gcc/ChangeLog
[official-gcc.git] / gcc / haifa-sched.c
blob15ddedbe113c2c0763f8d3a4236c16b96505ff46
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point is found for
24 the normal instruction scheduling pass is found in sched-rgn.c.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_backward_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "function.h"
135 #include "flags.h"
136 #include "insn-config.h"
137 #include "insn-attr.h"
138 #include "except.h"
139 #include "recog.h"
140 #include "sched-int.h"
141 #include "target.h"
142 #include "common/common-target.h"
143 #include "params.h"
144 #include "dbgcnt.h"
145 #include "cfgloop.h"
146 #include "ira.h"
147 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
148 #include "hash-table.h"
149 #include "dumpfile.h"
151 #ifdef INSN_SCHEDULING
153 /* issue_rate is the number of insns that can be scheduled in the same
154 machine cycle. It can be defined in the config/mach/mach.h file,
155 otherwise we set it to 1. */
157 int issue_rate;
159 /* This can be set to true by a backend if the scheduler should not
160 enable a DCE pass. */
161 bool sched_no_dce;
163 /* The current initiation interval used when modulo scheduling. */
164 static int modulo_ii;
166 /* The maximum number of stages we are prepared to handle. */
167 static int modulo_max_stages;
169 /* The number of insns that exist in each iteration of the loop. We use this
170 to detect when we've scheduled all insns from the first iteration. */
171 static int modulo_n_insns;
173 /* The current count of insns in the first iteration of the loop that have
174 already been scheduled. */
175 static int modulo_insns_scheduled;
177 /* The maximum uid of insns from the first iteration of the loop. */
178 static int modulo_iter0_max_uid;
180 /* The number of times we should attempt to backtrack when modulo scheduling.
181 Decreased each time we have to backtrack. */
182 static int modulo_backtracks_left;
184 /* The stage in which the last insn from the original loop was
185 scheduled. */
186 static int modulo_last_stage;
188 /* sched-verbose controls the amount of debugging output the
189 scheduler prints. It is controlled by -fsched-verbose=N:
190 N>0 and no -DSR : the output is directed to stderr.
191 N>=10 will direct the printouts to stderr (regardless of -dSR).
192 N=1: same as -dSR.
193 N=2: bb's probabilities, detailed ready list info, unit/insn info.
194 N=3: rtl at abort point, control-flow, regions info.
195 N=5: dependences info. */
197 int sched_verbose = 0;
199 /* Debugging file. All printouts are sent to dump, which is always set,
200 either to stderr, or to the dump listing file (-dRS). */
201 FILE *sched_dump = 0;
203 /* This is a placeholder for the scheduler parameters common
204 to all schedulers. */
205 struct common_sched_info_def *common_sched_info;
207 #define INSN_TICK(INSN) (HID (INSN)->tick)
208 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
209 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
210 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
211 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
212 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
213 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
214 /* Cached cost of the instruction. Use insn_cost to get cost of the
215 insn. -1 here means that the field is not initialized. */
216 #define INSN_COST(INSN) (HID (INSN)->cost)
218 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
219 then it should be recalculated from scratch. */
220 #define INVALID_TICK (-(max_insn_queue_index + 1))
221 /* The minimal value of the INSN_TICK of an instruction. */
222 #define MIN_TICK (-max_insn_queue_index)
224 /* List of important notes we must keep around. This is a pointer to the
225 last element in the list. */
226 rtx note_list;
228 static struct spec_info_def spec_info_var;
229 /* Description of the speculative part of the scheduling.
230 If NULL - no speculation. */
231 spec_info_t spec_info = NULL;
233 /* True, if recovery block was added during scheduling of current block.
234 Used to determine, if we need to fix INSN_TICKs. */
235 static bool haifa_recovery_bb_recently_added_p;
237 /* True, if recovery block was added during this scheduling pass.
238 Used to determine if we should have empty memory pools of dependencies
239 after finishing current region. */
240 bool haifa_recovery_bb_ever_added_p;
242 /* Counters of different types of speculative instructions. */
243 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
245 /* Array used in {unlink, restore}_bb_notes. */
246 static rtx *bb_header = 0;
248 /* Basic block after which recovery blocks will be created. */
249 static basic_block before_recovery;
251 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
252 created it. */
253 basic_block after_recovery;
255 /* FALSE if we add bb to another region, so we don't need to initialize it. */
256 bool adding_bb_to_current_region_p = true;
258 /* Queues, etc. */
260 /* An instruction is ready to be scheduled when all insns preceding it
261 have already been scheduled. It is important to ensure that all
262 insns which use its result will not be executed until its result
263 has been computed. An insn is maintained in one of four structures:
265 (P) the "Pending" set of insns which cannot be scheduled until
266 their dependencies have been satisfied.
267 (Q) the "Queued" set of insns that can be scheduled when sufficient
268 time has passed.
269 (R) the "Ready" list of unscheduled, uncommitted insns.
270 (S) the "Scheduled" list of insns.
272 Initially, all insns are either "Pending" or "Ready" depending on
273 whether their dependencies are satisfied.
275 Insns move from the "Ready" list to the "Scheduled" list as they
276 are committed to the schedule. As this occurs, the insns in the
277 "Pending" list have their dependencies satisfied and move to either
278 the "Ready" list or the "Queued" set depending on whether
279 sufficient time has passed to make them ready. As time passes,
280 insns move from the "Queued" set to the "Ready" list.
282 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
283 unscheduled insns, i.e., those that are ready, queued, and pending.
284 The "Queued" set (Q) is implemented by the variable `insn_queue'.
285 The "Ready" list (R) is implemented by the variables `ready' and
286 `n_ready'.
287 The "Scheduled" list (S) is the new insn chain built by this pass.
289 The transition (R->S) is implemented in the scheduling loop in
290 `schedule_block' when the best insn to schedule is chosen.
291 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
292 insns move from the ready list to the scheduled list.
293 The transition (Q->R) is implemented in 'queue_to_insn' as time
294 passes or stalls are introduced. */
296 /* Implement a circular buffer to delay instructions until sufficient
297 time has passed. For the new pipeline description interface,
298 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
299 than maximal time of instruction execution computed by genattr.c on
300 the base maximal time of functional unit reservations and getting a
301 result. This is the longest time an insn may be queued. */
303 static rtx *insn_queue;
304 static int q_ptr = 0;
305 static int q_size = 0;
306 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
307 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
309 #define QUEUE_SCHEDULED (-3)
310 #define QUEUE_NOWHERE (-2)
311 #define QUEUE_READY (-1)
312 /* QUEUE_SCHEDULED - INSN is scheduled.
313 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
314 queue or ready list.
315 QUEUE_READY - INSN is in ready list.
316 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
318 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
320 /* The following variable value refers for all current and future
321 reservations of the processor units. */
322 state_t curr_state;
324 /* The following variable value is size of memory representing all
325 current and future reservations of the processor units. */
326 size_t dfa_state_size;
328 /* The following array is used to find the best insn from ready when
329 the automaton pipeline interface is used. */
330 char *ready_try = NULL;
332 /* The ready list. */
333 struct ready_list ready = {NULL, 0, 0, 0, 0};
335 /* The pointer to the ready list (to be removed). */
336 static struct ready_list *readyp = &ready;
338 /* Scheduling clock. */
339 static int clock_var;
341 /* Clock at which the previous instruction was issued. */
342 static int last_clock_var;
344 /* Set to true if, when queuing a shadow insn, we discover that it would be
345 scheduled too late. */
346 static bool must_backtrack;
348 /* The following variable value is number of essential insns issued on
349 the current cycle. An insn is essential one if it changes the
350 processors state. */
351 int cycle_issued_insns;
353 /* This records the actual schedule. It is built up during the main phase
354 of schedule_block, and afterwards used to reorder the insns in the RTL. */
355 static vec<rtx> scheduled_insns;
357 static int may_trap_exp (const_rtx, int);
359 /* Nonzero iff the address is comprised from at most 1 register. */
360 #define CONST_BASED_ADDRESS_P(x) \
361 (REG_P (x) \
362 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
363 || (GET_CODE (x) == LO_SUM)) \
364 && (CONSTANT_P (XEXP (x, 0)) \
365 || CONSTANT_P (XEXP (x, 1)))))
367 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
368 as found by analyzing insn's expression. */
371 static int haifa_luid_for_non_insn (rtx x);
373 /* Haifa version of sched_info hooks common to all headers. */
374 const struct common_sched_info_def haifa_common_sched_info =
376 NULL, /* fix_recovery_cfg */
377 NULL, /* add_block */
378 NULL, /* estimate_number_of_insns */
379 haifa_luid_for_non_insn, /* luid_for_non_insn */
380 SCHED_PASS_UNKNOWN /* sched_pass_id */
383 /* Mapping from instruction UID to its Logical UID. */
384 vec<int> sched_luids = vNULL;
386 /* Next LUID to assign to an instruction. */
387 int sched_max_luid = 1;
389 /* Haifa Instruction Data. */
390 vec<haifa_insn_data_def> h_i_d = vNULL;
392 void (* sched_init_only_bb) (basic_block, basic_block);
394 /* Split block function. Different schedulers might use different functions
395 to handle their internal data consistent. */
396 basic_block (* sched_split_block) (basic_block, rtx);
398 /* Create empty basic block after the specified block. */
399 basic_block (* sched_create_empty_bb) (basic_block);
401 /* Return the number of cycles until INSN is expected to be ready.
402 Return zero if it already is. */
403 static int
404 insn_delay (rtx insn)
406 return MAX (INSN_TICK (insn) - clock_var, 0);
409 static int
410 may_trap_exp (const_rtx x, int is_store)
412 enum rtx_code code;
414 if (x == 0)
415 return TRAP_FREE;
416 code = GET_CODE (x);
417 if (is_store)
419 if (code == MEM && may_trap_p (x))
420 return TRAP_RISKY;
421 else
422 return TRAP_FREE;
424 if (code == MEM)
426 /* The insn uses memory: a volatile load. */
427 if (MEM_VOLATILE_P (x))
428 return IRISKY;
429 /* An exception-free load. */
430 if (!may_trap_p (x))
431 return IFREE;
432 /* A load with 1 base register, to be further checked. */
433 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
434 return PFREE_CANDIDATE;
435 /* No info on the load, to be further checked. */
436 return PRISKY_CANDIDATE;
438 else
440 const char *fmt;
441 int i, insn_class = TRAP_FREE;
443 /* Neither store nor load, check if it may cause a trap. */
444 if (may_trap_p (x))
445 return TRAP_RISKY;
446 /* Recursive step: walk the insn... */
447 fmt = GET_RTX_FORMAT (code);
448 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
450 if (fmt[i] == 'e')
452 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
453 insn_class = WORST_CLASS (insn_class, tmp_class);
455 else if (fmt[i] == 'E')
457 int j;
458 for (j = 0; j < XVECLEN (x, i); j++)
460 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
461 insn_class = WORST_CLASS (insn_class, tmp_class);
462 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
463 break;
466 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
467 break;
469 return insn_class;
473 /* Classifies rtx X of an insn for the purpose of verifying that X can be
474 executed speculatively (and consequently the insn can be moved
475 speculatively), by examining X, returning:
476 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
477 TRAP_FREE: non-load insn.
478 IFREE: load from a globally safe location.
479 IRISKY: volatile load.
480 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
481 being either PFREE or PRISKY. */
483 static int
484 haifa_classify_rtx (const_rtx x)
486 int tmp_class = TRAP_FREE;
487 int insn_class = TRAP_FREE;
488 enum rtx_code code;
490 if (GET_CODE (x) == PARALLEL)
492 int i, len = XVECLEN (x, 0);
494 for (i = len - 1; i >= 0; i--)
496 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
497 insn_class = WORST_CLASS (insn_class, tmp_class);
498 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
499 break;
502 else
504 code = GET_CODE (x);
505 switch (code)
507 case CLOBBER:
508 /* Test if it is a 'store'. */
509 tmp_class = may_trap_exp (XEXP (x, 0), 1);
510 break;
511 case SET:
512 /* Test if it is a store. */
513 tmp_class = may_trap_exp (SET_DEST (x), 1);
514 if (tmp_class == TRAP_RISKY)
515 break;
516 /* Test if it is a load. */
517 tmp_class =
518 WORST_CLASS (tmp_class,
519 may_trap_exp (SET_SRC (x), 0));
520 break;
521 case COND_EXEC:
522 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
523 if (tmp_class == TRAP_RISKY)
524 break;
525 tmp_class = WORST_CLASS (tmp_class,
526 may_trap_exp (COND_EXEC_TEST (x), 0));
527 break;
528 case TRAP_IF:
529 tmp_class = TRAP_RISKY;
530 break;
531 default:;
533 insn_class = tmp_class;
536 return insn_class;
540 haifa_classify_insn (const_rtx insn)
542 return haifa_classify_rtx (PATTERN (insn));
545 /* After the scheduler initialization function has been called, this function
546 can be called to enable modulo scheduling. II is the initiation interval
547 we should use, it affects the delays for delay_pairs that were recorded as
548 separated by a given number of stages.
550 MAX_STAGES provides us with a limit
551 after which we give up scheduling; the caller must have unrolled at least
552 as many copies of the loop body and recorded delay_pairs for them.
554 INSNS is the number of real (non-debug) insns in one iteration of
555 the loop. MAX_UID can be used to test whether an insn belongs to
556 the first iteration of the loop; all of them have a uid lower than
557 MAX_UID. */
558 void
559 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
561 modulo_ii = ii;
562 modulo_max_stages = max_stages;
563 modulo_n_insns = insns;
564 modulo_iter0_max_uid = max_uid;
565 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
568 /* A structure to record a pair of insns where the first one is a real
569 insn that has delay slots, and the second is its delayed shadow.
570 I1 is scheduled normally and will emit an assembly instruction,
571 while I2 describes the side effect that takes place at the
572 transition between cycles CYCLES and (CYCLES + 1) after I1. */
573 struct delay_pair
575 struct delay_pair *next_same_i1;
576 rtx i1, i2;
577 int cycles;
578 /* When doing modulo scheduling, we a delay_pair can also be used to
579 show that I1 and I2 are the same insn in a different stage. If that
580 is the case, STAGES will be nonzero. */
581 int stages;
584 /* Helpers for delay hashing. */
586 struct delay_i1_hasher : typed_noop_remove <delay_pair>
588 typedef delay_pair value_type;
589 typedef void compare_type;
590 static inline hashval_t hash (const value_type *);
591 static inline bool equal (const value_type *, const compare_type *);
594 /* Returns a hash value for X, based on hashing just I1. */
596 inline hashval_t
597 delay_i1_hasher::hash (const value_type *x)
599 return htab_hash_pointer (x->i1);
602 /* Return true if I1 of pair X is the same as that of pair Y. */
604 inline bool
605 delay_i1_hasher::equal (const value_type *x, const compare_type *y)
607 return x->i1 == y;
610 struct delay_i2_hasher : typed_free_remove <delay_pair>
612 typedef delay_pair value_type;
613 typedef void compare_type;
614 static inline hashval_t hash (const value_type *);
615 static inline bool equal (const value_type *, const compare_type *);
618 /* Returns a hash value for X, based on hashing just I2. */
620 inline hashval_t
621 delay_i2_hasher::hash (const value_type *x)
623 return htab_hash_pointer (x->i2);
626 /* Return true if I2 of pair X is the same as that of pair Y. */
628 inline bool
629 delay_i2_hasher::equal (const value_type *x, const compare_type *y)
631 return x->i2 == y;
634 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
635 indexed by I2. */
636 static hash_table <delay_i1_hasher> delay_htab;
637 static hash_table <delay_i2_hasher> delay_htab_i2;
639 /* Called through htab_traverse. Walk the hashtable using I2 as
640 index, and delete all elements involving an UID higher than
641 that pointed to by *DATA. */
643 haifa_htab_i2_traverse (delay_pair **slot, int *data)
645 int maxuid = *data;
646 struct delay_pair *p = *slot;
647 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
649 delay_htab_i2.clear_slot (slot);
651 return 1;
654 /* Called through htab_traverse. Walk the hashtable using I2 as
655 index, and delete all elements involving an UID higher than
656 that pointed to by *DATA. */
658 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
660 int maxuid = *data;
661 struct delay_pair *p, *first, **pprev;
663 if (INSN_UID ((*pslot)->i1) >= maxuid)
665 delay_htab.clear_slot (pslot);
666 return 1;
668 pprev = &first;
669 for (p = *pslot; p; p = p->next_same_i1)
671 if (INSN_UID (p->i2) < maxuid)
673 *pprev = p;
674 pprev = &p->next_same_i1;
677 *pprev = NULL;
678 if (first == NULL)
679 delay_htab.clear_slot (pslot);
680 else
681 *pslot = first;
682 return 1;
685 /* Discard all delay pairs which involve an insn with an UID higher
686 than MAX_UID. */
687 void
688 discard_delay_pairs_above (int max_uid)
690 delay_htab.traverse <int *, haifa_htab_i1_traverse> (&max_uid);
691 delay_htab_i2.traverse <int *, haifa_htab_i2_traverse> (&max_uid);
694 /* This function can be called by a port just before it starts the final
695 scheduling pass. It records the fact that an instruction with delay
696 slots has been split into two insns, I1 and I2. The first one will be
697 scheduled normally and initiates the operation. The second one is a
698 shadow which must follow a specific number of cycles after I1; its only
699 purpose is to show the side effect that occurs at that cycle in the RTL.
700 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
701 while I2 retains the original insn type.
703 There are two ways in which the number of cycles can be specified,
704 involving the CYCLES and STAGES arguments to this function. If STAGES
705 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
706 which is multiplied by MODULO_II to give the number of cycles. This is
707 only useful if the caller also calls set_modulo_params to enable modulo
708 scheduling. */
710 void
711 record_delay_slot_pair (rtx i1, rtx i2, int cycles, int stages)
713 struct delay_pair *p = XNEW (struct delay_pair);
714 struct delay_pair **slot;
716 p->i1 = i1;
717 p->i2 = i2;
718 p->cycles = cycles;
719 p->stages = stages;
721 if (!delay_htab.is_created ())
723 delay_htab.create (10);
724 delay_htab_i2.create (10);
726 slot = delay_htab.find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
727 p->next_same_i1 = *slot;
728 *slot = p;
729 slot = delay_htab_i2.find_slot_with_hash (i2, htab_hash_pointer (i2), INSERT);
730 *slot = p;
733 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
734 and return the other insn if so. Return NULL otherwise. */
736 real_insn_for_shadow (rtx insn)
738 struct delay_pair *pair;
740 if (!delay_htab.is_created ())
741 return NULL_RTX;
743 pair = delay_htab_i2.find_with_hash (insn, htab_hash_pointer (insn));
744 if (!pair || pair->stages > 0)
745 return NULL_RTX;
746 return pair->i1;
749 /* For a pair P of insns, return the fixed distance in cycles from the first
750 insn after which the second must be scheduled. */
751 static int
752 pair_delay (struct delay_pair *p)
754 if (p->stages == 0)
755 return p->cycles;
756 else
757 return p->stages * modulo_ii;
760 /* Given an insn INSN, add a dependence on its delayed shadow if it
761 has one. Also try to find situations where shadows depend on each other
762 and add dependencies to the real insns to limit the amount of backtracking
763 needed. */
764 void
765 add_delay_dependencies (rtx insn)
767 struct delay_pair *pair;
768 sd_iterator_def sd_it;
769 dep_t dep;
771 if (!delay_htab.is_created ())
772 return;
774 pair = delay_htab_i2.find_with_hash (insn, htab_hash_pointer (insn));
775 if (!pair)
776 return;
777 add_dependence (insn, pair->i1, REG_DEP_ANTI);
778 if (pair->stages)
779 return;
781 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
783 rtx pro = DEP_PRO (dep);
784 struct delay_pair *other_pair
785 = delay_htab_i2.find_with_hash (pro, htab_hash_pointer (pro));
786 if (!other_pair || other_pair->stages)
787 continue;
788 if (pair_delay (other_pair) >= pair_delay (pair))
790 if (sched_verbose >= 4)
792 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
793 INSN_UID (other_pair->i1),
794 INSN_UID (pair->i1));
795 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
796 INSN_UID (pair->i1),
797 INSN_UID (pair->i2),
798 pair_delay (pair));
799 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
800 INSN_UID (other_pair->i1),
801 INSN_UID (other_pair->i2),
802 pair_delay (other_pair));
804 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
809 /* Forward declarations. */
811 static int priority (rtx);
812 static int rank_for_schedule (const void *, const void *);
813 static void swap_sort (rtx *, int);
814 static void queue_insn (rtx, int, const char *);
815 static int schedule_insn (rtx);
816 static void adjust_priority (rtx);
817 static void advance_one_cycle (void);
818 static void extend_h_i_d (void);
821 /* Notes handling mechanism:
822 =========================
823 Generally, NOTES are saved before scheduling and restored after scheduling.
824 The scheduler distinguishes between two types of notes:
826 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
827 Before scheduling a region, a pointer to the note is added to the insn
828 that follows or precedes it. (This happens as part of the data dependence
829 computation). After scheduling an insn, the pointer contained in it is
830 used for regenerating the corresponding note (in reemit_notes).
832 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
833 these notes are put in a list (in rm_other_notes() and
834 unlink_other_notes ()). After scheduling the block, these notes are
835 inserted at the beginning of the block (in schedule_block()). */
837 static void ready_add (struct ready_list *, rtx, bool);
838 static rtx ready_remove_first (struct ready_list *);
839 static rtx ready_remove_first_dispatch (struct ready_list *ready);
841 static void queue_to_ready (struct ready_list *);
842 static int early_queue_to_ready (state_t, struct ready_list *);
844 static void debug_ready_list (struct ready_list *);
846 /* The following functions are used to implement multi-pass scheduling
847 on the first cycle. */
848 static rtx ready_remove (struct ready_list *, int);
849 static void ready_remove_insn (rtx);
851 static void fix_inter_tick (rtx, rtx);
852 static int fix_tick_ready (rtx);
853 static void change_queue_index (rtx, int);
855 /* The following functions are used to implement scheduling of data/control
856 speculative instructions. */
858 static void extend_h_i_d (void);
859 static void init_h_i_d (rtx);
860 static int haifa_speculate_insn (rtx, ds_t, rtx *);
861 static void generate_recovery_code (rtx);
862 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
863 static void begin_speculative_block (rtx);
864 static void add_to_speculative_block (rtx);
865 static void init_before_recovery (basic_block *);
866 static void create_check_block_twin (rtx, bool);
867 static void fix_recovery_deps (basic_block);
868 static bool haifa_change_pattern (rtx, rtx);
869 static void dump_new_block_header (int, basic_block, rtx, rtx);
870 static void restore_bb_notes (basic_block);
871 static void fix_jump_move (rtx);
872 static void move_block_after_check (rtx);
873 static void move_succs (vec<edge, va_gc> **, basic_block);
874 static void sched_remove_insn (rtx);
875 static void clear_priorities (rtx, rtx_vec_t *);
876 static void calc_priorities (rtx_vec_t);
877 static void add_jump_dependencies (rtx, rtx);
879 #endif /* INSN_SCHEDULING */
881 /* Point to state used for the current scheduling pass. */
882 struct haifa_sched_info *current_sched_info;
884 #ifndef INSN_SCHEDULING
885 void
886 schedule_insns (void)
889 #else
891 /* Do register pressure sensitive insn scheduling if the flag is set
892 up. */
893 enum sched_pressure_algorithm sched_pressure;
895 /* Map regno -> its pressure class. The map defined only when
896 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
897 enum reg_class *sched_regno_pressure_class;
899 /* The current register pressure. Only elements corresponding pressure
900 classes are defined. */
901 static int curr_reg_pressure[N_REG_CLASSES];
903 /* Saved value of the previous array. */
904 static int saved_reg_pressure[N_REG_CLASSES];
906 /* Register living at given scheduling point. */
907 static bitmap curr_reg_live;
909 /* Saved value of the previous array. */
910 static bitmap saved_reg_live;
912 /* Registers mentioned in the current region. */
913 static bitmap region_ref_regs;
915 /* Initiate register pressure relative info for scheduling the current
916 region. Currently it is only clearing register mentioned in the
917 current region. */
918 void
919 sched_init_region_reg_pressure_info (void)
921 bitmap_clear (region_ref_regs);
924 /* PRESSURE[CL] describes the pressure on register class CL. Update it
925 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
926 LIVE tracks the set of live registers; if it is null, assume that
927 every birth or death is genuine. */
928 static inline void
929 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
931 enum reg_class pressure_class;
933 pressure_class = sched_regno_pressure_class[regno];
934 if (regno >= FIRST_PSEUDO_REGISTER)
936 if (pressure_class != NO_REGS)
938 if (birth_p)
940 if (!live || bitmap_set_bit (live, regno))
941 pressure[pressure_class]
942 += (ira_reg_class_max_nregs
943 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
945 else
947 if (!live || bitmap_clear_bit (live, regno))
948 pressure[pressure_class]
949 -= (ira_reg_class_max_nregs
950 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
954 else if (pressure_class != NO_REGS
955 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
957 if (birth_p)
959 if (!live || bitmap_set_bit (live, regno))
960 pressure[pressure_class]++;
962 else
964 if (!live || bitmap_clear_bit (live, regno))
965 pressure[pressure_class]--;
970 /* Initiate current register pressure related info from living
971 registers given by LIVE. */
972 static void
973 initiate_reg_pressure_info (bitmap live)
975 int i;
976 unsigned int j;
977 bitmap_iterator bi;
979 for (i = 0; i < ira_pressure_classes_num; i++)
980 curr_reg_pressure[ira_pressure_classes[i]] = 0;
981 bitmap_clear (curr_reg_live);
982 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
983 if (sched_pressure == SCHED_PRESSURE_MODEL
984 || current_nr_blocks == 1
985 || bitmap_bit_p (region_ref_regs, j))
986 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
989 /* Mark registers in X as mentioned in the current region. */
990 static void
991 setup_ref_regs (rtx x)
993 int i, j, regno;
994 const RTX_CODE code = GET_CODE (x);
995 const char *fmt;
997 if (REG_P (x))
999 regno = REGNO (x);
1000 if (HARD_REGISTER_NUM_P (regno))
1001 bitmap_set_range (region_ref_regs, regno,
1002 hard_regno_nregs[regno][GET_MODE (x)]);
1003 else
1004 bitmap_set_bit (region_ref_regs, REGNO (x));
1005 return;
1007 fmt = GET_RTX_FORMAT (code);
1008 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1009 if (fmt[i] == 'e')
1010 setup_ref_regs (XEXP (x, i));
1011 else if (fmt[i] == 'E')
1013 for (j = 0; j < XVECLEN (x, i); j++)
1014 setup_ref_regs (XVECEXP (x, i, j));
1018 /* Initiate current register pressure related info at the start of
1019 basic block BB. */
1020 static void
1021 initiate_bb_reg_pressure_info (basic_block bb)
1023 unsigned int i ATTRIBUTE_UNUSED;
1024 rtx insn;
1026 if (current_nr_blocks > 1)
1027 FOR_BB_INSNS (bb, insn)
1028 if (NONDEBUG_INSN_P (insn))
1029 setup_ref_regs (PATTERN (insn));
1030 initiate_reg_pressure_info (df_get_live_in (bb));
1031 #ifdef EH_RETURN_DATA_REGNO
1032 if (bb_has_eh_pred (bb))
1033 for (i = 0; ; ++i)
1035 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1037 if (regno == INVALID_REGNUM)
1038 break;
1039 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1040 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1041 regno, true);
1043 #endif
1046 /* Save current register pressure related info. */
1047 static void
1048 save_reg_pressure (void)
1050 int i;
1052 for (i = 0; i < ira_pressure_classes_num; i++)
1053 saved_reg_pressure[ira_pressure_classes[i]]
1054 = curr_reg_pressure[ira_pressure_classes[i]];
1055 bitmap_copy (saved_reg_live, curr_reg_live);
1058 /* Restore saved register pressure related info. */
1059 static void
1060 restore_reg_pressure (void)
1062 int i;
1064 for (i = 0; i < ira_pressure_classes_num; i++)
1065 curr_reg_pressure[ira_pressure_classes[i]]
1066 = saved_reg_pressure[ira_pressure_classes[i]];
1067 bitmap_copy (curr_reg_live, saved_reg_live);
1070 /* Return TRUE if the register is dying after its USE. */
1071 static bool
1072 dying_use_p (struct reg_use_data *use)
1074 struct reg_use_data *next;
1076 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1077 if (NONDEBUG_INSN_P (next->insn)
1078 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1079 return false;
1080 return true;
1083 /* Print info about the current register pressure and its excess for
1084 each pressure class. */
1085 static void
1086 print_curr_reg_pressure (void)
1088 int i;
1089 enum reg_class cl;
1091 fprintf (sched_dump, ";;\t");
1092 for (i = 0; i < ira_pressure_classes_num; i++)
1094 cl = ira_pressure_classes[i];
1095 gcc_assert (curr_reg_pressure[cl] >= 0);
1096 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1097 curr_reg_pressure[cl],
1098 curr_reg_pressure[cl] - ira_class_hard_regs_num[cl]);
1100 fprintf (sched_dump, "\n");
1103 /* Determine if INSN has a condition that is clobbered if a register
1104 in SET_REGS is modified. */
1105 static bool
1106 cond_clobbered_p (rtx insn, HARD_REG_SET set_regs)
1108 rtx pat = PATTERN (insn);
1109 gcc_assert (GET_CODE (pat) == COND_EXEC);
1110 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1112 sd_iterator_def sd_it;
1113 dep_t dep;
1114 haifa_change_pattern (insn, ORIG_PAT (insn));
1115 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1116 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1117 TODO_SPEC (insn) = HARD_DEP;
1118 if (sched_verbose >= 2)
1119 fprintf (sched_dump,
1120 ";;\t\tdequeue insn %s because of clobbered condition\n",
1121 (*current_sched_info->print_insn) (insn, 0));
1122 return true;
1125 return false;
1128 /* This function should be called after modifying the pattern of INSN,
1129 to update scheduler data structures as needed. */
1130 static void
1131 update_insn_after_change (rtx insn)
1133 sd_iterator_def sd_it;
1134 dep_t dep;
1136 dfa_clear_single_insn_cache (insn);
1138 sd_it = sd_iterator_start (insn,
1139 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1140 while (sd_iterator_cond (&sd_it, &dep))
1142 DEP_COST (dep) = UNKNOWN_DEP_COST;
1143 sd_iterator_next (&sd_it);
1146 /* Invalidate INSN_COST, so it'll be recalculated. */
1147 INSN_COST (insn) = -1;
1148 /* Invalidate INSN_TICK, so it'll be recalculated. */
1149 INSN_TICK (insn) = INVALID_TICK;
1153 /* Two VECs, one to hold dependencies for which pattern replacements
1154 need to be applied or restored at the start of the next cycle, and
1155 another to hold an integer that is either one, to apply the
1156 corresponding replacement, or zero to restore it. */
1157 static vec<dep_t> next_cycle_replace_deps;
1158 static vec<int> next_cycle_apply;
1160 static void apply_replacement (dep_t, bool);
1161 static void restore_pattern (dep_t, bool);
1163 /* Look at the remaining dependencies for insn NEXT, and compute and return
1164 the TODO_SPEC value we should use for it. This is called after one of
1165 NEXT's dependencies has been resolved.
1166 We also perform pattern replacements for predication, and for broken
1167 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1168 false. */
1170 static ds_t
1171 recompute_todo_spec (rtx next, bool for_backtrack)
1173 ds_t new_ds;
1174 sd_iterator_def sd_it;
1175 dep_t dep, modify_dep = NULL;
1176 int n_spec = 0;
1177 int n_control = 0;
1178 int n_replace = 0;
1179 bool first_p = true;
1181 if (sd_lists_empty_p (next, SD_LIST_BACK))
1182 /* NEXT has all its dependencies resolved. */
1183 return 0;
1185 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1186 return HARD_DEP;
1188 /* Now we've got NEXT with speculative deps only.
1189 1. Look at the deps to see what we have to do.
1190 2. Check if we can do 'todo'. */
1191 new_ds = 0;
1193 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1195 rtx pro = DEP_PRO (dep);
1196 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1198 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1199 continue;
1201 if (ds)
1203 n_spec++;
1204 if (first_p)
1206 first_p = false;
1208 new_ds = ds;
1210 else
1211 new_ds = ds_merge (new_ds, ds);
1213 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1215 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1217 n_control++;
1218 modify_dep = dep;
1220 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1222 else if (DEP_REPLACE (dep) != NULL)
1224 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1226 n_replace++;
1227 modify_dep = dep;
1229 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1233 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1235 if (!dbg_cnt (sched_breakdep))
1236 return HARD_DEP;
1237 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1239 struct dep_replacement *desc = DEP_REPLACE (dep);
1240 if (desc != NULL)
1242 if (desc->insn == next && !for_backtrack)
1244 gcc_assert (n_replace == 1);
1245 apply_replacement (dep, true);
1247 DEP_STATUS (dep) |= DEP_CANCELLED;
1250 return 0;
1253 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1255 rtx pro, other, new_pat;
1256 rtx cond = NULL_RTX;
1257 bool success;
1258 rtx prev = NULL_RTX;
1259 int i;
1260 unsigned regno;
1262 if ((current_sched_info->flags & DO_PREDICATION) == 0
1263 || (ORIG_PAT (next) != NULL_RTX
1264 && PREDICATED_PAT (next) == NULL_RTX))
1265 return HARD_DEP;
1267 pro = DEP_PRO (modify_dep);
1268 other = real_insn_for_shadow (pro);
1269 if (other != NULL_RTX)
1270 pro = other;
1272 cond = sched_get_reverse_condition_uncached (pro);
1273 regno = REGNO (XEXP (cond, 0));
1275 /* Find the last scheduled insn that modifies the condition register.
1276 We can stop looking once we find the insn we depend on through the
1277 REG_DEP_CONTROL; if the condition register isn't modified after it,
1278 we know that it still has the right value. */
1279 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1280 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1282 HARD_REG_SET t;
1284 find_all_hard_reg_sets (prev, &t);
1285 if (TEST_HARD_REG_BIT (t, regno))
1286 return HARD_DEP;
1287 if (prev == pro)
1288 break;
1290 if (ORIG_PAT (next) == NULL_RTX)
1292 ORIG_PAT (next) = PATTERN (next);
1294 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1295 success = haifa_change_pattern (next, new_pat);
1296 if (!success)
1297 return HARD_DEP;
1298 PREDICATED_PAT (next) = new_pat;
1300 else if (PATTERN (next) != PREDICATED_PAT (next))
1302 bool success = haifa_change_pattern (next,
1303 PREDICATED_PAT (next));
1304 gcc_assert (success);
1306 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1307 return DEP_CONTROL;
1310 if (PREDICATED_PAT (next) != NULL_RTX)
1312 int tick = INSN_TICK (next);
1313 bool success = haifa_change_pattern (next,
1314 ORIG_PAT (next));
1315 INSN_TICK (next) = tick;
1316 gcc_assert (success);
1319 /* We can't handle the case where there are both speculative and control
1320 dependencies, so we return HARD_DEP in such a case. Also fail if
1321 we have speculative dependencies with not enough points, or more than
1322 one control dependency. */
1323 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1324 || (n_spec > 0
1325 /* Too few points? */
1326 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1327 || n_control > 0
1328 || n_replace > 0)
1329 return HARD_DEP;
1331 return new_ds;
1334 /* Pointer to the last instruction scheduled. */
1335 static rtx last_scheduled_insn;
1337 /* Pointer to the last nondebug instruction scheduled within the
1338 block, or the prev_head of the scheduling block. Used by
1339 rank_for_schedule, so that insns independent of the last scheduled
1340 insn will be preferred over dependent instructions. */
1341 static rtx last_nondebug_scheduled_insn;
1343 /* Pointer that iterates through the list of unscheduled insns if we
1344 have a dbg_cnt enabled. It always points at an insn prior to the
1345 first unscheduled one. */
1346 static rtx nonscheduled_insns_begin;
1348 /* Compute cost of executing INSN.
1349 This is the number of cycles between instruction issue and
1350 instruction results. */
1352 insn_cost (rtx insn)
1354 int cost;
1356 if (sel_sched_p ())
1358 if (recog_memoized (insn) < 0)
1359 return 0;
1361 cost = insn_default_latency (insn);
1362 if (cost < 0)
1363 cost = 0;
1365 return cost;
1368 cost = INSN_COST (insn);
1370 if (cost < 0)
1372 /* A USE insn, or something else we don't need to
1373 understand. We can't pass these directly to
1374 result_ready_cost or insn_default_latency because it will
1375 trigger a fatal error for unrecognizable insns. */
1376 if (recog_memoized (insn) < 0)
1378 INSN_COST (insn) = 0;
1379 return 0;
1381 else
1383 cost = insn_default_latency (insn);
1384 if (cost < 0)
1385 cost = 0;
1387 INSN_COST (insn) = cost;
1391 return cost;
1394 /* Compute cost of dependence LINK.
1395 This is the number of cycles between instruction issue and
1396 instruction results.
1397 ??? We also use this function to call recog_memoized on all insns. */
1399 dep_cost_1 (dep_t link, dw_t dw)
1401 rtx insn = DEP_PRO (link);
1402 rtx used = DEP_CON (link);
1403 int cost;
1405 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1406 return DEP_COST (link);
1408 if (delay_htab.is_created ())
1410 struct delay_pair *delay_entry;
1411 delay_entry
1412 = delay_htab_i2.find_with_hash (used, htab_hash_pointer (used));
1413 if (delay_entry)
1415 if (delay_entry->i1 == insn)
1417 DEP_COST (link) = pair_delay (delay_entry);
1418 return DEP_COST (link);
1423 /* A USE insn should never require the value used to be computed.
1424 This allows the computation of a function's result and parameter
1425 values to overlap the return and call. We don't care about the
1426 dependence cost when only decreasing register pressure. */
1427 if (recog_memoized (used) < 0)
1429 cost = 0;
1430 recog_memoized (insn);
1432 else
1434 enum reg_note dep_type = DEP_TYPE (link);
1436 cost = insn_cost (insn);
1438 if (INSN_CODE (insn) >= 0)
1440 if (dep_type == REG_DEP_ANTI)
1441 cost = 0;
1442 else if (dep_type == REG_DEP_OUTPUT)
1444 cost = (insn_default_latency (insn)
1445 - insn_default_latency (used));
1446 if (cost <= 0)
1447 cost = 1;
1449 else if (bypass_p (insn))
1450 cost = insn_latency (insn, used);
1454 if (targetm.sched.adjust_cost_2)
1455 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1456 dw);
1457 else if (targetm.sched.adjust_cost != NULL)
1459 /* This variable is used for backward compatibility with the
1460 targets. */
1461 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
1463 /* Make it self-cycled, so that if some tries to walk over this
1464 incomplete list he/she will be caught in an endless loop. */
1465 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1467 /* Targets use only REG_NOTE_KIND of the link. */
1468 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1470 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1471 insn, cost);
1473 free_INSN_LIST_node (dep_cost_rtx_link);
1476 if (cost < 0)
1477 cost = 0;
1480 DEP_COST (link) = cost;
1481 return cost;
1484 /* Compute cost of dependence LINK.
1485 This is the number of cycles between instruction issue and
1486 instruction results. */
1488 dep_cost (dep_t link)
1490 return dep_cost_1 (link, 0);
1493 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1494 INSN_PRIORITY explicitly. */
1495 void
1496 increase_insn_priority (rtx insn, int amount)
1498 if (!sel_sched_p ())
1500 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1501 if (INSN_PRIORITY_KNOWN (insn))
1502 INSN_PRIORITY (insn) += amount;
1504 else
1506 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1507 Use EXPR_PRIORITY instead. */
1508 sel_add_to_insn_priority (insn, amount);
1512 /* Return 'true' if DEP should be included in priority calculations. */
1513 static bool
1514 contributes_to_priority_p (dep_t dep)
1516 if (DEBUG_INSN_P (DEP_CON (dep))
1517 || DEBUG_INSN_P (DEP_PRO (dep)))
1518 return false;
1520 /* Critical path is meaningful in block boundaries only. */
1521 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1522 DEP_PRO (dep)))
1523 return false;
1525 if (DEP_REPLACE (dep) != NULL)
1526 return false;
1528 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1529 then speculative instructions will less likely be
1530 scheduled. That is because the priority of
1531 their producers will increase, and, thus, the
1532 producers will more likely be scheduled, thus,
1533 resolving the dependence. */
1534 if (sched_deps_info->generate_spec_deps
1535 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1536 && (DEP_STATUS (dep) & SPECULATIVE))
1537 return false;
1539 return true;
1542 /* Compute the number of nondebug deps in list LIST for INSN. */
1544 static int
1545 dep_list_size (rtx insn, sd_list_types_def list)
1547 sd_iterator_def sd_it;
1548 dep_t dep;
1549 int dbgcount = 0, nodbgcount = 0;
1551 if (!MAY_HAVE_DEBUG_INSNS)
1552 return sd_lists_size (insn, list);
1554 FOR_EACH_DEP (insn, list, sd_it, dep)
1556 if (DEBUG_INSN_P (DEP_CON (dep)))
1557 dbgcount++;
1558 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1559 nodbgcount++;
1562 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1564 return nodbgcount;
1567 /* Compute the priority number for INSN. */
1568 static int
1569 priority (rtx insn)
1571 if (! INSN_P (insn))
1572 return 0;
1574 /* We should not be interested in priority of an already scheduled insn. */
1575 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1577 if (!INSN_PRIORITY_KNOWN (insn))
1579 int this_priority = -1;
1581 if (dep_list_size (insn, SD_LIST_FORW) == 0)
1582 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1583 some forward deps but all of them are ignored by
1584 contributes_to_priority hook. At the moment we set priority of
1585 such insn to 0. */
1586 this_priority = insn_cost (insn);
1587 else
1589 rtx prev_first, twin;
1590 basic_block rec;
1592 /* For recovery check instructions we calculate priority slightly
1593 different than that of normal instructions. Instead of walking
1594 through INSN_FORW_DEPS (check) list, we walk through
1595 INSN_FORW_DEPS list of each instruction in the corresponding
1596 recovery block. */
1598 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1599 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1600 if (!rec || rec == EXIT_BLOCK_PTR)
1602 prev_first = PREV_INSN (insn);
1603 twin = insn;
1605 else
1607 prev_first = NEXT_INSN (BB_HEAD (rec));
1608 twin = PREV_INSN (BB_END (rec));
1613 sd_iterator_def sd_it;
1614 dep_t dep;
1616 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1618 rtx next;
1619 int next_priority;
1621 next = DEP_CON (dep);
1623 if (BLOCK_FOR_INSN (next) != rec)
1625 int cost;
1627 if (!contributes_to_priority_p (dep))
1628 continue;
1630 if (twin == insn)
1631 cost = dep_cost (dep);
1632 else
1634 struct _dep _dep1, *dep1 = &_dep1;
1636 init_dep (dep1, insn, next, REG_DEP_ANTI);
1638 cost = dep_cost (dep1);
1641 next_priority = cost + priority (next);
1643 if (next_priority > this_priority)
1644 this_priority = next_priority;
1648 twin = PREV_INSN (twin);
1650 while (twin != prev_first);
1653 if (this_priority < 0)
1655 gcc_assert (this_priority == -1);
1657 this_priority = insn_cost (insn);
1660 INSN_PRIORITY (insn) = this_priority;
1661 INSN_PRIORITY_STATUS (insn) = 1;
1664 return INSN_PRIORITY (insn);
1667 /* Macros and functions for keeping the priority queue sorted, and
1668 dealing with queuing and dequeuing of instructions. */
1670 #define SCHED_SORT(READY, N_READY) \
1671 do { if ((N_READY) == 2) \
1672 swap_sort (READY, N_READY); \
1673 else if ((N_READY) > 2) \
1674 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1675 while (0)
1677 /* For each pressure class CL, set DEATH[CL] to the number of registers
1678 in that class that die in INSN. */
1680 static void
1681 calculate_reg_deaths (rtx insn, int *death)
1683 int i;
1684 struct reg_use_data *use;
1686 for (i = 0; i < ira_pressure_classes_num; i++)
1687 death[ira_pressure_classes[i]] = 0;
1688 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1689 if (dying_use_p (use))
1690 mark_regno_birth_or_death (0, death, use->regno, true);
1693 /* Setup info about the current register pressure impact of scheduling
1694 INSN at the current scheduling point. */
1695 static void
1696 setup_insn_reg_pressure_info (rtx insn)
1698 int i, change, before, after, hard_regno;
1699 int excess_cost_change;
1700 enum machine_mode mode;
1701 enum reg_class cl;
1702 struct reg_pressure_data *pressure_info;
1703 int *max_reg_pressure;
1704 static int death[N_REG_CLASSES];
1706 gcc_checking_assert (!DEBUG_INSN_P (insn));
1708 excess_cost_change = 0;
1709 calculate_reg_deaths (insn, death);
1710 pressure_info = INSN_REG_PRESSURE (insn);
1711 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1712 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1713 for (i = 0; i < ira_pressure_classes_num; i++)
1715 cl = ira_pressure_classes[i];
1716 gcc_assert (curr_reg_pressure[cl] >= 0);
1717 change = (int) pressure_info[i].set_increase - death[cl];
1718 before = MAX (0, max_reg_pressure[i] - ira_class_hard_regs_num[cl]);
1719 after = MAX (0, max_reg_pressure[i] + change
1720 - ira_class_hard_regs_num[cl]);
1721 hard_regno = ira_class_hard_regs[cl][0];
1722 gcc_assert (hard_regno >= 0);
1723 mode = reg_raw_mode[hard_regno];
1724 excess_cost_change += ((after - before)
1725 * (ira_memory_move_cost[mode][cl][0]
1726 + ira_memory_move_cost[mode][cl][1]));
1728 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1731 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1732 It tries to make the scheduler take register pressure into account
1733 without introducing too many unnecessary stalls. It hooks into the
1734 main scheduling algorithm at several points:
1736 - Before scheduling starts, model_start_schedule constructs a
1737 "model schedule" for the current block. This model schedule is
1738 chosen solely to keep register pressure down. It does not take the
1739 target's pipeline or the original instruction order into account,
1740 except as a tie-breaker. It also doesn't work to a particular
1741 pressure limit.
1743 This model schedule gives us an idea of what pressure can be
1744 achieved for the block and gives us an example of a schedule that
1745 keeps to that pressure. It also makes the final schedule less
1746 dependent on the original instruction order. This is important
1747 because the original order can either be "wide" (many values live
1748 at once, such as in user-scheduled code) or "narrow" (few values
1749 live at once, such as after loop unrolling, where several
1750 iterations are executed sequentially).
1752 We do not apply this model schedule to the rtx stream. We simply
1753 record it in model_schedule. We also compute the maximum pressure,
1754 MP, that was seen during this schedule.
1756 - Instructions are added to the ready queue even if they require
1757 a stall. The length of the stall is instead computed as:
1759 MAX (INSN_TICK (INSN) - clock_var, 0)
1761 (= insn_delay). This allows rank_for_schedule to choose between
1762 introducing a deliberate stall or increasing pressure.
1764 - Before sorting the ready queue, model_set_excess_costs assigns
1765 a pressure-based cost to each ready instruction in the queue.
1766 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1767 (ECC for short) and is effectively measured in cycles.
1769 - rank_for_schedule ranks instructions based on:
1771 ECC (insn) + insn_delay (insn)
1773 then as:
1775 insn_delay (insn)
1777 So, for example, an instruction X1 with an ECC of 1 that can issue
1778 now will win over an instruction X0 with an ECC of zero that would
1779 introduce a stall of one cycle. However, an instruction X2 with an
1780 ECC of 2 that can issue now will lose to both X0 and X1.
1782 - When an instruction is scheduled, model_recompute updates the model
1783 schedule with the new pressures (some of which might now exceed the
1784 original maximum pressure MP). model_update_limit_points then searches
1785 for the new point of maximum pressure, if not already known. */
1787 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1788 from surrounding debug information. */
1789 #define MODEL_BAR \
1790 ";;\t\t+------------------------------------------------------\n"
1792 /* Information about the pressure on a particular register class at a
1793 particular point of the model schedule. */
1794 struct model_pressure_data {
1795 /* The pressure at this point of the model schedule, or -1 if the
1796 point is associated with an instruction that has already been
1797 scheduled. */
1798 int ref_pressure;
1800 /* The maximum pressure during or after this point of the model schedule. */
1801 int max_pressure;
1804 /* Per-instruction information that is used while building the model
1805 schedule. Here, "schedule" refers to the model schedule rather
1806 than the main schedule. */
1807 struct model_insn_info {
1808 /* The instruction itself. */
1809 rtx insn;
1811 /* If this instruction is in model_worklist, these fields link to the
1812 previous (higher-priority) and next (lower-priority) instructions
1813 in the list. */
1814 struct model_insn_info *prev;
1815 struct model_insn_info *next;
1817 /* While constructing the schedule, QUEUE_INDEX describes whether an
1818 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1819 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1820 old_queue records the value that QUEUE_INDEX had before scheduling
1821 started, so that we can restore it once the schedule is complete. */
1822 int old_queue;
1824 /* The relative importance of an unscheduled instruction. Higher
1825 values indicate greater importance. */
1826 unsigned int model_priority;
1828 /* The length of the longest path of satisfied true dependencies
1829 that leads to this instruction. */
1830 unsigned int depth;
1832 /* The length of the longest path of dependencies of any kind
1833 that leads from this instruction. */
1834 unsigned int alap;
1836 /* The number of predecessor nodes that must still be scheduled. */
1837 int unscheduled_preds;
1840 /* Information about the pressure limit for a particular register class.
1841 This structure is used when applying a model schedule to the main
1842 schedule. */
1843 struct model_pressure_limit {
1844 /* The maximum register pressure seen in the original model schedule. */
1845 int orig_pressure;
1847 /* The maximum register pressure seen in the current model schedule
1848 (which excludes instructions that have already been scheduled). */
1849 int pressure;
1851 /* The point of the current model schedule at which PRESSURE is first
1852 reached. It is set to -1 if the value needs to be recomputed. */
1853 int point;
1856 /* Describes a particular way of measuring register pressure. */
1857 struct model_pressure_group {
1858 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1859 struct model_pressure_limit limits[N_REG_CLASSES];
1861 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1862 on register class ira_pressure_classes[PCI] at point POINT of the
1863 current model schedule. A POINT of model_num_insns describes the
1864 pressure at the end of the schedule. */
1865 struct model_pressure_data *model;
1868 /* Index POINT gives the instruction at point POINT of the model schedule.
1869 This array doesn't change during main scheduling. */
1870 static vec<rtx> model_schedule;
1872 /* The list of instructions in the model worklist, sorted in order of
1873 decreasing priority. */
1874 static struct model_insn_info *model_worklist;
1876 /* Index I describes the instruction with INSN_LUID I. */
1877 static struct model_insn_info *model_insns;
1879 /* The number of instructions in the model schedule. */
1880 static int model_num_insns;
1882 /* The index of the first instruction in model_schedule that hasn't yet been
1883 added to the main schedule, or model_num_insns if all of them have. */
1884 static int model_curr_point;
1886 /* Describes the pressure before each instruction in the model schedule. */
1887 static struct model_pressure_group model_before_pressure;
1889 /* The first unused model_priority value (as used in model_insn_info). */
1890 static unsigned int model_next_priority;
1893 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1894 at point POINT of the model schedule. */
1895 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1896 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1898 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1899 after point POINT of the model schedule. */
1900 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1901 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1903 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1904 of the model schedule. */
1905 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1906 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1908 /* Information about INSN that is used when creating the model schedule. */
1909 #define MODEL_INSN_INFO(INSN) \
1910 (&model_insns[INSN_LUID (INSN)])
1912 /* The instruction at point POINT of the model schedule. */
1913 #define MODEL_INSN(POINT) \
1914 (model_schedule[POINT])
1917 /* Return INSN's index in the model schedule, or model_num_insns if it
1918 doesn't belong to that schedule. */
1920 static int
1921 model_index (rtx insn)
1923 if (INSN_MODEL_INDEX (insn) == 0)
1924 return model_num_insns;
1925 return INSN_MODEL_INDEX (insn) - 1;
1928 /* Make sure that GROUP->limits is up-to-date for the current point
1929 of the model schedule. */
1931 static void
1932 model_update_limit_points_in_group (struct model_pressure_group *group)
1934 int pci, max_pressure, point;
1936 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1938 /* We may have passed the final point at which the pressure in
1939 group->limits[pci].pressure was reached. Update the limit if so. */
1940 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1941 group->limits[pci].pressure = max_pressure;
1943 /* Find the point at which MAX_PRESSURE is first reached. We need
1944 to search in three cases:
1946 - We've already moved past the previous pressure point.
1947 In this case we search forward from model_curr_point.
1949 - We scheduled the previous point of maximum pressure ahead of
1950 its position in the model schedule, but doing so didn't bring
1951 the pressure point earlier. In this case we search forward
1952 from that previous pressure point.
1954 - Scheduling an instruction early caused the maximum pressure
1955 to decrease. In this case we will have set the pressure
1956 point to -1, and we search forward from model_curr_point. */
1957 point = MAX (group->limits[pci].point, model_curr_point);
1958 while (point < model_num_insns
1959 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1960 point++;
1961 group->limits[pci].point = point;
1963 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1964 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1968 /* Make sure that all register-pressure limits are up-to-date for the
1969 current position in the model schedule. */
1971 static void
1972 model_update_limit_points (void)
1974 model_update_limit_points_in_group (&model_before_pressure);
1977 /* Return the model_index of the last unscheduled use in chain USE
1978 outside of USE's instruction. Return -1 if there are no other uses,
1979 or model_num_insns if the register is live at the end of the block. */
1981 static int
1982 model_last_use_except (struct reg_use_data *use)
1984 struct reg_use_data *next;
1985 int last, index;
1987 last = -1;
1988 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1989 if (NONDEBUG_INSN_P (next->insn)
1990 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1992 index = model_index (next->insn);
1993 if (index == model_num_insns)
1994 return model_num_insns;
1995 if (last < index)
1996 last = index;
1998 return last;
2001 /* An instruction with model_index POINT has just been scheduled, and it
2002 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2003 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2004 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2006 static void
2007 model_start_update_pressure (struct model_pressure_group *group,
2008 int point, int pci, int delta)
2010 int next_max_pressure;
2012 if (point == model_num_insns)
2014 /* The instruction wasn't part of the model schedule; it was moved
2015 from a different block. Update the pressure for the end of
2016 the model schedule. */
2017 MODEL_REF_PRESSURE (group, point, pci) += delta;
2018 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2020 else
2022 /* Record that this instruction has been scheduled. Nothing now
2023 changes between POINT and POINT + 1, so get the maximum pressure
2024 from the latter. If the maximum pressure decreases, the new
2025 pressure point may be before POINT. */
2026 MODEL_REF_PRESSURE (group, point, pci) = -1;
2027 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2028 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2030 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2031 if (group->limits[pci].point == point)
2032 group->limits[pci].point = -1;
2037 /* Record that scheduling a later instruction has changed the pressure
2038 at point POINT of the model schedule by DELTA (which might be 0).
2039 Update GROUP accordingly. Return nonzero if these changes might
2040 trigger changes to previous points as well. */
2042 static int
2043 model_update_pressure (struct model_pressure_group *group,
2044 int point, int pci, int delta)
2046 int ref_pressure, max_pressure, next_max_pressure;
2048 /* If POINT hasn't yet been scheduled, update its pressure. */
2049 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2050 if (ref_pressure >= 0 && delta != 0)
2052 ref_pressure += delta;
2053 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2055 /* Check whether the maximum pressure in the overall schedule
2056 has increased. (This means that the MODEL_MAX_PRESSURE of
2057 every point <= POINT will need to increae too; see below.) */
2058 if (group->limits[pci].pressure < ref_pressure)
2059 group->limits[pci].pressure = ref_pressure;
2061 /* If we are at maximum pressure, and the maximum pressure
2062 point was previously unknown or later than POINT,
2063 bring it forward. */
2064 if (group->limits[pci].pressure == ref_pressure
2065 && !IN_RANGE (group->limits[pci].point, 0, point))
2066 group->limits[pci].point = point;
2068 /* If POINT used to be the point of maximum pressure, but isn't
2069 any longer, we need to recalculate it using a forward walk. */
2070 if (group->limits[pci].pressure > ref_pressure
2071 && group->limits[pci].point == point)
2072 group->limits[pci].point = -1;
2075 /* Update the maximum pressure at POINT. Changes here might also
2076 affect the maximum pressure at POINT - 1. */
2077 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2078 max_pressure = MAX (ref_pressure, next_max_pressure);
2079 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2081 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2082 return 1;
2084 return 0;
2087 /* INSN has just been scheduled. Update the model schedule accordingly. */
2089 static void
2090 model_recompute (rtx insn)
2092 struct {
2093 int last_use;
2094 int regno;
2095 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2096 struct reg_use_data *use;
2097 struct reg_pressure_data *reg_pressure;
2098 int delta[N_REG_CLASSES];
2099 int pci, point, mix, new_last, cl, ref_pressure, queue;
2100 unsigned int i, num_uses, num_pending_births;
2101 bool print_p;
2103 /* The destinations of INSN were previously live from POINT onwards, but are
2104 now live from model_curr_point onwards. Set up DELTA accordingly. */
2105 point = model_index (insn);
2106 reg_pressure = INSN_REG_PRESSURE (insn);
2107 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2109 cl = ira_pressure_classes[pci];
2110 delta[cl] = reg_pressure[pci].set_increase;
2113 /* Record which registers previously died at POINT, but which now die
2114 before POINT. Adjust DELTA so that it represents the effect of
2115 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2116 registers that will be born in the range [model_curr_point, POINT). */
2117 num_uses = 0;
2118 num_pending_births = 0;
2119 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2121 new_last = model_last_use_except (use);
2122 if (new_last < point)
2124 gcc_assert (num_uses < ARRAY_SIZE (uses));
2125 uses[num_uses].last_use = new_last;
2126 uses[num_uses].regno = use->regno;
2127 /* This register is no longer live after POINT - 1. */
2128 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2129 num_uses++;
2130 if (new_last >= 0)
2131 num_pending_births++;
2135 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2136 Also set each group pressure limit for POINT. */
2137 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2139 cl = ira_pressure_classes[pci];
2140 model_start_update_pressure (&model_before_pressure,
2141 point, pci, delta[cl]);
2144 /* Walk the model schedule backwards, starting immediately before POINT. */
2145 print_p = false;
2146 if (point != model_curr_point)
2149 point--;
2150 insn = MODEL_INSN (point);
2151 queue = QUEUE_INDEX (insn);
2153 if (queue != QUEUE_SCHEDULED)
2155 /* DELTA describes the effect of the move on the register pressure
2156 after POINT. Make it describe the effect on the pressure
2157 before POINT. */
2158 i = 0;
2159 while (i < num_uses)
2161 if (uses[i].last_use == point)
2163 /* This register is now live again. */
2164 mark_regno_birth_or_death (NULL, delta,
2165 uses[i].regno, true);
2167 /* Remove this use from the array. */
2168 uses[i] = uses[num_uses - 1];
2169 num_uses--;
2170 num_pending_births--;
2172 else
2173 i++;
2176 if (sched_verbose >= 5)
2178 if (!print_p)
2180 fprintf (sched_dump, MODEL_BAR);
2181 fprintf (sched_dump, ";;\t\t| New pressure for model"
2182 " schedule\n");
2183 fprintf (sched_dump, MODEL_BAR);
2184 print_p = true;
2187 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2188 point, INSN_UID (insn),
2189 str_pattern_slim (PATTERN (insn)));
2190 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2192 cl = ira_pressure_classes[pci];
2193 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2194 point, pci);
2195 fprintf (sched_dump, " %s:[%d->%d]",
2196 reg_class_names[ira_pressure_classes[pci]],
2197 ref_pressure, ref_pressure + delta[cl]);
2199 fprintf (sched_dump, "\n");
2203 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2204 might have changed as well. */
2205 mix = num_pending_births;
2206 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2208 cl = ira_pressure_classes[pci];
2209 mix |= delta[cl];
2210 mix |= model_update_pressure (&model_before_pressure,
2211 point, pci, delta[cl]);
2214 while (mix && point > model_curr_point);
2216 if (print_p)
2217 fprintf (sched_dump, MODEL_BAR);
2220 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2221 check whether the insn's pattern needs restoring. */
2222 static bool
2223 must_restore_pattern_p (rtx next, dep_t dep)
2225 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2226 return false;
2228 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2230 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2231 gcc_assert (next == DEP_CON (dep));
2233 else
2235 struct dep_replacement *desc = DEP_REPLACE (dep);
2236 if (desc->insn != next)
2238 gcc_assert (*desc->loc == desc->orig);
2239 return false;
2242 return true;
2245 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2246 pressure on CL from P to P'. We use this to calculate a "base ECC",
2247 baseECC (CL, X), for each pressure class CL and each instruction X.
2248 Supposing X changes the pressure on CL from P to P', and that the
2249 maximum pressure on CL in the current model schedule is MP', then:
2251 * if X occurs before or at the next point of maximum pressure in
2252 the model schedule and P' > MP', then:
2254 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2256 The idea is that the pressure after scheduling a fixed set of
2257 instructions -- in this case, the set up to and including the
2258 next maximum pressure point -- is going to be the same regardless
2259 of the order; we simply want to keep the intermediate pressure
2260 under control. Thus X has a cost of zero unless scheduling it
2261 now would exceed MP'.
2263 If all increases in the set are by the same amount, no zero-cost
2264 instruction will ever cause the pressure to exceed MP'. However,
2265 if X is instead moved past an instruction X' with pressure in the
2266 range (MP' - (P' - P), MP'), the pressure at X' will increase
2267 beyond MP'. Since baseECC is very much a heuristic anyway,
2268 it doesn't seem worth the overhead of tracking cases like these.
2270 The cost of exceeding MP' is always based on the original maximum
2271 pressure MP. This is so that going 2 registers over the original
2272 limit has the same cost regardless of whether it comes from two
2273 separate +1 deltas or from a single +2 delta.
2275 * if X occurs after the next point of maximum pressure in the model
2276 schedule and P' > P, then:
2278 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2280 That is, if we move X forward across a point of maximum pressure,
2281 and if X increases the pressure by P' - P, then we conservatively
2282 assume that scheduling X next would increase the maximum pressure
2283 by P' - P. Again, the cost of doing this is based on the original
2284 maximum pressure MP, for the same reason as above.
2286 * if P' < P, P > MP, and X occurs at or after the next point of
2287 maximum pressure, then:
2289 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2291 That is, if we have already exceeded the original maximum pressure MP,
2292 and if X might reduce the maximum pressure again -- or at least push
2293 it further back, and thus allow more scheduling freedom -- it is given
2294 a negative cost to reflect the improvement.
2296 * otherwise,
2298 baseECC (CL, X) = 0
2300 In this case, X is not expected to affect the maximum pressure MP',
2301 so it has zero cost.
2303 We then create a combined value baseECC (X) that is the sum of
2304 baseECC (CL, X) for each pressure class CL.
2306 baseECC (X) could itself be used as the ECC value described above.
2307 However, this is often too conservative, in the sense that it
2308 tends to make high-priority instructions that increase pressure
2309 wait too long in cases where introducing a spill would be better.
2310 For this reason the final ECC is a priority-adjusted form of
2311 baseECC (X). Specifically, we calculate:
2313 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2314 baseP = MAX { P (X) | baseECC (X) <= 0 }
2316 Then:
2318 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2320 Thus an instruction's effect on pressure is ignored if it has a high
2321 enough priority relative to the ones that don't increase pressure.
2322 Negative values of baseECC (X) do not increase the priority of X
2323 itself, but they do make it harder for other instructions to
2324 increase the pressure further.
2326 This pressure cost is deliberately timid. The intention has been
2327 to choose a heuristic that rarely interferes with the normal list
2328 scheduler in cases where that scheduler would produce good code.
2329 We simply want to curb some of its worst excesses. */
2331 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2333 Here we use the very simplistic cost model that every register above
2334 ira_class_hard_regs_num[CL] has a spill cost of 1. We could use other
2335 measures instead, such as one based on MEMORY_MOVE_COST. However:
2337 (1) In order for an instruction to be scheduled, the higher cost
2338 would need to be justified in a single saving of that many stalls.
2339 This is overly pessimistic, because the benefit of spilling is
2340 often to avoid a sequence of several short stalls rather than
2341 a single long one.
2343 (2) The cost is still arbitrary. Because we are not allocating
2344 registers during scheduling, we have no way of knowing for
2345 sure how many memory accesses will be required by each spill,
2346 where the spills will be placed within the block, or even
2347 which block(s) will contain the spills.
2349 So a higher cost than 1 is often too conservative in practice,
2350 forcing blocks to contain unnecessary stalls instead of spill code.
2351 The simple cost below seems to be the best compromise. It reduces
2352 the interference with the normal list scheduler, which helps make
2353 it more suitable for a default-on option. */
2355 static int
2356 model_spill_cost (int cl, int from, int to)
2358 from = MAX (from, ira_class_hard_regs_num[cl]);
2359 return MAX (to, from) - from;
2362 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2363 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2364 P' = P + DELTA. */
2366 static int
2367 model_excess_group_cost (struct model_pressure_group *group,
2368 int point, int pci, int delta)
2370 int pressure, cl;
2372 cl = ira_pressure_classes[pci];
2373 if (delta < 0 && point >= group->limits[pci].point)
2375 pressure = MAX (group->limits[pci].orig_pressure,
2376 curr_reg_pressure[cl] + delta);
2377 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2380 if (delta > 0)
2382 if (point > group->limits[pci].point)
2383 pressure = group->limits[pci].pressure + delta;
2384 else
2385 pressure = curr_reg_pressure[cl] + delta;
2387 if (pressure > group->limits[pci].pressure)
2388 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2389 pressure);
2392 return 0;
2395 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2396 if PRINT_P. */
2398 static int
2399 model_excess_cost (rtx insn, bool print_p)
2401 int point, pci, cl, cost, this_cost, delta;
2402 struct reg_pressure_data *insn_reg_pressure;
2403 int insn_death[N_REG_CLASSES];
2405 calculate_reg_deaths (insn, insn_death);
2406 point = model_index (insn);
2407 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2408 cost = 0;
2410 if (print_p)
2411 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2412 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2414 /* Sum up the individual costs for each register class. */
2415 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2417 cl = ira_pressure_classes[pci];
2418 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2419 this_cost = model_excess_group_cost (&model_before_pressure,
2420 point, pci, delta);
2421 cost += this_cost;
2422 if (print_p)
2423 fprintf (sched_dump, " %s:[%d base cost %d]",
2424 reg_class_names[cl], delta, this_cost);
2427 if (print_p)
2428 fprintf (sched_dump, "\n");
2430 return cost;
2433 /* Dump the next points of maximum pressure for GROUP. */
2435 static void
2436 model_dump_pressure_points (struct model_pressure_group *group)
2438 int pci, cl;
2440 fprintf (sched_dump, ";;\t\t| pressure points");
2441 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2443 cl = ira_pressure_classes[pci];
2444 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2445 curr_reg_pressure[cl], group->limits[pci].pressure);
2446 if (group->limits[pci].point < model_num_insns)
2447 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2448 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2449 else
2450 fprintf (sched_dump, "end]");
2452 fprintf (sched_dump, "\n");
2455 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2457 static void
2458 model_set_excess_costs (rtx *insns, int count)
2460 int i, cost, priority_base, priority;
2461 bool print_p;
2463 /* Record the baseECC value for each instruction in the model schedule,
2464 except that negative costs are converted to zero ones now rather thatn
2465 later. Do not assign a cost to debug instructions, since they must
2466 not change code-generation decisions. Experiments suggest we also
2467 get better results by not assigning a cost to instructions from
2468 a different block.
2470 Set PRIORITY_BASE to baseP in the block comment above. This is the
2471 maximum priority of the "cheap" instructions, which should always
2472 include the next model instruction. */
2473 priority_base = 0;
2474 print_p = false;
2475 for (i = 0; i < count; i++)
2476 if (INSN_MODEL_INDEX (insns[i]))
2478 if (sched_verbose >= 6 && !print_p)
2480 fprintf (sched_dump, MODEL_BAR);
2481 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2482 model_dump_pressure_points (&model_before_pressure);
2483 fprintf (sched_dump, MODEL_BAR);
2484 print_p = true;
2486 cost = model_excess_cost (insns[i], print_p);
2487 if (cost <= 0)
2489 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2490 priority_base = MAX (priority_base, priority);
2491 cost = 0;
2493 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2495 if (print_p)
2496 fprintf (sched_dump, MODEL_BAR);
2498 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2499 instruction. */
2500 for (i = 0; i < count; i++)
2502 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2503 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2504 if (cost > 0 && priority > priority_base)
2506 cost += priority_base - priority;
2507 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2512 /* Returns a positive value if x is preferred; returns a negative value if
2513 y is preferred. Should never return 0, since that will make the sort
2514 unstable. */
2516 static int
2517 rank_for_schedule (const void *x, const void *y)
2519 rtx tmp = *(const rtx *) y;
2520 rtx tmp2 = *(const rtx *) x;
2521 int tmp_class, tmp2_class;
2522 int val, priority_val, info_val;
2524 if (MAY_HAVE_DEBUG_INSNS)
2526 /* Schedule debug insns as early as possible. */
2527 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2528 return -1;
2529 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2530 return 1;
2531 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2532 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2535 /* The insn in a schedule group should be issued the first. */
2536 if (flag_sched_group_heuristic &&
2537 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2538 return SCHED_GROUP_P (tmp2) ? 1 : -1;
2540 /* Make sure that priority of TMP and TMP2 are initialized. */
2541 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2543 if (sched_pressure != SCHED_PRESSURE_NONE)
2545 int diff;
2547 /* Prefer insn whose scheduling results in the smallest register
2548 pressure excess. */
2549 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2550 + insn_delay (tmp)
2551 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2552 - insn_delay (tmp2))))
2553 return diff;
2556 if (sched_pressure != SCHED_PRESSURE_NONE
2557 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
2559 if (INSN_TICK (tmp) <= clock_var)
2560 return -1;
2561 else if (INSN_TICK (tmp2) <= clock_var)
2562 return 1;
2563 else
2564 return INSN_TICK (tmp) - INSN_TICK (tmp2);
2567 /* If we are doing backtracking in this schedule, prefer insns that
2568 have forward dependencies with negative cost against an insn that
2569 was already scheduled. */
2570 if (current_sched_info->flags & DO_BACKTRACKING)
2572 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2573 if (priority_val)
2574 return priority_val;
2577 /* Prefer insn with higher priority. */
2578 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2580 if (flag_sched_critical_path_heuristic && priority_val)
2581 return priority_val;
2583 /* Prefer speculative insn with greater dependencies weakness. */
2584 if (flag_sched_spec_insn_heuristic && spec_info)
2586 ds_t ds1, ds2;
2587 dw_t dw1, dw2;
2588 int dw;
2590 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2591 if (ds1)
2592 dw1 = ds_weak (ds1);
2593 else
2594 dw1 = NO_DEP_WEAK;
2596 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2597 if (ds2)
2598 dw2 = ds_weak (ds2);
2599 else
2600 dw2 = NO_DEP_WEAK;
2602 dw = dw2 - dw1;
2603 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2604 return dw;
2607 info_val = (*current_sched_info->rank) (tmp, tmp2);
2608 if(flag_sched_rank_heuristic && info_val)
2609 return info_val;
2611 /* Compare insns based on their relation to the last scheduled
2612 non-debug insn. */
2613 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2615 dep_t dep1;
2616 dep_t dep2;
2617 rtx last = last_nondebug_scheduled_insn;
2619 /* Classify the instructions into three classes:
2620 1) Data dependent on last schedule insn.
2621 2) Anti/Output dependent on last scheduled insn.
2622 3) Independent of last scheduled insn, or has latency of one.
2623 Choose the insn from the highest numbered class if different. */
2624 dep1 = sd_find_dep_between (last, tmp, true);
2626 if (dep1 == NULL || dep_cost (dep1) == 1)
2627 tmp_class = 3;
2628 else if (/* Data dependence. */
2629 DEP_TYPE (dep1) == REG_DEP_TRUE)
2630 tmp_class = 1;
2631 else
2632 tmp_class = 2;
2634 dep2 = sd_find_dep_between (last, tmp2, true);
2636 if (dep2 == NULL || dep_cost (dep2) == 1)
2637 tmp2_class = 3;
2638 else if (/* Data dependence. */
2639 DEP_TYPE (dep2) == REG_DEP_TRUE)
2640 tmp2_class = 1;
2641 else
2642 tmp2_class = 2;
2644 if ((val = tmp2_class - tmp_class))
2645 return val;
2648 /* Prefer instructions that occur earlier in the model schedule. */
2649 if (sched_pressure == SCHED_PRESSURE_MODEL)
2651 int diff;
2653 diff = model_index (tmp) - model_index (tmp2);
2654 if (diff != 0)
2655 return diff;
2658 /* Prefer the insn which has more later insns that depend on it.
2659 This gives the scheduler more freedom when scheduling later
2660 instructions at the expense of added register pressure. */
2662 val = (dep_list_size (tmp2, SD_LIST_FORW)
2663 - dep_list_size (tmp, SD_LIST_FORW));
2665 if (flag_sched_dep_count_heuristic && val != 0)
2666 return val;
2668 /* If insns are equally good, sort by INSN_LUID (original insn order),
2669 so that we make the sort stable. This minimizes instruction movement,
2670 thus minimizing sched's effect on debugging and cross-jumping. */
2671 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2674 /* Resort the array A in which only element at index N may be out of order. */
2676 HAIFA_INLINE static void
2677 swap_sort (rtx *a, int n)
2679 rtx insn = a[n - 1];
2680 int i = n - 2;
2682 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2684 a[i + 1] = a[i];
2685 i -= 1;
2687 a[i + 1] = insn;
2690 /* Add INSN to the insn queue so that it can be executed at least
2691 N_CYCLES after the currently executing insn. Preserve insns
2692 chain for debugging purposes. REASON will be printed in debugging
2693 output. */
2695 HAIFA_INLINE static void
2696 queue_insn (rtx insn, int n_cycles, const char *reason)
2698 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2699 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2700 int new_tick;
2702 gcc_assert (n_cycles <= max_insn_queue_index);
2703 gcc_assert (!DEBUG_INSN_P (insn));
2705 insn_queue[next_q] = link;
2706 q_size += 1;
2708 if (sched_verbose >= 2)
2710 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2711 (*current_sched_info->print_insn) (insn, 0));
2713 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2716 QUEUE_INDEX (insn) = next_q;
2718 if (current_sched_info->flags & DO_BACKTRACKING)
2720 new_tick = clock_var + n_cycles;
2721 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2722 INSN_TICK (insn) = new_tick;
2724 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2725 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2727 must_backtrack = true;
2728 if (sched_verbose >= 2)
2729 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2734 /* Remove INSN from queue. */
2735 static void
2736 queue_remove (rtx insn)
2738 gcc_assert (QUEUE_INDEX (insn) >= 0);
2739 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2740 q_size--;
2741 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2744 /* Return a pointer to the bottom of the ready list, i.e. the insn
2745 with the lowest priority. */
2747 rtx *
2748 ready_lastpos (struct ready_list *ready)
2750 gcc_assert (ready->n_ready >= 1);
2751 return ready->vec + ready->first - ready->n_ready + 1;
2754 /* Add an element INSN to the ready list so that it ends up with the
2755 lowest/highest priority depending on FIRST_P. */
2757 HAIFA_INLINE static void
2758 ready_add (struct ready_list *ready, rtx insn, bool first_p)
2760 if (!first_p)
2762 if (ready->first == ready->n_ready)
2764 memmove (ready->vec + ready->veclen - ready->n_ready,
2765 ready_lastpos (ready),
2766 ready->n_ready * sizeof (rtx));
2767 ready->first = ready->veclen - 1;
2769 ready->vec[ready->first - ready->n_ready] = insn;
2771 else
2773 if (ready->first == ready->veclen - 1)
2775 if (ready->n_ready)
2776 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2777 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2778 ready_lastpos (ready),
2779 ready->n_ready * sizeof (rtx));
2780 ready->first = ready->veclen - 2;
2782 ready->vec[++(ready->first)] = insn;
2785 ready->n_ready++;
2786 if (DEBUG_INSN_P (insn))
2787 ready->n_debug++;
2789 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2790 QUEUE_INDEX (insn) = QUEUE_READY;
2792 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2793 && INSN_EXACT_TICK (insn) < clock_var)
2795 must_backtrack = true;
2799 /* Remove the element with the highest priority from the ready list and
2800 return it. */
2802 HAIFA_INLINE static rtx
2803 ready_remove_first (struct ready_list *ready)
2805 rtx t;
2807 gcc_assert (ready->n_ready);
2808 t = ready->vec[ready->first--];
2809 ready->n_ready--;
2810 if (DEBUG_INSN_P (t))
2811 ready->n_debug--;
2812 /* If the queue becomes empty, reset it. */
2813 if (ready->n_ready == 0)
2814 ready->first = ready->veclen - 1;
2816 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2817 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2819 return t;
2822 /* The following code implements multi-pass scheduling for the first
2823 cycle. In other words, we will try to choose ready insn which
2824 permits to start maximum number of insns on the same cycle. */
2826 /* Return a pointer to the element INDEX from the ready. INDEX for
2827 insn with the highest priority is 0, and the lowest priority has
2828 N_READY - 1. */
2831 ready_element (struct ready_list *ready, int index)
2833 gcc_assert (ready->n_ready && index < ready->n_ready);
2835 return ready->vec[ready->first - index];
2838 /* Remove the element INDEX from the ready list and return it. INDEX
2839 for insn with the highest priority is 0, and the lowest priority
2840 has N_READY - 1. */
2842 HAIFA_INLINE static rtx
2843 ready_remove (struct ready_list *ready, int index)
2845 rtx t;
2846 int i;
2848 if (index == 0)
2849 return ready_remove_first (ready);
2850 gcc_assert (ready->n_ready && index < ready->n_ready);
2851 t = ready->vec[ready->first - index];
2852 ready->n_ready--;
2853 if (DEBUG_INSN_P (t))
2854 ready->n_debug--;
2855 for (i = index; i < ready->n_ready; i++)
2856 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2857 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2858 return t;
2861 /* Remove INSN from the ready list. */
2862 static void
2863 ready_remove_insn (rtx insn)
2865 int i;
2867 for (i = 0; i < readyp->n_ready; i++)
2868 if (ready_element (readyp, i) == insn)
2870 ready_remove (readyp, i);
2871 return;
2873 gcc_unreachable ();
2876 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
2877 macro. */
2879 void
2880 ready_sort (struct ready_list *ready)
2882 int i;
2883 rtx *first = ready_lastpos (ready);
2885 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2887 for (i = 0; i < ready->n_ready; i++)
2888 if (!DEBUG_INSN_P (first[i]))
2889 setup_insn_reg_pressure_info (first[i]);
2891 if (sched_pressure == SCHED_PRESSURE_MODEL
2892 && model_curr_point < model_num_insns)
2893 model_set_excess_costs (first, ready->n_ready);
2894 SCHED_SORT (first, ready->n_ready);
2897 /* PREV is an insn that is ready to execute. Adjust its priority if that
2898 will help shorten or lengthen register lifetimes as appropriate. Also
2899 provide a hook for the target to tweak itself. */
2901 HAIFA_INLINE static void
2902 adjust_priority (rtx prev)
2904 /* ??? There used to be code here to try and estimate how an insn
2905 affected register lifetimes, but it did it by looking at REG_DEAD
2906 notes, which we removed in schedule_region. Nor did it try to
2907 take into account register pressure or anything useful like that.
2909 Revisit when we have a machine model to work with and not before. */
2911 if (targetm.sched.adjust_priority)
2912 INSN_PRIORITY (prev) =
2913 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
2916 /* Advance DFA state STATE on one cycle. */
2917 void
2918 advance_state (state_t state)
2920 if (targetm.sched.dfa_pre_advance_cycle)
2921 targetm.sched.dfa_pre_advance_cycle ();
2923 if (targetm.sched.dfa_pre_cycle_insn)
2924 state_transition (state,
2925 targetm.sched.dfa_pre_cycle_insn ());
2927 state_transition (state, NULL);
2929 if (targetm.sched.dfa_post_cycle_insn)
2930 state_transition (state,
2931 targetm.sched.dfa_post_cycle_insn ());
2933 if (targetm.sched.dfa_post_advance_cycle)
2934 targetm.sched.dfa_post_advance_cycle ();
2937 /* Advance time on one cycle. */
2938 HAIFA_INLINE static void
2939 advance_one_cycle (void)
2941 advance_state (curr_state);
2942 if (sched_verbose >= 6)
2943 fprintf (sched_dump, ";;\tAdvanced a state.\n");
2946 /* Update register pressure after scheduling INSN. */
2947 static void
2948 update_register_pressure (rtx insn)
2950 struct reg_use_data *use;
2951 struct reg_set_data *set;
2953 gcc_checking_assert (!DEBUG_INSN_P (insn));
2955 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2956 if (dying_use_p (use))
2957 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
2958 use->regno, false);
2959 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
2960 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
2961 set->regno, true);
2964 /* Set up or update (if UPDATE_P) max register pressure (see its
2965 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
2966 after insn AFTER. */
2967 static void
2968 setup_insn_max_reg_pressure (rtx after, bool update_p)
2970 int i, p;
2971 bool eq_p;
2972 rtx insn;
2973 static int max_reg_pressure[N_REG_CLASSES];
2975 save_reg_pressure ();
2976 for (i = 0; i < ira_pressure_classes_num; i++)
2977 max_reg_pressure[ira_pressure_classes[i]]
2978 = curr_reg_pressure[ira_pressure_classes[i]];
2979 for (insn = NEXT_INSN (after);
2980 insn != NULL_RTX && ! BARRIER_P (insn)
2981 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
2982 insn = NEXT_INSN (insn))
2983 if (NONDEBUG_INSN_P (insn))
2985 eq_p = true;
2986 for (i = 0; i < ira_pressure_classes_num; i++)
2988 p = max_reg_pressure[ira_pressure_classes[i]];
2989 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
2991 eq_p = false;
2992 INSN_MAX_REG_PRESSURE (insn)[i]
2993 = max_reg_pressure[ira_pressure_classes[i]];
2996 if (update_p && eq_p)
2997 break;
2998 update_register_pressure (insn);
2999 for (i = 0; i < ira_pressure_classes_num; i++)
3000 if (max_reg_pressure[ira_pressure_classes[i]]
3001 < curr_reg_pressure[ira_pressure_classes[i]])
3002 max_reg_pressure[ira_pressure_classes[i]]
3003 = curr_reg_pressure[ira_pressure_classes[i]];
3005 restore_reg_pressure ();
3008 /* Update the current register pressure after scheduling INSN. Update
3009 also max register pressure for unscheduled insns of the current
3010 BB. */
3011 static void
3012 update_reg_and_insn_max_reg_pressure (rtx insn)
3014 int i;
3015 int before[N_REG_CLASSES];
3017 for (i = 0; i < ira_pressure_classes_num; i++)
3018 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3019 update_register_pressure (insn);
3020 for (i = 0; i < ira_pressure_classes_num; i++)
3021 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3022 break;
3023 if (i < ira_pressure_classes_num)
3024 setup_insn_max_reg_pressure (insn, true);
3027 /* Set up register pressure at the beginning of basic block BB whose
3028 insns starting after insn AFTER. Set up also max register pressure
3029 for all insns of the basic block. */
3030 void
3031 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
3033 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3034 initiate_bb_reg_pressure_info (bb);
3035 setup_insn_max_reg_pressure (after, false);
3038 /* If doing predication while scheduling, verify whether INSN, which
3039 has just been scheduled, clobbers the conditions of any
3040 instructions that must be predicated in order to break their
3041 dependencies. If so, remove them from the queues so that they will
3042 only be scheduled once their control dependency is resolved. */
3044 static void
3045 check_clobbered_conditions (rtx insn)
3047 HARD_REG_SET t;
3048 int i;
3050 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3051 return;
3053 find_all_hard_reg_sets (insn, &t);
3055 restart:
3056 for (i = 0; i < ready.n_ready; i++)
3058 rtx x = ready_element (&ready, i);
3059 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3061 ready_remove_insn (x);
3062 goto restart;
3065 for (i = 0; i <= max_insn_queue_index; i++)
3067 rtx link;
3068 int q = NEXT_Q_AFTER (q_ptr, i);
3070 restart_queue:
3071 for (link = insn_queue[q]; link; link = XEXP (link, 1))
3073 rtx x = XEXP (link, 0);
3074 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3076 queue_remove (x);
3077 goto restart_queue;
3083 /* Return (in order):
3085 - positive if INSN adversely affects the pressure on one
3086 register class
3088 - negative if INSN reduces the pressure on one register class
3090 - 0 if INSN doesn't affect the pressure on any register class. */
3092 static int
3093 model_classify_pressure (struct model_insn_info *insn)
3095 struct reg_pressure_data *reg_pressure;
3096 int death[N_REG_CLASSES];
3097 int pci, cl, sum;
3099 calculate_reg_deaths (insn->insn, death);
3100 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3101 sum = 0;
3102 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3104 cl = ira_pressure_classes[pci];
3105 if (death[cl] < reg_pressure[pci].set_increase)
3106 return 1;
3107 sum += reg_pressure[pci].set_increase - death[cl];
3109 return sum;
3112 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3114 static int
3115 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3117 unsigned int height1, height2;
3118 unsigned int priority1, priority2;
3120 /* Prefer instructions with a higher model priority. */
3121 if (insn1->model_priority != insn2->model_priority)
3122 return insn1->model_priority > insn2->model_priority;
3124 /* Combine the length of the longest path of satisfied true dependencies
3125 that leads to each instruction (depth) with the length of the longest
3126 path of any dependencies that leads from the instruction (alap).
3127 Prefer instructions with the greatest combined length. If the combined
3128 lengths are equal, prefer instructions with the greatest depth.
3130 The idea is that, if we have a set S of "equal" instructions that each
3131 have ALAP value X, and we pick one such instruction I, any true-dependent
3132 successors of I that have ALAP value X - 1 should be preferred over S.
3133 This encourages the schedule to be "narrow" rather than "wide".
3134 However, if I is a low-priority instruction that we decided to
3135 schedule because of its model_classify_pressure, and if there
3136 is a set of higher-priority instructions T, the aforementioned
3137 successors of I should not have the edge over T. */
3138 height1 = insn1->depth + insn1->alap;
3139 height2 = insn2->depth + insn2->alap;
3140 if (height1 != height2)
3141 return height1 > height2;
3142 if (insn1->depth != insn2->depth)
3143 return insn1->depth > insn2->depth;
3145 /* We have no real preference between INSN1 an INSN2 as far as attempts
3146 to reduce pressure go. Prefer instructions with higher priorities. */
3147 priority1 = INSN_PRIORITY (insn1->insn);
3148 priority2 = INSN_PRIORITY (insn2->insn);
3149 if (priority1 != priority2)
3150 return priority1 > priority2;
3152 /* Use the original rtl sequence as a tie-breaker. */
3153 return insn1 < insn2;
3156 /* Add INSN to the model worklist immediately after PREV. Add it to the
3157 beginning of the list if PREV is null. */
3159 static void
3160 model_add_to_worklist_at (struct model_insn_info *insn,
3161 struct model_insn_info *prev)
3163 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3164 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3166 insn->prev = prev;
3167 if (prev)
3169 insn->next = prev->next;
3170 prev->next = insn;
3172 else
3174 insn->next = model_worklist;
3175 model_worklist = insn;
3177 if (insn->next)
3178 insn->next->prev = insn;
3181 /* Remove INSN from the model worklist. */
3183 static void
3184 model_remove_from_worklist (struct model_insn_info *insn)
3186 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3187 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3189 if (insn->prev)
3190 insn->prev->next = insn->next;
3191 else
3192 model_worklist = insn->next;
3193 if (insn->next)
3194 insn->next->prev = insn->prev;
3197 /* Add INSN to the model worklist. Start looking for a suitable position
3198 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3199 insns either side. A null PREV indicates the beginning of the list and
3200 a null NEXT indicates the end. */
3202 static void
3203 model_add_to_worklist (struct model_insn_info *insn,
3204 struct model_insn_info *prev,
3205 struct model_insn_info *next)
3207 int count;
3209 count = MAX_SCHED_READY_INSNS;
3210 if (count > 0 && prev && model_order_p (insn, prev))
3213 count--;
3214 prev = prev->prev;
3216 while (count > 0 && prev && model_order_p (insn, prev));
3217 else
3218 while (count > 0 && next && model_order_p (next, insn))
3220 count--;
3221 prev = next;
3222 next = next->next;
3224 model_add_to_worklist_at (insn, prev);
3227 /* INSN may now have a higher priority (in the model_order_p sense)
3228 than before. Move it up the worklist if necessary. */
3230 static void
3231 model_promote_insn (struct model_insn_info *insn)
3233 struct model_insn_info *prev;
3234 int count;
3236 prev = insn->prev;
3237 count = MAX_SCHED_READY_INSNS;
3238 while (count > 0 && prev && model_order_p (insn, prev))
3240 count--;
3241 prev = prev->prev;
3243 if (prev != insn->prev)
3245 model_remove_from_worklist (insn);
3246 model_add_to_worklist_at (insn, prev);
3250 /* Add INSN to the end of the model schedule. */
3252 static void
3253 model_add_to_schedule (rtx insn)
3255 unsigned int point;
3257 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3258 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3260 point = model_schedule.length ();
3261 model_schedule.quick_push (insn);
3262 INSN_MODEL_INDEX (insn) = point + 1;
3265 /* Analyze the instructions that are to be scheduled, setting up
3266 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3267 instructions to model_worklist. */
3269 static void
3270 model_analyze_insns (void)
3272 rtx start, end, iter;
3273 sd_iterator_def sd_it;
3274 dep_t dep;
3275 struct model_insn_info *insn, *con;
3277 model_num_insns = 0;
3278 start = PREV_INSN (current_sched_info->next_tail);
3279 end = current_sched_info->prev_head;
3280 for (iter = start; iter != end; iter = PREV_INSN (iter))
3281 if (NONDEBUG_INSN_P (iter))
3283 insn = MODEL_INSN_INFO (iter);
3284 insn->insn = iter;
3285 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3287 con = MODEL_INSN_INFO (DEP_CON (dep));
3288 if (con->insn && insn->alap < con->alap + 1)
3289 insn->alap = con->alap + 1;
3292 insn->old_queue = QUEUE_INDEX (iter);
3293 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3295 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3296 if (insn->unscheduled_preds == 0)
3297 model_add_to_worklist (insn, NULL, model_worklist);
3299 model_num_insns++;
3303 /* The global state describes the register pressure at the start of the
3304 model schedule. Initialize GROUP accordingly. */
3306 static void
3307 model_init_pressure_group (struct model_pressure_group *group)
3309 int pci, cl;
3311 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3313 cl = ira_pressure_classes[pci];
3314 group->limits[pci].pressure = curr_reg_pressure[cl];
3315 group->limits[pci].point = 0;
3317 /* Use index model_num_insns to record the state after the last
3318 instruction in the model schedule. */
3319 group->model = XNEWVEC (struct model_pressure_data,
3320 (model_num_insns + 1) * ira_pressure_classes_num);
3323 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3324 Update the maximum pressure for the whole schedule. */
3326 static void
3327 model_record_pressure (struct model_pressure_group *group,
3328 int point, int pci, int pressure)
3330 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3331 if (group->limits[pci].pressure < pressure)
3333 group->limits[pci].pressure = pressure;
3334 group->limits[pci].point = point;
3338 /* INSN has just been added to the end of the model schedule. Record its
3339 register-pressure information. */
3341 static void
3342 model_record_pressures (struct model_insn_info *insn)
3344 struct reg_pressure_data *reg_pressure;
3345 int point, pci, cl, delta;
3346 int death[N_REG_CLASSES];
3348 point = model_index (insn->insn);
3349 if (sched_verbose >= 2)
3351 if (point == 0)
3353 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3354 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3356 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3357 point, INSN_UID (insn->insn), insn->model_priority,
3358 insn->depth + insn->alap, insn->depth,
3359 INSN_PRIORITY (insn->insn),
3360 str_pattern_slim (PATTERN (insn->insn)));
3362 calculate_reg_deaths (insn->insn, death);
3363 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3364 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3366 cl = ira_pressure_classes[pci];
3367 delta = reg_pressure[pci].set_increase - death[cl];
3368 if (sched_verbose >= 2)
3369 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3370 curr_reg_pressure[cl], delta);
3371 model_record_pressure (&model_before_pressure, point, pci,
3372 curr_reg_pressure[cl]);
3374 if (sched_verbose >= 2)
3375 fprintf (sched_dump, "\n");
3378 /* All instructions have been added to the model schedule. Record the
3379 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3381 static void
3382 model_record_final_pressures (struct model_pressure_group *group)
3384 int point, pci, max_pressure, ref_pressure, cl;
3386 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3388 /* Record the final pressure for this class. */
3389 cl = ira_pressure_classes[pci];
3390 point = model_num_insns;
3391 ref_pressure = curr_reg_pressure[cl];
3392 model_record_pressure (group, point, pci, ref_pressure);
3394 /* Record the original maximum pressure. */
3395 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3397 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3398 max_pressure = ref_pressure;
3399 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3400 while (point > 0)
3402 point--;
3403 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3404 max_pressure = MAX (max_pressure, ref_pressure);
3405 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3410 /* Update all successors of INSN, given that INSN has just been scheduled. */
3412 static void
3413 model_add_successors_to_worklist (struct model_insn_info *insn)
3415 sd_iterator_def sd_it;
3416 struct model_insn_info *con;
3417 dep_t dep;
3419 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3421 con = MODEL_INSN_INFO (DEP_CON (dep));
3422 /* Ignore debug instructions, and instructions from other blocks. */
3423 if (con->insn)
3425 con->unscheduled_preds--;
3427 /* Update the depth field of each true-dependent successor.
3428 Increasing the depth gives them a higher priority than
3429 before. */
3430 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3432 con->depth = insn->depth + 1;
3433 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3434 model_promote_insn (con);
3437 /* If this is a true dependency, or if there are no remaining
3438 dependencies for CON (meaning that CON only had non-true
3439 dependencies), make sure that CON is on the worklist.
3440 We don't bother otherwise because it would tend to fill the
3441 worklist with a lot of low-priority instructions that are not
3442 yet ready to issue. */
3443 if ((con->depth > 0 || con->unscheduled_preds == 0)
3444 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3445 model_add_to_worklist (con, insn, insn->next);
3450 /* Give INSN a higher priority than any current instruction, then give
3451 unscheduled predecessors of INSN a higher priority still. If any of
3452 those predecessors are not on the model worklist, do the same for its
3453 predecessors, and so on. */
3455 static void
3456 model_promote_predecessors (struct model_insn_info *insn)
3458 struct model_insn_info *pro, *first;
3459 sd_iterator_def sd_it;
3460 dep_t dep;
3462 if (sched_verbose >= 7)
3463 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3464 INSN_UID (insn->insn), model_next_priority);
3465 insn->model_priority = model_next_priority++;
3466 model_remove_from_worklist (insn);
3467 model_add_to_worklist_at (insn, NULL);
3469 first = NULL;
3470 for (;;)
3472 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3474 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3475 /* The first test is to ignore debug instructions, and instructions
3476 from other blocks. */
3477 if (pro->insn
3478 && pro->model_priority != model_next_priority
3479 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3481 pro->model_priority = model_next_priority;
3482 if (sched_verbose >= 7)
3483 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3484 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3486 /* PRO is already in the worklist, but it now has
3487 a higher priority than before. Move it at the
3488 appropriate place. */
3489 model_remove_from_worklist (pro);
3490 model_add_to_worklist (pro, NULL, model_worklist);
3492 else
3494 /* PRO isn't in the worklist. Recursively process
3495 its predecessors until we find one that is. */
3496 pro->next = first;
3497 first = pro;
3501 if (!first)
3502 break;
3503 insn = first;
3504 first = insn->next;
3506 if (sched_verbose >= 7)
3507 fprintf (sched_dump, " = %d\n", model_next_priority);
3508 model_next_priority++;
3511 /* Pick one instruction from model_worklist and process it. */
3513 static void
3514 model_choose_insn (void)
3516 struct model_insn_info *insn, *fallback;
3517 int count;
3519 if (sched_verbose >= 7)
3521 fprintf (sched_dump, ";;\t+--- worklist:\n");
3522 insn = model_worklist;
3523 count = MAX_SCHED_READY_INSNS;
3524 while (count > 0 && insn)
3526 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3527 INSN_UID (insn->insn), insn->model_priority,
3528 insn->depth + insn->alap, insn->depth,
3529 INSN_PRIORITY (insn->insn));
3530 count--;
3531 insn = insn->next;
3535 /* Look for a ready instruction whose model_classify_priority is zero
3536 or negative, picking the highest-priority one. Adding such an
3537 instruction to the schedule now should do no harm, and may actually
3538 do some good.
3540 Failing that, see whether there is an instruction with the highest
3541 extant model_priority that is not yet ready, but which would reduce
3542 pressure if it became ready. This is designed to catch cases like:
3544 (set (mem (reg R1)) (reg R2))
3546 where the instruction is the last remaining use of R1 and where the
3547 value of R2 is not yet available (or vice versa). The death of R1
3548 means that this instruction already reduces pressure. It is of
3549 course possible that the computation of R2 involves other registers
3550 that are hard to kill, but such cases are rare enough for this
3551 heuristic to be a win in general.
3553 Failing that, just pick the highest-priority instruction in the
3554 worklist. */
3555 count = MAX_SCHED_READY_INSNS;
3556 insn = model_worklist;
3557 fallback = 0;
3558 for (;;)
3560 if (count == 0 || !insn)
3562 insn = fallback ? fallback : model_worklist;
3563 break;
3565 if (insn->unscheduled_preds)
3567 if (model_worklist->model_priority == insn->model_priority
3568 && !fallback
3569 && model_classify_pressure (insn) < 0)
3570 fallback = insn;
3572 else
3574 if (model_classify_pressure (insn) <= 0)
3575 break;
3577 count--;
3578 insn = insn->next;
3581 if (sched_verbose >= 7 && insn != model_worklist)
3583 if (insn->unscheduled_preds)
3584 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3585 INSN_UID (insn->insn));
3586 else
3587 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3588 INSN_UID (insn->insn));
3590 if (insn->unscheduled_preds)
3591 /* INSN isn't yet ready to issue. Give all its predecessors the
3592 highest priority. */
3593 model_promote_predecessors (insn);
3594 else
3596 /* INSN is ready. Add it to the end of model_schedule and
3597 process its successors. */
3598 model_add_successors_to_worklist (insn);
3599 model_remove_from_worklist (insn);
3600 model_add_to_schedule (insn->insn);
3601 model_record_pressures (insn);
3602 update_register_pressure (insn->insn);
3606 /* Restore all QUEUE_INDEXs to the values that they had before
3607 model_start_schedule was called. */
3609 static void
3610 model_reset_queue_indices (void)
3612 unsigned int i;
3613 rtx insn;
3615 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3616 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3619 /* We have calculated the model schedule and spill costs. Print a summary
3620 to sched_dump. */
3622 static void
3623 model_dump_pressure_summary (void)
3625 int pci, cl;
3627 fprintf (sched_dump, ";; Pressure summary:");
3628 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3630 cl = ira_pressure_classes[pci];
3631 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3632 model_before_pressure.limits[pci].pressure);
3634 fprintf (sched_dump, "\n\n");
3637 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3638 scheduling region. */
3640 static void
3641 model_start_schedule (void)
3643 basic_block bb;
3645 model_next_priority = 1;
3646 model_schedule.create (sched_max_luid);
3647 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3649 bb = BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head));
3650 initiate_reg_pressure_info (df_get_live_in (bb));
3652 model_analyze_insns ();
3653 model_init_pressure_group (&model_before_pressure);
3654 while (model_worklist)
3655 model_choose_insn ();
3656 gcc_assert (model_num_insns == (int) model_schedule.length ());
3657 if (sched_verbose >= 2)
3658 fprintf (sched_dump, "\n");
3660 model_record_final_pressures (&model_before_pressure);
3661 model_reset_queue_indices ();
3663 XDELETEVEC (model_insns);
3665 model_curr_point = 0;
3666 initiate_reg_pressure_info (df_get_live_in (bb));
3667 if (sched_verbose >= 1)
3668 model_dump_pressure_summary ();
3671 /* Free the information associated with GROUP. */
3673 static void
3674 model_finalize_pressure_group (struct model_pressure_group *group)
3676 XDELETEVEC (group->model);
3679 /* Free the information created by model_start_schedule. */
3681 static void
3682 model_end_schedule (void)
3684 model_finalize_pressure_group (&model_before_pressure);
3685 model_schedule.release ();
3688 /* A structure that holds local state for the loop in schedule_block. */
3689 struct sched_block_state
3691 /* True if no real insns have been scheduled in the current cycle. */
3692 bool first_cycle_insn_p;
3693 /* True if a shadow insn has been scheduled in the current cycle, which
3694 means that no more normal insns can be issued. */
3695 bool shadows_only_p;
3696 /* True if we're winding down a modulo schedule, which means that we only
3697 issue insns with INSN_EXACT_TICK set. */
3698 bool modulo_epilogue;
3699 /* Initialized with the machine's issue rate every cycle, and updated
3700 by calls to the variable_issue hook. */
3701 int can_issue_more;
3704 /* INSN is the "currently executing insn". Launch each insn which was
3705 waiting on INSN. READY is the ready list which contains the insns
3706 that are ready to fire. CLOCK is the current cycle. The function
3707 returns necessary cycle advance after issuing the insn (it is not
3708 zero for insns in a schedule group). */
3710 static int
3711 schedule_insn (rtx insn)
3713 sd_iterator_def sd_it;
3714 dep_t dep;
3715 int i;
3716 int advance = 0;
3718 if (sched_verbose >= 1)
3720 struct reg_pressure_data *pressure_info;
3721 fprintf (sched_dump, ";;\t%3i--> %s%-40s:",
3722 clock_var, (*current_sched_info->print_insn) (insn, 1),
3723 str_pattern_slim (PATTERN (insn)));
3725 if (recog_memoized (insn) < 0)
3726 fprintf (sched_dump, "nothing");
3727 else
3728 print_reservation (sched_dump, insn);
3729 pressure_info = INSN_REG_PRESSURE (insn);
3730 if (pressure_info != NULL)
3732 fputc (':', sched_dump);
3733 for (i = 0; i < ira_pressure_classes_num; i++)
3734 fprintf (sched_dump, "%s%+d(%d)",
3735 reg_class_names[ira_pressure_classes[i]],
3736 pressure_info[i].set_increase, pressure_info[i].change);
3738 if (sched_pressure == SCHED_PRESSURE_MODEL
3739 && model_curr_point < model_num_insns
3740 && model_index (insn) == model_curr_point)
3741 fprintf (sched_dump, ":model %d", model_curr_point);
3742 fputc ('\n', sched_dump);
3745 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
3746 update_reg_and_insn_max_reg_pressure (insn);
3748 /* Scheduling instruction should have all its dependencies resolved and
3749 should have been removed from the ready list. */
3750 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
3752 /* Reset debug insns invalidated by moving this insn. */
3753 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
3754 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
3755 sd_iterator_cond (&sd_it, &dep);)
3757 rtx dbg = DEP_PRO (dep);
3758 struct reg_use_data *use, *next;
3760 if (DEP_STATUS (dep) & DEP_CANCELLED)
3762 sd_iterator_next (&sd_it);
3763 continue;
3766 gcc_assert (DEBUG_INSN_P (dbg));
3768 if (sched_verbose >= 6)
3769 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
3770 INSN_UID (dbg));
3772 /* ??? Rather than resetting the debug insn, we might be able
3773 to emit a debug temp before the just-scheduled insn, but
3774 this would involve checking that the expression at the
3775 point of the debug insn is equivalent to the expression
3776 before the just-scheduled insn. They might not be: the
3777 expression in the debug insn may depend on other insns not
3778 yet scheduled that set MEMs, REGs or even other debug
3779 insns. It's not clear that attempting to preserve debug
3780 information in these cases is worth the effort, given how
3781 uncommon these resets are and the likelihood that the debug
3782 temps introduced won't survive the schedule change. */
3783 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
3784 df_insn_rescan (dbg);
3786 /* Unknown location doesn't use any registers. */
3787 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
3789 struct reg_use_data *prev = use;
3791 /* Remove use from the cyclic next_regno_use chain first. */
3792 while (prev->next_regno_use != use)
3793 prev = prev->next_regno_use;
3794 prev->next_regno_use = use->next_regno_use;
3795 next = use->next_insn_use;
3796 free (use);
3798 INSN_REG_USE_LIST (dbg) = NULL;
3800 /* We delete rather than resolve these deps, otherwise we
3801 crash in sched_free_deps(), because forward deps are
3802 expected to be released before backward deps. */
3803 sd_delete_dep (sd_it);
3806 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3807 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3809 if (sched_pressure == SCHED_PRESSURE_MODEL
3810 && model_curr_point < model_num_insns
3811 && NONDEBUG_INSN_P (insn))
3813 if (model_index (insn) == model_curr_point)
3815 model_curr_point++;
3816 while (model_curr_point < model_num_insns
3817 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
3818 == QUEUE_SCHEDULED));
3819 else
3820 model_recompute (insn);
3821 model_update_limit_points ();
3822 update_register_pressure (insn);
3823 if (sched_verbose >= 2)
3824 print_curr_reg_pressure ();
3827 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
3828 if (INSN_TICK (insn) > clock_var)
3829 /* INSN has been prematurely moved from the queue to the ready list.
3830 This is possible only if following flag is set. */
3831 gcc_assert (flag_sched_stalled_insns);
3833 /* ??? Probably, if INSN is scheduled prematurely, we should leave
3834 INSN_TICK untouched. This is a machine-dependent issue, actually. */
3835 INSN_TICK (insn) = clock_var;
3837 check_clobbered_conditions (insn);
3839 /* Update dependent instructions. First, see if by scheduling this insn
3840 now we broke a dependence in a way that requires us to change another
3841 insn. */
3842 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3843 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
3845 struct dep_replacement *desc = DEP_REPLACE (dep);
3846 rtx pro = DEP_PRO (dep);
3847 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
3848 && desc != NULL && desc->insn == pro)
3849 apply_replacement (dep, false);
3852 /* Go through and resolve forward dependencies. */
3853 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
3854 sd_iterator_cond (&sd_it, &dep);)
3856 rtx next = DEP_CON (dep);
3857 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
3859 /* Resolve the dependence between INSN and NEXT.
3860 sd_resolve_dep () moves current dep to another list thus
3861 advancing the iterator. */
3862 sd_resolve_dep (sd_it);
3864 if (cancelled)
3866 if (must_restore_pattern_p (next, dep))
3867 restore_pattern (dep, false);
3868 continue;
3871 /* Don't bother trying to mark next as ready if insn is a debug
3872 insn. If insn is the last hard dependency, it will have
3873 already been discounted. */
3874 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
3875 continue;
3877 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
3879 int effective_cost;
3881 effective_cost = try_ready (next);
3883 if (effective_cost >= 0
3884 && SCHED_GROUP_P (next)
3885 && advance < effective_cost)
3886 advance = effective_cost;
3888 else
3889 /* Check always has only one forward dependence (to the first insn in
3890 the recovery block), therefore, this will be executed only once. */
3892 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
3893 fix_recovery_deps (RECOVERY_BLOCK (insn));
3897 /* Annotate the instruction with issue information -- TImode
3898 indicates that the instruction is expected not to be able
3899 to issue on the same cycle as the previous insn. A machine
3900 may use this information to decide how the instruction should
3901 be aligned. */
3902 if (issue_rate > 1
3903 && GET_CODE (PATTERN (insn)) != USE
3904 && GET_CODE (PATTERN (insn)) != CLOBBER
3905 && !DEBUG_INSN_P (insn))
3907 if (reload_completed)
3908 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
3909 last_clock_var = clock_var;
3912 return advance;
3915 /* Functions for handling of notes. */
3917 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
3918 void
3919 concat_note_lists (rtx from_end, rtx *to_endp)
3921 rtx from_start;
3923 /* It's easy when have nothing to concat. */
3924 if (from_end == NULL)
3925 return;
3927 /* It's also easy when destination is empty. */
3928 if (*to_endp == NULL)
3930 *to_endp = from_end;
3931 return;
3934 from_start = from_end;
3935 while (PREV_INSN (from_start) != NULL)
3936 from_start = PREV_INSN (from_start);
3938 PREV_INSN (from_start) = *to_endp;
3939 NEXT_INSN (*to_endp) = from_start;
3940 *to_endp = from_end;
3943 /* Delete notes between HEAD and TAIL and put them in the chain
3944 of notes ended by NOTE_LIST. */
3945 void
3946 remove_notes (rtx head, rtx tail)
3948 rtx next_tail, insn, next;
3950 note_list = 0;
3951 if (head == tail && !INSN_P (head))
3952 return;
3954 next_tail = NEXT_INSN (tail);
3955 for (insn = head; insn != next_tail; insn = next)
3957 next = NEXT_INSN (insn);
3958 if (!NOTE_P (insn))
3959 continue;
3961 switch (NOTE_KIND (insn))
3963 case NOTE_INSN_BASIC_BLOCK:
3964 continue;
3966 case NOTE_INSN_EPILOGUE_BEG:
3967 if (insn != tail)
3969 remove_insn (insn);
3970 add_reg_note (next, REG_SAVE_NOTE,
3971 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
3972 break;
3974 /* FALLTHRU */
3976 default:
3977 remove_insn (insn);
3979 /* Add the note to list that ends at NOTE_LIST. */
3980 PREV_INSN (insn) = note_list;
3981 NEXT_INSN (insn) = NULL_RTX;
3982 if (note_list)
3983 NEXT_INSN (note_list) = insn;
3984 note_list = insn;
3985 break;
3988 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
3992 /* A structure to record enough data to allow us to backtrack the scheduler to
3993 a previous state. */
3994 struct haifa_saved_data
3996 /* Next entry on the list. */
3997 struct haifa_saved_data *next;
3999 /* Backtracking is associated with scheduling insns that have delay slots.
4000 DELAY_PAIR points to the structure that contains the insns involved, and
4001 the number of cycles between them. */
4002 struct delay_pair *delay_pair;
4004 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4005 void *fe_saved_data;
4006 /* Data used by the backend. */
4007 void *be_saved_data;
4009 /* Copies of global state. */
4010 int clock_var, last_clock_var;
4011 struct ready_list ready;
4012 state_t curr_state;
4014 rtx last_scheduled_insn;
4015 rtx last_nondebug_scheduled_insn;
4016 int cycle_issued_insns;
4018 /* Copies of state used in the inner loop of schedule_block. */
4019 struct sched_block_state sched_block;
4021 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4022 to 0 when restoring. */
4023 int q_size;
4024 rtx *insn_queue;
4026 /* Describe pattern replacements that occurred since this backtrack point
4027 was queued. */
4028 vec<dep_t> replacement_deps;
4029 vec<int> replace_apply;
4031 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4032 point. */
4033 vec<dep_t> next_cycle_deps;
4034 vec<int> next_cycle_apply;
4037 /* A record, in reverse order, of all scheduled insns which have delay slots
4038 and may require backtracking. */
4039 static struct haifa_saved_data *backtrack_queue;
4041 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4042 to SET_P. */
4043 static void
4044 mark_backtrack_feeds (rtx insn, int set_p)
4046 sd_iterator_def sd_it;
4047 dep_t dep;
4048 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4050 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4054 /* Save the current scheduler state so that we can backtrack to it
4055 later if necessary. PAIR gives the insns that make it necessary to
4056 save this point. SCHED_BLOCK is the local state of schedule_block
4057 that need to be saved. */
4058 static void
4059 save_backtrack_point (struct delay_pair *pair,
4060 struct sched_block_state sched_block)
4062 int i;
4063 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4065 save->curr_state = xmalloc (dfa_state_size);
4066 memcpy (save->curr_state, curr_state, dfa_state_size);
4068 save->ready.first = ready.first;
4069 save->ready.n_ready = ready.n_ready;
4070 save->ready.n_debug = ready.n_debug;
4071 save->ready.veclen = ready.veclen;
4072 save->ready.vec = XNEWVEC (rtx, ready.veclen);
4073 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4075 save->insn_queue = XNEWVEC (rtx, max_insn_queue_index + 1);
4076 save->q_size = q_size;
4077 for (i = 0; i <= max_insn_queue_index; i++)
4079 int q = NEXT_Q_AFTER (q_ptr, i);
4080 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4083 save->clock_var = clock_var;
4084 save->last_clock_var = last_clock_var;
4085 save->cycle_issued_insns = cycle_issued_insns;
4086 save->last_scheduled_insn = last_scheduled_insn;
4087 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4089 save->sched_block = sched_block;
4091 save->replacement_deps.create (0);
4092 save->replace_apply.create (0);
4093 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4094 save->next_cycle_apply = next_cycle_apply.copy ();
4096 if (current_sched_info->save_state)
4097 save->fe_saved_data = (*current_sched_info->save_state) ();
4099 if (targetm.sched.alloc_sched_context)
4101 save->be_saved_data = targetm.sched.alloc_sched_context ();
4102 targetm.sched.init_sched_context (save->be_saved_data, false);
4104 else
4105 save->be_saved_data = NULL;
4107 save->delay_pair = pair;
4109 save->next = backtrack_queue;
4110 backtrack_queue = save;
4112 while (pair)
4114 mark_backtrack_feeds (pair->i2, 1);
4115 INSN_TICK (pair->i2) = INVALID_TICK;
4116 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4117 SHADOW_P (pair->i2) = pair->stages == 0;
4118 pair = pair->next_same_i1;
4122 /* Walk the ready list and all queues. If any insns have unresolved backwards
4123 dependencies, these must be cancelled deps, broken by predication. Set or
4124 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4126 static void
4127 toggle_cancelled_flags (bool set)
4129 int i;
4130 sd_iterator_def sd_it;
4131 dep_t dep;
4133 if (ready.n_ready > 0)
4135 rtx *first = ready_lastpos (&ready);
4136 for (i = 0; i < ready.n_ready; i++)
4137 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4138 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4140 if (set)
4141 DEP_STATUS (dep) |= DEP_CANCELLED;
4142 else
4143 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4146 for (i = 0; i <= max_insn_queue_index; i++)
4148 int q = NEXT_Q_AFTER (q_ptr, i);
4149 rtx link;
4150 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4152 rtx insn = XEXP (link, 0);
4153 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4154 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4156 if (set)
4157 DEP_STATUS (dep) |= DEP_CANCELLED;
4158 else
4159 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4165 /* Undo the replacements that have occurred after backtrack point SAVE
4166 was placed. */
4167 static void
4168 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4170 while (!save->replacement_deps.is_empty ())
4172 dep_t dep = save->replacement_deps.pop ();
4173 int apply_p = save->replace_apply.pop ();
4175 if (apply_p)
4176 restore_pattern (dep, true);
4177 else
4178 apply_replacement (dep, true);
4180 save->replacement_deps.release ();
4181 save->replace_apply.release ();
4184 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4185 Restore their dependencies to an unresolved state, and mark them as
4186 queued nowhere. */
4188 static void
4189 unschedule_insns_until (rtx insn)
4191 vec<rtx> recompute_vec = vNULL;
4193 /* Make two passes over the insns to be unscheduled. First, we clear out
4194 dependencies and other trivial bookkeeping. */
4195 for (;;)
4197 rtx last;
4198 sd_iterator_def sd_it;
4199 dep_t dep;
4201 last = scheduled_insns.pop ();
4203 /* This will be changed by restore_backtrack_point if the insn is in
4204 any queue. */
4205 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4206 if (last != insn)
4207 INSN_TICK (last) = INVALID_TICK;
4209 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4210 modulo_insns_scheduled--;
4212 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4213 sd_iterator_cond (&sd_it, &dep);)
4215 rtx con = DEP_CON (dep);
4216 sd_unresolve_dep (sd_it);
4217 if (!MUST_RECOMPUTE_SPEC_P (con))
4219 MUST_RECOMPUTE_SPEC_P (con) = 1;
4220 recompute_vec.safe_push (con);
4224 if (last == insn)
4225 break;
4228 /* A second pass, to update ready and speculation status for insns
4229 depending on the unscheduled ones. The first pass must have
4230 popped the scheduled_insns vector up to the point where we
4231 restart scheduling, as recompute_todo_spec requires it to be
4232 up-to-date. */
4233 while (!recompute_vec.is_empty ())
4235 rtx con;
4237 con = recompute_vec.pop ();
4238 MUST_RECOMPUTE_SPEC_P (con) = 0;
4239 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4241 TODO_SPEC (con) = HARD_DEP;
4242 INSN_TICK (con) = INVALID_TICK;
4243 if (PREDICATED_PAT (con) != NULL_RTX)
4244 haifa_change_pattern (con, ORIG_PAT (con));
4246 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4247 TODO_SPEC (con) = recompute_todo_spec (con, true);
4249 recompute_vec.release ();
4252 /* Restore scheduler state from the topmost entry on the backtracking queue.
4253 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4254 overwrite with the saved data.
4255 The caller must already have called unschedule_insns_until. */
4257 static void
4258 restore_last_backtrack_point (struct sched_block_state *psched_block)
4260 rtx link;
4261 int i;
4262 struct haifa_saved_data *save = backtrack_queue;
4264 backtrack_queue = save->next;
4266 if (current_sched_info->restore_state)
4267 (*current_sched_info->restore_state) (save->fe_saved_data);
4269 if (targetm.sched.alloc_sched_context)
4271 targetm.sched.set_sched_context (save->be_saved_data);
4272 targetm.sched.free_sched_context (save->be_saved_data);
4275 /* Do this first since it clobbers INSN_TICK of the involved
4276 instructions. */
4277 undo_replacements_for_backtrack (save);
4279 /* Clear the QUEUE_INDEX of everything in the ready list or one
4280 of the queues. */
4281 if (ready.n_ready > 0)
4283 rtx *first = ready_lastpos (&ready);
4284 for (i = 0; i < ready.n_ready; i++)
4286 rtx insn = first[i];
4287 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4288 INSN_TICK (insn) = INVALID_TICK;
4291 for (i = 0; i <= max_insn_queue_index; i++)
4293 int q = NEXT_Q_AFTER (q_ptr, i);
4295 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4297 rtx x = XEXP (link, 0);
4298 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4299 INSN_TICK (x) = INVALID_TICK;
4301 free_INSN_LIST_list (&insn_queue[q]);
4304 free (ready.vec);
4305 ready = save->ready;
4307 if (ready.n_ready > 0)
4309 rtx *first = ready_lastpos (&ready);
4310 for (i = 0; i < ready.n_ready; i++)
4312 rtx insn = first[i];
4313 QUEUE_INDEX (insn) = QUEUE_READY;
4314 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4315 INSN_TICK (insn) = save->clock_var;
4319 q_ptr = 0;
4320 q_size = save->q_size;
4321 for (i = 0; i <= max_insn_queue_index; i++)
4323 int q = NEXT_Q_AFTER (q_ptr, i);
4325 insn_queue[q] = save->insn_queue[q];
4327 for (link = insn_queue[q]; link; link = XEXP (link, 1))
4329 rtx x = XEXP (link, 0);
4330 QUEUE_INDEX (x) = i;
4331 TODO_SPEC (x) = recompute_todo_spec (x, true);
4332 INSN_TICK (x) = save->clock_var + i;
4335 free (save->insn_queue);
4337 toggle_cancelled_flags (true);
4339 clock_var = save->clock_var;
4340 last_clock_var = save->last_clock_var;
4341 cycle_issued_insns = save->cycle_issued_insns;
4342 last_scheduled_insn = save->last_scheduled_insn;
4343 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4345 *psched_block = save->sched_block;
4347 memcpy (curr_state, save->curr_state, dfa_state_size);
4348 free (save->curr_state);
4350 mark_backtrack_feeds (save->delay_pair->i2, 0);
4352 gcc_assert (next_cycle_replace_deps.is_empty ());
4353 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4354 next_cycle_apply = save->next_cycle_apply.copy ();
4356 free (save);
4358 for (save = backtrack_queue; save; save = save->next)
4360 mark_backtrack_feeds (save->delay_pair->i2, 1);
4364 /* Discard all data associated with the topmost entry in the backtrack
4365 queue. If RESET_TICK is false, we just want to free the data. If true,
4366 we are doing this because we discovered a reason to backtrack. In the
4367 latter case, also reset the INSN_TICK for the shadow insn. */
4368 static void
4369 free_topmost_backtrack_point (bool reset_tick)
4371 struct haifa_saved_data *save = backtrack_queue;
4372 int i;
4374 backtrack_queue = save->next;
4376 if (reset_tick)
4378 struct delay_pair *pair = save->delay_pair;
4379 while (pair)
4381 INSN_TICK (pair->i2) = INVALID_TICK;
4382 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4383 pair = pair->next_same_i1;
4385 undo_replacements_for_backtrack (save);
4387 else
4389 save->replacement_deps.release ();
4390 save->replace_apply.release ();
4393 if (targetm.sched.free_sched_context)
4394 targetm.sched.free_sched_context (save->be_saved_data);
4395 if (current_sched_info->restore_state)
4396 free (save->fe_saved_data);
4397 for (i = 0; i <= max_insn_queue_index; i++)
4398 free_INSN_LIST_list (&save->insn_queue[i]);
4399 free (save->insn_queue);
4400 free (save->curr_state);
4401 free (save->ready.vec);
4402 free (save);
4405 /* Free the entire backtrack queue. */
4406 static void
4407 free_backtrack_queue (void)
4409 while (backtrack_queue)
4410 free_topmost_backtrack_point (false);
4413 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4414 may have to postpone the replacement until the start of the next cycle,
4415 at which point we will be called again with IMMEDIATELY true. This is
4416 only done for machines which have instruction packets with explicit
4417 parallelism however. */
4418 static void
4419 apply_replacement (dep_t dep, bool immediately)
4421 struct dep_replacement *desc = DEP_REPLACE (dep);
4422 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4424 next_cycle_replace_deps.safe_push (dep);
4425 next_cycle_apply.safe_push (1);
4427 else
4429 bool success;
4431 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4432 return;
4434 if (sched_verbose >= 5)
4435 fprintf (sched_dump, "applying replacement for insn %d\n",
4436 INSN_UID (desc->insn));
4438 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4439 gcc_assert (success);
4441 update_insn_after_change (desc->insn);
4442 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4443 fix_tick_ready (desc->insn);
4445 if (backtrack_queue != NULL)
4447 backtrack_queue->replacement_deps.safe_push (dep);
4448 backtrack_queue->replace_apply.safe_push (1);
4453 /* We have determined that a pattern involved in DEP must be restored.
4454 If IMMEDIATELY is false, we may have to postpone the replacement
4455 until the start of the next cycle, at which point we will be called
4456 again with IMMEDIATELY true. */
4457 static void
4458 restore_pattern (dep_t dep, bool immediately)
4460 rtx next = DEP_CON (dep);
4461 int tick = INSN_TICK (next);
4463 /* If we already scheduled the insn, the modified version is
4464 correct. */
4465 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4466 return;
4468 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4470 next_cycle_replace_deps.safe_push (dep);
4471 next_cycle_apply.safe_push (0);
4472 return;
4476 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4478 if (sched_verbose >= 5)
4479 fprintf (sched_dump, "restoring pattern for insn %d\n",
4480 INSN_UID (next));
4481 haifa_change_pattern (next, ORIG_PAT (next));
4483 else
4485 struct dep_replacement *desc = DEP_REPLACE (dep);
4486 bool success;
4488 if (sched_verbose >= 5)
4489 fprintf (sched_dump, "restoring pattern for insn %d\n",
4490 INSN_UID (desc->insn));
4491 tick = INSN_TICK (desc->insn);
4493 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4494 gcc_assert (success);
4495 update_insn_after_change (desc->insn);
4496 if (backtrack_queue != NULL)
4498 backtrack_queue->replacement_deps.safe_push (dep);
4499 backtrack_queue->replace_apply.safe_push (0);
4502 INSN_TICK (next) = tick;
4503 if (TODO_SPEC (next) == DEP_POSTPONED)
4504 return;
4506 if (sd_lists_empty_p (next, SD_LIST_BACK))
4507 TODO_SPEC (next) = 0;
4508 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4509 TODO_SPEC (next) = HARD_DEP;
4512 /* Perform pattern replacements that were queued up until the next
4513 cycle. */
4514 static void
4515 perform_replacements_new_cycle (void)
4517 int i;
4518 dep_t dep;
4519 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4521 int apply_p = next_cycle_apply[i];
4522 if (apply_p)
4523 apply_replacement (dep, true);
4524 else
4525 restore_pattern (dep, true);
4527 next_cycle_replace_deps.truncate (0);
4528 next_cycle_apply.truncate (0);
4531 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4532 instructions we've previously encountered, a set bit prevents
4533 recursion. BUDGET is a limit on how far ahead we look, it is
4534 reduced on recursive calls. Return true if we produced a good
4535 estimate, or false if we exceeded the budget. */
4536 static bool
4537 estimate_insn_tick (bitmap processed, rtx insn, int budget)
4539 sd_iterator_def sd_it;
4540 dep_t dep;
4541 int earliest = INSN_TICK (insn);
4543 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4545 rtx pro = DEP_PRO (dep);
4546 int t;
4548 if (DEP_STATUS (dep) & DEP_CANCELLED)
4549 continue;
4551 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4552 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4553 else
4555 int cost = dep_cost (dep);
4556 if (cost >= budget)
4557 return false;
4558 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4560 if (!estimate_insn_tick (processed, pro, budget - cost))
4561 return false;
4563 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4564 t = INSN_TICK_ESTIMATE (pro) + cost;
4565 if (earliest == INVALID_TICK || t > earliest)
4566 earliest = t;
4569 bitmap_set_bit (processed, INSN_LUID (insn));
4570 INSN_TICK_ESTIMATE (insn) = earliest;
4571 return true;
4574 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4575 infinite resources) the cycle in which the delayed shadow can be issued.
4576 Return the number of cycles that must pass before the real insn can be
4577 issued in order to meet this constraint. */
4578 static int
4579 estimate_shadow_tick (struct delay_pair *p)
4581 bitmap_head processed;
4582 int t;
4583 bool cutoff;
4584 bitmap_initialize (&processed, 0);
4586 cutoff = !estimate_insn_tick (&processed, p->i2,
4587 max_insn_queue_index + pair_delay (p));
4588 bitmap_clear (&processed);
4589 if (cutoff)
4590 return max_insn_queue_index;
4591 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4592 if (t > 0)
4593 return t;
4594 return 0;
4597 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4598 recursively resolve all its forward dependencies. */
4599 static void
4600 resolve_dependencies (rtx insn)
4602 sd_iterator_def sd_it;
4603 dep_t dep;
4605 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4606 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4607 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4608 return;
4610 if (sched_verbose >= 4)
4611 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4613 if (QUEUE_INDEX (insn) >= 0)
4614 queue_remove (insn);
4616 scheduled_insns.safe_push (insn);
4618 /* Update dependent instructions. */
4619 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4620 sd_iterator_cond (&sd_it, &dep);)
4622 rtx next = DEP_CON (dep);
4624 if (sched_verbose >= 4)
4625 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4626 INSN_UID (next));
4628 /* Resolve the dependence between INSN and NEXT.
4629 sd_resolve_dep () moves current dep to another list thus
4630 advancing the iterator. */
4631 sd_resolve_dep (sd_it);
4633 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4635 resolve_dependencies (next);
4637 else
4638 /* Check always has only one forward dependence (to the first insn in
4639 the recovery block), therefore, this will be executed only once. */
4641 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4647 /* Return the head and tail pointers of ebb starting at BEG and ending
4648 at END. */
4649 void
4650 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
4652 rtx beg_head = BB_HEAD (beg);
4653 rtx beg_tail = BB_END (beg);
4654 rtx end_head = BB_HEAD (end);
4655 rtx end_tail = BB_END (end);
4657 /* Don't include any notes or labels at the beginning of the BEG
4658 basic block, or notes at the end of the END basic blocks. */
4660 if (LABEL_P (beg_head))
4661 beg_head = NEXT_INSN (beg_head);
4663 while (beg_head != beg_tail)
4664 if (NOTE_P (beg_head))
4665 beg_head = NEXT_INSN (beg_head);
4666 else if (DEBUG_INSN_P (beg_head))
4668 rtx note, next;
4670 for (note = NEXT_INSN (beg_head);
4671 note != beg_tail;
4672 note = next)
4674 next = NEXT_INSN (note);
4675 if (NOTE_P (note))
4677 if (sched_verbose >= 9)
4678 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4680 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4682 if (BLOCK_FOR_INSN (note) != beg)
4683 df_insn_change_bb (note, beg);
4685 else if (!DEBUG_INSN_P (note))
4686 break;
4689 break;
4691 else
4692 break;
4694 *headp = beg_head;
4696 if (beg == end)
4697 end_head = beg_head;
4698 else if (LABEL_P (end_head))
4699 end_head = NEXT_INSN (end_head);
4701 while (end_head != end_tail)
4702 if (NOTE_P (end_tail))
4703 end_tail = PREV_INSN (end_tail);
4704 else if (DEBUG_INSN_P (end_tail))
4706 rtx note, prev;
4708 for (note = PREV_INSN (end_tail);
4709 note != end_head;
4710 note = prev)
4712 prev = PREV_INSN (note);
4713 if (NOTE_P (note))
4715 if (sched_verbose >= 9)
4716 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4718 reorder_insns_nobb (note, note, end_tail);
4720 if (end_tail == BB_END (end))
4721 BB_END (end) = note;
4723 if (BLOCK_FOR_INSN (note) != end)
4724 df_insn_change_bb (note, end);
4726 else if (!DEBUG_INSN_P (note))
4727 break;
4730 break;
4732 else
4733 break;
4735 *tailp = end_tail;
4738 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4741 no_real_insns_p (const_rtx head, const_rtx tail)
4743 while (head != NEXT_INSN (tail))
4745 if (!NOTE_P (head) && !LABEL_P (head))
4746 return 0;
4747 head = NEXT_INSN (head);
4749 return 1;
4752 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
4753 previously found among the insns. Insert them just before HEAD. */
4755 restore_other_notes (rtx head, basic_block head_bb)
4757 if (note_list != 0)
4759 rtx note_head = note_list;
4761 if (head)
4762 head_bb = BLOCK_FOR_INSN (head);
4763 else
4764 head = NEXT_INSN (bb_note (head_bb));
4766 while (PREV_INSN (note_head))
4768 set_block_for_insn (note_head, head_bb);
4769 note_head = PREV_INSN (note_head);
4771 /* In the above cycle we've missed this note. */
4772 set_block_for_insn (note_head, head_bb);
4774 PREV_INSN (note_head) = PREV_INSN (head);
4775 NEXT_INSN (PREV_INSN (head)) = note_head;
4776 PREV_INSN (head) = note_list;
4777 NEXT_INSN (note_list) = head;
4779 if (BLOCK_FOR_INSN (head) != head_bb)
4780 BB_END (head_bb) = note_list;
4782 head = note_head;
4785 return head;
4788 /* When we know we are going to discard the schedule due to a failed attempt
4789 at modulo scheduling, undo all replacements. */
4790 static void
4791 undo_all_replacements (void)
4793 rtx insn;
4794 int i;
4796 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
4798 sd_iterator_def sd_it;
4799 dep_t dep;
4801 /* See if we must undo a replacement. */
4802 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
4803 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4805 struct dep_replacement *desc = DEP_REPLACE (dep);
4806 if (desc != NULL)
4807 validate_change (desc->insn, desc->loc, desc->orig, 0);
4812 /* Move insns that became ready to fire from queue to ready list. */
4814 static void
4815 queue_to_ready (struct ready_list *ready)
4817 rtx insn;
4818 rtx link;
4819 rtx skip_insn;
4821 q_ptr = NEXT_Q (q_ptr);
4823 if (dbg_cnt (sched_insn) == false)
4825 /* If debug counter is activated do not requeue the first
4826 nonscheduled insn. */
4827 skip_insn = nonscheduled_insns_begin;
4830 skip_insn = next_nonnote_nondebug_insn (skip_insn);
4832 while (QUEUE_INDEX (skip_insn) == QUEUE_SCHEDULED);
4834 else
4835 skip_insn = NULL_RTX;
4837 /* Add all pending insns that can be scheduled without stalls to the
4838 ready list. */
4839 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
4841 insn = XEXP (link, 0);
4842 q_size -= 1;
4844 if (sched_verbose >= 2)
4845 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4846 (*current_sched_info->print_insn) (insn, 0));
4848 /* If the ready list is full, delay the insn for 1 cycle.
4849 See the comment in schedule_block for the rationale. */
4850 if (!reload_completed
4851 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
4852 || (sched_pressure == SCHED_PRESSURE_MODEL
4853 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
4854 instructions too. */
4855 && model_index (insn) > (model_curr_point
4856 + MAX_SCHED_READY_INSNS)))
4857 && !(sched_pressure == SCHED_PRESSURE_MODEL
4858 && model_curr_point < model_num_insns
4859 /* Always allow the next model instruction to issue. */
4860 && model_index (insn) == model_curr_point)
4861 && !SCHED_GROUP_P (insn)
4862 && insn != skip_insn)
4863 queue_insn (insn, 1, "ready full");
4864 else
4866 ready_add (ready, insn, false);
4867 if (sched_verbose >= 2)
4868 fprintf (sched_dump, "moving to ready without stalls\n");
4871 free_INSN_LIST_list (&insn_queue[q_ptr]);
4873 /* If there are no ready insns, stall until one is ready and add all
4874 of the pending insns at that point to the ready list. */
4875 if (ready->n_ready == 0)
4877 int stalls;
4879 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
4881 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
4883 for (; link; link = XEXP (link, 1))
4885 insn = XEXP (link, 0);
4886 q_size -= 1;
4888 if (sched_verbose >= 2)
4889 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
4890 (*current_sched_info->print_insn) (insn, 0));
4892 ready_add (ready, insn, false);
4893 if (sched_verbose >= 2)
4894 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
4896 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
4898 advance_one_cycle ();
4900 break;
4903 advance_one_cycle ();
4906 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
4907 clock_var += stalls;
4911 /* Used by early_queue_to_ready. Determines whether it is "ok" to
4912 prematurely move INSN from the queue to the ready list. Currently,
4913 if a target defines the hook 'is_costly_dependence', this function
4914 uses the hook to check whether there exist any dependences which are
4915 considered costly by the target, between INSN and other insns that
4916 have already been scheduled. Dependences are checked up to Y cycles
4917 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
4918 controlling this value.
4919 (Other considerations could be taken into account instead (or in
4920 addition) depending on user flags and target hooks. */
4922 static bool
4923 ok_for_early_queue_removal (rtx insn)
4925 if (targetm.sched.is_costly_dependence)
4927 rtx prev_insn;
4928 int n_cycles;
4929 int i = scheduled_insns.length ();
4930 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
4932 while (i-- > 0)
4934 int cost;
4936 prev_insn = scheduled_insns[i];
4938 if (!NOTE_P (prev_insn))
4940 dep_t dep;
4942 dep = sd_find_dep_between (prev_insn, insn, true);
4944 if (dep != NULL)
4946 cost = dep_cost (dep);
4948 if (targetm.sched.is_costly_dependence (dep, cost,
4949 flag_sched_stalled_insns_dep - n_cycles))
4950 return false;
4954 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
4955 break;
4958 if (i == 0)
4959 break;
4963 return true;
4967 /* Remove insns from the queue, before they become "ready" with respect
4968 to FU latency considerations. */
4970 static int
4971 early_queue_to_ready (state_t state, struct ready_list *ready)
4973 rtx insn;
4974 rtx link;
4975 rtx next_link;
4976 rtx prev_link;
4977 bool move_to_ready;
4978 int cost;
4979 state_t temp_state = alloca (dfa_state_size);
4980 int stalls;
4981 int insns_removed = 0;
4984 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
4985 function:
4987 X == 0: There is no limit on how many queued insns can be removed
4988 prematurely. (flag_sched_stalled_insns = -1).
4990 X >= 1: Only X queued insns can be removed prematurely in each
4991 invocation. (flag_sched_stalled_insns = X).
4993 Otherwise: Early queue removal is disabled.
4994 (flag_sched_stalled_insns = 0)
4997 if (! flag_sched_stalled_insns)
4998 return 0;
5000 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5002 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5004 if (sched_verbose > 6)
5005 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5007 prev_link = 0;
5008 while (link)
5010 next_link = XEXP (link, 1);
5011 insn = XEXP (link, 0);
5012 if (insn && sched_verbose > 6)
5013 print_rtl_single (sched_dump, insn);
5015 memcpy (temp_state, state, dfa_state_size);
5016 if (recog_memoized (insn) < 0)
5017 /* non-negative to indicate that it's not ready
5018 to avoid infinite Q->R->Q->R... */
5019 cost = 0;
5020 else
5021 cost = state_transition (temp_state, insn);
5023 if (sched_verbose >= 6)
5024 fprintf (sched_dump, "transition cost = %d\n", cost);
5026 move_to_ready = false;
5027 if (cost < 0)
5029 move_to_ready = ok_for_early_queue_removal (insn);
5030 if (move_to_ready == true)
5032 /* move from Q to R */
5033 q_size -= 1;
5034 ready_add (ready, insn, false);
5036 if (prev_link)
5037 XEXP (prev_link, 1) = next_link;
5038 else
5039 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5041 free_INSN_LIST_node (link);
5043 if (sched_verbose >= 2)
5044 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5045 (*current_sched_info->print_insn) (insn, 0));
5047 insns_removed++;
5048 if (insns_removed == flag_sched_stalled_insns)
5049 /* Remove no more than flag_sched_stalled_insns insns
5050 from Q at a time. */
5051 return insns_removed;
5055 if (move_to_ready == false)
5056 prev_link = link;
5058 link = next_link;
5059 } /* while link */
5060 } /* if link */
5062 } /* for stalls.. */
5064 return insns_removed;
5068 /* Print the ready list for debugging purposes. Callable from debugger. */
5070 static void
5071 debug_ready_list (struct ready_list *ready)
5073 rtx *p;
5074 int i;
5076 if (ready->n_ready == 0)
5078 fprintf (sched_dump, "\n");
5079 return;
5082 p = ready_lastpos (ready);
5083 for (i = 0; i < ready->n_ready; i++)
5085 fprintf (sched_dump, " %s:%d",
5086 (*current_sched_info->print_insn) (p[i], 0),
5087 INSN_LUID (p[i]));
5088 if (sched_pressure != SCHED_PRESSURE_NONE)
5089 fprintf (sched_dump, "(cost=%d",
5090 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5091 if (INSN_TICK (p[i]) > clock_var)
5092 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5093 if (sched_pressure != SCHED_PRESSURE_NONE)
5094 fprintf (sched_dump, ")");
5096 fprintf (sched_dump, "\n");
5099 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5100 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5101 replaces the epilogue note in the correct basic block. */
5102 void
5103 reemit_notes (rtx insn)
5105 rtx note, last = insn;
5107 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5109 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5111 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5113 last = emit_note_before (note_type, last);
5114 remove_note (insn, note);
5119 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5120 static void
5121 move_insn (rtx insn, rtx last, rtx nt)
5123 if (PREV_INSN (insn) != last)
5125 basic_block bb;
5126 rtx note;
5127 int jump_p = 0;
5129 bb = BLOCK_FOR_INSN (insn);
5131 /* BB_HEAD is either LABEL or NOTE. */
5132 gcc_assert (BB_HEAD (bb) != insn);
5134 if (BB_END (bb) == insn)
5135 /* If this is last instruction in BB, move end marker one
5136 instruction up. */
5138 /* Jumps are always placed at the end of basic block. */
5139 jump_p = control_flow_insn_p (insn);
5141 gcc_assert (!jump_p
5142 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5143 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5144 || (common_sched_info->sched_pass_id
5145 == SCHED_EBB_PASS));
5147 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5149 BB_END (bb) = PREV_INSN (insn);
5152 gcc_assert (BB_END (bb) != last);
5154 if (jump_p)
5155 /* We move the block note along with jump. */
5157 gcc_assert (nt);
5159 note = NEXT_INSN (insn);
5160 while (NOTE_NOT_BB_P (note) && note != nt)
5161 note = NEXT_INSN (note);
5163 if (note != nt
5164 && (LABEL_P (note)
5165 || BARRIER_P (note)))
5166 note = NEXT_INSN (note);
5168 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5170 else
5171 note = insn;
5173 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5174 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5176 NEXT_INSN (note) = NEXT_INSN (last);
5177 PREV_INSN (NEXT_INSN (last)) = note;
5179 NEXT_INSN (last) = insn;
5180 PREV_INSN (insn) = last;
5182 bb = BLOCK_FOR_INSN (last);
5184 if (jump_p)
5186 fix_jump_move (insn);
5188 if (BLOCK_FOR_INSN (insn) != bb)
5189 move_block_after_check (insn);
5191 gcc_assert (BB_END (bb) == last);
5194 df_insn_change_bb (insn, bb);
5196 /* Update BB_END, if needed. */
5197 if (BB_END (bb) == last)
5198 BB_END (bb) = insn;
5201 SCHED_GROUP_P (insn) = 0;
5204 /* Return true if scheduling INSN will finish current clock cycle. */
5205 static bool
5206 insn_finishes_cycle_p (rtx insn)
5208 if (SCHED_GROUP_P (insn))
5209 /* After issuing INSN, rest of the sched_group will be forced to issue
5210 in order. Don't make any plans for the rest of cycle. */
5211 return true;
5213 /* Finishing the block will, apparently, finish the cycle. */
5214 if (current_sched_info->insn_finishes_block_p
5215 && current_sched_info->insn_finishes_block_p (insn))
5216 return true;
5218 return false;
5221 /* Define type for target data used in multipass scheduling. */
5222 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5223 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5224 #endif
5225 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5227 /* The following structure describe an entry of the stack of choices. */
5228 struct choice_entry
5230 /* Ordinal number of the issued insn in the ready queue. */
5231 int index;
5232 /* The number of the rest insns whose issues we should try. */
5233 int rest;
5234 /* The number of issued essential insns. */
5235 int n;
5236 /* State after issuing the insn. */
5237 state_t state;
5238 /* Target-specific data. */
5239 first_cycle_multipass_data_t target_data;
5242 /* The following array is used to implement a stack of choices used in
5243 function max_issue. */
5244 static struct choice_entry *choice_stack;
5246 /* This holds the value of the target dfa_lookahead hook. */
5247 int dfa_lookahead;
5249 /* The following variable value is maximal number of tries of issuing
5250 insns for the first cycle multipass insn scheduling. We define
5251 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5252 need this constraint if all real insns (with non-negative codes)
5253 had reservations because in this case the algorithm complexity is
5254 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5255 might be incomplete and such insn might occur. For such
5256 descriptions, the complexity of algorithm (without the constraint)
5257 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5258 static int max_lookahead_tries;
5260 /* The following value is value of hook
5261 `first_cycle_multipass_dfa_lookahead' at the last call of
5262 `max_issue'. */
5263 static int cached_first_cycle_multipass_dfa_lookahead = 0;
5265 /* The following value is value of `issue_rate' at the last call of
5266 `sched_init'. */
5267 static int cached_issue_rate = 0;
5269 /* The following function returns maximal (or close to maximal) number
5270 of insns which can be issued on the same cycle and one of which
5271 insns is insns with the best rank (the first insn in READY). To
5272 make this function tries different samples of ready insns. READY
5273 is current queue `ready'. Global array READY_TRY reflects what
5274 insns are already issued in this try. The function stops immediately,
5275 if it reached the such a solution, that all instruction can be issued.
5276 INDEX will contain index of the best insn in READY. The following
5277 function is used only for first cycle multipass scheduling.
5279 PRIVILEGED_N >= 0
5281 This function expects recognized insns only. All USEs,
5282 CLOBBERs, etc must be filtered elsewhere. */
5284 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5285 bool first_cycle_insn_p, int *index)
5287 int n, i, all, n_ready, best, delay, tries_num;
5288 int more_issue;
5289 struct choice_entry *top;
5290 rtx insn;
5292 n_ready = ready->n_ready;
5293 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5294 && privileged_n <= n_ready);
5296 /* Init MAX_LOOKAHEAD_TRIES. */
5297 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
5299 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
5300 max_lookahead_tries = 100;
5301 for (i = 0; i < issue_rate; i++)
5302 max_lookahead_tries *= dfa_lookahead;
5305 /* Init max_points. */
5306 more_issue = issue_rate - cycle_issued_insns;
5307 gcc_assert (more_issue >= 0);
5309 /* The number of the issued insns in the best solution. */
5310 best = 0;
5312 top = choice_stack;
5314 /* Set initial state of the search. */
5315 memcpy (top->state, state, dfa_state_size);
5316 top->rest = dfa_lookahead;
5317 top->n = 0;
5318 if (targetm.sched.first_cycle_multipass_begin)
5319 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5320 ready_try, n_ready,
5321 first_cycle_insn_p);
5323 /* Count the number of the insns to search among. */
5324 for (all = i = 0; i < n_ready; i++)
5325 if (!ready_try [i])
5326 all++;
5328 /* I is the index of the insn to try next. */
5329 i = 0;
5330 tries_num = 0;
5331 for (;;)
5333 if (/* If we've reached a dead end or searched enough of what we have
5334 been asked... */
5335 top->rest == 0
5336 /* or have nothing else to try... */
5337 || i >= n_ready
5338 /* or should not issue more. */
5339 || top->n >= more_issue)
5341 /* ??? (... || i == n_ready). */
5342 gcc_assert (i <= n_ready);
5344 /* We should not issue more than issue_rate instructions. */
5345 gcc_assert (top->n <= more_issue);
5347 if (top == choice_stack)
5348 break;
5350 if (best < top - choice_stack)
5352 if (privileged_n)
5354 n = privileged_n;
5355 /* Try to find issued privileged insn. */
5356 while (n && !ready_try[--n])
5360 if (/* If all insns are equally good... */
5361 privileged_n == 0
5362 /* Or a privileged insn will be issued. */
5363 || ready_try[n])
5364 /* Then we have a solution. */
5366 best = top - choice_stack;
5367 /* This is the index of the insn issued first in this
5368 solution. */
5369 *index = choice_stack [1].index;
5370 if (top->n == more_issue || best == all)
5371 break;
5375 /* Set ready-list index to point to the last insn
5376 ('i++' below will advance it to the next insn). */
5377 i = top->index;
5379 /* Backtrack. */
5380 ready_try [i] = 0;
5382 if (targetm.sched.first_cycle_multipass_backtrack)
5383 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5384 ready_try, n_ready);
5386 top--;
5387 memcpy (state, top->state, dfa_state_size);
5389 else if (!ready_try [i])
5391 tries_num++;
5392 if (tries_num > max_lookahead_tries)
5393 break;
5394 insn = ready_element (ready, i);
5395 delay = state_transition (state, insn);
5396 if (delay < 0)
5398 if (state_dead_lock_p (state)
5399 || insn_finishes_cycle_p (insn))
5400 /* We won't issue any more instructions in the next
5401 choice_state. */
5402 top->rest = 0;
5403 else
5404 top->rest--;
5406 n = top->n;
5407 if (memcmp (top->state, state, dfa_state_size) != 0)
5408 n++;
5410 /* Advance to the next choice_entry. */
5411 top++;
5412 /* Initialize it. */
5413 top->rest = dfa_lookahead;
5414 top->index = i;
5415 top->n = n;
5416 memcpy (top->state, state, dfa_state_size);
5417 ready_try [i] = 1;
5419 if (targetm.sched.first_cycle_multipass_issue)
5420 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5421 ready_try, n_ready,
5422 insn,
5423 &((top - 1)
5424 ->target_data));
5426 i = -1;
5430 /* Increase ready-list index. */
5431 i++;
5434 if (targetm.sched.first_cycle_multipass_end)
5435 targetm.sched.first_cycle_multipass_end (best != 0
5436 ? &choice_stack[1].target_data
5437 : NULL);
5439 /* Restore the original state of the DFA. */
5440 memcpy (state, choice_stack->state, dfa_state_size);
5442 return best;
5445 /* The following function chooses insn from READY and modifies
5446 READY. The following function is used only for first
5447 cycle multipass scheduling.
5448 Return:
5449 -1 if cycle should be advanced,
5450 0 if INSN_PTR is set to point to the desirable insn,
5451 1 if choose_ready () should be restarted without advancing the cycle. */
5452 static int
5453 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
5454 rtx *insn_ptr)
5456 int lookahead;
5458 if (dbg_cnt (sched_insn) == false)
5460 rtx insn = nonscheduled_insns_begin;
5463 insn = next_nonnote_insn (insn);
5465 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5467 if (QUEUE_INDEX (insn) == QUEUE_READY)
5468 /* INSN is in the ready_list. */
5470 nonscheduled_insns_begin = insn;
5471 ready_remove_insn (insn);
5472 *insn_ptr = insn;
5473 return 0;
5476 /* INSN is in the queue. Advance cycle to move it to the ready list. */
5477 return -1;
5480 lookahead = 0;
5482 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
5483 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
5484 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
5485 || DEBUG_INSN_P (ready_element (ready, 0)))
5487 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
5488 *insn_ptr = ready_remove_first_dispatch (ready);
5489 else
5490 *insn_ptr = ready_remove_first (ready);
5492 return 0;
5494 else
5496 /* Try to choose the better insn. */
5497 int index = 0, i, n;
5498 rtx insn;
5499 int try_data = 1, try_control = 1;
5500 ds_t ts;
5502 insn = ready_element (ready, 0);
5503 if (INSN_CODE (insn) < 0)
5505 *insn_ptr = ready_remove_first (ready);
5506 return 0;
5509 if (spec_info
5510 && spec_info->flags & (PREFER_NON_DATA_SPEC
5511 | PREFER_NON_CONTROL_SPEC))
5513 for (i = 0, n = ready->n_ready; i < n; i++)
5515 rtx x;
5516 ds_t s;
5518 x = ready_element (ready, i);
5519 s = TODO_SPEC (x);
5521 if (spec_info->flags & PREFER_NON_DATA_SPEC
5522 && !(s & DATA_SPEC))
5524 try_data = 0;
5525 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
5526 || !try_control)
5527 break;
5530 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
5531 && !(s & CONTROL_SPEC))
5533 try_control = 0;
5534 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
5535 break;
5540 ts = TODO_SPEC (insn);
5541 if ((ts & SPECULATIVE)
5542 && (((!try_data && (ts & DATA_SPEC))
5543 || (!try_control && (ts & CONTROL_SPEC)))
5544 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
5545 && !targetm.sched
5546 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
5547 /* Discard speculative instruction that stands first in the ready
5548 list. */
5550 change_queue_index (insn, 1);
5551 return 1;
5554 ready_try[0] = 0;
5556 for (i = 1; i < ready->n_ready; i++)
5558 insn = ready_element (ready, i);
5560 ready_try [i]
5561 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
5562 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
5565 /* Let the target filter the search space. */
5566 for (i = 1; i < ready->n_ready; i++)
5567 if (!ready_try[i])
5569 insn = ready_element (ready, i);
5571 /* If this insn is recognizable we should have already
5572 recognized it earlier.
5573 ??? Not very clear where this is supposed to be done.
5574 See dep_cost_1. */
5575 gcc_checking_assert (INSN_CODE (insn) >= 0
5576 || recog_memoized (insn) < 0);
5578 ready_try [i]
5579 = (/* INSN_CODE check can be omitted here as it is also done later
5580 in max_issue (). */
5581 INSN_CODE (insn) < 0
5582 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5583 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
5584 (insn)));
5587 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
5589 *insn_ptr = ready_remove_first (ready);
5590 if (sched_verbose >= 4)
5591 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
5592 (*current_sched_info->print_insn) (*insn_ptr, 0));
5593 return 0;
5595 else
5597 if (sched_verbose >= 4)
5598 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
5599 (*current_sched_info->print_insn)
5600 (ready_element (ready, index), 0));
5602 *insn_ptr = ready_remove (ready, index);
5603 return 0;
5608 /* This function is called when we have successfully scheduled a
5609 block. It uses the schedule stored in the scheduled_insns vector
5610 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
5611 append the scheduled insns; TAIL is the insn after the scheduled
5612 block. TARGET_BB is the argument passed to schedule_block. */
5614 static void
5615 commit_schedule (rtx prev_head, rtx tail, basic_block *target_bb)
5617 unsigned int i;
5618 rtx insn;
5620 last_scheduled_insn = prev_head;
5621 for (i = 0;
5622 scheduled_insns.iterate (i, &insn);
5623 i++)
5625 if (control_flow_insn_p (last_scheduled_insn)
5626 || current_sched_info->advance_target_bb (*target_bb, insn))
5628 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
5630 if (sched_verbose)
5632 rtx x;
5634 x = next_real_insn (last_scheduled_insn);
5635 gcc_assert (x);
5636 dump_new_block_header (1, *target_bb, x, tail);
5639 last_scheduled_insn = bb_note (*target_bb);
5642 if (current_sched_info->begin_move_insn)
5643 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
5644 move_insn (insn, last_scheduled_insn,
5645 current_sched_info->next_tail);
5646 if (!DEBUG_INSN_P (insn))
5647 reemit_notes (insn);
5648 last_scheduled_insn = insn;
5651 scheduled_insns.truncate (0);
5654 /* Examine all insns on the ready list and queue those which can't be
5655 issued in this cycle. TEMP_STATE is temporary scheduler state we
5656 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
5657 have been issued for the current cycle, which means it is valid to
5658 issue an asm statement.
5660 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
5661 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
5662 we only leave insns which have an INSN_EXACT_TICK. */
5664 static void
5665 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
5666 bool shadows_only_p, bool modulo_epilogue_p)
5668 int i, pass;
5669 bool sched_group_found = false;
5670 int min_cost_group = 1;
5672 for (i = 0; i < ready.n_ready; i++)
5674 rtx insn = ready_element (&ready, i);
5675 if (SCHED_GROUP_P (insn))
5677 sched_group_found = true;
5678 break;
5682 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
5683 such an insn first and note its cost, then schedule all other insns
5684 for one cycle later. */
5685 for (pass = sched_group_found ? 0 : 1; pass < 2; )
5687 int n = ready.n_ready;
5688 for (i = 0; i < n; i++)
5690 rtx insn = ready_element (&ready, i);
5691 int cost = 0;
5692 const char *reason = "resource conflict";
5694 if (DEBUG_INSN_P (insn))
5695 continue;
5697 if (sched_group_found && !SCHED_GROUP_P (insn))
5699 if (pass == 0)
5700 continue;
5701 cost = min_cost_group;
5702 reason = "not in sched group";
5704 else if (modulo_epilogue_p
5705 && INSN_EXACT_TICK (insn) == INVALID_TICK)
5707 cost = max_insn_queue_index;
5708 reason = "not an epilogue insn";
5710 else if (shadows_only_p && !SHADOW_P (insn))
5712 cost = 1;
5713 reason = "not a shadow";
5715 else if (recog_memoized (insn) < 0)
5717 if (!first_cycle_insn_p
5718 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
5719 || asm_noperands (PATTERN (insn)) >= 0))
5720 cost = 1;
5721 reason = "asm";
5723 else if (sched_pressure != SCHED_PRESSURE_NONE)
5725 if (sched_pressure == SCHED_PRESSURE_MODEL
5726 && INSN_TICK (insn) <= clock_var)
5728 memcpy (temp_state, curr_state, dfa_state_size);
5729 if (state_transition (temp_state, insn) >= 0)
5730 INSN_TICK (insn) = clock_var + 1;
5732 cost = 0;
5734 else
5736 int delay_cost = 0;
5738 if (delay_htab.is_created ())
5740 struct delay_pair *delay_entry;
5741 delay_entry
5742 = delay_htab.find_with_hash (insn,
5743 htab_hash_pointer (insn));
5744 while (delay_entry && delay_cost == 0)
5746 delay_cost = estimate_shadow_tick (delay_entry);
5747 if (delay_cost > max_insn_queue_index)
5748 delay_cost = max_insn_queue_index;
5749 delay_entry = delay_entry->next_same_i1;
5753 memcpy (temp_state, curr_state, dfa_state_size);
5754 cost = state_transition (temp_state, insn);
5755 if (cost < 0)
5756 cost = 0;
5757 else if (cost == 0)
5758 cost = 1;
5759 if (cost < delay_cost)
5761 cost = delay_cost;
5762 reason = "shadow tick";
5765 if (cost >= 1)
5767 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
5768 min_cost_group = cost;
5769 ready_remove (&ready, i);
5770 queue_insn (insn, cost, reason);
5771 if (i + 1 < n)
5772 break;
5775 if (i == n)
5776 pass++;
5780 /* Called when we detect that the schedule is impossible. We examine the
5781 backtrack queue to find the earliest insn that caused this condition. */
5783 static struct haifa_saved_data *
5784 verify_shadows (void)
5786 struct haifa_saved_data *save, *earliest_fail = NULL;
5787 for (save = backtrack_queue; save; save = save->next)
5789 int t;
5790 struct delay_pair *pair = save->delay_pair;
5791 rtx i1 = pair->i1;
5793 for (; pair; pair = pair->next_same_i1)
5795 rtx i2 = pair->i2;
5797 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
5798 continue;
5800 t = INSN_TICK (i1) + pair_delay (pair);
5801 if (t < clock_var)
5803 if (sched_verbose >= 2)
5804 fprintf (sched_dump,
5805 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
5806 ", not ready\n",
5807 INSN_UID (pair->i1), INSN_UID (pair->i2),
5808 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5809 earliest_fail = save;
5810 break;
5812 if (QUEUE_INDEX (i2) >= 0)
5814 int queued_for = INSN_TICK (i2);
5816 if (t < queued_for)
5818 if (sched_verbose >= 2)
5819 fprintf (sched_dump,
5820 ";;\t\tfailed delay requirements for %d/%d"
5821 " (%d->%d), queued too late\n",
5822 INSN_UID (pair->i1), INSN_UID (pair->i2),
5823 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
5824 earliest_fail = save;
5825 break;
5831 return earliest_fail;
5834 /* Use forward list scheduling to rearrange insns of block pointed to by
5835 TARGET_BB, possibly bringing insns from subsequent blocks in the same
5836 region. */
5838 bool
5839 schedule_block (basic_block *target_bb, state_t init_state)
5841 int i;
5842 bool success = modulo_ii == 0;
5843 struct sched_block_state ls;
5844 state_t temp_state = NULL; /* It is used for multipass scheduling. */
5845 int sort_p, advance, start_clock_var;
5847 /* Head/tail info for this block. */
5848 rtx prev_head = current_sched_info->prev_head;
5849 rtx next_tail = current_sched_info->next_tail;
5850 rtx head = NEXT_INSN (prev_head);
5851 rtx tail = PREV_INSN (next_tail);
5853 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
5854 && sched_pressure != SCHED_PRESSURE_MODEL)
5855 find_modifiable_mems (head, tail);
5857 /* We used to have code to avoid getting parameters moved from hard
5858 argument registers into pseudos.
5860 However, it was removed when it proved to be of marginal benefit
5861 and caused problems because schedule_block and compute_forward_dependences
5862 had different notions of what the "head" insn was. */
5864 gcc_assert (head != tail || INSN_P (head));
5866 haifa_recovery_bb_recently_added_p = false;
5868 backtrack_queue = NULL;
5870 /* Debug info. */
5871 if (sched_verbose)
5872 dump_new_block_header (0, *target_bb, head, tail);
5874 if (init_state == NULL)
5875 state_reset (curr_state);
5876 else
5877 memcpy (curr_state, init_state, dfa_state_size);
5879 /* Clear the ready list. */
5880 ready.first = ready.veclen - 1;
5881 ready.n_ready = 0;
5882 ready.n_debug = 0;
5884 /* It is used for first cycle multipass scheduling. */
5885 temp_state = alloca (dfa_state_size);
5887 if (targetm.sched.init)
5888 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
5890 /* We start inserting insns after PREV_HEAD. */
5891 last_scheduled_insn = nonscheduled_insns_begin = prev_head;
5892 last_nondebug_scheduled_insn = NULL_RTX;
5894 gcc_assert ((NOTE_P (last_scheduled_insn)
5895 || DEBUG_INSN_P (last_scheduled_insn))
5896 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
5898 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
5899 queue. */
5900 q_ptr = 0;
5901 q_size = 0;
5903 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
5904 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
5906 /* Start just before the beginning of time. */
5907 clock_var = -1;
5909 /* We need queue and ready lists and clock_var be initialized
5910 in try_ready () (which is called through init_ready_list ()). */
5911 (*current_sched_info->init_ready_list) ();
5913 if (sched_pressure == SCHED_PRESSURE_MODEL)
5914 model_start_schedule ();
5916 /* The algorithm is O(n^2) in the number of ready insns at any given
5917 time in the worst case. Before reload we are more likely to have
5918 big lists so truncate them to a reasonable size. */
5919 if (!reload_completed
5920 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
5922 ready_sort (&ready);
5924 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
5925 If there are debug insns, we know they're first. */
5926 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
5927 if (!SCHED_GROUP_P (ready_element (&ready, i)))
5928 break;
5930 if (sched_verbose >= 2)
5932 fprintf (sched_dump,
5933 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
5934 fprintf (sched_dump,
5935 ";;\t\t before reload => truncated to %d insns\n", i);
5938 /* Delay all insns past it for 1 cycle. If debug counter is
5939 activated make an exception for the insn right after
5940 nonscheduled_insns_begin. */
5942 rtx skip_insn;
5944 if (dbg_cnt (sched_insn) == false)
5945 skip_insn = next_nonnote_insn (nonscheduled_insns_begin);
5946 else
5947 skip_insn = NULL_RTX;
5949 while (i < ready.n_ready)
5951 rtx insn;
5953 insn = ready_remove (&ready, i);
5955 if (insn != skip_insn)
5956 queue_insn (insn, 1, "list truncated");
5958 if (skip_insn)
5959 ready_add (&ready, skip_insn, true);
5963 /* Now we can restore basic block notes and maintain precise cfg. */
5964 restore_bb_notes (*target_bb);
5966 last_clock_var = -1;
5968 advance = 0;
5970 gcc_assert (scheduled_insns.length () == 0);
5971 sort_p = TRUE;
5972 must_backtrack = false;
5973 modulo_insns_scheduled = 0;
5975 ls.modulo_epilogue = false;
5977 /* Loop until all the insns in BB are scheduled. */
5978 while ((*current_sched_info->schedule_more_p) ())
5980 perform_replacements_new_cycle ();
5983 start_clock_var = clock_var;
5985 clock_var++;
5987 advance_one_cycle ();
5989 /* Add to the ready list all pending insns that can be issued now.
5990 If there are no ready insns, increment clock until one
5991 is ready and add all pending insns at that point to the ready
5992 list. */
5993 queue_to_ready (&ready);
5995 gcc_assert (ready.n_ready);
5997 if (sched_verbose >= 2)
5999 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
6000 debug_ready_list (&ready);
6002 advance -= clock_var - start_clock_var;
6004 while (advance > 0);
6006 if (ls.modulo_epilogue)
6008 int stage = clock_var / modulo_ii;
6009 if (stage > modulo_last_stage * 2 + 2)
6011 if (sched_verbose >= 2)
6012 fprintf (sched_dump,
6013 ";;\t\tmodulo scheduled succeeded at II %d\n",
6014 modulo_ii);
6015 success = true;
6016 goto end_schedule;
6019 else if (modulo_ii > 0)
6021 int stage = clock_var / modulo_ii;
6022 if (stage > modulo_max_stages)
6024 if (sched_verbose >= 2)
6025 fprintf (sched_dump,
6026 ";;\t\tfailing schedule due to excessive stages\n");
6027 goto end_schedule;
6029 if (modulo_n_insns == modulo_insns_scheduled
6030 && stage > modulo_last_stage)
6032 if (sched_verbose >= 2)
6033 fprintf (sched_dump,
6034 ";;\t\tfound kernel after %d stages, II %d\n",
6035 stage, modulo_ii);
6036 ls.modulo_epilogue = true;
6040 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6041 if (ready.n_ready == 0)
6042 continue;
6043 if (must_backtrack)
6044 goto do_backtrack;
6046 ls.first_cycle_insn_p = true;
6047 ls.shadows_only_p = false;
6048 cycle_issued_insns = 0;
6049 ls.can_issue_more = issue_rate;
6050 for (;;)
6052 rtx insn;
6053 int cost;
6054 bool asm_p;
6056 if (sort_p && ready.n_ready > 0)
6058 /* Sort the ready list based on priority. This must be
6059 done every iteration through the loop, as schedule_insn
6060 may have readied additional insns that will not be
6061 sorted correctly. */
6062 ready_sort (&ready);
6064 if (sched_verbose >= 2)
6066 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
6067 debug_ready_list (&ready);
6071 /* We don't want md sched reorder to even see debug isns, so put
6072 them out right away. */
6073 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6074 && (*current_sched_info->schedule_more_p) ())
6076 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6078 rtx insn = ready_remove_first (&ready);
6079 gcc_assert (DEBUG_INSN_P (insn));
6080 (*current_sched_info->begin_schedule_ready) (insn);
6081 scheduled_insns.safe_push (insn);
6082 last_scheduled_insn = insn;
6083 advance = schedule_insn (insn);
6084 gcc_assert (advance == 0);
6085 if (ready.n_ready > 0)
6086 ready_sort (&ready);
6090 if (ls.first_cycle_insn_p && !ready.n_ready)
6091 break;
6093 resume_after_backtrack:
6094 /* Allow the target to reorder the list, typically for
6095 better instruction bundling. */
6096 if (sort_p
6097 && (ready.n_ready == 0
6098 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6100 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6101 ls.can_issue_more
6102 = targetm.sched.reorder (sched_dump, sched_verbose,
6103 ready_lastpos (&ready),
6104 &ready.n_ready, clock_var);
6105 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6106 ls.can_issue_more
6107 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6108 ready.n_ready
6109 ? ready_lastpos (&ready) : NULL,
6110 &ready.n_ready, clock_var);
6113 restart_choose_ready:
6114 if (sched_verbose >= 2)
6116 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6117 clock_var);
6118 debug_ready_list (&ready);
6119 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6120 print_curr_reg_pressure ();
6123 if (ready.n_ready == 0
6124 && ls.can_issue_more
6125 && reload_completed)
6127 /* Allow scheduling insns directly from the queue in case
6128 there's nothing better to do (ready list is empty) but
6129 there are still vacant dispatch slots in the current cycle. */
6130 if (sched_verbose >= 6)
6131 fprintf (sched_dump,";;\t\tSecond chance\n");
6132 memcpy (temp_state, curr_state, dfa_state_size);
6133 if (early_queue_to_ready (temp_state, &ready))
6134 ready_sort (&ready);
6137 if (ready.n_ready == 0
6138 || !ls.can_issue_more
6139 || state_dead_lock_p (curr_state)
6140 || !(*current_sched_info->schedule_more_p) ())
6141 break;
6143 /* Select and remove the insn from the ready list. */
6144 if (sort_p)
6146 int res;
6148 insn = NULL_RTX;
6149 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6151 if (res < 0)
6152 /* Finish cycle. */
6153 break;
6154 if (res > 0)
6155 goto restart_choose_ready;
6157 gcc_assert (insn != NULL_RTX);
6159 else
6160 insn = ready_remove_first (&ready);
6162 if (sched_pressure != SCHED_PRESSURE_NONE
6163 && INSN_TICK (insn) > clock_var)
6165 ready_add (&ready, insn, true);
6166 advance = 1;
6167 break;
6170 if (targetm.sched.dfa_new_cycle
6171 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6172 insn, last_clock_var,
6173 clock_var, &sort_p))
6174 /* SORT_P is used by the target to override sorting
6175 of the ready list. This is needed when the target
6176 has modified its internal structures expecting that
6177 the insn will be issued next. As we need the insn
6178 to have the highest priority (so it will be returned by
6179 the ready_remove_first call above), we invoke
6180 ready_add (&ready, insn, true).
6181 But, still, there is one issue: INSN can be later
6182 discarded by scheduler's front end through
6183 current_sched_info->can_schedule_ready_p, hence, won't
6184 be issued next. */
6186 ready_add (&ready, insn, true);
6187 break;
6190 sort_p = TRUE;
6192 if (current_sched_info->can_schedule_ready_p
6193 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6194 /* We normally get here only if we don't want to move
6195 insn from the split block. */
6197 TODO_SPEC (insn) = DEP_POSTPONED;
6198 goto restart_choose_ready;
6201 if (delay_htab.is_created ())
6203 /* If this insn is the first part of a delay-slot pair, record a
6204 backtrack point. */
6205 struct delay_pair *delay_entry;
6206 delay_entry
6207 = delay_htab.find_with_hash (insn, htab_hash_pointer (insn));
6208 if (delay_entry)
6210 save_backtrack_point (delay_entry, ls);
6211 if (sched_verbose >= 2)
6212 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6216 /* DECISION is made. */
6218 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6220 modulo_insns_scheduled++;
6221 modulo_last_stage = clock_var / modulo_ii;
6223 if (TODO_SPEC (insn) & SPECULATIVE)
6224 generate_recovery_code (insn);
6226 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6227 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6229 /* Update counters, etc in the scheduler's front end. */
6230 (*current_sched_info->begin_schedule_ready) (insn);
6231 scheduled_insns.safe_push (insn);
6232 gcc_assert (NONDEBUG_INSN_P (insn));
6233 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6235 if (recog_memoized (insn) >= 0)
6237 memcpy (temp_state, curr_state, dfa_state_size);
6238 cost = state_transition (curr_state, insn);
6239 if (sched_pressure != SCHED_PRESSURE_WEIGHTED)
6240 gcc_assert (cost < 0);
6241 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6242 cycle_issued_insns++;
6243 asm_p = false;
6245 else
6246 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6247 || asm_noperands (PATTERN (insn)) >= 0);
6249 if (targetm.sched.variable_issue)
6250 ls.can_issue_more =
6251 targetm.sched.variable_issue (sched_dump, sched_verbose,
6252 insn, ls.can_issue_more);
6253 /* A naked CLOBBER or USE generates no instruction, so do
6254 not count them against the issue rate. */
6255 else if (GET_CODE (PATTERN (insn)) != USE
6256 && GET_CODE (PATTERN (insn)) != CLOBBER)
6257 ls.can_issue_more--;
6258 advance = schedule_insn (insn);
6260 if (SHADOW_P (insn))
6261 ls.shadows_only_p = true;
6263 /* After issuing an asm insn we should start a new cycle. */
6264 if (advance == 0 && asm_p)
6265 advance = 1;
6267 if (must_backtrack)
6268 break;
6270 if (advance != 0)
6271 break;
6273 ls.first_cycle_insn_p = false;
6274 if (ready.n_ready > 0)
6275 prune_ready_list (temp_state, false, ls.shadows_only_p,
6276 ls.modulo_epilogue);
6279 do_backtrack:
6280 if (!must_backtrack)
6281 for (i = 0; i < ready.n_ready; i++)
6283 rtx insn = ready_element (&ready, i);
6284 if (INSN_EXACT_TICK (insn) == clock_var)
6286 must_backtrack = true;
6287 clock_var++;
6288 break;
6291 if (must_backtrack && modulo_ii > 0)
6293 if (modulo_backtracks_left == 0)
6294 goto end_schedule;
6295 modulo_backtracks_left--;
6297 while (must_backtrack)
6299 struct haifa_saved_data *failed;
6300 rtx failed_insn;
6302 must_backtrack = false;
6303 failed = verify_shadows ();
6304 gcc_assert (failed);
6306 failed_insn = failed->delay_pair->i1;
6307 /* Clear these queues. */
6308 perform_replacements_new_cycle ();
6309 toggle_cancelled_flags (false);
6310 unschedule_insns_until (failed_insn);
6311 while (failed != backtrack_queue)
6312 free_topmost_backtrack_point (true);
6313 restore_last_backtrack_point (&ls);
6314 if (sched_verbose >= 2)
6315 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6316 /* Delay by at least a cycle. This could cause additional
6317 backtracking. */
6318 queue_insn (failed_insn, 1, "backtracked");
6319 advance = 0;
6320 if (must_backtrack)
6321 continue;
6322 if (ready.n_ready > 0)
6323 goto resume_after_backtrack;
6324 else
6326 if (clock_var == 0 && ls.first_cycle_insn_p)
6327 goto end_schedule;
6328 advance = 1;
6329 break;
6333 if (ls.modulo_epilogue)
6334 success = true;
6335 end_schedule:
6336 advance_one_cycle ();
6337 perform_replacements_new_cycle ();
6338 if (modulo_ii > 0)
6340 /* Once again, debug insn suckiness: they can be on the ready list
6341 even if they have unresolved dependencies. To make our view
6342 of the world consistent, remove such "ready" insns. */
6343 restart_debug_insn_loop:
6344 for (i = ready.n_ready - 1; i >= 0; i--)
6346 rtx x;
6348 x = ready_element (&ready, i);
6349 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6350 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6352 ready_remove (&ready, i);
6353 goto restart_debug_insn_loop;
6356 for (i = ready.n_ready - 1; i >= 0; i--)
6358 rtx x;
6360 x = ready_element (&ready, i);
6361 resolve_dependencies (x);
6363 for (i = 0; i <= max_insn_queue_index; i++)
6365 rtx link;
6366 while ((link = insn_queue[i]) != NULL)
6368 rtx x = XEXP (link, 0);
6369 insn_queue[i] = XEXP (link, 1);
6370 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6371 free_INSN_LIST_node (link);
6372 resolve_dependencies (x);
6377 if (!success)
6378 undo_all_replacements ();
6380 /* Debug info. */
6381 if (sched_verbose)
6383 fprintf (sched_dump, ";;\tReady list (final): ");
6384 debug_ready_list (&ready);
6387 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6388 /* Sanity check -- queue must be empty now. Meaningless if region has
6389 multiple bbs. */
6390 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6391 else if (modulo_ii == 0)
6393 /* We must maintain QUEUE_INDEX between blocks in region. */
6394 for (i = ready.n_ready - 1; i >= 0; i--)
6396 rtx x;
6398 x = ready_element (&ready, i);
6399 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6400 TODO_SPEC (x) = HARD_DEP;
6403 if (q_size)
6404 for (i = 0; i <= max_insn_queue_index; i++)
6406 rtx link;
6407 for (link = insn_queue[i]; link; link = XEXP (link, 1))
6409 rtx x;
6411 x = XEXP (link, 0);
6412 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6413 TODO_SPEC (x) = HARD_DEP;
6415 free_INSN_LIST_list (&insn_queue[i]);
6419 if (sched_pressure == SCHED_PRESSURE_MODEL)
6420 model_end_schedule ();
6422 if (success)
6424 commit_schedule (prev_head, tail, target_bb);
6425 if (sched_verbose)
6426 fprintf (sched_dump, ";; total time = %d\n", clock_var);
6428 else
6429 last_scheduled_insn = tail;
6431 scheduled_insns.truncate (0);
6433 if (!current_sched_info->queue_must_finish_empty
6434 || haifa_recovery_bb_recently_added_p)
6436 /* INSN_TICK (minimum clock tick at which the insn becomes
6437 ready) may be not correct for the insn in the subsequent
6438 blocks of the region. We should use a correct value of
6439 `clock_var' or modify INSN_TICK. It is better to keep
6440 clock_var value equal to 0 at the start of a basic block.
6441 Therefore we modify INSN_TICK here. */
6442 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
6445 if (targetm.sched.finish)
6447 targetm.sched.finish (sched_dump, sched_verbose);
6448 /* Target might have added some instructions to the scheduled block
6449 in its md_finish () hook. These new insns don't have any data
6450 initialized and to identify them we extend h_i_d so that they'll
6451 get zero luids. */
6452 sched_extend_luids ();
6455 if (sched_verbose)
6456 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
6457 INSN_UID (head), INSN_UID (tail));
6459 /* Update head/tail boundaries. */
6460 head = NEXT_INSN (prev_head);
6461 tail = last_scheduled_insn;
6463 head = restore_other_notes (head, NULL);
6465 current_sched_info->head = head;
6466 current_sched_info->tail = tail;
6468 free_backtrack_queue ();
6470 return success;
6473 /* Set_priorities: compute priority of each insn in the block. */
6476 set_priorities (rtx head, rtx tail)
6478 rtx insn;
6479 int n_insn;
6480 int sched_max_insns_priority =
6481 current_sched_info->sched_max_insns_priority;
6482 rtx prev_head;
6484 if (head == tail && ! INSN_P (head))
6485 gcc_unreachable ();
6487 n_insn = 0;
6489 prev_head = PREV_INSN (head);
6490 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
6492 if (!INSN_P (insn))
6493 continue;
6495 n_insn++;
6496 (void) priority (insn);
6498 gcc_assert (INSN_PRIORITY_KNOWN (insn));
6500 sched_max_insns_priority = MAX (sched_max_insns_priority,
6501 INSN_PRIORITY (insn));
6504 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
6506 return n_insn;
6509 /* Set dump and sched_verbose for the desired debugging output. If no
6510 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
6511 For -fsched-verbose=N, N>=10, print everything to stderr. */
6512 void
6513 setup_sched_dump (void)
6515 sched_verbose = sched_verbose_param;
6516 if (sched_verbose_param == 0 && dump_file)
6517 sched_verbose = 1;
6518 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
6519 ? stderr : dump_file);
6522 /* Initialize some global state for the scheduler. This function works
6523 with the common data shared between all the schedulers. It is called
6524 from the scheduler specific initialization routine. */
6526 void
6527 sched_init (void)
6529 /* Disable speculative loads in their presence if cc0 defined. */
6530 #ifdef HAVE_cc0
6531 flag_schedule_speculative_load = 0;
6532 #endif
6534 if (targetm.sched.dispatch (NULL_RTX, IS_DISPATCH_ON))
6535 targetm.sched.dispatch_do (NULL_RTX, DISPATCH_INIT);
6537 if (flag_sched_pressure
6538 && !reload_completed
6539 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
6540 sched_pressure = ((enum sched_pressure_algorithm)
6541 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
6542 else
6543 sched_pressure = SCHED_PRESSURE_NONE;
6545 if (sched_pressure != SCHED_PRESSURE_NONE)
6546 ira_setup_eliminable_regset (false);
6548 /* Initialize SPEC_INFO. */
6549 if (targetm.sched.set_sched_flags)
6551 spec_info = &spec_info_var;
6552 targetm.sched.set_sched_flags (spec_info);
6554 if (spec_info->mask != 0)
6556 spec_info->data_weakness_cutoff =
6557 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
6558 spec_info->control_weakness_cutoff =
6559 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
6560 * REG_BR_PROB_BASE) / 100;
6562 else
6563 /* So we won't read anything accidentally. */
6564 spec_info = NULL;
6567 else
6568 /* So we won't read anything accidentally. */
6569 spec_info = 0;
6571 /* Initialize issue_rate. */
6572 if (targetm.sched.issue_rate)
6573 issue_rate = targetm.sched.issue_rate ();
6574 else
6575 issue_rate = 1;
6577 if (cached_issue_rate != issue_rate)
6579 cached_issue_rate = issue_rate;
6580 /* To invalidate max_lookahead_tries: */
6581 cached_first_cycle_multipass_dfa_lookahead = 0;
6584 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
6585 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
6586 else
6587 dfa_lookahead = 0;
6589 if (targetm.sched.init_dfa_pre_cycle_insn)
6590 targetm.sched.init_dfa_pre_cycle_insn ();
6592 if (targetm.sched.init_dfa_post_cycle_insn)
6593 targetm.sched.init_dfa_post_cycle_insn ();
6595 dfa_start ();
6596 dfa_state_size = state_size ();
6598 init_alias_analysis ();
6600 if (!sched_no_dce)
6601 df_set_flags (DF_LR_RUN_DCE);
6602 df_note_add_problem ();
6604 /* More problems needed for interloop dep calculation in SMS. */
6605 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
6607 df_rd_add_problem ();
6608 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
6611 df_analyze ();
6613 /* Do not run DCE after reload, as this can kill nops inserted
6614 by bundling. */
6615 if (reload_completed)
6616 df_clear_flags (DF_LR_RUN_DCE);
6618 regstat_compute_calls_crossed ();
6620 if (targetm.sched.init_global)
6621 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
6623 if (sched_pressure != SCHED_PRESSURE_NONE)
6625 int i, max_regno = max_reg_num ();
6627 if (sched_dump != NULL)
6628 /* We need info about pseudos for rtl dumps about pseudo
6629 classes and costs. */
6630 regstat_init_n_sets_and_refs ();
6631 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
6632 sched_regno_pressure_class
6633 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
6634 for (i = 0; i < max_regno; i++)
6635 sched_regno_pressure_class[i]
6636 = (i < FIRST_PSEUDO_REGISTER
6637 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
6638 : ira_pressure_class_translate[reg_allocno_class (i)]);
6639 curr_reg_live = BITMAP_ALLOC (NULL);
6640 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6642 saved_reg_live = BITMAP_ALLOC (NULL);
6643 region_ref_regs = BITMAP_ALLOC (NULL);
6647 curr_state = xmalloc (dfa_state_size);
6650 static void haifa_init_only_bb (basic_block, basic_block);
6652 /* Initialize data structures specific to the Haifa scheduler. */
6653 void
6654 haifa_sched_init (void)
6656 setup_sched_dump ();
6657 sched_init ();
6659 scheduled_insns.create (0);
6661 if (spec_info != NULL)
6663 sched_deps_info->use_deps_list = 1;
6664 sched_deps_info->generate_spec_deps = 1;
6667 /* Initialize luids, dependency caches, target and h_i_d for the
6668 whole function. */
6670 bb_vec_t bbs;
6671 bbs.create (n_basic_blocks);
6672 basic_block bb;
6674 sched_init_bbs ();
6676 FOR_EACH_BB (bb)
6677 bbs.quick_push (bb);
6678 sched_init_luids (bbs);
6679 sched_deps_init (true);
6680 sched_extend_target ();
6681 haifa_init_h_i_d (bbs);
6683 bbs.release ();
6686 sched_init_only_bb = haifa_init_only_bb;
6687 sched_split_block = sched_split_block_1;
6688 sched_create_empty_bb = sched_create_empty_bb_1;
6689 haifa_recovery_bb_ever_added_p = false;
6691 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
6692 before_recovery = 0;
6693 after_recovery = 0;
6695 modulo_ii = 0;
6698 /* Finish work with the data specific to the Haifa scheduler. */
6699 void
6700 haifa_sched_finish (void)
6702 sched_create_empty_bb = NULL;
6703 sched_split_block = NULL;
6704 sched_init_only_bb = NULL;
6706 if (spec_info && spec_info->dump)
6708 char c = reload_completed ? 'a' : 'b';
6710 fprintf (spec_info->dump,
6711 ";; %s:\n", current_function_name ());
6713 fprintf (spec_info->dump,
6714 ";; Procedure %cr-begin-data-spec motions == %d\n",
6715 c, nr_begin_data);
6716 fprintf (spec_info->dump,
6717 ";; Procedure %cr-be-in-data-spec motions == %d\n",
6718 c, nr_be_in_data);
6719 fprintf (spec_info->dump,
6720 ";; Procedure %cr-begin-control-spec motions == %d\n",
6721 c, nr_begin_control);
6722 fprintf (spec_info->dump,
6723 ";; Procedure %cr-be-in-control-spec motions == %d\n",
6724 c, nr_be_in_control);
6727 scheduled_insns.release ();
6729 /* Finalize h_i_d, dependency caches, and luids for the whole
6730 function. Target will be finalized in md_global_finish (). */
6731 sched_deps_finish ();
6732 sched_finish_luids ();
6733 current_sched_info = NULL;
6734 sched_finish ();
6737 /* Free global data used during insn scheduling. This function works with
6738 the common data shared between the schedulers. */
6740 void
6741 sched_finish (void)
6743 haifa_finish_h_i_d ();
6744 if (sched_pressure != SCHED_PRESSURE_NONE)
6746 if (regstat_n_sets_and_refs != NULL)
6747 regstat_free_n_sets_and_refs ();
6748 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6750 BITMAP_FREE (region_ref_regs);
6751 BITMAP_FREE (saved_reg_live);
6753 BITMAP_FREE (curr_reg_live);
6754 free (sched_regno_pressure_class);
6756 free (curr_state);
6758 if (targetm.sched.finish_global)
6759 targetm.sched.finish_global (sched_dump, sched_verbose);
6761 end_alias_analysis ();
6763 regstat_free_calls_crossed ();
6765 dfa_finish ();
6768 /* Free all delay_pair structures that were recorded. */
6769 void
6770 free_delay_pairs (void)
6772 if (delay_htab.is_created ())
6774 delay_htab.empty ();
6775 delay_htab_i2.empty ();
6779 /* Fix INSN_TICKs of the instructions in the current block as well as
6780 INSN_TICKs of their dependents.
6781 HEAD and TAIL are the begin and the end of the current scheduled block. */
6782 static void
6783 fix_inter_tick (rtx head, rtx tail)
6785 /* Set of instructions with corrected INSN_TICK. */
6786 bitmap_head processed;
6787 /* ??? It is doubtful if we should assume that cycle advance happens on
6788 basic block boundaries. Basically insns that are unconditionally ready
6789 on the start of the block are more preferable then those which have
6790 a one cycle dependency over insn from the previous block. */
6791 int next_clock = clock_var + 1;
6793 bitmap_initialize (&processed, 0);
6795 /* Iterates over scheduled instructions and fix their INSN_TICKs and
6796 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
6797 across different blocks. */
6798 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
6800 if (INSN_P (head))
6802 int tick;
6803 sd_iterator_def sd_it;
6804 dep_t dep;
6806 tick = INSN_TICK (head);
6807 gcc_assert (tick >= MIN_TICK);
6809 /* Fix INSN_TICK of instruction from just scheduled block. */
6810 if (bitmap_set_bit (&processed, INSN_LUID (head)))
6812 tick -= next_clock;
6814 if (tick < MIN_TICK)
6815 tick = MIN_TICK;
6817 INSN_TICK (head) = tick;
6820 if (DEBUG_INSN_P (head))
6821 continue;
6823 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
6825 rtx next;
6827 next = DEP_CON (dep);
6828 tick = INSN_TICK (next);
6830 if (tick != INVALID_TICK
6831 /* If NEXT has its INSN_TICK calculated, fix it.
6832 If not - it will be properly calculated from
6833 scratch later in fix_tick_ready. */
6834 && bitmap_set_bit (&processed, INSN_LUID (next)))
6836 tick -= next_clock;
6838 if (tick < MIN_TICK)
6839 tick = MIN_TICK;
6841 if (tick > INTER_TICK (next))
6842 INTER_TICK (next) = tick;
6843 else
6844 tick = INTER_TICK (next);
6846 INSN_TICK (next) = tick;
6851 bitmap_clear (&processed);
6854 /* Check if NEXT is ready to be added to the ready or queue list.
6855 If "yes", add it to the proper list.
6856 Returns:
6857 -1 - is not ready yet,
6858 0 - added to the ready list,
6859 0 < N - queued for N cycles. */
6861 try_ready (rtx next)
6863 ds_t old_ts, new_ts;
6865 old_ts = TODO_SPEC (next);
6867 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
6868 && (old_ts == HARD_DEP
6869 || old_ts == DEP_POSTPONED
6870 || (old_ts & SPECULATIVE)
6871 || old_ts == DEP_CONTROL));
6873 new_ts = recompute_todo_spec (next, false);
6875 if (new_ts & (HARD_DEP | DEP_POSTPONED))
6876 gcc_assert (new_ts == old_ts
6877 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
6878 else if (current_sched_info->new_ready)
6879 new_ts = current_sched_info->new_ready (next, new_ts);
6881 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
6882 have its original pattern or changed (speculative) one. This is due
6883 to changing ebb in region scheduling.
6884 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
6885 has speculative pattern.
6887 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
6888 control-speculative NEXT could have been discarded by sched-rgn.c
6889 (the same case as when discarded by can_schedule_ready_p ()). */
6891 if ((new_ts & SPECULATIVE)
6892 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
6893 need to change anything. */
6894 && new_ts != old_ts)
6896 int res;
6897 rtx new_pat;
6899 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
6901 res = haifa_speculate_insn (next, new_ts, &new_pat);
6903 switch (res)
6905 case -1:
6906 /* It would be nice to change DEP_STATUS of all dependences,
6907 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
6908 so we won't reanalyze anything. */
6909 new_ts = HARD_DEP;
6910 break;
6912 case 0:
6913 /* We follow the rule, that every speculative insn
6914 has non-null ORIG_PAT. */
6915 if (!ORIG_PAT (next))
6916 ORIG_PAT (next) = PATTERN (next);
6917 break;
6919 case 1:
6920 if (!ORIG_PAT (next))
6921 /* If we gonna to overwrite the original pattern of insn,
6922 save it. */
6923 ORIG_PAT (next) = PATTERN (next);
6925 res = haifa_change_pattern (next, new_pat);
6926 gcc_assert (res);
6927 break;
6929 default:
6930 gcc_unreachable ();
6934 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
6935 either correct (new_ts & SPECULATIVE),
6936 or we simply don't care (new_ts & HARD_DEP). */
6938 gcc_assert (!ORIG_PAT (next)
6939 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
6941 TODO_SPEC (next) = new_ts;
6943 if (new_ts & (HARD_DEP | DEP_POSTPONED))
6945 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
6946 control-speculative NEXT could have been discarded by sched-rgn.c
6947 (the same case as when discarded by can_schedule_ready_p ()). */
6948 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
6950 change_queue_index (next, QUEUE_NOWHERE);
6952 return -1;
6954 else if (!(new_ts & BEGIN_SPEC)
6955 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
6956 && !IS_SPECULATION_CHECK_P (next))
6957 /* We should change pattern of every previously speculative
6958 instruction - and we determine if NEXT was speculative by using
6959 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
6960 pat too, so skip them. */
6962 bool success = haifa_change_pattern (next, ORIG_PAT (next));
6963 gcc_assert (success);
6964 ORIG_PAT (next) = 0;
6967 if (sched_verbose >= 2)
6969 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
6970 (*current_sched_info->print_insn) (next, 0));
6972 if (spec_info && spec_info->dump)
6974 if (new_ts & BEGIN_DATA)
6975 fprintf (spec_info->dump, "; data-spec;");
6976 if (new_ts & BEGIN_CONTROL)
6977 fprintf (spec_info->dump, "; control-spec;");
6978 if (new_ts & BE_IN_CONTROL)
6979 fprintf (spec_info->dump, "; in-control-spec;");
6981 if (TODO_SPEC (next) & DEP_CONTROL)
6982 fprintf (sched_dump, " predicated");
6983 fprintf (sched_dump, "\n");
6986 adjust_priority (next);
6988 return fix_tick_ready (next);
6991 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
6992 static int
6993 fix_tick_ready (rtx next)
6995 int tick, delay;
6997 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
6999 int full_p;
7000 sd_iterator_def sd_it;
7001 dep_t dep;
7003 tick = INSN_TICK (next);
7004 /* if tick is not equal to INVALID_TICK, then update
7005 INSN_TICK of NEXT with the most recent resolved dependence
7006 cost. Otherwise, recalculate from scratch. */
7007 full_p = (tick == INVALID_TICK);
7009 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7011 rtx pro = DEP_PRO (dep);
7012 int tick1;
7014 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7016 tick1 = INSN_TICK (pro) + dep_cost (dep);
7017 if (tick1 > tick)
7018 tick = tick1;
7020 if (!full_p)
7021 break;
7024 else
7025 tick = -1;
7027 INSN_TICK (next) = tick;
7029 delay = tick - clock_var;
7030 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE)
7031 delay = QUEUE_READY;
7033 change_queue_index (next, delay);
7035 return delay;
7038 /* Move NEXT to the proper queue list with (DELAY >= 1),
7039 or add it to the ready list (DELAY == QUEUE_READY),
7040 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7041 static void
7042 change_queue_index (rtx next, int delay)
7044 int i = QUEUE_INDEX (next);
7046 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7047 && delay != 0);
7048 gcc_assert (i != QUEUE_SCHEDULED);
7050 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7051 || (delay < 0 && delay == i))
7052 /* We have nothing to do. */
7053 return;
7055 /* Remove NEXT from wherever it is now. */
7056 if (i == QUEUE_READY)
7057 ready_remove_insn (next);
7058 else if (i >= 0)
7059 queue_remove (next);
7061 /* Add it to the proper place. */
7062 if (delay == QUEUE_READY)
7063 ready_add (readyp, next, false);
7064 else if (delay >= 1)
7065 queue_insn (next, delay, "change queue index");
7067 if (sched_verbose >= 2)
7069 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7070 (*current_sched_info->print_insn) (next, 0));
7072 if (delay == QUEUE_READY)
7073 fprintf (sched_dump, " into ready\n");
7074 else if (delay >= 1)
7075 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7076 else
7077 fprintf (sched_dump, " removed from ready or queue lists\n");
7081 static int sched_ready_n_insns = -1;
7083 /* Initialize per region data structures. */
7084 void
7085 sched_extend_ready_list (int new_sched_ready_n_insns)
7087 int i;
7089 if (sched_ready_n_insns == -1)
7090 /* At the first call we need to initialize one more choice_stack
7091 entry. */
7093 i = 0;
7094 sched_ready_n_insns = 0;
7095 scheduled_insns.reserve (new_sched_ready_n_insns);
7097 else
7098 i = sched_ready_n_insns + 1;
7100 ready.veclen = new_sched_ready_n_insns + issue_rate;
7101 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
7103 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7105 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7106 sched_ready_n_insns, sizeof (*ready_try));
7108 /* We allocate +1 element to save initial state in the choice_stack[0]
7109 entry. */
7110 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7111 new_sched_ready_n_insns + 1);
7113 for (; i <= new_sched_ready_n_insns; i++)
7115 choice_stack[i].state = xmalloc (dfa_state_size);
7117 if (targetm.sched.first_cycle_multipass_init)
7118 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7119 .target_data));
7122 sched_ready_n_insns = new_sched_ready_n_insns;
7125 /* Free per region data structures. */
7126 void
7127 sched_finish_ready_list (void)
7129 int i;
7131 free (ready.vec);
7132 ready.vec = NULL;
7133 ready.veclen = 0;
7135 free (ready_try);
7136 ready_try = NULL;
7138 for (i = 0; i <= sched_ready_n_insns; i++)
7140 if (targetm.sched.first_cycle_multipass_fini)
7141 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7142 .target_data));
7144 free (choice_stack [i].state);
7146 free (choice_stack);
7147 choice_stack = NULL;
7149 sched_ready_n_insns = -1;
7152 static int
7153 haifa_luid_for_non_insn (rtx x)
7155 gcc_assert (NOTE_P (x) || LABEL_P (x));
7157 return 0;
7160 /* Generates recovery code for INSN. */
7161 static void
7162 generate_recovery_code (rtx insn)
7164 if (TODO_SPEC (insn) & BEGIN_SPEC)
7165 begin_speculative_block (insn);
7167 /* Here we have insn with no dependencies to
7168 instructions other then CHECK_SPEC ones. */
7170 if (TODO_SPEC (insn) & BE_IN_SPEC)
7171 add_to_speculative_block (insn);
7174 /* Helper function.
7175 Tries to add speculative dependencies of type FS between instructions
7176 in deps_list L and TWIN. */
7177 static void
7178 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
7180 sd_iterator_def sd_it;
7181 dep_t dep;
7183 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7185 ds_t ds;
7186 rtx consumer;
7188 consumer = DEP_CON (dep);
7190 ds = DEP_STATUS (dep);
7192 if (/* If we want to create speculative dep. */
7194 /* And we can do that because this is a true dep. */
7195 && (ds & DEP_TYPES) == DEP_TRUE)
7197 gcc_assert (!(ds & BE_IN_SPEC));
7199 if (/* If this dep can be overcome with 'begin speculation'. */
7200 ds & BEGIN_SPEC)
7201 /* Then we have a choice: keep the dep 'begin speculative'
7202 or transform it into 'be in speculative'. */
7204 if (/* In try_ready we assert that if insn once became ready
7205 it can be removed from the ready (or queue) list only
7206 due to backend decision. Hence we can't let the
7207 probability of the speculative dep to decrease. */
7208 ds_weak (ds) <= ds_weak (fs))
7210 ds_t new_ds;
7212 new_ds = (ds & ~BEGIN_SPEC) | fs;
7214 if (/* consumer can 'be in speculative'. */
7215 sched_insn_is_legitimate_for_speculation_p (consumer,
7216 new_ds))
7217 /* Transform it to be in speculative. */
7218 ds = new_ds;
7221 else
7222 /* Mark the dep as 'be in speculative'. */
7223 ds |= fs;
7227 dep_def _new_dep, *new_dep = &_new_dep;
7229 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7230 sd_add_dep (new_dep, false);
7235 /* Generates recovery code for BEGIN speculative INSN. */
7236 static void
7237 begin_speculative_block (rtx insn)
7239 if (TODO_SPEC (insn) & BEGIN_DATA)
7240 nr_begin_data++;
7241 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7242 nr_begin_control++;
7244 create_check_block_twin (insn, false);
7246 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7249 static void haifa_init_insn (rtx);
7251 /* Generates recovery code for BE_IN speculative INSN. */
7252 static void
7253 add_to_speculative_block (rtx insn)
7255 ds_t ts;
7256 sd_iterator_def sd_it;
7257 dep_t dep;
7258 rtx twins = NULL;
7259 rtx_vec_t priorities_roots;
7261 ts = TODO_SPEC (insn);
7262 gcc_assert (!(ts & ~BE_IN_SPEC));
7264 if (ts & BE_IN_DATA)
7265 nr_be_in_data++;
7266 if (ts & BE_IN_CONTROL)
7267 nr_be_in_control++;
7269 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7270 gcc_assert (!TODO_SPEC (insn));
7272 DONE_SPEC (insn) |= ts;
7274 /* First we convert all simple checks to branchy. */
7275 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7276 sd_iterator_cond (&sd_it, &dep);)
7278 rtx check = DEP_PRO (dep);
7280 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7282 create_check_block_twin (check, true);
7284 /* Restart search. */
7285 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7287 else
7288 /* Continue search. */
7289 sd_iterator_next (&sd_it);
7292 priorities_roots.create (0);
7293 clear_priorities (insn, &priorities_roots);
7295 while (1)
7297 rtx check, twin;
7298 basic_block rec;
7300 /* Get the first backward dependency of INSN. */
7301 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7302 if (!sd_iterator_cond (&sd_it, &dep))
7303 /* INSN has no backward dependencies left. */
7304 break;
7306 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7307 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7308 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7310 check = DEP_PRO (dep);
7312 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7313 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7315 rec = BLOCK_FOR_INSN (check);
7317 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7318 haifa_init_insn (twin);
7320 sd_copy_back_deps (twin, insn, true);
7322 if (sched_verbose && spec_info->dump)
7323 /* INSN_BB (insn) isn't determined for twin insns yet.
7324 So we can't use current_sched_info->print_insn. */
7325 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7326 INSN_UID (twin), rec->index);
7328 twins = alloc_INSN_LIST (twin, twins);
7330 /* Add dependences between TWIN and all appropriate
7331 instructions from REC. */
7332 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7334 rtx pro = DEP_PRO (dep);
7336 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7338 /* INSN might have dependencies from the instructions from
7339 several recovery blocks. At this iteration we process those
7340 producers that reside in REC. */
7341 if (BLOCK_FOR_INSN (pro) == rec)
7343 dep_def _new_dep, *new_dep = &_new_dep;
7345 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7346 sd_add_dep (new_dep, false);
7350 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7352 /* Remove all dependencies between INSN and insns in REC. */
7353 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7354 sd_iterator_cond (&sd_it, &dep);)
7356 rtx pro = DEP_PRO (dep);
7358 if (BLOCK_FOR_INSN (pro) == rec)
7359 sd_delete_dep (sd_it);
7360 else
7361 sd_iterator_next (&sd_it);
7365 /* We couldn't have added the dependencies between INSN and TWINS earlier
7366 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7367 while (twins)
7369 rtx twin;
7371 twin = XEXP (twins, 0);
7374 dep_def _new_dep, *new_dep = &_new_dep;
7376 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7377 sd_add_dep (new_dep, false);
7380 twin = XEXP (twins, 1);
7381 free_INSN_LIST_node (twins);
7382 twins = twin;
7385 calc_priorities (priorities_roots);
7386 priorities_roots.release ();
7389 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7390 void *
7391 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
7393 gcc_assert (new_nmemb >= old_nmemb);
7394 p = XRESIZEVAR (void, p, new_nmemb * size);
7395 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
7396 return p;
7399 /* Helper function.
7400 Find fallthru edge from PRED. */
7401 edge
7402 find_fallthru_edge_from (basic_block pred)
7404 edge e;
7405 basic_block succ;
7407 succ = pred->next_bb;
7408 gcc_assert (succ->prev_bb == pred);
7410 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
7412 e = find_fallthru_edge (pred->succs);
7414 if (e)
7416 gcc_assert (e->dest == succ);
7417 return e;
7420 else
7422 e = find_fallthru_edge (succ->preds);
7424 if (e)
7426 gcc_assert (e->src == pred);
7427 return e;
7431 return NULL;
7434 /* Extend per basic block data structures. */
7435 static void
7436 sched_extend_bb (void)
7438 rtx insn;
7440 /* The following is done to keep current_sched_info->next_tail non null. */
7441 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
7442 if (NEXT_INSN (insn) == 0
7443 || (!NOTE_P (insn)
7444 && !LABEL_P (insn)
7445 /* Don't emit a NOTE if it would end up before a BARRIER. */
7446 && !BARRIER_P (NEXT_INSN (insn))))
7448 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
7449 /* Make insn appear outside BB. */
7450 set_block_for_insn (note, NULL);
7451 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
7455 /* Init per basic block data structures. */
7456 void
7457 sched_init_bbs (void)
7459 sched_extend_bb ();
7462 /* Initialize BEFORE_RECOVERY variable. */
7463 static void
7464 init_before_recovery (basic_block *before_recovery_ptr)
7466 basic_block last;
7467 edge e;
7469 last = EXIT_BLOCK_PTR->prev_bb;
7470 e = find_fallthru_edge_from (last);
7472 if (e)
7474 /* We create two basic blocks:
7475 1. Single instruction block is inserted right after E->SRC
7476 and has jump to
7477 2. Empty block right before EXIT_BLOCK.
7478 Between these two blocks recovery blocks will be emitted. */
7480 basic_block single, empty;
7481 rtx x, label;
7483 /* If the fallthrough edge to exit we've found is from the block we've
7484 created before, don't do anything more. */
7485 if (last == after_recovery)
7486 return;
7488 adding_bb_to_current_region_p = false;
7490 single = sched_create_empty_bb (last);
7491 empty = sched_create_empty_bb (single);
7493 /* Add new blocks to the root loop. */
7494 if (current_loops != NULL)
7496 add_bb_to_loop (single, (*current_loops->larray)[0]);
7497 add_bb_to_loop (empty, (*current_loops->larray)[0]);
7500 single->count = last->count;
7501 empty->count = last->count;
7502 single->frequency = last->frequency;
7503 empty->frequency = last->frequency;
7504 BB_COPY_PARTITION (single, last);
7505 BB_COPY_PARTITION (empty, last);
7507 redirect_edge_succ (e, single);
7508 make_single_succ_edge (single, empty, 0);
7509 make_single_succ_edge (empty, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
7511 label = block_label (empty);
7512 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
7513 JUMP_LABEL (x) = label;
7514 LABEL_NUSES (label)++;
7515 haifa_init_insn (x);
7517 emit_barrier_after (x);
7519 sched_init_only_bb (empty, NULL);
7520 sched_init_only_bb (single, NULL);
7521 sched_extend_bb ();
7523 adding_bb_to_current_region_p = true;
7524 before_recovery = single;
7525 after_recovery = empty;
7527 if (before_recovery_ptr)
7528 *before_recovery_ptr = before_recovery;
7530 if (sched_verbose >= 2 && spec_info->dump)
7531 fprintf (spec_info->dump,
7532 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
7533 last->index, single->index, empty->index);
7535 else
7536 before_recovery = last;
7539 /* Returns new recovery block. */
7540 basic_block
7541 sched_create_recovery_block (basic_block *before_recovery_ptr)
7543 rtx label;
7544 rtx barrier;
7545 basic_block rec;
7547 haifa_recovery_bb_recently_added_p = true;
7548 haifa_recovery_bb_ever_added_p = true;
7550 init_before_recovery (before_recovery_ptr);
7552 barrier = get_last_bb_insn (before_recovery);
7553 gcc_assert (BARRIER_P (barrier));
7555 label = emit_label_after (gen_label_rtx (), barrier);
7557 rec = create_basic_block (label, label, before_recovery);
7559 /* A recovery block always ends with an unconditional jump. */
7560 emit_barrier_after (BB_END (rec));
7562 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
7563 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
7565 if (sched_verbose && spec_info->dump)
7566 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
7567 rec->index);
7569 return rec;
7572 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
7573 and emit necessary jumps. */
7574 void
7575 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
7576 basic_block second_bb)
7578 rtx label;
7579 rtx jump;
7580 int edge_flags;
7582 /* This is fixing of incoming edge. */
7583 /* ??? Which other flags should be specified? */
7584 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
7585 /* Partition type is the same, if it is "unpartitioned". */
7586 edge_flags = EDGE_CROSSING;
7587 else
7588 edge_flags = 0;
7590 make_edge (first_bb, rec, edge_flags);
7591 label = block_label (second_bb);
7592 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
7593 JUMP_LABEL (jump) = label;
7594 LABEL_NUSES (label)++;
7596 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
7597 /* Partition type is the same, if it is "unpartitioned". */
7599 /* Rewritten from cfgrtl.c. */
7600 if (flag_reorder_blocks_and_partition
7601 && targetm_common.have_named_sections)
7603 /* We don't need the same note for the check because
7604 any_condjump_p (check) == true. */
7605 add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
7607 edge_flags = EDGE_CROSSING;
7609 else
7610 edge_flags = 0;
7612 make_single_succ_edge (rec, second_bb, edge_flags);
7613 if (dom_info_available_p (CDI_DOMINATORS))
7614 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
7617 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
7618 INSN is a simple check, that should be converted to branchy one. */
7619 static void
7620 create_check_block_twin (rtx insn, bool mutate_p)
7622 basic_block rec;
7623 rtx label, check, twin;
7624 ds_t fs;
7625 sd_iterator_def sd_it;
7626 dep_t dep;
7627 dep_def _new_dep, *new_dep = &_new_dep;
7628 ds_t todo_spec;
7630 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
7632 if (!mutate_p)
7633 todo_spec = TODO_SPEC (insn);
7634 else
7636 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
7637 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
7639 todo_spec = CHECK_SPEC (insn);
7642 todo_spec &= SPECULATIVE;
7644 /* Create recovery block. */
7645 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
7647 rec = sched_create_recovery_block (NULL);
7648 label = BB_HEAD (rec);
7650 else
7652 rec = EXIT_BLOCK_PTR;
7653 label = NULL_RTX;
7656 /* Emit CHECK. */
7657 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
7659 if (rec != EXIT_BLOCK_PTR)
7661 /* To have mem_reg alive at the beginning of second_bb,
7662 we emit check BEFORE insn, so insn after splitting
7663 insn will be at the beginning of second_bb, which will
7664 provide us with the correct life information. */
7665 check = emit_jump_insn_before (check, insn);
7666 JUMP_LABEL (check) = label;
7667 LABEL_NUSES (label)++;
7669 else
7670 check = emit_insn_before (check, insn);
7672 /* Extend data structures. */
7673 haifa_init_insn (check);
7675 /* CHECK is being added to current region. Extend ready list. */
7676 gcc_assert (sched_ready_n_insns != -1);
7677 sched_extend_ready_list (sched_ready_n_insns + 1);
7679 if (current_sched_info->add_remove_insn)
7680 current_sched_info->add_remove_insn (insn, 0);
7682 RECOVERY_BLOCK (check) = rec;
7684 if (sched_verbose && spec_info->dump)
7685 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
7686 (*current_sched_info->print_insn) (check, 0));
7688 gcc_assert (ORIG_PAT (insn));
7690 /* Initialize TWIN (twin is a duplicate of original instruction
7691 in the recovery block). */
7692 if (rec != EXIT_BLOCK_PTR)
7694 sd_iterator_def sd_it;
7695 dep_t dep;
7697 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
7698 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
7700 struct _dep _dep2, *dep2 = &_dep2;
7702 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
7704 sd_add_dep (dep2, true);
7707 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
7708 haifa_init_insn (twin);
7710 if (sched_verbose && spec_info->dump)
7711 /* INSN_BB (insn) isn't determined for twin insns yet.
7712 So we can't use current_sched_info->print_insn. */
7713 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7714 INSN_UID (twin), rec->index);
7716 else
7718 ORIG_PAT (check) = ORIG_PAT (insn);
7719 HAS_INTERNAL_DEP (check) = 1;
7720 twin = check;
7721 /* ??? We probably should change all OUTPUT dependencies to
7722 (TRUE | OUTPUT). */
7725 /* Copy all resolved back dependencies of INSN to TWIN. This will
7726 provide correct value for INSN_TICK (TWIN). */
7727 sd_copy_back_deps (twin, insn, true);
7729 if (rec != EXIT_BLOCK_PTR)
7730 /* In case of branchy check, fix CFG. */
7732 basic_block first_bb, second_bb;
7733 rtx jump;
7735 first_bb = BLOCK_FOR_INSN (check);
7736 second_bb = sched_split_block (first_bb, check);
7738 sched_create_recovery_edges (first_bb, rec, second_bb);
7740 sched_init_only_bb (second_bb, first_bb);
7741 sched_init_only_bb (rec, EXIT_BLOCK_PTR);
7743 jump = BB_END (rec);
7744 haifa_init_insn (jump);
7747 /* Move backward dependences from INSN to CHECK and
7748 move forward dependences from INSN to TWIN. */
7750 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
7751 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
7753 rtx pro = DEP_PRO (dep);
7754 ds_t ds;
7756 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
7757 check --TRUE--> producer ??? or ANTI ???
7758 twin --TRUE--> producer
7759 twin --ANTI--> check
7761 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
7762 check --ANTI--> producer
7763 twin --ANTI--> producer
7764 twin --ANTI--> check
7766 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
7767 check ~~TRUE~~> producer
7768 twin ~~TRUE~~> producer
7769 twin --ANTI--> check */
7771 ds = DEP_STATUS (dep);
7773 if (ds & BEGIN_SPEC)
7775 gcc_assert (!mutate_p);
7776 ds &= ~BEGIN_SPEC;
7779 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
7780 sd_add_dep (new_dep, false);
7782 if (rec != EXIT_BLOCK_PTR)
7784 DEP_CON (new_dep) = twin;
7785 sd_add_dep (new_dep, false);
7789 /* Second, remove backward dependencies of INSN. */
7790 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7791 sd_iterator_cond (&sd_it, &dep);)
7793 if ((DEP_STATUS (dep) & BEGIN_SPEC)
7794 || mutate_p)
7795 /* We can delete this dep because we overcome it with
7796 BEGIN_SPECULATION. */
7797 sd_delete_dep (sd_it);
7798 else
7799 sd_iterator_next (&sd_it);
7802 /* Future Speculations. Determine what BE_IN speculations will be like. */
7803 fs = 0;
7805 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
7806 here. */
7808 gcc_assert (!DONE_SPEC (insn));
7810 if (!mutate_p)
7812 ds_t ts = TODO_SPEC (insn);
7814 DONE_SPEC (insn) = ts & BEGIN_SPEC;
7815 CHECK_SPEC (check) = ts & BEGIN_SPEC;
7817 /* Luckiness of future speculations solely depends upon initial
7818 BEGIN speculation. */
7819 if (ts & BEGIN_DATA)
7820 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
7821 if (ts & BEGIN_CONTROL)
7822 fs = set_dep_weak (fs, BE_IN_CONTROL,
7823 get_dep_weak (ts, BEGIN_CONTROL));
7825 else
7826 CHECK_SPEC (check) = CHECK_SPEC (insn);
7828 /* Future speculations: call the helper. */
7829 process_insn_forw_deps_be_in_spec (insn, twin, fs);
7831 if (rec != EXIT_BLOCK_PTR)
7833 /* Which types of dependencies should we use here is,
7834 generally, machine-dependent question... But, for now,
7835 it is not. */
7837 if (!mutate_p)
7839 init_dep (new_dep, insn, check, REG_DEP_TRUE);
7840 sd_add_dep (new_dep, false);
7842 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
7843 sd_add_dep (new_dep, false);
7845 else
7847 if (spec_info->dump)
7848 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
7849 (*current_sched_info->print_insn) (insn, 0));
7851 /* Remove all dependencies of the INSN. */
7853 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
7854 | SD_LIST_BACK
7855 | SD_LIST_RES_BACK));
7856 while (sd_iterator_cond (&sd_it, &dep))
7857 sd_delete_dep (sd_it);
7860 /* If former check (INSN) already was moved to the ready (or queue)
7861 list, add new check (CHECK) there too. */
7862 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
7863 try_ready (check);
7865 /* Remove old check from instruction stream and free its
7866 data. */
7867 sched_remove_insn (insn);
7870 init_dep (new_dep, check, twin, REG_DEP_ANTI);
7871 sd_add_dep (new_dep, false);
7873 else
7875 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
7876 sd_add_dep (new_dep, false);
7879 if (!mutate_p)
7880 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
7881 because it'll be done later in add_to_speculative_block. */
7883 rtx_vec_t priorities_roots = rtx_vec_t();
7885 clear_priorities (twin, &priorities_roots);
7886 calc_priorities (priorities_roots);
7887 priorities_roots.release ();
7891 /* Removes dependency between instructions in the recovery block REC
7892 and usual region instructions. It keeps inner dependences so it
7893 won't be necessary to recompute them. */
7894 static void
7895 fix_recovery_deps (basic_block rec)
7897 rtx note, insn, jump, ready_list = 0;
7898 bitmap_head in_ready;
7899 rtx link;
7901 bitmap_initialize (&in_ready, 0);
7903 /* NOTE - a basic block note. */
7904 note = NEXT_INSN (BB_HEAD (rec));
7905 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
7906 insn = BB_END (rec);
7907 gcc_assert (JUMP_P (insn));
7908 insn = PREV_INSN (insn);
7912 sd_iterator_def sd_it;
7913 dep_t dep;
7915 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
7916 sd_iterator_cond (&sd_it, &dep);)
7918 rtx consumer = DEP_CON (dep);
7920 if (BLOCK_FOR_INSN (consumer) != rec)
7922 sd_delete_dep (sd_it);
7924 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
7925 ready_list = alloc_INSN_LIST (consumer, ready_list);
7927 else
7929 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7931 sd_iterator_next (&sd_it);
7935 insn = PREV_INSN (insn);
7937 while (insn != note);
7939 bitmap_clear (&in_ready);
7941 /* Try to add instructions to the ready or queue list. */
7942 for (link = ready_list; link; link = XEXP (link, 1))
7943 try_ready (XEXP (link, 0));
7944 free_INSN_LIST_list (&ready_list);
7946 /* Fixing jump's dependences. */
7947 insn = BB_HEAD (rec);
7948 jump = BB_END (rec);
7950 gcc_assert (LABEL_P (insn));
7951 insn = NEXT_INSN (insn);
7953 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
7954 add_jump_dependencies (insn, jump);
7957 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
7958 instruction data. */
7959 static bool
7960 haifa_change_pattern (rtx insn, rtx new_pat)
7962 int t;
7964 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
7965 if (!t)
7966 return false;
7968 update_insn_after_change (insn);
7969 return true;
7972 /* -1 - can't speculate,
7973 0 - for speculation with REQUEST mode it is OK to use
7974 current instruction pattern,
7975 1 - need to change pattern for *NEW_PAT to be speculative. */
7977 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
7979 gcc_assert (current_sched_info->flags & DO_SPECULATION
7980 && (request & SPECULATIVE)
7981 && sched_insn_is_legitimate_for_speculation_p (insn, request));
7983 if ((request & spec_info->mask) != request)
7984 return -1;
7986 if (request & BE_IN_SPEC
7987 && !(request & BEGIN_SPEC))
7988 return 0;
7990 return targetm.sched.speculate_insn (insn, request, new_pat);
7993 static int
7994 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
7996 gcc_assert (sched_deps_info->generate_spec_deps
7997 && !IS_SPECULATION_CHECK_P (insn));
7999 if (HAS_INTERNAL_DEP (insn)
8000 || SCHED_GROUP_P (insn))
8001 return -1;
8003 return sched_speculate_insn (insn, request, new_pat);
8006 /* Print some information about block BB, which starts with HEAD and
8007 ends with TAIL, before scheduling it.
8008 I is zero, if scheduler is about to start with the fresh ebb. */
8009 static void
8010 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
8012 if (!i)
8013 fprintf (sched_dump,
8014 ";; ======================================================\n");
8015 else
8016 fprintf (sched_dump,
8017 ";; =====================ADVANCING TO=====================\n");
8018 fprintf (sched_dump,
8019 ";; -- basic block %d from %d to %d -- %s reload\n",
8020 bb->index, INSN_UID (head), INSN_UID (tail),
8021 (reload_completed ? "after" : "before"));
8022 fprintf (sched_dump,
8023 ";; ======================================================\n");
8024 fprintf (sched_dump, "\n");
8027 /* Unlink basic block notes and labels and saves them, so they
8028 can be easily restored. We unlink basic block notes in EBB to
8029 provide back-compatibility with the previous code, as target backends
8030 assume, that there'll be only instructions between
8031 current_sched_info->{head and tail}. We restore these notes as soon
8032 as we can.
8033 FIRST (LAST) is the first (last) basic block in the ebb.
8034 NB: In usual case (FIRST == LAST) nothing is really done. */
8035 void
8036 unlink_bb_notes (basic_block first, basic_block last)
8038 /* We DON'T unlink basic block notes of the first block in the ebb. */
8039 if (first == last)
8040 return;
8042 bb_header = XNEWVEC (rtx, last_basic_block);
8044 /* Make a sentinel. */
8045 if (last->next_bb != EXIT_BLOCK_PTR)
8046 bb_header[last->next_bb->index] = 0;
8048 first = first->next_bb;
8051 rtx prev, label, note, next;
8053 label = BB_HEAD (last);
8054 if (LABEL_P (label))
8055 note = NEXT_INSN (label);
8056 else
8057 note = label;
8058 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8060 prev = PREV_INSN (label);
8061 next = NEXT_INSN (note);
8062 gcc_assert (prev && next);
8064 NEXT_INSN (prev) = next;
8065 PREV_INSN (next) = prev;
8067 bb_header[last->index] = label;
8069 if (last == first)
8070 break;
8072 last = last->prev_bb;
8074 while (1);
8077 /* Restore basic block notes.
8078 FIRST is the first basic block in the ebb. */
8079 static void
8080 restore_bb_notes (basic_block first)
8082 if (!bb_header)
8083 return;
8085 /* We DON'T unlink basic block notes of the first block in the ebb. */
8086 first = first->next_bb;
8087 /* Remember: FIRST is actually a second basic block in the ebb. */
8089 while (first != EXIT_BLOCK_PTR
8090 && bb_header[first->index])
8092 rtx prev, label, note, next;
8094 label = bb_header[first->index];
8095 prev = PREV_INSN (label);
8096 next = NEXT_INSN (prev);
8098 if (LABEL_P (label))
8099 note = NEXT_INSN (label);
8100 else
8101 note = label;
8102 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8104 bb_header[first->index] = 0;
8106 NEXT_INSN (prev) = label;
8107 NEXT_INSN (note) = next;
8108 PREV_INSN (next) = note;
8110 first = first->next_bb;
8113 free (bb_header);
8114 bb_header = 0;
8117 /* Helper function.
8118 Fix CFG after both in- and inter-block movement of
8119 control_flow_insn_p JUMP. */
8120 static void
8121 fix_jump_move (rtx jump)
8123 basic_block bb, jump_bb, jump_bb_next;
8125 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8126 jump_bb = BLOCK_FOR_INSN (jump);
8127 jump_bb_next = jump_bb->next_bb;
8129 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8130 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8132 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8133 /* if jump_bb_next is not empty. */
8134 BB_END (jump_bb) = BB_END (jump_bb_next);
8136 if (BB_END (bb) != PREV_INSN (jump))
8137 /* Then there are instruction after jump that should be placed
8138 to jump_bb_next. */
8139 BB_END (jump_bb_next) = BB_END (bb);
8140 else
8141 /* Otherwise jump_bb_next is empty. */
8142 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8144 /* To make assertion in move_insn happy. */
8145 BB_END (bb) = PREV_INSN (jump);
8147 update_bb_for_insn (jump_bb_next);
8150 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8151 static void
8152 move_block_after_check (rtx jump)
8154 basic_block bb, jump_bb, jump_bb_next;
8155 vec<edge, va_gc> *t;
8157 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8158 jump_bb = BLOCK_FOR_INSN (jump);
8159 jump_bb_next = jump_bb->next_bb;
8161 update_bb_for_insn (jump_bb);
8163 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8164 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8166 unlink_block (jump_bb_next);
8167 link_block (jump_bb_next, bb);
8169 t = bb->succs;
8170 bb->succs = 0;
8171 move_succs (&(jump_bb->succs), bb);
8172 move_succs (&(jump_bb_next->succs), jump_bb);
8173 move_succs (&t, jump_bb_next);
8175 df_mark_solutions_dirty ();
8177 common_sched_info->fix_recovery_cfg
8178 (bb->index, jump_bb->index, jump_bb_next->index);
8181 /* Helper function for move_block_after_check.
8182 This functions attaches edge vector pointed to by SUCCSP to
8183 block TO. */
8184 static void
8185 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8187 edge e;
8188 edge_iterator ei;
8190 gcc_assert (to->succs == 0);
8192 to->succs = *succsp;
8194 FOR_EACH_EDGE (e, ei, to->succs)
8195 e->src = to;
8197 *succsp = 0;
8200 /* Remove INSN from the instruction stream.
8201 INSN should have any dependencies. */
8202 static void
8203 sched_remove_insn (rtx insn)
8205 sd_finish_insn (insn);
8207 change_queue_index (insn, QUEUE_NOWHERE);
8208 current_sched_info->add_remove_insn (insn, 1);
8209 delete_insn (insn);
8212 /* Clear priorities of all instructions, that are forward dependent on INSN.
8213 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8214 be invoked to initialize all cleared priorities. */
8215 static void
8216 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
8218 sd_iterator_def sd_it;
8219 dep_t dep;
8220 bool insn_is_root_p = true;
8222 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8224 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8226 rtx pro = DEP_PRO (dep);
8228 if (INSN_PRIORITY_STATUS (pro) >= 0
8229 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8231 /* If DEP doesn't contribute to priority then INSN itself should
8232 be added to priority roots. */
8233 if (contributes_to_priority_p (dep))
8234 insn_is_root_p = false;
8236 INSN_PRIORITY_STATUS (pro) = -1;
8237 clear_priorities (pro, roots_ptr);
8241 if (insn_is_root_p)
8242 roots_ptr->safe_push (insn);
8245 /* Recompute priorities of instructions, whose priorities might have been
8246 changed. ROOTS is a vector of instructions whose priority computation will
8247 trigger initialization of all cleared priorities. */
8248 static void
8249 calc_priorities (rtx_vec_t roots)
8251 int i;
8252 rtx insn;
8254 FOR_EACH_VEC_ELT (roots, i, insn)
8255 priority (insn);
8259 /* Add dependences between JUMP and other instructions in the recovery
8260 block. INSN is the first insn the recovery block. */
8261 static void
8262 add_jump_dependencies (rtx insn, rtx jump)
8266 insn = NEXT_INSN (insn);
8267 if (insn == jump)
8268 break;
8270 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8272 dep_def _new_dep, *new_dep = &_new_dep;
8274 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8275 sd_add_dep (new_dep, false);
8278 while (1);
8280 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8283 /* Extend data structures for logical insn UID. */
8284 void
8285 sched_extend_luids (void)
8287 int new_luids_max_uid = get_max_uid () + 1;
8289 sched_luids.safe_grow_cleared (new_luids_max_uid);
8292 /* Initialize LUID for INSN. */
8293 void
8294 sched_init_insn_luid (rtx insn)
8296 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8297 int luid;
8299 if (i >= 0)
8301 luid = sched_max_luid;
8302 sched_max_luid += i;
8304 else
8305 luid = -1;
8307 SET_INSN_LUID (insn, luid);
8310 /* Initialize luids for BBS.
8311 The hook common_sched_info->luid_for_non_insn () is used to determine
8312 if notes, labels, etc. need luids. */
8313 void
8314 sched_init_luids (bb_vec_t bbs)
8316 int i;
8317 basic_block bb;
8319 sched_extend_luids ();
8320 FOR_EACH_VEC_ELT (bbs, i, bb)
8322 rtx insn;
8324 FOR_BB_INSNS (bb, insn)
8325 sched_init_insn_luid (insn);
8329 /* Free LUIDs. */
8330 void
8331 sched_finish_luids (void)
8333 sched_luids.release ();
8334 sched_max_luid = 1;
8337 /* Return logical uid of INSN. Helpful while debugging. */
8339 insn_luid (rtx insn)
8341 return INSN_LUID (insn);
8344 /* Extend per insn data in the target. */
8345 void
8346 sched_extend_target (void)
8348 if (targetm.sched.h_i_d_extended)
8349 targetm.sched.h_i_d_extended ();
8352 /* Extend global scheduler structures (those, that live across calls to
8353 schedule_block) to include information about just emitted INSN. */
8354 static void
8355 extend_h_i_d (void)
8357 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8358 if (reserve > 0
8359 && ! h_i_d.space (reserve))
8361 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8362 sched_extend_target ();
8366 /* Initialize h_i_d entry of the INSN with default values.
8367 Values, that are not explicitly initialized here, hold zero. */
8368 static void
8369 init_h_i_d (rtx insn)
8371 if (INSN_LUID (insn) > 0)
8373 INSN_COST (insn) = -1;
8374 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
8375 INSN_TICK (insn) = INVALID_TICK;
8376 INSN_EXACT_TICK (insn) = INVALID_TICK;
8377 INTER_TICK (insn) = INVALID_TICK;
8378 TODO_SPEC (insn) = HARD_DEP;
8382 /* Initialize haifa_insn_data for BBS. */
8383 void
8384 haifa_init_h_i_d (bb_vec_t bbs)
8386 int i;
8387 basic_block bb;
8389 extend_h_i_d ();
8390 FOR_EACH_VEC_ELT (bbs, i, bb)
8392 rtx insn;
8394 FOR_BB_INSNS (bb, insn)
8395 init_h_i_d (insn);
8399 /* Finalize haifa_insn_data. */
8400 void
8401 haifa_finish_h_i_d (void)
8403 int i;
8404 haifa_insn_data_t data;
8405 struct reg_use_data *use, *next;
8407 FOR_EACH_VEC_ELT (h_i_d, i, data)
8409 free (data->max_reg_pressure);
8410 free (data->reg_pressure);
8411 for (use = data->reg_use_list; use != NULL; use = next)
8413 next = use->next_insn_use;
8414 free (use);
8417 h_i_d.release ();
8420 /* Init data for the new insn INSN. */
8421 static void
8422 haifa_init_insn (rtx insn)
8424 gcc_assert (insn != NULL);
8426 sched_extend_luids ();
8427 sched_init_insn_luid (insn);
8428 sched_extend_target ();
8429 sched_deps_init (false);
8430 extend_h_i_d ();
8431 init_h_i_d (insn);
8433 if (adding_bb_to_current_region_p)
8435 sd_init_insn (insn);
8437 /* Extend dependency caches by one element. */
8438 extend_dependency_caches (1, false);
8440 if (sched_pressure != SCHED_PRESSURE_NONE)
8441 init_insn_reg_pressure_info (insn);
8444 /* Init data for the new basic block BB which comes after AFTER. */
8445 static void
8446 haifa_init_only_bb (basic_block bb, basic_block after)
8448 gcc_assert (bb != NULL);
8450 sched_init_bbs ();
8452 if (common_sched_info->add_block)
8453 /* This changes only data structures of the front-end. */
8454 common_sched_info->add_block (bb, after);
8457 /* A generic version of sched_split_block (). */
8458 basic_block
8459 sched_split_block_1 (basic_block first_bb, rtx after)
8461 edge e;
8463 e = split_block (first_bb, after);
8464 gcc_assert (e->src == first_bb);
8466 /* sched_split_block emits note if *check == BB_END. Probably it
8467 is better to rip that note off. */
8469 return e->dest;
8472 /* A generic version of sched_create_empty_bb (). */
8473 basic_block
8474 sched_create_empty_bb_1 (basic_block after)
8476 return create_empty_bb (after);
8479 /* Insert PAT as an INSN into the schedule and update the necessary data
8480 structures to account for it. */
8482 sched_emit_insn (rtx pat)
8484 rtx insn = emit_insn_before (pat, nonscheduled_insns_begin);
8485 haifa_init_insn (insn);
8487 if (current_sched_info->add_remove_insn)
8488 current_sched_info->add_remove_insn (insn, 0);
8490 (*current_sched_info->begin_schedule_ready) (insn);
8491 scheduled_insns.safe_push (insn);
8493 last_scheduled_insn = insn;
8494 return insn;
8497 /* This function returns a candidate satisfying dispatch constraints from
8498 the ready list. */
8500 static rtx
8501 ready_remove_first_dispatch (struct ready_list *ready)
8503 int i;
8504 rtx insn = ready_element (ready, 0);
8506 if (ready->n_ready == 1
8507 || INSN_CODE (insn) < 0
8508 || !INSN_P (insn)
8509 || !active_insn_p (insn)
8510 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8511 return ready_remove_first (ready);
8513 for (i = 1; i < ready->n_ready; i++)
8515 insn = ready_element (ready, i);
8517 if (INSN_CODE (insn) < 0
8518 || !INSN_P (insn)
8519 || !active_insn_p (insn))
8520 continue;
8522 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
8524 /* Return ith element of ready. */
8525 insn = ready_remove (ready, i);
8526 return insn;
8530 if (targetm.sched.dispatch (NULL_RTX, DISPATCH_VIOLATION))
8531 return ready_remove_first (ready);
8533 for (i = 1; i < ready->n_ready; i++)
8535 insn = ready_element (ready, i);
8537 if (INSN_CODE (insn) < 0
8538 || !INSN_P (insn)
8539 || !active_insn_p (insn))
8540 continue;
8542 /* Return i-th element of ready. */
8543 if (targetm.sched.dispatch (insn, IS_CMP))
8544 return ready_remove (ready, i);
8547 return ready_remove_first (ready);
8550 /* Get number of ready insn in the ready list. */
8553 number_in_ready (void)
8555 return ready.n_ready;
8558 /* Get number of ready's in the ready list. */
8561 get_ready_element (int i)
8563 return ready_element (&ready, i);
8566 #endif /* INSN_SCHEDULING */