2008-07-29 Manuel Lopez-Ibanez <manu@gcc.gnu.org>
[official-gcc.git] / gcc / tree-predcom.c
blob63911b3dbe51871cb7db49ac8ed9df9648fcb1a1
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
31 Let us demonstrate what is done on an example:
33 for (i = 0; i < 100; i++)
35 a[i+2] = a[i] + a[i+1];
36 b[10] = b[10] + i;
37 c[i] = c[99 - i];
38 d[i] = d[i + 1];
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
67 In our example, we get the following chains (the chain for c is invalid).
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
82 reuse),
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
93 e[i] + f[i+1] + e[i+1] + f[i]
95 can be reassociated as
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
99 and we can combine the chains for e and f into one chain.
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 upto RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
104 R0 .. R(N-1).
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
119 f = phi (a[0], s);
120 s = phi (a[1], f);
121 x = phi (b[10], x);
123 f = f + s;
124 a[i+2] = f;
125 x = x + i;
126 b[10] = x;
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
140 In our case, F = 2 and the (main loop of the) result is
142 for (i = 0; i < ...; i += 2)
144 f = phi (a[0], f);
145 s = phi (a[1], s);
146 x = phi (b[10], x);
148 f = f + s;
149 a[i+2] = f;
150 x = x + i;
151 b[10] = x;
153 s = s + f;
154 a[i+3] = s;
155 x = x + i;
156 b[10] = x;
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
162 a[i] = 1;
163 a[i+2] = 2;
166 can be replaced with
168 t0 = a[0];
169 t1 = a[1];
170 for (i = 0; i < n; i++)
172 a[i] = 1;
173 t2 = 2;
174 t0 = t1;
175 t1 = t2;
177 a[n] = t0;
178 a[n+1] = t1;
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187 #include "config.h"
188 #include "system.h"
189 #include "coretypes.h"
190 #include "tm.h"
191 #include "tree.h"
192 #include "tm_p.h"
193 #include "cfgloop.h"
194 #include "tree-flow.h"
195 #include "ggc.h"
196 #include "tree-data-ref.h"
197 #include "tree-scalar-evolution.h"
198 #include "tree-chrec.h"
199 #include "params.h"
200 #include "diagnostic.h"
201 #include "tree-pass.h"
202 #include "tree-affine.h"
203 #include "tree-inline.h"
205 /* The maximum number of iterations between the considered memory
206 references. */
208 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
210 /* Data references (or phi nodes that carry data reference values across
211 loop iterations). */
213 typedef struct dref
215 /* The reference itself. */
216 struct data_reference *ref;
218 /* The statement in that the reference appears. */
219 gimple stmt;
221 /* In case that STMT is a phi node, this field is set to the SSA name
222 defined by it in replace_phis_by_defined_names (in order to avoid
223 pointing to phi node that got reallocated in the meantime). */
224 tree name_defined_by_phi;
226 /* Distance of the reference from the root of the chain (in number of
227 iterations of the loop). */
228 unsigned distance;
230 /* Number of iterations offset from the first reference in the component. */
231 double_int offset;
233 /* Number of the reference in a component, in dominance ordering. */
234 unsigned pos;
236 /* True if the memory reference is always accessed when the loop is
237 entered. */
238 unsigned always_accessed : 1;
239 } *dref;
241 DEF_VEC_P (dref);
242 DEF_VEC_ALLOC_P (dref, heap);
244 /* Type of the chain of the references. */
246 enum chain_type
248 /* The addresses of the references in the chain are constant. */
249 CT_INVARIANT,
251 /* There are only loads in the chain. */
252 CT_LOAD,
254 /* Root of the chain is store, the rest are loads. */
255 CT_STORE_LOAD,
257 /* A combination of two chains. */
258 CT_COMBINATION
261 /* Chains of data references. */
263 typedef struct chain
265 /* Type of the chain. */
266 enum chain_type type;
268 /* For combination chains, the operator and the two chains that are
269 combined, and the type of the result. */
270 enum tree_code operator;
271 tree rslt_type;
272 struct chain *ch1, *ch2;
274 /* The references in the chain. */
275 VEC(dref,heap) *refs;
277 /* The maximum distance of the reference in the chain from the root. */
278 unsigned length;
280 /* The variables used to copy the value throughout iterations. */
281 VEC(tree,heap) *vars;
283 /* Initializers for the variables. */
284 VEC(tree,heap) *inits;
286 /* True if there is a use of a variable with the maximal distance
287 that comes after the root in the loop. */
288 unsigned has_max_use_after : 1;
290 /* True if all the memory references in the chain are always accessed. */
291 unsigned all_always_accessed : 1;
293 /* True if this chain was combined together with some other chain. */
294 unsigned combined : 1;
295 } *chain_p;
297 DEF_VEC_P (chain_p);
298 DEF_VEC_ALLOC_P (chain_p, heap);
300 /* Describes the knowledge about the step of the memory references in
301 the component. */
303 enum ref_step_type
305 /* The step is zero. */
306 RS_INVARIANT,
308 /* The step is nonzero. */
309 RS_NONZERO,
311 /* The step may or may not be nonzero. */
312 RS_ANY
315 /* Components of the data dependence graph. */
317 struct component
319 /* The references in the component. */
320 VEC(dref,heap) *refs;
322 /* What we know about the step of the references in the component. */
323 enum ref_step_type comp_step;
325 /* Next component in the list. */
326 struct component *next;
329 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
331 static bitmap looparound_phis;
333 /* Cache used by tree_to_aff_combination_expand. */
335 static struct pointer_map_t *name_expansions;
337 /* Dumps data reference REF to FILE. */
339 extern void dump_dref (FILE *, dref);
340 void
341 dump_dref (FILE *file, dref ref)
343 if (ref->ref)
345 fprintf (file, " ");
346 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
347 fprintf (file, " (id %u%s)\n", ref->pos,
348 DR_IS_READ (ref->ref) ? "" : ", write");
350 fprintf (file, " offset ");
351 dump_double_int (file, ref->offset, false);
352 fprintf (file, "\n");
354 fprintf (file, " distance %u\n", ref->distance);
356 else
358 if (gimple_code (ref->stmt) == GIMPLE_PHI)
359 fprintf (file, " looparound ref\n");
360 else
361 fprintf (file, " combination ref\n");
362 fprintf (file, " in statement ");
363 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
364 fprintf (file, "\n");
365 fprintf (file, " distance %u\n", ref->distance);
370 /* Dumps CHAIN to FILE. */
372 extern void dump_chain (FILE *, chain_p);
373 void
374 dump_chain (FILE *file, chain_p chain)
376 dref a;
377 const char *chain_type;
378 unsigned i;
379 tree var;
381 switch (chain->type)
383 case CT_INVARIANT:
384 chain_type = "Load motion";
385 break;
387 case CT_LOAD:
388 chain_type = "Loads-only";
389 break;
391 case CT_STORE_LOAD:
392 chain_type = "Store-loads";
393 break;
395 case CT_COMBINATION:
396 chain_type = "Combination";
397 break;
399 default:
400 gcc_unreachable ();
403 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
404 chain->combined ? " (combined)" : "");
405 if (chain->type != CT_INVARIANT)
406 fprintf (file, " max distance %u%s\n", chain->length,
407 chain->has_max_use_after ? "" : ", may reuse first");
409 if (chain->type == CT_COMBINATION)
411 fprintf (file, " equal to %p %s %p in type ",
412 (void *) chain->ch1, op_symbol_code (chain->operator),
413 (void *) chain->ch2);
414 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
415 fprintf (file, "\n");
418 if (chain->vars)
420 fprintf (file, " vars");
421 for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
423 fprintf (file, " ");
424 print_generic_expr (file, var, TDF_SLIM);
426 fprintf (file, "\n");
429 if (chain->inits)
431 fprintf (file, " inits");
432 for (i = 0; VEC_iterate (tree, chain->inits, i, var); i++)
434 fprintf (file, " ");
435 print_generic_expr (file, var, TDF_SLIM);
437 fprintf (file, "\n");
440 fprintf (file, " references:\n");
441 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
442 dump_dref (file, a);
444 fprintf (file, "\n");
447 /* Dumps CHAINS to FILE. */
449 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
450 void
451 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
453 chain_p chain;
454 unsigned i;
456 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
457 dump_chain (file, chain);
460 /* Dumps COMP to FILE. */
462 extern void dump_component (FILE *, struct component *);
463 void
464 dump_component (FILE *file, struct component *comp)
466 dref a;
467 unsigned i;
469 fprintf (file, "Component%s:\n",
470 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
471 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
472 dump_dref (file, a);
473 fprintf (file, "\n");
476 /* Dumps COMPS to FILE. */
478 extern void dump_components (FILE *, struct component *);
479 void
480 dump_components (FILE *file, struct component *comps)
482 struct component *comp;
484 for (comp = comps; comp; comp = comp->next)
485 dump_component (file, comp);
488 /* Frees a chain CHAIN. */
490 static void
491 release_chain (chain_p chain)
493 dref ref;
494 unsigned i;
496 if (chain == NULL)
497 return;
499 for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
500 free (ref);
502 VEC_free (dref, heap, chain->refs);
503 VEC_free (tree, heap, chain->vars);
504 VEC_free (tree, heap, chain->inits);
506 free (chain);
509 /* Frees CHAINS. */
511 static void
512 release_chains (VEC (chain_p, heap) *chains)
514 unsigned i;
515 chain_p chain;
517 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
518 release_chain (chain);
519 VEC_free (chain_p, heap, chains);
522 /* Frees a component COMP. */
524 static void
525 release_component (struct component *comp)
527 VEC_free (dref, heap, comp->refs);
528 free (comp);
531 /* Frees list of components COMPS. */
533 static void
534 release_components (struct component *comps)
536 struct component *act, *next;
538 for (act = comps; act; act = next)
540 next = act->next;
541 release_component (act);
545 /* Finds a root of tree given by FATHERS containing A, and performs path
546 shortening. */
548 static unsigned
549 component_of (unsigned fathers[], unsigned a)
551 unsigned root, n;
553 for (root = a; root != fathers[root]; root = fathers[root])
554 continue;
556 for (; a != root; a = n)
558 n = fathers[a];
559 fathers[a] = root;
562 return root;
565 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
566 components, A and B are components to merge. */
568 static void
569 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
571 unsigned ca = component_of (fathers, a);
572 unsigned cb = component_of (fathers, b);
574 if (ca == cb)
575 return;
577 if (sizes[ca] < sizes[cb])
579 sizes[cb] += sizes[ca];
580 fathers[ca] = cb;
582 else
584 sizes[ca] += sizes[cb];
585 fathers[cb] = ca;
589 /* Returns true if A is a reference that is suitable for predictive commoning
590 in the innermost loop that contains it. REF_STEP is set according to the
591 step of the reference A. */
593 static bool
594 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
596 tree ref = DR_REF (a), step = DR_STEP (a);
598 if (!step
599 || !is_gimple_reg_type (TREE_TYPE (ref))
600 || tree_could_throw_p (ref))
601 return false;
603 if (integer_zerop (step))
604 *ref_step = RS_INVARIANT;
605 else if (integer_nonzerop (step))
606 *ref_step = RS_NONZERO;
607 else
608 *ref_step = RS_ANY;
610 return true;
613 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
615 static void
616 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
618 aff_tree delta;
620 tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset,
621 &name_expansions);
622 aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr)));
623 aff_combination_add (offset, &delta);
626 /* Determines number of iterations of the innermost enclosing loop before B
627 refers to exactly the same location as A and stores it to OFF. If A and
628 B do not have the same step, they never meet, or anything else fails,
629 returns false, otherwise returns true. Both A and B are assumed to
630 satisfy suitable_reference_p. */
632 static bool
633 determine_offset (struct data_reference *a, struct data_reference *b,
634 double_int *off)
636 aff_tree diff, baseb, step;
637 tree typea, typeb;
639 /* Check that both the references access the location in the same type. */
640 typea = TREE_TYPE (DR_REF (a));
641 typeb = TREE_TYPE (DR_REF (b));
642 if (!useless_type_conversion_p (typeb, typea))
643 return false;
645 /* Check whether the base address and the step of both references is the
646 same. */
647 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
648 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
649 return false;
651 if (integer_zerop (DR_STEP (a)))
653 /* If the references have loop invariant address, check that they access
654 exactly the same location. */
655 *off = double_int_zero;
656 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
657 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
660 /* Compare the offsets of the addresses, and check whether the difference
661 is a multiple of step. */
662 aff_combination_dr_offset (a, &diff);
663 aff_combination_dr_offset (b, &baseb);
664 aff_combination_scale (&baseb, double_int_minus_one);
665 aff_combination_add (&diff, &baseb);
667 tree_to_aff_combination_expand (DR_STEP (a), sizetype,
668 &step, &name_expansions);
669 return aff_combination_constant_multiple_p (&diff, &step, off);
672 /* Returns the last basic block in LOOP for that we are sure that
673 it is executed whenever the loop is entered. */
675 static basic_block
676 last_always_executed_block (struct loop *loop)
678 unsigned i;
679 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
680 edge ex;
681 basic_block last = loop->latch;
683 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
684 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
685 VEC_free (edge, heap, exits);
687 return last;
690 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
692 static struct component *
693 split_data_refs_to_components (struct loop *loop,
694 VEC (data_reference_p, heap) *datarefs,
695 VEC (ddr_p, heap) *depends)
697 unsigned i, n = VEC_length (data_reference_p, datarefs);
698 unsigned ca, ia, ib, bad;
699 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
700 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
701 struct component **comps;
702 struct data_reference *dr, *dra, *drb;
703 struct data_dependence_relation *ddr;
704 struct component *comp_list = NULL, *comp;
705 dref dataref;
706 basic_block last_always_executed = last_always_executed_block (loop);
708 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
710 if (!DR_REF (dr))
712 /* A fake reference for call or asm_expr that may clobber memory;
713 just fail. */
714 goto end;
716 dr->aux = (void *) (size_t) i;
717 comp_father[i] = i;
718 comp_size[i] = 1;
721 /* A component reserved for the "bad" data references. */
722 comp_father[n] = n;
723 comp_size[n] = 1;
725 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
727 enum ref_step_type dummy;
729 if (!suitable_reference_p (dr, &dummy))
731 ia = (unsigned) (size_t) dr->aux;
732 merge_comps (comp_father, comp_size, n, ia);
736 for (i = 0; VEC_iterate (ddr_p, depends, i, ddr); i++)
738 double_int dummy_off;
740 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
741 continue;
743 dra = DDR_A (ddr);
744 drb = DDR_B (ddr);
745 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
746 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
747 if (ia == ib)
748 continue;
750 bad = component_of (comp_father, n);
752 /* If both A and B are reads, we may ignore unsuitable dependences. */
753 if (DR_IS_READ (dra) && DR_IS_READ (drb)
754 && (ia == bad || ib == bad
755 || !determine_offset (dra, drb, &dummy_off)))
756 continue;
758 merge_comps (comp_father, comp_size, ia, ib);
761 comps = XCNEWVEC (struct component *, n);
762 bad = component_of (comp_father, n);
763 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
765 ia = (unsigned) (size_t) dr->aux;
766 ca = component_of (comp_father, ia);
767 if (ca == bad)
768 continue;
770 comp = comps[ca];
771 if (!comp)
773 comp = XCNEW (struct component);
774 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
775 comps[ca] = comp;
778 dataref = XCNEW (struct dref);
779 dataref->ref = dr;
780 dataref->stmt = DR_STMT (dr);
781 dataref->offset = double_int_zero;
782 dataref->distance = 0;
784 dataref->always_accessed
785 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
786 gimple_bb (dataref->stmt));
787 dataref->pos = VEC_length (dref, comp->refs);
788 VEC_quick_push (dref, comp->refs, dataref);
791 for (i = 0; i < n; i++)
793 comp = comps[i];
794 if (comp)
796 comp->next = comp_list;
797 comp_list = comp;
800 free (comps);
802 end:
803 free (comp_father);
804 free (comp_size);
805 return comp_list;
808 /* Returns true if the component COMP satisfies the conditions
809 described in 2) at the beginning of this file. LOOP is the current
810 loop. */
812 static bool
813 suitable_component_p (struct loop *loop, struct component *comp)
815 unsigned i;
816 dref a, first;
817 basic_block ba, bp = loop->header;
818 bool ok, has_write = false;
820 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
822 ba = gimple_bb (a->stmt);
824 if (!just_once_each_iteration_p (loop, ba))
825 return false;
827 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
828 bp = ba;
830 if (!DR_IS_READ (a->ref))
831 has_write = true;
834 first = VEC_index (dref, comp->refs, 0);
835 ok = suitable_reference_p (first->ref, &comp->comp_step);
836 gcc_assert (ok);
837 first->offset = double_int_zero;
839 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
841 if (!determine_offset (first->ref, a->ref, &a->offset))
842 return false;
844 #ifdef ENABLE_CHECKING
846 enum ref_step_type a_step;
847 ok = suitable_reference_p (a->ref, &a_step);
848 gcc_assert (ok && a_step == comp->comp_step);
850 #endif
853 /* If there is a write inside the component, we must know whether the
854 step is nonzero or not -- we would not otherwise be able to recognize
855 whether the value accessed by reads comes from the OFFSET-th iteration
856 or the previous one. */
857 if (has_write && comp->comp_step == RS_ANY)
858 return false;
860 return true;
863 /* Check the conditions on references inside each of components COMPS,
864 and remove the unsuitable components from the list. The new list
865 of components is returned. The conditions are described in 2) at
866 the beginning of this file. LOOP is the current loop. */
868 static struct component *
869 filter_suitable_components (struct loop *loop, struct component *comps)
871 struct component **comp, *act;
873 for (comp = &comps; *comp; )
875 act = *comp;
876 if (suitable_component_p (loop, act))
877 comp = &act->next;
878 else
880 *comp = act->next;
881 release_component (act);
885 return comps;
888 /* Compares two drefs A and B by their offset and position. Callback for
889 qsort. */
891 static int
892 order_drefs (const void *a, const void *b)
894 const dref *const da = (const dref *) a;
895 const dref *const db = (const dref *) b;
896 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
898 if (offcmp != 0)
899 return offcmp;
901 return (*da)->pos - (*db)->pos;
904 /* Returns root of the CHAIN. */
906 static inline dref
907 get_chain_root (chain_p chain)
909 return VEC_index (dref, chain->refs, 0);
912 /* Adds REF to the chain CHAIN. */
914 static void
915 add_ref_to_chain (chain_p chain, dref ref)
917 dref root = get_chain_root (chain);
918 double_int dist;
920 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
921 dist = double_int_add (ref->offset, double_int_neg (root->offset));
922 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
923 return;
924 gcc_assert (double_int_fits_in_uhwi_p (dist));
926 VEC_safe_push (dref, heap, chain->refs, ref);
928 ref->distance = double_int_to_uhwi (dist);
930 if (ref->distance >= chain->length)
932 chain->length = ref->distance;
933 chain->has_max_use_after = false;
936 if (ref->distance == chain->length
937 && ref->pos > root->pos)
938 chain->has_max_use_after = true;
940 chain->all_always_accessed &= ref->always_accessed;
943 /* Returns the chain for invariant component COMP. */
945 static chain_p
946 make_invariant_chain (struct component *comp)
948 chain_p chain = XCNEW (struct chain);
949 unsigned i;
950 dref ref;
952 chain->type = CT_INVARIANT;
954 chain->all_always_accessed = true;
956 for (i = 0; VEC_iterate (dref, comp->refs, i, ref); i++)
958 VEC_safe_push (dref, heap, chain->refs, ref);
959 chain->all_always_accessed &= ref->always_accessed;
962 return chain;
965 /* Make a new chain rooted at REF. */
967 static chain_p
968 make_rooted_chain (dref ref)
970 chain_p chain = XCNEW (struct chain);
972 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
974 VEC_safe_push (dref, heap, chain->refs, ref);
975 chain->all_always_accessed = ref->always_accessed;
977 ref->distance = 0;
979 return chain;
982 /* Returns true if CHAIN is not trivial. */
984 static bool
985 nontrivial_chain_p (chain_p chain)
987 return chain != NULL && VEC_length (dref, chain->refs) > 1;
990 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
991 is no such name. */
993 static tree
994 name_for_ref (dref ref)
996 tree name;
998 if (is_gimple_assign (ref->stmt))
1000 if (!ref->ref || DR_IS_READ (ref->ref))
1001 name = gimple_assign_lhs (ref->stmt);
1002 else
1003 name = gimple_assign_rhs1 (ref->stmt);
1005 else
1006 name = PHI_RESULT (ref->stmt);
1008 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1011 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1012 iterations of the innermost enclosing loop). */
1014 static bool
1015 valid_initializer_p (struct data_reference *ref,
1016 unsigned distance, struct data_reference *root)
1018 aff_tree diff, base, step;
1019 double_int off;
1021 if (!DR_BASE_ADDRESS (ref))
1022 return false;
1024 /* Both REF and ROOT must be accessing the same object. */
1025 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1026 return false;
1028 /* The initializer is defined outside of loop, hence its address must be
1029 invariant inside the loop. */
1030 gcc_assert (integer_zerop (DR_STEP (ref)));
1032 /* If the address of the reference is invariant, initializer must access
1033 exactly the same location. */
1034 if (integer_zerop (DR_STEP (root)))
1035 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1036 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1038 /* Verify that this index of REF is equal to the root's index at
1039 -DISTANCE-th iteration. */
1040 aff_combination_dr_offset (root, &diff);
1041 aff_combination_dr_offset (ref, &base);
1042 aff_combination_scale (&base, double_int_minus_one);
1043 aff_combination_add (&diff, &base);
1045 tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step,
1046 &name_expansions);
1047 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1048 return false;
1050 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1051 return false;
1053 return true;
1056 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1057 initial value is correct (equal to initial value of REF shifted by one
1058 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1059 is the root of the current chain. */
1061 static gimple
1062 find_looparound_phi (struct loop *loop, dref ref, dref root)
1064 tree name, init, init_ref;
1065 gimple phi = NULL, init_stmt;
1066 edge latch = loop_latch_edge (loop);
1067 struct data_reference init_dr;
1068 gimple_stmt_iterator psi;
1070 if (is_gimple_assign (ref->stmt))
1072 if (DR_IS_READ (ref->ref))
1073 name = gimple_assign_lhs (ref->stmt);
1074 else
1075 name = gimple_assign_rhs1 (ref->stmt);
1077 else
1078 name = PHI_RESULT (ref->stmt);
1079 if (!name)
1080 return NULL;
1082 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1084 phi = gsi_stmt (psi);
1085 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1086 break;
1089 if (gsi_end_p (psi))
1090 return NULL;
1092 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1093 if (TREE_CODE (init) != SSA_NAME)
1094 return NULL;
1095 init_stmt = SSA_NAME_DEF_STMT (init);
1096 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1097 return NULL;
1098 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1100 init_ref = gimple_assign_rhs1 (init_stmt);
1101 if (!REFERENCE_CLASS_P (init_ref)
1102 && !DECL_P (init_ref))
1103 return NULL;
1105 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1106 loop enclosing PHI). */
1107 memset (&init_dr, 0, sizeof (struct data_reference));
1108 DR_REF (&init_dr) = init_ref;
1109 DR_STMT (&init_dr) = phi;
1110 dr_analyze_innermost (&init_dr);
1112 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1113 return NULL;
1115 return phi;
1118 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1120 static void
1121 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1123 dref nw = XCNEW (struct dref), aref;
1124 unsigned i;
1126 nw->stmt = phi;
1127 nw->distance = ref->distance + 1;
1128 nw->always_accessed = 1;
1130 for (i = 0; VEC_iterate (dref, chain->refs, i, aref); i++)
1131 if (aref->distance >= nw->distance)
1132 break;
1133 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1135 if (nw->distance > chain->length)
1137 chain->length = nw->distance;
1138 chain->has_max_use_after = false;
1142 /* For references in CHAIN that are copied around the LOOP (created previously
1143 by PRE, or by user), add the results of such copies to the chain. This
1144 enables us to remove the copies by unrolling, and may need less registers
1145 (also, it may allow us to combine chains together). */
1147 static void
1148 add_looparound_copies (struct loop *loop, chain_p chain)
1150 unsigned i;
1151 dref ref, root = get_chain_root (chain);
1152 gimple phi;
1154 for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
1156 phi = find_looparound_phi (loop, ref, root);
1157 if (!phi)
1158 continue;
1160 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1161 insert_looparound_copy (chain, ref, phi);
1165 /* Find roots of the values and determine distances in the component COMP.
1166 The references are redistributed into CHAINS. LOOP is the current
1167 loop. */
1169 static void
1170 determine_roots_comp (struct loop *loop,
1171 struct component *comp,
1172 VEC (chain_p, heap) **chains)
1174 unsigned i;
1175 dref a;
1176 chain_p chain = NULL;
1178 /* Invariants are handled specially. */
1179 if (comp->comp_step == RS_INVARIANT)
1181 chain = make_invariant_chain (comp);
1182 VEC_safe_push (chain_p, heap, *chains, chain);
1183 return;
1186 qsort (VEC_address (dref, comp->refs), VEC_length (dref, comp->refs),
1187 sizeof (dref), order_drefs);
1189 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
1191 if (!chain || !DR_IS_READ (a->ref))
1193 if (nontrivial_chain_p (chain))
1194 VEC_safe_push (chain_p, heap, *chains, chain);
1195 else
1196 release_chain (chain);
1197 chain = make_rooted_chain (a);
1198 continue;
1201 add_ref_to_chain (chain, a);
1204 if (nontrivial_chain_p (chain))
1206 add_looparound_copies (loop, chain);
1207 VEC_safe_push (chain_p, heap, *chains, chain);
1209 else
1210 release_chain (chain);
1213 /* Find roots of the values and determine distances in components COMPS, and
1214 separates the references to CHAINS. LOOP is the current loop. */
1216 static void
1217 determine_roots (struct loop *loop,
1218 struct component *comps, VEC (chain_p, heap) **chains)
1220 struct component *comp;
1222 for (comp = comps; comp; comp = comp->next)
1223 determine_roots_comp (loop, comp, chains);
1226 /* Replace the reference in statement STMT with temporary variable
1227 NEW. If SET is true, NEW is instead initialized to the value of
1228 the reference in the statement. IN_LHS is true if the reference
1229 is in the lhs of STMT, false if it is in rhs. */
1231 static void
1232 replace_ref_with (gimple stmt, tree new, bool set, bool in_lhs)
1234 tree val;
1235 gimple new_stmt;
1236 gimple_stmt_iterator bsi, psi;
1238 if (gimple_code (stmt) == GIMPLE_PHI)
1240 gcc_assert (!in_lhs && !set);
1242 val = PHI_RESULT (stmt);
1243 bsi = gsi_after_labels (gimple_bb (stmt));
1244 psi = gsi_for_stmt (stmt);
1245 remove_phi_node (&psi, false);
1247 /* Turn the phi node into GIMPLE_ASSIGN. */
1248 new_stmt = gimple_build_assign (val, new);
1249 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1250 return;
1253 /* Since the reference is of gimple_reg type, it should only
1254 appear as lhs or rhs of modify statement. */
1255 gcc_assert (is_gimple_assign (stmt));
1257 bsi = gsi_for_stmt (stmt);
1259 /* If we do not need to initialize NEW, just replace the use of OLD. */
1260 if (!set)
1262 gcc_assert (!in_lhs);
1263 gimple_assign_set_rhs_from_tree (&bsi, new);
1264 stmt = gsi_stmt (bsi);
1265 update_stmt (stmt);
1266 return;
1269 if (in_lhs)
1271 /* We have statement
1273 OLD = VAL
1275 If OLD is a memory reference, then VAL is gimple_val, and we transform
1276 this to
1278 OLD = VAL
1279 NEW = VAL
1281 Otherwise, we are replacing a combination chain,
1282 VAL is the expression that performs the combination, and OLD is an
1283 SSA name. In this case, we transform the assignment to
1285 OLD = VAL
1286 NEW = OLD
1290 val = gimple_assign_lhs (stmt);
1291 if (TREE_CODE (val) != SSA_NAME)
1293 gcc_assert (gimple_assign_copy_p (stmt));
1294 val = gimple_assign_rhs1 (stmt);
1297 else
1299 /* VAL = OLD
1301 is transformed to
1303 VAL = OLD
1304 NEW = VAL */
1306 val = gimple_assign_lhs (stmt);
1309 new_stmt = gimple_build_assign (new, unshare_expr (val));
1310 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1313 /* Returns the reference to the address of REF in the ITER-th iteration of
1314 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1315 try to preserve the original shape of the reference (not rewrite it
1316 as an indirect ref to the address), to make tree_could_trap_p in
1317 prepare_initializers_chain return false more often. */
1319 static tree
1320 ref_at_iteration (struct loop *loop, tree ref, int iter)
1322 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1323 affine_iv iv;
1324 bool ok;
1326 if (handled_component_p (ref))
1328 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1329 if (!op0)
1330 return NULL_TREE;
1332 else if (!INDIRECT_REF_P (ref))
1333 return unshare_expr (ref);
1335 if (TREE_CODE (ref) == INDIRECT_REF)
1337 ret = build1 (INDIRECT_REF, TREE_TYPE (ref), NULL_TREE);
1338 idx = TREE_OPERAND (ref, 0);
1339 idx_p = &TREE_OPERAND (ret, 0);
1341 else if (TREE_CODE (ref) == COMPONENT_REF)
1343 /* Check that the offset is loop invariant. */
1344 if (TREE_OPERAND (ref, 2)
1345 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1346 return NULL_TREE;
1348 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1349 unshare_expr (TREE_OPERAND (ref, 1)),
1350 unshare_expr (TREE_OPERAND (ref, 2)));
1352 else if (TREE_CODE (ref) == ARRAY_REF)
1354 /* Check that the lower bound and the step are loop invariant. */
1355 if (TREE_OPERAND (ref, 2)
1356 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1357 return NULL_TREE;
1358 if (TREE_OPERAND (ref, 3)
1359 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1360 return NULL_TREE;
1362 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1363 unshare_expr (TREE_OPERAND (ref, 2)),
1364 unshare_expr (TREE_OPERAND (ref, 3)));
1365 idx = TREE_OPERAND (ref, 1);
1366 idx_p = &TREE_OPERAND (ret, 1);
1368 else
1369 return NULL_TREE;
1371 ok = simple_iv (loop, first_stmt (loop->header), idx, &iv, true);
1372 if (!ok)
1373 return NULL_TREE;
1374 iv.base = expand_simple_operations (iv.base);
1375 if (integer_zerop (iv.step))
1376 *idx_p = unshare_expr (iv.base);
1377 else
1379 type = TREE_TYPE (iv.base);
1380 if (POINTER_TYPE_P (type))
1382 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1383 size_int (iter));
1384 val = fold_build2 (POINTER_PLUS_EXPR, type, iv.base, val);
1386 else
1388 val = fold_build2 (MULT_EXPR, type, iv.step,
1389 build_int_cst_type (type, iter));
1390 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1392 *idx_p = unshare_expr (val);
1395 return ret;
1398 /* Get the initialization expression for the INDEX-th temporary variable
1399 of CHAIN. */
1401 static tree
1402 get_init_expr (chain_p chain, unsigned index)
1404 if (chain->type == CT_COMBINATION)
1406 tree e1 = get_init_expr (chain->ch1, index);
1407 tree e2 = get_init_expr (chain->ch2, index);
1409 return fold_build2 (chain->operator, chain->rslt_type, e1, e2);
1411 else
1412 return VEC_index (tree, chain->inits, index);
1415 /* Marks all virtual operands of statement STMT for renaming. */
1417 void
1418 mark_virtual_ops_for_renaming (gimple stmt)
1420 ssa_op_iter iter;
1421 tree var;
1423 if (gimple_code (stmt) == GIMPLE_PHI)
1425 var = PHI_RESULT (stmt);
1426 if (is_gimple_reg (var))
1427 return;
1429 if (TREE_CODE (var) == SSA_NAME)
1430 var = SSA_NAME_VAR (var);
1431 mark_sym_for_renaming (var);
1432 return;
1435 update_stmt (stmt);
1437 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_VIRTUALS)
1439 if (TREE_CODE (var) == SSA_NAME)
1440 var = SSA_NAME_VAR (var);
1441 mark_sym_for_renaming (var);
1445 /* Calls mark_virtual_ops_for_renaming for all members of LIST. */
1447 static void
1448 mark_virtual_ops_for_renaming_list (gimple_seq list)
1450 gimple_stmt_iterator gsi;
1452 for (gsi = gsi_start (list); !gsi_end_p (gsi); gsi_next (&gsi))
1453 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
1456 /* Returns a new temporary variable used for the I-th variable carrying
1457 value of REF. The variable's uid is marked in TMP_VARS. */
1459 static tree
1460 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1462 tree type = TREE_TYPE (ref);
1463 tree var = create_tmp_var (type, get_lsm_tmp_name (ref, i));
1465 /* We never access the components of the temporary variable in predictive
1466 commoning. */
1467 if (TREE_CODE (type) == COMPLEX_TYPE
1468 || TREE_CODE (type) == VECTOR_TYPE)
1469 DECL_GIMPLE_REG_P (var) = 1;
1471 add_referenced_var (var);
1472 bitmap_set_bit (tmp_vars, DECL_UID (var));
1473 return var;
1476 /* Creates the variables for CHAIN, as well as phi nodes for them and
1477 initialization on entry to LOOP. Uids of the newly created
1478 temporary variables are marked in TMP_VARS. */
1480 static void
1481 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1483 unsigned i;
1484 unsigned n = chain->length;
1485 dref root = get_chain_root (chain);
1486 bool reuse_first = !chain->has_max_use_after;
1487 tree ref, init, var, next;
1488 gimple phi;
1489 gimple_seq stmts;
1490 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1492 /* If N == 0, then all the references are within the single iteration. And
1493 since this is an nonempty chain, reuse_first cannot be true. */
1494 gcc_assert (n > 0 || !reuse_first);
1496 chain->vars = VEC_alloc (tree, heap, n + 1);
1498 if (chain->type == CT_COMBINATION)
1499 ref = gimple_assign_lhs (root->stmt);
1500 else
1501 ref = DR_REF (root->ref);
1503 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1505 var = predcom_tmp_var (ref, i, tmp_vars);
1506 VEC_quick_push (tree, chain->vars, var);
1508 if (reuse_first)
1509 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1511 for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
1512 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1514 for (i = 0; i < n; i++)
1516 var = VEC_index (tree, chain->vars, i);
1517 next = VEC_index (tree, chain->vars, i + 1);
1518 init = get_init_expr (chain, i);
1520 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1521 if (stmts)
1523 mark_virtual_ops_for_renaming_list (stmts);
1524 gsi_insert_seq_on_edge_immediate (entry, stmts);
1527 phi = create_phi_node (var, loop->header);
1528 SSA_NAME_DEF_STMT (var) = phi;
1529 add_phi_arg (phi, init, entry);
1530 add_phi_arg (phi, next, latch);
1534 /* Create the variables and initialization statement for root of chain
1535 CHAIN. Uids of the newly created temporary variables are marked
1536 in TMP_VARS. */
1538 static void
1539 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1541 dref root = get_chain_root (chain);
1542 bool in_lhs = (chain->type == CT_STORE_LOAD
1543 || chain->type == CT_COMBINATION);
1545 initialize_root_vars (loop, chain, tmp_vars);
1546 replace_ref_with (root->stmt,
1547 VEC_index (tree, chain->vars, chain->length),
1548 true, in_lhs);
1551 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1552 initialization on entry to LOOP if necessary. The ssa name for the variable
1553 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1554 around the loop is created. Uid of the newly created temporary variable
1555 is marked in TMP_VARS. INITS is the list containing the (single)
1556 initializer. */
1558 static void
1559 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1560 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1561 bitmap tmp_vars)
1563 unsigned i;
1564 tree ref = DR_REF (root->ref), init, var, next;
1565 gimple_seq stmts;
1566 gimple phi;
1567 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1569 /* Find the initializer for the variable, and check that it cannot
1570 trap. */
1571 init = VEC_index (tree, inits, 0);
1573 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1574 var = predcom_tmp_var (ref, 0, tmp_vars);
1575 VEC_quick_push (tree, *vars, var);
1576 if (written)
1577 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1579 for (i = 0; VEC_iterate (tree, *vars, i, var); i++)
1580 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1582 var = VEC_index (tree, *vars, 0);
1584 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1585 if (stmts)
1587 mark_virtual_ops_for_renaming_list (stmts);
1588 gsi_insert_seq_on_edge_immediate (entry, stmts);
1591 if (written)
1593 next = VEC_index (tree, *vars, 1);
1594 phi = create_phi_node (var, loop->header);
1595 SSA_NAME_DEF_STMT (var) = phi;
1596 add_phi_arg (phi, init, entry);
1597 add_phi_arg (phi, next, latch);
1599 else
1601 gimple init_stmt = gimple_build_assign (var, init);
1602 mark_virtual_ops_for_renaming (init_stmt);
1603 gsi_insert_on_edge_immediate (entry, init_stmt);
1608 /* Execute load motion for references in chain CHAIN. Uids of the newly
1609 created temporary variables are marked in TMP_VARS. */
1611 static void
1612 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1614 VEC (tree, heap) *vars;
1615 dref a;
1616 unsigned n_writes = 0, ridx, i;
1617 tree var;
1619 gcc_assert (chain->type == CT_INVARIANT);
1620 gcc_assert (!chain->combined);
1621 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
1622 if (!DR_IS_READ (a->ref))
1623 n_writes++;
1625 /* If there are no reads in the loop, there is nothing to do. */
1626 if (n_writes == VEC_length (dref, chain->refs))
1627 return;
1629 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1630 &vars, chain->inits, tmp_vars);
1632 ridx = 0;
1633 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
1635 bool is_read = DR_IS_READ (a->ref);
1636 mark_virtual_ops_for_renaming (a->stmt);
1638 if (!DR_IS_READ (a->ref))
1640 n_writes--;
1641 if (n_writes)
1643 var = VEC_index (tree, vars, 0);
1644 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1645 VEC_replace (tree, vars, 0, var);
1647 else
1648 ridx = 1;
1651 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1652 !is_read, !is_read);
1655 VEC_free (tree, heap, vars);
1658 /* Returns the single statement in that NAME is used, excepting
1659 the looparound phi nodes contained in one of the chains. If there is no
1660 such statement, or more statements, NULL is returned. */
1662 static gimple
1663 single_nonlooparound_use (tree name)
1665 use_operand_p use;
1666 imm_use_iterator it;
1667 gimple stmt, ret = NULL;
1669 FOR_EACH_IMM_USE_FAST (use, it, name)
1671 stmt = USE_STMT (use);
1673 if (gimple_code (stmt) == GIMPLE_PHI)
1675 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1676 could not be processed anyway, so just fail for them. */
1677 if (bitmap_bit_p (looparound_phis,
1678 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1679 continue;
1681 return NULL;
1683 else if (ret != NULL)
1684 return NULL;
1685 else
1686 ret = stmt;
1689 return ret;
1692 /* Remove statement STMT, as well as the chain of assignments in that it is
1693 used. */
1695 static void
1696 remove_stmt (gimple stmt)
1698 tree name;
1699 gimple next;
1700 gimple_stmt_iterator psi;
1702 if (gimple_code (stmt) == GIMPLE_PHI)
1704 name = PHI_RESULT (stmt);
1705 next = single_nonlooparound_use (name);
1706 psi = gsi_for_stmt (stmt);
1707 remove_phi_node (&psi, true);
1709 if (!next
1710 || !gimple_assign_copy_p (next)
1711 || gimple_assign_rhs1 (next) != name)
1712 return;
1714 stmt = next;
1717 while (1)
1719 gimple_stmt_iterator bsi;
1721 bsi = gsi_for_stmt (stmt);
1723 name = gimple_assign_lhs (stmt);
1724 gcc_assert (TREE_CODE (name) == SSA_NAME);
1726 next = single_nonlooparound_use (name);
1728 mark_virtual_ops_for_renaming (stmt);
1729 gsi_remove (&bsi, true);
1731 if (!next
1732 || !gimple_assign_copy_p (next)
1733 || gimple_assign_rhs1 (next) != name)
1734 return;
1736 stmt = next;
1740 /* Perform the predictive commoning optimization for a chain CHAIN.
1741 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1743 static void
1744 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1745 bitmap tmp_vars)
1747 unsigned i;
1748 dref a, root;
1749 tree var;
1751 if (chain->combined)
1753 /* For combined chains, just remove the statements that are used to
1754 compute the values of the expression (except for the root one). */
1755 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1756 remove_stmt (a->stmt);
1758 else
1760 /* For non-combined chains, set up the variables that hold its value,
1761 and replace the uses of the original references by these
1762 variables. */
1763 root = get_chain_root (chain);
1764 mark_virtual_ops_for_renaming (root->stmt);
1766 initialize_root (loop, chain, tmp_vars);
1767 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1769 mark_virtual_ops_for_renaming (a->stmt);
1770 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1771 replace_ref_with (a->stmt, var, false, false);
1776 /* Determines the unroll factor necessary to remove as many temporary variable
1777 copies as possible. CHAINS is the list of chains that will be
1778 optimized. */
1780 static unsigned
1781 determine_unroll_factor (VEC (chain_p, heap) *chains)
1783 chain_p chain;
1784 unsigned factor = 1, af, nfactor, i;
1785 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1787 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1789 if (chain->type == CT_INVARIANT || chain->combined)
1790 continue;
1792 /* The best unroll factor for this chain is equal to the number of
1793 temporary variables that we create for it. */
1794 af = chain->length;
1795 if (chain->has_max_use_after)
1796 af++;
1798 nfactor = factor * af / gcd (factor, af);
1799 if (nfactor <= max)
1800 factor = nfactor;
1803 return factor;
1806 /* Perform the predictive commoning optimization for CHAINS.
1807 Uids of the newly created temporary variables are marked in TMP_VARS. */
1809 static void
1810 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1811 bitmap tmp_vars)
1813 chain_p chain;
1814 unsigned i;
1816 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1818 if (chain->type == CT_INVARIANT)
1819 execute_load_motion (loop, chain, tmp_vars);
1820 else
1821 execute_pred_commoning_chain (loop, chain, tmp_vars);
1824 update_ssa (TODO_update_ssa_only_virtuals);
1827 /* For each reference in CHAINS, if its defining statement is
1828 phi node, record the ssa name that is defined by it. */
1830 static void
1831 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1833 chain_p chain;
1834 dref a;
1835 unsigned i, j;
1837 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1838 for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
1840 if (gimple_code (a->stmt) == GIMPLE_PHI)
1842 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1843 a->stmt = NULL;
1848 /* For each reference in CHAINS, if name_defined_by_phi is not
1849 NULL, use it to set the stmt field. */
1851 static void
1852 replace_names_by_phis (VEC (chain_p, heap) *chains)
1854 chain_p chain;
1855 dref a;
1856 unsigned i, j;
1858 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1859 for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
1860 if (a->stmt == NULL)
1862 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1863 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1864 a->name_defined_by_phi = NULL_TREE;
1868 /* Wrapper over execute_pred_commoning, to pass it as a callback
1869 to tree_transform_and_unroll_loop. */
1871 struct epcc_data
1873 VEC (chain_p, heap) *chains;
1874 bitmap tmp_vars;
1877 static void
1878 execute_pred_commoning_cbck (struct loop *loop, void *data)
1880 struct epcc_data *const dta = (struct epcc_data *) data;
1882 /* Restore phi nodes that were replaced by ssa names before
1883 tree_transform_and_unroll_loop (see detailed description in
1884 tree_predictive_commoning_loop). */
1885 replace_names_by_phis (dta->chains);
1886 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1889 /* Returns true if we can and should unroll LOOP FACTOR times. Number
1890 of iterations of the loop is returned in NITER. */
1892 static bool
1893 should_unroll_loop_p (struct loop *loop, unsigned factor,
1894 struct tree_niter_desc *niter)
1896 edge exit;
1898 if (factor == 1)
1899 return false;
1901 /* Check whether unrolling is possible. We only want to unroll loops
1902 for that we are able to determine number of iterations. We also
1903 want to split the extra iterations of the loop from its end,
1904 therefore we require that the loop has precisely one
1905 exit. */
1907 exit = single_dom_exit (loop);
1908 if (!exit)
1909 return false;
1911 if (!number_of_iterations_exit (loop, exit, niter, false))
1912 return false;
1914 /* And of course, we must be able to duplicate the loop. */
1915 if (!can_duplicate_loop_p (loop))
1916 return false;
1918 /* The final loop should be small enough. */
1919 if (tree_num_loop_insns (loop, &eni_size_weights) * factor
1920 > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
1921 return false;
1923 return true;
1926 /* Base NAME and all the names in the chain of phi nodes that use it
1927 on variable VAR. The phi nodes are recognized by being in the copies of
1928 the header of the LOOP. */
1930 static void
1931 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1933 gimple stmt, phi;
1934 imm_use_iterator iter;
1935 edge e;
1937 SSA_NAME_VAR (name) = var;
1939 while (1)
1941 phi = NULL;
1942 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1944 if (gimple_code (stmt) == GIMPLE_PHI
1945 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1947 phi = stmt;
1948 BREAK_FROM_IMM_USE_STMT (iter);
1951 if (!phi)
1952 return;
1954 if (gimple_bb (phi) == loop->header)
1955 e = loop_latch_edge (loop);
1956 else
1957 e = single_pred_edge (gimple_bb (stmt));
1959 name = PHI_RESULT (phi);
1960 SSA_NAME_VAR (name) = var;
1964 /* Given an unrolled LOOP after predictive commoning, remove the
1965 register copies arising from phi nodes by changing the base
1966 variables of SSA names. TMP_VARS is the set of the temporary variables
1967 for those we want to perform this. */
1969 static void
1970 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1972 edge e;
1973 gimple phi, stmt;
1974 tree name, use, var;
1975 gimple_stmt_iterator psi;
1977 e = loop_latch_edge (loop);
1978 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1980 phi = gsi_stmt (psi);
1981 name = PHI_RESULT (phi);
1982 var = SSA_NAME_VAR (name);
1983 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1984 continue;
1985 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1986 gcc_assert (TREE_CODE (use) == SSA_NAME);
1988 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1989 stmt = SSA_NAME_DEF_STMT (use);
1990 while (gimple_code (stmt) == GIMPLE_PHI
1991 /* In case we could not unroll the loop enough to eliminate
1992 all copies, we may reach the loop header before the defining
1993 statement (in that case, some register copies will be present
1994 in loop latch in the final code, corresponding to the newly
1995 created looparound phi nodes). */
1996 && gimple_bb (stmt) != loop->header)
1998 gcc_assert (single_pred_p (gimple_bb (stmt)));
1999 use = PHI_ARG_DEF (stmt, 0);
2000 stmt = SSA_NAME_DEF_STMT (use);
2003 base_names_in_chain_on (loop, use, var);
2007 /* Returns true if CHAIN is suitable to be combined. */
2009 static bool
2010 chain_can_be_combined_p (chain_p chain)
2012 return (!chain->combined
2013 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
2016 /* Returns the modify statement that uses NAME. Skips over assignment
2017 statements, NAME is replaced with the actual name used in the returned
2018 statement. */
2020 static gimple
2021 find_use_stmt (tree *name)
2023 gimple stmt;
2024 tree rhs, lhs;
2026 /* Skip over assignments. */
2027 while (1)
2029 stmt = single_nonlooparound_use (*name);
2030 if (!stmt)
2031 return NULL;
2033 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2034 return NULL;
2036 lhs = gimple_assign_lhs (stmt);
2037 if (TREE_CODE (lhs) != SSA_NAME)
2038 return NULL;
2040 if (gimple_assign_copy_p (stmt))
2042 rhs = gimple_assign_rhs1 (stmt);
2043 if (rhs != *name)
2044 return NULL;
2046 *name = lhs;
2048 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
2049 == GIMPLE_BINARY_RHS)
2050 return stmt;
2051 else
2052 return NULL;
2056 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2058 static bool
2059 may_reassociate_p (tree type, enum tree_code code)
2061 if (FLOAT_TYPE_P (type)
2062 && !flag_unsafe_math_optimizations)
2063 return false;
2065 return (commutative_tree_code (code)
2066 && associative_tree_code (code));
2069 /* If the operation used in STMT is associative and commutative, go through the
2070 tree of the same operations and returns its root. Distance to the root
2071 is stored in DISTANCE. */
2073 static gimple
2074 find_associative_operation_root (gimple stmt, unsigned *distance)
2076 tree lhs;
2077 gimple next;
2078 enum tree_code code = gimple_assign_rhs_code (stmt);
2079 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2080 unsigned dist = 0;
2082 if (!may_reassociate_p (type, code))
2083 return NULL;
2085 while (1)
2087 lhs = gimple_assign_lhs (stmt);
2088 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2090 next = find_use_stmt (&lhs);
2091 if (!next
2092 || gimple_assign_rhs_code (next) != code)
2093 break;
2095 stmt = next;
2096 dist++;
2099 if (distance)
2100 *distance = dist;
2101 return stmt;
2104 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2105 is no such statement, returns NULL_TREE. In case the operation used on
2106 NAME1 and NAME2 is associative and commutative, returns the root of the
2107 tree formed by this operation instead of the statement that uses NAME1 or
2108 NAME2. */
2110 static gimple
2111 find_common_use_stmt (tree *name1, tree *name2)
2113 gimple stmt1, stmt2;
2115 stmt1 = find_use_stmt (name1);
2116 if (!stmt1)
2117 return NULL;
2119 stmt2 = find_use_stmt (name2);
2120 if (!stmt2)
2121 return NULL;
2123 if (stmt1 == stmt2)
2124 return stmt1;
2126 stmt1 = find_associative_operation_root (stmt1, NULL);
2127 if (!stmt1)
2128 return NULL;
2129 stmt2 = find_associative_operation_root (stmt2, NULL);
2130 if (!stmt2)
2131 return NULL;
2133 return (stmt1 == stmt2 ? stmt1 : NULL);
2136 /* Checks whether R1 and R2 are combined together using CODE, with the result
2137 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2138 if it is true. If CODE is ERROR_MARK, set these values instead. */
2140 static bool
2141 combinable_refs_p (dref r1, dref r2,
2142 enum tree_code *code, bool *swap, tree *rslt_type)
2144 enum tree_code acode;
2145 bool aswap;
2146 tree atype;
2147 tree name1, name2;
2148 gimple stmt;
2150 name1 = name_for_ref (r1);
2151 name2 = name_for_ref (r2);
2152 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2154 stmt = find_common_use_stmt (&name1, &name2);
2156 if (!stmt)
2157 return false;
2159 acode = gimple_assign_rhs_code (stmt);
2160 aswap = (!commutative_tree_code (acode)
2161 && gimple_assign_rhs1 (stmt) != name1);
2162 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2164 if (*code == ERROR_MARK)
2166 *code = acode;
2167 *swap = aswap;
2168 *rslt_type = atype;
2169 return true;
2172 return (*code == acode
2173 && *swap == aswap
2174 && *rslt_type == atype);
2177 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2178 an assignment of the remaining operand. */
2180 static void
2181 remove_name_from_operation (gimple stmt, tree op)
2183 tree other_op;
2184 gimple_stmt_iterator si;
2186 gcc_assert (is_gimple_assign (stmt));
2188 if (gimple_assign_rhs1 (stmt) == op)
2189 other_op = gimple_assign_rhs2 (stmt);
2190 else
2191 other_op = gimple_assign_rhs1 (stmt);
2193 si = gsi_for_stmt (stmt);
2194 gimple_assign_set_rhs_from_tree (&si, other_op);
2196 /* We should not have reallocated STMT. */
2197 gcc_assert (gsi_stmt (si) == stmt);
2199 update_stmt (stmt);
2202 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2203 are combined in a single statement, and returns this statement. */
2205 static gimple
2206 reassociate_to_the_same_stmt (tree name1, tree name2)
2208 gimple stmt1, stmt2, root1, root2, s1, s2;
2209 gimple new_stmt, tmp_stmt;
2210 tree new_name, tmp_name, var, r1, r2;
2211 unsigned dist1, dist2;
2212 enum tree_code code;
2213 tree type = TREE_TYPE (name1);
2214 gimple_stmt_iterator bsi;
2216 stmt1 = find_use_stmt (&name1);
2217 stmt2 = find_use_stmt (&name2);
2218 root1 = find_associative_operation_root (stmt1, &dist1);
2219 root2 = find_associative_operation_root (stmt2, &dist2);
2220 code = gimple_assign_rhs_code (stmt1);
2222 gcc_assert (root1 && root2 && root1 == root2
2223 && code == gimple_assign_rhs_code (stmt2));
2225 /* Find the root of the nearest expression in that both NAME1 and NAME2
2226 are used. */
2227 r1 = name1;
2228 s1 = stmt1;
2229 r2 = name2;
2230 s2 = stmt2;
2232 while (dist1 > dist2)
2234 s1 = find_use_stmt (&r1);
2235 r1 = gimple_assign_lhs (s1);
2236 dist1--;
2238 while (dist2 > dist1)
2240 s2 = find_use_stmt (&r2);
2241 r2 = gimple_assign_lhs (s2);
2242 dist2--;
2245 while (s1 != s2)
2247 s1 = find_use_stmt (&r1);
2248 r1 = gimple_assign_lhs (s1);
2249 s2 = find_use_stmt (&r2);
2250 r2 = gimple_assign_lhs (s2);
2253 /* Remove NAME1 and NAME2 from the statements in that they are used
2254 currently. */
2255 remove_name_from_operation (stmt1, name1);
2256 remove_name_from_operation (stmt2, name2);
2258 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2259 combine it with the rhs of S1. */
2260 var = create_tmp_var (type, "predreastmp");
2261 add_referenced_var (var);
2262 new_name = make_ssa_name (var, NULL);
2263 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2265 var = create_tmp_var (type, "predreastmp");
2266 add_referenced_var (var);
2267 tmp_name = make_ssa_name (var, NULL);
2269 /* Rhs of S1 may now be either a binary expression with operation
2270 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2271 so that name1 or name2 was removed from it). */
2272 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2273 tmp_name,
2274 gimple_assign_rhs1 (s1),
2275 gimple_assign_rhs2 (s1));
2277 bsi = gsi_for_stmt (s1);
2278 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2279 s1 = gsi_stmt (bsi);
2280 update_stmt (s1);
2282 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2283 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2285 return new_stmt;
2288 /* Returns the statement that combines references R1 and R2. In case R1
2289 and R2 are not used in the same statement, but they are used with an
2290 associative and commutative operation in the same expression, reassociate
2291 the expression so that they are used in the same statement. */
2293 static gimple
2294 stmt_combining_refs (dref r1, dref r2)
2296 gimple stmt1, stmt2;
2297 tree name1 = name_for_ref (r1);
2298 tree name2 = name_for_ref (r2);
2300 stmt1 = find_use_stmt (&name1);
2301 stmt2 = find_use_stmt (&name2);
2302 if (stmt1 == stmt2)
2303 return stmt1;
2305 return reassociate_to_the_same_stmt (name1, name2);
2308 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2309 description of the new chain is returned, otherwise we return NULL. */
2311 static chain_p
2312 combine_chains (chain_p ch1, chain_p ch2)
2314 dref r1, r2, nw;
2315 enum tree_code op = ERROR_MARK;
2316 bool swap = false;
2317 chain_p new_chain;
2318 unsigned i;
2319 gimple root_stmt;
2320 tree rslt_type = NULL_TREE;
2322 if (ch1 == ch2)
2323 return false;
2324 if (ch1->length != ch2->length)
2325 return NULL;
2327 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2328 return NULL;
2330 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2331 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2333 if (r1->distance != r2->distance)
2334 return NULL;
2336 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2337 return NULL;
2340 if (swap)
2342 chain_p tmp = ch1;
2343 ch1 = ch2;
2344 ch2 = tmp;
2347 new_chain = XCNEW (struct chain);
2348 new_chain->type = CT_COMBINATION;
2349 new_chain->operator = op;
2350 new_chain->ch1 = ch1;
2351 new_chain->ch2 = ch2;
2352 new_chain->rslt_type = rslt_type;
2353 new_chain->length = ch1->length;
2355 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2356 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2358 nw = XCNEW (struct dref);
2359 nw->stmt = stmt_combining_refs (r1, r2);
2360 nw->distance = r1->distance;
2362 VEC_safe_push (dref, heap, new_chain->refs, nw);
2365 new_chain->has_max_use_after = false;
2366 root_stmt = get_chain_root (new_chain)->stmt;
2367 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2369 if (nw->distance == new_chain->length
2370 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2372 new_chain->has_max_use_after = true;
2373 break;
2377 ch1->combined = true;
2378 ch2->combined = true;
2379 return new_chain;
2382 /* Try to combine the CHAINS. */
2384 static void
2385 try_combine_chains (VEC (chain_p, heap) **chains)
2387 unsigned i, j;
2388 chain_p ch1, ch2, cch;
2389 VEC (chain_p, heap) *worklist = NULL;
2391 for (i = 0; VEC_iterate (chain_p, *chains, i, ch1); i++)
2392 if (chain_can_be_combined_p (ch1))
2393 VEC_safe_push (chain_p, heap, worklist, ch1);
2395 while (!VEC_empty (chain_p, worklist))
2397 ch1 = VEC_pop (chain_p, worklist);
2398 if (!chain_can_be_combined_p (ch1))
2399 continue;
2401 for (j = 0; VEC_iterate (chain_p, *chains, j, ch2); j++)
2403 if (!chain_can_be_combined_p (ch2))
2404 continue;
2406 cch = combine_chains (ch1, ch2);
2407 if (cch)
2409 VEC_safe_push (chain_p, heap, worklist, cch);
2410 VEC_safe_push (chain_p, heap, *chains, cch);
2411 break;
2417 /* Sets alias information based on data reference DR for REF,
2418 if necessary. */
2420 static void
2421 set_alias_info (tree ref, struct data_reference *dr)
2423 tree var;
2424 tree tag = DR_SYMBOL_TAG (dr);
2426 gcc_assert (tag != NULL_TREE);
2428 ref = get_base_address (ref);
2429 if (!ref || !INDIRECT_REF_P (ref))
2430 return;
2432 var = SSA_NAME_VAR (TREE_OPERAND (ref, 0));
2433 if (var_ann (var)->symbol_mem_tag)
2434 return;
2436 if (!MTAG_P (tag))
2437 new_type_alias (var, tag, ref);
2438 else
2439 var_ann (var)->symbol_mem_tag = tag;
2442 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2443 impossible because one of these initializers may trap, true otherwise. */
2445 static bool
2446 prepare_initializers_chain (struct loop *loop, chain_p chain)
2448 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2449 struct data_reference *dr = get_chain_root (chain)->ref;
2450 tree init;
2451 gimple_seq stmts;
2452 dref laref;
2453 edge entry = loop_preheader_edge (loop);
2455 /* Find the initializers for the variables, and check that they cannot
2456 trap. */
2457 chain->inits = VEC_alloc (tree, heap, n);
2458 for (i = 0; i < n; i++)
2459 VEC_quick_push (tree, chain->inits, NULL_TREE);
2461 /* If we have replaced some looparound phi nodes, use their initializers
2462 instead of creating our own. */
2463 for (i = 0; VEC_iterate (dref, chain->refs, i, laref); i++)
2465 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2466 continue;
2468 gcc_assert (laref->distance > 0);
2469 VEC_replace (tree, chain->inits, n - laref->distance,
2470 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2473 for (i = 0; i < n; i++)
2475 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2476 continue;
2478 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2479 if (!init)
2480 return false;
2482 if (!chain->all_always_accessed && tree_could_trap_p (init))
2483 return false;
2485 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2486 if (stmts)
2488 mark_virtual_ops_for_renaming_list (stmts);
2489 gsi_insert_seq_on_edge_immediate (entry, stmts);
2491 set_alias_info (init, dr);
2493 VEC_replace (tree, chain->inits, i, init);
2496 return true;
2499 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2500 be used because the initializers might trap. */
2502 static void
2503 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2505 chain_p chain;
2506 unsigned i;
2508 for (i = 0; i < VEC_length (chain_p, chains); )
2510 chain = VEC_index (chain_p, chains, i);
2511 if (prepare_initializers_chain (loop, chain))
2512 i++;
2513 else
2515 release_chain (chain);
2516 VEC_unordered_remove (chain_p, chains, i);
2521 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2522 unrolled. */
2524 static bool
2525 tree_predictive_commoning_loop (struct loop *loop)
2527 VEC (data_reference_p, heap) *datarefs;
2528 VEC (ddr_p, heap) *dependences;
2529 struct component *components;
2530 VEC (chain_p, heap) *chains = NULL;
2531 unsigned unroll_factor;
2532 struct tree_niter_desc desc;
2533 bool unroll = false;
2534 edge exit;
2535 bitmap tmp_vars;
2537 if (dump_file && (dump_flags & TDF_DETAILS))
2538 fprintf (dump_file, "Processing loop %d\n", loop->num);
2540 /* Find the data references and split them into components according to their
2541 dependence relations. */
2542 datarefs = VEC_alloc (data_reference_p, heap, 10);
2543 dependences = VEC_alloc (ddr_p, heap, 10);
2544 compute_data_dependences_for_loop (loop, true, &datarefs, &dependences);
2545 if (dump_file && (dump_flags & TDF_DETAILS))
2546 dump_data_dependence_relations (dump_file, dependences);
2548 components = split_data_refs_to_components (loop, datarefs, dependences);
2549 free_dependence_relations (dependences);
2550 if (!components)
2552 free_data_refs (datarefs);
2553 return false;
2556 if (dump_file && (dump_flags & TDF_DETAILS))
2558 fprintf (dump_file, "Initial state:\n\n");
2559 dump_components (dump_file, components);
2562 /* Find the suitable components and split them into chains. */
2563 components = filter_suitable_components (loop, components);
2565 tmp_vars = BITMAP_ALLOC (NULL);
2566 looparound_phis = BITMAP_ALLOC (NULL);
2567 determine_roots (loop, components, &chains);
2568 release_components (components);
2570 if (!chains)
2572 if (dump_file && (dump_flags & TDF_DETAILS))
2573 fprintf (dump_file,
2574 "Predictive commoning failed: no suitable chains\n");
2575 goto end;
2577 prepare_initializers (loop, chains);
2579 /* Try to combine the chains that are always worked with together. */
2580 try_combine_chains (&chains);
2582 if (dump_file && (dump_flags & TDF_DETAILS))
2584 fprintf (dump_file, "Before commoning:\n\n");
2585 dump_chains (dump_file, chains);
2588 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2589 that its number of iterations is divisible by the factor. */
2590 unroll_factor = determine_unroll_factor (chains);
2591 scev_reset ();
2592 unroll = should_unroll_loop_p (loop, unroll_factor, &desc);
2593 exit = single_dom_exit (loop);
2595 /* Execute the predictive commoning transformations, and possibly unroll the
2596 loop. */
2597 if (unroll)
2599 struct epcc_data dta;
2601 if (dump_file && (dump_flags & TDF_DETAILS))
2602 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2604 dta.chains = chains;
2605 dta.tmp_vars = tmp_vars;
2607 update_ssa (TODO_update_ssa_only_virtuals);
2609 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2610 execute_pred_commoning_cbck is called may cause phi nodes to be
2611 reallocated, which is a problem since CHAINS may point to these
2612 statements. To fix this, we store the ssa names defined by the
2613 phi nodes here instead of the phi nodes themselves, and restore
2614 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2615 replace_phis_by_defined_names (chains);
2617 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2618 execute_pred_commoning_cbck, &dta);
2619 eliminate_temp_copies (loop, tmp_vars);
2621 else
2623 if (dump_file && (dump_flags & TDF_DETAILS))
2624 fprintf (dump_file,
2625 "Executing predictive commoning without unrolling.\n");
2626 execute_pred_commoning (loop, chains, tmp_vars);
2629 end: ;
2630 release_chains (chains);
2631 free_data_refs (datarefs);
2632 BITMAP_FREE (tmp_vars);
2633 BITMAP_FREE (looparound_phis);
2635 free_affine_expand_cache (&name_expansions);
2637 return unroll;
2640 /* Runs predictive commoning. */
2642 unsigned
2643 tree_predictive_commoning (void)
2645 bool unrolled = false;
2646 struct loop *loop;
2647 loop_iterator li;
2648 unsigned ret = 0;
2650 initialize_original_copy_tables ();
2651 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2653 unrolled |= tree_predictive_commoning_loop (loop);
2656 if (unrolled)
2658 scev_reset ();
2659 ret = TODO_cleanup_cfg;
2661 free_original_copy_tables ();
2663 return ret;