1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
33 tree_expr_nonnegative_p
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
51 #include "cfn-operators.pd"
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
57 Also define operand lists:
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 (define_operator_list X##FN BUILT_IN_I##FN \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
81 mult trunc_div trunc_mod rdiv
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
90 /* Same for ternary operations. */
91 (define_operator_list UNCOND_TERNARY
92 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
93 (define_operator_list COND_TERNARY
94 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
96 /* As opposed to convert?, this still creates a single pattern, so
97 it is not a suitable replacement for convert? in all cases. */
98 (match (nop_convert @0)
100 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
101 (match (nop_convert @0)
103 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
104 && known_eq (TYPE_VECTOR_SUBPARTS (type),
105 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
106 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
107 /* This one has to be last, or it shadows the others. */
108 (match (nop_convert @0)
111 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
112 ABSU_EXPR returns unsigned absolute value of the operand and the operand
113 of the ABSU_EXPR will have the corresponding signed type. */
114 (simplify (abs (convert @0))
115 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
116 && !TYPE_UNSIGNED (TREE_TYPE (@0))
117 && element_precision (type) > element_precision (TREE_TYPE (@0)))
118 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
119 (convert (absu:utype @0)))))
122 /* Simplifications of operations with one constant operand and
123 simplifications to constants or single values. */
125 (for op (plus pointer_plus minus bit_ior bit_xor)
127 (op @0 integer_zerop)
130 /* 0 +p index -> (type)index */
132 (pointer_plus integer_zerop @1)
133 (non_lvalue (convert @1)))
135 /* ptr - 0 -> (type)ptr */
137 (pointer_diff @0 integer_zerop)
140 /* See if ARG1 is zero and X + ARG1 reduces to X.
141 Likewise if the operands are reversed. */
143 (plus:c @0 real_zerop@1)
144 (if (fold_real_zero_addition_p (type, @1, 0))
147 /* See if ARG1 is zero and X - ARG1 reduces to X. */
149 (minus @0 real_zerop@1)
150 (if (fold_real_zero_addition_p (type, @1, 1))
154 This is unsafe for certain floats even in non-IEEE formats.
155 In IEEE, it is unsafe because it does wrong for NaNs.
156 Also note that operand_equal_p is always false if an operand
160 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
161 { build_zero_cst (type); }))
163 (pointer_diff @@0 @0)
164 { build_zero_cst (type); })
167 (mult @0 integer_zerop@1)
170 /* Maybe fold x * 0 to 0. The expressions aren't the same
171 when x is NaN, since x * 0 is also NaN. Nor are they the
172 same in modes with signed zeros, since multiplying a
173 negative value by 0 gives -0, not +0. */
175 (mult @0 real_zerop@1)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
179 /* In IEEE floating point, x*1 is not equivalent to x for snans.
180 Likewise for complex arithmetic with signed zeros. */
183 (if (!HONOR_SNANS (type)
184 && (!HONOR_SIGNED_ZEROS (type)
185 || !COMPLEX_FLOAT_TYPE_P (type)))
188 /* Transform x * -1.0 into -x. */
190 (mult @0 real_minus_onep)
191 (if (!HONOR_SNANS (type)
192 && (!HONOR_SIGNED_ZEROS (type)
193 || !COMPLEX_FLOAT_TYPE_P (type)))
196 (for cmp (gt ge lt le)
197 outp (convert convert negate negate)
198 outn (negate negate convert convert)
199 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
200 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
201 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
202 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
204 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
205 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
206 && types_match (type, TREE_TYPE (@0)))
208 (if (types_match (type, float_type_node))
209 (BUILT_IN_COPYSIGNF @1 (outp @0)))
210 (if (types_match (type, double_type_node))
211 (BUILT_IN_COPYSIGN @1 (outp @0)))
212 (if (types_match (type, long_double_type_node))
213 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
214 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
215 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
216 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
217 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
219 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
220 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
221 && types_match (type, TREE_TYPE (@0)))
223 (if (types_match (type, float_type_node))
224 (BUILT_IN_COPYSIGNF @1 (outn @0)))
225 (if (types_match (type, double_type_node))
226 (BUILT_IN_COPYSIGN @1 (outn @0)))
227 (if (types_match (type, long_double_type_node))
228 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
230 /* Transform X * copysign (1.0, X) into abs(X). */
232 (mult:c @0 (COPYSIGN_ALL real_onep @0))
233 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
236 /* Transform X * copysign (1.0, -X) into -abs(X). */
238 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
239 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
242 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
244 (COPYSIGN_ALL REAL_CST@0 @1)
245 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
246 (COPYSIGN_ALL (negate @0) @1)))
248 /* X * 1, X / 1 -> X. */
249 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
254 /* (A / (1 << B)) -> (A >> B).
255 Only for unsigned A. For signed A, this would not preserve rounding
257 For example: (-1 / ( 1 << B)) != -1 >> B. */
259 (trunc_div @0 (lshift integer_onep@1 @2))
260 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
261 && (!VECTOR_TYPE_P (type)
262 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
263 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
266 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
267 undefined behavior in constexpr evaluation, and assuming that the division
268 traps enables better optimizations than these anyway. */
269 (for div (trunc_div ceil_div floor_div round_div exact_div)
270 /* 0 / X is always zero. */
272 (div integer_zerop@0 @1)
273 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
274 (if (!integer_zerop (@1))
278 (div @0 integer_minus_onep@1)
279 (if (!TYPE_UNSIGNED (type))
284 /* But not for 0 / 0 so that we can get the proper warnings and errors.
285 And not for _Fract types where we can't build 1. */
286 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
287 { build_one_cst (type); }))
288 /* X / abs (X) is X < 0 ? -1 : 1. */
291 (if (INTEGRAL_TYPE_P (type)
292 && TYPE_OVERFLOW_UNDEFINED (type))
293 (cond (lt @0 { build_zero_cst (type); })
294 { build_minus_one_cst (type); } { build_one_cst (type); })))
297 (div:C @0 (negate @0))
298 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
299 && TYPE_OVERFLOW_UNDEFINED (type))
300 { build_minus_one_cst (type); })))
302 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
303 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
306 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
307 && TYPE_UNSIGNED (type))
310 /* Combine two successive divisions. Note that combining ceil_div
311 and floor_div is trickier and combining round_div even more so. */
312 (for div (trunc_div exact_div)
314 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
316 wi::overflow_type overflow;
317 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
318 TYPE_SIGN (type), &overflow);
321 (div @0 { wide_int_to_tree (type, mul); })
322 (if (TYPE_UNSIGNED (type)
323 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
324 { build_zero_cst (type); })))))
326 /* Combine successive multiplications. Similar to above, but handling
327 overflow is different. */
329 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
331 wi::overflow_type overflow;
332 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
333 TYPE_SIGN (type), &overflow);
335 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
336 otherwise undefined overflow implies that @0 must be zero. */
337 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
338 (mult @0 { wide_int_to_tree (type, mul); }))))
340 /* Optimize A / A to 1.0 if we don't care about
341 NaNs or Infinities. */
344 (if (FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 { build_one_cst (type); }))
349 /* Optimize -A / A to -1.0 if we don't care about
350 NaNs or Infinities. */
352 (rdiv:C @0 (negate @0))
353 (if (FLOAT_TYPE_P (type)
354 && ! HONOR_NANS (type)
355 && ! HONOR_INFINITIES (type))
356 { build_minus_one_cst (type); }))
358 /* PR71078: x / abs(x) -> copysign (1.0, x) */
360 (rdiv:C (convert? @0) (convert? (abs @0)))
361 (if (SCALAR_FLOAT_TYPE_P (type)
362 && ! HONOR_NANS (type)
363 && ! HONOR_INFINITIES (type))
365 (if (types_match (type, float_type_node))
366 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
367 (if (types_match (type, double_type_node))
368 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
369 (if (types_match (type, long_double_type_node))
370 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
372 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
375 (if (!HONOR_SNANS (type))
378 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
380 (rdiv @0 real_minus_onep)
381 (if (!HONOR_SNANS (type))
384 (if (flag_reciprocal_math)
385 /* Convert (A/B)/C to A/(B*C). */
387 (rdiv (rdiv:s @0 @1) @2)
388 (rdiv @0 (mult @1 @2)))
390 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
392 (rdiv @0 (mult:s @1 REAL_CST@2))
394 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
396 (rdiv (mult @0 { tem; } ) @1))))
398 /* Convert A/(B/C) to (A/B)*C */
400 (rdiv @0 (rdiv:s @1 @2))
401 (mult (rdiv @0 @1) @2)))
403 /* Simplify x / (- y) to -x / y. */
405 (rdiv @0 (negate @1))
406 (rdiv (negate @0) @1))
408 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
409 (for div (trunc_div ceil_div floor_div round_div exact_div)
411 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
412 (if (integer_pow2p (@2)
413 && tree_int_cst_sgn (@2) > 0
414 && tree_nop_conversion_p (type, TREE_TYPE (@0))
415 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
417 { build_int_cst (integer_type_node,
418 wi::exact_log2 (wi::to_wide (@2))); }))))
420 /* If ARG1 is a constant, we can convert this to a multiply by the
421 reciprocal. This does not have the same rounding properties,
422 so only do this if -freciprocal-math. We can actually
423 always safely do it if ARG1 is a power of two, but it's hard to
424 tell if it is or not in a portable manner. */
425 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
429 (if (flag_reciprocal_math
432 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
434 (mult @0 { tem; } )))
435 (if (cst != COMPLEX_CST)
436 (with { tree inverse = exact_inverse (type, @1); }
438 (mult @0 { inverse; } ))))))))
440 (for mod (ceil_mod floor_mod round_mod trunc_mod)
441 /* 0 % X is always zero. */
443 (mod integer_zerop@0 @1)
444 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
445 (if (!integer_zerop (@1))
447 /* X % 1 is always zero. */
449 (mod @0 integer_onep)
450 { build_zero_cst (type); })
451 /* X % -1 is zero. */
453 (mod @0 integer_minus_onep@1)
454 (if (!TYPE_UNSIGNED (type))
455 { build_zero_cst (type); }))
459 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
460 (if (!integer_zerop (@0))
461 { build_zero_cst (type); }))
462 /* (X % Y) % Y is just X % Y. */
464 (mod (mod@2 @0 @1) @1)
466 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
468 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
469 (if (ANY_INTEGRAL_TYPE_P (type)
470 && TYPE_OVERFLOW_UNDEFINED (type)
471 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
473 { build_zero_cst (type); })))
475 /* X % -C is the same as X % C. */
477 (trunc_mod @0 INTEGER_CST@1)
478 (if (TYPE_SIGN (type) == SIGNED
479 && !TREE_OVERFLOW (@1)
480 && wi::neg_p (wi::to_wide (@1))
481 && !TYPE_OVERFLOW_TRAPS (type)
482 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
483 && !sign_bit_p (@1, @1))
484 (trunc_mod @0 (negate @1))))
486 /* X % -Y is the same as X % Y. */
488 (trunc_mod @0 (convert? (negate @1)))
489 (if (INTEGRAL_TYPE_P (type)
490 && !TYPE_UNSIGNED (type)
491 && !TYPE_OVERFLOW_TRAPS (type)
492 && tree_nop_conversion_p (type, TREE_TYPE (@1))
493 /* Avoid this transformation if X might be INT_MIN or
494 Y might be -1, because we would then change valid
495 INT_MIN % -(-1) into invalid INT_MIN % -1. */
496 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
497 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
499 (trunc_mod @0 (convert @1))))
501 /* X - (X / Y) * Y is the same as X % Y. */
503 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
504 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
505 (convert (trunc_mod @0 @1))))
507 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
508 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
509 Also optimize A % (C << N) where C is a power of 2,
510 to A & ((C << N) - 1). */
511 (match (power_of_two_cand @1)
513 (match (power_of_two_cand @1)
514 (lshift INTEGER_CST@1 @2))
515 (for mod (trunc_mod floor_mod)
517 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
518 (if ((TYPE_UNSIGNED (type)
519 || tree_expr_nonnegative_p (@0))
520 && tree_nop_conversion_p (type, TREE_TYPE (@3))
521 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
522 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
524 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
526 (trunc_div (mult @0 integer_pow2p@1) @1)
527 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
528 (bit_and @0 { wide_int_to_tree
529 (type, wi::mask (TYPE_PRECISION (type)
530 - wi::exact_log2 (wi::to_wide (@1)),
531 false, TYPE_PRECISION (type))); })))
533 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
535 (mult (trunc_div @0 integer_pow2p@1) @1)
536 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
537 (bit_and @0 (negate @1))))
539 /* Simplify (t * 2) / 2) -> t. */
540 (for div (trunc_div ceil_div floor_div round_div exact_div)
542 (div (mult:c @0 @1) @1)
543 (if (ANY_INTEGRAL_TYPE_P (type)
544 && TYPE_OVERFLOW_UNDEFINED (type))
548 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
553 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
556 (pows (op @0) REAL_CST@1)
557 (with { HOST_WIDE_INT n; }
558 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
560 /* Likewise for powi. */
563 (pows (op @0) INTEGER_CST@1)
564 (if ((wi::to_wide (@1) & 1) == 0)
566 /* Strip negate and abs from both operands of hypot. */
574 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
575 (for copysigns (COPYSIGN_ALL)
577 (copysigns (op @0) @1)
580 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
585 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
589 (coss (copysigns @0 @1))
592 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
596 (pows (copysigns @0 @2) REAL_CST@1)
597 (with { HOST_WIDE_INT n; }
598 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
600 /* Likewise for powi. */
604 (pows (copysigns @0 @2) INTEGER_CST@1)
605 (if ((wi::to_wide (@1) & 1) == 0)
610 /* hypot(copysign(x, y), z) -> hypot(x, z). */
612 (hypots (copysigns @0 @1) @2)
614 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
616 (hypots @0 (copysigns @1 @2))
619 /* copysign(x, CST) -> [-]abs (x). */
620 (for copysigns (COPYSIGN_ALL)
622 (copysigns @0 REAL_CST@1)
623 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
627 /* copysign(copysign(x, y), z) -> copysign(x, z). */
628 (for copysigns (COPYSIGN_ALL)
630 (copysigns (copysigns @0 @1) @2)
633 /* copysign(x,y)*copysign(x,y) -> x*x. */
634 (for copysigns (COPYSIGN_ALL)
636 (mult (copysigns@2 @0 @1) @2)
639 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
640 (for ccoss (CCOS CCOSH)
645 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
646 (for ops (conj negate)
652 /* Fold (a * (1 << b)) into (a << b) */
654 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
655 (if (! FLOAT_TYPE_P (type)
656 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
659 /* Fold (1 << (C - x)) where C = precision(type) - 1
660 into ((1 << C) >> x). */
662 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
663 (if (INTEGRAL_TYPE_P (type)
664 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
666 (if (TYPE_UNSIGNED (type))
667 (rshift (lshift @0 @2) @3)
669 { tree utype = unsigned_type_for (type); }
670 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
672 /* Fold (C1/X)*C2 into (C1*C2)/X. */
674 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
675 (if (flag_associative_math
678 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
680 (rdiv { tem; } @1)))))
682 /* Simplify ~X & X as zero. */
684 (bit_and:c (convert? @0) (convert? (bit_not @0)))
685 { build_zero_cst (type); })
687 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
689 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
690 (if (TYPE_UNSIGNED (type))
691 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
693 (for bitop (bit_and bit_ior)
695 /* PR35691: Transform
696 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
697 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
699 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
700 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
701 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
702 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
703 (cmp (bit_ior @0 (convert @1)) @2)))
705 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
706 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
708 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
709 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
710 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
711 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
712 (cmp (bit_and @0 (convert @1)) @2))))
714 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
716 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
717 (minus (bit_xor @0 @1) @1))
719 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
720 (if (~wi::to_wide (@2) == wi::to_wide (@1))
721 (minus (bit_xor @0 @1) @1)))
723 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
725 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
726 (minus @1 (bit_xor @0 @1)))
728 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
729 (for op (bit_ior bit_xor plus)
731 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
734 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
735 (if (~wi::to_wide (@2) == wi::to_wide (@1))
738 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
740 (bit_ior:c (bit_xor:c @0 @1) @0)
743 /* (a & ~b) | (a ^ b) --> a ^ b */
745 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
748 /* (a & ~b) ^ ~a --> ~(a & b) */
750 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
751 (bit_not (bit_and @0 @1)))
753 /* (a | b) & ~(a ^ b) --> a & b */
755 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
758 /* a | ~(a ^ b) --> a | ~b */
760 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
761 (bit_ior @0 (bit_not @1)))
763 /* (a | b) | (a &^ b) --> a | b */
764 (for op (bit_and bit_xor)
766 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
769 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
771 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
774 /* ~(~a & b) --> a | ~b */
776 (bit_not (bit_and:cs (bit_not @0) @1))
777 (bit_ior @0 (bit_not @1)))
779 /* ~(~a | b) --> a & ~b */
781 (bit_not (bit_ior:cs (bit_not @0) @1))
782 (bit_and @0 (bit_not @1)))
784 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
787 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
788 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
789 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
793 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
794 ((A & N) + B) & M -> (A + B) & M
795 Similarly if (N & M) == 0,
796 ((A | N) + B) & M -> (A + B) & M
797 and for - instead of + (or unary - instead of +)
798 and/or ^ instead of |.
799 If B is constant and (B & M) == 0, fold into A & M. */
801 (for bitop (bit_and bit_ior bit_xor)
803 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
806 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
807 @3, @4, @1, ERROR_MARK, NULL_TREE,
810 (convert (bit_and (op (convert:utype { pmop[0]; })
811 (convert:utype { pmop[1]; }))
812 (convert:utype @2))))))
814 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
817 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
818 NULL_TREE, NULL_TREE, @1, bitop, @3,
821 (convert (bit_and (op (convert:utype { pmop[0]; })
822 (convert:utype { pmop[1]; }))
823 (convert:utype @2)))))))
825 (bit_and (op:s @0 @1) INTEGER_CST@2)
828 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
829 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
830 NULL_TREE, NULL_TREE, pmop); }
832 (convert (bit_and (op (convert:utype { pmop[0]; })
833 (convert:utype { pmop[1]; }))
834 (convert:utype @2)))))))
835 (for bitop (bit_and bit_ior bit_xor)
837 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
840 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
841 bitop, @2, @3, NULL_TREE, ERROR_MARK,
842 NULL_TREE, NULL_TREE, pmop); }
844 (convert (bit_and (negate (convert:utype { pmop[0]; }))
845 (convert:utype @1)))))))
847 /* X % Y is smaller than Y. */
850 (cmp (trunc_mod @0 @1) @1)
851 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
852 { constant_boolean_node (cmp == LT_EXPR, type); })))
855 (cmp @1 (trunc_mod @0 @1))
856 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
857 { constant_boolean_node (cmp == GT_EXPR, type); })))
861 (bit_ior @0 integer_all_onesp@1)
866 (bit_ior @0 integer_zerop)
871 (bit_and @0 integer_zerop@1)
877 (for op (bit_ior bit_xor plus)
879 (op:c (convert? @0) (convert? (bit_not @0)))
880 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
885 { build_zero_cst (type); })
887 /* Canonicalize X ^ ~0 to ~X. */
889 (bit_xor @0 integer_all_onesp@1)
894 (bit_and @0 integer_all_onesp)
897 /* x & x -> x, x | x -> x */
898 (for bitop (bit_and bit_ior)
903 /* x & C -> x if we know that x & ~C == 0. */
906 (bit_and SSA_NAME@0 INTEGER_CST@1)
907 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
908 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
912 /* x + (x & 1) -> (x + 1) & ~1 */
914 (plus:c @0 (bit_and:s @0 integer_onep@1))
915 (bit_and (plus @0 @1) (bit_not @1)))
917 /* x & ~(x & y) -> x & ~y */
918 /* x | ~(x | y) -> x | ~y */
919 (for bitop (bit_and bit_ior)
921 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
922 (bitop @0 (bit_not @1))))
924 /* (x | y) & ~x -> y & ~x */
925 /* (x & y) | ~x -> y | ~x */
926 (for bitop (bit_and bit_ior)
927 rbitop (bit_ior bit_and)
929 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
932 /* (x & y) ^ (x | y) -> x ^ y */
934 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
937 /* (x ^ y) ^ (x | y) -> x & y */
939 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
942 /* (x & y) + (x ^ y) -> x | y */
943 /* (x & y) | (x ^ y) -> x | y */
944 /* (x & y) ^ (x ^ y) -> x | y */
945 (for op (plus bit_ior bit_xor)
947 (op:c (bit_and @0 @1) (bit_xor @0 @1))
950 /* (x & y) + (x | y) -> x + y */
952 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
955 /* (x + y) - (x | y) -> x & y */
957 (minus (plus @0 @1) (bit_ior @0 @1))
958 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
959 && !TYPE_SATURATING (type))
962 /* (x + y) - (x & y) -> x | y */
964 (minus (plus @0 @1) (bit_and @0 @1))
965 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
966 && !TYPE_SATURATING (type))
969 /* (x | y) - (x ^ y) -> x & y */
971 (minus (bit_ior @0 @1) (bit_xor @0 @1))
974 /* (x | y) - (x & y) -> x ^ y */
976 (minus (bit_ior @0 @1) (bit_and @0 @1))
979 /* (x | y) & ~(x & y) -> x ^ y */
981 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
984 /* (x | y) & (~x ^ y) -> x & y */
986 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
989 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
991 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
992 (bit_not (bit_xor @0 @1)))
994 /* (~x | y) ^ (x | ~y) -> x ^ y */
996 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
999 /* ~x & ~y -> ~(x | y)
1000 ~x | ~y -> ~(x & y) */
1001 (for op (bit_and bit_ior)
1002 rop (bit_ior bit_and)
1004 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1005 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1006 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1007 (bit_not (rop (convert @0) (convert @1))))))
1009 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1010 with a constant, and the two constants have no bits in common,
1011 we should treat this as a BIT_IOR_EXPR since this may produce more
1013 (for op (bit_xor plus)
1015 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1016 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1017 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1018 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1019 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1020 (bit_ior (convert @4) (convert @5)))))
1022 /* (X | Y) ^ X -> Y & ~ X*/
1024 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1025 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1026 (convert (bit_and @1 (bit_not @0)))))
1028 /* Convert ~X ^ ~Y to X ^ Y. */
1030 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1031 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1032 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1033 (bit_xor (convert @0) (convert @1))))
1035 /* Convert ~X ^ C to X ^ ~C. */
1037 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1038 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1039 (bit_xor (convert @0) (bit_not @1))))
1041 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1042 (for opo (bit_and bit_xor)
1043 opi (bit_xor bit_and)
1045 (opo:c (opi:cs @0 @1) @1)
1046 (bit_and (bit_not @0) @1)))
1048 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1049 operands are another bit-wise operation with a common input. If so,
1050 distribute the bit operations to save an operation and possibly two if
1051 constants are involved. For example, convert
1052 (A | B) & (A | C) into A | (B & C)
1053 Further simplification will occur if B and C are constants. */
1054 (for op (bit_and bit_ior bit_xor)
1055 rop (bit_ior bit_and bit_and)
1057 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1058 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1059 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1060 (rop (convert @0) (op (convert @1) (convert @2))))))
1062 /* Some simple reassociation for bit operations, also handled in reassoc. */
1063 /* (X & Y) & Y -> X & Y
1064 (X | Y) | Y -> X | Y */
1065 (for op (bit_and bit_ior)
1067 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1069 /* (X ^ Y) ^ Y -> X */
1071 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1073 /* (X & Y) & (X & Z) -> (X & Y) & Z
1074 (X | Y) | (X | Z) -> (X | Y) | Z */
1075 (for op (bit_and bit_ior)
1077 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1078 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1079 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1080 (if (single_use (@5) && single_use (@6))
1081 (op @3 (convert @2))
1082 (if (single_use (@3) && single_use (@4))
1083 (op (convert @1) @5))))))
1084 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1086 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1087 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1088 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1089 (bit_xor (convert @1) (convert @2))))
1098 (abs tree_expr_nonnegative_p@0)
1101 /* A few cases of fold-const.c negate_expr_p predicate. */
1102 (match negate_expr_p
1104 (if ((INTEGRAL_TYPE_P (type)
1105 && TYPE_UNSIGNED (type))
1106 || (!TYPE_OVERFLOW_SANITIZED (type)
1107 && may_negate_without_overflow_p (t)))))
1108 (match negate_expr_p
1110 (match negate_expr_p
1112 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1113 (match negate_expr_p
1115 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1116 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1118 (match negate_expr_p
1120 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1121 (match negate_expr_p
1123 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1124 || (FLOAT_TYPE_P (type)
1125 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1126 && !HONOR_SIGNED_ZEROS (type)))))
1128 /* (-A) * (-B) -> A * B */
1130 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1131 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1132 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1133 (mult (convert @0) (convert (negate @1)))))
1135 /* -(A + B) -> (-B) - A. */
1137 (negate (plus:c @0 negate_expr_p@1))
1138 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1139 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1140 (minus (negate @1) @0)))
1142 /* -(A - B) -> B - A. */
1144 (negate (minus @0 @1))
1145 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1146 || (FLOAT_TYPE_P (type)
1147 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1148 && !HONOR_SIGNED_ZEROS (type)))
1151 (negate (pointer_diff @0 @1))
1152 (if (TYPE_OVERFLOW_UNDEFINED (type))
1153 (pointer_diff @1 @0)))
1155 /* A - B -> A + (-B) if B is easily negatable. */
1157 (minus @0 negate_expr_p@1)
1158 (if (!FIXED_POINT_TYPE_P (type))
1159 (plus @0 (negate @1))))
1161 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1163 For bitwise binary operations apply operand conversions to the
1164 binary operation result instead of to the operands. This allows
1165 to combine successive conversions and bitwise binary operations.
1166 We combine the above two cases by using a conditional convert. */
1167 (for bitop (bit_and bit_ior bit_xor)
1169 (bitop (convert @0) (convert? @1))
1170 (if (((TREE_CODE (@1) == INTEGER_CST
1171 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1172 && int_fits_type_p (@1, TREE_TYPE (@0)))
1173 || types_match (@0, @1))
1174 /* ??? This transform conflicts with fold-const.c doing
1175 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1176 constants (if x has signed type, the sign bit cannot be set
1177 in c). This folds extension into the BIT_AND_EXPR.
1178 Restrict it to GIMPLE to avoid endless recursions. */
1179 && (bitop != BIT_AND_EXPR || GIMPLE)
1180 && (/* That's a good idea if the conversion widens the operand, thus
1181 after hoisting the conversion the operation will be narrower. */
1182 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1183 /* It's also a good idea if the conversion is to a non-integer
1185 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1186 /* Or if the precision of TO is not the same as the precision
1188 || !type_has_mode_precision_p (type)))
1189 (convert (bitop @0 (convert @1))))))
1191 (for bitop (bit_and bit_ior)
1192 rbitop (bit_ior bit_and)
1193 /* (x | y) & x -> x */
1194 /* (x & y) | x -> x */
1196 (bitop:c (rbitop:c @0 @1) @0)
1198 /* (~x | y) & x -> x & y */
1199 /* (~x & y) | x -> x | y */
1201 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1204 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1206 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1207 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1209 /* Combine successive equal operations with constants. */
1210 (for bitop (bit_and bit_ior bit_xor)
1212 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1213 (if (!CONSTANT_CLASS_P (@0))
1214 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1215 folded to a constant. */
1216 (bitop @0 (bitop @1 @2))
1217 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1218 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1219 the values involved are such that the operation can't be decided at
1220 compile time. Try folding one of @0 or @1 with @2 to see whether
1221 that combination can be decided at compile time.
1223 Keep the existing form if both folds fail, to avoid endless
1225 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1227 (bitop @1 { cst1; })
1228 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1230 (bitop @0 { cst2; }))))))))
1232 /* Try simple folding for X op !X, and X op X with the help
1233 of the truth_valued_p and logical_inverted_value predicates. */
1234 (match truth_valued_p
1236 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1237 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1238 (match truth_valued_p
1240 (match truth_valued_p
1243 (match (logical_inverted_value @0)
1245 (match (logical_inverted_value @0)
1246 (bit_not truth_valued_p@0))
1247 (match (logical_inverted_value @0)
1248 (eq @0 integer_zerop))
1249 (match (logical_inverted_value @0)
1250 (ne truth_valued_p@0 integer_truep))
1251 (match (logical_inverted_value @0)
1252 (bit_xor truth_valued_p@0 integer_truep))
1256 (bit_and:c @0 (logical_inverted_value @0))
1257 { build_zero_cst (type); })
1258 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1259 (for op (bit_ior bit_xor)
1261 (op:c truth_valued_p@0 (logical_inverted_value @0))
1262 { constant_boolean_node (true, type); }))
1263 /* X ==/!= !X is false/true. */
1266 (op:c truth_valued_p@0 (logical_inverted_value @0))
1267 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1271 (bit_not (bit_not @0))
1274 /* Convert ~ (-A) to A - 1. */
1276 (bit_not (convert? (negate @0)))
1277 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1278 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1279 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1281 /* Convert - (~A) to A + 1. */
1283 (negate (nop_convert (bit_not @0)))
1284 (plus (view_convert @0) { build_each_one_cst (type); }))
1286 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1288 (bit_not (convert? (minus @0 integer_each_onep)))
1289 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1290 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1291 (convert (negate @0))))
1293 (bit_not (convert? (plus @0 integer_all_onesp)))
1294 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1295 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1296 (convert (negate @0))))
1298 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1300 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1301 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1302 (convert (bit_xor @0 (bit_not @1)))))
1304 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1305 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1306 (convert (bit_xor @0 @1))))
1308 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1310 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1311 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1312 (bit_not (bit_xor (view_convert @0) @1))))
1314 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1316 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1317 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1319 /* Fold A - (A & B) into ~B & A. */
1321 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1322 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1323 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1324 (convert (bit_and (bit_not @1) @0))))
1326 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1327 (for cmp (gt lt ge le)
1329 (mult (convert (cmp @0 @1)) @2)
1330 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1332 /* For integral types with undefined overflow and C != 0 fold
1333 x * C EQ/NE y * C into x EQ/NE y. */
1336 (cmp (mult:c @0 @1) (mult:c @2 @1))
1337 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1338 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1339 && tree_expr_nonzero_p (@1))
1342 /* For integral types with wrapping overflow and C odd fold
1343 x * C EQ/NE y * C into x EQ/NE y. */
1346 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1347 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1348 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1349 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1352 /* For integral types with undefined overflow and C != 0 fold
1353 x * C RELOP y * C into:
1355 x RELOP y for nonnegative C
1356 y RELOP x for negative C */
1357 (for cmp (lt gt le ge)
1359 (cmp (mult:c @0 @1) (mult:c @2 @1))
1360 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1361 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1362 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1364 (if (TREE_CODE (@1) == INTEGER_CST
1365 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1368 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1372 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1373 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1374 && TYPE_UNSIGNED (TREE_TYPE (@0))
1375 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1376 && (wi::to_wide (@2)
1377 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1378 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1379 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1381 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1382 (for cmp (simple_comparison)
1384 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1385 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1388 /* X / C1 op C2 into a simple range test. */
1389 (for cmp (simple_comparison)
1391 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1392 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1393 && integer_nonzerop (@1)
1394 && !TREE_OVERFLOW (@1)
1395 && !TREE_OVERFLOW (@2))
1396 (with { tree lo, hi; bool neg_overflow;
1397 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1400 (if (code == LT_EXPR || code == GE_EXPR)
1401 (if (TREE_OVERFLOW (lo))
1402 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1403 (if (code == LT_EXPR)
1406 (if (code == LE_EXPR || code == GT_EXPR)
1407 (if (TREE_OVERFLOW (hi))
1408 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1409 (if (code == LE_EXPR)
1413 { build_int_cst (type, code == NE_EXPR); })
1414 (if (code == EQ_EXPR && !hi)
1416 (if (code == EQ_EXPR && !lo)
1418 (if (code == NE_EXPR && !hi)
1420 (if (code == NE_EXPR && !lo)
1423 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1427 tree etype = range_check_type (TREE_TYPE (@0));
1430 if (! TYPE_UNSIGNED (etype))
1431 etype = unsigned_type_for (etype);
1432 hi = fold_convert (etype, hi);
1433 lo = fold_convert (etype, lo);
1434 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1437 (if (etype && hi && !TREE_OVERFLOW (hi))
1438 (if (code == EQ_EXPR)
1439 (le (minus (convert:etype @0) { lo; }) { hi; })
1440 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1442 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1443 (for op (lt le ge gt)
1445 (op (plus:c @0 @2) (plus:c @1 @2))
1446 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1447 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1449 /* For equality and subtraction, this is also true with wrapping overflow. */
1450 (for op (eq ne minus)
1452 (op (plus:c @0 @2) (plus:c @1 @2))
1453 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1454 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1455 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1458 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1459 (for op (lt le ge gt)
1461 (op (minus @0 @2) (minus @1 @2))
1462 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1463 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1465 /* For equality and subtraction, this is also true with wrapping overflow. */
1466 (for op (eq ne minus)
1468 (op (minus @0 @2) (minus @1 @2))
1469 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1470 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1471 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1473 /* And for pointers... */
1474 (for op (simple_comparison)
1476 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1477 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1480 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1481 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1482 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1483 (pointer_diff @0 @1)))
1485 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1486 (for op (lt le ge gt)
1488 (op (minus @2 @0) (minus @2 @1))
1489 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1490 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1492 /* For equality and subtraction, this is also true with wrapping overflow. */
1493 (for op (eq ne minus)
1495 (op (minus @2 @0) (minus @2 @1))
1496 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1497 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1498 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1500 /* And for pointers... */
1501 (for op (simple_comparison)
1503 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1504 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1507 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1508 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1509 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1510 (pointer_diff @1 @0)))
1512 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1513 (for op (lt le gt ge)
1515 (op:c (plus:c@2 @0 @1) @1)
1516 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1517 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1518 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1519 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1520 /* For equality, this is also true with wrapping overflow. */
1523 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1524 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1525 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1526 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1527 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1528 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1529 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1530 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1532 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1533 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1534 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1535 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1536 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1538 /* X - Y < X is the same as Y > 0 when there is no overflow.
1539 For equality, this is also true with wrapping overflow. */
1540 (for op (simple_comparison)
1542 (op:c @0 (minus@2 @0 @1))
1543 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1544 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1545 || ((op == EQ_EXPR || op == NE_EXPR)
1546 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1547 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1548 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1551 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1552 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1556 (cmp (trunc_div @0 @1) integer_zerop)
1557 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1558 /* Complex ==/!= is allowed, but not </>=. */
1559 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1560 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1563 /* X == C - X can never be true if C is odd. */
1566 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1567 (if (TREE_INT_CST_LOW (@1) & 1)
1568 { constant_boolean_node (cmp == NE_EXPR, type); })))
1570 /* Arguments on which one can call get_nonzero_bits to get the bits
1572 (match with_possible_nonzero_bits
1574 (match with_possible_nonzero_bits
1576 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1577 /* Slightly extended version, do not make it recursive to keep it cheap. */
1578 (match (with_possible_nonzero_bits2 @0)
1579 with_possible_nonzero_bits@0)
1580 (match (with_possible_nonzero_bits2 @0)
1581 (bit_and:c with_possible_nonzero_bits@0 @2))
1583 /* Same for bits that are known to be set, but we do not have
1584 an equivalent to get_nonzero_bits yet. */
1585 (match (with_certain_nonzero_bits2 @0)
1587 (match (with_certain_nonzero_bits2 @0)
1588 (bit_ior @1 INTEGER_CST@0))
1590 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1593 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1594 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1595 { constant_boolean_node (cmp == NE_EXPR, type); })))
1597 /* ((X inner_op C0) outer_op C1)
1598 With X being a tree where value_range has reasoned certain bits to always be
1599 zero throughout its computed value range,
1600 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1601 where zero_mask has 1's for all bits that are sure to be 0 in
1603 if (inner_op == '^') C0 &= ~C1;
1604 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1605 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1607 (for inner_op (bit_ior bit_xor)
1608 outer_op (bit_xor bit_ior)
1611 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1615 wide_int zero_mask_not;
1619 if (TREE_CODE (@2) == SSA_NAME)
1620 zero_mask_not = get_nonzero_bits (@2);
1624 if (inner_op == BIT_XOR_EXPR)
1626 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1627 cst_emit = C0 | wi::to_wide (@1);
1631 C0 = wi::to_wide (@0);
1632 cst_emit = C0 ^ wi::to_wide (@1);
1635 (if (!fail && (C0 & zero_mask_not) == 0)
1636 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1637 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1638 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1640 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1642 (pointer_plus (pointer_plus:s @0 @1) @3)
1643 (pointer_plus @0 (plus @1 @3)))
1649 tem4 = (unsigned long) tem3;
1654 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1655 /* Conditionally look through a sign-changing conversion. */
1656 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1657 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1658 || (GENERIC && type == TREE_TYPE (@1))))
1661 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1662 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1666 tem = (sizetype) ptr;
1670 and produce the simpler and easier to analyze with respect to alignment
1671 ... = ptr & ~algn; */
1673 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1674 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1675 (bit_and @0 { algn; })))
1677 /* Try folding difference of addresses. */
1679 (minus (convert ADDR_EXPR@0) (convert @1))
1680 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1681 (with { poly_int64 diff; }
1682 (if (ptr_difference_const (@0, @1, &diff))
1683 { build_int_cst_type (type, diff); }))))
1685 (minus (convert @0) (convert ADDR_EXPR@1))
1686 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1687 (with { poly_int64 diff; }
1688 (if (ptr_difference_const (@0, @1, &diff))
1689 { build_int_cst_type (type, diff); }))))
1691 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1692 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1693 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1694 (with { poly_int64 diff; }
1695 (if (ptr_difference_const (@0, @1, &diff))
1696 { build_int_cst_type (type, diff); }))))
1698 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1699 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1700 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1701 (with { poly_int64 diff; }
1702 (if (ptr_difference_const (@0, @1, &diff))
1703 { build_int_cst_type (type, diff); }))))
1705 /* If arg0 is derived from the address of an object or function, we may
1706 be able to fold this expression using the object or function's
1709 (bit_and (convert? @0) INTEGER_CST@1)
1710 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1711 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1715 unsigned HOST_WIDE_INT bitpos;
1716 get_pointer_alignment_1 (@0, &align, &bitpos);
1718 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1719 { wide_int_to_tree (type, (wi::to_wide (@1)
1720 & (bitpos / BITS_PER_UNIT))); }))))
1723 /* We can't reassociate at all for saturating types. */
1724 (if (!TYPE_SATURATING (type))
1726 /* Contract negates. */
1727 /* A + (-B) -> A - B */
1729 (plus:c @0 (convert? (negate @1)))
1730 /* Apply STRIP_NOPS on the negate. */
1731 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1732 && !TYPE_OVERFLOW_SANITIZED (type))
1736 if (INTEGRAL_TYPE_P (type)
1737 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1738 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1740 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1741 /* A - (-B) -> A + B */
1743 (minus @0 (convert? (negate @1)))
1744 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1745 && !TYPE_OVERFLOW_SANITIZED (type))
1749 if (INTEGRAL_TYPE_P (type)
1750 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1751 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1753 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1755 Sign-extension is ok except for INT_MIN, which thankfully cannot
1756 happen without overflow. */
1758 (negate (convert (negate @1)))
1759 (if (INTEGRAL_TYPE_P (type)
1760 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1761 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1762 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1763 && !TYPE_OVERFLOW_SANITIZED (type)
1764 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1767 (negate (convert negate_expr_p@1))
1768 (if (SCALAR_FLOAT_TYPE_P (type)
1769 && ((DECIMAL_FLOAT_TYPE_P (type)
1770 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1771 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1772 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1773 (convert (negate @1))))
1775 (negate (nop_convert (negate @1)))
1776 (if (!TYPE_OVERFLOW_SANITIZED (type)
1777 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1780 /* We can't reassociate floating-point unless -fassociative-math
1781 or fixed-point plus or minus because of saturation to +-Inf. */
1782 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1783 && !FIXED_POINT_TYPE_P (type))
1785 /* Match patterns that allow contracting a plus-minus pair
1786 irrespective of overflow issues. */
1787 /* (A +- B) - A -> +- B */
1788 /* (A +- B) -+ B -> A */
1789 /* A - (A +- B) -> -+ B */
1790 /* A +- (B -+ A) -> +- B */
1792 (minus (plus:c @0 @1) @0)
1795 (minus (minus @0 @1) @0)
1798 (plus:c (minus @0 @1) @1)
1801 (minus @0 (plus:c @0 @1))
1804 (minus @0 (minus @0 @1))
1806 /* (A +- B) + (C - A) -> C +- B */
1807 /* (A + B) - (A - C) -> B + C */
1808 /* More cases are handled with comparisons. */
1810 (plus:c (plus:c @0 @1) (minus @2 @0))
1813 (plus:c (minus @0 @1) (minus @2 @0))
1816 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1817 (if (TYPE_OVERFLOW_UNDEFINED (type)
1818 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1819 (pointer_diff @2 @1)))
1821 (minus (plus:c @0 @1) (minus @0 @2))
1824 /* (A +- CST1) +- CST2 -> A + CST3
1825 Use view_convert because it is safe for vectors and equivalent for
1827 (for outer_op (plus minus)
1828 (for inner_op (plus minus)
1829 neg_inner_op (minus plus)
1831 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1833 /* If one of the types wraps, use that one. */
1834 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1835 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1836 forever if something doesn't simplify into a constant. */
1837 (if (!CONSTANT_CLASS_P (@0))
1838 (if (outer_op == PLUS_EXPR)
1839 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1840 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1841 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1842 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1843 (if (outer_op == PLUS_EXPR)
1844 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1845 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1846 /* If the constant operation overflows we cannot do the transform
1847 directly as we would introduce undefined overflow, for example
1848 with (a - 1) + INT_MIN. */
1849 (if (types_match (type, @0))
1850 (with { tree cst = const_binop (outer_op == inner_op
1851 ? PLUS_EXPR : MINUS_EXPR,
1853 (if (cst && !TREE_OVERFLOW (cst))
1854 (inner_op @0 { cst; } )
1855 /* X+INT_MAX+1 is X-INT_MIN. */
1856 (if (INTEGRAL_TYPE_P (type) && cst
1857 && wi::to_wide (cst) == wi::min_value (type))
1858 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1859 /* Last resort, use some unsigned type. */
1860 (with { tree utype = unsigned_type_for (type); }
1862 (view_convert (inner_op
1863 (view_convert:utype @0)
1865 { drop_tree_overflow (cst); }))))))))))))))
1867 /* (CST1 - A) +- CST2 -> CST3 - A */
1868 (for outer_op (plus minus)
1870 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1871 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1872 (if (cst && !TREE_OVERFLOW (cst))
1873 (minus { cst; } @0)))))
1875 /* CST1 - (CST2 - A) -> CST3 + A */
1877 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1878 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1879 (if (cst && !TREE_OVERFLOW (cst))
1880 (plus { cst; } @0))))
1884 (plus:c (bit_not @0) @0)
1885 (if (!TYPE_OVERFLOW_TRAPS (type))
1886 { build_all_ones_cst (type); }))
1890 (plus (convert? (bit_not @0)) integer_each_onep)
1891 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1892 (negate (convert @0))))
1896 (minus (convert? (negate @0)) integer_each_onep)
1897 (if (!TYPE_OVERFLOW_TRAPS (type)
1898 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1899 (bit_not (convert @0))))
1903 (minus integer_all_onesp @0)
1906 /* (T)(P + A) - (T)P -> (T) A */
1908 (minus (convert (plus:c @@0 @1))
1910 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1911 /* For integer types, if A has a smaller type
1912 than T the result depends on the possible
1914 E.g. T=size_t, A=(unsigned)429497295, P>0.
1915 However, if an overflow in P + A would cause
1916 undefined behavior, we can assume that there
1918 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1919 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1922 (minus (convert (pointer_plus @@0 @1))
1924 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1925 /* For pointer types, if the conversion of A to the
1926 final type requires a sign- or zero-extension,
1927 then we have to punt - it is not defined which
1929 || (POINTER_TYPE_P (TREE_TYPE (@0))
1930 && TREE_CODE (@1) == INTEGER_CST
1931 && tree_int_cst_sign_bit (@1) == 0))
1934 (pointer_diff (pointer_plus @@0 @1) @0)
1935 /* The second argument of pointer_plus must be interpreted as signed, and
1936 thus sign-extended if necessary. */
1937 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1938 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1939 second arg is unsigned even when we need to consider it as signed,
1940 we don't want to diagnose overflow here. */
1941 (convert (view_convert:stype @1))))
1943 /* (T)P - (T)(P + A) -> -(T) A */
1945 (minus (convert? @0)
1946 (convert (plus:c @@0 @1)))
1947 (if (INTEGRAL_TYPE_P (type)
1948 && TYPE_OVERFLOW_UNDEFINED (type)
1949 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1950 (with { tree utype = unsigned_type_for (type); }
1951 (convert (negate (convert:utype @1))))
1952 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1953 /* For integer types, if A has a smaller type
1954 than T the result depends on the possible
1956 E.g. T=size_t, A=(unsigned)429497295, P>0.
1957 However, if an overflow in P + A would cause
1958 undefined behavior, we can assume that there
1960 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1961 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1962 (negate (convert @1)))))
1965 (convert (pointer_plus @@0 @1)))
1966 (if (INTEGRAL_TYPE_P (type)
1967 && TYPE_OVERFLOW_UNDEFINED (type)
1968 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1969 (with { tree utype = unsigned_type_for (type); }
1970 (convert (negate (convert:utype @1))))
1971 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1972 /* For pointer types, if the conversion of A to the
1973 final type requires a sign- or zero-extension,
1974 then we have to punt - it is not defined which
1976 || (POINTER_TYPE_P (TREE_TYPE (@0))
1977 && TREE_CODE (@1) == INTEGER_CST
1978 && tree_int_cst_sign_bit (@1) == 0))
1979 (negate (convert @1)))))
1981 (pointer_diff @0 (pointer_plus @@0 @1))
1982 /* The second argument of pointer_plus must be interpreted as signed, and
1983 thus sign-extended if necessary. */
1984 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1985 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1986 second arg is unsigned even when we need to consider it as signed,
1987 we don't want to diagnose overflow here. */
1988 (negate (convert (view_convert:stype @1)))))
1990 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1992 (minus (convert (plus:c @@0 @1))
1993 (convert (plus:c @0 @2)))
1994 (if (INTEGRAL_TYPE_P (type)
1995 && TYPE_OVERFLOW_UNDEFINED (type)
1996 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1997 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1998 (with { tree utype = unsigned_type_for (type); }
1999 (convert (minus (convert:utype @1) (convert:utype @2))))
2000 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2001 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2002 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2003 /* For integer types, if A has a smaller type
2004 than T the result depends on the possible
2006 E.g. T=size_t, A=(unsigned)429497295, P>0.
2007 However, if an overflow in P + A would cause
2008 undefined behavior, we can assume that there
2010 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2011 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2012 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2013 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2014 (minus (convert @1) (convert @2)))))
2016 (minus (convert (pointer_plus @@0 @1))
2017 (convert (pointer_plus @0 @2)))
2018 (if (INTEGRAL_TYPE_P (type)
2019 && TYPE_OVERFLOW_UNDEFINED (type)
2020 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2021 (with { tree utype = unsigned_type_for (type); }
2022 (convert (minus (convert:utype @1) (convert:utype @2))))
2023 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2024 /* For pointer types, if the conversion of A to the
2025 final type requires a sign- or zero-extension,
2026 then we have to punt - it is not defined which
2028 || (POINTER_TYPE_P (TREE_TYPE (@0))
2029 && TREE_CODE (@1) == INTEGER_CST
2030 && tree_int_cst_sign_bit (@1) == 0
2031 && TREE_CODE (@2) == INTEGER_CST
2032 && tree_int_cst_sign_bit (@2) == 0))
2033 (minus (convert @1) (convert @2)))))
2035 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2036 /* The second argument of pointer_plus must be interpreted as signed, and
2037 thus sign-extended if necessary. */
2038 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2039 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2040 second arg is unsigned even when we need to consider it as signed,
2041 we don't want to diagnose overflow here. */
2042 (minus (convert (view_convert:stype @1))
2043 (convert (view_convert:stype @2)))))))
2045 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2046 Modeled after fold_plusminus_mult_expr. */
2047 (if (!TYPE_SATURATING (type)
2048 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2049 (for plusminus (plus minus)
2051 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2052 (if ((!ANY_INTEGRAL_TYPE_P (type)
2053 || TYPE_OVERFLOW_WRAPS (type)
2054 || (INTEGRAL_TYPE_P (type)
2055 && tree_expr_nonzero_p (@0)
2056 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2057 /* If @1 +- @2 is constant require a hard single-use on either
2058 original operand (but not on both). */
2059 && (single_use (@3) || single_use (@4)))
2060 (mult (plusminus @1 @2) @0)))
2061 /* We cannot generate constant 1 for fract. */
2062 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2064 (plusminus @0 (mult:c@3 @0 @2))
2065 (if ((!ANY_INTEGRAL_TYPE_P (type)
2066 || TYPE_OVERFLOW_WRAPS (type)
2067 || (INTEGRAL_TYPE_P (type)
2068 && tree_expr_nonzero_p (@0)
2069 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2071 (mult (plusminus { build_one_cst (type); } @2) @0)))
2073 (plusminus (mult:c@3 @0 @2) @0)
2074 (if ((!ANY_INTEGRAL_TYPE_P (type)
2075 || TYPE_OVERFLOW_WRAPS (type)
2076 || (INTEGRAL_TYPE_P (type)
2077 && tree_expr_nonzero_p (@0)
2078 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2080 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2082 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2084 (for minmax (min max FMIN_ALL FMAX_ALL)
2088 /* min(max(x,y),y) -> y. */
2090 (min:c (max:c @0 @1) @1)
2092 /* max(min(x,y),y) -> y. */
2094 (max:c (min:c @0 @1) @1)
2096 /* max(a,-a) -> abs(a). */
2098 (max:c @0 (negate @0))
2099 (if (TREE_CODE (type) != COMPLEX_TYPE
2100 && (! ANY_INTEGRAL_TYPE_P (type)
2101 || TYPE_OVERFLOW_UNDEFINED (type)))
2103 /* min(a,-a) -> -abs(a). */
2105 (min:c @0 (negate @0))
2106 (if (TREE_CODE (type) != COMPLEX_TYPE
2107 && (! ANY_INTEGRAL_TYPE_P (type)
2108 || TYPE_OVERFLOW_UNDEFINED (type)))
2113 (if (INTEGRAL_TYPE_P (type)
2114 && TYPE_MIN_VALUE (type)
2115 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2117 (if (INTEGRAL_TYPE_P (type)
2118 && TYPE_MAX_VALUE (type)
2119 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2124 (if (INTEGRAL_TYPE_P (type)
2125 && TYPE_MAX_VALUE (type)
2126 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2128 (if (INTEGRAL_TYPE_P (type)
2129 && TYPE_MIN_VALUE (type)
2130 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2133 /* max (a, a + CST) -> a + CST where CST is positive. */
2134 /* max (a, a + CST) -> a where CST is negative. */
2136 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2137 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2138 (if (tree_int_cst_sgn (@1) > 0)
2142 /* min (a, a + CST) -> a where CST is positive. */
2143 /* min (a, a + CST) -> a + CST where CST is negative. */
2145 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2146 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2147 (if (tree_int_cst_sgn (@1) > 0)
2151 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2152 and the outer convert demotes the expression back to x's type. */
2153 (for minmax (min max)
2155 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2156 (if (INTEGRAL_TYPE_P (type)
2157 && types_match (@1, type) && int_fits_type_p (@2, type)
2158 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2159 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2160 (minmax @1 (convert @2)))))
2162 (for minmax (FMIN_ALL FMAX_ALL)
2163 /* If either argument is NaN, return the other one. Avoid the
2164 transformation if we get (and honor) a signalling NaN. */
2166 (minmax:c @0 REAL_CST@1)
2167 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2168 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2170 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2171 functions to return the numeric arg if the other one is NaN.
2172 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2173 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2174 worry about it either. */
2175 (if (flag_finite_math_only)
2182 /* min (-A, -B) -> -max (A, B) */
2183 (for minmax (min max FMIN_ALL FMAX_ALL)
2184 maxmin (max min FMAX_ALL FMIN_ALL)
2186 (minmax (negate:s@2 @0) (negate:s@3 @1))
2187 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2188 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2189 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2190 (negate (maxmin @0 @1)))))
2191 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2192 MAX (~X, ~Y) -> ~MIN (X, Y) */
2193 (for minmax (min max)
2196 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2197 (bit_not (maxmin @0 @1))))
2199 /* MIN (X, Y) == X -> X <= Y */
2200 (for minmax (min min max max)
2204 (cmp:c (minmax:c @0 @1) @0)
2205 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2207 /* MIN (X, 5) == 0 -> X == 0
2208 MIN (X, 5) == 7 -> false */
2211 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2212 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2213 TYPE_SIGN (TREE_TYPE (@0))))
2214 { constant_boolean_node (cmp == NE_EXPR, type); }
2215 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2216 TYPE_SIGN (TREE_TYPE (@0))))
2220 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2221 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2222 TYPE_SIGN (TREE_TYPE (@0))))
2223 { constant_boolean_node (cmp == NE_EXPR, type); }
2224 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2225 TYPE_SIGN (TREE_TYPE (@0))))
2227 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2228 (for minmax (min min max max min min max max )
2229 cmp (lt le gt ge gt ge lt le )
2230 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2232 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2233 (comb (cmp @0 @2) (cmp @1 @2))))
2235 /* Simplifications of shift and rotates. */
2237 (for rotate (lrotate rrotate)
2239 (rotate integer_all_onesp@0 @1)
2242 /* Optimize -1 >> x for arithmetic right shifts. */
2244 (rshift integer_all_onesp@0 @1)
2245 (if (!TYPE_UNSIGNED (type)
2246 && tree_expr_nonnegative_p (@1))
2249 /* Optimize (x >> c) << c into x & (-1<<c). */
2251 (lshift (rshift @0 INTEGER_CST@1) @1)
2252 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2253 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2255 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2258 (rshift (lshift @0 INTEGER_CST@1) @1)
2259 (if (TYPE_UNSIGNED (type)
2260 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2261 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2263 (for shiftrotate (lrotate rrotate lshift rshift)
2265 (shiftrotate @0 integer_zerop)
2268 (shiftrotate integer_zerop@0 @1)
2270 /* Prefer vector1 << scalar to vector1 << vector2
2271 if vector2 is uniform. */
2272 (for vec (VECTOR_CST CONSTRUCTOR)
2274 (shiftrotate @0 vec@1)
2275 (with { tree tem = uniform_vector_p (@1); }
2277 (shiftrotate @0 { tem; }))))))
2279 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2280 Y is 0. Similarly for X >> Y. */
2282 (for shift (lshift rshift)
2284 (shift @0 SSA_NAME@1)
2285 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2287 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2288 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2290 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2294 /* Rewrite an LROTATE_EXPR by a constant into an
2295 RROTATE_EXPR by a new constant. */
2297 (lrotate @0 INTEGER_CST@1)
2298 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2299 build_int_cst (TREE_TYPE (@1),
2300 element_precision (type)), @1); }))
2302 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2303 (for op (lrotate rrotate rshift lshift)
2305 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2306 (with { unsigned int prec = element_precision (type); }
2307 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2308 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2309 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2310 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2311 (with { unsigned int low = (tree_to_uhwi (@1)
2312 + tree_to_uhwi (@2)); }
2313 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2314 being well defined. */
2316 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2317 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2318 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2319 { build_zero_cst (type); }
2320 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2321 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2324 /* ((1 << A) & 1) != 0 -> A == 0
2325 ((1 << A) & 1) == 0 -> A != 0 */
2329 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2330 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2332 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2333 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2337 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2338 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2340 || (!integer_zerop (@2)
2341 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2342 { constant_boolean_node (cmp == NE_EXPR, type); }
2343 (if (!integer_zerop (@2)
2344 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2345 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2347 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2348 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2349 if the new mask might be further optimized. */
2350 (for shift (lshift rshift)
2352 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2354 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2355 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2356 && tree_fits_uhwi_p (@1)
2357 && tree_to_uhwi (@1) > 0
2358 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2361 unsigned int shiftc = tree_to_uhwi (@1);
2362 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2363 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2364 tree shift_type = TREE_TYPE (@3);
2367 if (shift == LSHIFT_EXPR)
2368 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2369 else if (shift == RSHIFT_EXPR
2370 && type_has_mode_precision_p (shift_type))
2372 prec = TYPE_PRECISION (TREE_TYPE (@3));
2374 /* See if more bits can be proven as zero because of
2377 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2379 tree inner_type = TREE_TYPE (@0);
2380 if (type_has_mode_precision_p (inner_type)
2381 && TYPE_PRECISION (inner_type) < prec)
2383 prec = TYPE_PRECISION (inner_type);
2384 /* See if we can shorten the right shift. */
2386 shift_type = inner_type;
2387 /* Otherwise X >> C1 is all zeros, so we'll optimize
2388 it into (X, 0) later on by making sure zerobits
2392 zerobits = HOST_WIDE_INT_M1U;
2395 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2396 zerobits <<= prec - shiftc;
2398 /* For arithmetic shift if sign bit could be set, zerobits
2399 can contain actually sign bits, so no transformation is
2400 possible, unless MASK masks them all away. In that
2401 case the shift needs to be converted into logical shift. */
2402 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2403 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2405 if ((mask & zerobits) == 0)
2406 shift_type = unsigned_type_for (TREE_TYPE (@3));
2412 /* ((X << 16) & 0xff00) is (X, 0). */
2413 (if ((mask & zerobits) == mask)
2414 { build_int_cst (type, 0); }
2415 (with { newmask = mask | zerobits; }
2416 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2419 /* Only do the transformation if NEWMASK is some integer
2421 for (prec = BITS_PER_UNIT;
2422 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2423 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2426 (if (prec < HOST_BITS_PER_WIDE_INT
2427 || newmask == HOST_WIDE_INT_M1U)
2429 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2430 (if (!tree_int_cst_equal (newmaskt, @2))
2431 (if (shift_type != TREE_TYPE (@3))
2432 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2433 (bit_and @4 { newmaskt; })))))))))))))
2435 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2436 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2437 (for shift (lshift rshift)
2438 (for bit_op (bit_and bit_xor bit_ior)
2440 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2441 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2442 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2443 (bit_op (shift (convert @0) @1) { mask; }))))))
2445 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2447 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2448 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2449 && (element_precision (TREE_TYPE (@0))
2450 <= element_precision (TREE_TYPE (@1))
2451 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2453 { tree shift_type = TREE_TYPE (@0); }
2454 (convert (rshift (convert:shift_type @1) @2)))))
2456 /* ~(~X >>r Y) -> X >>r Y
2457 ~(~X <<r Y) -> X <<r Y */
2458 (for rotate (lrotate rrotate)
2460 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2461 (if ((element_precision (TREE_TYPE (@0))
2462 <= element_precision (TREE_TYPE (@1))
2463 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2464 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2465 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2467 { tree rotate_type = TREE_TYPE (@0); }
2468 (convert (rotate (convert:rotate_type @1) @2))))))
2470 /* Simplifications of conversions. */
2472 /* Basic strip-useless-type-conversions / strip_nops. */
2473 (for cvt (convert view_convert float fix_trunc)
2476 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2477 || (GENERIC && type == TREE_TYPE (@0)))
2480 /* Contract view-conversions. */
2482 (view_convert (view_convert @0))
2485 /* For integral conversions with the same precision or pointer
2486 conversions use a NOP_EXPR instead. */
2489 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2490 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2491 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2494 /* Strip inner integral conversions that do not change precision or size, or
2495 zero-extend while keeping the same size (for bool-to-char). */
2497 (view_convert (convert@0 @1))
2498 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2499 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2500 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2501 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2502 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2503 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2506 /* Re-association barriers around constants and other re-association
2507 barriers can be removed. */
2509 (paren CONSTANT_CLASS_P@0)
2512 (paren (paren@1 @0))
2515 /* Handle cases of two conversions in a row. */
2516 (for ocvt (convert float fix_trunc)
2517 (for icvt (convert float)
2522 tree inside_type = TREE_TYPE (@0);
2523 tree inter_type = TREE_TYPE (@1);
2524 int inside_int = INTEGRAL_TYPE_P (inside_type);
2525 int inside_ptr = POINTER_TYPE_P (inside_type);
2526 int inside_float = FLOAT_TYPE_P (inside_type);
2527 int inside_vec = VECTOR_TYPE_P (inside_type);
2528 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2529 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2530 int inter_int = INTEGRAL_TYPE_P (inter_type);
2531 int inter_ptr = POINTER_TYPE_P (inter_type);
2532 int inter_float = FLOAT_TYPE_P (inter_type);
2533 int inter_vec = VECTOR_TYPE_P (inter_type);
2534 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2535 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2536 int final_int = INTEGRAL_TYPE_P (type);
2537 int final_ptr = POINTER_TYPE_P (type);
2538 int final_float = FLOAT_TYPE_P (type);
2539 int final_vec = VECTOR_TYPE_P (type);
2540 unsigned int final_prec = TYPE_PRECISION (type);
2541 int final_unsignedp = TYPE_UNSIGNED (type);
2544 /* In addition to the cases of two conversions in a row
2545 handled below, if we are converting something to its own
2546 type via an object of identical or wider precision, neither
2547 conversion is needed. */
2548 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2550 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2551 && (((inter_int || inter_ptr) && final_int)
2552 || (inter_float && final_float))
2553 && inter_prec >= final_prec)
2556 /* Likewise, if the intermediate and initial types are either both
2557 float or both integer, we don't need the middle conversion if the
2558 former is wider than the latter and doesn't change the signedness
2559 (for integers). Avoid this if the final type is a pointer since
2560 then we sometimes need the middle conversion. */
2561 (if (((inter_int && inside_int) || (inter_float && inside_float))
2562 && (final_int || final_float)
2563 && inter_prec >= inside_prec
2564 && (inter_float || inter_unsignedp == inside_unsignedp))
2567 /* If we have a sign-extension of a zero-extended value, we can
2568 replace that by a single zero-extension. Likewise if the
2569 final conversion does not change precision we can drop the
2570 intermediate conversion. */
2571 (if (inside_int && inter_int && final_int
2572 && ((inside_prec < inter_prec && inter_prec < final_prec
2573 && inside_unsignedp && !inter_unsignedp)
2574 || final_prec == inter_prec))
2577 /* Two conversions in a row are not needed unless:
2578 - some conversion is floating-point (overstrict for now), or
2579 - some conversion is a vector (overstrict for now), or
2580 - the intermediate type is narrower than both initial and
2582 - the intermediate type and innermost type differ in signedness,
2583 and the outermost type is wider than the intermediate, or
2584 - the initial type is a pointer type and the precisions of the
2585 intermediate and final types differ, or
2586 - the final type is a pointer type and the precisions of the
2587 initial and intermediate types differ. */
2588 (if (! inside_float && ! inter_float && ! final_float
2589 && ! inside_vec && ! inter_vec && ! final_vec
2590 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2591 && ! (inside_int && inter_int
2592 && inter_unsignedp != inside_unsignedp
2593 && inter_prec < final_prec)
2594 && ((inter_unsignedp && inter_prec > inside_prec)
2595 == (final_unsignedp && final_prec > inter_prec))
2596 && ! (inside_ptr && inter_prec != final_prec)
2597 && ! (final_ptr && inside_prec != inter_prec))
2600 /* A truncation to an unsigned type (a zero-extension) should be
2601 canonicalized as bitwise and of a mask. */
2602 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2603 && final_int && inter_int && inside_int
2604 && final_prec == inside_prec
2605 && final_prec > inter_prec
2607 (convert (bit_and @0 { wide_int_to_tree
2609 wi::mask (inter_prec, false,
2610 TYPE_PRECISION (inside_type))); })))
2612 /* If we are converting an integer to a floating-point that can
2613 represent it exactly and back to an integer, we can skip the
2614 floating-point conversion. */
2615 (if (GIMPLE /* PR66211 */
2616 && inside_int && inter_float && final_int &&
2617 (unsigned) significand_size (TYPE_MODE (inter_type))
2618 >= inside_prec - !inside_unsignedp)
2621 /* If we have a narrowing conversion to an integral type that is fed by a
2622 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2623 masks off bits outside the final type (and nothing else). */
2625 (convert (bit_and @0 INTEGER_CST@1))
2626 (if (INTEGRAL_TYPE_P (type)
2627 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2628 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2629 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2630 TYPE_PRECISION (type)), 0))
2634 /* (X /[ex] A) * A -> X. */
2636 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2639 /* Canonicalization of binary operations. */
2641 /* Convert X + -C into X - C. */
2643 (plus @0 REAL_CST@1)
2644 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2645 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2646 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2647 (minus @0 { tem; })))))
2649 /* Convert x+x into x*2. */
2652 (if (SCALAR_FLOAT_TYPE_P (type))
2653 (mult @0 { build_real (type, dconst2); })
2654 (if (INTEGRAL_TYPE_P (type))
2655 (mult @0 { build_int_cst (type, 2); }))))
2659 (minus integer_zerop @1)
2662 (pointer_diff integer_zerop @1)
2663 (negate (convert @1)))
2665 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2666 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2667 (-ARG1 + ARG0) reduces to -ARG1. */
2669 (minus real_zerop@0 @1)
2670 (if (fold_real_zero_addition_p (type, @0, 0))
2673 /* Transform x * -1 into -x. */
2675 (mult @0 integer_minus_onep)
2678 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2679 signed overflow for CST != 0 && CST != -1. */
2681 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2682 (if (TREE_CODE (@2) != INTEGER_CST
2684 && !integer_zerop (@1) && !integer_minus_onep (@1))
2685 (mult (mult @0 @2) @1)))
2687 /* True if we can easily extract the real and imaginary parts of a complex
2689 (match compositional_complex
2690 (convert? (complex @0 @1)))
2692 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2694 (complex (realpart @0) (imagpart @0))
2697 (realpart (complex @0 @1))
2700 (imagpart (complex @0 @1))
2703 /* Sometimes we only care about half of a complex expression. */
2705 (realpart (convert?:s (conj:s @0)))
2706 (convert (realpart @0)))
2708 (imagpart (convert?:s (conj:s @0)))
2709 (convert (negate (imagpart @0))))
2710 (for part (realpart imagpart)
2711 (for op (plus minus)
2713 (part (convert?:s@2 (op:s @0 @1)))
2714 (convert (op (part @0) (part @1))))))
2716 (realpart (convert?:s (CEXPI:s @0)))
2719 (imagpart (convert?:s (CEXPI:s @0)))
2722 /* conj(conj(x)) -> x */
2724 (conj (convert? (conj @0)))
2725 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2728 /* conj({x,y}) -> {x,-y} */
2730 (conj (convert?:s (complex:s @0 @1)))
2731 (with { tree itype = TREE_TYPE (type); }
2732 (complex (convert:itype @0) (negate (convert:itype @1)))))
2734 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2735 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2740 (bswap (bit_not (bswap @0)))
2742 (for bitop (bit_xor bit_ior bit_and)
2744 (bswap (bitop:c (bswap @0) @1))
2745 (bitop @0 (bswap @1)))))
2748 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2750 /* Simplify constant conditions.
2751 Only optimize constant conditions when the selected branch
2752 has the same type as the COND_EXPR. This avoids optimizing
2753 away "c ? x : throw", where the throw has a void type.
2754 Note that we cannot throw away the fold-const.c variant nor
2755 this one as we depend on doing this transform before possibly
2756 A ? B : B -> B triggers and the fold-const.c one can optimize
2757 0 ? A : B to B even if A has side-effects. Something
2758 genmatch cannot handle. */
2760 (cond INTEGER_CST@0 @1 @2)
2761 (if (integer_zerop (@0))
2762 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2764 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2767 (vec_cond VECTOR_CST@0 @1 @2)
2768 (if (integer_all_onesp (@0))
2770 (if (integer_zerop (@0))
2773 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2775 /* This pattern implements two kinds simplification:
2778 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2779 1) Conversions are type widening from smaller type.
2780 2) Const c1 equals to c2 after canonicalizing comparison.
2781 3) Comparison has tree code LT, LE, GT or GE.
2782 This specific pattern is needed when (cmp (convert x) c) may not
2783 be simplified by comparison patterns because of multiple uses of
2784 x. It also makes sense here because simplifying across multiple
2785 referred var is always benefitial for complicated cases.
2788 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2789 (for cmp (lt le gt ge eq)
2791 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2794 tree from_type = TREE_TYPE (@1);
2795 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2796 enum tree_code code = ERROR_MARK;
2798 if (INTEGRAL_TYPE_P (from_type)
2799 && int_fits_type_p (@2, from_type)
2800 && (types_match (c1_type, from_type)
2801 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2802 && (TYPE_UNSIGNED (from_type)
2803 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2804 && (types_match (c2_type, from_type)
2805 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2806 && (TYPE_UNSIGNED (from_type)
2807 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2811 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2813 /* X <= Y - 1 equals to X < Y. */
2816 /* X > Y - 1 equals to X >= Y. */
2820 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2822 /* X < Y + 1 equals to X <= Y. */
2825 /* X >= Y + 1 equals to X > Y. */
2829 if (code != ERROR_MARK
2830 || wi::to_widest (@2) == wi::to_widest (@3))
2832 if (cmp == LT_EXPR || cmp == LE_EXPR)
2834 if (cmp == GT_EXPR || cmp == GE_EXPR)
2838 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2839 else if (int_fits_type_p (@3, from_type))
2843 (if (code == MAX_EXPR)
2844 (convert (max @1 (convert @2)))
2845 (if (code == MIN_EXPR)
2846 (convert (min @1 (convert @2)))
2847 (if (code == EQ_EXPR)
2848 (convert (cond (eq @1 (convert @3))
2849 (convert:from_type @3) (convert:from_type @2)))))))))
2851 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2853 1) OP is PLUS or MINUS.
2854 2) CMP is LT, LE, GT or GE.
2855 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2857 This pattern also handles special cases like:
2859 A) Operand x is a unsigned to signed type conversion and c1 is
2860 integer zero. In this case,
2861 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2862 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2863 B) Const c1 may not equal to (C3 op' C2). In this case we also
2864 check equality for (c1+1) and (c1-1) by adjusting comparison
2867 TODO: Though signed type is handled by this pattern, it cannot be
2868 simplified at the moment because C standard requires additional
2869 type promotion. In order to match&simplify it here, the IR needs
2870 to be cleaned up by other optimizers, i.e, VRP. */
2871 (for op (plus minus)
2872 (for cmp (lt le gt ge)
2874 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2875 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2876 (if (types_match (from_type, to_type)
2877 /* Check if it is special case A). */
2878 || (TYPE_UNSIGNED (from_type)
2879 && !TYPE_UNSIGNED (to_type)
2880 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2881 && integer_zerop (@1)
2882 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2885 wi::overflow_type overflow = wi::OVF_NONE;
2886 enum tree_code code, cmp_code = cmp;
2888 wide_int c1 = wi::to_wide (@1);
2889 wide_int c2 = wi::to_wide (@2);
2890 wide_int c3 = wi::to_wide (@3);
2891 signop sgn = TYPE_SIGN (from_type);
2893 /* Handle special case A), given x of unsigned type:
2894 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2895 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2896 if (!types_match (from_type, to_type))
2898 if (cmp_code == LT_EXPR)
2900 if (cmp_code == GE_EXPR)
2902 c1 = wi::max_value (to_type);
2904 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2905 compute (c3 op' c2) and check if it equals to c1 with op' being
2906 the inverted operator of op. Make sure overflow doesn't happen
2907 if it is undefined. */
2908 if (op == PLUS_EXPR)
2909 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2911 real_c1 = wi::add (c3, c2, sgn, &overflow);
2914 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2916 /* Check if c1 equals to real_c1. Boundary condition is handled
2917 by adjusting comparison operation if necessary. */
2918 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2921 /* X <= Y - 1 equals to X < Y. */
2922 if (cmp_code == LE_EXPR)
2924 /* X > Y - 1 equals to X >= Y. */
2925 if (cmp_code == GT_EXPR)
2928 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2931 /* X < Y + 1 equals to X <= Y. */
2932 if (cmp_code == LT_EXPR)
2934 /* X >= Y + 1 equals to X > Y. */
2935 if (cmp_code == GE_EXPR)
2938 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2940 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2942 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2947 (if (code == MAX_EXPR)
2948 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2949 { wide_int_to_tree (from_type, c2); })
2950 (if (code == MIN_EXPR)
2951 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2952 { wide_int_to_tree (from_type, c2); })))))))))
2954 (for cnd (cond vec_cond)
2955 /* A ? B : (A ? X : C) -> A ? B : C. */
2957 (cnd @0 (cnd @0 @1 @2) @3)
2960 (cnd @0 @1 (cnd @0 @2 @3))
2962 /* A ? B : (!A ? C : X) -> A ? B : C. */
2963 /* ??? This matches embedded conditions open-coded because genmatch
2964 would generate matching code for conditions in separate stmts only.
2965 The following is still important to merge then and else arm cases
2966 from if-conversion. */
2968 (cnd @0 @1 (cnd @2 @3 @4))
2969 (if (inverse_conditions_p (@0, @2))
2972 (cnd @0 (cnd @1 @2 @3) @4)
2973 (if (inverse_conditions_p (@0, @1))
2976 /* A ? B : B -> B. */
2981 /* !A ? B : C -> A ? C : B. */
2983 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2986 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2987 return all -1 or all 0 results. */
2988 /* ??? We could instead convert all instances of the vec_cond to negate,
2989 but that isn't necessarily a win on its own. */
2991 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2992 (if (VECTOR_TYPE_P (type)
2993 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2994 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2995 && (TYPE_MODE (TREE_TYPE (type))
2996 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2997 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2999 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3001 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3002 (if (VECTOR_TYPE_P (type)
3003 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3004 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3005 && (TYPE_MODE (TREE_TYPE (type))
3006 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3007 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3010 /* Simplifications of comparisons. */
3012 /* See if we can reduce the magnitude of a constant involved in a
3013 comparison by changing the comparison code. This is a canonicalization
3014 formerly done by maybe_canonicalize_comparison_1. */
3018 (cmp @0 INTEGER_CST@1)
3019 (if (tree_int_cst_sgn (@1) == -1)
3020 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3024 (cmp @0 INTEGER_CST@1)
3025 (if (tree_int_cst_sgn (@1) == 1)
3026 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3029 /* We can simplify a logical negation of a comparison to the
3030 inverted comparison. As we cannot compute an expression
3031 operator using invert_tree_comparison we have to simulate
3032 that with expression code iteration. */
3033 (for cmp (tcc_comparison)
3034 icmp (inverted_tcc_comparison)
3035 ncmp (inverted_tcc_comparison_with_nans)
3036 /* Ideally we'd like to combine the following two patterns
3037 and handle some more cases by using
3038 (logical_inverted_value (cmp @0 @1))
3039 here but for that genmatch would need to "inline" that.
3040 For now implement what forward_propagate_comparison did. */
3042 (bit_not (cmp @0 @1))
3043 (if (VECTOR_TYPE_P (type)
3044 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3045 /* Comparison inversion may be impossible for trapping math,
3046 invert_tree_comparison will tell us. But we can't use
3047 a computed operator in the replacement tree thus we have
3048 to play the trick below. */
3049 (with { enum tree_code ic = invert_tree_comparison
3050 (cmp, HONOR_NANS (@0)); }
3056 (bit_xor (cmp @0 @1) integer_truep)
3057 (with { enum tree_code ic = invert_tree_comparison
3058 (cmp, HONOR_NANS (@0)); }
3064 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3065 ??? The transformation is valid for the other operators if overflow
3066 is undefined for the type, but performing it here badly interacts
3067 with the transformation in fold_cond_expr_with_comparison which
3068 attempts to synthetize ABS_EXPR. */
3070 (for sub (minus pointer_diff)
3072 (cmp (sub@2 @0 @1) integer_zerop)
3073 (if (single_use (@2))
3076 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3077 signed arithmetic case. That form is created by the compiler
3078 often enough for folding it to be of value. One example is in
3079 computing loop trip counts after Operator Strength Reduction. */
3080 (for cmp (simple_comparison)
3081 scmp (swapped_simple_comparison)
3083 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3084 /* Handle unfolded multiplication by zero. */
3085 (if (integer_zerop (@1))
3087 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3088 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3090 /* If @1 is negative we swap the sense of the comparison. */
3091 (if (tree_int_cst_sgn (@1) < 0)
3095 /* Simplify comparison of something with itself. For IEEE
3096 floating-point, we can only do some of these simplifications. */
3100 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3101 || ! HONOR_NANS (@0))
3102 { constant_boolean_node (true, type); }
3103 (if (cmp != EQ_EXPR)
3109 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3110 || ! HONOR_NANS (@0))
3111 { constant_boolean_node (false, type); })))
3112 (for cmp (unle unge uneq)
3115 { constant_boolean_node (true, type); }))
3116 (for cmp (unlt ungt)
3122 (if (!flag_trapping_math)
3123 { constant_boolean_node (false, type); }))
3125 /* Fold ~X op ~Y as Y op X. */
3126 (for cmp (simple_comparison)
3128 (cmp (bit_not@2 @0) (bit_not@3 @1))
3129 (if (single_use (@2) && single_use (@3))
3132 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3133 (for cmp (simple_comparison)
3134 scmp (swapped_simple_comparison)
3136 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3137 (if (single_use (@2)
3138 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3139 (scmp @0 (bit_not @1)))))
3141 (for cmp (simple_comparison)
3142 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3144 (cmp (convert@2 @0) (convert? @1))
3145 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3146 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3147 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3148 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3149 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3152 tree type1 = TREE_TYPE (@1);
3153 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3155 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3156 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3157 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3158 type1 = float_type_node;
3159 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3160 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3161 type1 = double_type_node;
3164 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3165 ? TREE_TYPE (@0) : type1);
3167 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3168 (cmp (convert:newtype @0) (convert:newtype @1))))))
3172 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3174 /* a CMP (-0) -> a CMP 0 */
3175 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3176 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3177 /* x != NaN is always true, other ops are always false. */
3178 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3179 && ! HONOR_SNANS (@1))
3180 { constant_boolean_node (cmp == NE_EXPR, type); })
3181 /* Fold comparisons against infinity. */
3182 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3183 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3186 REAL_VALUE_TYPE max;
3187 enum tree_code code = cmp;
3188 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3190 code = swap_tree_comparison (code);
3193 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3194 (if (code == GT_EXPR
3195 && !(HONOR_NANS (@0) && flag_trapping_math))
3196 { constant_boolean_node (false, type); })
3197 (if (code == LE_EXPR)
3198 /* x <= +Inf is always true, if we don't care about NaNs. */
3199 (if (! HONOR_NANS (@0))
3200 { constant_boolean_node (true, type); }
3201 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3202 an "invalid" exception. */
3203 (if (!flag_trapping_math)
3205 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3206 for == this introduces an exception for x a NaN. */
3207 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3209 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3211 (lt @0 { build_real (TREE_TYPE (@0), max); })
3212 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3213 /* x < +Inf is always equal to x <= DBL_MAX. */
3214 (if (code == LT_EXPR)
3215 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3217 (ge @0 { build_real (TREE_TYPE (@0), max); })
3218 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3219 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3220 an exception for x a NaN so use an unordered comparison. */
3221 (if (code == NE_EXPR)
3222 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3223 (if (! HONOR_NANS (@0))
3225 (ge @0 { build_real (TREE_TYPE (@0), max); })
3226 (le @0 { build_real (TREE_TYPE (@0), max); }))
3228 (unge @0 { build_real (TREE_TYPE (@0), max); })
3229 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3231 /* If this is a comparison of a real constant with a PLUS_EXPR
3232 or a MINUS_EXPR of a real constant, we can convert it into a
3233 comparison with a revised real constant as long as no overflow
3234 occurs when unsafe_math_optimizations are enabled. */
3235 (if (flag_unsafe_math_optimizations)
3236 (for op (plus minus)
3238 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3241 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3242 TREE_TYPE (@1), @2, @1);
3244 (if (tem && !TREE_OVERFLOW (tem))
3245 (cmp @0 { tem; }))))))
3247 /* Likewise, we can simplify a comparison of a real constant with
3248 a MINUS_EXPR whose first operand is also a real constant, i.e.
3249 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3250 floating-point types only if -fassociative-math is set. */
3251 (if (flag_associative_math)
3253 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3254 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3255 (if (tem && !TREE_OVERFLOW (tem))
3256 (cmp { tem; } @1)))))
3258 /* Fold comparisons against built-in math functions. */
3259 (if (flag_unsafe_math_optimizations
3260 && ! flag_errno_math)
3263 (cmp (sq @0) REAL_CST@1)
3265 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3267 /* sqrt(x) < y is always false, if y is negative. */
3268 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3269 { constant_boolean_node (false, type); })
3270 /* sqrt(x) > y is always true, if y is negative and we
3271 don't care about NaNs, i.e. negative values of x. */
3272 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3273 { constant_boolean_node (true, type); })
3274 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3275 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3276 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3278 /* sqrt(x) < 0 is always false. */
3279 (if (cmp == LT_EXPR)
3280 { constant_boolean_node (false, type); })
3281 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3282 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3283 { constant_boolean_node (true, type); })
3284 /* sqrt(x) <= 0 -> x == 0. */
3285 (if (cmp == LE_EXPR)
3287 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3288 == or !=. In the last case:
3290 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3292 if x is negative or NaN. Due to -funsafe-math-optimizations,
3293 the results for other x follow from natural arithmetic. */
3295 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3299 real_arithmetic (&c2, MULT_EXPR,
3300 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3301 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3303 (if (REAL_VALUE_ISINF (c2))
3304 /* sqrt(x) > y is x == +Inf, when y is very large. */
3305 (if (HONOR_INFINITIES (@0))
3306 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3307 { constant_boolean_node (false, type); })
3308 /* sqrt(x) > c is the same as x > c*c. */
3309 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3310 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3314 real_arithmetic (&c2, MULT_EXPR,
3315 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3316 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3318 (if (REAL_VALUE_ISINF (c2))
3320 /* sqrt(x) < y is always true, when y is a very large
3321 value and we don't care about NaNs or Infinities. */
3322 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3323 { constant_boolean_node (true, type); })
3324 /* sqrt(x) < y is x != +Inf when y is very large and we
3325 don't care about NaNs. */
3326 (if (! HONOR_NANS (@0))
3327 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3328 /* sqrt(x) < y is x >= 0 when y is very large and we
3329 don't care about Infinities. */
3330 (if (! HONOR_INFINITIES (@0))
3331 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3332 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3335 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3336 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3337 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3338 (if (! HONOR_NANS (@0))
3339 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3340 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3343 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3344 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3345 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3347 (cmp (sq @0) (sq @1))
3348 (if (! HONOR_NANS (@0))
3351 /* Optimize various special cases of (FTYPE) N CMP CST. */
3352 (for cmp (lt le eq ne ge gt)
3353 icmp (le le eq ne ge ge)
3355 (cmp (float @0) REAL_CST@1)
3356 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3357 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3360 tree itype = TREE_TYPE (@0);
3361 signop isign = TYPE_SIGN (itype);
3362 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3363 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3364 /* Be careful to preserve any potential exceptions due to
3365 NaNs. qNaNs are ok in == or != context.
3366 TODO: relax under -fno-trapping-math or
3367 -fno-signaling-nans. */
3369 = real_isnan (cst) && (cst->signalling
3370 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3371 /* INT?_MIN is power-of-two so it takes
3372 only one mantissa bit. */
3373 bool signed_p = isign == SIGNED;
3374 bool itype_fits_ftype_p
3375 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3377 /* TODO: allow non-fitting itype and SNaNs when
3378 -fno-trapping-math. */
3379 (if (itype_fits_ftype_p && ! exception_p)
3382 REAL_VALUE_TYPE imin, imax;
3383 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3384 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3386 REAL_VALUE_TYPE icst;
3387 if (cmp == GT_EXPR || cmp == GE_EXPR)
3388 real_ceil (&icst, fmt, cst);
3389 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3390 real_floor (&icst, fmt, cst);
3392 real_trunc (&icst, fmt, cst);
3394 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3396 bool overflow_p = false;
3398 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3401 /* Optimize cases when CST is outside of ITYPE's range. */
3402 (if (real_compare (LT_EXPR, cst, &imin))
3403 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3405 (if (real_compare (GT_EXPR, cst, &imax))
3406 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3408 /* Remove cast if CST is an integer representable by ITYPE. */
3410 (cmp @0 { gcc_assert (!overflow_p);
3411 wide_int_to_tree (itype, icst_val); })
3413 /* When CST is fractional, optimize
3414 (FTYPE) N == CST -> 0
3415 (FTYPE) N != CST -> 1. */
3416 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3417 { constant_boolean_node (cmp == NE_EXPR, type); })
3418 /* Otherwise replace with sensible integer constant. */
3421 gcc_checking_assert (!overflow_p);
3423 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3425 /* Fold A /[ex] B CMP C to A CMP B * C. */
3428 (cmp (exact_div @0 @1) INTEGER_CST@2)
3429 (if (!integer_zerop (@1))
3430 (if (wi::to_wide (@2) == 0)
3432 (if (TREE_CODE (@1) == INTEGER_CST)
3435 wi::overflow_type ovf;
3436 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3437 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3440 { constant_boolean_node (cmp == NE_EXPR, type); }
3441 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3442 (for cmp (lt le gt ge)
3444 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3445 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3448 wi::overflow_type ovf;
3449 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3450 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3453 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3454 TYPE_SIGN (TREE_TYPE (@2)))
3455 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3456 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3458 /* Unordered tests if either argument is a NaN. */
3460 (bit_ior (unordered @0 @0) (unordered @1 @1))
3461 (if (types_match (@0, @1))
3464 (bit_and (ordered @0 @0) (ordered @1 @1))
3465 (if (types_match (@0, @1))
3468 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3471 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3474 /* Simple range test simplifications. */
3475 /* A < B || A >= B -> true. */
3476 (for test1 (lt le le le ne ge)
3477 test2 (ge gt ge ne eq ne)
3479 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3480 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3481 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3482 { constant_boolean_node (true, type); })))
3483 /* A < B && A >= B -> false. */
3484 (for test1 (lt lt lt le ne eq)
3485 test2 (ge gt eq gt eq gt)
3487 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3488 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3489 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3490 { constant_boolean_node (false, type); })))
3492 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3493 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3495 Note that comparisons
3496 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3497 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3498 will be canonicalized to above so there's no need to
3505 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3506 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3509 tree ty = TREE_TYPE (@0);
3510 unsigned prec = TYPE_PRECISION (ty);
3511 wide_int mask = wi::to_wide (@2, prec);
3512 wide_int rhs = wi::to_wide (@3, prec);
3513 signop sgn = TYPE_SIGN (ty);
3515 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3516 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3517 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3518 { build_zero_cst (ty); }))))))
3520 /* -A CMP -B -> B CMP A. */
3521 (for cmp (tcc_comparison)
3522 scmp (swapped_tcc_comparison)
3524 (cmp (negate @0) (negate @1))
3525 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3526 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3527 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3530 (cmp (negate @0) CONSTANT_CLASS_P@1)
3531 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3532 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3533 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3534 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3535 (if (tem && !TREE_OVERFLOW (tem))
3536 (scmp @0 { tem; }))))))
3538 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3541 (op (abs @0) zerop@1)
3544 /* From fold_sign_changed_comparison and fold_widened_comparison.
3545 FIXME: the lack of symmetry is disturbing. */
3546 (for cmp (simple_comparison)
3548 (cmp (convert@0 @00) (convert?@1 @10))
3549 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3550 /* Disable this optimization if we're casting a function pointer
3551 type on targets that require function pointer canonicalization. */
3552 && !(targetm.have_canonicalize_funcptr_for_compare ()
3553 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3554 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3556 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3557 && (TREE_CODE (@10) == INTEGER_CST
3559 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3562 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3563 /* ??? The special-casing of INTEGER_CST conversion was in the original
3564 code and here to avoid a spurious overflow flag on the resulting
3565 constant which fold_convert produces. */
3566 (if (TREE_CODE (@1) == INTEGER_CST)
3567 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3568 TREE_OVERFLOW (@1)); })
3569 (cmp @00 (convert @1)))
3571 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3572 /* If possible, express the comparison in the shorter mode. */
3573 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3574 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3575 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3576 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3577 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3578 || ((TYPE_PRECISION (TREE_TYPE (@00))
3579 >= TYPE_PRECISION (TREE_TYPE (@10)))
3580 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3581 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3582 || (TREE_CODE (@10) == INTEGER_CST
3583 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3584 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3585 (cmp @00 (convert @10))
3586 (if (TREE_CODE (@10) == INTEGER_CST
3587 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3588 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3591 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3592 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3593 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3594 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3596 (if (above || below)
3597 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3598 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3599 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3600 { constant_boolean_node (above ? true : false, type); }
3601 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3602 { constant_boolean_node (above ? false : true, type); }))))))))))))
3605 /* A local variable can never be pointed to by
3606 the default SSA name of an incoming parameter.
3607 SSA names are canonicalized to 2nd place. */
3609 (cmp addr@0 SSA_NAME@1)
3610 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3611 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3612 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3613 (if (TREE_CODE (base) == VAR_DECL
3614 && auto_var_in_fn_p (base, current_function_decl))
3615 (if (cmp == NE_EXPR)
3616 { constant_boolean_node (true, type); }
3617 { constant_boolean_node (false, type); }))))))
3619 /* Equality compare simplifications from fold_binary */
3622 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3623 Similarly for NE_EXPR. */
3625 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3626 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3627 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3628 { constant_boolean_node (cmp == NE_EXPR, type); }))
3630 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3632 (cmp (bit_xor @0 @1) integer_zerop)
3635 /* (X ^ Y) == Y becomes X == 0.
3636 Likewise (X ^ Y) == X becomes Y == 0. */
3638 (cmp:c (bit_xor:c @0 @1) @0)
3639 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3641 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3643 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3644 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3645 (cmp @0 (bit_xor @1 (convert @2)))))
3648 (cmp (convert? addr@0) integer_zerop)
3649 (if (tree_single_nonzero_warnv_p (@0, NULL))
3650 { constant_boolean_node (cmp == NE_EXPR, type); })))
3652 /* If we have (A & C) == C where C is a power of 2, convert this into
3653 (A & C) != 0. Similarly for NE_EXPR. */
3657 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3658 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3660 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3661 convert this into a shift followed by ANDing with D. */
3664 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3665 INTEGER_CST@2 integer_zerop)
3666 (if (integer_pow2p (@2))
3668 int shift = (wi::exact_log2 (wi::to_wide (@2))
3669 - wi::exact_log2 (wi::to_wide (@1)));
3673 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3675 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3678 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3679 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3683 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3684 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3685 && type_has_mode_precision_p (TREE_TYPE (@0))
3686 && element_precision (@2) >= element_precision (@0)
3687 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3688 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3689 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3691 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3692 this into a right shift or sign extension followed by ANDing with C. */
3695 (lt @0 integer_zerop)
3696 INTEGER_CST@1 integer_zerop)
3697 (if (integer_pow2p (@1)
3698 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3700 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3704 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3706 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3707 sign extension followed by AND with C will achieve the effect. */
3708 (bit_and (convert @0) @1)))))
3710 /* When the addresses are not directly of decls compare base and offset.
3711 This implements some remaining parts of fold_comparison address
3712 comparisons but still no complete part of it. Still it is good
3713 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3714 (for cmp (simple_comparison)
3716 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3719 poly_int64 off0, off1;
3720 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3721 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3722 if (base0 && TREE_CODE (base0) == MEM_REF)
3724 off0 += mem_ref_offset (base0).force_shwi ();
3725 base0 = TREE_OPERAND (base0, 0);
3727 if (base1 && TREE_CODE (base1) == MEM_REF)
3729 off1 += mem_ref_offset (base1).force_shwi ();
3730 base1 = TREE_OPERAND (base1, 0);
3733 (if (base0 && base1)
3737 /* Punt in GENERIC on variables with value expressions;
3738 the value expressions might point to fields/elements
3739 of other vars etc. */
3741 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3742 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3744 else if (decl_in_symtab_p (base0)
3745 && decl_in_symtab_p (base1))
3746 equal = symtab_node::get_create (base0)
3747 ->equal_address_to (symtab_node::get_create (base1));
3748 else if ((DECL_P (base0)
3749 || TREE_CODE (base0) == SSA_NAME
3750 || TREE_CODE (base0) == STRING_CST)
3752 || TREE_CODE (base1) == SSA_NAME
3753 || TREE_CODE (base1) == STRING_CST))
3754 equal = (base0 == base1);
3757 && (cmp == EQ_EXPR || cmp == NE_EXPR
3758 /* If the offsets are equal we can ignore overflow. */
3759 || known_eq (off0, off1)
3760 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3761 /* Or if we compare using pointers to decls or strings. */
3762 || (POINTER_TYPE_P (TREE_TYPE (@2))
3763 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3765 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3766 { constant_boolean_node (known_eq (off0, off1), type); })
3767 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3768 { constant_boolean_node (known_ne (off0, off1), type); })
3769 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3770 { constant_boolean_node (known_lt (off0, off1), type); })
3771 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3772 { constant_boolean_node (known_le (off0, off1), type); })
3773 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3774 { constant_boolean_node (known_ge (off0, off1), type); })
3775 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3776 { constant_boolean_node (known_gt (off0, off1), type); }))
3778 && DECL_P (base0) && DECL_P (base1)
3779 /* If we compare this as integers require equal offset. */
3780 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3781 || known_eq (off0, off1)))
3783 (if (cmp == EQ_EXPR)
3784 { constant_boolean_node (false, type); })
3785 (if (cmp == NE_EXPR)
3786 { constant_boolean_node (true, type); })))))))))
3788 /* Simplify pointer equality compares using PTA. */
3792 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3793 && ptrs_compare_unequal (@0, @1))
3794 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3796 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3797 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3798 Disable the transform if either operand is pointer to function.
3799 This broke pr22051-2.c for arm where function pointer
3800 canonicalizaion is not wanted. */
3804 (cmp (convert @0) INTEGER_CST@1)
3805 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3806 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3807 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3808 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3809 && POINTER_TYPE_P (TREE_TYPE (@1))
3810 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3811 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3812 (cmp @0 (convert @1)))))
3814 /* Non-equality compare simplifications from fold_binary */
3815 (for cmp (lt gt le ge)
3816 /* Comparisons with the highest or lowest possible integer of
3817 the specified precision will have known values. */
3819 (cmp (convert?@2 @0) INTEGER_CST@1)
3820 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3821 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3824 tree arg1_type = TREE_TYPE (@1);
3825 unsigned int prec = TYPE_PRECISION (arg1_type);
3826 wide_int max = wi::max_value (arg1_type);
3827 wide_int signed_max = wi::max_value (prec, SIGNED);
3828 wide_int min = wi::min_value (arg1_type);
3831 (if (wi::to_wide (@1) == max)
3833 (if (cmp == GT_EXPR)
3834 { constant_boolean_node (false, type); })
3835 (if (cmp == GE_EXPR)
3837 (if (cmp == LE_EXPR)
3838 { constant_boolean_node (true, type); })
3839 (if (cmp == LT_EXPR)
3841 (if (wi::to_wide (@1) == min)
3843 (if (cmp == LT_EXPR)
3844 { constant_boolean_node (false, type); })
3845 (if (cmp == LE_EXPR)
3847 (if (cmp == GE_EXPR)
3848 { constant_boolean_node (true, type); })
3849 (if (cmp == GT_EXPR)
3851 (if (wi::to_wide (@1) == max - 1)
3853 (if (cmp == GT_EXPR)
3854 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3855 (if (cmp == LE_EXPR)
3856 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3857 (if (wi::to_wide (@1) == min + 1)
3859 (if (cmp == GE_EXPR)
3860 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3861 (if (cmp == LT_EXPR)
3862 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3863 (if (wi::to_wide (@1) == signed_max
3864 && TYPE_UNSIGNED (arg1_type)
3865 /* We will flip the signedness of the comparison operator
3866 associated with the mode of @1, so the sign bit is
3867 specified by this mode. Check that @1 is the signed
3868 max associated with this sign bit. */
3869 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3870 /* signed_type does not work on pointer types. */
3871 && INTEGRAL_TYPE_P (arg1_type))
3872 /* The following case also applies to X < signed_max+1
3873 and X >= signed_max+1 because previous transformations. */
3874 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3875 (with { tree st = signed_type_for (arg1_type); }
3876 (if (cmp == LE_EXPR)
3877 (ge (convert:st @0) { build_zero_cst (st); })
3878 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3880 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3881 /* If the second operand is NaN, the result is constant. */
3884 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3885 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3886 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3887 ? false : true, type); })))
3889 /* bool_var != 0 becomes bool_var. */
3891 (ne @0 integer_zerop)
3892 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3893 && types_match (type, TREE_TYPE (@0)))
3895 /* bool_var == 1 becomes bool_var. */
3897 (eq @0 integer_onep)
3898 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3899 && types_match (type, TREE_TYPE (@0)))
3902 bool_var == 0 becomes !bool_var or
3903 bool_var != 1 becomes !bool_var
3904 here because that only is good in assignment context as long
3905 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3906 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3907 clearly less optimal and which we'll transform again in forwprop. */
3909 /* When one argument is a constant, overflow detection can be simplified.
3910 Currently restricted to single use so as not to interfere too much with
3911 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3912 A + CST CMP A -> A CMP' CST' */
3913 (for cmp (lt le ge gt)
3916 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3917 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3918 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3919 && wi::to_wide (@1) != 0
3921 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3922 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3923 wi::max_value (prec, UNSIGNED)
3924 - wi::to_wide (@1)); })))))
3926 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3927 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3928 expects the long form, so we restrict the transformation for now. */
3931 (cmp:c (minus@2 @0 @1) @0)
3932 (if (single_use (@2)
3933 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3934 && TYPE_UNSIGNED (TREE_TYPE (@0))
3935 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3938 /* Testing for overflow is unnecessary if we already know the result. */
3943 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3944 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3945 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3946 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3951 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3952 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3953 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3954 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3956 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3957 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3961 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3962 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3963 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3964 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3966 /* Simplification of math builtins. These rules must all be optimizations
3967 as well as IL simplifications. If there is a possibility that the new
3968 form could be a pessimization, the rule should go in the canonicalization
3969 section that follows this one.
3971 Rules can generally go in this section if they satisfy one of
3974 - the rule describes an identity
3976 - the rule replaces calls with something as simple as addition or
3979 - the rule contains unary calls only and simplifies the surrounding
3980 arithmetic. (The idea here is to exclude non-unary calls in which
3981 one operand is constant and in which the call is known to be cheap
3982 when the operand has that value.) */
3984 (if (flag_unsafe_math_optimizations)
3985 /* Simplify sqrt(x) * sqrt(x) -> x. */
3987 (mult (SQRT_ALL@1 @0) @1)
3988 (if (!HONOR_SNANS (type))
3991 (for op (plus minus)
3992 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3996 (rdiv (op @0 @2) @1)))
3998 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3999 (for root (SQRT CBRT)
4001 (mult (root:s @0) (root:s @1))
4002 (root (mult @0 @1))))
4004 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4005 (for exps (EXP EXP2 EXP10 POW10)
4007 (mult (exps:s @0) (exps:s @1))
4008 (exps (plus @0 @1))))
4010 /* Simplify a/root(b/c) into a*root(c/b). */
4011 (for root (SQRT CBRT)
4013 (rdiv @0 (root:s (rdiv:s @1 @2)))
4014 (mult @0 (root (rdiv @2 @1)))))
4016 /* Simplify x/expN(y) into x*expN(-y). */
4017 (for exps (EXP EXP2 EXP10 POW10)
4019 (rdiv @0 (exps:s @1))
4020 (mult @0 (exps (negate @1)))))
4022 (for logs (LOG LOG2 LOG10 LOG10)
4023 exps (EXP EXP2 EXP10 POW10)
4024 /* logN(expN(x)) -> x. */
4028 /* expN(logN(x)) -> x. */
4033 /* Optimize logN(func()) for various exponential functions. We
4034 want to determine the value "x" and the power "exponent" in
4035 order to transform logN(x**exponent) into exponent*logN(x). */
4036 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4037 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4040 (if (SCALAR_FLOAT_TYPE_P (type))
4046 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4047 x = build_real_truncate (type, dconst_e ());
4050 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4051 x = build_real (type, dconst2);
4055 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4057 REAL_VALUE_TYPE dconst10;
4058 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4059 x = build_real (type, dconst10);
4066 (mult (logs { x; }) @0)))))
4074 (if (SCALAR_FLOAT_TYPE_P (type))
4080 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4081 x = build_real (type, dconsthalf);
4084 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4085 x = build_real_truncate (type, dconst_third ());
4091 (mult { x; } (logs @0))))))
4093 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4094 (for logs (LOG LOG2 LOG10)
4098 (mult @1 (logs @0))))
4100 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4101 or if C is a positive power of 2,
4102 pow(C,x) -> exp2(log2(C)*x). */
4110 (pows REAL_CST@0 @1)
4111 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4112 && real_isfinite (TREE_REAL_CST_PTR (@0))
4113 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4114 the use_exp2 case until after vectorization. It seems actually
4115 beneficial for all constants to postpone this until later,
4116 because exp(log(C)*x), while faster, will have worse precision
4117 and if x folds into a constant too, that is unnecessary
4119 && canonicalize_math_after_vectorization_p ())
4121 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4122 bool use_exp2 = false;
4123 if (targetm.libc_has_function (function_c99_misc)
4124 && value->cl == rvc_normal)
4126 REAL_VALUE_TYPE frac_rvt = *value;
4127 SET_REAL_EXP (&frac_rvt, 1);
4128 if (real_equal (&frac_rvt, &dconst1))
4133 (if (optimize_pow_to_exp (@0, @1))
4134 (exps (mult (logs @0) @1)))
4135 (exp2s (mult (log2s @0) @1)))))))
4138 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4140 exps (EXP EXP2 EXP10 POW10)
4141 logs (LOG LOG2 LOG10 LOG10)
4143 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4144 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4145 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4146 (exps (plus (mult (logs @0) @1) @2)))))
4151 exps (EXP EXP2 EXP10 POW10)
4152 /* sqrt(expN(x)) -> expN(x*0.5). */
4155 (exps (mult @0 { build_real (type, dconsthalf); })))
4156 /* cbrt(expN(x)) -> expN(x/3). */
4159 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4160 /* pow(expN(x), y) -> expN(x*y). */
4163 (exps (mult @0 @1))))
4165 /* tan(atan(x)) -> x. */
4172 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4174 (CABS (complex:C @0 real_zerop@1))
4177 /* trunc(trunc(x)) -> trunc(x), etc. */
4178 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4182 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4183 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4185 (fns integer_valued_real_p@0)
4188 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4190 (HYPOT:c @0 real_zerop@1)
4193 /* pow(1,x) -> 1. */
4195 (POW real_onep@0 @1)
4199 /* copysign(x,x) -> x. */
4200 (COPYSIGN_ALL @0 @0)
4204 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4205 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4208 (for scale (LDEXP SCALBN SCALBLN)
4209 /* ldexp(0, x) -> 0. */
4211 (scale real_zerop@0 @1)
4213 /* ldexp(x, 0) -> x. */
4215 (scale @0 integer_zerop@1)
4217 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4219 (scale REAL_CST@0 @1)
4220 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4223 /* Canonicalization of sequences of math builtins. These rules represent
4224 IL simplifications but are not necessarily optimizations.
4226 The sincos pass is responsible for picking "optimal" implementations
4227 of math builtins, which may be more complicated and can sometimes go
4228 the other way, e.g. converting pow into a sequence of sqrts.
4229 We only want to do these canonicalizations before the pass has run. */
4231 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4232 /* Simplify tan(x) * cos(x) -> sin(x). */
4234 (mult:c (TAN:s @0) (COS:s @0))
4237 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4239 (mult:c @0 (POW:s @0 REAL_CST@1))
4240 (if (!TREE_OVERFLOW (@1))
4241 (POW @0 (plus @1 { build_one_cst (type); }))))
4243 /* Simplify sin(x) / cos(x) -> tan(x). */
4245 (rdiv (SIN:s @0) (COS:s @0))
4248 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4250 (rdiv (COS:s @0) (SIN:s @0))
4251 (rdiv { build_one_cst (type); } (TAN @0)))
4253 /* Simplify sin(x) / tan(x) -> cos(x). */
4255 (rdiv (SIN:s @0) (TAN:s @0))
4256 (if (! HONOR_NANS (@0)
4257 && ! HONOR_INFINITIES (@0))
4260 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4262 (rdiv (TAN:s @0) (SIN:s @0))
4263 (if (! HONOR_NANS (@0)
4264 && ! HONOR_INFINITIES (@0))
4265 (rdiv { build_one_cst (type); } (COS @0))))
4267 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4269 (mult (POW:s @0 @1) (POW:s @0 @2))
4270 (POW @0 (plus @1 @2)))
4272 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4274 (mult (POW:s @0 @1) (POW:s @2 @1))
4275 (POW (mult @0 @2) @1))
4277 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4279 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4280 (POWI (mult @0 @2) @1))
4282 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4284 (rdiv (POW:s @0 REAL_CST@1) @0)
4285 (if (!TREE_OVERFLOW (@1))
4286 (POW @0 (minus @1 { build_one_cst (type); }))))
4288 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4290 (rdiv @0 (POW:s @1 @2))
4291 (mult @0 (POW @1 (negate @2))))
4296 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4299 (pows @0 { build_real (type, dconst_quarter ()); }))
4300 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4303 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4304 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4307 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4308 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4310 (cbrts (cbrts tree_expr_nonnegative_p@0))
4311 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4312 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4314 (sqrts (pows @0 @1))
4315 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4316 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4318 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4319 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4320 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4322 (pows (sqrts @0) @1)
4323 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4324 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4326 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4327 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4328 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4330 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4331 (pows @0 (mult @1 @2))))
4333 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4335 (CABS (complex @0 @0))
4336 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4338 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4341 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4343 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4348 (cexps compositional_complex@0)
4349 (if (targetm.libc_has_function (function_c99_math_complex))
4351 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4352 (mult @1 (imagpart @2)))))))
4354 (if (canonicalize_math_p ())
4355 /* floor(x) -> trunc(x) if x is nonnegative. */
4356 (for floors (FLOOR_ALL)
4359 (floors tree_expr_nonnegative_p@0)
4362 (match double_value_p
4364 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4365 (for froms (BUILT_IN_TRUNCL
4377 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4378 (if (optimize && canonicalize_math_p ())
4380 (froms (convert double_value_p@0))
4381 (convert (tos @0)))))
4383 (match float_value_p
4385 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4386 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4387 BUILT_IN_FLOORL BUILT_IN_FLOOR
4388 BUILT_IN_CEILL BUILT_IN_CEIL
4389 BUILT_IN_ROUNDL BUILT_IN_ROUND
4390 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4391 BUILT_IN_RINTL BUILT_IN_RINT)
4392 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4393 BUILT_IN_FLOORF BUILT_IN_FLOORF
4394 BUILT_IN_CEILF BUILT_IN_CEILF
4395 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4396 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4397 BUILT_IN_RINTF BUILT_IN_RINTF)
4398 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4400 (if (optimize && canonicalize_math_p ()
4401 && targetm.libc_has_function (function_c99_misc))
4403 (froms (convert float_value_p@0))
4404 (convert (tos @0)))))
4406 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4407 tos (XFLOOR XCEIL XROUND XRINT)
4408 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4409 (if (optimize && canonicalize_math_p ())
4411 (froms (convert double_value_p@0))
4414 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4415 XFLOOR XCEIL XROUND XRINT)
4416 tos (XFLOORF XCEILF XROUNDF XRINTF)
4417 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4419 (if (optimize && canonicalize_math_p ())
4421 (froms (convert float_value_p@0))
4424 (if (canonicalize_math_p ())
4425 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4426 (for floors (IFLOOR LFLOOR LLFLOOR)
4428 (floors tree_expr_nonnegative_p@0)
4431 (if (canonicalize_math_p ())
4432 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4433 (for fns (IFLOOR LFLOOR LLFLOOR
4435 IROUND LROUND LLROUND)
4437 (fns integer_valued_real_p@0)
4439 (if (!flag_errno_math)
4440 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4441 (for rints (IRINT LRINT LLRINT)
4443 (rints integer_valued_real_p@0)
4446 (if (canonicalize_math_p ())
4447 (for ifn (IFLOOR ICEIL IROUND IRINT)
4448 lfn (LFLOOR LCEIL LROUND LRINT)
4449 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4450 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4451 sizeof (int) == sizeof (long). */
4452 (if (TYPE_PRECISION (integer_type_node)
4453 == TYPE_PRECISION (long_integer_type_node))
4456 (lfn:long_integer_type_node @0)))
4457 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4458 sizeof (long long) == sizeof (long). */
4459 (if (TYPE_PRECISION (long_long_integer_type_node)
4460 == TYPE_PRECISION (long_integer_type_node))
4463 (lfn:long_integer_type_node @0)))))
4465 /* cproj(x) -> x if we're ignoring infinities. */
4468 (if (!HONOR_INFINITIES (type))
4471 /* If the real part is inf and the imag part is known to be
4472 nonnegative, return (inf + 0i). */
4474 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4475 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4476 { build_complex_inf (type, false); }))
4478 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4480 (CPROJ (complex @0 REAL_CST@1))
4481 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4482 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4488 (pows @0 REAL_CST@1)
4490 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4491 REAL_VALUE_TYPE tmp;
4494 /* pow(x,0) -> 1. */
4495 (if (real_equal (value, &dconst0))
4496 { build_real (type, dconst1); })
4497 /* pow(x,1) -> x. */
4498 (if (real_equal (value, &dconst1))
4500 /* pow(x,-1) -> 1/x. */
4501 (if (real_equal (value, &dconstm1))
4502 (rdiv { build_real (type, dconst1); } @0))
4503 /* pow(x,0.5) -> sqrt(x). */
4504 (if (flag_unsafe_math_optimizations
4505 && canonicalize_math_p ()
4506 && real_equal (value, &dconsthalf))
4508 /* pow(x,1/3) -> cbrt(x). */
4509 (if (flag_unsafe_math_optimizations
4510 && canonicalize_math_p ()
4511 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4512 real_equal (value, &tmp)))
4515 /* powi(1,x) -> 1. */
4517 (POWI real_onep@0 @1)
4521 (POWI @0 INTEGER_CST@1)
4523 /* powi(x,0) -> 1. */
4524 (if (wi::to_wide (@1) == 0)
4525 { build_real (type, dconst1); })
4526 /* powi(x,1) -> x. */
4527 (if (wi::to_wide (@1) == 1)
4529 /* powi(x,-1) -> 1/x. */
4530 (if (wi::to_wide (@1) == -1)
4531 (rdiv { build_real (type, dconst1); } @0))))
4533 /* Narrowing of arithmetic and logical operations.
4535 These are conceptually similar to the transformations performed for
4536 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4537 term we want to move all that code out of the front-ends into here. */
4539 /* If we have a narrowing conversion of an arithmetic operation where
4540 both operands are widening conversions from the same type as the outer
4541 narrowing conversion. Then convert the innermost operands to a suitable
4542 unsigned type (to avoid introducing undefined behavior), perform the
4543 operation and convert the result to the desired type. */
4544 (for op (plus minus)
4546 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4547 (if (INTEGRAL_TYPE_P (type)
4548 /* We check for type compatibility between @0 and @1 below,
4549 so there's no need to check that @1/@3 are integral types. */
4550 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4551 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4552 /* The precision of the type of each operand must match the
4553 precision of the mode of each operand, similarly for the
4555 && type_has_mode_precision_p (TREE_TYPE (@0))
4556 && type_has_mode_precision_p (TREE_TYPE (@1))
4557 && type_has_mode_precision_p (type)
4558 /* The inner conversion must be a widening conversion. */
4559 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4560 && types_match (@0, type)
4561 && (types_match (@0, @1)
4562 /* Or the second operand is const integer or converted const
4563 integer from valueize. */
4564 || TREE_CODE (@1) == INTEGER_CST))
4565 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4566 (op @0 (convert @1))
4567 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4568 (convert (op (convert:utype @0)
4569 (convert:utype @1))))))))
4571 /* This is another case of narrowing, specifically when there's an outer
4572 BIT_AND_EXPR which masks off bits outside the type of the innermost
4573 operands. Like the previous case we have to convert the operands
4574 to unsigned types to avoid introducing undefined behavior for the
4575 arithmetic operation. */
4576 (for op (minus plus)
4578 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4579 (if (INTEGRAL_TYPE_P (type)
4580 /* We check for type compatibility between @0 and @1 below,
4581 so there's no need to check that @1/@3 are integral types. */
4582 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4583 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4584 /* The precision of the type of each operand must match the
4585 precision of the mode of each operand, similarly for the
4587 && type_has_mode_precision_p (TREE_TYPE (@0))
4588 && type_has_mode_precision_p (TREE_TYPE (@1))
4589 && type_has_mode_precision_p (type)
4590 /* The inner conversion must be a widening conversion. */
4591 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4592 && types_match (@0, @1)
4593 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4594 <= TYPE_PRECISION (TREE_TYPE (@0)))
4595 && (wi::to_wide (@4)
4596 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4597 true, TYPE_PRECISION (type))) == 0)
4598 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4599 (with { tree ntype = TREE_TYPE (@0); }
4600 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4601 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4602 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4603 (convert:utype @4))))))))
4605 /* Transform (@0 < @1 and @0 < @2) to use min,
4606 (@0 > @1 and @0 > @2) to use max */
4607 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4608 op (lt le gt ge lt le gt ge )
4609 ext (min min max max max max min min )
4611 (logic (op:cs @0 @1) (op:cs @0 @2))
4612 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4613 && TREE_CODE (@0) != INTEGER_CST)
4614 (op @0 (ext @1 @2)))))
4617 /* signbit(x) -> 0 if x is nonnegative. */
4618 (SIGNBIT tree_expr_nonnegative_p@0)
4619 { integer_zero_node; })
4622 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4624 (if (!HONOR_SIGNED_ZEROS (@0))
4625 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4627 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4629 (for op (plus minus)
4632 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4633 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4634 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4635 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4636 && !TYPE_SATURATING (TREE_TYPE (@0)))
4637 (with { tree res = int_const_binop (rop, @2, @1); }
4638 (if (TREE_OVERFLOW (res)
4639 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4640 { constant_boolean_node (cmp == NE_EXPR, type); }
4641 (if (single_use (@3))
4642 (cmp @0 { TREE_OVERFLOW (res)
4643 ? drop_tree_overflow (res) : res; }))))))))
4644 (for cmp (lt le gt ge)
4645 (for op (plus minus)
4648 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4649 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4650 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4651 (with { tree res = int_const_binop (rop, @2, @1); }
4652 (if (TREE_OVERFLOW (res))
4654 fold_overflow_warning (("assuming signed overflow does not occur "
4655 "when simplifying conditional to constant"),
4656 WARN_STRICT_OVERFLOW_CONDITIONAL);
4657 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4658 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4659 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4660 TYPE_SIGN (TREE_TYPE (@1)))
4661 != (op == MINUS_EXPR);
4662 constant_boolean_node (less == ovf_high, type);
4664 (if (single_use (@3))
4667 fold_overflow_warning (("assuming signed overflow does not occur "
4668 "when changing X +- C1 cmp C2 to "
4670 WARN_STRICT_OVERFLOW_COMPARISON);
4672 (cmp @0 { res; })))))))))
4674 /* Canonicalizations of BIT_FIELD_REFs. */
4677 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4678 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4681 (BIT_FIELD_REF (view_convert @0) @1 @2)
4682 (BIT_FIELD_REF @0 @1 @2))
4685 (BIT_FIELD_REF @0 @1 integer_zerop)
4686 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4690 (BIT_FIELD_REF @0 @1 @2)
4692 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4693 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4695 (if (integer_zerop (@2))
4696 (view_convert (realpart @0)))
4697 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4698 (view_convert (imagpart @0)))))
4699 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4700 && INTEGRAL_TYPE_P (type)
4701 /* On GIMPLE this should only apply to register arguments. */
4702 && (! GIMPLE || is_gimple_reg (@0))
4703 /* A bit-field-ref that referenced the full argument can be stripped. */
4704 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4705 && integer_zerop (@2))
4706 /* Low-parts can be reduced to integral conversions.
4707 ??? The following doesn't work for PDP endian. */
4708 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4709 /* Don't even think about BITS_BIG_ENDIAN. */
4710 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4711 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4712 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4713 ? (TYPE_PRECISION (TREE_TYPE (@0))
4714 - TYPE_PRECISION (type))
4718 /* Simplify vector extracts. */
4721 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4722 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4723 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4724 || (VECTOR_TYPE_P (type)
4725 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4728 tree ctor = (TREE_CODE (@0) == SSA_NAME
4729 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4730 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4731 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4732 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4733 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4736 && (idx % width) == 0
4738 && known_le ((idx + n) / width,
4739 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4744 /* Constructor elements can be subvectors. */
4746 if (CONSTRUCTOR_NELTS (ctor) != 0)
4748 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4749 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4750 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4752 unsigned HOST_WIDE_INT elt, count, const_k;
4755 /* We keep an exact subset of the constructor elements. */
4756 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4757 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4758 { build_constructor (type, NULL); }
4760 (if (elt < CONSTRUCTOR_NELTS (ctor))
4761 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4762 { build_zero_cst (type); })
4764 vec<constructor_elt, va_gc> *vals;
4765 vec_alloc (vals, count);
4766 for (unsigned i = 0;
4767 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4768 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4769 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4770 build_constructor (type, vals);
4772 /* The bitfield references a single constructor element. */
4773 (if (k.is_constant (&const_k)
4774 && idx + n <= (idx / const_k + 1) * const_k)
4776 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4777 { build_zero_cst (type); })
4779 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4780 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4781 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4783 /* Simplify a bit extraction from a bit insertion for the cases with
4784 the inserted element fully covering the extraction or the insertion
4785 not touching the extraction. */
4787 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4790 unsigned HOST_WIDE_INT isize;
4791 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4792 isize = TYPE_PRECISION (TREE_TYPE (@1));
4794 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4797 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4798 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4799 wi::to_wide (@ipos) + isize))
4800 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4802 - wi::to_wide (@ipos)); }))
4803 (if (wi::geu_p (wi::to_wide (@ipos),
4804 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4805 || wi::geu_p (wi::to_wide (@rpos),
4806 wi::to_wide (@ipos) + isize))
4807 (BIT_FIELD_REF @0 @rsize @rpos)))))
4809 (if (canonicalize_math_after_vectorization_p ())
4812 (fmas:c (negate @0) @1 @2)
4813 (IFN_FNMA @0 @1 @2))
4815 (fmas @0 @1 (negate @2))
4818 (fmas:c (negate @0) @1 (negate @2))
4819 (IFN_FNMS @0 @1 @2))
4821 (negate (fmas@3 @0 @1 @2))
4822 (if (single_use (@3))
4823 (IFN_FNMS @0 @1 @2))))
4826 (IFN_FMS:c (negate @0) @1 @2)
4827 (IFN_FNMS @0 @1 @2))
4829 (IFN_FMS @0 @1 (negate @2))
4832 (IFN_FMS:c (negate @0) @1 (negate @2))
4833 (IFN_FNMA @0 @1 @2))
4835 (negate (IFN_FMS@3 @0 @1 @2))
4836 (if (single_use (@3))
4837 (IFN_FNMA @0 @1 @2)))
4840 (IFN_FNMA:c (negate @0) @1 @2)
4843 (IFN_FNMA @0 @1 (negate @2))
4844 (IFN_FNMS @0 @1 @2))
4846 (IFN_FNMA:c (negate @0) @1 (negate @2))
4849 (negate (IFN_FNMA@3 @0 @1 @2))
4850 (if (single_use (@3))
4851 (IFN_FMS @0 @1 @2)))
4854 (IFN_FNMS:c (negate @0) @1 @2)
4857 (IFN_FNMS @0 @1 (negate @2))
4858 (IFN_FNMA @0 @1 @2))
4860 (IFN_FNMS:c (negate @0) @1 (negate @2))
4863 (negate (IFN_FNMS@3 @0 @1 @2))
4864 (if (single_use (@3))
4865 (IFN_FMA @0 @1 @2))))
4867 /* POPCOUNT simplifications. */
4868 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4869 BUILT_IN_POPCOUNTIMAX)
4870 /* popcount(X&1) is nop_expr(X&1). */
4873 (if (tree_nonzero_bits (@0) == 1)
4875 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4877 (plus (popcount:s @0) (popcount:s @1))
4878 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4879 (popcount (bit_ior @0 @1))))
4880 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4881 (for cmp (le eq ne gt)
4884 (cmp (popcount @0) integer_zerop)
4885 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
4894 r = c ? a1 op a2 : b;
4896 if the target can do it in one go. This makes the operation conditional
4897 on c, so could drop potentially-trapping arithmetic, but that's a valid
4898 simplification if the result of the operation isn't needed. */
4899 (for uncond_op (UNCOND_BINARY)
4900 cond_op (COND_BINARY)
4902 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
4903 (with { tree op_type = TREE_TYPE (@4); }
4904 (if (element_precision (type) == element_precision (op_type))
4905 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
4907 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
4908 (with { tree op_type = TREE_TYPE (@4); }
4909 (if (element_precision (type) == element_precision (op_type))
4910 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
4912 /* Same for ternary operations. */
4913 (for uncond_op (UNCOND_TERNARY)
4914 cond_op (COND_TERNARY)
4916 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
4917 (with { tree op_type = TREE_TYPE (@5); }
4918 (if (element_precision (type) == element_precision (op_type))
4919 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
4921 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
4922 (with { tree op_type = TREE_TYPE (@5); }
4923 (if (element_precision (type) == element_precision (op_type))
4924 (view_convert (cond_op (bit_not @0) @2 @3 @4
4925 (view_convert:op_type @1)))))))
4927 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
4928 "else" value of an IFN_COND_*. */
4929 (for cond_op (COND_BINARY)
4931 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
4932 (with { tree op_type = TREE_TYPE (@3); }
4933 (if (element_precision (type) == element_precision (op_type))
4934 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
4936 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
4937 (with { tree op_type = TREE_TYPE (@5); }
4938 (if (inverse_conditions_p (@0, @2)
4939 && element_precision (type) == element_precision (op_type))
4940 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
4942 /* Same for ternary operations. */
4943 (for cond_op (COND_TERNARY)
4945 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
4946 (with { tree op_type = TREE_TYPE (@4); }
4947 (if (element_precision (type) == element_precision (op_type))
4948 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
4950 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
4951 (with { tree op_type = TREE_TYPE (@6); }
4952 (if (inverse_conditions_p (@0, @2)
4953 && element_precision (type) == element_precision (op_type))
4954 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
4956 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
4959 A: (@0 + @1 < @2) | (@2 + @1 < @0)
4960 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
4962 If pointers are known not to wrap, B checks whether @1 bytes starting
4963 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
4964 bytes. A is more efficiently tested as:
4966 A: (sizetype) (@0 + @1 - @2) > @1 * 2
4968 The equivalent expression for B is given by replacing @1 with @1 - 1:
4970 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
4972 @0 and @2 can be swapped in both expressions without changing the result.
4974 The folds rely on sizetype's being unsigned (which is always true)
4975 and on its being the same width as the pointer (which we have to check).
4977 The fold replaces two pointer_plus expressions, two comparisons and
4978 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
4979 the best case it's a saving of two operations. The A fold retains one
4980 of the original pointer_pluses, so is a win even if both pointer_pluses
4981 are used elsewhere. The B fold is a wash if both pointer_pluses are
4982 used elsewhere, since all we end up doing is replacing a comparison with
4983 a pointer_plus. We do still apply the fold under those circumstances
4984 though, in case applying it to other conditions eventually makes one of the
4985 pointer_pluses dead. */
4986 (for ior (truth_orif truth_or bit_ior)
4989 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
4990 (cmp:cs (pointer_plus@4 @2 @1) @0))
4991 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4992 && TYPE_OVERFLOW_WRAPS (sizetype)
4993 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
4994 /* Calculate the rhs constant. */
4995 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
4996 offset_int rhs = off * 2; }
4997 /* Always fails for negative values. */
4998 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
4999 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5000 pick a canonical order. This increases the chances of using the
5001 same pointer_plus in multiple checks. */
5002 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5003 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5004 (if (cmp == LT_EXPR)
5005 (gt (convert:sizetype
5006 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5007 { swap_p ? @0 : @2; }))
5009 (gt (convert:sizetype
5010 (pointer_diff:ssizetype
5011 (pointer_plus { swap_p ? @2 : @0; }
5012 { wide_int_to_tree (sizetype, off); })
5013 { swap_p ? @0 : @2; }))
5014 { rhs_tree; })))))))))