parts - i;
2817 k += dst->n_var_parts - j;
2819 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2820 thus there are at most MAX_VAR_PARTS different offsets. */
2821 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2823 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2825 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2826 dst = *dstp;
2829 i = src->n_var_parts - 1;
2830 j = dst->n_var_parts - 1;
2831 dst->n_var_parts = k;
2833 for (k--; k >= 0; k--)
2835 location_chain node, node2;
2837 if (i >= 0 && j >= 0
2838 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2840 /* Compute the "sorted" union of the chains, i.e. the locations which
2841 are in both chains go first, they are sorted by the sum of
2842 positions in the chains. */
2843 int dst_l, src_l;
2844 int ii, jj, n;
2845 struct variable_union_info *vui;
2847 /* If DST is shared compare the location chains.
2848 If they are different we will modify the chain in DST with
2849 high probability so make a copy of DST. */
2850 if (shared_var_p (dst, set->vars))
2852 for (node = src->var_part[i].loc_chain,
2853 node2 = dst->var_part[j].loc_chain; node && node2;
2854 node = node->next, node2 = node2->next)
2856 if (!((REG_P (node2->loc)
2857 && REG_P (node->loc)
2858 && REGNO (node2->loc) == REGNO (node->loc))
2859 || rtx_equal_p (node2->loc, node->loc)))
2861 if (node2->init < node->init)
2862 node2->init = node->init;
2863 break;
2866 if (node || node2)
2868 dstp = unshare_variable (set, dstp, dst,
2869 VAR_INIT_STATUS_UNKNOWN);
2870 dst = (variable)*dstp;
2874 src_l = 0;
2875 for (node = src->var_part[i].loc_chain; node; node = node->next)
2876 src_l++;
2877 dst_l = 0;
2878 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2879 dst_l++;
2881 if (dst_l == 1)
2883 /* The most common case, much simpler, no qsort is needed. */
2884 location_chain dstnode = dst->var_part[j].loc_chain;
2885 dst->var_part[k].loc_chain = dstnode;
2886 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2887 node2 = dstnode;
2888 for (node = src->var_part[i].loc_chain; node; node = node->next)
2889 if (!((REG_P (dstnode->loc)
2890 && REG_P (node->loc)
2891 && REGNO (dstnode->loc) == REGNO (node->loc))
2892 || rtx_equal_p (dstnode->loc, node->loc)))
2894 location_chain new_node;
2896 /* Copy the location from SRC. */
2897 new_node = (location_chain) pool_alloc (loc_chain_pool);
2898 new_node->loc = node->loc;
2899 new_node->init = node->init;
2900 if (!node->set_src || MEM_P (node->set_src))
2901 new_node->set_src = NULL;
2902 else
2903 new_node->set_src = node->set_src;
2904 node2->next = new_node;
2905 node2 = new_node;
2907 node2->next = NULL;
2909 else
2911 if (src_l + dst_l > vui_allocated)
2913 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2914 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2915 vui_allocated);
2917 vui = vui_vec;
2919 /* Fill in the locations from DST. */
2920 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2921 node = node->next, jj++)
2923 vui[jj].lc = node;
2924 vui[jj].pos_dst = jj;
2926 /* Pos plus value larger than a sum of 2 valid positions. */
2927 vui[jj].pos = jj + src_l + dst_l;
2930 /* Fill in the locations from SRC. */
2931 n = dst_l;
2932 for (node = src->var_part[i].loc_chain, ii = 0; node;
2933 node = node->next, ii++)
2935 /* Find location from NODE. */
2936 for (jj = 0; jj < dst_l; jj++)
2938 if ((REG_P (vui[jj].lc->loc)
2939 && REG_P (node->loc)
2940 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2941 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2943 vui[jj].pos = jj + ii;
2944 break;
2947 if (jj >= dst_l) /* The location has not been found. */
2949 location_chain new_node;
2951 /* Copy the location from SRC. */
2952 new_node = (location_chain) pool_alloc (loc_chain_pool);
2953 new_node->loc = node->loc;
2954 new_node->init = node->init;
2955 if (!node->set_src || MEM_P (node->set_src))
2956 new_node->set_src = NULL;
2957 else
2958 new_node->set_src = node->set_src;
2959 vui[n].lc = new_node;
2960 vui[n].pos_dst = src_l + dst_l;
2961 vui[n].pos = ii + src_l + dst_l;
2962 n++;
2966 if (dst_l == 2)
2968 /* Special case still very common case. For dst_l == 2
2969 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2970 vui[i].pos == i + src_l + dst_l. */
2971 if (vui[0].pos > vui[1].pos)
2973 /* Order should be 1, 0, 2... */
2974 dst->var_part[k].loc_chain = vui[1].lc;
2975 vui[1].lc->next = vui[0].lc;
2976 if (n >= 3)
2978 vui[0].lc->next = vui[2].lc;
2979 vui[n - 1].lc->next = NULL;
2981 else
2982 vui[0].lc->next = NULL;
2983 ii = 3;
2985 else
2987 dst->var_part[k].loc_chain = vui[0].lc;
2988 if (n >= 3 && vui[2].pos < vui[1].pos)
2990 /* Order should be 0, 2, 1, 3... */
2991 vui[0].lc->next = vui[2].lc;
2992 vui[2].lc->next = vui[1].lc;
2993 if (n >= 4)
2995 vui[1].lc->next = vui[3].lc;
2996 vui[n - 1].lc->next = NULL;
2998 else
2999 vui[1].lc->next = NULL;
3000 ii = 4;
3002 else
3004 /* Order should be 0, 1, 2... */
3005 ii = 1;
3006 vui[n - 1].lc->next = NULL;
3009 for (; ii < n; ii++)
3010 vui[ii - 1].lc->next = vui[ii].lc;
3012 else
3014 qsort (vui, n, sizeof (struct variable_union_info),
3015 variable_union_info_cmp_pos);
3017 /* Reconnect the nodes in sorted order. */
3018 for (ii = 1; ii < n; ii++)
3019 vui[ii - 1].lc->next = vui[ii].lc;
3020 vui[n - 1].lc->next = NULL;
3021 dst->var_part[k].loc_chain = vui[0].lc;
3024 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3026 i--;
3027 j--;
3029 else if ((i >= 0 && j >= 0
3030 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3031 || i < 0)
3033 dst->var_part[k] = dst->var_part[j];
3034 j--;
3036 else if ((i >= 0 && j >= 0
3037 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3038 || j < 0)
3040 location_chain *nextp;
3042 /* Copy the chain from SRC. */
3043 nextp = &dst->var_part[k].loc_chain;
3044 for (node = src->var_part[i].loc_chain; node; node = node->next)
3046 location_chain new_lc;
3048 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3049 new_lc->next = NULL;
3050 new_lc->init = node->init;
3051 if (!node->set_src || MEM_P (node->set_src))
3052 new_lc->set_src = NULL;
3053 else
3054 new_lc->set_src = node->set_src;
3055 new_lc->loc = node->loc;
3057 *nextp = new_lc;
3058 nextp = &new_lc->next;
3061 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3062 i--;
3064 dst->var_part[k].cur_loc = NULL;
3067 if (flag_var_tracking_uninit)
3068 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3070 location_chain node, node2;
3071 for (node = src->var_part[i].loc_chain; node; node = node->next)
3072 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3073 if (rtx_equal_p (node->loc, node2->loc))
3075 if (node->init > node2->init)
3076 node2->init = node->init;
3080 /* Continue traversing the hash table. */
3081 return 1;
3084 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3086 static void
3087 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3089 int i;
3091 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3092 attrs_list_union (&dst->regs[i], src->regs[i]);
3094 if (dst->vars == empty_shared_hash)
3096 shared_hash_destroy (dst->vars);
3097 dst->vars = shared_hash_copy (src->vars);
3099 else
3101 variable_iterator_type hi;
3102 variable var;
3104 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src->vars),
3105 var, variable, hi)
3106 variable_union (var, dst);
3110 /* Whether the value is currently being expanded. */
3111 #define VALUE_RECURSED_INTO(x) \
3112 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3114 /* Whether no expansion was found, saving useless lookups.
3115 It must only be set when VALUE_CHANGED is clear. */
3116 #define NO_LOC_P(x) \
3117 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3119 /* Whether cur_loc in the value needs to be (re)computed. */
3120 #define VALUE_CHANGED(x) \
3121 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3122 /* Whether cur_loc in the decl needs to be (re)computed. */
3123 #define DECL_CHANGED(x) TREE_VISITED (x)
3125 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3126 user DECLs, this means they're in changed_variables. Values and
3127 debug exprs may be left with this flag set if no user variable
3128 requires them to be evaluated. */
3130 static inline void
3131 set_dv_changed (decl_or_value dv, bool newv)
3133 switch (dv_onepart_p (dv))
3135 case ONEPART_VALUE:
3136 if (newv)
3137 NO_LOC_P (dv_as_value (dv)) = false;
3138 VALUE_CHANGED (dv_as_value (dv)) = newv;
3139 break;
3141 case ONEPART_DEXPR:
3142 if (newv)
3143 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3144 /* Fall through... */
3146 default:
3147 DECL_CHANGED (dv_as_decl (dv)) = newv;
3148 break;
3152 /* Return true if DV needs to have its cur_loc recomputed. */
3154 static inline bool
3155 dv_changed_p (decl_or_value dv)
3157 return (dv_is_value_p (dv)
3158 ? VALUE_CHANGED (dv_as_value (dv))
3159 : DECL_CHANGED (dv_as_decl (dv)));
3162 /* Return a location list node whose loc is rtx_equal to LOC, in the
3163 location list of a one-part variable or value VAR, or in that of
3164 any values recursively mentioned in the location lists. VARS must
3165 be in star-canonical form. */
3167 static location_chain
3168 find_loc_in_1pdv (rtx loc, variable var, variable_table_type vars)
3170 location_chain node;
3171 enum rtx_code loc_code;
3173 if (!var)
3174 return NULL;
3176 gcc_checking_assert (var->onepart);
3178 if (!var->n_var_parts)
3179 return NULL;
3181 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3183 loc_code = GET_CODE (loc);
3184 for (node = var->var_part[0].loc_chain; node; node = node->next)
3186 decl_or_value dv;
3187 variable rvar;
3189 if (GET_CODE (node->loc) != loc_code)
3191 if (GET_CODE (node->loc) != VALUE)
3192 continue;
3194 else if (loc == node->loc)
3195 return node;
3196 else if (loc_code != VALUE)
3198 if (rtx_equal_p (loc, node->loc))
3199 return node;
3200 continue;
3203 /* Since we're in star-canonical form, we don't need to visit
3204 non-canonical nodes: one-part variables and non-canonical
3205 values would only point back to the canonical node. */
3206 if (dv_is_value_p (var->dv)
3207 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3209 /* Skip all subsequent VALUEs. */
3210 while (node->next && GET_CODE (node->next->loc) == VALUE)
3212 node = node->next;
3213 gcc_checking_assert (!canon_value_cmp (node->loc,
3214 dv_as_value (var->dv)));
3215 if (loc == node->loc)
3216 return node;
3218 continue;
3221 gcc_checking_assert (node == var->var_part[0].loc_chain);
3222 gcc_checking_assert (!node->next);
3224 dv = dv_from_value (node->loc);
3225 rvar = vars.find_with_hash (dv, dv_htab_hash (dv));
3226 return find_loc_in_1pdv (loc, rvar, vars);
3229 /* ??? Gotta look in cselib_val locations too. */
3231 return NULL;
3234 /* Hash table iteration argument passed to variable_merge. */
3235 struct dfset_merge
3237 /* The set in which the merge is to be inserted. */
3238 dataflow_set *dst;
3239 /* The set that we're iterating in. */
3240 dataflow_set *cur;
3241 /* The set that may contain the other dv we are to merge with. */
3242 dataflow_set *src;
3243 /* Number of onepart dvs in src. */
3244 int src_onepart_cnt;
3247 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3248 loc_cmp order, and it is maintained as such. */
3250 static void
3251 insert_into_intersection (location_chain *nodep, rtx loc,
3252 enum var_init_status status)
3254 location_chain node;
3255 int r;
3257 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3258 if ((r = loc_cmp (node->loc, loc)) == 0)
3260 node->init = MIN (node->init, status);
3261 return;
3263 else if (r > 0)
3264 break;
3266 node = (location_chain) pool_alloc (loc_chain_pool);
3268 node->loc = loc;
3269 node->set_src = NULL;
3270 node->init = status;
3271 node->next = *nodep;
3272 *nodep = node;
3275 /* Insert in DEST the intersection of the locations present in both
3276 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3277 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3278 DSM->dst. */
3280 static void
3281 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3282 location_chain s1node, variable s2var)
3284 dataflow_set *s1set = dsm->cur;
3285 dataflow_set *s2set = dsm->src;
3286 location_chain found;
3288 if (s2var)
3290 location_chain s2node;
3292 gcc_checking_assert (s2var->onepart);
3294 if (s2var->n_var_parts)
3296 s2node = s2var->var_part[0].loc_chain;
3298 for (; s1node && s2node;
3299 s1node = s1node->next, s2node = s2node->next)
3300 if (s1node->loc != s2node->loc)
3301 break;
3302 else if (s1node->loc == val)
3303 continue;
3304 else
3305 insert_into_intersection (dest, s1node->loc,
3306 MIN (s1node->init, s2node->init));
3310 for (; s1node; s1node = s1node->next)
3312 if (s1node->loc == val)
3313 continue;
3315 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3316 shared_hash_htab (s2set->vars))))
3318 insert_into_intersection (dest, s1node->loc,
3319 MIN (s1node->init, found->init));
3320 continue;
3323 if (GET_CODE (s1node->loc) == VALUE
3324 && !VALUE_RECURSED_INTO (s1node->loc))
3326 decl_or_value dv = dv_from_value (s1node->loc);
3327 variable svar = shared_hash_find (s1set->vars, dv);
3328 if (svar)
3330 if (svar->n_var_parts == 1)
3332 VALUE_RECURSED_INTO (s1node->loc) = true;
3333 intersect_loc_chains (val, dest, dsm,
3334 svar->var_part[0].loc_chain,
3335 s2var);
3336 VALUE_RECURSED_INTO (s1node->loc) = false;
3341 /* ??? gotta look in cselib_val locations too. */
3343 /* ??? if the location is equivalent to any location in src,
3344 searched recursively
3346 add to dst the values needed to represent the equivalence
3348 telling whether locations S is equivalent to another dv's
3349 location list:
3351 for each location D in the list
3353 if S and D satisfy rtx_equal_p, then it is present
3355 else if D is a value, recurse without cycles
3357 else if S and D have the same CODE and MODE
3359 for each operand oS and the corresponding oD
3361 if oS and oD are not equivalent, then S an D are not equivalent
3363 else if they are RTX vectors
3365 if any vector oS element is not equivalent to its respective oD,
3366 then S and D are not equivalent
3374 /* Return -1 if X should be before Y in a location list for a 1-part
3375 variable, 1 if Y should be before X, and 0 if they're equivalent
3376 and should not appear in the list. */
3378 static int
3379 loc_cmp (rtx x, rtx y)
3381 int i, j, r;
3382 RTX_CODE code = GET_CODE (x);
3383 const char *fmt;
3385 if (x == y)
3386 return 0;
3388 if (REG_P (x))
3390 if (!REG_P (y))
3391 return -1;
3392 gcc_assert (GET_MODE (x) == GET_MODE (y));
3393 if (REGNO (x) == REGNO (y))
3394 return 0;
3395 else if (REGNO (x) < REGNO (y))
3396 return -1;
3397 else
3398 return 1;
3401 if (REG_P (y))
3402 return 1;
3404 if (MEM_P (x))
3406 if (!MEM_P (y))
3407 return -1;
3408 gcc_assert (GET_MODE (x) == GET_MODE (y));
3409 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3412 if (MEM_P (y))
3413 return 1;
3415 if (GET_CODE (x) == VALUE)
3417 if (GET_CODE (y) != VALUE)
3418 return -1;
3419 /* Don't assert the modes are the same, that is true only
3420 when not recursing. (subreg:QI (value:SI 1:1) 0)
3421 and (subreg:QI (value:DI 2:2) 0) can be compared,
3422 even when the modes are different. */
3423 if (canon_value_cmp (x, y))
3424 return -1;
3425 else
3426 return 1;
3429 if (GET_CODE (y) == VALUE)
3430 return 1;
3432 /* Entry value is the least preferable kind of expression. */
3433 if (GET_CODE (x) == ENTRY_VALUE)
3435 if (GET_CODE (y) != ENTRY_VALUE)
3436 return 1;
3437 gcc_assert (GET_MODE (x) == GET_MODE (y));
3438 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3441 if (GET_CODE (y) == ENTRY_VALUE)
3442 return -1;
3444 if (GET_CODE (x) == GET_CODE (y))
3445 /* Compare operands below. */;
3446 else if (GET_CODE (x) < GET_CODE (y))
3447 return -1;
3448 else
3449 return 1;
3451 gcc_assert (GET_MODE (x) == GET_MODE (y));
3453 if (GET_CODE (x) == DEBUG_EXPR)
3455 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3456 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3457 return -1;
3458 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3459 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3460 return 1;
3463 fmt = GET_RTX_FORMAT (code);
3464 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3465 switch (fmt[i])
3467 case 'w':
3468 if (XWINT (x, i) == XWINT (y, i))
3469 break;
3470 else if (XWINT (x, i) < XWINT (y, i))
3471 return -1;
3472 else
3473 return 1;
3475 case 'n':
3476 case 'i':
3477 if (XINT (x, i) == XINT (y, i))
3478 break;
3479 else if (XINT (x, i) < XINT (y, i))
3480 return -1;
3481 else
3482 return 1;
3484 case 'V':
3485 case 'E':
3486 /* Compare the vector length first. */
3487 if (XVECLEN (x, i) == XVECLEN (y, i))
3488 /* Compare the vectors elements. */;
3489 else if (XVECLEN (x, i) < XVECLEN (y, i))
3490 return -1;
3491 else
3492 return 1;
3494 for (j = 0; j < XVECLEN (x, i); j++)
3495 if ((r = loc_cmp (XVECEXP (x, i, j),
3496 XVECEXP (y, i, j))))
3497 return r;
3498 break;
3500 case 'e':
3501 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3502 return r;
3503 break;
3505 case 'S':
3506 case 's':
3507 if (XSTR (x, i) == XSTR (y, i))
3508 break;
3509 if (!XSTR (x, i))
3510 return -1;
3511 if (!XSTR (y, i))
3512 return 1;
3513 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3514 break;
3515 else if (r < 0)
3516 return -1;
3517 else
3518 return 1;
3520 case 'u':
3521 /* These are just backpointers, so they don't matter. */
3522 break;
3524 case '0':
3525 case 't':
3526 break;
3528 /* It is believed that rtx's at this level will never
3529 contain anything but integers and other rtx's,
3530 except for within LABEL_REFs and SYMBOL_REFs. */
3531 default:
3532 gcc_unreachable ();
3535 return 0;
3538 #if ENABLE_CHECKING
3539 /* Check the order of entries in one-part variables. */
3542 canonicalize_loc_order_check (variable_def **slot,
3543 dataflow_set *data ATTRIBUTE_UNUSED)
3545 variable var = *slot;
3546 location_chain node, next;
3548 #ifdef ENABLE_RTL_CHECKING
3549 int i;
3550 for (i = 0; i < var->n_var_parts; i++)
3551 gcc_assert (var->var_part[0].cur_loc == NULL);
3552 gcc_assert (!var->in_changed_variables);
3553 #endif
3555 if (!var->onepart)
3556 return 1;
3558 gcc_assert (var->n_var_parts == 1);
3559 node = var->var_part[0].loc_chain;
3560 gcc_assert (node);
3562 while ((next = node->next))
3564 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3565 node = next;
3568 return 1;
3570 #endif
3572 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3573 more likely to be chosen as canonical for an equivalence set.
3574 Ensure less likely values can reach more likely neighbors, making
3575 the connections bidirectional. */
3578 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3580 variable var = *slot;
3581 decl_or_value dv = var->dv;
3582 rtx val;
3583 location_chain node;
3585 if (!dv_is_value_p (dv))
3586 return 1;
3588 gcc_checking_assert (var->n_var_parts == 1);
3590 val = dv_as_value (dv);
3592 for (node = var->var_part[0].loc_chain; node; node = node->next)
3593 if (GET_CODE (node->loc) == VALUE)
3595 if (canon_value_cmp (node->loc, val))
3596 VALUE_RECURSED_INTO (val) = true;
3597 else
3599 decl_or_value odv = dv_from_value (node->loc);
3600 variable_def **oslot;
3601 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3603 set_slot_part (set, val, oslot, odv, 0,
3604 node->init, NULL_RTX);
3606 VALUE_RECURSED_INTO (node->loc) = true;
3610 return 1;
3613 /* Remove redundant entries from equivalence lists in onepart
3614 variables, canonicalizing equivalence sets into star shapes. */
3617 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3619 variable var = *slot;
3620 decl_or_value dv = var->dv;
3621 location_chain node;
3622 decl_or_value cdv;
3623 rtx val, cval;
3624 variable_def **cslot;
3625 bool has_value;
3626 bool has_marks;
3628 if (!var->onepart)
3629 return 1;
3631 gcc_checking_assert (var->n_var_parts == 1);
3633 if (dv_is_value_p (dv))
3635 cval = dv_as_value (dv);
3636 if (!VALUE_RECURSED_INTO (cval))
3637 return 1;
3638 VALUE_RECURSED_INTO (cval) = false;
3640 else
3641 cval = NULL_RTX;
3643 restart:
3644 val = cval;
3645 has_value = false;
3646 has_marks = false;
3648 gcc_assert (var->n_var_parts == 1);
3650 for (node = var->var_part[0].loc_chain; node; node = node->next)
3651 if (GET_CODE (node->loc) == VALUE)
3653 has_value = true;
3654 if (VALUE_RECURSED_INTO (node->loc))
3655 has_marks = true;
3656 if (canon_value_cmp (node->loc, cval))
3657 cval = node->loc;
3660 if (!has_value)
3661 return 1;
3663 if (cval == val)
3665 if (!has_marks || dv_is_decl_p (dv))
3666 return 1;
3668 /* Keep it marked so that we revisit it, either after visiting a
3669 child node, or after visiting a new parent that might be
3670 found out. */
3671 VALUE_RECURSED_INTO (val) = true;
3673 for (node = var->var_part[0].loc_chain; node; node = node->next)
3674 if (GET_CODE (node->loc) == VALUE
3675 && VALUE_RECURSED_INTO (node->loc))
3677 cval = node->loc;
3678 restart_with_cval:
3679 VALUE_RECURSED_INTO (cval) = false;
3680 dv = dv_from_value (cval);
3681 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3682 if (!slot)
3684 gcc_assert (dv_is_decl_p (var->dv));
3685 /* The canonical value was reset and dropped.
3686 Remove it. */
3687 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3688 return 1;
3690 var = *slot;
3691 gcc_assert (dv_is_value_p (var->dv));
3692 if (var->n_var_parts == 0)
3693 return 1;
3694 gcc_assert (var->n_var_parts == 1);
3695 goto restart;
3698 VALUE_RECURSED_INTO (val) = false;
3700 return 1;
3703 /* Push values to the canonical one. */
3704 cdv = dv_from_value (cval);
3705 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3707 for (node = var->var_part[0].loc_chain; node; node = node->next)
3708 if (node->loc != cval)
3710 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3711 node->init, NULL_RTX);
3712 if (GET_CODE (node->loc) == VALUE)
3714 decl_or_value ndv = dv_from_value (node->loc);
3716 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3717 NO_INSERT);
3719 if (canon_value_cmp (node->loc, val))
3721 /* If it could have been a local minimum, it's not any more,
3722 since it's now neighbor to cval, so it may have to push
3723 to it. Conversely, if it wouldn't have prevailed over
3724 val, then whatever mark it has is fine: if it was to
3725 push, it will now push to a more canonical node, but if
3726 it wasn't, then it has already pushed any values it might
3727 have to. */
3728 VALUE_RECURSED_INTO (node->loc) = true;
3729 /* Make sure we visit node->loc by ensuring we cval is
3730 visited too. */
3731 VALUE_RECURSED_INTO (cval) = true;
3733 else if (!VALUE_RECURSED_INTO (node->loc))
3734 /* If we have no need to "recurse" into this node, it's
3735 already "canonicalized", so drop the link to the old
3736 parent. */
3737 clobber_variable_part (set, cval, ndv, 0, NULL);
3739 else if (GET_CODE (node->loc) == REG)
3741 attrs list = set->regs[REGNO (node->loc)], *listp;
3743 /* Change an existing attribute referring to dv so that it
3744 refers to cdv, removing any duplicate this might
3745 introduce, and checking that no previous duplicates
3746 existed, all in a single pass. */
3748 while (list)
3750 if (list->offset == 0
3751 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3752 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3753 break;
3755 list = list->next;
3758 gcc_assert (list);
3759 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3761 list->dv = cdv;
3762 for (listp = &list->next; (list = *listp); listp = &list->next)
3764 if (list->offset)
3765 continue;
3767 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3769 *listp = list->next;
3770 pool_free (attrs_pool, list);
3771 list = *listp;
3772 break;
3775 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3778 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3780 for (listp = &list->next; (list = *listp); listp = &list->next)
3782 if (list->offset)
3783 continue;
3785 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3787 *listp = list->next;
3788 pool_free (attrs_pool, list);
3789 list = *listp;
3790 break;
3793 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3796 else
3797 gcc_unreachable ();
3799 #if ENABLE_CHECKING
3800 while (list)
3802 if (list->offset == 0
3803 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3804 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3805 gcc_unreachable ();
3807 list = list->next;
3809 #endif
3813 if (val)
3814 set_slot_part (set, val, cslot, cdv, 0,
3815 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3817 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3819 /* Variable may have been unshared. */
3820 var = *slot;
3821 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3822 && var->var_part[0].loc_chain->next == NULL);
3824 if (VALUE_RECURSED_INTO (cval))
3825 goto restart_with_cval;
3827 return 1;
3830 /* Bind one-part variables to the canonical value in an equivalence
3831 set. Not doing this causes dataflow convergence failure in rare
3832 circumstances, see PR42873. Unfortunately we can't do this
3833 efficiently as part of canonicalize_values_star, since we may not
3834 have determined or even seen the canonical value of a set when we
3835 get to a variable that references another member of the set. */
3838 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3840 variable var = *slot;
3841 decl_or_value dv = var->dv;
3842 location_chain node;
3843 rtx cval;
3844 decl_or_value cdv;
3845 variable_def **cslot;
3846 variable cvar;
3847 location_chain cnode;
3849 if (!var->onepart || var->onepart == ONEPART_VALUE)
3850 return 1;
3852 gcc_assert (var->n_var_parts == 1);
3854 node = var->var_part[0].loc_chain;
3856 if (GET_CODE (node->loc) != VALUE)
3857 return 1;
3859 gcc_assert (!node->next);
3860 cval = node->loc;
3862 /* Push values to the canonical one. */
3863 cdv = dv_from_value (cval);
3864 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3865 if (!cslot)
3866 return 1;
3867 cvar = *cslot;
3868 gcc_assert (cvar->n_var_parts == 1);
3870 cnode = cvar->var_part[0].loc_chain;
3872 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3873 that are not “more canonical” than it. */
3874 if (GET_CODE (cnode->loc) != VALUE
3875 || !canon_value_cmp (cnode->loc, cval))
3876 return 1;
3878 /* CVAL was found to be non-canonical. Change the variable to point
3879 to the canonical VALUE. */
3880 gcc_assert (!cnode->next);
3881 cval = cnode->loc;
3883 slot = set_slot_part (set, cval, slot, dv, 0,
3884 node->init, node->set_src);
3885 clobber_slot_part (set, cval, slot, 0, node->set_src);
3887 return 1;
3890 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3891 corresponding entry in DSM->src. Multi-part variables are combined
3892 with variable_union, whereas onepart dvs are combined with
3893 intersection. */
3895 static int
3896 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3898 dataflow_set *dst = dsm->dst;
3899 variable_def **dstslot;
3900 variable s2var, dvar = NULL;
3901 decl_or_value dv = s1var->dv;
3902 onepart_enum_t onepart = s1var->onepart;
3903 rtx val;
3904 hashval_t dvhash;
3905 location_chain node, *nodep;
3907 /* If the incoming onepart variable has an empty location list, then
3908 the intersection will be just as empty. For other variables,
3909 it's always union. */
3910 gcc_checking_assert (s1var->n_var_parts
3911 && s1var->var_part[0].loc_chain);
3913 if (!onepart)
3914 return variable_union (s1var, dst);
3916 gcc_checking_assert (s1var->n_var_parts == 1);
3918 dvhash = dv_htab_hash (dv);
3919 if (dv_is_value_p (dv))
3920 val = dv_as_value (dv);
3921 else
3922 val = NULL;
3924 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3925 if (!s2var)
3927 dst_can_be_shared = false;
3928 return 1;
3931 dsm->src_onepart_cnt--;
3932 gcc_assert (s2var->var_part[0].loc_chain
3933 && s2var->onepart == onepart
3934 && s2var->n_var_parts == 1);
3936 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3937 if (dstslot)
3939 dvar = *dstslot;
3940 gcc_assert (dvar->refcount == 1
3941 && dvar->onepart == onepart
3942 && dvar->n_var_parts == 1);
3943 nodep = &dvar->var_part[0].loc_chain;
3945 else
3947 nodep = &node;
3948 node = NULL;
3951 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3953 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3954 dvhash, INSERT);
3955 *dstslot = dvar = s2var;
3956 dvar->refcount++;
3958 else
3960 dst_can_be_shared = false;
3962 intersect_loc_chains (val, nodep, dsm,
3963 s1var->var_part[0].loc_chain, s2var);
3965 if (!dstslot)
3967 if (node)
3969 dvar = (variable) pool_alloc (onepart_pool (onepart));
3970 dvar->dv = dv;
3971 dvar->refcount = 1;
3972 dvar->n_var_parts = 1;
3973 dvar->onepart = onepart;
3974 dvar->in_changed_variables = false;
3975 dvar->var_part[0].loc_chain = node;
3976 dvar->var_part[0].cur_loc = NULL;
3977 if (onepart)
3978 VAR_LOC_1PAUX (dvar) = NULL;
3979 else
3980 VAR_PART_OFFSET (dvar, 0) = 0;
3982 dstslot
3983 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3984 INSERT);
3985 gcc_assert (!*dstslot);
3986 *dstslot = dvar;
3988 else
3989 return 1;
3993 nodep = &dvar->var_part[0].loc_chain;
3994 while ((node = *nodep))
3996 location_chain *nextp = &node->next;
3998 if (GET_CODE (node->loc) == REG)
4000 attrs list;
4002 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4003 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4004 && dv_is_value_p (list->dv))
4005 break;
4007 if (!list)
4008 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4009 dv, 0, node->loc);
4010 /* If this value became canonical for another value that had
4011 this register, we want to leave it alone. */
4012 else if (dv_as_value (list->dv) != val)
4014 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4015 dstslot, dv, 0,
4016 node->init, NULL_RTX);
4017 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4019 /* Since nextp points into the removed node, we can't
4020 use it. The pointer to the next node moved to nodep.
4021 However, if the variable we're walking is unshared
4022 during our walk, we'll keep walking the location list
4023 of the previously-shared variable, in which case the
4024 node won't have been removed, and we'll want to skip
4025 it. That's why we test *nodep here. */
4026 if (*nodep != node)
4027 nextp = nodep;
4030 else
4031 /* Canonicalization puts registers first, so we don't have to
4032 walk it all. */
4033 break;
4034 nodep = nextp;
4037 if (dvar != *dstslot)
4038 dvar = *dstslot;
4039 nodep = &dvar->var_part[0].loc_chain;
4041 if (val)
4043 /* Mark all referenced nodes for canonicalization, and make sure
4044 we have mutual equivalence links. */
4045 VALUE_RECURSED_INTO (val) = true;
4046 for (node = *nodep; node; node = node->next)
4047 if (GET_CODE (node->loc) == VALUE)
4049 VALUE_RECURSED_INTO (node->loc) = true;
4050 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4051 node->init, NULL, INSERT);
4054 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4055 gcc_assert (*dstslot == dvar);
4056 canonicalize_values_star (dstslot, dst);
4057 gcc_checking_assert (dstslot
4058 == shared_hash_find_slot_noinsert_1 (dst->vars,
4059 dv, dvhash));
4060 dvar = *dstslot;
4062 else
4064 bool has_value = false, has_other = false;
4066 /* If we have one value and anything else, we're going to
4067 canonicalize this, so make sure all values have an entry in
4068 the table and are marked for canonicalization. */
4069 for (node = *nodep; node; node = node->next)
4071 if (GET_CODE (node->loc) == VALUE)
4073 /* If this was marked during register canonicalization,
4074 we know we have to canonicalize values. */
4075 if (has_value)
4076 has_other = true;
4077 has_value = true;
4078 if (has_other)
4079 break;
4081 else
4083 has_other = true;
4084 if (has_value)
4085 break;
4089 if (has_value && has_other)
4091 for (node = *nodep; node; node = node->next)
4093 if (GET_CODE (node->loc) == VALUE)
4095 decl_or_value dv = dv_from_value (node->loc);
4096 variable_def **slot = NULL;
4098 if (shared_hash_shared (dst->vars))
4099 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4100 if (!slot)
4101 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4102 INSERT);
4103 if (!*slot)
4105 variable var = (variable) pool_alloc (onepart_pool
4106 (ONEPART_VALUE));
4107 var->dv = dv;
4108 var->refcount = 1;
4109 var->n_var_parts = 1;
4110 var->onepart = ONEPART_VALUE;
4111 var->in_changed_variables = false;
4112 var->var_part[0].loc_chain = NULL;
4113 var->var_part[0].cur_loc = NULL;
4114 VAR_LOC_1PAUX (var) = NULL;
4115 *slot = var;
4118 VALUE_RECURSED_INTO (node->loc) = true;
4122 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4123 gcc_assert (*dstslot == dvar);
4124 canonicalize_values_star (dstslot, dst);
4125 gcc_checking_assert (dstslot
4126 == shared_hash_find_slot_noinsert_1 (dst->vars,
4127 dv, dvhash));
4128 dvar = *dstslot;
4132 if (!onepart_variable_different_p (dvar, s2var))
4134 variable_htab_free (dvar);
4135 *dstslot = dvar = s2var;
4136 dvar->refcount++;
4138 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4140 variable_htab_free (dvar);
4141 *dstslot = dvar = s1var;
4142 dvar->refcount++;
4143 dst_can_be_shared = false;
4145 else
4146 dst_can_be_shared = false;
4148 return 1;
4151 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4152 multi-part variable. Unions of multi-part variables and
4153 intersections of one-part ones will be handled in
4154 variable_merge_over_cur(). */
4156 static int
4157 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4159 dataflow_set *dst = dsm->dst;
4160 decl_or_value dv = s2var->dv;
4162 if (!s2var->onepart)
4164 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4165 *dstp = s2var;
4166 s2var->refcount++;
4167 return 1;
4170 dsm->src_onepart_cnt++;
4171 return 1;
4174 /* Combine dataflow set information from SRC2 into DST, using PDST
4175 to carry over information across passes. */
4177 static void
4178 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4180 dataflow_set cur = *dst;
4181 dataflow_set *src1 = &cur;
4182 struct dfset_merge dsm;
4183 int i;
4184 size_t src1_elems, src2_elems;
4185 variable_iterator_type hi;
4186 variable var;
4188 src1_elems = shared_hash_htab (src1->vars).elements ();
4189 src2_elems = shared_hash_htab (src2->vars).elements ();
4190 dataflow_set_init (dst);
4191 dst->stack_adjust = cur.stack_adjust;
4192 shared_hash_destroy (dst->vars);
4193 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4194 dst->vars->refcount = 1;
4195 dst->vars->htab.create (MAX (src1_elems, src2_elems));
4197 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4198 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4200 dsm.dst = dst;
4201 dsm.src = src2;
4202 dsm.cur = src1;
4203 dsm.src_onepart_cnt = 0;
4205 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.src->vars),
4206 var, variable, hi)
4207 variable_merge_over_src (var, &dsm);
4208 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.cur->vars),
4209 var, variable, hi)
4210 variable_merge_over_cur (var, &dsm);
4212 if (dsm.src_onepart_cnt)
4213 dst_can_be_shared = false;
4215 dataflow_set_destroy (src1);
4218 /* Mark register equivalences. */
4220 static void
4221 dataflow_set_equiv_regs (dataflow_set *set)
4223 int i;
4224 attrs list, *listp;
4226 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4228 rtx canon[NUM_MACHINE_MODES];
4230 /* If the list is empty or one entry, no need to canonicalize
4231 anything. */
4232 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4233 continue;
4235 memset (canon, 0, sizeof (canon));
4237 for (list = set->regs[i]; list; list = list->next)
4238 if (list->offset == 0 && dv_is_value_p (list->dv))
4240 rtx val = dv_as_value (list->dv);
4241 rtx *cvalp = &canon[(int)GET_MODE (val)];
4242 rtx cval = *cvalp;
4244 if (canon_value_cmp (val, cval))
4245 *cvalp = val;
4248 for (list = set->regs[i]; list; list = list->next)
4249 if (list->offset == 0 && dv_onepart_p (list->dv))
4251 rtx cval = canon[(int)GET_MODE (list->loc)];
4253 if (!cval)
4254 continue;
4256 if (dv_is_value_p (list->dv))
4258 rtx val = dv_as_value (list->dv);
4260 if (val == cval)
4261 continue;
4263 VALUE_RECURSED_INTO (val) = true;
4264 set_variable_part (set, val, dv_from_value (cval), 0,
4265 VAR_INIT_STATUS_INITIALIZED,
4266 NULL, NO_INSERT);
4269 VALUE_RECURSED_INTO (cval) = true;
4270 set_variable_part (set, cval, list->dv, 0,
4271 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4274 for (listp = &set->regs[i]; (list = *listp);
4275 listp = list ? &list->next : listp)
4276 if (list->offset == 0 && dv_onepart_p (list->dv))
4278 rtx cval = canon[(int)GET_MODE (list->loc)];
4279 variable_def **slot;
4281 if (!cval)
4282 continue;
4284 if (dv_is_value_p (list->dv))
4286 rtx val = dv_as_value (list->dv);
4287 if (!VALUE_RECURSED_INTO (val))
4288 continue;
4291 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4292 canonicalize_values_star (slot, set);
4293 if (*listp != list)
4294 list = NULL;
4299 /* Remove any redundant values in the location list of VAR, which must
4300 be unshared and 1-part. */
4302 static void
4303 remove_duplicate_values (variable var)
4305 location_chain node, *nodep;
4307 gcc_assert (var->onepart);
4308 gcc_assert (var->n_var_parts == 1);
4309 gcc_assert (var->refcount == 1);
4311 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4313 if (GET_CODE (node->loc) == VALUE)
4315 if (VALUE_RECURSED_INTO (node->loc))
4317 /* Remove duplicate value node. */
4318 *nodep = node->next;
4319 pool_free (loc_chain_pool, node);
4320 continue;
4322 else
4323 VALUE_RECURSED_INTO (node->loc) = true;
4325 nodep = &node->next;
4328 for (node = var->var_part[0].loc_chain; node; node = node->next)
4329 if (GET_CODE (node->loc) == VALUE)
4331 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4332 VALUE_RECURSED_INTO (node->loc) = false;
4337 /* Hash table iteration argument passed to variable_post_merge. */
4338 struct dfset_post_merge
4340 /* The new input set for the current block. */
4341 dataflow_set *set;
4342 /* Pointer to the permanent input set for the current block, or
4343 NULL. */
4344 dataflow_set **permp;
4347 /* Create values for incoming expressions associated with one-part
4348 variables that don't have value numbers for them. */
4351 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4353 dataflow_set *set = dfpm->set;
4354 variable var = *slot;
4355 location_chain node;
4357 if (!var->onepart || !var->n_var_parts)
4358 return 1;
4360 gcc_assert (var->n_var_parts == 1);
4362 if (dv_is_decl_p (var->dv))
4364 bool check_dupes = false;
4366 restart:
4367 for (node = var->var_part[0].loc_chain; node; node = node->next)
4369 if (GET_CODE (node->loc) == VALUE)
4370 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4371 else if (GET_CODE (node->loc) == REG)
4373 attrs att, *attp, *curp = NULL;
4375 if (var->refcount != 1)
4377 slot = unshare_variable (set, slot, var,
4378 VAR_INIT_STATUS_INITIALIZED);
4379 var = *slot;
4380 goto restart;
4383 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4384 attp = &att->next)
4385 if (att->offset == 0
4386 && GET_MODE (att->loc) == GET_MODE (node->loc))
4388 if (dv_is_value_p (att->dv))
4390 rtx cval = dv_as_value (att->dv);
4391 node->loc = cval;
4392 check_dupes = true;
4393 break;
4395 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4396 curp = attp;
4399 if (!curp)
4401 curp = attp;
4402 while (*curp)
4403 if ((*curp)->offset == 0
4404 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4405 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4406 break;
4407 else
4408 curp = &(*curp)->next;
4409 gcc_assert (*curp);
4412 if (!att)
4414 decl_or_value cdv;
4415 rtx cval;
4417 if (!*dfpm->permp)
4419 *dfpm->permp = XNEW (dataflow_set);
4420 dataflow_set_init (*dfpm->permp);
4423 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4424 att; att = att->next)
4425 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4427 gcc_assert (att->offset == 0
4428 && dv_is_value_p (att->dv));
4429 val_reset (set, att->dv);
4430 break;
4433 if (att)
4435 cdv = att->dv;
4436 cval = dv_as_value (cdv);
4438 else
4440 /* Create a unique value to hold this register,
4441 that ought to be found and reused in
4442 subsequent rounds. */
4443 cselib_val *v;
4444 gcc_assert (!cselib_lookup (node->loc,
4445 GET_MODE (node->loc), 0,
4446 VOIDmode));
4447 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4448 VOIDmode);
4449 cselib_preserve_value (v);
4450 cselib_invalidate_rtx (node->loc);
4451 cval = v->val_rtx;
4452 cdv = dv_from_value (cval);
4453 if (dump_file)
4454 fprintf (dump_file,
4455 "Created new value %u:%u for reg %i\n",
4456 v->uid, v->hash, REGNO (node->loc));
4459 var_reg_decl_set (*dfpm->permp, node->loc,
4460 VAR_INIT_STATUS_INITIALIZED,
4461 cdv, 0, NULL, INSERT);
4463 node->loc = cval;
4464 check_dupes = true;
4467 /* Remove attribute referring to the decl, which now
4468 uses the value for the register, already existing or
4469 to be added when we bring perm in. */
4470 att = *curp;
4471 *curp = att->next;
4472 pool_free (attrs_pool, att);
4476 if (check_dupes)
4477 remove_duplicate_values (var);
4480 return 1;
4483 /* Reset values in the permanent set that are not associated with the
4484 chosen expression. */
4487 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4489 dataflow_set *set = dfpm->set;
4490 variable pvar = *pslot, var;
4491 location_chain pnode;
4492 decl_or_value dv;
4493 attrs att;
4495 gcc_assert (dv_is_value_p (pvar->dv)
4496 && pvar->n_var_parts == 1);
4497 pnode = pvar->var_part[0].loc_chain;
4498 gcc_assert (pnode
4499 && !pnode->next
4500 && REG_P (pnode->loc));
4502 dv = pvar->dv;
4504 var = shared_hash_find (set->vars, dv);
4505 if (var)
4507 /* Although variable_post_merge_new_vals may have made decls
4508 non-star-canonical, values that pre-existed in canonical form
4509 remain canonical, and newly-created values reference a single
4510 REG, so they are canonical as well. Since VAR has the
4511 location list for a VALUE, using find_loc_in_1pdv for it is
4512 fine, since VALUEs don't map back to DECLs. */
4513 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4514 return 1;
4515 val_reset (set, dv);
4518 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4519 if (att->offset == 0
4520 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4521 && dv_is_value_p (att->dv))
4522 break;
4524 /* If there is a value associated with this register already, create
4525 an equivalence. */
4526 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4528 rtx cval = dv_as_value (att->dv);
4529 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4530 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4531 NULL, INSERT);
4533 else if (!att)
4535 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4536 dv, 0, pnode->loc);
4537 variable_union (pvar, set);
4540 return 1;
4543 /* Just checking stuff and registering register attributes for
4544 now. */
4546 static void
4547 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4549 struct dfset_post_merge dfpm;
4551 dfpm.set = set;
4552 dfpm.permp = permp;
4554 shared_hash_htab (set->vars)
4555 .traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4556 if (*permp)
4557 shared_hash_htab ((*permp)->vars)
4558 .traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4559 shared_hash_htab (set->vars)
4560 .traverse <dataflow_set *, canonicalize_values_star> (set);
4561 shared_hash_htab (set->vars)
4562 .traverse <dataflow_set *, canonicalize_vars_star> (set);
4565 /* Return a node whose loc is a MEM that refers to EXPR in the
4566 location list of a one-part variable or value VAR, or in that of
4567 any values recursively mentioned in the location lists. */
4569 static location_chain
4570 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type vars)
4572 location_chain node;
4573 decl_or_value dv;
4574 variable var;
4575 location_chain where = NULL;
4577 if (!val)
4578 return NULL;
4580 gcc_assert (GET_CODE (val) == VALUE
4581 && !VALUE_RECURSED_INTO (val));
4583 dv = dv_from_value (val);
4584 var = vars.find_with_hash (dv, dv_htab_hash (dv));
4586 if (!var)
4587 return NULL;
4589 gcc_assert (var->onepart);
4591 if (!var->n_var_parts)
4592 return NULL;
4594 VALUE_RECURSED_INTO (val) = true;
4596 for (node = var->var_part[0].loc_chain; node; node = node->next)
4597 if (MEM_P (node->loc)
4598 && MEM_EXPR (node->loc) == expr
4599 && INT_MEM_OFFSET (node->loc) == 0)
4601 where = node;
4602 break;
4604 else if (GET_CODE (node->loc) == VALUE
4605 && !VALUE_RECURSED_INTO (node->loc)
4606 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4607 break;
4609 VALUE_RECURSED_INTO (val) = false;
4611 return where;
4614 /* Return TRUE if the value of MEM may vary across a call. */
4616 static bool
4617 mem_dies_at_call (rtx mem)
4619 tree expr = MEM_EXPR (mem);
4620 tree decl;
4622 if (!expr)
4623 return true;
4625 decl = get_base_address (expr);
4627 if (!decl)
4628 return true;
4630 if (!DECL_P (decl))
4631 return true;
4633 return (may_be_aliased (decl)
4634 || (!TREE_READONLY (decl) && is_global_var (decl)));
4637 /* Remove all MEMs from the location list of a hash table entry for a
4638 one-part variable, except those whose MEM attributes map back to
4639 the variable itself, directly or within a VALUE. */
4642 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4644 variable var = *slot;
4646 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4648 tree decl = dv_as_decl (var->dv);
4649 location_chain loc, *locp;
4650 bool changed = false;
4652 if (!var->n_var_parts)
4653 return 1;
4655 gcc_assert (var->n_var_parts == 1);
4657 if (shared_var_p (var, set->vars))
4659 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4661 /* We want to remove dying MEMs that doesn't refer to DECL. */
4662 if (GET_CODE (loc->loc) == MEM
4663 && (MEM_EXPR (loc->loc) != decl
4664 || INT_MEM_OFFSET (loc->loc) != 0)
4665 && !mem_dies_at_call (loc->loc))
4666 break;
4667 /* We want to move here MEMs that do refer to DECL. */
4668 else if (GET_CODE (loc->loc) == VALUE
4669 && find_mem_expr_in_1pdv (decl, loc->loc,
4670 shared_hash_htab (set->vars)))
4671 break;
4674 if (!loc)
4675 return 1;
4677 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4678 var = *slot;
4679 gcc_assert (var->n_var_parts == 1);
4682 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4683 loc; loc = *locp)
4685 rtx old_loc = loc->loc;
4686 if (GET_CODE (old_loc) == VALUE)
4688 location_chain mem_node
4689 = find_mem_expr_in_1pdv (decl, loc->loc,
4690 shared_hash_htab (set->vars));
4692 /* ??? This picks up only one out of multiple MEMs that
4693 refer to the same variable. Do we ever need to be
4694 concerned about dealing with more than one, or, given
4695 that they should all map to the same variable
4696 location, their addresses will have been merged and
4697 they will be regarded as equivalent? */
4698 if (mem_node)
4700 loc->loc = mem_node->loc;
4701 loc->set_src = mem_node->set_src;
4702 loc->init = MIN (loc->init, mem_node->init);
4706 if (GET_CODE (loc->loc) != MEM
4707 || (MEM_EXPR (loc->loc) == decl
4708 && INT_MEM_OFFSET (loc->loc) == 0)
4709 || !mem_dies_at_call (loc->loc))
4711 if (old_loc != loc->loc && emit_notes)
4713 if (old_loc == var->var_part[0].cur_loc)
4715 changed = true;
4716 var->var_part[0].cur_loc = NULL;
4719 locp = &loc->next;
4720 continue;
4723 if (emit_notes)
4725 if (old_loc == var->var_part[0].cur_loc)
4727 changed = true;
4728 var->var_part[0].cur_loc = NULL;
4731 *locp = loc->next;
4732 pool_free (loc_chain_pool, loc);
4735 if (!var->var_part[0].loc_chain)
4737 var->n_var_parts--;
4738 changed = true;
4740 if (changed)
4741 variable_was_changed (var, set);
4744 return 1;
4747 /* Remove all MEMs from the location list of a hash table entry for a
4748 value. */
4751 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4753 variable var = *slot;
4755 if (var->onepart == ONEPART_VALUE)
4757 location_chain loc, *locp;
4758 bool changed = false;
4759 rtx cur_loc;
4761 gcc_assert (var->n_var_parts == 1);
4763 if (shared_var_p (var, set->vars))
4765 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4766 if (GET_CODE (loc->loc) == MEM
4767 && mem_dies_at_call (loc->loc))
4768 break;
4770 if (!loc)
4771 return 1;
4773 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4774 var = *slot;
4775 gcc_assert (var->n_var_parts == 1);
4778 if (VAR_LOC_1PAUX (var))
4779 cur_loc = VAR_LOC_FROM (var);
4780 else
4781 cur_loc = var->var_part[0].cur_loc;
4783 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4784 loc; loc = *locp)
4786 if (GET_CODE (loc->loc) != MEM
4787 || !mem_dies_at_call (loc->loc))
4789 locp = &loc->next;
4790 continue;
4793 *locp = loc->next;
4794 /* If we have deleted the location which was last emitted
4795 we have to emit new location so add the variable to set
4796 of changed variables. */
4797 if (cur_loc == loc->loc)
4799 changed = true;
4800 var->var_part[0].cur_loc = NULL;
4801 if (VAR_LOC_1PAUX (var))
4802 VAR_LOC_FROM (var) = NULL;
4804 pool_free (loc_chain_pool, loc);
4807 if (!var->var_part[0].loc_chain)
4809 var->n_var_parts--;
4810 changed = true;
4812 if (changed)
4813 variable_was_changed (var, set);
4816 return 1;
4819 /* Remove all variable-location information about call-clobbered
4820 registers, as well as associations between MEMs and VALUEs. */
4822 static void
4823 dataflow_set_clear_at_call (dataflow_set *set)
4825 unsigned int r;
4826 hard_reg_set_iterator hrsi;
4828 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4829 var_regno_delete (set, r);
4831 if (MAY_HAVE_DEBUG_INSNS)
4833 set->traversed_vars = set->vars;
4834 shared_hash_htab (set->vars)
4835 .traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4836 set->traversed_vars = set->vars;
4837 shared_hash_htab (set->vars)
4838 .traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4839 set->traversed_vars = NULL;
4843 static bool
4844 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4846 location_chain lc1, lc2;
4848 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4850 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4852 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4854 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4855 break;
4857 if (rtx_equal_p (lc1->loc, lc2->loc))
4858 break;
4860 if (!lc2)
4861 return true;
4863 return false;
4866 /* Return true if one-part variables VAR1 and VAR2 are different.
4867 They must be in canonical order. */
4869 static bool
4870 onepart_variable_different_p (variable var1, variable var2)
4872 location_chain lc1, lc2;
4874 if (var1 == var2)
4875 return false;
4877 gcc_assert (var1->n_var_parts == 1
4878 && var2->n_var_parts == 1);
4880 lc1 = var1->var_part[0].loc_chain;
4881 lc2 = var2->var_part[0].loc_chain;
4883 gcc_assert (lc1 && lc2);
4885 while (lc1 && lc2)
4887 if (loc_cmp (lc1->loc, lc2->loc))
4888 return true;
4889 lc1 = lc1->next;
4890 lc2 = lc2->next;
4893 return lc1 != lc2;
4896 /* Return true if variables VAR1 and VAR2 are different. */
4898 static bool
4899 variable_different_p (variable var1, variable var2)
4901 int i;
4903 if (var1 == var2)
4904 return false;
4906 if (var1->onepart != var2->onepart)
4907 return true;
4909 if (var1->n_var_parts != var2->n_var_parts)
4910 return true;
4912 if (var1->onepart && var1->n_var_parts)
4914 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4915 && var1->n_var_parts == 1);
4916 /* One-part values have locations in a canonical order. */
4917 return onepart_variable_different_p (var1, var2);
4920 for (i = 0; i < var1->n_var_parts; i++)
4922 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4923 return true;
4924 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4925 return true;
4926 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4927 return true;
4929 return false;
4932 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4934 static bool
4935 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4937 variable_iterator_type hi;
4938 variable var1;
4940 if (old_set->vars == new_set->vars)
4941 return false;
4943 if (shared_hash_htab (old_set->vars).elements ()
4944 != shared_hash_htab (new_set->vars).elements ())
4945 return true;
4947 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set->vars),
4948 var1, variable, hi)
4950 variable_table_type htab = shared_hash_htab (new_set->vars);
4951 variable var2 = htab.find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4952 if (!var2)
4954 if (dump_file && (dump_flags & TDF_DETAILS))
4956 fprintf (dump_file, "dataflow difference found: removal of:\n");
4957 dump_var (var1);
4959 return true;
4962 if (variable_different_p (var1, var2))
4964 if (dump_file && (dump_flags & TDF_DETAILS))
4966 fprintf (dump_file, "dataflow difference found: "
4967 "old and new follow:\n");
4968 dump_var (var1);
4969 dump_var (var2);
4971 return true;
4975 /* No need to traverse the second hashtab, if both have the same number
4976 of elements and the second one had all entries found in the first one,
4977 then it can't have any extra entries. */
4978 return false;
4981 /* Free the contents of dataflow set SET. */
4983 static void
4984 dataflow_set_destroy (dataflow_set *set)
4986 int i;
4988 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4989 attrs_list_clear (&set->regs[i]);
4991 shared_hash_destroy (set->vars);
4992 set->vars = NULL;
4995 /* Return true if RTL X contains a SYMBOL_REF. */
4997 static bool
4998 contains_symbol_ref (rtx x)
5000 const char *fmt;
5001 RTX_CODE code;
5002 int i;
5004 if (!x)
5005 return false;
5007 code = GET_CODE (x);
5008 if (code == SYMBOL_REF)
5009 return true;
5011 fmt = GET_RTX_FORMAT (code);
5012 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5014 if (fmt[i] == 'e')
5016 if (contains_symbol_ref (XEXP (x, i)))
5017 return true;
5019 else if (fmt[i] == 'E')
5021 int j;
5022 for (j = 0; j < XVECLEN (x, i); j++)
5023 if (contains_symbol_ref (XVECEXP (x, i, j)))
5024 return true;
5028 return false;
5031 /* Shall EXPR be tracked? */
5033 static bool
5034 track_expr_p (tree expr, bool need_rtl)
5036 rtx decl_rtl;
5037 tree realdecl;
5039 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5040 return DECL_RTL_SET_P (expr);
5042 /* If EXPR is not a parameter or a variable do not track it. */
5043 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5044 return 0;
5046 /* It also must have a name... */
5047 if (!DECL_NAME (expr) && need_rtl)
5048 return 0;
5050 /* ... and a RTL assigned to it. */
5051 decl_rtl = DECL_RTL_IF_SET (expr);
5052 if (!decl_rtl && need_rtl)
5053 return 0;
5055 /* If this expression is really a debug alias of some other declaration, we
5056 don't need to track this expression if the ultimate declaration is
5057 ignored. */
5058 realdecl = expr;
5059 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5061 realdecl = DECL_DEBUG_EXPR (realdecl);
5062 if (!DECL_P (realdecl))
5064 if (handled_component_p (realdecl)
5065 || (TREE_CODE (realdecl) == MEM_REF
5066 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5068 HOST_WIDE_INT bitsize, bitpos, maxsize;
5069 tree innerdecl
5070 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5071 &maxsize);
5072 if (!DECL_P (innerdecl)
5073 || DECL_IGNORED_P (innerdecl)
5074 /* Do not track declarations for parts of tracked parameters
5075 since we want to track them as a whole instead. */
5076 || (TREE_CODE (innerdecl) == PARM_DECL
5077 && DECL_MODE (innerdecl) != BLKmode
5078 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5079 || TREE_STATIC (innerdecl)
5080 || bitsize <= 0
5081 || bitpos + bitsize > 256
5082 || bitsize != maxsize)
5083 return 0;
5084 else
5085 realdecl = expr;
5087 else
5088 return 0;
5092 /* Do not track EXPR if REALDECL it should be ignored for debugging
5093 purposes. */
5094 if (DECL_IGNORED_P (realdecl))
5095 return 0;
5097 /* Do not track global variables until we are able to emit correct location
5098 list for them. */
5099 if (TREE_STATIC (realdecl))
5100 return 0;
5102 /* When the EXPR is a DECL for alias of some variable (see example)
5103 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5104 DECL_RTL contains SYMBOL_REF.
5106 Example:
5107 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5108 char **_dl_argv;
5110 if (decl_rtl && MEM_P (decl_rtl)
5111 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5112 return 0;
5114 /* If RTX is a memory it should not be very large (because it would be
5115 an array or struct). */
5116 if (decl_rtl && MEM_P (decl_rtl))
5118 /* Do not track structures and arrays. */
5119 if (GET_MODE (decl_rtl) == BLKmode
5120 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5121 return 0;
5122 if (MEM_SIZE_KNOWN_P (decl_rtl)
5123 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5124 return 0;
5127 DECL_CHANGED (expr) = 0;
5128 DECL_CHANGED (realdecl) = 0;
5129 return 1;
5132 /* Determine whether a given LOC refers to the same variable part as
5133 EXPR+OFFSET. */
5135 static bool
5136 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5138 tree expr2;
5139 HOST_WIDE_INT offset2;
5141 if (! DECL_P (expr))
5142 return false;
5144 if (REG_P (loc))
5146 expr2 = REG_EXPR (loc);
5147 offset2 = REG_OFFSET (loc);
5149 else if (MEM_P (loc))
5151 expr2 = MEM_EXPR (loc);
5152 offset2 = INT_MEM_OFFSET (loc);
5154 else
5155 return false;
5157 if (! expr2 || ! DECL_P (expr2))
5158 return false;
5160 expr = var_debug_decl (expr);
5161 expr2 = var_debug_decl (expr2);
5163 return (expr == expr2 && offset == offset2);
5166 /* LOC is a REG or MEM that we would like to track if possible.
5167 If EXPR is null, we don't know what expression LOC refers to,
5168 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5169 LOC is an lvalue register.
5171 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5172 is something we can track. When returning true, store the mode of
5173 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5174 from EXPR in *OFFSET_OUT (if nonnull). */
5176 static bool
5177 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5178 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5180 enum machine_mode mode;
5182 if (expr == NULL || !track_expr_p (expr, true))
5183 return false;
5185 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5186 whole subreg, but only the old inner part is really relevant. */
5187 mode = GET_MODE (loc);
5188 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5190 enum machine_mode pseudo_mode;
5192 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5193 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5195 offset += byte_lowpart_offset (pseudo_mode, mode);
5196 mode = pseudo_mode;
5200 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5201 Do the same if we are storing to a register and EXPR occupies
5202 the whole of register LOC; in that case, the whole of EXPR is
5203 being changed. We exclude complex modes from the second case
5204 because the real and imaginary parts are represented as separate
5205 pseudo registers, even if the whole complex value fits into one
5206 hard register. */
5207 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5208 || (store_reg_p
5209 && !COMPLEX_MODE_P (DECL_MODE (expr))
5210 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5211 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5213 mode = DECL_MODE (expr);
5214 offset = 0;
5217 if (offset < 0 || offset >= MAX_VAR_PARTS)
5218 return false;
5220 if (mode_out)
5221 *mode_out = mode;
5222 if (offset_out)
5223 *offset_out = offset;
5224 return true;
5227 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5228 want to track. When returning nonnull, make sure that the attributes
5229 on the returned value are updated. */
5231 static rtx
5232 var_lowpart (enum machine_mode mode, rtx loc)
5234 unsigned int offset, reg_offset, regno;
5236 if (GET_MODE (loc) == mode)
5237 return loc;
5239 if (!REG_P (loc) && !MEM_P (loc))
5240 return NULL;
5242 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5244 if (MEM_P (loc))
5245 return adjust_address_nv (loc, mode, offset);
5247 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5248 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5249 reg_offset, mode);
5250 return gen_rtx_REG_offset (loc, mode, regno, offset);
5253 /* Carry information about uses and stores while walking rtx. */
5255 struct count_use_info
5257 /* The insn where the RTX is. */
5258 rtx insn;
5260 /* The basic block where insn is. */
5261 basic_block bb;
5263 /* The array of n_sets sets in the insn, as determined by cselib. */
5264 struct cselib_set *sets;
5265 int n_sets;
5267 /* True if we're counting stores, false otherwise. */
5268 bool store_p;
5271 /* Find a VALUE corresponding to X. */
5273 static inline cselib_val *
5274 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5276 int i;
5278 if (cui->sets)
5280 /* This is called after uses are set up and before stores are
5281 processed by cselib, so it's safe to look up srcs, but not
5282 dsts. So we look up expressions that appear in srcs or in
5283 dest expressions, but we search the sets array for dests of
5284 stores. */
5285 if (cui->store_p)
5287 /* Some targets represent memset and memcpy patterns
5288 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5289 (set (mem:BLK ...) (const_int ...)) or
5290 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5291 in that case, otherwise we end up with mode mismatches. */
5292 if (mode == BLKmode && MEM_P (x))
5293 return NULL;
5294 for (i = 0; i < cui->n_sets; i++)
5295 if (cui->sets[i].dest == x)
5296 return cui->sets[i].src_elt;
5298 else
5299 return cselib_lookup (x, mode, 0, VOIDmode);
5302 return NULL;
5305 /* Replace all registers and addresses in an expression with VALUE
5306 expressions that map back to them, unless the expression is a
5307 register. If no mapping is or can be performed, returns NULL. */
5309 static rtx
5310 replace_expr_with_values (rtx loc)
5312 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5313 return NULL;
5314 else if (MEM_P (loc))
5316 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5317 get_address_mode (loc), 0,
5318 GET_MODE (loc));
5319 if (addr)
5320 return replace_equiv_address_nv (loc, addr->val_rtx);
5321 else
5322 return NULL;
5324 else
5325 return cselib_subst_to_values (loc, VOIDmode);
5328 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5329 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5330 RTX. */
5332 static int
5333 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5335 rtx loc = *x;
5337 return GET_CODE (loc) == DEBUG_EXPR;
5340 /* Determine what kind of micro operation to choose for a USE. Return
5341 MO_CLOBBER if no micro operation is to be generated. */
5343 static enum micro_operation_type
5344 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5346 tree expr;
5348 if (cui && cui->sets)
5350 if (GET_CODE (loc) == VAR_LOCATION)
5352 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5354 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5355 if (! VAR_LOC_UNKNOWN_P (ploc))
5357 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5358 VOIDmode);
5360 /* ??? flag_float_store and volatile mems are never
5361 given values, but we could in theory use them for
5362 locations. */
5363 gcc_assert (val || 1);
5365 return MO_VAL_LOC;
5367 else
5368 return MO_CLOBBER;
5371 if (REG_P (loc) || MEM_P (loc))
5373 if (modep)
5374 *modep = GET_MODE (loc);
5375 if (cui->store_p)
5377 if (REG_P (loc)
5378 || (find_use_val (loc, GET_MODE (loc), cui)
5379 && cselib_lookup (XEXP (loc, 0),
5380 get_address_mode (loc), 0,
5381 GET_MODE (loc))))
5382 return MO_VAL_SET;
5384 else
5386 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5388 if (val && !cselib_preserved_value_p (val))
5389 return MO_VAL_USE;
5394 if (REG_P (loc))
5396 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5398 if (loc == cfa_base_rtx)
5399 return MO_CLOBBER;
5400 expr = REG_EXPR (loc);
5402 if (!expr)
5403 return MO_USE_NO_VAR;
5404 else if (target_for_debug_bind (var_debug_decl (expr)))
5405 return MO_CLOBBER;
5406 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5407 false, modep, NULL))
5408 return MO_USE;
5409 else
5410 return MO_USE_NO_VAR;
5412 else if (MEM_P (loc))
5414 expr = MEM_EXPR (loc);
5416 if (!expr)
5417 return MO_CLOBBER;
5418 else if (target_for_debug_bind (var_debug_decl (expr)))
5419 return MO_CLOBBER;
5420 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5421 false, modep, NULL)
5422 /* Multi-part variables shouldn't refer to one-part
5423 variable names such as VALUEs (never happens) or
5424 DEBUG_EXPRs (only happens in the presence of debug
5425 insns). */
5426 && (!MAY_HAVE_DEBUG_INSNS
5427 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5428 return MO_USE;
5429 else
5430 return MO_CLOBBER;
5433 return MO_CLOBBER;
5436 /* Log to OUT information about micro-operation MOPT involving X in
5437 INSN of BB. */
5439 static inline void
5440 log_op_type (rtx x, basic_block bb, rtx insn,
5441 enum micro_operation_type mopt, FILE *out)
5443 fprintf (out, "bb %i op %i insn %i %s ",
5444 bb->index, VTI (bb)->mos.length (),
5445 INSN_UID (insn), micro_operation_type_name[mopt]);
5446 print_inline_rtx (out, x, 2);
5447 fputc ('\n', out);
5450 /* Tell whether the CONCAT used to holds a VALUE and its location
5451 needs value resolution, i.e., an attempt of mapping the location
5452 back to other incoming values. */
5453 #define VAL_NEEDS_RESOLUTION(x) \
5454 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5455 /* Whether the location in the CONCAT is a tracked expression, that
5456 should also be handled like a MO_USE. */
5457 #define VAL_HOLDS_TRACK_EXPR(x) \
5458 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5459 /* Whether the location in the CONCAT should be handled like a MO_COPY
5460 as well. */
5461 #define VAL_EXPR_IS_COPIED(x) \
5462 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5463 /* Whether the location in the CONCAT should be handled like a
5464 MO_CLOBBER as well. */
5465 #define VAL_EXPR_IS_CLOBBERED(x) \
5466 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5468 /* All preserved VALUEs. */
5469 static vec<rtx> preserved_values;
5471 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5473 static void
5474 preserve_value (cselib_val *val)
5476 cselib_preserve_value (val);
5477 preserved_values.safe_push (val->val_rtx);
5480 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5481 any rtxes not suitable for CONST use not replaced by VALUEs
5482 are discovered. */
5484 static int
5485 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5487 if (*x == NULL_RTX)
5488 return 0;
5490 switch (GET_CODE (*x))
5492 case REG:
5493 case DEBUG_EXPR:
5494 case PC:
5495 case SCRATCH:
5496 case CC0:
5497 case ASM_INPUT:
5498 case ASM_OPERANDS:
5499 return 1;
5500 case MEM:
5501 return !MEM_READONLY_P (*x);
5502 default:
5503 return 0;
5507 /* Add uses (register and memory references) LOC which will be tracked
5508 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5510 static int
5511 add_uses (rtx *ploc, void *data)
5513 rtx loc = *ploc;
5514 enum machine_mode mode = VOIDmode;
5515 struct count_use_info *cui = (struct count_use_info *)data;
5516 enum micro_operation_type type = use_type (loc, cui, &mode);
5518 if (type != MO_CLOBBER)
5520 basic_block bb = cui->bb;
5521 micro_operation mo;
5523 mo.type = type;
5524 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5525 mo.insn = cui->insn;
5527 if (type == MO_VAL_LOC)
5529 rtx oloc = loc;
5530 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5531 cselib_val *val;
5533 gcc_assert (cui->sets);
5535 if (MEM_P (vloc)
5536 && !REG_P (XEXP (vloc, 0))
5537 && !MEM_P (XEXP (vloc, 0)))
5539 rtx mloc = vloc;
5540 enum machine_mode address_mode = get_address_mode (mloc);
5541 cselib_val *val
5542 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5543 GET_MODE (mloc));
5545 if (val && !cselib_preserved_value_p (val))
5546 preserve_value (val);
5549 if (CONSTANT_P (vloc)
5550 && (GET_CODE (vloc) != CONST
5551 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5552 /* For constants don't look up any value. */;
5553 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5554 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5556 enum machine_mode mode2;
5557 enum micro_operation_type type2;
5558 rtx nloc = NULL;
5559 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5561 if (resolvable)
5562 nloc = replace_expr_with_values (vloc);
5564 if (nloc)
5566 oloc = shallow_copy_rtx (oloc);
5567 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5570 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5572 type2 = use_type (vloc, 0, &mode2);
5574 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5575 || type2 == MO_CLOBBER);
5577 if (type2 == MO_CLOBBER
5578 && !cselib_preserved_value_p (val))
5580 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5581 preserve_value (val);
5584 else if (!VAR_LOC_UNKNOWN_P (vloc))
5586 oloc = shallow_copy_rtx (oloc);
5587 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5590 mo.u.loc = oloc;
5592 else if (type == MO_VAL_USE)
5594 enum machine_mode mode2 = VOIDmode;
5595 enum micro_operation_type type2;
5596 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5597 rtx vloc, oloc = loc, nloc;
5599 gcc_assert (cui->sets);
5601 if (MEM_P (oloc)
5602 && !REG_P (XEXP (oloc, 0))
5603 && !MEM_P (XEXP (oloc, 0)))
5605 rtx mloc = oloc;
5606 enum machine_mode address_mode = get_address_mode (mloc);
5607 cselib_val *val
5608 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5609 GET_MODE (mloc));
5611 if (val && !cselib_preserved_value_p (val))
5612 preserve_value (val);
5615 type2 = use_type (loc, 0, &mode2);
5617 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5618 || type2 == MO_CLOBBER);
5620 if (type2 == MO_USE)
5621 vloc = var_lowpart (mode2, loc);
5622 else
5623 vloc = oloc;
5625 /* The loc of a MO_VAL_USE may have two forms:
5627 (concat val src): val is at src, a value-based
5628 representation.
5630 (concat (concat val use) src): same as above, with use as
5631 the MO_USE tracked value, if it differs from src.
5635 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5636 nloc = replace_expr_with_values (loc);
5637 if (!nloc)
5638 nloc = oloc;
5640 if (vloc != nloc)
5641 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5642 else
5643 oloc = val->val_rtx;
5645 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5647 if (type2 == MO_USE)
5648 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5649 if (!cselib_preserved_value_p (val))
5651 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5652 preserve_value (val);
5655 else
5656 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5658 if (dump_file && (dump_flags & TDF_DETAILS))
5659 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5660 VTI (bb)->mos.safe_push (mo);
5663 return 0;
5666 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5668 static void
5669 add_uses_1 (rtx *x, void *cui)
5671 for_each_rtx (x, add_uses, cui);
5674 /* This is the value used during expansion of locations. We want it
5675 to be unbounded, so that variables expanded deep in a recursion
5676 nest are fully evaluated, so that their values are cached
5677 correctly. We avoid recursion cycles through other means, and we
5678 don't unshare RTL, so excess complexity is not a problem. */
5679 #define EXPR_DEPTH (INT_MAX)
5680 /* We use this to keep too-complex expressions from being emitted as
5681 location notes, and then to debug information. Users can trade
5682 compile time for ridiculously complex expressions, although they're
5683 seldom useful, and they may often have to be discarded as not
5684 representable anyway. */
5685 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5687 /* Attempt to reverse the EXPR operation in the debug info and record
5688 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5689 no longer live we can express its value as VAL - 6. */
5691 static void
5692 reverse_op (rtx val, const_rtx expr, rtx insn)
5694 rtx src, arg, ret;
5695 cselib_val *v;
5696 struct elt_loc_list *l;
5697 enum rtx_code code;
5698 int count;
5700 if (GET_CODE (expr) != SET)
5701 return;
5703 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5704 return;
5706 src = SET_SRC (expr);
5707 switch (GET_CODE (src))
5709 case PLUS:
5710 case MINUS:
5711 case XOR:
5712 case NOT:
5713 case NEG:
5714 if (!REG_P (XEXP (src, 0)))
5715 return;
5716 break;
5717 case SIGN_EXTEND:
5718 case ZERO_EXTEND:
5719 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5720 return;
5721 break;
5722 default:
5723 return;
5726 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5727 return;
5729 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5730 if (!v || !cselib_preserved_value_p (v))
5731 return;
5733 /* Use canonical V to avoid creating multiple redundant expressions
5734 for different VALUES equivalent to V. */
5735 v = canonical_cselib_val (v);
5737 /* Adding a reverse op isn't useful if V already has an always valid
5738 location. Ignore ENTRY_VALUE, while it is always constant, we should
5739 prefer non-ENTRY_VALUE locations whenever possible. */
5740 for (l = v->locs, count = 0; l; l = l->next, count++)
5741 if (CONSTANT_P (l->loc)
5742 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5743 return;
5744 /* Avoid creating too large locs lists. */
5745 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5746 return;
5748 switch (GET_CODE (src))
5750 case NOT:
5751 case NEG:
5752 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5753 return;
5754 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5755 break;
5756 case SIGN_EXTEND:
5757 case ZERO_EXTEND:
5758 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5759 break;
5760 case XOR:
5761 code = XOR;
5762 goto binary;
5763 case PLUS:
5764 code = MINUS;
5765 goto binary;
5766 case MINUS:
5767 code = PLUS;
5768 goto binary;
5769 binary:
5770 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5771 return;
5772 arg = XEXP (src, 1);
5773 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5775 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5776 if (arg == NULL_RTX)
5777 return;
5778 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5779 return;
5781 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5782 if (ret == val)
5783 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5784 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5785 breaks a lot of routines during var-tracking. */
5786 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5787 break;
5788 default:
5789 gcc_unreachable ();
5792 cselib_add_permanent_equiv (v, ret, insn);
5795 /* Add stores (register and memory references) LOC which will be tracked
5796 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5797 CUIP->insn is instruction which the LOC is part of. */
5799 static void
5800 add_stores (rtx loc, const_rtx expr, void *cuip)
5802 enum machine_mode mode = VOIDmode, mode2;
5803 struct count_use_info *cui = (struct count_use_info *)cuip;
5804 basic_block bb = cui->bb;
5805 micro_operation mo;
5806 rtx oloc = loc, nloc, src = NULL;
5807 enum micro_operation_type type = use_type (loc, cui, &mode);
5808 bool track_p = false;
5809 cselib_val *v;
5810 bool resolve, preserve;
5812 if (type == MO_CLOBBER)
5813 return;
5815 mode2 = mode;
5817 if (REG_P (loc))
5819 gcc_assert (loc != cfa_base_rtx);
5820 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5821 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5822 || GET_CODE (expr) == CLOBBER)
5824 mo.type = MO_CLOBBER;
5825 mo.u.loc = loc;
5826 if (GET_CODE (expr) == SET
5827 && SET_DEST (expr) == loc
5828 && !unsuitable_loc (SET_SRC (expr))
5829 && find_use_val (loc, mode, cui))
5831 gcc_checking_assert (type == MO_VAL_SET);
5832 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5835 else
5837 if (GET_CODE (expr) == SET
5838 && SET_DEST (expr) == loc
5839 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5840 src = var_lowpart (mode2, SET_SRC (expr));
5841 loc = var_lowpart (mode2, loc);
5843 if (src == NULL)
5845 mo.type = MO_SET;
5846 mo.u.loc = loc;
5848 else
5850 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5851 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5853 /* If this is an instruction copying (part of) a parameter
5854 passed by invisible reference to its register location,
5855 pretend it's a SET so that the initial memory location
5856 is discarded, as the parameter register can be reused
5857 for other purposes and we do not track locations based
5858 on generic registers. */
5859 if (MEM_P (src)
5860 && REG_EXPR (loc)
5861 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5862 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5863 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5864 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5865 != arg_pointer_rtx)
5866 mo.type = MO_SET;
5867 else
5868 mo.type = MO_COPY;
5870 else
5871 mo.type = MO_SET;
5872 mo.u.loc = xexpr;
5875 mo.insn = cui->insn;
5877 else if (MEM_P (loc)
5878 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5879 || cui->sets))
5881 if (MEM_P (loc) && type == MO_VAL_SET
5882 && !REG_P (XEXP (loc, 0))
5883 && !MEM_P (XEXP (loc, 0)))
5885 rtx mloc = loc;
5886 enum machine_mode address_mode = get_address_mode (mloc);
5887 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5888 address_mode, 0,
5889 GET_MODE (mloc));
5891 if (val && !cselib_preserved_value_p (val))
5892 preserve_value (val);
5895 if (GET_CODE (expr) == CLOBBER || !track_p)
5897 mo.type = MO_CLOBBER;
5898 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5900 else
5902 if (GET_CODE (expr) == SET
5903 && SET_DEST (expr) == loc
5904 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5905 src = var_lowpart (mode2, SET_SRC (expr));
5906 loc = var_lowpart (mode2, loc);
5908 if (src == NULL)
5910 mo.type = MO_SET;
5911 mo.u.loc = loc;
5913 else
5915 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5916 if (same_variable_part_p (SET_SRC (xexpr),
5917 MEM_EXPR (loc),
5918 INT_MEM_OFFSET (loc)))
5919 mo.type = MO_COPY;
5920 else
5921 mo.type = MO_SET;
5922 mo.u.loc = xexpr;
5925 mo.insn = cui->insn;
5927 else
5928 return;
5930 if (type != MO_VAL_SET)
5931 goto log_and_return;
5933 /* We cannot track values for multiple-part variables, so we track only
5934 locations for tracked parameters passed either by invisible reference
5935 or directly in multiple locations. */
5936 if (track_p
5937 && REG_P (loc)
5938 && REG_EXPR (loc)
5939 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5940 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5941 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5942 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5943 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5944 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5945 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5946 goto log_and_return;
5948 v = find_use_val (oloc, mode, cui);
5950 if (!v)
5951 goto log_and_return;
5953 resolve = preserve = !cselib_preserved_value_p (v);
5955 if (loc == stack_pointer_rtx
5956 && hard_frame_pointer_adjustment != -1
5957 && preserve)
5958 cselib_set_value_sp_based (v);
5960 nloc = replace_expr_with_values (oloc);
5961 if (nloc)
5962 oloc = nloc;
5964 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5966 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5968 gcc_assert (oval != v);
5969 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5971 if (oval && !cselib_preserved_value_p (oval))
5973 micro_operation moa;
5975 preserve_value (oval);
5977 moa.type = MO_VAL_USE;
5978 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5979 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5980 moa.insn = cui->insn;
5982 if (dump_file && (dump_flags & TDF_DETAILS))
5983 log_op_type (moa.u.loc, cui->bb, cui->insn,
5984 moa.type, dump_file);
5985 VTI (bb)->mos.safe_push (moa);
5988 resolve = false;
5990 else if (resolve && GET_CODE (mo.u.loc) == SET)
5992 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
5993 nloc = replace_expr_with_values (SET_SRC (expr));
5994 else
5995 nloc = NULL_RTX;
5997 /* Avoid the mode mismatch between oexpr and expr. */
5998 if (!nloc && mode != mode2)
6000 nloc = SET_SRC (expr);
6001 gcc_assert (oloc == SET_DEST (expr));
6004 if (nloc && nloc != SET_SRC (mo.u.loc))
6005 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6006 else
6008 if (oloc == SET_DEST (mo.u.loc))
6009 /* No point in duplicating. */
6010 oloc = mo.u.loc;
6011 if (!REG_P (SET_SRC (mo.u.loc)))
6012 resolve = false;
6015 else if (!resolve)
6017 if (GET_CODE (mo.u.loc) == SET
6018 && oloc == SET_DEST (mo.u.loc))
6019 /* No point in duplicating. */
6020 oloc = mo.u.loc;
6022 else
6023 resolve = false;
6025 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6027 if (mo.u.loc != oloc)
6028 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6030 /* The loc of a MO_VAL_SET may have various forms:
6032 (concat val dst): dst now holds val
6034 (concat val (set dst src)): dst now holds val, copied from src
6036 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6037 after replacing mems and non-top-level regs with values.
6039 (concat (concat val dstv) (set dst src)): dst now holds val,
6040 copied from src. dstv is a value-based representation of dst, if
6041 it differs from dst. If resolution is needed, src is a REG, and
6042 its mode is the same as that of val.
6044 (concat (concat val (set dstv srcv)) (set dst src)): src
6045 copied to dst, holding val. dstv and srcv are value-based
6046 representations of dst and src, respectively.
6050 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6051 reverse_op (v->val_rtx, expr, cui->insn);
6053 mo.u.loc = loc;
6055 if (track_p)
6056 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6057 if (preserve)
6059 VAL_NEEDS_RESOLUTION (loc) = resolve;
6060 preserve_value (v);
6062 if (mo.type == MO_CLOBBER)
6063 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6064 if (mo.type == MO_COPY)
6065 VAL_EXPR_IS_COPIED (loc) = 1;
6067 mo.type = MO_VAL_SET;
6069 log_and_return:
6070 if (dump_file && (dump_flags & TDF_DETAILS))
6071 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6072 VTI (bb)->mos.safe_push (mo);
6075 /* Arguments to the call. */
6076 static rtx call_arguments;
6078 /* Compute call_arguments. */
6080 static void
6081 prepare_call_arguments (basic_block bb, rtx insn)
6083 rtx link, x, call;
6084 rtx prev, cur, next;
6085 rtx this_arg = NULL_RTX;
6086 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6087 tree obj_type_ref = NULL_TREE;
6088 CUMULATIVE_ARGS args_so_far_v;
6089 cumulative_args_t args_so_far;
6091 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6092 args_so_far = pack_cumulative_args (&args_so_far_v);
6093 call = get_call_rtx_from (insn);
6094 if (call)
6096 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6098 rtx symbol = XEXP (XEXP (call, 0), 0);
6099 if (SYMBOL_REF_DECL (symbol))
6100 fndecl = SYMBOL_REF_DECL (symbol);
6102 if (fndecl == NULL_TREE)
6103 fndecl = MEM_EXPR (XEXP (call, 0));
6104 if (fndecl
6105 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6106 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6107 fndecl = NULL_TREE;
6108 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6109 type = TREE_TYPE (fndecl);
6110 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6112 if (TREE_CODE (fndecl) == INDIRECT_REF
6113 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6114 obj_type_ref = TREE_OPERAND (fndecl, 0);
6115 fndecl = NULL_TREE;
6117 if (type)
6119 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6120 t = TREE_CHAIN (t))
6121 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6122 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6123 break;
6124 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6125 type = NULL;
6126 else
6128 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6129 link = CALL_INSN_FUNCTION_USAGE (insn);
6130 #ifndef PCC_STATIC_STRUCT_RETURN
6131 if (aggregate_value_p (TREE_TYPE (type), type)
6132 && targetm.calls.struct_value_rtx (type, 0) == 0)
6134 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6135 enum machine_mode mode = TYPE_MODE (struct_addr);
6136 rtx reg;
6137 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6138 nargs + 1);
6139 reg = targetm.calls.function_arg (args_so_far, mode,
6140 struct_addr, true);
6141 targetm.calls.function_arg_advance (args_so_far, mode,
6142 struct_addr, true);
6143 if (reg == NULL_RTX)
6145 for (; link; link = XEXP (link, 1))
6146 if (GET_CODE (XEXP (link, 0)) == USE
6147 && MEM_P (XEXP (XEXP (link, 0), 0)))
6149 link = XEXP (link, 1);
6150 break;
6154 else
6155 #endif
6156 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6157 nargs);
6158 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6160 enum machine_mode mode;
6161 t = TYPE_ARG_TYPES (type);
6162 mode = TYPE_MODE (TREE_VALUE (t));
6163 this_arg = targetm.calls.function_arg (args_so_far, mode,
6164 TREE_VALUE (t), true);
6165 if (this_arg && !REG_P (this_arg))
6166 this_arg = NULL_RTX;
6167 else if (this_arg == NULL_RTX)
6169 for (; link; link = XEXP (link, 1))
6170 if (GET_CODE (XEXP (link, 0)) == USE
6171 && MEM_P (XEXP (XEXP (link, 0), 0)))
6173 this_arg = XEXP (XEXP (link, 0), 0);
6174 break;
6181 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6183 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6184 if (GET_CODE (XEXP (link, 0)) == USE)
6186 rtx item = NULL_RTX;
6187 x = XEXP (XEXP (link, 0), 0);
6188 if (GET_MODE (link) == VOIDmode
6189 || GET_MODE (link) == BLKmode
6190 || (GET_MODE (link) != GET_MODE (x)
6191 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6192 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6193 /* Can't do anything for these, if the original type mode
6194 isn't known or can't be converted. */;
6195 else if (REG_P (x))
6197 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6198 if (val && cselib_preserved_value_p (val))
6199 item = val->val_rtx;
6200 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6202 enum machine_mode mode = GET_MODE (x);
6204 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6205 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6207 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6209 if (reg == NULL_RTX || !REG_P (reg))
6210 continue;
6211 val = cselib_lookup (reg, mode, 0, VOIDmode);
6212 if (val && cselib_preserved_value_p (val))
6214 item = val->val_rtx;
6215 break;
6220 else if (MEM_P (x))
6222 rtx mem = x;
6223 cselib_val *val;
6225 if (!frame_pointer_needed)
6227 struct adjust_mem_data amd;
6228 amd.mem_mode = VOIDmode;
6229 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6230 amd.side_effects = NULL_RTX;
6231 amd.store = true;
6232 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6233 &amd);
6234 gcc_assert (amd.side_effects == NULL_RTX);
6236 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6237 if (val && cselib_preserved_value_p (val))
6238 item = val->val_rtx;
6239 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6241 /* For non-integer stack argument see also if they weren't
6242 initialized by integers. */
6243 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6244 if (imode != GET_MODE (mem) && imode != BLKmode)
6246 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6247 imode, 0, VOIDmode);
6248 if (val && cselib_preserved_value_p (val))
6249 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6250 imode);
6254 if (item)
6256 rtx x2 = x;
6257 if (GET_MODE (item) != GET_MODE (link))
6258 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6259 if (GET_MODE (x2) != GET_MODE (link))
6260 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6261 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6262 call_arguments
6263 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6265 if (t && t != void_list_node)
6267 tree argtype = TREE_VALUE (t);
6268 enum machine_mode mode = TYPE_MODE (argtype);
6269 rtx reg;
6270 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6272 argtype = build_pointer_type (argtype);
6273 mode = TYPE_MODE (argtype);
6275 reg = targetm.calls.function_arg (args_so_far, mode,
6276 argtype, true);
6277 if (TREE_CODE (argtype) == REFERENCE_TYPE
6278 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6279 && reg
6280 && REG_P (reg)
6281 && GET_MODE (reg) == mode
6282 && GET_MODE_CLASS (mode) == MODE_INT
6283 && REG_P (x)
6284 && REGNO (x) == REGNO (reg)
6285 && GET_MODE (x) == mode
6286 && item)
6288 enum machine_mode indmode
6289 = TYPE_MODE (TREE_TYPE (argtype));
6290 rtx mem = gen_rtx_MEM (indmode, x);
6291 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6292 if (val && cselib_preserved_value_p (val))
6294 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6295 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6296 call_arguments);
6298 else
6300 struct elt_loc_list *l;
6301 tree initial;
6303 /* Try harder, when passing address of a constant
6304 pool integer it can be easily read back. */
6305 item = XEXP (item, 1);
6306 if (GET_CODE (item) == SUBREG)
6307 item = SUBREG_REG (item);
6308 gcc_assert (GET_CODE (item) == VALUE);
6309 val = CSELIB_VAL_PTR (item);
6310 for (l = val->locs; l; l = l->next)
6311 if (GET_CODE (l->loc) == SYMBOL_REF
6312 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6313 && SYMBOL_REF_DECL (l->loc)
6314 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6316 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6317 if (tree_fits_shwi_p (initial))
6319 item = GEN_INT (tree_to_shwi (initial));
6320 item = gen_rtx_CONCAT (indmode, mem, item);
6321 call_arguments
6322 = gen_rtx_EXPR_LIST (VOIDmode, item,
6323 call_arguments);
6325 break;
6329 targetm.calls.function_arg_advance (args_so_far, mode,
6330 argtype, true);
6331 t = TREE_CHAIN (t);
6335 /* Add debug arguments. */
6336 if (fndecl
6337 && TREE_CODE (fndecl) == FUNCTION_DECL
6338 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6340 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6341 if (debug_args)
6343 unsigned int ix;
6344 tree param;
6345 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6347 rtx item;
6348 tree dtemp = (**debug_args)[ix + 1];
6349 enum machine_mode mode = DECL_MODE (dtemp);
6350 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6351 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6352 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6353 call_arguments);
6358 /* Reverse call_arguments chain. */
6359 prev = NULL_RTX;
6360 for (cur = call_arguments; cur; cur = next)
6362 next = XEXP (cur, 1);
6363 XEXP (cur, 1) = prev;
6364 prev = cur;
6366 call_arguments = prev;
6368 x = get_call_rtx_from (insn);
6369 if (x)
6371 x = XEXP (XEXP (x, 0), 0);
6372 if (GET_CODE (x) == SYMBOL_REF)
6373 /* Don't record anything. */;
6374 else if (CONSTANT_P (x))
6376 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6377 pc_rtx, x);
6378 call_arguments
6379 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6381 else
6383 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6384 if (val && cselib_preserved_value_p (val))
6386 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6387 call_arguments
6388 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6392 if (this_arg)
6394 enum machine_mode mode
6395 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6396 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6397 HOST_WIDE_INT token
6398 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6399 if (token)
6400 clobbered = plus_constant (mode, clobbered,
6401 token * GET_MODE_SIZE (mode));
6402 clobbered = gen_rtx_MEM (mode, clobbered);
6403 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6404 call_arguments
6405 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6409 /* Callback for cselib_record_sets_hook, that records as micro
6410 operations uses and stores in an insn after cselib_record_sets has
6411 analyzed the sets in an insn, but before it modifies the stored
6412 values in the internal tables, unless cselib_record_sets doesn't
6413 call it directly (perhaps because we're not doing cselib in the
6414 first place, in which case sets and n_sets will be 0). */
6416 static void
6417 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6419 basic_block bb = BLOCK_FOR_INSN (insn);
6420 int n1, n2;
6421 struct count_use_info cui;
6422 micro_operation *mos;
6424 cselib_hook_called = true;
6426 cui.insn = insn;
6427 cui.bb = bb;
6428 cui.sets = sets;
6429 cui.n_sets = n_sets;
6431 n1 = VTI (bb)->mos.length ();
6432 cui.store_p = false;
6433 note_uses (&PATTERN (insn), add_uses_1, &cui);
6434 n2 = VTI (bb)->mos.length () - 1;
6435 mos = VTI (bb)->mos.address ();
6437 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6438 MO_VAL_LOC last. */
6439 while (n1 < n2)
6441 while (n1 < n2 && mos[n1].type == MO_USE)
6442 n1++;
6443 while (n1 < n2 && mos[n2].type != MO_USE)
6444 n2--;
6445 if (n1 < n2)
6447 micro_operation sw;
6449 sw = mos[n1];
6450 mos[n1] = mos[n2];
6451 mos[n2] = sw;
6455 n2 = VTI (bb)->mos.length () - 1;
6456 while (n1 < n2)
6458 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6459 n1++;
6460 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6461 n2--;
6462 if (n1 < n2)
6464 micro_operation sw;
6466 sw = mos[n1];
6467 mos[n1] = mos[n2];
6468 mos[n2] = sw;
6472 if (CALL_P (insn))
6474 micro_operation mo;
6476 mo.type = MO_CALL;
6477 mo.insn = insn;
6478 mo.u.loc = call_arguments;
6479 call_arguments = NULL_RTX;
6481 if (dump_file && (dump_flags & TDF_DETAILS))
6482 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6483 VTI (bb)->mos.safe_push (mo);
6486 n1 = VTI (bb)->mos.length ();
6487 /* This will record NEXT_INSN (insn), such that we can
6488 insert notes before it without worrying about any
6489 notes that MO_USEs might emit after the insn. */
6490 cui.store_p = true;
6491 note_stores (PATTERN (insn), add_stores, &cui);
6492 n2 = VTI (bb)->mos.length () - 1;
6493 mos = VTI (bb)->mos.address ();
6495 /* Order the MO_VAL_USEs first (note_stores does nothing
6496 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6497 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6498 while (n1 < n2)
6500 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6501 n1++;
6502 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6503 n2--;
6504 if (n1 < n2)
6506 micro_operation sw;
6508 sw = mos[n1];
6509 mos[n1] = mos[n2];
6510 mos[n2] = sw;
6514 n2 = VTI (bb)->mos.length () - 1;
6515 while (n1 < n2)
6517 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6518 n1++;
6519 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6520 n2--;
6521 if (n1 < n2)
6523 micro_operation sw;
6525 sw = mos[n1];
6526 mos[n1] = mos[n2];
6527 mos[n2] = sw;
6532 static enum var_init_status
6533 find_src_status (dataflow_set *in, rtx src)
6535 tree decl = NULL_TREE;
6536 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6538 if (! flag_var_tracking_uninit)
6539 status = VAR_INIT_STATUS_INITIALIZED;
6541 if (src && REG_P (src))
6542 decl = var_debug_decl (REG_EXPR (src));
6543 else if (src && MEM_P (src))
6544 decl = var_debug_decl (MEM_EXPR (src));
6546 if (src && decl)
6547 status = get_init_value (in, src, dv_from_decl (decl));
6549 return status;
6552 /* SRC is the source of an assignment. Use SET to try to find what
6553 was ultimately assigned to SRC. Return that value if known,
6554 otherwise return SRC itself. */
6556 static rtx
6557 find_src_set_src (dataflow_set *set, rtx src)
6559 tree decl = NULL_TREE; /* The variable being copied around. */
6560 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6561 variable var;
6562 location_chain nextp;
6563 int i;
6564 bool found;
6566 if (src && REG_P (src))
6567 decl = var_debug_decl (REG_EXPR (src));
6568 else if (src && MEM_P (src))
6569 decl = var_debug_decl (MEM_EXPR (src));
6571 if (src && decl)
6573 decl_or_value dv = dv_from_decl (decl);
6575 var = shared_hash_find (set->vars, dv);
6576 if (var)
6578 found = false;
6579 for (i = 0; i < var->n_var_parts && !found; i++)
6580 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6581 nextp = nextp->next)
6582 if (rtx_equal_p (nextp->loc, src))
6584 set_src = nextp->set_src;
6585 found = true;
6591 return set_src;
6594 /* Compute the changes of variable locations in the basic block BB. */
6596 static bool
6597 compute_bb_dataflow (basic_block bb)
6599 unsigned int i;
6600 micro_operation *mo;
6601 bool changed;
6602 dataflow_set old_out;
6603 dataflow_set *in = &VTI (bb)->in;
6604 dataflow_set *out = &VTI (bb)->out;
6606 dataflow_set_init (&old_out);
6607 dataflow_set_copy (&old_out, out);
6608 dataflow_set_copy (out, in);
6610 if (MAY_HAVE_DEBUG_INSNS)
6611 local_get_addr_cache = pointer_map_create ();
6613 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6615 rtx insn = mo->insn;
6617 switch (mo->type)
6619 case MO_CALL:
6620 dataflow_set_clear_at_call (out);
6621 break;
6623 case MO_USE:
6625 rtx loc = mo->u.loc;
6627 if (REG_P (loc))
6628 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6629 else if (MEM_P (loc))
6630 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6632 break;
6634 case MO_VAL_LOC:
6636 rtx loc = mo->u.loc;
6637 rtx val, vloc;
6638 tree var;
6640 if (GET_CODE (loc) == CONCAT)
6642 val = XEXP (loc, 0);
6643 vloc = XEXP (loc, 1);
6645 else
6647 val = NULL_RTX;
6648 vloc = loc;
6651 var = PAT_VAR_LOCATION_DECL (vloc);
6653 clobber_variable_part (out, NULL_RTX,
6654 dv_from_decl (var), 0, NULL_RTX);
6655 if (val)
6657 if (VAL_NEEDS_RESOLUTION (loc))
6658 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6659 set_variable_part (out, val, dv_from_decl (var), 0,
6660 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6661 INSERT);
6663 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6664 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6665 dv_from_decl (var), 0,
6666 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6667 INSERT);
6669 break;
6671 case MO_VAL_USE:
6673 rtx loc = mo->u.loc;
6674 rtx val, vloc, uloc;
6676 vloc = uloc = XEXP (loc, 1);
6677 val = XEXP (loc, 0);
6679 if (GET_CODE (val) == CONCAT)
6681 uloc = XEXP (val, 1);
6682 val = XEXP (val, 0);
6685 if (VAL_NEEDS_RESOLUTION (loc))
6686 val_resolve (out, val, vloc, insn);
6687 else
6688 val_store (out, val, uloc, insn, false);
6690 if (VAL_HOLDS_TRACK_EXPR (loc))
6692 if (GET_CODE (uloc) == REG)
6693 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6694 NULL);
6695 else if (GET_CODE (uloc) == MEM)
6696 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6697 NULL);
6700 break;
6702 case MO_VAL_SET:
6704 rtx loc = mo->u.loc;
6705 rtx val, vloc, uloc;
6706 rtx dstv, srcv;
6708 vloc = loc;
6709 uloc = XEXP (vloc, 1);
6710 val = XEXP (vloc, 0);
6711 vloc = uloc;
6713 if (GET_CODE (uloc) == SET)
6715 dstv = SET_DEST (uloc);
6716 srcv = SET_SRC (uloc);
6718 else
6720 dstv = uloc;
6721 srcv = NULL;
6724 if (GET_CODE (val) == CONCAT)
6726 dstv = vloc = XEXP (val, 1);
6727 val = XEXP (val, 0);
6730 if (GET_CODE (vloc) == SET)
6732 srcv = SET_SRC (vloc);
6734 gcc_assert (val != srcv);
6735 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6737 dstv = vloc = SET_DEST (vloc);
6739 if (VAL_NEEDS_RESOLUTION (loc))
6740 val_resolve (out, val, srcv, insn);
6742 else if (VAL_NEEDS_RESOLUTION (loc))
6744 gcc_assert (GET_CODE (uloc) == SET
6745 && GET_CODE (SET_SRC (uloc)) == REG);
6746 val_resolve (out, val, SET_SRC (uloc), insn);
6749 if (VAL_HOLDS_TRACK_EXPR (loc))
6751 if (VAL_EXPR_IS_CLOBBERED (loc))
6753 if (REG_P (uloc))
6754 var_reg_delete (out, uloc, true);
6755 else if (MEM_P (uloc))
6757 gcc_assert (MEM_P (dstv));
6758 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6759 var_mem_delete (out, dstv, true);
6762 else
6764 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6765 rtx src = NULL, dst = uloc;
6766 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6768 if (GET_CODE (uloc) == SET)
6770 src = SET_SRC (uloc);
6771 dst = SET_DEST (uloc);
6774 if (copied_p)
6776 if (flag_var_tracking_uninit)
6778 status = find_src_status (in, src);
6780 if (status == VAR_INIT_STATUS_UNKNOWN)
6781 status = find_src_status (out, src);
6784 src = find_src_set_src (in, src);
6787 if (REG_P (dst))
6788 var_reg_delete_and_set (out, dst, !copied_p,
6789 status, srcv);
6790 else if (MEM_P (dst))
6792 gcc_assert (MEM_P (dstv));
6793 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6794 var_mem_delete_and_set (out, dstv, !copied_p,
6795 status, srcv);
6799 else if (REG_P (uloc))
6800 var_regno_delete (out, REGNO (uloc));
6801 else if (MEM_P (uloc))
6803 gcc_checking_assert (GET_CODE (vloc) == MEM);
6804 gcc_checking_assert (dstv == vloc);
6805 if (dstv != vloc)
6806 clobber_overlapping_mems (out, vloc);
6809 val_store (out, val, dstv, insn, true);
6811 break;
6813 case MO_SET:
6815 rtx loc = mo->u.loc;
6816 rtx set_src = NULL;
6818 if (GET_CODE (loc) == SET)
6820 set_src = SET_SRC (loc);
6821 loc = SET_DEST (loc);
6824 if (REG_P (loc))
6825 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6826 set_src);
6827 else if (MEM_P (loc))
6828 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6829 set_src);
6831 break;
6833 case MO_COPY:
6835 rtx loc = mo->u.loc;
6836 enum var_init_status src_status;
6837 rtx set_src = NULL;
6839 if (GET_CODE (loc) == SET)
6841 set_src = SET_SRC (loc);
6842 loc = SET_DEST (loc);
6845 if (! flag_var_tracking_uninit)
6846 src_status = VAR_INIT_STATUS_INITIALIZED;
6847 else
6849 src_status = find_src_status (in, set_src);
6851 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6852 src_status = find_src_status (out, set_src);
6855 set_src = find_src_set_src (in, set_src);
6857 if (REG_P (loc))
6858 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6859 else if (MEM_P (loc))
6860 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6862 break;
6864 case MO_USE_NO_VAR:
6866 rtx loc = mo->u.loc;
6868 if (REG_P (loc))
6869 var_reg_delete (out, loc, false);
6870 else if (MEM_P (loc))
6871 var_mem_delete (out, loc, false);
6873 break;
6875 case MO_CLOBBER:
6877 rtx loc = mo->u.loc;
6879 if (REG_P (loc))
6880 var_reg_delete (out, loc, true);
6881 else if (MEM_P (loc))
6882 var_mem_delete (out, loc, true);
6884 break;
6886 case MO_ADJUST:
6887 out->stack_adjust += mo->u.adjust;
6888 break;
6892 if (MAY_HAVE_DEBUG_INSNS)
6894 pointer_map_destroy (local_get_addr_cache);
6895 local_get_addr_cache = NULL;
6897 dataflow_set_equiv_regs (out);
6898 shared_hash_htab (out->vars)
6899 .traverse <dataflow_set *, canonicalize_values_mark> (out);
6900 shared_hash_htab (out->vars)
6901 .traverse <dataflow_set *, canonicalize_values_star> (out);
6902 #if ENABLE_CHECKING
6903 shared_hash_htab (out->vars)
6904 .traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6905 #endif
6907 changed = dataflow_set_different (&old_out, out);
6908 dataflow_set_destroy (&old_out);
6909 return changed;
6912 /* Find the locations of variables in the whole function. */
6914 static bool
6915 vt_find_locations (void)
6917 fibheap_t worklist, pending, fibheap_swap;
6918 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6919 basic_block bb;
6920 edge e;
6921 int *bb_order;
6922 int *rc_order;
6923 int i;
6924 int htabsz = 0;
6925 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6926 bool success = true;
6928 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6929 /* Compute reverse completion order of depth first search of the CFG
6930 so that the data-flow runs faster. */
6931 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6932 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6933 pre_and_rev_post_order_compute (NULL, rc_order, false);
6934 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6935 bb_order[rc_order[i]] = i;
6936 free (rc_order);
6938 worklist = fibheap_new ();
6939 pending = fibheap_new ();
6940 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6941 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6942 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6943 bitmap_clear (in_worklist);
6945 FOR_EACH_BB_FN (bb, cfun)
6946 fibheap_insert (pending, bb_order[bb->index], bb);
6947 bitmap_ones (in_pending);
6949 while (success && !fibheap_empty (pending))
6951 fibheap_swap = pending;
6952 pending = worklist;
6953 worklist = fibheap_swap;
6954 sbitmap_swap = in_pending;
6955 in_pending = in_worklist;
6956 in_worklist = sbitmap_swap;
6958 bitmap_clear (visited);
6960 while (!fibheap_empty (worklist))
6962 bb = (basic_block) fibheap_extract_min (worklist);
6963 bitmap_clear_bit (in_worklist, bb->index);
6964 gcc_assert (!bitmap_bit_p (visited, bb->index));
6965 if (!bitmap_bit_p (visited, bb->index))
6967 bool changed;
6968 edge_iterator ei;
6969 int oldinsz, oldoutsz;
6971 bitmap_set_bit (visited, bb->index);
6973 if (VTI (bb)->in.vars)
6975 htabsz
6976 -= shared_hash_htab (VTI (bb)->in.vars).size ()
6977 + shared_hash_htab (VTI (bb)->out.vars).size ();
6978 oldinsz = shared_hash_htab (VTI (bb)->in.vars).elements ();
6979 oldoutsz = shared_hash_htab (VTI (bb)->out.vars).elements ();
6981 else
6982 oldinsz = oldoutsz = 0;
6984 if (MAY_HAVE_DEBUG_INSNS)
6986 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6987 bool first = true, adjust = false;
6989 /* Calculate the IN set as the intersection of
6990 predecessor OUT sets. */
6992 dataflow_set_clear (in);
6993 dst_can_be_shared = true;
6995 FOR_EACH_EDGE (e, ei, bb->preds)
6996 if (!VTI (e->src)->flooded)
6997 gcc_assert (bb_order[bb->index]
6998 <= bb_order[e->src->index]);
6999 else if (first)
7001 dataflow_set_copy (in, &VTI (e->src)->out);
7002 first_out = &VTI (e->src)->out;
7003 first = false;
7005 else
7007 dataflow_set_merge (in, &VTI (e->src)->out);
7008 adjust = true;
7011 if (adjust)
7013 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7014 #if ENABLE_CHECKING
7015 /* Merge and merge_adjust should keep entries in
7016 canonical order. */
7017 shared_hash_htab (in->vars)
7018 .traverse <dataflow_set *,
7019 canonicalize_loc_order_check> (in);
7020 #endif
7021 if (dst_can_be_shared)
7023 shared_hash_destroy (in->vars);
7024 in->vars = shared_hash_copy (first_out->vars);
7028 VTI (bb)->flooded = true;
7030 else
7032 /* Calculate the IN set as union of predecessor OUT sets. */
7033 dataflow_set_clear (&VTI (bb)->in);
7034 FOR_EACH_EDGE (e, ei, bb->preds)
7035 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7038 changed = compute_bb_dataflow (bb);
7039 htabsz += shared_hash_htab (VTI (bb)->in.vars).size ()
7040 + shared_hash_htab (VTI (bb)->out.vars).size ();
7042 if (htabmax && htabsz > htabmax)
7044 if (MAY_HAVE_DEBUG_INSNS)
7045 inform (DECL_SOURCE_LOCATION (cfun->decl),
7046 "variable tracking size limit exceeded with "
7047 "-fvar-tracking-assignments, retrying without");
7048 else
7049 inform (DECL_SOURCE_LOCATION (cfun->decl),
7050 "variable tracking size limit exceeded");
7051 success = false;
7052 break;
7055 if (changed)
7057 FOR_EACH_EDGE (e, ei, bb->succs)
7059 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7060 continue;
7062 if (bitmap_bit_p (visited, e->dest->index))
7064 if (!bitmap_bit_p (in_pending, e->dest->index))
7066 /* Send E->DEST to next round. */
7067 bitmap_set_bit (in_pending, e->dest->index);
7068 fibheap_insert (pending,
7069 bb_order[e->dest->index],
7070 e->dest);
7073 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7075 /* Add E->DEST to current round. */
7076 bitmap_set_bit (in_worklist, e->dest->index);
7077 fibheap_insert (worklist, bb_order[e->dest->index],
7078 e->dest);
7083 if (dump_file)
7084 fprintf (dump_file,
7085 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7086 bb->index,
7087 (int)shared_hash_htab (VTI (bb)->in.vars).size (),
7088 oldinsz,
7089 (int)shared_hash_htab (VTI (bb)->out.vars).size (),
7090 oldoutsz,
7091 (int)worklist->nodes, (int)pending->nodes, htabsz);
7093 if (dump_file && (dump_flags & TDF_DETAILS))
7095 fprintf (dump_file, "BB %i IN:\n", bb->index);
7096 dump_dataflow_set (&VTI (bb)->in);
7097 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7098 dump_dataflow_set (&VTI (bb)->out);
7104 if (success && MAY_HAVE_DEBUG_INSNS)
7105 FOR_EACH_BB_FN (bb, cfun)
7106 gcc_assert (VTI (bb)->flooded);
7108 free (bb_order);
7109 fibheap_delete (worklist);
7110 fibheap_delete (pending);
7111 sbitmap_free (visited);
7112 sbitmap_free (in_worklist);
7113 sbitmap_free (in_pending);
7115 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7116 return success;
7119 /* Print the content of the LIST to dump file. */
7121 static void
7122 dump_attrs_list (attrs list)
7124 for (; list; list = list->next)
7126 if (dv_is_decl_p (list->dv))
7127 print_mem_expr (dump_file, dv_as_decl (list->dv));
7128 else
7129 print_rtl_single (dump_file, dv_as_value (list->dv));
7130 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7132 fprintf (dump_file, "\n");
7135 /* Print the information about variable *SLOT to dump file. */
7138 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7140 variable var = *slot;
7142 dump_var (var);
7144 /* Continue traversing the hash table. */
7145 return 1;
7148 /* Print the information about variable VAR to dump file. */
7150 static void
7151 dump_var (variable var)
7153 int i;
7154 location_chain node;
7156 if (dv_is_decl_p (var->dv))
7158 const_tree decl = dv_as_decl (var->dv);
7160 if (DECL_NAME (decl))
7162 fprintf (dump_file, " name: %s",
7163 IDENTIFIER_POINTER (DECL_NAME (decl)));
7164 if (dump_flags & TDF_UID)
7165 fprintf (dump_file, "D.%u", DECL_UID (decl));
7167 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7168 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7169 else
7170 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7171 fprintf (dump_file, "\n");
7173 else
7175 fputc (' ', dump_file);
7176 print_rtl_single (dump_file, dv_as_value (var->dv));
7179 for (i = 0; i < var->n_var_parts; i++)
7181 fprintf (dump_file, " offset %ld\n",
7182 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7183 for (node = var->var_part[i].loc_chain; node; node = node->next)
7185 fprintf (dump_file, " ");
7186 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7187 fprintf (dump_file, "[uninit]");
7188 print_rtl_single (dump_file, node->loc);
7193 /* Print the information about variables from hash table VARS to dump file. */
7195 static void
7196 dump_vars (variable_table_type vars)
7198 if (vars.elements () > 0)
7200 fprintf (dump_file, "Variables:\n");
7201 vars.traverse <void *, dump_var_tracking_slot> (NULL);
7205 /* Print the dataflow set SET to dump file. */
7207 static void
7208 dump_dataflow_set (dataflow_set *set)
7210 int i;
7212 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7213 set->stack_adjust);
7214 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7216 if (set->regs[i])
7218 fprintf (dump_file, "Reg %d:", i);
7219 dump_attrs_list (set->regs[i]);
7222 dump_vars (shared_hash_htab (set->vars));
7223 fprintf (dump_file, "\n");
7226 /* Print the IN and OUT sets for each basic block to dump file. */
7228 static void
7229 dump_dataflow_sets (void)
7231 basic_block bb;
7233 FOR_EACH_BB_FN (bb, cfun)
7235 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7236 fprintf (dump_file, "IN:\n");
7237 dump_dataflow_set (&VTI (bb)->in);
7238 fprintf (dump_file, "OUT:\n");
7239 dump_dataflow_set (&VTI (bb)->out);
7243 /* Return the variable for DV in dropped_values, inserting one if
7244 requested with INSERT. */
7246 static inline variable
7247 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7249 variable_def **slot;
7250 variable empty_var;
7251 onepart_enum_t onepart;
7253 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7255 if (!slot)
7256 return NULL;
7258 if (*slot)
7259 return *slot;
7261 gcc_checking_assert (insert == INSERT);
7263 onepart = dv_onepart_p (dv);
7265 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7267 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7268 empty_var->dv = dv;
7269 empty_var->refcount = 1;
7270 empty_var->n_var_parts = 0;
7271 empty_var->onepart = onepart;
7272 empty_var->in_changed_variables = false;
7273 empty_var->var_part[0].loc_chain = NULL;
7274 empty_var->var_part[0].cur_loc = NULL;
7275 VAR_LOC_1PAUX (empty_var) = NULL;
7276 set_dv_changed (dv, true);
7278 *slot = empty_var;
7280 return empty_var;
7283 /* Recover the one-part aux from dropped_values. */
7285 static struct onepart_aux *
7286 recover_dropped_1paux (variable var)
7288 variable dvar;
7290 gcc_checking_assert (var->onepart);
7292 if (VAR_LOC_1PAUX (var))
7293 return VAR_LOC_1PAUX (var);
7295 if (var->onepart == ONEPART_VDECL)
7296 return NULL;
7298 dvar = variable_from_dropped (var->dv, NO_INSERT);
7300 if (!dvar)
7301 return NULL;
7303 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7304 VAR_LOC_1PAUX (dvar) = NULL;
7306 return VAR_LOC_1PAUX (var);
7309 /* Add variable VAR to the hash table of changed variables and
7310 if it has no locations delete it from SET's hash table. */
7312 static void
7313 variable_was_changed (variable var, dataflow_set *set)
7315 hashval_t hash = dv_htab_hash (var->dv);
7317 if (emit_notes)
7319 variable_def **slot;
7321 /* Remember this decl or VALUE has been added to changed_variables. */
7322 set_dv_changed (var->dv, true);
7324 slot = changed_variables.find_slot_with_hash (var->dv, hash, INSERT);
7326 if (*slot)
7328 variable old_var = *slot;
7329 gcc_assert (old_var->in_changed_variables);
7330 old_var->in_changed_variables = false;
7331 if (var != old_var && var->onepart)
7333 /* Restore the auxiliary info from an empty variable
7334 previously created for changed_variables, so it is
7335 not lost. */
7336 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7337 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7338 VAR_LOC_1PAUX (old_var) = NULL;
7340 variable_htab_free (*slot);
7343 if (set && var->n_var_parts == 0)
7345 onepart_enum_t onepart = var->onepart;
7346 variable empty_var = NULL;
7347 variable_def **dslot = NULL;
7349 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7351 dslot = dropped_values.find_slot_with_hash (var->dv,
7352 dv_htab_hash (var->dv),
7353 INSERT);
7354 empty_var = *dslot;
7356 if (empty_var)
7358 gcc_checking_assert (!empty_var->in_changed_variables);
7359 if (!VAR_LOC_1PAUX (var))
7361 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7362 VAR_LOC_1PAUX (empty_var) = NULL;
7364 else
7365 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7369 if (!empty_var)
7371 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7372 empty_var->dv = var->dv;
7373 empty_var->refcount = 1;
7374 empty_var->n_var_parts = 0;
7375 empty_var->onepart = onepart;
7376 if (dslot)
7378 empty_var->refcount++;
7379 *dslot = empty_var;
7382 else
7383 empty_var->refcount++;
7384 empty_var->in_changed_variables = true;
7385 *slot = empty_var;
7386 if (onepart)
7388 empty_var->var_part[0].loc_chain = NULL;
7389 empty_var->var_part[0].cur_loc = NULL;
7390 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7391 VAR_LOC_1PAUX (var) = NULL;
7393 goto drop_var;
7395 else
7397 if (var->onepart && !VAR_LOC_1PAUX (var))
7398 recover_dropped_1paux (var);
7399 var->refcount++;
7400 var->in_changed_variables = true;
7401 *slot = var;
7404 else
7406 gcc_assert (set);
7407 if (var->n_var_parts == 0)
7409 variable_def **slot;
7411 drop_var:
7412 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7413 if (slot)
7415 if (shared_hash_shared (set->vars))
7416 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7417 NO_INSERT);
7418 shared_hash_htab (set->vars).clear_slot (slot);
7424 /* Look for the index in VAR->var_part corresponding to OFFSET.
7425 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7426 referenced int will be set to the index that the part has or should
7427 have, if it should be inserted. */
7429 static inline int
7430 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7431 int *insertion_point)
7433 int pos, low, high;
7435 if (var->onepart)
7437 if (offset != 0)
7438 return -1;
7440 if (insertion_point)
7441 *insertion_point = 0;
7443 return var->n_var_parts - 1;
7446 /* Find the location part. */
7447 low = 0;
7448 high = var->n_var_parts;
7449 while (low != high)
7451 pos = (low + high) / 2;
7452 if (VAR_PART_OFFSET (var, pos) < offset)
7453 low = pos + 1;
7454 else
7455 high = pos;
7457 pos = low;
7459 if (insertion_point)
7460 *insertion_point = pos;
7462 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7463 return pos;
7465 return -1;
7468 static variable_def **
7469 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7470 decl_or_value dv, HOST_WIDE_INT offset,
7471 enum var_init_status initialized, rtx set_src)
7473 int pos;
7474 location_chain node, next;
7475 location_chain *nextp;
7476 variable var;
7477 onepart_enum_t onepart;
7479 var = *slot;
7481 if (var)
7482 onepart = var->onepart;
7483 else
7484 onepart = dv_onepart_p (dv);
7486 gcc_checking_assert (offset == 0 || !onepart);
7487 gcc_checking_assert (loc != dv_as_opaque (dv));
7489 if (! flag_var_tracking_uninit)
7490 initialized = VAR_INIT_STATUS_INITIALIZED;
7492 if (!var)
7494 /* Create new variable information. */
7495 var = (variable) pool_alloc (onepart_pool (onepart));
7496 var->dv = dv;
7497 var->refcount = 1;
7498 var->n_var_parts = 1;
7499 var->onepart = onepart;
7500 var->in_changed_variables = false;
7501 if (var->onepart)
7502 VAR_LOC_1PAUX (var) = NULL;
7503 else
7504 VAR_PART_OFFSET (var, 0) = offset;
7505 var->var_part[0].loc_chain = NULL;
7506 var->var_part[0].cur_loc = NULL;
7507 *slot = var;
7508 pos = 0;
7509 nextp = &var->var_part[0].loc_chain;
7511 else if (onepart)
7513 int r = -1, c = 0;
7515 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7517 pos = 0;
7519 if (GET_CODE (loc) == VALUE)
7521 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7522 nextp = &node->next)
7523 if (GET_CODE (node->loc) == VALUE)
7525 if (node->loc == loc)
7527 r = 0;
7528 break;
7530 if (canon_value_cmp (node->loc, loc))
7531 c++;
7532 else
7534 r = 1;
7535 break;
7538 else if (REG_P (node->loc) || MEM_P (node->loc))
7539 c++;
7540 else
7542 r = 1;
7543 break;
7546 else if (REG_P (loc))
7548 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7549 nextp = &node->next)
7550 if (REG_P (node->loc))
7552 if (REGNO (node->loc) < REGNO (loc))
7553 c++;
7554 else
7556 if (REGNO (node->loc) == REGNO (loc))
7557 r = 0;
7558 else
7559 r = 1;
7560 break;
7563 else
7565 r = 1;
7566 break;
7569 else if (MEM_P (loc))
7571 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7572 nextp = &node->next)
7573 if (REG_P (node->loc))
7574 c++;
7575 else if (MEM_P (node->loc))
7577 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7578 break;
7579 else
7580 c++;
7582 else
7584 r = 1;
7585 break;
7588 else
7589 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7590 nextp = &node->next)
7591 if ((r = loc_cmp (node->loc, loc)) >= 0)
7592 break;
7593 else
7594 c++;
7596 if (r == 0)
7597 return slot;
7599 if (shared_var_p (var, set->vars))
7601 slot = unshare_variable (set, slot, var, initialized);
7602 var = *slot;
7603 for (nextp = &var->var_part[0].loc_chain; c;
7604 nextp = &(*nextp)->next)
7605 c--;
7606 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7609 else
7611 int inspos = 0;
7613 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7615 pos = find_variable_location_part (var, offset, &inspos);
7617 if (pos >= 0)
7619 node = var->var_part[pos].loc_chain;
7621 if (node
7622 && ((REG_P (node->loc) && REG_P (loc)
7623 && REGNO (node->loc) == REGNO (loc))
7624 || rtx_equal_p (node->loc, loc)))
7626 /* LOC is in the beginning of the chain so we have nothing
7627 to do. */
7628 if (node->init < initialized)
7629 node->init = initialized;
7630 if (set_src != NULL)
7631 node->set_src = set_src;
7633 return slot;
7635 else
7637 /* We have to make a copy of a shared variable. */
7638 if (shared_var_p (var, set->vars))
7640 slot = unshare_variable (set, slot, var, initialized);
7641 var = *slot;
7645 else
7647 /* We have not found the location part, new one will be created. */
7649 /* We have to make a copy of the shared variable. */
7650 if (shared_var_p (var, set->vars))
7652 slot = unshare_variable (set, slot, var, initialized);
7653 var = *slot;
7656 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7657 thus there are at most MAX_VAR_PARTS different offsets. */
7658 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7659 && (!var->n_var_parts || !onepart));
7661 /* We have to move the elements of array starting at index
7662 inspos to the next position. */
7663 for (pos = var->n_var_parts; pos > inspos; pos--)
7664 var->var_part[pos] = var->var_part[pos - 1];
7666 var->n_var_parts++;
7667 gcc_checking_assert (!onepart);
7668 VAR_PART_OFFSET (var, pos) = offset;
7669 var->var_part[pos].loc_chain = NULL;
7670 var->var_part[pos].cur_loc = NULL;
7673 /* Delete the location from the list. */
7674 nextp = &var->var_part[pos].loc_chain;
7675 for (node = var->var_part[pos].loc_chain; node; node = next)
7677 next = node->next;
7678 if ((REG_P (node->loc) && REG_P (loc)
7679 && REGNO (node->loc) == REGNO (loc))
7680 || rtx_equal_p (node->loc, loc))
7682 /* Save these values, to assign to the new node, before
7683 deleting this one. */
7684 if (node->init > initialized)
7685 initialized = node->init;
7686 if (node->set_src != NULL && set_src == NULL)
7687 set_src = node->set_src;
7688 if (var->var_part[pos].cur_loc == node->loc)
7689 var->var_part[pos].cur_loc = NULL;
7690 pool_free (loc_chain_pool, node);
7691 *nextp = next;
7692 break;
7694 else
7695 nextp = &node->next;
7698 nextp = &var->var_part[pos].loc_chain;
7701 /* Add the location to the beginning. */
7702 node = (location_chain) pool_alloc (loc_chain_pool);
7703 node->loc = loc;
7704 node->init = initialized;
7705 node->set_src = set_src;
7706 node->next = *nextp;
7707 *nextp = node;
7709 /* If no location was emitted do so. */
7710 if (var->var_part[pos].cur_loc == NULL)
7711 variable_was_changed (var, set);
7713 return slot;
7716 /* Set the part of variable's location in the dataflow set SET. The
7717 variable part is specified by variable's declaration in DV and
7718 offset OFFSET and the part's location by LOC. IOPT should be
7719 NO_INSERT if the variable is known to be in SET already and the
7720 variable hash table must not be resized, and INSERT otherwise. */
7722 static void
7723 set_variable_part (dataflow_set *set, rtx loc,
7724 decl_or_value dv, HOST_WIDE_INT offset,
7725 enum var_init_status initialized, rtx set_src,
7726 enum insert_option iopt)
7728 variable_def **slot;
7730 if (iopt == NO_INSERT)
7731 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7732 else
7734 slot = shared_hash_find_slot (set->vars, dv);
7735 if (!slot)
7736 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7738 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7741 /* Remove all recorded register locations for the given variable part
7742 from dataflow set SET, except for those that are identical to loc.
7743 The variable part is specified by variable's declaration or value
7744 DV and offset OFFSET. */
7746 static variable_def **
7747 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7748 HOST_WIDE_INT offset, rtx set_src)
7750 variable var = *slot;
7751 int pos = find_variable_location_part (var, offset, NULL);
7753 if (pos >= 0)
7755 location_chain node, next;
7757 /* Remove the register locations from the dataflow set. */
7758 next = var->var_part[pos].loc_chain;
7759 for (node = next; node; node = next)
7761 next = node->next;
7762 if (node->loc != loc
7763 && (!flag_var_tracking_uninit
7764 || !set_src
7765 || MEM_P (set_src)
7766 || !rtx_equal_p (set_src, node->set_src)))
7768 if (REG_P (node->loc))
7770 attrs anode, anext;
7771 attrs *anextp;
7773 /* Remove the variable part from the register's
7774 list, but preserve any other variable parts
7775 that might be regarded as live in that same
7776 register. */
7777 anextp = &set->regs[REGNO (node->loc)];
7778 for (anode = *anextp; anode; anode = anext)
7780 anext = anode->next;
7781 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7782 && anode->offset == offset)
7784 pool_free (attrs_pool, anode);
7785 *anextp = anext;
7787 else
7788 anextp = &anode->next;
7792 slot = delete_slot_part (set, node->loc, slot, offset);
7797 return slot;
7800 /* Remove all recorded register locations for the given variable part
7801 from dataflow set SET, except for those that are identical to loc.
7802 The variable part is specified by variable's declaration or value
7803 DV and offset OFFSET. */
7805 static void
7806 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7807 HOST_WIDE_INT offset, rtx set_src)
7809 variable_def **slot;
7811 if (!dv_as_opaque (dv)
7812 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7813 return;
7815 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7816 if (!slot)
7817 return;
7819 clobber_slot_part (set, loc, slot, offset, set_src);
7822 /* Delete the part of variable's location from dataflow set SET. The
7823 variable part is specified by its SET->vars slot SLOT and offset
7824 OFFSET and the part's location by LOC. */
7826 static variable_def **
7827 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7828 HOST_WIDE_INT offset)
7830 variable var = *slot;
7831 int pos = find_variable_location_part (var, offset, NULL);
7833 if (pos >= 0)
7835 location_chain node, next;
7836 location_chain *nextp;
7837 bool changed;
7838 rtx cur_loc;
7840 if (shared_var_p (var, set->vars))
7842 /* If the variable contains the location part we have to
7843 make a copy of the variable. */
7844 for (node = var->var_part[pos].loc_chain; node;
7845 node = node->next)
7847 if ((REG_P (node->loc) && REG_P (loc)
7848 && REGNO (node->loc) == REGNO (loc))
7849 || rtx_equal_p (node->loc, loc))
7851 slot = unshare_variable (set, slot, var,
7852 VAR_INIT_STATUS_UNKNOWN);
7853 var = *slot;
7854 break;
7859 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7860 cur_loc = VAR_LOC_FROM (var);
7861 else
7862 cur_loc = var->var_part[pos].cur_loc;
7864 /* Delete the location part. */
7865 changed = false;
7866 nextp = &var->var_part[pos].loc_chain;
7867 for (node = *nextp; node; node = next)
7869 next = node->next;
7870 if ((REG_P (node->loc) && REG_P (loc)
7871 && REGNO (node->loc) == REGNO (loc))
7872 || rtx_equal_p (node->loc, loc))
7874 /* If we have deleted the location which was last emitted
7875 we have to emit new location so add the variable to set
7876 of changed variables. */
7877 if (cur_loc == node->loc)
7879 changed = true;
7880 var->var_part[pos].cur_loc = NULL;
7881 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7882 VAR_LOC_FROM (var) = NULL;
7884 pool_free (loc_chain_pool, node);
7885 *nextp = next;
7886 break;
7888 else
7889 nextp = &node->next;
7892 if (var->var_part[pos].loc_chain == NULL)
7894 changed = true;
7895 var->n_var_parts--;
7896 while (pos < var->n_var_parts)
7898 var->var_part[pos] = var->var_part[pos + 1];
7899 pos++;
7902 if (changed)
7903 variable_was_changed (var, set);
7906 return slot;
7909 /* Delete the part of variable's location from dataflow set SET. The
7910 variable part is specified by variable's declaration or value DV
7911 and offset OFFSET and the part's location by LOC. */
7913 static void
7914 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7915 HOST_WIDE_INT offset)
7917 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7918 if (!slot)
7919 return;
7921 delete_slot_part (set, loc, slot, offset);
7925 /* Structure for passing some other parameters to function
7926 vt_expand_loc_callback. */
7927 struct expand_loc_callback_data
7929 /* The variables and values active at this point. */
7930 variable_table_type vars;
7932 /* Stack of values and debug_exprs under expansion, and their
7933 children. */
7934 stack_vec<rtx, 4> expanding;
7936 /* Stack of values and debug_exprs whose expansion hit recursion
7937 cycles. They will have VALUE_RECURSED_INTO marked when added to
7938 this list. This flag will be cleared if any of its dependencies
7939 resolves to a valid location. So, if the flag remains set at the
7940 end of the search, we know no valid location for this one can
7941 possibly exist. */
7942 stack_vec<rtx, 4> pending;
7944 /* The maximum depth among the sub-expressions under expansion.
7945 Zero indicates no expansion so far. */
7946 expand_depth depth;
7949 /* Allocate the one-part auxiliary data structure for VAR, with enough
7950 room for COUNT dependencies. */
7952 static void
7953 loc_exp_dep_alloc (variable var, int count)
7955 size_t allocsize;
7957 gcc_checking_assert (var->onepart);
7959 /* We can be called with COUNT == 0 to allocate the data structure
7960 without any dependencies, e.g. for the backlinks only. However,
7961 if we are specifying a COUNT, then the dependency list must have
7962 been emptied before. It would be possible to adjust pointers or
7963 force it empty here, but this is better done at an earlier point
7964 in the algorithm, so we instead leave an assertion to catch
7965 errors. */
7966 gcc_checking_assert (!count
7967 || VAR_LOC_DEP_VEC (var) == NULL
7968 || VAR_LOC_DEP_VEC (var)->is_empty ());
7970 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7971 return;
7973 allocsize = offsetof (struct onepart_aux, deps)
7974 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
7976 if (VAR_LOC_1PAUX (var))
7978 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7979 VAR_LOC_1PAUX (var), allocsize);
7980 /* If the reallocation moves the onepaux structure, the
7981 back-pointer to BACKLINKS in the first list member will still
7982 point to its old location. Adjust it. */
7983 if (VAR_LOC_DEP_LST (var))
7984 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7986 else
7988 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7989 *VAR_LOC_DEP_LSTP (var) = NULL;
7990 VAR_LOC_FROM (var) = NULL;
7991 VAR_LOC_DEPTH (var).complexity = 0;
7992 VAR_LOC_DEPTH (var).entryvals = 0;
7994 VAR_LOC_DEP_VEC (var)->embedded_init (count);
7997 /* Remove all entries from the vector of active dependencies of VAR,
7998 removing them from the back-links lists too. */
8000 static void
8001 loc_exp_dep_clear (variable var)
8003 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8005 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8006 if (led->next)
8007 led->next->pprev = led->pprev;
8008 if (led->pprev)
8009 *led->pprev = led->next;
8010 VAR_LOC_DEP_VEC (var)->pop ();
8014 /* Insert an active dependency from VAR on X to the vector of
8015 dependencies, and add the corresponding back-link to X's list of
8016 back-links in VARS. */
8018 static void
8019 loc_exp_insert_dep (variable var, rtx x, variable_table_type vars)
8021 decl_or_value dv;
8022 variable xvar;
8023 loc_exp_dep *led;
8025 dv = dv_from_rtx (x);
8027 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8028 an additional look up? */
8029 xvar = vars.find_with_hash (dv, dv_htab_hash (dv));
8031 if (!xvar)
8033 xvar = variable_from_dropped (dv, NO_INSERT);
8034 gcc_checking_assert (xvar);
8037 /* No point in adding the same backlink more than once. This may
8038 arise if say the same value appears in two complex expressions in
8039 the same loc_list, or even more than once in a single
8040 expression. */
8041 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8042 return;
8044 if (var->onepart == NOT_ONEPART)
8045 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8046 else
8048 loc_exp_dep empty;
8049 memset (&empty, 0, sizeof (empty));
8050 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8051 led = &VAR_LOC_DEP_VEC (var)->last ();
8053 led->dv = var->dv;
8054 led->value = x;
8056 loc_exp_dep_alloc (xvar, 0);
8057 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8058 led->next = *led->pprev;
8059 if (led->next)
8060 led->next->pprev = &led->next;
8061 *led->pprev = led;
8064 /* Create active dependencies of VAR on COUNT values starting at
8065 VALUE, and corresponding back-links to the entries in VARS. Return
8066 true if we found any pending-recursion results. */
8068 static bool
8069 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8070 variable_table_type vars)
8072 bool pending_recursion = false;
8074 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8075 || VAR_LOC_DEP_VEC (var)->is_empty ());
8077 /* Set up all dependencies from last_child (as set up at the end of
8078 the loop above) to the end. */
8079 loc_exp_dep_alloc (var, count);
8081 while (count--)
8083 rtx x = *value++;
8085 if (!pending_recursion)
8086 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8088 loc_exp_insert_dep (var, x, vars);
8091 return pending_recursion;
8094 /* Notify the back-links of IVAR that are pending recursion that we
8095 have found a non-NIL value for it, so they are cleared for another
8096 attempt to compute a current location. */
8098 static void
8099 notify_dependents_of_resolved_value (variable ivar, variable_table_type vars)
8101 loc_exp_dep *led, *next;
8103 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8105 decl_or_value dv = led->dv;
8106 variable var;
8108 next = led->next;
8110 if (dv_is_value_p (dv))
8112 rtx value = dv_as_value (dv);
8114 /* If we have already resolved it, leave it alone. */
8115 if (!VALUE_RECURSED_INTO (value))
8116 continue;
8118 /* Check that VALUE_RECURSED_INTO, true from the test above,
8119 implies NO_LOC_P. */
8120 gcc_checking_assert (NO_LOC_P (value));
8122 /* We won't notify variables that are being expanded,
8123 because their dependency list is cleared before
8124 recursing. */
8125 NO_LOC_P (value) = false;
8126 VALUE_RECURSED_INTO (value) = false;
8128 gcc_checking_assert (dv_changed_p (dv));
8130 else
8132 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8133 if (!dv_changed_p (dv))
8134 continue;
8137 var = vars.find_with_hash (dv, dv_htab_hash (dv));
8139 if (!var)
8140 var = variable_from_dropped (dv, NO_INSERT);
8142 if (var)
8143 notify_dependents_of_resolved_value (var, vars);
8145 if (next)
8146 next->pprev = led->pprev;
8147 if (led->pprev)
8148 *led->pprev = next;
8149 led->next = NULL;
8150 led->pprev = NULL;
8154 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8155 int max_depth, void *data);
8157 /* Return the combined depth, when one sub-expression evaluated to
8158 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8160 static inline expand_depth
8161 update_depth (expand_depth saved_depth, expand_depth best_depth)
8163 /* If we didn't find anything, stick with what we had. */
8164 if (!best_depth.complexity)
8165 return saved_depth;
8167 /* If we found hadn't found anything, use the depth of the current
8168 expression. Do NOT add one extra level, we want to compute the
8169 maximum depth among sub-expressions. We'll increment it later,
8170 if appropriate. */
8171 if (!saved_depth.complexity)
8172 return best_depth;
8174 /* Combine the entryval count so that regardless of which one we
8175 return, the entryval count is accurate. */
8176 best_depth.entryvals = saved_depth.entryvals
8177 = best_depth.entryvals + saved_depth.entryvals;
8179 if (saved_depth.complexity < best_depth.complexity)
8180 return best_depth;
8181 else
8182 return saved_depth;
8185 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8186 DATA for cselib expand callback. If PENDRECP is given, indicate in
8187 it whether any sub-expression couldn't be fully evaluated because
8188 it is pending recursion resolution. */
8190 static inline rtx
8191 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8193 struct expand_loc_callback_data *elcd
8194 = (struct expand_loc_callback_data *) data;
8195 location_chain loc, next;
8196 rtx result = NULL;
8197 int first_child, result_first_child, last_child;
8198 bool pending_recursion;
8199 rtx loc_from = NULL;
8200 struct elt_loc_list *cloc = NULL;
8201 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8202 int wanted_entryvals, found_entryvals = 0;
8204 /* Clear all backlinks pointing at this, so that we're not notified
8205 while we're active. */
8206 loc_exp_dep_clear (var);
8208 retry:
8209 if (var->onepart == ONEPART_VALUE)
8211 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8213 gcc_checking_assert (cselib_preserved_value_p (val));
8215 cloc = val->locs;
8218 first_child = result_first_child = last_child
8219 = elcd->expanding.length ();
8221 wanted_entryvals = found_entryvals;
8223 /* Attempt to expand each available location in turn. */
8224 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8225 loc || cloc; loc = next)
8227 result_first_child = last_child;
8229 if (!loc)
8231 loc_from = cloc->loc;
8232 next = loc;
8233 cloc = cloc->next;
8234 if (unsuitable_loc (loc_from))
8235 continue;
8237 else
8239 loc_from = loc->loc;
8240 next = loc->next;
8243 gcc_checking_assert (!unsuitable_loc (loc_from));
8245 elcd->depth.complexity = elcd->depth.entryvals = 0;
8246 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8247 vt_expand_loc_callback, data);
8248 last_child = elcd->expanding.length ();
8250 if (result)
8252 depth = elcd->depth;
8254 gcc_checking_assert (depth.complexity
8255 || result_first_child == last_child);
8257 if (last_child - result_first_child != 1)
8259 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8260 depth.entryvals++;
8261 depth.complexity++;
8264 if (depth.complexity <= EXPR_USE_DEPTH)
8266 if (depth.entryvals <= wanted_entryvals)
8267 break;
8268 else if (!found_entryvals || depth.entryvals < found_entryvals)
8269 found_entryvals = depth.entryvals;
8272 result = NULL;
8275 /* Set it up in case we leave the loop. */
8276 depth.complexity = depth.entryvals = 0;
8277 loc_from = NULL;
8278 result_first_child = first_child;
8281 if (!loc_from && wanted_entryvals < found_entryvals)
8283 /* We found entries with ENTRY_VALUEs and skipped them. Since
8284 we could not find any expansions without ENTRY_VALUEs, but we
8285 found at least one with them, go back and get an entry with
8286 the minimum number ENTRY_VALUE count that we found. We could
8287 avoid looping, but since each sub-loc is already resolved,
8288 the re-expansion should be trivial. ??? Should we record all
8289 attempted locs as dependencies, so that we retry the
8290 expansion should any of them change, in the hope it can give
8291 us a new entry without an ENTRY_VALUE? */
8292 elcd->expanding.truncate (first_child);
8293 goto retry;
8296 /* Register all encountered dependencies as active. */
8297 pending_recursion = loc_exp_dep_set
8298 (var, result, elcd->expanding.address () + result_first_child,
8299 last_child - result_first_child, elcd->vars);
8301 elcd->expanding.truncate (first_child);
8303 /* Record where the expansion came from. */
8304 gcc_checking_assert (!result || !pending_recursion);
8305 VAR_LOC_FROM (var) = loc_from;
8306 VAR_LOC_DEPTH (var) = depth;
8308 gcc_checking_assert (!depth.complexity == !result);
8310 elcd->depth = update_depth (saved_depth, depth);
8312 /* Indicate whether any of the dependencies are pending recursion
8313 resolution. */
8314 if (pendrecp)
8315 *pendrecp = pending_recursion;
8317 if (!pendrecp || !pending_recursion)
8318 var->var_part[0].cur_loc = result;
8320 return result;
8323 /* Callback for cselib_expand_value, that looks for expressions
8324 holding the value in the var-tracking hash tables. Return X for
8325 standard processing, anything else is to be used as-is. */
8327 static rtx
8328 vt_expand_loc_callback (rtx x, bitmap regs,
8329 int max_depth ATTRIBUTE_UNUSED,
8330 void *data)
8332 struct expand_loc_callback_data *elcd
8333 = (struct expand_loc_callback_data *) data;
8334 decl_or_value dv;
8335 variable var;
8336 rtx result, subreg;
8337 bool pending_recursion = false;
8338 bool from_empty = false;
8340 switch (GET_CODE (x))
8342 case SUBREG:
8343 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8344 EXPR_DEPTH,
8345 vt_expand_loc_callback, data);
8347 if (!subreg)
8348 return NULL;
8350 result = simplify_gen_subreg (GET_MODE (x), subreg,
8351 GET_MODE (SUBREG_REG (x)),
8352 SUBREG_BYTE (x));
8354 /* Invalid SUBREGs are ok in debug info. ??? We could try
8355 alternate expansions for the VALUE as well. */
8356 if (!result)
8357 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8359 return result;
8361 case DEBUG_EXPR:
8362 case VALUE:
8363 dv = dv_from_rtx (x);
8364 break;
8366 default:
8367 return x;
8370 elcd->expanding.safe_push (x);
8372 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8373 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8375 if (NO_LOC_P (x))
8377 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8378 return NULL;
8381 var = elcd->vars.find_with_hash (dv, dv_htab_hash (dv));
8383 if (!var)
8385 from_empty = true;
8386 var = variable_from_dropped (dv, INSERT);
8389 gcc_checking_assert (var);
8391 if (!dv_changed_p (dv))
8393 gcc_checking_assert (!NO_LOC_P (x));
8394 gcc_checking_assert (var->var_part[0].cur_loc);
8395 gcc_checking_assert (VAR_LOC_1PAUX (var));
8396 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8398 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8400 return var->var_part[0].cur_loc;
8403 VALUE_RECURSED_INTO (x) = true;
8404 /* This is tentative, but it makes some tests simpler. */
8405 NO_LOC_P (x) = true;
8407 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8409 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8411 if (pending_recursion)
8413 gcc_checking_assert (!result);
8414 elcd->pending.safe_push (x);
8416 else
8418 NO_LOC_P (x) = !result;
8419 VALUE_RECURSED_INTO (x) = false;
8420 set_dv_changed (dv, false);
8422 if (result)
8423 notify_dependents_of_resolved_value (var, elcd->vars);
8426 return result;
8429 /* While expanding variables, we may encounter recursion cycles
8430 because of mutual (possibly indirect) dependencies between two
8431 particular variables (or values), say A and B. If we're trying to
8432 expand A when we get to B, which in turn attempts to expand A, if
8433 we can't find any other expansion for B, we'll add B to this
8434 pending-recursion stack, and tentatively return NULL for its
8435 location. This tentative value will be used for any other
8436 occurrences of B, unless A gets some other location, in which case
8437 it will notify B that it is worth another try at computing a
8438 location for it, and it will use the location computed for A then.
8439 At the end of the expansion, the tentative NULL locations become
8440 final for all members of PENDING that didn't get a notification.
8441 This function performs this finalization of NULL locations. */
8443 static void
8444 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8446 while (!pending->is_empty ())
8448 rtx x = pending->pop ();
8449 decl_or_value dv;
8451 if (!VALUE_RECURSED_INTO (x))
8452 continue;
8454 gcc_checking_assert (NO_LOC_P (x));
8455 VALUE_RECURSED_INTO (x) = false;
8456 dv = dv_from_rtx (x);
8457 gcc_checking_assert (dv_changed_p (dv));
8458 set_dv_changed (dv, false);
8462 /* Initialize expand_loc_callback_data D with variable hash table V.
8463 It must be a macro because of alloca (vec stack). */
8464 #define INIT_ELCD(d, v) \
8465 do \
8467 (d).vars = (v); \
8468 (d).depth.complexity = (d).depth.entryvals = 0; \
8470 while (0)
8471 /* Finalize expand_loc_callback_data D, resolved to location L. */
8472 #define FINI_ELCD(d, l) \
8473 do \
8475 resolve_expansions_pending_recursion (&(d).pending); \
8476 (d).pending.release (); \
8477 (d).expanding.release (); \
8479 if ((l) && MEM_P (l)) \
8480 (l) = targetm.delegitimize_address (l); \
8482 while (0)
8484 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8485 equivalences in VARS, updating their CUR_LOCs in the process. */
8487 static rtx
8488 vt_expand_loc (rtx loc, variable_table_type vars)
8490 struct expand_loc_callback_data data;
8491 rtx result;
8493 if (!MAY_HAVE_DEBUG_INSNS)
8494 return loc;
8496 INIT_ELCD (data, vars);
8498 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8499 vt_expand_loc_callback, &data);
8501 FINI_ELCD (data, result);
8503 return result;
8506 /* Expand the one-part VARiable to a location, using the equivalences
8507 in VARS, updating their CUR_LOCs in the process. */
8509 static rtx
8510 vt_expand_1pvar (variable var, variable_table_type vars)
8512 struct expand_loc_callback_data data;
8513 rtx loc;
8515 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8517 if (!dv_changed_p (var->dv))
8518 return var->var_part[0].cur_loc;
8520 INIT_ELCD (data, vars);
8522 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8524 gcc_checking_assert (data.expanding.is_empty ());
8526 FINI_ELCD (data, loc);
8528 return loc;
8531 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8532 additional parameters: WHERE specifies whether the note shall be emitted
8533 before or after instruction INSN. */
8536 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8538 variable var = *varp;
8539 rtx insn = data->insn;
8540 enum emit_note_where where = data->where;
8541 variable_table_type vars = data->vars;
8542 rtx note, note_vl;
8543 int i, j, n_var_parts;
8544 bool complete;
8545 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8546 HOST_WIDE_INT last_limit;
8547 tree type_size_unit;
8548 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8549 rtx loc[MAX_VAR_PARTS];
8550 tree decl;
8551 location_chain lc;
8553 gcc_checking_assert (var->onepart == NOT_ONEPART
8554 || var->onepart == ONEPART_VDECL);
8556 decl = dv_as_decl (var->dv);
8558 complete = true;
8559 last_limit = 0;
8560 n_var_parts = 0;
8561 if (!var->onepart)
8562 for (i = 0; i < var->n_var_parts; i++)
8563 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8564 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8565 for (i = 0; i < var->n_var_parts; i++)
8567 enum machine_mode mode, wider_mode;
8568 rtx loc2;
8569 HOST_WIDE_INT offset;
8571 if (i == 0 && var->onepart)
8573 gcc_checking_assert (var->n_var_parts == 1);
8574 offset = 0;
8575 initialized = VAR_INIT_STATUS_INITIALIZED;
8576 loc2 = vt_expand_1pvar (var, vars);
8578 else
8580 if (last_limit < VAR_PART_OFFSET (var, i))
8582 complete = false;
8583 break;
8585 else if (last_limit > VAR_PART_OFFSET (var, i))
8586 continue;
8587 offset = VAR_PART_OFFSET (var, i);
8588 loc2 = var->var_part[i].cur_loc;
8589 if (loc2 && GET_CODE (loc2) == MEM
8590 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8592 rtx depval = XEXP (loc2, 0);
8594 loc2 = vt_expand_loc (loc2, vars);
8596 if (loc2)
8597 loc_exp_insert_dep (var, depval, vars);
8599 if (!loc2)
8601 complete = false;
8602 continue;
8604 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8605 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8606 if (var->var_part[i].cur_loc == lc->loc)
8608 initialized = lc->init;
8609 break;
8611 gcc_assert (lc);
8614 offsets[n_var_parts] = offset;
8615 if (!loc2)
8617 complete = false;
8618 continue;
8620 loc[n_var_parts] = loc2;
8621 mode = GET_MODE (var->var_part[i].cur_loc);
8622 if (mode == VOIDmode && var->onepart)
8623 mode = DECL_MODE (decl);
8624 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8626 /* Attempt to merge adjacent registers or memory. */
8627 wider_mode = GET_MODE_WIDER_MODE (mode);
8628 for (j = i + 1; j < var->n_var_parts; j++)
8629 if (last_limit <= VAR_PART_OFFSET (var, j))
8630 break;
8631 if (j < var->n_var_parts
8632 && wider_mode != VOIDmode
8633 && var->var_part[j].cur_loc
8634 && mode == GET_MODE (var->var_part[j].cur_loc)
8635 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8636 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8637 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8638 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8640 rtx new_loc = NULL;
8642 if (REG_P (loc[n_var_parts])
8643 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8644 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8645 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8646 == REGNO (loc2))
8648 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8649 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8650 mode, 0);
8651 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8652 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8653 if (new_loc)
8655 if (!REG_P (new_loc)
8656 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8657 new_loc = NULL;
8658 else
8659 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8662 else if (MEM_P (loc[n_var_parts])
8663 && GET_CODE (XEXP (loc2, 0)) == PLUS
8664 && REG_P (XEXP (XEXP (loc2, 0), 0))
8665 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8667 if ((REG_P (XEXP (loc[n_var_parts], 0))
8668 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8669 XEXP (XEXP (loc2, 0), 0))
8670 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8671 == GET_MODE_SIZE (mode))
8672 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8673 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8674 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8675 XEXP (XEXP (loc2, 0), 0))
8676 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8677 + GET_MODE_SIZE (mode)
8678 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8679 new_loc = adjust_address_nv (loc[n_var_parts],
8680 wider_mode, 0);
8683 if (new_loc)
8685 loc[n_var_parts] = new_loc;
8686 mode = wider_mode;
8687 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8688 i = j;
8691 ++n_var_parts;
8693 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8694 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8695 complete = false;
8697 if (! flag_var_tracking_uninit)
8698 initialized = VAR_INIT_STATUS_INITIALIZED;
8700 note_vl = NULL_RTX;
8701 if (!complete)
8702 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8703 (int) initialized);
8704 else if (n_var_parts == 1)
8706 rtx expr_list;
8708 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8709 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8710 else
8711 expr_list = loc[0];
8713 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8714 (int) initialized);
8716 else if (n_var_parts)
8718 rtx parallel;
8720 for (i = 0; i < n_var_parts; i++)
8721 loc[i]
8722 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8724 parallel = gen_rtx_PARALLEL (VOIDmode,
8725 gen_rtvec_v (n_var_parts, loc));
8726 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8727 parallel, (int) initialized);
8730 if (where != EMIT_NOTE_BEFORE_INSN)
8732 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8733 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8734 NOTE_DURING_CALL_P (note) = true;
8736 else
8738 /* Make sure that the call related notes come first. */
8739 while (NEXT_INSN (insn)
8740 && NOTE_P (insn)
8741 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8742 && NOTE_DURING_CALL_P (insn))
8743 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8744 insn = NEXT_INSN (insn);
8745 if (NOTE_P (insn)
8746 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8747 && NOTE_DURING_CALL_P (insn))
8748 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8749 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8750 else
8751 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8753 NOTE_VAR_LOCATION (note) = note_vl;
8755 set_dv_changed (var->dv, false);
8756 gcc_assert (var->in_changed_variables);
8757 var->in_changed_variables = false;
8758 changed_variables.clear_slot (varp);
8760 /* Continue traversing the hash table. */
8761 return 1;
8764 /* While traversing changed_variables, push onto DATA (a stack of RTX
8765 values) entries that aren't user variables. */
8768 var_track_values_to_stack (variable_def **slot,
8769 vec<rtx, va_heap> *changed_values_stack)
8771 variable var = *slot;
8773 if (var->onepart == ONEPART_VALUE)
8774 changed_values_stack->safe_push (dv_as_value (var->dv));
8775 else if (var->onepart == ONEPART_DEXPR)
8776 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8778 return 1;
8781 /* Remove from changed_variables the entry whose DV corresponds to
8782 value or debug_expr VAL. */
8783 static void
8784 remove_value_from_changed_variables (rtx val)
8786 decl_or_value dv = dv_from_rtx (val);
8787 variable_def **slot;
8788 variable var;
8790 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8791 NO_INSERT);
8792 var = *slot;
8793 var->in_changed_variables = false;
8794 changed_variables.clear_slot (slot);
8797 /* If VAL (a value or debug_expr) has backlinks to variables actively
8798 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8799 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8800 have dependencies of their own to notify. */
8802 static void
8803 notify_dependents_of_changed_value (rtx val, variable_table_type htab,
8804 vec<rtx, va_heap> *changed_values_stack)
8806 variable_def **slot;
8807 variable var;
8808 loc_exp_dep *led;
8809 decl_or_value dv = dv_from_rtx (val);
8811 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8812 NO_INSERT);
8813 if (!slot)
8814 slot = htab.find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8815 if (!slot)
8816 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv),
8817 NO_INSERT);
8818 var = *slot;
8820 while ((led = VAR_LOC_DEP_LST (var)))
8822 decl_or_value ldv = led->dv;
8823 variable ivar;
8825 /* Deactivate and remove the backlink, as it was “used up”. It
8826 makes no sense to attempt to notify the same entity again:
8827 either it will be recomputed and re-register an active
8828 dependency, or it will still have the changed mark. */
8829 if (led->next)
8830 led->next->pprev = led->pprev;
8831 if (led->pprev)
8832 *led->pprev = led->next;
8833 led->next = NULL;
8834 led->pprev = NULL;
8836 if (dv_changed_p (ldv))
8837 continue;
8839 switch (dv_onepart_p (ldv))
8841 case ONEPART_VALUE:
8842 case ONEPART_DEXPR:
8843 set_dv_changed (ldv, true);
8844 changed_values_stack->safe_push (dv_as_rtx (ldv));
8845 break;
8847 case ONEPART_VDECL:
8848 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8849 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8850 variable_was_changed (ivar, NULL);
8851 break;
8853 case NOT_ONEPART:
8854 pool_free (loc_exp_dep_pool, led);
8855 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8856 if (ivar)
8858 int i = ivar->n_var_parts;
8859 while (i--)
8861 rtx loc = ivar->var_part[i].cur_loc;
8863 if (loc && GET_CODE (loc) == MEM
8864 && XEXP (loc, 0) == val)
8866 variable_was_changed (ivar, NULL);
8867 break;
8871 break;
8873 default:
8874 gcc_unreachable ();
8879 /* Take out of changed_variables any entries that don't refer to use
8880 variables. Back-propagate change notifications from values and
8881 debug_exprs to their active dependencies in HTAB or in
8882 CHANGED_VARIABLES. */
8884 static void
8885 process_changed_values (variable_table_type htab)
8887 int i, n;
8888 rtx val;
8889 stack_vec<rtx, 20> changed_values_stack;
8891 /* Move values from changed_variables to changed_values_stack. */
8892 changed_variables
8893 .traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8894 (&changed_values_stack);
8896 /* Back-propagate change notifications in values while popping
8897 them from the stack. */
8898 for (n = i = changed_values_stack.length ();
8899 i > 0; i = changed_values_stack.length ())
8901 val = changed_values_stack.pop ();
8902 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8904 /* This condition will hold when visiting each of the entries
8905 originally in changed_variables. We can't remove them
8906 earlier because this could drop the backlinks before we got a
8907 chance to use them. */
8908 if (i == n)
8910 remove_value_from_changed_variables (val);
8911 n--;
8916 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8917 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8918 the notes shall be emitted before of after instruction INSN. */
8920 static void
8921 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8922 shared_hash vars)
8924 emit_note_data data;
8925 variable_table_type htab = shared_hash_htab (vars);
8927 if (!changed_variables.elements ())
8928 return;
8930 if (MAY_HAVE_DEBUG_INSNS)
8931 process_changed_values (htab);
8933 data.insn = insn;
8934 data.where = where;
8935 data.vars = htab;
8937 changed_variables
8938 .traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8941 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8942 same variable in hash table DATA or is not there at all. */
8945 emit_notes_for_differences_1 (variable_def **slot, variable_table_type new_vars)
8947 variable old_var, new_var;
8949 old_var = *slot;
8950 new_var = new_vars.find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8952 if (!new_var)
8954 /* Variable has disappeared. */
8955 variable empty_var = NULL;
8957 if (old_var->onepart == ONEPART_VALUE
8958 || old_var->onepart == ONEPART_DEXPR)
8960 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8961 if (empty_var)
8963 gcc_checking_assert (!empty_var->in_changed_variables);
8964 if (!VAR_LOC_1PAUX (old_var))
8966 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8967 VAR_LOC_1PAUX (empty_var) = NULL;
8969 else
8970 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8974 if (!empty_var)
8976 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
8977 empty_var->dv = old_var->dv;
8978 empty_var->refcount = 0;
8979 empty_var->n_var_parts = 0;
8980 empty_var->onepart = old_var->onepart;
8981 empty_var->in_changed_variables = false;
8984 if (empty_var->onepart)
8986 /* Propagate the auxiliary data to (ultimately)
8987 changed_variables. */
8988 empty_var->var_part[0].loc_chain = NULL;
8989 empty_var->var_part[0].cur_loc = NULL;
8990 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
8991 VAR_LOC_1PAUX (old_var) = NULL;
8993 variable_was_changed (empty_var, NULL);
8994 /* Continue traversing the hash table. */
8995 return 1;
8997 /* Update cur_loc and one-part auxiliary data, before new_var goes
8998 through variable_was_changed. */
8999 if (old_var != new_var && new_var->onepart)
9001 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9002 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9003 VAR_LOC_1PAUX (old_var) = NULL;
9004 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9006 if (variable_different_p (old_var, new_var))
9007 variable_was_changed (new_var, NULL);
9009 /* Continue traversing the hash table. */
9010 return 1;
9013 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9014 table DATA. */
9017 emit_notes_for_differences_2 (variable_def **slot, variable_table_type old_vars)
9019 variable old_var, new_var;
9021 new_var = *slot;
9022 old_var = old_vars.find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9023 if (!old_var)
9025 int i;
9026 for (i = 0; i < new_var->n_var_parts; i++)
9027 new_var->var_part[i].cur_loc = NULL;
9028 variable_was_changed (new_var, NULL);
9031 /* Continue traversing the hash table. */
9032 return 1;
9035 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9036 NEW_SET. */
9038 static void
9039 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9040 dataflow_set *new_set)
9042 shared_hash_htab (old_set->vars)
9043 .traverse <variable_table_type, emit_notes_for_differences_1>
9044 (shared_hash_htab (new_set->vars));
9045 shared_hash_htab (new_set->vars)
9046 .traverse <variable_table_type, emit_notes_for_differences_2>
9047 (shared_hash_htab (old_set->vars));
9048 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9051 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9053 static rtx
9054 next_non_note_insn_var_location (rtx insn)
9056 while (insn)
9058 insn = NEXT_INSN (insn);
9059 if (insn == 0
9060 || !NOTE_P (insn)
9061 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9062 break;
9065 return insn;
9068 /* Emit the notes for changes of location parts in the basic block BB. */
9070 static void
9071 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9073 unsigned int i;
9074 micro_operation *mo;
9076 dataflow_set_clear (set);
9077 dataflow_set_copy (set, &VTI (bb)->in);
9079 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9081 rtx insn = mo->insn;
9082 rtx next_insn = next_non_note_insn_var_location (insn);
9084 switch (mo->type)
9086 case MO_CALL:
9087 dataflow_set_clear_at_call (set);
9088 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9090 rtx arguments = mo->u.loc, *p = &arguments, note;
9091 while (*p)
9093 XEXP (XEXP (*p, 0), 1)
9094 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9095 shared_hash_htab (set->vars));
9096 /* If expansion is successful, keep it in the list. */
9097 if (XEXP (XEXP (*p, 0), 1))
9098 p = &XEXP (*p, 1);
9099 /* Otherwise, if the following item is data_value for it,
9100 drop it too too. */
9101 else if (XEXP (*p, 1)
9102 && REG_P (XEXP (XEXP (*p, 0), 0))
9103 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9104 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9106 && REGNO (XEXP (XEXP (*p, 0), 0))
9107 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9108 0), 0)))
9109 *p = XEXP (XEXP (*p, 1), 1);
9110 /* Just drop this item. */
9111 else
9112 *p = XEXP (*p, 1);
9114 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9115 NOTE_VAR_LOCATION (note) = arguments;
9117 break;
9119 case MO_USE:
9121 rtx loc = mo->u.loc;
9123 if (REG_P (loc))
9124 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9125 else
9126 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9128 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9130 break;
9132 case MO_VAL_LOC:
9134 rtx loc = mo->u.loc;
9135 rtx val, vloc;
9136 tree var;
9138 if (GET_CODE (loc) == CONCAT)
9140 val = XEXP (loc, 0);
9141 vloc = XEXP (loc, 1);
9143 else
9145 val = NULL_RTX;
9146 vloc = loc;
9149 var = PAT_VAR_LOCATION_DECL (vloc);
9151 clobber_variable_part (set, NULL_RTX,
9152 dv_from_decl (var), 0, NULL_RTX);
9153 if (val)
9155 if (VAL_NEEDS_RESOLUTION (loc))
9156 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9157 set_variable_part (set, val, dv_from_decl (var), 0,
9158 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9159 INSERT);
9161 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9162 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9163 dv_from_decl (var), 0,
9164 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9165 INSERT);
9167 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9169 break;
9171 case MO_VAL_USE:
9173 rtx loc = mo->u.loc;
9174 rtx val, vloc, uloc;
9176 vloc = uloc = XEXP (loc, 1);
9177 val = XEXP (loc, 0);
9179 if (GET_CODE (val) == CONCAT)
9181 uloc = XEXP (val, 1);
9182 val = XEXP (val, 0);
9185 if (VAL_NEEDS_RESOLUTION (loc))
9186 val_resolve (set, val, vloc, insn);
9187 else
9188 val_store (set, val, uloc, insn, false);
9190 if (VAL_HOLDS_TRACK_EXPR (loc))
9192 if (GET_CODE (uloc) == REG)
9193 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9194 NULL);
9195 else if (GET_CODE (uloc) == MEM)
9196 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9197 NULL);
9200 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9202 break;
9204 case MO_VAL_SET:
9206 rtx loc = mo->u.loc;
9207 rtx val, vloc, uloc;
9208 rtx dstv, srcv;
9210 vloc = loc;
9211 uloc = XEXP (vloc, 1);
9212 val = XEXP (vloc, 0);
9213 vloc = uloc;
9215 if (GET_CODE (uloc) == SET)
9217 dstv = SET_DEST (uloc);
9218 srcv = SET_SRC (uloc);
9220 else
9222 dstv = uloc;
9223 srcv = NULL;
9226 if (GET_CODE (val) == CONCAT)
9228 dstv = vloc = XEXP (val, 1);
9229 val = XEXP (val, 0);
9232 if (GET_CODE (vloc) == SET)
9234 srcv = SET_SRC (vloc);
9236 gcc_assert (val != srcv);
9237 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9239 dstv = vloc = SET_DEST (vloc);
9241 if (VAL_NEEDS_RESOLUTION (loc))
9242 val_resolve (set, val, srcv, insn);
9244 else if (VAL_NEEDS_RESOLUTION (loc))
9246 gcc_assert (GET_CODE (uloc) == SET
9247 && GET_CODE (SET_SRC (uloc)) == REG);
9248 val_resolve (set, val, SET_SRC (uloc), insn);
9251 if (VAL_HOLDS_TRACK_EXPR (loc))
9253 if (VAL_EXPR_IS_CLOBBERED (loc))
9255 if (REG_P (uloc))
9256 var_reg_delete (set, uloc, true);
9257 else if (MEM_P (uloc))
9259 gcc_assert (MEM_P (dstv));
9260 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9261 var_mem_delete (set, dstv, true);
9264 else
9266 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9267 rtx src = NULL, dst = uloc;
9268 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9270 if (GET_CODE (uloc) == SET)
9272 src = SET_SRC (uloc);
9273 dst = SET_DEST (uloc);
9276 if (copied_p)
9278 status = find_src_status (set, src);
9280 src = find_src_set_src (set, src);
9283 if (REG_P (dst))
9284 var_reg_delete_and_set (set, dst, !copied_p,
9285 status, srcv);
9286 else if (MEM_P (dst))
9288 gcc_assert (MEM_P (dstv));
9289 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9290 var_mem_delete_and_set (set, dstv, !copied_p,
9291 status, srcv);
9295 else if (REG_P (uloc))
9296 var_regno_delete (set, REGNO (uloc));
9297 else if (MEM_P (uloc))
9299 gcc_checking_assert (GET_CODE (vloc) == MEM);
9300 gcc_checking_assert (vloc == dstv);
9301 if (vloc != dstv)
9302 clobber_overlapping_mems (set, vloc);
9305 val_store (set, val, dstv, insn, true);
9307 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9308 set->vars);
9310 break;
9312 case MO_SET:
9314 rtx loc = mo->u.loc;
9315 rtx set_src = NULL;
9317 if (GET_CODE (loc) == SET)
9319 set_src = SET_SRC (loc);
9320 loc = SET_DEST (loc);
9323 if (REG_P (loc))
9324 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9325 set_src);
9326 else
9327 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9328 set_src);
9330 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9331 set->vars);
9333 break;
9335 case MO_COPY:
9337 rtx loc = mo->u.loc;
9338 enum var_init_status src_status;
9339 rtx set_src = NULL;
9341 if (GET_CODE (loc) == SET)
9343 set_src = SET_SRC (loc);
9344 loc = SET_DEST (loc);
9347 src_status = find_src_status (set, set_src);
9348 set_src = find_src_set_src (set, set_src);
9350 if (REG_P (loc))
9351 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9352 else
9353 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9355 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9356 set->vars);
9358 break;
9360 case MO_USE_NO_VAR:
9362 rtx loc = mo->u.loc;
9364 if (REG_P (loc))
9365 var_reg_delete (set, loc, false);
9366 else
9367 var_mem_delete (set, loc, false);
9369 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9371 break;
9373 case MO_CLOBBER:
9375 rtx loc = mo->u.loc;
9377 if (REG_P (loc))
9378 var_reg_delete (set, loc, true);
9379 else
9380 var_mem_delete (set, loc, true);
9382 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9383 set->vars);
9385 break;
9387 case MO_ADJUST:
9388 set->stack_adjust += mo->u.adjust;
9389 break;
9394 /* Emit notes for the whole function. */
9396 static void
9397 vt_emit_notes (void)
9399 basic_block bb;
9400 dataflow_set cur;
9402 gcc_assert (!changed_variables.elements ());
9404 /* Free memory occupied by the out hash tables, as they aren't used
9405 anymore. */
9406 FOR_EACH_BB_FN (bb, cfun)
9407 dataflow_set_clear (&VTI (bb)->out);
9409 /* Enable emitting notes by functions (mainly by set_variable_part and
9410 delete_variable_part). */
9411 emit_notes = true;
9413 if (MAY_HAVE_DEBUG_INSNS)
9415 dropped_values.create (cselib_get_next_uid () * 2);
9416 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9417 sizeof (loc_exp_dep), 64);
9420 dataflow_set_init (&cur);
9422 FOR_EACH_BB_FN (bb, cfun)
9424 /* Emit the notes for changes of variable locations between two
9425 subsequent basic blocks. */
9426 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9428 if (MAY_HAVE_DEBUG_INSNS)
9429 local_get_addr_cache = pointer_map_create ();
9431 /* Emit the notes for the changes in the basic block itself. */
9432 emit_notes_in_bb (bb, &cur);
9434 if (MAY_HAVE_DEBUG_INSNS)
9435 pointer_map_destroy (local_get_addr_cache);
9436 local_get_addr_cache = NULL;
9438 /* Free memory occupied by the in hash table, we won't need it
9439 again. */
9440 dataflow_set_clear (&VTI (bb)->in);
9442 #ifdef ENABLE_CHECKING
9443 shared_hash_htab (cur.vars)
9444 .traverse <variable_table_type, emit_notes_for_differences_1>
9445 (shared_hash_htab (empty_shared_hash));
9446 #endif
9447 dataflow_set_destroy (&cur);
9449 if (MAY_HAVE_DEBUG_INSNS)
9450 dropped_values.dispose ();
9452 emit_notes = false;
9455 /* If there is a declaration and offset associated with register/memory RTL
9456 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9458 static bool
9459 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9461 if (REG_P (rtl))
9463 if (REG_ATTRS (rtl))
9465 *declp = REG_EXPR (rtl);
9466 *offsetp = REG_OFFSET (rtl);
9467 return true;
9470 else if (GET_CODE (rtl) == PARALLEL)
9472 tree decl = NULL_TREE;
9473 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9474 int len = XVECLEN (rtl, 0), i;
9476 for (i = 0; i < len; i++)
9478 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9479 if (!REG_P (reg) || !REG_ATTRS (reg))
9480 break;
9481 if (!decl)
9482 decl = REG_EXPR (reg);
9483 if (REG_EXPR (reg) != decl)
9484 break;
9485 if (REG_OFFSET (reg) < offset)
9486 offset = REG_OFFSET (reg);
9489 if (i == len)
9491 *declp = decl;
9492 *offsetp = offset;
9493 return true;
9496 else if (MEM_P (rtl))
9498 if (MEM_ATTRS (rtl))
9500 *declp = MEM_EXPR (rtl);
9501 *offsetp = INT_MEM_OFFSET (rtl);
9502 return true;
9505 return false;
9508 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9509 of VAL. */
9511 static void
9512 record_entry_value (cselib_val *val, rtx rtl)
9514 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9516 ENTRY_VALUE_EXP (ev) = rtl;
9518 cselib_add_permanent_equiv (val, ev, get_insns ());
9521 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9523 static void
9524 vt_add_function_parameter (tree parm)
9526 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9527 rtx incoming = DECL_INCOMING_RTL (parm);
9528 tree decl;
9529 enum machine_mode mode;
9530 HOST_WIDE_INT offset;
9531 dataflow_set *out;
9532 decl_or_value dv;
9534 if (TREE_CODE (parm) != PARM_DECL)
9535 return;
9537 if (!decl_rtl || !incoming)
9538 return;
9540 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9541 return;
9543 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9544 rewrite the incoming location of parameters passed on the stack
9545 into MEMs based on the argument pointer, so that incoming doesn't
9546 depend on a pseudo. */
9547 if (MEM_P (incoming)
9548 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9549 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9550 && XEXP (XEXP (incoming, 0), 0)
9551 == crtl->args.internal_arg_pointer
9552 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9554 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9555 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9556 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9557 incoming
9558 = replace_equiv_address_nv (incoming,
9559 plus_constant (Pmode,
9560 arg_pointer_rtx, off));
9563 #ifdef HAVE_window_save
9564 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9565 If the target machine has an explicit window save instruction, the
9566 actual entry value is the corresponding OUTGOING_REGNO instead. */
9567 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9569 if (REG_P (incoming)
9570 && HARD_REGISTER_P (incoming)
9571 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9573 parm_reg_t p;
9574 p.incoming = incoming;
9575 incoming
9576 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9577 OUTGOING_REGNO (REGNO (incoming)), 0);
9578 p.outgoing = incoming;
9579 vec_safe_push (windowed_parm_regs, p);
9581 else if (GET_CODE (incoming) == PARALLEL)
9583 rtx outgoing
9584 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9585 int i;
9587 for (i = 0; i < XVECLEN (incoming, 0); i++)
9589 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9590 parm_reg_t p;
9591 p.incoming = reg;
9592 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9593 OUTGOING_REGNO (REGNO (reg)), 0);
9594 p.outgoing = reg;
9595 XVECEXP (outgoing, 0, i)
9596 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9597 XEXP (XVECEXP (incoming, 0, i), 1));
9598 vec_safe_push (windowed_parm_regs, p);
9601 incoming = outgoing;
9603 else if (MEM_P (incoming)
9604 && REG_P (XEXP (incoming, 0))
9605 && HARD_REGISTER_P (XEXP (incoming, 0)))
9607 rtx reg = XEXP (incoming, 0);
9608 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9610 parm_reg_t p;
9611 p.incoming = reg;
9612 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9613 p.outgoing = reg;
9614 vec_safe_push (windowed_parm_regs, p);
9615 incoming = replace_equiv_address_nv (incoming, reg);
9619 #endif
9621 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9623 if (MEM_P (incoming))
9625 /* This means argument is passed by invisible reference. */
9626 offset = 0;
9627 decl = parm;
9629 else
9631 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9632 return;
9633 offset += byte_lowpart_offset (GET_MODE (incoming),
9634 GET_MODE (decl_rtl));
9638 if (!decl)
9639 return;
9641 if (parm != decl)
9643 /* If that DECL_RTL wasn't a pseudo that got spilled to
9644 memory, bail out. Otherwise, the spill slot sharing code
9645 will force the memory to reference spill_slot_decl (%sfp),
9646 so we don't match above. That's ok, the pseudo must have
9647 referenced the entire parameter, so just reset OFFSET. */
9648 if (decl != get_spill_slot_decl (false))
9649 return;
9650 offset = 0;
9653 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9654 return;
9656 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9658 dv = dv_from_decl (parm);
9660 if (target_for_debug_bind (parm)
9661 /* We can't deal with these right now, because this kind of
9662 variable is single-part. ??? We could handle parallels
9663 that describe multiple locations for the same single
9664 value, but ATM we don't. */
9665 && GET_CODE (incoming) != PARALLEL)
9667 cselib_val *val;
9668 rtx lowpart;
9670 /* ??? We shouldn't ever hit this, but it may happen because
9671 arguments passed by invisible reference aren't dealt with
9672 above: incoming-rtl will have Pmode rather than the
9673 expected mode for the type. */
9674 if (offset)
9675 return;
9677 lowpart = var_lowpart (mode, incoming);
9678 if (!lowpart)
9679 return;
9681 val = cselib_lookup_from_insn (lowpart, mode, true,
9682 VOIDmode, get_insns ());
9684 /* ??? Float-typed values in memory are not handled by
9685 cselib. */
9686 if (val)
9688 preserve_value (val);
9689 set_variable_part (out, val->val_rtx, dv, offset,
9690 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9691 dv = dv_from_value (val->val_rtx);
9694 if (MEM_P (incoming))
9696 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9697 VOIDmode, get_insns ());
9698 if (val)
9700 preserve_value (val);
9701 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9706 if (REG_P (incoming))
9708 incoming = var_lowpart (mode, incoming);
9709 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9710 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9711 incoming);
9712 set_variable_part (out, incoming, dv, offset,
9713 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9714 if (dv_is_value_p (dv))
9716 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9717 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9718 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9720 enum machine_mode indmode
9721 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9722 rtx mem = gen_rtx_MEM (indmode, incoming);
9723 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9724 VOIDmode,
9725 get_insns ());
9726 if (val)
9728 preserve_value (val);
9729 record_entry_value (val, mem);
9730 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9731 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9736 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9738 int i;
9740 for (i = 0; i < XVECLEN (incoming, 0); i++)
9742 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9743 offset = REG_OFFSET (reg);
9744 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9745 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9746 set_variable_part (out, reg, dv, offset,
9747 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9750 else if (MEM_P (incoming))
9752 incoming = var_lowpart (mode, incoming);
9753 set_variable_part (out, incoming, dv, offset,
9754 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9758 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9760 static void
9761 vt_add_function_parameters (void)
9763 tree parm;
9765 for (parm = DECL_ARGUMENTS (current_function_decl);
9766 parm; parm = DECL_CHAIN (parm))
9767 vt_add_function_parameter (parm);
9769 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9771 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9773 if (TREE_CODE (vexpr) == INDIRECT_REF)
9774 vexpr = TREE_OPERAND (vexpr, 0);
9776 if (TREE_CODE (vexpr) == PARM_DECL
9777 && DECL_ARTIFICIAL (vexpr)
9778 && !DECL_IGNORED_P (vexpr)
9779 && DECL_NAMELESS (vexpr))
9780 vt_add_function_parameter (vexpr);
9784 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9785 ensure it isn't flushed during cselib_reset_table.
9786 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9787 has been eliminated. */
9789 static void
9790 vt_init_cfa_base (void)
9792 cselib_val *val;
9794 #ifdef FRAME_POINTER_CFA_OFFSET
9795 cfa_base_rtx = frame_pointer_rtx;
9796 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9797 #else
9798 cfa_base_rtx = arg_pointer_rtx;
9799 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9800 #endif
9801 if (cfa_base_rtx == hard_frame_pointer_rtx
9802 || !fixed_regs[REGNO (cfa_base_rtx)])
9804 cfa_base_rtx = NULL_RTX;
9805 return;
9807 if (!MAY_HAVE_DEBUG_INSNS)
9808 return;
9810 /* Tell alias analysis that cfa_base_rtx should share
9811 find_base_term value with stack pointer or hard frame pointer. */
9812 if (!frame_pointer_needed)
9813 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9814 else if (!crtl->stack_realign_tried)
9815 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9817 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9818 VOIDmode, get_insns ());
9819 preserve_value (val);
9820 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9823 /* Allocate and initialize the data structures for variable tracking
9824 and parse the RTL to get the micro operations. */
9826 static bool
9827 vt_initialize (void)
9829 basic_block bb;
9830 HOST_WIDE_INT fp_cfa_offset = -1;
9832 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9834 attrs_pool = create_alloc_pool ("attrs_def pool",
9835 sizeof (struct attrs_def), 1024);
9836 var_pool = create_alloc_pool ("variable_def pool",
9837 sizeof (struct variable_def)
9838 + (MAX_VAR_PARTS - 1)
9839 * sizeof (((variable)NULL)->var_part[0]), 64);
9840 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9841 sizeof (struct location_chain_def),
9842 1024);
9843 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9844 sizeof (struct shared_hash_def), 256);
9845 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9846 empty_shared_hash->refcount = 1;
9847 empty_shared_hash->htab.create (1);
9848 changed_variables.create (10);
9850 /* Init the IN and OUT sets. */
9851 FOR_ALL_BB_FN (bb, cfun)
9853 VTI (bb)->visited = false;
9854 VTI (bb)->flooded = false;
9855 dataflow_set_init (&VTI (bb)->in);
9856 dataflow_set_init (&VTI (bb)->out);
9857 VTI (bb)->permp = NULL;
9860 if (MAY_HAVE_DEBUG_INSNS)
9862 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9863 scratch_regs = BITMAP_ALLOC (NULL);
9864 valvar_pool = create_alloc_pool ("small variable_def pool",
9865 sizeof (struct variable_def), 256);
9866 preserved_values.create (256);
9867 global_get_addr_cache = pointer_map_create ();
9869 else
9871 scratch_regs = NULL;
9872 valvar_pool = NULL;
9873 global_get_addr_cache = NULL;
9876 if (MAY_HAVE_DEBUG_INSNS)
9878 rtx reg, expr;
9879 int ofst;
9880 cselib_val *val;
9882 #ifdef FRAME_POINTER_CFA_OFFSET
9883 reg = frame_pointer_rtx;
9884 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9885 #else
9886 reg = arg_pointer_rtx;
9887 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9888 #endif
9890 ofst -= INCOMING_FRAME_SP_OFFSET;
9892 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9893 VOIDmode, get_insns ());
9894 preserve_value (val);
9895 cselib_preserve_cfa_base_value (val, REGNO (reg));
9896 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9897 stack_pointer_rtx, -ofst);
9898 cselib_add_permanent_equiv (val, expr, get_insns ());
9900 if (ofst)
9902 val = cselib_lookup_from_insn (stack_pointer_rtx,
9903 GET_MODE (stack_pointer_rtx), 1,
9904 VOIDmode, get_insns ());
9905 preserve_value (val);
9906 expr = plus_constant (GET_MODE (reg), reg, ofst);
9907 cselib_add_permanent_equiv (val, expr, get_insns ());
9911 /* In order to factor out the adjustments made to the stack pointer or to
9912 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9913 instead of individual location lists, we're going to rewrite MEMs based
9914 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9915 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9916 resp. arg_pointer_rtx. We can do this either when there is no frame
9917 pointer in the function and stack adjustments are consistent for all
9918 basic blocks or when there is a frame pointer and no stack realignment.
9919 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9920 has been eliminated. */
9921 if (!frame_pointer_needed)
9923 rtx reg, elim;
9925 if (!vt_stack_adjustments ())
9926 return false;
9928 #ifdef FRAME_POINTER_CFA_OFFSET
9929 reg = frame_pointer_rtx;
9930 #else
9931 reg = arg_pointer_rtx;
9932 #endif
9933 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9934 if (elim != reg)
9936 if (GET_CODE (elim) == PLUS)
9937 elim = XEXP (elim, 0);
9938 if (elim == stack_pointer_rtx)
9939 vt_init_cfa_base ();
9942 else if (!crtl->stack_realign_tried)
9944 rtx reg, elim;
9946 #ifdef FRAME_POINTER_CFA_OFFSET
9947 reg = frame_pointer_rtx;
9948 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9949 #else
9950 reg = arg_pointer_rtx;
9951 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9952 #endif
9953 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9954 if (elim != reg)
9956 if (GET_CODE (elim) == PLUS)
9958 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9959 elim = XEXP (elim, 0);
9961 if (elim != hard_frame_pointer_rtx)
9962 fp_cfa_offset = -1;
9964 else
9965 fp_cfa_offset = -1;
9968 /* If the stack is realigned and a DRAP register is used, we're going to
9969 rewrite MEMs based on it representing incoming locations of parameters
9970 passed on the stack into MEMs based on the argument pointer. Although
9971 we aren't going to rewrite other MEMs, we still need to initialize the
9972 virtual CFA pointer in order to ensure that the argument pointer will
9973 be seen as a constant throughout the function.
9975 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9976 else if (stack_realign_drap)
9978 rtx reg, elim;
9980 #ifdef FRAME_POINTER_CFA_OFFSET
9981 reg = frame_pointer_rtx;
9982 #else
9983 reg = arg_pointer_rtx;
9984 #endif
9985 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9986 if (elim != reg)
9988 if (GET_CODE (elim) == PLUS)
9989 elim = XEXP (elim, 0);
9990 if (elim == hard_frame_pointer_rtx)
9991 vt_init_cfa_base ();
9995 hard_frame_pointer_adjustment = -1;
9997 vt_add_function_parameters ();
9999 FOR_EACH_BB_FN (bb, cfun)
10001 rtx insn;
10002 HOST_WIDE_INT pre, post = 0;
10003 basic_block first_bb, last_bb;
10005 if (MAY_HAVE_DEBUG_INSNS)
10007 cselib_record_sets_hook = add_with_sets;
10008 if (dump_file && (dump_flags & TDF_DETAILS))
10009 fprintf (dump_file, "first value: %i\n",
10010 cselib_get_next_uid ());
10013 first_bb = bb;
10014 for (;;)
10016 edge e;
10017 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10018 || ! single_pred_p (bb->next_bb))
10019 break;
10020 e = find_edge (bb, bb->next_bb);
10021 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10022 break;
10023 bb = bb->next_bb;
10025 last_bb = bb;
10027 /* Add the micro-operations to the vector. */
10028 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10030 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10031 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10032 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10033 insn = NEXT_INSN (insn))
10035 if (INSN_P (insn))
10037 if (!frame_pointer_needed)
10039 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10040 if (pre)
10042 micro_operation mo;
10043 mo.type = MO_ADJUST;
10044 mo.u.adjust = pre;
10045 mo.insn = insn;
10046 if (dump_file && (dump_flags & TDF_DETAILS))
10047 log_op_type (PATTERN (insn), bb, insn,
10048 MO_ADJUST, dump_file);
10049 VTI (bb)->mos.safe_push (mo);
10050 VTI (bb)->out.stack_adjust += pre;
10054 cselib_hook_called = false;
10055 adjust_insn (bb, insn);
10056 if (MAY_HAVE_DEBUG_INSNS)
10058 if (CALL_P (insn))
10059 prepare_call_arguments (bb, insn);
10060 cselib_process_insn (insn);
10061 if (dump_file && (dump_flags & TDF_DETAILS))
10063 print_rtl_single (dump_file, insn);
10064 dump_cselib_table (dump_file);
10067 if (!cselib_hook_called)
10068 add_with_sets (insn, 0, 0);
10069 cancel_changes (0);
10071 if (!frame_pointer_needed && post)
10073 micro_operation mo;
10074 mo.type = MO_ADJUST;
10075 mo.u.adjust = post;
10076 mo.insn = insn;
10077 if (dump_file && (dump_flags & TDF_DETAILS))
10078 log_op_type (PATTERN (insn), bb, insn,
10079 MO_ADJUST, dump_file);
10080 VTI (bb)->mos.safe_push (mo);
10081 VTI (bb)->out.stack_adjust += post;
10084 if (fp_cfa_offset != -1
10085 && hard_frame_pointer_adjustment == -1
10086 && fp_setter_insn (insn))
10088 vt_init_cfa_base ();
10089 hard_frame_pointer_adjustment = fp_cfa_offset;
10090 /* Disassociate sp from fp now. */
10091 if (MAY_HAVE_DEBUG_INSNS)
10093 cselib_val *v;
10094 cselib_invalidate_rtx (stack_pointer_rtx);
10095 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10096 VOIDmode);
10097 if (v && !cselib_preserved_value_p (v))
10099 cselib_set_value_sp_based (v);
10100 preserve_value (v);
10106 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10109 bb = last_bb;
10111 if (MAY_HAVE_DEBUG_INSNS)
10113 cselib_preserve_only_values ();
10114 cselib_reset_table (cselib_get_next_uid ());
10115 cselib_record_sets_hook = NULL;
10119 hard_frame_pointer_adjustment = -1;
10120 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10121 cfa_base_rtx = NULL_RTX;
10122 return true;
10125 /* This is *not* reset after each function. It gives each
10126 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10127 a unique label number. */
10129 static int debug_label_num = 1;
10131 /* Get rid of all debug insns from the insn stream. */
10133 static void
10134 delete_debug_insns (void)
10136 basic_block bb;
10137 rtx insn, next;
10139 if (!MAY_HAVE_DEBUG_INSNS)
10140 return;
10142 FOR_EACH_BB_FN (bb, cfun)
10144 FOR_BB_INSNS_SAFE (bb, insn, next)
10145 if (DEBUG_INSN_P (insn))
10147 tree decl = INSN_VAR_LOCATION_DECL (insn);
10148 if (TREE_CODE (decl) == LABEL_DECL
10149 && DECL_NAME (decl)
10150 && !DECL_RTL_SET_P (decl))
10152 PUT_CODE (insn, NOTE);
10153 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10154 NOTE_DELETED_LABEL_NAME (insn)
10155 = IDENTIFIER_POINTER (DECL_NAME (decl));
10156 SET_DECL_RTL (decl, insn);
10157 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10159 else
10160 delete_insn (insn);
10165 /* Run a fast, BB-local only version of var tracking, to take care of
10166 information that we don't do global analysis on, such that not all
10167 information is lost. If SKIPPED holds, we're skipping the global
10168 pass entirely, so we should try to use information it would have
10169 handled as well.. */
10171 static void
10172 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10174 /* ??? Just skip it all for now. */
10175 delete_debug_insns ();
10178 /* Free the data structures needed for variable tracking. */
10180 static void
10181 vt_finalize (void)
10183 basic_block bb;
10185 FOR_EACH_BB_FN (bb, cfun)
10187 VTI (bb)->mos.release ();
10190 FOR_ALL_BB_FN (bb, cfun)
10192 dataflow_set_destroy (&VTI (bb)->in);
10193 dataflow_set_destroy (&VTI (bb)->out);
10194 if (VTI (bb)->permp)
10196 dataflow_set_destroy (VTI (bb)->permp);
10197 XDELETE (VTI (bb)->permp);
10200 free_aux_for_blocks ();
10201 empty_shared_hash->htab.dispose ();
10202 changed_variables.dispose ();
10203 free_alloc_pool (attrs_pool);
10204 free_alloc_pool (var_pool);
10205 free_alloc_pool (loc_chain_pool);
10206 free_alloc_pool (shared_hash_pool);
10208 if (MAY_HAVE_DEBUG_INSNS)
10210 if (global_get_addr_cache)
10211 pointer_map_destroy (global_get_addr_cache);
10212 global_get_addr_cache = NULL;
10213 if (loc_exp_dep_pool)
10214 free_alloc_pool (loc_exp_dep_pool);
10215 loc_exp_dep_pool = NULL;
10216 free_alloc_pool (valvar_pool);
10217 preserved_values.release ();
10218 cselib_finish ();
10219 BITMAP_FREE (scratch_regs);
10220 scratch_regs = NULL;
10223 #ifdef HAVE_window_save
10224 vec_free (windowed_parm_regs);
10225 #endif
10227 if (vui_vec)
10228 XDELETEVEC (vui_vec);
10229 vui_vec = NULL;
10230 vui_allocated = 0;
10233 /* The entry point to variable tracking pass. */
10235 static inline unsigned int
10236 variable_tracking_main_1 (void)
10238 bool success;
10240 if (flag_var_tracking_assignments < 0)
10242 delete_debug_insns ();
10243 return 0;
10246 if (n_basic_blocks_for_fn (cfun) > 500 &&
10247 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10249 vt_debug_insns_local (true);
10250 return 0;
10253 mark_dfs_back_edges ();
10254 if (!vt_initialize ())
10256 vt_finalize ();
10257 vt_debug_insns_local (true);
10258 return 0;
10261 success = vt_find_locations ();
10263 if (!success && flag_var_tracking_assignments > 0)
10265 vt_finalize ();
10267 delete_debug_insns ();
10269 /* This is later restored by our caller. */
10270 flag_var_tracking_assignments = 0;
10272 success = vt_initialize ();
10273 gcc_assert (success);
10275 success = vt_find_locations ();
10278 if (!success)
10280 vt_finalize ();
10281 vt_debug_insns_local (false);
10282 return 0;
10285 if (dump_file && (dump_flags & TDF_DETAILS))
10287 dump_dataflow_sets ();
10288 dump_reg_info (dump_file);
10289 dump_flow_info (dump_file, dump_flags);
10292 timevar_push (TV_VAR_TRACKING_EMIT);
10293 vt_emit_notes ();
10294 timevar_pop (TV_VAR_TRACKING_EMIT);
10296 vt_finalize ();
10297 vt_debug_insns_local (false);
10298 return 0;
10301 unsigned int
10302 variable_tracking_main (void)
10304 unsigned int ret;
10305 int save = flag_var_tracking_assignments;
10307 ret = variable_tracking_main_1 ();
10309 flag_var_tracking_assignments = save;
10311 return ret;
10314 static bool
10315 gate_handle_var_tracking (void)
10317 return (flag_var_tracking && !targetm.delay_vartrack);
10322 namespace {
10324 const pass_data pass_data_variable_tracking =
10326 RTL_PASS, /* type */
10327 "vartrack", /* name */
10328 OPTGROUP_NONE, /* optinfo_flags */
10329 true, /* has_gate */
10330 true, /* has_execute */
10331 TV_VAR_TRACKING, /* tv_id */
10332 0, /* properties_required */
10333 0, /* properties_provided */
10334 0, /* properties_destroyed */
10335 0, /* todo_flags_start */
10336 ( TODO_verify_rtl_sharing | TODO_verify_flow ), /* todo_flags_finish */
10339 class pass_variable_tracking : public rtl_opt_pass
10341 public:
10342 pass_variable_tracking (gcc::context *ctxt)
10343 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10346 /* opt_pass methods: */
10347 bool gate () { return gate_handle_var_tracking (); }
10348 unsigned int execute () { return variable_tracking_main (); }
10350 }; // class pass_variable_tracking
10352 } // anon namespace
10354 rtl_opt_pass *
10355 make_pass_variable_tracking (gcc::context *ctxt)
10357 return new pass_variable_tracking (ctxt);