* cp-tree.h (treat_lvalue_as_rvalue_p): Declare.
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob9c62f20866c8b59e53d694438812721cea68ba57
1 /* Loop invariant motion.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "tree-affine.h"
43 #include "tree-ssa-propagate.h"
44 #include "trans-mem.h"
45 #include "gimple-fold.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-ssa-loop-niter.h"
49 /* TODO: Support for predicated code motion. I.e.
51 while (1)
53 if (cond)
55 a = inv;
56 something;
60 Where COND and INV are invariants, but evaluating INV may trap or be
61 invalid from some other reason if !COND. This may be transformed to
63 if (cond)
64 a = inv;
65 while (1)
67 if (cond)
68 something;
69 } */
71 /* The auxiliary data kept for each statement. */
73 struct lim_aux_data
75 struct loop *max_loop; /* The outermost loop in that the statement
76 is invariant. */
78 struct loop *tgt_loop; /* The loop out of that we want to move the
79 invariant. */
81 struct loop *always_executed_in;
82 /* The outermost loop for that we are sure
83 the statement is executed if the loop
84 is entered. */
86 unsigned cost; /* Cost of the computation performed by the
87 statement. */
89 unsigned ref; /* The simple_mem_ref in this stmt or 0. */
91 vec<gimple *> depends; /* Vector of statements that must be also
92 hoisted out of the loop when this statement
93 is hoisted; i.e. those that define the
94 operands of the statement and are inside of
95 the MAX_LOOP loop. */
98 /* Maps statements to their lim_aux_data. */
100 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
102 /* Description of a memory reference location. */
104 struct mem_ref_loc
106 tree *ref; /* The reference itself. */
107 gimple *stmt; /* The statement in that it occurs. */
111 /* Description of a memory reference. */
113 struct im_mem_ref
115 unsigned id; /* ID assigned to the memory reference
116 (its index in memory_accesses.refs_list) */
117 hashval_t hash; /* Its hash value. */
119 /* The memory access itself and associated caching of alias-oracle
120 query meta-data. */
121 ao_ref mem;
123 bitmap stored; /* The set of loops in that this memory location
124 is stored to. */
125 vec<mem_ref_loc> accesses_in_loop;
126 /* The locations of the accesses. Vector
127 indexed by the loop number. */
129 /* The following sets are computed on demand. We keep both set and
130 its complement, so that we know whether the information was
131 already computed or not. */
132 bitmap_head indep_loop; /* The set of loops in that the memory
133 reference is independent, meaning:
134 If it is stored in the loop, this store
135 is independent on all other loads and
136 stores.
137 If it is only loaded, then it is independent
138 on all stores in the loop. */
139 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
142 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
143 to record (in)dependence against stores in the loop and its subloops, the
144 second to record (in)dependence against all references in the loop
145 and its subloops. */
146 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
148 /* Mem_ref hashtable helpers. */
150 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
152 typedef tree_node *compare_type;
153 static inline hashval_t hash (const im_mem_ref *);
154 static inline bool equal (const im_mem_ref *, const tree_node *);
157 /* A hash function for struct im_mem_ref object OBJ. */
159 inline hashval_t
160 mem_ref_hasher::hash (const im_mem_ref *mem)
162 return mem->hash;
165 /* An equality function for struct im_mem_ref object MEM1 with
166 memory reference OBJ2. */
168 inline bool
169 mem_ref_hasher::equal (const im_mem_ref *mem1, const tree_node *obj2)
171 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
175 /* Description of memory accesses in loops. */
177 static struct
179 /* The hash table of memory references accessed in loops. */
180 hash_table<mem_ref_hasher> *refs;
182 /* The list of memory references. */
183 vec<im_mem_ref *> refs_list;
185 /* The set of memory references accessed in each loop. */
186 vec<bitmap_head> refs_in_loop;
188 /* The set of memory references stored in each loop. */
189 vec<bitmap_head> refs_stored_in_loop;
191 /* The set of memory references stored in each loop, including subloops . */
192 vec<bitmap_head> all_refs_stored_in_loop;
194 /* Cache for expanding memory addresses. */
195 hash_map<tree, name_expansion *> *ttae_cache;
196 } memory_accesses;
198 /* Obstack for the bitmaps in the above data structures. */
199 static bitmap_obstack lim_bitmap_obstack;
200 static obstack mem_ref_obstack;
202 static bool ref_indep_loop_p (struct loop *, im_mem_ref *);
203 static bool ref_always_accessed_p (struct loop *, im_mem_ref *, bool);
205 /* Minimum cost of an expensive expression. */
206 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
208 /* The outermost loop for which execution of the header guarantees that the
209 block will be executed. */
210 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
211 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
213 /* ID of the shared unanalyzable mem. */
214 #define UNANALYZABLE_MEM_ID 0
216 /* Whether the reference was analyzable. */
217 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
219 static struct lim_aux_data *
220 init_lim_data (gimple *stmt)
222 lim_aux_data *p = XCNEW (struct lim_aux_data);
223 lim_aux_data_map->put (stmt, p);
225 return p;
228 static struct lim_aux_data *
229 get_lim_data (gimple *stmt)
231 lim_aux_data **p = lim_aux_data_map->get (stmt);
232 if (!p)
233 return NULL;
235 return *p;
238 /* Releases the memory occupied by DATA. */
240 static void
241 free_lim_aux_data (struct lim_aux_data *data)
243 data->depends.release ();
244 free (data);
247 static void
248 clear_lim_data (gimple *stmt)
250 lim_aux_data **p = lim_aux_data_map->get (stmt);
251 if (!p)
252 return;
254 free_lim_aux_data (*p);
255 *p = NULL;
259 /* The possibilities of statement movement. */
260 enum move_pos
262 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
263 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
264 become executed -- memory accesses, ... */
265 MOVE_POSSIBLE /* Unlimited movement. */
269 /* If it is possible to hoist the statement STMT unconditionally,
270 returns MOVE_POSSIBLE.
271 If it is possible to hoist the statement STMT, but we must avoid making
272 it executed if it would not be executed in the original program (e.g.
273 because it may trap), return MOVE_PRESERVE_EXECUTION.
274 Otherwise return MOVE_IMPOSSIBLE. */
276 enum move_pos
277 movement_possibility (gimple *stmt)
279 tree lhs;
280 enum move_pos ret = MOVE_POSSIBLE;
282 if (flag_unswitch_loops
283 && gimple_code (stmt) == GIMPLE_COND)
285 /* If we perform unswitching, force the operands of the invariant
286 condition to be moved out of the loop. */
287 return MOVE_POSSIBLE;
290 if (gimple_code (stmt) == GIMPLE_PHI
291 && gimple_phi_num_args (stmt) <= 2
292 && !virtual_operand_p (gimple_phi_result (stmt))
293 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
294 return MOVE_POSSIBLE;
296 if (gimple_get_lhs (stmt) == NULL_TREE)
297 return MOVE_IMPOSSIBLE;
299 if (gimple_vdef (stmt))
300 return MOVE_IMPOSSIBLE;
302 if (stmt_ends_bb_p (stmt)
303 || gimple_has_volatile_ops (stmt)
304 || gimple_has_side_effects (stmt)
305 || stmt_could_throw_p (stmt))
306 return MOVE_IMPOSSIBLE;
308 if (is_gimple_call (stmt))
310 /* While pure or const call is guaranteed to have no side effects, we
311 cannot move it arbitrarily. Consider code like
313 char *s = something ();
315 while (1)
317 if (s)
318 t = strlen (s);
319 else
320 t = 0;
323 Here the strlen call cannot be moved out of the loop, even though
324 s is invariant. In addition to possibly creating a call with
325 invalid arguments, moving out a function call that is not executed
326 may cause performance regressions in case the call is costly and
327 not executed at all. */
328 ret = MOVE_PRESERVE_EXECUTION;
329 lhs = gimple_call_lhs (stmt);
331 else if (is_gimple_assign (stmt))
332 lhs = gimple_assign_lhs (stmt);
333 else
334 return MOVE_IMPOSSIBLE;
336 if (TREE_CODE (lhs) == SSA_NAME
337 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
338 return MOVE_IMPOSSIBLE;
340 if (TREE_CODE (lhs) != SSA_NAME
341 || gimple_could_trap_p (stmt))
342 return MOVE_PRESERVE_EXECUTION;
344 /* Non local loads in a transaction cannot be hoisted out. Well,
345 unless the load happens on every path out of the loop, but we
346 don't take this into account yet. */
347 if (flag_tm
348 && gimple_in_transaction (stmt)
349 && gimple_assign_single_p (stmt))
351 tree rhs = gimple_assign_rhs1 (stmt);
352 if (DECL_P (rhs) && is_global_var (rhs))
354 if (dump_file)
356 fprintf (dump_file, "Cannot hoist conditional load of ");
357 print_generic_expr (dump_file, rhs, TDF_SLIM);
358 fprintf (dump_file, " because it is in a transaction.\n");
360 return MOVE_IMPOSSIBLE;
364 return ret;
367 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
368 loop to that we could move the expression using DEF if it did not have
369 other operands, i.e. the outermost loop enclosing LOOP in that the value
370 of DEF is invariant. */
372 static struct loop *
373 outermost_invariant_loop (tree def, struct loop *loop)
375 gimple *def_stmt;
376 basic_block def_bb;
377 struct loop *max_loop;
378 struct lim_aux_data *lim_data;
380 if (!def)
381 return superloop_at_depth (loop, 1);
383 if (TREE_CODE (def) != SSA_NAME)
385 gcc_assert (is_gimple_min_invariant (def));
386 return superloop_at_depth (loop, 1);
389 def_stmt = SSA_NAME_DEF_STMT (def);
390 def_bb = gimple_bb (def_stmt);
391 if (!def_bb)
392 return superloop_at_depth (loop, 1);
394 max_loop = find_common_loop (loop, def_bb->loop_father);
396 lim_data = get_lim_data (def_stmt);
397 if (lim_data != NULL && lim_data->max_loop != NULL)
398 max_loop = find_common_loop (max_loop,
399 loop_outer (lim_data->max_loop));
400 if (max_loop == loop)
401 return NULL;
402 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
404 return max_loop;
407 /* DATA is a structure containing information associated with a statement
408 inside LOOP. DEF is one of the operands of this statement.
410 Find the outermost loop enclosing LOOP in that value of DEF is invariant
411 and record this in DATA->max_loop field. If DEF itself is defined inside
412 this loop as well (i.e. we need to hoist it out of the loop if we want
413 to hoist the statement represented by DATA), record the statement in that
414 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
415 add the cost of the computation of DEF to the DATA->cost.
417 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
419 static bool
420 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
421 bool add_cost)
423 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
424 basic_block def_bb = gimple_bb (def_stmt);
425 struct loop *max_loop;
426 struct lim_aux_data *def_data;
428 if (!def_bb)
429 return true;
431 max_loop = outermost_invariant_loop (def, loop);
432 if (!max_loop)
433 return false;
435 if (flow_loop_nested_p (data->max_loop, max_loop))
436 data->max_loop = max_loop;
438 def_data = get_lim_data (def_stmt);
439 if (!def_data)
440 return true;
442 if (add_cost
443 /* Only add the cost if the statement defining DEF is inside LOOP,
444 i.e. if it is likely that by moving the invariants dependent
445 on it, we will be able to avoid creating a new register for
446 it (since it will be only used in these dependent invariants). */
447 && def_bb->loop_father == loop)
448 data->cost += def_data->cost;
450 data->depends.safe_push (def_stmt);
452 return true;
455 /* Returns an estimate for a cost of statement STMT. The values here
456 are just ad-hoc constants, similar to costs for inlining. */
458 static unsigned
459 stmt_cost (gimple *stmt)
461 /* Always try to create possibilities for unswitching. */
462 if (gimple_code (stmt) == GIMPLE_COND
463 || gimple_code (stmt) == GIMPLE_PHI)
464 return LIM_EXPENSIVE;
466 /* We should be hoisting calls if possible. */
467 if (is_gimple_call (stmt))
469 tree fndecl;
471 /* Unless the call is a builtin_constant_p; this always folds to a
472 constant, so moving it is useless. */
473 fndecl = gimple_call_fndecl (stmt);
474 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_CONSTANT_P))
475 return 0;
477 return LIM_EXPENSIVE;
480 /* Hoisting memory references out should almost surely be a win. */
481 if (gimple_references_memory_p (stmt))
482 return LIM_EXPENSIVE;
484 if (gimple_code (stmt) != GIMPLE_ASSIGN)
485 return 1;
487 switch (gimple_assign_rhs_code (stmt))
489 case MULT_EXPR:
490 case WIDEN_MULT_EXPR:
491 case WIDEN_MULT_PLUS_EXPR:
492 case WIDEN_MULT_MINUS_EXPR:
493 case DOT_PROD_EXPR:
494 case TRUNC_DIV_EXPR:
495 case CEIL_DIV_EXPR:
496 case FLOOR_DIV_EXPR:
497 case ROUND_DIV_EXPR:
498 case EXACT_DIV_EXPR:
499 case CEIL_MOD_EXPR:
500 case FLOOR_MOD_EXPR:
501 case ROUND_MOD_EXPR:
502 case TRUNC_MOD_EXPR:
503 case RDIV_EXPR:
504 /* Division and multiplication are usually expensive. */
505 return LIM_EXPENSIVE;
507 case LSHIFT_EXPR:
508 case RSHIFT_EXPR:
509 case WIDEN_LSHIFT_EXPR:
510 case LROTATE_EXPR:
511 case RROTATE_EXPR:
512 /* Shifts and rotates are usually expensive. */
513 return LIM_EXPENSIVE;
515 case CONSTRUCTOR:
516 /* Make vector construction cost proportional to the number
517 of elements. */
518 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
520 case SSA_NAME:
521 case PAREN_EXPR:
522 /* Whether or not something is wrapped inside a PAREN_EXPR
523 should not change move cost. Nor should an intermediate
524 unpropagated SSA name copy. */
525 return 0;
527 default:
528 return 1;
532 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
533 REF is independent. If REF is not independent in LOOP, NULL is returned
534 instead. */
536 static struct loop *
537 outermost_indep_loop (struct loop *outer, struct loop *loop, im_mem_ref *ref)
539 struct loop *aloop;
541 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
542 return NULL;
544 for (aloop = outer;
545 aloop != loop;
546 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
547 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
548 && ref_indep_loop_p (aloop, ref))
549 return aloop;
551 if (ref_indep_loop_p (loop, ref))
552 return loop;
553 else
554 return NULL;
557 /* If there is a simple load or store to a memory reference in STMT, returns
558 the location of the memory reference, and sets IS_STORE according to whether
559 it is a store or load. Otherwise, returns NULL. */
561 static tree *
562 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
564 tree *lhs, *rhs;
566 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
567 if (!gimple_assign_single_p (stmt))
568 return NULL;
570 lhs = gimple_assign_lhs_ptr (stmt);
571 rhs = gimple_assign_rhs1_ptr (stmt);
573 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
575 *is_store = false;
576 return rhs;
578 else if (gimple_vdef (stmt)
579 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
581 *is_store = true;
582 return lhs;
584 else
585 return NULL;
588 /* From a controlling predicate in DOM determine the arguments from
589 the PHI node PHI that are chosen if the predicate evaluates to
590 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
591 they are non-NULL. Returns true if the arguments can be determined,
592 else return false. */
594 static bool
595 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
596 tree *true_arg_p, tree *false_arg_p)
598 edge te, fe;
599 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
600 &te, &fe))
601 return false;
603 if (true_arg_p)
604 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
605 if (false_arg_p)
606 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
608 return true;
611 /* Determine the outermost loop to that it is possible to hoist a statement
612 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
613 the outermost loop in that the value computed by STMT is invariant.
614 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
615 we preserve the fact whether STMT is executed. It also fills other related
616 information to LIM_DATA (STMT).
618 The function returns false if STMT cannot be hoisted outside of the loop it
619 is defined in, and true otherwise. */
621 static bool
622 determine_max_movement (gimple *stmt, bool must_preserve_exec)
624 basic_block bb = gimple_bb (stmt);
625 struct loop *loop = bb->loop_father;
626 struct loop *level;
627 struct lim_aux_data *lim_data = get_lim_data (stmt);
628 tree val;
629 ssa_op_iter iter;
631 if (must_preserve_exec)
632 level = ALWAYS_EXECUTED_IN (bb);
633 else
634 level = superloop_at_depth (loop, 1);
635 lim_data->max_loop = level;
637 if (gphi *phi = dyn_cast <gphi *> (stmt))
639 use_operand_p use_p;
640 unsigned min_cost = UINT_MAX;
641 unsigned total_cost = 0;
642 struct lim_aux_data *def_data;
644 /* We will end up promoting dependencies to be unconditionally
645 evaluated. For this reason the PHI cost (and thus the
646 cost we remove from the loop by doing the invariant motion)
647 is that of the cheapest PHI argument dependency chain. */
648 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
650 val = USE_FROM_PTR (use_p);
652 if (TREE_CODE (val) != SSA_NAME)
654 /* Assign const 1 to constants. */
655 min_cost = MIN (min_cost, 1);
656 total_cost += 1;
657 continue;
659 if (!add_dependency (val, lim_data, loop, false))
660 return false;
662 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
663 if (gimple_bb (def_stmt)
664 && gimple_bb (def_stmt)->loop_father == loop)
666 def_data = get_lim_data (def_stmt);
667 if (def_data)
669 min_cost = MIN (min_cost, def_data->cost);
670 total_cost += def_data->cost;
675 min_cost = MIN (min_cost, total_cost);
676 lim_data->cost += min_cost;
678 if (gimple_phi_num_args (phi) > 1)
680 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
681 gimple *cond;
682 if (gsi_end_p (gsi_last_bb (dom)))
683 return false;
684 cond = gsi_stmt (gsi_last_bb (dom));
685 if (gimple_code (cond) != GIMPLE_COND)
686 return false;
687 /* Verify that this is an extended form of a diamond and
688 the PHI arguments are completely controlled by the
689 predicate in DOM. */
690 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
691 return false;
693 /* Fold in dependencies and cost of the condition. */
694 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
696 if (!add_dependency (val, lim_data, loop, false))
697 return false;
698 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
699 if (def_data)
700 lim_data->cost += def_data->cost;
703 /* We want to avoid unconditionally executing very expensive
704 operations. As costs for our dependencies cannot be
705 negative just claim we are not invariand for this case.
706 We also are not sure whether the control-flow inside the
707 loop will vanish. */
708 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
709 && !(min_cost != 0
710 && total_cost / min_cost <= 2))
711 return false;
713 /* Assume that the control-flow in the loop will vanish.
714 ??? We should verify this and not artificially increase
715 the cost if that is not the case. */
716 lim_data->cost += stmt_cost (stmt);
719 return true;
721 else
722 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
723 if (!add_dependency (val, lim_data, loop, true))
724 return false;
726 if (gimple_vuse (stmt))
728 im_mem_ref *ref
729 = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
730 if (ref
731 && MEM_ANALYZABLE (ref))
733 lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
734 loop, ref);
735 if (!lim_data->max_loop)
736 return false;
738 else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
739 return false;
742 lim_data->cost += stmt_cost (stmt);
744 return true;
747 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
748 and that one of the operands of this statement is computed by STMT.
749 Ensure that STMT (together with all the statements that define its
750 operands) is hoisted at least out of the loop LEVEL. */
752 static void
753 set_level (gimple *stmt, struct loop *orig_loop, struct loop *level)
755 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
756 struct lim_aux_data *lim_data;
757 gimple *dep_stmt;
758 unsigned i;
760 stmt_loop = find_common_loop (orig_loop, stmt_loop);
761 lim_data = get_lim_data (stmt);
762 if (lim_data != NULL && lim_data->tgt_loop != NULL)
763 stmt_loop = find_common_loop (stmt_loop,
764 loop_outer (lim_data->tgt_loop));
765 if (flow_loop_nested_p (stmt_loop, level))
766 return;
768 gcc_assert (level == lim_data->max_loop
769 || flow_loop_nested_p (lim_data->max_loop, level));
771 lim_data->tgt_loop = level;
772 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
773 set_level (dep_stmt, orig_loop, level);
776 /* Determines an outermost loop from that we want to hoist the statement STMT.
777 For now we chose the outermost possible loop. TODO -- use profiling
778 information to set it more sanely. */
780 static void
781 set_profitable_level (gimple *stmt)
783 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
786 /* Returns true if STMT is a call that has side effects. */
788 static bool
789 nonpure_call_p (gimple *stmt)
791 if (gimple_code (stmt) != GIMPLE_CALL)
792 return false;
794 return gimple_has_side_effects (stmt);
797 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
799 static gimple *
800 rewrite_reciprocal (gimple_stmt_iterator *bsi)
802 gassign *stmt, *stmt1, *stmt2;
803 tree name, lhs, type;
804 tree real_one;
805 gimple_stmt_iterator gsi;
807 stmt = as_a <gassign *> (gsi_stmt (*bsi));
808 lhs = gimple_assign_lhs (stmt);
809 type = TREE_TYPE (lhs);
811 real_one = build_one_cst (type);
813 name = make_temp_ssa_name (type, NULL, "reciptmp");
814 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
815 gimple_assign_rhs2 (stmt));
816 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
817 gimple_assign_rhs1 (stmt));
819 /* Replace division stmt with reciprocal and multiply stmts.
820 The multiply stmt is not invariant, so update iterator
821 and avoid rescanning. */
822 gsi = *bsi;
823 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
824 gsi_replace (&gsi, stmt2, true);
826 /* Continue processing with invariant reciprocal statement. */
827 return stmt1;
830 /* Check if the pattern at *BSI is a bittest of the form
831 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
833 static gimple *
834 rewrite_bittest (gimple_stmt_iterator *bsi)
836 gassign *stmt;
837 gimple *stmt1;
838 gassign *stmt2;
839 gimple *use_stmt;
840 gcond *cond_stmt;
841 tree lhs, name, t, a, b;
842 use_operand_p use;
844 stmt = as_a <gassign *> (gsi_stmt (*bsi));
845 lhs = gimple_assign_lhs (stmt);
847 /* Verify that the single use of lhs is a comparison against zero. */
848 if (TREE_CODE (lhs) != SSA_NAME
849 || !single_imm_use (lhs, &use, &use_stmt))
850 return stmt;
851 cond_stmt = dyn_cast <gcond *> (use_stmt);
852 if (!cond_stmt)
853 return stmt;
854 if (gimple_cond_lhs (cond_stmt) != lhs
855 || (gimple_cond_code (cond_stmt) != NE_EXPR
856 && gimple_cond_code (cond_stmt) != EQ_EXPR)
857 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
858 return stmt;
860 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
861 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
862 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
863 return stmt;
865 /* There is a conversion in between possibly inserted by fold. */
866 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
868 t = gimple_assign_rhs1 (stmt1);
869 if (TREE_CODE (t) != SSA_NAME
870 || !has_single_use (t))
871 return stmt;
872 stmt1 = SSA_NAME_DEF_STMT (t);
873 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
874 return stmt;
877 /* Verify that B is loop invariant but A is not. Verify that with
878 all the stmt walking we are still in the same loop. */
879 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
880 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
881 return stmt;
883 a = gimple_assign_rhs1 (stmt1);
884 b = gimple_assign_rhs2 (stmt1);
886 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
887 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
889 gimple_stmt_iterator rsi;
891 /* 1 << B */
892 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
893 build_int_cst (TREE_TYPE (a), 1), b);
894 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
895 stmt1 = gimple_build_assign (name, t);
897 /* A & (1 << B) */
898 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
899 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
900 stmt2 = gimple_build_assign (name, t);
902 /* Replace the SSA_NAME we compare against zero. Adjust
903 the type of zero accordingly. */
904 SET_USE (use, name);
905 gimple_cond_set_rhs (cond_stmt,
906 build_int_cst_type (TREE_TYPE (name),
907 0));
909 /* Don't use gsi_replace here, none of the new assignments sets
910 the variable originally set in stmt. Move bsi to stmt1, and
911 then remove the original stmt, so that we get a chance to
912 retain debug info for it. */
913 rsi = *bsi;
914 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
915 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
916 gimple *to_release = gsi_stmt (rsi);
917 gsi_remove (&rsi, true);
918 release_defs (to_release);
920 return stmt1;
923 return stmt;
926 /* For each statement determines the outermost loop in that it is invariant,
927 - statements on whose motion it depends and the cost of the computation.
928 - This information is stored to the LIM_DATA structure associated with
929 - each statement. */
930 class invariantness_dom_walker : public dom_walker
932 public:
933 invariantness_dom_walker (cdi_direction direction)
934 : dom_walker (direction) {}
936 virtual edge before_dom_children (basic_block);
939 /* Determine the outermost loops in that statements in basic block BB are
940 invariant, and record them to the LIM_DATA associated with the statements.
941 Callback for dom_walker. */
943 edge
944 invariantness_dom_walker::before_dom_children (basic_block bb)
946 enum move_pos pos;
947 gimple_stmt_iterator bsi;
948 gimple *stmt;
949 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
950 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
951 struct lim_aux_data *lim_data;
953 if (!loop_outer (bb->loop_father))
954 return NULL;
956 if (dump_file && (dump_flags & TDF_DETAILS))
957 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
958 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
960 /* Look at PHI nodes, but only if there is at most two.
961 ??? We could relax this further by post-processing the inserted
962 code and transforming adjacent cond-exprs with the same predicate
963 to control flow again. */
964 bsi = gsi_start_phis (bb);
965 if (!gsi_end_p (bsi)
966 && ((gsi_next (&bsi), gsi_end_p (bsi))
967 || (gsi_next (&bsi), gsi_end_p (bsi))))
968 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
970 stmt = gsi_stmt (bsi);
972 pos = movement_possibility (stmt);
973 if (pos == MOVE_IMPOSSIBLE)
974 continue;
976 lim_data = get_lim_data (stmt);
977 if (! lim_data)
978 lim_data = init_lim_data (stmt);
979 lim_data->always_executed_in = outermost;
981 if (!determine_max_movement (stmt, false))
983 lim_data->max_loop = NULL;
984 continue;
987 if (dump_file && (dump_flags & TDF_DETAILS))
989 print_gimple_stmt (dump_file, stmt, 2);
990 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
991 loop_depth (lim_data->max_loop),
992 lim_data->cost);
995 if (lim_data->cost >= LIM_EXPENSIVE)
996 set_profitable_level (stmt);
999 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1001 stmt = gsi_stmt (bsi);
1003 pos = movement_possibility (stmt);
1004 if (pos == MOVE_IMPOSSIBLE)
1006 if (nonpure_call_p (stmt))
1008 maybe_never = true;
1009 outermost = NULL;
1011 /* Make sure to note always_executed_in for stores to make
1012 store-motion work. */
1013 else if (stmt_makes_single_store (stmt))
1015 struct lim_aux_data *lim_data = get_lim_data (stmt);
1016 if (! lim_data)
1017 lim_data = init_lim_data (stmt);
1018 lim_data->always_executed_in = outermost;
1020 continue;
1023 if (is_gimple_assign (stmt)
1024 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1025 == GIMPLE_BINARY_RHS))
1027 tree op0 = gimple_assign_rhs1 (stmt);
1028 tree op1 = gimple_assign_rhs2 (stmt);
1029 struct loop *ol1 = outermost_invariant_loop (op1,
1030 loop_containing_stmt (stmt));
1032 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1033 to be hoisted out of loop, saving expensive divide. */
1034 if (pos == MOVE_POSSIBLE
1035 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1036 && flag_unsafe_math_optimizations
1037 && !flag_trapping_math
1038 && ol1 != NULL
1039 && outermost_invariant_loop (op0, ol1) == NULL)
1040 stmt = rewrite_reciprocal (&bsi);
1042 /* If the shift count is invariant, convert (A >> B) & 1 to
1043 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1044 saving an expensive shift. */
1045 if (pos == MOVE_POSSIBLE
1046 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1047 && integer_onep (op1)
1048 && TREE_CODE (op0) == SSA_NAME
1049 && has_single_use (op0))
1050 stmt = rewrite_bittest (&bsi);
1053 lim_data = get_lim_data (stmt);
1054 if (! lim_data)
1055 lim_data = init_lim_data (stmt);
1056 lim_data->always_executed_in = outermost;
1058 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1059 continue;
1061 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1063 lim_data->max_loop = NULL;
1064 continue;
1067 if (dump_file && (dump_flags & TDF_DETAILS))
1069 print_gimple_stmt (dump_file, stmt, 2);
1070 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1071 loop_depth (lim_data->max_loop),
1072 lim_data->cost);
1075 if (lim_data->cost >= LIM_EXPENSIVE)
1076 set_profitable_level (stmt);
1078 return NULL;
1081 /* Hoist the statements in basic block BB out of the loops prescribed by
1082 data stored in LIM_DATA structures associated with each statement. Callback
1083 for walk_dominator_tree. */
1085 unsigned int
1086 move_computations_worker (basic_block bb)
1088 struct loop *level;
1089 unsigned cost = 0;
1090 struct lim_aux_data *lim_data;
1091 unsigned int todo = 0;
1093 if (!loop_outer (bb->loop_father))
1094 return todo;
1096 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1098 gassign *new_stmt;
1099 gphi *stmt = bsi.phi ();
1101 lim_data = get_lim_data (stmt);
1102 if (lim_data == NULL)
1104 gsi_next (&bsi);
1105 continue;
1108 cost = lim_data->cost;
1109 level = lim_data->tgt_loop;
1110 clear_lim_data (stmt);
1112 if (!level)
1114 gsi_next (&bsi);
1115 continue;
1118 if (dump_file && (dump_flags & TDF_DETAILS))
1120 fprintf (dump_file, "Moving PHI node\n");
1121 print_gimple_stmt (dump_file, stmt, 0);
1122 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1123 cost, level->num);
1126 if (gimple_phi_num_args (stmt) == 1)
1128 tree arg = PHI_ARG_DEF (stmt, 0);
1129 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1130 TREE_CODE (arg), arg);
1132 else
1134 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1135 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1136 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1137 /* Get the PHI arguments corresponding to the true and false
1138 edges of COND. */
1139 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1140 gcc_assert (arg0 && arg1);
1141 t = build2 (gimple_cond_code (cond), boolean_type_node,
1142 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1143 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1144 COND_EXPR, t, arg0, arg1);
1145 todo |= TODO_cleanup_cfg;
1147 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1148 && (!ALWAYS_EXECUTED_IN (bb)
1149 || (ALWAYS_EXECUTED_IN (bb) != level
1150 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1152 tree lhs = gimple_assign_lhs (new_stmt);
1153 SSA_NAME_RANGE_INFO (lhs) = NULL;
1155 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1156 remove_phi_node (&bsi, false);
1159 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1161 edge e;
1163 gimple *stmt = gsi_stmt (bsi);
1165 lim_data = get_lim_data (stmt);
1166 if (lim_data == NULL)
1168 gsi_next (&bsi);
1169 continue;
1172 cost = lim_data->cost;
1173 level = lim_data->tgt_loop;
1174 clear_lim_data (stmt);
1176 if (!level)
1178 gsi_next (&bsi);
1179 continue;
1182 /* We do not really want to move conditionals out of the loop; we just
1183 placed it here to force its operands to be moved if necessary. */
1184 if (gimple_code (stmt) == GIMPLE_COND)
1185 continue;
1187 if (dump_file && (dump_flags & TDF_DETAILS))
1189 fprintf (dump_file, "Moving statement\n");
1190 print_gimple_stmt (dump_file, stmt, 0);
1191 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1192 cost, level->num);
1195 e = loop_preheader_edge (level);
1196 gcc_assert (!gimple_vdef (stmt));
1197 if (gimple_vuse (stmt))
1199 /* The new VUSE is the one from the virtual PHI in the loop
1200 header or the one already present. */
1201 gphi_iterator gsi2;
1202 for (gsi2 = gsi_start_phis (e->dest);
1203 !gsi_end_p (gsi2); gsi_next (&gsi2))
1205 gphi *phi = gsi2.phi ();
1206 if (virtual_operand_p (gimple_phi_result (phi)))
1208 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1209 break;
1213 gsi_remove (&bsi, false);
1214 if (gimple_has_lhs (stmt)
1215 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1216 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1217 && (!ALWAYS_EXECUTED_IN (bb)
1218 || !(ALWAYS_EXECUTED_IN (bb) == level
1219 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1221 tree lhs = gimple_get_lhs (stmt);
1222 SSA_NAME_RANGE_INFO (lhs) = NULL;
1224 /* In case this is a stmt that is not unconditionally executed
1225 when the target loop header is executed and the stmt may
1226 invoke undefined integer or pointer overflow rewrite it to
1227 unsigned arithmetic. */
1228 if (is_gimple_assign (stmt)
1229 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1230 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1231 && arith_code_with_undefined_signed_overflow
1232 (gimple_assign_rhs_code (stmt))
1233 && (!ALWAYS_EXECUTED_IN (bb)
1234 || !(ALWAYS_EXECUTED_IN (bb) == level
1235 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1236 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1237 else
1238 gsi_insert_on_edge (e, stmt);
1241 return todo;
1244 /* Hoist the statements out of the loops prescribed by data stored in
1245 LIM_DATA structures associated with each statement.*/
1247 static unsigned int
1248 move_computations (void)
1250 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1251 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, false);
1252 unsigned todo = 0;
1254 for (int i = 0; i < n; ++i)
1255 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (cfun, rpo[i]));
1257 free (rpo);
1259 gsi_commit_edge_inserts ();
1260 if (need_ssa_update_p (cfun))
1261 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1263 return todo;
1266 /* Checks whether the statement defining variable *INDEX can be hoisted
1267 out of the loop passed in DATA. Callback for for_each_index. */
1269 static bool
1270 may_move_till (tree ref, tree *index, void *data)
1272 struct loop *loop = (struct loop *) data, *max_loop;
1274 /* If REF is an array reference, check also that the step and the lower
1275 bound is invariant in LOOP. */
1276 if (TREE_CODE (ref) == ARRAY_REF)
1278 tree step = TREE_OPERAND (ref, 3);
1279 tree lbound = TREE_OPERAND (ref, 2);
1281 max_loop = outermost_invariant_loop (step, loop);
1282 if (!max_loop)
1283 return false;
1285 max_loop = outermost_invariant_loop (lbound, loop);
1286 if (!max_loop)
1287 return false;
1290 max_loop = outermost_invariant_loop (*index, loop);
1291 if (!max_loop)
1292 return false;
1294 return true;
1297 /* If OP is SSA NAME, force the statement that defines it to be
1298 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1300 static void
1301 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1303 gimple *stmt;
1305 if (!op
1306 || is_gimple_min_invariant (op))
1307 return;
1309 gcc_assert (TREE_CODE (op) == SSA_NAME);
1311 stmt = SSA_NAME_DEF_STMT (op);
1312 if (gimple_nop_p (stmt))
1313 return;
1315 set_level (stmt, orig_loop, loop);
1318 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1319 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1320 for_each_index. */
1322 struct fmt_data
1324 struct loop *loop;
1325 struct loop *orig_loop;
1328 static bool
1329 force_move_till (tree ref, tree *index, void *data)
1331 struct fmt_data *fmt_data = (struct fmt_data *) data;
1333 if (TREE_CODE (ref) == ARRAY_REF)
1335 tree step = TREE_OPERAND (ref, 3);
1336 tree lbound = TREE_OPERAND (ref, 2);
1338 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1339 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1342 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1344 return true;
1347 /* A function to free the mem_ref object OBJ. */
1349 static void
1350 memref_free (struct im_mem_ref *mem)
1352 mem->accesses_in_loop.release ();
1355 /* Allocates and returns a memory reference description for MEM whose hash
1356 value is HASH and id is ID. */
1358 static im_mem_ref *
1359 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1361 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1362 ao_ref_init (&ref->mem, mem);
1363 ref->id = id;
1364 ref->hash = hash;
1365 ref->stored = NULL;
1366 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1367 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1368 ref->accesses_in_loop.create (1);
1370 return ref;
1373 /* Records memory reference location *LOC in LOOP to the memory reference
1374 description REF. The reference occurs in statement STMT. */
1376 static void
1377 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1379 mem_ref_loc aref;
1380 aref.stmt = stmt;
1381 aref.ref = loc;
1382 ref->accesses_in_loop.safe_push (aref);
1385 /* Set the LOOP bit in REF stored bitmap and allocate that if
1386 necessary. Return whether a bit was changed. */
1388 static bool
1389 set_ref_stored_in_loop (im_mem_ref *ref, struct loop *loop)
1391 if (!ref->stored)
1392 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1393 return bitmap_set_bit (ref->stored, loop->num);
1396 /* Marks reference REF as stored in LOOP. */
1398 static void
1399 mark_ref_stored (im_mem_ref *ref, struct loop *loop)
1401 while (loop != current_loops->tree_root
1402 && set_ref_stored_in_loop (ref, loop))
1403 loop = loop_outer (loop);
1406 /* Gathers memory references in statement STMT in LOOP, storing the
1407 information about them in the memory_accesses structure. Marks
1408 the vops accessed through unrecognized statements there as
1409 well. */
1411 static void
1412 gather_mem_refs_stmt (struct loop *loop, gimple *stmt)
1414 tree *mem = NULL;
1415 hashval_t hash;
1416 im_mem_ref **slot;
1417 im_mem_ref *ref;
1418 bool is_stored;
1419 unsigned id;
1421 if (!gimple_vuse (stmt))
1422 return;
1424 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1425 if (!mem)
1427 /* We use the shared mem_ref for all unanalyzable refs. */
1428 id = UNANALYZABLE_MEM_ID;
1429 ref = memory_accesses.refs_list[id];
1430 if (dump_file && (dump_flags & TDF_DETAILS))
1432 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1433 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1435 is_stored = gimple_vdef (stmt);
1437 else
1439 hash = iterative_hash_expr (*mem, 0);
1440 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1441 if (*slot)
1443 ref = *slot;
1444 id = ref->id;
1446 else
1448 id = memory_accesses.refs_list.length ();
1449 ref = mem_ref_alloc (*mem, hash, id);
1450 memory_accesses.refs_list.safe_push (ref);
1451 *slot = ref;
1453 if (dump_file && (dump_flags & TDF_DETAILS))
1455 fprintf (dump_file, "Memory reference %u: ", id);
1456 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1457 fprintf (dump_file, "\n");
1461 record_mem_ref_loc (ref, stmt, mem);
1463 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1464 if (is_stored)
1466 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1467 mark_ref_stored (ref, loop);
1469 init_lim_data (stmt)->ref = ref->id;
1470 return;
1473 static unsigned *bb_loop_postorder;
1475 /* qsort sort function to sort blocks after their loop fathers postorder. */
1477 static int
1478 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1480 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1481 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1482 struct loop *loop1 = bb1->loop_father;
1483 struct loop *loop2 = bb2->loop_father;
1484 if (loop1->num == loop2->num)
1485 return bb1->index - bb2->index;
1486 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1489 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1491 static int
1492 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1494 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1495 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1496 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1497 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1498 if (loop1->num == loop2->num)
1499 return 0;
1500 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1503 /* Gathers memory references in loops. */
1505 static void
1506 analyze_memory_references (void)
1508 gimple_stmt_iterator bsi;
1509 basic_block bb, *bbs;
1510 struct loop *loop, *outer;
1511 unsigned i, n;
1513 /* Collect all basic-blocks in loops and sort them after their
1514 loops postorder. */
1515 i = 0;
1516 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1517 FOR_EACH_BB_FN (bb, cfun)
1518 if (bb->loop_father != current_loops->tree_root)
1519 bbs[i++] = bb;
1520 n = i;
1521 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1523 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1524 That results in better locality for all the bitmaps. */
1525 for (i = 0; i < n; ++i)
1527 basic_block bb = bbs[i];
1528 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1529 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1532 /* Sort the location list of gathered memory references after their
1533 loop postorder number. */
1534 im_mem_ref *ref;
1535 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1536 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1538 free (bbs);
1539 // free (bb_loop_postorder);
1541 /* Propagate the information about accessed memory references up
1542 the loop hierarchy. */
1543 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1545 /* Finalize the overall touched references (including subloops). */
1546 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1547 &memory_accesses.refs_stored_in_loop[loop->num]);
1549 /* Propagate the information about accessed memory references up
1550 the loop hierarchy. */
1551 outer = loop_outer (loop);
1552 if (outer == current_loops->tree_root)
1553 continue;
1555 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1556 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1560 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1561 tree_to_aff_combination_expand. */
1563 static bool
1564 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1565 hash_map<tree, name_expansion *> **ttae_cache)
1567 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1568 object and their offset differ in such a way that the locations cannot
1569 overlap, then they cannot alias. */
1570 poly_widest_int size1, size2;
1571 aff_tree off1, off2;
1573 /* Perform basic offset and type-based disambiguation. */
1574 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1575 return false;
1577 /* The expansion of addresses may be a bit expensive, thus we only do
1578 the check at -O2 and higher optimization levels. */
1579 if (optimize < 2)
1580 return true;
1582 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1583 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1584 aff_combination_expand (&off1, ttae_cache);
1585 aff_combination_expand (&off2, ttae_cache);
1586 aff_combination_scale (&off1, -1);
1587 aff_combination_add (&off2, &off1);
1589 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1590 return false;
1592 return true;
1595 /* Compare function for bsearch searching for reference locations
1596 in a loop. */
1598 static int
1599 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1601 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1602 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1603 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1604 if (loop->num == loc_loop->num
1605 || flow_loop_nested_p (loop, loc_loop))
1606 return 0;
1607 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1608 ? -1 : 1);
1611 /* Iterates over all locations of REF in LOOP and its subloops calling
1612 fn.operator() with the location as argument. When that operator
1613 returns true the iteration is stopped and true is returned.
1614 Otherwise false is returned. */
1616 template <typename FN>
1617 static bool
1618 for_all_locs_in_loop (struct loop *loop, im_mem_ref *ref, FN fn)
1620 unsigned i;
1621 mem_ref_loc *loc;
1623 /* Search for the cluster of locs in the accesses_in_loop vector
1624 which is sorted after postorder index of the loop father. */
1625 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1626 if (!loc)
1627 return false;
1629 /* We have found one location inside loop or its sub-loops. Iterate
1630 both forward and backward to cover the whole cluster. */
1631 i = loc - ref->accesses_in_loop.address ();
1632 while (i > 0)
1634 --i;
1635 mem_ref_loc *l = &ref->accesses_in_loop[i];
1636 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1637 break;
1638 if (fn (l))
1639 return true;
1641 for (i = loc - ref->accesses_in_loop.address ();
1642 i < ref->accesses_in_loop.length (); ++i)
1644 mem_ref_loc *l = &ref->accesses_in_loop[i];
1645 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1646 break;
1647 if (fn (l))
1648 return true;
1651 return false;
1654 /* Rewrites location LOC by TMP_VAR. */
1656 struct rewrite_mem_ref_loc
1658 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1659 bool operator () (mem_ref_loc *loc);
1660 tree tmp_var;
1663 bool
1664 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1666 *loc->ref = tmp_var;
1667 update_stmt (loc->stmt);
1668 return false;
1671 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1673 static void
1674 rewrite_mem_refs (struct loop *loop, im_mem_ref *ref, tree tmp_var)
1676 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1679 /* Stores the first reference location in LOCP. */
1681 struct first_mem_ref_loc_1
1683 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1684 bool operator () (mem_ref_loc *loc);
1685 mem_ref_loc **locp;
1688 bool
1689 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1691 *locp = loc;
1692 return true;
1695 /* Returns the first reference location to REF in LOOP. */
1697 static mem_ref_loc *
1698 first_mem_ref_loc (struct loop *loop, im_mem_ref *ref)
1700 mem_ref_loc *locp = NULL;
1701 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1702 return locp;
1705 struct prev_flag_edges {
1706 /* Edge to insert new flag comparison code. */
1707 edge append_cond_position;
1709 /* Edge for fall through from previous flag comparison. */
1710 edge last_cond_fallthru;
1713 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1714 MEM along edge EX.
1716 The store is only done if MEM has changed. We do this so no
1717 changes to MEM occur on code paths that did not originally store
1718 into it.
1720 The common case for execute_sm will transform:
1722 for (...) {
1723 if (foo)
1724 stuff;
1725 else
1726 MEM = TMP_VAR;
1729 into:
1731 lsm = MEM;
1732 for (...) {
1733 if (foo)
1734 stuff;
1735 else
1736 lsm = TMP_VAR;
1738 MEM = lsm;
1740 This function will generate:
1742 lsm = MEM;
1744 lsm_flag = false;
1746 for (...) {
1747 if (foo)
1748 stuff;
1749 else {
1750 lsm = TMP_VAR;
1751 lsm_flag = true;
1754 if (lsm_flag) <--
1755 MEM = lsm; <--
1758 static void
1759 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
1760 edge preheader, hash_set <basic_block> *flag_bbs)
1762 basic_block new_bb, then_bb, old_dest;
1763 bool loop_has_only_one_exit;
1764 edge then_old_edge, orig_ex = ex;
1765 gimple_stmt_iterator gsi;
1766 gimple *stmt;
1767 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1768 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1770 profile_count count_sum = profile_count::zero ();
1771 int nbbs = 0, ncount = 0;
1772 profile_probability flag_probability = profile_probability::uninitialized ();
1774 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
1775 at loop exit.
1777 This code may look fancy, but it can not update profile very realistically
1778 because we do not know the probability that flag will be true at given
1779 loop exit.
1781 We look for two interesting extremes
1782 - when exit is dominated by block setting the flag, we know it will
1783 always be true. This is a common case.
1784 - when all blocks setting the flag have very low frequency we know
1785 it will likely be false.
1786 In all other cases we default to 2/3 for flag being true. */
1788 for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
1789 it != flag_bbs->end (); ++it)
1791 if ((*it)->count.initialized_p ())
1792 count_sum += (*it)->count, ncount ++;
1793 if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
1794 flag_probability = profile_probability::always ();
1795 nbbs++;
1798 profile_probability cap = profile_probability::always ().apply_scale (2, 3);
1800 if (flag_probability.initialized_p ())
1802 else if (ncount == nbbs
1803 && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
1805 flag_probability = count_sum.probability_in (preheader->count ());
1806 if (flag_probability > cap)
1807 flag_probability = cap;
1810 if (!flag_probability.initialized_p ())
1811 flag_probability = cap;
1813 /* ?? Insert store after previous store if applicable. See note
1814 below. */
1815 if (prev_edges)
1816 ex = prev_edges->append_cond_position;
1818 loop_has_only_one_exit = single_pred_p (ex->dest);
1820 if (loop_has_only_one_exit)
1821 ex = split_block_after_labels (ex->dest);
1822 else
1824 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
1825 !gsi_end_p (gpi); gsi_next (&gpi))
1827 gphi *phi = gpi.phi ();
1828 if (virtual_operand_p (gimple_phi_result (phi)))
1829 continue;
1831 /* When the destination has a non-virtual PHI node with multiple
1832 predecessors make sure we preserve the PHI structure by
1833 forcing a forwarder block so that hoisting of that PHI will
1834 still work. */
1835 split_edge (ex);
1836 break;
1840 old_dest = ex->dest;
1841 new_bb = split_edge (ex);
1842 then_bb = create_empty_bb (new_bb);
1843 then_bb->count = new_bb->count.apply_probability (flag_probability);
1844 if (irr)
1845 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1846 add_bb_to_loop (then_bb, new_bb->loop_father);
1848 gsi = gsi_start_bb (new_bb);
1849 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1850 NULL_TREE, NULL_TREE);
1851 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1853 gsi = gsi_start_bb (then_bb);
1854 /* Insert actual store. */
1855 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1856 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1858 edge e1 = single_succ_edge (new_bb);
1859 edge e2 = make_edge (new_bb, then_bb,
1860 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1861 e2->probability = flag_probability;
1863 e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
1864 e1->flags &= ~EDGE_FALLTHRU;
1866 e1->probability = flag_probability.invert ();
1868 then_old_edge = make_single_succ_edge (then_bb, old_dest,
1869 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1871 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1873 if (prev_edges)
1875 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1876 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1877 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1878 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1879 recompute_dominator (CDI_DOMINATORS, old_dest));
1882 /* ?? Because stores may alias, they must happen in the exact
1883 sequence they originally happened. Save the position right after
1884 the (_lsm) store we just created so we can continue appending after
1885 it and maintain the original order. */
1887 struct prev_flag_edges *p;
1889 if (orig_ex->aux)
1890 orig_ex->aux = NULL;
1891 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1892 p = (struct prev_flag_edges *) orig_ex->aux;
1893 p->append_cond_position = then_old_edge;
1894 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1895 orig_ex->aux = (void *) p;
1898 if (!loop_has_only_one_exit)
1899 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1900 !gsi_end_p (gpi); gsi_next (&gpi))
1902 gphi *phi = gpi.phi ();
1903 unsigned i;
1905 for (i = 0; i < gimple_phi_num_args (phi); i++)
1906 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1908 tree arg = gimple_phi_arg_def (phi, i);
1909 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1910 update_stmt (phi);
1915 /* When REF is set on the location, set flag indicating the store. */
1917 struct sm_set_flag_if_changed
1919 sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
1920 : flag (flag_), bbs (bbs_) {}
1921 bool operator () (mem_ref_loc *loc);
1922 tree flag;
1923 hash_set <basic_block> *bbs;
1926 bool
1927 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
1929 /* Only set the flag for writes. */
1930 if (is_gimple_assign (loc->stmt)
1931 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1933 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1934 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
1935 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1936 bbs->add (gimple_bb (stmt));
1938 return false;
1941 /* Helper function for execute_sm. On every location where REF is
1942 set, set an appropriate flag indicating the store. */
1944 static tree
1945 execute_sm_if_changed_flag_set (struct loop *loop, im_mem_ref *ref,
1946 hash_set <basic_block> *bbs)
1948 tree flag;
1949 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1950 flag = create_tmp_reg (boolean_type_node, str);
1951 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
1952 return flag;
1955 /* Executes store motion of memory reference REF from LOOP.
1956 Exits from the LOOP are stored in EXITS. The initialization of the
1957 temporary variable is put to the preheader of the loop, and assignments
1958 to the reference from the temporary variable are emitted to exits. */
1960 static void
1961 execute_sm (struct loop *loop, vec<edge> exits, im_mem_ref *ref)
1963 tree tmp_var, store_flag = NULL_TREE;
1964 unsigned i;
1965 gassign *load;
1966 struct fmt_data fmt_data;
1967 edge ex;
1968 struct lim_aux_data *lim_data;
1969 bool multi_threaded_model_p = false;
1970 gimple_stmt_iterator gsi;
1971 hash_set<basic_block> flag_bbs;
1973 if (dump_file && (dump_flags & TDF_DETAILS))
1975 fprintf (dump_file, "Executing store motion of ");
1976 print_generic_expr (dump_file, ref->mem.ref);
1977 fprintf (dump_file, " from loop %d\n", loop->num);
1980 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1981 get_lsm_tmp_name (ref->mem.ref, ~0));
1983 fmt_data.loop = loop;
1984 fmt_data.orig_loop = loop;
1985 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1987 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1988 || (! PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES)
1989 && ! ref_always_accessed_p (loop, ref, true)))
1990 multi_threaded_model_p = true;
1992 if (multi_threaded_model_p)
1993 store_flag = execute_sm_if_changed_flag_set (loop, ref, &flag_bbs);
1995 rewrite_mem_refs (loop, ref, tmp_var);
1997 /* Emit the load code on a random exit edge or into the latch if
1998 the loop does not exit, so that we are sure it will be processed
1999 by move_computations after all dependencies. */
2000 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2002 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2003 load altogether, since the store is predicated by a flag. We
2004 could, do the load only if it was originally in the loop. */
2005 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
2006 lim_data = init_lim_data (load);
2007 lim_data->max_loop = loop;
2008 lim_data->tgt_loop = loop;
2009 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2011 if (multi_threaded_model_p)
2013 load = gimple_build_assign (store_flag, boolean_false_node);
2014 lim_data = init_lim_data (load);
2015 lim_data->max_loop = loop;
2016 lim_data->tgt_loop = loop;
2017 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2020 /* Sink the store to every exit from the loop. */
2021 FOR_EACH_VEC_ELT (exits, i, ex)
2022 if (!multi_threaded_model_p)
2024 gassign *store;
2025 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2026 gsi_insert_on_edge (ex, store);
2028 else
2029 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag,
2030 loop_preheader_edge (loop), &flag_bbs);
2033 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2034 edges of the LOOP. */
2036 static void
2037 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2038 vec<edge> exits)
2040 im_mem_ref *ref;
2041 unsigned i;
2042 bitmap_iterator bi;
2044 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2046 ref = memory_accesses.refs_list[i];
2047 execute_sm (loop, exits, ref);
2051 struct ref_always_accessed
2053 ref_always_accessed (struct loop *loop_, bool stored_p_)
2054 : loop (loop_), stored_p (stored_p_) {}
2055 bool operator () (mem_ref_loc *loc);
2056 struct loop *loop;
2057 bool stored_p;
2060 bool
2061 ref_always_accessed::operator () (mem_ref_loc *loc)
2063 struct loop *must_exec;
2065 if (!get_lim_data (loc->stmt))
2066 return false;
2068 /* If we require an always executed store make sure the statement
2069 stores to the reference. */
2070 if (stored_p)
2072 tree lhs = gimple_get_lhs (loc->stmt);
2073 if (!lhs
2074 || lhs != *loc->ref)
2075 return false;
2078 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2079 if (!must_exec)
2080 return false;
2082 if (must_exec == loop
2083 || flow_loop_nested_p (must_exec, loop))
2084 return true;
2086 return false;
2089 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2090 make sure REF is always stored to in LOOP. */
2092 static bool
2093 ref_always_accessed_p (struct loop *loop, im_mem_ref *ref, bool stored_p)
2095 return for_all_locs_in_loop (loop, ref,
2096 ref_always_accessed (loop, stored_p));
2099 /* Returns true if REF1 and REF2 are independent. */
2101 static bool
2102 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2)
2104 if (ref1 == ref2)
2105 return true;
2107 if (dump_file && (dump_flags & TDF_DETAILS))
2108 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2109 ref1->id, ref2->id);
2111 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2113 if (dump_file && (dump_flags & TDF_DETAILS))
2114 fprintf (dump_file, "dependent.\n");
2115 return false;
2117 else
2119 if (dump_file && (dump_flags & TDF_DETAILS))
2120 fprintf (dump_file, "independent.\n");
2121 return true;
2125 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2126 and its super-loops. */
2128 static void
2129 record_dep_loop (struct loop *loop, im_mem_ref *ref, bool stored_p)
2131 /* We can propagate dependent-in-loop bits up the loop
2132 hierarchy to all outer loops. */
2133 while (loop != current_loops->tree_root
2134 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2135 loop = loop_outer (loop);
2138 /* Returns true if REF is independent on all other memory
2139 references in LOOP. */
2141 static bool
2142 ref_indep_loop_p_1 (struct loop *loop, im_mem_ref *ref, bool stored_p)
2144 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2146 bool indep_p = true;
2147 bitmap refs_to_check;
2149 if (stored_p)
2150 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2151 else
2152 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2154 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2155 indep_p = false;
2156 else
2158 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2159 return true;
2160 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2161 return false;
2163 struct loop *inner = loop->inner;
2164 while (inner)
2166 if (!ref_indep_loop_p_1 (inner, ref, stored_p))
2168 indep_p = false;
2169 break;
2171 inner = inner->next;
2174 if (indep_p)
2176 unsigned i;
2177 bitmap_iterator bi;
2178 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2180 im_mem_ref *aref = memory_accesses.refs_list[i];
2181 if (!refs_independent_p (ref, aref))
2183 indep_p = false;
2184 break;
2190 if (dump_file && (dump_flags & TDF_DETAILS))
2191 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2192 ref->id, loop->num, indep_p ? "independent" : "dependent");
2194 /* Record the computed result in the cache. */
2195 if (indep_p)
2197 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2198 && stored_p)
2200 /* If it's independend against all refs then it's independent
2201 against stores, too. */
2202 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2205 else
2207 record_dep_loop (loop, ref, stored_p);
2208 if (!stored_p)
2210 /* If it's dependent against stores it's dependent against
2211 all refs, too. */
2212 record_dep_loop (loop, ref, true);
2216 return indep_p;
2219 /* Returns true if REF is independent on all other memory references in
2220 LOOP. */
2222 static bool
2223 ref_indep_loop_p (struct loop *loop, im_mem_ref *ref)
2225 gcc_checking_assert (MEM_ANALYZABLE (ref));
2227 return ref_indep_loop_p_1 (loop, ref, false);
2230 /* Returns true if we can perform store motion of REF from LOOP. */
2232 static bool
2233 can_sm_ref_p (struct loop *loop, im_mem_ref *ref)
2235 tree base;
2237 /* Can't hoist unanalyzable refs. */
2238 if (!MEM_ANALYZABLE (ref))
2239 return false;
2241 /* It should be movable. */
2242 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2243 || TREE_THIS_VOLATILE (ref->mem.ref)
2244 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2245 return false;
2247 /* If it can throw fail, we do not properly update EH info. */
2248 if (tree_could_throw_p (ref->mem.ref))
2249 return false;
2251 /* If it can trap, it must be always executed in LOOP.
2252 Readonly memory locations may trap when storing to them, but
2253 tree_could_trap_p is a predicate for rvalues, so check that
2254 explicitly. */
2255 base = get_base_address (ref->mem.ref);
2256 if ((tree_could_trap_p (ref->mem.ref)
2257 || (DECL_P (base) && TREE_READONLY (base)))
2258 && !ref_always_accessed_p (loop, ref, true))
2259 return false;
2261 /* And it must be independent on all other memory references
2262 in LOOP. */
2263 if (!ref_indep_loop_p (loop, ref))
2264 return false;
2266 return true;
2269 /* Marks the references in LOOP for that store motion should be performed
2270 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2271 motion was performed in one of the outer loops. */
2273 static void
2274 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2276 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2277 unsigned i;
2278 bitmap_iterator bi;
2279 im_mem_ref *ref;
2281 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2283 ref = memory_accesses.refs_list[i];
2284 if (can_sm_ref_p (loop, ref))
2285 bitmap_set_bit (refs_to_sm, i);
2289 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2290 for a store motion optimization (i.e. whether we can insert statement
2291 on its exits). */
2293 static bool
2294 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2295 vec<edge> exits)
2297 unsigned i;
2298 edge ex;
2300 FOR_EACH_VEC_ELT (exits, i, ex)
2301 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2302 return false;
2304 return true;
2307 /* Try to perform store motion for all memory references modified inside
2308 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2309 store motion was executed in one of the outer loops. */
2311 static void
2312 store_motion_loop (struct loop *loop, bitmap sm_executed)
2314 vec<edge> exits = get_loop_exit_edges (loop);
2315 struct loop *subloop;
2316 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2318 if (loop_suitable_for_sm (loop, exits))
2320 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2321 hoist_memory_references (loop, sm_in_loop, exits);
2323 exits.release ();
2325 bitmap_ior_into (sm_executed, sm_in_loop);
2326 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2327 store_motion_loop (subloop, sm_executed);
2328 bitmap_and_compl_into (sm_executed, sm_in_loop);
2329 BITMAP_FREE (sm_in_loop);
2332 /* Try to perform store motion for all memory references modified inside
2333 loops. */
2335 static void
2336 store_motion (void)
2338 struct loop *loop;
2339 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2341 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2342 store_motion_loop (loop, sm_executed);
2344 BITMAP_FREE (sm_executed);
2345 gsi_commit_edge_inserts ();
2348 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2349 for each such basic block bb records the outermost loop for that execution
2350 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2351 blocks that contain a nonpure call. */
2353 static void
2354 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2356 basic_block bb = NULL, *bbs, last = NULL;
2357 unsigned i;
2358 edge e;
2359 struct loop *inn_loop = loop;
2361 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2363 bbs = get_loop_body_in_dom_order (loop);
2365 for (i = 0; i < loop->num_nodes; i++)
2367 edge_iterator ei;
2368 bb = bbs[i];
2370 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2371 last = bb;
2373 if (bitmap_bit_p (contains_call, bb->index))
2374 break;
2376 FOR_EACH_EDGE (e, ei, bb->succs)
2378 /* If there is an exit from this BB. */
2379 if (!flow_bb_inside_loop_p (loop, e->dest))
2380 break;
2381 /* Or we enter a possibly non-finite loop. */
2382 if (flow_loop_nested_p (bb->loop_father,
2383 e->dest->loop_father)
2384 && ! finite_loop_p (e->dest->loop_father))
2385 break;
2387 if (e)
2388 break;
2390 /* A loop might be infinite (TODO use simple loop analysis
2391 to disprove this if possible). */
2392 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2393 break;
2395 if (!flow_bb_inside_loop_p (inn_loop, bb))
2396 break;
2398 if (bb->loop_father->header == bb)
2400 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2401 break;
2403 /* In a loop that is always entered we may proceed anyway.
2404 But record that we entered it and stop once we leave it. */
2405 inn_loop = bb->loop_father;
2409 while (1)
2411 SET_ALWAYS_EXECUTED_IN (last, loop);
2412 if (last == loop->header)
2413 break;
2414 last = get_immediate_dominator (CDI_DOMINATORS, last);
2417 free (bbs);
2420 for (loop = loop->inner; loop; loop = loop->next)
2421 fill_always_executed_in_1 (loop, contains_call);
2424 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2425 for each such basic block bb records the outermost loop for that execution
2426 of its header implies execution of bb. */
2428 static void
2429 fill_always_executed_in (void)
2431 basic_block bb;
2432 struct loop *loop;
2434 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
2435 bitmap_clear (contains_call);
2436 FOR_EACH_BB_FN (bb, cfun)
2438 gimple_stmt_iterator gsi;
2439 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2441 if (nonpure_call_p (gsi_stmt (gsi)))
2442 break;
2445 if (!gsi_end_p (gsi))
2446 bitmap_set_bit (contains_call, bb->index);
2449 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2450 fill_always_executed_in_1 (loop, contains_call);
2454 /* Compute the global information needed by the loop invariant motion pass. */
2456 static void
2457 tree_ssa_lim_initialize (void)
2459 struct loop *loop;
2460 unsigned i;
2462 bitmap_obstack_initialize (&lim_bitmap_obstack);
2463 gcc_obstack_init (&mem_ref_obstack);
2464 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
2466 if (flag_tm)
2467 compute_transaction_bits ();
2469 alloc_aux_for_edges (0);
2471 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2472 memory_accesses.refs_list.create (100);
2473 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2474 memory_accesses.refs_list.quick_push
2475 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2477 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2478 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2479 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2480 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2481 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2482 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2484 for (i = 0; i < number_of_loops (cfun); i++)
2486 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2487 &lim_bitmap_obstack);
2488 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2489 &lim_bitmap_obstack);
2490 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2491 &lim_bitmap_obstack);
2494 memory_accesses.ttae_cache = NULL;
2496 /* Initialize bb_loop_postorder with a mapping from loop->num to
2497 its postorder index. */
2498 i = 0;
2499 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2500 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2501 bb_loop_postorder[loop->num] = i++;
2504 /* Cleans up after the invariant motion pass. */
2506 static void
2507 tree_ssa_lim_finalize (void)
2509 basic_block bb;
2510 unsigned i;
2511 im_mem_ref *ref;
2513 free_aux_for_edges ();
2515 FOR_EACH_BB_FN (bb, cfun)
2516 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2518 bitmap_obstack_release (&lim_bitmap_obstack);
2519 delete lim_aux_data_map;
2521 delete memory_accesses.refs;
2522 memory_accesses.refs = NULL;
2524 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2525 memref_free (ref);
2526 memory_accesses.refs_list.release ();
2527 obstack_free (&mem_ref_obstack, NULL);
2529 memory_accesses.refs_in_loop.release ();
2530 memory_accesses.refs_stored_in_loop.release ();
2531 memory_accesses.all_refs_stored_in_loop.release ();
2533 if (memory_accesses.ttae_cache)
2534 free_affine_expand_cache (&memory_accesses.ttae_cache);
2536 free (bb_loop_postorder);
2539 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2540 i.e. those that are likely to be win regardless of the register pressure. */
2542 static unsigned int
2543 tree_ssa_lim (void)
2545 unsigned int todo;
2547 tree_ssa_lim_initialize ();
2549 /* Gathers information about memory accesses in the loops. */
2550 analyze_memory_references ();
2552 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2553 fill_always_executed_in ();
2555 /* For each statement determine the outermost loop in that it is
2556 invariant and cost for computing the invariant. */
2557 invariantness_dom_walker (CDI_DOMINATORS)
2558 .walk (cfun->cfg->x_entry_block_ptr);
2560 /* Execute store motion. Force the necessary invariants to be moved
2561 out of the loops as well. */
2562 store_motion ();
2564 /* Move the expressions that are expensive enough. */
2565 todo = move_computations ();
2567 tree_ssa_lim_finalize ();
2569 return todo;
2572 /* Loop invariant motion pass. */
2574 namespace {
2576 const pass_data pass_data_lim =
2578 GIMPLE_PASS, /* type */
2579 "lim", /* name */
2580 OPTGROUP_LOOP, /* optinfo_flags */
2581 TV_LIM, /* tv_id */
2582 PROP_cfg, /* properties_required */
2583 0, /* properties_provided */
2584 0, /* properties_destroyed */
2585 0, /* todo_flags_start */
2586 0, /* todo_flags_finish */
2589 class pass_lim : public gimple_opt_pass
2591 public:
2592 pass_lim (gcc::context *ctxt)
2593 : gimple_opt_pass (pass_data_lim, ctxt)
2596 /* opt_pass methods: */
2597 opt_pass * clone () { return new pass_lim (m_ctxt); }
2598 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2599 virtual unsigned int execute (function *);
2601 }; // class pass_lim
2603 unsigned int
2604 pass_lim::execute (function *fun)
2606 bool in_loop_pipeline = scev_initialized_p ();
2607 if (!in_loop_pipeline)
2608 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2610 if (number_of_loops (fun) <= 1)
2611 return 0;
2612 unsigned int todo = tree_ssa_lim ();
2614 if (!in_loop_pipeline)
2615 loop_optimizer_finalize ();
2616 else
2617 scev_reset ();
2618 return todo;
2621 } // anon namespace
2623 gimple_opt_pass *
2624 make_pass_lim (gcc::context *ctxt)
2626 return new pass_lim (ctxt);