* reorg.c (mostly_true_jump): Clean up code depending on
[official-gcc.git] / gcc / dwarf2out.c
blobf5860f213ecad59d9b8d1f5116b5790150ac3302
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 DEF_VEC_P(rtx);
117 DEF_VEC_ALLOC_P(rtx,gc);
119 /* Array of RTXes referenced by the debugging information, which therefore
120 must be kept around forever. */
121 static GTY(()) VEC(rtx,gc) *used_rtx_array;
123 /* A pointer to the base of a list of incomplete types which might be
124 completed at some later time. incomplete_types_list needs to be a
125 VEC(tree,gc) because we want to tell the garbage collector about
126 it. */
127 static GTY(()) VEC(tree,gc) *incomplete_types;
129 /* A pointer to the base of a table of references to declaration
130 scopes. This table is a display which tracks the nesting
131 of declaration scopes at the current scope and containing
132 scopes. This table is used to find the proper place to
133 define type declaration DIE's. */
134 static GTY(()) VEC(tree,gc) *decl_scope_table;
136 /* Pointers to various DWARF2 sections. */
137 static GTY(()) section *debug_info_section;
138 static GTY(()) section *debug_abbrev_section;
139 static GTY(()) section *debug_aranges_section;
140 static GTY(()) section *debug_macinfo_section;
141 static GTY(()) section *debug_line_section;
142 static GTY(()) section *debug_loc_section;
143 static GTY(()) section *debug_pubnames_section;
144 static GTY(()) section *debug_str_section;
145 static GTY(()) section *debug_ranges_section;
147 /* How to start an assembler comment. */
148 #ifndef ASM_COMMENT_START
149 #define ASM_COMMENT_START ";#"
150 #endif
152 typedef struct dw_cfi_struct *dw_cfi_ref;
153 typedef struct dw_fde_struct *dw_fde_ref;
154 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
156 /* Call frames are described using a sequence of Call Frame
157 Information instructions. The register number, offset
158 and address fields are provided as possible operands;
159 their use is selected by the opcode field. */
161 enum dw_cfi_oprnd_type {
162 dw_cfi_oprnd_unused,
163 dw_cfi_oprnd_reg_num,
164 dw_cfi_oprnd_offset,
165 dw_cfi_oprnd_addr,
166 dw_cfi_oprnd_loc
169 typedef union dw_cfi_oprnd_struct GTY(())
171 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
172 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
173 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
174 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
176 dw_cfi_oprnd;
178 typedef struct dw_cfi_struct GTY(())
180 dw_cfi_ref dw_cfi_next;
181 enum dwarf_call_frame_info dw_cfi_opc;
182 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
183 dw_cfi_oprnd1;
184 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
185 dw_cfi_oprnd2;
187 dw_cfi_node;
189 /* This is how we define the location of the CFA. We use to handle it
190 as REG + OFFSET all the time, but now it can be more complex.
191 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
192 Instead of passing around REG and OFFSET, we pass a copy
193 of this structure. */
194 typedef struct cfa_loc GTY(())
196 HOST_WIDE_INT offset;
197 HOST_WIDE_INT base_offset;
198 unsigned int reg;
199 int indirect; /* 1 if CFA is accessed via a dereference. */
200 } dw_cfa_location;
202 /* All call frame descriptions (FDE's) in the GCC generated DWARF
203 refer to a single Common Information Entry (CIE), defined at
204 the beginning of the .debug_frame section. This use of a single
205 CIE obviates the need to keep track of multiple CIE's
206 in the DWARF generation routines below. */
208 typedef struct dw_fde_struct GTY(())
210 tree decl;
211 const char *dw_fde_begin;
212 const char *dw_fde_current_label;
213 const char *dw_fde_end;
214 const char *dw_fde_hot_section_label;
215 const char *dw_fde_hot_section_end_label;
216 const char *dw_fde_unlikely_section_label;
217 const char *dw_fde_unlikely_section_end_label;
218 bool dw_fde_switched_sections;
219 dw_cfi_ref dw_fde_cfi;
220 unsigned funcdef_number;
221 unsigned all_throwers_are_sibcalls : 1;
222 unsigned nothrow : 1;
223 unsigned uses_eh_lsda : 1;
225 dw_fde_node;
227 /* Maximum size (in bytes) of an artificially generated label. */
228 #define MAX_ARTIFICIAL_LABEL_BYTES 30
230 /* The size of addresses as they appear in the Dwarf 2 data.
231 Some architectures use word addresses to refer to code locations,
232 but Dwarf 2 info always uses byte addresses. On such machines,
233 Dwarf 2 addresses need to be larger than the architecture's
234 pointers. */
235 #ifndef DWARF2_ADDR_SIZE
236 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
237 #endif
239 /* The size in bytes of a DWARF field indicating an offset or length
240 relative to a debug info section, specified to be 4 bytes in the
241 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
242 as PTR_SIZE. */
244 #ifndef DWARF_OFFSET_SIZE
245 #define DWARF_OFFSET_SIZE 4
246 #endif
248 /* According to the (draft) DWARF 3 specification, the initial length
249 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
250 bytes are 0xffffffff, followed by the length stored in the next 8
251 bytes.
253 However, the SGI/MIPS ABI uses an initial length which is equal to
254 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
256 #ifndef DWARF_INITIAL_LENGTH_SIZE
257 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
258 #endif
260 #define DWARF_VERSION 2
262 /* Round SIZE up to the nearest BOUNDARY. */
263 #define DWARF_ROUND(SIZE,BOUNDARY) \
264 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
266 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
267 #ifndef DWARF_CIE_DATA_ALIGNMENT
268 #ifdef STACK_GROWS_DOWNWARD
269 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
270 #else
271 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
272 #endif
273 #endif
275 /* A pointer to the base of a table that contains frame description
276 information for each routine. */
277 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
279 /* Number of elements currently allocated for fde_table. */
280 static GTY(()) unsigned fde_table_allocated;
282 /* Number of elements in fde_table currently in use. */
283 static GTY(()) unsigned fde_table_in_use;
285 /* Size (in elements) of increments by which we may expand the
286 fde_table. */
287 #define FDE_TABLE_INCREMENT 256
289 /* A list of call frame insns for the CIE. */
290 static GTY(()) dw_cfi_ref cie_cfi_head;
292 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
293 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
294 attribute that accelerates the lookup of the FDE associated
295 with the subprogram. This variable holds the table index of the FDE
296 associated with the current function (body) definition. */
297 static unsigned current_funcdef_fde;
298 #endif
300 struct indirect_string_node GTY(())
302 const char *str;
303 unsigned int refcount;
304 unsigned int form;
305 char *label;
308 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
310 static GTY(()) int dw2_string_counter;
311 static GTY(()) unsigned long dwarf2out_cfi_label_num;
313 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
315 /* Forward declarations for functions defined in this file. */
317 static char *stripattributes (const char *);
318 static const char *dwarf_cfi_name (unsigned);
319 static dw_cfi_ref new_cfi (void);
320 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
321 static void add_fde_cfi (const char *, dw_cfi_ref);
322 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
323 static void lookup_cfa (dw_cfa_location *);
324 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
325 static void initial_return_save (rtx);
326 static HOST_WIDE_INT stack_adjust_offset (rtx);
327 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
328 static void output_call_frame_info (int);
329 static void dwarf2out_stack_adjust (rtx, bool);
330 static void flush_queued_reg_saves (void);
331 static bool clobbers_queued_reg_save (rtx);
332 static void dwarf2out_frame_debug_expr (rtx, const char *);
334 /* Support for complex CFA locations. */
335 static void output_cfa_loc (dw_cfi_ref);
336 static void get_cfa_from_loc_descr (dw_cfa_location *,
337 struct dw_loc_descr_struct *);
338 static struct dw_loc_descr_struct *build_cfa_loc
339 (dw_cfa_location *);
340 static void def_cfa_1 (const char *, dw_cfa_location *);
342 /* How to start an assembler comment. */
343 #ifndef ASM_COMMENT_START
344 #define ASM_COMMENT_START ";#"
345 #endif
347 /* Data and reference forms for relocatable data. */
348 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
349 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
351 #ifndef DEBUG_FRAME_SECTION
352 #define DEBUG_FRAME_SECTION ".debug_frame"
353 #endif
355 #ifndef FUNC_BEGIN_LABEL
356 #define FUNC_BEGIN_LABEL "LFB"
357 #endif
359 #ifndef FUNC_END_LABEL
360 #define FUNC_END_LABEL "LFE"
361 #endif
363 #ifndef FRAME_BEGIN_LABEL
364 #define FRAME_BEGIN_LABEL "Lframe"
365 #endif
366 #define CIE_AFTER_SIZE_LABEL "LSCIE"
367 #define CIE_END_LABEL "LECIE"
368 #define FDE_LABEL "LSFDE"
369 #define FDE_AFTER_SIZE_LABEL "LASFDE"
370 #define FDE_END_LABEL "LEFDE"
371 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
372 #define LINE_NUMBER_END_LABEL "LELT"
373 #define LN_PROLOG_AS_LABEL "LASLTP"
374 #define LN_PROLOG_END_LABEL "LELTP"
375 #define DIE_LABEL_PREFIX "DW"
377 /* The DWARF 2 CFA column which tracks the return address. Normally this
378 is the column for PC, or the first column after all of the hard
379 registers. */
380 #ifndef DWARF_FRAME_RETURN_COLUMN
381 #ifdef PC_REGNUM
382 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
383 #else
384 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
385 #endif
386 #endif
388 /* The mapping from gcc register number to DWARF 2 CFA column number. By
389 default, we just provide columns for all registers. */
390 #ifndef DWARF_FRAME_REGNUM
391 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
392 #endif
394 /* Hook used by __throw. */
397 expand_builtin_dwarf_sp_column (void)
399 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
402 /* Return a pointer to a copy of the section string name S with all
403 attributes stripped off, and an asterisk prepended (for assemble_name). */
405 static inline char *
406 stripattributes (const char *s)
408 char *stripped = xmalloc (strlen (s) + 2);
409 char *p = stripped;
411 *p++ = '*';
413 while (*s && *s != ',')
414 *p++ = *s++;
416 *p = '\0';
417 return stripped;
420 /* Generate code to initialize the register size table. */
422 void
423 expand_builtin_init_dwarf_reg_sizes (tree address)
425 int i;
426 enum machine_mode mode = TYPE_MODE (char_type_node);
427 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
428 rtx mem = gen_rtx_MEM (BLKmode, addr);
429 bool wrote_return_column = false;
431 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
432 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
434 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
435 enum machine_mode save_mode = reg_raw_mode[i];
436 HOST_WIDE_INT size;
438 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
439 save_mode = choose_hard_reg_mode (i, 1, true);
440 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
442 if (save_mode == VOIDmode)
443 continue;
444 wrote_return_column = true;
446 size = GET_MODE_SIZE (save_mode);
447 if (offset < 0)
448 continue;
450 emit_move_insn (adjust_address (mem, mode, offset),
451 gen_int_mode (size, mode));
454 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
455 gcc_assert (wrote_return_column);
456 i = DWARF_ALT_FRAME_RETURN_COLUMN;
457 wrote_return_column = false;
458 #else
459 i = DWARF_FRAME_RETURN_COLUMN;
460 #endif
462 if (! wrote_return_column)
464 enum machine_mode save_mode = Pmode;
465 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
466 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
467 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
471 /* Convert a DWARF call frame info. operation to its string name */
473 static const char *
474 dwarf_cfi_name (unsigned int cfi_opc)
476 switch (cfi_opc)
478 case DW_CFA_advance_loc:
479 return "DW_CFA_advance_loc";
480 case DW_CFA_offset:
481 return "DW_CFA_offset";
482 case DW_CFA_restore:
483 return "DW_CFA_restore";
484 case DW_CFA_nop:
485 return "DW_CFA_nop";
486 case DW_CFA_set_loc:
487 return "DW_CFA_set_loc";
488 case DW_CFA_advance_loc1:
489 return "DW_CFA_advance_loc1";
490 case DW_CFA_advance_loc2:
491 return "DW_CFA_advance_loc2";
492 case DW_CFA_advance_loc4:
493 return "DW_CFA_advance_loc4";
494 case DW_CFA_offset_extended:
495 return "DW_CFA_offset_extended";
496 case DW_CFA_restore_extended:
497 return "DW_CFA_restore_extended";
498 case DW_CFA_undefined:
499 return "DW_CFA_undefined";
500 case DW_CFA_same_value:
501 return "DW_CFA_same_value";
502 case DW_CFA_register:
503 return "DW_CFA_register";
504 case DW_CFA_remember_state:
505 return "DW_CFA_remember_state";
506 case DW_CFA_restore_state:
507 return "DW_CFA_restore_state";
508 case DW_CFA_def_cfa:
509 return "DW_CFA_def_cfa";
510 case DW_CFA_def_cfa_register:
511 return "DW_CFA_def_cfa_register";
512 case DW_CFA_def_cfa_offset:
513 return "DW_CFA_def_cfa_offset";
515 /* DWARF 3 */
516 case DW_CFA_def_cfa_expression:
517 return "DW_CFA_def_cfa_expression";
518 case DW_CFA_expression:
519 return "DW_CFA_expression";
520 case DW_CFA_offset_extended_sf:
521 return "DW_CFA_offset_extended_sf";
522 case DW_CFA_def_cfa_sf:
523 return "DW_CFA_def_cfa_sf";
524 case DW_CFA_def_cfa_offset_sf:
525 return "DW_CFA_def_cfa_offset_sf";
527 /* SGI/MIPS specific */
528 case DW_CFA_MIPS_advance_loc8:
529 return "DW_CFA_MIPS_advance_loc8";
531 /* GNU extensions */
532 case DW_CFA_GNU_window_save:
533 return "DW_CFA_GNU_window_save";
534 case DW_CFA_GNU_args_size:
535 return "DW_CFA_GNU_args_size";
536 case DW_CFA_GNU_negative_offset_extended:
537 return "DW_CFA_GNU_negative_offset_extended";
539 default:
540 return "DW_CFA_<unknown>";
544 /* Return a pointer to a newly allocated Call Frame Instruction. */
546 static inline dw_cfi_ref
547 new_cfi (void)
549 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
551 cfi->dw_cfi_next = NULL;
552 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
553 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
555 return cfi;
558 /* Add a Call Frame Instruction to list of instructions. */
560 static inline void
561 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
563 dw_cfi_ref *p;
565 /* Find the end of the chain. */
566 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
569 *p = cfi;
572 /* Generate a new label for the CFI info to refer to. */
574 char *
575 dwarf2out_cfi_label (void)
577 static char label[20];
579 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
580 ASM_OUTPUT_LABEL (asm_out_file, label);
581 return label;
584 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
585 or to the CIE if LABEL is NULL. */
587 static void
588 add_fde_cfi (const char *label, dw_cfi_ref cfi)
590 if (label)
592 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
594 if (*label == 0)
595 label = dwarf2out_cfi_label ();
597 if (fde->dw_fde_current_label == NULL
598 || strcmp (label, fde->dw_fde_current_label) != 0)
600 dw_cfi_ref xcfi;
602 fde->dw_fde_current_label = label = xstrdup (label);
604 /* Set the location counter to the new label. */
605 xcfi = new_cfi ();
606 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
607 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
608 add_cfi (&fde->dw_fde_cfi, xcfi);
611 add_cfi (&fde->dw_fde_cfi, cfi);
614 else
615 add_cfi (&cie_cfi_head, cfi);
618 /* Subroutine of lookup_cfa. */
620 static void
621 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
623 switch (cfi->dw_cfi_opc)
625 case DW_CFA_def_cfa_offset:
626 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
627 break;
628 case DW_CFA_def_cfa_offset_sf:
629 loc->offset
630 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
631 break;
632 case DW_CFA_def_cfa_register:
633 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
634 break;
635 case DW_CFA_def_cfa:
636 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
637 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
638 break;
639 case DW_CFA_def_cfa_sf:
640 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
641 loc->offset
642 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
643 break;
644 case DW_CFA_def_cfa_expression:
645 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
646 break;
647 default:
648 break;
652 /* Find the previous value for the CFA. */
654 static void
655 lookup_cfa (dw_cfa_location *loc)
657 dw_cfi_ref cfi;
659 loc->reg = INVALID_REGNUM;
660 loc->offset = 0;
661 loc->indirect = 0;
662 loc->base_offset = 0;
664 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
665 lookup_cfa_1 (cfi, loc);
667 if (fde_table_in_use)
669 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
670 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
671 lookup_cfa_1 (cfi, loc);
675 /* The current rule for calculating the DWARF2 canonical frame address. */
676 static dw_cfa_location cfa;
678 /* The register used for saving registers to the stack, and its offset
679 from the CFA. */
680 static dw_cfa_location cfa_store;
682 /* The running total of the size of arguments pushed onto the stack. */
683 static HOST_WIDE_INT args_size;
685 /* The last args_size we actually output. */
686 static HOST_WIDE_INT old_args_size;
688 /* Entry point to update the canonical frame address (CFA).
689 LABEL is passed to add_fde_cfi. The value of CFA is now to be
690 calculated from REG+OFFSET. */
692 void
693 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
695 dw_cfa_location loc;
696 loc.indirect = 0;
697 loc.base_offset = 0;
698 loc.reg = reg;
699 loc.offset = offset;
700 def_cfa_1 (label, &loc);
703 /* Determine if two dw_cfa_location structures define the same data. */
705 static bool
706 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
708 return (loc1->reg == loc2->reg
709 && loc1->offset == loc2->offset
710 && loc1->indirect == loc2->indirect
711 && (loc1->indirect == 0
712 || loc1->base_offset == loc2->base_offset));
715 /* This routine does the actual work. The CFA is now calculated from
716 the dw_cfa_location structure. */
718 static void
719 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
721 dw_cfi_ref cfi;
722 dw_cfa_location old_cfa, loc;
724 cfa = *loc_p;
725 loc = *loc_p;
727 if (cfa_store.reg == loc.reg && loc.indirect == 0)
728 cfa_store.offset = loc.offset;
730 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
731 lookup_cfa (&old_cfa);
733 /* If nothing changed, no need to issue any call frame instructions. */
734 if (cfa_equal_p (&loc, &old_cfa))
735 return;
737 cfi = new_cfi ();
739 if (loc.reg == old_cfa.reg && !loc.indirect)
741 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
742 the CFA register did not change but the offset did. */
743 if (loc.offset < 0)
745 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
746 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
748 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
749 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
751 else
753 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
754 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
758 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
759 else if (loc.offset == old_cfa.offset
760 && old_cfa.reg != INVALID_REGNUM
761 && !loc.indirect)
763 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
764 indicating the CFA register has changed to <register> but the
765 offset has not changed. */
766 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
767 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
769 #endif
771 else if (loc.indirect == 0)
773 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
774 indicating the CFA register has changed to <register> with
775 the specified offset. */
776 if (loc.offset < 0)
778 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
779 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
781 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
782 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
783 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
785 else
787 cfi->dw_cfi_opc = DW_CFA_def_cfa;
788 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
789 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
792 else
794 /* Construct a DW_CFA_def_cfa_expression instruction to
795 calculate the CFA using a full location expression since no
796 register-offset pair is available. */
797 struct dw_loc_descr_struct *loc_list;
799 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
800 loc_list = build_cfa_loc (&loc);
801 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
804 add_fde_cfi (label, cfi);
807 /* Add the CFI for saving a register. REG is the CFA column number.
808 LABEL is passed to add_fde_cfi.
809 If SREG is -1, the register is saved at OFFSET from the CFA;
810 otherwise it is saved in SREG. */
812 static void
813 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
815 dw_cfi_ref cfi = new_cfi ();
817 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
819 if (sreg == INVALID_REGNUM)
821 if (reg & ~0x3f)
822 /* The register number won't fit in 6 bits, so we have to use
823 the long form. */
824 cfi->dw_cfi_opc = DW_CFA_offset_extended;
825 else
826 cfi->dw_cfi_opc = DW_CFA_offset;
828 #ifdef ENABLE_CHECKING
830 /* If we get an offset that is not a multiple of
831 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
832 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
833 description. */
834 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
836 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
838 #endif
839 offset /= DWARF_CIE_DATA_ALIGNMENT;
840 if (offset < 0)
841 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
843 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
845 else if (sreg == reg)
846 cfi->dw_cfi_opc = DW_CFA_same_value;
847 else
849 cfi->dw_cfi_opc = DW_CFA_register;
850 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
853 add_fde_cfi (label, cfi);
856 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
857 This CFI tells the unwinder that it needs to restore the window registers
858 from the previous frame's window save area.
860 ??? Perhaps we should note in the CIE where windows are saved (instead of
861 assuming 0(cfa)) and what registers are in the window. */
863 void
864 dwarf2out_window_save (const char *label)
866 dw_cfi_ref cfi = new_cfi ();
868 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
869 add_fde_cfi (label, cfi);
872 /* Add a CFI to update the running total of the size of arguments
873 pushed onto the stack. */
875 void
876 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
878 dw_cfi_ref cfi;
880 if (size == old_args_size)
881 return;
883 old_args_size = size;
885 cfi = new_cfi ();
886 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
887 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
888 add_fde_cfi (label, cfi);
891 /* Entry point for saving a register to the stack. REG is the GCC register
892 number. LABEL and OFFSET are passed to reg_save. */
894 void
895 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
897 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
900 /* Entry point for saving the return address in the stack.
901 LABEL and OFFSET are passed to reg_save. */
903 void
904 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
906 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
909 /* Entry point for saving the return address in a register.
910 LABEL and SREG are passed to reg_save. */
912 void
913 dwarf2out_return_reg (const char *label, unsigned int sreg)
915 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
918 /* Record the initial position of the return address. RTL is
919 INCOMING_RETURN_ADDR_RTX. */
921 static void
922 initial_return_save (rtx rtl)
924 unsigned int reg = INVALID_REGNUM;
925 HOST_WIDE_INT offset = 0;
927 switch (GET_CODE (rtl))
929 case REG:
930 /* RA is in a register. */
931 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
932 break;
934 case MEM:
935 /* RA is on the stack. */
936 rtl = XEXP (rtl, 0);
937 switch (GET_CODE (rtl))
939 case REG:
940 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
941 offset = 0;
942 break;
944 case PLUS:
945 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
946 offset = INTVAL (XEXP (rtl, 1));
947 break;
949 case MINUS:
950 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
951 offset = -INTVAL (XEXP (rtl, 1));
952 break;
954 default:
955 gcc_unreachable ();
958 break;
960 case PLUS:
961 /* The return address is at some offset from any value we can
962 actually load. For instance, on the SPARC it is in %i7+8. Just
963 ignore the offset for now; it doesn't matter for unwinding frames. */
964 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
965 initial_return_save (XEXP (rtl, 0));
966 return;
968 default:
969 gcc_unreachable ();
972 if (reg != DWARF_FRAME_RETURN_COLUMN)
973 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
976 /* Given a SET, calculate the amount of stack adjustment it
977 contains. */
979 static HOST_WIDE_INT
980 stack_adjust_offset (rtx pattern)
982 rtx src = SET_SRC (pattern);
983 rtx dest = SET_DEST (pattern);
984 HOST_WIDE_INT offset = 0;
985 enum rtx_code code;
987 if (dest == stack_pointer_rtx)
989 /* (set (reg sp) (plus (reg sp) (const_int))) */
990 code = GET_CODE (src);
991 if (! (code == PLUS || code == MINUS)
992 || XEXP (src, 0) != stack_pointer_rtx
993 || GET_CODE (XEXP (src, 1)) != CONST_INT)
994 return 0;
996 offset = INTVAL (XEXP (src, 1));
997 if (code == PLUS)
998 offset = -offset;
1000 else if (MEM_P (dest))
1002 /* (set (mem (pre_dec (reg sp))) (foo)) */
1003 src = XEXP (dest, 0);
1004 code = GET_CODE (src);
1006 switch (code)
1008 case PRE_MODIFY:
1009 case POST_MODIFY:
1010 if (XEXP (src, 0) == stack_pointer_rtx)
1012 rtx val = XEXP (XEXP (src, 1), 1);
1013 /* We handle only adjustments by constant amount. */
1014 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1015 && GET_CODE (val) == CONST_INT);
1016 offset = -INTVAL (val);
1017 break;
1019 return 0;
1021 case PRE_DEC:
1022 case POST_DEC:
1023 if (XEXP (src, 0) == stack_pointer_rtx)
1025 offset = GET_MODE_SIZE (GET_MODE (dest));
1026 break;
1028 return 0;
1030 case PRE_INC:
1031 case POST_INC:
1032 if (XEXP (src, 0) == stack_pointer_rtx)
1034 offset = -GET_MODE_SIZE (GET_MODE (dest));
1035 break;
1037 return 0;
1039 default:
1040 return 0;
1043 else
1044 return 0;
1046 return offset;
1049 /* Check INSN to see if it looks like a push or a stack adjustment, and
1050 make a note of it if it does. EH uses this information to find out how
1051 much extra space it needs to pop off the stack. */
1053 static void
1054 dwarf2out_stack_adjust (rtx insn, bool after_p)
1056 HOST_WIDE_INT offset;
1057 const char *label;
1058 int i;
1060 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1061 with this function. Proper support would require all frame-related
1062 insns to be marked, and to be able to handle saving state around
1063 epilogues textually in the middle of the function. */
1064 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1065 return;
1067 /* If only calls can throw, and we have a frame pointer,
1068 save up adjustments until we see the CALL_INSN. */
1069 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1071 if (CALL_P (insn) && !after_p)
1073 /* Extract the size of the args from the CALL rtx itself. */
1074 insn = PATTERN (insn);
1075 if (GET_CODE (insn) == PARALLEL)
1076 insn = XVECEXP (insn, 0, 0);
1077 if (GET_CODE (insn) == SET)
1078 insn = SET_SRC (insn);
1079 gcc_assert (GET_CODE (insn) == CALL);
1080 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1082 return;
1085 if (CALL_P (insn) && !after_p)
1087 if (!flag_asynchronous_unwind_tables)
1088 dwarf2out_args_size ("", args_size);
1089 return;
1091 else if (BARRIER_P (insn))
1093 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1094 the compiler will have already emitted a stack adjustment, but
1095 doesn't bother for calls to noreturn functions. */
1096 #ifdef STACK_GROWS_DOWNWARD
1097 offset = -args_size;
1098 #else
1099 offset = args_size;
1100 #endif
1102 else if (GET_CODE (PATTERN (insn)) == SET)
1103 offset = stack_adjust_offset (PATTERN (insn));
1104 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1105 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1107 /* There may be stack adjustments inside compound insns. Search
1108 for them. */
1109 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1110 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1111 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1113 else
1114 return;
1116 if (offset == 0)
1117 return;
1119 if (cfa.reg == STACK_POINTER_REGNUM)
1120 cfa.offset += offset;
1122 #ifndef STACK_GROWS_DOWNWARD
1123 offset = -offset;
1124 #endif
1126 args_size += offset;
1127 if (args_size < 0)
1128 args_size = 0;
1130 label = dwarf2out_cfi_label ();
1131 def_cfa_1 (label, &cfa);
1132 if (flag_asynchronous_unwind_tables)
1133 dwarf2out_args_size (label, args_size);
1136 #endif
1138 /* We delay emitting a register save until either (a) we reach the end
1139 of the prologue or (b) the register is clobbered. This clusters
1140 register saves so that there are fewer pc advances. */
1142 struct queued_reg_save GTY(())
1144 struct queued_reg_save *next;
1145 rtx reg;
1146 HOST_WIDE_INT cfa_offset;
1147 rtx saved_reg;
1150 static GTY(()) struct queued_reg_save *queued_reg_saves;
1152 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1153 struct reg_saved_in_data GTY(()) {
1154 rtx orig_reg;
1155 rtx saved_in_reg;
1158 /* A list of registers saved in other registers.
1159 The list intentionally has a small maximum capacity of 4; if your
1160 port needs more than that, you might consider implementing a
1161 more efficient data structure. */
1162 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1163 static GTY(()) size_t num_regs_saved_in_regs;
1165 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1166 static const char *last_reg_save_label;
1168 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1169 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1171 static void
1172 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1174 struct queued_reg_save *q;
1176 /* Duplicates waste space, but it's also necessary to remove them
1177 for correctness, since the queue gets output in reverse
1178 order. */
1179 for (q = queued_reg_saves; q != NULL; q = q->next)
1180 if (REGNO (q->reg) == REGNO (reg))
1181 break;
1183 if (q == NULL)
1185 q = ggc_alloc (sizeof (*q));
1186 q->next = queued_reg_saves;
1187 queued_reg_saves = q;
1190 q->reg = reg;
1191 q->cfa_offset = offset;
1192 q->saved_reg = sreg;
1194 last_reg_save_label = label;
1197 /* Output all the entries in QUEUED_REG_SAVES. */
1199 static void
1200 flush_queued_reg_saves (void)
1202 struct queued_reg_save *q;
1204 for (q = queued_reg_saves; q; q = q->next)
1206 size_t i;
1207 unsigned int reg, sreg;
1209 for (i = 0; i < num_regs_saved_in_regs; i++)
1210 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1211 break;
1212 if (q->saved_reg && i == num_regs_saved_in_regs)
1214 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1215 num_regs_saved_in_regs++;
1217 if (i != num_regs_saved_in_regs)
1219 regs_saved_in_regs[i].orig_reg = q->reg;
1220 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1223 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1224 if (q->saved_reg)
1225 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1226 else
1227 sreg = INVALID_REGNUM;
1228 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1231 queued_reg_saves = NULL;
1232 last_reg_save_label = NULL;
1235 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1236 location for? Or, does it clobber a register which we've previously
1237 said that some other register is saved in, and for which we now
1238 have a new location for? */
1240 static bool
1241 clobbers_queued_reg_save (rtx insn)
1243 struct queued_reg_save *q;
1245 for (q = queued_reg_saves; q; q = q->next)
1247 size_t i;
1248 if (modified_in_p (q->reg, insn))
1249 return true;
1250 for (i = 0; i < num_regs_saved_in_regs; i++)
1251 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1252 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1253 return true;
1256 return false;
1259 /* Entry point for saving the first register into the second. */
1261 void
1262 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1264 size_t i;
1265 unsigned int regno, sregno;
1267 for (i = 0; i < num_regs_saved_in_regs; i++)
1268 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1269 break;
1270 if (i == num_regs_saved_in_regs)
1272 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1273 num_regs_saved_in_regs++;
1275 regs_saved_in_regs[i].orig_reg = reg;
1276 regs_saved_in_regs[i].saved_in_reg = sreg;
1278 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1279 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1280 reg_save (label, regno, sregno, 0);
1283 /* What register, if any, is currently saved in REG? */
1285 static rtx
1286 reg_saved_in (rtx reg)
1288 unsigned int regn = REGNO (reg);
1289 size_t i;
1290 struct queued_reg_save *q;
1292 for (q = queued_reg_saves; q; q = q->next)
1293 if (q->saved_reg && regn == REGNO (q->saved_reg))
1294 return q->reg;
1296 for (i = 0; i < num_regs_saved_in_regs; i++)
1297 if (regs_saved_in_regs[i].saved_in_reg
1298 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1299 return regs_saved_in_regs[i].orig_reg;
1301 return NULL_RTX;
1305 /* A temporary register holding an integral value used in adjusting SP
1306 or setting up the store_reg. The "offset" field holds the integer
1307 value, not an offset. */
1308 static dw_cfa_location cfa_temp;
1310 /* Record call frame debugging information for an expression EXPR,
1311 which either sets SP or FP (adjusting how we calculate the frame
1312 address) or saves a register to the stack or another register.
1313 LABEL indicates the address of EXPR.
1315 This function encodes a state machine mapping rtxes to actions on
1316 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1317 users need not read the source code.
1319 The High-Level Picture
1321 Changes in the register we use to calculate the CFA: Currently we
1322 assume that if you copy the CFA register into another register, we
1323 should take the other one as the new CFA register; this seems to
1324 work pretty well. If it's wrong for some target, it's simple
1325 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1327 Changes in the register we use for saving registers to the stack:
1328 This is usually SP, but not always. Again, we deduce that if you
1329 copy SP into another register (and SP is not the CFA register),
1330 then the new register is the one we will be using for register
1331 saves. This also seems to work.
1333 Register saves: There's not much guesswork about this one; if
1334 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1335 register save, and the register used to calculate the destination
1336 had better be the one we think we're using for this purpose.
1337 It's also assumed that a copy from a call-saved register to another
1338 register is saving that register if RTX_FRAME_RELATED_P is set on
1339 that instruction. If the copy is from a call-saved register to
1340 the *same* register, that means that the register is now the same
1341 value as in the caller.
1343 Except: If the register being saved is the CFA register, and the
1344 offset is nonzero, we are saving the CFA, so we assume we have to
1345 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1346 the intent is to save the value of SP from the previous frame.
1348 In addition, if a register has previously been saved to a different
1349 register,
1351 Invariants / Summaries of Rules
1353 cfa current rule for calculating the CFA. It usually
1354 consists of a register and an offset.
1355 cfa_store register used by prologue code to save things to the stack
1356 cfa_store.offset is the offset from the value of
1357 cfa_store.reg to the actual CFA
1358 cfa_temp register holding an integral value. cfa_temp.offset
1359 stores the value, which will be used to adjust the
1360 stack pointer. cfa_temp is also used like cfa_store,
1361 to track stores to the stack via fp or a temp reg.
1363 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1364 with cfa.reg as the first operand changes the cfa.reg and its
1365 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1366 cfa_temp.offset.
1368 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1369 expression yielding a constant. This sets cfa_temp.reg
1370 and cfa_temp.offset.
1372 Rule 5: Create a new register cfa_store used to save items to the
1373 stack.
1375 Rules 10-14: Save a register to the stack. Define offset as the
1376 difference of the original location and cfa_store's
1377 location (or cfa_temp's location if cfa_temp is used).
1379 The Rules
1381 "{a,b}" indicates a choice of a xor b.
1382 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1384 Rule 1:
1385 (set <reg1> <reg2>:cfa.reg)
1386 effects: cfa.reg = <reg1>
1387 cfa.offset unchanged
1388 cfa_temp.reg = <reg1>
1389 cfa_temp.offset = cfa.offset
1391 Rule 2:
1392 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1393 {<const_int>,<reg>:cfa_temp.reg}))
1394 effects: cfa.reg = sp if fp used
1395 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1396 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1397 if cfa_store.reg==sp
1399 Rule 3:
1400 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1401 effects: cfa.reg = fp
1402 cfa_offset += +/- <const_int>
1404 Rule 4:
1405 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1406 constraints: <reg1> != fp
1407 <reg1> != sp
1408 effects: cfa.reg = <reg1>
1409 cfa_temp.reg = <reg1>
1410 cfa_temp.offset = cfa.offset
1412 Rule 5:
1413 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1414 constraints: <reg1> != fp
1415 <reg1> != sp
1416 effects: cfa_store.reg = <reg1>
1417 cfa_store.offset = cfa.offset - cfa_temp.offset
1419 Rule 6:
1420 (set <reg> <const_int>)
1421 effects: cfa_temp.reg = <reg>
1422 cfa_temp.offset = <const_int>
1424 Rule 7:
1425 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1426 effects: cfa_temp.reg = <reg1>
1427 cfa_temp.offset |= <const_int>
1429 Rule 8:
1430 (set <reg> (high <exp>))
1431 effects: none
1433 Rule 9:
1434 (set <reg> (lo_sum <exp> <const_int>))
1435 effects: cfa_temp.reg = <reg>
1436 cfa_temp.offset = <const_int>
1438 Rule 10:
1439 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1440 effects: cfa_store.offset -= <const_int>
1441 cfa.offset = cfa_store.offset if cfa.reg == sp
1442 cfa.reg = sp
1443 cfa.base_offset = -cfa_store.offset
1445 Rule 11:
1446 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1447 effects: cfa_store.offset += -/+ mode_size(mem)
1448 cfa.offset = cfa_store.offset if cfa.reg == sp
1449 cfa.reg = sp
1450 cfa.base_offset = -cfa_store.offset
1452 Rule 12:
1453 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1455 <reg2>)
1456 effects: cfa.reg = <reg1>
1457 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1459 Rule 13:
1460 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1461 effects: cfa.reg = <reg1>
1462 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1464 Rule 14:
1465 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1466 effects: cfa.reg = <reg1>
1467 cfa.base_offset = -cfa_temp.offset
1468 cfa_temp.offset -= mode_size(mem)
1470   Rule 15:
1471   (set <reg> {unspec, unspec_volatile})
1472   effects: target-dependent */
1474 static void
1475 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1477 rtx src, dest;
1478 HOST_WIDE_INT offset;
1480 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1481 the PARALLEL independently. The first element is always processed if
1482 it is a SET. This is for backward compatibility. Other elements
1483 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1484 flag is set in them. */
1485 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1487 int par_index;
1488 int limit = XVECLEN (expr, 0);
1490 for (par_index = 0; par_index < limit; par_index++)
1491 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1492 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1493 || par_index == 0))
1494 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1496 return;
1499 gcc_assert (GET_CODE (expr) == SET);
1501 src = SET_SRC (expr);
1502 dest = SET_DEST (expr);
1504 if (REG_P (src))
1506 rtx rsi = reg_saved_in (src);
1507 if (rsi)
1508 src = rsi;
1511 switch (GET_CODE (dest))
1513 case REG:
1514 switch (GET_CODE (src))
1516 /* Setting FP from SP. */
1517 case REG:
1518 if (cfa.reg == (unsigned) REGNO (src))
1520 /* Rule 1 */
1521 /* Update the CFA rule wrt SP or FP. Make sure src is
1522 relative to the current CFA register.
1524 We used to require that dest be either SP or FP, but the
1525 ARM copies SP to a temporary register, and from there to
1526 FP. So we just rely on the backends to only set
1527 RTX_FRAME_RELATED_P on appropriate insns. */
1528 cfa.reg = REGNO (dest);
1529 cfa_temp.reg = cfa.reg;
1530 cfa_temp.offset = cfa.offset;
1532 else
1534 /* Saving a register in a register. */
1535 gcc_assert (!fixed_regs [REGNO (dest)]
1536 /* For the SPARC and its register window. */
1537 || (DWARF_FRAME_REGNUM (REGNO (src))
1538 == DWARF_FRAME_RETURN_COLUMN));
1539 queue_reg_save (label, src, dest, 0);
1541 break;
1543 case PLUS:
1544 case MINUS:
1545 case LO_SUM:
1546 if (dest == stack_pointer_rtx)
1548 /* Rule 2 */
1549 /* Adjusting SP. */
1550 switch (GET_CODE (XEXP (src, 1)))
1552 case CONST_INT:
1553 offset = INTVAL (XEXP (src, 1));
1554 break;
1555 case REG:
1556 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1557 == cfa_temp.reg);
1558 offset = cfa_temp.offset;
1559 break;
1560 default:
1561 gcc_unreachable ();
1564 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1566 /* Restoring SP from FP in the epilogue. */
1567 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1568 cfa.reg = STACK_POINTER_REGNUM;
1570 else if (GET_CODE (src) == LO_SUM)
1571 /* Assume we've set the source reg of the LO_SUM from sp. */
1573 else
1574 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1576 if (GET_CODE (src) != MINUS)
1577 offset = -offset;
1578 if (cfa.reg == STACK_POINTER_REGNUM)
1579 cfa.offset += offset;
1580 if (cfa_store.reg == STACK_POINTER_REGNUM)
1581 cfa_store.offset += offset;
1583 else if (dest == hard_frame_pointer_rtx)
1585 /* Rule 3 */
1586 /* Either setting the FP from an offset of the SP,
1587 or adjusting the FP */
1588 gcc_assert (frame_pointer_needed);
1590 gcc_assert (REG_P (XEXP (src, 0))
1591 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1592 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1593 offset = INTVAL (XEXP (src, 1));
1594 if (GET_CODE (src) != MINUS)
1595 offset = -offset;
1596 cfa.offset += offset;
1597 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1599 else
1601 gcc_assert (GET_CODE (src) != MINUS);
1603 /* Rule 4 */
1604 if (REG_P (XEXP (src, 0))
1605 && REGNO (XEXP (src, 0)) == cfa.reg
1606 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1608 /* Setting a temporary CFA register that will be copied
1609 into the FP later on. */
1610 offset = - INTVAL (XEXP (src, 1));
1611 cfa.offset += offset;
1612 cfa.reg = REGNO (dest);
1613 /* Or used to save regs to the stack. */
1614 cfa_temp.reg = cfa.reg;
1615 cfa_temp.offset = cfa.offset;
1618 /* Rule 5 */
1619 else if (REG_P (XEXP (src, 0))
1620 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1621 && XEXP (src, 1) == stack_pointer_rtx)
1623 /* Setting a scratch register that we will use instead
1624 of SP for saving registers to the stack. */
1625 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1626 cfa_store.reg = REGNO (dest);
1627 cfa_store.offset = cfa.offset - cfa_temp.offset;
1630 /* Rule 9 */
1631 else if (GET_CODE (src) == LO_SUM
1632 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1634 cfa_temp.reg = REGNO (dest);
1635 cfa_temp.offset = INTVAL (XEXP (src, 1));
1637 else
1638 gcc_unreachable ();
1640 break;
1642 /* Rule 6 */
1643 case CONST_INT:
1644 cfa_temp.reg = REGNO (dest);
1645 cfa_temp.offset = INTVAL (src);
1646 break;
1648 /* Rule 7 */
1649 case IOR:
1650 gcc_assert (REG_P (XEXP (src, 0))
1651 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1652 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1654 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1655 cfa_temp.reg = REGNO (dest);
1656 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1657 break;
1659 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1660 which will fill in all of the bits. */
1661 /* Rule 8 */
1662 case HIGH:
1663 break;
1665 /* Rule 15 */
1666 case UNSPEC:
1667 case UNSPEC_VOLATILE:
1668 gcc_assert (targetm.dwarf_handle_frame_unspec);
1669 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1670 return;
1672 default:
1673 gcc_unreachable ();
1676 def_cfa_1 (label, &cfa);
1677 break;
1679 case MEM:
1680 gcc_assert (REG_P (src));
1682 /* Saving a register to the stack. Make sure dest is relative to the
1683 CFA register. */
1684 switch (GET_CODE (XEXP (dest, 0)))
1686 /* Rule 10 */
1687 /* With a push. */
1688 case PRE_MODIFY:
1689 /* We can't handle variable size modifications. */
1690 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1691 == CONST_INT);
1692 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1694 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1695 && cfa_store.reg == STACK_POINTER_REGNUM);
1697 cfa_store.offset += offset;
1698 if (cfa.reg == STACK_POINTER_REGNUM)
1699 cfa.offset = cfa_store.offset;
1701 offset = -cfa_store.offset;
1702 break;
1704 /* Rule 11 */
1705 case PRE_INC:
1706 case PRE_DEC:
1707 offset = GET_MODE_SIZE (GET_MODE (dest));
1708 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1709 offset = -offset;
1711 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1712 && cfa_store.reg == STACK_POINTER_REGNUM);
1714 cfa_store.offset += offset;
1715 if (cfa.reg == STACK_POINTER_REGNUM)
1716 cfa.offset = cfa_store.offset;
1718 offset = -cfa_store.offset;
1719 break;
1721 /* Rule 12 */
1722 /* With an offset. */
1723 case PLUS:
1724 case MINUS:
1725 case LO_SUM:
1727 int regno;
1729 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1730 && REG_P (XEXP (XEXP (dest, 0), 0)));
1731 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1732 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1733 offset = -offset;
1735 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1737 if (cfa_store.reg == (unsigned) regno)
1738 offset -= cfa_store.offset;
1739 else
1741 gcc_assert (cfa_temp.reg == (unsigned) regno);
1742 offset -= cfa_temp.offset;
1745 break;
1747 /* Rule 13 */
1748 /* Without an offset. */
1749 case REG:
1751 int regno = REGNO (XEXP (dest, 0));
1753 if (cfa_store.reg == (unsigned) regno)
1754 offset = -cfa_store.offset;
1755 else
1757 gcc_assert (cfa_temp.reg == (unsigned) regno);
1758 offset = -cfa_temp.offset;
1761 break;
1763 /* Rule 14 */
1764 case POST_INC:
1765 gcc_assert (cfa_temp.reg
1766 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1767 offset = -cfa_temp.offset;
1768 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1769 break;
1771 default:
1772 gcc_unreachable ();
1775 if (REGNO (src) != STACK_POINTER_REGNUM
1776 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1777 && (unsigned) REGNO (src) == cfa.reg)
1779 /* We're storing the current CFA reg into the stack. */
1781 if (cfa.offset == 0)
1783 /* If the source register is exactly the CFA, assume
1784 we're saving SP like any other register; this happens
1785 on the ARM. */
1786 def_cfa_1 (label, &cfa);
1787 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1788 break;
1790 else
1792 /* Otherwise, we'll need to look in the stack to
1793 calculate the CFA. */
1794 rtx x = XEXP (dest, 0);
1796 if (!REG_P (x))
1797 x = XEXP (x, 0);
1798 gcc_assert (REG_P (x));
1800 cfa.reg = REGNO (x);
1801 cfa.base_offset = offset;
1802 cfa.indirect = 1;
1803 def_cfa_1 (label, &cfa);
1804 break;
1808 def_cfa_1 (label, &cfa);
1809 queue_reg_save (label, src, NULL_RTX, offset);
1810 break;
1812 default:
1813 gcc_unreachable ();
1817 /* Record call frame debugging information for INSN, which either
1818 sets SP or FP (adjusting how we calculate the frame address) or saves a
1819 register to the stack. If INSN is NULL_RTX, initialize our state.
1821 If AFTER_P is false, we're being called before the insn is emitted,
1822 otherwise after. Call instructions get invoked twice. */
1824 void
1825 dwarf2out_frame_debug (rtx insn, bool after_p)
1827 const char *label;
1828 rtx src;
1830 if (insn == NULL_RTX)
1832 size_t i;
1834 /* Flush any queued register saves. */
1835 flush_queued_reg_saves ();
1837 /* Set up state for generating call frame debug info. */
1838 lookup_cfa (&cfa);
1839 gcc_assert (cfa.reg
1840 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1842 cfa.reg = STACK_POINTER_REGNUM;
1843 cfa_store = cfa;
1844 cfa_temp.reg = -1;
1845 cfa_temp.offset = 0;
1847 for (i = 0; i < num_regs_saved_in_regs; i++)
1849 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1850 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1852 num_regs_saved_in_regs = 0;
1853 return;
1856 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1857 flush_queued_reg_saves ();
1859 if (! RTX_FRAME_RELATED_P (insn))
1861 if (!ACCUMULATE_OUTGOING_ARGS)
1862 dwarf2out_stack_adjust (insn, after_p);
1863 return;
1866 label = dwarf2out_cfi_label ();
1867 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1868 if (src)
1869 insn = XEXP (src, 0);
1870 else
1871 insn = PATTERN (insn);
1873 dwarf2out_frame_debug_expr (insn, label);
1876 #endif
1878 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1879 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1880 (enum dwarf_call_frame_info cfi);
1882 static enum dw_cfi_oprnd_type
1883 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1885 switch (cfi)
1887 case DW_CFA_nop:
1888 case DW_CFA_GNU_window_save:
1889 return dw_cfi_oprnd_unused;
1891 case DW_CFA_set_loc:
1892 case DW_CFA_advance_loc1:
1893 case DW_CFA_advance_loc2:
1894 case DW_CFA_advance_loc4:
1895 case DW_CFA_MIPS_advance_loc8:
1896 return dw_cfi_oprnd_addr;
1898 case DW_CFA_offset:
1899 case DW_CFA_offset_extended:
1900 case DW_CFA_def_cfa:
1901 case DW_CFA_offset_extended_sf:
1902 case DW_CFA_def_cfa_sf:
1903 case DW_CFA_restore_extended:
1904 case DW_CFA_undefined:
1905 case DW_CFA_same_value:
1906 case DW_CFA_def_cfa_register:
1907 case DW_CFA_register:
1908 return dw_cfi_oprnd_reg_num;
1910 case DW_CFA_def_cfa_offset:
1911 case DW_CFA_GNU_args_size:
1912 case DW_CFA_def_cfa_offset_sf:
1913 return dw_cfi_oprnd_offset;
1915 case DW_CFA_def_cfa_expression:
1916 case DW_CFA_expression:
1917 return dw_cfi_oprnd_loc;
1919 default:
1920 gcc_unreachable ();
1924 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1925 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1926 (enum dwarf_call_frame_info cfi);
1928 static enum dw_cfi_oprnd_type
1929 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1931 switch (cfi)
1933 case DW_CFA_def_cfa:
1934 case DW_CFA_def_cfa_sf:
1935 case DW_CFA_offset:
1936 case DW_CFA_offset_extended_sf:
1937 case DW_CFA_offset_extended:
1938 return dw_cfi_oprnd_offset;
1940 case DW_CFA_register:
1941 return dw_cfi_oprnd_reg_num;
1943 default:
1944 return dw_cfi_oprnd_unused;
1948 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1950 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1951 switch to the data section instead, and write out a synthetic label
1952 for collect2. */
1954 static void
1955 switch_to_eh_frame_section (void)
1957 tree label;
1959 #ifdef EH_FRAME_SECTION_NAME
1960 if (eh_frame_section == 0)
1962 int flags;
1964 if (EH_TABLES_CAN_BE_READ_ONLY)
1966 int fde_encoding;
1967 int per_encoding;
1968 int lsda_encoding;
1970 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
1971 /*global=*/0);
1972 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
1973 /*global=*/1);
1974 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
1975 /*global=*/0);
1976 flags = ((! flag_pic
1977 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
1978 && (fde_encoding & 0x70) != DW_EH_PE_aligned
1979 && (per_encoding & 0x70) != DW_EH_PE_absptr
1980 && (per_encoding & 0x70) != DW_EH_PE_aligned
1981 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
1982 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
1983 ? 0 : SECTION_WRITE);
1985 else
1986 flags = SECTION_WRITE;
1987 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
1989 #endif
1991 if (eh_frame_section)
1992 switch_to_section (eh_frame_section);
1993 else
1995 /* We have no special eh_frame section. Put the information in
1996 the data section and emit special labels to guide collect2. */
1997 switch_to_section (data_section);
1998 label = get_file_function_name ('F');
1999 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2000 targetm.asm_out.globalize_label (asm_out_file,
2001 IDENTIFIER_POINTER (label));
2002 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2006 /* Map register numbers held in the call frame info that gcc has
2007 collected using DWARF_FRAME_REGNUM to those that should be output in
2008 .debug_frame and .eh_frame. */
2009 #ifndef DWARF2_FRAME_REG_OUT
2010 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
2011 #endif
2013 /* Output a Call Frame Information opcode and its operand(s). */
2015 static void
2016 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2018 unsigned long r;
2019 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2020 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2021 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2022 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2023 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2024 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2026 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2027 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2028 "DW_CFA_offset, column 0x%lx", r);
2029 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2031 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2033 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2034 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2035 "DW_CFA_restore, column 0x%lx", r);
2037 else
2039 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2040 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2042 switch (cfi->dw_cfi_opc)
2044 case DW_CFA_set_loc:
2045 if (for_eh)
2046 dw2_asm_output_encoded_addr_rtx (
2047 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2048 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2049 false, NULL);
2050 else
2051 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2052 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2053 break;
2055 case DW_CFA_advance_loc1:
2056 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2057 fde->dw_fde_current_label, NULL);
2058 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2059 break;
2061 case DW_CFA_advance_loc2:
2062 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2063 fde->dw_fde_current_label, NULL);
2064 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2065 break;
2067 case DW_CFA_advance_loc4:
2068 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2069 fde->dw_fde_current_label, NULL);
2070 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2071 break;
2073 case DW_CFA_MIPS_advance_loc8:
2074 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2075 fde->dw_fde_current_label, NULL);
2076 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2077 break;
2079 case DW_CFA_offset_extended:
2080 case DW_CFA_def_cfa:
2081 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2082 dw2_asm_output_data_uleb128 (r, NULL);
2083 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2084 break;
2086 case DW_CFA_offset_extended_sf:
2087 case DW_CFA_def_cfa_sf:
2088 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2089 dw2_asm_output_data_uleb128 (r, NULL);
2090 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2091 break;
2093 case DW_CFA_restore_extended:
2094 case DW_CFA_undefined:
2095 case DW_CFA_same_value:
2096 case DW_CFA_def_cfa_register:
2097 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2098 dw2_asm_output_data_uleb128 (r, NULL);
2099 break;
2101 case DW_CFA_register:
2102 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2103 dw2_asm_output_data_uleb128 (r, NULL);
2104 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2105 dw2_asm_output_data_uleb128 (r, NULL);
2106 break;
2108 case DW_CFA_def_cfa_offset:
2109 case DW_CFA_GNU_args_size:
2110 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2111 break;
2113 case DW_CFA_def_cfa_offset_sf:
2114 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2115 break;
2117 case DW_CFA_GNU_window_save:
2118 break;
2120 case DW_CFA_def_cfa_expression:
2121 case DW_CFA_expression:
2122 output_cfa_loc (cfi);
2123 break;
2125 case DW_CFA_GNU_negative_offset_extended:
2126 /* Obsoleted by DW_CFA_offset_extended_sf. */
2127 gcc_unreachable ();
2129 default:
2130 break;
2135 /* Output the call frame information used to record information
2136 that relates to calculating the frame pointer, and records the
2137 location of saved registers. */
2139 static void
2140 output_call_frame_info (int for_eh)
2142 unsigned int i;
2143 dw_fde_ref fde;
2144 dw_cfi_ref cfi;
2145 char l1[20], l2[20], section_start_label[20];
2146 bool any_lsda_needed = false;
2147 char augmentation[6];
2148 int augmentation_size;
2149 int fde_encoding = DW_EH_PE_absptr;
2150 int per_encoding = DW_EH_PE_absptr;
2151 int lsda_encoding = DW_EH_PE_absptr;
2152 int return_reg;
2154 /* Don't emit a CIE if there won't be any FDEs. */
2155 if (fde_table_in_use == 0)
2156 return;
2158 /* If we make FDEs linkonce, we may have to emit an empty label for
2159 an FDE that wouldn't otherwise be emitted. We want to avoid
2160 having an FDE kept around when the function it refers to is
2161 discarded. Example where this matters: a primary function
2162 template in C++ requires EH information, but an explicit
2163 specialization doesn't. */
2164 if (TARGET_USES_WEAK_UNWIND_INFO
2165 && ! flag_asynchronous_unwind_tables
2166 && for_eh)
2167 for (i = 0; i < fde_table_in_use; i++)
2168 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2169 && !fde_table[i].uses_eh_lsda
2170 && ! DECL_WEAK (fde_table[i].decl))
2171 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2172 for_eh, /* empty */ 1);
2174 /* If we don't have any functions we'll want to unwind out of, don't
2175 emit any EH unwind information. Note that if exceptions aren't
2176 enabled, we won't have collected nothrow information, and if we
2177 asked for asynchronous tables, we always want this info. */
2178 if (for_eh)
2180 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2182 for (i = 0; i < fde_table_in_use; i++)
2183 if (fde_table[i].uses_eh_lsda)
2184 any_eh_needed = any_lsda_needed = true;
2185 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2186 any_eh_needed = true;
2187 else if (! fde_table[i].nothrow
2188 && ! fde_table[i].all_throwers_are_sibcalls)
2189 any_eh_needed = true;
2191 if (! any_eh_needed)
2192 return;
2195 /* We're going to be generating comments, so turn on app. */
2196 if (flag_debug_asm)
2197 app_enable ();
2199 if (for_eh)
2200 switch_to_eh_frame_section ();
2201 else
2202 switch_to_section (get_section (DEBUG_FRAME_SECTION, SECTION_DEBUG, NULL));
2204 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2205 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2207 /* Output the CIE. */
2208 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2209 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2210 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2211 "Length of Common Information Entry");
2212 ASM_OUTPUT_LABEL (asm_out_file, l1);
2214 /* Now that the CIE pointer is PC-relative for EH,
2215 use 0 to identify the CIE. */
2216 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2217 (for_eh ? 0 : DW_CIE_ID),
2218 "CIE Identifier Tag");
2220 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2222 augmentation[0] = 0;
2223 augmentation_size = 0;
2224 if (for_eh)
2226 char *p;
2228 /* Augmentation:
2229 z Indicates that a uleb128 is present to size the
2230 augmentation section.
2231 L Indicates the encoding (and thus presence) of
2232 an LSDA pointer in the FDE augmentation.
2233 R Indicates a non-default pointer encoding for
2234 FDE code pointers.
2235 P Indicates the presence of an encoding + language
2236 personality routine in the CIE augmentation. */
2238 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2239 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2240 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2242 p = augmentation + 1;
2243 if (eh_personality_libfunc)
2245 *p++ = 'P';
2246 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2248 if (any_lsda_needed)
2250 *p++ = 'L';
2251 augmentation_size += 1;
2253 if (fde_encoding != DW_EH_PE_absptr)
2255 *p++ = 'R';
2256 augmentation_size += 1;
2258 if (p > augmentation + 1)
2260 augmentation[0] = 'z';
2261 *p = '\0';
2264 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2265 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2267 int offset = ( 4 /* Length */
2268 + 4 /* CIE Id */
2269 + 1 /* CIE version */
2270 + strlen (augmentation) + 1 /* Augmentation */
2271 + size_of_uleb128 (1) /* Code alignment */
2272 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2273 + 1 /* RA column */
2274 + 1 /* Augmentation size */
2275 + 1 /* Personality encoding */ );
2276 int pad = -offset & (PTR_SIZE - 1);
2278 augmentation_size += pad;
2280 /* Augmentations should be small, so there's scarce need to
2281 iterate for a solution. Die if we exceed one uleb128 byte. */
2282 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2286 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2287 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2288 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2289 "CIE Data Alignment Factor");
2291 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2292 if (DW_CIE_VERSION == 1)
2293 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2294 else
2295 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2297 if (augmentation[0])
2299 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2300 if (eh_personality_libfunc)
2302 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2303 eh_data_format_name (per_encoding));
2304 dw2_asm_output_encoded_addr_rtx (per_encoding,
2305 eh_personality_libfunc,
2306 true, NULL);
2309 if (any_lsda_needed)
2310 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2311 eh_data_format_name (lsda_encoding));
2313 if (fde_encoding != DW_EH_PE_absptr)
2314 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2315 eh_data_format_name (fde_encoding));
2318 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2319 output_cfi (cfi, NULL, for_eh);
2321 /* Pad the CIE out to an address sized boundary. */
2322 ASM_OUTPUT_ALIGN (asm_out_file,
2323 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2324 ASM_OUTPUT_LABEL (asm_out_file, l2);
2326 /* Loop through all of the FDE's. */
2327 for (i = 0; i < fde_table_in_use; i++)
2329 fde = &fde_table[i];
2331 /* Don't emit EH unwind info for leaf functions that don't need it. */
2332 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2333 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2334 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2335 && !fde->uses_eh_lsda)
2336 continue;
2338 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2339 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2340 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2341 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2342 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2343 "FDE Length");
2344 ASM_OUTPUT_LABEL (asm_out_file, l1);
2346 if (for_eh)
2347 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2348 else
2349 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2350 "FDE CIE offset");
2352 if (for_eh)
2354 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2355 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2356 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2357 sym_ref,
2358 false,
2359 "FDE initial location");
2360 if (fde->dw_fde_switched_sections)
2362 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2363 fde->dw_fde_unlikely_section_label);
2364 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2365 fde->dw_fde_hot_section_label);
2366 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2367 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2368 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2369 "FDE initial location");
2370 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2371 fde->dw_fde_hot_section_end_label,
2372 fde->dw_fde_hot_section_label,
2373 "FDE address range");
2374 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2375 "FDE initial location");
2376 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2377 fde->dw_fde_unlikely_section_end_label,
2378 fde->dw_fde_unlikely_section_label,
2379 "FDE address range");
2381 else
2382 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2383 fde->dw_fde_end, fde->dw_fde_begin,
2384 "FDE address range");
2386 else
2388 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2389 "FDE initial location");
2390 if (fde->dw_fde_switched_sections)
2392 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2393 fde->dw_fde_hot_section_label,
2394 "FDE initial location");
2395 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2396 fde->dw_fde_hot_section_end_label,
2397 fde->dw_fde_hot_section_label,
2398 "FDE address range");
2399 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2400 fde->dw_fde_unlikely_section_label,
2401 "FDE initial location");
2402 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2403 fde->dw_fde_unlikely_section_end_label,
2404 fde->dw_fde_unlikely_section_label,
2405 "FDE address range");
2407 else
2408 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2409 fde->dw_fde_end, fde->dw_fde_begin,
2410 "FDE address range");
2413 if (augmentation[0])
2415 if (any_lsda_needed)
2417 int size = size_of_encoded_value (lsda_encoding);
2419 if (lsda_encoding == DW_EH_PE_aligned)
2421 int offset = ( 4 /* Length */
2422 + 4 /* CIE offset */
2423 + 2 * size_of_encoded_value (fde_encoding)
2424 + 1 /* Augmentation size */ );
2425 int pad = -offset & (PTR_SIZE - 1);
2427 size += pad;
2428 gcc_assert (size_of_uleb128 (size) == 1);
2431 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2433 if (fde->uses_eh_lsda)
2435 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2436 fde->funcdef_number);
2437 dw2_asm_output_encoded_addr_rtx (
2438 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2439 false, "Language Specific Data Area");
2441 else
2443 if (lsda_encoding == DW_EH_PE_aligned)
2444 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2445 dw2_asm_output_data
2446 (size_of_encoded_value (lsda_encoding), 0,
2447 "Language Specific Data Area (none)");
2450 else
2451 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2454 /* Loop through the Call Frame Instructions associated with
2455 this FDE. */
2456 fde->dw_fde_current_label = fde->dw_fde_begin;
2457 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2458 output_cfi (cfi, fde, for_eh);
2460 /* Pad the FDE out to an address sized boundary. */
2461 ASM_OUTPUT_ALIGN (asm_out_file,
2462 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2463 ASM_OUTPUT_LABEL (asm_out_file, l2);
2466 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2467 dw2_asm_output_data (4, 0, "End of Table");
2468 #ifdef MIPS_DEBUGGING_INFO
2469 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2470 get a value of 0. Putting .align 0 after the label fixes it. */
2471 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2472 #endif
2474 /* Turn off app to make assembly quicker. */
2475 if (flag_debug_asm)
2476 app_disable ();
2479 /* Output a marker (i.e. a label) for the beginning of a function, before
2480 the prologue. */
2482 void
2483 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2484 const char *file ATTRIBUTE_UNUSED)
2486 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2487 char * dup_label;
2488 dw_fde_ref fde;
2490 current_function_func_begin_label = NULL;
2492 #ifdef TARGET_UNWIND_INFO
2493 /* ??? current_function_func_begin_label is also used by except.c
2494 for call-site information. We must emit this label if it might
2495 be used. */
2496 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2497 && ! dwarf2out_do_frame ())
2498 return;
2499 #else
2500 if (! dwarf2out_do_frame ())
2501 return;
2502 #endif
2504 switch_to_section (function_section (current_function_decl));
2505 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2506 current_function_funcdef_no);
2507 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2508 current_function_funcdef_no);
2509 dup_label = xstrdup (label);
2510 current_function_func_begin_label = dup_label;
2512 #ifdef TARGET_UNWIND_INFO
2513 /* We can elide the fde allocation if we're not emitting debug info. */
2514 if (! dwarf2out_do_frame ())
2515 return;
2516 #endif
2518 /* Expand the fde table if necessary. */
2519 if (fde_table_in_use == fde_table_allocated)
2521 fde_table_allocated += FDE_TABLE_INCREMENT;
2522 fde_table = ggc_realloc (fde_table,
2523 fde_table_allocated * sizeof (dw_fde_node));
2524 memset (fde_table + fde_table_in_use, 0,
2525 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2528 /* Record the FDE associated with this function. */
2529 current_funcdef_fde = fde_table_in_use;
2531 /* Add the new FDE at the end of the fde_table. */
2532 fde = &fde_table[fde_table_in_use++];
2533 fde->decl = current_function_decl;
2534 fde->dw_fde_begin = dup_label;
2535 fde->dw_fde_current_label = NULL;
2536 fde->dw_fde_hot_section_label = NULL;
2537 fde->dw_fde_hot_section_end_label = NULL;
2538 fde->dw_fde_unlikely_section_label = NULL;
2539 fde->dw_fde_unlikely_section_end_label = NULL;
2540 fde->dw_fde_switched_sections = false;
2541 fde->dw_fde_end = NULL;
2542 fde->dw_fde_cfi = NULL;
2543 fde->funcdef_number = current_function_funcdef_no;
2544 fde->nothrow = TREE_NOTHROW (current_function_decl);
2545 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2546 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2548 args_size = old_args_size = 0;
2550 /* We only want to output line number information for the genuine dwarf2
2551 prologue case, not the eh frame case. */
2552 #ifdef DWARF2_DEBUGGING_INFO
2553 if (file)
2554 dwarf2out_source_line (line, file);
2555 #endif
2558 /* Output a marker (i.e. a label) for the absolute end of the generated code
2559 for a function definition. This gets called *after* the epilogue code has
2560 been generated. */
2562 void
2563 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2564 const char *file ATTRIBUTE_UNUSED)
2566 dw_fde_ref fde;
2567 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2569 /* Output a label to mark the endpoint of the code generated for this
2570 function. */
2571 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2572 current_function_funcdef_no);
2573 ASM_OUTPUT_LABEL (asm_out_file, label);
2574 fde = &fde_table[fde_table_in_use - 1];
2575 fde->dw_fde_end = xstrdup (label);
2578 void
2579 dwarf2out_frame_init (void)
2581 /* Allocate the initial hunk of the fde_table. */
2582 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2583 fde_table_allocated = FDE_TABLE_INCREMENT;
2584 fde_table_in_use = 0;
2586 /* Generate the CFA instructions common to all FDE's. Do it now for the
2587 sake of lookup_cfa. */
2589 #ifdef DWARF2_UNWIND_INFO
2590 /* On entry, the Canonical Frame Address is at SP. */
2591 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2592 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2593 #endif
2596 void
2597 dwarf2out_frame_finish (void)
2599 /* Output call frame information. */
2600 if (write_symbols == DWARF2_DEBUG
2601 || write_symbols == VMS_AND_DWARF2_DEBUG
2602 #ifdef DWARF2_FRAME_INFO
2603 || DWARF2_FRAME_INFO
2604 #endif
2606 output_call_frame_info (0);
2608 #ifndef TARGET_UNWIND_INFO
2609 /* Output another copy for the unwinder. */
2610 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2611 output_call_frame_info (1);
2612 #endif
2614 #endif
2616 /* And now, the subset of the debugging information support code necessary
2617 for emitting location expressions. */
2619 /* We need some way to distinguish DW_OP_addr with a direct symbol
2620 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2621 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2624 typedef struct dw_val_struct *dw_val_ref;
2625 typedef struct die_struct *dw_die_ref;
2626 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2627 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2629 /* Each DIE may have a series of attribute/value pairs. Values
2630 can take on several forms. The forms that are used in this
2631 implementation are listed below. */
2633 enum dw_val_class
2635 dw_val_class_addr,
2636 dw_val_class_offset,
2637 dw_val_class_loc,
2638 dw_val_class_loc_list,
2639 dw_val_class_range_list,
2640 dw_val_class_const,
2641 dw_val_class_unsigned_const,
2642 dw_val_class_long_long,
2643 dw_val_class_vec,
2644 dw_val_class_flag,
2645 dw_val_class_die_ref,
2646 dw_val_class_fde_ref,
2647 dw_val_class_lbl_id,
2648 dw_val_class_lbl_offset,
2649 dw_val_class_str
2652 /* Describe a double word constant value. */
2653 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2655 typedef struct dw_long_long_struct GTY(())
2657 unsigned long hi;
2658 unsigned long low;
2660 dw_long_long_const;
2662 /* Describe a floating point constant value, or a vector constant value. */
2664 typedef struct dw_vec_struct GTY(())
2666 unsigned char * GTY((length ("%h.length"))) array;
2667 unsigned length;
2668 unsigned elt_size;
2670 dw_vec_const;
2672 /* The dw_val_node describes an attribute's value, as it is
2673 represented internally. */
2675 typedef struct dw_val_struct GTY(())
2677 enum dw_val_class val_class;
2678 union dw_val_struct_union
2680 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2681 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2682 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2683 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2684 HOST_WIDE_INT GTY ((default)) val_int;
2685 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2686 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2687 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2688 struct dw_val_die_union
2690 dw_die_ref die;
2691 int external;
2692 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2693 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2694 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2695 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2696 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2698 GTY ((desc ("%1.val_class"))) v;
2700 dw_val_node;
2702 /* Locations in memory are described using a sequence of stack machine
2703 operations. */
2705 typedef struct dw_loc_descr_struct GTY(())
2707 dw_loc_descr_ref dw_loc_next;
2708 enum dwarf_location_atom dw_loc_opc;
2709 dw_val_node dw_loc_oprnd1;
2710 dw_val_node dw_loc_oprnd2;
2711 int dw_loc_addr;
2713 dw_loc_descr_node;
2715 /* Location lists are ranges + location descriptions for that range,
2716 so you can track variables that are in different places over
2717 their entire life. */
2718 typedef struct dw_loc_list_struct GTY(())
2720 dw_loc_list_ref dw_loc_next;
2721 const char *begin; /* Label for begin address of range */
2722 const char *end; /* Label for end address of range */
2723 char *ll_symbol; /* Label for beginning of location list.
2724 Only on head of list */
2725 const char *section; /* Section this loclist is relative to */
2726 dw_loc_descr_ref expr;
2727 } dw_loc_list_node;
2729 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2731 static const char *dwarf_stack_op_name (unsigned);
2732 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2733 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2734 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2735 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2736 static unsigned long size_of_locs (dw_loc_descr_ref);
2737 static void output_loc_operands (dw_loc_descr_ref);
2738 static void output_loc_sequence (dw_loc_descr_ref);
2740 /* Convert a DWARF stack opcode into its string name. */
2742 static const char *
2743 dwarf_stack_op_name (unsigned int op)
2745 switch (op)
2747 case DW_OP_addr:
2748 case INTERNAL_DW_OP_tls_addr:
2749 return "DW_OP_addr";
2750 case DW_OP_deref:
2751 return "DW_OP_deref";
2752 case DW_OP_const1u:
2753 return "DW_OP_const1u";
2754 case DW_OP_const1s:
2755 return "DW_OP_const1s";
2756 case DW_OP_const2u:
2757 return "DW_OP_const2u";
2758 case DW_OP_const2s:
2759 return "DW_OP_const2s";
2760 case DW_OP_const4u:
2761 return "DW_OP_const4u";
2762 case DW_OP_const4s:
2763 return "DW_OP_const4s";
2764 case DW_OP_const8u:
2765 return "DW_OP_const8u";
2766 case DW_OP_const8s:
2767 return "DW_OP_const8s";
2768 case DW_OP_constu:
2769 return "DW_OP_constu";
2770 case DW_OP_consts:
2771 return "DW_OP_consts";
2772 case DW_OP_dup:
2773 return "DW_OP_dup";
2774 case DW_OP_drop:
2775 return "DW_OP_drop";
2776 case DW_OP_over:
2777 return "DW_OP_over";
2778 case DW_OP_pick:
2779 return "DW_OP_pick";
2780 case DW_OP_swap:
2781 return "DW_OP_swap";
2782 case DW_OP_rot:
2783 return "DW_OP_rot";
2784 case DW_OP_xderef:
2785 return "DW_OP_xderef";
2786 case DW_OP_abs:
2787 return "DW_OP_abs";
2788 case DW_OP_and:
2789 return "DW_OP_and";
2790 case DW_OP_div:
2791 return "DW_OP_div";
2792 case DW_OP_minus:
2793 return "DW_OP_minus";
2794 case DW_OP_mod:
2795 return "DW_OP_mod";
2796 case DW_OP_mul:
2797 return "DW_OP_mul";
2798 case DW_OP_neg:
2799 return "DW_OP_neg";
2800 case DW_OP_not:
2801 return "DW_OP_not";
2802 case DW_OP_or:
2803 return "DW_OP_or";
2804 case DW_OP_plus:
2805 return "DW_OP_plus";
2806 case DW_OP_plus_uconst:
2807 return "DW_OP_plus_uconst";
2808 case DW_OP_shl:
2809 return "DW_OP_shl";
2810 case DW_OP_shr:
2811 return "DW_OP_shr";
2812 case DW_OP_shra:
2813 return "DW_OP_shra";
2814 case DW_OP_xor:
2815 return "DW_OP_xor";
2816 case DW_OP_bra:
2817 return "DW_OP_bra";
2818 case DW_OP_eq:
2819 return "DW_OP_eq";
2820 case DW_OP_ge:
2821 return "DW_OP_ge";
2822 case DW_OP_gt:
2823 return "DW_OP_gt";
2824 case DW_OP_le:
2825 return "DW_OP_le";
2826 case DW_OP_lt:
2827 return "DW_OP_lt";
2828 case DW_OP_ne:
2829 return "DW_OP_ne";
2830 case DW_OP_skip:
2831 return "DW_OP_skip";
2832 case DW_OP_lit0:
2833 return "DW_OP_lit0";
2834 case DW_OP_lit1:
2835 return "DW_OP_lit1";
2836 case DW_OP_lit2:
2837 return "DW_OP_lit2";
2838 case DW_OP_lit3:
2839 return "DW_OP_lit3";
2840 case DW_OP_lit4:
2841 return "DW_OP_lit4";
2842 case DW_OP_lit5:
2843 return "DW_OP_lit5";
2844 case DW_OP_lit6:
2845 return "DW_OP_lit6";
2846 case DW_OP_lit7:
2847 return "DW_OP_lit7";
2848 case DW_OP_lit8:
2849 return "DW_OP_lit8";
2850 case DW_OP_lit9:
2851 return "DW_OP_lit9";
2852 case DW_OP_lit10:
2853 return "DW_OP_lit10";
2854 case DW_OP_lit11:
2855 return "DW_OP_lit11";
2856 case DW_OP_lit12:
2857 return "DW_OP_lit12";
2858 case DW_OP_lit13:
2859 return "DW_OP_lit13";
2860 case DW_OP_lit14:
2861 return "DW_OP_lit14";
2862 case DW_OP_lit15:
2863 return "DW_OP_lit15";
2864 case DW_OP_lit16:
2865 return "DW_OP_lit16";
2866 case DW_OP_lit17:
2867 return "DW_OP_lit17";
2868 case DW_OP_lit18:
2869 return "DW_OP_lit18";
2870 case DW_OP_lit19:
2871 return "DW_OP_lit19";
2872 case DW_OP_lit20:
2873 return "DW_OP_lit20";
2874 case DW_OP_lit21:
2875 return "DW_OP_lit21";
2876 case DW_OP_lit22:
2877 return "DW_OP_lit22";
2878 case DW_OP_lit23:
2879 return "DW_OP_lit23";
2880 case DW_OP_lit24:
2881 return "DW_OP_lit24";
2882 case DW_OP_lit25:
2883 return "DW_OP_lit25";
2884 case DW_OP_lit26:
2885 return "DW_OP_lit26";
2886 case DW_OP_lit27:
2887 return "DW_OP_lit27";
2888 case DW_OP_lit28:
2889 return "DW_OP_lit28";
2890 case DW_OP_lit29:
2891 return "DW_OP_lit29";
2892 case DW_OP_lit30:
2893 return "DW_OP_lit30";
2894 case DW_OP_lit31:
2895 return "DW_OP_lit31";
2896 case DW_OP_reg0:
2897 return "DW_OP_reg0";
2898 case DW_OP_reg1:
2899 return "DW_OP_reg1";
2900 case DW_OP_reg2:
2901 return "DW_OP_reg2";
2902 case DW_OP_reg3:
2903 return "DW_OP_reg3";
2904 case DW_OP_reg4:
2905 return "DW_OP_reg4";
2906 case DW_OP_reg5:
2907 return "DW_OP_reg5";
2908 case DW_OP_reg6:
2909 return "DW_OP_reg6";
2910 case DW_OP_reg7:
2911 return "DW_OP_reg7";
2912 case DW_OP_reg8:
2913 return "DW_OP_reg8";
2914 case DW_OP_reg9:
2915 return "DW_OP_reg9";
2916 case DW_OP_reg10:
2917 return "DW_OP_reg10";
2918 case DW_OP_reg11:
2919 return "DW_OP_reg11";
2920 case DW_OP_reg12:
2921 return "DW_OP_reg12";
2922 case DW_OP_reg13:
2923 return "DW_OP_reg13";
2924 case DW_OP_reg14:
2925 return "DW_OP_reg14";
2926 case DW_OP_reg15:
2927 return "DW_OP_reg15";
2928 case DW_OP_reg16:
2929 return "DW_OP_reg16";
2930 case DW_OP_reg17:
2931 return "DW_OP_reg17";
2932 case DW_OP_reg18:
2933 return "DW_OP_reg18";
2934 case DW_OP_reg19:
2935 return "DW_OP_reg19";
2936 case DW_OP_reg20:
2937 return "DW_OP_reg20";
2938 case DW_OP_reg21:
2939 return "DW_OP_reg21";
2940 case DW_OP_reg22:
2941 return "DW_OP_reg22";
2942 case DW_OP_reg23:
2943 return "DW_OP_reg23";
2944 case DW_OP_reg24:
2945 return "DW_OP_reg24";
2946 case DW_OP_reg25:
2947 return "DW_OP_reg25";
2948 case DW_OP_reg26:
2949 return "DW_OP_reg26";
2950 case DW_OP_reg27:
2951 return "DW_OP_reg27";
2952 case DW_OP_reg28:
2953 return "DW_OP_reg28";
2954 case DW_OP_reg29:
2955 return "DW_OP_reg29";
2956 case DW_OP_reg30:
2957 return "DW_OP_reg30";
2958 case DW_OP_reg31:
2959 return "DW_OP_reg31";
2960 case DW_OP_breg0:
2961 return "DW_OP_breg0";
2962 case DW_OP_breg1:
2963 return "DW_OP_breg1";
2964 case DW_OP_breg2:
2965 return "DW_OP_breg2";
2966 case DW_OP_breg3:
2967 return "DW_OP_breg3";
2968 case DW_OP_breg4:
2969 return "DW_OP_breg4";
2970 case DW_OP_breg5:
2971 return "DW_OP_breg5";
2972 case DW_OP_breg6:
2973 return "DW_OP_breg6";
2974 case DW_OP_breg7:
2975 return "DW_OP_breg7";
2976 case DW_OP_breg8:
2977 return "DW_OP_breg8";
2978 case DW_OP_breg9:
2979 return "DW_OP_breg9";
2980 case DW_OP_breg10:
2981 return "DW_OP_breg10";
2982 case DW_OP_breg11:
2983 return "DW_OP_breg11";
2984 case DW_OP_breg12:
2985 return "DW_OP_breg12";
2986 case DW_OP_breg13:
2987 return "DW_OP_breg13";
2988 case DW_OP_breg14:
2989 return "DW_OP_breg14";
2990 case DW_OP_breg15:
2991 return "DW_OP_breg15";
2992 case DW_OP_breg16:
2993 return "DW_OP_breg16";
2994 case DW_OP_breg17:
2995 return "DW_OP_breg17";
2996 case DW_OP_breg18:
2997 return "DW_OP_breg18";
2998 case DW_OP_breg19:
2999 return "DW_OP_breg19";
3000 case DW_OP_breg20:
3001 return "DW_OP_breg20";
3002 case DW_OP_breg21:
3003 return "DW_OP_breg21";
3004 case DW_OP_breg22:
3005 return "DW_OP_breg22";
3006 case DW_OP_breg23:
3007 return "DW_OP_breg23";
3008 case DW_OP_breg24:
3009 return "DW_OP_breg24";
3010 case DW_OP_breg25:
3011 return "DW_OP_breg25";
3012 case DW_OP_breg26:
3013 return "DW_OP_breg26";
3014 case DW_OP_breg27:
3015 return "DW_OP_breg27";
3016 case DW_OP_breg28:
3017 return "DW_OP_breg28";
3018 case DW_OP_breg29:
3019 return "DW_OP_breg29";
3020 case DW_OP_breg30:
3021 return "DW_OP_breg30";
3022 case DW_OP_breg31:
3023 return "DW_OP_breg31";
3024 case DW_OP_regx:
3025 return "DW_OP_regx";
3026 case DW_OP_fbreg:
3027 return "DW_OP_fbreg";
3028 case DW_OP_bregx:
3029 return "DW_OP_bregx";
3030 case DW_OP_piece:
3031 return "DW_OP_piece";
3032 case DW_OP_deref_size:
3033 return "DW_OP_deref_size";
3034 case DW_OP_xderef_size:
3035 return "DW_OP_xderef_size";
3036 case DW_OP_nop:
3037 return "DW_OP_nop";
3038 case DW_OP_push_object_address:
3039 return "DW_OP_push_object_address";
3040 case DW_OP_call2:
3041 return "DW_OP_call2";
3042 case DW_OP_call4:
3043 return "DW_OP_call4";
3044 case DW_OP_call_ref:
3045 return "DW_OP_call_ref";
3046 case DW_OP_GNU_push_tls_address:
3047 return "DW_OP_GNU_push_tls_address";
3048 default:
3049 return "OP_<unknown>";
3053 /* Return a pointer to a newly allocated location description. Location
3054 descriptions are simple expression terms that can be strung
3055 together to form more complicated location (address) descriptions. */
3057 static inline dw_loc_descr_ref
3058 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3059 unsigned HOST_WIDE_INT oprnd2)
3061 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3063 descr->dw_loc_opc = op;
3064 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3065 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3066 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3067 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3069 return descr;
3072 /* Add a location description term to a location description expression. */
3074 static inline void
3075 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3077 dw_loc_descr_ref *d;
3079 /* Find the end of the chain. */
3080 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3083 *d = descr;
3086 /* Return the size of a location descriptor. */
3088 static unsigned long
3089 size_of_loc_descr (dw_loc_descr_ref loc)
3091 unsigned long size = 1;
3093 switch (loc->dw_loc_opc)
3095 case DW_OP_addr:
3096 case INTERNAL_DW_OP_tls_addr:
3097 size += DWARF2_ADDR_SIZE;
3098 break;
3099 case DW_OP_const1u:
3100 case DW_OP_const1s:
3101 size += 1;
3102 break;
3103 case DW_OP_const2u:
3104 case DW_OP_const2s:
3105 size += 2;
3106 break;
3107 case DW_OP_const4u:
3108 case DW_OP_const4s:
3109 size += 4;
3110 break;
3111 case DW_OP_const8u:
3112 case DW_OP_const8s:
3113 size += 8;
3114 break;
3115 case DW_OP_constu:
3116 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3117 break;
3118 case DW_OP_consts:
3119 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3120 break;
3121 case DW_OP_pick:
3122 size += 1;
3123 break;
3124 case DW_OP_plus_uconst:
3125 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3126 break;
3127 case DW_OP_skip:
3128 case DW_OP_bra:
3129 size += 2;
3130 break;
3131 case DW_OP_breg0:
3132 case DW_OP_breg1:
3133 case DW_OP_breg2:
3134 case DW_OP_breg3:
3135 case DW_OP_breg4:
3136 case DW_OP_breg5:
3137 case DW_OP_breg6:
3138 case DW_OP_breg7:
3139 case DW_OP_breg8:
3140 case DW_OP_breg9:
3141 case DW_OP_breg10:
3142 case DW_OP_breg11:
3143 case DW_OP_breg12:
3144 case DW_OP_breg13:
3145 case DW_OP_breg14:
3146 case DW_OP_breg15:
3147 case DW_OP_breg16:
3148 case DW_OP_breg17:
3149 case DW_OP_breg18:
3150 case DW_OP_breg19:
3151 case DW_OP_breg20:
3152 case DW_OP_breg21:
3153 case DW_OP_breg22:
3154 case DW_OP_breg23:
3155 case DW_OP_breg24:
3156 case DW_OP_breg25:
3157 case DW_OP_breg26:
3158 case DW_OP_breg27:
3159 case DW_OP_breg28:
3160 case DW_OP_breg29:
3161 case DW_OP_breg30:
3162 case DW_OP_breg31:
3163 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3164 break;
3165 case DW_OP_regx:
3166 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3167 break;
3168 case DW_OP_fbreg:
3169 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3170 break;
3171 case DW_OP_bregx:
3172 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3173 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3174 break;
3175 case DW_OP_piece:
3176 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3177 break;
3178 case DW_OP_deref_size:
3179 case DW_OP_xderef_size:
3180 size += 1;
3181 break;
3182 case DW_OP_call2:
3183 size += 2;
3184 break;
3185 case DW_OP_call4:
3186 size += 4;
3187 break;
3188 case DW_OP_call_ref:
3189 size += DWARF2_ADDR_SIZE;
3190 break;
3191 default:
3192 break;
3195 return size;
3198 /* Return the size of a series of location descriptors. */
3200 static unsigned long
3201 size_of_locs (dw_loc_descr_ref loc)
3203 unsigned long size;
3205 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3207 loc->dw_loc_addr = size;
3208 size += size_of_loc_descr (loc);
3211 return size;
3214 /* Output location description stack opcode's operands (if any). */
3216 static void
3217 output_loc_operands (dw_loc_descr_ref loc)
3219 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3220 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3222 switch (loc->dw_loc_opc)
3224 #ifdef DWARF2_DEBUGGING_INFO
3225 case DW_OP_addr:
3226 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3227 break;
3228 case DW_OP_const2u:
3229 case DW_OP_const2s:
3230 dw2_asm_output_data (2, val1->v.val_int, NULL);
3231 break;
3232 case DW_OP_const4u:
3233 case DW_OP_const4s:
3234 dw2_asm_output_data (4, val1->v.val_int, NULL);
3235 break;
3236 case DW_OP_const8u:
3237 case DW_OP_const8s:
3238 gcc_assert (HOST_BITS_PER_LONG >= 64);
3239 dw2_asm_output_data (8, val1->v.val_int, NULL);
3240 break;
3241 case DW_OP_skip:
3242 case DW_OP_bra:
3244 int offset;
3246 gcc_assert (val1->val_class == dw_val_class_loc);
3247 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3249 dw2_asm_output_data (2, offset, NULL);
3251 break;
3252 #else
3253 case DW_OP_addr:
3254 case DW_OP_const2u:
3255 case DW_OP_const2s:
3256 case DW_OP_const4u:
3257 case DW_OP_const4s:
3258 case DW_OP_const8u:
3259 case DW_OP_const8s:
3260 case DW_OP_skip:
3261 case DW_OP_bra:
3262 /* We currently don't make any attempt to make sure these are
3263 aligned properly like we do for the main unwind info, so
3264 don't support emitting things larger than a byte if we're
3265 only doing unwinding. */
3266 gcc_unreachable ();
3267 #endif
3268 case DW_OP_const1u:
3269 case DW_OP_const1s:
3270 dw2_asm_output_data (1, val1->v.val_int, NULL);
3271 break;
3272 case DW_OP_constu:
3273 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3274 break;
3275 case DW_OP_consts:
3276 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3277 break;
3278 case DW_OP_pick:
3279 dw2_asm_output_data (1, val1->v.val_int, NULL);
3280 break;
3281 case DW_OP_plus_uconst:
3282 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3283 break;
3284 case DW_OP_breg0:
3285 case DW_OP_breg1:
3286 case DW_OP_breg2:
3287 case DW_OP_breg3:
3288 case DW_OP_breg4:
3289 case DW_OP_breg5:
3290 case DW_OP_breg6:
3291 case DW_OP_breg7:
3292 case DW_OP_breg8:
3293 case DW_OP_breg9:
3294 case DW_OP_breg10:
3295 case DW_OP_breg11:
3296 case DW_OP_breg12:
3297 case DW_OP_breg13:
3298 case DW_OP_breg14:
3299 case DW_OP_breg15:
3300 case DW_OP_breg16:
3301 case DW_OP_breg17:
3302 case DW_OP_breg18:
3303 case DW_OP_breg19:
3304 case DW_OP_breg20:
3305 case DW_OP_breg21:
3306 case DW_OP_breg22:
3307 case DW_OP_breg23:
3308 case DW_OP_breg24:
3309 case DW_OP_breg25:
3310 case DW_OP_breg26:
3311 case DW_OP_breg27:
3312 case DW_OP_breg28:
3313 case DW_OP_breg29:
3314 case DW_OP_breg30:
3315 case DW_OP_breg31:
3316 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3317 break;
3318 case DW_OP_regx:
3319 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3320 break;
3321 case DW_OP_fbreg:
3322 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3323 break;
3324 case DW_OP_bregx:
3325 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3326 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3327 break;
3328 case DW_OP_piece:
3329 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3330 break;
3331 case DW_OP_deref_size:
3332 case DW_OP_xderef_size:
3333 dw2_asm_output_data (1, val1->v.val_int, NULL);
3334 break;
3336 case INTERNAL_DW_OP_tls_addr:
3337 if (targetm.asm_out.output_dwarf_dtprel)
3339 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3340 DWARF2_ADDR_SIZE,
3341 val1->v.val_addr);
3342 fputc ('\n', asm_out_file);
3344 else
3345 gcc_unreachable ();
3346 break;
3348 default:
3349 /* Other codes have no operands. */
3350 break;
3354 /* Output a sequence of location operations. */
3356 static void
3357 output_loc_sequence (dw_loc_descr_ref loc)
3359 for (; loc != NULL; loc = loc->dw_loc_next)
3361 /* Output the opcode. */
3362 dw2_asm_output_data (1, loc->dw_loc_opc,
3363 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3365 /* Output the operand(s) (if any). */
3366 output_loc_operands (loc);
3370 /* This routine will generate the correct assembly data for a location
3371 description based on a cfi entry with a complex address. */
3373 static void
3374 output_cfa_loc (dw_cfi_ref cfi)
3376 dw_loc_descr_ref loc;
3377 unsigned long size;
3379 /* Output the size of the block. */
3380 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3381 size = size_of_locs (loc);
3382 dw2_asm_output_data_uleb128 (size, NULL);
3384 /* Now output the operations themselves. */
3385 output_loc_sequence (loc);
3388 /* This function builds a dwarf location descriptor sequence from
3389 a dw_cfa_location. */
3391 static struct dw_loc_descr_struct *
3392 build_cfa_loc (dw_cfa_location *cfa)
3394 struct dw_loc_descr_struct *head, *tmp;
3396 if (cfa->indirect)
3398 if (cfa->base_offset)
3400 if (cfa->reg <= 31)
3401 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3402 else
3403 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3405 else if (cfa->reg <= 31)
3406 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3407 else
3408 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3410 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3411 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3412 add_loc_descr (&head, tmp);
3413 if (cfa->offset != 0)
3415 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3416 add_loc_descr (&head, tmp);
3419 else
3421 if (cfa->offset == 0)
3422 if (cfa->reg <= 31)
3423 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3424 else
3425 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3426 else if (cfa->reg <= 31)
3427 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->offset, 0);
3428 else
3429 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->offset);
3432 return head;
3435 /* This function fills in aa dw_cfa_location structure from a dwarf location
3436 descriptor sequence. */
3438 static void
3439 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3441 struct dw_loc_descr_struct *ptr;
3442 cfa->offset = 0;
3443 cfa->base_offset = 0;
3444 cfa->indirect = 0;
3445 cfa->reg = -1;
3447 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3449 enum dwarf_location_atom op = ptr->dw_loc_opc;
3451 switch (op)
3453 case DW_OP_reg0:
3454 case DW_OP_reg1:
3455 case DW_OP_reg2:
3456 case DW_OP_reg3:
3457 case DW_OP_reg4:
3458 case DW_OP_reg5:
3459 case DW_OP_reg6:
3460 case DW_OP_reg7:
3461 case DW_OP_reg8:
3462 case DW_OP_reg9:
3463 case DW_OP_reg10:
3464 case DW_OP_reg11:
3465 case DW_OP_reg12:
3466 case DW_OP_reg13:
3467 case DW_OP_reg14:
3468 case DW_OP_reg15:
3469 case DW_OP_reg16:
3470 case DW_OP_reg17:
3471 case DW_OP_reg18:
3472 case DW_OP_reg19:
3473 case DW_OP_reg20:
3474 case DW_OP_reg21:
3475 case DW_OP_reg22:
3476 case DW_OP_reg23:
3477 case DW_OP_reg24:
3478 case DW_OP_reg25:
3479 case DW_OP_reg26:
3480 case DW_OP_reg27:
3481 case DW_OP_reg28:
3482 case DW_OP_reg29:
3483 case DW_OP_reg30:
3484 case DW_OP_reg31:
3485 cfa->reg = op - DW_OP_reg0;
3486 break;
3487 case DW_OP_regx:
3488 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3489 break;
3490 case DW_OP_breg0:
3491 case DW_OP_breg1:
3492 case DW_OP_breg2:
3493 case DW_OP_breg3:
3494 case DW_OP_breg4:
3495 case DW_OP_breg5:
3496 case DW_OP_breg6:
3497 case DW_OP_breg7:
3498 case DW_OP_breg8:
3499 case DW_OP_breg9:
3500 case DW_OP_breg10:
3501 case DW_OP_breg11:
3502 case DW_OP_breg12:
3503 case DW_OP_breg13:
3504 case DW_OP_breg14:
3505 case DW_OP_breg15:
3506 case DW_OP_breg16:
3507 case DW_OP_breg17:
3508 case DW_OP_breg18:
3509 case DW_OP_breg19:
3510 case DW_OP_breg20:
3511 case DW_OP_breg21:
3512 case DW_OP_breg22:
3513 case DW_OP_breg23:
3514 case DW_OP_breg24:
3515 case DW_OP_breg25:
3516 case DW_OP_breg26:
3517 case DW_OP_breg27:
3518 case DW_OP_breg28:
3519 case DW_OP_breg29:
3520 case DW_OP_breg30:
3521 case DW_OP_breg31:
3522 cfa->reg = op - DW_OP_breg0;
3523 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3524 break;
3525 case DW_OP_bregx:
3526 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3527 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3528 break;
3529 case DW_OP_deref:
3530 cfa->indirect = 1;
3531 break;
3532 case DW_OP_plus_uconst:
3533 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3534 break;
3535 default:
3536 internal_error ("DW_LOC_OP %s not implemented",
3537 dwarf_stack_op_name (ptr->dw_loc_opc));
3541 #endif /* .debug_frame support */
3543 /* And now, the support for symbolic debugging information. */
3544 #ifdef DWARF2_DEBUGGING_INFO
3546 /* .debug_str support. */
3547 static int output_indirect_string (void **, void *);
3549 static void dwarf2out_init (const char *);
3550 static void dwarf2out_finish (const char *);
3551 static void dwarf2out_define (unsigned int, const char *);
3552 static void dwarf2out_undef (unsigned int, const char *);
3553 static void dwarf2out_start_source_file (unsigned, const char *);
3554 static void dwarf2out_end_source_file (unsigned);
3555 static void dwarf2out_begin_block (unsigned, unsigned);
3556 static void dwarf2out_end_block (unsigned, unsigned);
3557 static bool dwarf2out_ignore_block (tree);
3558 static void dwarf2out_global_decl (tree);
3559 static void dwarf2out_type_decl (tree, int);
3560 static void dwarf2out_imported_module_or_decl (tree, tree);
3561 static void dwarf2out_abstract_function (tree);
3562 static void dwarf2out_var_location (rtx);
3563 static void dwarf2out_begin_function (tree);
3564 static void dwarf2out_switch_text_section (void);
3566 /* The debug hooks structure. */
3568 const struct gcc_debug_hooks dwarf2_debug_hooks =
3570 dwarf2out_init,
3571 dwarf2out_finish,
3572 dwarf2out_define,
3573 dwarf2out_undef,
3574 dwarf2out_start_source_file,
3575 dwarf2out_end_source_file,
3576 dwarf2out_begin_block,
3577 dwarf2out_end_block,
3578 dwarf2out_ignore_block,
3579 dwarf2out_source_line,
3580 dwarf2out_begin_prologue,
3581 debug_nothing_int_charstar, /* end_prologue */
3582 dwarf2out_end_epilogue,
3583 dwarf2out_begin_function,
3584 debug_nothing_int, /* end_function */
3585 dwarf2out_decl, /* function_decl */
3586 dwarf2out_global_decl,
3587 dwarf2out_type_decl, /* type_decl */
3588 dwarf2out_imported_module_or_decl,
3589 debug_nothing_tree, /* deferred_inline_function */
3590 /* The DWARF 2 backend tries to reduce debugging bloat by not
3591 emitting the abstract description of inline functions until
3592 something tries to reference them. */
3593 dwarf2out_abstract_function, /* outlining_inline_function */
3594 debug_nothing_rtx, /* label */
3595 debug_nothing_int, /* handle_pch */
3596 dwarf2out_var_location,
3597 dwarf2out_switch_text_section,
3598 1 /* start_end_main_source_file */
3600 #endif
3602 /* NOTE: In the comments in this file, many references are made to
3603 "Debugging Information Entries". This term is abbreviated as `DIE'
3604 throughout the remainder of this file. */
3606 /* An internal representation of the DWARF output is built, and then
3607 walked to generate the DWARF debugging info. The walk of the internal
3608 representation is done after the entire program has been compiled.
3609 The types below are used to describe the internal representation. */
3611 /* Various DIE's use offsets relative to the beginning of the
3612 .debug_info section to refer to each other. */
3614 typedef long int dw_offset;
3616 /* Define typedefs here to avoid circular dependencies. */
3618 typedef struct dw_attr_struct *dw_attr_ref;
3619 typedef struct dw_line_info_struct *dw_line_info_ref;
3620 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3621 typedef struct pubname_struct *pubname_ref;
3622 typedef struct dw_ranges_struct *dw_ranges_ref;
3624 /* Each entry in the line_info_table maintains the file and
3625 line number associated with the label generated for that
3626 entry. The label gives the PC value associated with
3627 the line number entry. */
3629 typedef struct dw_line_info_struct GTY(())
3631 unsigned long dw_file_num;
3632 unsigned long dw_line_num;
3634 dw_line_info_entry;
3636 /* Line information for functions in separate sections; each one gets its
3637 own sequence. */
3638 typedef struct dw_separate_line_info_struct GTY(())
3640 unsigned long dw_file_num;
3641 unsigned long dw_line_num;
3642 unsigned long function;
3644 dw_separate_line_info_entry;
3646 /* Each DIE attribute has a field specifying the attribute kind,
3647 a link to the next attribute in the chain, and an attribute value.
3648 Attributes are typically linked below the DIE they modify. */
3650 typedef struct dw_attr_struct GTY(())
3652 enum dwarf_attribute dw_attr;
3653 dw_attr_ref dw_attr_next;
3654 dw_val_node dw_attr_val;
3656 dw_attr_node;
3658 /* The Debugging Information Entry (DIE) structure */
3660 typedef struct die_struct GTY(())
3662 enum dwarf_tag die_tag;
3663 char *die_symbol;
3664 dw_attr_ref die_attr;
3665 dw_die_ref die_parent;
3666 dw_die_ref die_child;
3667 dw_die_ref die_sib;
3668 dw_die_ref die_definition; /* ref from a specification to its definition */
3669 dw_offset die_offset;
3670 unsigned long die_abbrev;
3671 int die_mark;
3672 unsigned int decl_id;
3674 die_node;
3676 /* The pubname structure */
3678 typedef struct pubname_struct GTY(())
3680 dw_die_ref die;
3681 char *name;
3683 pubname_entry;
3685 struct dw_ranges_struct GTY(())
3687 int block_num;
3690 /* The limbo die list structure. */
3691 typedef struct limbo_die_struct GTY(())
3693 dw_die_ref die;
3694 tree created_for;
3695 struct limbo_die_struct *next;
3697 limbo_die_node;
3699 /* How to start an assembler comment. */
3700 #ifndef ASM_COMMENT_START
3701 #define ASM_COMMENT_START ";#"
3702 #endif
3704 /* Define a macro which returns nonzero for a TYPE_DECL which was
3705 implicitly generated for a tagged type.
3707 Note that unlike the gcc front end (which generates a NULL named
3708 TYPE_DECL node for each complete tagged type, each array type, and
3709 each function type node created) the g++ front end generates a
3710 _named_ TYPE_DECL node for each tagged type node created.
3711 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3712 generate a DW_TAG_typedef DIE for them. */
3714 #define TYPE_DECL_IS_STUB(decl) \
3715 (DECL_NAME (decl) == NULL_TREE \
3716 || (DECL_ARTIFICIAL (decl) \
3717 && is_tagged_type (TREE_TYPE (decl)) \
3718 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3719 /* This is necessary for stub decls that \
3720 appear in nested inline functions. */ \
3721 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3722 && (decl_ultimate_origin (decl) \
3723 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3725 /* Information concerning the compilation unit's programming
3726 language, and compiler version. */
3728 /* Fixed size portion of the DWARF compilation unit header. */
3729 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3730 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3732 /* Fixed size portion of public names info. */
3733 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3735 /* Fixed size portion of the address range info. */
3736 #define DWARF_ARANGES_HEADER_SIZE \
3737 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3738 DWARF2_ADDR_SIZE * 2) \
3739 - DWARF_INITIAL_LENGTH_SIZE)
3741 /* Size of padding portion in the address range info. It must be
3742 aligned to twice the pointer size. */
3743 #define DWARF_ARANGES_PAD_SIZE \
3744 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3745 DWARF2_ADDR_SIZE * 2) \
3746 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3748 /* Use assembler line directives if available. */
3749 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3750 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3751 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3752 #else
3753 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3754 #endif
3755 #endif
3757 /* Minimum line offset in a special line info. opcode.
3758 This value was chosen to give a reasonable range of values. */
3759 #define DWARF_LINE_BASE -10
3761 /* First special line opcode - leave room for the standard opcodes. */
3762 #define DWARF_LINE_OPCODE_BASE 10
3764 /* Range of line offsets in a special line info. opcode. */
3765 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3767 /* Flag that indicates the initial value of the is_stmt_start flag.
3768 In the present implementation, we do not mark any lines as
3769 the beginning of a source statement, because that information
3770 is not made available by the GCC front-end. */
3771 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3773 #ifdef DWARF2_DEBUGGING_INFO
3774 /* This location is used by calc_die_sizes() to keep track
3775 the offset of each DIE within the .debug_info section. */
3776 static unsigned long next_die_offset;
3777 #endif
3779 /* Record the root of the DIE's built for the current compilation unit. */
3780 static GTY(()) dw_die_ref comp_unit_die;
3782 /* A list of DIEs with a NULL parent waiting to be relocated. */
3783 static GTY(()) limbo_die_node *limbo_die_list;
3785 /* Filenames referenced by this compilation unit. */
3786 static GTY(()) varray_type file_table;
3787 static GTY(()) varray_type file_table_emitted;
3788 static GTY(()) size_t file_table_last_lookup_index;
3790 /* A hash table of references to DIE's that describe declarations.
3791 The key is a DECL_UID() which is a unique number identifying each decl. */
3792 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3794 /* Node of the variable location list. */
3795 struct var_loc_node GTY ((chain_next ("%h.next")))
3797 rtx GTY (()) var_loc_note;
3798 const char * GTY (()) label;
3799 const char * GTY (()) section_label;
3800 struct var_loc_node * GTY (()) next;
3803 /* Variable location list. */
3804 struct var_loc_list_def GTY (())
3806 struct var_loc_node * GTY (()) first;
3808 /* Do not mark the last element of the chained list because
3809 it is marked through the chain. */
3810 struct var_loc_node * GTY ((skip ("%h"))) last;
3812 /* DECL_UID of the variable decl. */
3813 unsigned int decl_id;
3815 typedef struct var_loc_list_def var_loc_list;
3818 /* Table of decl location linked lists. */
3819 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3821 /* A pointer to the base of a list of references to DIE's that
3822 are uniquely identified by their tag, presence/absence of
3823 children DIE's, and list of attribute/value pairs. */
3824 static GTY((length ("abbrev_die_table_allocated")))
3825 dw_die_ref *abbrev_die_table;
3827 /* Number of elements currently allocated for abbrev_die_table. */
3828 static GTY(()) unsigned abbrev_die_table_allocated;
3830 /* Number of elements in type_die_table currently in use. */
3831 static GTY(()) unsigned abbrev_die_table_in_use;
3833 /* Size (in elements) of increments by which we may expand the
3834 abbrev_die_table. */
3835 #define ABBREV_DIE_TABLE_INCREMENT 256
3837 /* A pointer to the base of a table that contains line information
3838 for each source code line in .text in the compilation unit. */
3839 static GTY((length ("line_info_table_allocated")))
3840 dw_line_info_ref line_info_table;
3842 /* Number of elements currently allocated for line_info_table. */
3843 static GTY(()) unsigned line_info_table_allocated;
3845 /* Number of elements in line_info_table currently in use. */
3846 static GTY(()) unsigned line_info_table_in_use;
3848 /* True if the compilation unit contains more than one .text section. */
3849 static GTY(()) bool have_switched_text_section = false;
3851 /* A pointer to the base of a table that contains line information
3852 for each source code line outside of .text in the compilation unit. */
3853 static GTY ((length ("separate_line_info_table_allocated")))
3854 dw_separate_line_info_ref separate_line_info_table;
3856 /* Number of elements currently allocated for separate_line_info_table. */
3857 static GTY(()) unsigned separate_line_info_table_allocated;
3859 /* Number of elements in separate_line_info_table currently in use. */
3860 static GTY(()) unsigned separate_line_info_table_in_use;
3862 /* Size (in elements) of increments by which we may expand the
3863 line_info_table. */
3864 #define LINE_INFO_TABLE_INCREMENT 1024
3866 /* A pointer to the base of a table that contains a list of publicly
3867 accessible names. */
3868 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3870 /* Number of elements currently allocated for pubname_table. */
3871 static GTY(()) unsigned pubname_table_allocated;
3873 /* Number of elements in pubname_table currently in use. */
3874 static GTY(()) unsigned pubname_table_in_use;
3876 /* Size (in elements) of increments by which we may expand the
3877 pubname_table. */
3878 #define PUBNAME_TABLE_INCREMENT 64
3880 /* Array of dies for which we should generate .debug_arange info. */
3881 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3883 /* Number of elements currently allocated for arange_table. */
3884 static GTY(()) unsigned arange_table_allocated;
3886 /* Number of elements in arange_table currently in use. */
3887 static GTY(()) unsigned arange_table_in_use;
3889 /* Size (in elements) of increments by which we may expand the
3890 arange_table. */
3891 #define ARANGE_TABLE_INCREMENT 64
3893 /* Array of dies for which we should generate .debug_ranges info. */
3894 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3896 /* Number of elements currently allocated for ranges_table. */
3897 static GTY(()) unsigned ranges_table_allocated;
3899 /* Number of elements in ranges_table currently in use. */
3900 static GTY(()) unsigned ranges_table_in_use;
3902 /* Size (in elements) of increments by which we may expand the
3903 ranges_table. */
3904 #define RANGES_TABLE_INCREMENT 64
3906 /* Whether we have location lists that need outputting */
3907 static GTY(()) unsigned have_location_lists;
3909 /* Unique label counter. */
3910 static GTY(()) unsigned int loclabel_num;
3912 #ifdef DWARF2_DEBUGGING_INFO
3913 /* Record whether the function being analyzed contains inlined functions. */
3914 static int current_function_has_inlines;
3915 #endif
3916 #if 0 && defined (MIPS_DEBUGGING_INFO)
3917 static int comp_unit_has_inlines;
3918 #endif
3920 /* Number of file tables emitted in maybe_emit_file(). */
3921 static GTY(()) int emitcount = 0;
3923 /* Number of internal labels generated by gen_internal_sym(). */
3924 static GTY(()) int label_num;
3926 #ifdef DWARF2_DEBUGGING_INFO
3928 /* Offset from the "steady-state frame pointer" to the CFA,
3929 within the current function. */
3930 static HOST_WIDE_INT frame_pointer_cfa_offset;
3932 /* Forward declarations for functions defined in this file. */
3934 static int is_pseudo_reg (rtx);
3935 static tree type_main_variant (tree);
3936 static int is_tagged_type (tree);
3937 static const char *dwarf_tag_name (unsigned);
3938 static const char *dwarf_attr_name (unsigned);
3939 static const char *dwarf_form_name (unsigned);
3940 static tree decl_ultimate_origin (tree);
3941 static tree block_ultimate_origin (tree);
3942 static tree decl_class_context (tree);
3943 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3944 static inline enum dw_val_class AT_class (dw_attr_ref);
3945 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3946 static inline unsigned AT_flag (dw_attr_ref);
3947 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3948 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3949 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3950 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3951 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3952 unsigned long);
3953 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3954 unsigned int, unsigned char *);
3955 static hashval_t debug_str_do_hash (const void *);
3956 static int debug_str_eq (const void *, const void *);
3957 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3958 static inline const char *AT_string (dw_attr_ref);
3959 static int AT_string_form (dw_attr_ref);
3960 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3961 static void add_AT_specification (dw_die_ref, dw_die_ref);
3962 static inline dw_die_ref AT_ref (dw_attr_ref);
3963 static inline int AT_ref_external (dw_attr_ref);
3964 static inline void set_AT_ref_external (dw_attr_ref, int);
3965 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3966 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3967 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3968 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3969 dw_loc_list_ref);
3970 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3971 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3972 static inline rtx AT_addr (dw_attr_ref);
3973 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3974 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3975 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3976 unsigned HOST_WIDE_INT);
3977 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3978 unsigned long);
3979 static inline const char *AT_lbl (dw_attr_ref);
3980 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3981 static const char *get_AT_low_pc (dw_die_ref);
3982 static const char *get_AT_hi_pc (dw_die_ref);
3983 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3984 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3985 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3986 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3987 static bool is_c_family (void);
3988 static bool is_cxx (void);
3989 static bool is_java (void);
3990 static bool is_fortran (void);
3991 static bool is_ada (void);
3992 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3993 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3994 static inline void free_die (dw_die_ref);
3995 static void remove_children (dw_die_ref);
3996 static void add_child_die (dw_die_ref, dw_die_ref);
3997 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3998 static dw_die_ref lookup_type_die (tree);
3999 static void equate_type_number_to_die (tree, dw_die_ref);
4000 static hashval_t decl_die_table_hash (const void *);
4001 static int decl_die_table_eq (const void *, const void *);
4002 static dw_die_ref lookup_decl_die (tree);
4003 static hashval_t decl_loc_table_hash (const void *);
4004 static int decl_loc_table_eq (const void *, const void *);
4005 static var_loc_list *lookup_decl_loc (tree);
4006 static void equate_decl_number_to_die (tree, dw_die_ref);
4007 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4008 static void print_spaces (FILE *);
4009 static void print_die (dw_die_ref, FILE *);
4010 static void print_dwarf_line_table (FILE *);
4011 static void reverse_die_lists (dw_die_ref);
4012 static void reverse_all_dies (dw_die_ref);
4013 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4014 static dw_die_ref pop_compile_unit (dw_die_ref);
4015 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4016 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4017 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4018 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4019 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4020 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4021 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4022 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4023 static void compute_section_prefix (dw_die_ref);
4024 static int is_type_die (dw_die_ref);
4025 static int is_comdat_die (dw_die_ref);
4026 static int is_symbol_die (dw_die_ref);
4027 static void assign_symbol_names (dw_die_ref);
4028 static void break_out_includes (dw_die_ref);
4029 static hashval_t htab_cu_hash (const void *);
4030 static int htab_cu_eq (const void *, const void *);
4031 static void htab_cu_del (void *);
4032 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4033 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4034 static void add_sibling_attributes (dw_die_ref);
4035 static void build_abbrev_table (dw_die_ref);
4036 static void output_location_lists (dw_die_ref);
4037 static int constant_size (long unsigned);
4038 static unsigned long size_of_die (dw_die_ref);
4039 static void calc_die_sizes (dw_die_ref);
4040 static void mark_dies (dw_die_ref);
4041 static void unmark_dies (dw_die_ref);
4042 static void unmark_all_dies (dw_die_ref);
4043 static unsigned long size_of_pubnames (void);
4044 static unsigned long size_of_aranges (void);
4045 static enum dwarf_form value_format (dw_attr_ref);
4046 static void output_value_format (dw_attr_ref);
4047 static void output_abbrev_section (void);
4048 static void output_die_symbol (dw_die_ref);
4049 static void output_die (dw_die_ref);
4050 static void output_compilation_unit_header (void);
4051 static void output_comp_unit (dw_die_ref, int);
4052 static const char *dwarf2_name (tree, int);
4053 static void add_pubname (tree, dw_die_ref);
4054 static void output_pubnames (void);
4055 static void add_arange (tree, dw_die_ref);
4056 static void output_aranges (void);
4057 static unsigned int add_ranges (tree);
4058 static void output_ranges (void);
4059 static void output_line_info (void);
4060 static void output_file_names (void);
4061 static dw_die_ref base_type_die (tree);
4062 static tree root_type (tree);
4063 static int is_base_type (tree);
4064 static bool is_subrange_type (tree);
4065 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4066 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4067 static int type_is_enum (tree);
4068 static unsigned int dbx_reg_number (rtx);
4069 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4070 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4071 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4072 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4073 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4074 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4075 static int is_based_loc (rtx);
4076 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4077 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4078 static dw_loc_descr_ref loc_descriptor (rtx);
4079 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4080 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4081 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4082 static tree field_type (tree);
4083 static unsigned int simple_type_align_in_bits (tree);
4084 static unsigned int simple_decl_align_in_bits (tree);
4085 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4086 static HOST_WIDE_INT field_byte_offset (tree);
4087 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4088 dw_loc_descr_ref);
4089 static void add_data_member_location_attribute (dw_die_ref, tree);
4090 static void add_const_value_attribute (dw_die_ref, rtx);
4091 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4092 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4093 static void insert_float (rtx, unsigned char *);
4094 static rtx rtl_for_decl_location (tree);
4095 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4096 enum dwarf_attribute);
4097 static void tree_add_const_value_attribute (dw_die_ref, tree);
4098 static void add_name_attribute (dw_die_ref, const char *);
4099 static void add_comp_dir_attribute (dw_die_ref);
4100 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4101 static void add_subscript_info (dw_die_ref, tree);
4102 static void add_byte_size_attribute (dw_die_ref, tree);
4103 static void add_bit_offset_attribute (dw_die_ref, tree);
4104 static void add_bit_size_attribute (dw_die_ref, tree);
4105 static void add_prototyped_attribute (dw_die_ref, tree);
4106 static void add_abstract_origin_attribute (dw_die_ref, tree);
4107 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4108 static void add_src_coords_attributes (dw_die_ref, tree);
4109 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4110 static void push_decl_scope (tree);
4111 static void pop_decl_scope (void);
4112 static dw_die_ref scope_die_for (tree, dw_die_ref);
4113 static inline int local_scope_p (dw_die_ref);
4114 static inline int class_or_namespace_scope_p (dw_die_ref);
4115 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4116 static void add_calling_convention_attribute (dw_die_ref, tree);
4117 static const char *type_tag (tree);
4118 static tree member_declared_type (tree);
4119 #if 0
4120 static const char *decl_start_label (tree);
4121 #endif
4122 static void gen_array_type_die (tree, dw_die_ref);
4123 #if 0
4124 static void gen_entry_point_die (tree, dw_die_ref);
4125 #endif
4126 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4127 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4128 static void gen_inlined_union_type_die (tree, dw_die_ref);
4129 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4130 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4131 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4132 static void gen_formal_types_die (tree, dw_die_ref);
4133 static void gen_subprogram_die (tree, dw_die_ref);
4134 static void gen_variable_die (tree, dw_die_ref);
4135 static void gen_label_die (tree, dw_die_ref);
4136 static void gen_lexical_block_die (tree, dw_die_ref, int);
4137 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4138 static void gen_field_die (tree, dw_die_ref);
4139 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4140 static dw_die_ref gen_compile_unit_die (const char *);
4141 static void gen_string_type_die (tree, dw_die_ref);
4142 static void gen_inheritance_die (tree, tree, dw_die_ref);
4143 static void gen_member_die (tree, dw_die_ref);
4144 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4145 static void gen_subroutine_type_die (tree, dw_die_ref);
4146 static void gen_typedef_die (tree, dw_die_ref);
4147 static void gen_type_die (tree, dw_die_ref);
4148 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4149 static void gen_block_die (tree, dw_die_ref, int);
4150 static void decls_for_scope (tree, dw_die_ref, int);
4151 static int is_redundant_typedef (tree);
4152 static void gen_namespace_die (tree);
4153 static void gen_decl_die (tree, dw_die_ref);
4154 static dw_die_ref force_decl_die (tree);
4155 static dw_die_ref force_type_die (tree);
4156 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4157 static void declare_in_namespace (tree, dw_die_ref);
4158 static unsigned lookup_filename (const char *);
4159 static void init_file_table (void);
4160 static void retry_incomplete_types (void);
4161 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4162 static void splice_child_die (dw_die_ref, dw_die_ref);
4163 static int file_info_cmp (const void *, const void *);
4164 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4165 const char *, const char *, unsigned);
4166 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4167 const char *, const char *,
4168 const char *);
4169 static void output_loc_list (dw_loc_list_ref);
4170 static char *gen_internal_sym (const char *);
4172 static void prune_unmark_dies (dw_die_ref);
4173 static void prune_unused_types_mark (dw_die_ref, int);
4174 static void prune_unused_types_walk (dw_die_ref);
4175 static void prune_unused_types_walk_attribs (dw_die_ref);
4176 static void prune_unused_types_prune (dw_die_ref);
4177 static void prune_unused_types (void);
4178 static int maybe_emit_file (int);
4180 /* Section names used to hold DWARF debugging information. */
4181 #ifndef DEBUG_INFO_SECTION
4182 #define DEBUG_INFO_SECTION ".debug_info"
4183 #endif
4184 #ifndef DEBUG_ABBREV_SECTION
4185 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4186 #endif
4187 #ifndef DEBUG_ARANGES_SECTION
4188 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4189 #endif
4190 #ifndef DEBUG_MACINFO_SECTION
4191 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4192 #endif
4193 #ifndef DEBUG_LINE_SECTION
4194 #define DEBUG_LINE_SECTION ".debug_line"
4195 #endif
4196 #ifndef DEBUG_LOC_SECTION
4197 #define DEBUG_LOC_SECTION ".debug_loc"
4198 #endif
4199 #ifndef DEBUG_PUBNAMES_SECTION
4200 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4201 #endif
4202 #ifndef DEBUG_STR_SECTION
4203 #define DEBUG_STR_SECTION ".debug_str"
4204 #endif
4205 #ifndef DEBUG_RANGES_SECTION
4206 #define DEBUG_RANGES_SECTION ".debug_ranges"
4207 #endif
4209 /* Standard ELF section names for compiled code and data. */
4210 #ifndef TEXT_SECTION_NAME
4211 #define TEXT_SECTION_NAME ".text"
4212 #endif
4214 /* Section flags for .debug_str section. */
4215 #define DEBUG_STR_SECTION_FLAGS \
4216 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4217 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4218 : SECTION_DEBUG)
4220 /* Labels we insert at beginning sections we can reference instead of
4221 the section names themselves. */
4223 #ifndef TEXT_SECTION_LABEL
4224 #define TEXT_SECTION_LABEL "Ltext"
4225 #endif
4226 #ifndef COLD_TEXT_SECTION_LABEL
4227 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4228 #endif
4229 #ifndef DEBUG_LINE_SECTION_LABEL
4230 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4231 #endif
4232 #ifndef DEBUG_INFO_SECTION_LABEL
4233 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4234 #endif
4235 #ifndef DEBUG_ABBREV_SECTION_LABEL
4236 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4237 #endif
4238 #ifndef DEBUG_LOC_SECTION_LABEL
4239 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4240 #endif
4241 #ifndef DEBUG_RANGES_SECTION_LABEL
4242 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4243 #endif
4244 #ifndef DEBUG_MACINFO_SECTION_LABEL
4245 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4246 #endif
4248 /* Definitions of defaults for formats and names of various special
4249 (artificial) labels which may be generated within this file (when the -g
4250 options is used and DWARF2_DEBUGGING_INFO is in effect.
4251 If necessary, these may be overridden from within the tm.h file, but
4252 typically, overriding these defaults is unnecessary. */
4254 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4255 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4256 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4257 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4258 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4259 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4260 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4261 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4262 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4263 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4265 #ifndef TEXT_END_LABEL
4266 #define TEXT_END_LABEL "Letext"
4267 #endif
4268 #ifndef COLD_END_LABEL
4269 #define COLD_END_LABEL "Letext_cold"
4270 #endif
4271 #ifndef BLOCK_BEGIN_LABEL
4272 #define BLOCK_BEGIN_LABEL "LBB"
4273 #endif
4274 #ifndef BLOCK_END_LABEL
4275 #define BLOCK_END_LABEL "LBE"
4276 #endif
4277 #ifndef LINE_CODE_LABEL
4278 #define LINE_CODE_LABEL "LM"
4279 #endif
4280 #ifndef SEPARATE_LINE_CODE_LABEL
4281 #define SEPARATE_LINE_CODE_LABEL "LSM"
4282 #endif
4284 /* We allow a language front-end to designate a function that is to be
4285 called to "demangle" any name before it is put into a DIE. */
4287 static const char *(*demangle_name_func) (const char *);
4289 void
4290 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4292 demangle_name_func = func;
4295 /* Test if rtl node points to a pseudo register. */
4297 static inline int
4298 is_pseudo_reg (rtx rtl)
4300 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4301 || (GET_CODE (rtl) == SUBREG
4302 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4305 /* Return a reference to a type, with its const and volatile qualifiers
4306 removed. */
4308 static inline tree
4309 type_main_variant (tree type)
4311 type = TYPE_MAIN_VARIANT (type);
4313 /* ??? There really should be only one main variant among any group of
4314 variants of a given type (and all of the MAIN_VARIANT values for all
4315 members of the group should point to that one type) but sometimes the C
4316 front-end messes this up for array types, so we work around that bug
4317 here. */
4318 if (TREE_CODE (type) == ARRAY_TYPE)
4319 while (type != TYPE_MAIN_VARIANT (type))
4320 type = TYPE_MAIN_VARIANT (type);
4322 return type;
4325 /* Return nonzero if the given type node represents a tagged type. */
4327 static inline int
4328 is_tagged_type (tree type)
4330 enum tree_code code = TREE_CODE (type);
4332 return (code == RECORD_TYPE || code == UNION_TYPE
4333 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4336 /* Convert a DIE tag into its string name. */
4338 static const char *
4339 dwarf_tag_name (unsigned int tag)
4341 switch (tag)
4343 case DW_TAG_padding:
4344 return "DW_TAG_padding";
4345 case DW_TAG_array_type:
4346 return "DW_TAG_array_type";
4347 case DW_TAG_class_type:
4348 return "DW_TAG_class_type";
4349 case DW_TAG_entry_point:
4350 return "DW_TAG_entry_point";
4351 case DW_TAG_enumeration_type:
4352 return "DW_TAG_enumeration_type";
4353 case DW_TAG_formal_parameter:
4354 return "DW_TAG_formal_parameter";
4355 case DW_TAG_imported_declaration:
4356 return "DW_TAG_imported_declaration";
4357 case DW_TAG_label:
4358 return "DW_TAG_label";
4359 case DW_TAG_lexical_block:
4360 return "DW_TAG_lexical_block";
4361 case DW_TAG_member:
4362 return "DW_TAG_member";
4363 case DW_TAG_pointer_type:
4364 return "DW_TAG_pointer_type";
4365 case DW_TAG_reference_type:
4366 return "DW_TAG_reference_type";
4367 case DW_TAG_compile_unit:
4368 return "DW_TAG_compile_unit";
4369 case DW_TAG_string_type:
4370 return "DW_TAG_string_type";
4371 case DW_TAG_structure_type:
4372 return "DW_TAG_structure_type";
4373 case DW_TAG_subroutine_type:
4374 return "DW_TAG_subroutine_type";
4375 case DW_TAG_typedef:
4376 return "DW_TAG_typedef";
4377 case DW_TAG_union_type:
4378 return "DW_TAG_union_type";
4379 case DW_TAG_unspecified_parameters:
4380 return "DW_TAG_unspecified_parameters";
4381 case DW_TAG_variant:
4382 return "DW_TAG_variant";
4383 case DW_TAG_common_block:
4384 return "DW_TAG_common_block";
4385 case DW_TAG_common_inclusion:
4386 return "DW_TAG_common_inclusion";
4387 case DW_TAG_inheritance:
4388 return "DW_TAG_inheritance";
4389 case DW_TAG_inlined_subroutine:
4390 return "DW_TAG_inlined_subroutine";
4391 case DW_TAG_module:
4392 return "DW_TAG_module";
4393 case DW_TAG_ptr_to_member_type:
4394 return "DW_TAG_ptr_to_member_type";
4395 case DW_TAG_set_type:
4396 return "DW_TAG_set_type";
4397 case DW_TAG_subrange_type:
4398 return "DW_TAG_subrange_type";
4399 case DW_TAG_with_stmt:
4400 return "DW_TAG_with_stmt";
4401 case DW_TAG_access_declaration:
4402 return "DW_TAG_access_declaration";
4403 case DW_TAG_base_type:
4404 return "DW_TAG_base_type";
4405 case DW_TAG_catch_block:
4406 return "DW_TAG_catch_block";
4407 case DW_TAG_const_type:
4408 return "DW_TAG_const_type";
4409 case DW_TAG_constant:
4410 return "DW_TAG_constant";
4411 case DW_TAG_enumerator:
4412 return "DW_TAG_enumerator";
4413 case DW_TAG_file_type:
4414 return "DW_TAG_file_type";
4415 case DW_TAG_friend:
4416 return "DW_TAG_friend";
4417 case DW_TAG_namelist:
4418 return "DW_TAG_namelist";
4419 case DW_TAG_namelist_item:
4420 return "DW_TAG_namelist_item";
4421 case DW_TAG_namespace:
4422 return "DW_TAG_namespace";
4423 case DW_TAG_packed_type:
4424 return "DW_TAG_packed_type";
4425 case DW_TAG_subprogram:
4426 return "DW_TAG_subprogram";
4427 case DW_TAG_template_type_param:
4428 return "DW_TAG_template_type_param";
4429 case DW_TAG_template_value_param:
4430 return "DW_TAG_template_value_param";
4431 case DW_TAG_thrown_type:
4432 return "DW_TAG_thrown_type";
4433 case DW_TAG_try_block:
4434 return "DW_TAG_try_block";
4435 case DW_TAG_variant_part:
4436 return "DW_TAG_variant_part";
4437 case DW_TAG_variable:
4438 return "DW_TAG_variable";
4439 case DW_TAG_volatile_type:
4440 return "DW_TAG_volatile_type";
4441 case DW_TAG_imported_module:
4442 return "DW_TAG_imported_module";
4443 case DW_TAG_MIPS_loop:
4444 return "DW_TAG_MIPS_loop";
4445 case DW_TAG_format_label:
4446 return "DW_TAG_format_label";
4447 case DW_TAG_function_template:
4448 return "DW_TAG_function_template";
4449 case DW_TAG_class_template:
4450 return "DW_TAG_class_template";
4451 case DW_TAG_GNU_BINCL:
4452 return "DW_TAG_GNU_BINCL";
4453 case DW_TAG_GNU_EINCL:
4454 return "DW_TAG_GNU_EINCL";
4455 default:
4456 return "DW_TAG_<unknown>";
4460 /* Convert a DWARF attribute code into its string name. */
4462 static const char *
4463 dwarf_attr_name (unsigned int attr)
4465 switch (attr)
4467 case DW_AT_sibling:
4468 return "DW_AT_sibling";
4469 case DW_AT_location:
4470 return "DW_AT_location";
4471 case DW_AT_name:
4472 return "DW_AT_name";
4473 case DW_AT_ordering:
4474 return "DW_AT_ordering";
4475 case DW_AT_subscr_data:
4476 return "DW_AT_subscr_data";
4477 case DW_AT_byte_size:
4478 return "DW_AT_byte_size";
4479 case DW_AT_bit_offset:
4480 return "DW_AT_bit_offset";
4481 case DW_AT_bit_size:
4482 return "DW_AT_bit_size";
4483 case DW_AT_element_list:
4484 return "DW_AT_element_list";
4485 case DW_AT_stmt_list:
4486 return "DW_AT_stmt_list";
4487 case DW_AT_low_pc:
4488 return "DW_AT_low_pc";
4489 case DW_AT_high_pc:
4490 return "DW_AT_high_pc";
4491 case DW_AT_language:
4492 return "DW_AT_language";
4493 case DW_AT_member:
4494 return "DW_AT_member";
4495 case DW_AT_discr:
4496 return "DW_AT_discr";
4497 case DW_AT_discr_value:
4498 return "DW_AT_discr_value";
4499 case DW_AT_visibility:
4500 return "DW_AT_visibility";
4501 case DW_AT_import:
4502 return "DW_AT_import";
4503 case DW_AT_string_length:
4504 return "DW_AT_string_length";
4505 case DW_AT_common_reference:
4506 return "DW_AT_common_reference";
4507 case DW_AT_comp_dir:
4508 return "DW_AT_comp_dir";
4509 case DW_AT_const_value:
4510 return "DW_AT_const_value";
4511 case DW_AT_containing_type:
4512 return "DW_AT_containing_type";
4513 case DW_AT_default_value:
4514 return "DW_AT_default_value";
4515 case DW_AT_inline:
4516 return "DW_AT_inline";
4517 case DW_AT_is_optional:
4518 return "DW_AT_is_optional";
4519 case DW_AT_lower_bound:
4520 return "DW_AT_lower_bound";
4521 case DW_AT_producer:
4522 return "DW_AT_producer";
4523 case DW_AT_prototyped:
4524 return "DW_AT_prototyped";
4525 case DW_AT_return_addr:
4526 return "DW_AT_return_addr";
4527 case DW_AT_start_scope:
4528 return "DW_AT_start_scope";
4529 case DW_AT_stride_size:
4530 return "DW_AT_stride_size";
4531 case DW_AT_upper_bound:
4532 return "DW_AT_upper_bound";
4533 case DW_AT_abstract_origin:
4534 return "DW_AT_abstract_origin";
4535 case DW_AT_accessibility:
4536 return "DW_AT_accessibility";
4537 case DW_AT_address_class:
4538 return "DW_AT_address_class";
4539 case DW_AT_artificial:
4540 return "DW_AT_artificial";
4541 case DW_AT_base_types:
4542 return "DW_AT_base_types";
4543 case DW_AT_calling_convention:
4544 return "DW_AT_calling_convention";
4545 case DW_AT_count:
4546 return "DW_AT_count";
4547 case DW_AT_data_member_location:
4548 return "DW_AT_data_member_location";
4549 case DW_AT_decl_column:
4550 return "DW_AT_decl_column";
4551 case DW_AT_decl_file:
4552 return "DW_AT_decl_file";
4553 case DW_AT_decl_line:
4554 return "DW_AT_decl_line";
4555 case DW_AT_declaration:
4556 return "DW_AT_declaration";
4557 case DW_AT_discr_list:
4558 return "DW_AT_discr_list";
4559 case DW_AT_encoding:
4560 return "DW_AT_encoding";
4561 case DW_AT_external:
4562 return "DW_AT_external";
4563 case DW_AT_frame_base:
4564 return "DW_AT_frame_base";
4565 case DW_AT_friend:
4566 return "DW_AT_friend";
4567 case DW_AT_identifier_case:
4568 return "DW_AT_identifier_case";
4569 case DW_AT_macro_info:
4570 return "DW_AT_macro_info";
4571 case DW_AT_namelist_items:
4572 return "DW_AT_namelist_items";
4573 case DW_AT_priority:
4574 return "DW_AT_priority";
4575 case DW_AT_segment:
4576 return "DW_AT_segment";
4577 case DW_AT_specification:
4578 return "DW_AT_specification";
4579 case DW_AT_static_link:
4580 return "DW_AT_static_link";
4581 case DW_AT_type:
4582 return "DW_AT_type";
4583 case DW_AT_use_location:
4584 return "DW_AT_use_location";
4585 case DW_AT_variable_parameter:
4586 return "DW_AT_variable_parameter";
4587 case DW_AT_virtuality:
4588 return "DW_AT_virtuality";
4589 case DW_AT_vtable_elem_location:
4590 return "DW_AT_vtable_elem_location";
4592 case DW_AT_allocated:
4593 return "DW_AT_allocated";
4594 case DW_AT_associated:
4595 return "DW_AT_associated";
4596 case DW_AT_data_location:
4597 return "DW_AT_data_location";
4598 case DW_AT_stride:
4599 return "DW_AT_stride";
4600 case DW_AT_entry_pc:
4601 return "DW_AT_entry_pc";
4602 case DW_AT_use_UTF8:
4603 return "DW_AT_use_UTF8";
4604 case DW_AT_extension:
4605 return "DW_AT_extension";
4606 case DW_AT_ranges:
4607 return "DW_AT_ranges";
4608 case DW_AT_trampoline:
4609 return "DW_AT_trampoline";
4610 case DW_AT_call_column:
4611 return "DW_AT_call_column";
4612 case DW_AT_call_file:
4613 return "DW_AT_call_file";
4614 case DW_AT_call_line:
4615 return "DW_AT_call_line";
4617 case DW_AT_MIPS_fde:
4618 return "DW_AT_MIPS_fde";
4619 case DW_AT_MIPS_loop_begin:
4620 return "DW_AT_MIPS_loop_begin";
4621 case DW_AT_MIPS_tail_loop_begin:
4622 return "DW_AT_MIPS_tail_loop_begin";
4623 case DW_AT_MIPS_epilog_begin:
4624 return "DW_AT_MIPS_epilog_begin";
4625 case DW_AT_MIPS_loop_unroll_factor:
4626 return "DW_AT_MIPS_loop_unroll_factor";
4627 case DW_AT_MIPS_software_pipeline_depth:
4628 return "DW_AT_MIPS_software_pipeline_depth";
4629 case DW_AT_MIPS_linkage_name:
4630 return "DW_AT_MIPS_linkage_name";
4631 case DW_AT_MIPS_stride:
4632 return "DW_AT_MIPS_stride";
4633 case DW_AT_MIPS_abstract_name:
4634 return "DW_AT_MIPS_abstract_name";
4635 case DW_AT_MIPS_clone_origin:
4636 return "DW_AT_MIPS_clone_origin";
4637 case DW_AT_MIPS_has_inlines:
4638 return "DW_AT_MIPS_has_inlines";
4640 case DW_AT_sf_names:
4641 return "DW_AT_sf_names";
4642 case DW_AT_src_info:
4643 return "DW_AT_src_info";
4644 case DW_AT_mac_info:
4645 return "DW_AT_mac_info";
4646 case DW_AT_src_coords:
4647 return "DW_AT_src_coords";
4648 case DW_AT_body_begin:
4649 return "DW_AT_body_begin";
4650 case DW_AT_body_end:
4651 return "DW_AT_body_end";
4652 case DW_AT_GNU_vector:
4653 return "DW_AT_GNU_vector";
4655 case DW_AT_VMS_rtnbeg_pd_address:
4656 return "DW_AT_VMS_rtnbeg_pd_address";
4658 default:
4659 return "DW_AT_<unknown>";
4663 /* Convert a DWARF value form code into its string name. */
4665 static const char *
4666 dwarf_form_name (unsigned int form)
4668 switch (form)
4670 case DW_FORM_addr:
4671 return "DW_FORM_addr";
4672 case DW_FORM_block2:
4673 return "DW_FORM_block2";
4674 case DW_FORM_block4:
4675 return "DW_FORM_block4";
4676 case DW_FORM_data2:
4677 return "DW_FORM_data2";
4678 case DW_FORM_data4:
4679 return "DW_FORM_data4";
4680 case DW_FORM_data8:
4681 return "DW_FORM_data8";
4682 case DW_FORM_string:
4683 return "DW_FORM_string";
4684 case DW_FORM_block:
4685 return "DW_FORM_block";
4686 case DW_FORM_block1:
4687 return "DW_FORM_block1";
4688 case DW_FORM_data1:
4689 return "DW_FORM_data1";
4690 case DW_FORM_flag:
4691 return "DW_FORM_flag";
4692 case DW_FORM_sdata:
4693 return "DW_FORM_sdata";
4694 case DW_FORM_strp:
4695 return "DW_FORM_strp";
4696 case DW_FORM_udata:
4697 return "DW_FORM_udata";
4698 case DW_FORM_ref_addr:
4699 return "DW_FORM_ref_addr";
4700 case DW_FORM_ref1:
4701 return "DW_FORM_ref1";
4702 case DW_FORM_ref2:
4703 return "DW_FORM_ref2";
4704 case DW_FORM_ref4:
4705 return "DW_FORM_ref4";
4706 case DW_FORM_ref8:
4707 return "DW_FORM_ref8";
4708 case DW_FORM_ref_udata:
4709 return "DW_FORM_ref_udata";
4710 case DW_FORM_indirect:
4711 return "DW_FORM_indirect";
4712 default:
4713 return "DW_FORM_<unknown>";
4717 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4718 instance of an inlined instance of a decl which is local to an inline
4719 function, so we have to trace all of the way back through the origin chain
4720 to find out what sort of node actually served as the original seed for the
4721 given block. */
4723 static tree
4724 decl_ultimate_origin (tree decl)
4726 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4727 return NULL_TREE;
4729 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4730 nodes in the function to point to themselves; ignore that if
4731 we're trying to output the abstract instance of this function. */
4732 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4733 return NULL_TREE;
4735 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4736 most distant ancestor, this should never happen. */
4737 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4739 return DECL_ABSTRACT_ORIGIN (decl);
4742 /* Determine the "ultimate origin" of a block. The block may be an inlined
4743 instance of an inlined instance of a block which is local to an inline
4744 function, so we have to trace all of the way back through the origin chain
4745 to find out what sort of node actually served as the original seed for the
4746 given block. */
4748 static tree
4749 block_ultimate_origin (tree block)
4751 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4753 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4754 nodes in the function to point to themselves; ignore that if
4755 we're trying to output the abstract instance of this function. */
4756 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4757 return NULL_TREE;
4759 if (immediate_origin == NULL_TREE)
4760 return NULL_TREE;
4761 else
4763 tree ret_val;
4764 tree lookahead = immediate_origin;
4768 ret_val = lookahead;
4769 lookahead = (TREE_CODE (ret_val) == BLOCK
4770 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4772 while (lookahead != NULL && lookahead != ret_val);
4774 /* The block's abstract origin chain may not be the *ultimate* origin of
4775 the block. It could lead to a DECL that has an abstract origin set.
4776 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4777 will give us if it has one). Note that DECL's abstract origins are
4778 supposed to be the most distant ancestor (or so decl_ultimate_origin
4779 claims), so we don't need to loop following the DECL origins. */
4780 if (DECL_P (ret_val))
4781 return DECL_ORIGIN (ret_val);
4783 return ret_val;
4787 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4788 of a virtual function may refer to a base class, so we check the 'this'
4789 parameter. */
4791 static tree
4792 decl_class_context (tree decl)
4794 tree context = NULL_TREE;
4796 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4797 context = DECL_CONTEXT (decl);
4798 else
4799 context = TYPE_MAIN_VARIANT
4800 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4802 if (context && !TYPE_P (context))
4803 context = NULL_TREE;
4805 return context;
4808 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4809 addition order, and correct that in reverse_all_dies. */
4811 static inline void
4812 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4814 if (die != NULL && attr != NULL)
4816 attr->dw_attr_next = die->die_attr;
4817 die->die_attr = attr;
4821 static inline enum dw_val_class
4822 AT_class (dw_attr_ref a)
4824 return a->dw_attr_val.val_class;
4827 /* Add a flag value attribute to a DIE. */
4829 static inline void
4830 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4832 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4834 attr->dw_attr_next = NULL;
4835 attr->dw_attr = attr_kind;
4836 attr->dw_attr_val.val_class = dw_val_class_flag;
4837 attr->dw_attr_val.v.val_flag = flag;
4838 add_dwarf_attr (die, attr);
4841 static inline unsigned
4842 AT_flag (dw_attr_ref a)
4844 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4845 return a->dw_attr_val.v.val_flag;
4848 /* Add a signed integer attribute value to a DIE. */
4850 static inline void
4851 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4853 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4855 attr->dw_attr_next = NULL;
4856 attr->dw_attr = attr_kind;
4857 attr->dw_attr_val.val_class = dw_val_class_const;
4858 attr->dw_attr_val.v.val_int = int_val;
4859 add_dwarf_attr (die, attr);
4862 static inline HOST_WIDE_INT
4863 AT_int (dw_attr_ref a)
4865 gcc_assert (a && AT_class (a) == dw_val_class_const);
4866 return a->dw_attr_val.v.val_int;
4869 /* Add an unsigned integer attribute value to a DIE. */
4871 static inline void
4872 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4873 unsigned HOST_WIDE_INT unsigned_val)
4875 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4877 attr->dw_attr_next = NULL;
4878 attr->dw_attr = attr_kind;
4879 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4880 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4881 add_dwarf_attr (die, attr);
4884 static inline unsigned HOST_WIDE_INT
4885 AT_unsigned (dw_attr_ref a)
4887 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4888 return a->dw_attr_val.v.val_unsigned;
4891 /* Add an unsigned double integer attribute value to a DIE. */
4893 static inline void
4894 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4895 long unsigned int val_hi, long unsigned int val_low)
4897 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4899 attr->dw_attr_next = NULL;
4900 attr->dw_attr = attr_kind;
4901 attr->dw_attr_val.val_class = dw_val_class_long_long;
4902 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4903 attr->dw_attr_val.v.val_long_long.low = val_low;
4904 add_dwarf_attr (die, attr);
4907 /* Add a floating point attribute value to a DIE and return it. */
4909 static inline void
4910 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4911 unsigned int length, unsigned int elt_size, unsigned char *array)
4913 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4915 attr->dw_attr_next = NULL;
4916 attr->dw_attr = attr_kind;
4917 attr->dw_attr_val.val_class = dw_val_class_vec;
4918 attr->dw_attr_val.v.val_vec.length = length;
4919 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4920 attr->dw_attr_val.v.val_vec.array = array;
4921 add_dwarf_attr (die, attr);
4924 /* Hash and equality functions for debug_str_hash. */
4926 static hashval_t
4927 debug_str_do_hash (const void *x)
4929 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4932 static int
4933 debug_str_eq (const void *x1, const void *x2)
4935 return strcmp ((((const struct indirect_string_node *)x1)->str),
4936 (const char *)x2) == 0;
4939 /* Add a string attribute value to a DIE. */
4941 static inline void
4942 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4944 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4945 struct indirect_string_node *node;
4946 void **slot;
4948 if (! debug_str_hash)
4949 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4950 debug_str_eq, NULL);
4952 slot = htab_find_slot_with_hash (debug_str_hash, str,
4953 htab_hash_string (str), INSERT);
4954 if (*slot == NULL)
4955 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4956 node = (struct indirect_string_node *) *slot;
4957 node->str = ggc_strdup (str);
4958 node->refcount++;
4960 attr->dw_attr_next = NULL;
4961 attr->dw_attr = attr_kind;
4962 attr->dw_attr_val.val_class = dw_val_class_str;
4963 attr->dw_attr_val.v.val_str = node;
4964 add_dwarf_attr (die, attr);
4967 static inline const char *
4968 AT_string (dw_attr_ref a)
4970 gcc_assert (a && AT_class (a) == dw_val_class_str);
4971 return a->dw_attr_val.v.val_str->str;
4974 /* Find out whether a string should be output inline in DIE
4975 or out-of-line in .debug_str section. */
4977 static int
4978 AT_string_form (dw_attr_ref a)
4980 struct indirect_string_node *node;
4981 unsigned int len;
4982 char label[32];
4984 gcc_assert (a && AT_class (a) == dw_val_class_str);
4986 node = a->dw_attr_val.v.val_str;
4987 if (node->form)
4988 return node->form;
4990 len = strlen (node->str) + 1;
4992 /* If the string is shorter or equal to the size of the reference, it is
4993 always better to put it inline. */
4994 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4995 return node->form = DW_FORM_string;
4997 /* If we cannot expect the linker to merge strings in .debug_str
4998 section, only put it into .debug_str if it is worth even in this
4999 single module. */
5000 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5001 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5002 return node->form = DW_FORM_string;
5004 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5005 ++dw2_string_counter;
5006 node->label = xstrdup (label);
5008 return node->form = DW_FORM_strp;
5011 /* Add a DIE reference attribute value to a DIE. */
5013 static inline void
5014 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5016 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5018 attr->dw_attr_next = NULL;
5019 attr->dw_attr = attr_kind;
5020 attr->dw_attr_val.val_class = dw_val_class_die_ref;
5021 attr->dw_attr_val.v.val_die_ref.die = targ_die;
5022 attr->dw_attr_val.v.val_die_ref.external = 0;
5023 add_dwarf_attr (die, attr);
5026 /* Add an AT_specification attribute to a DIE, and also make the back
5027 pointer from the specification to the definition. */
5029 static inline void
5030 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5032 add_AT_die_ref (die, DW_AT_specification, targ_die);
5033 gcc_assert (!targ_die->die_definition);
5034 targ_die->die_definition = die;
5037 static inline dw_die_ref
5038 AT_ref (dw_attr_ref a)
5040 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5041 return a->dw_attr_val.v.val_die_ref.die;
5044 static inline int
5045 AT_ref_external (dw_attr_ref a)
5047 if (a && AT_class (a) == dw_val_class_die_ref)
5048 return a->dw_attr_val.v.val_die_ref.external;
5050 return 0;
5053 static inline void
5054 set_AT_ref_external (dw_attr_ref a, int i)
5056 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5057 a->dw_attr_val.v.val_die_ref.external = i;
5060 /* Add an FDE reference attribute value to a DIE. */
5062 static inline void
5063 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5065 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5067 attr->dw_attr_next = NULL;
5068 attr->dw_attr = attr_kind;
5069 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
5070 attr->dw_attr_val.v.val_fde_index = targ_fde;
5071 add_dwarf_attr (die, attr);
5074 /* Add a location description attribute value to a DIE. */
5076 static inline void
5077 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5079 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5081 attr->dw_attr_next = NULL;
5082 attr->dw_attr = attr_kind;
5083 attr->dw_attr_val.val_class = dw_val_class_loc;
5084 attr->dw_attr_val.v.val_loc = loc;
5085 add_dwarf_attr (die, attr);
5088 static inline dw_loc_descr_ref
5089 AT_loc (dw_attr_ref a)
5091 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5092 return a->dw_attr_val.v.val_loc;
5095 static inline void
5096 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5098 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5100 attr->dw_attr_next = NULL;
5101 attr->dw_attr = attr_kind;
5102 attr->dw_attr_val.val_class = dw_val_class_loc_list;
5103 attr->dw_attr_val.v.val_loc_list = loc_list;
5104 add_dwarf_attr (die, attr);
5105 have_location_lists = 1;
5108 static inline dw_loc_list_ref
5109 AT_loc_list (dw_attr_ref a)
5111 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5112 return a->dw_attr_val.v.val_loc_list;
5115 /* Add an address constant attribute value to a DIE. */
5117 static inline void
5118 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5120 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5122 attr->dw_attr_next = NULL;
5123 attr->dw_attr = attr_kind;
5124 attr->dw_attr_val.val_class = dw_val_class_addr;
5125 attr->dw_attr_val.v.val_addr = addr;
5126 add_dwarf_attr (die, attr);
5129 static inline rtx
5130 AT_addr (dw_attr_ref a)
5132 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5133 return a->dw_attr_val.v.val_addr;
5136 /* Add a label identifier attribute value to a DIE. */
5138 static inline void
5139 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5141 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5143 attr->dw_attr_next = NULL;
5144 attr->dw_attr = attr_kind;
5145 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5146 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5147 add_dwarf_attr (die, attr);
5150 /* Add a section offset attribute value to a DIE. */
5152 static inline void
5153 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5155 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5157 attr->dw_attr_next = NULL;
5158 attr->dw_attr = attr_kind;
5159 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5160 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5161 add_dwarf_attr (die, attr);
5164 /* Add an offset attribute value to a DIE. */
5166 static inline void
5167 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5168 unsigned HOST_WIDE_INT offset)
5170 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5172 attr->dw_attr_next = NULL;
5173 attr->dw_attr = attr_kind;
5174 attr->dw_attr_val.val_class = dw_val_class_offset;
5175 attr->dw_attr_val.v.val_offset = offset;
5176 add_dwarf_attr (die, attr);
5179 /* Add an range_list attribute value to a DIE. */
5181 static void
5182 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5183 long unsigned int offset)
5185 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5187 attr->dw_attr_next = NULL;
5188 attr->dw_attr = attr_kind;
5189 attr->dw_attr_val.val_class = dw_val_class_range_list;
5190 attr->dw_attr_val.v.val_offset = offset;
5191 add_dwarf_attr (die, attr);
5194 static inline const char *
5195 AT_lbl (dw_attr_ref a)
5197 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5198 || AT_class (a) == dw_val_class_lbl_offset));
5199 return a->dw_attr_val.v.val_lbl_id;
5202 /* Get the attribute of type attr_kind. */
5204 static dw_attr_ref
5205 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5207 dw_attr_ref a;
5208 dw_die_ref spec = NULL;
5210 if (die != NULL)
5212 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5213 if (a->dw_attr == attr_kind)
5214 return a;
5215 else if (a->dw_attr == DW_AT_specification
5216 || a->dw_attr == DW_AT_abstract_origin)
5217 spec = AT_ref (a);
5219 if (spec)
5220 return get_AT (spec, attr_kind);
5223 return NULL;
5226 /* Return the "low pc" attribute value, typically associated with a subprogram
5227 DIE. Return null if the "low pc" attribute is either not present, or if it
5228 cannot be represented as an assembler label identifier. */
5230 static inline const char *
5231 get_AT_low_pc (dw_die_ref die)
5233 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5235 return a ? AT_lbl (a) : NULL;
5238 /* Return the "high pc" attribute value, typically associated with a subprogram
5239 DIE. Return null if the "high pc" attribute is either not present, or if it
5240 cannot be represented as an assembler label identifier. */
5242 static inline const char *
5243 get_AT_hi_pc (dw_die_ref die)
5245 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5247 return a ? AT_lbl (a) : NULL;
5250 /* Return the value of the string attribute designated by ATTR_KIND, or
5251 NULL if it is not present. */
5253 static inline const char *
5254 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5256 dw_attr_ref a = get_AT (die, attr_kind);
5258 return a ? AT_string (a) : NULL;
5261 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5262 if it is not present. */
5264 static inline int
5265 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5267 dw_attr_ref a = get_AT (die, attr_kind);
5269 return a ? AT_flag (a) : 0;
5272 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5273 if it is not present. */
5275 static inline unsigned
5276 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5278 dw_attr_ref a = get_AT (die, attr_kind);
5280 return a ? AT_unsigned (a) : 0;
5283 static inline dw_die_ref
5284 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5286 dw_attr_ref a = get_AT (die, attr_kind);
5288 return a ? AT_ref (a) : NULL;
5291 /* Return TRUE if the language is C or C++. */
5293 static inline bool
5294 is_c_family (void)
5296 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5298 return (lang == DW_LANG_C || lang == DW_LANG_C89
5299 || lang == DW_LANG_C_plus_plus);
5302 /* Return TRUE if the language is C++. */
5304 static inline bool
5305 is_cxx (void)
5307 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5308 == DW_LANG_C_plus_plus);
5311 /* Return TRUE if the language is Fortran. */
5313 static inline bool
5314 is_fortran (void)
5316 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5318 return (lang == DW_LANG_Fortran77
5319 || lang == DW_LANG_Fortran90
5320 || lang == DW_LANG_Fortran95);
5323 /* Return TRUE if the language is Java. */
5325 static inline bool
5326 is_java (void)
5328 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5330 return lang == DW_LANG_Java;
5333 /* Return TRUE if the language is Ada. */
5335 static inline bool
5336 is_ada (void)
5338 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5340 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5343 /* Free up the memory used by A. */
5345 static inline void free_AT (dw_attr_ref);
5346 static inline void
5347 free_AT (dw_attr_ref a)
5349 if (AT_class (a) == dw_val_class_str)
5350 if (a->dw_attr_val.v.val_str->refcount)
5351 a->dw_attr_val.v.val_str->refcount--;
5354 /* Remove the specified attribute if present. */
5356 static void
5357 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5359 dw_attr_ref *p;
5360 dw_attr_ref removed = NULL;
5362 if (die != NULL)
5364 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5365 if ((*p)->dw_attr == attr_kind)
5367 removed = *p;
5368 *p = (*p)->dw_attr_next;
5369 break;
5372 if (removed != 0)
5373 free_AT (removed);
5377 /* Remove child die whose die_tag is specified tag. */
5379 static void
5380 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5382 dw_die_ref current, prev, next;
5383 current = die->die_child;
5384 prev = NULL;
5385 while (current != NULL)
5387 if (current->die_tag == tag)
5389 next = current->die_sib;
5390 if (prev == NULL)
5391 die->die_child = next;
5392 else
5393 prev->die_sib = next;
5394 free_die (current);
5395 current = next;
5397 else
5399 prev = current;
5400 current = current->die_sib;
5405 /* Free up the memory used by DIE. */
5407 static inline void
5408 free_die (dw_die_ref die)
5410 remove_children (die);
5413 /* Discard the children of this DIE. */
5415 static void
5416 remove_children (dw_die_ref die)
5418 dw_die_ref child_die = die->die_child;
5420 die->die_child = NULL;
5422 while (child_die != NULL)
5424 dw_die_ref tmp_die = child_die;
5425 dw_attr_ref a;
5427 child_die = child_die->die_sib;
5429 for (a = tmp_die->die_attr; a != NULL;)
5431 dw_attr_ref tmp_a = a;
5433 a = a->dw_attr_next;
5434 free_AT (tmp_a);
5437 free_die (tmp_die);
5441 /* Add a child DIE below its parent. We build the lists up in reverse
5442 addition order, and correct that in reverse_all_dies. */
5444 static inline void
5445 add_child_die (dw_die_ref die, dw_die_ref child_die)
5447 if (die != NULL && child_die != NULL)
5449 gcc_assert (die != child_die);
5451 child_die->die_parent = die;
5452 child_die->die_sib = die->die_child;
5453 die->die_child = child_die;
5457 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5458 is the specification, to the front of PARENT's list of children. */
5460 static void
5461 splice_child_die (dw_die_ref parent, dw_die_ref child)
5463 dw_die_ref *p;
5465 /* We want the declaration DIE from inside the class, not the
5466 specification DIE at toplevel. */
5467 if (child->die_parent != parent)
5469 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5471 if (tmp)
5472 child = tmp;
5475 gcc_assert (child->die_parent == parent
5476 || (child->die_parent
5477 == get_AT_ref (parent, DW_AT_specification)));
5479 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5480 if (*p == child)
5482 *p = child->die_sib;
5483 break;
5486 child->die_parent = parent;
5487 child->die_sib = parent->die_child;
5488 parent->die_child = child;
5491 /* Return a pointer to a newly created DIE node. */
5493 static inline dw_die_ref
5494 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5496 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5498 die->die_tag = tag_value;
5500 if (parent_die != NULL)
5501 add_child_die (parent_die, die);
5502 else
5504 limbo_die_node *limbo_node;
5506 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5507 limbo_node->die = die;
5508 limbo_node->created_for = t;
5509 limbo_node->next = limbo_die_list;
5510 limbo_die_list = limbo_node;
5513 return die;
5516 /* Return the DIE associated with the given type specifier. */
5518 static inline dw_die_ref
5519 lookup_type_die (tree type)
5521 return TYPE_SYMTAB_DIE (type);
5524 /* Equate a DIE to a given type specifier. */
5526 static inline void
5527 equate_type_number_to_die (tree type, dw_die_ref type_die)
5529 TYPE_SYMTAB_DIE (type) = type_die;
5532 /* Returns a hash value for X (which really is a die_struct). */
5534 static hashval_t
5535 decl_die_table_hash (const void *x)
5537 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5540 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5542 static int
5543 decl_die_table_eq (const void *x, const void *y)
5545 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5548 /* Return the DIE associated with a given declaration. */
5550 static inline dw_die_ref
5551 lookup_decl_die (tree decl)
5553 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5556 /* Returns a hash value for X (which really is a var_loc_list). */
5558 static hashval_t
5559 decl_loc_table_hash (const void *x)
5561 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5564 /* Return nonzero if decl_id of var_loc_list X is the same as
5565 UID of decl *Y. */
5567 static int
5568 decl_loc_table_eq (const void *x, const void *y)
5570 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5573 /* Return the var_loc list associated with a given declaration. */
5575 static inline var_loc_list *
5576 lookup_decl_loc (tree decl)
5578 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5581 /* Equate a DIE to a particular declaration. */
5583 static void
5584 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5586 unsigned int decl_id = DECL_UID (decl);
5587 void **slot;
5589 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5590 *slot = decl_die;
5591 decl_die->decl_id = decl_id;
5594 /* Add a variable location node to the linked list for DECL. */
5596 static void
5597 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5599 unsigned int decl_id = DECL_UID (decl);
5600 var_loc_list *temp;
5601 void **slot;
5603 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5604 if (*slot == NULL)
5606 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5607 temp->decl_id = decl_id;
5608 *slot = temp;
5610 else
5611 temp = *slot;
5613 if (temp->last)
5615 /* If the current location is the same as the end of the list,
5616 we have nothing to do. */
5617 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5618 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5620 /* Add LOC to the end of list and update LAST. */
5621 temp->last->next = loc;
5622 temp->last = loc;
5625 /* Do not add empty location to the beginning of the list. */
5626 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5628 temp->first = loc;
5629 temp->last = loc;
5633 /* Keep track of the number of spaces used to indent the
5634 output of the debugging routines that print the structure of
5635 the DIE internal representation. */
5636 static int print_indent;
5638 /* Indent the line the number of spaces given by print_indent. */
5640 static inline void
5641 print_spaces (FILE *outfile)
5643 fprintf (outfile, "%*s", print_indent, "");
5646 /* Print the information associated with a given DIE, and its children.
5647 This routine is a debugging aid only. */
5649 static void
5650 print_die (dw_die_ref die, FILE *outfile)
5652 dw_attr_ref a;
5653 dw_die_ref c;
5655 print_spaces (outfile);
5656 fprintf (outfile, "DIE %4lu: %s\n",
5657 die->die_offset, dwarf_tag_name (die->die_tag));
5658 print_spaces (outfile);
5659 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5660 fprintf (outfile, " offset: %lu\n", die->die_offset);
5662 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5664 print_spaces (outfile);
5665 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5667 switch (AT_class (a))
5669 case dw_val_class_addr:
5670 fprintf (outfile, "address");
5671 break;
5672 case dw_val_class_offset:
5673 fprintf (outfile, "offset");
5674 break;
5675 case dw_val_class_loc:
5676 fprintf (outfile, "location descriptor");
5677 break;
5678 case dw_val_class_loc_list:
5679 fprintf (outfile, "location list -> label:%s",
5680 AT_loc_list (a)->ll_symbol);
5681 break;
5682 case dw_val_class_range_list:
5683 fprintf (outfile, "range list");
5684 break;
5685 case dw_val_class_const:
5686 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5687 break;
5688 case dw_val_class_unsigned_const:
5689 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5690 break;
5691 case dw_val_class_long_long:
5692 fprintf (outfile, "constant (%lu,%lu)",
5693 a->dw_attr_val.v.val_long_long.hi,
5694 a->dw_attr_val.v.val_long_long.low);
5695 break;
5696 case dw_val_class_vec:
5697 fprintf (outfile, "floating-point or vector constant");
5698 break;
5699 case dw_val_class_flag:
5700 fprintf (outfile, "%u", AT_flag (a));
5701 break;
5702 case dw_val_class_die_ref:
5703 if (AT_ref (a) != NULL)
5705 if (AT_ref (a)->die_symbol)
5706 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5707 else
5708 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5710 else
5711 fprintf (outfile, "die -> <null>");
5712 break;
5713 case dw_val_class_lbl_id:
5714 case dw_val_class_lbl_offset:
5715 fprintf (outfile, "label: %s", AT_lbl (a));
5716 break;
5717 case dw_val_class_str:
5718 if (AT_string (a) != NULL)
5719 fprintf (outfile, "\"%s\"", AT_string (a));
5720 else
5721 fprintf (outfile, "<null>");
5722 break;
5723 default:
5724 break;
5727 fprintf (outfile, "\n");
5730 if (die->die_child != NULL)
5732 print_indent += 4;
5733 for (c = die->die_child; c != NULL; c = c->die_sib)
5734 print_die (c, outfile);
5736 print_indent -= 4;
5738 if (print_indent == 0)
5739 fprintf (outfile, "\n");
5742 /* Print the contents of the source code line number correspondence table.
5743 This routine is a debugging aid only. */
5745 static void
5746 print_dwarf_line_table (FILE *outfile)
5748 unsigned i;
5749 dw_line_info_ref line_info;
5751 fprintf (outfile, "\n\nDWARF source line information\n");
5752 for (i = 1; i < line_info_table_in_use; i++)
5754 line_info = &line_info_table[i];
5755 fprintf (outfile, "%5d: ", i);
5756 fprintf (outfile, "%-20s",
5757 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5758 fprintf (outfile, "%6ld", line_info->dw_line_num);
5759 fprintf (outfile, "\n");
5762 fprintf (outfile, "\n\n");
5765 /* Print the information collected for a given DIE. */
5767 void
5768 debug_dwarf_die (dw_die_ref die)
5770 print_die (die, stderr);
5773 /* Print all DWARF information collected for the compilation unit.
5774 This routine is a debugging aid only. */
5776 void
5777 debug_dwarf (void)
5779 print_indent = 0;
5780 print_die (comp_unit_die, stderr);
5781 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5782 print_dwarf_line_table (stderr);
5785 /* We build up the lists of children and attributes by pushing new ones
5786 onto the beginning of the list. Reverse the lists for DIE so that
5787 they are in order of addition. */
5789 static void
5790 reverse_die_lists (dw_die_ref die)
5792 dw_die_ref c, cp, cn;
5793 dw_attr_ref a, ap, an;
5795 for (a = die->die_attr, ap = 0; a; a = an)
5797 an = a->dw_attr_next;
5798 a->dw_attr_next = ap;
5799 ap = a;
5802 die->die_attr = ap;
5804 for (c = die->die_child, cp = 0; c; c = cn)
5806 cn = c->die_sib;
5807 c->die_sib = cp;
5808 cp = c;
5811 die->die_child = cp;
5814 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5815 reverse all dies in add_sibling_attributes, which runs through all the dies,
5816 it would reverse all the dies. Now, however, since we don't call
5817 reverse_die_lists in add_sibling_attributes, we need a routine to
5818 recursively reverse all the dies. This is that routine. */
5820 static void
5821 reverse_all_dies (dw_die_ref die)
5823 dw_die_ref c;
5825 reverse_die_lists (die);
5827 for (c = die->die_child; c; c = c->die_sib)
5828 reverse_all_dies (c);
5831 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5832 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5833 DIE that marks the start of the DIEs for this include file. */
5835 static dw_die_ref
5836 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5838 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5839 dw_die_ref new_unit = gen_compile_unit_die (filename);
5841 new_unit->die_sib = old_unit;
5842 return new_unit;
5845 /* Close an include-file CU and reopen the enclosing one. */
5847 static dw_die_ref
5848 pop_compile_unit (dw_die_ref old_unit)
5850 dw_die_ref new_unit = old_unit->die_sib;
5852 old_unit->die_sib = NULL;
5853 return new_unit;
5856 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5857 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5859 /* Calculate the checksum of a location expression. */
5861 static inline void
5862 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5864 CHECKSUM (loc->dw_loc_opc);
5865 CHECKSUM (loc->dw_loc_oprnd1);
5866 CHECKSUM (loc->dw_loc_oprnd2);
5869 /* Calculate the checksum of an attribute. */
5871 static void
5872 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5874 dw_loc_descr_ref loc;
5875 rtx r;
5877 CHECKSUM (at->dw_attr);
5879 /* We don't care about differences in file numbering. */
5880 if (at->dw_attr == DW_AT_decl_file
5881 /* Or that this was compiled with a different compiler snapshot; if
5882 the output is the same, that's what matters. */
5883 || at->dw_attr == DW_AT_producer)
5884 return;
5886 switch (AT_class (at))
5888 case dw_val_class_const:
5889 CHECKSUM (at->dw_attr_val.v.val_int);
5890 break;
5891 case dw_val_class_unsigned_const:
5892 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5893 break;
5894 case dw_val_class_long_long:
5895 CHECKSUM (at->dw_attr_val.v.val_long_long);
5896 break;
5897 case dw_val_class_vec:
5898 CHECKSUM (at->dw_attr_val.v.val_vec);
5899 break;
5900 case dw_val_class_flag:
5901 CHECKSUM (at->dw_attr_val.v.val_flag);
5902 break;
5903 case dw_val_class_str:
5904 CHECKSUM_STRING (AT_string (at));
5905 break;
5907 case dw_val_class_addr:
5908 r = AT_addr (at);
5909 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5910 CHECKSUM_STRING (XSTR (r, 0));
5911 break;
5913 case dw_val_class_offset:
5914 CHECKSUM (at->dw_attr_val.v.val_offset);
5915 break;
5917 case dw_val_class_loc:
5918 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5919 loc_checksum (loc, ctx);
5920 break;
5922 case dw_val_class_die_ref:
5923 die_checksum (AT_ref (at), ctx, mark);
5924 break;
5926 case dw_val_class_fde_ref:
5927 case dw_val_class_lbl_id:
5928 case dw_val_class_lbl_offset:
5929 break;
5931 default:
5932 break;
5936 /* Calculate the checksum of a DIE. */
5938 static void
5939 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5941 dw_die_ref c;
5942 dw_attr_ref a;
5944 /* To avoid infinite recursion. */
5945 if (die->die_mark)
5947 CHECKSUM (die->die_mark);
5948 return;
5950 die->die_mark = ++(*mark);
5952 CHECKSUM (die->die_tag);
5954 for (a = die->die_attr; a; a = a->dw_attr_next)
5955 attr_checksum (a, ctx, mark);
5957 for (c = die->die_child; c; c = c->die_sib)
5958 die_checksum (c, ctx, mark);
5961 #undef CHECKSUM
5962 #undef CHECKSUM_STRING
5964 /* Do the location expressions look same? */
5965 static inline int
5966 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5968 return loc1->dw_loc_opc == loc2->dw_loc_opc
5969 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5970 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5973 /* Do the values look the same? */
5974 static int
5975 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5977 dw_loc_descr_ref loc1, loc2;
5978 rtx r1, r2;
5980 if (v1->val_class != v2->val_class)
5981 return 0;
5983 switch (v1->val_class)
5985 case dw_val_class_const:
5986 return v1->v.val_int == v2->v.val_int;
5987 case dw_val_class_unsigned_const:
5988 return v1->v.val_unsigned == v2->v.val_unsigned;
5989 case dw_val_class_long_long:
5990 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5991 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5992 case dw_val_class_vec:
5993 if (v1->v.val_vec.length != v2->v.val_vec.length
5994 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5995 return 0;
5996 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5997 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5998 return 0;
5999 return 1;
6000 case dw_val_class_flag:
6001 return v1->v.val_flag == v2->v.val_flag;
6002 case dw_val_class_str:
6003 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6005 case dw_val_class_addr:
6006 r1 = v1->v.val_addr;
6007 r2 = v2->v.val_addr;
6008 if (GET_CODE (r1) != GET_CODE (r2))
6009 return 0;
6010 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6011 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6013 case dw_val_class_offset:
6014 return v1->v.val_offset == v2->v.val_offset;
6016 case dw_val_class_loc:
6017 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6018 loc1 && loc2;
6019 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6020 if (!same_loc_p (loc1, loc2, mark))
6021 return 0;
6022 return !loc1 && !loc2;
6024 case dw_val_class_die_ref:
6025 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6027 case dw_val_class_fde_ref:
6028 case dw_val_class_lbl_id:
6029 case dw_val_class_lbl_offset:
6030 return 1;
6032 default:
6033 return 1;
6037 /* Do the attributes look the same? */
6039 static int
6040 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6042 if (at1->dw_attr != at2->dw_attr)
6043 return 0;
6045 /* We don't care about differences in file numbering. */
6046 if (at1->dw_attr == DW_AT_decl_file
6047 /* Or that this was compiled with a different compiler snapshot; if
6048 the output is the same, that's what matters. */
6049 || at1->dw_attr == DW_AT_producer)
6050 return 1;
6052 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6055 /* Do the dies look the same? */
6057 static int
6058 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6060 dw_die_ref c1, c2;
6061 dw_attr_ref a1, a2;
6063 /* To avoid infinite recursion. */
6064 if (die1->die_mark)
6065 return die1->die_mark == die2->die_mark;
6066 die1->die_mark = die2->die_mark = ++(*mark);
6068 if (die1->die_tag != die2->die_tag)
6069 return 0;
6071 for (a1 = die1->die_attr, a2 = die2->die_attr;
6072 a1 && a2;
6073 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
6074 if (!same_attr_p (a1, a2, mark))
6075 return 0;
6076 if (a1 || a2)
6077 return 0;
6079 for (c1 = die1->die_child, c2 = die2->die_child;
6080 c1 && c2;
6081 c1 = c1->die_sib, c2 = c2->die_sib)
6082 if (!same_die_p (c1, c2, mark))
6083 return 0;
6084 if (c1 || c2)
6085 return 0;
6087 return 1;
6090 /* Do the dies look the same? Wrapper around same_die_p. */
6092 static int
6093 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6095 int mark = 0;
6096 int ret = same_die_p (die1, die2, &mark);
6098 unmark_all_dies (die1);
6099 unmark_all_dies (die2);
6101 return ret;
6104 /* The prefix to attach to symbols on DIEs in the current comdat debug
6105 info section. */
6106 static char *comdat_symbol_id;
6108 /* The index of the current symbol within the current comdat CU. */
6109 static unsigned int comdat_symbol_number;
6111 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6112 children, and set comdat_symbol_id accordingly. */
6114 static void
6115 compute_section_prefix (dw_die_ref unit_die)
6117 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6118 const char *base = die_name ? lbasename (die_name) : "anonymous";
6119 char *name = alloca (strlen (base) + 64);
6120 char *p;
6121 int i, mark;
6122 unsigned char checksum[16];
6123 struct md5_ctx ctx;
6125 /* Compute the checksum of the DIE, then append part of it as hex digits to
6126 the name filename of the unit. */
6128 md5_init_ctx (&ctx);
6129 mark = 0;
6130 die_checksum (unit_die, &ctx, &mark);
6131 unmark_all_dies (unit_die);
6132 md5_finish_ctx (&ctx, checksum);
6134 sprintf (name, "%s.", base);
6135 clean_symbol_name (name);
6137 p = name + strlen (name);
6138 for (i = 0; i < 4; i++)
6140 sprintf (p, "%.2x", checksum[i]);
6141 p += 2;
6144 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6145 comdat_symbol_number = 0;
6148 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6150 static int
6151 is_type_die (dw_die_ref die)
6153 switch (die->die_tag)
6155 case DW_TAG_array_type:
6156 case DW_TAG_class_type:
6157 case DW_TAG_enumeration_type:
6158 case DW_TAG_pointer_type:
6159 case DW_TAG_reference_type:
6160 case DW_TAG_string_type:
6161 case DW_TAG_structure_type:
6162 case DW_TAG_subroutine_type:
6163 case DW_TAG_union_type:
6164 case DW_TAG_ptr_to_member_type:
6165 case DW_TAG_set_type:
6166 case DW_TAG_subrange_type:
6167 case DW_TAG_base_type:
6168 case DW_TAG_const_type:
6169 case DW_TAG_file_type:
6170 case DW_TAG_packed_type:
6171 case DW_TAG_volatile_type:
6172 case DW_TAG_typedef:
6173 return 1;
6174 default:
6175 return 0;
6179 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6180 Basically, we want to choose the bits that are likely to be shared between
6181 compilations (types) and leave out the bits that are specific to individual
6182 compilations (functions). */
6184 static int
6185 is_comdat_die (dw_die_ref c)
6187 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6188 we do for stabs. The advantage is a greater likelihood of sharing between
6189 objects that don't include headers in the same order (and therefore would
6190 put the base types in a different comdat). jason 8/28/00 */
6192 if (c->die_tag == DW_TAG_base_type)
6193 return 0;
6195 if (c->die_tag == DW_TAG_pointer_type
6196 || c->die_tag == DW_TAG_reference_type
6197 || c->die_tag == DW_TAG_const_type
6198 || c->die_tag == DW_TAG_volatile_type)
6200 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6202 return t ? is_comdat_die (t) : 0;
6205 return is_type_die (c);
6208 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6209 compilation unit. */
6211 static int
6212 is_symbol_die (dw_die_ref c)
6214 return (is_type_die (c)
6215 || (get_AT (c, DW_AT_declaration)
6216 && !get_AT (c, DW_AT_specification)));
6219 static char *
6220 gen_internal_sym (const char *prefix)
6222 char buf[256];
6224 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6225 return xstrdup (buf);
6228 /* Assign symbols to all worthy DIEs under DIE. */
6230 static void
6231 assign_symbol_names (dw_die_ref die)
6233 dw_die_ref c;
6235 if (is_symbol_die (die))
6237 if (comdat_symbol_id)
6239 char *p = alloca (strlen (comdat_symbol_id) + 64);
6241 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6242 comdat_symbol_id, comdat_symbol_number++);
6243 die->die_symbol = xstrdup (p);
6245 else
6246 die->die_symbol = gen_internal_sym ("LDIE");
6249 for (c = die->die_child; c != NULL; c = c->die_sib)
6250 assign_symbol_names (c);
6253 struct cu_hash_table_entry
6255 dw_die_ref cu;
6256 unsigned min_comdat_num, max_comdat_num;
6257 struct cu_hash_table_entry *next;
6260 /* Routines to manipulate hash table of CUs. */
6261 static hashval_t
6262 htab_cu_hash (const void *of)
6264 const struct cu_hash_table_entry *entry = of;
6266 return htab_hash_string (entry->cu->die_symbol);
6269 static int
6270 htab_cu_eq (const void *of1, const void *of2)
6272 const struct cu_hash_table_entry *entry1 = of1;
6273 const struct die_struct *entry2 = of2;
6275 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6278 static void
6279 htab_cu_del (void *what)
6281 struct cu_hash_table_entry *next, *entry = what;
6283 while (entry)
6285 next = entry->next;
6286 free (entry);
6287 entry = next;
6291 /* Check whether we have already seen this CU and set up SYM_NUM
6292 accordingly. */
6293 static int
6294 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6296 struct cu_hash_table_entry dummy;
6297 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6299 dummy.max_comdat_num = 0;
6301 slot = (struct cu_hash_table_entry **)
6302 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6303 INSERT);
6304 entry = *slot;
6306 for (; entry; last = entry, entry = entry->next)
6308 if (same_die_p_wrap (cu, entry->cu))
6309 break;
6312 if (entry)
6314 *sym_num = entry->min_comdat_num;
6315 return 1;
6318 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6319 entry->cu = cu;
6320 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6321 entry->next = *slot;
6322 *slot = entry;
6324 return 0;
6327 /* Record SYM_NUM to record of CU in HTABLE. */
6328 static void
6329 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6331 struct cu_hash_table_entry **slot, *entry;
6333 slot = (struct cu_hash_table_entry **)
6334 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6335 NO_INSERT);
6336 entry = *slot;
6338 entry->max_comdat_num = sym_num;
6341 /* Traverse the DIE (which is always comp_unit_die), and set up
6342 additional compilation units for each of the include files we see
6343 bracketed by BINCL/EINCL. */
6345 static void
6346 break_out_includes (dw_die_ref die)
6348 dw_die_ref *ptr;
6349 dw_die_ref unit = NULL;
6350 limbo_die_node *node, **pnode;
6351 htab_t cu_hash_table;
6353 for (ptr = &(die->die_child); *ptr;)
6355 dw_die_ref c = *ptr;
6357 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6358 || (unit && is_comdat_die (c)))
6360 /* This DIE is for a secondary CU; remove it from the main one. */
6361 *ptr = c->die_sib;
6363 if (c->die_tag == DW_TAG_GNU_BINCL)
6365 unit = push_new_compile_unit (unit, c);
6366 free_die (c);
6368 else if (c->die_tag == DW_TAG_GNU_EINCL)
6370 unit = pop_compile_unit (unit);
6371 free_die (c);
6373 else
6374 add_child_die (unit, c);
6376 else
6378 /* Leave this DIE in the main CU. */
6379 ptr = &(c->die_sib);
6380 continue;
6384 #if 0
6385 /* We can only use this in debugging, since the frontend doesn't check
6386 to make sure that we leave every include file we enter. */
6387 gcc_assert (!unit);
6388 #endif
6390 assign_symbol_names (die);
6391 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6392 for (node = limbo_die_list, pnode = &limbo_die_list;
6393 node;
6394 node = node->next)
6396 int is_dupl;
6398 compute_section_prefix (node->die);
6399 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6400 &comdat_symbol_number);
6401 assign_symbol_names (node->die);
6402 if (is_dupl)
6403 *pnode = node->next;
6404 else
6406 pnode = &node->next;
6407 record_comdat_symbol_number (node->die, cu_hash_table,
6408 comdat_symbol_number);
6411 htab_delete (cu_hash_table);
6414 /* Traverse the DIE and add a sibling attribute if it may have the
6415 effect of speeding up access to siblings. To save some space,
6416 avoid generating sibling attributes for DIE's without children. */
6418 static void
6419 add_sibling_attributes (dw_die_ref die)
6421 dw_die_ref c;
6423 if (die->die_tag != DW_TAG_compile_unit
6424 && die->die_sib && die->die_child != NULL)
6425 /* Add the sibling link to the front of the attribute list. */
6426 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6428 for (c = die->die_child; c != NULL; c = c->die_sib)
6429 add_sibling_attributes (c);
6432 /* Output all location lists for the DIE and its children. */
6434 static void
6435 output_location_lists (dw_die_ref die)
6437 dw_die_ref c;
6438 dw_attr_ref d_attr;
6440 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6441 if (AT_class (d_attr) == dw_val_class_loc_list)
6442 output_loc_list (AT_loc_list (d_attr));
6444 for (c = die->die_child; c != NULL; c = c->die_sib)
6445 output_location_lists (c);
6449 /* The format of each DIE (and its attribute value pairs) is encoded in an
6450 abbreviation table. This routine builds the abbreviation table and assigns
6451 a unique abbreviation id for each abbreviation entry. The children of each
6452 die are visited recursively. */
6454 static void
6455 build_abbrev_table (dw_die_ref die)
6457 unsigned long abbrev_id;
6458 unsigned int n_alloc;
6459 dw_die_ref c;
6460 dw_attr_ref d_attr, a_attr;
6462 /* Scan the DIE references, and mark as external any that refer to
6463 DIEs from other CUs (i.e. those which are not marked). */
6464 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6465 if (AT_class (d_attr) == dw_val_class_die_ref
6466 && AT_ref (d_attr)->die_mark == 0)
6468 gcc_assert (AT_ref (d_attr)->die_symbol);
6470 set_AT_ref_external (d_attr, 1);
6473 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6475 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6477 if (abbrev->die_tag == die->die_tag)
6479 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6481 a_attr = abbrev->die_attr;
6482 d_attr = die->die_attr;
6484 while (a_attr != NULL && d_attr != NULL)
6486 if ((a_attr->dw_attr != d_attr->dw_attr)
6487 || (value_format (a_attr) != value_format (d_attr)))
6488 break;
6490 a_attr = a_attr->dw_attr_next;
6491 d_attr = d_attr->dw_attr_next;
6494 if (a_attr == NULL && d_attr == NULL)
6495 break;
6500 if (abbrev_id >= abbrev_die_table_in_use)
6502 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6504 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6505 abbrev_die_table = ggc_realloc (abbrev_die_table,
6506 sizeof (dw_die_ref) * n_alloc);
6508 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6509 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6510 abbrev_die_table_allocated = n_alloc;
6513 ++abbrev_die_table_in_use;
6514 abbrev_die_table[abbrev_id] = die;
6517 die->die_abbrev = abbrev_id;
6518 for (c = die->die_child; c != NULL; c = c->die_sib)
6519 build_abbrev_table (c);
6522 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6524 static int
6525 constant_size (long unsigned int value)
6527 int log;
6529 if (value == 0)
6530 log = 0;
6531 else
6532 log = floor_log2 (value);
6534 log = log / 8;
6535 log = 1 << (floor_log2 (log) + 1);
6537 return log;
6540 /* Return the size of a DIE as it is represented in the
6541 .debug_info section. */
6543 static unsigned long
6544 size_of_die (dw_die_ref die)
6546 unsigned long size = 0;
6547 dw_attr_ref a;
6549 size += size_of_uleb128 (die->die_abbrev);
6550 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6552 switch (AT_class (a))
6554 case dw_val_class_addr:
6555 size += DWARF2_ADDR_SIZE;
6556 break;
6557 case dw_val_class_offset:
6558 size += DWARF_OFFSET_SIZE;
6559 break;
6560 case dw_val_class_loc:
6562 unsigned long lsize = size_of_locs (AT_loc (a));
6564 /* Block length. */
6565 size += constant_size (lsize);
6566 size += lsize;
6568 break;
6569 case dw_val_class_loc_list:
6570 size += DWARF_OFFSET_SIZE;
6571 break;
6572 case dw_val_class_range_list:
6573 size += DWARF_OFFSET_SIZE;
6574 break;
6575 case dw_val_class_const:
6576 size += size_of_sleb128 (AT_int (a));
6577 break;
6578 case dw_val_class_unsigned_const:
6579 size += constant_size (AT_unsigned (a));
6580 break;
6581 case dw_val_class_long_long:
6582 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6583 break;
6584 case dw_val_class_vec:
6585 size += 1 + (a->dw_attr_val.v.val_vec.length
6586 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6587 break;
6588 case dw_val_class_flag:
6589 size += 1;
6590 break;
6591 case dw_val_class_die_ref:
6592 if (AT_ref_external (a))
6593 size += DWARF2_ADDR_SIZE;
6594 else
6595 size += DWARF_OFFSET_SIZE;
6596 break;
6597 case dw_val_class_fde_ref:
6598 size += DWARF_OFFSET_SIZE;
6599 break;
6600 case dw_val_class_lbl_id:
6601 size += DWARF2_ADDR_SIZE;
6602 break;
6603 case dw_val_class_lbl_offset:
6604 size += DWARF_OFFSET_SIZE;
6605 break;
6606 case dw_val_class_str:
6607 if (AT_string_form (a) == DW_FORM_strp)
6608 size += DWARF_OFFSET_SIZE;
6609 else
6610 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6611 break;
6612 default:
6613 gcc_unreachable ();
6617 return size;
6620 /* Size the debugging information associated with a given DIE. Visits the
6621 DIE's children recursively. Updates the global variable next_die_offset, on
6622 each time through. Uses the current value of next_die_offset to update the
6623 die_offset field in each DIE. */
6625 static void
6626 calc_die_sizes (dw_die_ref die)
6628 dw_die_ref c;
6630 die->die_offset = next_die_offset;
6631 next_die_offset += size_of_die (die);
6633 for (c = die->die_child; c != NULL; c = c->die_sib)
6634 calc_die_sizes (c);
6636 if (die->die_child != NULL)
6637 /* Count the null byte used to terminate sibling lists. */
6638 next_die_offset += 1;
6641 /* Set the marks for a die and its children. We do this so
6642 that we know whether or not a reference needs to use FORM_ref_addr; only
6643 DIEs in the same CU will be marked. We used to clear out the offset
6644 and use that as the flag, but ran into ordering problems. */
6646 static void
6647 mark_dies (dw_die_ref die)
6649 dw_die_ref c;
6651 gcc_assert (!die->die_mark);
6653 die->die_mark = 1;
6654 for (c = die->die_child; c; c = c->die_sib)
6655 mark_dies (c);
6658 /* Clear the marks for a die and its children. */
6660 static void
6661 unmark_dies (dw_die_ref die)
6663 dw_die_ref c;
6665 gcc_assert (die->die_mark);
6667 die->die_mark = 0;
6668 for (c = die->die_child; c; c = c->die_sib)
6669 unmark_dies (c);
6672 /* Clear the marks for a die, its children and referred dies. */
6674 static void
6675 unmark_all_dies (dw_die_ref die)
6677 dw_die_ref c;
6678 dw_attr_ref a;
6680 if (!die->die_mark)
6681 return;
6682 die->die_mark = 0;
6684 for (c = die->die_child; c; c = c->die_sib)
6685 unmark_all_dies (c);
6687 for (a = die->die_attr; a; a = a->dw_attr_next)
6688 if (AT_class (a) == dw_val_class_die_ref)
6689 unmark_all_dies (AT_ref (a));
6692 /* Return the size of the .debug_pubnames table generated for the
6693 compilation unit. */
6695 static unsigned long
6696 size_of_pubnames (void)
6698 unsigned long size;
6699 unsigned i;
6701 size = DWARF_PUBNAMES_HEADER_SIZE;
6702 for (i = 0; i < pubname_table_in_use; i++)
6704 pubname_ref p = &pubname_table[i];
6705 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6708 size += DWARF_OFFSET_SIZE;
6709 return size;
6712 /* Return the size of the information in the .debug_aranges section. */
6714 static unsigned long
6715 size_of_aranges (void)
6717 unsigned long size;
6719 size = DWARF_ARANGES_HEADER_SIZE;
6721 /* Count the address/length pair for this compilation unit. */
6722 size += 2 * DWARF2_ADDR_SIZE;
6723 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6725 /* Count the two zero words used to terminated the address range table. */
6726 size += 2 * DWARF2_ADDR_SIZE;
6727 return size;
6730 /* Select the encoding of an attribute value. */
6732 static enum dwarf_form
6733 value_format (dw_attr_ref a)
6735 switch (a->dw_attr_val.val_class)
6737 case dw_val_class_addr:
6738 return DW_FORM_addr;
6739 case dw_val_class_range_list:
6740 case dw_val_class_offset:
6741 switch (DWARF_OFFSET_SIZE)
6743 case 4:
6744 return DW_FORM_data4;
6745 case 8:
6746 return DW_FORM_data8;
6747 default:
6748 gcc_unreachable ();
6750 case dw_val_class_loc_list:
6751 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6752 .debug_loc section */
6753 return DW_FORM_data4;
6754 case dw_val_class_loc:
6755 switch (constant_size (size_of_locs (AT_loc (a))))
6757 case 1:
6758 return DW_FORM_block1;
6759 case 2:
6760 return DW_FORM_block2;
6761 default:
6762 gcc_unreachable ();
6764 case dw_val_class_const:
6765 return DW_FORM_sdata;
6766 case dw_val_class_unsigned_const:
6767 switch (constant_size (AT_unsigned (a)))
6769 case 1:
6770 return DW_FORM_data1;
6771 case 2:
6772 return DW_FORM_data2;
6773 case 4:
6774 return DW_FORM_data4;
6775 case 8:
6776 return DW_FORM_data8;
6777 default:
6778 gcc_unreachable ();
6780 case dw_val_class_long_long:
6781 return DW_FORM_block1;
6782 case dw_val_class_vec:
6783 return DW_FORM_block1;
6784 case dw_val_class_flag:
6785 return DW_FORM_flag;
6786 case dw_val_class_die_ref:
6787 if (AT_ref_external (a))
6788 return DW_FORM_ref_addr;
6789 else
6790 return DW_FORM_ref;
6791 case dw_val_class_fde_ref:
6792 return DW_FORM_data;
6793 case dw_val_class_lbl_id:
6794 return DW_FORM_addr;
6795 case dw_val_class_lbl_offset:
6796 return DW_FORM_data;
6797 case dw_val_class_str:
6798 return AT_string_form (a);
6800 default:
6801 gcc_unreachable ();
6805 /* Output the encoding of an attribute value. */
6807 static void
6808 output_value_format (dw_attr_ref a)
6810 enum dwarf_form form = value_format (a);
6812 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6815 /* Output the .debug_abbrev section which defines the DIE abbreviation
6816 table. */
6818 static void
6819 output_abbrev_section (void)
6821 unsigned long abbrev_id;
6823 dw_attr_ref a_attr;
6825 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6827 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6829 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6830 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6831 dwarf_tag_name (abbrev->die_tag));
6833 if (abbrev->die_child != NULL)
6834 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6835 else
6836 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6838 for (a_attr = abbrev->die_attr; a_attr != NULL;
6839 a_attr = a_attr->dw_attr_next)
6841 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6842 dwarf_attr_name (a_attr->dw_attr));
6843 output_value_format (a_attr);
6846 dw2_asm_output_data (1, 0, NULL);
6847 dw2_asm_output_data (1, 0, NULL);
6850 /* Terminate the table. */
6851 dw2_asm_output_data (1, 0, NULL);
6854 /* Output a symbol we can use to refer to this DIE from another CU. */
6856 static inline void
6857 output_die_symbol (dw_die_ref die)
6859 char *sym = die->die_symbol;
6861 if (sym == 0)
6862 return;
6864 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6865 /* We make these global, not weak; if the target doesn't support
6866 .linkonce, it doesn't support combining the sections, so debugging
6867 will break. */
6868 targetm.asm_out.globalize_label (asm_out_file, sym);
6870 ASM_OUTPUT_LABEL (asm_out_file, sym);
6873 /* Return a new location list, given the begin and end range, and the
6874 expression. gensym tells us whether to generate a new internal symbol for
6875 this location list node, which is done for the head of the list only. */
6877 static inline dw_loc_list_ref
6878 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6879 const char *section, unsigned int gensym)
6881 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6883 retlist->begin = begin;
6884 retlist->end = end;
6885 retlist->expr = expr;
6886 retlist->section = section;
6887 if (gensym)
6888 retlist->ll_symbol = gen_internal_sym ("LLST");
6890 return retlist;
6893 /* Add a location description expression to a location list. */
6895 static inline void
6896 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6897 const char *begin, const char *end,
6898 const char *section)
6900 dw_loc_list_ref *d;
6902 /* Find the end of the chain. */
6903 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6906 /* Add a new location list node to the list. */
6907 *d = new_loc_list (descr, begin, end, section, 0);
6910 static void
6911 dwarf2out_switch_text_section (void)
6913 dw_fde_ref fde;
6915 gcc_assert (cfun);
6917 fde = &fde_table[fde_table_in_use - 1];
6918 fde->dw_fde_switched_sections = true;
6919 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6920 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6921 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6922 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6923 have_switched_text_section = true;
6926 /* Output the location list given to us. */
6928 static void
6929 output_loc_list (dw_loc_list_ref list_head)
6931 dw_loc_list_ref curr = list_head;
6933 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6935 /* Walk the location list, and output each range + expression. */
6936 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6938 unsigned long size;
6939 if (!separate_line_info_table_in_use && !have_switched_text_section)
6941 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6942 "Location list begin address (%s)",
6943 list_head->ll_symbol);
6944 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6945 "Location list end address (%s)",
6946 list_head->ll_symbol);
6948 else
6950 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6951 "Location list begin address (%s)",
6952 list_head->ll_symbol);
6953 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6954 "Location list end address (%s)",
6955 list_head->ll_symbol);
6957 size = size_of_locs (curr->expr);
6959 /* Output the block length for this list of location operations. */
6960 gcc_assert (size <= 0xffff);
6961 dw2_asm_output_data (2, size, "%s", "Location expression size");
6963 output_loc_sequence (curr->expr);
6966 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6967 "Location list terminator begin (%s)",
6968 list_head->ll_symbol);
6969 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6970 "Location list terminator end (%s)",
6971 list_head->ll_symbol);
6974 /* Output the DIE and its attributes. Called recursively to generate
6975 the definitions of each child DIE. */
6977 static void
6978 output_die (dw_die_ref die)
6980 dw_attr_ref a;
6981 dw_die_ref c;
6982 unsigned long size;
6984 /* If someone in another CU might refer to us, set up a symbol for
6985 them to point to. */
6986 if (die->die_symbol)
6987 output_die_symbol (die);
6989 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6990 die->die_offset, dwarf_tag_name (die->die_tag));
6992 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6994 const char *name = dwarf_attr_name (a->dw_attr);
6996 switch (AT_class (a))
6998 case dw_val_class_addr:
6999 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7000 break;
7002 case dw_val_class_offset:
7003 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7004 "%s", name);
7005 break;
7007 case dw_val_class_range_list:
7009 char *p = strchr (ranges_section_label, '\0');
7011 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7012 a->dw_attr_val.v.val_offset);
7013 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7014 "%s", name);
7015 *p = '\0';
7017 break;
7019 case dw_val_class_loc:
7020 size = size_of_locs (AT_loc (a));
7022 /* Output the block length for this list of location operations. */
7023 dw2_asm_output_data (constant_size (size), size, "%s", name);
7025 output_loc_sequence (AT_loc (a));
7026 break;
7028 case dw_val_class_const:
7029 /* ??? It would be slightly more efficient to use a scheme like is
7030 used for unsigned constants below, but gdb 4.x does not sign
7031 extend. Gdb 5.x does sign extend. */
7032 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7033 break;
7035 case dw_val_class_unsigned_const:
7036 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7037 AT_unsigned (a), "%s", name);
7038 break;
7040 case dw_val_class_long_long:
7042 unsigned HOST_WIDE_INT first, second;
7044 dw2_asm_output_data (1,
7045 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7046 "%s", name);
7048 if (WORDS_BIG_ENDIAN)
7050 first = a->dw_attr_val.v.val_long_long.hi;
7051 second = a->dw_attr_val.v.val_long_long.low;
7053 else
7055 first = a->dw_attr_val.v.val_long_long.low;
7056 second = a->dw_attr_val.v.val_long_long.hi;
7059 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7060 first, "long long constant");
7061 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7062 second, NULL);
7064 break;
7066 case dw_val_class_vec:
7068 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7069 unsigned int len = a->dw_attr_val.v.val_vec.length;
7070 unsigned int i;
7071 unsigned char *p;
7073 dw2_asm_output_data (1, len * elt_size, "%s", name);
7074 if (elt_size > sizeof (HOST_WIDE_INT))
7076 elt_size /= 2;
7077 len *= 2;
7079 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7080 i < len;
7081 i++, p += elt_size)
7082 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7083 "fp or vector constant word %u", i);
7084 break;
7087 case dw_val_class_flag:
7088 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7089 break;
7091 case dw_val_class_loc_list:
7093 char *sym = AT_loc_list (a)->ll_symbol;
7095 gcc_assert (sym);
7096 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
7098 break;
7100 case dw_val_class_die_ref:
7101 if (AT_ref_external (a))
7103 char *sym = AT_ref (a)->die_symbol;
7105 gcc_assert (sym);
7106 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
7108 else
7110 gcc_assert (AT_ref (a)->die_offset);
7111 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7112 "%s", name);
7114 break;
7116 case dw_val_class_fde_ref:
7118 char l1[20];
7120 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7121 a->dw_attr_val.v.val_fde_index * 2);
7122 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7124 break;
7126 case dw_val_class_lbl_id:
7127 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7128 break;
7130 case dw_val_class_lbl_offset:
7131 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7132 break;
7134 case dw_val_class_str:
7135 if (AT_string_form (a) == DW_FORM_strp)
7136 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7137 a->dw_attr_val.v.val_str->label,
7138 "%s: \"%s\"", name, AT_string (a));
7139 else
7140 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7141 break;
7143 default:
7144 gcc_unreachable ();
7148 for (c = die->die_child; c != NULL; c = c->die_sib)
7149 output_die (c);
7151 /* Add null byte to terminate sibling list. */
7152 if (die->die_child != NULL)
7153 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7154 die->die_offset);
7157 /* Output the compilation unit that appears at the beginning of the
7158 .debug_info section, and precedes the DIE descriptions. */
7160 static void
7161 output_compilation_unit_header (void)
7163 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7164 dw2_asm_output_data (4, 0xffffffff,
7165 "Initial length escape value indicating 64-bit DWARF extension");
7166 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7167 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7168 "Length of Compilation Unit Info");
7169 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7170 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7171 "Offset Into Abbrev. Section");
7172 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7175 /* Output the compilation unit DIE and its children. */
7177 static void
7178 output_comp_unit (dw_die_ref die, int output_if_empty)
7180 const char *secname;
7181 char *oldsym, *tmp;
7183 /* Unless we are outputting main CU, we may throw away empty ones. */
7184 if (!output_if_empty && die->die_child == NULL)
7185 return;
7187 /* Even if there are no children of this DIE, we must output the information
7188 about the compilation unit. Otherwise, on an empty translation unit, we
7189 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7190 will then complain when examining the file. First mark all the DIEs in
7191 this CU so we know which get local refs. */
7192 mark_dies (die);
7194 build_abbrev_table (die);
7196 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7197 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7198 calc_die_sizes (die);
7200 oldsym = die->die_symbol;
7201 if (oldsym)
7203 tmp = alloca (strlen (oldsym) + 24);
7205 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7206 secname = tmp;
7207 die->die_symbol = NULL;
7208 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7210 else
7211 switch_to_section (debug_info_section);
7213 /* Output debugging information. */
7214 output_compilation_unit_header ();
7215 output_die (die);
7217 /* Leave the marks on the main CU, so we can check them in
7218 output_pubnames. */
7219 if (oldsym)
7221 unmark_dies (die);
7222 die->die_symbol = oldsym;
7226 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7227 output of lang_hooks.decl_printable_name for C++ looks like
7228 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7230 static const char *
7231 dwarf2_name (tree decl, int scope)
7233 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7236 /* Add a new entry to .debug_pubnames if appropriate. */
7238 static void
7239 add_pubname (tree decl, dw_die_ref die)
7241 pubname_ref p;
7243 if (! TREE_PUBLIC (decl))
7244 return;
7246 if (pubname_table_in_use == pubname_table_allocated)
7248 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7249 pubname_table
7250 = ggc_realloc (pubname_table,
7251 (pubname_table_allocated * sizeof (pubname_entry)));
7252 memset (pubname_table + pubname_table_in_use, 0,
7253 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7256 p = &pubname_table[pubname_table_in_use++];
7257 p->die = die;
7258 p->name = xstrdup (dwarf2_name (decl, 1));
7261 /* Output the public names table used to speed up access to externally
7262 visible names. For now, only generate entries for externally
7263 visible procedures. */
7265 static void
7266 output_pubnames (void)
7268 unsigned i;
7269 unsigned long pubnames_length = size_of_pubnames ();
7271 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7272 dw2_asm_output_data (4, 0xffffffff,
7273 "Initial length escape value indicating 64-bit DWARF extension");
7274 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7275 "Length of Public Names Info");
7276 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7277 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7278 "Offset of Compilation Unit Info");
7279 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7280 "Compilation Unit Length");
7282 for (i = 0; i < pubname_table_in_use; i++)
7284 pubname_ref pub = &pubname_table[i];
7286 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7287 gcc_assert (pub->die->die_mark);
7289 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7290 "DIE offset");
7292 dw2_asm_output_nstring (pub->name, -1, "external name");
7295 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7298 /* Add a new entry to .debug_aranges if appropriate. */
7300 static void
7301 add_arange (tree decl, dw_die_ref die)
7303 if (! DECL_SECTION_NAME (decl))
7304 return;
7306 if (arange_table_in_use == arange_table_allocated)
7308 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7309 arange_table = ggc_realloc (arange_table,
7310 (arange_table_allocated
7311 * sizeof (dw_die_ref)));
7312 memset (arange_table + arange_table_in_use, 0,
7313 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7316 arange_table[arange_table_in_use++] = die;
7319 /* Output the information that goes into the .debug_aranges table.
7320 Namely, define the beginning and ending address range of the
7321 text section generated for this compilation unit. */
7323 static void
7324 output_aranges (void)
7326 unsigned i;
7327 unsigned long aranges_length = size_of_aranges ();
7329 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7330 dw2_asm_output_data (4, 0xffffffff,
7331 "Initial length escape value indicating 64-bit DWARF extension");
7332 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7333 "Length of Address Ranges Info");
7334 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7335 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7336 "Offset of Compilation Unit Info");
7337 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7338 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7340 /* We need to align to twice the pointer size here. */
7341 if (DWARF_ARANGES_PAD_SIZE)
7343 /* Pad using a 2 byte words so that padding is correct for any
7344 pointer size. */
7345 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7346 2 * DWARF2_ADDR_SIZE);
7347 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7348 dw2_asm_output_data (2, 0, NULL);
7351 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7352 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7353 text_section_label, "Length");
7354 if (flag_reorder_blocks_and_partition)
7356 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7357 "Address");
7358 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7359 cold_text_section_label, "Length");
7362 for (i = 0; i < arange_table_in_use; i++)
7364 dw_die_ref die = arange_table[i];
7366 /* We shouldn't see aranges for DIEs outside of the main CU. */
7367 gcc_assert (die->die_mark);
7369 if (die->die_tag == DW_TAG_subprogram)
7371 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7372 "Address");
7373 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7374 get_AT_low_pc (die), "Length");
7376 else
7378 /* A static variable; extract the symbol from DW_AT_location.
7379 Note that this code isn't currently hit, as we only emit
7380 aranges for functions (jason 9/23/99). */
7381 dw_attr_ref a = get_AT (die, DW_AT_location);
7382 dw_loc_descr_ref loc;
7384 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7386 loc = AT_loc (a);
7387 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7389 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7390 loc->dw_loc_oprnd1.v.val_addr, "Address");
7391 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7392 get_AT_unsigned (die, DW_AT_byte_size),
7393 "Length");
7397 /* Output the terminator words. */
7398 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7399 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7402 /* Add a new entry to .debug_ranges. Return the offset at which it
7403 was placed. */
7405 static unsigned int
7406 add_ranges (tree block)
7408 unsigned int in_use = ranges_table_in_use;
7410 if (in_use == ranges_table_allocated)
7412 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7413 ranges_table
7414 = ggc_realloc (ranges_table, (ranges_table_allocated
7415 * sizeof (struct dw_ranges_struct)));
7416 memset (ranges_table + ranges_table_in_use, 0,
7417 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7420 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7421 ranges_table_in_use = in_use + 1;
7423 return in_use * 2 * DWARF2_ADDR_SIZE;
7426 static void
7427 output_ranges (void)
7429 unsigned i;
7430 static const char *const start_fmt = "Offset 0x%x";
7431 const char *fmt = start_fmt;
7433 for (i = 0; i < ranges_table_in_use; i++)
7435 int block_num = ranges_table[i].block_num;
7437 if (block_num)
7439 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7440 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7442 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7443 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7445 /* If all code is in the text section, then the compilation
7446 unit base address defaults to DW_AT_low_pc, which is the
7447 base of the text section. */
7448 if (!separate_line_info_table_in_use && !have_switched_text_section)
7450 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7451 text_section_label,
7452 fmt, i * 2 * DWARF2_ADDR_SIZE);
7453 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7454 text_section_label, NULL);
7457 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7458 compilation unit base address to zero, which allows us to
7459 use absolute addresses, and not worry about whether the
7460 target supports cross-section arithmetic. */
7461 else
7463 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7464 fmt, i * 2 * DWARF2_ADDR_SIZE);
7465 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7468 fmt = NULL;
7470 else
7472 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7473 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7474 fmt = start_fmt;
7479 /* Data structure containing information about input files. */
7480 struct file_info
7482 char *path; /* Complete file name. */
7483 char *fname; /* File name part. */
7484 int length; /* Length of entire string. */
7485 int file_idx; /* Index in input file table. */
7486 int dir_idx; /* Index in directory table. */
7489 /* Data structure containing information about directories with source
7490 files. */
7491 struct dir_info
7493 char *path; /* Path including directory name. */
7494 int length; /* Path length. */
7495 int prefix; /* Index of directory entry which is a prefix. */
7496 int count; /* Number of files in this directory. */
7497 int dir_idx; /* Index of directory used as base. */
7498 int used; /* Used in the end? */
7501 /* Callback function for file_info comparison. We sort by looking at
7502 the directories in the path. */
7504 static int
7505 file_info_cmp (const void *p1, const void *p2)
7507 const struct file_info *s1 = p1;
7508 const struct file_info *s2 = p2;
7509 unsigned char *cp1;
7510 unsigned char *cp2;
7512 /* Take care of file names without directories. We need to make sure that
7513 we return consistent values to qsort since some will get confused if
7514 we return the same value when identical operands are passed in opposite
7515 orders. So if neither has a directory, return 0 and otherwise return
7516 1 or -1 depending on which one has the directory. */
7517 if ((s1->path == s1->fname || s2->path == s2->fname))
7518 return (s2->path == s2->fname) - (s1->path == s1->fname);
7520 cp1 = (unsigned char *) s1->path;
7521 cp2 = (unsigned char *) s2->path;
7523 while (1)
7525 ++cp1;
7526 ++cp2;
7527 /* Reached the end of the first path? If so, handle like above. */
7528 if ((cp1 == (unsigned char *) s1->fname)
7529 || (cp2 == (unsigned char *) s2->fname))
7530 return ((cp2 == (unsigned char *) s2->fname)
7531 - (cp1 == (unsigned char *) s1->fname));
7533 /* Character of current path component the same? */
7534 else if (*cp1 != *cp2)
7535 return *cp1 - *cp2;
7539 /* Output the directory table and the file name table. We try to minimize
7540 the total amount of memory needed. A heuristic is used to avoid large
7541 slowdowns with many input files. */
7543 static void
7544 output_file_names (void)
7546 struct file_info *files;
7547 struct dir_info *dirs;
7548 int *saved;
7549 int *savehere;
7550 int *backmap;
7551 size_t ndirs;
7552 int idx_offset;
7553 size_t i;
7554 int idx;
7556 /* Handle the case where file_table is empty. */
7557 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7559 dw2_asm_output_data (1, 0, "End directory table");
7560 dw2_asm_output_data (1, 0, "End file name table");
7561 return;
7564 /* Allocate the various arrays we need. */
7565 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7566 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7568 /* Sort the file names. */
7569 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7571 char *f;
7573 /* Skip all leading "./". */
7574 f = VARRAY_CHAR_PTR (file_table, i);
7575 while (f[0] == '.' && f[1] == '/')
7576 f += 2;
7578 /* Create a new array entry. */
7579 files[i].path = f;
7580 files[i].length = strlen (f);
7581 files[i].file_idx = i;
7583 /* Search for the file name part. */
7584 f = strrchr (f, '/');
7585 files[i].fname = f == NULL ? files[i].path : f + 1;
7588 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7589 sizeof (files[0]), file_info_cmp);
7591 /* Find all the different directories used. */
7592 dirs[0].path = files[1].path;
7593 dirs[0].length = files[1].fname - files[1].path;
7594 dirs[0].prefix = -1;
7595 dirs[0].count = 1;
7596 dirs[0].dir_idx = 0;
7597 dirs[0].used = 0;
7598 files[1].dir_idx = 0;
7599 ndirs = 1;
7601 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7602 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7603 && memcmp (dirs[ndirs - 1].path, files[i].path,
7604 dirs[ndirs - 1].length) == 0)
7606 /* Same directory as last entry. */
7607 files[i].dir_idx = ndirs - 1;
7608 ++dirs[ndirs - 1].count;
7610 else
7612 size_t j;
7614 /* This is a new directory. */
7615 dirs[ndirs].path = files[i].path;
7616 dirs[ndirs].length = files[i].fname - files[i].path;
7617 dirs[ndirs].count = 1;
7618 dirs[ndirs].dir_idx = ndirs;
7619 dirs[ndirs].used = 0;
7620 files[i].dir_idx = ndirs;
7622 /* Search for a prefix. */
7623 dirs[ndirs].prefix = -1;
7624 for (j = 0; j < ndirs; j++)
7625 if (dirs[j].length < dirs[ndirs].length
7626 && dirs[j].length > 1
7627 && (dirs[ndirs].prefix == -1
7628 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7629 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7630 dirs[ndirs].prefix = j;
7632 ++ndirs;
7635 /* Now to the actual work. We have to find a subset of the directories which
7636 allow expressing the file name using references to the directory table
7637 with the least amount of characters. We do not do an exhaustive search
7638 where we would have to check out every combination of every single
7639 possible prefix. Instead we use a heuristic which provides nearly optimal
7640 results in most cases and never is much off. */
7641 saved = alloca (ndirs * sizeof (int));
7642 savehere = alloca (ndirs * sizeof (int));
7644 memset (saved, '\0', ndirs * sizeof (saved[0]));
7645 for (i = 0; i < ndirs; i++)
7647 size_t j;
7648 int total;
7650 /* We can always save some space for the current directory. But this
7651 does not mean it will be enough to justify adding the directory. */
7652 savehere[i] = dirs[i].length;
7653 total = (savehere[i] - saved[i]) * dirs[i].count;
7655 for (j = i + 1; j < ndirs; j++)
7657 savehere[j] = 0;
7658 if (saved[j] < dirs[i].length)
7660 /* Determine whether the dirs[i] path is a prefix of the
7661 dirs[j] path. */
7662 int k;
7664 k = dirs[j].prefix;
7665 while (k != -1 && k != (int) i)
7666 k = dirs[k].prefix;
7668 if (k == (int) i)
7670 /* Yes it is. We can possibly safe some memory but
7671 writing the filenames in dirs[j] relative to
7672 dirs[i]. */
7673 savehere[j] = dirs[i].length;
7674 total += (savehere[j] - saved[j]) * dirs[j].count;
7679 /* Check whether we can safe enough to justify adding the dirs[i]
7680 directory. */
7681 if (total > dirs[i].length + 1)
7683 /* It's worthwhile adding. */
7684 for (j = i; j < ndirs; j++)
7685 if (savehere[j] > 0)
7687 /* Remember how much we saved for this directory so far. */
7688 saved[j] = savehere[j];
7690 /* Remember the prefix directory. */
7691 dirs[j].dir_idx = i;
7696 /* We have to emit them in the order they appear in the file_table array
7697 since the index is used in the debug info generation. To do this
7698 efficiently we generate a back-mapping of the indices first. */
7699 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7700 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7702 backmap[files[i].file_idx] = i;
7704 /* Mark this directory as used. */
7705 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7708 /* That was it. We are ready to emit the information. First emit the
7709 directory name table. We have to make sure the first actually emitted
7710 directory name has index one; zero is reserved for the current working
7711 directory. Make sure we do not confuse these indices with the one for the
7712 constructed table (even though most of the time they are identical). */
7713 idx = 1;
7714 idx_offset = dirs[0].length > 0 ? 1 : 0;
7715 for (i = 1 - idx_offset; i < ndirs; i++)
7716 if (dirs[i].used != 0)
7718 dirs[i].used = idx++;
7719 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7720 "Directory Entry: 0x%x", dirs[i].used);
7723 dw2_asm_output_data (1, 0, "End directory table");
7725 /* Correct the index for the current working directory entry if it
7726 exists. */
7727 if (idx_offset == 0)
7728 dirs[0].used = 0;
7730 /* Now write all the file names. */
7731 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7733 int file_idx = backmap[i];
7734 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7736 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7737 "File Entry: 0x%lx", (unsigned long) i);
7739 /* Include directory index. */
7740 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7742 /* Modification time. */
7743 dw2_asm_output_data_uleb128 (0, NULL);
7745 /* File length in bytes. */
7746 dw2_asm_output_data_uleb128 (0, NULL);
7749 dw2_asm_output_data (1, 0, "End file name table");
7753 /* Output the source line number correspondence information. This
7754 information goes into the .debug_line section. */
7756 static void
7757 output_line_info (void)
7759 char l1[20], l2[20], p1[20], p2[20];
7760 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7761 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7762 unsigned opc;
7763 unsigned n_op_args;
7764 unsigned long lt_index;
7765 unsigned long current_line;
7766 long line_offset;
7767 long line_delta;
7768 unsigned long current_file;
7769 unsigned long function;
7771 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7772 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7773 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7774 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7776 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7777 dw2_asm_output_data (4, 0xffffffff,
7778 "Initial length escape value indicating 64-bit DWARF extension");
7779 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7780 "Length of Source Line Info");
7781 ASM_OUTPUT_LABEL (asm_out_file, l1);
7783 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7784 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7785 ASM_OUTPUT_LABEL (asm_out_file, p1);
7787 /* Define the architecture-dependent minimum instruction length (in
7788 bytes). In this implementation of DWARF, this field is used for
7789 information purposes only. Since GCC generates assembly language,
7790 we have no a priori knowledge of how many instruction bytes are
7791 generated for each source line, and therefore can use only the
7792 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7793 commands. Accordingly, we fix this as `1', which is "correct
7794 enough" for all architectures, and don't let the target override. */
7795 dw2_asm_output_data (1, 1,
7796 "Minimum Instruction Length");
7798 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7799 "Default is_stmt_start flag");
7800 dw2_asm_output_data (1, DWARF_LINE_BASE,
7801 "Line Base Value (Special Opcodes)");
7802 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7803 "Line Range Value (Special Opcodes)");
7804 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7805 "Special Opcode Base");
7807 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7809 switch (opc)
7811 case DW_LNS_advance_pc:
7812 case DW_LNS_advance_line:
7813 case DW_LNS_set_file:
7814 case DW_LNS_set_column:
7815 case DW_LNS_fixed_advance_pc:
7816 n_op_args = 1;
7817 break;
7818 default:
7819 n_op_args = 0;
7820 break;
7823 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7824 opc, n_op_args);
7827 /* Write out the information about the files we use. */
7828 output_file_names ();
7829 ASM_OUTPUT_LABEL (asm_out_file, p2);
7831 /* We used to set the address register to the first location in the text
7832 section here, but that didn't accomplish anything since we already
7833 have a line note for the opening brace of the first function. */
7835 /* Generate the line number to PC correspondence table, encoded as
7836 a series of state machine operations. */
7837 current_file = 1;
7838 current_line = 1;
7840 if (cfun && in_cold_section_p)
7841 strcpy (prev_line_label, cfun->cold_section_label);
7842 else
7843 strcpy (prev_line_label, text_section_label);
7844 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7846 dw_line_info_ref line_info = &line_info_table[lt_index];
7848 #if 0
7849 /* Disable this optimization for now; GDB wants to see two line notes
7850 at the beginning of a function so it can find the end of the
7851 prologue. */
7853 /* Don't emit anything for redundant notes. Just updating the
7854 address doesn't accomplish anything, because we already assume
7855 that anything after the last address is this line. */
7856 if (line_info->dw_line_num == current_line
7857 && line_info->dw_file_num == current_file)
7858 continue;
7859 #endif
7861 /* Emit debug info for the address of the current line.
7863 Unfortunately, we have little choice here currently, and must always
7864 use the most general form. GCC does not know the address delta
7865 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7866 attributes which will give an upper bound on the address range. We
7867 could perhaps use length attributes to determine when it is safe to
7868 use DW_LNS_fixed_advance_pc. */
7870 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7871 if (0)
7873 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7874 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7875 "DW_LNS_fixed_advance_pc");
7876 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7878 else
7880 /* This can handle any delta. This takes
7881 4+DWARF2_ADDR_SIZE bytes. */
7882 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7883 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7884 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7885 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7888 strcpy (prev_line_label, line_label);
7890 /* Emit debug info for the source file of the current line, if
7891 different from the previous line. */
7892 if (line_info->dw_file_num != current_file)
7894 current_file = line_info->dw_file_num;
7895 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7896 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7897 VARRAY_CHAR_PTR (file_table,
7898 current_file));
7901 /* Emit debug info for the current line number, choosing the encoding
7902 that uses the least amount of space. */
7903 if (line_info->dw_line_num != current_line)
7905 line_offset = line_info->dw_line_num - current_line;
7906 line_delta = line_offset - DWARF_LINE_BASE;
7907 current_line = line_info->dw_line_num;
7908 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7909 /* This can handle deltas from -10 to 234, using the current
7910 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7911 takes 1 byte. */
7912 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7913 "line %lu", current_line);
7914 else
7916 /* This can handle any delta. This takes at least 4 bytes,
7917 depending on the value being encoded. */
7918 dw2_asm_output_data (1, DW_LNS_advance_line,
7919 "advance to line %lu", current_line);
7920 dw2_asm_output_data_sleb128 (line_offset, NULL);
7921 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7924 else
7925 /* We still need to start a new row, so output a copy insn. */
7926 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7929 /* Emit debug info for the address of the end of the function. */
7930 if (0)
7932 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7933 "DW_LNS_fixed_advance_pc");
7934 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7936 else
7938 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7939 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7940 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7941 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7944 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7945 dw2_asm_output_data_uleb128 (1, NULL);
7946 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7948 function = 0;
7949 current_file = 1;
7950 current_line = 1;
7951 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7953 dw_separate_line_info_ref line_info
7954 = &separate_line_info_table[lt_index];
7956 #if 0
7957 /* Don't emit anything for redundant notes. */
7958 if (line_info->dw_line_num == current_line
7959 && line_info->dw_file_num == current_file
7960 && line_info->function == function)
7961 goto cont;
7962 #endif
7964 /* Emit debug info for the address of the current line. If this is
7965 a new function, or the first line of a function, then we need
7966 to handle it differently. */
7967 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7968 lt_index);
7969 if (function != line_info->function)
7971 function = line_info->function;
7973 /* Set the address register to the first line in the function. */
7974 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7975 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7976 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7977 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7979 else
7981 /* ??? See the DW_LNS_advance_pc comment above. */
7982 if (0)
7984 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7985 "DW_LNS_fixed_advance_pc");
7986 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7988 else
7990 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7991 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7992 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7993 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7997 strcpy (prev_line_label, line_label);
7999 /* Emit debug info for the source file of the current line, if
8000 different from the previous line. */
8001 if (line_info->dw_file_num != current_file)
8003 current_file = line_info->dw_file_num;
8004 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8005 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
8006 VARRAY_CHAR_PTR (file_table,
8007 current_file));
8010 /* Emit debug info for the current line number, choosing the encoding
8011 that uses the least amount of space. */
8012 if (line_info->dw_line_num != current_line)
8014 line_offset = line_info->dw_line_num - current_line;
8015 line_delta = line_offset - DWARF_LINE_BASE;
8016 current_line = line_info->dw_line_num;
8017 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8018 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8019 "line %lu", current_line);
8020 else
8022 dw2_asm_output_data (1, DW_LNS_advance_line,
8023 "advance to line %lu", current_line);
8024 dw2_asm_output_data_sleb128 (line_offset, NULL);
8025 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8028 else
8029 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8031 #if 0
8032 cont:
8033 #endif
8035 lt_index++;
8037 /* If we're done with a function, end its sequence. */
8038 if (lt_index == separate_line_info_table_in_use
8039 || separate_line_info_table[lt_index].function != function)
8041 current_file = 1;
8042 current_line = 1;
8044 /* Emit debug info for the address of the end of the function. */
8045 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8046 if (0)
8048 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8049 "DW_LNS_fixed_advance_pc");
8050 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8052 else
8054 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8055 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8056 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8057 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8060 /* Output the marker for the end of this sequence. */
8061 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8062 dw2_asm_output_data_uleb128 (1, NULL);
8063 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8067 /* Output the marker for the end of the line number info. */
8068 ASM_OUTPUT_LABEL (asm_out_file, l2);
8071 /* Given a pointer to a tree node for some base type, return a pointer to
8072 a DIE that describes the given type.
8074 This routine must only be called for GCC type nodes that correspond to
8075 Dwarf base (fundamental) types. */
8077 static dw_die_ref
8078 base_type_die (tree type)
8080 dw_die_ref base_type_result;
8081 const char *type_name;
8082 enum dwarf_type encoding;
8083 tree name = TYPE_NAME (type);
8085 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8086 return 0;
8088 if (name)
8090 if (TREE_CODE (name) == TYPE_DECL)
8091 name = DECL_NAME (name);
8093 type_name = IDENTIFIER_POINTER (name);
8095 else
8096 type_name = "__unknown__";
8098 switch (TREE_CODE (type))
8100 case INTEGER_TYPE:
8101 /* Carefully distinguish the C character types, without messing
8102 up if the language is not C. Note that we check only for the names
8103 that contain spaces; other names might occur by coincidence in other
8104 languages. */
8105 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
8106 && (TYPE_MAIN_VARIANT (type) == char_type_node
8107 || ! strcmp (type_name, "signed char")
8108 || ! strcmp (type_name, "unsigned char"))))
8110 if (TYPE_UNSIGNED (type))
8111 encoding = DW_ATE_unsigned;
8112 else
8113 encoding = DW_ATE_signed;
8114 break;
8116 /* else fall through. */
8118 case CHAR_TYPE:
8119 /* GNU Pascal/Ada CHAR type. Not used in C. */
8120 if (TYPE_UNSIGNED (type))
8121 encoding = DW_ATE_unsigned_char;
8122 else
8123 encoding = DW_ATE_signed_char;
8124 break;
8126 case REAL_TYPE:
8127 encoding = DW_ATE_float;
8128 break;
8130 /* Dwarf2 doesn't know anything about complex ints, so use
8131 a user defined type for it. */
8132 case COMPLEX_TYPE:
8133 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8134 encoding = DW_ATE_complex_float;
8135 else
8136 encoding = DW_ATE_lo_user;
8137 break;
8139 case BOOLEAN_TYPE:
8140 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8141 encoding = DW_ATE_boolean;
8142 break;
8144 default:
8145 /* No other TREE_CODEs are Dwarf fundamental types. */
8146 gcc_unreachable ();
8149 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8150 if (demangle_name_func)
8151 type_name = (*demangle_name_func) (type_name);
8153 add_AT_string (base_type_result, DW_AT_name, type_name);
8154 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8155 int_size_in_bytes (type));
8156 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8158 return base_type_result;
8161 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8162 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8163 a given type is generally the same as the given type, except that if the
8164 given type is a pointer or reference type, then the root type of the given
8165 type is the root type of the "basis" type for the pointer or reference
8166 type. (This definition of the "root" type is recursive.) Also, the root
8167 type of a `const' qualified type or a `volatile' qualified type is the
8168 root type of the given type without the qualifiers. */
8170 static tree
8171 root_type (tree type)
8173 if (TREE_CODE (type) == ERROR_MARK)
8174 return error_mark_node;
8176 switch (TREE_CODE (type))
8178 case ERROR_MARK:
8179 return error_mark_node;
8181 case POINTER_TYPE:
8182 case REFERENCE_TYPE:
8183 return type_main_variant (root_type (TREE_TYPE (type)));
8185 default:
8186 return type_main_variant (type);
8190 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8191 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8193 static inline int
8194 is_base_type (tree type)
8196 switch (TREE_CODE (type))
8198 case ERROR_MARK:
8199 case VOID_TYPE:
8200 case INTEGER_TYPE:
8201 case REAL_TYPE:
8202 case COMPLEX_TYPE:
8203 case BOOLEAN_TYPE:
8204 case CHAR_TYPE:
8205 return 1;
8207 case ARRAY_TYPE:
8208 case RECORD_TYPE:
8209 case UNION_TYPE:
8210 case QUAL_UNION_TYPE:
8211 case ENUMERAL_TYPE:
8212 case FUNCTION_TYPE:
8213 case METHOD_TYPE:
8214 case POINTER_TYPE:
8215 case REFERENCE_TYPE:
8216 case OFFSET_TYPE:
8217 case LANG_TYPE:
8218 case VECTOR_TYPE:
8219 return 0;
8221 default:
8222 gcc_unreachable ();
8225 return 0;
8228 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8229 node, return the size in bits for the type if it is a constant, or else
8230 return the alignment for the type if the type's size is not constant, or
8231 else return BITS_PER_WORD if the type actually turns out to be an
8232 ERROR_MARK node. */
8234 static inline unsigned HOST_WIDE_INT
8235 simple_type_size_in_bits (tree type)
8237 if (TREE_CODE (type) == ERROR_MARK)
8238 return BITS_PER_WORD;
8239 else if (TYPE_SIZE (type) == NULL_TREE)
8240 return 0;
8241 else if (host_integerp (TYPE_SIZE (type), 1))
8242 return tree_low_cst (TYPE_SIZE (type), 1);
8243 else
8244 return TYPE_ALIGN (type);
8247 /* Return true if the debug information for the given type should be
8248 emitted as a subrange type. */
8250 static inline bool
8251 is_subrange_type (tree type)
8253 tree subtype = TREE_TYPE (type);
8255 /* Subrange types are identified by the fact that they are integer
8256 types, and that they have a subtype which is either an integer type
8257 or an enumeral type. */
8259 if (TREE_CODE (type) != INTEGER_TYPE
8260 || subtype == NULL_TREE)
8261 return false;
8263 if (TREE_CODE (subtype) != INTEGER_TYPE
8264 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8265 return false;
8267 if (TREE_CODE (type) == TREE_CODE (subtype)
8268 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8269 && TYPE_MIN_VALUE (type) != NULL
8270 && TYPE_MIN_VALUE (subtype) != NULL
8271 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8272 && TYPE_MAX_VALUE (type) != NULL
8273 && TYPE_MAX_VALUE (subtype) != NULL
8274 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8276 /* The type and its subtype have the same representation. If in
8277 addition the two types also have the same name, then the given
8278 type is not a subrange type, but rather a plain base type. */
8279 /* FIXME: brobecker/2004-03-22:
8280 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8281 therefore be sufficient to check the TYPE_SIZE node pointers
8282 rather than checking the actual size. Unfortunately, we have
8283 found some cases, such as in the Ada "integer" type, where
8284 this is not the case. Until this problem is solved, we need to
8285 keep checking the actual size. */
8286 tree type_name = TYPE_NAME (type);
8287 tree subtype_name = TYPE_NAME (subtype);
8289 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8290 type_name = DECL_NAME (type_name);
8292 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8293 subtype_name = DECL_NAME (subtype_name);
8295 if (type_name == subtype_name)
8296 return false;
8299 return true;
8302 /* Given a pointer to a tree node for a subrange type, return a pointer
8303 to a DIE that describes the given type. */
8305 static dw_die_ref
8306 subrange_type_die (tree type, dw_die_ref context_die)
8308 dw_die_ref subtype_die;
8309 dw_die_ref subrange_die;
8310 tree name = TYPE_NAME (type);
8311 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8312 tree subtype = TREE_TYPE (type);
8314 if (context_die == NULL)
8315 context_die = comp_unit_die;
8317 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8318 subtype_die = gen_enumeration_type_die (subtype, context_die);
8319 else
8320 subtype_die = base_type_die (subtype);
8322 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8324 if (name != NULL)
8326 if (TREE_CODE (name) == TYPE_DECL)
8327 name = DECL_NAME (name);
8328 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8331 if (int_size_in_bytes (subtype) != size_in_bytes)
8333 /* The size of the subrange type and its base type do not match,
8334 so we need to generate a size attribute for the subrange type. */
8335 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8338 if (TYPE_MIN_VALUE (type) != NULL)
8339 add_bound_info (subrange_die, DW_AT_lower_bound,
8340 TYPE_MIN_VALUE (type));
8341 if (TYPE_MAX_VALUE (type) != NULL)
8342 add_bound_info (subrange_die, DW_AT_upper_bound,
8343 TYPE_MAX_VALUE (type));
8344 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8346 return subrange_die;
8349 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8350 entry that chains various modifiers in front of the given type. */
8352 static dw_die_ref
8353 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8354 dw_die_ref context_die)
8356 enum tree_code code = TREE_CODE (type);
8357 dw_die_ref mod_type_die = NULL;
8358 dw_die_ref sub_die = NULL;
8359 tree item_type = NULL;
8361 if (code != ERROR_MARK)
8363 tree qualified_type;
8365 /* See if we already have the appropriately qualified variant of
8366 this type. */
8367 qualified_type
8368 = get_qualified_type (type,
8369 ((is_const_type ? TYPE_QUAL_CONST : 0)
8370 | (is_volatile_type
8371 ? TYPE_QUAL_VOLATILE : 0)));
8373 /* If we do, then we can just use its DIE, if it exists. */
8374 if (qualified_type)
8376 mod_type_die = lookup_type_die (qualified_type);
8377 if (mod_type_die)
8378 return mod_type_die;
8381 /* Handle C typedef types. */
8382 if (qualified_type && TYPE_NAME (qualified_type)
8383 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8384 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8386 tree type_name = TYPE_NAME (qualified_type);
8387 tree dtype = TREE_TYPE (type_name);
8389 if (qualified_type == dtype)
8391 /* For a named type, use the typedef. */
8392 gen_type_die (qualified_type, context_die);
8393 mod_type_die = lookup_type_die (qualified_type);
8395 else if (is_const_type < TYPE_READONLY (dtype)
8396 || is_volatile_type < TYPE_VOLATILE (dtype))
8397 /* cv-unqualified version of named type. Just use the unnamed
8398 type to which it refers. */
8399 mod_type_die
8400 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8401 is_const_type, is_volatile_type,
8402 context_die);
8404 /* Else cv-qualified version of named type; fall through. */
8407 if (mod_type_die)
8408 /* OK. */
8410 else if (is_const_type)
8412 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8413 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8415 else if (is_volatile_type)
8417 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8418 sub_die = modified_type_die (type, 0, 0, context_die);
8420 else if (code == POINTER_TYPE)
8422 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8423 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8424 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8425 #if 0
8426 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8427 #endif
8428 item_type = TREE_TYPE (type);
8430 else if (code == REFERENCE_TYPE)
8432 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8433 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8434 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8435 #if 0
8436 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8437 #endif
8438 item_type = TREE_TYPE (type);
8440 else if (is_subrange_type (type))
8441 mod_type_die = subrange_type_die (type, context_die);
8442 else if (is_base_type (type))
8443 mod_type_die = base_type_die (type);
8444 else
8446 gen_type_die (type, context_die);
8448 /* We have to get the type_main_variant here (and pass that to the
8449 `lookup_type_die' routine) because the ..._TYPE node we have
8450 might simply be a *copy* of some original type node (where the
8451 copy was created to help us keep track of typedef names) and
8452 that copy might have a different TYPE_UID from the original
8453 ..._TYPE node. */
8454 if (TREE_CODE (type) != VECTOR_TYPE)
8455 mod_type_die = lookup_type_die (type_main_variant (type));
8456 else
8457 /* Vectors have the debugging information in the type,
8458 not the main variant. */
8459 mod_type_die = lookup_type_die (type);
8460 gcc_assert (mod_type_die);
8463 /* We want to equate the qualified type to the die below. */
8464 type = qualified_type;
8467 if (type)
8468 equate_type_number_to_die (type, mod_type_die);
8469 if (item_type)
8470 /* We must do this after the equate_type_number_to_die call, in case
8471 this is a recursive type. This ensures that the modified_type_die
8472 recursion will terminate even if the type is recursive. Recursive
8473 types are possible in Ada. */
8474 sub_die = modified_type_die (item_type,
8475 TYPE_READONLY (item_type),
8476 TYPE_VOLATILE (item_type),
8477 context_die);
8479 if (sub_die != NULL)
8480 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8482 return mod_type_die;
8485 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8486 an enumerated type. */
8488 static inline int
8489 type_is_enum (tree type)
8491 return TREE_CODE (type) == ENUMERAL_TYPE;
8494 /* Return the DBX register number described by a given RTL node. */
8496 static unsigned int
8497 dbx_reg_number (rtx rtl)
8499 unsigned regno = REGNO (rtl);
8501 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8503 #ifdef LEAF_REG_REMAP
8504 regno = LEAF_REG_REMAP (regno);
8505 #endif
8507 return DBX_REGISTER_NUMBER (regno);
8510 /* Optionally add a DW_OP_piece term to a location description expression.
8511 DW_OP_piece is only added if the location description expression already
8512 doesn't end with DW_OP_piece. */
8514 static void
8515 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8517 dw_loc_descr_ref loc;
8519 if (*list_head != NULL)
8521 /* Find the end of the chain. */
8522 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8525 if (loc->dw_loc_opc != DW_OP_piece)
8526 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8530 /* Return a location descriptor that designates a machine register or
8531 zero if there is none. */
8533 static dw_loc_descr_ref
8534 reg_loc_descriptor (rtx rtl)
8536 rtx regs;
8538 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8539 return 0;
8541 regs = targetm.dwarf_register_span (rtl);
8543 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8544 return multiple_reg_loc_descriptor (rtl, regs);
8545 else
8546 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8549 /* Return a location descriptor that designates a machine register for
8550 a given hard register number. */
8552 static dw_loc_descr_ref
8553 one_reg_loc_descriptor (unsigned int regno)
8555 if (regno <= 31)
8556 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8557 else
8558 return new_loc_descr (DW_OP_regx, regno, 0);
8561 /* Given an RTL of a register, return a location descriptor that
8562 designates a value that spans more than one register. */
8564 static dw_loc_descr_ref
8565 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8567 int nregs, size, i;
8568 unsigned reg;
8569 dw_loc_descr_ref loc_result = NULL;
8571 reg = REGNO (rtl);
8572 #ifdef LEAF_REG_REMAP
8573 reg = LEAF_REG_REMAP (reg);
8574 #endif
8575 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8576 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8578 /* Simple, contiguous registers. */
8579 if (regs == NULL_RTX)
8581 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8583 loc_result = NULL;
8584 while (nregs--)
8586 dw_loc_descr_ref t;
8588 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8589 add_loc_descr (&loc_result, t);
8590 add_loc_descr_op_piece (&loc_result, size);
8591 ++reg;
8593 return loc_result;
8596 /* Now onto stupid register sets in non contiguous locations. */
8598 gcc_assert (GET_CODE (regs) == PARALLEL);
8600 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8601 loc_result = NULL;
8603 for (i = 0; i < XVECLEN (regs, 0); ++i)
8605 dw_loc_descr_ref t;
8607 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8608 add_loc_descr (&loc_result, t);
8609 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8610 add_loc_descr_op_piece (&loc_result, size);
8612 return loc_result;
8615 /* Return a location descriptor that designates a constant. */
8617 static dw_loc_descr_ref
8618 int_loc_descriptor (HOST_WIDE_INT i)
8620 enum dwarf_location_atom op;
8622 /* Pick the smallest representation of a constant, rather than just
8623 defaulting to the LEB encoding. */
8624 if (i >= 0)
8626 if (i <= 31)
8627 op = DW_OP_lit0 + i;
8628 else if (i <= 0xff)
8629 op = DW_OP_const1u;
8630 else if (i <= 0xffff)
8631 op = DW_OP_const2u;
8632 else if (HOST_BITS_PER_WIDE_INT == 32
8633 || i <= 0xffffffff)
8634 op = DW_OP_const4u;
8635 else
8636 op = DW_OP_constu;
8638 else
8640 if (i >= -0x80)
8641 op = DW_OP_const1s;
8642 else if (i >= -0x8000)
8643 op = DW_OP_const2s;
8644 else if (HOST_BITS_PER_WIDE_INT == 32
8645 || i >= -0x80000000)
8646 op = DW_OP_const4s;
8647 else
8648 op = DW_OP_consts;
8651 return new_loc_descr (op, i, 0);
8654 /* Return a location descriptor that designates a base+offset location. */
8656 static dw_loc_descr_ref
8657 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8659 unsigned int regno;
8661 /* We only use "frame base" when we're sure we're talking about the
8662 post-prologue local stack frame. We do this by *not* running
8663 register elimination until this point, and recognizing the special
8664 argument pointer and soft frame pointer rtx's. */
8665 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8667 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8669 if (elim != reg)
8671 if (GET_CODE (elim) == PLUS)
8673 offset += INTVAL (XEXP (elim, 1));
8674 elim = XEXP (elim, 0);
8676 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8677 : stack_pointer_rtx));
8678 offset += frame_pointer_cfa_offset;
8680 return new_loc_descr (DW_OP_fbreg, offset, 0);
8684 regno = dbx_reg_number (reg);
8685 if (regno <= 31)
8686 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8687 else
8688 return new_loc_descr (DW_OP_bregx, regno, offset);
8691 /* Return true if this RTL expression describes a base+offset calculation. */
8693 static inline int
8694 is_based_loc (rtx rtl)
8696 return (GET_CODE (rtl) == PLUS
8697 && ((REG_P (XEXP (rtl, 0))
8698 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8699 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8702 /* The following routine converts the RTL for a variable or parameter
8703 (resident in memory) into an equivalent Dwarf representation of a
8704 mechanism for getting the address of that same variable onto the top of a
8705 hypothetical "address evaluation" stack.
8707 When creating memory location descriptors, we are effectively transforming
8708 the RTL for a memory-resident object into its Dwarf postfix expression
8709 equivalent. This routine recursively descends an RTL tree, turning
8710 it into Dwarf postfix code as it goes.
8712 MODE is the mode of the memory reference, needed to handle some
8713 autoincrement addressing modes.
8715 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8716 location list for RTL.
8718 Return 0 if we can't represent the location. */
8720 static dw_loc_descr_ref
8721 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8723 dw_loc_descr_ref mem_loc_result = NULL;
8724 enum dwarf_location_atom op;
8726 /* Note that for a dynamically sized array, the location we will generate a
8727 description of here will be the lowest numbered location which is
8728 actually within the array. That's *not* necessarily the same as the
8729 zeroth element of the array. */
8731 rtl = targetm.delegitimize_address (rtl);
8733 switch (GET_CODE (rtl))
8735 case POST_INC:
8736 case POST_DEC:
8737 case POST_MODIFY:
8738 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8739 just fall into the SUBREG code. */
8741 /* ... fall through ... */
8743 case SUBREG:
8744 /* The case of a subreg may arise when we have a local (register)
8745 variable or a formal (register) parameter which doesn't quite fill
8746 up an entire register. For now, just assume that it is
8747 legitimate to make the Dwarf info refer to the whole register which
8748 contains the given subreg. */
8749 rtl = XEXP (rtl, 0);
8751 /* ... fall through ... */
8753 case REG:
8754 /* Whenever a register number forms a part of the description of the
8755 method for calculating the (dynamic) address of a memory resident
8756 object, DWARF rules require the register number be referred to as
8757 a "base register". This distinction is not based in any way upon
8758 what category of register the hardware believes the given register
8759 belongs to. This is strictly DWARF terminology we're dealing with
8760 here. Note that in cases where the location of a memory-resident
8761 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8762 OP_CONST (0)) the actual DWARF location descriptor that we generate
8763 may just be OP_BASEREG (basereg). This may look deceptively like
8764 the object in question was allocated to a register (rather than in
8765 memory) so DWARF consumers need to be aware of the subtle
8766 distinction between OP_REG and OP_BASEREG. */
8767 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8768 mem_loc_result = based_loc_descr (rtl, 0);
8769 break;
8771 case MEM:
8772 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8773 if (mem_loc_result != 0)
8774 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8775 break;
8777 case LO_SUM:
8778 rtl = XEXP (rtl, 1);
8780 /* ... fall through ... */
8782 case LABEL_REF:
8783 /* Some ports can transform a symbol ref into a label ref, because
8784 the symbol ref is too far away and has to be dumped into a constant
8785 pool. */
8786 case CONST:
8787 case SYMBOL_REF:
8788 /* Alternatively, the symbol in the constant pool might be referenced
8789 by a different symbol. */
8790 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8792 bool marked;
8793 rtx tmp = get_pool_constant_mark (rtl, &marked);
8795 if (GET_CODE (tmp) == SYMBOL_REF)
8797 rtl = tmp;
8798 if (CONSTANT_POOL_ADDRESS_P (tmp))
8799 get_pool_constant_mark (tmp, &marked);
8800 else
8801 marked = true;
8804 /* If all references to this pool constant were optimized away,
8805 it was not output and thus we can't represent it.
8806 FIXME: might try to use DW_OP_const_value here, though
8807 DW_OP_piece complicates it. */
8808 if (!marked)
8809 return 0;
8812 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8813 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8814 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8815 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8816 break;
8818 case PRE_MODIFY:
8819 /* Extract the PLUS expression nested inside and fall into
8820 PLUS code below. */
8821 rtl = XEXP (rtl, 1);
8822 goto plus;
8824 case PRE_INC:
8825 case PRE_DEC:
8826 /* Turn these into a PLUS expression and fall into the PLUS code
8827 below. */
8828 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8829 GEN_INT (GET_CODE (rtl) == PRE_INC
8830 ? GET_MODE_UNIT_SIZE (mode)
8831 : -GET_MODE_UNIT_SIZE (mode)));
8833 /* ... fall through ... */
8835 case PLUS:
8836 plus:
8837 if (is_based_loc (rtl))
8838 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8839 INTVAL (XEXP (rtl, 1)));
8840 else
8842 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8843 if (mem_loc_result == 0)
8844 break;
8846 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8847 && INTVAL (XEXP (rtl, 1)) >= 0)
8848 add_loc_descr (&mem_loc_result,
8849 new_loc_descr (DW_OP_plus_uconst,
8850 INTVAL (XEXP (rtl, 1)), 0));
8851 else
8853 add_loc_descr (&mem_loc_result,
8854 mem_loc_descriptor (XEXP (rtl, 1), mode));
8855 add_loc_descr (&mem_loc_result,
8856 new_loc_descr (DW_OP_plus, 0, 0));
8859 break;
8861 /* If a pseudo-reg is optimized away, it is possible for it to
8862 be replaced with a MEM containing a multiply or shift. */
8863 case MULT:
8864 op = DW_OP_mul;
8865 goto do_binop;
8867 case ASHIFT:
8868 op = DW_OP_shl;
8869 goto do_binop;
8871 case ASHIFTRT:
8872 op = DW_OP_shra;
8873 goto do_binop;
8875 case LSHIFTRT:
8876 op = DW_OP_shr;
8877 goto do_binop;
8879 do_binop:
8881 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8882 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8884 if (op0 == 0 || op1 == 0)
8885 break;
8887 mem_loc_result = op0;
8888 add_loc_descr (&mem_loc_result, op1);
8889 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8890 break;
8893 case CONST_INT:
8894 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8895 break;
8897 default:
8898 gcc_unreachable ();
8901 return mem_loc_result;
8904 /* Return a descriptor that describes the concatenation of two locations.
8905 This is typically a complex variable. */
8907 static dw_loc_descr_ref
8908 concat_loc_descriptor (rtx x0, rtx x1)
8910 dw_loc_descr_ref cc_loc_result = NULL;
8911 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8912 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8914 if (x0_ref == 0 || x1_ref == 0)
8915 return 0;
8917 cc_loc_result = x0_ref;
8918 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8920 add_loc_descr (&cc_loc_result, x1_ref);
8921 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8923 return cc_loc_result;
8926 /* Output a proper Dwarf location descriptor for a variable or parameter
8927 which is either allocated in a register or in a memory location. For a
8928 register, we just generate an OP_REG and the register number. For a
8929 memory location we provide a Dwarf postfix expression describing how to
8930 generate the (dynamic) address of the object onto the address stack.
8932 If we don't know how to describe it, return 0. */
8934 static dw_loc_descr_ref
8935 loc_descriptor (rtx rtl)
8937 dw_loc_descr_ref loc_result = NULL;
8939 switch (GET_CODE (rtl))
8941 case SUBREG:
8942 /* The case of a subreg may arise when we have a local (register)
8943 variable or a formal (register) parameter which doesn't quite fill
8944 up an entire register. For now, just assume that it is
8945 legitimate to make the Dwarf info refer to the whole register which
8946 contains the given subreg. */
8947 rtl = SUBREG_REG (rtl);
8949 /* ... fall through ... */
8951 case REG:
8952 loc_result = reg_loc_descriptor (rtl);
8953 break;
8955 case MEM:
8956 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8957 break;
8959 case CONCAT:
8960 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8961 break;
8963 case VAR_LOCATION:
8964 /* Single part. */
8965 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8967 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
8968 break;
8971 rtl = XEXP (rtl, 1);
8972 /* FALLTHRU */
8974 case PARALLEL:
8976 rtvec par_elems = XVEC (rtl, 0);
8977 int num_elem = GET_NUM_ELEM (par_elems);
8978 enum machine_mode mode;
8979 int i;
8981 /* Create the first one, so we have something to add to. */
8982 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
8983 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8984 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8985 for (i = 1; i < num_elem; i++)
8987 dw_loc_descr_ref temp;
8989 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
8990 add_loc_descr (&loc_result, temp);
8991 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8992 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8995 break;
8997 default:
8998 gcc_unreachable ();
9001 return loc_result;
9004 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9005 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9006 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9007 top-level invocation, and we require the address of LOC; is 0 if we require
9008 the value of LOC. */
9010 static dw_loc_descr_ref
9011 loc_descriptor_from_tree_1 (tree loc, int want_address)
9013 dw_loc_descr_ref ret, ret1;
9014 int have_address = 0;
9015 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9016 enum dwarf_location_atom op;
9018 /* ??? Most of the time we do not take proper care for sign/zero
9019 extending the values properly. Hopefully this won't be a real
9020 problem... */
9022 switch (TREE_CODE (loc))
9024 case ERROR_MARK:
9025 return 0;
9027 case PLACEHOLDER_EXPR:
9028 /* This case involves extracting fields from an object to determine the
9029 position of other fields. We don't try to encode this here. The
9030 only user of this is Ada, which encodes the needed information using
9031 the names of types. */
9032 return 0;
9034 case CALL_EXPR:
9035 return 0;
9037 case PREINCREMENT_EXPR:
9038 case PREDECREMENT_EXPR:
9039 case POSTINCREMENT_EXPR:
9040 case POSTDECREMENT_EXPR:
9041 /* There are no opcodes for these operations. */
9042 return 0;
9044 case ADDR_EXPR:
9045 /* If we already want an address, there's nothing we can do. */
9046 if (want_address)
9047 return 0;
9049 /* Otherwise, process the argument and look for the address. */
9050 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9052 case VAR_DECL:
9053 if (DECL_THREAD_LOCAL_P (loc))
9055 rtx rtl;
9057 /* If this is not defined, we have no way to emit the data. */
9058 if (!targetm.asm_out.output_dwarf_dtprel)
9059 return 0;
9061 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9062 look up addresses of objects in the current module. */
9063 if (DECL_EXTERNAL (loc))
9064 return 0;
9066 rtl = rtl_for_decl_location (loc);
9067 if (rtl == NULL_RTX)
9068 return 0;
9070 if (!MEM_P (rtl))
9071 return 0;
9072 rtl = XEXP (rtl, 0);
9073 if (! CONSTANT_P (rtl))
9074 return 0;
9076 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9077 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9078 ret->dw_loc_oprnd1.v.val_addr = rtl;
9080 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9081 add_loc_descr (&ret, ret1);
9083 have_address = 1;
9084 break;
9086 /* FALLTHRU */
9088 case PARM_DECL:
9089 if (DECL_HAS_VALUE_EXPR_P (loc))
9090 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9091 want_address);
9092 /* FALLTHRU */
9094 case RESULT_DECL:
9096 rtx rtl = rtl_for_decl_location (loc);
9098 if (rtl == NULL_RTX)
9099 return 0;
9100 else if (GET_CODE (rtl) == CONST_INT)
9102 HOST_WIDE_INT val = INTVAL (rtl);
9103 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9104 val &= GET_MODE_MASK (DECL_MODE (loc));
9105 ret = int_loc_descriptor (val);
9107 else if (GET_CODE (rtl) == CONST_STRING)
9108 return 0;
9109 else if (CONSTANT_P (rtl))
9111 ret = new_loc_descr (DW_OP_addr, 0, 0);
9112 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9113 ret->dw_loc_oprnd1.v.val_addr = rtl;
9115 else
9117 enum machine_mode mode;
9119 /* Certain constructs can only be represented at top-level. */
9120 if (want_address == 2)
9121 return loc_descriptor (rtl);
9123 mode = GET_MODE (rtl);
9124 if (MEM_P (rtl))
9126 rtl = XEXP (rtl, 0);
9127 have_address = 1;
9129 ret = mem_loc_descriptor (rtl, mode);
9132 break;
9134 case INDIRECT_REF:
9135 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9136 have_address = 1;
9137 break;
9139 case COMPOUND_EXPR:
9140 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9142 case NOP_EXPR:
9143 case CONVERT_EXPR:
9144 case NON_LVALUE_EXPR:
9145 case VIEW_CONVERT_EXPR:
9146 case SAVE_EXPR:
9147 case MODIFY_EXPR:
9148 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9150 case COMPONENT_REF:
9151 case BIT_FIELD_REF:
9152 case ARRAY_REF:
9153 case ARRAY_RANGE_REF:
9155 tree obj, offset;
9156 HOST_WIDE_INT bitsize, bitpos, bytepos;
9157 enum machine_mode mode;
9158 int volatilep;
9160 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9161 &unsignedp, &volatilep, false);
9163 if (obj == loc)
9164 return 0;
9166 ret = loc_descriptor_from_tree_1 (obj, 1);
9167 if (ret == 0
9168 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9169 return 0;
9171 if (offset != NULL_TREE)
9173 /* Variable offset. */
9174 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9175 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9178 bytepos = bitpos / BITS_PER_UNIT;
9179 if (bytepos > 0)
9180 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9181 else if (bytepos < 0)
9183 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9184 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9187 have_address = 1;
9188 break;
9191 case INTEGER_CST:
9192 if (host_integerp (loc, 0))
9193 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9194 else
9195 return 0;
9196 break;
9198 case CONSTRUCTOR:
9200 /* Get an RTL for this, if something has been emitted. */
9201 rtx rtl = lookup_constant_def (loc);
9202 enum machine_mode mode;
9204 if (!rtl || !MEM_P (rtl))
9205 return 0;
9206 mode = GET_MODE (rtl);
9207 rtl = XEXP (rtl, 0);
9208 ret = mem_loc_descriptor (rtl, mode);
9209 have_address = 1;
9210 break;
9213 case TRUTH_AND_EXPR:
9214 case TRUTH_ANDIF_EXPR:
9215 case BIT_AND_EXPR:
9216 op = DW_OP_and;
9217 goto do_binop;
9219 case TRUTH_XOR_EXPR:
9220 case BIT_XOR_EXPR:
9221 op = DW_OP_xor;
9222 goto do_binop;
9224 case TRUTH_OR_EXPR:
9225 case TRUTH_ORIF_EXPR:
9226 case BIT_IOR_EXPR:
9227 op = DW_OP_or;
9228 goto do_binop;
9230 case FLOOR_DIV_EXPR:
9231 case CEIL_DIV_EXPR:
9232 case ROUND_DIV_EXPR:
9233 case TRUNC_DIV_EXPR:
9234 op = DW_OP_div;
9235 goto do_binop;
9237 case MINUS_EXPR:
9238 op = DW_OP_minus;
9239 goto do_binop;
9241 case FLOOR_MOD_EXPR:
9242 case CEIL_MOD_EXPR:
9243 case ROUND_MOD_EXPR:
9244 case TRUNC_MOD_EXPR:
9245 op = DW_OP_mod;
9246 goto do_binop;
9248 case MULT_EXPR:
9249 op = DW_OP_mul;
9250 goto do_binop;
9252 case LSHIFT_EXPR:
9253 op = DW_OP_shl;
9254 goto do_binop;
9256 case RSHIFT_EXPR:
9257 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9258 goto do_binop;
9260 case PLUS_EXPR:
9261 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9262 && host_integerp (TREE_OPERAND (loc, 1), 0))
9264 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9265 if (ret == 0)
9266 return 0;
9268 add_loc_descr (&ret,
9269 new_loc_descr (DW_OP_plus_uconst,
9270 tree_low_cst (TREE_OPERAND (loc, 1),
9272 0));
9273 break;
9276 op = DW_OP_plus;
9277 goto do_binop;
9279 case LE_EXPR:
9280 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9281 return 0;
9283 op = DW_OP_le;
9284 goto do_binop;
9286 case GE_EXPR:
9287 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9288 return 0;
9290 op = DW_OP_ge;
9291 goto do_binop;
9293 case LT_EXPR:
9294 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9295 return 0;
9297 op = DW_OP_lt;
9298 goto do_binop;
9300 case GT_EXPR:
9301 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9302 return 0;
9304 op = DW_OP_gt;
9305 goto do_binop;
9307 case EQ_EXPR:
9308 op = DW_OP_eq;
9309 goto do_binop;
9311 case NE_EXPR:
9312 op = DW_OP_ne;
9313 goto do_binop;
9315 do_binop:
9316 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9317 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9318 if (ret == 0 || ret1 == 0)
9319 return 0;
9321 add_loc_descr (&ret, ret1);
9322 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9323 break;
9325 case TRUTH_NOT_EXPR:
9326 case BIT_NOT_EXPR:
9327 op = DW_OP_not;
9328 goto do_unop;
9330 case ABS_EXPR:
9331 op = DW_OP_abs;
9332 goto do_unop;
9334 case NEGATE_EXPR:
9335 op = DW_OP_neg;
9336 goto do_unop;
9338 do_unop:
9339 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9340 if (ret == 0)
9341 return 0;
9343 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9344 break;
9346 case MIN_EXPR:
9347 case MAX_EXPR:
9349 const enum tree_code code =
9350 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9352 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9353 build2 (code, integer_type_node,
9354 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9355 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9358 /* ... fall through ... */
9360 case COND_EXPR:
9362 dw_loc_descr_ref lhs
9363 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9364 dw_loc_descr_ref rhs
9365 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9366 dw_loc_descr_ref bra_node, jump_node, tmp;
9368 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9369 if (ret == 0 || lhs == 0 || rhs == 0)
9370 return 0;
9372 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9373 add_loc_descr (&ret, bra_node);
9375 add_loc_descr (&ret, rhs);
9376 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9377 add_loc_descr (&ret, jump_node);
9379 add_loc_descr (&ret, lhs);
9380 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9381 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9383 /* ??? Need a node to point the skip at. Use a nop. */
9384 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9385 add_loc_descr (&ret, tmp);
9386 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9387 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9389 break;
9391 case FIX_TRUNC_EXPR:
9392 case FIX_CEIL_EXPR:
9393 case FIX_FLOOR_EXPR:
9394 case FIX_ROUND_EXPR:
9395 return 0;
9397 default:
9398 /* Leave front-end specific codes as simply unknown. This comes
9399 up, for instance, with the C STMT_EXPR. */
9400 if ((unsigned int) TREE_CODE (loc)
9401 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9402 return 0;
9404 #ifdef ENABLE_CHECKING
9405 /* Otherwise this is a generic code; we should just lists all of
9406 these explicitly. We forgot one. */
9407 gcc_unreachable ();
9408 #else
9409 /* In a release build, we want to degrade gracefully: better to
9410 generate incomplete debugging information than to crash. */
9411 return NULL;
9412 #endif
9415 /* Show if we can't fill the request for an address. */
9416 if (want_address && !have_address)
9417 return 0;
9419 /* If we've got an address and don't want one, dereference. */
9420 if (!want_address && have_address)
9422 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9424 if (size > DWARF2_ADDR_SIZE || size == -1)
9425 return 0;
9426 else if (size == DWARF2_ADDR_SIZE)
9427 op = DW_OP_deref;
9428 else
9429 op = DW_OP_deref_size;
9431 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9434 return ret;
9437 static inline dw_loc_descr_ref
9438 loc_descriptor_from_tree (tree loc)
9440 return loc_descriptor_from_tree_1 (loc, 2);
9443 /* Given a value, round it up to the lowest multiple of `boundary'
9444 which is not less than the value itself. */
9446 static inline HOST_WIDE_INT
9447 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9449 return (((value + boundary - 1) / boundary) * boundary);
9452 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9453 pointer to the declared type for the relevant field variable, or return
9454 `integer_type_node' if the given node turns out to be an
9455 ERROR_MARK node. */
9457 static inline tree
9458 field_type (tree decl)
9460 tree type;
9462 if (TREE_CODE (decl) == ERROR_MARK)
9463 return integer_type_node;
9465 type = DECL_BIT_FIELD_TYPE (decl);
9466 if (type == NULL_TREE)
9467 type = TREE_TYPE (decl);
9469 return type;
9472 /* Given a pointer to a tree node, return the alignment in bits for
9473 it, or else return BITS_PER_WORD if the node actually turns out to
9474 be an ERROR_MARK node. */
9476 static inline unsigned
9477 simple_type_align_in_bits (tree type)
9479 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9482 static inline unsigned
9483 simple_decl_align_in_bits (tree decl)
9485 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9488 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9489 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9490 or return 0 if we are unable to determine what that offset is, either
9491 because the argument turns out to be a pointer to an ERROR_MARK node, or
9492 because the offset is actually variable. (We can't handle the latter case
9493 just yet). */
9495 static HOST_WIDE_INT
9496 field_byte_offset (tree decl)
9498 unsigned int type_align_in_bits;
9499 unsigned int decl_align_in_bits;
9500 unsigned HOST_WIDE_INT type_size_in_bits;
9501 HOST_WIDE_INT object_offset_in_bits;
9502 tree type;
9503 tree field_size_tree;
9504 HOST_WIDE_INT bitpos_int;
9505 HOST_WIDE_INT deepest_bitpos;
9506 unsigned HOST_WIDE_INT field_size_in_bits;
9508 if (TREE_CODE (decl) == ERROR_MARK)
9509 return 0;
9511 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9513 type = field_type (decl);
9514 field_size_tree = DECL_SIZE (decl);
9516 /* The size could be unspecified if there was an error, or for
9517 a flexible array member. */
9518 if (! field_size_tree)
9519 field_size_tree = bitsize_zero_node;
9521 /* We cannot yet cope with fields whose positions are variable, so
9522 for now, when we see such things, we simply return 0. Someday, we may
9523 be able to handle such cases, but it will be damn difficult. */
9524 if (! host_integerp (bit_position (decl), 0))
9525 return 0;
9527 bitpos_int = int_bit_position (decl);
9529 /* If we don't know the size of the field, pretend it's a full word. */
9530 if (host_integerp (field_size_tree, 1))
9531 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9532 else
9533 field_size_in_bits = BITS_PER_WORD;
9535 type_size_in_bits = simple_type_size_in_bits (type);
9536 type_align_in_bits = simple_type_align_in_bits (type);
9537 decl_align_in_bits = simple_decl_align_in_bits (decl);
9539 /* The GCC front-end doesn't make any attempt to keep track of the starting
9540 bit offset (relative to the start of the containing structure type) of the
9541 hypothetical "containing object" for a bit-field. Thus, when computing
9542 the byte offset value for the start of the "containing object" of a
9543 bit-field, we must deduce this information on our own. This can be rather
9544 tricky to do in some cases. For example, handling the following structure
9545 type definition when compiling for an i386/i486 target (which only aligns
9546 long long's to 32-bit boundaries) can be very tricky:
9548 struct S { int field1; long long field2:31; };
9550 Fortunately, there is a simple rule-of-thumb which can be used in such
9551 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9552 structure shown above. It decides to do this based upon one simple rule
9553 for bit-field allocation. GCC allocates each "containing object" for each
9554 bit-field at the first (i.e. lowest addressed) legitimate alignment
9555 boundary (based upon the required minimum alignment for the declared type
9556 of the field) which it can possibly use, subject to the condition that
9557 there is still enough available space remaining in the containing object
9558 (when allocated at the selected point) to fully accommodate all of the
9559 bits of the bit-field itself.
9561 This simple rule makes it obvious why GCC allocates 8 bytes for each
9562 object of the structure type shown above. When looking for a place to
9563 allocate the "containing object" for `field2', the compiler simply tries
9564 to allocate a 64-bit "containing object" at each successive 32-bit
9565 boundary (starting at zero) until it finds a place to allocate that 64-
9566 bit field such that at least 31 contiguous (and previously unallocated)
9567 bits remain within that selected 64 bit field. (As it turns out, for the
9568 example above, the compiler finds it is OK to allocate the "containing
9569 object" 64-bit field at bit-offset zero within the structure type.)
9571 Here we attempt to work backwards from the limited set of facts we're
9572 given, and we try to deduce from those facts, where GCC must have believed
9573 that the containing object started (within the structure type). The value
9574 we deduce is then used (by the callers of this routine) to generate
9575 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9576 and, in the case of DW_AT_location, regular fields as well). */
9578 /* Figure out the bit-distance from the start of the structure to the
9579 "deepest" bit of the bit-field. */
9580 deepest_bitpos = bitpos_int + field_size_in_bits;
9582 /* This is the tricky part. Use some fancy footwork to deduce where the
9583 lowest addressed bit of the containing object must be. */
9584 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9586 /* Round up to type_align by default. This works best for bitfields. */
9587 object_offset_in_bits += type_align_in_bits - 1;
9588 object_offset_in_bits /= type_align_in_bits;
9589 object_offset_in_bits *= type_align_in_bits;
9591 if (object_offset_in_bits > bitpos_int)
9593 /* Sigh, the decl must be packed. */
9594 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9596 /* Round up to decl_align instead. */
9597 object_offset_in_bits += decl_align_in_bits - 1;
9598 object_offset_in_bits /= decl_align_in_bits;
9599 object_offset_in_bits *= decl_align_in_bits;
9602 return object_offset_in_bits / BITS_PER_UNIT;
9605 /* The following routines define various Dwarf attributes and any data
9606 associated with them. */
9608 /* Add a location description attribute value to a DIE.
9610 This emits location attributes suitable for whole variables and
9611 whole parameters. Note that the location attributes for struct fields are
9612 generated by the routine `data_member_location_attribute' below. */
9614 static inline void
9615 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9616 dw_loc_descr_ref descr)
9618 if (descr != 0)
9619 add_AT_loc (die, attr_kind, descr);
9622 /* Attach the specialized form of location attribute used for data members of
9623 struct and union types. In the special case of a FIELD_DECL node which
9624 represents a bit-field, the "offset" part of this special location
9625 descriptor must indicate the distance in bytes from the lowest-addressed
9626 byte of the containing struct or union type to the lowest-addressed byte of
9627 the "containing object" for the bit-field. (See the `field_byte_offset'
9628 function above).
9630 For any given bit-field, the "containing object" is a hypothetical object
9631 (of some integral or enum type) within which the given bit-field lives. The
9632 type of this hypothetical "containing object" is always the same as the
9633 declared type of the individual bit-field itself (for GCC anyway... the
9634 DWARF spec doesn't actually mandate this). Note that it is the size (in
9635 bytes) of the hypothetical "containing object" which will be given in the
9636 DW_AT_byte_size attribute for this bit-field. (See the
9637 `byte_size_attribute' function below.) It is also used when calculating the
9638 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9639 function below.) */
9641 static void
9642 add_data_member_location_attribute (dw_die_ref die, tree decl)
9644 HOST_WIDE_INT offset;
9645 dw_loc_descr_ref loc_descr = 0;
9647 if (TREE_CODE (decl) == TREE_BINFO)
9649 /* We're working on the TAG_inheritance for a base class. */
9650 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9652 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9653 aren't at a fixed offset from all (sub)objects of the same
9654 type. We need to extract the appropriate offset from our
9655 vtable. The following dwarf expression means
9657 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9659 This is specific to the V3 ABI, of course. */
9661 dw_loc_descr_ref tmp;
9663 /* Make a copy of the object address. */
9664 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9665 add_loc_descr (&loc_descr, tmp);
9667 /* Extract the vtable address. */
9668 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9669 add_loc_descr (&loc_descr, tmp);
9671 /* Calculate the address of the offset. */
9672 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9673 gcc_assert (offset < 0);
9675 tmp = int_loc_descriptor (-offset);
9676 add_loc_descr (&loc_descr, tmp);
9677 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9678 add_loc_descr (&loc_descr, tmp);
9680 /* Extract the offset. */
9681 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9682 add_loc_descr (&loc_descr, tmp);
9684 /* Add it to the object address. */
9685 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9686 add_loc_descr (&loc_descr, tmp);
9688 else
9689 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9691 else
9692 offset = field_byte_offset (decl);
9694 if (! loc_descr)
9696 enum dwarf_location_atom op;
9698 /* The DWARF2 standard says that we should assume that the structure
9699 address is already on the stack, so we can specify a structure field
9700 address by using DW_OP_plus_uconst. */
9702 #ifdef MIPS_DEBUGGING_INFO
9703 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9704 operator correctly. It works only if we leave the offset on the
9705 stack. */
9706 op = DW_OP_constu;
9707 #else
9708 op = DW_OP_plus_uconst;
9709 #endif
9711 loc_descr = new_loc_descr (op, offset, 0);
9714 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9717 /* Writes integer values to dw_vec_const array. */
9719 static void
9720 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9722 while (size != 0)
9724 *dest++ = val & 0xff;
9725 val >>= 8;
9726 --size;
9730 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9732 static HOST_WIDE_INT
9733 extract_int (const unsigned char *src, unsigned int size)
9735 HOST_WIDE_INT val = 0;
9737 src += size;
9738 while (size != 0)
9740 val <<= 8;
9741 val |= *--src & 0xff;
9742 --size;
9744 return val;
9747 /* Writes floating point values to dw_vec_const array. */
9749 static void
9750 insert_float (rtx rtl, unsigned char *array)
9752 REAL_VALUE_TYPE rv;
9753 long val[4];
9754 int i;
9756 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9757 real_to_target (val, &rv, GET_MODE (rtl));
9759 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9760 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9762 insert_int (val[i], 4, array);
9763 array += 4;
9767 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9768 does not have a "location" either in memory or in a register. These
9769 things can arise in GNU C when a constant is passed as an actual parameter
9770 to an inlined function. They can also arise in C++ where declared
9771 constants do not necessarily get memory "homes". */
9773 static void
9774 add_const_value_attribute (dw_die_ref die, rtx rtl)
9776 switch (GET_CODE (rtl))
9778 case CONST_INT:
9780 HOST_WIDE_INT val = INTVAL (rtl);
9782 if (val < 0)
9783 add_AT_int (die, DW_AT_const_value, val);
9784 else
9785 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9787 break;
9789 case CONST_DOUBLE:
9790 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9791 floating-point constant. A CONST_DOUBLE is used whenever the
9792 constant requires more than one word in order to be adequately
9793 represented. We output CONST_DOUBLEs as blocks. */
9795 enum machine_mode mode = GET_MODE (rtl);
9797 if (SCALAR_FLOAT_MODE_P (mode))
9799 unsigned int length = GET_MODE_SIZE (mode);
9800 unsigned char *array = ggc_alloc (length);
9802 insert_float (rtl, array);
9803 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9805 else
9807 /* ??? We really should be using HOST_WIDE_INT throughout. */
9808 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9810 add_AT_long_long (die, DW_AT_const_value,
9811 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9814 break;
9816 case CONST_VECTOR:
9818 enum machine_mode mode = GET_MODE (rtl);
9819 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9820 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9821 unsigned char *array = ggc_alloc (length * elt_size);
9822 unsigned int i;
9823 unsigned char *p;
9825 switch (GET_MODE_CLASS (mode))
9827 case MODE_VECTOR_INT:
9828 for (i = 0, p = array; i < length; i++, p += elt_size)
9830 rtx elt = CONST_VECTOR_ELT (rtl, i);
9831 HOST_WIDE_INT lo, hi;
9833 switch (GET_CODE (elt))
9835 case CONST_INT:
9836 lo = INTVAL (elt);
9837 hi = -(lo < 0);
9838 break;
9840 case CONST_DOUBLE:
9841 lo = CONST_DOUBLE_LOW (elt);
9842 hi = CONST_DOUBLE_HIGH (elt);
9843 break;
9845 default:
9846 gcc_unreachable ();
9849 if (elt_size <= sizeof (HOST_WIDE_INT))
9850 insert_int (lo, elt_size, p);
9851 else
9853 unsigned char *p0 = p;
9854 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9856 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9857 if (WORDS_BIG_ENDIAN)
9859 p0 = p1;
9860 p1 = p;
9862 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9863 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9866 break;
9868 case MODE_VECTOR_FLOAT:
9869 for (i = 0, p = array; i < length; i++, p += elt_size)
9871 rtx elt = CONST_VECTOR_ELT (rtl, i);
9872 insert_float (elt, p);
9874 break;
9876 default:
9877 gcc_unreachable ();
9880 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9882 break;
9884 case CONST_STRING:
9885 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9886 break;
9888 case SYMBOL_REF:
9889 case LABEL_REF:
9890 case CONST:
9891 add_AT_addr (die, DW_AT_const_value, rtl);
9892 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9893 break;
9895 case PLUS:
9896 /* In cases where an inlined instance of an inline function is passed
9897 the address of an `auto' variable (which is local to the caller) we
9898 can get a situation where the DECL_RTL of the artificial local
9899 variable (for the inlining) which acts as a stand-in for the
9900 corresponding formal parameter (of the inline function) will look
9901 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9902 exactly a compile-time constant expression, but it isn't the address
9903 of the (artificial) local variable either. Rather, it represents the
9904 *value* which the artificial local variable always has during its
9905 lifetime. We currently have no way to represent such quasi-constant
9906 values in Dwarf, so for now we just punt and generate nothing. */
9907 break;
9909 default:
9910 /* No other kinds of rtx should be possible here. */
9911 gcc_unreachable ();
9916 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9917 for use in a later add_const_value_attribute call. */
9919 static rtx
9920 rtl_for_decl_init (tree init, tree type)
9922 rtx rtl = NULL_RTX;
9924 /* If a variable is initialized with a string constant without embedded
9925 zeros, build CONST_STRING. */
9926 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9928 tree enttype = TREE_TYPE (type);
9929 tree domain = TYPE_DOMAIN (type);
9930 enum machine_mode mode = TYPE_MODE (enttype);
9932 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9933 && domain
9934 && integer_zerop (TYPE_MIN_VALUE (domain))
9935 && compare_tree_int (TYPE_MAX_VALUE (domain),
9936 TREE_STRING_LENGTH (init) - 1) == 0
9937 && ((size_t) TREE_STRING_LENGTH (init)
9938 == strlen (TREE_STRING_POINTER (init)) + 1))
9939 rtl = gen_rtx_CONST_STRING (VOIDmode,
9940 ggc_strdup (TREE_STRING_POINTER (init)));
9942 /* If the initializer is something that we know will expand into an
9943 immediate RTL constant, expand it now. Expanding anything else
9944 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9945 /* Aggregate, vector, and complex types may contain constructors that may
9946 result in code being generated when expand_expr is called, so we can't
9947 handle them here. Integer and float are useful and safe types to handle
9948 here. */
9949 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9950 && initializer_constant_valid_p (init, type) == null_pointer_node)
9952 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9954 /* If expand_expr returns a MEM, it wasn't immediate. */
9955 gcc_assert (!rtl || !MEM_P (rtl));
9958 return rtl;
9961 /* Generate RTL for the variable DECL to represent its location. */
9963 static rtx
9964 rtl_for_decl_location (tree decl)
9966 rtx rtl;
9968 /* Here we have to decide where we are going to say the parameter "lives"
9969 (as far as the debugger is concerned). We only have a couple of
9970 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9972 DECL_RTL normally indicates where the parameter lives during most of the
9973 activation of the function. If optimization is enabled however, this
9974 could be either NULL or else a pseudo-reg. Both of those cases indicate
9975 that the parameter doesn't really live anywhere (as far as the code
9976 generation parts of GCC are concerned) during most of the function's
9977 activation. That will happen (for example) if the parameter is never
9978 referenced within the function.
9980 We could just generate a location descriptor here for all non-NULL
9981 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9982 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9983 where DECL_RTL is NULL or is a pseudo-reg.
9985 Note however that we can only get away with using DECL_INCOMING_RTL as
9986 a backup substitute for DECL_RTL in certain limited cases. In cases
9987 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9988 we can be sure that the parameter was passed using the same type as it is
9989 declared to have within the function, and that its DECL_INCOMING_RTL
9990 points us to a place where a value of that type is passed.
9992 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9993 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9994 because in these cases DECL_INCOMING_RTL points us to a value of some
9995 type which is *different* from the type of the parameter itself. Thus,
9996 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9997 such cases, the debugger would end up (for example) trying to fetch a
9998 `float' from a place which actually contains the first part of a
9999 `double'. That would lead to really incorrect and confusing
10000 output at debug-time.
10002 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10003 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10004 are a couple of exceptions however. On little-endian machines we can
10005 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10006 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10007 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10008 when (on a little-endian machine) a non-prototyped function has a
10009 parameter declared to be of type `short' or `char'. In such cases,
10010 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10011 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10012 passed `int' value. If the debugger then uses that address to fetch
10013 a `short' or a `char' (on a little-endian machine) the result will be
10014 the correct data, so we allow for such exceptional cases below.
10016 Note that our goal here is to describe the place where the given formal
10017 parameter lives during most of the function's activation (i.e. between the
10018 end of the prologue and the start of the epilogue). We'll do that as best
10019 as we can. Note however that if the given formal parameter is modified
10020 sometime during the execution of the function, then a stack backtrace (at
10021 debug-time) will show the function as having been called with the *new*
10022 value rather than the value which was originally passed in. This happens
10023 rarely enough that it is not a major problem, but it *is* a problem, and
10024 I'd like to fix it.
10026 A future version of dwarf2out.c may generate two additional attributes for
10027 any given DW_TAG_formal_parameter DIE which will describe the "passed
10028 type" and the "passed location" for the given formal parameter in addition
10029 to the attributes we now generate to indicate the "declared type" and the
10030 "active location" for each parameter. This additional set of attributes
10031 could be used by debuggers for stack backtraces. Separately, note that
10032 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10033 This happens (for example) for inlined-instances of inline function formal
10034 parameters which are never referenced. This really shouldn't be
10035 happening. All PARM_DECL nodes should get valid non-NULL
10036 DECL_INCOMING_RTL values. FIXME. */
10038 /* Use DECL_RTL as the "location" unless we find something better. */
10039 rtl = DECL_RTL_IF_SET (decl);
10041 /* When generating abstract instances, ignore everything except
10042 constants, symbols living in memory, and symbols living in
10043 fixed registers. */
10044 if (! reload_completed)
10046 if (rtl
10047 && (CONSTANT_P (rtl)
10048 || (MEM_P (rtl)
10049 && CONSTANT_P (XEXP (rtl, 0)))
10050 || (REG_P (rtl)
10051 && TREE_CODE (decl) == VAR_DECL
10052 && TREE_STATIC (decl))))
10054 rtl = targetm.delegitimize_address (rtl);
10055 return rtl;
10057 rtl = NULL_RTX;
10059 else if (TREE_CODE (decl) == PARM_DECL)
10061 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10063 tree declared_type = TREE_TYPE (decl);
10064 tree passed_type = DECL_ARG_TYPE (decl);
10065 enum machine_mode dmode = TYPE_MODE (declared_type);
10066 enum machine_mode pmode = TYPE_MODE (passed_type);
10068 /* This decl represents a formal parameter which was optimized out.
10069 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10070 all cases where (rtl == NULL_RTX) just below. */
10071 if (dmode == pmode)
10072 rtl = DECL_INCOMING_RTL (decl);
10073 else if (SCALAR_INT_MODE_P (dmode)
10074 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10075 && DECL_INCOMING_RTL (decl))
10077 rtx inc = DECL_INCOMING_RTL (decl);
10078 if (REG_P (inc))
10079 rtl = inc;
10080 else if (MEM_P (inc))
10082 if (BYTES_BIG_ENDIAN)
10083 rtl = adjust_address_nv (inc, dmode,
10084 GET_MODE_SIZE (pmode)
10085 - GET_MODE_SIZE (dmode));
10086 else
10087 rtl = inc;
10092 /* If the parm was passed in registers, but lives on the stack, then
10093 make a big endian correction if the mode of the type of the
10094 parameter is not the same as the mode of the rtl. */
10095 /* ??? This is the same series of checks that are made in dbxout.c before
10096 we reach the big endian correction code there. It isn't clear if all
10097 of these checks are necessary here, but keeping them all is the safe
10098 thing to do. */
10099 else if (MEM_P (rtl)
10100 && XEXP (rtl, 0) != const0_rtx
10101 && ! CONSTANT_P (XEXP (rtl, 0))
10102 /* Not passed in memory. */
10103 && !MEM_P (DECL_INCOMING_RTL (decl))
10104 /* Not passed by invisible reference. */
10105 && (!REG_P (XEXP (rtl, 0))
10106 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10107 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10108 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10109 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10110 #endif
10112 /* Big endian correction check. */
10113 && BYTES_BIG_ENDIAN
10114 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10115 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10116 < UNITS_PER_WORD))
10118 int offset = (UNITS_PER_WORD
10119 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10121 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10122 plus_constant (XEXP (rtl, 0), offset));
10125 else if (TREE_CODE (decl) == VAR_DECL
10126 && rtl
10127 && MEM_P (rtl)
10128 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10129 && BYTES_BIG_ENDIAN)
10131 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10132 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10134 /* If a variable is declared "register" yet is smaller than
10135 a register, then if we store the variable to memory, it
10136 looks like we're storing a register-sized value, when in
10137 fact we are not. We need to adjust the offset of the
10138 storage location to reflect the actual value's bytes,
10139 else gdb will not be able to display it. */
10140 if (rsize > dsize)
10141 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10142 plus_constant (XEXP (rtl, 0), rsize-dsize));
10145 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10146 and will have been substituted directly into all expressions that use it.
10147 C does not have such a concept, but C++ and other languages do. */
10148 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10149 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10151 if (rtl)
10152 rtl = targetm.delegitimize_address (rtl);
10154 /* If we don't look past the constant pool, we risk emitting a
10155 reference to a constant pool entry that isn't referenced from
10156 code, and thus is not emitted. */
10157 if (rtl)
10158 rtl = avoid_constant_pool_reference (rtl);
10160 return rtl;
10163 /* We need to figure out what section we should use as the base for the
10164 address ranges where a given location is valid.
10165 1. If this particular DECL has a section associated with it, use that.
10166 2. If this function has a section associated with it, use that.
10167 3. Otherwise, use the text section.
10168 XXX: If you split a variable across multiple sections, we won't notice. */
10170 static const char *
10171 secname_for_decl (tree decl)
10173 const char *secname;
10175 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10177 tree sectree = DECL_SECTION_NAME (decl);
10178 secname = TREE_STRING_POINTER (sectree);
10180 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10182 tree sectree = DECL_SECTION_NAME (current_function_decl);
10183 secname = TREE_STRING_POINTER (sectree);
10185 else if (cfun && in_cold_section_p)
10186 secname = cfun->cold_section_label;
10187 else
10188 secname = text_section_label;
10190 return secname;
10193 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10194 data attribute for a variable or a parameter. We generate the
10195 DW_AT_const_value attribute only in those cases where the given variable
10196 or parameter does not have a true "location" either in memory or in a
10197 register. This can happen (for example) when a constant is passed as an
10198 actual argument in a call to an inline function. (It's possible that
10199 these things can crop up in other ways also.) Note that one type of
10200 constant value which can be passed into an inlined function is a constant
10201 pointer. This can happen for example if an actual argument in an inlined
10202 function call evaluates to a compile-time constant address. */
10204 static void
10205 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10206 enum dwarf_attribute attr)
10208 rtx rtl;
10209 dw_loc_descr_ref descr;
10210 var_loc_list *loc_list;
10211 struct var_loc_node *node;
10212 if (TREE_CODE (decl) == ERROR_MARK)
10213 return;
10215 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10216 || TREE_CODE (decl) == RESULT_DECL);
10218 /* See if we possibly have multiple locations for this variable. */
10219 loc_list = lookup_decl_loc (decl);
10221 /* If it truly has multiple locations, the first and last node will
10222 differ. */
10223 if (loc_list && loc_list->first != loc_list->last)
10225 const char *endname, *secname;
10226 dw_loc_list_ref list;
10227 rtx varloc;
10229 /* Now that we know what section we are using for a base,
10230 actually construct the list of locations.
10231 The first location information is what is passed to the
10232 function that creates the location list, and the remaining
10233 locations just get added on to that list.
10234 Note that we only know the start address for a location
10235 (IE location changes), so to build the range, we use
10236 the range [current location start, next location start].
10237 This means we have to special case the last node, and generate
10238 a range of [last location start, end of function label]. */
10240 node = loc_list->first;
10241 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10242 secname = secname_for_decl (decl);
10244 list = new_loc_list (loc_descriptor (varloc),
10245 node->label, node->next->label, secname, 1);
10246 node = node->next;
10248 for (; node->next; node = node->next)
10249 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10251 /* The variable has a location between NODE->LABEL and
10252 NODE->NEXT->LABEL. */
10253 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10254 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10255 node->label, node->next->label, secname);
10258 /* If the variable has a location at the last label
10259 it keeps its location until the end of function. */
10260 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10262 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10264 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10265 if (!current_function_decl)
10266 endname = text_end_label;
10267 else
10269 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10270 current_function_funcdef_no);
10271 endname = ggc_strdup (label_id);
10273 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10274 node->label, endname, secname);
10277 /* Finally, add the location list to the DIE, and we are done. */
10278 add_AT_loc_list (die, attr, list);
10279 return;
10282 /* Try to get some constant RTL for this decl, and use that as the value of
10283 the location. */
10285 rtl = rtl_for_decl_location (decl);
10286 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10288 add_const_value_attribute (die, rtl);
10289 return;
10292 /* If we have tried to generate the location otherwise, and it
10293 didn't work out (we wouldn't be here if we did), and we have a one entry
10294 location list, try generating a location from that. */
10295 if (loc_list && loc_list->first)
10297 node = loc_list->first;
10298 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10299 if (descr)
10301 add_AT_location_description (die, attr, descr);
10302 return;
10306 /* We couldn't get any rtl, so try directly generating the location
10307 description from the tree. */
10308 descr = loc_descriptor_from_tree (decl);
10309 if (descr)
10311 add_AT_location_description (die, attr, descr);
10312 return;
10316 /* If we don't have a copy of this variable in memory for some reason (such
10317 as a C++ member constant that doesn't have an out-of-line definition),
10318 we should tell the debugger about the constant value. */
10320 static void
10321 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10323 tree init = DECL_INITIAL (decl);
10324 tree type = TREE_TYPE (decl);
10325 rtx rtl;
10327 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10328 /* OK */;
10329 else
10330 return;
10332 rtl = rtl_for_decl_init (init, type);
10333 if (rtl)
10334 add_const_value_attribute (var_die, rtl);
10337 #ifdef DWARF2_UNWIND_INFO
10338 /* Convert the CFI instructions for the current function into a location
10339 list. This is used for DW_AT_frame_base when we targeting a dwarf2
10340 consumer that does not support the dwarf3 DW_OP_call_frame_cfa. */
10342 static dw_loc_list_ref
10343 convert_cfa_to_loc_list (void)
10345 dw_fde_ref fde;
10346 dw_loc_list_ref list, *list_tail;
10347 dw_cfi_ref cfi;
10348 dw_cfa_location last_cfa, next_cfa;
10349 const char *start_label, *last_label, *section;
10351 fde = &fde_table[fde_table_in_use - 1];
10353 section = secname_for_decl (current_function_decl);
10354 list_tail = &list;
10355 list = NULL;
10357 next_cfa.reg = INVALID_REGNUM;
10358 next_cfa.offset = 0;
10359 next_cfa.indirect = 0;
10360 next_cfa.base_offset = 0;
10362 start_label = fde->dw_fde_begin;
10364 /* ??? Bald assumption that the CIE opcode list does not contain
10365 advance opcodes. */
10366 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10367 lookup_cfa_1 (cfi, &next_cfa);
10369 last_cfa = next_cfa;
10370 last_label = start_label;
10372 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10373 switch (cfi->dw_cfi_opc)
10375 case DW_CFA_advance_loc1:
10376 case DW_CFA_advance_loc2:
10377 case DW_CFA_advance_loc4:
10378 if (!cfa_equal_p (&last_cfa, &next_cfa))
10380 *list_tail = new_loc_list (build_cfa_loc (&last_cfa), start_label,
10381 last_label, section, list == NULL);
10383 list_tail = &(*list_tail)->dw_loc_next;
10384 last_cfa = next_cfa;
10385 start_label = last_label;
10387 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10388 break;
10390 case DW_CFA_advance_loc:
10391 /* The encoding is complex enough that we should never emit this. */
10392 case DW_CFA_remember_state:
10393 case DW_CFA_restore_state:
10394 /* We don't handle these two in this function. It would be possible
10395 if it were to be required. */
10396 gcc_unreachable ();
10398 default:
10399 lookup_cfa_1 (cfi, &next_cfa);
10400 break;
10403 if (!cfa_equal_p (&last_cfa, &next_cfa))
10405 *list_tail = new_loc_list (build_cfa_loc (&last_cfa), start_label,
10406 last_label, section, list == NULL);
10407 list_tail = &(*list_tail)->dw_loc_next;
10408 start_label = last_label;
10410 *list_tail = new_loc_list (build_cfa_loc (&next_cfa), start_label,
10411 fde->dw_fde_end, section, list == NULL);
10413 return list;
10416 /* Compute a displacement from the "steady-state frame pointer" to
10417 the CFA, and store it in frame_pointer_cfa_offset. */
10419 static void
10420 compute_frame_pointer_to_cfa_displacement (void)
10422 HOST_WIDE_INT offset;
10423 rtx reg, elim;
10425 #ifdef FRAME_POINTER_CFA_OFFSET
10426 reg = frame_pointer_rtx;
10427 offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10428 #else
10429 reg = arg_pointer_rtx;
10430 offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10431 #endif
10433 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10434 if (GET_CODE (elim) == PLUS)
10436 offset += INTVAL (XEXP (elim, 1));
10437 elim = XEXP (elim, 0);
10439 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10440 : stack_pointer_rtx));
10442 frame_pointer_cfa_offset = -offset;
10444 #endif
10446 /* Generate a DW_AT_name attribute given some string value to be included as
10447 the value of the attribute. */
10449 static void
10450 add_name_attribute (dw_die_ref die, const char *name_string)
10452 if (name_string != NULL && *name_string != 0)
10454 if (demangle_name_func)
10455 name_string = (*demangle_name_func) (name_string);
10457 add_AT_string (die, DW_AT_name, name_string);
10461 /* Generate a DW_AT_comp_dir attribute for DIE. */
10463 static void
10464 add_comp_dir_attribute (dw_die_ref die)
10466 const char *wd = get_src_pwd ();
10467 if (wd != NULL)
10468 add_AT_string (die, DW_AT_comp_dir, wd);
10471 /* Given a tree node describing an array bound (either lower or upper) output
10472 a representation for that bound. */
10474 static void
10475 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10477 switch (TREE_CODE (bound))
10479 case ERROR_MARK:
10480 return;
10482 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10483 case INTEGER_CST:
10484 if (! host_integerp (bound, 0)
10485 || (bound_attr == DW_AT_lower_bound
10486 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10487 || (is_fortran () && integer_onep (bound)))))
10488 /* Use the default. */
10490 else
10491 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10492 break;
10494 case CONVERT_EXPR:
10495 case NOP_EXPR:
10496 case NON_LVALUE_EXPR:
10497 case VIEW_CONVERT_EXPR:
10498 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10499 break;
10501 case SAVE_EXPR:
10502 break;
10504 case VAR_DECL:
10505 case PARM_DECL:
10506 case RESULT_DECL:
10508 dw_die_ref decl_die = lookup_decl_die (bound);
10510 /* ??? Can this happen, or should the variable have been bound
10511 first? Probably it can, since I imagine that we try to create
10512 the types of parameters in the order in which they exist in
10513 the list, and won't have created a forward reference to a
10514 later parameter. */
10515 if (decl_die != NULL)
10516 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10517 break;
10520 default:
10522 /* Otherwise try to create a stack operation procedure to
10523 evaluate the value of the array bound. */
10525 dw_die_ref ctx, decl_die;
10526 dw_loc_descr_ref loc;
10528 loc = loc_descriptor_from_tree (bound);
10529 if (loc == NULL)
10530 break;
10532 if (current_function_decl == 0)
10533 ctx = comp_unit_die;
10534 else
10535 ctx = lookup_decl_die (current_function_decl);
10537 decl_die = new_die (DW_TAG_variable, ctx, bound);
10538 add_AT_flag (decl_die, DW_AT_artificial, 1);
10539 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10540 add_AT_loc (decl_die, DW_AT_location, loc);
10542 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10543 break;
10548 /* Note that the block of subscript information for an array type also
10549 includes information about the element type of type given array type. */
10551 static void
10552 add_subscript_info (dw_die_ref type_die, tree type)
10554 #ifndef MIPS_DEBUGGING_INFO
10555 unsigned dimension_number;
10556 #endif
10557 tree lower, upper;
10558 dw_die_ref subrange_die;
10560 /* The GNU compilers represent multidimensional array types as sequences of
10561 one dimensional array types whose element types are themselves array
10562 types. Here we squish that down, so that each multidimensional array
10563 type gets only one array_type DIE in the Dwarf debugging info. The draft
10564 Dwarf specification say that we are allowed to do this kind of
10565 compression in C (because there is no difference between an array or
10566 arrays and a multidimensional array in C) but for other source languages
10567 (e.g. Ada) we probably shouldn't do this. */
10569 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10570 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10571 We work around this by disabling this feature. See also
10572 gen_array_type_die. */
10573 #ifndef MIPS_DEBUGGING_INFO
10574 for (dimension_number = 0;
10575 TREE_CODE (type) == ARRAY_TYPE;
10576 type = TREE_TYPE (type), dimension_number++)
10577 #endif
10579 tree domain = TYPE_DOMAIN (type);
10581 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10582 and (in GNU C only) variable bounds. Handle all three forms
10583 here. */
10584 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10585 if (domain)
10587 /* We have an array type with specified bounds. */
10588 lower = TYPE_MIN_VALUE (domain);
10589 upper = TYPE_MAX_VALUE (domain);
10591 /* Define the index type. */
10592 if (TREE_TYPE (domain))
10594 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10595 TREE_TYPE field. We can't emit debug info for this
10596 because it is an unnamed integral type. */
10597 if (TREE_CODE (domain) == INTEGER_TYPE
10598 && TYPE_NAME (domain) == NULL_TREE
10599 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10600 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10602 else
10603 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10604 type_die);
10607 /* ??? If upper is NULL, the array has unspecified length,
10608 but it does have a lower bound. This happens with Fortran
10609 dimension arr(N:*)
10610 Since the debugger is definitely going to need to know N
10611 to produce useful results, go ahead and output the lower
10612 bound solo, and hope the debugger can cope. */
10614 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10615 if (upper)
10616 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10619 /* Otherwise we have an array type with an unspecified length. The
10620 DWARF-2 spec does not say how to handle this; let's just leave out the
10621 bounds. */
10625 static void
10626 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10628 unsigned size;
10630 switch (TREE_CODE (tree_node))
10632 case ERROR_MARK:
10633 size = 0;
10634 break;
10635 case ENUMERAL_TYPE:
10636 case RECORD_TYPE:
10637 case UNION_TYPE:
10638 case QUAL_UNION_TYPE:
10639 size = int_size_in_bytes (tree_node);
10640 break;
10641 case FIELD_DECL:
10642 /* For a data member of a struct or union, the DW_AT_byte_size is
10643 generally given as the number of bytes normally allocated for an
10644 object of the *declared* type of the member itself. This is true
10645 even for bit-fields. */
10646 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10647 break;
10648 default:
10649 gcc_unreachable ();
10652 /* Note that `size' might be -1 when we get to this point. If it is, that
10653 indicates that the byte size of the entity in question is variable. We
10654 have no good way of expressing this fact in Dwarf at the present time,
10655 so just let the -1 pass on through. */
10656 add_AT_unsigned (die, DW_AT_byte_size, size);
10659 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10660 which specifies the distance in bits from the highest order bit of the
10661 "containing object" for the bit-field to the highest order bit of the
10662 bit-field itself.
10664 For any given bit-field, the "containing object" is a hypothetical object
10665 (of some integral or enum type) within which the given bit-field lives. The
10666 type of this hypothetical "containing object" is always the same as the
10667 declared type of the individual bit-field itself. The determination of the
10668 exact location of the "containing object" for a bit-field is rather
10669 complicated. It's handled by the `field_byte_offset' function (above).
10671 Note that it is the size (in bytes) of the hypothetical "containing object"
10672 which will be given in the DW_AT_byte_size attribute for this bit-field.
10673 (See `byte_size_attribute' above). */
10675 static inline void
10676 add_bit_offset_attribute (dw_die_ref die, tree decl)
10678 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10679 tree type = DECL_BIT_FIELD_TYPE (decl);
10680 HOST_WIDE_INT bitpos_int;
10681 HOST_WIDE_INT highest_order_object_bit_offset;
10682 HOST_WIDE_INT highest_order_field_bit_offset;
10683 HOST_WIDE_INT unsigned bit_offset;
10685 /* Must be a field and a bit field. */
10686 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10688 /* We can't yet handle bit-fields whose offsets are variable, so if we
10689 encounter such things, just return without generating any attribute
10690 whatsoever. Likewise for variable or too large size. */
10691 if (! host_integerp (bit_position (decl), 0)
10692 || ! host_integerp (DECL_SIZE (decl), 1))
10693 return;
10695 bitpos_int = int_bit_position (decl);
10697 /* Note that the bit offset is always the distance (in bits) from the
10698 highest-order bit of the "containing object" to the highest-order bit of
10699 the bit-field itself. Since the "high-order end" of any object or field
10700 is different on big-endian and little-endian machines, the computation
10701 below must take account of these differences. */
10702 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10703 highest_order_field_bit_offset = bitpos_int;
10705 if (! BYTES_BIG_ENDIAN)
10707 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10708 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10711 bit_offset
10712 = (! BYTES_BIG_ENDIAN
10713 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10714 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10716 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10719 /* For a FIELD_DECL node which represents a bit field, output an attribute
10720 which specifies the length in bits of the given field. */
10722 static inline void
10723 add_bit_size_attribute (dw_die_ref die, tree decl)
10725 /* Must be a field and a bit field. */
10726 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10727 && DECL_BIT_FIELD_TYPE (decl));
10729 if (host_integerp (DECL_SIZE (decl), 1))
10730 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10733 /* If the compiled language is ANSI C, then add a 'prototyped'
10734 attribute, if arg types are given for the parameters of a function. */
10736 static inline void
10737 add_prototyped_attribute (dw_die_ref die, tree func_type)
10739 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10740 && TYPE_ARG_TYPES (func_type) != NULL)
10741 add_AT_flag (die, DW_AT_prototyped, 1);
10744 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10745 by looking in either the type declaration or object declaration
10746 equate table. */
10748 static inline void
10749 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10751 dw_die_ref origin_die = NULL;
10753 if (TREE_CODE (origin) != FUNCTION_DECL)
10755 /* We may have gotten separated from the block for the inlined
10756 function, if we're in an exception handler or some such; make
10757 sure that the abstract function has been written out.
10759 Doing this for nested functions is wrong, however; functions are
10760 distinct units, and our context might not even be inline. */
10761 tree fn = origin;
10763 if (TYPE_P (fn))
10764 fn = TYPE_STUB_DECL (fn);
10766 fn = decl_function_context (fn);
10767 if (fn)
10768 dwarf2out_abstract_function (fn);
10771 if (DECL_P (origin))
10772 origin_die = lookup_decl_die (origin);
10773 else if (TYPE_P (origin))
10774 origin_die = lookup_type_die (origin);
10776 /* XXX: Functions that are never lowered don't always have correct block
10777 trees (in the case of java, they simply have no block tree, in some other
10778 languages). For these functions, there is nothing we can really do to
10779 output correct debug info for inlined functions in all cases. Rather
10780 than die, we'll just produce deficient debug info now, in that we will
10781 have variables without a proper abstract origin. In the future, when all
10782 functions are lowered, we should re-add a gcc_assert (origin_die)
10783 here. */
10785 if (origin_die)
10786 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10789 /* We do not currently support the pure_virtual attribute. */
10791 static inline void
10792 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10794 if (DECL_VINDEX (func_decl))
10796 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10798 if (host_integerp (DECL_VINDEX (func_decl), 0))
10799 add_AT_loc (die, DW_AT_vtable_elem_location,
10800 new_loc_descr (DW_OP_constu,
10801 tree_low_cst (DECL_VINDEX (func_decl), 0),
10802 0));
10804 /* GNU extension: Record what type this method came from originally. */
10805 if (debug_info_level > DINFO_LEVEL_TERSE)
10806 add_AT_die_ref (die, DW_AT_containing_type,
10807 lookup_type_die (DECL_CONTEXT (func_decl)));
10811 /* Add source coordinate attributes for the given decl. */
10813 static void
10814 add_src_coords_attributes (dw_die_ref die, tree decl)
10816 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10817 unsigned file_index = lookup_filename (s.file);
10819 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10820 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10823 /* Add a DW_AT_name attribute and source coordinate attribute for the
10824 given decl, but only if it actually has a name. */
10826 static void
10827 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10829 tree decl_name;
10831 decl_name = DECL_NAME (decl);
10832 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10834 add_name_attribute (die, dwarf2_name (decl, 0));
10835 if (! DECL_ARTIFICIAL (decl))
10836 add_src_coords_attributes (die, decl);
10838 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10839 && TREE_PUBLIC (decl)
10840 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10841 && !DECL_ABSTRACT (decl)
10842 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10843 add_AT_string (die, DW_AT_MIPS_linkage_name,
10844 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10847 #ifdef VMS_DEBUGGING_INFO
10848 /* Get the function's name, as described by its RTL. This may be different
10849 from the DECL_NAME name used in the source file. */
10850 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10852 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10853 XEXP (DECL_RTL (decl), 0));
10854 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10856 #endif
10859 /* Push a new declaration scope. */
10861 static void
10862 push_decl_scope (tree scope)
10864 VEC_safe_push (tree, gc, decl_scope_table, scope);
10867 /* Pop a declaration scope. */
10869 static inline void
10870 pop_decl_scope (void)
10872 VEC_pop (tree, decl_scope_table);
10875 /* Return the DIE for the scope that immediately contains this type.
10876 Non-named types get global scope. Named types nested in other
10877 types get their containing scope if it's open, or global scope
10878 otherwise. All other types (i.e. function-local named types) get
10879 the current active scope. */
10881 static dw_die_ref
10882 scope_die_for (tree t, dw_die_ref context_die)
10884 dw_die_ref scope_die = NULL;
10885 tree containing_scope;
10886 int i;
10888 /* Non-types always go in the current scope. */
10889 gcc_assert (TYPE_P (t));
10891 containing_scope = TYPE_CONTEXT (t);
10893 /* Use the containing namespace if it was passed in (for a declaration). */
10894 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10896 if (context_die == lookup_decl_die (containing_scope))
10897 /* OK */;
10898 else
10899 containing_scope = NULL_TREE;
10902 /* Ignore function type "scopes" from the C frontend. They mean that
10903 a tagged type is local to a parmlist of a function declarator, but
10904 that isn't useful to DWARF. */
10905 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10906 containing_scope = NULL_TREE;
10908 if (containing_scope == NULL_TREE)
10909 scope_die = comp_unit_die;
10910 else if (TYPE_P (containing_scope))
10912 /* For types, we can just look up the appropriate DIE. But
10913 first we check to see if we're in the middle of emitting it
10914 so we know where the new DIE should go. */
10915 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
10916 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
10917 break;
10919 if (i < 0)
10921 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10922 || TREE_ASM_WRITTEN (containing_scope));
10924 /* If none of the current dies are suitable, we get file scope. */
10925 scope_die = comp_unit_die;
10927 else
10928 scope_die = lookup_type_die (containing_scope);
10930 else
10931 scope_die = context_die;
10933 return scope_die;
10936 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10938 static inline int
10939 local_scope_p (dw_die_ref context_die)
10941 for (; context_die; context_die = context_die->die_parent)
10942 if (context_die->die_tag == DW_TAG_inlined_subroutine
10943 || context_die->die_tag == DW_TAG_subprogram)
10944 return 1;
10946 return 0;
10949 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10950 whether or not to treat a DIE in this context as a declaration. */
10952 static inline int
10953 class_or_namespace_scope_p (dw_die_ref context_die)
10955 return (context_die
10956 && (context_die->die_tag == DW_TAG_structure_type
10957 || context_die->die_tag == DW_TAG_union_type
10958 || context_die->die_tag == DW_TAG_namespace));
10961 /* Many forms of DIEs require a "type description" attribute. This
10962 routine locates the proper "type descriptor" die for the type given
10963 by 'type', and adds a DW_AT_type attribute below the given die. */
10965 static void
10966 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10967 int decl_volatile, dw_die_ref context_die)
10969 enum tree_code code = TREE_CODE (type);
10970 dw_die_ref type_die = NULL;
10972 /* ??? If this type is an unnamed subrange type of an integral or
10973 floating-point type, use the inner type. This is because we have no
10974 support for unnamed types in base_type_die. This can happen if this is
10975 an Ada subrange type. Correct solution is emit a subrange type die. */
10976 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10977 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10978 type = TREE_TYPE (type), code = TREE_CODE (type);
10980 if (code == ERROR_MARK
10981 /* Handle a special case. For functions whose return type is void, we
10982 generate *no* type attribute. (Note that no object may have type
10983 `void', so this only applies to function return types). */
10984 || code == VOID_TYPE)
10985 return;
10987 type_die = modified_type_die (type,
10988 decl_const || TYPE_READONLY (type),
10989 decl_volatile || TYPE_VOLATILE (type),
10990 context_die);
10992 if (type_die != NULL)
10993 add_AT_die_ref (object_die, DW_AT_type, type_die);
10996 /* Given an object die, add the calling convention attribute for the
10997 function call type. */
10998 static void
10999 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11001 enum dwarf_calling_convention value = DW_CC_normal;
11003 value = targetm.dwarf_calling_convention (type);
11005 /* Only add the attribute if the backend requests it, and
11006 is not DW_CC_normal. */
11007 if (value && (value != DW_CC_normal))
11008 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11011 /* Given a tree pointer to a struct, class, union, or enum type node, return
11012 a pointer to the (string) tag name for the given type, or zero if the type
11013 was declared without a tag. */
11015 static const char *
11016 type_tag (tree type)
11018 const char *name = 0;
11020 if (TYPE_NAME (type) != 0)
11022 tree t = 0;
11024 /* Find the IDENTIFIER_NODE for the type name. */
11025 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11026 t = TYPE_NAME (type);
11028 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11029 a TYPE_DECL node, regardless of whether or not a `typedef' was
11030 involved. */
11031 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11032 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11033 t = DECL_NAME (TYPE_NAME (type));
11035 /* Now get the name as a string, or invent one. */
11036 if (t != 0)
11037 name = IDENTIFIER_POINTER (t);
11040 return (name == 0 || *name == '\0') ? 0 : name;
11043 /* Return the type associated with a data member, make a special check
11044 for bit field types. */
11046 static inline tree
11047 member_declared_type (tree member)
11049 return (DECL_BIT_FIELD_TYPE (member)
11050 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11053 /* Get the decl's label, as described by its RTL. This may be different
11054 from the DECL_NAME name used in the source file. */
11056 #if 0
11057 static const char *
11058 decl_start_label (tree decl)
11060 rtx x;
11061 const char *fnname;
11063 x = DECL_RTL (decl);
11064 gcc_assert (MEM_P (x));
11066 x = XEXP (x, 0);
11067 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11069 fnname = XSTR (x, 0);
11070 return fnname;
11072 #endif
11074 /* These routines generate the internal representation of the DIE's for
11075 the compilation unit. Debugging information is collected by walking
11076 the declaration trees passed in from dwarf2out_decl(). */
11078 static void
11079 gen_array_type_die (tree type, dw_die_ref context_die)
11081 dw_die_ref scope_die = scope_die_for (type, context_die);
11082 dw_die_ref array_die;
11083 tree element_type;
11085 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11086 the inner array type comes before the outer array type. Thus we must
11087 call gen_type_die before we call new_die. See below also. */
11088 #ifdef MIPS_DEBUGGING_INFO
11089 gen_type_die (TREE_TYPE (type), context_die);
11090 #endif
11092 array_die = new_die (DW_TAG_array_type, scope_die, type);
11093 add_name_attribute (array_die, type_tag (type));
11094 equate_type_number_to_die (type, array_die);
11096 if (TREE_CODE (type) == VECTOR_TYPE)
11098 /* The frontend feeds us a representation for the vector as a struct
11099 containing an array. Pull out the array type. */
11100 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11101 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11104 #if 0
11105 /* We default the array ordering. SDB will probably do
11106 the right things even if DW_AT_ordering is not present. It's not even
11107 an issue until we start to get into multidimensional arrays anyway. If
11108 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11109 then we'll have to put the DW_AT_ordering attribute back in. (But if
11110 and when we find out that we need to put these in, we will only do so
11111 for multidimensional arrays. */
11112 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11113 #endif
11115 #ifdef MIPS_DEBUGGING_INFO
11116 /* The SGI compilers handle arrays of unknown bound by setting
11117 AT_declaration and not emitting any subrange DIEs. */
11118 if (! TYPE_DOMAIN (type))
11119 add_AT_flag (array_die, DW_AT_declaration, 1);
11120 else
11121 #endif
11122 add_subscript_info (array_die, type);
11124 /* Add representation of the type of the elements of this array type. */
11125 element_type = TREE_TYPE (type);
11127 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11128 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11129 We work around this by disabling this feature. See also
11130 add_subscript_info. */
11131 #ifndef MIPS_DEBUGGING_INFO
11132 while (TREE_CODE (element_type) == ARRAY_TYPE)
11133 element_type = TREE_TYPE (element_type);
11135 gen_type_die (element_type, context_die);
11136 #endif
11138 add_type_attribute (array_die, element_type, 0, 0, context_die);
11141 #if 0
11142 static void
11143 gen_entry_point_die (tree decl, dw_die_ref context_die)
11145 tree origin = decl_ultimate_origin (decl);
11146 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11148 if (origin != NULL)
11149 add_abstract_origin_attribute (decl_die, origin);
11150 else
11152 add_name_and_src_coords_attributes (decl_die, decl);
11153 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11154 0, 0, context_die);
11157 if (DECL_ABSTRACT (decl))
11158 equate_decl_number_to_die (decl, decl_die);
11159 else
11160 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11162 #endif
11164 /* Walk through the list of incomplete types again, trying once more to
11165 emit full debugging info for them. */
11167 static void
11168 retry_incomplete_types (void)
11170 int i;
11172 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11173 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11176 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11178 static void
11179 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11181 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11183 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11184 be incomplete and such types are not marked. */
11185 add_abstract_origin_attribute (type_die, type);
11188 /* Generate a DIE to represent an inlined instance of a structure type. */
11190 static void
11191 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11193 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11195 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11196 be incomplete and such types are not marked. */
11197 add_abstract_origin_attribute (type_die, type);
11200 /* Generate a DIE to represent an inlined instance of a union type. */
11202 static void
11203 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11205 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11207 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11208 be incomplete and such types are not marked. */
11209 add_abstract_origin_attribute (type_die, type);
11212 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11213 include all of the information about the enumeration values also. Each
11214 enumerated type name/value is listed as a child of the enumerated type
11215 DIE. */
11217 static dw_die_ref
11218 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11220 dw_die_ref type_die = lookup_type_die (type);
11222 if (type_die == NULL)
11224 type_die = new_die (DW_TAG_enumeration_type,
11225 scope_die_for (type, context_die), type);
11226 equate_type_number_to_die (type, type_die);
11227 add_name_attribute (type_die, type_tag (type));
11229 else if (! TYPE_SIZE (type))
11230 return type_die;
11231 else
11232 remove_AT (type_die, DW_AT_declaration);
11234 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11235 given enum type is incomplete, do not generate the DW_AT_byte_size
11236 attribute or the DW_AT_element_list attribute. */
11237 if (TYPE_SIZE (type))
11239 tree link;
11241 TREE_ASM_WRITTEN (type) = 1;
11242 add_byte_size_attribute (type_die, type);
11243 if (TYPE_STUB_DECL (type) != NULL_TREE)
11244 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11246 /* If the first reference to this type was as the return type of an
11247 inline function, then it may not have a parent. Fix this now. */
11248 if (type_die->die_parent == NULL)
11249 add_child_die (scope_die_for (type, context_die), type_die);
11251 for (link = TYPE_VALUES (type);
11252 link != NULL; link = TREE_CHAIN (link))
11254 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11255 tree value = TREE_VALUE (link);
11257 add_name_attribute (enum_die,
11258 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11260 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11261 /* DWARF2 does not provide a way of indicating whether or
11262 not enumeration constants are signed or unsigned. GDB
11263 always assumes the values are signed, so we output all
11264 values as if they were signed. That means that
11265 enumeration constants with very large unsigned values
11266 will appear to have negative values in the debugger. */
11267 add_AT_int (enum_die, DW_AT_const_value,
11268 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11271 else
11272 add_AT_flag (type_die, DW_AT_declaration, 1);
11274 return type_die;
11277 /* Generate a DIE to represent either a real live formal parameter decl or to
11278 represent just the type of some formal parameter position in some function
11279 type.
11281 Note that this routine is a bit unusual because its argument may be a
11282 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11283 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11284 node. If it's the former then this function is being called to output a
11285 DIE to represent a formal parameter object (or some inlining thereof). If
11286 it's the latter, then this function is only being called to output a
11287 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11288 argument type of some subprogram type. */
11290 static dw_die_ref
11291 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11293 dw_die_ref parm_die
11294 = new_die (DW_TAG_formal_parameter, context_die, node);
11295 tree origin;
11297 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11299 case tcc_declaration:
11300 origin = decl_ultimate_origin (node);
11301 if (origin != NULL)
11302 add_abstract_origin_attribute (parm_die, origin);
11303 else
11305 add_name_and_src_coords_attributes (parm_die, node);
11306 add_type_attribute (parm_die, TREE_TYPE (node),
11307 TREE_READONLY (node),
11308 TREE_THIS_VOLATILE (node),
11309 context_die);
11310 if (DECL_ARTIFICIAL (node))
11311 add_AT_flag (parm_die, DW_AT_artificial, 1);
11314 equate_decl_number_to_die (node, parm_die);
11315 if (! DECL_ABSTRACT (node))
11316 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11318 break;
11320 case tcc_type:
11321 /* We were called with some kind of a ..._TYPE node. */
11322 add_type_attribute (parm_die, node, 0, 0, context_die);
11323 break;
11325 default:
11326 gcc_unreachable ();
11329 return parm_die;
11332 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11333 at the end of an (ANSI prototyped) formal parameters list. */
11335 static void
11336 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11338 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11341 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11342 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11343 parameters as specified in some function type specification (except for
11344 those which appear as part of a function *definition*). */
11346 static void
11347 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11349 tree link;
11350 tree formal_type = NULL;
11351 tree first_parm_type;
11352 tree arg;
11354 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11356 arg = DECL_ARGUMENTS (function_or_method_type);
11357 function_or_method_type = TREE_TYPE (function_or_method_type);
11359 else
11360 arg = NULL_TREE;
11362 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11364 /* Make our first pass over the list of formal parameter types and output a
11365 DW_TAG_formal_parameter DIE for each one. */
11366 for (link = first_parm_type; link; )
11368 dw_die_ref parm_die;
11370 formal_type = TREE_VALUE (link);
11371 if (formal_type == void_type_node)
11372 break;
11374 /* Output a (nameless) DIE to represent the formal parameter itself. */
11375 parm_die = gen_formal_parameter_die (formal_type, context_die);
11376 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11377 && link == first_parm_type)
11378 || (arg && DECL_ARTIFICIAL (arg)))
11379 add_AT_flag (parm_die, DW_AT_artificial, 1);
11381 link = TREE_CHAIN (link);
11382 if (arg)
11383 arg = TREE_CHAIN (arg);
11386 /* If this function type has an ellipsis, add a
11387 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11388 if (formal_type != void_type_node)
11389 gen_unspecified_parameters_die (function_or_method_type, context_die);
11391 /* Make our second (and final) pass over the list of formal parameter types
11392 and output DIEs to represent those types (as necessary). */
11393 for (link = TYPE_ARG_TYPES (function_or_method_type);
11394 link && TREE_VALUE (link);
11395 link = TREE_CHAIN (link))
11396 gen_type_die (TREE_VALUE (link), context_die);
11399 /* We want to generate the DIE for TYPE so that we can generate the
11400 die for MEMBER, which has been defined; we will need to refer back
11401 to the member declaration nested within TYPE. If we're trying to
11402 generate minimal debug info for TYPE, processing TYPE won't do the
11403 trick; we need to attach the member declaration by hand. */
11405 static void
11406 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11408 gen_type_die (type, context_die);
11410 /* If we're trying to avoid duplicate debug info, we may not have
11411 emitted the member decl for this function. Emit it now. */
11412 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11413 && ! lookup_decl_die (member))
11415 dw_die_ref type_die;
11416 gcc_assert (!decl_ultimate_origin (member));
11418 push_decl_scope (type);
11419 type_die = lookup_type_die (type);
11420 if (TREE_CODE (member) == FUNCTION_DECL)
11421 gen_subprogram_die (member, type_die);
11422 else if (TREE_CODE (member) == FIELD_DECL)
11424 /* Ignore the nameless fields that are used to skip bits but handle
11425 C++ anonymous unions and structs. */
11426 if (DECL_NAME (member) != NULL_TREE
11427 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11428 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11430 gen_type_die (member_declared_type (member), type_die);
11431 gen_field_die (member, type_die);
11434 else
11435 gen_variable_die (member, type_die);
11437 pop_decl_scope ();
11441 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11442 may later generate inlined and/or out-of-line instances of. */
11444 static void
11445 dwarf2out_abstract_function (tree decl)
11447 dw_die_ref old_die;
11448 tree save_fn;
11449 tree context;
11450 int was_abstract = DECL_ABSTRACT (decl);
11452 /* Make sure we have the actual abstract inline, not a clone. */
11453 decl = DECL_ORIGIN (decl);
11455 old_die = lookup_decl_die (decl);
11456 if (old_die && get_AT (old_die, DW_AT_inline))
11457 /* We've already generated the abstract instance. */
11458 return;
11460 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11461 we don't get confused by DECL_ABSTRACT. */
11462 if (debug_info_level > DINFO_LEVEL_TERSE)
11464 context = decl_class_context (decl);
11465 if (context)
11466 gen_type_die_for_member
11467 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11470 /* Pretend we've just finished compiling this function. */
11471 save_fn = current_function_decl;
11472 current_function_decl = decl;
11474 set_decl_abstract_flags (decl, 1);
11475 dwarf2out_decl (decl);
11476 if (! was_abstract)
11477 set_decl_abstract_flags (decl, 0);
11479 current_function_decl = save_fn;
11482 /* Generate a DIE to represent a declared function (either file-scope or
11483 block-local). */
11485 static void
11486 gen_subprogram_die (tree decl, dw_die_ref context_die)
11488 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11489 tree origin = decl_ultimate_origin (decl);
11490 dw_die_ref subr_die;
11491 tree fn_arg_types;
11492 tree outer_scope;
11493 dw_die_ref old_die = lookup_decl_die (decl);
11494 int declaration = (current_function_decl != decl
11495 || class_or_namespace_scope_p (context_die));
11497 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11498 started to generate the abstract instance of an inline, decided to output
11499 its containing class, and proceeded to emit the declaration of the inline
11500 from the member list for the class. If so, DECLARATION takes priority;
11501 we'll get back to the abstract instance when done with the class. */
11503 /* The class-scope declaration DIE must be the primary DIE. */
11504 if (origin && declaration && class_or_namespace_scope_p (context_die))
11506 origin = NULL;
11507 gcc_assert (!old_die);
11510 /* Now that the C++ front end lazily declares artificial member fns, we
11511 might need to retrofit the declaration into its class. */
11512 if (!declaration && !origin && !old_die
11513 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11514 && !class_or_namespace_scope_p (context_die)
11515 && debug_info_level > DINFO_LEVEL_TERSE)
11516 old_die = force_decl_die (decl);
11518 if (origin != NULL)
11520 gcc_assert (!declaration || local_scope_p (context_die));
11522 /* Fixup die_parent for the abstract instance of a nested
11523 inline function. */
11524 if (old_die && old_die->die_parent == NULL)
11525 add_child_die (context_die, old_die);
11527 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11528 add_abstract_origin_attribute (subr_die, origin);
11530 else if (old_die)
11532 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11533 unsigned file_index = lookup_filename (s.file);
11535 if (!get_AT_flag (old_die, DW_AT_declaration)
11536 /* We can have a normal definition following an inline one in the
11537 case of redefinition of GNU C extern inlines.
11538 It seems reasonable to use AT_specification in this case. */
11539 && !get_AT (old_die, DW_AT_inline))
11541 /* Detect and ignore this case, where we are trying to output
11542 something we have already output. */
11543 return;
11546 /* If the definition comes from the same place as the declaration,
11547 maybe use the old DIE. We always want the DIE for this function
11548 that has the *_pc attributes to be under comp_unit_die so the
11549 debugger can find it. We also need to do this for abstract
11550 instances of inlines, since the spec requires the out-of-line copy
11551 to have the same parent. For local class methods, this doesn't
11552 apply; we just use the old DIE. */
11553 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11554 && (DECL_ARTIFICIAL (decl)
11555 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11556 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11557 == (unsigned) s.line))))
11559 subr_die = old_die;
11561 /* Clear out the declaration attribute and the formal parameters.
11562 Do not remove all children, because it is possible that this
11563 declaration die was forced using force_decl_die(). In such
11564 cases die that forced declaration die (e.g. TAG_imported_module)
11565 is one of the children that we do not want to remove. */
11566 remove_AT (subr_die, DW_AT_declaration);
11567 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11569 else
11571 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11572 add_AT_specification (subr_die, old_die);
11573 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11574 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11575 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11576 != (unsigned) s.line)
11577 add_AT_unsigned
11578 (subr_die, DW_AT_decl_line, s.line);
11581 else
11583 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11585 if (TREE_PUBLIC (decl))
11586 add_AT_flag (subr_die, DW_AT_external, 1);
11588 add_name_and_src_coords_attributes (subr_die, decl);
11589 if (debug_info_level > DINFO_LEVEL_TERSE)
11591 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11592 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11593 0, 0, context_die);
11596 add_pure_or_virtual_attribute (subr_die, decl);
11597 if (DECL_ARTIFICIAL (decl))
11598 add_AT_flag (subr_die, DW_AT_artificial, 1);
11600 if (TREE_PROTECTED (decl))
11601 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11602 else if (TREE_PRIVATE (decl))
11603 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11606 if (declaration)
11608 if (!old_die || !get_AT (old_die, DW_AT_inline))
11610 add_AT_flag (subr_die, DW_AT_declaration, 1);
11612 /* The first time we see a member function, it is in the context of
11613 the class to which it belongs. We make sure of this by emitting
11614 the class first. The next time is the definition, which is
11615 handled above. The two may come from the same source text.
11617 Note that force_decl_die() forces function declaration die. It is
11618 later reused to represent definition. */
11619 equate_decl_number_to_die (decl, subr_die);
11622 else if (DECL_ABSTRACT (decl))
11624 if (DECL_DECLARED_INLINE_P (decl))
11626 if (cgraph_function_possibly_inlined_p (decl))
11627 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11628 else
11629 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11631 else
11633 if (cgraph_function_possibly_inlined_p (decl))
11634 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11635 else
11636 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11639 equate_decl_number_to_die (decl, subr_die);
11641 else if (!DECL_EXTERNAL (decl))
11643 if (!old_die || !get_AT (old_die, DW_AT_inline))
11644 equate_decl_number_to_die (decl, subr_die);
11646 if (!flag_reorder_blocks_and_partition)
11648 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11649 current_function_funcdef_no);
11650 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11651 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11652 current_function_funcdef_no);
11653 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11655 add_pubname (decl, subr_die);
11656 add_arange (decl, subr_die);
11658 else
11659 { /* Do nothing for now; maybe need to duplicate die, one for
11660 hot section and ond for cold section, then use the hot/cold
11661 section begin/end labels to generate the aranges... */
11663 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11664 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11665 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11666 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11668 add_pubname (decl, subr_die);
11669 add_arange (decl, subr_die);
11670 add_arange (decl, subr_die);
11674 #ifdef MIPS_DEBUGGING_INFO
11675 /* Add a reference to the FDE for this routine. */
11676 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11677 #endif
11679 #ifdef DWARF2_UNWIND_INFO
11680 /* We define the "frame base" as the function's CFA. This is more
11681 convenient for several reasons: (1) It's stable across the prologue
11682 and epilogue, which makes it better than just a frame pointer,
11683 (2) With dwarf3, there exists a one-byte encoding that allows us
11684 to reference the .debug_frame data by proxy, but failing that,
11685 (3) We can at least reuse the code inspection and interpretation
11686 code that determines the CFA position at various points in the
11687 function. */
11688 /* ??? Use some command-line or configury switch to enable the use
11689 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11690 consumers that understand it; fall back to "pure" dwarf2 and
11691 convert the CFA data into a location list. */
11693 dw_loc_list_ref list = convert_cfa_to_loc_list ();
11694 if (list->dw_loc_next)
11695 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11696 else
11697 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11700 /* Compute a displacement from the "steady-state frame pointer" to
11701 the CFA. The former is what all stack slots and argument slots
11702 will reference in the rtl; the later is what we've told the
11703 debugger about. We'll need to adjust all frame_base references
11704 by this displacement. */
11705 compute_frame_pointer_to_cfa_displacement ();
11706 #else
11707 /* For targets which support DWARF2, but not DWARF2 call-frame info,
11708 we just use the stack pointer or frame pointer. */
11709 /* ??? Should investigate getting better info via callbacks, or else
11710 by interpreting the IA-64 unwind info. */
11712 rtx fp_reg
11713 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11714 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11716 #endif
11718 if (cfun->static_chain_decl)
11719 add_AT_location_description (subr_die, DW_AT_static_link,
11720 loc_descriptor_from_tree (cfun->static_chain_decl));
11723 /* Now output descriptions of the arguments for this function. This gets
11724 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11725 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11726 `...' at the end of the formal parameter list. In order to find out if
11727 there was a trailing ellipsis or not, we must instead look at the type
11728 associated with the FUNCTION_DECL. This will be a node of type
11729 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11730 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11731 an ellipsis at the end. */
11733 /* In the case where we are describing a mere function declaration, all we
11734 need to do here (and all we *can* do here) is to describe the *types* of
11735 its formal parameters. */
11736 if (debug_info_level <= DINFO_LEVEL_TERSE)
11738 else if (declaration)
11739 gen_formal_types_die (decl, subr_die);
11740 else
11742 /* Generate DIEs to represent all known formal parameters. */
11743 tree arg_decls = DECL_ARGUMENTS (decl);
11744 tree parm;
11746 /* When generating DIEs, generate the unspecified_parameters DIE
11747 instead if we come across the arg "__builtin_va_alist" */
11748 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11749 if (TREE_CODE (parm) == PARM_DECL)
11751 if (DECL_NAME (parm)
11752 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11753 "__builtin_va_alist"))
11754 gen_unspecified_parameters_die (parm, subr_die);
11755 else
11756 gen_decl_die (parm, subr_die);
11759 /* Decide whether we need an unspecified_parameters DIE at the end.
11760 There are 2 more cases to do this for: 1) the ansi ... declaration -
11761 this is detectable when the end of the arg list is not a
11762 void_type_node 2) an unprototyped function declaration (not a
11763 definition). This just means that we have no info about the
11764 parameters at all. */
11765 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11766 if (fn_arg_types != NULL)
11768 /* This is the prototyped case, check for.... */
11769 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11770 gen_unspecified_parameters_die (decl, subr_die);
11772 else if (DECL_INITIAL (decl) == NULL_TREE)
11773 gen_unspecified_parameters_die (decl, subr_die);
11776 /* Output Dwarf info for all of the stuff within the body of the function
11777 (if it has one - it may be just a declaration). */
11778 outer_scope = DECL_INITIAL (decl);
11780 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11781 a function. This BLOCK actually represents the outermost binding contour
11782 for the function, i.e. the contour in which the function's formal
11783 parameters and labels get declared. Curiously, it appears that the front
11784 end doesn't actually put the PARM_DECL nodes for the current function onto
11785 the BLOCK_VARS list for this outer scope, but are strung off of the
11786 DECL_ARGUMENTS list for the function instead.
11788 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11789 the LABEL_DECL nodes for the function however, and we output DWARF info
11790 for those in decls_for_scope. Just within the `outer_scope' there will be
11791 a BLOCK node representing the function's outermost pair of curly braces,
11792 and any blocks used for the base and member initializers of a C++
11793 constructor function. */
11794 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11796 /* Emit a DW_TAG_variable DIE for a named return value. */
11797 if (DECL_NAME (DECL_RESULT (decl)))
11798 gen_decl_die (DECL_RESULT (decl), subr_die);
11800 current_function_has_inlines = 0;
11801 decls_for_scope (outer_scope, subr_die, 0);
11803 #if 0 && defined (MIPS_DEBUGGING_INFO)
11804 if (current_function_has_inlines)
11806 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11807 if (! comp_unit_has_inlines)
11809 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11810 comp_unit_has_inlines = 1;
11813 #endif
11815 /* Add the calling convention attribute if requested. */
11816 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11820 /* Generate a DIE to represent a declared data object. */
11822 static void
11823 gen_variable_die (tree decl, dw_die_ref context_die)
11825 tree origin = decl_ultimate_origin (decl);
11826 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11828 dw_die_ref old_die = lookup_decl_die (decl);
11829 int declaration = (DECL_EXTERNAL (decl)
11830 /* If DECL is COMDAT and has not actually been
11831 emitted, we cannot take its address; there
11832 might end up being no definition anywhere in
11833 the program. For example, consider the C++
11834 test case:
11836 template <class T>
11837 struct S { static const int i = 7; };
11839 template <class T>
11840 const int S<T>::i;
11842 int f() { return S<int>::i; }
11844 Here, S<int>::i is not DECL_EXTERNAL, but no
11845 definition is required, so the compiler will
11846 not emit a definition. */
11847 || (TREE_CODE (decl) == VAR_DECL
11848 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11849 || class_or_namespace_scope_p (context_die));
11851 if (origin != NULL)
11852 add_abstract_origin_attribute (var_die, origin);
11854 /* Loop unrolling can create multiple blocks that refer to the same
11855 static variable, so we must test for the DW_AT_declaration flag.
11857 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11858 copy decls and set the DECL_ABSTRACT flag on them instead of
11859 sharing them.
11861 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11863 ??? The declare_in_namespace support causes us to get two DIEs for one
11864 variable, both of which are declarations. We want to avoid considering
11865 one to be a specification, so we must test that this DIE is not a
11866 declaration. */
11867 else if (old_die && TREE_STATIC (decl) && ! declaration
11868 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11870 /* This is a definition of a C++ class level static. */
11871 add_AT_specification (var_die, old_die);
11872 if (DECL_NAME (decl))
11874 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11875 unsigned file_index = lookup_filename (s.file);
11877 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11878 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11880 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11881 != (unsigned) s.line)
11883 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11886 else
11888 add_name_and_src_coords_attributes (var_die, decl);
11889 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11890 TREE_THIS_VOLATILE (decl), context_die);
11892 if (TREE_PUBLIC (decl))
11893 add_AT_flag (var_die, DW_AT_external, 1);
11895 if (DECL_ARTIFICIAL (decl))
11896 add_AT_flag (var_die, DW_AT_artificial, 1);
11898 if (TREE_PROTECTED (decl))
11899 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11900 else if (TREE_PRIVATE (decl))
11901 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11904 if (declaration)
11905 add_AT_flag (var_die, DW_AT_declaration, 1);
11907 if (DECL_ABSTRACT (decl) || declaration)
11908 equate_decl_number_to_die (decl, var_die);
11910 if (! declaration && ! DECL_ABSTRACT (decl))
11912 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11913 add_pubname (decl, var_die);
11915 else
11916 tree_add_const_value_attribute (var_die, decl);
11919 /* Generate a DIE to represent a label identifier. */
11921 static void
11922 gen_label_die (tree decl, dw_die_ref context_die)
11924 tree origin = decl_ultimate_origin (decl);
11925 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11926 rtx insn;
11927 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11929 if (origin != NULL)
11930 add_abstract_origin_attribute (lbl_die, origin);
11931 else
11932 add_name_and_src_coords_attributes (lbl_die, decl);
11934 if (DECL_ABSTRACT (decl))
11935 equate_decl_number_to_die (decl, lbl_die);
11936 else
11938 insn = DECL_RTL_IF_SET (decl);
11940 /* Deleted labels are programmer specified labels which have been
11941 eliminated because of various optimizations. We still emit them
11942 here so that it is possible to put breakpoints on them. */
11943 if (insn
11944 && (LABEL_P (insn)
11945 || ((NOTE_P (insn)
11946 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11948 /* When optimization is enabled (via -O) some parts of the compiler
11949 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11950 represent source-level labels which were explicitly declared by
11951 the user. This really shouldn't be happening though, so catch
11952 it if it ever does happen. */
11953 gcc_assert (!INSN_DELETED_P (insn));
11955 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11956 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11961 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
11962 attributes to the DIE for a block STMT, to describe where the inlined
11963 function was called from. This is similar to add_src_coords_attributes. */
11965 static inline void
11966 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
11968 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
11969 unsigned file_index = lookup_filename (s.file);
11971 add_AT_unsigned (die, DW_AT_call_file, file_index);
11972 add_AT_unsigned (die, DW_AT_call_line, s.line);
11975 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11976 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11978 static inline void
11979 add_high_low_attributes (tree stmt, dw_die_ref die)
11981 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11983 if (BLOCK_FRAGMENT_CHAIN (stmt))
11985 tree chain;
11987 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11989 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11992 add_ranges (chain);
11993 chain = BLOCK_FRAGMENT_CHAIN (chain);
11995 while (chain);
11996 add_ranges (NULL);
11998 else
12000 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12001 BLOCK_NUMBER (stmt));
12002 add_AT_lbl_id (die, DW_AT_low_pc, label);
12003 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12004 BLOCK_NUMBER (stmt));
12005 add_AT_lbl_id (die, DW_AT_high_pc, label);
12009 /* Generate a DIE for a lexical block. */
12011 static void
12012 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12014 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12016 if (! BLOCK_ABSTRACT (stmt))
12017 add_high_low_attributes (stmt, stmt_die);
12019 decls_for_scope (stmt, stmt_die, depth);
12022 /* Generate a DIE for an inlined subprogram. */
12024 static void
12025 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12027 tree decl = block_ultimate_origin (stmt);
12029 /* Emit info for the abstract instance first, if we haven't yet. We
12030 must emit this even if the block is abstract, otherwise when we
12031 emit the block below (or elsewhere), we may end up trying to emit
12032 a die whose origin die hasn't been emitted, and crashing. */
12033 dwarf2out_abstract_function (decl);
12035 if (! BLOCK_ABSTRACT (stmt))
12037 dw_die_ref subr_die
12038 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12040 add_abstract_origin_attribute (subr_die, decl);
12041 add_high_low_attributes (stmt, subr_die);
12042 add_call_src_coords_attributes (stmt, subr_die);
12044 decls_for_scope (stmt, subr_die, depth);
12045 current_function_has_inlines = 1;
12047 else
12048 /* We may get here if we're the outer block of function A that was
12049 inlined into function B that was inlined into function C. When
12050 generating debugging info for C, dwarf2out_abstract_function(B)
12051 would mark all inlined blocks as abstract, including this one.
12052 So, we wouldn't (and shouldn't) expect labels to be generated
12053 for this one. Instead, just emit debugging info for
12054 declarations within the block. This is particularly important
12055 in the case of initializers of arguments passed from B to us:
12056 if they're statement expressions containing declarations, we
12057 wouldn't generate dies for their abstract variables, and then,
12058 when generating dies for the real variables, we'd die (pun
12059 intended :-) */
12060 gen_lexical_block_die (stmt, context_die, depth);
12063 /* Generate a DIE for a field in a record, or structure. */
12065 static void
12066 gen_field_die (tree decl, dw_die_ref context_die)
12068 dw_die_ref decl_die;
12070 if (TREE_TYPE (decl) == error_mark_node)
12071 return;
12073 decl_die = new_die (DW_TAG_member, context_die, decl);
12074 add_name_and_src_coords_attributes (decl_die, decl);
12075 add_type_attribute (decl_die, member_declared_type (decl),
12076 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12077 context_die);
12079 if (DECL_BIT_FIELD_TYPE (decl))
12081 add_byte_size_attribute (decl_die, decl);
12082 add_bit_size_attribute (decl_die, decl);
12083 add_bit_offset_attribute (decl_die, decl);
12086 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12087 add_data_member_location_attribute (decl_die, decl);
12089 if (DECL_ARTIFICIAL (decl))
12090 add_AT_flag (decl_die, DW_AT_artificial, 1);
12092 if (TREE_PROTECTED (decl))
12093 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12094 else if (TREE_PRIVATE (decl))
12095 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12097 /* Equate decl number to die, so that we can look up this decl later on. */
12098 equate_decl_number_to_die (decl, decl_die);
12101 #if 0
12102 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12103 Use modified_type_die instead.
12104 We keep this code here just in case these types of DIEs may be needed to
12105 represent certain things in other languages (e.g. Pascal) someday. */
12107 static void
12108 gen_pointer_type_die (tree type, dw_die_ref context_die)
12110 dw_die_ref ptr_die
12111 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12113 equate_type_number_to_die (type, ptr_die);
12114 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12115 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12118 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12119 Use modified_type_die instead.
12120 We keep this code here just in case these types of DIEs may be needed to
12121 represent certain things in other languages (e.g. Pascal) someday. */
12123 static void
12124 gen_reference_type_die (tree type, dw_die_ref context_die)
12126 dw_die_ref ref_die
12127 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12129 equate_type_number_to_die (type, ref_die);
12130 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12131 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12133 #endif
12135 /* Generate a DIE for a pointer to a member type. */
12137 static void
12138 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12140 dw_die_ref ptr_die
12141 = new_die (DW_TAG_ptr_to_member_type,
12142 scope_die_for (type, context_die), type);
12144 equate_type_number_to_die (type, ptr_die);
12145 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12146 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12147 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12150 /* Generate the DIE for the compilation unit. */
12152 static dw_die_ref
12153 gen_compile_unit_die (const char *filename)
12155 dw_die_ref die;
12156 char producer[250];
12157 const char *language_string = lang_hooks.name;
12158 int language;
12160 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12162 if (filename)
12164 add_name_attribute (die, filename);
12165 /* Don't add cwd for <built-in>. */
12166 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12167 add_comp_dir_attribute (die);
12170 sprintf (producer, "%s %s", language_string, version_string);
12172 #ifdef MIPS_DEBUGGING_INFO
12173 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12174 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12175 not appear in the producer string, the debugger reaches the conclusion
12176 that the object file is stripped and has no debugging information.
12177 To get the MIPS/SGI debugger to believe that there is debugging
12178 information in the object file, we add a -g to the producer string. */
12179 if (debug_info_level > DINFO_LEVEL_TERSE)
12180 strcat (producer, " -g");
12181 #endif
12183 add_AT_string (die, DW_AT_producer, producer);
12185 if (strcmp (language_string, "GNU C++") == 0)
12186 language = DW_LANG_C_plus_plus;
12187 else if (strcmp (language_string, "GNU Ada") == 0)
12188 language = DW_LANG_Ada95;
12189 else if (strcmp (language_string, "GNU F77") == 0)
12190 language = DW_LANG_Fortran77;
12191 else if (strcmp (language_string, "GNU F95") == 0)
12192 language = DW_LANG_Fortran95;
12193 else if (strcmp (language_string, "GNU Pascal") == 0)
12194 language = DW_LANG_Pascal83;
12195 else if (strcmp (language_string, "GNU Java") == 0)
12196 language = DW_LANG_Java;
12197 else
12198 language = DW_LANG_C89;
12200 add_AT_unsigned (die, DW_AT_language, language);
12201 return die;
12204 /* Generate a DIE for a string type. */
12206 static void
12207 gen_string_type_die (tree type, dw_die_ref context_die)
12209 dw_die_ref type_die
12210 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
12212 equate_type_number_to_die (type, type_die);
12214 /* ??? Fudge the string length attribute for now.
12215 TODO: add string length info. */
12216 #if 0
12217 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
12218 bound_representation (upper_bound, 0, 'u');
12219 #endif
12222 /* Generate the DIE for a base class. */
12224 static void
12225 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12227 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12229 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12230 add_data_member_location_attribute (die, binfo);
12232 if (BINFO_VIRTUAL_P (binfo))
12233 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12235 if (access == access_public_node)
12236 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12237 else if (access == access_protected_node)
12238 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12241 /* Generate a DIE for a class member. */
12243 static void
12244 gen_member_die (tree type, dw_die_ref context_die)
12246 tree member;
12247 tree binfo = TYPE_BINFO (type);
12248 dw_die_ref child;
12250 /* If this is not an incomplete type, output descriptions of each of its
12251 members. Note that as we output the DIEs necessary to represent the
12252 members of this record or union type, we will also be trying to output
12253 DIEs to represent the *types* of those members. However the `type'
12254 function (above) will specifically avoid generating type DIEs for member
12255 types *within* the list of member DIEs for this (containing) type except
12256 for those types (of members) which are explicitly marked as also being
12257 members of this (containing) type themselves. The g++ front- end can
12258 force any given type to be treated as a member of some other (containing)
12259 type by setting the TYPE_CONTEXT of the given (member) type to point to
12260 the TREE node representing the appropriate (containing) type. */
12262 /* First output info about the base classes. */
12263 if (binfo)
12265 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12266 int i;
12267 tree base;
12269 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12270 gen_inheritance_die (base,
12271 (accesses ? VEC_index (tree, accesses, i)
12272 : access_public_node), context_die);
12275 /* Now output info about the data members and type members. */
12276 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12278 /* If we thought we were generating minimal debug info for TYPE
12279 and then changed our minds, some of the member declarations
12280 may have already been defined. Don't define them again, but
12281 do put them in the right order. */
12283 child = lookup_decl_die (member);
12284 if (child)
12285 splice_child_die (context_die, child);
12286 else
12287 gen_decl_die (member, context_die);
12290 /* Now output info about the function members (if any). */
12291 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12293 /* Don't include clones in the member list. */
12294 if (DECL_ABSTRACT_ORIGIN (member))
12295 continue;
12297 child = lookup_decl_die (member);
12298 if (child)
12299 splice_child_die (context_die, child);
12300 else
12301 gen_decl_die (member, context_die);
12305 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12306 is set, we pretend that the type was never defined, so we only get the
12307 member DIEs needed by later specification DIEs. */
12309 static void
12310 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12312 dw_die_ref type_die = lookup_type_die (type);
12313 dw_die_ref scope_die = 0;
12314 int nested = 0;
12315 int complete = (TYPE_SIZE (type)
12316 && (! TYPE_STUB_DECL (type)
12317 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12318 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12320 if (type_die && ! complete)
12321 return;
12323 if (TYPE_CONTEXT (type) != NULL_TREE
12324 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12325 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12326 nested = 1;
12328 scope_die = scope_die_for (type, context_die);
12330 if (! type_die || (nested && scope_die == comp_unit_die))
12331 /* First occurrence of type or toplevel definition of nested class. */
12333 dw_die_ref old_die = type_die;
12335 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12336 ? DW_TAG_structure_type : DW_TAG_union_type,
12337 scope_die, type);
12338 equate_type_number_to_die (type, type_die);
12339 if (old_die)
12340 add_AT_specification (type_die, old_die);
12341 else
12342 add_name_attribute (type_die, type_tag (type));
12344 else
12345 remove_AT (type_die, DW_AT_declaration);
12347 /* If this type has been completed, then give it a byte_size attribute and
12348 then give a list of members. */
12349 if (complete && !ns_decl)
12351 /* Prevent infinite recursion in cases where the type of some member of
12352 this type is expressed in terms of this type itself. */
12353 TREE_ASM_WRITTEN (type) = 1;
12354 add_byte_size_attribute (type_die, type);
12355 if (TYPE_STUB_DECL (type) != NULL_TREE)
12356 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12358 /* If the first reference to this type was as the return type of an
12359 inline function, then it may not have a parent. Fix this now. */
12360 if (type_die->die_parent == NULL)
12361 add_child_die (scope_die, type_die);
12363 push_decl_scope (type);
12364 gen_member_die (type, type_die);
12365 pop_decl_scope ();
12367 /* GNU extension: Record what type our vtable lives in. */
12368 if (TYPE_VFIELD (type))
12370 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12372 gen_type_die (vtype, context_die);
12373 add_AT_die_ref (type_die, DW_AT_containing_type,
12374 lookup_type_die (vtype));
12377 else
12379 add_AT_flag (type_die, DW_AT_declaration, 1);
12381 /* We don't need to do this for function-local types. */
12382 if (TYPE_STUB_DECL (type)
12383 && ! decl_function_context (TYPE_STUB_DECL (type)))
12384 VEC_safe_push (tree, gc, incomplete_types, type);
12388 /* Generate a DIE for a subroutine _type_. */
12390 static void
12391 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12393 tree return_type = TREE_TYPE (type);
12394 dw_die_ref subr_die
12395 = new_die (DW_TAG_subroutine_type,
12396 scope_die_for (type, context_die), type);
12398 equate_type_number_to_die (type, subr_die);
12399 add_prototyped_attribute (subr_die, type);
12400 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12401 gen_formal_types_die (type, subr_die);
12404 /* Generate a DIE for a type definition. */
12406 static void
12407 gen_typedef_die (tree decl, dw_die_ref context_die)
12409 dw_die_ref type_die;
12410 tree origin;
12412 if (TREE_ASM_WRITTEN (decl))
12413 return;
12415 TREE_ASM_WRITTEN (decl) = 1;
12416 type_die = new_die (DW_TAG_typedef, context_die, decl);
12417 origin = decl_ultimate_origin (decl);
12418 if (origin != NULL)
12419 add_abstract_origin_attribute (type_die, origin);
12420 else
12422 tree type;
12424 add_name_and_src_coords_attributes (type_die, decl);
12425 if (DECL_ORIGINAL_TYPE (decl))
12427 type = DECL_ORIGINAL_TYPE (decl);
12429 gcc_assert (type != TREE_TYPE (decl));
12430 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12432 else
12433 type = TREE_TYPE (decl);
12435 add_type_attribute (type_die, type, TREE_READONLY (decl),
12436 TREE_THIS_VOLATILE (decl), context_die);
12439 if (DECL_ABSTRACT (decl))
12440 equate_decl_number_to_die (decl, type_die);
12443 /* Generate a type description DIE. */
12445 static void
12446 gen_type_die (tree type, dw_die_ref context_die)
12448 int need_pop;
12450 if (type == NULL_TREE || type == error_mark_node)
12451 return;
12453 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12454 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12456 if (TREE_ASM_WRITTEN (type))
12457 return;
12459 /* Prevent broken recursion; we can't hand off to the same type. */
12460 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12462 TREE_ASM_WRITTEN (type) = 1;
12463 gen_decl_die (TYPE_NAME (type), context_die);
12464 return;
12467 /* We are going to output a DIE to represent the unqualified version
12468 of this type (i.e. without any const or volatile qualifiers) so
12469 get the main variant (i.e. the unqualified version) of this type
12470 now. (Vectors are special because the debugging info is in the
12471 cloned type itself). */
12472 if (TREE_CODE (type) != VECTOR_TYPE)
12473 type = type_main_variant (type);
12475 if (TREE_ASM_WRITTEN (type))
12476 return;
12478 switch (TREE_CODE (type))
12480 case ERROR_MARK:
12481 break;
12483 case POINTER_TYPE:
12484 case REFERENCE_TYPE:
12485 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12486 ensures that the gen_type_die recursion will terminate even if the
12487 type is recursive. Recursive types are possible in Ada. */
12488 /* ??? We could perhaps do this for all types before the switch
12489 statement. */
12490 TREE_ASM_WRITTEN (type) = 1;
12492 /* For these types, all that is required is that we output a DIE (or a
12493 set of DIEs) to represent the "basis" type. */
12494 gen_type_die (TREE_TYPE (type), context_die);
12495 break;
12497 case OFFSET_TYPE:
12498 /* This code is used for C++ pointer-to-data-member types.
12499 Output a description of the relevant class type. */
12500 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12502 /* Output a description of the type of the object pointed to. */
12503 gen_type_die (TREE_TYPE (type), context_die);
12505 /* Now output a DIE to represent this pointer-to-data-member type
12506 itself. */
12507 gen_ptr_to_mbr_type_die (type, context_die);
12508 break;
12510 case FUNCTION_TYPE:
12511 /* Force out return type (in case it wasn't forced out already). */
12512 gen_type_die (TREE_TYPE (type), context_die);
12513 gen_subroutine_type_die (type, context_die);
12514 break;
12516 case METHOD_TYPE:
12517 /* Force out return type (in case it wasn't forced out already). */
12518 gen_type_die (TREE_TYPE (type), context_die);
12519 gen_subroutine_type_die (type, context_die);
12520 break;
12522 case ARRAY_TYPE:
12523 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12525 gen_type_die (TREE_TYPE (type), context_die);
12526 gen_string_type_die (type, context_die);
12528 else
12529 gen_array_type_die (type, context_die);
12530 break;
12532 case VECTOR_TYPE:
12533 gen_array_type_die (type, context_die);
12534 break;
12536 case ENUMERAL_TYPE:
12537 case RECORD_TYPE:
12538 case UNION_TYPE:
12539 case QUAL_UNION_TYPE:
12540 /* If this is a nested type whose containing class hasn't been written
12541 out yet, writing it out will cover this one, too. This does not apply
12542 to instantiations of member class templates; they need to be added to
12543 the containing class as they are generated. FIXME: This hurts the
12544 idea of combining type decls from multiple TUs, since we can't predict
12545 what set of template instantiations we'll get. */
12546 if (TYPE_CONTEXT (type)
12547 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12548 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12550 gen_type_die (TYPE_CONTEXT (type), context_die);
12552 if (TREE_ASM_WRITTEN (type))
12553 return;
12555 /* If that failed, attach ourselves to the stub. */
12556 push_decl_scope (TYPE_CONTEXT (type));
12557 context_die = lookup_type_die (TYPE_CONTEXT (type));
12558 need_pop = 1;
12560 else
12562 declare_in_namespace (type, context_die);
12563 need_pop = 0;
12566 if (TREE_CODE (type) == ENUMERAL_TYPE)
12567 gen_enumeration_type_die (type, context_die);
12568 else
12569 gen_struct_or_union_type_die (type, context_die);
12571 if (need_pop)
12572 pop_decl_scope ();
12574 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12575 it up if it is ever completed. gen_*_type_die will set it for us
12576 when appropriate. */
12577 return;
12579 case VOID_TYPE:
12580 case INTEGER_TYPE:
12581 case REAL_TYPE:
12582 case COMPLEX_TYPE:
12583 case BOOLEAN_TYPE:
12584 case CHAR_TYPE:
12585 /* No DIEs needed for fundamental types. */
12586 break;
12588 case LANG_TYPE:
12589 /* No Dwarf representation currently defined. */
12590 break;
12592 default:
12593 gcc_unreachable ();
12596 TREE_ASM_WRITTEN (type) = 1;
12599 /* Generate a DIE for a tagged type instantiation. */
12601 static void
12602 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12604 if (type == NULL_TREE || type == error_mark_node)
12605 return;
12607 /* We are going to output a DIE to represent the unqualified version of
12608 this type (i.e. without any const or volatile qualifiers) so make sure
12609 that we have the main variant (i.e. the unqualified version) of this
12610 type now. */
12611 gcc_assert (type == type_main_variant (type));
12613 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12614 an instance of an unresolved type. */
12616 switch (TREE_CODE (type))
12618 case ERROR_MARK:
12619 break;
12621 case ENUMERAL_TYPE:
12622 gen_inlined_enumeration_type_die (type, context_die);
12623 break;
12625 case RECORD_TYPE:
12626 gen_inlined_structure_type_die (type, context_die);
12627 break;
12629 case UNION_TYPE:
12630 case QUAL_UNION_TYPE:
12631 gen_inlined_union_type_die (type, context_die);
12632 break;
12634 default:
12635 gcc_unreachable ();
12639 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12640 things which are local to the given block. */
12642 static void
12643 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12645 int must_output_die = 0;
12646 tree origin;
12647 tree decl;
12648 enum tree_code origin_code;
12650 /* Ignore blocks that are NULL. */
12651 if (stmt == NULL_TREE)
12652 return;
12654 /* If the block is one fragment of a non-contiguous block, do not
12655 process the variables, since they will have been done by the
12656 origin block. Do process subblocks. */
12657 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12659 tree sub;
12661 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12662 gen_block_die (sub, context_die, depth + 1);
12664 return;
12667 /* Determine the "ultimate origin" of this block. This block may be an
12668 inlined instance of an inlined instance of inline function, so we have
12669 to trace all of the way back through the origin chain to find out what
12670 sort of node actually served as the original seed for the creation of
12671 the current block. */
12672 origin = block_ultimate_origin (stmt);
12673 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12675 /* Determine if we need to output any Dwarf DIEs at all to represent this
12676 block. */
12677 if (origin_code == FUNCTION_DECL)
12678 /* The outer scopes for inlinings *must* always be represented. We
12679 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12680 must_output_die = 1;
12681 else
12683 /* In the case where the current block represents an inlining of the
12684 "body block" of an inline function, we must *NOT* output any DIE for
12685 this block because we have already output a DIE to represent the whole
12686 inlined function scope and the "body block" of any function doesn't
12687 really represent a different scope according to ANSI C rules. So we
12688 check here to make sure that this block does not represent a "body
12689 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12690 if (! is_body_block (origin ? origin : stmt))
12692 /* Determine if this block directly contains any "significant"
12693 local declarations which we will need to output DIEs for. */
12694 if (debug_info_level > DINFO_LEVEL_TERSE)
12695 /* We are not in terse mode so *any* local declaration counts
12696 as being a "significant" one. */
12697 must_output_die = (BLOCK_VARS (stmt) != NULL
12698 && (TREE_USED (stmt)
12699 || TREE_ASM_WRITTEN (stmt)
12700 || BLOCK_ABSTRACT (stmt)));
12701 else
12702 /* We are in terse mode, so only local (nested) function
12703 definitions count as "significant" local declarations. */
12704 for (decl = BLOCK_VARS (stmt);
12705 decl != NULL; decl = TREE_CHAIN (decl))
12706 if (TREE_CODE (decl) == FUNCTION_DECL
12707 && DECL_INITIAL (decl))
12709 must_output_die = 1;
12710 break;
12715 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12716 DIE for any block which contains no significant local declarations at
12717 all. Rather, in such cases we just call `decls_for_scope' so that any
12718 needed Dwarf info for any sub-blocks will get properly generated. Note
12719 that in terse mode, our definition of what constitutes a "significant"
12720 local declaration gets restricted to include only inlined function
12721 instances and local (nested) function definitions. */
12722 if (must_output_die)
12724 if (origin_code == FUNCTION_DECL)
12725 gen_inlined_subroutine_die (stmt, context_die, depth);
12726 else
12727 gen_lexical_block_die (stmt, context_die, depth);
12729 else
12730 decls_for_scope (stmt, context_die, depth);
12733 /* Generate all of the decls declared within a given scope and (recursively)
12734 all of its sub-blocks. */
12736 static void
12737 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12739 tree decl;
12740 tree subblocks;
12742 /* Ignore NULL blocks. */
12743 if (stmt == NULL_TREE)
12744 return;
12746 if (TREE_USED (stmt))
12748 /* Output the DIEs to represent all of the data objects and typedefs
12749 declared directly within this block but not within any nested
12750 sub-blocks. Also, nested function and tag DIEs have been
12751 generated with a parent of NULL; fix that up now. */
12752 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12754 dw_die_ref die;
12756 if (TREE_CODE (decl) == FUNCTION_DECL)
12757 die = lookup_decl_die (decl);
12758 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12759 die = lookup_type_die (TREE_TYPE (decl));
12760 else
12761 die = NULL;
12763 if (die != NULL && die->die_parent == NULL)
12764 add_child_die (context_die, die);
12765 /* Do not produce debug information for static variables since
12766 these might be optimized out. We are called for these later
12767 in cgraph_varpool_analyze_pending_decls. */
12768 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12770 else
12771 gen_decl_die (decl, context_die);
12775 /* If we're at -g1, we're not interested in subblocks. */
12776 if (debug_info_level <= DINFO_LEVEL_TERSE)
12777 return;
12779 /* Output the DIEs to represent all sub-blocks (and the items declared
12780 therein) of this block. */
12781 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12782 subblocks != NULL;
12783 subblocks = BLOCK_CHAIN (subblocks))
12784 gen_block_die (subblocks, context_die, depth + 1);
12787 /* Is this a typedef we can avoid emitting? */
12789 static inline int
12790 is_redundant_typedef (tree decl)
12792 if (TYPE_DECL_IS_STUB (decl))
12793 return 1;
12795 if (DECL_ARTIFICIAL (decl)
12796 && DECL_CONTEXT (decl)
12797 && is_tagged_type (DECL_CONTEXT (decl))
12798 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12799 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12800 /* Also ignore the artificial member typedef for the class name. */
12801 return 1;
12803 return 0;
12806 /* Returns the DIE for decl. A DIE will always be returned. */
12808 static dw_die_ref
12809 force_decl_die (tree decl)
12811 dw_die_ref decl_die;
12812 unsigned saved_external_flag;
12813 tree save_fn = NULL_TREE;
12814 decl_die = lookup_decl_die (decl);
12815 if (!decl_die)
12817 dw_die_ref context_die;
12818 tree decl_context = DECL_CONTEXT (decl);
12819 if (decl_context)
12821 /* Find die that represents this context. */
12822 if (TYPE_P (decl_context))
12823 context_die = force_type_die (decl_context);
12824 else
12825 context_die = force_decl_die (decl_context);
12827 else
12828 context_die = comp_unit_die;
12830 decl_die = lookup_decl_die (decl);
12831 if (decl_die)
12832 return decl_die;
12834 switch (TREE_CODE (decl))
12836 case FUNCTION_DECL:
12837 /* Clear current_function_decl, so that gen_subprogram_die thinks
12838 that this is a declaration. At this point, we just want to force
12839 declaration die. */
12840 save_fn = current_function_decl;
12841 current_function_decl = NULL_TREE;
12842 gen_subprogram_die (decl, context_die);
12843 current_function_decl = save_fn;
12844 break;
12846 case VAR_DECL:
12847 /* Set external flag to force declaration die. Restore it after
12848 gen_decl_die() call. */
12849 saved_external_flag = DECL_EXTERNAL (decl);
12850 DECL_EXTERNAL (decl) = 1;
12851 gen_decl_die (decl, context_die);
12852 DECL_EXTERNAL (decl) = saved_external_flag;
12853 break;
12855 case NAMESPACE_DECL:
12856 dwarf2out_decl (decl);
12857 break;
12859 default:
12860 gcc_unreachable ();
12863 /* We should be able to find the DIE now. */
12864 if (!decl_die)
12865 decl_die = lookup_decl_die (decl);
12866 gcc_assert (decl_die);
12869 return decl_die;
12872 /* Returns the DIE for TYPE. A DIE is always returned. */
12874 static dw_die_ref
12875 force_type_die (tree type)
12877 dw_die_ref type_die;
12879 type_die = lookup_type_die (type);
12880 if (!type_die)
12882 dw_die_ref context_die;
12883 if (TYPE_CONTEXT (type))
12885 if (TYPE_P (TYPE_CONTEXT (type)))
12886 context_die = force_type_die (TYPE_CONTEXT (type));
12887 else
12888 context_die = force_decl_die (TYPE_CONTEXT (type));
12890 else
12891 context_die = comp_unit_die;
12893 type_die = lookup_type_die (type);
12894 if (type_die)
12895 return type_die;
12896 gen_type_die (type, context_die);
12897 type_die = lookup_type_die (type);
12898 gcc_assert (type_die);
12900 return type_die;
12903 /* Force out any required namespaces to be able to output DECL,
12904 and return the new context_die for it, if it's changed. */
12906 static dw_die_ref
12907 setup_namespace_context (tree thing, dw_die_ref context_die)
12909 tree context = (DECL_P (thing)
12910 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12911 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12912 /* Force out the namespace. */
12913 context_die = force_decl_die (context);
12915 return context_die;
12918 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12919 type) within its namespace, if appropriate.
12921 For compatibility with older debuggers, namespace DIEs only contain
12922 declarations; all definitions are emitted at CU scope. */
12924 static void
12925 declare_in_namespace (tree thing, dw_die_ref context_die)
12927 dw_die_ref ns_context;
12929 if (debug_info_level <= DINFO_LEVEL_TERSE)
12930 return;
12932 /* If this decl is from an inlined function, then don't try to emit it in its
12933 namespace, as we will get confused. It would have already been emitted
12934 when the abstract instance of the inline function was emitted anyways. */
12935 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12936 return;
12938 ns_context = setup_namespace_context (thing, context_die);
12940 if (ns_context != context_die)
12942 if (DECL_P (thing))
12943 gen_decl_die (thing, ns_context);
12944 else
12945 gen_type_die (thing, ns_context);
12949 /* Generate a DIE for a namespace or namespace alias. */
12951 static void
12952 gen_namespace_die (tree decl)
12954 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12956 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12957 they are an alias of. */
12958 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12960 /* Output a real namespace. */
12961 dw_die_ref namespace_die
12962 = new_die (DW_TAG_namespace, context_die, decl);
12963 add_name_and_src_coords_attributes (namespace_die, decl);
12964 equate_decl_number_to_die (decl, namespace_die);
12966 else
12968 /* Output a namespace alias. */
12970 /* Force out the namespace we are an alias of, if necessary. */
12971 dw_die_ref origin_die
12972 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12974 /* Now create the namespace alias DIE. */
12975 dw_die_ref namespace_die
12976 = new_die (DW_TAG_imported_declaration, context_die, decl);
12977 add_name_and_src_coords_attributes (namespace_die, decl);
12978 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12979 equate_decl_number_to_die (decl, namespace_die);
12983 /* Generate Dwarf debug information for a decl described by DECL. */
12985 static void
12986 gen_decl_die (tree decl, dw_die_ref context_die)
12988 tree origin;
12990 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12991 return;
12993 switch (TREE_CODE (decl))
12995 case ERROR_MARK:
12996 break;
12998 case CONST_DECL:
12999 /* The individual enumerators of an enum type get output when we output
13000 the Dwarf representation of the relevant enum type itself. */
13001 break;
13003 case FUNCTION_DECL:
13004 /* Don't output any DIEs to represent mere function declarations,
13005 unless they are class members or explicit block externs. */
13006 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13007 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13008 break;
13010 #if 0
13011 /* FIXME */
13012 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13013 on local redeclarations of global functions. That seems broken. */
13014 if (current_function_decl != decl)
13015 /* This is only a declaration. */;
13016 #endif
13018 /* If we're emitting a clone, emit info for the abstract instance. */
13019 if (DECL_ORIGIN (decl) != decl)
13020 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13022 /* If we're emitting an out-of-line copy of an inline function,
13023 emit info for the abstract instance and set up to refer to it. */
13024 else if (cgraph_function_possibly_inlined_p (decl)
13025 && ! DECL_ABSTRACT (decl)
13026 && ! class_or_namespace_scope_p (context_die)
13027 /* dwarf2out_abstract_function won't emit a die if this is just
13028 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13029 that case, because that works only if we have a die. */
13030 && DECL_INITIAL (decl) != NULL_TREE)
13032 dwarf2out_abstract_function (decl);
13033 set_decl_origin_self (decl);
13036 /* Otherwise we're emitting the primary DIE for this decl. */
13037 else if (debug_info_level > DINFO_LEVEL_TERSE)
13039 /* Before we describe the FUNCTION_DECL itself, make sure that we
13040 have described its return type. */
13041 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13043 /* And its virtual context. */
13044 if (DECL_VINDEX (decl) != NULL_TREE)
13045 gen_type_die (DECL_CONTEXT (decl), context_die);
13047 /* And its containing type. */
13048 origin = decl_class_context (decl);
13049 if (origin != NULL_TREE)
13050 gen_type_die_for_member (origin, decl, context_die);
13052 /* And its containing namespace. */
13053 declare_in_namespace (decl, context_die);
13056 /* Now output a DIE to represent the function itself. */
13057 gen_subprogram_die (decl, context_die);
13058 break;
13060 case TYPE_DECL:
13061 /* If we are in terse mode, don't generate any DIEs to represent any
13062 actual typedefs. */
13063 if (debug_info_level <= DINFO_LEVEL_TERSE)
13064 break;
13066 /* In the special case of a TYPE_DECL node representing the declaration
13067 of some type tag, if the given TYPE_DECL is marked as having been
13068 instantiated from some other (original) TYPE_DECL node (e.g. one which
13069 was generated within the original definition of an inline function) we
13070 have to generate a special (abbreviated) DW_TAG_structure_type,
13071 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13072 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13074 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13075 break;
13078 if (is_redundant_typedef (decl))
13079 gen_type_die (TREE_TYPE (decl), context_die);
13080 else
13081 /* Output a DIE to represent the typedef itself. */
13082 gen_typedef_die (decl, context_die);
13083 break;
13085 case LABEL_DECL:
13086 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13087 gen_label_die (decl, context_die);
13088 break;
13090 case VAR_DECL:
13091 case RESULT_DECL:
13092 /* If we are in terse mode, don't generate any DIEs to represent any
13093 variable declarations or definitions. */
13094 if (debug_info_level <= DINFO_LEVEL_TERSE)
13095 break;
13097 /* Output any DIEs that are needed to specify the type of this data
13098 object. */
13099 gen_type_die (TREE_TYPE (decl), context_die);
13101 /* And its containing type. */
13102 origin = decl_class_context (decl);
13103 if (origin != NULL_TREE)
13104 gen_type_die_for_member (origin, decl, context_die);
13106 /* And its containing namespace. */
13107 declare_in_namespace (decl, context_die);
13109 /* Now output the DIE to represent the data object itself. This gets
13110 complicated because of the possibility that the VAR_DECL really
13111 represents an inlined instance of a formal parameter for an inline
13112 function. */
13113 origin = decl_ultimate_origin (decl);
13114 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13115 gen_formal_parameter_die (decl, context_die);
13116 else
13117 gen_variable_die (decl, context_die);
13118 break;
13120 case FIELD_DECL:
13121 /* Ignore the nameless fields that are used to skip bits but handle C++
13122 anonymous unions and structs. */
13123 if (DECL_NAME (decl) != NULL_TREE
13124 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13125 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13127 gen_type_die (member_declared_type (decl), context_die);
13128 gen_field_die (decl, context_die);
13130 break;
13132 case PARM_DECL:
13133 gen_type_die (TREE_TYPE (decl), context_die);
13134 gen_formal_parameter_die (decl, context_die);
13135 break;
13137 case NAMESPACE_DECL:
13138 gen_namespace_die (decl);
13139 break;
13141 default:
13142 /* Probably some frontend-internal decl. Assume we don't care. */
13143 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13144 break;
13148 /* Add Ada "use" clause information for SGI Workshop debugger. */
13150 void
13151 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
13153 unsigned int file_index;
13155 if (filename != NULL)
13157 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
13158 tree context_list_decl
13159 = build_decl (LABEL_DECL, get_identifier (context_list),
13160 void_type_node);
13162 TREE_PUBLIC (context_list_decl) = TRUE;
13163 add_name_attribute (unit_die, context_list);
13164 file_index = lookup_filename (filename);
13165 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
13166 add_pubname (context_list_decl, unit_die);
13170 /* Output debug information for global decl DECL. Called from toplev.c after
13171 compilation proper has finished. */
13173 static void
13174 dwarf2out_global_decl (tree decl)
13176 /* Output DWARF2 information for file-scope tentative data object
13177 declarations, file-scope (extern) function declarations (which had no
13178 corresponding body) and file-scope tagged type declarations and
13179 definitions which have not yet been forced out. */
13180 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13181 dwarf2out_decl (decl);
13184 /* Output debug information for type decl DECL. Called from toplev.c
13185 and from language front ends (to record built-in types). */
13186 static void
13187 dwarf2out_type_decl (tree decl, int local)
13189 if (!local)
13190 dwarf2out_decl (decl);
13193 /* Output debug information for imported module or decl. */
13195 static void
13196 dwarf2out_imported_module_or_decl (tree decl, tree context)
13198 dw_die_ref imported_die, at_import_die;
13199 dw_die_ref scope_die;
13200 unsigned file_index;
13201 expanded_location xloc;
13203 if (debug_info_level <= DINFO_LEVEL_TERSE)
13204 return;
13206 gcc_assert (decl);
13208 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13209 We need decl DIE for reference and scope die. First, get DIE for the decl
13210 itself. */
13212 /* Get the scope die for decl context. Use comp_unit_die for global module
13213 or decl. If die is not found for non globals, force new die. */
13214 if (!context)
13215 scope_die = comp_unit_die;
13216 else if (TYPE_P (context))
13217 scope_die = force_type_die (context);
13218 else
13219 scope_die = force_decl_die (context);
13221 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13222 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13223 at_import_die = force_type_die (TREE_TYPE (decl));
13224 else
13226 at_import_die = lookup_decl_die (decl);
13227 if (!at_import_die)
13229 /* If we're trying to avoid duplicate debug info, we may not have
13230 emitted the member decl for this field. Emit it now. */
13231 if (TREE_CODE (decl) == FIELD_DECL)
13233 tree type = DECL_CONTEXT (decl);
13234 dw_die_ref type_context_die;
13236 if (TYPE_CONTEXT (type))
13237 if (TYPE_P (TYPE_CONTEXT (type)))
13238 type_context_die = force_type_die (TYPE_CONTEXT (type));
13239 else
13240 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13241 else
13242 type_context_die = comp_unit_die;
13243 gen_type_die_for_member (type, decl, type_context_die);
13245 at_import_die = force_decl_die (decl);
13249 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13250 if (TREE_CODE (decl) == NAMESPACE_DECL)
13251 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13252 else
13253 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13255 xloc = expand_location (input_location);
13256 file_index = lookup_filename (xloc.file);
13257 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
13258 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13259 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13262 /* Write the debugging output for DECL. */
13264 void
13265 dwarf2out_decl (tree decl)
13267 dw_die_ref context_die = comp_unit_die;
13269 switch (TREE_CODE (decl))
13271 case ERROR_MARK:
13272 return;
13274 case FUNCTION_DECL:
13275 /* What we would really like to do here is to filter out all mere
13276 file-scope declarations of file-scope functions which are never
13277 referenced later within this translation unit (and keep all of ones
13278 that *are* referenced later on) but we aren't clairvoyant, so we have
13279 no idea which functions will be referenced in the future (i.e. later
13280 on within the current translation unit). So here we just ignore all
13281 file-scope function declarations which are not also definitions. If
13282 and when the debugger needs to know something about these functions,
13283 it will have to hunt around and find the DWARF information associated
13284 with the definition of the function.
13286 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13287 nodes represent definitions and which ones represent mere
13288 declarations. We have to check DECL_INITIAL instead. That's because
13289 the C front-end supports some weird semantics for "extern inline"
13290 function definitions. These can get inlined within the current
13291 translation unit (and thus, we need to generate Dwarf info for their
13292 abstract instances so that the Dwarf info for the concrete inlined
13293 instances can have something to refer to) but the compiler never
13294 generates any out-of-lines instances of such things (despite the fact
13295 that they *are* definitions).
13297 The important point is that the C front-end marks these "extern
13298 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13299 them anyway. Note that the C++ front-end also plays some similar games
13300 for inline function definitions appearing within include files which
13301 also contain `#pragma interface' pragmas. */
13302 if (DECL_INITIAL (decl) == NULL_TREE)
13303 return;
13305 /* If we're a nested function, initially use a parent of NULL; if we're
13306 a plain function, this will be fixed up in decls_for_scope. If
13307 we're a method, it will be ignored, since we already have a DIE. */
13308 if (decl_function_context (decl)
13309 /* But if we're in terse mode, we don't care about scope. */
13310 && debug_info_level > DINFO_LEVEL_TERSE)
13311 context_die = NULL;
13312 break;
13314 case VAR_DECL:
13315 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13316 declaration and if the declaration was never even referenced from
13317 within this entire compilation unit. We suppress these DIEs in
13318 order to save space in the .debug section (by eliminating entries
13319 which are probably useless). Note that we must not suppress
13320 block-local extern declarations (whether used or not) because that
13321 would screw-up the debugger's name lookup mechanism and cause it to
13322 miss things which really ought to be in scope at a given point. */
13323 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13324 return;
13326 /* For local statics lookup proper context die. */
13327 if (TREE_STATIC (decl) && decl_function_context (decl))
13328 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13330 /* If we are in terse mode, don't generate any DIEs to represent any
13331 variable declarations or definitions. */
13332 if (debug_info_level <= DINFO_LEVEL_TERSE)
13333 return;
13334 break;
13336 case NAMESPACE_DECL:
13337 if (debug_info_level <= DINFO_LEVEL_TERSE)
13338 return;
13339 if (lookup_decl_die (decl) != NULL)
13340 return;
13341 break;
13343 case TYPE_DECL:
13344 /* Don't emit stubs for types unless they are needed by other DIEs. */
13345 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13346 return;
13348 /* Don't bother trying to generate any DIEs to represent any of the
13349 normal built-in types for the language we are compiling. */
13350 if (DECL_IS_BUILTIN (decl))
13352 /* OK, we need to generate one for `bool' so GDB knows what type
13353 comparisons have. */
13354 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13355 == DW_LANG_C_plus_plus)
13356 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13357 && ! DECL_IGNORED_P (decl))
13358 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13360 return;
13363 /* If we are in terse mode, don't generate any DIEs for types. */
13364 if (debug_info_level <= DINFO_LEVEL_TERSE)
13365 return;
13367 /* If we're a function-scope tag, initially use a parent of NULL;
13368 this will be fixed up in decls_for_scope. */
13369 if (decl_function_context (decl))
13370 context_die = NULL;
13372 break;
13374 default:
13375 return;
13378 gen_decl_die (decl, context_die);
13381 /* Output a marker (i.e. a label) for the beginning of the generated code for
13382 a lexical block. */
13384 static void
13385 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13386 unsigned int blocknum)
13388 switch_to_section (current_function_section ());
13389 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13392 /* Output a marker (i.e. a label) for the end of the generated code for a
13393 lexical block. */
13395 static void
13396 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13398 switch_to_section (current_function_section ());
13399 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13402 /* Returns nonzero if it is appropriate not to emit any debugging
13403 information for BLOCK, because it doesn't contain any instructions.
13405 Don't allow this for blocks with nested functions or local classes
13406 as we would end up with orphans, and in the presence of scheduling
13407 we may end up calling them anyway. */
13409 static bool
13410 dwarf2out_ignore_block (tree block)
13412 tree decl;
13414 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13415 if (TREE_CODE (decl) == FUNCTION_DECL
13416 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13417 return 0;
13419 return 1;
13422 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13423 dwarf2out.c) and return its "index". The index of each (known) filename is
13424 just a unique number which is associated with only that one filename. We
13425 need such numbers for the sake of generating labels (in the .debug_sfnames
13426 section) and references to those files numbers (in the .debug_srcinfo
13427 and.debug_macinfo sections). If the filename given as an argument is not
13428 found in our current list, add it to the list and assign it the next
13429 available unique index number. In order to speed up searches, we remember
13430 the index of the filename was looked up last. This handles the majority of
13431 all searches. */
13433 static unsigned
13434 lookup_filename (const char *file_name)
13436 size_t i, n;
13437 char *save_file_name;
13439 /* Check to see if the file name that was searched on the previous
13440 call matches this file name. If so, return the index. */
13441 if (file_table_last_lookup_index != 0)
13443 const char *last
13444 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13445 if (strcmp (file_name, last) == 0)
13446 return file_table_last_lookup_index;
13449 /* Didn't match the previous lookup, search the table. */
13450 n = VARRAY_ACTIVE_SIZE (file_table);
13451 for (i = 1; i < n; i++)
13452 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13454 file_table_last_lookup_index = i;
13455 return i;
13458 /* Add the new entry to the end of the filename table. */
13459 file_table_last_lookup_index = n;
13460 save_file_name = (char *) ggc_strdup (file_name);
13461 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13462 VARRAY_PUSH_UINT (file_table_emitted, 0);
13464 /* If the assembler is emitting the file table, and we aren't eliminating
13465 unused debug types, then we must emit .file here. If we are eliminating
13466 unused debug types, then this will be done by the maybe_emit_file call in
13467 prune_unused_types_walk_attribs. */
13469 if (DWARF2_ASM_LINE_DEBUG_INFO && ! flag_eliminate_unused_debug_types)
13470 return maybe_emit_file (i);
13472 return i;
13475 /* If the assembler will construct the file table, then translate the compiler
13476 internal file table number into the assembler file table number, and emit
13477 a .file directive if we haven't already emitted one yet. The file table
13478 numbers are different because we prune debug info for unused variables and
13479 types, which may include filenames. */
13481 static int
13482 maybe_emit_file (int fileno)
13484 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13486 if (!VARRAY_UINT (file_table_emitted, fileno))
13488 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13489 fprintf (asm_out_file, "\t.file %u ",
13490 VARRAY_UINT (file_table_emitted, fileno));
13491 output_quoted_string (asm_out_file,
13492 VARRAY_CHAR_PTR (file_table, fileno));
13493 fputc ('\n', asm_out_file);
13495 return VARRAY_UINT (file_table_emitted, fileno);
13497 else
13498 return fileno;
13501 /* Initialize the compiler internal file table. */
13503 static void
13504 init_file_table (void)
13506 /* Allocate the initial hunk of the file_table. */
13507 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13508 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13510 /* Skip the first entry - file numbers begin at 1. */
13511 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13512 VARRAY_PUSH_UINT (file_table_emitted, 0);
13513 file_table_last_lookup_index = 0;
13516 /* Called by the final INSN scan whenever we see a var location. We
13517 use it to drop labels in the right places, and throw the location in
13518 our lookup table. */
13520 static void
13521 dwarf2out_var_location (rtx loc_note)
13523 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13524 struct var_loc_node *newloc;
13525 rtx prev_insn;
13526 static rtx last_insn;
13527 static const char *last_label;
13528 tree decl;
13530 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13531 return;
13532 prev_insn = PREV_INSN (loc_note);
13534 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13535 /* If the insn we processed last time is the previous insn
13536 and it is also a var location note, use the label we emitted
13537 last time. */
13538 if (last_insn != NULL_RTX
13539 && last_insn == prev_insn
13540 && NOTE_P (prev_insn)
13541 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13543 newloc->label = last_label;
13545 else
13547 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13548 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13549 loclabel_num++;
13550 newloc->label = ggc_strdup (loclabel);
13552 newloc->var_loc_note = loc_note;
13553 newloc->next = NULL;
13555 if (cfun && in_cold_section_p)
13556 newloc->section_label = cfun->cold_section_label;
13557 else
13558 newloc->section_label = text_section_label;
13560 last_insn = loc_note;
13561 last_label = newloc->label;
13562 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13563 if (DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
13564 && DECL_P (DECL_DEBUG_EXPR (decl)))
13565 decl = DECL_DEBUG_EXPR (decl);
13566 add_var_loc_to_decl (decl, newloc);
13569 /* We need to reset the locations at the beginning of each
13570 function. We can't do this in the end_function hook, because the
13571 declarations that use the locations won't have been outputted when
13572 that hook is called. */
13574 static void
13575 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13577 htab_empty (decl_loc_table);
13580 /* Output a label to mark the beginning of a source code line entry
13581 and record information relating to this source line, in
13582 'line_info_table' for later output of the .debug_line section. */
13584 static void
13585 dwarf2out_source_line (unsigned int line, const char *filename)
13587 if (debug_info_level >= DINFO_LEVEL_NORMAL
13588 && line != 0)
13590 switch_to_section (current_function_section ());
13592 /* If requested, emit something human-readable. */
13593 if (flag_debug_asm)
13594 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13595 filename, line);
13597 if (DWARF2_ASM_LINE_DEBUG_INFO)
13599 unsigned file_num = lookup_filename (filename);
13601 file_num = maybe_emit_file (file_num);
13603 /* Emit the .loc directive understood by GNU as. */
13604 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13606 /* Indicate that line number info exists. */
13607 line_info_table_in_use++;
13609 /* Indicate that multiple line number tables exist. */
13610 if (DECL_SECTION_NAME (current_function_decl))
13611 separate_line_info_table_in_use++;
13613 else if (DECL_SECTION_NAME (current_function_decl))
13615 dw_separate_line_info_ref line_info;
13616 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13617 separate_line_info_table_in_use);
13619 /* Expand the line info table if necessary. */
13620 if (separate_line_info_table_in_use
13621 == separate_line_info_table_allocated)
13623 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13624 separate_line_info_table
13625 = ggc_realloc (separate_line_info_table,
13626 separate_line_info_table_allocated
13627 * sizeof (dw_separate_line_info_entry));
13628 memset (separate_line_info_table
13629 + separate_line_info_table_in_use,
13631 (LINE_INFO_TABLE_INCREMENT
13632 * sizeof (dw_separate_line_info_entry)));
13635 /* Add the new entry at the end of the line_info_table. */
13636 line_info
13637 = &separate_line_info_table[separate_line_info_table_in_use++];
13638 line_info->dw_file_num = lookup_filename (filename);
13639 line_info->dw_line_num = line;
13640 line_info->function = current_function_funcdef_no;
13642 else
13644 dw_line_info_ref line_info;
13646 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13647 line_info_table_in_use);
13649 /* Expand the line info table if necessary. */
13650 if (line_info_table_in_use == line_info_table_allocated)
13652 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13653 line_info_table
13654 = ggc_realloc (line_info_table,
13655 (line_info_table_allocated
13656 * sizeof (dw_line_info_entry)));
13657 memset (line_info_table + line_info_table_in_use, 0,
13658 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13661 /* Add the new entry at the end of the line_info_table. */
13662 line_info = &line_info_table[line_info_table_in_use++];
13663 line_info->dw_file_num = lookup_filename (filename);
13664 line_info->dw_line_num = line;
13669 /* Record the beginning of a new source file. */
13671 static void
13672 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13674 if (flag_eliminate_dwarf2_dups)
13676 /* Record the beginning of the file for break_out_includes. */
13677 dw_die_ref bincl_die;
13679 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13680 add_AT_string (bincl_die, DW_AT_name, filename);
13683 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13685 int fileno;
13687 switch_to_section (debug_macinfo_section);
13688 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13689 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13690 lineno);
13692 fileno = maybe_emit_file (lookup_filename (filename));
13693 dw2_asm_output_data_uleb128 (fileno, "Filename we just started");
13697 /* Record the end of a source file. */
13699 static void
13700 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13702 if (flag_eliminate_dwarf2_dups)
13703 /* Record the end of the file for break_out_includes. */
13704 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13706 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13708 switch_to_section (debug_macinfo_section);
13709 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13713 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13714 the tail part of the directive line, i.e. the part which is past the
13715 initial whitespace, #, whitespace, directive-name, whitespace part. */
13717 static void
13718 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13719 const char *buffer ATTRIBUTE_UNUSED)
13721 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13723 switch_to_section (debug_macinfo_section);
13724 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13725 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13726 dw2_asm_output_nstring (buffer, -1, "The macro");
13730 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13731 the tail part of the directive line, i.e. the part which is past the
13732 initial whitespace, #, whitespace, directive-name, whitespace part. */
13734 static void
13735 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13736 const char *buffer ATTRIBUTE_UNUSED)
13738 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13740 switch_to_section (debug_macinfo_section);
13741 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13742 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13743 dw2_asm_output_nstring (buffer, -1, "The macro");
13747 /* Set up for Dwarf output at the start of compilation. */
13749 static void
13750 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13752 init_file_table ();
13754 /* Allocate the decl_die_table. */
13755 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13756 decl_die_table_eq, NULL);
13758 /* Allocate the decl_loc_table. */
13759 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13760 decl_loc_table_eq, NULL);
13762 /* Allocate the initial hunk of the decl_scope_table. */
13763 decl_scope_table = VEC_alloc (tree, gc, 256);
13765 /* Allocate the initial hunk of the abbrev_die_table. */
13766 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13767 * sizeof (dw_die_ref));
13768 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13769 /* Zero-th entry is allocated, but unused. */
13770 abbrev_die_table_in_use = 1;
13772 /* Allocate the initial hunk of the line_info_table. */
13773 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13774 * sizeof (dw_line_info_entry));
13775 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13777 /* Zero-th entry is allocated, but unused. */
13778 line_info_table_in_use = 1;
13780 /* Generate the initial DIE for the .debug section. Note that the (string)
13781 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13782 will (typically) be a relative pathname and that this pathname should be
13783 taken as being relative to the directory from which the compiler was
13784 invoked when the given (base) source file was compiled. We will fill
13785 in this value in dwarf2out_finish. */
13786 comp_unit_die = gen_compile_unit_die (NULL);
13788 incomplete_types = VEC_alloc (tree, gc, 64);
13790 used_rtx_array = VEC_alloc (rtx, gc, 32);
13792 debug_info_section = get_section (DEBUG_INFO_SECTION,
13793 SECTION_DEBUG, NULL);
13794 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13795 SECTION_DEBUG, NULL);
13796 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13797 SECTION_DEBUG, NULL);
13798 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13799 SECTION_DEBUG, NULL);
13800 debug_line_section = get_section (DEBUG_LINE_SECTION,
13801 SECTION_DEBUG, NULL);
13802 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13803 SECTION_DEBUG, NULL);
13804 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13805 SECTION_DEBUG, NULL);
13806 debug_str_section = get_section (DEBUG_STR_SECTION,
13807 DEBUG_STR_SECTION_FLAGS, NULL);
13808 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13809 SECTION_DEBUG, NULL);
13811 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13812 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13813 DEBUG_ABBREV_SECTION_LABEL, 0);
13814 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13815 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13816 COLD_TEXT_SECTION_LABEL, 0);
13817 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13819 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13820 DEBUG_INFO_SECTION_LABEL, 0);
13821 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13822 DEBUG_LINE_SECTION_LABEL, 0);
13823 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13824 DEBUG_RANGES_SECTION_LABEL, 0);
13825 switch_to_section (debug_abbrev_section);
13826 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13827 switch_to_section (debug_info_section);
13828 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13829 switch_to_section (debug_line_section);
13830 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13832 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13834 switch_to_section (debug_macinfo_section);
13835 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13836 DEBUG_MACINFO_SECTION_LABEL, 0);
13837 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13840 switch_to_section (text_section);
13841 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13842 if (flag_reorder_blocks_and_partition)
13844 switch_to_section (unlikely_text_section ());
13845 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13849 /* A helper function for dwarf2out_finish called through
13850 ht_forall. Emit one queued .debug_str string. */
13852 static int
13853 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13855 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13857 if (node->form == DW_FORM_strp)
13859 switch_to_section (debug_str_section);
13860 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13861 assemble_string (node->str, strlen (node->str) + 1);
13864 return 1;
13869 /* Clear the marks for a die and its children.
13870 Be cool if the mark isn't set. */
13872 static void
13873 prune_unmark_dies (dw_die_ref die)
13875 dw_die_ref c;
13876 die->die_mark = 0;
13877 for (c = die->die_child; c; c = c->die_sib)
13878 prune_unmark_dies (c);
13882 /* Given DIE that we're marking as used, find any other dies
13883 it references as attributes and mark them as used. */
13885 static void
13886 prune_unused_types_walk_attribs (dw_die_ref die)
13888 dw_attr_ref a;
13890 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13892 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13894 /* A reference to another DIE.
13895 Make sure that it will get emitted. */
13896 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13898 else if (a->dw_attr == DW_AT_decl_file || a->dw_attr == DW_AT_call_file)
13900 /* A reference to a file. Make sure the file name is emitted. */
13901 a->dw_attr_val.v.val_unsigned =
13902 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13908 /* Mark DIE as being used. If DOKIDS is true, then walk down
13909 to DIE's children. */
13911 static void
13912 prune_unused_types_mark (dw_die_ref die, int dokids)
13914 dw_die_ref c;
13916 if (die->die_mark == 0)
13918 /* We haven't done this node yet. Mark it as used. */
13919 die->die_mark = 1;
13921 /* We also have to mark its parents as used.
13922 (But we don't want to mark our parents' kids due to this.) */
13923 if (die->die_parent)
13924 prune_unused_types_mark (die->die_parent, 0);
13926 /* Mark any referenced nodes. */
13927 prune_unused_types_walk_attribs (die);
13929 /* If this node is a specification,
13930 also mark the definition, if it exists. */
13931 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13932 prune_unused_types_mark (die->die_definition, 1);
13935 if (dokids && die->die_mark != 2)
13937 /* We need to walk the children, but haven't done so yet.
13938 Remember that we've walked the kids. */
13939 die->die_mark = 2;
13941 /* Walk them. */
13942 for (c = die->die_child; c; c = c->die_sib)
13944 /* If this is an array type, we need to make sure our
13945 kids get marked, even if they're types. */
13946 if (die->die_tag == DW_TAG_array_type)
13947 prune_unused_types_mark (c, 1);
13948 else
13949 prune_unused_types_walk (c);
13955 /* Walk the tree DIE and mark types that we actually use. */
13957 static void
13958 prune_unused_types_walk (dw_die_ref die)
13960 dw_die_ref c;
13962 /* Don't do anything if this node is already marked. */
13963 if (die->die_mark)
13964 return;
13966 switch (die->die_tag) {
13967 case DW_TAG_const_type:
13968 case DW_TAG_packed_type:
13969 case DW_TAG_pointer_type:
13970 case DW_TAG_reference_type:
13971 case DW_TAG_volatile_type:
13972 case DW_TAG_typedef:
13973 case DW_TAG_array_type:
13974 case DW_TAG_structure_type:
13975 case DW_TAG_union_type:
13976 case DW_TAG_class_type:
13977 case DW_TAG_friend:
13978 case DW_TAG_variant_part:
13979 case DW_TAG_enumeration_type:
13980 case DW_TAG_subroutine_type:
13981 case DW_TAG_string_type:
13982 case DW_TAG_set_type:
13983 case DW_TAG_subrange_type:
13984 case DW_TAG_ptr_to_member_type:
13985 case DW_TAG_file_type:
13986 /* It's a type node --- don't mark it. */
13987 return;
13989 default:
13990 /* Mark everything else. */
13991 break;
13994 die->die_mark = 1;
13996 /* Now, mark any dies referenced from here. */
13997 prune_unused_types_walk_attribs (die);
13999 /* Mark children. */
14000 for (c = die->die_child; c; c = c->die_sib)
14001 prune_unused_types_walk (c);
14005 /* Remove from the tree DIE any dies that aren't marked. */
14007 static void
14008 prune_unused_types_prune (dw_die_ref die)
14010 dw_die_ref c, p, n;
14012 gcc_assert (die->die_mark);
14014 p = NULL;
14015 for (c = die->die_child; c; c = n)
14017 n = c->die_sib;
14018 if (c->die_mark)
14020 prune_unused_types_prune (c);
14021 p = c;
14023 else
14025 if (p)
14026 p->die_sib = n;
14027 else
14028 die->die_child = n;
14029 free_die (c);
14035 /* Remove dies representing declarations that we never use. */
14037 static void
14038 prune_unused_types (void)
14040 unsigned int i;
14041 limbo_die_node *node;
14043 /* Clear all the marks. */
14044 prune_unmark_dies (comp_unit_die);
14045 for (node = limbo_die_list; node; node = node->next)
14046 prune_unmark_dies (node->die);
14048 /* Set the mark on nodes that are actually used. */
14049 prune_unused_types_walk (comp_unit_die);
14050 for (node = limbo_die_list; node; node = node->next)
14051 prune_unused_types_walk (node->die);
14053 /* Also set the mark on nodes referenced from the
14054 pubname_table or arange_table. */
14055 for (i = 0; i < pubname_table_in_use; i++)
14056 prune_unused_types_mark (pubname_table[i].die, 1);
14057 for (i = 0; i < arange_table_in_use; i++)
14058 prune_unused_types_mark (arange_table[i], 1);
14060 /* Get rid of nodes that aren't marked. */
14061 prune_unused_types_prune (comp_unit_die);
14062 for (node = limbo_die_list; node; node = node->next)
14063 prune_unused_types_prune (node->die);
14065 /* Leave the marks clear. */
14066 prune_unmark_dies (comp_unit_die);
14067 for (node = limbo_die_list; node; node = node->next)
14068 prune_unmark_dies (node->die);
14071 /* Output stuff that dwarf requires at the end of every file,
14072 and generate the DWARF-2 debugging info. */
14074 static void
14075 dwarf2out_finish (const char *filename)
14077 limbo_die_node *node, *next_node;
14078 dw_die_ref die = 0;
14080 /* Add the name for the main input file now. We delayed this from
14081 dwarf2out_init to avoid complications with PCH. */
14082 add_name_attribute (comp_unit_die, filename);
14083 if (filename[0] != DIR_SEPARATOR)
14084 add_comp_dir_attribute (comp_unit_die);
14085 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14087 size_t i;
14088 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
14089 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
14090 /* Don't add cwd for <built-in>. */
14091 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
14093 add_comp_dir_attribute (comp_unit_die);
14094 break;
14098 /* Traverse the limbo die list, and add parent/child links. The only
14099 dies without parents that should be here are concrete instances of
14100 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14101 For concrete instances, we can get the parent die from the abstract
14102 instance. */
14103 for (node = limbo_die_list; node; node = next_node)
14105 next_node = node->next;
14106 die = node->die;
14108 if (die->die_parent == NULL)
14110 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14112 if (origin)
14113 add_child_die (origin->die_parent, die);
14114 else if (die == comp_unit_die)
14116 else if (errorcount > 0 || sorrycount > 0)
14117 /* It's OK to be confused by errors in the input. */
14118 add_child_die (comp_unit_die, die);
14119 else
14121 /* In certain situations, the lexical block containing a
14122 nested function can be optimized away, which results
14123 in the nested function die being orphaned. Likewise
14124 with the return type of that nested function. Force
14125 this to be a child of the containing function.
14127 It may happen that even the containing function got fully
14128 inlined and optimized out. In that case we are lost and
14129 assign the empty child. This should not be big issue as
14130 the function is likely unreachable too. */
14131 tree context = NULL_TREE;
14133 gcc_assert (node->created_for);
14135 if (DECL_P (node->created_for))
14136 context = DECL_CONTEXT (node->created_for);
14137 else if (TYPE_P (node->created_for))
14138 context = TYPE_CONTEXT (node->created_for);
14140 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14142 origin = lookup_decl_die (context);
14143 if (origin)
14144 add_child_die (origin, die);
14145 else
14146 add_child_die (comp_unit_die, die);
14151 limbo_die_list = NULL;
14153 /* Walk through the list of incomplete types again, trying once more to
14154 emit full debugging info for them. */
14155 retry_incomplete_types ();
14157 /* We need to reverse all the dies before break_out_includes, or
14158 we'll see the end of an include file before the beginning. */
14159 reverse_all_dies (comp_unit_die);
14161 if (flag_eliminate_unused_debug_types)
14162 prune_unused_types ();
14164 /* Generate separate CUs for each of the include files we've seen.
14165 They will go into limbo_die_list. */
14166 if (flag_eliminate_dwarf2_dups)
14167 break_out_includes (comp_unit_die);
14169 /* Traverse the DIE's and add add sibling attributes to those DIE's
14170 that have children. */
14171 add_sibling_attributes (comp_unit_die);
14172 for (node = limbo_die_list; node; node = node->next)
14173 add_sibling_attributes (node->die);
14175 /* Output a terminator label for the .text section. */
14176 switch_to_section (text_section);
14177 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14178 if (flag_reorder_blocks_and_partition)
14180 switch_to_section (unlikely_text_section ());
14181 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14184 /* Output the source line correspondence table. We must do this
14185 even if there is no line information. Otherwise, on an empty
14186 translation unit, we will generate a present, but empty,
14187 .debug_info section. IRIX 6.5 `nm' will then complain when
14188 examining the file. */
14189 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14191 switch_to_section (debug_line_section);
14192 output_line_info ();
14195 /* Output location list section if necessary. */
14196 if (have_location_lists)
14198 /* Output the location lists info. */
14199 switch_to_section (debug_loc_section);
14200 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14201 DEBUG_LOC_SECTION_LABEL, 0);
14202 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14203 output_location_lists (die);
14204 have_location_lists = 0;
14207 /* We can only use the low/high_pc attributes if all of the code was
14208 in .text. */
14209 if (!separate_line_info_table_in_use && !have_switched_text_section)
14211 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14212 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14215 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14216 "base address". Use zero so that these addresses become absolute. */
14217 else if (have_location_lists || ranges_table_in_use)
14218 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14220 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14221 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
14222 debug_line_section_label);
14224 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14225 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14227 /* Output all of the compilation units. We put the main one last so that
14228 the offsets are available to output_pubnames. */
14229 for (node = limbo_die_list; node; node = node->next)
14230 output_comp_unit (node->die, 0);
14232 output_comp_unit (comp_unit_die, 0);
14234 /* Output the abbreviation table. */
14235 switch_to_section (debug_abbrev_section);
14236 output_abbrev_section ();
14238 /* Output public names table if necessary. */
14239 if (pubname_table_in_use)
14241 switch_to_section (debug_pubnames_section);
14242 output_pubnames ();
14245 /* Output the address range information. We only put functions in the arange
14246 table, so don't write it out if we don't have any. */
14247 if (fde_table_in_use)
14249 switch_to_section (debug_aranges_section);
14250 output_aranges ();
14253 /* Output ranges section if necessary. */
14254 if (ranges_table_in_use)
14256 switch_to_section (debug_ranges_section);
14257 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14258 output_ranges ();
14261 /* Have to end the macro section. */
14262 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14264 switch_to_section (debug_macinfo_section);
14265 dw2_asm_output_data (1, 0, "End compilation unit");
14268 /* If we emitted any DW_FORM_strp form attribute, output the string
14269 table too. */
14270 if (debug_str_hash)
14271 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14273 #else
14275 /* This should never be used, but its address is needed for comparisons. */
14276 const struct gcc_debug_hooks dwarf2_debug_hooks;
14278 #endif /* DWARF2_DEBUGGING_INFO */
14280 #include "gt-dwarf2out.h"