gcc/ChangeLog
[official-gcc.git] / gcc / ipa-inline.c
blob35fce6d4a1a541886dc2b5b2add293985b907311
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
36 inlining heuristics
38 The inliner itself is split into two passes:
40 pass_early_inlining
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
68 pass_ipa_inline
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "tm.h"
96 #include "tree.h"
97 #include "tree-inline.h"
98 #include "langhooks.h"
99 #include "flags.h"
100 #include "cgraph.h"
101 #include "diagnostic.h"
102 #include "gimple-pretty-print.h"
103 #include "params.h"
104 #include "fibheap.h"
105 #include "intl.h"
106 #include "tree-pass.h"
107 #include "coverage.h"
108 #include "ggc.h"
109 #include "rtl.h"
110 #include "tree-flow.h"
111 #include "ipa-prop.h"
112 #include "except.h"
113 #include "target.h"
114 #include "ipa-inline.h"
115 #include "ipa-utils.h"
117 /* Statistics we collect about inlining algorithm. */
118 static int overall_size;
119 static gcov_type max_count;
121 /* Return false when inlining edge E would lead to violating
122 limits on function unit growth or stack usage growth.
124 The relative function body growth limit is present generally
125 to avoid problems with non-linear behavior of the compiler.
126 To allow inlining huge functions into tiny wrapper, the limit
127 is always based on the bigger of the two functions considered.
129 For stack growth limits we always base the growth in stack usage
130 of the callers. We want to prevent applications from segfaulting
131 on stack overflow when functions with huge stack frames gets
132 inlined. */
134 static bool
135 caller_growth_limits (struct cgraph_edge *e)
137 struct cgraph_node *to = e->caller;
138 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
139 int newsize;
140 int limit = 0;
141 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
142 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
144 /* Look for function e->caller is inlined to. While doing
145 so work out the largest function body on the way. As
146 described above, we want to base our function growth
147 limits based on that. Not on the self size of the
148 outer function, not on the self size of inline code
149 we immediately inline to. This is the most relaxed
150 interpretation of the rule "do not grow large functions
151 too much in order to prevent compiler from exploding". */
152 while (true)
154 info = inline_summary (to);
155 if (limit < info->self_size)
156 limit = info->self_size;
157 if (stack_size_limit < info->estimated_self_stack_size)
158 stack_size_limit = info->estimated_self_stack_size;
159 if (to->global.inlined_to)
160 to = to->callers->caller;
161 else
162 break;
165 what_info = inline_summary (what);
167 if (limit < what_info->self_size)
168 limit = what_info->self_size;
170 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
172 /* Check the size after inlining against the function limits. But allow
173 the function to shrink if it went over the limits by forced inlining. */
174 newsize = estimate_size_after_inlining (to, e);
175 if (newsize >= info->size
176 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
177 && newsize > limit)
179 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
180 return false;
183 if (!what_info->estimated_stack_size)
184 return true;
186 /* FIXME: Stack size limit often prevents inlining in Fortran programs
187 due to large i/o datastructures used by the Fortran front-end.
188 We ought to ignore this limit when we know that the edge is executed
189 on every invocation of the caller (i.e. its call statement dominates
190 exit block). We do not track this information, yet. */
191 stack_size_limit += ((gcov_type)stack_size_limit
192 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
194 inlined_stack = (outer_info->stack_frame_offset
195 + outer_info->estimated_self_stack_size
196 + what_info->estimated_stack_size);
197 /* Check new stack consumption with stack consumption at the place
198 stack is used. */
199 if (inlined_stack > stack_size_limit
200 /* If function already has large stack usage from sibling
201 inline call, we can inline, too.
202 This bit overoptimistically assume that we are good at stack
203 packing. */
204 && inlined_stack > info->estimated_stack_size
205 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
207 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
208 return false;
210 return true;
213 /* Dump info about why inlining has failed. */
215 static void
216 report_inline_failed_reason (struct cgraph_edge *e)
218 if (dump_file)
220 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
221 xstrdup (cgraph_node_name (e->caller)), e->caller->symbol.order,
222 xstrdup (cgraph_node_name (e->callee)), e->callee->symbol.order,
223 cgraph_inline_failed_string (e->inline_failed));
227 /* Decide if we can inline the edge and possibly update
228 inline_failed reason.
229 We check whether inlining is possible at all and whether
230 caller growth limits allow doing so.
232 if REPORT is true, output reason to the dump file. */
234 static bool
235 can_inline_edge_p (struct cgraph_edge *e, bool report)
237 bool inlinable = true;
238 enum availability avail;
239 struct cgraph_node *callee
240 = cgraph_function_or_thunk_node (e->callee, &avail);
241 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->symbol.decl);
242 tree callee_tree
243 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->symbol.decl) : NULL;
244 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->symbol.decl);
245 struct function *callee_cfun
246 = callee ? DECL_STRUCT_FUNCTION (callee->symbol.decl) : NULL;
248 if (!caller_cfun && e->caller->clone_of)
249 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->symbol.decl);
251 if (!callee_cfun && callee && callee->clone_of)
252 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->symbol.decl);
254 gcc_assert (e->inline_failed);
256 if (!callee || !callee->analyzed)
258 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
259 inlinable = false;
261 else if (!inline_summary (callee)->inlinable)
263 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
264 inlinable = false;
266 else if (avail <= AVAIL_OVERWRITABLE)
268 e->inline_failed = CIF_OVERWRITABLE;
269 inlinable = false;
271 else if (e->call_stmt_cannot_inline_p)
273 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
274 inlinable = false;
276 /* Don't inline if the functions have different EH personalities. */
277 else if (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
278 && DECL_FUNCTION_PERSONALITY (callee->symbol.decl)
279 && (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
280 != DECL_FUNCTION_PERSONALITY (callee->symbol.decl)))
282 e->inline_failed = CIF_EH_PERSONALITY;
283 inlinable = false;
285 /* TM pure functions should not be inlined into non-TM_pure
286 functions. */
287 else if (is_tm_pure (callee->symbol.decl)
288 && !is_tm_pure (e->caller->symbol.decl))
290 e->inline_failed = CIF_UNSPECIFIED;
291 inlinable = false;
293 /* Don't inline if the callee can throw non-call exceptions but the
294 caller cannot.
295 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
296 Move the flag into cgraph node or mirror it in the inline summary. */
297 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
298 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
300 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
301 inlinable = false;
303 /* Check compatibility of target optimization options. */
304 else if (!targetm.target_option.can_inline_p (e->caller->symbol.decl,
305 callee->symbol.decl))
307 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
308 inlinable = false;
310 /* Check if caller growth allows the inlining. */
311 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)
312 && !lookup_attribute ("flatten",
313 DECL_ATTRIBUTES
314 (e->caller->global.inlined_to
315 ? e->caller->global.inlined_to->symbol.decl
316 : e->caller->symbol.decl))
317 && !caller_growth_limits (e))
318 inlinable = false;
319 /* Don't inline a function with a higher optimization level than the
320 caller. FIXME: this is really just tip of iceberg of handling
321 optimization attribute. */
322 else if (caller_tree != callee_tree)
324 struct cl_optimization *caller_opt
325 = TREE_OPTIMIZATION ((caller_tree)
326 ? caller_tree
327 : optimization_default_node);
329 struct cl_optimization *callee_opt
330 = TREE_OPTIMIZATION ((callee_tree)
331 ? callee_tree
332 : optimization_default_node);
334 if (((caller_opt->x_optimize > callee_opt->x_optimize)
335 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
336 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
337 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->symbol.decl))
339 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
340 inlinable = false;
344 if (!inlinable && report)
345 report_inline_failed_reason (e);
346 return inlinable;
350 /* Return true if the edge E is inlinable during early inlining. */
352 static bool
353 can_early_inline_edge_p (struct cgraph_edge *e)
355 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
356 NULL);
357 /* Early inliner might get called at WPA stage when IPA pass adds new
358 function. In this case we can not really do any of early inlining
359 because function bodies are missing. */
360 if (!gimple_has_body_p (callee->symbol.decl))
362 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
363 return false;
365 /* In early inliner some of callees may not be in SSA form yet
366 (i.e. the callgraph is cyclic and we did not process
367 the callee by early inliner, yet). We don't have CIF code for this
368 case; later we will re-do the decision in the real inliner. */
369 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->symbol.decl))
370 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
372 if (dump_file)
373 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
374 return false;
376 if (!can_inline_edge_p (e, true))
377 return false;
378 return true;
382 /* Return number of calls in N. Ignore cheap builtins. */
384 static int
385 num_calls (struct cgraph_node *n)
387 struct cgraph_edge *e;
388 int num = 0;
390 for (e = n->callees; e; e = e->next_callee)
391 if (!is_inexpensive_builtin (e->callee->symbol.decl))
392 num++;
393 return num;
397 /* Return true if we are interested in inlining small function. */
399 static bool
400 want_early_inline_function_p (struct cgraph_edge *e)
402 bool want_inline = true;
403 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
405 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
407 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
408 && !flag_inline_small_functions)
410 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
411 report_inline_failed_reason (e);
412 want_inline = false;
414 else
416 int growth = estimate_edge_growth (e);
417 int n;
419 if (growth <= 0)
421 else if (!cgraph_maybe_hot_edge_p (e)
422 && growth > 0)
424 if (dump_file)
425 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
426 "call is cold and code would grow by %i\n",
427 xstrdup (cgraph_node_name (e->caller)),
428 e->caller->symbol.order,
429 xstrdup (cgraph_node_name (callee)), callee->symbol.order,
430 growth);
431 want_inline = false;
433 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
435 if (dump_file)
436 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
437 "growth %i exceeds --param early-inlining-insns\n",
438 xstrdup (cgraph_node_name (e->caller)),
439 e->caller->symbol.order,
440 xstrdup (cgraph_node_name (callee)), callee->symbol.order,
441 growth);
442 want_inline = false;
444 else if ((n = num_calls (callee)) != 0
445 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
447 if (dump_file)
448 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
449 "growth %i exceeds --param early-inlining-insns "
450 "divided by number of calls\n",
451 xstrdup (cgraph_node_name (e->caller)),
452 e->caller->symbol.order,
453 xstrdup (cgraph_node_name (callee)), callee->symbol.order,
454 growth);
455 want_inline = false;
458 return want_inline;
461 /* Compute time of the edge->caller + edge->callee execution when inlining
462 does not happen. */
464 inline gcov_type
465 compute_uninlined_call_time (struct inline_summary *callee_info,
466 struct cgraph_edge *edge)
468 gcov_type uninlined_call_time =
469 RDIV ((gcov_type)callee_info->time * MAX (edge->frequency, 1),
470 CGRAPH_FREQ_BASE);
471 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
472 ? edge->caller->global.inlined_to
473 : edge->caller)->time;
474 return uninlined_call_time + caller_time;
477 /* Same as compute_uinlined_call_time but compute time when inlining
478 does happen. */
480 inline gcov_type
481 compute_inlined_call_time (struct cgraph_edge *edge,
482 int edge_time)
484 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
485 ? edge->caller->global.inlined_to
486 : edge->caller)->time;
487 gcov_type time = (caller_time
488 + RDIV (((gcov_type) edge_time
489 - inline_edge_summary (edge)->call_stmt_time)
490 * MAX (edge->frequency, 1), CGRAPH_FREQ_BASE));
491 /* Possible one roundoff error, but watch for overflows. */
492 gcc_checking_assert (time >= INT_MIN / 2);
493 if (time < 0)
494 time = 0;
495 return time;
498 /* Return true if the speedup for inlining E is bigger than
499 PARAM_MAX_INLINE_MIN_SPEEDUP. */
501 static bool
502 big_speedup_p (struct cgraph_edge *e)
504 gcov_type time = compute_uninlined_call_time (inline_summary (e->callee),
506 gcov_type inlined_time = compute_inlined_call_time (e,
507 estimate_edge_time (e));
508 if (time - inlined_time
509 > RDIV (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP), 100))
510 return true;
511 return false;
514 /* Return true if we are interested in inlining small function.
515 When REPORT is true, report reason to dump file. */
517 static bool
518 want_inline_small_function_p (struct cgraph_edge *e, bool report)
520 bool want_inline = true;
521 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
523 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
525 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
526 && !flag_inline_small_functions)
528 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
529 want_inline = false;
531 else
533 int growth = estimate_edge_growth (e);
534 inline_hints hints = estimate_edge_hints (e);
535 bool big_speedup = big_speedup_p (e);
537 if (growth <= 0)
539 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
540 hints suggests that inlining given function is very profitable. */
541 else if (DECL_DECLARED_INLINE_P (callee->symbol.decl)
542 && growth >= MAX_INLINE_INSNS_SINGLE
543 && !big_speedup
544 && !(hints & (INLINE_HINT_indirect_call
545 | INLINE_HINT_loop_iterations
546 | INLINE_HINT_array_index
547 | INLINE_HINT_loop_stride)))
549 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
550 want_inline = false;
552 /* Before giving up based on fact that caller size will grow, allow
553 functions that are called few times and eliminating the offline
554 copy will lead to overall code size reduction.
555 Not all of these will be handled by subsequent inlining of functions
556 called once: in particular weak functions are not handled or funcitons
557 that inline to multiple calls but a lot of bodies is optimized out.
558 Finally we want to inline earlier to allow inlining of callbacks.
560 This is slightly wrong on aggressive side: it is entirely possible
561 that function is called many times with a context where inlining
562 reduces code size and few times with a context where inlining increase
563 code size. Resoluting growth estimate will be negative even if it
564 would make more sense to keep offline copy and do not inline into the
565 call sites that makes the code size grow.
567 When badness orders the calls in a way that code reducing calls come
568 first, this situation is not a problem at all: after inlining all
569 "good" calls, we will realize that keeping the function around is
570 better. */
571 else if (growth <= MAX_INLINE_INSNS_SINGLE
572 /* Unlike for functions called once, we play unsafe with
573 COMDATs. We can allow that since we know functions
574 in consideration are small (and thus risk is small) and
575 moreover grow estimates already accounts that COMDAT
576 functions may or may not disappear when eliminated from
577 current unit. With good probability making aggressive
578 choice in all units is going to make overall program
579 smaller.
581 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
582 instead of
583 cgraph_will_be_removed_from_program_if_no_direct_calls */
584 && !DECL_EXTERNAL (callee->symbol.decl)
585 && cgraph_can_remove_if_no_direct_calls_p (callee)
586 && estimate_growth (callee) <= 0)
588 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
589 && !flag_inline_functions)
591 e->inline_failed = CIF_NOT_DECLARED_INLINED;
592 want_inline = false;
594 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
595 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
596 inlining given function is very profitable. */
597 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
598 && !big_speedup
599 && growth >= ((hints & (INLINE_HINT_indirect_call
600 | INLINE_HINT_loop_iterations
601 | INLINE_HINT_array_index
602 | INLINE_HINT_loop_stride))
603 ? MAX (MAX_INLINE_INSNS_AUTO,
604 MAX_INLINE_INSNS_SINGLE)
605 : MAX_INLINE_INSNS_AUTO))
607 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
608 want_inline = false;
610 /* If call is cold, do not inline when function body would grow. */
611 else if (!cgraph_maybe_hot_edge_p (e))
613 e->inline_failed = CIF_UNLIKELY_CALL;
614 want_inline = false;
617 if (!want_inline && report)
618 report_inline_failed_reason (e);
619 return want_inline;
622 /* EDGE is self recursive edge.
623 We hand two cases - when function A is inlining into itself
624 or when function A is being inlined into another inliner copy of function
625 A within function B.
627 In first case OUTER_NODE points to the toplevel copy of A, while
628 in the second case OUTER_NODE points to the outermost copy of A in B.
630 In both cases we want to be extra selective since
631 inlining the call will just introduce new recursive calls to appear. */
633 static bool
634 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
635 struct cgraph_node *outer_node,
636 bool peeling,
637 int depth)
639 char const *reason = NULL;
640 bool want_inline = true;
641 int caller_freq = CGRAPH_FREQ_BASE;
642 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
644 if (DECL_DECLARED_INLINE_P (edge->caller->symbol.decl))
645 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
647 if (!cgraph_maybe_hot_edge_p (edge))
649 reason = "recursive call is cold";
650 want_inline = false;
652 else if (max_count && !outer_node->count)
654 reason = "not executed in profile";
655 want_inline = false;
657 else if (depth > max_depth)
659 reason = "--param max-inline-recursive-depth exceeded.";
660 want_inline = false;
663 if (outer_node->global.inlined_to)
664 caller_freq = outer_node->callers->frequency;
666 if (!want_inline)
668 /* Inlining of self recursive function into copy of itself within other function
669 is transformation similar to loop peeling.
671 Peeling is profitable if we can inline enough copies to make probability
672 of actual call to the self recursive function very small. Be sure that
673 the probability of recursion is small.
675 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
676 This way the expected number of recision is at most max_depth. */
677 else if (peeling)
679 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
680 / max_depth);
681 int i;
682 for (i = 1; i < depth; i++)
683 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
684 if (max_count
685 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
686 >= max_prob))
688 reason = "profile of recursive call is too large";
689 want_inline = false;
691 if (!max_count
692 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
693 >= max_prob))
695 reason = "frequency of recursive call is too large";
696 want_inline = false;
699 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
700 depth is large. We reduce function call overhead and increase chances that
701 things fit in hardware return predictor.
703 Recursive inlining might however increase cost of stack frame setup
704 actually slowing down functions whose recursion tree is wide rather than
705 deep.
707 Deciding reliably on when to do recursive inlining without profile feedback
708 is tricky. For now we disable recursive inlining when probability of self
709 recursion is low.
711 Recursive inlining of self recursive call within loop also results in large loop
712 depths that generally optimize badly. We may want to throttle down inlining
713 in those cases. In particular this seems to happen in one of libstdc++ rb tree
714 methods. */
715 else
717 if (max_count
718 && (edge->count * 100 / outer_node->count
719 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
721 reason = "profile of recursive call is too small";
722 want_inline = false;
724 else if (!max_count
725 && (edge->frequency * 100 / caller_freq
726 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
728 reason = "frequency of recursive call is too small";
729 want_inline = false;
732 if (!want_inline && dump_file)
733 fprintf (dump_file, " not inlining recursively: %s\n", reason);
734 return want_inline;
737 /* Return true when NODE has caller other than EDGE.
738 Worker for cgraph_for_node_and_aliases. */
740 static bool
741 check_caller_edge (struct cgraph_node *node, void *edge)
743 return (node->callers
744 && node->callers != edge);
748 /* Decide if inlining NODE would reduce unit size by eliminating
749 the offline copy of function.
750 When COLD is true the cold calls are considered, too. */
752 static bool
753 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
755 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
756 struct cgraph_edge *e;
757 bool has_hot_call = false;
759 /* Does it have callers? */
760 if (!node->callers)
761 return false;
762 /* Already inlined? */
763 if (function->global.inlined_to)
764 return false;
765 if (cgraph_function_or_thunk_node (node, NULL) != node)
766 return false;
767 /* Inlining into all callers would increase size? */
768 if (estimate_growth (node) > 0)
769 return false;
770 /* Maybe other aliases has more direct calls. */
771 if (cgraph_for_node_and_aliases (node, check_caller_edge, node->callers, true))
772 return false;
773 /* All inlines must be possible. */
774 for (e = node->callers; e; e = e->next_caller)
776 if (!can_inline_edge_p (e, true))
777 return false;
778 if (!has_hot_call && cgraph_maybe_hot_edge_p (e))
779 has_hot_call = 1;
782 if (!cold && !has_hot_call)
783 return false;
784 return true;
787 #define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64)
789 /* Return relative time improvement for inlining EDGE in range
790 1...RELATIVE_TIME_BENEFIT_RANGE */
792 static inline int
793 relative_time_benefit (struct inline_summary *callee_info,
794 struct cgraph_edge *edge,
795 int edge_time)
797 gcov_type relbenefit;
798 gcov_type uninlined_call_time = compute_uninlined_call_time (callee_info, edge);
799 gcov_type inlined_call_time = compute_inlined_call_time (edge, edge_time);
801 /* Inlining into extern inline function is not a win. */
802 if (DECL_EXTERNAL (edge->caller->global.inlined_to
803 ? edge->caller->global.inlined_to->symbol.decl
804 : edge->caller->symbol.decl))
805 return 1;
807 /* Watch overflows. */
808 gcc_checking_assert (uninlined_call_time >= 0);
809 gcc_checking_assert (inlined_call_time >= 0);
810 gcc_checking_assert (uninlined_call_time >= inlined_call_time);
812 /* Compute relative time benefit, i.e. how much the call becomes faster.
813 ??? perhaps computing how much the caller+calle together become faster
814 would lead to more realistic results. */
815 if (!uninlined_call_time)
816 uninlined_call_time = 1;
817 relbenefit =
818 RDIV (((gcov_type)uninlined_call_time - inlined_call_time) * RELATIVE_TIME_BENEFIT_RANGE,
819 uninlined_call_time);
820 relbenefit = MIN (relbenefit, RELATIVE_TIME_BENEFIT_RANGE);
821 gcc_checking_assert (relbenefit >= 0);
822 relbenefit = MAX (relbenefit, 1);
823 return relbenefit;
827 /* A cost model driving the inlining heuristics in a way so the edges with
828 smallest badness are inlined first. After each inlining is performed
829 the costs of all caller edges of nodes affected are recomputed so the
830 metrics may accurately depend on values such as number of inlinable callers
831 of the function or function body size. */
833 static int
834 edge_badness (struct cgraph_edge *edge, bool dump)
836 gcov_type badness;
837 int growth, edge_time;
838 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
839 NULL);
840 struct inline_summary *callee_info = inline_summary (callee);
841 inline_hints hints;
843 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
844 return INT_MIN;
846 growth = estimate_edge_growth (edge);
847 edge_time = estimate_edge_time (edge);
848 hints = estimate_edge_hints (edge);
849 gcc_checking_assert (edge_time >= 0);
850 gcc_checking_assert (edge_time <= callee_info->time);
851 gcc_checking_assert (growth <= callee_info->size);
853 if (dump)
855 fprintf (dump_file, " Badness calculation for %s/%i -> %s/%i\n",
856 xstrdup (cgraph_node_name (edge->caller)),
857 edge->caller->symbol.order,
858 xstrdup (cgraph_node_name (callee)),
859 edge->callee->symbol.order);
860 fprintf (dump_file, " size growth %i, time %i ",
861 growth,
862 edge_time);
863 dump_inline_hints (dump_file, hints);
864 if (big_speedup_p (edge))
865 fprintf (dump_file, " big_speedup");
866 fprintf (dump_file, "\n");
869 /* Always prefer inlining saving code size. */
870 if (growth <= 0)
872 badness = INT_MIN / 2 + growth;
873 if (dump)
874 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
875 growth);
878 /* When profiling is available, compute badness as:
880 relative_edge_count * relative_time_benefit
881 goodness = -------------------------------------------
882 growth_f_caller
883 badness = -goodness
885 The fraction is upside down, because on edge counts and time beneits
886 the bounds are known. Edge growth is essentially unlimited. */
888 else if (max_count)
890 int relbenefit = relative_time_benefit (callee_info, edge, edge_time);
891 badness =
892 ((int)
893 ((double) edge->count * INT_MIN / 2 / max_count / RELATIVE_TIME_BENEFIT_RANGE) *
894 relbenefit) / growth;
896 /* Be sure that insanity of the profile won't lead to increasing counts
897 in the scalling and thus to overflow in the computation above. */
898 gcc_assert (max_count >= edge->count);
899 if (dump)
901 fprintf (dump_file,
902 " %i (relative %f): profile info. Relative count %f"
903 " * Relative benefit %f\n",
904 (int) badness, (double) badness / INT_MIN,
905 (double) edge->count / max_count,
906 relbenefit * 100.0 / RELATIVE_TIME_BENEFIT_RANGE);
910 /* When function local profile is available. Compute badness as:
912 relative_time_benefit
913 goodness = ---------------------------------
914 growth_of_caller * overall_growth
916 badness = - goodness
918 compensated by the inline hints.
920 else if (flag_guess_branch_prob)
922 badness = (relative_time_benefit (callee_info, edge, edge_time)
923 * (INT_MIN / 16 / RELATIVE_TIME_BENEFIT_RANGE));
924 badness /= (MIN (65536/2, growth) * MIN (65536/2, MAX (1, callee_info->growth)));
925 gcc_checking_assert (badness <=0 && badness >= INT_MIN / 16);
926 if ((hints & (INLINE_HINT_indirect_call
927 | INLINE_HINT_loop_iterations
928 | INLINE_HINT_array_index
929 | INLINE_HINT_loop_stride))
930 || callee_info->growth <= 0)
931 badness *= 8;
932 if (hints & (INLINE_HINT_same_scc))
933 badness /= 16;
934 else if (hints & (INLINE_HINT_in_scc))
935 badness /= 8;
936 else if (hints & (INLINE_HINT_cross_module))
937 badness /= 2;
938 gcc_checking_assert (badness <= 0 && badness >= INT_MIN / 2);
939 if ((hints & INLINE_HINT_declared_inline) && badness >= INT_MIN / 32)
940 badness *= 16;
941 if (dump)
943 fprintf (dump_file,
944 " %i: guessed profile. frequency %f,"
945 " benefit %f%%, time w/o inlining %i, time w inlining %i"
946 " overall growth %i (current) %i (original)\n",
947 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
948 relative_time_benefit (callee_info, edge, edge_time) * 100.0
949 / RELATIVE_TIME_BENEFIT_RANGE,
950 (int)compute_uninlined_call_time (callee_info, edge),
951 (int)compute_inlined_call_time (edge, edge_time),
952 estimate_growth (callee),
953 callee_info->growth);
956 /* When function local profile is not available or it does not give
957 useful information (ie frequency is zero), base the cost on
958 loop nest and overall size growth, so we optimize for overall number
959 of functions fully inlined in program. */
960 else
962 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
963 badness = growth * 256;
965 /* Decrease badness if call is nested. */
966 if (badness > 0)
967 badness >>= nest;
968 else
970 badness <<= nest;
972 if (dump)
973 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
974 nest);
977 /* Ensure that we did not overflow in all the fixed point math above. */
978 gcc_assert (badness >= INT_MIN);
979 gcc_assert (badness <= INT_MAX - 1);
980 /* Make recursive inlining happen always after other inlining is done. */
981 if (cgraph_edge_recursive_p (edge))
982 return badness + 1;
983 else
984 return badness;
987 /* Recompute badness of EDGE and update its key in HEAP if needed. */
988 static inline void
989 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
991 int badness = edge_badness (edge, false);
992 if (edge->aux)
994 fibnode_t n = (fibnode_t) edge->aux;
995 gcc_checking_assert (n->data == edge);
997 /* fibheap_replace_key only decrease the keys.
998 When we increase the key we do not update heap
999 and instead re-insert the element once it becomes
1000 a minimum of heap. */
1001 if (badness < n->key)
1003 if (dump_file && (dump_flags & TDF_DETAILS))
1005 fprintf (dump_file,
1006 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
1007 xstrdup (cgraph_node_name (edge->caller)),
1008 edge->caller->symbol.order,
1009 xstrdup (cgraph_node_name (edge->callee)),
1010 edge->callee->symbol.order,
1011 (int)n->key,
1012 badness);
1014 fibheap_replace_key (heap, n, badness);
1015 gcc_checking_assert (n->key == badness);
1018 else
1020 if (dump_file && (dump_flags & TDF_DETAILS))
1022 fprintf (dump_file,
1023 " enqueuing call %s/%i -> %s/%i, badness %i\n",
1024 xstrdup (cgraph_node_name (edge->caller)),
1025 edge->caller->symbol.order,
1026 xstrdup (cgraph_node_name (edge->callee)),
1027 edge->callee->symbol.order,
1028 badness);
1030 edge->aux = fibheap_insert (heap, badness, edge);
1035 /* NODE was inlined.
1036 All caller edges needs to be resetted because
1037 size estimates change. Similarly callees needs reset
1038 because better context may be known. */
1040 static void
1041 reset_edge_caches (struct cgraph_node *node)
1043 struct cgraph_edge *edge;
1044 struct cgraph_edge *e = node->callees;
1045 struct cgraph_node *where = node;
1046 int i;
1047 struct ipa_ref *ref;
1049 if (where->global.inlined_to)
1050 where = where->global.inlined_to;
1052 /* WHERE body size has changed, the cached growth is invalid. */
1053 reset_node_growth_cache (where);
1055 for (edge = where->callers; edge; edge = edge->next_caller)
1056 if (edge->inline_failed)
1057 reset_edge_growth_cache (edge);
1058 for (i = 0; ipa_ref_list_referring_iterate (&where->symbol.ref_list,
1059 i, ref); i++)
1060 if (ref->use == IPA_REF_ALIAS)
1061 reset_edge_caches (ipa_ref_referring_node (ref));
1063 if (!e)
1064 return;
1066 while (true)
1067 if (!e->inline_failed && e->callee->callees)
1068 e = e->callee->callees;
1069 else
1071 if (e->inline_failed)
1072 reset_edge_growth_cache (e);
1073 if (e->next_callee)
1074 e = e->next_callee;
1075 else
1079 if (e->caller == node)
1080 return;
1081 e = e->caller->callers;
1083 while (!e->next_callee);
1084 e = e->next_callee;
1089 /* Recompute HEAP nodes for each of caller of NODE.
1090 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1091 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1092 it is inlinable. Otherwise check all edges. */
1094 static void
1095 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
1096 bitmap updated_nodes,
1097 struct cgraph_edge *check_inlinablity_for)
1099 struct cgraph_edge *edge;
1100 int i;
1101 struct ipa_ref *ref;
1103 if ((!node->alias && !inline_summary (node)->inlinable)
1104 || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE
1105 || node->global.inlined_to)
1106 return;
1107 if (!bitmap_set_bit (updated_nodes, node->uid))
1108 return;
1110 for (i = 0; ipa_ref_list_referring_iterate (&node->symbol.ref_list,
1111 i, ref); i++)
1112 if (ref->use == IPA_REF_ALIAS)
1114 struct cgraph_node *alias = ipa_ref_referring_node (ref);
1115 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1118 for (edge = node->callers; edge; edge = edge->next_caller)
1119 if (edge->inline_failed)
1121 if (!check_inlinablity_for
1122 || check_inlinablity_for == edge)
1124 if (can_inline_edge_p (edge, false)
1125 && want_inline_small_function_p (edge, false))
1126 update_edge_key (heap, edge);
1127 else if (edge->aux)
1129 report_inline_failed_reason (edge);
1130 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1131 edge->aux = NULL;
1134 else if (edge->aux)
1135 update_edge_key (heap, edge);
1139 /* Recompute HEAP nodes for each uninlined call in NODE.
1140 This is used when we know that edge badnesses are going only to increase
1141 (we introduced new call site) and thus all we need is to insert newly
1142 created edges into heap. */
1144 static void
1145 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1146 bitmap updated_nodes)
1148 struct cgraph_edge *e = node->callees;
1150 if (!e)
1151 return;
1152 while (true)
1153 if (!e->inline_failed && e->callee->callees)
1154 e = e->callee->callees;
1155 else
1157 enum availability avail;
1158 struct cgraph_node *callee;
1159 /* We do not reset callee growth cache here. Since we added a new call,
1160 growth chould have just increased and consequentely badness metric
1161 don't need updating. */
1162 if (e->inline_failed
1163 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1164 && inline_summary (callee)->inlinable
1165 && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE
1166 && !bitmap_bit_p (updated_nodes, callee->uid))
1168 if (can_inline_edge_p (e, false)
1169 && want_inline_small_function_p (e, false))
1170 update_edge_key (heap, e);
1171 else if (e->aux)
1173 report_inline_failed_reason (e);
1174 fibheap_delete_node (heap, (fibnode_t) e->aux);
1175 e->aux = NULL;
1178 if (e->next_callee)
1179 e = e->next_callee;
1180 else
1184 if (e->caller == node)
1185 return;
1186 e = e->caller->callers;
1188 while (!e->next_callee);
1189 e = e->next_callee;
1194 /* Enqueue all recursive calls from NODE into priority queue depending on
1195 how likely we want to recursively inline the call. */
1197 static void
1198 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1199 fibheap_t heap)
1201 struct cgraph_edge *e;
1202 enum availability avail;
1204 for (e = where->callees; e; e = e->next_callee)
1205 if (e->callee == node
1206 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1207 && avail > AVAIL_OVERWRITABLE))
1209 /* When profile feedback is available, prioritize by expected number
1210 of calls. */
1211 fibheap_insert (heap,
1212 !max_count ? -e->frequency
1213 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1216 for (e = where->callees; e; e = e->next_callee)
1217 if (!e->inline_failed)
1218 lookup_recursive_calls (node, e->callee, heap);
1221 /* Decide on recursive inlining: in the case function has recursive calls,
1222 inline until body size reaches given argument. If any new indirect edges
1223 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1224 is NULL. */
1226 static bool
1227 recursive_inlining (struct cgraph_edge *edge,
1228 vec<cgraph_edge_p> *new_edges)
1230 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1231 fibheap_t heap;
1232 struct cgraph_node *node;
1233 struct cgraph_edge *e;
1234 struct cgraph_node *master_clone = NULL, *next;
1235 int depth = 0;
1236 int n = 0;
1238 node = edge->caller;
1239 if (node->global.inlined_to)
1240 node = node->global.inlined_to;
1242 if (DECL_DECLARED_INLINE_P (node->symbol.decl))
1243 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1245 /* Make sure that function is small enough to be considered for inlining. */
1246 if (estimate_size_after_inlining (node, edge) >= limit)
1247 return false;
1248 heap = fibheap_new ();
1249 lookup_recursive_calls (node, node, heap);
1250 if (fibheap_empty (heap))
1252 fibheap_delete (heap);
1253 return false;
1256 if (dump_file)
1257 fprintf (dump_file,
1258 " Performing recursive inlining on %s\n",
1259 cgraph_node_name (node));
1261 /* Do the inlining and update list of recursive call during process. */
1262 while (!fibheap_empty (heap))
1264 struct cgraph_edge *curr
1265 = (struct cgraph_edge *) fibheap_extract_min (heap);
1266 struct cgraph_node *cnode, *dest = curr->callee;
1268 if (!can_inline_edge_p (curr, true))
1269 continue;
1271 /* MASTER_CLONE is produced in the case we already started modified
1272 the function. Be sure to redirect edge to the original body before
1273 estimating growths otherwise we will be seeing growths after inlining
1274 the already modified body. */
1275 if (master_clone)
1277 cgraph_redirect_edge_callee (curr, master_clone);
1278 reset_edge_growth_cache (curr);
1281 if (estimate_size_after_inlining (node, curr) > limit)
1283 cgraph_redirect_edge_callee (curr, dest);
1284 reset_edge_growth_cache (curr);
1285 break;
1288 depth = 1;
1289 for (cnode = curr->caller;
1290 cnode->global.inlined_to; cnode = cnode->callers->caller)
1291 if (node->symbol.decl
1292 == cgraph_function_or_thunk_node (curr->callee, NULL)->symbol.decl)
1293 depth++;
1295 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1297 cgraph_redirect_edge_callee (curr, dest);
1298 reset_edge_growth_cache (curr);
1299 continue;
1302 if (dump_file)
1304 fprintf (dump_file,
1305 " Inlining call of depth %i", depth);
1306 if (node->count)
1308 fprintf (dump_file, " called approx. %.2f times per call",
1309 (double)curr->count / node->count);
1311 fprintf (dump_file, "\n");
1313 if (!master_clone)
1315 /* We need original clone to copy around. */
1316 master_clone = cgraph_clone_node (node, node->symbol.decl,
1317 node->count, CGRAPH_FREQ_BASE,
1318 false, vNULL, true);
1319 for (e = master_clone->callees; e; e = e->next_callee)
1320 if (!e->inline_failed)
1321 clone_inlined_nodes (e, true, false, NULL);
1322 cgraph_redirect_edge_callee (curr, master_clone);
1323 reset_edge_growth_cache (curr);
1326 inline_call (curr, false, new_edges, &overall_size, true);
1327 lookup_recursive_calls (node, curr->callee, heap);
1328 n++;
1331 if (!fibheap_empty (heap) && dump_file)
1332 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1333 fibheap_delete (heap);
1335 if (!master_clone)
1336 return false;
1338 if (dump_file)
1339 fprintf (dump_file,
1340 "\n Inlined %i times, "
1341 "body grown from size %i to %i, time %i to %i\n", n,
1342 inline_summary (master_clone)->size, inline_summary (node)->size,
1343 inline_summary (master_clone)->time, inline_summary (node)->time);
1345 /* Remove master clone we used for inlining. We rely that clones inlined
1346 into master clone gets queued just before master clone so we don't
1347 need recursion. */
1348 for (node = cgraph_first_function (); node != master_clone;
1349 node = next)
1351 next = cgraph_next_function (node);
1352 if (node->global.inlined_to == master_clone)
1353 cgraph_remove_node (node);
1355 cgraph_remove_node (master_clone);
1356 return true;
1360 /* Given whole compilation unit estimate of INSNS, compute how large we can
1361 allow the unit to grow. */
1363 static int
1364 compute_max_insns (int insns)
1366 int max_insns = insns;
1367 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1368 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1370 return ((HOST_WIDEST_INT) max_insns
1371 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1375 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1377 static void
1378 add_new_edges_to_heap (fibheap_t heap, vec<cgraph_edge_p> new_edges)
1380 while (new_edges.length () > 0)
1382 struct cgraph_edge *edge = new_edges.pop ();
1384 gcc_assert (!edge->aux);
1385 if (edge->inline_failed
1386 && can_inline_edge_p (edge, true)
1387 && want_inline_small_function_p (edge, true))
1388 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1393 /* We use greedy algorithm for inlining of small functions:
1394 All inline candidates are put into prioritized heap ordered in
1395 increasing badness.
1397 The inlining of small functions is bounded by unit growth parameters. */
1399 static void
1400 inline_small_functions (void)
1402 struct cgraph_node *node;
1403 struct cgraph_edge *edge;
1404 fibheap_t edge_heap = fibheap_new ();
1405 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1406 int min_size, max_size;
1407 vec<cgraph_edge_p> new_indirect_edges = vNULL;
1408 int initial_size = 0;
1409 struct cgraph_node **order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1411 if (flag_indirect_inlining)
1412 new_indirect_edges.create (8);
1414 /* Compute overall unit size and other global parameters used by badness
1415 metrics. */
1417 max_count = 0;
1418 ipa_reduced_postorder (order, true, true, NULL);
1419 free (order);
1421 FOR_EACH_DEFINED_FUNCTION (node)
1422 if (!node->global.inlined_to)
1424 if (cgraph_function_with_gimple_body_p (node)
1425 || node->thunk.thunk_p)
1427 struct inline_summary *info = inline_summary (node);
1428 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->symbol.aux;
1430 if (!DECL_EXTERNAL (node->symbol.decl))
1431 initial_size += info->size;
1432 info->growth = estimate_growth (node);
1433 if (dfs && dfs->next_cycle)
1435 struct cgraph_node *n2;
1436 int id = dfs->scc_no + 1;
1437 for (n2 = node; n2;
1438 n2 = ((struct ipa_dfs_info *) node->symbol.aux)->next_cycle)
1440 struct inline_summary *info2 = inline_summary (n2);
1441 if (info2->scc_no)
1442 break;
1443 info2->scc_no = id;
1448 for (edge = node->callers; edge; edge = edge->next_caller)
1449 if (max_count < edge->count)
1450 max_count = edge->count;
1452 ipa_free_postorder_info ();
1453 initialize_growth_caches ();
1455 if (dump_file)
1456 fprintf (dump_file,
1457 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1458 initial_size);
1460 overall_size = initial_size;
1461 max_size = compute_max_insns (overall_size);
1462 min_size = overall_size;
1464 /* Populate the heeap with all edges we might inline. */
1466 FOR_EACH_DEFINED_FUNCTION (node)
1467 if (!node->global.inlined_to)
1469 if (dump_file)
1470 fprintf (dump_file, "Enqueueing calls of %s/%i.\n",
1471 cgraph_node_name (node), node->symbol.order);
1473 for (edge = node->callers; edge; edge = edge->next_caller)
1474 if (edge->inline_failed
1475 && can_inline_edge_p (edge, true)
1476 && want_inline_small_function_p (edge, true)
1477 && edge->inline_failed)
1479 gcc_assert (!edge->aux);
1480 update_edge_key (edge_heap, edge);
1484 gcc_assert (in_lto_p
1485 || !max_count
1486 || (profile_info && flag_branch_probabilities));
1488 while (!fibheap_empty (edge_heap))
1490 int old_size = overall_size;
1491 struct cgraph_node *where, *callee;
1492 int badness = fibheap_min_key (edge_heap);
1493 int current_badness;
1494 int cached_badness;
1495 int growth;
1497 edge = (struct cgraph_edge *) fibheap_extract_min (edge_heap);
1498 gcc_assert (edge->aux);
1499 edge->aux = NULL;
1500 if (!edge->inline_failed)
1501 continue;
1503 /* Be sure that caches are maintained consistent.
1504 We can not make this ENABLE_CHECKING only because it cause different
1505 updates of the fibheap queue. */
1506 cached_badness = edge_badness (edge, false);
1507 reset_edge_growth_cache (edge);
1508 reset_node_growth_cache (edge->callee);
1510 /* When updating the edge costs, we only decrease badness in the keys.
1511 Increases of badness are handled lazilly; when we see key with out
1512 of date value on it, we re-insert it now. */
1513 current_badness = edge_badness (edge, false);
1514 gcc_assert (cached_badness == current_badness);
1515 gcc_assert (current_badness >= badness);
1516 if (current_badness != badness)
1518 edge->aux = fibheap_insert (edge_heap, current_badness, edge);
1519 continue;
1522 if (!can_inline_edge_p (edge, true))
1523 continue;
1525 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1526 growth = estimate_edge_growth (edge);
1527 if (dump_file)
1529 fprintf (dump_file,
1530 "\nConsidering %s/%i with %i size\n",
1531 cgraph_node_name (callee), callee->symbol.order,
1532 inline_summary (callee)->size);
1533 fprintf (dump_file,
1534 " to be inlined into %s/%i in %s:%i\n"
1535 " Estimated growth after inlined into all is %+i insns.\n"
1536 " Estimated badness is %i, frequency %.2f.\n",
1537 cgraph_node_name (edge->caller), edge->caller->symbol.order,
1538 flag_wpa ? "unknown"
1539 : gimple_filename ((const_gimple) edge->call_stmt),
1540 flag_wpa ? -1
1541 : gimple_lineno ((const_gimple) edge->call_stmt),
1542 estimate_growth (callee),
1543 badness,
1544 edge->frequency / (double)CGRAPH_FREQ_BASE);
1545 if (edge->count)
1546 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1547 edge->count);
1548 if (dump_flags & TDF_DETAILS)
1549 edge_badness (edge, true);
1552 if (overall_size + growth > max_size
1553 && !DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1555 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1556 report_inline_failed_reason (edge);
1557 continue;
1560 if (!want_inline_small_function_p (edge, true))
1561 continue;
1563 /* Heuristics for inlining small functions works poorly for
1564 recursive calls where we do efect similar to loop unrolling.
1565 When inliing such edge seems profitable, leave decision on
1566 specific inliner. */
1567 if (cgraph_edge_recursive_p (edge))
1569 where = edge->caller;
1570 if (where->global.inlined_to)
1571 where = where->global.inlined_to;
1572 if (!recursive_inlining (edge,
1573 flag_indirect_inlining
1574 ? &new_indirect_edges : NULL))
1576 edge->inline_failed = CIF_RECURSIVE_INLINING;
1577 continue;
1579 reset_edge_caches (where);
1580 /* Recursive inliner inlines all recursive calls of the function
1581 at once. Consequently we need to update all callee keys. */
1582 if (flag_indirect_inlining)
1583 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1584 update_callee_keys (edge_heap, where, updated_nodes);
1586 else
1588 struct cgraph_node *outer_node = NULL;
1589 int depth = 0;
1591 /* Consider the case where self recursive function A is inlined into B.
1592 This is desired optimization in some cases, since it leads to effect
1593 similar of loop peeling and we might completely optimize out the
1594 recursive call. However we must be extra selective. */
1596 where = edge->caller;
1597 while (where->global.inlined_to)
1599 if (where->symbol.decl == callee->symbol.decl)
1600 outer_node = where, depth++;
1601 where = where->callers->caller;
1603 if (outer_node
1604 && !want_inline_self_recursive_call_p (edge, outer_node,
1605 true, depth))
1607 edge->inline_failed
1608 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->symbol.decl)
1609 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1610 continue;
1612 else if (depth && dump_file)
1613 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1615 gcc_checking_assert (!callee->global.inlined_to);
1616 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
1617 if (flag_indirect_inlining)
1618 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1620 reset_edge_caches (edge->callee);
1621 reset_node_growth_cache (callee);
1623 update_callee_keys (edge_heap, where, updated_nodes);
1625 where = edge->caller;
1626 if (where->global.inlined_to)
1627 where = where->global.inlined_to;
1629 /* Our profitability metric can depend on local properties
1630 such as number of inlinable calls and size of the function body.
1631 After inlining these properties might change for the function we
1632 inlined into (since it's body size changed) and for the functions
1633 called by function we inlined (since number of it inlinable callers
1634 might change). */
1635 update_caller_keys (edge_heap, where, updated_nodes, NULL);
1636 bitmap_clear (updated_nodes);
1638 if (dump_file)
1640 fprintf (dump_file,
1641 " Inlined into %s which now has time %i and size %i,"
1642 "net change of %+i.\n",
1643 cgraph_node_name (edge->caller),
1644 inline_summary (edge->caller)->time,
1645 inline_summary (edge->caller)->size,
1646 overall_size - old_size);
1648 if (min_size > overall_size)
1650 min_size = overall_size;
1651 max_size = compute_max_insns (min_size);
1653 if (dump_file)
1654 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1658 free_growth_caches ();
1659 new_indirect_edges.release ();
1660 fibheap_delete (edge_heap);
1661 if (dump_file)
1662 fprintf (dump_file,
1663 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1664 initial_size, overall_size,
1665 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1666 BITMAP_FREE (updated_nodes);
1669 /* Flatten NODE. Performed both during early inlining and
1670 at IPA inlining time. */
1672 static void
1673 flatten_function (struct cgraph_node *node, bool early)
1675 struct cgraph_edge *e;
1677 /* We shouldn't be called recursively when we are being processed. */
1678 gcc_assert (node->symbol.aux == NULL);
1680 node->symbol.aux = (void *) node;
1682 for (e = node->callees; e; e = e->next_callee)
1684 struct cgraph_node *orig_callee;
1685 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1687 /* We've hit cycle? It is time to give up. */
1688 if (callee->symbol.aux)
1690 if (dump_file)
1691 fprintf (dump_file,
1692 "Not inlining %s into %s to avoid cycle.\n",
1693 xstrdup (cgraph_node_name (callee)),
1694 xstrdup (cgraph_node_name (e->caller)));
1695 e->inline_failed = CIF_RECURSIVE_INLINING;
1696 continue;
1699 /* When the edge is already inlined, we just need to recurse into
1700 it in order to fully flatten the leaves. */
1701 if (!e->inline_failed)
1703 flatten_function (callee, early);
1704 continue;
1707 /* Flatten attribute needs to be processed during late inlining. For
1708 extra code quality we however do flattening during early optimization,
1709 too. */
1710 if (!early
1711 ? !can_inline_edge_p (e, true)
1712 : !can_early_inline_edge_p (e))
1713 continue;
1715 if (cgraph_edge_recursive_p (e))
1717 if (dump_file)
1718 fprintf (dump_file, "Not inlining: recursive call.\n");
1719 continue;
1722 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->symbol.decl))
1723 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
1725 if (dump_file)
1726 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1727 continue;
1730 /* Inline the edge and flatten the inline clone. Avoid
1731 recursing through the original node if the node was cloned. */
1732 if (dump_file)
1733 fprintf (dump_file, " Inlining %s into %s.\n",
1734 xstrdup (cgraph_node_name (callee)),
1735 xstrdup (cgraph_node_name (e->caller)));
1736 orig_callee = callee;
1737 inline_call (e, true, NULL, NULL, false);
1738 if (e->callee != orig_callee)
1739 orig_callee->symbol.aux = (void *) node;
1740 flatten_function (e->callee, early);
1741 if (e->callee != orig_callee)
1742 orig_callee->symbol.aux = NULL;
1745 node->symbol.aux = NULL;
1746 if (!node->global.inlined_to)
1747 inline_update_overall_summary (node);
1750 /* Decide on the inlining. We do so in the topological order to avoid
1751 expenses on updating data structures. */
1753 static unsigned int
1754 ipa_inline (void)
1756 struct cgraph_node *node;
1757 int nnodes;
1758 struct cgraph_node **order =
1759 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1760 int i;
1762 if (in_lto_p && optimize)
1763 ipa_update_after_lto_read ();
1765 if (dump_file)
1766 dump_inline_summaries (dump_file);
1768 nnodes = ipa_reverse_postorder (order);
1770 FOR_EACH_FUNCTION (node)
1771 node->symbol.aux = 0;
1773 if (dump_file)
1774 fprintf (dump_file, "\nFlattening functions:\n");
1776 /* In the first pass handle functions to be flattened. Do this with
1777 a priority so none of our later choices will make this impossible. */
1778 for (i = nnodes - 1; i >= 0; i--)
1780 node = order[i];
1782 /* Handle nodes to be flattened.
1783 Ideally when processing callees we stop inlining at the
1784 entry of cycles, possibly cloning that entry point and
1785 try to flatten itself turning it into a self-recursive
1786 function. */
1787 if (lookup_attribute ("flatten",
1788 DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
1790 if (dump_file)
1791 fprintf (dump_file,
1792 "Flattening %s\n", cgraph_node_name (node));
1793 flatten_function (node, false);
1797 inline_small_functions ();
1798 symtab_remove_unreachable_nodes (false, dump_file);
1799 free (order);
1801 /* Inline functions with a property that after inlining into all callers the
1802 code size will shrink because the out-of-line copy is eliminated.
1803 We do this regardless on the callee size as long as function growth limits
1804 are met. */
1805 if (flag_inline_functions_called_once)
1807 int cold;
1808 if (dump_file)
1809 fprintf (dump_file,
1810 "\nDeciding on functions to be inlined into all callers:\n");
1812 /* Inlining one function called once has good chance of preventing
1813 inlining other function into the same callee. Ideally we should
1814 work in priority order, but probably inlining hot functions first
1815 is good cut without the extra pain of maintaining the queue.
1817 ??? this is not really fitting the bill perfectly: inlining function
1818 into callee often leads to better optimization of callee due to
1819 increased context for optimization.
1820 For example if main() function calls a function that outputs help
1821 and then function that does the main optmization, we should inline
1822 the second with priority even if both calls are cold by themselves.
1824 We probably want to implement new predicate replacing our use of
1825 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1826 to be hot. */
1827 for (cold = 0; cold <= 1; cold ++)
1829 FOR_EACH_DEFINED_FUNCTION (node)
1831 if (want_inline_function_to_all_callers_p (node, cold))
1833 int num_calls = 0;
1834 struct cgraph_edge *e;
1835 for (e = node->callers; e; e = e->next_caller)
1836 num_calls++;
1837 while (node->callers && !node->global.inlined_to)
1839 struct cgraph_node *caller = node->callers->caller;
1841 if (dump_file)
1843 fprintf (dump_file,
1844 "\nInlining %s size %i.\n",
1845 cgraph_node_name (node),
1846 inline_summary (node)->size);
1847 fprintf (dump_file,
1848 " Called once from %s %i insns.\n",
1849 cgraph_node_name (node->callers->caller),
1850 inline_summary (node->callers->caller)->size);
1853 inline_call (node->callers, true, NULL, NULL, true);
1854 if (dump_file)
1855 fprintf (dump_file,
1856 " Inlined into %s which now has %i size\n",
1857 cgraph_node_name (caller),
1858 inline_summary (caller)->size);
1859 if (!num_calls--)
1861 if (dump_file)
1862 fprintf (dump_file, "New calls found; giving up.\n");
1863 break;
1871 /* Free ipa-prop structures if they are no longer needed. */
1872 if (optimize)
1873 ipa_free_all_structures_after_iinln ();
1875 if (dump_file)
1876 fprintf (dump_file,
1877 "\nInlined %i calls, eliminated %i functions\n\n",
1878 ncalls_inlined, nfunctions_inlined);
1880 if (dump_file)
1881 dump_inline_summaries (dump_file);
1882 /* In WPA we use inline summaries for partitioning process. */
1883 if (!flag_wpa)
1884 inline_free_summary ();
1885 return 0;
1888 /* Inline always-inline function calls in NODE. */
1890 static bool
1891 inline_always_inline_functions (struct cgraph_node *node)
1893 struct cgraph_edge *e;
1894 bool inlined = false;
1896 for (e = node->callees; e; e = e->next_callee)
1898 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1899 if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1900 continue;
1902 if (cgraph_edge_recursive_p (e))
1904 if (dump_file)
1905 fprintf (dump_file, " Not inlining recursive call to %s.\n",
1906 cgraph_node_name (e->callee));
1907 e->inline_failed = CIF_RECURSIVE_INLINING;
1908 continue;
1911 if (!can_early_inline_edge_p (e))
1912 continue;
1914 if (dump_file)
1915 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
1916 xstrdup (cgraph_node_name (e->callee)),
1917 xstrdup (cgraph_node_name (e->caller)));
1918 inline_call (e, true, NULL, NULL, false);
1919 inlined = true;
1921 if (inlined)
1922 inline_update_overall_summary (node);
1924 return inlined;
1927 /* Decide on the inlining. We do so in the topological order to avoid
1928 expenses on updating data structures. */
1930 static bool
1931 early_inline_small_functions (struct cgraph_node *node)
1933 struct cgraph_edge *e;
1934 bool inlined = false;
1936 for (e = node->callees; e; e = e->next_callee)
1938 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1939 if (!inline_summary (callee)->inlinable
1940 || !e->inline_failed)
1941 continue;
1943 /* Do not consider functions not declared inline. */
1944 if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
1945 && !flag_inline_small_functions
1946 && !flag_inline_functions)
1947 continue;
1949 if (dump_file)
1950 fprintf (dump_file, "Considering inline candidate %s.\n",
1951 cgraph_node_name (callee));
1953 if (!can_early_inline_edge_p (e))
1954 continue;
1956 if (cgraph_edge_recursive_p (e))
1958 if (dump_file)
1959 fprintf (dump_file, " Not inlining: recursive call.\n");
1960 continue;
1963 if (!want_early_inline_function_p (e))
1964 continue;
1966 if (dump_file)
1967 fprintf (dump_file, " Inlining %s into %s.\n",
1968 xstrdup (cgraph_node_name (callee)),
1969 xstrdup (cgraph_node_name (e->caller)));
1970 inline_call (e, true, NULL, NULL, true);
1971 inlined = true;
1974 return inlined;
1977 /* Do inlining of small functions. Doing so early helps profiling and other
1978 passes to be somewhat more effective and avoids some code duplication in
1979 later real inlining pass for testcases with very many function calls. */
1980 static unsigned int
1981 early_inliner (void)
1983 struct cgraph_node *node = cgraph_get_node (current_function_decl);
1984 struct cgraph_edge *edge;
1985 unsigned int todo = 0;
1986 int iterations = 0;
1987 bool inlined = false;
1989 if (seen_error ())
1990 return 0;
1992 /* Do nothing if datastructures for ipa-inliner are already computed. This
1993 happens when some pass decides to construct new function and
1994 cgraph_add_new_function calls lowering passes and early optimization on
1995 it. This may confuse ourself when early inliner decide to inline call to
1996 function clone, because function clones don't have parameter list in
1997 ipa-prop matching their signature. */
1998 if (ipa_node_params_vector.exists ())
1999 return 0;
2001 #ifdef ENABLE_CHECKING
2002 verify_cgraph_node (node);
2003 #endif
2005 /* Even when not optimizing or not inlining inline always-inline
2006 functions. */
2007 inlined = inline_always_inline_functions (node);
2009 if (!optimize
2010 || flag_no_inline
2011 || !flag_early_inlining
2012 /* Never inline regular functions into always-inline functions
2013 during incremental inlining. This sucks as functions calling
2014 always inline functions will get less optimized, but at the
2015 same time inlining of functions calling always inline
2016 function into an always inline function might introduce
2017 cycles of edges to be always inlined in the callgraph.
2019 We might want to be smarter and just avoid this type of inlining. */
2020 || DECL_DISREGARD_INLINE_LIMITS (node->symbol.decl))
2022 else if (lookup_attribute ("flatten",
2023 DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
2025 /* When the function is marked to be flattened, recursively inline
2026 all calls in it. */
2027 if (dump_file)
2028 fprintf (dump_file,
2029 "Flattening %s\n", cgraph_node_name (node));
2030 flatten_function (node, true);
2031 inlined = true;
2033 else
2035 /* We iterate incremental inlining to get trivial cases of indirect
2036 inlining. */
2037 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2038 && early_inline_small_functions (node))
2040 timevar_push (TV_INTEGRATION);
2041 todo |= optimize_inline_calls (current_function_decl);
2043 /* Technically we ought to recompute inline parameters so the new
2044 iteration of early inliner works as expected. We however have
2045 values approximately right and thus we only need to update edge
2046 info that might be cleared out for newly discovered edges. */
2047 for (edge = node->callees; edge; edge = edge->next_callee)
2049 struct inline_edge_summary *es = inline_edge_summary (edge);
2050 es->call_stmt_size
2051 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2052 es->call_stmt_time
2053 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2054 if (edge->callee->symbol.decl
2055 && !gimple_check_call_matching_types (edge->call_stmt,
2056 edge->callee->symbol.decl))
2057 edge->call_stmt_cannot_inline_p = true;
2059 timevar_pop (TV_INTEGRATION);
2060 iterations++;
2061 inlined = false;
2063 if (dump_file)
2064 fprintf (dump_file, "Iterations: %i\n", iterations);
2067 if (inlined)
2069 timevar_push (TV_INTEGRATION);
2070 todo |= optimize_inline_calls (current_function_decl);
2071 timevar_pop (TV_INTEGRATION);
2074 cfun->always_inline_functions_inlined = true;
2076 return todo;
2079 struct gimple_opt_pass pass_early_inline =
2082 GIMPLE_PASS,
2083 "einline", /* name */
2084 OPTGROUP_INLINE, /* optinfo_flags */
2085 NULL, /* gate */
2086 early_inliner, /* execute */
2087 NULL, /* sub */
2088 NULL, /* next */
2089 0, /* static_pass_number */
2090 TV_EARLY_INLINING, /* tv_id */
2091 PROP_ssa, /* properties_required */
2092 0, /* properties_provided */
2093 0, /* properties_destroyed */
2094 0, /* todo_flags_start */
2095 0 /* todo_flags_finish */
2100 /* When to run IPA inlining. Inlining of always-inline functions
2101 happens during early inlining.
2103 Enable inlining unconditoinally at -flto. We need size estimates to
2104 drive partitioning. */
2106 static bool
2107 gate_ipa_inline (void)
2109 return optimize || flag_lto || flag_wpa;
2112 struct ipa_opt_pass_d pass_ipa_inline =
2115 IPA_PASS,
2116 "inline", /* name */
2117 OPTGROUP_INLINE, /* optinfo_flags */
2118 gate_ipa_inline, /* gate */
2119 ipa_inline, /* execute */
2120 NULL, /* sub */
2121 NULL, /* next */
2122 0, /* static_pass_number */
2123 TV_IPA_INLINING, /* tv_id */
2124 0, /* properties_required */
2125 0, /* properties_provided */
2126 0, /* properties_destroyed */
2127 TODO_remove_functions, /* todo_flags_finish */
2128 TODO_dump_symtab
2129 | TODO_remove_functions /* todo_flags_finish */
2131 inline_generate_summary, /* generate_summary */
2132 inline_write_summary, /* write_summary */
2133 inline_read_summary, /* read_summary */
2134 NULL, /* write_optimization_summary */
2135 NULL, /* read_optimization_summary */
2136 NULL, /* stmt_fixup */
2137 0, /* TODOs */
2138 inline_transform, /* function_transform */
2139 NULL, /* variable_transform */