1 /* Dummy data flow analysis for GNU compiler in nonoptimizing mode.
2 Copyright (C) 1987, 91, 94, 95, 96, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file performs stupid register allocation, which is used
23 when cc1 gets the -noreg switch (which is when cc does not get -O).
25 Stupid register allocation goes in place of the the flow_analysis,
26 local_alloc and global_alloc passes. combine_instructions cannot
27 be done with stupid allocation because the data flow info that it needs
30 In stupid allocation, the only user-defined variables that can
31 go in registers are those declared "register". They are assumed
32 to have a life span equal to their scope. Other user variables
33 are given stack slots in the rtl-generation pass and are not
34 represented as pseudo regs. A compiler-generated temporary
35 is assumed to live from its first mention to its last mention.
37 Since each pseudo-reg's life span is just an interval, it can be
38 represented as a pair of numbers, each of which identifies an insn by
39 its position in the function (number of insns before it). The first
40 thing done for stupid allocation is to compute such a number for each
41 insn. It is called the suid. Then the life-interval of each
42 pseudo reg is computed. Then the pseudo regs are ordered by priority
43 and assigned hard regs in priority order. */
48 #include "hard-reg-set.h"
52 /* Vector mapping INSN_UIDs to suids.
53 The suids are like uids but increase monotonically always.
54 We use them to see whether a subroutine call came
55 between a variable's birth and its death. */
59 /* Get the suid of an insn. */
61 #define INSN_SUID(INSN) (uid_suid[INSN_UID (INSN)])
63 /* Record the suid of the last CALL_INSN
64 so we can tell whether a pseudo reg crosses any calls. */
66 static int last_call_suid
;
68 /* Record the suid of the last NOTE_INSN_SETJMP
69 so we can tell whether a pseudo reg crosses any setjmp. */
71 static int last_setjmp_suid
;
73 /* Element N is suid of insn where life span of pseudo reg N ends.
74 Element is 0 if register N has not been seen yet on backward scan. */
76 static int *reg_where_dead
;
78 /* Element N is suid of insn where life span of pseudo reg N begins. */
80 static int *reg_where_born
;
82 /* Numbers of pseudo-regs to be allocated, highest priority first. */
84 static int *reg_order
;
86 /* Indexed by reg number (hard or pseudo), nonzero if register is live
87 at the current point in the instruction stream. */
89 static char *regs_live
;
91 /* Indexed by reg number, nonzero if reg was used in a SUBREG that changes
94 static char *regs_change_size
;
96 /* Indexed by reg number, nonzero if reg crosses a setjmp. */
98 static char *regs_crosses_setjmp
;
100 /* Indexed by insn's suid, the set of hard regs live after that insn. */
102 static HARD_REG_SET
*after_insn_hard_regs
;
104 /* Record that hard reg REGNO is live after insn INSN. */
106 #define MARK_LIVE_AFTER(INSN,REGNO) \
107 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (INSN)], (REGNO))
109 static int stupid_reg_compare
PROTO((const GENERIC_PTR
,const GENERIC_PTR
));
110 static int stupid_find_reg
PROTO((int, enum reg_class
, enum machine_mode
,
112 static void stupid_mark_refs
PROTO((rtx
, rtx
));
114 /* Stupid life analysis is for the case where only variables declared
115 `register' go in registers. For this case, we mark all
116 pseudo-registers that belong to register variables as
117 dying in the last instruction of the function, and all other
118 pseudo registers as dying in the last place they are referenced.
119 Hard registers are marked as dying in the last reference before
120 the end or before each store into them. */
123 stupid_life_analysis (f
, nregs
, file
)
129 register rtx last
, insn
;
130 int max_uid
, max_suid
;
132 bzero (regs_ever_live
, sizeof regs_ever_live
);
134 regs_live
= (char *) alloca (nregs
);
136 /* First find the last real insn, and count the number of insns,
137 and assign insns their suids. */
139 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
140 if (INSN_UID (insn
) > i
)
144 uid_suid
= (int *) alloca ((i
+ 1) * sizeof (int));
146 /* Compute the mapping from uids to suids.
147 Suids are numbers assigned to insns, like uids,
148 except that suids increase monotonically through the code. */
150 last
= 0; /* In case of empty function body */
151 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
153 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
156 INSN_SUID (insn
) = ++i
;
159 last_call_suid
= i
+ 1;
160 last_setjmp_suid
= i
+ 1;
165 /* Allocate tables to record info about regs. */
167 reg_where_dead
= (int *) alloca (nregs
* sizeof (int));
168 bzero ((char *) reg_where_dead
, nregs
* sizeof (int));
170 reg_where_born
= (int *) alloca (nregs
* sizeof (int));
171 bzero ((char *) reg_where_born
, nregs
* sizeof (int));
173 reg_order
= (int *) alloca (nregs
* sizeof (int));
174 bzero ((char *) reg_order
, nregs
* sizeof (int));
176 regs_change_size
= (char *) alloca (nregs
* sizeof (char));
177 bzero ((char *) regs_change_size
, nregs
* sizeof (char));
179 regs_crosses_setjmp
= (char *) alloca (nregs
* sizeof (char));
180 bzero ((char *) regs_crosses_setjmp
, nregs
* sizeof (char));
182 /* Allocate the reg_renumber array */
183 allocate_reg_info (max_regno
, FALSE
, TRUE
);
184 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
188 = (HARD_REG_SET
*) alloca (max_suid
* sizeof (HARD_REG_SET
));
190 bzero ((char *) after_insn_hard_regs
, max_suid
* sizeof (HARD_REG_SET
));
192 /* Allocate and zero out many data structures
193 that will record the data from lifetime analysis. */
195 allocate_for_life_analysis ();
197 for (i
= 0; i
< max_regno
; i
++)
198 REG_N_DEATHS (i
) = 1;
200 bzero (regs_live
, nregs
);
202 /* Find where each pseudo register is born and dies,
203 by scanning all insns from the end to the start
204 and noting all mentions of the registers.
206 Also find where each hard register is live
207 and record that info in after_insn_hard_regs.
208 regs_live[I] is 1 if hard reg I is live
209 at the current point in the scan. */
211 for (insn
= last
; insn
; insn
= PREV_INSN (insn
))
213 register HARD_REG_SET
*p
= after_insn_hard_regs
+ INSN_SUID (insn
);
215 /* Copy the info in regs_live into the element of after_insn_hard_regs
216 for the current position in the rtl code. */
218 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
220 SET_HARD_REG_BIT (*p
, i
);
222 /* Update which hard regs are currently live
223 and also the birth and death suids of pseudo regs
224 based on the pattern of this insn. */
226 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
227 stupid_mark_refs (PATTERN (insn
), insn
);
229 if (GET_CODE (insn
) == NOTE
230 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_SETJMP
)
231 last_setjmp_suid
= INSN_SUID (insn
);
233 /* Mark all call-clobbered regs as live after each call insn
234 so that a pseudo whose life span includes this insn
235 will not go in one of them.
236 Then mark those regs as all dead for the continuing scan
237 of the insns before the call. */
239 if (GET_CODE (insn
) == CALL_INSN
)
241 last_call_suid
= INSN_SUID (insn
);
242 IOR_HARD_REG_SET (after_insn_hard_regs
[last_call_suid
],
245 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
246 if (call_used_regs
[i
])
249 /* It is important that this be done after processing the insn's
250 pattern because we want the function result register to still
251 be live if it's also used to pass arguments. */
252 stupid_mark_refs (CALL_INSN_FUNCTION_USAGE (insn
), insn
);
256 /* Now decide the order in which to allocate the pseudo registers. */
258 for (i
= LAST_VIRTUAL_REGISTER
+ 1; i
< max_regno
; i
++)
261 qsort (®_order
[LAST_VIRTUAL_REGISTER
+ 1],
262 max_regno
- LAST_VIRTUAL_REGISTER
- 1, sizeof (int),
265 /* Now, in that order, try to find hard registers for those pseudo regs. */
267 for (i
= LAST_VIRTUAL_REGISTER
+ 1; i
< max_regno
; i
++)
269 register int r
= reg_order
[i
];
271 /* Some regnos disappear from the rtl. Ignore them to avoid crash.
272 Also don't allocate registers that cross a setjmp, or live across
273 a call if this function receives a nonlocal goto. */
274 if (regno_reg_rtx
[r
] == 0 || regs_crosses_setjmp
[r
]
275 || (REG_N_CALLS_CROSSED (r
) > 0
276 && current_function_has_nonlocal_label
))
279 /* Now find the best hard-register class for this pseudo register */
280 if (N_REG_CLASSES
> 1)
281 reg_renumber
[r
] = stupid_find_reg (REG_N_CALLS_CROSSED (r
),
282 reg_preferred_class (r
),
283 PSEUDO_REGNO_MODE (r
),
286 regs_change_size
[r
]);
288 /* If no reg available in that class, try alternate class. */
289 if (reg_renumber
[r
] == -1 && reg_alternate_class (r
) != NO_REGS
)
290 reg_renumber
[r
] = stupid_find_reg (REG_N_CALLS_CROSSED (r
),
291 reg_alternate_class (r
),
292 PSEUDO_REGNO_MODE (r
),
295 regs_change_size
[r
]);
299 dump_flow_info (file
);
302 /* Comparison function for qsort.
303 Returns -1 (1) if register *R1P is higher priority than *R2P. */
306 stupid_reg_compare (r1p
, r2p
)
307 const GENERIC_PTR r1p
;
308 const GENERIC_PTR r2p
;
310 register int r1
= *(int *)r1p
, r2
= *(int *)r2p
;
311 register int len1
= reg_where_dead
[r1
] - reg_where_born
[r1
];
312 register int len2
= reg_where_dead
[r2
] - reg_where_born
[r2
];
319 tem
= REG_N_REFS (r1
) - REG_N_REFS (r2
);
323 /* If regs are equally good, sort by regno,
324 so that the results of qsort leave nothing to chance. */
328 /* Find a block of SIZE words of hard registers in reg_class CLASS
329 that can hold a value of machine-mode MODE
330 (but actually we test only the first of the block for holding MODE)
331 currently free from after insn whose suid is BORN_INSN
332 through the insn whose suid is DEAD_INSN,
333 and return the number of the first of them.
334 Return -1 if such a block cannot be found.
336 If CALL_PRESERVED is nonzero, insist on registers preserved
337 over subroutine calls, and return -1 if cannot find such.
339 If CHANGES_SIZE is nonzero, it means this register was used as the
340 operand of a SUBREG that changes its size. */
343 stupid_find_reg (call_preserved
, class, mode
,
344 born_insn
, dead_insn
, changes_size
)
346 enum reg_class
class;
347 enum machine_mode mode
;
348 int born_insn
, dead_insn
;
353 register /* Declare them register if they are scalars. */
355 HARD_REG_SET used
, this_reg
;
356 #ifdef ELIMINABLE_REGS
357 static struct {int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
360 /* If this register's life is more than 5,000 insns, we probably
361 can't allocate it, so don't waste the time trying. This avoids
362 quadratic behavior on programs that have regularly-occurring
364 if (dead_insn
> born_insn
+ 5000)
367 COPY_HARD_REG_SET (used
,
368 call_preserved
? call_used_reg_set
: fixed_reg_set
);
370 #ifdef ELIMINABLE_REGS
371 for (i
= 0; i
< sizeof eliminables
/ sizeof eliminables
[0]; i
++)
372 SET_HARD_REG_BIT (used
, eliminables
[i
].from
);
373 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
374 SET_HARD_REG_BIT (used
, HARD_FRAME_POINTER_REGNUM
);
377 SET_HARD_REG_BIT (used
, FRAME_POINTER_REGNUM
);
380 for (ins
= born_insn
; ins
< dead_insn
; ins
++)
381 IOR_HARD_REG_SET (used
, after_insn_hard_regs
[ins
]);
383 IOR_COMPL_HARD_REG_SET (used
, reg_class_contents
[(int) class]);
385 #ifdef CLASS_CANNOT_CHANGE_SIZE
387 IOR_HARD_REG_SET (used
,
388 reg_class_contents
[(int) CLASS_CANNOT_CHANGE_SIZE
]);
391 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
393 #ifdef REG_ALLOC_ORDER
394 int regno
= reg_alloc_order
[i
];
399 /* If a register has screwy overlap problems,
400 don't use it at all if not optimizing.
401 Actually this is only for the 387 stack register,
402 and it's because subsequent code won't work. */
403 #ifdef OVERLAPPING_REGNO_P
404 if (OVERLAPPING_REGNO_P (regno
))
408 if (! TEST_HARD_REG_BIT (used
, regno
)
409 && HARD_REGNO_MODE_OK (regno
, mode
))
412 register int size1
= HARD_REGNO_NREGS (regno
, mode
);
413 for (j
= 1; j
< size1
&& ! TEST_HARD_REG_BIT (used
, regno
+ j
); j
++);
416 CLEAR_HARD_REG_SET (this_reg
);
418 SET_HARD_REG_BIT (this_reg
, regno
+ j
);
419 for (ins
= born_insn
; ins
< dead_insn
; ins
++)
421 IOR_HARD_REG_SET (after_insn_hard_regs
[ins
], this_reg
);
425 #ifndef REG_ALLOC_ORDER
426 i
+= j
; /* Skip starting points we know will lose */
434 /* Walk X, noting all assignments and references to registers
435 and recording what they imply about life spans.
436 INSN is the current insn, supplied so we can find its suid. */
439 stupid_mark_refs (x
, insn
)
442 register RTX_CODE code
;
444 register int regno
, i
;
451 if (code
== SET
|| code
== CLOBBER
)
453 if (SET_DEST (x
) != 0
454 && (GET_CODE (SET_DEST (x
)) == REG
455 || (GET_CODE (SET_DEST (x
)) == SUBREG
456 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
457 && (REGNO (SUBREG_REG (SET_DEST (x
)))
458 >= FIRST_PSEUDO_REGISTER
))))
460 /* Register is being assigned. */
461 /* If setting a SUBREG, we treat the entire reg as being set. */
462 if (GET_CODE (SET_DEST (x
)) == SUBREG
)
463 regno
= REGNO (SUBREG_REG (SET_DEST (x
)));
465 regno
= REGNO (SET_DEST (x
));
467 /* For hard regs, update the where-live info. */
468 if (regno
< FIRST_PSEUDO_REGISTER
)
471 = HARD_REGNO_NREGS (regno
, GET_MODE (SET_DEST (x
)));
475 regs_ever_live
[regno
+j
] = 1;
476 regs_live
[regno
+j
] = 0;
478 /* The following line is for unused outputs;
479 they do get stored even though never used again. */
480 MARK_LIVE_AFTER (insn
, regno
+j
);
482 /* When a hard reg is clobbered, mark it in use
483 just before this insn, so it is live all through. */
484 if (code
== CLOBBER
&& INSN_SUID (insn
) > 0)
485 SET_HARD_REG_BIT (after_insn_hard_regs
[INSN_SUID (insn
) - 1],
489 /* For pseudo regs, record where born, where dead, number of
490 times used, and whether live across a call. */
493 /* Update the life-interval bounds of this pseudo reg. */
495 /* When a pseudo-reg is CLOBBERed, it is born just before
496 the clobbering insn. When setting, just after. */
497 int where_born
= INSN_SUID (insn
) - (code
== CLOBBER
);
499 reg_where_born
[regno
] = where_born
;
501 /* The reg must live at least one insn even
502 in it is never again used--because it has to go
503 in SOME hard reg. Mark it as dying after the current
504 insn so that it will conflict with any other outputs of
506 if (reg_where_dead
[regno
] < where_born
+ 2)
508 reg_where_dead
[regno
] = where_born
+ 2;
509 regs_live
[regno
] = 1;
512 /* Count the refs of this reg. */
513 REG_N_REFS (regno
)++;
515 if (last_call_suid
< reg_where_dead
[regno
])
516 REG_N_CALLS_CROSSED (regno
) += 1;
518 if (last_setjmp_suid
< reg_where_dead
[regno
])
519 regs_crosses_setjmp
[regno
] = 1;
521 /* If this register is only used in this insn and is only
522 set, mark it unused. We have to do this even when not
523 optimizing so that MD patterns which count on this
524 behavior (e.g., it not causing an output reload on
525 an insn setting CC) will operate correctly. */
526 if (GET_CODE (SET_DEST (x
)) == REG
527 && REGNO_FIRST_UID (regno
) == INSN_UID (insn
)
528 && REGNO_LAST_UID (regno
) == INSN_UID (insn
)
529 && (code
== CLOBBER
|| ! reg_mentioned_p (SET_DEST (x
),
531 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_UNUSED
,
532 SET_DEST (x
), REG_NOTES (insn
));
536 /* Record references from the value being set,
537 or from addresses in the place being set if that's not a reg.
538 If setting a SUBREG, we treat the entire reg as *used*. */
541 stupid_mark_refs (SET_SRC (x
), insn
);
542 if (GET_CODE (SET_DEST (x
)) != REG
)
543 stupid_mark_refs (SET_DEST (x
), insn
);
548 else if (code
== SUBREG
549 && GET_CODE (SUBREG_REG (x
)) == REG
550 && REGNO (SUBREG_REG (x
)) >= FIRST_PSEUDO_REGISTER
551 && (GET_MODE_SIZE (GET_MODE (x
))
552 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
553 && (INTEGRAL_MODE_P (GET_MODE (x
))
554 || INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (x
)))))
555 regs_change_size
[REGNO (SUBREG_REG (x
))] = 1;
557 /* Register value being used, not set. */
559 else if (code
== REG
)
562 if (regno
< FIRST_PSEUDO_REGISTER
)
564 /* Hard reg: mark it live for continuing scan of previous insns. */
565 register int j
= HARD_REGNO_NREGS (regno
, GET_MODE (x
));
568 regs_ever_live
[regno
+j
] = 1;
569 regs_live
[regno
+j
] = 1;
574 /* Pseudo reg: record first use, last use and number of uses. */
576 reg_where_born
[regno
] = INSN_SUID (insn
);
577 REG_N_REFS (regno
)++;
578 if (regs_live
[regno
] == 0)
580 regs_live
[regno
] = 1;
581 reg_where_dead
[regno
] = INSN_SUID (insn
);
587 /* Recursive scan of all other rtx's. */
589 fmt
= GET_RTX_FORMAT (code
);
590 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
593 stupid_mark_refs (XEXP (x
, i
), insn
);
597 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
598 stupid_mark_refs (XVECEXP (x
, i
, j
), insn
);