PR target/12070
[official-gcc.git] / gcc / cfgcleanup.c
blobfc5be846dee96acf5f3bb2828bdf426e780809c8
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains optimizer of the control flow. The main entrypoint is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to it's
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
52 /* cleanup_cfg maintains following flags for each basic block. */
54 enum bb_flags
56 /* Set if BB is the forwarder block to avoid too many
57 forwarder_block_p calls. */
58 BB_FORWARDER_BLOCK = 1,
59 BB_NONTHREADABLE_BLOCK = 2
62 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
63 #define BB_SET_FLAG(BB, FLAG) \
64 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
65 #define BB_CLEAR_FLAG(BB, FLAG) \
66 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
68 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
70 static bool try_crossjump_to_edge (int, edge, edge);
71 static bool try_crossjump_bb (int, basic_block);
72 static bool outgoing_edges_match (int, basic_block, basic_block);
73 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
74 static bool insns_match_p (int, rtx, rtx);
76 static bool label_is_jump_target_p (rtx, rtx);
77 static bool tail_recursion_label_p (rtx);
78 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
79 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
80 static bool try_optimize_cfg (int);
81 static bool try_simplify_condjump (basic_block);
82 static bool try_forward_edges (int, basic_block);
83 static edge thread_jump (int, edge, basic_block);
84 static bool mark_effect (rtx, bitmap);
85 static void notice_new_block (basic_block);
86 static void update_forwarder_flag (basic_block);
87 static int mentions_nonequal_regs (rtx *, void *);
89 /* Set flags for newly created block. */
91 static void
92 notice_new_block (basic_block bb)
94 if (!bb)
95 return;
97 if (forwarder_block_p (bb))
98 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
101 /* Recompute forwarder flag after block has been modified. */
103 static void
104 update_forwarder_flag (basic_block bb)
106 if (forwarder_block_p (bb))
107 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
108 else
109 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
115 static bool
116 try_simplify_condjump (basic_block cbranch_block)
118 basic_block jump_block, jump_dest_block, cbranch_dest_block;
119 edge cbranch_jump_edge, cbranch_fallthru_edge;
120 rtx cbranch_insn;
121 rtx insn, next;
122 rtx end;
124 /* Verify that there are exactly two successors. */
125 if (!cbranch_block->succ
126 || !cbranch_block->succ->succ_next
127 || cbranch_block->succ->succ_next->succ_next)
128 return false;
130 /* Verify that we've got a normal conditional branch at the end
131 of the block. */
132 cbranch_insn = cbranch_block->end;
133 if (!any_condjump_p (cbranch_insn))
134 return false;
136 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
137 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
139 /* The next block must not have multiple predecessors, must not
140 be the last block in the function, and must contain just the
141 unconditional jump. */
142 jump_block = cbranch_fallthru_edge->dest;
143 if (jump_block->pred->pred_next
144 || jump_block->next_bb == EXIT_BLOCK_PTR
145 || !FORWARDER_BLOCK_P (jump_block))
146 return false;
147 jump_dest_block = jump_block->succ->dest;
149 /* The conditional branch must target the block after the
150 unconditional branch. */
151 cbranch_dest_block = cbranch_jump_edge->dest;
153 if (!can_fallthru (jump_block, cbranch_dest_block))
154 return false;
156 /* Invert the conditional branch. */
157 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
158 return false;
160 if (rtl_dump_file)
161 fprintf (rtl_dump_file, "Simplifying condjump %i around jump %i\n",
162 INSN_UID (cbranch_insn), INSN_UID (jump_block->end));
164 /* Success. Update the CFG to match. Note that after this point
165 the edge variable names appear backwards; the redirection is done
166 this way to preserve edge profile data. */
167 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
168 cbranch_dest_block);
169 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
170 jump_dest_block);
171 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
172 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
173 update_br_prob_note (cbranch_block);
175 end = jump_block->end;
176 /* Deleting a block may produce unreachable code warning even when we are
177 not deleting anything live. Supress it by moving all the line number
178 notes out of the block. */
179 for (insn = jump_block->head; insn != NEXT_INSN (jump_block->end);
180 insn = next)
182 next = NEXT_INSN (insn);
183 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
185 reorder_insns (insn, insn, end);
186 end = insn;
189 /* Delete the block with the unconditional jump, and clean up the mess. */
190 delete_block (jump_block);
191 tidy_fallthru_edge (cbranch_jump_edge, cbranch_block, cbranch_dest_block);
193 return true;
196 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
197 on register. Used by jump threading. */
199 static bool
200 mark_effect (rtx exp, regset nonequal)
202 int regno;
203 rtx dest;
204 switch (GET_CODE (exp))
206 /* In case we do clobber the register, mark it as equal, as we know the
207 value is dead so it don't have to match. */
208 case CLOBBER:
209 if (REG_P (XEXP (exp, 0)))
211 dest = XEXP (exp, 0);
212 regno = REGNO (dest);
213 CLEAR_REGNO_REG_SET (nonequal, regno);
214 if (regno < FIRST_PSEUDO_REGISTER)
216 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
217 while (--n > 0)
218 CLEAR_REGNO_REG_SET (nonequal, regno + n);
221 return false;
223 case SET:
224 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
225 return false;
226 dest = SET_DEST (exp);
227 if (dest == pc_rtx)
228 return false;
229 if (!REG_P (dest))
230 return true;
231 regno = REGNO (dest);
232 SET_REGNO_REG_SET (nonequal, regno);
233 if (regno < FIRST_PSEUDO_REGISTER)
235 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
236 while (--n > 0)
237 SET_REGNO_REG_SET (nonequal, regno + n);
239 return false;
241 default:
242 return false;
246 /* Return nonzero if X is a register set in regset DATA.
247 Called via for_each_rtx. */
248 static int
249 mentions_nonequal_regs (rtx *x, void *data)
251 regset nonequal = (regset) data;
252 if (REG_P (*x))
254 int regno;
256 regno = REGNO (*x);
257 if (REGNO_REG_SET_P (nonequal, regno))
258 return 1;
259 if (regno < FIRST_PSEUDO_REGISTER)
261 int n = HARD_REGNO_NREGS (regno, GET_MODE (*x));
262 while (--n > 0)
263 if (REGNO_REG_SET_P (nonequal, regno + n))
264 return 1;
267 return 0;
269 /* Attempt to prove that the basic block B will have no side effects and
270 always continues in the same edge if reached via E. Return the edge
271 if exist, NULL otherwise. */
273 static edge
274 thread_jump (int mode, edge e, basic_block b)
276 rtx set1, set2, cond1, cond2, insn;
277 enum rtx_code code1, code2, reversed_code2;
278 bool reverse1 = false;
279 int i;
280 regset nonequal;
281 bool failed = false;
283 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
284 return NULL;
286 /* At the moment, we do handle only conditional jumps, but later we may
287 want to extend this code to tablejumps and others. */
288 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
289 return NULL;
290 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
292 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
293 return NULL;
296 /* Second branch must end with onlyjump, as we will eliminate the jump. */
297 if (!any_condjump_p (e->src->end))
298 return NULL;
300 if (!any_condjump_p (b->end) || !onlyjump_p (b->end))
302 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
303 return NULL;
306 set1 = pc_set (e->src->end);
307 set2 = pc_set (b->end);
308 if (((e->flags & EDGE_FALLTHRU) != 0)
309 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
310 reverse1 = true;
312 cond1 = XEXP (SET_SRC (set1), 0);
313 cond2 = XEXP (SET_SRC (set2), 0);
314 if (reverse1)
315 code1 = reversed_comparison_code (cond1, e->src->end);
316 else
317 code1 = GET_CODE (cond1);
319 code2 = GET_CODE (cond2);
320 reversed_code2 = reversed_comparison_code (cond2, b->end);
322 if (!comparison_dominates_p (code1, code2)
323 && !comparison_dominates_p (code1, reversed_code2))
324 return NULL;
326 /* Ensure that the comparison operators are equivalent.
327 ??? This is far too pessimistic. We should allow swapped operands,
328 different CCmodes, or for example comparisons for interval, that
329 dominate even when operands are not equivalent. */
330 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
331 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
332 return NULL;
334 /* Short circuit cases where block B contains some side effects, as we can't
335 safely bypass it. */
336 for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end);
337 insn = NEXT_INSN (insn))
338 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
340 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
341 return NULL;
344 cselib_init ();
346 /* First process all values computed in the source basic block. */
347 for (insn = NEXT_INSN (e->src->head); insn != NEXT_INSN (e->src->end);
348 insn = NEXT_INSN (insn))
349 if (INSN_P (insn))
350 cselib_process_insn (insn);
352 nonequal = BITMAP_XMALLOC();
353 CLEAR_REG_SET (nonequal);
355 /* Now assume that we've continued by the edge E to B and continue
356 processing as if it were same basic block.
357 Our goal is to prove that whole block is an NOOP. */
359 for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end) && !failed;
360 insn = NEXT_INSN (insn))
362 if (INSN_P (insn))
364 rtx pat = PATTERN (insn);
366 if (GET_CODE (pat) == PARALLEL)
368 for (i = 0; i < XVECLEN (pat, 0); i++)
369 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
371 else
372 failed |= mark_effect (pat, nonequal);
375 cselib_process_insn (insn);
378 /* Later we should clear nonequal of dead registers. So far we don't
379 have life information in cfg_cleanup. */
380 if (failed)
382 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
383 goto failed_exit;
386 /* cond2 must not mention any register that is not equal to the
387 former block. */
388 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
389 goto failed_exit;
391 /* In case liveness information is available, we need to prove equivalence
392 only of the live values. */
393 if (mode & CLEANUP_UPDATE_LIFE)
394 AND_REG_SET (nonequal, b->global_live_at_end);
396 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
398 BITMAP_XFREE (nonequal);
399 cselib_finish ();
400 if ((comparison_dominates_p (code1, code2) != 0)
401 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
402 return BRANCH_EDGE (b);
403 else
404 return FALLTHRU_EDGE (b);
406 failed_exit:
407 BITMAP_XFREE (nonequal);
408 cselib_finish ();
409 return NULL;
412 /* Attempt to forward edges leaving basic block B.
413 Return true if successful. */
415 static bool
416 try_forward_edges (int mode, basic_block b)
418 bool changed = false;
419 edge e, next, *threaded_edges = NULL;
421 for (e = b->succ; e; e = next)
423 basic_block target, first;
424 int counter;
425 bool threaded = false;
426 int nthreaded_edges = 0;
428 next = e->succ_next;
430 /* Skip complex edges because we don't know how to update them.
432 Still handle fallthru edges, as we can succeed to forward fallthru
433 edge to the same place as the branch edge of conditional branch
434 and turn conditional branch to an unconditional branch. */
435 if (e->flags & EDGE_COMPLEX)
436 continue;
438 target = first = e->dest;
439 counter = 0;
441 while (counter < n_basic_blocks)
443 basic_block new_target = NULL;
444 bool new_target_threaded = false;
446 if (FORWARDER_BLOCK_P (target)
447 && target->succ->dest != EXIT_BLOCK_PTR)
449 /* Bypass trivial infinite loops. */
450 if (target == target->succ->dest)
451 counter = n_basic_blocks;
452 new_target = target->succ->dest;
455 /* Allow to thread only over one edge at time to simplify updating
456 of probabilities. */
457 else if (mode & CLEANUP_THREADING)
459 edge t = thread_jump (mode, e, target);
460 if (t)
462 if (!threaded_edges)
463 threaded_edges = xmalloc (sizeof (*threaded_edges)
464 * n_basic_blocks);
465 else
467 int i;
469 /* Detect an infinite loop across blocks not
470 including the start block. */
471 for (i = 0; i < nthreaded_edges; ++i)
472 if (threaded_edges[i] == t)
473 break;
474 if (i < nthreaded_edges)
476 counter = n_basic_blocks;
477 break;
481 /* Detect an infinite loop across the start block. */
482 if (t->dest == b)
483 break;
485 if (nthreaded_edges >= n_basic_blocks)
486 abort ();
487 threaded_edges[nthreaded_edges++] = t;
489 new_target = t->dest;
490 new_target_threaded = true;
494 if (!new_target)
495 break;
497 /* Avoid killing of loop pre-headers, as it is the place loop
498 optimizer wants to hoist code to.
500 For fallthru forwarders, the LOOP_BEG note must appear between
501 the header of block and CODE_LABEL of the loop, for non forwarders
502 it must appear before the JUMP_INSN. */
503 if ((mode & CLEANUP_PRE_LOOP) && optimize)
505 rtx insn = (target->succ->flags & EDGE_FALLTHRU
506 ? target->head : prev_nonnote_insn (target->end));
508 if (GET_CODE (insn) != NOTE)
509 insn = NEXT_INSN (insn);
511 for (; insn && GET_CODE (insn) != CODE_LABEL && !INSN_P (insn);
512 insn = NEXT_INSN (insn))
513 if (GET_CODE (insn) == NOTE
514 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
515 break;
517 if (GET_CODE (insn) == NOTE)
518 break;
520 /* Do not clean up branches to just past the end of a loop
521 at this time; it can mess up the loop optimizer's
522 recognition of some patterns. */
524 insn = PREV_INSN (target->head);
525 if (insn && GET_CODE (insn) == NOTE
526 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
527 break;
530 counter++;
531 target = new_target;
532 threaded |= new_target_threaded;
535 if (counter >= n_basic_blocks)
537 if (rtl_dump_file)
538 fprintf (rtl_dump_file, "Infinite loop in BB %i.\n",
539 target->index);
541 else if (target == first)
542 ; /* We didn't do anything. */
543 else
545 /* Save the values now, as the edge may get removed. */
546 gcov_type edge_count = e->count;
547 int edge_probability = e->probability;
548 int edge_frequency;
549 int n = 0;
551 /* Don't force if target is exit block. */
552 if (threaded && target != EXIT_BLOCK_PTR)
554 notice_new_block (redirect_edge_and_branch_force (e, target));
555 if (rtl_dump_file)
556 fprintf (rtl_dump_file, "Conditionals threaded.\n");
558 else if (!redirect_edge_and_branch (e, target))
560 if (rtl_dump_file)
561 fprintf (rtl_dump_file,
562 "Forwarding edge %i->%i to %i failed.\n",
563 b->index, e->dest->index, target->index);
564 continue;
567 /* We successfully forwarded the edge. Now update profile
568 data: for each edge we traversed in the chain, remove
569 the original edge's execution count. */
570 edge_frequency = ((edge_probability * b->frequency
571 + REG_BR_PROB_BASE / 2)
572 / REG_BR_PROB_BASE);
574 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
575 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
579 edge t;
581 first->count -= edge_count;
582 if (first->count < 0)
583 first->count = 0;
584 first->frequency -= edge_frequency;
585 if (first->frequency < 0)
586 first->frequency = 0;
587 if (first->succ->succ_next)
589 edge e;
590 int prob;
591 if (n >= nthreaded_edges)
592 abort ();
593 t = threaded_edges [n++];
594 if (t->src != first)
595 abort ();
596 if (first->frequency)
597 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
598 else
599 prob = 0;
600 if (prob > t->probability)
601 prob = t->probability;
602 t->probability -= prob;
603 prob = REG_BR_PROB_BASE - prob;
604 if (prob <= 0)
606 first->succ->probability = REG_BR_PROB_BASE;
607 first->succ->succ_next->probability = 0;
609 else
610 for (e = first->succ; e; e = e->succ_next)
611 e->probability = ((e->probability * REG_BR_PROB_BASE)
612 / (double) prob);
613 update_br_prob_note (first);
615 else
617 /* It is possible that as the result of
618 threading we've removed edge as it is
619 threaded to the fallthru edge. Avoid
620 getting out of sync. */
621 if (n < nthreaded_edges
622 && first == threaded_edges [n]->src)
623 n++;
624 t = first->succ;
627 t->count -= edge_count;
628 if (t->count < 0)
629 t->count = 0;
630 first = t->dest;
632 while (first != target);
634 changed = true;
638 if (threaded_edges)
639 free (threaded_edges);
640 return changed;
643 /* Return true if LABEL is a target of JUMP_INSN. This applies only
644 to non-complex jumps. That is, direct unconditional, conditional,
645 and tablejumps, but not computed jumps or returns. It also does
646 not apply to the fallthru case of a conditional jump. */
648 static bool
649 label_is_jump_target_p (rtx label, rtx jump_insn)
651 rtx tmp = JUMP_LABEL (jump_insn);
653 if (label == tmp)
654 return true;
656 if (tablejump_p (jump_insn, NULL, &tmp))
658 rtvec vec = XVEC (tmp, GET_CODE (tmp) == ADDR_DIFF_VEC);
659 int i, veclen = GET_NUM_ELEM (vec);
661 for (i = 0; i < veclen; ++i)
662 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
663 return true;
666 return false;
669 /* Return true if LABEL is used for tail recursion. */
671 static bool
672 tail_recursion_label_p (rtx label)
674 rtx x;
676 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
677 if (label == XEXP (x, 0))
678 return true;
680 return false;
683 /* Blocks A and B are to be merged into a single block. A has no incoming
684 fallthru edge, so it can be moved before B without adding or modifying
685 any jumps (aside from the jump from A to B). */
687 static void
688 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
690 rtx barrier;
692 barrier = next_nonnote_insn (a->end);
693 if (GET_CODE (barrier) != BARRIER)
694 abort ();
695 delete_insn (barrier);
697 /* Move block and loop notes out of the chain so that we do not
698 disturb their order.
700 ??? A better solution would be to squeeze out all the non-nested notes
701 and adjust the block trees appropriately. Even better would be to have
702 a tighter connection between block trees and rtl so that this is not
703 necessary. */
704 if (squeeze_notes (&a->head, &a->end))
705 abort ();
707 /* Scramble the insn chain. */
708 if (a->end != PREV_INSN (b->head))
709 reorder_insns_nobb (a->head, a->end, PREV_INSN (b->head));
710 a->flags |= BB_DIRTY;
712 if (rtl_dump_file)
713 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
714 a->index, b->index);
716 /* Swap the records for the two blocks around. */
718 unlink_block (a);
719 link_block (a, b->prev_bb);
721 /* Now blocks A and B are contiguous. Merge them. */
722 merge_blocks (a, b);
725 /* Blocks A and B are to be merged into a single block. B has no outgoing
726 fallthru edge, so it can be moved after A without adding or modifying
727 any jumps (aside from the jump from A to B). */
729 static void
730 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
732 rtx barrier, real_b_end;
733 rtx label, table;
735 real_b_end = b->end;
737 /* If there is a jump table following block B temporarily add the jump table
738 to block B so that it will also be moved to the correct location. */
739 if (tablejump_p (b->end, &label, &table)
740 && prev_active_insn (label) == b->end)
742 b->end = table;
745 /* There had better have been a barrier there. Delete it. */
746 barrier = NEXT_INSN (b->end);
747 if (barrier && GET_CODE (barrier) == BARRIER)
748 delete_insn (barrier);
750 /* Move block and loop notes out of the chain so that we do not
751 disturb their order.
753 ??? A better solution would be to squeeze out all the non-nested notes
754 and adjust the block trees appropriately. Even better would be to have
755 a tighter connection between block trees and rtl so that this is not
756 necessary. */
757 if (squeeze_notes (&b->head, &b->end))
758 abort ();
760 /* Scramble the insn chain. */
761 reorder_insns_nobb (b->head, b->end, a->end);
763 /* Restore the real end of b. */
764 b->end = real_b_end;
766 if (rtl_dump_file)
767 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
768 b->index, a->index);
770 /* Now blocks A and B are contiguous. Merge them. */
771 merge_blocks (a, b);
774 /* Attempt to merge basic blocks that are potentially non-adjacent.
775 Return NULL iff the attempt failed, otherwise return basic block
776 where cleanup_cfg should continue. Because the merging commonly
777 moves basic block away or introduces another optimization
778 possibility, return basic block just before B so cleanup_cfg don't
779 need to iterate.
781 It may be good idea to return basic block before C in the case
782 C has been moved after B and originally appeared earlier in the
783 insn sequence, but we have no information available about the
784 relative ordering of these two. Hopefully it is not too common. */
786 static basic_block
787 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
789 basic_block next;
790 /* If C has a tail recursion label, do not merge. There is no
791 edge recorded from the call_placeholder back to this label, as
792 that would make optimize_sibling_and_tail_recursive_calls more
793 complex for no gain. */
794 if ((mode & CLEANUP_PRE_SIBCALL)
795 && GET_CODE (c->head) == CODE_LABEL
796 && tail_recursion_label_p (c->head))
797 return NULL;
799 /* If B has a fallthru edge to C, no need to move anything. */
800 if (e->flags & EDGE_FALLTHRU)
802 int b_index = b->index, c_index = c->index;
803 merge_blocks (b, c);
804 update_forwarder_flag (b);
806 if (rtl_dump_file)
807 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
808 b_index, c_index);
810 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
813 /* Otherwise we will need to move code around. Do that only if expensive
814 transformations are allowed. */
815 else if (mode & CLEANUP_EXPENSIVE)
817 edge tmp_edge, b_fallthru_edge;
818 bool c_has_outgoing_fallthru;
819 bool b_has_incoming_fallthru;
821 /* Avoid overactive code motion, as the forwarder blocks should be
822 eliminated by edge redirection instead. One exception might have
823 been if B is a forwarder block and C has no fallthru edge, but
824 that should be cleaned up by bb-reorder instead. */
825 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
826 return NULL;
828 /* We must make sure to not munge nesting of lexical blocks,
829 and loop notes. This is done by squeezing out all the notes
830 and leaving them there to lie. Not ideal, but functional. */
832 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
833 if (tmp_edge->flags & EDGE_FALLTHRU)
834 break;
836 c_has_outgoing_fallthru = (tmp_edge != NULL);
838 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
839 if (tmp_edge->flags & EDGE_FALLTHRU)
840 break;
842 b_has_incoming_fallthru = (tmp_edge != NULL);
843 b_fallthru_edge = tmp_edge;
844 next = b->prev_bb;
845 if (next == c)
846 next = next->prev_bb;
848 /* Otherwise, we're going to try to move C after B. If C does
849 not have an outgoing fallthru, then it can be moved
850 immediately after B without introducing or modifying jumps. */
851 if (! c_has_outgoing_fallthru)
853 merge_blocks_move_successor_nojumps (b, c);
854 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
857 /* If B does not have an incoming fallthru, then it can be moved
858 immediately before C without introducing or modifying jumps.
859 C cannot be the first block, so we do not have to worry about
860 accessing a non-existent block. */
862 if (b_has_incoming_fallthru)
864 basic_block bb;
866 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
867 return NULL;
868 bb = force_nonfallthru (b_fallthru_edge);
869 if (bb)
870 notice_new_block (bb);
873 merge_blocks_move_predecessor_nojumps (b, c);
874 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
877 return NULL;
881 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
883 static bool
884 insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
886 rtx p1, p2;
888 /* Verify that I1 and I2 are equivalent. */
889 if (GET_CODE (i1) != GET_CODE (i2))
890 return false;
892 p1 = PATTERN (i1);
893 p2 = PATTERN (i2);
895 if (GET_CODE (p1) != GET_CODE (p2))
896 return false;
898 /* If this is a CALL_INSN, compare register usage information.
899 If we don't check this on stack register machines, the two
900 CALL_INSNs might be merged leaving reg-stack.c with mismatching
901 numbers of stack registers in the same basic block.
902 If we don't check this on machines with delay slots, a delay slot may
903 be filled that clobbers a parameter expected by the subroutine.
905 ??? We take the simple route for now and assume that if they're
906 equal, they were constructed identically. */
908 if (GET_CODE (i1) == CALL_INSN
909 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
910 CALL_INSN_FUNCTION_USAGE (i2))
911 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
912 return false;
914 #ifdef STACK_REGS
915 /* If cross_jump_death_matters is not 0, the insn's mode
916 indicates whether or not the insn contains any stack-like
917 regs. */
919 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
921 /* If register stack conversion has already been done, then
922 death notes must also be compared before it is certain that
923 the two instruction streams match. */
925 rtx note;
926 HARD_REG_SET i1_regset, i2_regset;
928 CLEAR_HARD_REG_SET (i1_regset);
929 CLEAR_HARD_REG_SET (i2_regset);
931 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
932 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
933 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
935 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
936 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
937 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
939 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
941 return false;
943 done:
946 #endif
948 if (reload_completed
949 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
950 return true;
952 /* Do not do EQUIV substitution after reload. First, we're undoing the
953 work of reload_cse. Second, we may be undoing the work of the post-
954 reload splitting pass. */
955 /* ??? Possibly add a new phase switch variable that can be used by
956 targets to disallow the troublesome insns after splitting. */
957 if (!reload_completed)
959 /* The following code helps take care of G++ cleanups. */
960 rtx equiv1 = find_reg_equal_equiv_note (i1);
961 rtx equiv2 = find_reg_equal_equiv_note (i2);
963 if (equiv1 && equiv2
964 /* If the equivalences are not to a constant, they may
965 reference pseudos that no longer exist, so we can't
966 use them. */
967 && (! reload_completed
968 || (CONSTANT_P (XEXP (equiv1, 0))
969 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
971 rtx s1 = single_set (i1);
972 rtx s2 = single_set (i2);
973 if (s1 != 0 && s2 != 0
974 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
976 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
977 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
978 if (! rtx_renumbered_equal_p (p1, p2))
979 cancel_changes (0);
980 else if (apply_change_group ())
981 return true;
986 return false;
989 /* Look through the insns at the end of BB1 and BB2 and find the longest
990 sequence that are equivalent. Store the first insns for that sequence
991 in *F1 and *F2 and return the sequence length.
993 To simplify callers of this function, if the blocks match exactly,
994 store the head of the blocks in *F1 and *F2. */
996 static int
997 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
998 basic_block bb2, rtx *f1, rtx *f2)
1000 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1001 int ninsns = 0;
1003 /* Skip simple jumps at the end of the blocks. Complex jumps still
1004 need to be compared for equivalence, which we'll do below. */
1006 i1 = bb1->end;
1007 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1008 if (onlyjump_p (i1)
1009 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1011 last1 = i1;
1012 i1 = PREV_INSN (i1);
1015 i2 = bb2->end;
1016 if (onlyjump_p (i2)
1017 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1019 last2 = i2;
1020 /* Count everything except for unconditional jump as insn. */
1021 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1022 ninsns++;
1023 i2 = PREV_INSN (i2);
1026 while (true)
1028 /* Ignore notes. */
1029 while (!INSN_P (i1) && i1 != bb1->head)
1030 i1 = PREV_INSN (i1);
1032 while (!INSN_P (i2) && i2 != bb2->head)
1033 i2 = PREV_INSN (i2);
1035 if (i1 == bb1->head || i2 == bb2->head)
1036 break;
1038 if (!insns_match_p (mode, i1, i2))
1039 break;
1041 /* Don't begin a cross-jump with a NOTE insn. */
1042 if (INSN_P (i1))
1044 /* If the merged insns have different REG_EQUAL notes, then
1045 remove them. */
1046 rtx equiv1 = find_reg_equal_equiv_note (i1);
1047 rtx equiv2 = find_reg_equal_equiv_note (i2);
1049 if (equiv1 && !equiv2)
1050 remove_note (i1, equiv1);
1051 else if (!equiv1 && equiv2)
1052 remove_note (i2, equiv2);
1053 else if (equiv1 && equiv2
1054 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1056 remove_note (i1, equiv1);
1057 remove_note (i2, equiv2);
1060 afterlast1 = last1, afterlast2 = last2;
1061 last1 = i1, last2 = i2;
1062 ninsns++;
1065 i1 = PREV_INSN (i1);
1066 i2 = PREV_INSN (i2);
1069 #ifdef HAVE_cc0
1070 /* Don't allow the insn after a compare to be shared by
1071 cross-jumping unless the compare is also shared. */
1072 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1073 last1 = afterlast1, last2 = afterlast2, ninsns--;
1074 #endif
1076 /* Include preceding notes and labels in the cross-jump. One,
1077 this may bring us to the head of the blocks as requested above.
1078 Two, it keeps line number notes as matched as may be. */
1079 if (ninsns)
1081 while (last1 != bb1->head && !INSN_P (PREV_INSN (last1)))
1082 last1 = PREV_INSN (last1);
1084 if (last1 != bb1->head && GET_CODE (PREV_INSN (last1)) == CODE_LABEL)
1085 last1 = PREV_INSN (last1);
1087 while (last2 != bb2->head && !INSN_P (PREV_INSN (last2)))
1088 last2 = PREV_INSN (last2);
1090 if (last2 != bb2->head && GET_CODE (PREV_INSN (last2)) == CODE_LABEL)
1091 last2 = PREV_INSN (last2);
1093 *f1 = last1;
1094 *f2 = last2;
1097 return ninsns;
1100 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1101 the branch instruction. This means that if we commonize the control
1102 flow before end of the basic block, the semantic remains unchanged.
1104 We may assume that there exists one edge with a common destination. */
1106 static bool
1107 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1109 int nehedges1 = 0, nehedges2 = 0;
1110 edge fallthru1 = 0, fallthru2 = 0;
1111 edge e1, e2;
1113 /* If BB1 has only one successor, we may be looking at either an
1114 unconditional jump, or a fake edge to exit. */
1115 if (bb1->succ && !bb1->succ->succ_next
1116 && (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1117 && (GET_CODE (bb1->end) != JUMP_INSN || simplejump_p (bb1->end)))
1118 return (bb2->succ && !bb2->succ->succ_next
1119 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1120 && (GET_CODE (bb2->end) != JUMP_INSN || simplejump_p (bb2->end)));
1122 /* Match conditional jumps - this may get tricky when fallthru and branch
1123 edges are crossed. */
1124 if (bb1->succ
1125 && bb1->succ->succ_next
1126 && !bb1->succ->succ_next->succ_next
1127 && any_condjump_p (bb1->end)
1128 && onlyjump_p (bb1->end))
1130 edge b1, f1, b2, f2;
1131 bool reverse, match;
1132 rtx set1, set2, cond1, cond2;
1133 enum rtx_code code1, code2;
1135 if (!bb2->succ
1136 || !bb2->succ->succ_next
1137 || bb2->succ->succ_next->succ_next
1138 || !any_condjump_p (bb2->end)
1139 || !onlyjump_p (bb2->end))
1140 return false;
1142 b1 = BRANCH_EDGE (bb1);
1143 b2 = BRANCH_EDGE (bb2);
1144 f1 = FALLTHRU_EDGE (bb1);
1145 f2 = FALLTHRU_EDGE (bb2);
1147 /* Get around possible forwarders on fallthru edges. Other cases
1148 should be optimized out already. */
1149 if (FORWARDER_BLOCK_P (f1->dest))
1150 f1 = f1->dest->succ;
1152 if (FORWARDER_BLOCK_P (f2->dest))
1153 f2 = f2->dest->succ;
1155 /* To simplify use of this function, return false if there are
1156 unneeded forwarder blocks. These will get eliminated later
1157 during cleanup_cfg. */
1158 if (FORWARDER_BLOCK_P (f1->dest)
1159 || FORWARDER_BLOCK_P (f2->dest)
1160 || FORWARDER_BLOCK_P (b1->dest)
1161 || FORWARDER_BLOCK_P (b2->dest))
1162 return false;
1164 if (f1->dest == f2->dest && b1->dest == b2->dest)
1165 reverse = false;
1166 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1167 reverse = true;
1168 else
1169 return false;
1171 set1 = pc_set (bb1->end);
1172 set2 = pc_set (bb2->end);
1173 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1174 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1175 reverse = !reverse;
1177 cond1 = XEXP (SET_SRC (set1), 0);
1178 cond2 = XEXP (SET_SRC (set2), 0);
1179 code1 = GET_CODE (cond1);
1180 if (reverse)
1181 code2 = reversed_comparison_code (cond2, bb2->end);
1182 else
1183 code2 = GET_CODE (cond2);
1185 if (code2 == UNKNOWN)
1186 return false;
1188 /* Verify codes and operands match. */
1189 match = ((code1 == code2
1190 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1191 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1192 || (code1 == swap_condition (code2)
1193 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1194 XEXP (cond2, 0))
1195 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1196 XEXP (cond2, 1))));
1198 /* If we return true, we will join the blocks. Which means that
1199 we will only have one branch prediction bit to work with. Thus
1200 we require the existing branches to have probabilities that are
1201 roughly similar. */
1202 if (match
1203 && !optimize_size
1204 && maybe_hot_bb_p (bb1)
1205 && maybe_hot_bb_p (bb2))
1207 int prob2;
1209 if (b1->dest == b2->dest)
1210 prob2 = b2->probability;
1211 else
1212 /* Do not use f2 probability as f2 may be forwarded. */
1213 prob2 = REG_BR_PROB_BASE - b2->probability;
1215 /* Fail if the difference in probabilities is greater than 50%.
1216 This rules out two well-predicted branches with opposite
1217 outcomes. */
1218 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1220 if (rtl_dump_file)
1221 fprintf (rtl_dump_file,
1222 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1223 bb1->index, bb2->index, b1->probability, prob2);
1225 return false;
1229 if (rtl_dump_file && match)
1230 fprintf (rtl_dump_file, "Conditionals in bb %i and %i match.\n",
1231 bb1->index, bb2->index);
1233 return match;
1236 /* Generic case - we are seeing a computed jump, table jump or trapping
1237 instruction. */
1239 #ifndef CASE_DROPS_THROUGH
1240 /* Check whether there are tablejumps in the end of BB1 and BB2.
1241 Return true if they are identical. */
1243 rtx label1, label2;
1244 rtx table1, table2;
1246 if (tablejump_p (bb1->end, &label1, &table1)
1247 && tablejump_p (bb2->end, &label2, &table2)
1248 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1250 /* The labels should never be the same rtx. If they really are same
1251 the jump tables are same too. So disable crossjumping of blocks BB1
1252 and BB2 because when deleting the common insns in the end of BB1
1253 by delete_block () the jump table would be deleted too. */
1254 /* If LABEL2 is referenced in BB1->END do not do anything
1255 because we would loose information when replacing
1256 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1257 if (label1 != label2 && !rtx_referenced_p (label2, bb1->end))
1259 /* Set IDENTICAL to true when the tables are identical. */
1260 bool identical = false;
1261 rtx p1, p2;
1263 p1 = PATTERN (table1);
1264 p2 = PATTERN (table2);
1265 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1267 identical = true;
1269 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1270 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1271 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1272 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1274 int i;
1276 identical = true;
1277 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1278 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1279 identical = false;
1282 if (identical)
1284 replace_label_data rr;
1285 bool match;
1287 /* Temporarily replace references to LABEL1 with LABEL2
1288 in BB1->END so that we could compare the instructions. */
1289 rr.r1 = label1;
1290 rr.r2 = label2;
1291 rr.update_label_nuses = false;
1292 for_each_rtx (&bb1->end, replace_label, &rr);
1294 match = insns_match_p (mode, bb1->end, bb2->end);
1295 if (rtl_dump_file && match)
1296 fprintf (rtl_dump_file,
1297 "Tablejumps in bb %i and %i match.\n",
1298 bb1->index, bb2->index);
1300 /* Set the original label in BB1->END because when deleting
1301 a block whose end is a tablejump, the tablejump referenced
1302 from the instruction is deleted too. */
1303 rr.r1 = label2;
1304 rr.r2 = label1;
1305 for_each_rtx (&bb1->end, replace_label, &rr);
1307 return match;
1310 return false;
1313 #endif
1315 /* First ensure that the instructions match. There may be many outgoing
1316 edges so this test is generally cheaper. */
1317 if (!insns_match_p (mode, bb1->end, bb2->end))
1318 return false;
1320 /* Search the outgoing edges, ensure that the counts do match, find possible
1321 fallthru and exception handling edges since these needs more
1322 validation. */
1323 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1324 e1 = e1->succ_next, e2 = e2->succ_next)
1326 if (e1->flags & EDGE_EH)
1327 nehedges1++;
1329 if (e2->flags & EDGE_EH)
1330 nehedges2++;
1332 if (e1->flags & EDGE_FALLTHRU)
1333 fallthru1 = e1;
1334 if (e2->flags & EDGE_FALLTHRU)
1335 fallthru2 = e2;
1338 /* If number of edges of various types does not match, fail. */
1339 if (e1 || e2
1340 || nehedges1 != nehedges2
1341 || (fallthru1 != 0) != (fallthru2 != 0))
1342 return false;
1344 /* fallthru edges must be forwarded to the same destination. */
1345 if (fallthru1)
1347 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1348 ? fallthru1->dest->succ->dest: fallthru1->dest);
1349 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1350 ? fallthru2->dest->succ->dest: fallthru2->dest);
1352 if (d1 != d2)
1353 return false;
1356 /* Ensure the same EH region. */
1358 rtx n1 = find_reg_note (bb1->end, REG_EH_REGION, 0);
1359 rtx n2 = find_reg_note (bb2->end, REG_EH_REGION, 0);
1361 if (!n1 && n2)
1362 return false;
1364 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1365 return false;
1368 /* We don't need to match the rest of edges as above checks should be enough
1369 to ensure that they are equivalent. */
1370 return true;
1373 /* E1 and E2 are edges with the same destination block. Search their
1374 predecessors for common code. If found, redirect control flow from
1375 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1377 static bool
1378 try_crossjump_to_edge (int mode, edge e1, edge e2)
1380 int nmatch;
1381 basic_block src1 = e1->src, src2 = e2->src;
1382 basic_block redirect_to, redirect_from, to_remove;
1383 rtx newpos1, newpos2;
1384 edge s;
1386 /* Search backward through forwarder blocks. We don't need to worry
1387 about multiple entry or chained forwarders, as they will be optimized
1388 away. We do this to look past the unconditional jump following a
1389 conditional jump that is required due to the current CFG shape. */
1390 if (src1->pred
1391 && !src1->pred->pred_next
1392 && FORWARDER_BLOCK_P (src1))
1393 e1 = src1->pred, src1 = e1->src;
1395 if (src2->pred
1396 && !src2->pred->pred_next
1397 && FORWARDER_BLOCK_P (src2))
1398 e2 = src2->pred, src2 = e2->src;
1400 /* Nothing to do if we reach ENTRY, or a common source block. */
1401 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1402 return false;
1403 if (src1 == src2)
1404 return false;
1406 /* Seeing more than 1 forwarder blocks would confuse us later... */
1407 if (FORWARDER_BLOCK_P (e1->dest)
1408 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1409 return false;
1411 if (FORWARDER_BLOCK_P (e2->dest)
1412 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1413 return false;
1415 /* Likewise with dead code (possibly newly created by the other optimizations
1416 of cfg_cleanup). */
1417 if (!src1->pred || !src2->pred)
1418 return false;
1420 /* Look for the common insn sequence, part the first ... */
1421 if (!outgoing_edges_match (mode, src1, src2))
1422 return false;
1424 /* ... and part the second. */
1425 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1426 if (!nmatch)
1427 return false;
1429 #ifndef CASE_DROPS_THROUGH
1430 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1431 will be deleted.
1432 If we have tablejumps in the end of SRC1 and SRC2
1433 they have been already compared for equivalence in outgoing_edges_match ()
1434 so replace the references to TABLE1 by references to TABLE2. */
1436 rtx label1, label2;
1437 rtx table1, table2;
1439 if (tablejump_p (src1->end, &label1, &table1)
1440 && tablejump_p (src2->end, &label2, &table2)
1441 && label1 != label2)
1443 replace_label_data rr;
1444 rtx insn;
1446 /* Replace references to LABEL1 with LABEL2. */
1447 rr.r1 = label1;
1448 rr.r2 = label2;
1449 rr.update_label_nuses = true;
1450 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1452 /* Do not replace the label in SRC1->END because when deleting
1453 a block whose end is a tablejump, the tablejump referenced
1454 from the instruction is deleted too. */
1455 if (insn != src1->end)
1456 for_each_rtx (&insn, replace_label, &rr);
1460 #endif
1462 /* Avoid splitting if possible. */
1463 if (newpos2 == src2->head)
1464 redirect_to = src2;
1465 else
1467 if (rtl_dump_file)
1468 fprintf (rtl_dump_file, "Splitting bb %i before %i insns\n",
1469 src2->index, nmatch);
1470 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1473 if (rtl_dump_file)
1474 fprintf (rtl_dump_file,
1475 "Cross jumping from bb %i to bb %i; %i common insns\n",
1476 src1->index, src2->index, nmatch);
1478 redirect_to->count += src1->count;
1479 redirect_to->frequency += src1->frequency;
1480 /* We may have some registers visible trought the block. */
1481 redirect_to->flags |= BB_DIRTY;
1483 /* Recompute the frequencies and counts of outgoing edges. */
1484 for (s = redirect_to->succ; s; s = s->succ_next)
1486 edge s2;
1487 basic_block d = s->dest;
1489 if (FORWARDER_BLOCK_P (d))
1490 d = d->succ->dest;
1492 for (s2 = src1->succ; ; s2 = s2->succ_next)
1494 basic_block d2 = s2->dest;
1495 if (FORWARDER_BLOCK_P (d2))
1496 d2 = d2->succ->dest;
1497 if (d == d2)
1498 break;
1501 s->count += s2->count;
1503 /* Take care to update possible forwarder blocks. We verified
1504 that there is no more than one in the chain, so we can't run
1505 into infinite loop. */
1506 if (FORWARDER_BLOCK_P (s->dest))
1508 s->dest->succ->count += s2->count;
1509 s->dest->count += s2->count;
1510 s->dest->frequency += EDGE_FREQUENCY (s);
1513 if (FORWARDER_BLOCK_P (s2->dest))
1515 s2->dest->succ->count -= s2->count;
1516 if (s2->dest->succ->count < 0)
1517 s2->dest->succ->count = 0;
1518 s2->dest->count -= s2->count;
1519 s2->dest->frequency -= EDGE_FREQUENCY (s);
1520 if (s2->dest->frequency < 0)
1521 s2->dest->frequency = 0;
1522 if (s2->dest->count < 0)
1523 s2->dest->count = 0;
1526 if (!redirect_to->frequency && !src1->frequency)
1527 s->probability = (s->probability + s2->probability) / 2;
1528 else
1529 s->probability
1530 = ((s->probability * redirect_to->frequency +
1531 s2->probability * src1->frequency)
1532 / (redirect_to->frequency + src1->frequency));
1535 update_br_prob_note (redirect_to);
1537 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1539 /* Skip possible basic block header. */
1540 if (GET_CODE (newpos1) == CODE_LABEL)
1541 newpos1 = NEXT_INSN (newpos1);
1543 if (GET_CODE (newpos1) == NOTE)
1544 newpos1 = NEXT_INSN (newpos1);
1546 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1547 to_remove = redirect_from->succ->dest;
1549 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1550 delete_block (to_remove);
1552 update_forwarder_flag (redirect_from);
1554 return true;
1557 /* Search the predecessors of BB for common insn sequences. When found,
1558 share code between them by redirecting control flow. Return true if
1559 any changes made. */
1561 static bool
1562 try_crossjump_bb (int mode, basic_block bb)
1564 edge e, e2, nexte2, nexte, fallthru;
1565 bool changed;
1566 int n = 0, max;
1568 /* Nothing to do if there is not at least two incoming edges. */
1569 if (!bb->pred || !bb->pred->pred_next)
1570 return false;
1572 /* It is always cheapest to redirect a block that ends in a branch to
1573 a block that falls through into BB, as that adds no branches to the
1574 program. We'll try that combination first. */
1575 fallthru = NULL;
1576 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1577 for (e = bb->pred; e ; e = e->pred_next, n++)
1579 if (e->flags & EDGE_FALLTHRU)
1580 fallthru = e;
1581 if (n > max)
1582 return false;
1585 changed = false;
1586 for (e = bb->pred; e; e = nexte)
1588 nexte = e->pred_next;
1590 /* As noted above, first try with the fallthru predecessor. */
1591 if (fallthru)
1593 /* Don't combine the fallthru edge into anything else.
1594 If there is a match, we'll do it the other way around. */
1595 if (e == fallthru)
1596 continue;
1598 if (try_crossjump_to_edge (mode, e, fallthru))
1600 changed = true;
1601 nexte = bb->pred;
1602 continue;
1606 /* Non-obvious work limiting check: Recognize that we're going
1607 to call try_crossjump_bb on every basic block. So if we have
1608 two blocks with lots of outgoing edges (a switch) and they
1609 share lots of common destinations, then we would do the
1610 cross-jump check once for each common destination.
1612 Now, if the blocks actually are cross-jump candidates, then
1613 all of their destinations will be shared. Which means that
1614 we only need check them for cross-jump candidacy once. We
1615 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1616 choosing to do the check from the block for which the edge
1617 in question is the first successor of A. */
1618 if (e->src->succ != e)
1619 continue;
1621 for (e2 = bb->pred; e2; e2 = nexte2)
1623 nexte2 = e2->pred_next;
1625 if (e2 == e)
1626 continue;
1628 /* We've already checked the fallthru edge above. */
1629 if (e2 == fallthru)
1630 continue;
1632 /* The "first successor" check above only prevents multiple
1633 checks of crossjump(A,B). In order to prevent redundant
1634 checks of crossjump(B,A), require that A be the block
1635 with the lowest index. */
1636 if (e->src->index > e2->src->index)
1637 continue;
1639 if (try_crossjump_to_edge (mode, e, e2))
1641 changed = true;
1642 nexte = bb->pred;
1643 break;
1648 return changed;
1651 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1652 instructions etc. Return nonzero if changes were made. */
1654 static bool
1655 try_optimize_cfg (int mode)
1657 bool changed_overall = false;
1658 bool changed;
1659 int iterations = 0;
1660 basic_block bb, b, next;
1662 if (mode & CLEANUP_CROSSJUMP)
1663 add_noreturn_fake_exit_edges ();
1665 FOR_EACH_BB (bb)
1666 update_forwarder_flag (bb);
1668 if (mode & CLEANUP_UPDATE_LIFE)
1669 clear_bb_flags ();
1671 if (! (* targetm.cannot_modify_jumps_p) ())
1673 /* Attempt to merge blocks as made possible by edge removal. If
1674 a block has only one successor, and the successor has only
1675 one predecessor, they may be combined. */
1678 changed = false;
1679 iterations++;
1681 if (rtl_dump_file)
1682 fprintf (rtl_dump_file,
1683 "\n\ntry_optimize_cfg iteration %i\n\n",
1684 iterations);
1686 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1688 basic_block c;
1689 edge s;
1690 bool changed_here = false;
1692 /* Delete trivially dead basic blocks. */
1693 while (b->pred == NULL)
1695 c = b->prev_bb;
1696 if (rtl_dump_file)
1697 fprintf (rtl_dump_file, "Deleting block %i.\n",
1698 b->index);
1700 delete_block (b);
1701 if (!(mode & CLEANUP_CFGLAYOUT))
1702 changed = true;
1703 b = c;
1706 /* Remove code labels no longer used. Don't do this
1707 before CALL_PLACEHOLDER is removed, as some branches
1708 may be hidden within. */
1709 if (b->pred->pred_next == NULL
1710 && (b->pred->flags & EDGE_FALLTHRU)
1711 && !(b->pred->flags & EDGE_COMPLEX)
1712 && GET_CODE (b->head) == CODE_LABEL
1713 && (!(mode & CLEANUP_PRE_SIBCALL)
1714 || !tail_recursion_label_p (b->head))
1715 /* If the previous block ends with a branch to this
1716 block, we can't delete the label. Normally this
1717 is a condjump that is yet to be simplified, but
1718 if CASE_DROPS_THRU, this can be a tablejump with
1719 some element going to the same place as the
1720 default (fallthru). */
1721 && (b->pred->src == ENTRY_BLOCK_PTR
1722 || GET_CODE (b->pred->src->end) != JUMP_INSN
1723 || ! label_is_jump_target_p (b->head,
1724 b->pred->src->end)))
1726 rtx label = b->head;
1728 delete_insn_chain (label, label);
1729 /* In the case label is undeletable, move it after the
1730 BASIC_BLOCK note. */
1731 if (NOTE_LINE_NUMBER (b->head) == NOTE_INSN_DELETED_LABEL)
1733 rtx bb_note = NEXT_INSN (b->head);
1735 reorder_insns_nobb (label, label, bb_note);
1736 b->head = bb_note;
1738 if (rtl_dump_file)
1739 fprintf (rtl_dump_file, "Deleted label in block %i.\n",
1740 b->index);
1743 /* If we fall through an empty block, we can remove it. */
1744 if (!(mode & CLEANUP_CFGLAYOUT)
1745 && b->pred->pred_next == NULL
1746 && (b->pred->flags & EDGE_FALLTHRU)
1747 && GET_CODE (b->head) != CODE_LABEL
1748 && FORWARDER_BLOCK_P (b)
1749 /* Note that forwarder_block_p true ensures that
1750 there is a successor for this block. */
1751 && (b->succ->flags & EDGE_FALLTHRU)
1752 && n_basic_blocks > 1)
1754 if (rtl_dump_file)
1755 fprintf (rtl_dump_file,
1756 "Deleting fallthru block %i.\n",
1757 b->index);
1759 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1760 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1761 delete_block (b);
1762 changed = true;
1763 b = c;
1766 if ((s = b->succ) != NULL
1767 && s->succ_next == NULL
1768 && !(s->flags & EDGE_COMPLEX)
1769 && (c = s->dest) != EXIT_BLOCK_PTR
1770 && c->pred->pred_next == NULL
1771 && b != c)
1773 /* When not in cfg_layout mode use code aware of reordering
1774 INSN. This code possibly creates new basic blocks so it
1775 does not fit merge_blocks interface and is kept here in
1776 hope that it will become useless once more of compiler
1777 is transformed to use cfg_layout mode. */
1779 if ((mode & CLEANUP_CFGLAYOUT)
1780 && can_merge_blocks_p (b, c))
1782 merge_blocks (b, c);
1783 update_forwarder_flag (b);
1784 changed_here = true;
1786 else if (!(mode & CLEANUP_CFGLAYOUT)
1787 /* If the jump insn has side effects,
1788 we can't kill the edge. */
1789 && (GET_CODE (b->end) != JUMP_INSN
1790 || (flow2_completed
1791 ? simplejump_p (b->end)
1792 : onlyjump_p (b->end)))
1793 && (next = merge_blocks_move (s, b, c, mode)))
1795 b = next;
1796 changed_here = true;
1800 /* Simplify branch over branch. */
1801 if ((mode & CLEANUP_EXPENSIVE)
1802 && !(mode & CLEANUP_CFGLAYOUT)
1803 && try_simplify_condjump (b))
1804 changed_here = true;
1806 /* If B has a single outgoing edge, but uses a
1807 non-trivial jump instruction without side-effects, we
1808 can either delete the jump entirely, or replace it
1809 with a simple unconditional jump. Use
1810 redirect_edge_and_branch to do the dirty work. */
1811 if (b->succ
1812 && ! b->succ->succ_next
1813 && b->succ->dest != EXIT_BLOCK_PTR
1814 && onlyjump_p (b->end)
1815 && redirect_edge_and_branch (b->succ, b->succ->dest))
1817 update_forwarder_flag (b);
1818 changed_here = true;
1821 /* Simplify branch to branch. */
1822 if (try_forward_edges (mode, b))
1823 changed_here = true;
1825 /* Look for shared code between blocks. */
1826 if ((mode & CLEANUP_CROSSJUMP)
1827 && try_crossjump_bb (mode, b))
1828 changed_here = true;
1830 /* Don't get confused by the index shift caused by
1831 deleting blocks. */
1832 if (!changed_here)
1833 b = b->next_bb;
1834 else
1835 changed = true;
1838 if ((mode & CLEANUP_CROSSJUMP)
1839 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1840 changed = true;
1842 #ifdef ENABLE_CHECKING
1843 if (changed)
1844 verify_flow_info ();
1845 #endif
1847 changed_overall |= changed;
1849 while (changed);
1852 if (mode & CLEANUP_CROSSJUMP)
1853 remove_fake_edges ();
1855 clear_aux_for_blocks ();
1857 return changed_overall;
1860 /* Delete all unreachable basic blocks. */
1862 bool
1863 delete_unreachable_blocks (void)
1865 bool changed = false;
1866 basic_block b, next_bb;
1868 find_unreachable_blocks ();
1870 /* Delete all unreachable basic blocks. */
1872 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
1874 next_bb = b->next_bb;
1876 if (!(b->flags & BB_REACHABLE))
1878 delete_block (b);
1879 changed = true;
1883 if (changed)
1884 tidy_fallthru_edges ();
1885 return changed;
1888 /* Tidy the CFG by deleting unreachable code and whatnot. */
1890 bool
1891 cleanup_cfg (int mode)
1893 bool changed = false;
1895 timevar_push (TV_CLEANUP_CFG);
1896 if (delete_unreachable_blocks ())
1898 changed = true;
1899 /* We've possibly created trivially dead code. Cleanup it right
1900 now to introduce more opportunities for try_optimize_cfg. */
1901 if (!(mode & (CLEANUP_NO_INSN_DEL
1902 | CLEANUP_UPDATE_LIFE | CLEANUP_PRE_SIBCALL))
1903 && !reload_completed)
1904 delete_trivially_dead_insns (get_insns(), max_reg_num ());
1907 compact_blocks ();
1909 while (try_optimize_cfg (mode))
1911 delete_unreachable_blocks (), changed = true;
1912 if (mode & CLEANUP_UPDATE_LIFE)
1914 /* Cleaning up CFG introduces more opportunities for dead code
1915 removal that in turn may introduce more opportunities for
1916 cleaning up the CFG. */
1917 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
1918 PROP_DEATH_NOTES
1919 | PROP_SCAN_DEAD_CODE
1920 | PROP_KILL_DEAD_CODE
1921 | PROP_LOG_LINKS))
1922 break;
1924 else if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_PRE_SIBCALL))
1925 && (mode & CLEANUP_EXPENSIVE)
1926 && !reload_completed)
1928 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
1929 break;
1931 else
1932 break;
1933 delete_dead_jumptables ();
1936 /* Kill the data we won't maintain. */
1937 free_EXPR_LIST_list (&label_value_list);
1938 timevar_pop (TV_CLEANUP_CFG);
1940 return changed;