[Ada] Adapt body of formal sets and maps for SPARK
[official-gcc.git] / gcc / fold-const.cc
blob7bf12315293383a86f78fa783b9fd52fcf3d92e9
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "memmodel.h"
53 #include "tm_p.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
56 #include "cgraph.h"
57 #include "diagnostic-core.h"
58 #include "flags.h"
59 #include "alias.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
63 #include "calls.h"
64 #include "tree-iterator.h"
65 #include "expr.h"
66 #include "intl.h"
67 #include "langhooks.h"
68 #include "tree-eh.h"
69 #include "gimplify.h"
70 #include "tree-dfa.h"
71 #include "builtins.h"
72 #include "generic-match.h"
73 #include "gimple-iterator.h"
74 #include "gimple-fold.h"
75 #include "tree-into-ssa.h"
76 #include "md5.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
79 #include "tree-vrp.h"
80 #include "tree-ssanames.h"
81 #include "selftest.h"
82 #include "stringpool.h"
83 #include "attribs.h"
84 #include "tree-vector-builder.h"
85 #include "vec-perm-indices.h"
86 #include "asan.h"
87 #include "gimple-range.h"
89 /* Nonzero if we are folding constants inside an initializer or a C++
90 manifestly-constant-evaluated context; zero otherwise.
91 Should be used when folding in initializer enables additional
92 optimizations. */
93 int folding_initializer = 0;
95 /* Nonzero if we are folding C++ manifestly-constant-evaluated context; zero
96 otherwise.
97 Should be used when certain constructs shouldn't be optimized
98 during folding in that context. */
99 bool folding_cxx_constexpr = false;
101 /* The following constants represent a bit based encoding of GCC's
102 comparison operators. This encoding simplifies transformations
103 on relational comparison operators, such as AND and OR. */
104 enum comparison_code {
105 COMPCODE_FALSE = 0,
106 COMPCODE_LT = 1,
107 COMPCODE_EQ = 2,
108 COMPCODE_LE = 3,
109 COMPCODE_GT = 4,
110 COMPCODE_LTGT = 5,
111 COMPCODE_GE = 6,
112 COMPCODE_ORD = 7,
113 COMPCODE_UNORD = 8,
114 COMPCODE_UNLT = 9,
115 COMPCODE_UNEQ = 10,
116 COMPCODE_UNLE = 11,
117 COMPCODE_UNGT = 12,
118 COMPCODE_NE = 13,
119 COMPCODE_UNGE = 14,
120 COMPCODE_TRUE = 15
123 static bool negate_expr_p (tree);
124 static tree negate_expr (tree);
125 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
126 static enum comparison_code comparison_to_compcode (enum tree_code);
127 static enum tree_code compcode_to_comparison (enum comparison_code);
128 static bool twoval_comparison_p (tree, tree *, tree *);
129 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
130 static tree optimize_bit_field_compare (location_t, enum tree_code,
131 tree, tree, tree);
132 static bool simple_operand_p (const_tree);
133 static bool simple_operand_p_2 (tree);
134 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
135 static tree range_predecessor (tree);
136 static tree range_successor (tree);
137 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
138 static tree fold_cond_expr_with_comparison (location_t, tree, enum tree_code,
139 tree, tree, tree, tree);
140 static tree unextend (tree, int, int, tree);
141 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
142 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
143 static tree fold_binary_op_with_conditional_arg (location_t,
144 enum tree_code, tree,
145 tree, tree,
146 tree, tree, int);
147 static tree fold_negate_const (tree, tree);
148 static tree fold_not_const (const_tree, tree);
149 static tree fold_relational_const (enum tree_code, tree, tree, tree);
150 static tree fold_convert_const (enum tree_code, tree, tree);
151 static tree fold_view_convert_expr (tree, tree);
152 static tree fold_negate_expr (location_t, tree);
155 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
156 Otherwise, return LOC. */
158 static location_t
159 expr_location_or (tree t, location_t loc)
161 location_t tloc = EXPR_LOCATION (t);
162 return tloc == UNKNOWN_LOCATION ? loc : tloc;
165 /* Similar to protected_set_expr_location, but never modify x in place,
166 if location can and needs to be set, unshare it. */
168 static inline tree
169 protected_set_expr_location_unshare (tree x, location_t loc)
171 if (CAN_HAVE_LOCATION_P (x)
172 && EXPR_LOCATION (x) != loc
173 && !(TREE_CODE (x) == SAVE_EXPR
174 || TREE_CODE (x) == TARGET_EXPR
175 || TREE_CODE (x) == BIND_EXPR))
177 x = copy_node (x);
178 SET_EXPR_LOCATION (x, loc);
180 return x;
183 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
184 division and returns the quotient. Otherwise returns
185 NULL_TREE. */
187 tree
188 div_if_zero_remainder (const_tree arg1, const_tree arg2)
190 widest_int quo;
192 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
193 SIGNED, &quo))
194 return wide_int_to_tree (TREE_TYPE (arg1), quo);
196 return NULL_TREE;
199 /* This is nonzero if we should defer warnings about undefined
200 overflow. This facility exists because these warnings are a
201 special case. The code to estimate loop iterations does not want
202 to issue any warnings, since it works with expressions which do not
203 occur in user code. Various bits of cleanup code call fold(), but
204 only use the result if it has certain characteristics (e.g., is a
205 constant); that code only wants to issue a warning if the result is
206 used. */
208 static int fold_deferring_overflow_warnings;
210 /* If a warning about undefined overflow is deferred, this is the
211 warning. Note that this may cause us to turn two warnings into
212 one, but that is fine since it is sufficient to only give one
213 warning per expression. */
215 static const char* fold_deferred_overflow_warning;
217 /* If a warning about undefined overflow is deferred, this is the
218 level at which the warning should be emitted. */
220 static enum warn_strict_overflow_code fold_deferred_overflow_code;
222 /* Start deferring overflow warnings. We could use a stack here to
223 permit nested calls, but at present it is not necessary. */
225 void
226 fold_defer_overflow_warnings (void)
228 ++fold_deferring_overflow_warnings;
231 /* Stop deferring overflow warnings. If there is a pending warning,
232 and ISSUE is true, then issue the warning if appropriate. STMT is
233 the statement with which the warning should be associated (used for
234 location information); STMT may be NULL. CODE is the level of the
235 warning--a warn_strict_overflow_code value. This function will use
236 the smaller of CODE and the deferred code when deciding whether to
237 issue the warning. CODE may be zero to mean to always use the
238 deferred code. */
240 void
241 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
243 const char *warnmsg;
244 location_t locus;
246 gcc_assert (fold_deferring_overflow_warnings > 0);
247 --fold_deferring_overflow_warnings;
248 if (fold_deferring_overflow_warnings > 0)
250 if (fold_deferred_overflow_warning != NULL
251 && code != 0
252 && code < (int) fold_deferred_overflow_code)
253 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
254 return;
257 warnmsg = fold_deferred_overflow_warning;
258 fold_deferred_overflow_warning = NULL;
260 if (!issue || warnmsg == NULL)
261 return;
263 if (warning_suppressed_p (stmt, OPT_Wstrict_overflow))
264 return;
266 /* Use the smallest code level when deciding to issue the
267 warning. */
268 if (code == 0 || code > (int) fold_deferred_overflow_code)
269 code = fold_deferred_overflow_code;
271 if (!issue_strict_overflow_warning (code))
272 return;
274 if (stmt == NULL)
275 locus = input_location;
276 else
277 locus = gimple_location (stmt);
278 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
281 /* Stop deferring overflow warnings, ignoring any deferred
282 warnings. */
284 void
285 fold_undefer_and_ignore_overflow_warnings (void)
287 fold_undefer_overflow_warnings (false, NULL, 0);
290 /* Whether we are deferring overflow warnings. */
292 bool
293 fold_deferring_overflow_warnings_p (void)
295 return fold_deferring_overflow_warnings > 0;
298 /* This is called when we fold something based on the fact that signed
299 overflow is undefined. */
301 void
302 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
304 if (fold_deferring_overflow_warnings > 0)
306 if (fold_deferred_overflow_warning == NULL
307 || wc < fold_deferred_overflow_code)
309 fold_deferred_overflow_warning = gmsgid;
310 fold_deferred_overflow_code = wc;
313 else if (issue_strict_overflow_warning (wc))
314 warning (OPT_Wstrict_overflow, gmsgid);
317 /* Return true if the built-in mathematical function specified by CODE
318 is odd, i.e. -f(x) == f(-x). */
320 bool
321 negate_mathfn_p (combined_fn fn)
323 switch (fn)
325 CASE_CFN_ASIN:
326 CASE_CFN_ASINH:
327 CASE_CFN_ATAN:
328 CASE_CFN_ATANH:
329 CASE_CFN_CASIN:
330 CASE_CFN_CASINH:
331 CASE_CFN_CATAN:
332 CASE_CFN_CATANH:
333 CASE_CFN_CBRT:
334 CASE_CFN_CPROJ:
335 CASE_CFN_CSIN:
336 CASE_CFN_CSINH:
337 CASE_CFN_CTAN:
338 CASE_CFN_CTANH:
339 CASE_CFN_ERF:
340 CASE_CFN_LLROUND:
341 CASE_CFN_LROUND:
342 CASE_CFN_ROUND:
343 CASE_CFN_ROUNDEVEN:
344 CASE_CFN_ROUNDEVEN_FN:
345 CASE_CFN_SIN:
346 CASE_CFN_SINH:
347 CASE_CFN_TAN:
348 CASE_CFN_TANH:
349 CASE_CFN_TRUNC:
350 return true;
352 CASE_CFN_LLRINT:
353 CASE_CFN_LRINT:
354 CASE_CFN_NEARBYINT:
355 CASE_CFN_RINT:
356 return !flag_rounding_math;
358 default:
359 break;
361 return false;
364 /* Check whether we may negate an integer constant T without causing
365 overflow. */
367 bool
368 may_negate_without_overflow_p (const_tree t)
370 tree type;
372 gcc_assert (TREE_CODE (t) == INTEGER_CST);
374 type = TREE_TYPE (t);
375 if (TYPE_UNSIGNED (type))
376 return false;
378 return !wi::only_sign_bit_p (wi::to_wide (t));
381 /* Determine whether an expression T can be cheaply negated using
382 the function negate_expr without introducing undefined overflow. */
384 static bool
385 negate_expr_p (tree t)
387 tree type;
389 if (t == 0)
390 return false;
392 type = TREE_TYPE (t);
394 STRIP_SIGN_NOPS (t);
395 switch (TREE_CODE (t))
397 case INTEGER_CST:
398 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type))
399 return true;
401 /* Check that -CST will not overflow type. */
402 return may_negate_without_overflow_p (t);
403 case BIT_NOT_EXPR:
404 return (INTEGRAL_TYPE_P (type)
405 && TYPE_OVERFLOW_WRAPS (type));
407 case FIXED_CST:
408 return true;
410 case NEGATE_EXPR:
411 return !TYPE_OVERFLOW_SANITIZED (type);
413 case REAL_CST:
414 /* We want to canonicalize to positive real constants. Pretend
415 that only negative ones can be easily negated. */
416 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
418 case COMPLEX_CST:
419 return negate_expr_p (TREE_REALPART (t))
420 && negate_expr_p (TREE_IMAGPART (t));
422 case VECTOR_CST:
424 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
425 return true;
427 /* Steps don't prevent negation. */
428 unsigned int count = vector_cst_encoded_nelts (t);
429 for (unsigned int i = 0; i < count; ++i)
430 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i)))
431 return false;
433 return true;
436 case COMPLEX_EXPR:
437 return negate_expr_p (TREE_OPERAND (t, 0))
438 && negate_expr_p (TREE_OPERAND (t, 1));
440 case CONJ_EXPR:
441 return negate_expr_p (TREE_OPERAND (t, 0));
443 case PLUS_EXPR:
444 if (HONOR_SIGN_DEPENDENT_ROUNDING (type)
445 || HONOR_SIGNED_ZEROS (type)
446 || (ANY_INTEGRAL_TYPE_P (type)
447 && ! TYPE_OVERFLOW_WRAPS (type)))
448 return false;
449 /* -(A + B) -> (-B) - A. */
450 if (negate_expr_p (TREE_OPERAND (t, 1)))
451 return true;
452 /* -(A + B) -> (-A) - B. */
453 return negate_expr_p (TREE_OPERAND (t, 0));
455 case MINUS_EXPR:
456 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
457 return !HONOR_SIGN_DEPENDENT_ROUNDING (type)
458 && !HONOR_SIGNED_ZEROS (type)
459 && (! ANY_INTEGRAL_TYPE_P (type)
460 || TYPE_OVERFLOW_WRAPS (type));
462 case MULT_EXPR:
463 if (TYPE_UNSIGNED (type))
464 break;
465 /* INT_MIN/n * n doesn't overflow while negating one operand it does
466 if n is a (negative) power of two. */
467 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
468 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
469 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
470 && (wi::popcount
471 (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1)
472 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
473 && (wi::popcount
474 (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1)))
475 break;
477 /* Fall through. */
479 case RDIV_EXPR:
480 if (! HONOR_SIGN_DEPENDENT_ROUNDING (t))
481 return negate_expr_p (TREE_OPERAND (t, 1))
482 || negate_expr_p (TREE_OPERAND (t, 0));
483 break;
485 case TRUNC_DIV_EXPR:
486 case ROUND_DIV_EXPR:
487 case EXACT_DIV_EXPR:
488 if (TYPE_UNSIGNED (type))
489 break;
490 /* In general we can't negate A in A / B, because if A is INT_MIN and
491 B is not 1 we change the sign of the result. */
492 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
493 && negate_expr_p (TREE_OPERAND (t, 0)))
494 return true;
495 /* In general we can't negate B in A / B, because if A is INT_MIN and
496 B is 1, we may turn this into INT_MIN / -1 which is undefined
497 and actually traps on some architectures. */
498 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
499 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
500 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
501 && ! integer_onep (TREE_OPERAND (t, 1))))
502 return negate_expr_p (TREE_OPERAND (t, 1));
503 break;
505 case NOP_EXPR:
506 /* Negate -((double)float) as (double)(-float). */
507 if (TREE_CODE (type) == REAL_TYPE)
509 tree tem = strip_float_extensions (t);
510 if (tem != t)
511 return negate_expr_p (tem);
513 break;
515 case CALL_EXPR:
516 /* Negate -f(x) as f(-x). */
517 if (negate_mathfn_p (get_call_combined_fn (t)))
518 return negate_expr_p (CALL_EXPR_ARG (t, 0));
519 break;
521 case RSHIFT_EXPR:
522 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
523 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
525 tree op1 = TREE_OPERAND (t, 1);
526 if (wi::to_wide (op1) == element_precision (type) - 1)
527 return true;
529 break;
531 default:
532 break;
534 return false;
537 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
538 simplification is possible.
539 If negate_expr_p would return true for T, NULL_TREE will never be
540 returned. */
542 static tree
543 fold_negate_expr_1 (location_t loc, tree t)
545 tree type = TREE_TYPE (t);
546 tree tem;
548 switch (TREE_CODE (t))
550 /* Convert - (~A) to A + 1. */
551 case BIT_NOT_EXPR:
552 if (INTEGRAL_TYPE_P (type))
553 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
554 build_one_cst (type));
555 break;
557 case INTEGER_CST:
558 tem = fold_negate_const (t, type);
559 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
560 || (ANY_INTEGRAL_TYPE_P (type)
561 && !TYPE_OVERFLOW_TRAPS (type)
562 && TYPE_OVERFLOW_WRAPS (type))
563 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
564 return tem;
565 break;
567 case POLY_INT_CST:
568 case REAL_CST:
569 case FIXED_CST:
570 tem = fold_negate_const (t, type);
571 return tem;
573 case COMPLEX_CST:
575 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
576 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
577 if (rpart && ipart)
578 return build_complex (type, rpart, ipart);
580 break;
582 case VECTOR_CST:
584 tree_vector_builder elts;
585 elts.new_unary_operation (type, t, true);
586 unsigned int count = elts.encoded_nelts ();
587 for (unsigned int i = 0; i < count; ++i)
589 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
590 if (elt == NULL_TREE)
591 return NULL_TREE;
592 elts.quick_push (elt);
595 return elts.build ();
598 case COMPLEX_EXPR:
599 if (negate_expr_p (t))
600 return fold_build2_loc (loc, COMPLEX_EXPR, type,
601 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
602 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
603 break;
605 case CONJ_EXPR:
606 if (negate_expr_p (t))
607 return fold_build1_loc (loc, CONJ_EXPR, type,
608 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
609 break;
611 case NEGATE_EXPR:
612 if (!TYPE_OVERFLOW_SANITIZED (type))
613 return TREE_OPERAND (t, 0);
614 break;
616 case PLUS_EXPR:
617 if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
618 && !HONOR_SIGNED_ZEROS (type))
620 /* -(A + B) -> (-B) - A. */
621 if (negate_expr_p (TREE_OPERAND (t, 1)))
623 tem = negate_expr (TREE_OPERAND (t, 1));
624 return fold_build2_loc (loc, MINUS_EXPR, type,
625 tem, TREE_OPERAND (t, 0));
628 /* -(A + B) -> (-A) - B. */
629 if (negate_expr_p (TREE_OPERAND (t, 0)))
631 tem = negate_expr (TREE_OPERAND (t, 0));
632 return fold_build2_loc (loc, MINUS_EXPR, type,
633 tem, TREE_OPERAND (t, 1));
636 break;
638 case MINUS_EXPR:
639 /* - (A - B) -> B - A */
640 if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
641 && !HONOR_SIGNED_ZEROS (type))
642 return fold_build2_loc (loc, MINUS_EXPR, type,
643 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
644 break;
646 case MULT_EXPR:
647 if (TYPE_UNSIGNED (type))
648 break;
650 /* Fall through. */
652 case RDIV_EXPR:
653 if (! HONOR_SIGN_DEPENDENT_ROUNDING (type))
655 tem = TREE_OPERAND (t, 1);
656 if (negate_expr_p (tem))
657 return fold_build2_loc (loc, TREE_CODE (t), type,
658 TREE_OPERAND (t, 0), negate_expr (tem));
659 tem = TREE_OPERAND (t, 0);
660 if (negate_expr_p (tem))
661 return fold_build2_loc (loc, TREE_CODE (t), type,
662 negate_expr (tem), TREE_OPERAND (t, 1));
664 break;
666 case TRUNC_DIV_EXPR:
667 case ROUND_DIV_EXPR:
668 case EXACT_DIV_EXPR:
669 if (TYPE_UNSIGNED (type))
670 break;
671 /* In general we can't negate A in A / B, because if A is INT_MIN and
672 B is not 1 we change the sign of the result. */
673 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
674 && negate_expr_p (TREE_OPERAND (t, 0)))
675 return fold_build2_loc (loc, TREE_CODE (t), type,
676 negate_expr (TREE_OPERAND (t, 0)),
677 TREE_OPERAND (t, 1));
678 /* In general we can't negate B in A / B, because if A is INT_MIN and
679 B is 1, we may turn this into INT_MIN / -1 which is undefined
680 and actually traps on some architectures. */
681 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t))
682 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
683 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
684 && ! integer_onep (TREE_OPERAND (t, 1))))
685 && negate_expr_p (TREE_OPERAND (t, 1)))
686 return fold_build2_loc (loc, TREE_CODE (t), type,
687 TREE_OPERAND (t, 0),
688 negate_expr (TREE_OPERAND (t, 1)));
689 break;
691 case NOP_EXPR:
692 /* Convert -((double)float) into (double)(-float). */
693 if (TREE_CODE (type) == REAL_TYPE)
695 tem = strip_float_extensions (t);
696 if (tem != t && negate_expr_p (tem))
697 return fold_convert_loc (loc, type, negate_expr (tem));
699 break;
701 case CALL_EXPR:
702 /* Negate -f(x) as f(-x). */
703 if (negate_mathfn_p (get_call_combined_fn (t))
704 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
706 tree fndecl, arg;
708 fndecl = get_callee_fndecl (t);
709 arg = negate_expr (CALL_EXPR_ARG (t, 0));
710 return build_call_expr_loc (loc, fndecl, 1, arg);
712 break;
714 case RSHIFT_EXPR:
715 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
716 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
718 tree op1 = TREE_OPERAND (t, 1);
719 if (wi::to_wide (op1) == element_precision (type) - 1)
721 tree ntype = TYPE_UNSIGNED (type)
722 ? signed_type_for (type)
723 : unsigned_type_for (type);
724 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
725 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
726 return fold_convert_loc (loc, type, temp);
729 break;
731 default:
732 break;
735 return NULL_TREE;
738 /* A wrapper for fold_negate_expr_1. */
740 static tree
741 fold_negate_expr (location_t loc, tree t)
743 tree type = TREE_TYPE (t);
744 STRIP_SIGN_NOPS (t);
745 tree tem = fold_negate_expr_1 (loc, t);
746 if (tem == NULL_TREE)
747 return NULL_TREE;
748 return fold_convert_loc (loc, type, tem);
751 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T cannot be
752 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
753 return NULL_TREE. */
755 static tree
756 negate_expr (tree t)
758 tree type, tem;
759 location_t loc;
761 if (t == NULL_TREE)
762 return NULL_TREE;
764 loc = EXPR_LOCATION (t);
765 type = TREE_TYPE (t);
766 STRIP_SIGN_NOPS (t);
768 tem = fold_negate_expr (loc, t);
769 if (!tem)
770 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
771 return fold_convert_loc (loc, type, tem);
774 /* Split a tree IN into a constant, literal and variable parts that could be
775 combined with CODE to make IN. "constant" means an expression with
776 TREE_CONSTANT but that isn't an actual constant. CODE must be a
777 commutative arithmetic operation. Store the constant part into *CONP,
778 the literal in *LITP and return the variable part. If a part isn't
779 present, set it to null. If the tree does not decompose in this way,
780 return the entire tree as the variable part and the other parts as null.
782 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
783 case, we negate an operand that was subtracted. Except if it is a
784 literal for which we use *MINUS_LITP instead.
786 If NEGATE_P is true, we are negating all of IN, again except a literal
787 for which we use *MINUS_LITP instead. If a variable part is of pointer
788 type, it is negated after converting to TYPE. This prevents us from
789 generating illegal MINUS pointer expression. LOC is the location of
790 the converted variable part.
792 If IN is itself a literal or constant, return it as appropriate.
794 Note that we do not guarantee that any of the three values will be the
795 same type as IN, but they will have the same signedness and mode. */
797 static tree
798 split_tree (tree in, tree type, enum tree_code code,
799 tree *minus_varp, tree *conp, tree *minus_conp,
800 tree *litp, tree *minus_litp, int negate_p)
802 tree var = 0;
803 *minus_varp = 0;
804 *conp = 0;
805 *minus_conp = 0;
806 *litp = 0;
807 *minus_litp = 0;
809 /* Strip any conversions that don't change the machine mode or signedness. */
810 STRIP_SIGN_NOPS (in);
812 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
813 || TREE_CODE (in) == FIXED_CST)
814 *litp = in;
815 else if (TREE_CODE (in) == code
816 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
817 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
818 /* We can associate addition and subtraction together (even
819 though the C standard doesn't say so) for integers because
820 the value is not affected. For reals, the value might be
821 affected, so we can't. */
822 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR)
823 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
824 || (code == MINUS_EXPR
825 && (TREE_CODE (in) == PLUS_EXPR
826 || TREE_CODE (in) == POINTER_PLUS_EXPR)))))
828 tree op0 = TREE_OPERAND (in, 0);
829 tree op1 = TREE_OPERAND (in, 1);
830 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
831 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
833 /* First see if either of the operands is a literal, then a constant. */
834 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
835 || TREE_CODE (op0) == FIXED_CST)
836 *litp = op0, op0 = 0;
837 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
838 || TREE_CODE (op1) == FIXED_CST)
839 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
841 if (op0 != 0 && TREE_CONSTANT (op0))
842 *conp = op0, op0 = 0;
843 else if (op1 != 0 && TREE_CONSTANT (op1))
844 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
846 /* If we haven't dealt with either operand, this is not a case we can
847 decompose. Otherwise, VAR is either of the ones remaining, if any. */
848 if (op0 != 0 && op1 != 0)
849 var = in;
850 else if (op0 != 0)
851 var = op0;
852 else
853 var = op1, neg_var_p = neg1_p;
855 /* Now do any needed negations. */
856 if (neg_litp_p)
857 *minus_litp = *litp, *litp = 0;
858 if (neg_conp_p && *conp)
859 *minus_conp = *conp, *conp = 0;
860 if (neg_var_p && var)
861 *minus_varp = var, var = 0;
863 else if (TREE_CONSTANT (in))
864 *conp = in;
865 else if (TREE_CODE (in) == BIT_NOT_EXPR
866 && code == PLUS_EXPR)
868 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
869 when IN is constant. */
870 *litp = build_minus_one_cst (type);
871 *minus_varp = TREE_OPERAND (in, 0);
873 else
874 var = in;
876 if (negate_p)
878 if (*litp)
879 *minus_litp = *litp, *litp = 0;
880 else if (*minus_litp)
881 *litp = *minus_litp, *minus_litp = 0;
882 if (*conp)
883 *minus_conp = *conp, *conp = 0;
884 else if (*minus_conp)
885 *conp = *minus_conp, *minus_conp = 0;
886 if (var)
887 *minus_varp = var, var = 0;
888 else if (*minus_varp)
889 var = *minus_varp, *minus_varp = 0;
892 if (*litp
893 && TREE_OVERFLOW_P (*litp))
894 *litp = drop_tree_overflow (*litp);
895 if (*minus_litp
896 && TREE_OVERFLOW_P (*minus_litp))
897 *minus_litp = drop_tree_overflow (*minus_litp);
899 return var;
902 /* Re-associate trees split by the above function. T1 and T2 are
903 either expressions to associate or null. Return the new
904 expression, if any. LOC is the location of the new expression. If
905 we build an operation, do it in TYPE and with CODE. */
907 static tree
908 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
910 if (t1 == 0)
912 gcc_assert (t2 == 0 || code != MINUS_EXPR);
913 return t2;
915 else if (t2 == 0)
916 return t1;
918 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
919 try to fold this since we will have infinite recursion. But do
920 deal with any NEGATE_EXPRs. */
921 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
922 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR
923 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
925 if (code == PLUS_EXPR)
927 if (TREE_CODE (t1) == NEGATE_EXPR)
928 return build2_loc (loc, MINUS_EXPR, type,
929 fold_convert_loc (loc, type, t2),
930 fold_convert_loc (loc, type,
931 TREE_OPERAND (t1, 0)));
932 else if (TREE_CODE (t2) == NEGATE_EXPR)
933 return build2_loc (loc, MINUS_EXPR, type,
934 fold_convert_loc (loc, type, t1),
935 fold_convert_loc (loc, type,
936 TREE_OPERAND (t2, 0)));
937 else if (integer_zerop (t2))
938 return fold_convert_loc (loc, type, t1);
940 else if (code == MINUS_EXPR)
942 if (integer_zerop (t2))
943 return fold_convert_loc (loc, type, t1);
946 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
947 fold_convert_loc (loc, type, t2));
950 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
951 fold_convert_loc (loc, type, t2));
954 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
955 for use in int_const_binop, size_binop and size_diffop. */
957 static bool
958 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
960 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
961 return false;
962 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
963 return false;
965 switch (code)
967 case LSHIFT_EXPR:
968 case RSHIFT_EXPR:
969 case LROTATE_EXPR:
970 case RROTATE_EXPR:
971 return true;
973 default:
974 break;
977 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
978 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
979 && TYPE_MODE (type1) == TYPE_MODE (type2);
982 /* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
983 a new constant in RES. Return FALSE if we don't know how to
984 evaluate CODE at compile-time. */
986 bool
987 wide_int_binop (wide_int &res,
988 enum tree_code code, const wide_int &arg1, const wide_int &arg2,
989 signop sign, wi::overflow_type *overflow)
991 wide_int tmp;
992 *overflow = wi::OVF_NONE;
993 switch (code)
995 case BIT_IOR_EXPR:
996 res = wi::bit_or (arg1, arg2);
997 break;
999 case BIT_XOR_EXPR:
1000 res = wi::bit_xor (arg1, arg2);
1001 break;
1003 case BIT_AND_EXPR:
1004 res = wi::bit_and (arg1, arg2);
1005 break;
1007 case LSHIFT_EXPR:
1008 if (wi::neg_p (arg2))
1009 return false;
1010 res = wi::lshift (arg1, arg2);
1011 break;
1013 case RSHIFT_EXPR:
1014 if (wi::neg_p (arg2))
1015 return false;
1016 /* It's unclear from the C standard whether shifts can overflow.
1017 The following code ignores overflow; perhaps a C standard
1018 interpretation ruling is needed. */
1019 res = wi::rshift (arg1, arg2, sign);
1020 break;
1022 case RROTATE_EXPR:
1023 case LROTATE_EXPR:
1024 if (wi::neg_p (arg2))
1026 tmp = -arg2;
1027 if (code == RROTATE_EXPR)
1028 code = LROTATE_EXPR;
1029 else
1030 code = RROTATE_EXPR;
1032 else
1033 tmp = arg2;
1035 if (code == RROTATE_EXPR)
1036 res = wi::rrotate (arg1, tmp);
1037 else
1038 res = wi::lrotate (arg1, tmp);
1039 break;
1041 case PLUS_EXPR:
1042 res = wi::add (arg1, arg2, sign, overflow);
1043 break;
1045 case MINUS_EXPR:
1046 res = wi::sub (arg1, arg2, sign, overflow);
1047 break;
1049 case MULT_EXPR:
1050 res = wi::mul (arg1, arg2, sign, overflow);
1051 break;
1053 case MULT_HIGHPART_EXPR:
1054 res = wi::mul_high (arg1, arg2, sign);
1055 break;
1057 case TRUNC_DIV_EXPR:
1058 case EXACT_DIV_EXPR:
1059 if (arg2 == 0)
1060 return false;
1061 res = wi::div_trunc (arg1, arg2, sign, overflow);
1062 break;
1064 case FLOOR_DIV_EXPR:
1065 if (arg2 == 0)
1066 return false;
1067 res = wi::div_floor (arg1, arg2, sign, overflow);
1068 break;
1070 case CEIL_DIV_EXPR:
1071 if (arg2 == 0)
1072 return false;
1073 res = wi::div_ceil (arg1, arg2, sign, overflow);
1074 break;
1076 case ROUND_DIV_EXPR:
1077 if (arg2 == 0)
1078 return false;
1079 res = wi::div_round (arg1, arg2, sign, overflow);
1080 break;
1082 case TRUNC_MOD_EXPR:
1083 if (arg2 == 0)
1084 return false;
1085 res = wi::mod_trunc (arg1, arg2, sign, overflow);
1086 break;
1088 case FLOOR_MOD_EXPR:
1089 if (arg2 == 0)
1090 return false;
1091 res = wi::mod_floor (arg1, arg2, sign, overflow);
1092 break;
1094 case CEIL_MOD_EXPR:
1095 if (arg2 == 0)
1096 return false;
1097 res = wi::mod_ceil (arg1, arg2, sign, overflow);
1098 break;
1100 case ROUND_MOD_EXPR:
1101 if (arg2 == 0)
1102 return false;
1103 res = wi::mod_round (arg1, arg2, sign, overflow);
1104 break;
1106 case MIN_EXPR:
1107 res = wi::min (arg1, arg2, sign);
1108 break;
1110 case MAX_EXPR:
1111 res = wi::max (arg1, arg2, sign);
1112 break;
1114 default:
1115 return false;
1117 return true;
1120 /* Combine two poly int's ARG1 and ARG2 under operation CODE to
1121 produce a new constant in RES. Return FALSE if we don't know how
1122 to evaluate CODE at compile-time. */
1124 static bool
1125 poly_int_binop (poly_wide_int &res, enum tree_code code,
1126 const_tree arg1, const_tree arg2,
1127 signop sign, wi::overflow_type *overflow)
1129 gcc_assert (NUM_POLY_INT_COEFFS != 1);
1130 gcc_assert (poly_int_tree_p (arg1) && poly_int_tree_p (arg2));
1131 switch (code)
1133 case PLUS_EXPR:
1134 res = wi::add (wi::to_poly_wide (arg1),
1135 wi::to_poly_wide (arg2), sign, overflow);
1136 break;
1138 case MINUS_EXPR:
1139 res = wi::sub (wi::to_poly_wide (arg1),
1140 wi::to_poly_wide (arg2), sign, overflow);
1141 break;
1143 case MULT_EXPR:
1144 if (TREE_CODE (arg2) == INTEGER_CST)
1145 res = wi::mul (wi::to_poly_wide (arg1),
1146 wi::to_wide (arg2), sign, overflow);
1147 else if (TREE_CODE (arg1) == INTEGER_CST)
1148 res = wi::mul (wi::to_poly_wide (arg2),
1149 wi::to_wide (arg1), sign, overflow);
1150 else
1151 return NULL_TREE;
1152 break;
1154 case LSHIFT_EXPR:
1155 if (TREE_CODE (arg2) == INTEGER_CST)
1156 res = wi::to_poly_wide (arg1) << wi::to_wide (arg2);
1157 else
1158 return false;
1159 break;
1161 case BIT_IOR_EXPR:
1162 if (TREE_CODE (arg2) != INTEGER_CST
1163 || !can_ior_p (wi::to_poly_wide (arg1), wi::to_wide (arg2),
1164 &res))
1165 return false;
1166 break;
1168 default:
1169 return false;
1171 return true;
1174 /* Combine two integer constants ARG1 and ARG2 under operation CODE to
1175 produce a new constant. Return NULL_TREE if we don't know how to
1176 evaluate CODE at compile-time. */
1178 tree
1179 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2,
1180 int overflowable)
1182 poly_wide_int poly_res;
1183 tree type = TREE_TYPE (arg1);
1184 signop sign = TYPE_SIGN (type);
1185 wi::overflow_type overflow = wi::OVF_NONE;
1187 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1189 wide_int warg1 = wi::to_wide (arg1), res;
1190 wide_int warg2 = wi::to_wide (arg2, TYPE_PRECISION (type));
1191 if (!wide_int_binop (res, code, warg1, warg2, sign, &overflow))
1192 return NULL_TREE;
1193 poly_res = res;
1195 else if (!poly_int_tree_p (arg1)
1196 || !poly_int_tree_p (arg2)
1197 || !poly_int_binop (poly_res, code, arg1, arg2, sign, &overflow))
1198 return NULL_TREE;
1199 return force_fit_type (type, poly_res, overflowable,
1200 (((sign == SIGNED || overflowable == -1)
1201 && overflow)
1202 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)));
1205 /* Return true if binary operation OP distributes over addition in operand
1206 OPNO, with the other operand being held constant. OPNO counts from 1. */
1208 static bool
1209 distributes_over_addition_p (tree_code op, int opno)
1211 switch (op)
1213 case PLUS_EXPR:
1214 case MINUS_EXPR:
1215 case MULT_EXPR:
1216 return true;
1218 case LSHIFT_EXPR:
1219 return opno == 1;
1221 default:
1222 return false;
1226 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1227 constant. We assume ARG1 and ARG2 have the same data type, or at least
1228 are the same kind of constant and the same machine mode. Return zero if
1229 combining the constants is not allowed in the current operating mode. */
1231 static tree
1232 const_binop (enum tree_code code, tree arg1, tree arg2)
1234 /* Sanity check for the recursive cases. */
1235 if (!arg1 || !arg2)
1236 return NULL_TREE;
1238 STRIP_NOPS (arg1);
1239 STRIP_NOPS (arg2);
1241 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1243 if (code == POINTER_PLUS_EXPR)
1244 return int_const_binop (PLUS_EXPR,
1245 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1247 return int_const_binop (code, arg1, arg2);
1250 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1252 machine_mode mode;
1253 REAL_VALUE_TYPE d1;
1254 REAL_VALUE_TYPE d2;
1255 REAL_VALUE_TYPE value;
1256 REAL_VALUE_TYPE result;
1257 bool inexact;
1258 tree t, type;
1260 /* The following codes are handled by real_arithmetic. */
1261 switch (code)
1263 case PLUS_EXPR:
1264 case MINUS_EXPR:
1265 case MULT_EXPR:
1266 case RDIV_EXPR:
1267 case MIN_EXPR:
1268 case MAX_EXPR:
1269 break;
1271 default:
1272 return NULL_TREE;
1275 d1 = TREE_REAL_CST (arg1);
1276 d2 = TREE_REAL_CST (arg2);
1278 type = TREE_TYPE (arg1);
1279 mode = TYPE_MODE (type);
1281 /* Don't perform operation if we honor signaling NaNs and
1282 either operand is a signaling NaN. */
1283 if (HONOR_SNANS (mode)
1284 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1285 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1286 return NULL_TREE;
1288 /* Don't perform operation if it would raise a division
1289 by zero exception. */
1290 if (code == RDIV_EXPR
1291 && real_equal (&d2, &dconst0)
1292 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1293 return NULL_TREE;
1295 /* If either operand is a NaN, just return it. Otherwise, set up
1296 for floating-point trap; we return an overflow. */
1297 if (REAL_VALUE_ISNAN (d1))
1299 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1300 is off. */
1301 d1.signalling = 0;
1302 t = build_real (type, d1);
1303 return t;
1305 else if (REAL_VALUE_ISNAN (d2))
1307 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1308 is off. */
1309 d2.signalling = 0;
1310 t = build_real (type, d2);
1311 return t;
1314 inexact = real_arithmetic (&value, code, &d1, &d2);
1315 real_convert (&result, mode, &value);
1317 /* Don't constant fold this floating point operation if
1318 both operands are not NaN but the result is NaN, and
1319 flag_trapping_math. Such operations should raise an
1320 invalid operation exception. */
1321 if (flag_trapping_math
1322 && MODE_HAS_NANS (mode)
1323 && REAL_VALUE_ISNAN (result)
1324 && !REAL_VALUE_ISNAN (d1)
1325 && !REAL_VALUE_ISNAN (d2))
1326 return NULL_TREE;
1328 /* Don't constant fold this floating point operation if
1329 the result has overflowed and flag_trapping_math. */
1330 if (flag_trapping_math
1331 && MODE_HAS_INFINITIES (mode)
1332 && REAL_VALUE_ISINF (result)
1333 && !REAL_VALUE_ISINF (d1)
1334 && !REAL_VALUE_ISINF (d2))
1335 return NULL_TREE;
1337 /* Don't constant fold this floating point operation if the
1338 result may dependent upon the run-time rounding mode and
1339 flag_rounding_math is set, or if GCC's software emulation
1340 is unable to accurately represent the result. */
1341 if ((flag_rounding_math
1342 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1343 && (inexact || !real_identical (&result, &value)))
1344 return NULL_TREE;
1346 t = build_real (type, result);
1348 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1349 return t;
1352 if (TREE_CODE (arg1) == FIXED_CST)
1354 FIXED_VALUE_TYPE f1;
1355 FIXED_VALUE_TYPE f2;
1356 FIXED_VALUE_TYPE result;
1357 tree t, type;
1358 int sat_p;
1359 bool overflow_p;
1361 /* The following codes are handled by fixed_arithmetic. */
1362 switch (code)
1364 case PLUS_EXPR:
1365 case MINUS_EXPR:
1366 case MULT_EXPR:
1367 case TRUNC_DIV_EXPR:
1368 if (TREE_CODE (arg2) != FIXED_CST)
1369 return NULL_TREE;
1370 f2 = TREE_FIXED_CST (arg2);
1371 break;
1373 case LSHIFT_EXPR:
1374 case RSHIFT_EXPR:
1376 if (TREE_CODE (arg2) != INTEGER_CST)
1377 return NULL_TREE;
1378 wi::tree_to_wide_ref w2 = wi::to_wide (arg2);
1379 f2.data.high = w2.elt (1);
1380 f2.data.low = w2.ulow ();
1381 f2.mode = SImode;
1383 break;
1385 default:
1386 return NULL_TREE;
1389 f1 = TREE_FIXED_CST (arg1);
1390 type = TREE_TYPE (arg1);
1391 sat_p = TYPE_SATURATING (type);
1392 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1393 t = build_fixed (type, result);
1394 /* Propagate overflow flags. */
1395 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1396 TREE_OVERFLOW (t) = 1;
1397 return t;
1400 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1402 tree type = TREE_TYPE (arg1);
1403 tree r1 = TREE_REALPART (arg1);
1404 tree i1 = TREE_IMAGPART (arg1);
1405 tree r2 = TREE_REALPART (arg2);
1406 tree i2 = TREE_IMAGPART (arg2);
1407 tree real, imag;
1409 switch (code)
1411 case PLUS_EXPR:
1412 case MINUS_EXPR:
1413 real = const_binop (code, r1, r2);
1414 imag = const_binop (code, i1, i2);
1415 break;
1417 case MULT_EXPR:
1418 if (COMPLEX_FLOAT_TYPE_P (type))
1419 return do_mpc_arg2 (arg1, arg2, type,
1420 /* do_nonfinite= */ folding_initializer,
1421 mpc_mul);
1423 real = const_binop (MINUS_EXPR,
1424 const_binop (MULT_EXPR, r1, r2),
1425 const_binop (MULT_EXPR, i1, i2));
1426 imag = const_binop (PLUS_EXPR,
1427 const_binop (MULT_EXPR, r1, i2),
1428 const_binop (MULT_EXPR, i1, r2));
1429 break;
1431 case RDIV_EXPR:
1432 if (COMPLEX_FLOAT_TYPE_P (type))
1433 return do_mpc_arg2 (arg1, arg2, type,
1434 /* do_nonfinite= */ folding_initializer,
1435 mpc_div);
1436 /* Fallthru. */
1437 case TRUNC_DIV_EXPR:
1438 case CEIL_DIV_EXPR:
1439 case FLOOR_DIV_EXPR:
1440 case ROUND_DIV_EXPR:
1441 if (flag_complex_method == 0)
1443 /* Keep this algorithm in sync with
1444 tree-complex.cc:expand_complex_div_straight().
1446 Expand complex division to scalars, straightforward algorithm.
1447 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1448 t = br*br + bi*bi
1450 tree magsquared
1451 = const_binop (PLUS_EXPR,
1452 const_binop (MULT_EXPR, r2, r2),
1453 const_binop (MULT_EXPR, i2, i2));
1454 tree t1
1455 = const_binop (PLUS_EXPR,
1456 const_binop (MULT_EXPR, r1, r2),
1457 const_binop (MULT_EXPR, i1, i2));
1458 tree t2
1459 = const_binop (MINUS_EXPR,
1460 const_binop (MULT_EXPR, i1, r2),
1461 const_binop (MULT_EXPR, r1, i2));
1463 real = const_binop (code, t1, magsquared);
1464 imag = const_binop (code, t2, magsquared);
1466 else
1468 /* Keep this algorithm in sync with
1469 tree-complex.cc:expand_complex_div_wide().
1471 Expand complex division to scalars, modified algorithm to minimize
1472 overflow with wide input ranges. */
1473 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1474 fold_abs_const (r2, TREE_TYPE (type)),
1475 fold_abs_const (i2, TREE_TYPE (type)));
1477 if (integer_nonzerop (compare))
1479 /* In the TRUE branch, we compute
1480 ratio = br/bi;
1481 div = (br * ratio) + bi;
1482 tr = (ar * ratio) + ai;
1483 ti = (ai * ratio) - ar;
1484 tr = tr / div;
1485 ti = ti / div; */
1486 tree ratio = const_binop (code, r2, i2);
1487 tree div = const_binop (PLUS_EXPR, i2,
1488 const_binop (MULT_EXPR, r2, ratio));
1489 real = const_binop (MULT_EXPR, r1, ratio);
1490 real = const_binop (PLUS_EXPR, real, i1);
1491 real = const_binop (code, real, div);
1493 imag = const_binop (MULT_EXPR, i1, ratio);
1494 imag = const_binop (MINUS_EXPR, imag, r1);
1495 imag = const_binop (code, imag, div);
1497 else
1499 /* In the FALSE branch, we compute
1500 ratio = d/c;
1501 divisor = (d * ratio) + c;
1502 tr = (b * ratio) + a;
1503 ti = b - (a * ratio);
1504 tr = tr / div;
1505 ti = ti / div; */
1506 tree ratio = const_binop (code, i2, r2);
1507 tree div = const_binop (PLUS_EXPR, r2,
1508 const_binop (MULT_EXPR, i2, ratio));
1510 real = const_binop (MULT_EXPR, i1, ratio);
1511 real = const_binop (PLUS_EXPR, real, r1);
1512 real = const_binop (code, real, div);
1514 imag = const_binop (MULT_EXPR, r1, ratio);
1515 imag = const_binop (MINUS_EXPR, i1, imag);
1516 imag = const_binop (code, imag, div);
1519 break;
1521 default:
1522 return NULL_TREE;
1525 if (real && imag)
1526 return build_complex (type, real, imag);
1529 if (TREE_CODE (arg1) == VECTOR_CST
1530 && TREE_CODE (arg2) == VECTOR_CST
1531 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)),
1532 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2))))
1534 tree type = TREE_TYPE (arg1);
1535 bool step_ok_p;
1536 if (VECTOR_CST_STEPPED_P (arg1)
1537 && VECTOR_CST_STEPPED_P (arg2))
1538 /* We can operate directly on the encoding if:
1540 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1541 implies
1542 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1544 Addition and subtraction are the supported operators
1545 for which this is true. */
1546 step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR);
1547 else if (VECTOR_CST_STEPPED_P (arg1))
1548 /* We can operate directly on stepped encodings if:
1550 a3 - a2 == a2 - a1
1551 implies:
1552 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1554 which is true if (x -> x op c) distributes over addition. */
1555 step_ok_p = distributes_over_addition_p (code, 1);
1556 else
1557 /* Similarly in reverse. */
1558 step_ok_p = distributes_over_addition_p (code, 2);
1559 tree_vector_builder elts;
1560 if (!elts.new_binary_operation (type, arg1, arg2, step_ok_p))
1561 return NULL_TREE;
1562 unsigned int count = elts.encoded_nelts ();
1563 for (unsigned int i = 0; i < count; ++i)
1565 tree elem1 = VECTOR_CST_ELT (arg1, i);
1566 tree elem2 = VECTOR_CST_ELT (arg2, i);
1568 tree elt = const_binop (code, elem1, elem2);
1570 /* It is possible that const_binop cannot handle the given
1571 code and return NULL_TREE */
1572 if (elt == NULL_TREE)
1573 return NULL_TREE;
1574 elts.quick_push (elt);
1577 return elts.build ();
1580 /* Shifts allow a scalar offset for a vector. */
1581 if (TREE_CODE (arg1) == VECTOR_CST
1582 && TREE_CODE (arg2) == INTEGER_CST)
1584 tree type = TREE_TYPE (arg1);
1585 bool step_ok_p = distributes_over_addition_p (code, 1);
1586 tree_vector_builder elts;
1587 if (!elts.new_unary_operation (type, arg1, step_ok_p))
1588 return NULL_TREE;
1589 unsigned int count = elts.encoded_nelts ();
1590 for (unsigned int i = 0; i < count; ++i)
1592 tree elem1 = VECTOR_CST_ELT (arg1, i);
1594 tree elt = const_binop (code, elem1, arg2);
1596 /* It is possible that const_binop cannot handle the given
1597 code and return NULL_TREE. */
1598 if (elt == NULL_TREE)
1599 return NULL_TREE;
1600 elts.quick_push (elt);
1603 return elts.build ();
1605 return NULL_TREE;
1608 /* Overload that adds a TYPE parameter to be able to dispatch
1609 to fold_relational_const. */
1611 tree
1612 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1614 if (TREE_CODE_CLASS (code) == tcc_comparison)
1615 return fold_relational_const (code, type, arg1, arg2);
1617 /* ??? Until we make the const_binop worker take the type of the
1618 result as argument put those cases that need it here. */
1619 switch (code)
1621 case VEC_SERIES_EXPR:
1622 if (CONSTANT_CLASS_P (arg1)
1623 && CONSTANT_CLASS_P (arg2))
1624 return build_vec_series (type, arg1, arg2);
1625 return NULL_TREE;
1627 case COMPLEX_EXPR:
1628 if ((TREE_CODE (arg1) == REAL_CST
1629 && TREE_CODE (arg2) == REAL_CST)
1630 || (TREE_CODE (arg1) == INTEGER_CST
1631 && TREE_CODE (arg2) == INTEGER_CST))
1632 return build_complex (type, arg1, arg2);
1633 return NULL_TREE;
1635 case POINTER_DIFF_EXPR:
1636 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2))
1638 poly_offset_int res = (wi::to_poly_offset (arg1)
1639 - wi::to_poly_offset (arg2));
1640 return force_fit_type (type, res, 1,
1641 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1643 return NULL_TREE;
1645 case VEC_PACK_TRUNC_EXPR:
1646 case VEC_PACK_FIX_TRUNC_EXPR:
1647 case VEC_PACK_FLOAT_EXPR:
1649 unsigned int HOST_WIDE_INT out_nelts, in_nelts, i;
1651 if (TREE_CODE (arg1) != VECTOR_CST
1652 || TREE_CODE (arg2) != VECTOR_CST)
1653 return NULL_TREE;
1655 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1656 return NULL_TREE;
1658 out_nelts = in_nelts * 2;
1659 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1660 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1662 tree_vector_builder elts (type, out_nelts, 1);
1663 for (i = 0; i < out_nelts; i++)
1665 tree elt = (i < in_nelts
1666 ? VECTOR_CST_ELT (arg1, i)
1667 : VECTOR_CST_ELT (arg2, i - in_nelts));
1668 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1669 ? NOP_EXPR
1670 : code == VEC_PACK_FLOAT_EXPR
1671 ? FLOAT_EXPR : FIX_TRUNC_EXPR,
1672 TREE_TYPE (type), elt);
1673 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1674 return NULL_TREE;
1675 elts.quick_push (elt);
1678 return elts.build ();
1681 case VEC_WIDEN_MULT_LO_EXPR:
1682 case VEC_WIDEN_MULT_HI_EXPR:
1683 case VEC_WIDEN_MULT_EVEN_EXPR:
1684 case VEC_WIDEN_MULT_ODD_EXPR:
1686 unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale;
1688 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1689 return NULL_TREE;
1691 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts))
1692 return NULL_TREE;
1693 out_nelts = in_nelts / 2;
1694 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2))
1695 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1697 if (code == VEC_WIDEN_MULT_LO_EXPR)
1698 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0;
1699 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1700 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts;
1701 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1702 scale = 1, ofs = 0;
1703 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1704 scale = 1, ofs = 1;
1706 tree_vector_builder elts (type, out_nelts, 1);
1707 for (out = 0; out < out_nelts; out++)
1709 unsigned int in = (out << scale) + ofs;
1710 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1711 VECTOR_CST_ELT (arg1, in));
1712 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type),
1713 VECTOR_CST_ELT (arg2, in));
1715 if (t1 == NULL_TREE || t2 == NULL_TREE)
1716 return NULL_TREE;
1717 tree elt = const_binop (MULT_EXPR, t1, t2);
1718 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1719 return NULL_TREE;
1720 elts.quick_push (elt);
1723 return elts.build ();
1726 default:;
1729 if (TREE_CODE_CLASS (code) != tcc_binary)
1730 return NULL_TREE;
1732 /* Make sure type and arg0 have the same saturating flag. */
1733 gcc_checking_assert (TYPE_SATURATING (type)
1734 == TYPE_SATURATING (TREE_TYPE (arg1)));
1736 return const_binop (code, arg1, arg2);
1739 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1740 Return zero if computing the constants is not possible. */
1742 tree
1743 const_unop (enum tree_code code, tree type, tree arg0)
1745 /* Don't perform the operation, other than NEGATE and ABS, if
1746 flag_signaling_nans is on and the operand is a signaling NaN. */
1747 if (TREE_CODE (arg0) == REAL_CST
1748 && HONOR_SNANS (arg0)
1749 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1750 && code != NEGATE_EXPR
1751 && code != ABS_EXPR
1752 && code != ABSU_EXPR)
1753 return NULL_TREE;
1755 switch (code)
1757 CASE_CONVERT:
1758 case FLOAT_EXPR:
1759 case FIX_TRUNC_EXPR:
1760 case FIXED_CONVERT_EXPR:
1761 return fold_convert_const (code, type, arg0);
1763 case ADDR_SPACE_CONVERT_EXPR:
1764 /* If the source address is 0, and the source address space
1765 cannot have a valid object at 0, fold to dest type null. */
1766 if (integer_zerop (arg0)
1767 && !(targetm.addr_space.zero_address_valid
1768 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1769 return fold_convert_const (code, type, arg0);
1770 break;
1772 case VIEW_CONVERT_EXPR:
1773 return fold_view_convert_expr (type, arg0);
1775 case NEGATE_EXPR:
1777 /* Can't call fold_negate_const directly here as that doesn't
1778 handle all cases and we might not be able to negate some
1779 constants. */
1780 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1781 if (tem && CONSTANT_CLASS_P (tem))
1782 return tem;
1783 break;
1786 case ABS_EXPR:
1787 case ABSU_EXPR:
1788 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1789 return fold_abs_const (arg0, type);
1790 break;
1792 case CONJ_EXPR:
1793 if (TREE_CODE (arg0) == COMPLEX_CST)
1795 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1796 TREE_TYPE (type));
1797 return build_complex (type, TREE_REALPART (arg0), ipart);
1799 break;
1801 case BIT_NOT_EXPR:
1802 if (TREE_CODE (arg0) == INTEGER_CST)
1803 return fold_not_const (arg0, type);
1804 else if (POLY_INT_CST_P (arg0))
1805 return wide_int_to_tree (type, -poly_int_cst_value (arg0));
1806 /* Perform BIT_NOT_EXPR on each element individually. */
1807 else if (TREE_CODE (arg0) == VECTOR_CST)
1809 tree elem;
1811 /* This can cope with stepped encodings because ~x == -1 - x. */
1812 tree_vector_builder elements;
1813 elements.new_unary_operation (type, arg0, true);
1814 unsigned int i, count = elements.encoded_nelts ();
1815 for (i = 0; i < count; ++i)
1817 elem = VECTOR_CST_ELT (arg0, i);
1818 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1819 if (elem == NULL_TREE)
1820 break;
1821 elements.quick_push (elem);
1823 if (i == count)
1824 return elements.build ();
1826 break;
1828 case TRUTH_NOT_EXPR:
1829 if (TREE_CODE (arg0) == INTEGER_CST)
1830 return constant_boolean_node (integer_zerop (arg0), type);
1831 break;
1833 case REALPART_EXPR:
1834 if (TREE_CODE (arg0) == COMPLEX_CST)
1835 return fold_convert (type, TREE_REALPART (arg0));
1836 break;
1838 case IMAGPART_EXPR:
1839 if (TREE_CODE (arg0) == COMPLEX_CST)
1840 return fold_convert (type, TREE_IMAGPART (arg0));
1841 break;
1843 case VEC_UNPACK_LO_EXPR:
1844 case VEC_UNPACK_HI_EXPR:
1845 case VEC_UNPACK_FLOAT_LO_EXPR:
1846 case VEC_UNPACK_FLOAT_HI_EXPR:
1847 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
1848 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
1850 unsigned HOST_WIDE_INT out_nelts, in_nelts, i;
1851 enum tree_code subcode;
1853 if (TREE_CODE (arg0) != VECTOR_CST)
1854 return NULL_TREE;
1856 if (!VECTOR_CST_NELTS (arg0).is_constant (&in_nelts))
1857 return NULL_TREE;
1858 out_nelts = in_nelts / 2;
1859 gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type)));
1861 unsigned int offset = 0;
1862 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1863 || code == VEC_UNPACK_FLOAT_LO_EXPR
1864 || code == VEC_UNPACK_FIX_TRUNC_LO_EXPR))
1865 offset = out_nelts;
1867 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1868 subcode = NOP_EXPR;
1869 else if (code == VEC_UNPACK_FLOAT_LO_EXPR
1870 || code == VEC_UNPACK_FLOAT_HI_EXPR)
1871 subcode = FLOAT_EXPR;
1872 else
1873 subcode = FIX_TRUNC_EXPR;
1875 tree_vector_builder elts (type, out_nelts, 1);
1876 for (i = 0; i < out_nelts; i++)
1878 tree elt = fold_convert_const (subcode, TREE_TYPE (type),
1879 VECTOR_CST_ELT (arg0, i + offset));
1880 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
1881 return NULL_TREE;
1882 elts.quick_push (elt);
1885 return elts.build ();
1888 case VEC_DUPLICATE_EXPR:
1889 if (CONSTANT_CLASS_P (arg0))
1890 return build_vector_from_val (type, arg0);
1891 return NULL_TREE;
1893 default:
1894 break;
1897 return NULL_TREE;
1900 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1901 indicates which particular sizetype to create. */
1903 tree
1904 size_int_kind (poly_int64 number, enum size_type_kind kind)
1906 return build_int_cst (sizetype_tab[(int) kind], number);
1909 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1910 is a tree code. The type of the result is taken from the operands.
1911 Both must be equivalent integer types, ala int_binop_types_match_p.
1912 If the operands are constant, so is the result. */
1914 tree
1915 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1917 tree type = TREE_TYPE (arg0);
1919 if (arg0 == error_mark_node || arg1 == error_mark_node)
1920 return error_mark_node;
1922 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1923 TREE_TYPE (arg1)));
1925 /* Handle the special case of two poly_int constants faster. */
1926 if (poly_int_tree_p (arg0) && poly_int_tree_p (arg1))
1928 /* And some specific cases even faster than that. */
1929 if (code == PLUS_EXPR)
1931 if (integer_zerop (arg0)
1932 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
1933 return arg1;
1934 if (integer_zerop (arg1)
1935 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
1936 return arg0;
1938 else if (code == MINUS_EXPR)
1940 if (integer_zerop (arg1)
1941 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1)))
1942 return arg0;
1944 else if (code == MULT_EXPR)
1946 if (integer_onep (arg0)
1947 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0)))
1948 return arg1;
1951 /* Handle general case of two integer constants. For sizetype
1952 constant calculations we always want to know about overflow,
1953 even in the unsigned case. */
1954 tree res = int_const_binop (code, arg0, arg1, -1);
1955 if (res != NULL_TREE)
1956 return res;
1959 return fold_build2_loc (loc, code, type, arg0, arg1);
1962 /* Given two values, either both of sizetype or both of bitsizetype,
1963 compute the difference between the two values. Return the value
1964 in signed type corresponding to the type of the operands. */
1966 tree
1967 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1969 tree type = TREE_TYPE (arg0);
1970 tree ctype;
1972 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1973 TREE_TYPE (arg1)));
1975 /* If the type is already signed, just do the simple thing. */
1976 if (!TYPE_UNSIGNED (type))
1977 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1979 if (type == sizetype)
1980 ctype = ssizetype;
1981 else if (type == bitsizetype)
1982 ctype = sbitsizetype;
1983 else
1984 ctype = signed_type_for (type);
1986 /* If either operand is not a constant, do the conversions to the signed
1987 type and subtract. The hardware will do the right thing with any
1988 overflow in the subtraction. */
1989 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1990 return size_binop_loc (loc, MINUS_EXPR,
1991 fold_convert_loc (loc, ctype, arg0),
1992 fold_convert_loc (loc, ctype, arg1));
1994 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1995 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1996 overflow) and negate (which can't either). Special-case a result
1997 of zero while we're here. */
1998 if (tree_int_cst_equal (arg0, arg1))
1999 return build_int_cst (ctype, 0);
2000 else if (tree_int_cst_lt (arg1, arg0))
2001 return fold_convert_loc (loc, ctype,
2002 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
2003 else
2004 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
2005 fold_convert_loc (loc, ctype,
2006 size_binop_loc (loc,
2007 MINUS_EXPR,
2008 arg1, arg0)));
2011 /* A subroutine of fold_convert_const handling conversions of an
2012 INTEGER_CST to another integer type. */
2014 static tree
2015 fold_convert_const_int_from_int (tree type, const_tree arg1)
2017 /* Given an integer constant, make new constant with new type,
2018 appropriately sign-extended or truncated. Use widest_int
2019 so that any extension is done according ARG1's type. */
2020 return force_fit_type (type, wi::to_widest (arg1),
2021 !POINTER_TYPE_P (TREE_TYPE (arg1)),
2022 TREE_OVERFLOW (arg1));
2025 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2026 to an integer type. */
2028 static tree
2029 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2031 bool overflow = false;
2032 tree t;
2034 /* The following code implements the floating point to integer
2035 conversion rules required by the Java Language Specification,
2036 that IEEE NaNs are mapped to zero and values that overflow
2037 the target precision saturate, i.e. values greater than
2038 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2039 are mapped to INT_MIN. These semantics are allowed by the
2040 C and C++ standards that simply state that the behavior of
2041 FP-to-integer conversion is unspecified upon overflow. */
2043 wide_int val;
2044 REAL_VALUE_TYPE r;
2045 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2047 switch (code)
2049 case FIX_TRUNC_EXPR:
2050 real_trunc (&r, VOIDmode, &x);
2051 break;
2053 default:
2054 gcc_unreachable ();
2057 /* If R is NaN, return zero and show we have an overflow. */
2058 if (REAL_VALUE_ISNAN (r))
2060 overflow = true;
2061 val = wi::zero (TYPE_PRECISION (type));
2064 /* See if R is less than the lower bound or greater than the
2065 upper bound. */
2067 if (! overflow)
2069 tree lt = TYPE_MIN_VALUE (type);
2070 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2071 if (real_less (&r, &l))
2073 overflow = true;
2074 val = wi::to_wide (lt);
2078 if (! overflow)
2080 tree ut = TYPE_MAX_VALUE (type);
2081 if (ut)
2083 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2084 if (real_less (&u, &r))
2086 overflow = true;
2087 val = wi::to_wide (ut);
2092 if (! overflow)
2093 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
2095 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
2096 return t;
2099 /* A subroutine of fold_convert_const handling conversions of a
2100 FIXED_CST to an integer type. */
2102 static tree
2103 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2105 tree t;
2106 double_int temp, temp_trunc;
2107 scalar_mode mode;
2109 /* Right shift FIXED_CST to temp by fbit. */
2110 temp = TREE_FIXED_CST (arg1).data;
2111 mode = TREE_FIXED_CST (arg1).mode;
2112 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
2114 temp = temp.rshift (GET_MODE_FBIT (mode),
2115 HOST_BITS_PER_DOUBLE_INT,
2116 SIGNED_FIXED_POINT_MODE_P (mode));
2118 /* Left shift temp to temp_trunc by fbit. */
2119 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
2120 HOST_BITS_PER_DOUBLE_INT,
2121 SIGNED_FIXED_POINT_MODE_P (mode));
2123 else
2125 temp = double_int_zero;
2126 temp_trunc = double_int_zero;
2129 /* If FIXED_CST is negative, we need to round the value toward 0.
2130 By checking if the fractional bits are not zero to add 1 to temp. */
2131 if (SIGNED_FIXED_POINT_MODE_P (mode)
2132 && temp_trunc.is_negative ()
2133 && TREE_FIXED_CST (arg1).data != temp_trunc)
2134 temp += double_int_one;
2136 /* Given a fixed-point constant, make new constant with new type,
2137 appropriately sign-extended or truncated. */
2138 t = force_fit_type (type, temp, -1,
2139 (temp.is_negative ()
2140 && (TYPE_UNSIGNED (type)
2141 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2142 | TREE_OVERFLOW (arg1));
2144 return t;
2147 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2148 to another floating point type. */
2150 static tree
2151 fold_convert_const_real_from_real (tree type, const_tree arg1)
2153 REAL_VALUE_TYPE value;
2154 tree t;
2156 /* Don't perform the operation if flag_signaling_nans is on
2157 and the operand is a signaling NaN. */
2158 if (HONOR_SNANS (arg1)
2159 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
2160 return NULL_TREE;
2162 /* With flag_rounding_math we should respect the current rounding mode
2163 unless the conversion is exact. */
2164 if (HONOR_SIGN_DEPENDENT_ROUNDING (arg1)
2165 && !exact_real_truncate (TYPE_MODE (type), &TREE_REAL_CST (arg1)))
2166 return NULL_TREE;
2168 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2169 t = build_real (type, value);
2171 /* If converting an infinity or NAN to a representation that doesn't
2172 have one, set the overflow bit so that we can produce some kind of
2173 error message at the appropriate point if necessary. It's not the
2174 most user-friendly message, but it's better than nothing. */
2175 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
2176 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
2177 TREE_OVERFLOW (t) = 1;
2178 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
2179 && !MODE_HAS_NANS (TYPE_MODE (type)))
2180 TREE_OVERFLOW (t) = 1;
2181 /* Regular overflow, conversion produced an infinity in a mode that
2182 can't represent them. */
2183 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2184 && REAL_VALUE_ISINF (value)
2185 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2186 TREE_OVERFLOW (t) = 1;
2187 else
2188 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2189 return t;
2192 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2193 to a floating point type. */
2195 static tree
2196 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2198 REAL_VALUE_TYPE value;
2199 tree t;
2201 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type),
2202 &TREE_FIXED_CST (arg1));
2203 t = build_real (type, value);
2205 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2206 return t;
2209 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2210 to another fixed-point type. */
2212 static tree
2213 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2215 FIXED_VALUE_TYPE value;
2216 tree t;
2217 bool overflow_p;
2219 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type),
2220 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type));
2221 t = build_fixed (type, value);
2223 /* Propagate overflow flags. */
2224 if (overflow_p | TREE_OVERFLOW (arg1))
2225 TREE_OVERFLOW (t) = 1;
2226 return t;
2229 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2230 to a fixed-point type. */
2232 static tree
2233 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2235 FIXED_VALUE_TYPE value;
2236 tree t;
2237 bool overflow_p;
2238 double_int di;
2240 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2242 di.low = TREE_INT_CST_ELT (arg1, 0);
2243 if (TREE_INT_CST_NUNITS (arg1) == 1)
2244 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2245 else
2246 di.high = TREE_INT_CST_ELT (arg1, 1);
2248 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di,
2249 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2250 TYPE_SATURATING (type));
2251 t = build_fixed (type, value);
2253 /* Propagate overflow flags. */
2254 if (overflow_p | TREE_OVERFLOW (arg1))
2255 TREE_OVERFLOW (t) = 1;
2256 return t;
2259 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2260 to a fixed-point type. */
2262 static tree
2263 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2265 FIXED_VALUE_TYPE value;
2266 tree t;
2267 bool overflow_p;
2269 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type),
2270 &TREE_REAL_CST (arg1),
2271 TYPE_SATURATING (type));
2272 t = build_fixed (type, value);
2274 /* Propagate overflow flags. */
2275 if (overflow_p | TREE_OVERFLOW (arg1))
2276 TREE_OVERFLOW (t) = 1;
2277 return t;
2280 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2281 type TYPE. If no simplification can be done return NULL_TREE. */
2283 static tree
2284 fold_convert_const (enum tree_code code, tree type, tree arg1)
2286 tree arg_type = TREE_TYPE (arg1);
2287 if (arg_type == type)
2288 return arg1;
2290 /* We can't widen types, since the runtime value could overflow the
2291 original type before being extended to the new type. */
2292 if (POLY_INT_CST_P (arg1)
2293 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2294 && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type))
2295 return build_poly_int_cst (type,
2296 poly_wide_int::from (poly_int_cst_value (arg1),
2297 TYPE_PRECISION (type),
2298 TYPE_SIGN (arg_type)));
2300 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2301 || TREE_CODE (type) == OFFSET_TYPE)
2303 if (TREE_CODE (arg1) == INTEGER_CST)
2304 return fold_convert_const_int_from_int (type, arg1);
2305 else if (TREE_CODE (arg1) == REAL_CST)
2306 return fold_convert_const_int_from_real (code, type, arg1);
2307 else if (TREE_CODE (arg1) == FIXED_CST)
2308 return fold_convert_const_int_from_fixed (type, arg1);
2310 else if (TREE_CODE (type) == REAL_TYPE)
2312 if (TREE_CODE (arg1) == INTEGER_CST)
2314 tree res = build_real_from_int_cst (type, arg1);
2315 /* Avoid the folding if flag_rounding_math is on and the
2316 conversion is not exact. */
2317 if (HONOR_SIGN_DEPENDENT_ROUNDING (type))
2319 bool fail = false;
2320 wide_int w = real_to_integer (&TREE_REAL_CST (res), &fail,
2321 TYPE_PRECISION (TREE_TYPE (arg1)));
2322 if (fail || wi::ne_p (w, wi::to_wide (arg1)))
2323 return NULL_TREE;
2325 return res;
2327 else if (TREE_CODE (arg1) == REAL_CST)
2328 return fold_convert_const_real_from_real (type, arg1);
2329 else if (TREE_CODE (arg1) == FIXED_CST)
2330 return fold_convert_const_real_from_fixed (type, arg1);
2332 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2334 if (TREE_CODE (arg1) == FIXED_CST)
2335 return fold_convert_const_fixed_from_fixed (type, arg1);
2336 else if (TREE_CODE (arg1) == INTEGER_CST)
2337 return fold_convert_const_fixed_from_int (type, arg1);
2338 else if (TREE_CODE (arg1) == REAL_CST)
2339 return fold_convert_const_fixed_from_real (type, arg1);
2341 else if (TREE_CODE (type) == VECTOR_TYPE)
2343 if (TREE_CODE (arg1) == VECTOR_CST
2344 && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1)))
2346 tree elttype = TREE_TYPE (type);
2347 tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1));
2348 /* We can't handle steps directly when extending, since the
2349 values need to wrap at the original precision first. */
2350 bool step_ok_p
2351 = (INTEGRAL_TYPE_P (elttype)
2352 && INTEGRAL_TYPE_P (arg1_elttype)
2353 && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype));
2354 tree_vector_builder v;
2355 if (!v.new_unary_operation (type, arg1, step_ok_p))
2356 return NULL_TREE;
2357 unsigned int len = v.encoded_nelts ();
2358 for (unsigned int i = 0; i < len; ++i)
2360 tree elt = VECTOR_CST_ELT (arg1, i);
2361 tree cvt = fold_convert_const (code, elttype, elt);
2362 if (cvt == NULL_TREE)
2363 return NULL_TREE;
2364 v.quick_push (cvt);
2366 return v.build ();
2369 return NULL_TREE;
2372 /* Construct a vector of zero elements of vector type TYPE. */
2374 static tree
2375 build_zero_vector (tree type)
2377 tree t;
2379 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2380 return build_vector_from_val (type, t);
2383 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2385 bool
2386 fold_convertible_p (const_tree type, const_tree arg)
2388 const_tree orig = TREE_TYPE (arg);
2390 if (type == orig)
2391 return true;
2393 if (TREE_CODE (arg) == ERROR_MARK
2394 || TREE_CODE (type) == ERROR_MARK
2395 || TREE_CODE (orig) == ERROR_MARK)
2396 return false;
2398 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2399 return true;
2401 switch (TREE_CODE (type))
2403 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2404 case POINTER_TYPE: case REFERENCE_TYPE:
2405 case OFFSET_TYPE:
2406 return (INTEGRAL_TYPE_P (orig)
2407 || (POINTER_TYPE_P (orig)
2408 && TYPE_PRECISION (type) <= TYPE_PRECISION (orig))
2409 || TREE_CODE (orig) == OFFSET_TYPE);
2411 case REAL_TYPE:
2412 case FIXED_POINT_TYPE:
2413 case VOID_TYPE:
2414 return TREE_CODE (type) == TREE_CODE (orig);
2416 case VECTOR_TYPE:
2417 return (VECTOR_TYPE_P (orig)
2418 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2419 TYPE_VECTOR_SUBPARTS (orig))
2420 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2422 default:
2423 return false;
2427 /* Convert expression ARG to type TYPE. Used by the middle-end for
2428 simple conversions in preference to calling the front-end's convert. */
2430 tree
2431 fold_convert_loc (location_t loc, tree type, tree arg)
2433 tree orig = TREE_TYPE (arg);
2434 tree tem;
2436 if (type == orig)
2437 return arg;
2439 if (TREE_CODE (arg) == ERROR_MARK
2440 || TREE_CODE (type) == ERROR_MARK
2441 || TREE_CODE (orig) == ERROR_MARK)
2442 return error_mark_node;
2444 switch (TREE_CODE (type))
2446 case POINTER_TYPE:
2447 case REFERENCE_TYPE:
2448 /* Handle conversions between pointers to different address spaces. */
2449 if (POINTER_TYPE_P (orig)
2450 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2451 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2452 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2453 /* fall through */
2455 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2456 case OFFSET_TYPE:
2457 if (TREE_CODE (arg) == INTEGER_CST)
2459 tem = fold_convert_const (NOP_EXPR, type, arg);
2460 if (tem != NULL_TREE)
2461 return tem;
2463 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2464 || TREE_CODE (orig) == OFFSET_TYPE)
2465 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2466 if (TREE_CODE (orig) == COMPLEX_TYPE)
2467 return fold_convert_loc (loc, type,
2468 fold_build1_loc (loc, REALPART_EXPR,
2469 TREE_TYPE (orig), arg));
2470 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2471 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2472 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2474 case REAL_TYPE:
2475 if (TREE_CODE (arg) == INTEGER_CST)
2477 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2478 if (tem != NULL_TREE)
2479 return tem;
2481 else if (TREE_CODE (arg) == REAL_CST)
2483 tem = fold_convert_const (NOP_EXPR, type, arg);
2484 if (tem != NULL_TREE)
2485 return tem;
2487 else if (TREE_CODE (arg) == FIXED_CST)
2489 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2490 if (tem != NULL_TREE)
2491 return tem;
2494 switch (TREE_CODE (orig))
2496 case INTEGER_TYPE:
2497 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2498 case POINTER_TYPE: case REFERENCE_TYPE:
2499 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2501 case REAL_TYPE:
2502 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2504 case FIXED_POINT_TYPE:
2505 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2507 case COMPLEX_TYPE:
2508 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2509 return fold_convert_loc (loc, type, tem);
2511 default:
2512 gcc_unreachable ();
2515 case FIXED_POINT_TYPE:
2516 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2517 || TREE_CODE (arg) == REAL_CST)
2519 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2520 if (tem != NULL_TREE)
2521 goto fold_convert_exit;
2524 switch (TREE_CODE (orig))
2526 case FIXED_POINT_TYPE:
2527 case INTEGER_TYPE:
2528 case ENUMERAL_TYPE:
2529 case BOOLEAN_TYPE:
2530 case REAL_TYPE:
2531 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2533 case COMPLEX_TYPE:
2534 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2535 return fold_convert_loc (loc, type, tem);
2537 default:
2538 gcc_unreachable ();
2541 case COMPLEX_TYPE:
2542 switch (TREE_CODE (orig))
2544 case INTEGER_TYPE:
2545 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2546 case POINTER_TYPE: case REFERENCE_TYPE:
2547 case REAL_TYPE:
2548 case FIXED_POINT_TYPE:
2549 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2550 fold_convert_loc (loc, TREE_TYPE (type), arg),
2551 fold_convert_loc (loc, TREE_TYPE (type),
2552 integer_zero_node));
2553 case COMPLEX_TYPE:
2555 tree rpart, ipart;
2557 if (TREE_CODE (arg) == COMPLEX_EXPR)
2559 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2560 TREE_OPERAND (arg, 0));
2561 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2562 TREE_OPERAND (arg, 1));
2563 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2566 arg = save_expr (arg);
2567 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2568 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2569 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2570 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2571 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2574 default:
2575 gcc_unreachable ();
2578 case VECTOR_TYPE:
2579 if (integer_zerop (arg))
2580 return build_zero_vector (type);
2581 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2582 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2583 || TREE_CODE (orig) == VECTOR_TYPE);
2584 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2586 case VOID_TYPE:
2587 tem = fold_ignored_result (arg);
2588 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2590 default:
2591 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2592 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2593 gcc_unreachable ();
2595 fold_convert_exit:
2596 protected_set_expr_location_unshare (tem, loc);
2597 return tem;
2600 /* Return false if expr can be assumed not to be an lvalue, true
2601 otherwise. */
2603 static bool
2604 maybe_lvalue_p (const_tree x)
2606 /* We only need to wrap lvalue tree codes. */
2607 switch (TREE_CODE (x))
2609 case VAR_DECL:
2610 case PARM_DECL:
2611 case RESULT_DECL:
2612 case LABEL_DECL:
2613 case FUNCTION_DECL:
2614 case SSA_NAME:
2616 case COMPONENT_REF:
2617 case MEM_REF:
2618 case INDIRECT_REF:
2619 case ARRAY_REF:
2620 case ARRAY_RANGE_REF:
2621 case BIT_FIELD_REF:
2622 case OBJ_TYPE_REF:
2624 case REALPART_EXPR:
2625 case IMAGPART_EXPR:
2626 case PREINCREMENT_EXPR:
2627 case PREDECREMENT_EXPR:
2628 case SAVE_EXPR:
2629 case TRY_CATCH_EXPR:
2630 case WITH_CLEANUP_EXPR:
2631 case COMPOUND_EXPR:
2632 case MODIFY_EXPR:
2633 case TARGET_EXPR:
2634 case COND_EXPR:
2635 case BIND_EXPR:
2636 case VIEW_CONVERT_EXPR:
2637 break;
2639 default:
2640 /* Assume the worst for front-end tree codes. */
2641 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2642 break;
2643 return false;
2646 return true;
2649 /* Return an expr equal to X but certainly not valid as an lvalue. */
2651 tree
2652 non_lvalue_loc (location_t loc, tree x)
2654 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2655 us. */
2656 if (in_gimple_form)
2657 return x;
2659 if (! maybe_lvalue_p (x))
2660 return x;
2661 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2664 /* Given a tree comparison code, return the code that is the logical inverse.
2665 It is generally not safe to do this for floating-point comparisons, except
2666 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2667 ERROR_MARK in this case. */
2669 enum tree_code
2670 invert_tree_comparison (enum tree_code code, bool honor_nans)
2672 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2673 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2674 return ERROR_MARK;
2676 switch (code)
2678 case EQ_EXPR:
2679 return NE_EXPR;
2680 case NE_EXPR:
2681 return EQ_EXPR;
2682 case GT_EXPR:
2683 return honor_nans ? UNLE_EXPR : LE_EXPR;
2684 case GE_EXPR:
2685 return honor_nans ? UNLT_EXPR : LT_EXPR;
2686 case LT_EXPR:
2687 return honor_nans ? UNGE_EXPR : GE_EXPR;
2688 case LE_EXPR:
2689 return honor_nans ? UNGT_EXPR : GT_EXPR;
2690 case LTGT_EXPR:
2691 return UNEQ_EXPR;
2692 case UNEQ_EXPR:
2693 return LTGT_EXPR;
2694 case UNGT_EXPR:
2695 return LE_EXPR;
2696 case UNGE_EXPR:
2697 return LT_EXPR;
2698 case UNLT_EXPR:
2699 return GE_EXPR;
2700 case UNLE_EXPR:
2701 return GT_EXPR;
2702 case ORDERED_EXPR:
2703 return UNORDERED_EXPR;
2704 case UNORDERED_EXPR:
2705 return ORDERED_EXPR;
2706 default:
2707 gcc_unreachable ();
2711 /* Similar, but return the comparison that results if the operands are
2712 swapped. This is safe for floating-point. */
2714 enum tree_code
2715 swap_tree_comparison (enum tree_code code)
2717 switch (code)
2719 case EQ_EXPR:
2720 case NE_EXPR:
2721 case ORDERED_EXPR:
2722 case UNORDERED_EXPR:
2723 case LTGT_EXPR:
2724 case UNEQ_EXPR:
2725 return code;
2726 case GT_EXPR:
2727 return LT_EXPR;
2728 case GE_EXPR:
2729 return LE_EXPR;
2730 case LT_EXPR:
2731 return GT_EXPR;
2732 case LE_EXPR:
2733 return GE_EXPR;
2734 case UNGT_EXPR:
2735 return UNLT_EXPR;
2736 case UNGE_EXPR:
2737 return UNLE_EXPR;
2738 case UNLT_EXPR:
2739 return UNGT_EXPR;
2740 case UNLE_EXPR:
2741 return UNGE_EXPR;
2742 default:
2743 gcc_unreachable ();
2748 /* Convert a comparison tree code from an enum tree_code representation
2749 into a compcode bit-based encoding. This function is the inverse of
2750 compcode_to_comparison. */
2752 static enum comparison_code
2753 comparison_to_compcode (enum tree_code code)
2755 switch (code)
2757 case LT_EXPR:
2758 return COMPCODE_LT;
2759 case EQ_EXPR:
2760 return COMPCODE_EQ;
2761 case LE_EXPR:
2762 return COMPCODE_LE;
2763 case GT_EXPR:
2764 return COMPCODE_GT;
2765 case NE_EXPR:
2766 return COMPCODE_NE;
2767 case GE_EXPR:
2768 return COMPCODE_GE;
2769 case ORDERED_EXPR:
2770 return COMPCODE_ORD;
2771 case UNORDERED_EXPR:
2772 return COMPCODE_UNORD;
2773 case UNLT_EXPR:
2774 return COMPCODE_UNLT;
2775 case UNEQ_EXPR:
2776 return COMPCODE_UNEQ;
2777 case UNLE_EXPR:
2778 return COMPCODE_UNLE;
2779 case UNGT_EXPR:
2780 return COMPCODE_UNGT;
2781 case LTGT_EXPR:
2782 return COMPCODE_LTGT;
2783 case UNGE_EXPR:
2784 return COMPCODE_UNGE;
2785 default:
2786 gcc_unreachable ();
2790 /* Convert a compcode bit-based encoding of a comparison operator back
2791 to GCC's enum tree_code representation. This function is the
2792 inverse of comparison_to_compcode. */
2794 static enum tree_code
2795 compcode_to_comparison (enum comparison_code code)
2797 switch (code)
2799 case COMPCODE_LT:
2800 return LT_EXPR;
2801 case COMPCODE_EQ:
2802 return EQ_EXPR;
2803 case COMPCODE_LE:
2804 return LE_EXPR;
2805 case COMPCODE_GT:
2806 return GT_EXPR;
2807 case COMPCODE_NE:
2808 return NE_EXPR;
2809 case COMPCODE_GE:
2810 return GE_EXPR;
2811 case COMPCODE_ORD:
2812 return ORDERED_EXPR;
2813 case COMPCODE_UNORD:
2814 return UNORDERED_EXPR;
2815 case COMPCODE_UNLT:
2816 return UNLT_EXPR;
2817 case COMPCODE_UNEQ:
2818 return UNEQ_EXPR;
2819 case COMPCODE_UNLE:
2820 return UNLE_EXPR;
2821 case COMPCODE_UNGT:
2822 return UNGT_EXPR;
2823 case COMPCODE_LTGT:
2824 return LTGT_EXPR;
2825 case COMPCODE_UNGE:
2826 return UNGE_EXPR;
2827 default:
2828 gcc_unreachable ();
2832 /* Return true if COND1 tests the opposite condition of COND2. */
2834 bool
2835 inverse_conditions_p (const_tree cond1, const_tree cond2)
2837 return (COMPARISON_CLASS_P (cond1)
2838 && COMPARISON_CLASS_P (cond2)
2839 && (invert_tree_comparison
2840 (TREE_CODE (cond1),
2841 HONOR_NANS (TREE_OPERAND (cond1, 0))) == TREE_CODE (cond2))
2842 && operand_equal_p (TREE_OPERAND (cond1, 0),
2843 TREE_OPERAND (cond2, 0), 0)
2844 && operand_equal_p (TREE_OPERAND (cond1, 1),
2845 TREE_OPERAND (cond2, 1), 0));
2848 /* Return a tree for the comparison which is the combination of
2849 doing the AND or OR (depending on CODE) of the two operations LCODE
2850 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2851 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2852 if this makes the transformation invalid. */
2854 tree
2855 combine_comparisons (location_t loc,
2856 enum tree_code code, enum tree_code lcode,
2857 enum tree_code rcode, tree truth_type,
2858 tree ll_arg, tree lr_arg)
2860 bool honor_nans = HONOR_NANS (ll_arg);
2861 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2862 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2863 int compcode;
2865 switch (code)
2867 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2868 compcode = lcompcode & rcompcode;
2869 break;
2871 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2872 compcode = lcompcode | rcompcode;
2873 break;
2875 default:
2876 return NULL_TREE;
2879 if (!honor_nans)
2881 /* Eliminate unordered comparisons, as well as LTGT and ORD
2882 which are not used unless the mode has NaNs. */
2883 compcode &= ~COMPCODE_UNORD;
2884 if (compcode == COMPCODE_LTGT)
2885 compcode = COMPCODE_NE;
2886 else if (compcode == COMPCODE_ORD)
2887 compcode = COMPCODE_TRUE;
2889 else if (flag_trapping_math)
2891 /* Check that the original operation and the optimized ones will trap
2892 under the same condition. */
2893 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2894 && (lcompcode != COMPCODE_EQ)
2895 && (lcompcode != COMPCODE_ORD);
2896 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2897 && (rcompcode != COMPCODE_EQ)
2898 && (rcompcode != COMPCODE_ORD);
2899 bool trap = (compcode & COMPCODE_UNORD) == 0
2900 && (compcode != COMPCODE_EQ)
2901 && (compcode != COMPCODE_ORD);
2903 /* In a short-circuited boolean expression the LHS might be
2904 such that the RHS, if evaluated, will never trap. For
2905 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2906 if neither x nor y is NaN. (This is a mixed blessing: for
2907 example, the expression above will never trap, hence
2908 optimizing it to x < y would be invalid). */
2909 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2910 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2911 rtrap = false;
2913 /* If the comparison was short-circuited, and only the RHS
2914 trapped, we may now generate a spurious trap. */
2915 if (rtrap && !ltrap
2916 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2917 return NULL_TREE;
2919 /* If we changed the conditions that cause a trap, we lose. */
2920 if ((ltrap || rtrap) != trap)
2921 return NULL_TREE;
2924 if (compcode == COMPCODE_TRUE)
2925 return constant_boolean_node (true, truth_type);
2926 else if (compcode == COMPCODE_FALSE)
2927 return constant_boolean_node (false, truth_type);
2928 else
2930 enum tree_code tcode;
2932 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2933 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2937 /* Return nonzero if two operands (typically of the same tree node)
2938 are necessarily equal. FLAGS modifies behavior as follows:
2940 If OEP_ONLY_CONST is set, only return nonzero for constants.
2941 This function tests whether the operands are indistinguishable;
2942 it does not test whether they are equal using C's == operation.
2943 The distinction is important for IEEE floating point, because
2944 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2945 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2947 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2948 even though it may hold multiple values during a function.
2949 This is because a GCC tree node guarantees that nothing else is
2950 executed between the evaluation of its "operands" (which may often
2951 be evaluated in arbitrary order). Hence if the operands themselves
2952 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2953 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2954 unset means assuming isochronic (or instantaneous) tree equivalence.
2955 Unless comparing arbitrary expression trees, such as from different
2956 statements, this flag can usually be left unset.
2958 If OEP_PURE_SAME is set, then pure functions with identical arguments
2959 are considered the same. It is used when the caller has other ways
2960 to ensure that global memory is unchanged in between.
2962 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2963 not values of expressions.
2965 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2966 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2968 If OEP_BITWISE is set, then require the values to be bitwise identical
2969 rather than simply numerically equal. Do not take advantage of things
2970 like math-related flags or undefined behavior; only return true for
2971 values that are provably bitwise identical in all circumstances.
2973 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2974 any operand with side effect. This is unnecesarily conservative in the
2975 case we know that arg0 and arg1 are in disjoint code paths (such as in
2976 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2977 addresses with TREE_CONSTANT flag set so we know that &var == &var
2978 even if var is volatile. */
2980 bool
2981 operand_compare::operand_equal_p (const_tree arg0, const_tree arg1,
2982 unsigned int flags)
2984 bool r;
2985 if (verify_hash_value (arg0, arg1, flags, &r))
2986 return r;
2988 STRIP_ANY_LOCATION_WRAPPER (arg0);
2989 STRIP_ANY_LOCATION_WRAPPER (arg1);
2991 /* If either is ERROR_MARK, they aren't equal. */
2992 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2993 || TREE_TYPE (arg0) == error_mark_node
2994 || TREE_TYPE (arg1) == error_mark_node)
2995 return false;
2997 /* Similar, if either does not have a type (like a template id),
2998 they aren't equal. */
2999 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
3000 return false;
3002 /* Bitwise identity makes no sense if the values have different layouts. */
3003 if ((flags & OEP_BITWISE)
3004 && !tree_nop_conversion_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3005 return false;
3007 /* We cannot consider pointers to different address space equal. */
3008 if (POINTER_TYPE_P (TREE_TYPE (arg0))
3009 && POINTER_TYPE_P (TREE_TYPE (arg1))
3010 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
3011 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
3012 return false;
3014 /* Check equality of integer constants before bailing out due to
3015 precision differences. */
3016 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
3018 /* Address of INTEGER_CST is not defined; check that we did not forget
3019 to drop the OEP_ADDRESS_OF flags. */
3020 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3021 return tree_int_cst_equal (arg0, arg1);
3024 if (!(flags & OEP_ADDRESS_OF))
3026 /* If both types don't have the same signedness, then we can't consider
3027 them equal. We must check this before the STRIP_NOPS calls
3028 because they may change the signedness of the arguments. As pointers
3029 strictly don't have a signedness, require either two pointers or
3030 two non-pointers as well. */
3031 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
3032 || POINTER_TYPE_P (TREE_TYPE (arg0))
3033 != POINTER_TYPE_P (TREE_TYPE (arg1)))
3034 return false;
3036 /* If both types don't have the same precision, then it is not safe
3037 to strip NOPs. */
3038 if (element_precision (TREE_TYPE (arg0))
3039 != element_precision (TREE_TYPE (arg1)))
3040 return false;
3042 STRIP_NOPS (arg0);
3043 STRIP_NOPS (arg1);
3045 #if 0
3046 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3047 sanity check once the issue is solved. */
3048 else
3049 /* Addresses of conversions and SSA_NAMEs (and many other things)
3050 are not defined. Check that we did not forget to drop the
3051 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3052 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
3053 && TREE_CODE (arg0) != SSA_NAME);
3054 #endif
3056 /* In case both args are comparisons but with different comparison
3057 code, try to swap the comparison operands of one arg to produce
3058 a match and compare that variant. */
3059 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3060 && COMPARISON_CLASS_P (arg0)
3061 && COMPARISON_CLASS_P (arg1))
3063 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3065 if (TREE_CODE (arg0) == swap_code)
3066 return operand_equal_p (TREE_OPERAND (arg0, 0),
3067 TREE_OPERAND (arg1, 1), flags)
3068 && operand_equal_p (TREE_OPERAND (arg0, 1),
3069 TREE_OPERAND (arg1, 0), flags);
3072 if (TREE_CODE (arg0) != TREE_CODE (arg1))
3074 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3075 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
3077 else if (flags & OEP_ADDRESS_OF)
3079 /* If we are interested in comparing addresses ignore
3080 MEM_REF wrappings of the base that can appear just for
3081 TBAA reasons. */
3082 if (TREE_CODE (arg0) == MEM_REF
3083 && DECL_P (arg1)
3084 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
3085 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
3086 && integer_zerop (TREE_OPERAND (arg0, 1)))
3087 return true;
3088 else if (TREE_CODE (arg1) == MEM_REF
3089 && DECL_P (arg0)
3090 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
3091 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
3092 && integer_zerop (TREE_OPERAND (arg1, 1)))
3093 return true;
3094 return false;
3096 else
3097 return false;
3100 /* When not checking adddresses, this is needed for conversions and for
3101 COMPONENT_REF. Might as well play it safe and always test this. */
3102 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3103 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3104 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
3105 && !(flags & OEP_ADDRESS_OF)))
3106 return false;
3108 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3109 We don't care about side effects in that case because the SAVE_EXPR
3110 takes care of that for us. In all other cases, two expressions are
3111 equal if they have no side effects. If we have two identical
3112 expressions with side effects that should be treated the same due
3113 to the only side effects being identical SAVE_EXPR's, that will
3114 be detected in the recursive calls below.
3115 If we are taking an invariant address of two identical objects
3116 they are necessarily equal as well. */
3117 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3118 && (TREE_CODE (arg0) == SAVE_EXPR
3119 || (flags & OEP_MATCH_SIDE_EFFECTS)
3120 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3121 return true;
3123 /* Next handle constant cases, those for which we can return 1 even
3124 if ONLY_CONST is set. */
3125 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3126 switch (TREE_CODE (arg0))
3128 case INTEGER_CST:
3129 return tree_int_cst_equal (arg0, arg1);
3131 case FIXED_CST:
3132 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3133 TREE_FIXED_CST (arg1));
3135 case REAL_CST:
3136 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
3137 return true;
3139 if (!(flags & OEP_BITWISE) && !HONOR_SIGNED_ZEROS (arg0))
3141 /* If we do not distinguish between signed and unsigned zero,
3142 consider them equal. */
3143 if (real_zerop (arg0) && real_zerop (arg1))
3144 return true;
3146 return false;
3148 case VECTOR_CST:
3150 if (VECTOR_CST_LOG2_NPATTERNS (arg0)
3151 != VECTOR_CST_LOG2_NPATTERNS (arg1))
3152 return false;
3154 if (VECTOR_CST_NELTS_PER_PATTERN (arg0)
3155 != VECTOR_CST_NELTS_PER_PATTERN (arg1))
3156 return false;
3158 unsigned int count = vector_cst_encoded_nelts (arg0);
3159 for (unsigned int i = 0; i < count; ++i)
3160 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i),
3161 VECTOR_CST_ENCODED_ELT (arg1, i), flags))
3162 return false;
3163 return true;
3166 case COMPLEX_CST:
3167 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3168 flags)
3169 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3170 flags));
3172 case STRING_CST:
3173 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3174 && ! memcmp (TREE_STRING_POINTER (arg0),
3175 TREE_STRING_POINTER (arg1),
3176 TREE_STRING_LENGTH (arg0)));
3178 case ADDR_EXPR:
3179 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3180 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3181 flags | OEP_ADDRESS_OF
3182 | OEP_MATCH_SIDE_EFFECTS);
3183 case CONSTRUCTOR:
3184 /* In GIMPLE empty constructors are allowed in initializers of
3185 aggregates. */
3186 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
3187 default:
3188 break;
3191 /* Don't handle more cases for OEP_BITWISE, since we can't guarantee that
3192 two instances of undefined behavior will give identical results. */
3193 if (flags & (OEP_ONLY_CONST | OEP_BITWISE))
3194 return false;
3196 /* Define macros to test an operand from arg0 and arg1 for equality and a
3197 variant that allows null and views null as being different from any
3198 non-null value. In the latter case, if either is null, the both
3199 must be; otherwise, do the normal comparison. */
3200 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3201 TREE_OPERAND (arg1, N), flags)
3203 #define OP_SAME_WITH_NULL(N) \
3204 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3205 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3207 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3209 case tcc_unary:
3210 /* Two conversions are equal only if signedness and modes match. */
3211 switch (TREE_CODE (arg0))
3213 CASE_CONVERT:
3214 case FIX_TRUNC_EXPR:
3215 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3216 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3217 return false;
3218 break;
3219 default:
3220 break;
3223 return OP_SAME (0);
3226 case tcc_comparison:
3227 case tcc_binary:
3228 if (OP_SAME (0) && OP_SAME (1))
3229 return true;
3231 /* For commutative ops, allow the other order. */
3232 return (commutative_tree_code (TREE_CODE (arg0))
3233 && operand_equal_p (TREE_OPERAND (arg0, 0),
3234 TREE_OPERAND (arg1, 1), flags)
3235 && operand_equal_p (TREE_OPERAND (arg0, 1),
3236 TREE_OPERAND (arg1, 0), flags));
3238 case tcc_reference:
3239 /* If either of the pointer (or reference) expressions we are
3240 dereferencing contain a side effect, these cannot be equal,
3241 but their addresses can be. */
3242 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3243 && (TREE_SIDE_EFFECTS (arg0)
3244 || TREE_SIDE_EFFECTS (arg1)))
3245 return false;
3247 switch (TREE_CODE (arg0))
3249 case INDIRECT_REF:
3250 if (!(flags & OEP_ADDRESS_OF))
3252 if (TYPE_ALIGN (TREE_TYPE (arg0))
3253 != TYPE_ALIGN (TREE_TYPE (arg1)))
3254 return false;
3255 /* Verify that the access types are compatible. */
3256 if (TYPE_MAIN_VARIANT (TREE_TYPE (arg0))
3257 != TYPE_MAIN_VARIANT (TREE_TYPE (arg1)))
3258 return false;
3260 flags &= ~OEP_ADDRESS_OF;
3261 return OP_SAME (0);
3263 case IMAGPART_EXPR:
3264 /* Require the same offset. */
3265 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3266 TYPE_SIZE (TREE_TYPE (arg1)),
3267 flags & ~OEP_ADDRESS_OF))
3268 return false;
3270 /* Fallthru. */
3271 case REALPART_EXPR:
3272 case VIEW_CONVERT_EXPR:
3273 return OP_SAME (0);
3275 case TARGET_MEM_REF:
3276 case MEM_REF:
3277 if (!(flags & OEP_ADDRESS_OF))
3279 /* Require equal access sizes */
3280 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3281 && (!TYPE_SIZE (TREE_TYPE (arg0))
3282 || !TYPE_SIZE (TREE_TYPE (arg1))
3283 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3284 TYPE_SIZE (TREE_TYPE (arg1)),
3285 flags)))
3286 return false;
3287 /* Verify that access happens in similar types. */
3288 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3289 return false;
3290 /* Verify that accesses are TBAA compatible. */
3291 if (!alias_ptr_types_compatible_p
3292 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3293 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3294 || (MR_DEPENDENCE_CLIQUE (arg0)
3295 != MR_DEPENDENCE_CLIQUE (arg1))
3296 || (MR_DEPENDENCE_BASE (arg0)
3297 != MR_DEPENDENCE_BASE (arg1)))
3298 return false;
3299 /* Verify that alignment is compatible. */
3300 if (TYPE_ALIGN (TREE_TYPE (arg0))
3301 != TYPE_ALIGN (TREE_TYPE (arg1)))
3302 return false;
3304 flags &= ~OEP_ADDRESS_OF;
3305 return (OP_SAME (0) && OP_SAME (1)
3306 /* TARGET_MEM_REF require equal extra operands. */
3307 && (TREE_CODE (arg0) != TARGET_MEM_REF
3308 || (OP_SAME_WITH_NULL (2)
3309 && OP_SAME_WITH_NULL (3)
3310 && OP_SAME_WITH_NULL (4))));
3312 case ARRAY_REF:
3313 case ARRAY_RANGE_REF:
3314 if (!OP_SAME (0))
3315 return false;
3316 flags &= ~OEP_ADDRESS_OF;
3317 /* Compare the array index by value if it is constant first as we
3318 may have different types but same value here. */
3319 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3320 TREE_OPERAND (arg1, 1))
3321 || OP_SAME (1))
3322 && OP_SAME_WITH_NULL (2)
3323 && OP_SAME_WITH_NULL (3)
3324 /* Compare low bound and element size as with OEP_ADDRESS_OF
3325 we have to account for the offset of the ref. */
3326 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3327 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3328 || (operand_equal_p (array_ref_low_bound
3329 (CONST_CAST_TREE (arg0)),
3330 array_ref_low_bound
3331 (CONST_CAST_TREE (arg1)), flags)
3332 && operand_equal_p (array_ref_element_size
3333 (CONST_CAST_TREE (arg0)),
3334 array_ref_element_size
3335 (CONST_CAST_TREE (arg1)),
3336 flags))));
3338 case COMPONENT_REF:
3339 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3340 may be NULL when we're called to compare MEM_EXPRs. */
3341 if (!OP_SAME_WITH_NULL (0))
3342 return false;
3344 bool compare_address = flags & OEP_ADDRESS_OF;
3346 /* Most of time we only need to compare FIELD_DECLs for equality.
3347 However when determining address look into actual offsets.
3348 These may match for unions and unshared record types. */
3349 flags &= ~OEP_ADDRESS_OF;
3350 if (!OP_SAME (1))
3352 if (compare_address
3353 && (flags & OEP_ADDRESS_OF_SAME_FIELD) == 0)
3355 if (TREE_OPERAND (arg0, 2)
3356 || TREE_OPERAND (arg1, 2))
3357 return OP_SAME_WITH_NULL (2);
3358 tree field0 = TREE_OPERAND (arg0, 1);
3359 tree field1 = TREE_OPERAND (arg1, 1);
3361 /* Non-FIELD_DECL operands can appear in C++ templates. */
3362 if (TREE_CODE (field0) != FIELD_DECL
3363 || TREE_CODE (field1) != FIELD_DECL
3364 || !operand_equal_p (DECL_FIELD_OFFSET (field0),
3365 DECL_FIELD_OFFSET (field1), flags)
3366 || !operand_equal_p (DECL_FIELD_BIT_OFFSET (field0),
3367 DECL_FIELD_BIT_OFFSET (field1),
3368 flags))
3369 return false;
3371 else
3372 return false;
3375 return OP_SAME_WITH_NULL (2);
3377 case BIT_FIELD_REF:
3378 if (!OP_SAME (0))
3379 return false;
3380 flags &= ~OEP_ADDRESS_OF;
3381 return OP_SAME (1) && OP_SAME (2);
3383 default:
3384 return false;
3387 case tcc_expression:
3388 switch (TREE_CODE (arg0))
3390 case ADDR_EXPR:
3391 /* Be sure we pass right ADDRESS_OF flag. */
3392 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3393 return operand_equal_p (TREE_OPERAND (arg0, 0),
3394 TREE_OPERAND (arg1, 0),
3395 flags | OEP_ADDRESS_OF);
3397 case TRUTH_NOT_EXPR:
3398 return OP_SAME (0);
3400 case TRUTH_ANDIF_EXPR:
3401 case TRUTH_ORIF_EXPR:
3402 return OP_SAME (0) && OP_SAME (1);
3404 case WIDEN_MULT_PLUS_EXPR:
3405 case WIDEN_MULT_MINUS_EXPR:
3406 if (!OP_SAME (2))
3407 return false;
3408 /* The multiplcation operands are commutative. */
3409 /* FALLTHRU */
3411 case TRUTH_AND_EXPR:
3412 case TRUTH_OR_EXPR:
3413 case TRUTH_XOR_EXPR:
3414 if (OP_SAME (0) && OP_SAME (1))
3415 return true;
3417 /* Otherwise take into account this is a commutative operation. */
3418 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3419 TREE_OPERAND (arg1, 1), flags)
3420 && operand_equal_p (TREE_OPERAND (arg0, 1),
3421 TREE_OPERAND (arg1, 0), flags));
3423 case COND_EXPR:
3424 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3425 return false;
3426 flags &= ~OEP_ADDRESS_OF;
3427 return OP_SAME (0);
3429 case BIT_INSERT_EXPR:
3430 /* BIT_INSERT_EXPR has an implict operand as the type precision
3431 of op1. Need to check to make sure they are the same. */
3432 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
3433 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
3434 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1)))
3435 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1))))
3436 return false;
3437 /* FALLTHRU */
3439 case VEC_COND_EXPR:
3440 case DOT_PROD_EXPR:
3441 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3443 case MODIFY_EXPR:
3444 case INIT_EXPR:
3445 case COMPOUND_EXPR:
3446 case PREDECREMENT_EXPR:
3447 case PREINCREMENT_EXPR:
3448 case POSTDECREMENT_EXPR:
3449 case POSTINCREMENT_EXPR:
3450 if (flags & OEP_LEXICOGRAPHIC)
3451 return OP_SAME (0) && OP_SAME (1);
3452 return false;
3454 case CLEANUP_POINT_EXPR:
3455 case EXPR_STMT:
3456 case SAVE_EXPR:
3457 if (flags & OEP_LEXICOGRAPHIC)
3458 return OP_SAME (0);
3459 return false;
3461 case OBJ_TYPE_REF:
3462 /* Virtual table reference. */
3463 if (!operand_equal_p (OBJ_TYPE_REF_EXPR (arg0),
3464 OBJ_TYPE_REF_EXPR (arg1), flags))
3465 return false;
3466 flags &= ~OEP_ADDRESS_OF;
3467 if (tree_to_uhwi (OBJ_TYPE_REF_TOKEN (arg0))
3468 != tree_to_uhwi (OBJ_TYPE_REF_TOKEN (arg1)))
3469 return false;
3470 if (!operand_equal_p (OBJ_TYPE_REF_OBJECT (arg0),
3471 OBJ_TYPE_REF_OBJECT (arg1), flags))
3472 return false;
3473 if (virtual_method_call_p (arg0))
3475 if (!virtual_method_call_p (arg1))
3476 return false;
3477 return types_same_for_odr (obj_type_ref_class (arg0),
3478 obj_type_ref_class (arg1));
3480 return false;
3482 default:
3483 return false;
3486 case tcc_vl_exp:
3487 switch (TREE_CODE (arg0))
3489 case CALL_EXPR:
3490 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3491 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3492 /* If not both CALL_EXPRs are either internal or normal function
3493 functions, then they are not equal. */
3494 return false;
3495 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3497 /* If the CALL_EXPRs call different internal functions, then they
3498 are not equal. */
3499 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3500 return false;
3502 else
3504 /* If the CALL_EXPRs call different functions, then they are not
3505 equal. */
3506 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3507 flags))
3508 return false;
3511 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3513 unsigned int cef = call_expr_flags (arg0);
3514 if (flags & OEP_PURE_SAME)
3515 cef &= ECF_CONST | ECF_PURE;
3516 else
3517 cef &= ECF_CONST;
3518 if (!cef && !(flags & OEP_LEXICOGRAPHIC))
3519 return false;
3522 /* Now see if all the arguments are the same. */
3524 const_call_expr_arg_iterator iter0, iter1;
3525 const_tree a0, a1;
3526 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3527 a1 = first_const_call_expr_arg (arg1, &iter1);
3528 a0 && a1;
3529 a0 = next_const_call_expr_arg (&iter0),
3530 a1 = next_const_call_expr_arg (&iter1))
3531 if (! operand_equal_p (a0, a1, flags))
3532 return false;
3534 /* If we get here and both argument lists are exhausted
3535 then the CALL_EXPRs are equal. */
3536 return ! (a0 || a1);
3538 default:
3539 return false;
3542 case tcc_declaration:
3543 /* Consider __builtin_sqrt equal to sqrt. */
3544 if (TREE_CODE (arg0) == FUNCTION_DECL)
3545 return (fndecl_built_in_p (arg0) && fndecl_built_in_p (arg1)
3546 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3547 && (DECL_UNCHECKED_FUNCTION_CODE (arg0)
3548 == DECL_UNCHECKED_FUNCTION_CODE (arg1)));
3550 if (DECL_P (arg0)
3551 && (flags & OEP_DECL_NAME)
3552 && (flags & OEP_LEXICOGRAPHIC))
3554 /* Consider decls with the same name equal. The caller needs
3555 to make sure they refer to the same entity (such as a function
3556 formal parameter). */
3557 tree a0name = DECL_NAME (arg0);
3558 tree a1name = DECL_NAME (arg1);
3559 const char *a0ns = a0name ? IDENTIFIER_POINTER (a0name) : NULL;
3560 const char *a1ns = a1name ? IDENTIFIER_POINTER (a1name) : NULL;
3561 return a0ns && a1ns && strcmp (a0ns, a1ns) == 0;
3563 return false;
3565 case tcc_exceptional:
3566 if (TREE_CODE (arg0) == CONSTRUCTOR)
3568 if (CONSTRUCTOR_NO_CLEARING (arg0) != CONSTRUCTOR_NO_CLEARING (arg1))
3569 return false;
3571 /* In GIMPLE constructors are used only to build vectors from
3572 elements. Individual elements in the constructor must be
3573 indexed in increasing order and form an initial sequence.
3575 We make no effort to compare constructors in generic.
3576 (see sem_variable::equals in ipa-icf which can do so for
3577 constants). */
3578 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3579 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3580 return false;
3582 /* Be sure that vectors constructed have the same representation.
3583 We only tested element precision and modes to match.
3584 Vectors may be BLKmode and thus also check that the number of
3585 parts match. */
3586 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)),
3587 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1))))
3588 return false;
3590 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3591 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3592 unsigned int len = vec_safe_length (v0);
3594 if (len != vec_safe_length (v1))
3595 return false;
3597 for (unsigned int i = 0; i < len; i++)
3599 constructor_elt *c0 = &(*v0)[i];
3600 constructor_elt *c1 = &(*v1)[i];
3602 if (!operand_equal_p (c0->value, c1->value, flags)
3603 /* In GIMPLE the indexes can be either NULL or matching i.
3604 Double check this so we won't get false
3605 positives for GENERIC. */
3606 || (c0->index
3607 && (TREE_CODE (c0->index) != INTEGER_CST
3608 || compare_tree_int (c0->index, i)))
3609 || (c1->index
3610 && (TREE_CODE (c1->index) != INTEGER_CST
3611 || compare_tree_int (c1->index, i))))
3612 return false;
3614 return true;
3616 else if (TREE_CODE (arg0) == STATEMENT_LIST
3617 && (flags & OEP_LEXICOGRAPHIC))
3619 /* Compare the STATEMENT_LISTs. */
3620 tree_stmt_iterator tsi1, tsi2;
3621 tree body1 = CONST_CAST_TREE (arg0);
3622 tree body2 = CONST_CAST_TREE (arg1);
3623 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ;
3624 tsi_next (&tsi1), tsi_next (&tsi2))
3626 /* The lists don't have the same number of statements. */
3627 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2))
3628 return false;
3629 if (tsi_end_p (tsi1) && tsi_end_p (tsi2))
3630 return true;
3631 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2),
3632 flags & (OEP_LEXICOGRAPHIC
3633 | OEP_NO_HASH_CHECK)))
3634 return false;
3637 return false;
3639 case tcc_statement:
3640 switch (TREE_CODE (arg0))
3642 case RETURN_EXPR:
3643 if (flags & OEP_LEXICOGRAPHIC)
3644 return OP_SAME_WITH_NULL (0);
3645 return false;
3646 case DEBUG_BEGIN_STMT:
3647 if (flags & OEP_LEXICOGRAPHIC)
3648 return true;
3649 return false;
3650 default:
3651 return false;
3654 default:
3655 return false;
3658 #undef OP_SAME
3659 #undef OP_SAME_WITH_NULL
3662 /* Generate a hash value for an expression. This can be used iteratively
3663 by passing a previous result as the HSTATE argument. */
3665 void
3666 operand_compare::hash_operand (const_tree t, inchash::hash &hstate,
3667 unsigned int flags)
3669 int i;
3670 enum tree_code code;
3671 enum tree_code_class tclass;
3673 if (t == NULL_TREE || t == error_mark_node)
3675 hstate.merge_hash (0);
3676 return;
3679 STRIP_ANY_LOCATION_WRAPPER (t);
3681 if (!(flags & OEP_ADDRESS_OF))
3682 STRIP_NOPS (t);
3684 code = TREE_CODE (t);
3686 switch (code)
3688 /* Alas, constants aren't shared, so we can't rely on pointer
3689 identity. */
3690 case VOID_CST:
3691 hstate.merge_hash (0);
3692 return;
3693 case INTEGER_CST:
3694 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3695 for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
3696 hstate.add_hwi (TREE_INT_CST_ELT (t, i));
3697 return;
3698 case REAL_CST:
3700 unsigned int val2;
3701 if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
3702 val2 = rvc_zero;
3703 else
3704 val2 = real_hash (TREE_REAL_CST_PTR (t));
3705 hstate.merge_hash (val2);
3706 return;
3708 case FIXED_CST:
3710 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
3711 hstate.merge_hash (val2);
3712 return;
3714 case STRING_CST:
3715 hstate.add ((const void *) TREE_STRING_POINTER (t),
3716 TREE_STRING_LENGTH (t));
3717 return;
3718 case COMPLEX_CST:
3719 hash_operand (TREE_REALPART (t), hstate, flags);
3720 hash_operand (TREE_IMAGPART (t), hstate, flags);
3721 return;
3722 case VECTOR_CST:
3724 hstate.add_int (VECTOR_CST_NPATTERNS (t));
3725 hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
3726 unsigned int count = vector_cst_encoded_nelts (t);
3727 for (unsigned int i = 0; i < count; ++i)
3728 hash_operand (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
3729 return;
3731 case SSA_NAME:
3732 /* We can just compare by pointer. */
3733 hstate.add_hwi (SSA_NAME_VERSION (t));
3734 return;
3735 case PLACEHOLDER_EXPR:
3736 /* The node itself doesn't matter. */
3737 return;
3738 case BLOCK:
3739 case OMP_CLAUSE:
3740 /* Ignore. */
3741 return;
3742 case TREE_LIST:
3743 /* A list of expressions, for a CALL_EXPR or as the elements of a
3744 VECTOR_CST. */
3745 for (; t; t = TREE_CHAIN (t))
3746 hash_operand (TREE_VALUE (t), hstate, flags);
3747 return;
3748 case CONSTRUCTOR:
3750 unsigned HOST_WIDE_INT idx;
3751 tree field, value;
3752 flags &= ~OEP_ADDRESS_OF;
3753 hstate.add_int (CONSTRUCTOR_NO_CLEARING (t));
3754 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
3756 /* In GIMPLE the indexes can be either NULL or matching i. */
3757 if (field == NULL_TREE)
3758 field = bitsize_int (idx);
3759 hash_operand (field, hstate, flags);
3760 hash_operand (value, hstate, flags);
3762 return;
3764 case STATEMENT_LIST:
3766 tree_stmt_iterator i;
3767 for (i = tsi_start (CONST_CAST_TREE (t));
3768 !tsi_end_p (i); tsi_next (&i))
3769 hash_operand (tsi_stmt (i), hstate, flags);
3770 return;
3772 case TREE_VEC:
3773 for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
3774 hash_operand (TREE_VEC_ELT (t, i), hstate, flags);
3775 return;
3776 case IDENTIFIER_NODE:
3777 hstate.add_object (IDENTIFIER_HASH_VALUE (t));
3778 return;
3779 case FUNCTION_DECL:
3780 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
3781 Otherwise nodes that compare equal according to operand_equal_p might
3782 get different hash codes. However, don't do this for machine specific
3783 or front end builtins, since the function code is overloaded in those
3784 cases. */
3785 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
3786 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
3788 t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
3789 code = TREE_CODE (t);
3791 /* FALL THROUGH */
3792 default:
3793 if (POLY_INT_CST_P (t))
3795 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
3796 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
3797 return;
3799 tclass = TREE_CODE_CLASS (code);
3801 if (tclass == tcc_declaration)
3803 /* DECL's have a unique ID */
3804 hstate.add_hwi (DECL_UID (t));
3806 else if (tclass == tcc_comparison && !commutative_tree_code (code))
3808 /* For comparisons that can be swapped, use the lower
3809 tree code. */
3810 enum tree_code ccode = swap_tree_comparison (code);
3811 if (code < ccode)
3812 ccode = code;
3813 hstate.add_object (ccode);
3814 hash_operand (TREE_OPERAND (t, ccode != code), hstate, flags);
3815 hash_operand (TREE_OPERAND (t, ccode == code), hstate, flags);
3817 else if (CONVERT_EXPR_CODE_P (code))
3819 /* NOP_EXPR and CONVERT_EXPR are considered equal by
3820 operand_equal_p. */
3821 enum tree_code ccode = NOP_EXPR;
3822 hstate.add_object (ccode);
3824 /* Don't hash the type, that can lead to having nodes which
3825 compare equal according to operand_equal_p, but which
3826 have different hash codes. Make sure to include signedness
3827 in the hash computation. */
3828 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
3829 hash_operand (TREE_OPERAND (t, 0), hstate, flags);
3831 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
3832 else if (code == MEM_REF
3833 && (flags & OEP_ADDRESS_OF) != 0
3834 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
3835 && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
3836 && integer_zerop (TREE_OPERAND (t, 1)))
3837 hash_operand (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
3838 hstate, flags);
3839 /* Don't ICE on FE specific trees, or their arguments etc.
3840 during operand_equal_p hash verification. */
3841 else if (!IS_EXPR_CODE_CLASS (tclass))
3842 gcc_assert (flags & OEP_HASH_CHECK);
3843 else
3845 unsigned int sflags = flags;
3847 hstate.add_object (code);
3849 switch (code)
3851 case ADDR_EXPR:
3852 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3853 flags |= OEP_ADDRESS_OF;
3854 sflags = flags;
3855 break;
3857 case INDIRECT_REF:
3858 case MEM_REF:
3859 case TARGET_MEM_REF:
3860 flags &= ~OEP_ADDRESS_OF;
3861 sflags = flags;
3862 break;
3864 case COMPONENT_REF:
3865 if (sflags & OEP_ADDRESS_OF)
3867 hash_operand (TREE_OPERAND (t, 0), hstate, flags);
3868 if (TREE_OPERAND (t, 2))
3869 hash_operand (TREE_OPERAND (t, 2), hstate,
3870 flags & ~OEP_ADDRESS_OF);
3871 else
3873 tree field = TREE_OPERAND (t, 1);
3874 hash_operand (DECL_FIELD_OFFSET (field),
3875 hstate, flags & ~OEP_ADDRESS_OF);
3876 hash_operand (DECL_FIELD_BIT_OFFSET (field),
3877 hstate, flags & ~OEP_ADDRESS_OF);
3879 return;
3881 break;
3882 case ARRAY_REF:
3883 case ARRAY_RANGE_REF:
3884 case BIT_FIELD_REF:
3885 sflags &= ~OEP_ADDRESS_OF;
3886 break;
3888 case COND_EXPR:
3889 flags &= ~OEP_ADDRESS_OF;
3890 break;
3892 case WIDEN_MULT_PLUS_EXPR:
3893 case WIDEN_MULT_MINUS_EXPR:
3895 /* The multiplication operands are commutative. */
3896 inchash::hash one, two;
3897 hash_operand (TREE_OPERAND (t, 0), one, flags);
3898 hash_operand (TREE_OPERAND (t, 1), two, flags);
3899 hstate.add_commutative (one, two);
3900 hash_operand (TREE_OPERAND (t, 2), two, flags);
3901 return;
3904 case CALL_EXPR:
3905 if (CALL_EXPR_FN (t) == NULL_TREE)
3906 hstate.add_int (CALL_EXPR_IFN (t));
3907 break;
3909 case TARGET_EXPR:
3910 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
3911 Usually different TARGET_EXPRs just should use
3912 different temporaries in their slots. */
3913 hash_operand (TARGET_EXPR_SLOT (t), hstate, flags);
3914 return;
3916 case OBJ_TYPE_REF:
3917 /* Virtual table reference. */
3918 inchash::add_expr (OBJ_TYPE_REF_EXPR (t), hstate, flags);
3919 flags &= ~OEP_ADDRESS_OF;
3920 inchash::add_expr (OBJ_TYPE_REF_TOKEN (t), hstate, flags);
3921 inchash::add_expr (OBJ_TYPE_REF_OBJECT (t), hstate, flags);
3922 if (!virtual_method_call_p (t))
3923 return;
3924 if (tree c = obj_type_ref_class (t))
3926 c = TYPE_NAME (TYPE_MAIN_VARIANT (c));
3927 /* We compute mangled names only when free_lang_data is run.
3928 In that case we can hash precisely. */
3929 if (TREE_CODE (c) == TYPE_DECL
3930 && DECL_ASSEMBLER_NAME_SET_P (c))
3931 hstate.add_object
3932 (IDENTIFIER_HASH_VALUE
3933 (DECL_ASSEMBLER_NAME (c)));
3935 return;
3936 default:
3937 break;
3940 /* Don't hash the type, that can lead to having nodes which
3941 compare equal according to operand_equal_p, but which
3942 have different hash codes. */
3943 if (code == NON_LVALUE_EXPR)
3945 /* Make sure to include signness in the hash computation. */
3946 hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
3947 hash_operand (TREE_OPERAND (t, 0), hstate, flags);
3950 else if (commutative_tree_code (code))
3952 /* It's a commutative expression. We want to hash it the same
3953 however it appears. We do this by first hashing both operands
3954 and then rehashing based on the order of their independent
3955 hashes. */
3956 inchash::hash one, two;
3957 hash_operand (TREE_OPERAND (t, 0), one, flags);
3958 hash_operand (TREE_OPERAND (t, 1), two, flags);
3959 hstate.add_commutative (one, two);
3961 else
3962 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
3963 hash_operand (TREE_OPERAND (t, i), hstate,
3964 i == 0 ? flags : sflags);
3966 return;
3970 bool
3971 operand_compare::verify_hash_value (const_tree arg0, const_tree arg1,
3972 unsigned int flags, bool *ret)
3974 /* When checking and unless comparing DECL names, verify that if
3975 the outermost operand_equal_p call returns non-zero then ARG0
3976 and ARG1 have the same hash value. */
3977 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
3979 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
3981 if (arg0 != arg1 && !(flags & OEP_DECL_NAME))
3983 inchash::hash hstate0 (0), hstate1 (0);
3984 hash_operand (arg0, hstate0, flags | OEP_HASH_CHECK);
3985 hash_operand (arg1, hstate1, flags | OEP_HASH_CHECK);
3986 hashval_t h0 = hstate0.end ();
3987 hashval_t h1 = hstate1.end ();
3988 gcc_assert (h0 == h1);
3990 *ret = true;
3992 else
3993 *ret = false;
3995 return true;
3998 return false;
4002 static operand_compare default_compare_instance;
4004 /* Conveinece wrapper around operand_compare class because usually we do
4005 not need to play with the valueizer. */
4007 bool
4008 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
4010 return default_compare_instance.operand_equal_p (arg0, arg1, flags);
4013 namespace inchash
4016 /* Generate a hash value for an expression. This can be used iteratively
4017 by passing a previous result as the HSTATE argument.
4019 This function is intended to produce the same hash for expressions which
4020 would compare equal using operand_equal_p. */
4021 void
4022 add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
4024 default_compare_instance.hash_operand (t, hstate, flags);
4029 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
4030 with a different signedness or a narrower precision. */
4032 static bool
4033 operand_equal_for_comparison_p (tree arg0, tree arg1)
4035 if (operand_equal_p (arg0, arg1, 0))
4036 return true;
4038 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
4039 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
4040 return false;
4042 /* Discard any conversions that don't change the modes of ARG0 and ARG1
4043 and see if the inner values are the same. This removes any
4044 signedness comparison, which doesn't matter here. */
4045 tree op0 = arg0;
4046 tree op1 = arg1;
4047 STRIP_NOPS (op0);
4048 STRIP_NOPS (op1);
4049 if (operand_equal_p (op0, op1, 0))
4050 return true;
4052 /* Discard a single widening conversion from ARG1 and see if the inner
4053 value is the same as ARG0. */
4054 if (CONVERT_EXPR_P (arg1)
4055 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0)))
4056 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0)))
4057 < TYPE_PRECISION (TREE_TYPE (arg1))
4058 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
4059 return true;
4061 return false;
4064 /* See if ARG is an expression that is either a comparison or is performing
4065 arithmetic on comparisons. The comparisons must only be comparing
4066 two different values, which will be stored in *CVAL1 and *CVAL2; if
4067 they are nonzero it means that some operands have already been found.
4068 No variables may be used anywhere else in the expression except in the
4069 comparisons.
4071 If this is true, return 1. Otherwise, return zero. */
4073 static bool
4074 twoval_comparison_p (tree arg, tree *cval1, tree *cval2)
4076 enum tree_code code = TREE_CODE (arg);
4077 enum tree_code_class tclass = TREE_CODE_CLASS (code);
4079 /* We can handle some of the tcc_expression cases here. */
4080 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
4081 tclass = tcc_unary;
4082 else if (tclass == tcc_expression
4083 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
4084 || code == COMPOUND_EXPR))
4085 tclass = tcc_binary;
4087 switch (tclass)
4089 case tcc_unary:
4090 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2);
4092 case tcc_binary:
4093 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
4094 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2));
4096 case tcc_constant:
4097 return true;
4099 case tcc_expression:
4100 if (code == COND_EXPR)
4101 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2)
4102 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)
4103 && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2));
4104 return false;
4106 case tcc_comparison:
4107 /* First see if we can handle the first operand, then the second. For
4108 the second operand, we know *CVAL1 can't be zero. It must be that
4109 one side of the comparison is each of the values; test for the
4110 case where this isn't true by failing if the two operands
4111 are the same. */
4113 if (operand_equal_p (TREE_OPERAND (arg, 0),
4114 TREE_OPERAND (arg, 1), 0))
4115 return false;
4117 if (*cval1 == 0)
4118 *cval1 = TREE_OPERAND (arg, 0);
4119 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
4121 else if (*cval2 == 0)
4122 *cval2 = TREE_OPERAND (arg, 0);
4123 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
4125 else
4126 return false;
4128 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
4130 else if (*cval2 == 0)
4131 *cval2 = TREE_OPERAND (arg, 1);
4132 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
4134 else
4135 return false;
4137 return true;
4139 default:
4140 return false;
4144 /* ARG is a tree that is known to contain just arithmetic operations and
4145 comparisons. Evaluate the operations in the tree substituting NEW0 for
4146 any occurrence of OLD0 as an operand of a comparison and likewise for
4147 NEW1 and OLD1. */
4149 static tree
4150 eval_subst (location_t loc, tree arg, tree old0, tree new0,
4151 tree old1, tree new1)
4153 tree type = TREE_TYPE (arg);
4154 enum tree_code code = TREE_CODE (arg);
4155 enum tree_code_class tclass = TREE_CODE_CLASS (code);
4157 /* We can handle some of the tcc_expression cases here. */
4158 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
4159 tclass = tcc_unary;
4160 else if (tclass == tcc_expression
4161 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
4162 tclass = tcc_binary;
4164 switch (tclass)
4166 case tcc_unary:
4167 return fold_build1_loc (loc, code, type,
4168 eval_subst (loc, TREE_OPERAND (arg, 0),
4169 old0, new0, old1, new1));
4171 case tcc_binary:
4172 return fold_build2_loc (loc, code, type,
4173 eval_subst (loc, TREE_OPERAND (arg, 0),
4174 old0, new0, old1, new1),
4175 eval_subst (loc, TREE_OPERAND (arg, 1),
4176 old0, new0, old1, new1));
4178 case tcc_expression:
4179 switch (code)
4181 case SAVE_EXPR:
4182 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
4183 old1, new1);
4185 case COMPOUND_EXPR:
4186 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
4187 old1, new1);
4189 case COND_EXPR:
4190 return fold_build3_loc (loc, code, type,
4191 eval_subst (loc, TREE_OPERAND (arg, 0),
4192 old0, new0, old1, new1),
4193 eval_subst (loc, TREE_OPERAND (arg, 1),
4194 old0, new0, old1, new1),
4195 eval_subst (loc, TREE_OPERAND (arg, 2),
4196 old0, new0, old1, new1));
4197 default:
4198 break;
4200 /* Fall through - ??? */
4202 case tcc_comparison:
4204 tree arg0 = TREE_OPERAND (arg, 0);
4205 tree arg1 = TREE_OPERAND (arg, 1);
4207 /* We need to check both for exact equality and tree equality. The
4208 former will be true if the operand has a side-effect. In that
4209 case, we know the operand occurred exactly once. */
4211 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
4212 arg0 = new0;
4213 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
4214 arg0 = new1;
4216 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
4217 arg1 = new0;
4218 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
4219 arg1 = new1;
4221 return fold_build2_loc (loc, code, type, arg0, arg1);
4224 default:
4225 return arg;
4229 /* Return a tree for the case when the result of an expression is RESULT
4230 converted to TYPE and OMITTED was previously an operand of the expression
4231 but is now not needed (e.g., we folded OMITTED * 0).
4233 If OMITTED has side effects, we must evaluate it. Otherwise, just do
4234 the conversion of RESULT to TYPE. */
4236 tree
4237 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
4239 tree t = fold_convert_loc (loc, type, result);
4241 /* If the resulting operand is an empty statement, just return the omitted
4242 statement casted to void. */
4243 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
4244 return build1_loc (loc, NOP_EXPR, void_type_node,
4245 fold_ignored_result (omitted));
4247 if (TREE_SIDE_EFFECTS (omitted))
4248 return build2_loc (loc, COMPOUND_EXPR, type,
4249 fold_ignored_result (omitted), t);
4251 return non_lvalue_loc (loc, t);
4254 /* Return a tree for the case when the result of an expression is RESULT
4255 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
4256 of the expression but are now not needed.
4258 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
4259 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
4260 evaluated before OMITTED2. Otherwise, if neither has side effects,
4261 just do the conversion of RESULT to TYPE. */
4263 tree
4264 omit_two_operands_loc (location_t loc, tree type, tree result,
4265 tree omitted1, tree omitted2)
4267 tree t = fold_convert_loc (loc, type, result);
4269 if (TREE_SIDE_EFFECTS (omitted2))
4270 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
4271 if (TREE_SIDE_EFFECTS (omitted1))
4272 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
4274 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
4278 /* Return a simplified tree node for the truth-negation of ARG. This
4279 never alters ARG itself. We assume that ARG is an operation that
4280 returns a truth value (0 or 1).
4282 FIXME: one would think we would fold the result, but it causes
4283 problems with the dominator optimizer. */
4285 static tree
4286 fold_truth_not_expr (location_t loc, tree arg)
4288 tree type = TREE_TYPE (arg);
4289 enum tree_code code = TREE_CODE (arg);
4290 location_t loc1, loc2;
4292 /* If this is a comparison, we can simply invert it, except for
4293 floating-point non-equality comparisons, in which case we just
4294 enclose a TRUTH_NOT_EXPR around what we have. */
4296 if (TREE_CODE_CLASS (code) == tcc_comparison)
4298 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
4299 if (FLOAT_TYPE_P (op_type)
4300 && flag_trapping_math
4301 && code != ORDERED_EXPR && code != UNORDERED_EXPR
4302 && code != NE_EXPR && code != EQ_EXPR)
4303 return NULL_TREE;
4305 code = invert_tree_comparison (code, HONOR_NANS (op_type));
4306 if (code == ERROR_MARK)
4307 return NULL_TREE;
4309 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
4310 TREE_OPERAND (arg, 1));
4311 copy_warning (ret, arg);
4312 return ret;
4315 switch (code)
4317 case INTEGER_CST:
4318 return constant_boolean_node (integer_zerop (arg), type);
4320 case TRUTH_AND_EXPR:
4321 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4322 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4323 return build2_loc (loc, TRUTH_OR_EXPR, type,
4324 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4325 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4327 case TRUTH_OR_EXPR:
4328 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4329 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4330 return build2_loc (loc, TRUTH_AND_EXPR, type,
4331 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4332 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4334 case TRUTH_XOR_EXPR:
4335 /* Here we can invert either operand. We invert the first operand
4336 unless the second operand is a TRUTH_NOT_EXPR in which case our
4337 result is the XOR of the first operand with the inside of the
4338 negation of the second operand. */
4340 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
4341 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
4342 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
4343 else
4344 return build2_loc (loc, TRUTH_XOR_EXPR, type,
4345 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
4346 TREE_OPERAND (arg, 1));
4348 case TRUTH_ANDIF_EXPR:
4349 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4350 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4351 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
4352 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4353 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4355 case TRUTH_ORIF_EXPR:
4356 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4357 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4358 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
4359 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
4360 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
4362 case TRUTH_NOT_EXPR:
4363 return TREE_OPERAND (arg, 0);
4365 case COND_EXPR:
4367 tree arg1 = TREE_OPERAND (arg, 1);
4368 tree arg2 = TREE_OPERAND (arg, 2);
4370 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4371 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
4373 /* A COND_EXPR may have a throw as one operand, which
4374 then has void type. Just leave void operands
4375 as they are. */
4376 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
4377 VOID_TYPE_P (TREE_TYPE (arg1))
4378 ? arg1 : invert_truthvalue_loc (loc1, arg1),
4379 VOID_TYPE_P (TREE_TYPE (arg2))
4380 ? arg2 : invert_truthvalue_loc (loc2, arg2));
4383 case COMPOUND_EXPR:
4384 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
4385 return build2_loc (loc, COMPOUND_EXPR, type,
4386 TREE_OPERAND (arg, 0),
4387 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
4389 case NON_LVALUE_EXPR:
4390 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4391 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
4393 CASE_CONVERT:
4394 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
4395 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
4397 /* fall through */
4399 case FLOAT_EXPR:
4400 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4401 return build1_loc (loc, TREE_CODE (arg), type,
4402 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
4404 case BIT_AND_EXPR:
4405 if (!integer_onep (TREE_OPERAND (arg, 1)))
4406 return NULL_TREE;
4407 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
4409 case SAVE_EXPR:
4410 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
4412 case CLEANUP_POINT_EXPR:
4413 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
4414 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
4415 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
4417 default:
4418 return NULL_TREE;
4422 /* Fold the truth-negation of ARG. This never alters ARG itself. We
4423 assume that ARG is an operation that returns a truth value (0 or 1
4424 for scalars, 0 or -1 for vectors). Return the folded expression if
4425 folding is successful. Otherwise, return NULL_TREE. */
4427 static tree
4428 fold_invert_truthvalue (location_t loc, tree arg)
4430 tree type = TREE_TYPE (arg);
4431 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
4432 ? BIT_NOT_EXPR
4433 : TRUTH_NOT_EXPR,
4434 type, arg);
4437 /* Return a simplified tree node for the truth-negation of ARG. This
4438 never alters ARG itself. We assume that ARG is an operation that
4439 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
4441 tree
4442 invert_truthvalue_loc (location_t loc, tree arg)
4444 if (TREE_CODE (arg) == ERROR_MARK)
4445 return arg;
4447 tree type = TREE_TYPE (arg);
4448 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
4449 ? BIT_NOT_EXPR
4450 : TRUTH_NOT_EXPR,
4451 type, arg);
4454 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
4455 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
4456 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
4457 is the original memory reference used to preserve the alias set of
4458 the access. */
4460 static tree
4461 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
4462 HOST_WIDE_INT bitsize, poly_int64 bitpos,
4463 int unsignedp, int reversep)
4465 tree result, bftype;
4467 /* Attempt not to lose the access path if possible. */
4468 if (TREE_CODE (orig_inner) == COMPONENT_REF)
4470 tree ninner = TREE_OPERAND (orig_inner, 0);
4471 machine_mode nmode;
4472 poly_int64 nbitsize, nbitpos;
4473 tree noffset;
4474 int nunsignedp, nreversep, nvolatilep = 0;
4475 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos,
4476 &noffset, &nmode, &nunsignedp,
4477 &nreversep, &nvolatilep);
4478 if (base == inner
4479 && noffset == NULL_TREE
4480 && known_subrange_p (bitpos, bitsize, nbitpos, nbitsize)
4481 && !reversep
4482 && !nreversep
4483 && !nvolatilep)
4485 inner = ninner;
4486 bitpos -= nbitpos;
4490 alias_set_type iset = get_alias_set (orig_inner);
4491 if (iset == 0 && get_alias_set (inner) != iset)
4492 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
4493 build_fold_addr_expr (inner),
4494 build_int_cst (ptr_type_node, 0));
4496 if (known_eq (bitpos, 0) && !reversep)
4498 tree size = TYPE_SIZE (TREE_TYPE (inner));
4499 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
4500 || POINTER_TYPE_P (TREE_TYPE (inner)))
4501 && tree_fits_shwi_p (size)
4502 && tree_to_shwi (size) == bitsize)
4503 return fold_convert_loc (loc, type, inner);
4506 bftype = type;
4507 if (TYPE_PRECISION (bftype) != bitsize
4508 || TYPE_UNSIGNED (bftype) == !unsignedp)
4509 bftype = build_nonstandard_integer_type (bitsize, 0);
4511 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
4512 bitsize_int (bitsize), bitsize_int (bitpos));
4513 REF_REVERSE_STORAGE_ORDER (result) = reversep;
4515 if (bftype != type)
4516 result = fold_convert_loc (loc, type, result);
4518 return result;
4521 /* Optimize a bit-field compare.
4523 There are two cases: First is a compare against a constant and the
4524 second is a comparison of two items where the fields are at the same
4525 bit position relative to the start of a chunk (byte, halfword, word)
4526 large enough to contain it. In these cases we can avoid the shift
4527 implicit in bitfield extractions.
4529 For constants, we emit a compare of the shifted constant with the
4530 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4531 compared. For two fields at the same position, we do the ANDs with the
4532 similar mask and compare the result of the ANDs.
4534 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4535 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4536 are the left and right operands of the comparison, respectively.
4538 If the optimization described above can be done, we return the resulting
4539 tree. Otherwise we return zero. */
4541 static tree
4542 optimize_bit_field_compare (location_t loc, enum tree_code code,
4543 tree compare_type, tree lhs, tree rhs)
4545 poly_int64 plbitpos, plbitsize, rbitpos, rbitsize;
4546 HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize;
4547 tree type = TREE_TYPE (lhs);
4548 tree unsigned_type;
4549 int const_p = TREE_CODE (rhs) == INTEGER_CST;
4550 machine_mode lmode, rmode;
4551 scalar_int_mode nmode;
4552 int lunsignedp, runsignedp;
4553 int lreversep, rreversep;
4554 int lvolatilep = 0, rvolatilep = 0;
4555 tree linner, rinner = NULL_TREE;
4556 tree mask;
4557 tree offset;
4559 /* Get all the information about the extractions being done. If the bit size
4560 is the same as the size of the underlying object, we aren't doing an
4561 extraction at all and so can do nothing. We also don't want to
4562 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4563 then will no longer be able to replace it. */
4564 linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode,
4565 &lunsignedp, &lreversep, &lvolatilep);
4566 if (linner == lhs
4567 || !known_size_p (plbitsize)
4568 || !plbitsize.is_constant (&lbitsize)
4569 || !plbitpos.is_constant (&lbitpos)
4570 || known_eq (lbitsize, GET_MODE_BITSIZE (lmode))
4571 || offset != 0
4572 || TREE_CODE (linner) == PLACEHOLDER_EXPR
4573 || lvolatilep)
4574 return 0;
4576 if (const_p)
4577 rreversep = lreversep;
4578 else
4580 /* If this is not a constant, we can only do something if bit positions,
4581 sizes, signedness and storage order are the same. */
4582 rinner
4583 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
4584 &runsignedp, &rreversep, &rvolatilep);
4586 if (rinner == rhs
4587 || maybe_ne (lbitpos, rbitpos)
4588 || maybe_ne (lbitsize, rbitsize)
4589 || lunsignedp != runsignedp
4590 || lreversep != rreversep
4591 || offset != 0
4592 || TREE_CODE (rinner) == PLACEHOLDER_EXPR
4593 || rvolatilep)
4594 return 0;
4597 /* Honor the C++ memory model and mimic what RTL expansion does. */
4598 poly_uint64 bitstart = 0;
4599 poly_uint64 bitend = 0;
4600 if (TREE_CODE (lhs) == COMPONENT_REF)
4602 get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset);
4603 if (!plbitpos.is_constant (&lbitpos) || offset != NULL_TREE)
4604 return 0;
4607 /* See if we can find a mode to refer to this field. We should be able to,
4608 but fail if we can't. */
4609 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend,
4610 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
4611 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
4612 TYPE_ALIGN (TREE_TYPE (rinner))),
4613 BITS_PER_WORD, false, &nmode))
4614 return 0;
4616 /* Set signed and unsigned types of the precision of this mode for the
4617 shifts below. */
4618 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
4620 /* Compute the bit position and size for the new reference and our offset
4621 within it. If the new reference is the same size as the original, we
4622 won't optimize anything, so return zero. */
4623 nbitsize = GET_MODE_BITSIZE (nmode);
4624 nbitpos = lbitpos & ~ (nbitsize - 1);
4625 lbitpos -= nbitpos;
4626 if (nbitsize == lbitsize)
4627 return 0;
4629 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4630 lbitpos = nbitsize - lbitsize - lbitpos;
4632 /* Make the mask to be used against the extracted field. */
4633 mask = build_int_cst_type (unsigned_type, -1);
4634 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
4635 mask = const_binop (RSHIFT_EXPR, mask,
4636 size_int (nbitsize - lbitsize - lbitpos));
4638 if (! const_p)
4640 if (nbitpos < 0)
4641 return 0;
4643 /* If not comparing with constant, just rework the comparison
4644 and return. */
4645 tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4646 nbitsize, nbitpos, 1, lreversep);
4647 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask);
4648 tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type,
4649 nbitsize, nbitpos, 1, rreversep);
4650 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask);
4651 return fold_build2_loc (loc, code, compare_type, t1, t2);
4654 /* Otherwise, we are handling the constant case. See if the constant is too
4655 big for the field. Warn and return a tree for 0 (false) if so. We do
4656 this not only for its own sake, but to avoid having to test for this
4657 error case below. If we didn't, we might generate wrong code.
4659 For unsigned fields, the constant shifted right by the field length should
4660 be all zero. For signed fields, the high-order bits should agree with
4661 the sign bit. */
4663 if (lunsignedp)
4665 if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0)
4667 warning (0, "comparison is always %d due to width of bit-field",
4668 code == NE_EXPR);
4669 return constant_boolean_node (code == NE_EXPR, compare_type);
4672 else
4674 wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1);
4675 if (tem != 0 && tem != -1)
4677 warning (0, "comparison is always %d due to width of bit-field",
4678 code == NE_EXPR);
4679 return constant_boolean_node (code == NE_EXPR, compare_type);
4683 if (nbitpos < 0)
4684 return 0;
4686 /* Single-bit compares should always be against zero. */
4687 if (lbitsize == 1 && ! integer_zerop (rhs))
4689 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4690 rhs = build_int_cst (type, 0);
4693 /* Make a new bitfield reference, shift the constant over the
4694 appropriate number of bits and mask it with the computed mask
4695 (in case this was a signed field). If we changed it, make a new one. */
4696 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4697 nbitsize, nbitpos, 1, lreversep);
4699 rhs = const_binop (BIT_AND_EXPR,
4700 const_binop (LSHIFT_EXPR,
4701 fold_convert_loc (loc, unsigned_type, rhs),
4702 size_int (lbitpos)),
4703 mask);
4705 lhs = build2_loc (loc, code, compare_type,
4706 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4707 return lhs;
4710 /* Subroutine for fold_truth_andor_1: decode a field reference.
4712 If EXP is a comparison reference, we return the innermost reference.
4714 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4715 set to the starting bit number.
4717 If the innermost field can be completely contained in a mode-sized
4718 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4720 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4721 otherwise it is not changed.
4723 *PUNSIGNEDP is set to the signedness of the field.
4725 *PREVERSEP is set to the storage order of the field.
4727 *PMASK is set to the mask used. This is either contained in a
4728 BIT_AND_EXPR or derived from the width of the field.
4730 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4732 Return 0 if this is not a component reference or is one that we can't
4733 do anything with. */
4735 static tree
4736 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4737 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4738 int *punsignedp, int *preversep, int *pvolatilep,
4739 tree *pmask, tree *pand_mask)
4741 tree exp = *exp_;
4742 tree outer_type = 0;
4743 tree and_mask = 0;
4744 tree mask, inner, offset;
4745 tree unsigned_type;
4746 unsigned int precision;
4748 /* All the optimizations using this function assume integer fields.
4749 There are problems with FP fields since the type_for_size call
4750 below can fail for, e.g., XFmode. */
4751 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4752 return NULL_TREE;
4754 /* We are interested in the bare arrangement of bits, so strip everything
4755 that doesn't affect the machine mode. However, record the type of the
4756 outermost expression if it may matter below. */
4757 if (CONVERT_EXPR_P (exp)
4758 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4759 outer_type = TREE_TYPE (exp);
4760 STRIP_NOPS (exp);
4762 if (TREE_CODE (exp) == BIT_AND_EXPR)
4764 and_mask = TREE_OPERAND (exp, 1);
4765 exp = TREE_OPERAND (exp, 0);
4766 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4767 if (TREE_CODE (and_mask) != INTEGER_CST)
4768 return NULL_TREE;
4771 poly_int64 poly_bitsize, poly_bitpos;
4772 inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset,
4773 pmode, punsignedp, preversep, pvolatilep);
4774 if ((inner == exp && and_mask == 0)
4775 || !poly_bitsize.is_constant (pbitsize)
4776 || !poly_bitpos.is_constant (pbitpos)
4777 || *pbitsize < 0
4778 || offset != 0
4779 || TREE_CODE (inner) == PLACEHOLDER_EXPR
4780 /* Reject out-of-bound accesses (PR79731). */
4781 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner))
4782 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)),
4783 *pbitpos + *pbitsize) < 0))
4784 return NULL_TREE;
4786 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4787 if (unsigned_type == NULL_TREE)
4788 return NULL_TREE;
4790 *exp_ = exp;
4792 /* If the number of bits in the reference is the same as the bitsize of
4793 the outer type, then the outer type gives the signedness. Otherwise
4794 (in case of a small bitfield) the signedness is unchanged. */
4795 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4796 *punsignedp = TYPE_UNSIGNED (outer_type);
4798 /* Compute the mask to access the bitfield. */
4799 precision = TYPE_PRECISION (unsigned_type);
4801 mask = build_int_cst_type (unsigned_type, -1);
4803 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4804 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4806 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4807 if (and_mask != 0)
4808 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4809 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4811 *pmask = mask;
4812 *pand_mask = and_mask;
4813 return inner;
4816 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4817 bit positions and MASK is SIGNED. */
4819 static bool
4820 all_ones_mask_p (const_tree mask, unsigned int size)
4822 tree type = TREE_TYPE (mask);
4823 unsigned int precision = TYPE_PRECISION (type);
4825 /* If this function returns true when the type of the mask is
4826 UNSIGNED, then there will be errors. In particular see
4827 gcc.c-torture/execute/990326-1.c. There does not appear to be
4828 any documentation paper trail as to why this is so. But the pre
4829 wide-int worked with that restriction and it has been preserved
4830 here. */
4831 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4832 return false;
4834 return wi::mask (size, false, precision) == wi::to_wide (mask);
4837 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4838 represents the sign bit of EXP's type. If EXP represents a sign
4839 or zero extension, also test VAL against the unextended type.
4840 The return value is the (sub)expression whose sign bit is VAL,
4841 or NULL_TREE otherwise. */
4843 tree
4844 sign_bit_p (tree exp, const_tree val)
4846 int width;
4847 tree t;
4849 /* Tree EXP must have an integral type. */
4850 t = TREE_TYPE (exp);
4851 if (! INTEGRAL_TYPE_P (t))
4852 return NULL_TREE;
4854 /* Tree VAL must be an integer constant. */
4855 if (TREE_CODE (val) != INTEGER_CST
4856 || TREE_OVERFLOW (val))
4857 return NULL_TREE;
4859 width = TYPE_PRECISION (t);
4860 if (wi::only_sign_bit_p (wi::to_wide (val), width))
4861 return exp;
4863 /* Handle extension from a narrower type. */
4864 if (TREE_CODE (exp) == NOP_EXPR
4865 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4866 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4868 return NULL_TREE;
4871 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4872 to be evaluated unconditionally. */
4874 static bool
4875 simple_operand_p (const_tree exp)
4877 /* Strip any conversions that don't change the machine mode. */
4878 STRIP_NOPS (exp);
4880 return (CONSTANT_CLASS_P (exp)
4881 || TREE_CODE (exp) == SSA_NAME
4882 || (DECL_P (exp)
4883 && ! TREE_ADDRESSABLE (exp)
4884 && ! TREE_THIS_VOLATILE (exp)
4885 && ! DECL_NONLOCAL (exp)
4886 /* Don't regard global variables as simple. They may be
4887 allocated in ways unknown to the compiler (shared memory,
4888 #pragma weak, etc). */
4889 && ! TREE_PUBLIC (exp)
4890 && ! DECL_EXTERNAL (exp)
4891 /* Weakrefs are not safe to be read, since they can be NULL.
4892 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4893 have DECL_WEAK flag set. */
4894 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4895 /* Loading a static variable is unduly expensive, but global
4896 registers aren't expensive. */
4897 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4900 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4901 to be evaluated unconditionally.
4902 I addition to simple_operand_p, we assume that comparisons, conversions,
4903 and logic-not operations are simple, if their operands are simple, too. */
4905 static bool
4906 simple_operand_p_2 (tree exp)
4908 enum tree_code code;
4910 if (TREE_SIDE_EFFECTS (exp) || generic_expr_could_trap_p (exp))
4911 return false;
4913 while (CONVERT_EXPR_P (exp))
4914 exp = TREE_OPERAND (exp, 0);
4916 code = TREE_CODE (exp);
4918 if (TREE_CODE_CLASS (code) == tcc_comparison)
4919 return (simple_operand_p (TREE_OPERAND (exp, 0))
4920 && simple_operand_p (TREE_OPERAND (exp, 1)));
4922 if (code == TRUTH_NOT_EXPR)
4923 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4925 return simple_operand_p (exp);
4929 /* The following functions are subroutines to fold_range_test and allow it to
4930 try to change a logical combination of comparisons into a range test.
4932 For example, both
4933 X == 2 || X == 3 || X == 4 || X == 5
4935 X >= 2 && X <= 5
4936 are converted to
4937 (unsigned) (X - 2) <= 3
4939 We describe each set of comparisons as being either inside or outside
4940 a range, using a variable named like IN_P, and then describe the
4941 range with a lower and upper bound. If one of the bounds is omitted,
4942 it represents either the highest or lowest value of the type.
4944 In the comments below, we represent a range by two numbers in brackets
4945 preceded by a "+" to designate being inside that range, or a "-" to
4946 designate being outside that range, so the condition can be inverted by
4947 flipping the prefix. An omitted bound is represented by a "-". For
4948 example, "- [-, 10]" means being outside the range starting at the lowest
4949 possible value and ending at 10, in other words, being greater than 10.
4950 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4951 always false.
4953 We set up things so that the missing bounds are handled in a consistent
4954 manner so neither a missing bound nor "true" and "false" need to be
4955 handled using a special case. */
4957 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4958 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4959 and UPPER1_P are nonzero if the respective argument is an upper bound
4960 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4961 must be specified for a comparison. ARG1 will be converted to ARG0's
4962 type if both are specified. */
4964 static tree
4965 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4966 tree arg1, int upper1_p)
4968 tree tem;
4969 int result;
4970 int sgn0, sgn1;
4972 /* If neither arg represents infinity, do the normal operation.
4973 Else, if not a comparison, return infinity. Else handle the special
4974 comparison rules. Note that most of the cases below won't occur, but
4975 are handled for consistency. */
4977 if (arg0 != 0 && arg1 != 0)
4979 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4980 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4981 STRIP_NOPS (tem);
4982 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4985 if (TREE_CODE_CLASS (code) != tcc_comparison)
4986 return 0;
4988 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4989 for neither. In real maths, we cannot assume open ended ranges are
4990 the same. But, this is computer arithmetic, where numbers are finite.
4991 We can therefore make the transformation of any unbounded range with
4992 the value Z, Z being greater than any representable number. This permits
4993 us to treat unbounded ranges as equal. */
4994 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4995 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4996 switch (code)
4998 case EQ_EXPR:
4999 result = sgn0 == sgn1;
5000 break;
5001 case NE_EXPR:
5002 result = sgn0 != sgn1;
5003 break;
5004 case LT_EXPR:
5005 result = sgn0 < sgn1;
5006 break;
5007 case LE_EXPR:
5008 result = sgn0 <= sgn1;
5009 break;
5010 case GT_EXPR:
5011 result = sgn0 > sgn1;
5012 break;
5013 case GE_EXPR:
5014 result = sgn0 >= sgn1;
5015 break;
5016 default:
5017 gcc_unreachable ();
5020 return constant_boolean_node (result, type);
5023 /* Helper routine for make_range. Perform one step for it, return
5024 new expression if the loop should continue or NULL_TREE if it should
5025 stop. */
5027 tree
5028 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
5029 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
5030 bool *strict_overflow_p)
5032 tree arg0_type = TREE_TYPE (arg0);
5033 tree n_low, n_high, low = *p_low, high = *p_high;
5034 int in_p = *p_in_p, n_in_p;
5036 switch (code)
5038 case TRUTH_NOT_EXPR:
5039 /* We can only do something if the range is testing for zero. */
5040 if (low == NULL_TREE || high == NULL_TREE
5041 || ! integer_zerop (low) || ! integer_zerop (high))
5042 return NULL_TREE;
5043 *p_in_p = ! in_p;
5044 return arg0;
5046 case EQ_EXPR: case NE_EXPR:
5047 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
5048 /* We can only do something if the range is testing for zero
5049 and if the second operand is an integer constant. Note that
5050 saying something is "in" the range we make is done by
5051 complementing IN_P since it will set in the initial case of
5052 being not equal to zero; "out" is leaving it alone. */
5053 if (low == NULL_TREE || high == NULL_TREE
5054 || ! integer_zerop (low) || ! integer_zerop (high)
5055 || TREE_CODE (arg1) != INTEGER_CST)
5056 return NULL_TREE;
5058 switch (code)
5060 case NE_EXPR: /* - [c, c] */
5061 low = high = arg1;
5062 break;
5063 case EQ_EXPR: /* + [c, c] */
5064 in_p = ! in_p, low = high = arg1;
5065 break;
5066 case GT_EXPR: /* - [-, c] */
5067 low = 0, high = arg1;
5068 break;
5069 case GE_EXPR: /* + [c, -] */
5070 in_p = ! in_p, low = arg1, high = 0;
5071 break;
5072 case LT_EXPR: /* - [c, -] */
5073 low = arg1, high = 0;
5074 break;
5075 case LE_EXPR: /* + [-, c] */
5076 in_p = ! in_p, low = 0, high = arg1;
5077 break;
5078 default:
5079 gcc_unreachable ();
5082 /* If this is an unsigned comparison, we also know that EXP is
5083 greater than or equal to zero. We base the range tests we make
5084 on that fact, so we record it here so we can parse existing
5085 range tests. We test arg0_type since often the return type
5086 of, e.g. EQ_EXPR, is boolean. */
5087 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
5089 if (! merge_ranges (&n_in_p, &n_low, &n_high,
5090 in_p, low, high, 1,
5091 build_int_cst (arg0_type, 0),
5092 NULL_TREE))
5093 return NULL_TREE;
5095 in_p = n_in_p, low = n_low, high = n_high;
5097 /* If the high bound is missing, but we have a nonzero low
5098 bound, reverse the range so it goes from zero to the low bound
5099 minus 1. */
5100 if (high == 0 && low && ! integer_zerop (low))
5102 in_p = ! in_p;
5103 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
5104 build_int_cst (TREE_TYPE (low), 1), 0);
5105 low = build_int_cst (arg0_type, 0);
5109 *p_low = low;
5110 *p_high = high;
5111 *p_in_p = in_p;
5112 return arg0;
5114 case NEGATE_EXPR:
5115 /* If flag_wrapv and ARG0_TYPE is signed, make sure
5116 low and high are non-NULL, then normalize will DTRT. */
5117 if (!TYPE_UNSIGNED (arg0_type)
5118 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
5120 if (low == NULL_TREE)
5121 low = TYPE_MIN_VALUE (arg0_type);
5122 if (high == NULL_TREE)
5123 high = TYPE_MAX_VALUE (arg0_type);
5126 /* (-x) IN [a,b] -> x in [-b, -a] */
5127 n_low = range_binop (MINUS_EXPR, exp_type,
5128 build_int_cst (exp_type, 0),
5129 0, high, 1);
5130 n_high = range_binop (MINUS_EXPR, exp_type,
5131 build_int_cst (exp_type, 0),
5132 0, low, 0);
5133 if (n_high != 0 && TREE_OVERFLOW (n_high))
5134 return NULL_TREE;
5135 goto normalize;
5137 case BIT_NOT_EXPR:
5138 /* ~ X -> -X - 1 */
5139 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
5140 build_int_cst (exp_type, 1));
5142 case PLUS_EXPR:
5143 case MINUS_EXPR:
5144 if (TREE_CODE (arg1) != INTEGER_CST)
5145 return NULL_TREE;
5147 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
5148 move a constant to the other side. */
5149 if (!TYPE_UNSIGNED (arg0_type)
5150 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
5151 return NULL_TREE;
5153 /* If EXP is signed, any overflow in the computation is undefined,
5154 so we don't worry about it so long as our computations on
5155 the bounds don't overflow. For unsigned, overflow is defined
5156 and this is exactly the right thing. */
5157 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
5158 arg0_type, low, 0, arg1, 0);
5159 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
5160 arg0_type, high, 1, arg1, 0);
5161 if ((n_low != 0 && TREE_OVERFLOW (n_low))
5162 || (n_high != 0 && TREE_OVERFLOW (n_high)))
5163 return NULL_TREE;
5165 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
5166 *strict_overflow_p = true;
5168 normalize:
5169 /* Check for an unsigned range which has wrapped around the maximum
5170 value thus making n_high < n_low, and normalize it. */
5171 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
5173 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
5174 build_int_cst (TREE_TYPE (n_high), 1), 0);
5175 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
5176 build_int_cst (TREE_TYPE (n_low), 1), 0);
5178 /* If the range is of the form +/- [ x+1, x ], we won't
5179 be able to normalize it. But then, it represents the
5180 whole range or the empty set, so make it
5181 +/- [ -, - ]. */
5182 if (tree_int_cst_equal (n_low, low)
5183 && tree_int_cst_equal (n_high, high))
5184 low = high = 0;
5185 else
5186 in_p = ! in_p;
5188 else
5189 low = n_low, high = n_high;
5191 *p_low = low;
5192 *p_high = high;
5193 *p_in_p = in_p;
5194 return arg0;
5196 CASE_CONVERT:
5197 case NON_LVALUE_EXPR:
5198 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
5199 return NULL_TREE;
5201 if (! INTEGRAL_TYPE_P (arg0_type)
5202 || (low != 0 && ! int_fits_type_p (low, arg0_type))
5203 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
5204 return NULL_TREE;
5206 n_low = low, n_high = high;
5208 if (n_low != 0)
5209 n_low = fold_convert_loc (loc, arg0_type, n_low);
5211 if (n_high != 0)
5212 n_high = fold_convert_loc (loc, arg0_type, n_high);
5214 /* If we're converting arg0 from an unsigned type, to exp,
5215 a signed type, we will be doing the comparison as unsigned.
5216 The tests above have already verified that LOW and HIGH
5217 are both positive.
5219 So we have to ensure that we will handle large unsigned
5220 values the same way that the current signed bounds treat
5221 negative values. */
5223 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
5225 tree high_positive;
5226 tree equiv_type;
5227 /* For fixed-point modes, we need to pass the saturating flag
5228 as the 2nd parameter. */
5229 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
5230 equiv_type
5231 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
5232 TYPE_SATURATING (arg0_type));
5233 else
5234 equiv_type
5235 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
5237 /* A range without an upper bound is, naturally, unbounded.
5238 Since convert would have cropped a very large value, use
5239 the max value for the destination type. */
5240 high_positive
5241 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
5242 : TYPE_MAX_VALUE (arg0_type);
5244 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
5245 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
5246 fold_convert_loc (loc, arg0_type,
5247 high_positive),
5248 build_int_cst (arg0_type, 1));
5250 /* If the low bound is specified, "and" the range with the
5251 range for which the original unsigned value will be
5252 positive. */
5253 if (low != 0)
5255 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
5256 1, fold_convert_loc (loc, arg0_type,
5257 integer_zero_node),
5258 high_positive))
5259 return NULL_TREE;
5261 in_p = (n_in_p == in_p);
5263 else
5265 /* Otherwise, "or" the range with the range of the input
5266 that will be interpreted as negative. */
5267 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
5268 1, fold_convert_loc (loc, arg0_type,
5269 integer_zero_node),
5270 high_positive))
5271 return NULL_TREE;
5273 in_p = (in_p != n_in_p);
5277 /* Otherwise, if we are converting arg0 from signed type, to exp,
5278 an unsigned type, we will do the comparison as signed. If
5279 high is non-NULL, we punt above if it doesn't fit in the signed
5280 type, so if we get through here, +[-, high] or +[low, high] are
5281 equivalent to +[-, n_high] or +[n_low, n_high]. Similarly,
5282 +[-, -] or -[-, -] are equivalent too. But if low is specified and
5283 high is not, the +[low, -] range is equivalent to union of
5284 +[n_low, -] and +[-, -1] ranges, so +[low, -] is equivalent to
5285 -[0, n_low-1] and similarly -[low, -] to +[0, n_low-1], except for
5286 low being 0, which should be treated as [-, -]. */
5287 else if (TYPE_UNSIGNED (exp_type)
5288 && !TYPE_UNSIGNED (arg0_type)
5289 && low
5290 && !high)
5292 if (integer_zerop (low))
5293 n_low = NULL_TREE;
5294 else
5296 n_high = fold_build2_loc (loc, PLUS_EXPR, arg0_type,
5297 n_low, build_int_cst (arg0_type, -1));
5298 n_low = build_zero_cst (arg0_type);
5299 in_p = !in_p;
5303 *p_low = n_low;
5304 *p_high = n_high;
5305 *p_in_p = in_p;
5306 return arg0;
5308 default:
5309 return NULL_TREE;
5313 /* Given EXP, a logical expression, set the range it is testing into
5314 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
5315 actually being tested. *PLOW and *PHIGH will be made of the same
5316 type as the returned expression. If EXP is not a comparison, we
5317 will most likely not be returning a useful value and range. Set
5318 *STRICT_OVERFLOW_P to true if the return value is only valid
5319 because signed overflow is undefined; otherwise, do not change
5320 *STRICT_OVERFLOW_P. */
5322 tree
5323 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
5324 bool *strict_overflow_p)
5326 enum tree_code code;
5327 tree arg0, arg1 = NULL_TREE;
5328 tree exp_type, nexp;
5329 int in_p;
5330 tree low, high;
5331 location_t loc = EXPR_LOCATION (exp);
5333 /* Start with simply saying "EXP != 0" and then look at the code of EXP
5334 and see if we can refine the range. Some of the cases below may not
5335 happen, but it doesn't seem worth worrying about this. We "continue"
5336 the outer loop when we've changed something; otherwise we "break"
5337 the switch, which will "break" the while. */
5339 in_p = 0;
5340 low = high = build_int_cst (TREE_TYPE (exp), 0);
5342 while (1)
5344 code = TREE_CODE (exp);
5345 exp_type = TREE_TYPE (exp);
5346 arg0 = NULL_TREE;
5348 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
5350 if (TREE_OPERAND_LENGTH (exp) > 0)
5351 arg0 = TREE_OPERAND (exp, 0);
5352 if (TREE_CODE_CLASS (code) == tcc_binary
5353 || TREE_CODE_CLASS (code) == tcc_comparison
5354 || (TREE_CODE_CLASS (code) == tcc_expression
5355 && TREE_OPERAND_LENGTH (exp) > 1))
5356 arg1 = TREE_OPERAND (exp, 1);
5358 if (arg0 == NULL_TREE)
5359 break;
5361 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
5362 &high, &in_p, strict_overflow_p);
5363 if (nexp == NULL_TREE)
5364 break;
5365 exp = nexp;
5368 /* If EXP is a constant, we can evaluate whether this is true or false. */
5369 if (TREE_CODE (exp) == INTEGER_CST)
5371 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
5372 exp, 0, low, 0))
5373 && integer_onep (range_binop (LE_EXPR, integer_type_node,
5374 exp, 1, high, 1)));
5375 low = high = 0;
5376 exp = 0;
5379 *pin_p = in_p, *plow = low, *phigh = high;
5380 return exp;
5383 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
5384 a bitwise check i.e. when
5385 LOW == 0xXX...X00...0
5386 HIGH == 0xXX...X11...1
5387 Return corresponding mask in MASK and stem in VALUE. */
5389 static bool
5390 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask,
5391 tree *value)
5393 if (TREE_CODE (low) != INTEGER_CST
5394 || TREE_CODE (high) != INTEGER_CST)
5395 return false;
5397 unsigned prec = TYPE_PRECISION (type);
5398 wide_int lo = wi::to_wide (low, prec);
5399 wide_int hi = wi::to_wide (high, prec);
5401 wide_int end_mask = lo ^ hi;
5402 if ((end_mask & (end_mask + 1)) != 0
5403 || (lo & end_mask) != 0)
5404 return false;
5406 wide_int stem_mask = ~end_mask;
5407 wide_int stem = lo & stem_mask;
5408 if (stem != (hi & stem_mask))
5409 return false;
5411 *mask = wide_int_to_tree (type, stem_mask);
5412 *value = wide_int_to_tree (type, stem);
5414 return true;
5417 /* Helper routine for build_range_check and match.pd. Return the type to
5418 perform the check or NULL if it shouldn't be optimized. */
5420 tree
5421 range_check_type (tree etype)
5423 /* First make sure that arithmetics in this type is valid, then make sure
5424 that it wraps around. */
5425 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
5426 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype), 1);
5428 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_UNSIGNED (etype))
5430 tree utype, minv, maxv;
5432 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
5433 for the type in question, as we rely on this here. */
5434 utype = unsigned_type_for (etype);
5435 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
5436 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
5437 build_int_cst (TREE_TYPE (maxv), 1), 1);
5438 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
5440 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
5441 minv, 1, maxv, 1)))
5442 etype = utype;
5443 else
5444 return NULL_TREE;
5446 else if (POINTER_TYPE_P (etype) || TREE_CODE (etype) == OFFSET_TYPE)
5447 etype = unsigned_type_for (etype);
5448 return etype;
5451 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
5452 type, TYPE, return an expression to test if EXP is in (or out of, depending
5453 on IN_P) the range. Return 0 if the test couldn't be created. */
5455 tree
5456 build_range_check (location_t loc, tree type, tree exp, int in_p,
5457 tree low, tree high)
5459 tree etype = TREE_TYPE (exp), mask, value;
5461 /* Disable this optimization for function pointer expressions
5462 on targets that require function pointer canonicalization. */
5463 if (targetm.have_canonicalize_funcptr_for_compare ()
5464 && POINTER_TYPE_P (etype)
5465 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype)))
5466 return NULL_TREE;
5468 if (! in_p)
5470 value = build_range_check (loc, type, exp, 1, low, high);
5471 if (value != 0)
5472 return invert_truthvalue_loc (loc, value);
5474 return 0;
5477 if (low == 0 && high == 0)
5478 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
5480 if (low == 0)
5481 return fold_build2_loc (loc, LE_EXPR, type, exp,
5482 fold_convert_loc (loc, etype, high));
5484 if (high == 0)
5485 return fold_build2_loc (loc, GE_EXPR, type, exp,
5486 fold_convert_loc (loc, etype, low));
5488 if (operand_equal_p (low, high, 0))
5489 return fold_build2_loc (loc, EQ_EXPR, type, exp,
5490 fold_convert_loc (loc, etype, low));
5492 if (TREE_CODE (exp) == BIT_AND_EXPR
5493 && maskable_range_p (low, high, etype, &mask, &value))
5494 return fold_build2_loc (loc, EQ_EXPR, type,
5495 fold_build2_loc (loc, BIT_AND_EXPR, etype,
5496 exp, mask),
5497 value);
5499 if (integer_zerop (low))
5501 if (! TYPE_UNSIGNED (etype))
5503 etype = unsigned_type_for (etype);
5504 high = fold_convert_loc (loc, etype, high);
5505 exp = fold_convert_loc (loc, etype, exp);
5507 return build_range_check (loc, type, exp, 1, 0, high);
5510 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5511 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
5513 int prec = TYPE_PRECISION (etype);
5515 if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high))
5517 if (TYPE_UNSIGNED (etype))
5519 tree signed_etype = signed_type_for (etype);
5520 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
5521 etype
5522 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
5523 else
5524 etype = signed_etype;
5525 exp = fold_convert_loc (loc, etype, exp);
5527 return fold_build2_loc (loc, GT_EXPR, type, exp,
5528 build_int_cst (etype, 0));
5532 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5533 This requires wrap-around arithmetics for the type of the expression. */
5534 etype = range_check_type (etype);
5535 if (etype == NULL_TREE)
5536 return NULL_TREE;
5538 high = fold_convert_loc (loc, etype, high);
5539 low = fold_convert_loc (loc, etype, low);
5540 exp = fold_convert_loc (loc, etype, exp);
5542 value = const_binop (MINUS_EXPR, high, low);
5544 if (value != 0 && !TREE_OVERFLOW (value))
5545 return build_range_check (loc, type,
5546 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
5547 1, build_int_cst (etype, 0), value);
5549 return 0;
5552 /* Return the predecessor of VAL in its type, handling the infinite case. */
5554 static tree
5555 range_predecessor (tree val)
5557 tree type = TREE_TYPE (val);
5559 if (INTEGRAL_TYPE_P (type)
5560 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
5561 return 0;
5562 else
5563 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
5564 build_int_cst (TREE_TYPE (val), 1), 0);
5567 /* Return the successor of VAL in its type, handling the infinite case. */
5569 static tree
5570 range_successor (tree val)
5572 tree type = TREE_TYPE (val);
5574 if (INTEGRAL_TYPE_P (type)
5575 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
5576 return 0;
5577 else
5578 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
5579 build_int_cst (TREE_TYPE (val), 1), 0);
5582 /* Given two ranges, see if we can merge them into one. Return 1 if we
5583 can, 0 if we can't. Set the output range into the specified parameters. */
5585 bool
5586 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
5587 tree high0, int in1_p, tree low1, tree high1)
5589 int no_overlap;
5590 int subset;
5591 int temp;
5592 tree tem;
5593 int in_p;
5594 tree low, high;
5595 int lowequal = ((low0 == 0 && low1 == 0)
5596 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5597 low0, 0, low1, 0)));
5598 int highequal = ((high0 == 0 && high1 == 0)
5599 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
5600 high0, 1, high1, 1)));
5602 /* Make range 0 be the range that starts first, or ends last if they
5603 start at the same value. Swap them if it isn't. */
5604 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
5605 low0, 0, low1, 0))
5606 || (lowequal
5607 && integer_onep (range_binop (GT_EXPR, integer_type_node,
5608 high1, 1, high0, 1))))
5610 temp = in0_p, in0_p = in1_p, in1_p = temp;
5611 tem = low0, low0 = low1, low1 = tem;
5612 tem = high0, high0 = high1, high1 = tem;
5615 /* If the second range is != high1 where high1 is the type maximum of
5616 the type, try first merging with < high1 range. */
5617 if (low1
5618 && high1
5619 && TREE_CODE (low1) == INTEGER_CST
5620 && (TREE_CODE (TREE_TYPE (low1)) == INTEGER_TYPE
5621 || (TREE_CODE (TREE_TYPE (low1)) == ENUMERAL_TYPE
5622 && known_eq (TYPE_PRECISION (TREE_TYPE (low1)),
5623 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1))))))
5624 && operand_equal_p (low1, high1, 0))
5626 if (tree_int_cst_equal (low1, TYPE_MAX_VALUE (TREE_TYPE (low1)))
5627 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5628 !in1_p, NULL_TREE, range_predecessor (low1)))
5629 return true;
5630 /* Similarly for the second range != low1 where low1 is the type minimum
5631 of the type, try first merging with > low1 range. */
5632 if (tree_int_cst_equal (low1, TYPE_MIN_VALUE (TREE_TYPE (low1)))
5633 && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0,
5634 !in1_p, range_successor (low1), NULL_TREE))
5635 return true;
5638 /* Now flag two cases, whether the ranges are disjoint or whether the
5639 second range is totally subsumed in the first. Note that the tests
5640 below are simplified by the ones above. */
5641 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
5642 high0, 1, low1, 0));
5643 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
5644 high1, 1, high0, 1));
5646 /* We now have four cases, depending on whether we are including or
5647 excluding the two ranges. */
5648 if (in0_p && in1_p)
5650 /* If they don't overlap, the result is false. If the second range
5651 is a subset it is the result. Otherwise, the range is from the start
5652 of the second to the end of the first. */
5653 if (no_overlap)
5654 in_p = 0, low = high = 0;
5655 else if (subset)
5656 in_p = 1, low = low1, high = high1;
5657 else
5658 in_p = 1, low = low1, high = high0;
5661 else if (in0_p && ! in1_p)
5663 /* If they don't overlap, the result is the first range. If they are
5664 equal, the result is false. If the second range is a subset of the
5665 first, and the ranges begin at the same place, we go from just after
5666 the end of the second range to the end of the first. If the second
5667 range is not a subset of the first, or if it is a subset and both
5668 ranges end at the same place, the range starts at the start of the
5669 first range and ends just before the second range.
5670 Otherwise, we can't describe this as a single range. */
5671 if (no_overlap)
5672 in_p = 1, low = low0, high = high0;
5673 else if (lowequal && highequal)
5674 in_p = 0, low = high = 0;
5675 else if (subset && lowequal)
5677 low = range_successor (high1);
5678 high = high0;
5679 in_p = 1;
5680 if (low == 0)
5682 /* We are in the weird situation where high0 > high1 but
5683 high1 has no successor. Punt. */
5684 return 0;
5687 else if (! subset || highequal)
5689 low = low0;
5690 high = range_predecessor (low1);
5691 in_p = 1;
5692 if (high == 0)
5694 /* low0 < low1 but low1 has no predecessor. Punt. */
5695 return 0;
5698 else
5699 return 0;
5702 else if (! in0_p && in1_p)
5704 /* If they don't overlap, the result is the second range. If the second
5705 is a subset of the first, the result is false. Otherwise,
5706 the range starts just after the first range and ends at the
5707 end of the second. */
5708 if (no_overlap)
5709 in_p = 1, low = low1, high = high1;
5710 else if (subset || highequal)
5711 in_p = 0, low = high = 0;
5712 else
5714 low = range_successor (high0);
5715 high = high1;
5716 in_p = 1;
5717 if (low == 0)
5719 /* high1 > high0 but high0 has no successor. Punt. */
5720 return 0;
5725 else
5727 /* The case where we are excluding both ranges. Here the complex case
5728 is if they don't overlap. In that case, the only time we have a
5729 range is if they are adjacent. If the second is a subset of the
5730 first, the result is the first. Otherwise, the range to exclude
5731 starts at the beginning of the first range and ends at the end of the
5732 second. */
5733 if (no_overlap)
5735 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
5736 range_successor (high0),
5737 1, low1, 0)))
5738 in_p = 0, low = low0, high = high1;
5739 else
5741 /* Canonicalize - [min, x] into - [-, x]. */
5742 if (low0 && TREE_CODE (low0) == INTEGER_CST)
5743 switch (TREE_CODE (TREE_TYPE (low0)))
5745 case ENUMERAL_TYPE:
5746 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)),
5747 GET_MODE_BITSIZE
5748 (TYPE_MODE (TREE_TYPE (low0)))))
5749 break;
5750 /* FALLTHROUGH */
5751 case INTEGER_TYPE:
5752 if (tree_int_cst_equal (low0,
5753 TYPE_MIN_VALUE (TREE_TYPE (low0))))
5754 low0 = 0;
5755 break;
5756 case POINTER_TYPE:
5757 if (TYPE_UNSIGNED (TREE_TYPE (low0))
5758 && integer_zerop (low0))
5759 low0 = 0;
5760 break;
5761 default:
5762 break;
5765 /* Canonicalize - [x, max] into - [x, -]. */
5766 if (high1 && TREE_CODE (high1) == INTEGER_CST)
5767 switch (TREE_CODE (TREE_TYPE (high1)))
5769 case ENUMERAL_TYPE:
5770 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)),
5771 GET_MODE_BITSIZE
5772 (TYPE_MODE (TREE_TYPE (high1)))))
5773 break;
5774 /* FALLTHROUGH */
5775 case INTEGER_TYPE:
5776 if (tree_int_cst_equal (high1,
5777 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5778 high1 = 0;
5779 break;
5780 case POINTER_TYPE:
5781 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5782 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5783 high1, 1,
5784 build_int_cst (TREE_TYPE (high1), 1),
5785 1)))
5786 high1 = 0;
5787 break;
5788 default:
5789 break;
5792 /* The ranges might be also adjacent between the maximum and
5793 minimum values of the given type. For
5794 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5795 return + [x + 1, y - 1]. */
5796 if (low0 == 0 && high1 == 0)
5798 low = range_successor (high0);
5799 high = range_predecessor (low1);
5800 if (low == 0 || high == 0)
5801 return 0;
5803 in_p = 1;
5805 else
5806 return 0;
5809 else if (subset)
5810 in_p = 0, low = low0, high = high0;
5811 else
5812 in_p = 0, low = low0, high = high1;
5815 *pin_p = in_p, *plow = low, *phigh = high;
5816 return 1;
5820 /* Subroutine of fold, looking inside expressions of the form
5821 A op B ? A : C, where (ARG00, COMP_CODE, ARG01), ARG1 and ARG2
5822 are the three operands of the COND_EXPR. This function is
5823 being used also to optimize A op B ? C : A, by reversing the
5824 comparison first.
5826 Return a folded expression whose code is not a COND_EXPR
5827 anymore, or NULL_TREE if no folding opportunity is found. */
5829 static tree
5830 fold_cond_expr_with_comparison (location_t loc, tree type,
5831 enum tree_code comp_code,
5832 tree arg00, tree arg01, tree arg1, tree arg2)
5834 tree arg1_type = TREE_TYPE (arg1);
5835 tree tem;
5837 STRIP_NOPS (arg1);
5838 STRIP_NOPS (arg2);
5840 /* If we have A op 0 ? A : -A, consider applying the following
5841 transformations:
5843 A == 0? A : -A same as -A
5844 A != 0? A : -A same as A
5845 A >= 0? A : -A same as abs (A)
5846 A > 0? A : -A same as abs (A)
5847 A <= 0? A : -A same as -abs (A)
5848 A < 0? A : -A same as -abs (A)
5850 None of these transformations work for modes with signed
5851 zeros. If A is +/-0, the first two transformations will
5852 change the sign of the result (from +0 to -0, or vice
5853 versa). The last four will fix the sign of the result,
5854 even though the original expressions could be positive or
5855 negative, depending on the sign of A.
5857 Note that all these transformations are correct if A is
5858 NaN, since the two alternatives (A and -A) are also NaNs. */
5859 if (!HONOR_SIGNED_ZEROS (type)
5860 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5861 ? real_zerop (arg01)
5862 : integer_zerop (arg01))
5863 && ((TREE_CODE (arg2) == NEGATE_EXPR
5864 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5865 /* In the case that A is of the form X-Y, '-A' (arg2) may
5866 have already been folded to Y-X, check for that. */
5867 || (TREE_CODE (arg1) == MINUS_EXPR
5868 && TREE_CODE (arg2) == MINUS_EXPR
5869 && operand_equal_p (TREE_OPERAND (arg1, 0),
5870 TREE_OPERAND (arg2, 1), 0)
5871 && operand_equal_p (TREE_OPERAND (arg1, 1),
5872 TREE_OPERAND (arg2, 0), 0))))
5873 switch (comp_code)
5875 case EQ_EXPR:
5876 case UNEQ_EXPR:
5877 tem = fold_convert_loc (loc, arg1_type, arg1);
5878 return fold_convert_loc (loc, type, negate_expr (tem));
5879 case NE_EXPR:
5880 case LTGT_EXPR:
5881 return fold_convert_loc (loc, type, arg1);
5882 case UNGE_EXPR:
5883 case UNGT_EXPR:
5884 if (flag_trapping_math)
5885 break;
5886 /* Fall through. */
5887 case GE_EXPR:
5888 case GT_EXPR:
5889 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5890 break;
5891 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5892 return fold_convert_loc (loc, type, tem);
5893 case UNLE_EXPR:
5894 case UNLT_EXPR:
5895 if (flag_trapping_math)
5896 break;
5897 /* FALLTHRU */
5898 case LE_EXPR:
5899 case LT_EXPR:
5900 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5901 break;
5902 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
5903 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
5905 /* A <= 0 ? A : -A for A INT_MIN is valid, but -abs(INT_MIN)
5906 is not, invokes UB both in abs and in the negation of it.
5907 So, use ABSU_EXPR instead. */
5908 tree utype = unsigned_type_for (TREE_TYPE (arg1));
5909 tem = fold_build1_loc (loc, ABSU_EXPR, utype, arg1);
5910 tem = negate_expr (tem);
5911 return fold_convert_loc (loc, type, tem);
5913 else
5915 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5916 return negate_expr (fold_convert_loc (loc, type, tem));
5918 default:
5919 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5920 break;
5923 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5924 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5925 both transformations are correct when A is NaN: A != 0
5926 is then true, and A == 0 is false. */
5928 if (!HONOR_SIGNED_ZEROS (type)
5929 && integer_zerop (arg01) && integer_zerop (arg2))
5931 if (comp_code == NE_EXPR)
5932 return fold_convert_loc (loc, type, arg1);
5933 else if (comp_code == EQ_EXPR)
5934 return build_zero_cst (type);
5937 /* Try some transformations of A op B ? A : B.
5939 A == B? A : B same as B
5940 A != B? A : B same as A
5941 A >= B? A : B same as max (A, B)
5942 A > B? A : B same as max (B, A)
5943 A <= B? A : B same as min (A, B)
5944 A < B? A : B same as min (B, A)
5946 As above, these transformations don't work in the presence
5947 of signed zeros. For example, if A and B are zeros of
5948 opposite sign, the first two transformations will change
5949 the sign of the result. In the last four, the original
5950 expressions give different results for (A=+0, B=-0) and
5951 (A=-0, B=+0), but the transformed expressions do not.
5953 The first two transformations are correct if either A or B
5954 is a NaN. In the first transformation, the condition will
5955 be false, and B will indeed be chosen. In the case of the
5956 second transformation, the condition A != B will be true,
5957 and A will be chosen.
5959 The conversions to max() and min() are not correct if B is
5960 a number and A is not. The conditions in the original
5961 expressions will be false, so all four give B. The min()
5962 and max() versions would give a NaN instead. */
5963 if (!HONOR_SIGNED_ZEROS (type)
5964 && operand_equal_for_comparison_p (arg01, arg2)
5965 /* Avoid these transformations if the COND_EXPR may be used
5966 as an lvalue in the C++ front-end. PR c++/19199. */
5967 && (in_gimple_form
5968 || VECTOR_TYPE_P (type)
5969 || (! lang_GNU_CXX ()
5970 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5971 || ! maybe_lvalue_p (arg1)
5972 || ! maybe_lvalue_p (arg2)))
5974 tree comp_op0 = arg00;
5975 tree comp_op1 = arg01;
5976 tree comp_type = TREE_TYPE (comp_op0);
5978 switch (comp_code)
5980 case EQ_EXPR:
5981 return fold_convert_loc (loc, type, arg2);
5982 case NE_EXPR:
5983 return fold_convert_loc (loc, type, arg1);
5984 case LE_EXPR:
5985 case LT_EXPR:
5986 case UNLE_EXPR:
5987 case UNLT_EXPR:
5988 /* In C++ a ?: expression can be an lvalue, so put the
5989 operand which will be used if they are equal first
5990 so that we can convert this back to the
5991 corresponding COND_EXPR. */
5992 if (!HONOR_NANS (arg1))
5994 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5995 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5996 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5997 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5998 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5999 comp_op1, comp_op0);
6000 return fold_convert_loc (loc, type, tem);
6002 break;
6003 case GE_EXPR:
6004 case GT_EXPR:
6005 case UNGE_EXPR:
6006 case UNGT_EXPR:
6007 if (!HONOR_NANS (arg1))
6009 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
6010 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
6011 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
6012 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
6013 : fold_build2_loc (loc, MAX_EXPR, comp_type,
6014 comp_op1, comp_op0);
6015 return fold_convert_loc (loc, type, tem);
6017 break;
6018 case UNEQ_EXPR:
6019 if (!HONOR_NANS (arg1))
6020 return fold_convert_loc (loc, type, arg2);
6021 break;
6022 case LTGT_EXPR:
6023 if (!HONOR_NANS (arg1))
6024 return fold_convert_loc (loc, type, arg1);
6025 break;
6026 default:
6027 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
6028 break;
6032 return NULL_TREE;
6037 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
6038 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
6039 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
6040 false) >= 2)
6041 #endif
6043 /* EXP is some logical combination of boolean tests. See if we can
6044 merge it into some range test. Return the new tree if so. */
6046 static tree
6047 fold_range_test (location_t loc, enum tree_code code, tree type,
6048 tree op0, tree op1)
6050 int or_op = (code == TRUTH_ORIF_EXPR
6051 || code == TRUTH_OR_EXPR);
6052 int in0_p, in1_p, in_p;
6053 tree low0, low1, low, high0, high1, high;
6054 bool strict_overflow_p = false;
6055 tree tem, lhs, rhs;
6056 const char * const warnmsg = G_("assuming signed overflow does not occur "
6057 "when simplifying range test");
6059 if (!INTEGRAL_TYPE_P (type))
6060 return 0;
6062 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
6063 /* If op0 is known true or false and this is a short-circuiting
6064 operation we must not merge with op1 since that makes side-effects
6065 unconditional. So special-case this. */
6066 if (!lhs
6067 && ((code == TRUTH_ORIF_EXPR && in0_p)
6068 || (code == TRUTH_ANDIF_EXPR && !in0_p)))
6069 return op0;
6070 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
6072 /* If this is an OR operation, invert both sides; we will invert
6073 again at the end. */
6074 if (or_op)
6075 in0_p = ! in0_p, in1_p = ! in1_p;
6077 /* If both expressions are the same, if we can merge the ranges, and we
6078 can build the range test, return it or it inverted. If one of the
6079 ranges is always true or always false, consider it to be the same
6080 expression as the other. */
6081 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
6082 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
6083 in1_p, low1, high1)
6084 && (tem = (build_range_check (loc, type,
6085 lhs != 0 ? lhs
6086 : rhs != 0 ? rhs : integer_zero_node,
6087 in_p, low, high))) != 0)
6089 if (strict_overflow_p)
6090 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
6091 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
6094 /* On machines where the branch cost is expensive, if this is a
6095 short-circuited branch and the underlying object on both sides
6096 is the same, make a non-short-circuit operation. */
6097 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
6098 if (param_logical_op_non_short_circuit != -1)
6099 logical_op_non_short_circuit
6100 = param_logical_op_non_short_circuit;
6101 if (logical_op_non_short_circuit
6102 && !sanitize_coverage_p ()
6103 && lhs != 0 && rhs != 0
6104 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
6105 && operand_equal_p (lhs, rhs, 0))
6107 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
6108 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
6109 which cases we can't do this. */
6110 if (simple_operand_p (lhs))
6111 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
6112 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
6113 type, op0, op1);
6115 else if (!lang_hooks.decls.global_bindings_p ()
6116 && !CONTAINS_PLACEHOLDER_P (lhs))
6118 tree common = save_expr (lhs);
6120 if ((lhs = build_range_check (loc, type, common,
6121 or_op ? ! in0_p : in0_p,
6122 low0, high0)) != 0
6123 && (rhs = build_range_check (loc, type, common,
6124 or_op ? ! in1_p : in1_p,
6125 low1, high1)) != 0)
6127 if (strict_overflow_p)
6128 fold_overflow_warning (warnmsg,
6129 WARN_STRICT_OVERFLOW_COMPARISON);
6130 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
6131 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
6132 type, lhs, rhs);
6137 return 0;
6140 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
6141 bit value. Arrange things so the extra bits will be set to zero if and
6142 only if C is signed-extended to its full width. If MASK is nonzero,
6143 it is an INTEGER_CST that should be AND'ed with the extra bits. */
6145 static tree
6146 unextend (tree c, int p, int unsignedp, tree mask)
6148 tree type = TREE_TYPE (c);
6149 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type));
6150 tree temp;
6152 if (p == modesize || unsignedp)
6153 return c;
6155 /* We work by getting just the sign bit into the low-order bit, then
6156 into the high-order bit, then sign-extend. We then XOR that value
6157 with C. */
6158 temp = build_int_cst (TREE_TYPE (c),
6159 wi::extract_uhwi (wi::to_wide (c), p - 1, 1));
6161 /* We must use a signed type in order to get an arithmetic right shift.
6162 However, we must also avoid introducing accidental overflows, so that
6163 a subsequent call to integer_zerop will work. Hence we must
6164 do the type conversion here. At this point, the constant is either
6165 zero or one, and the conversion to a signed type can never overflow.
6166 We could get an overflow if this conversion is done anywhere else. */
6167 if (TYPE_UNSIGNED (type))
6168 temp = fold_convert (signed_type_for (type), temp);
6170 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
6171 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
6172 if (mask != 0)
6173 temp = const_binop (BIT_AND_EXPR, temp,
6174 fold_convert (TREE_TYPE (c), mask));
6175 /* If necessary, convert the type back to match the type of C. */
6176 if (TYPE_UNSIGNED (type))
6177 temp = fold_convert (type, temp);
6179 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
6182 /* For an expression that has the form
6183 (A && B) || ~B
6185 (A || B) && ~B,
6186 we can drop one of the inner expressions and simplify to
6187 A || ~B
6189 A && ~B
6190 LOC is the location of the resulting expression. OP is the inner
6191 logical operation; the left-hand side in the examples above, while CMPOP
6192 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
6193 removing a condition that guards another, as in
6194 (A != NULL && A->...) || A == NULL
6195 which we must not transform. If RHS_ONLY is true, only eliminate the
6196 right-most operand of the inner logical operation. */
6198 static tree
6199 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
6200 bool rhs_only)
6202 tree type = TREE_TYPE (cmpop);
6203 enum tree_code code = TREE_CODE (cmpop);
6204 enum tree_code truthop_code = TREE_CODE (op);
6205 tree lhs = TREE_OPERAND (op, 0);
6206 tree rhs = TREE_OPERAND (op, 1);
6207 tree orig_lhs = lhs, orig_rhs = rhs;
6208 enum tree_code rhs_code = TREE_CODE (rhs);
6209 enum tree_code lhs_code = TREE_CODE (lhs);
6210 enum tree_code inv_code;
6212 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
6213 return NULL_TREE;
6215 if (TREE_CODE_CLASS (code) != tcc_comparison)
6216 return NULL_TREE;
6218 if (rhs_code == truthop_code)
6220 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
6221 if (newrhs != NULL_TREE)
6223 rhs = newrhs;
6224 rhs_code = TREE_CODE (rhs);
6227 if (lhs_code == truthop_code && !rhs_only)
6229 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
6230 if (newlhs != NULL_TREE)
6232 lhs = newlhs;
6233 lhs_code = TREE_CODE (lhs);
6237 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
6238 if (inv_code == rhs_code
6239 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
6240 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
6241 return lhs;
6242 if (!rhs_only && inv_code == lhs_code
6243 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
6244 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
6245 return rhs;
6246 if (rhs != orig_rhs || lhs != orig_lhs)
6247 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
6248 lhs, rhs);
6249 return NULL_TREE;
6252 /* Find ways of folding logical expressions of LHS and RHS:
6253 Try to merge two comparisons to the same innermost item.
6254 Look for range tests like "ch >= '0' && ch <= '9'".
6255 Look for combinations of simple terms on machines with expensive branches
6256 and evaluate the RHS unconditionally.
6258 For example, if we have p->a == 2 && p->b == 4 and we can make an
6259 object large enough to span both A and B, we can do this with a comparison
6260 against the object ANDed with the a mask.
6262 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
6263 operations to do this with one comparison.
6265 We check for both normal comparisons and the BIT_AND_EXPRs made this by
6266 function and the one above.
6268 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
6269 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
6271 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
6272 two operands.
6274 We return the simplified tree or 0 if no optimization is possible. */
6276 static tree
6277 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
6278 tree lhs, tree rhs)
6280 /* If this is the "or" of two comparisons, we can do something if
6281 the comparisons are NE_EXPR. If this is the "and", we can do something
6282 if the comparisons are EQ_EXPR. I.e.,
6283 (a->b == 2 && a->c == 4) can become (a->new == NEW).
6285 WANTED_CODE is this operation code. For single bit fields, we can
6286 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
6287 comparison for one-bit fields. */
6289 enum tree_code wanted_code;
6290 enum tree_code lcode, rcode;
6291 tree ll_arg, lr_arg, rl_arg, rr_arg;
6292 tree ll_inner, lr_inner, rl_inner, rr_inner;
6293 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
6294 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
6295 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
6296 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
6297 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
6298 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
6299 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
6300 scalar_int_mode lnmode, rnmode;
6301 tree ll_mask, lr_mask, rl_mask, rr_mask;
6302 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
6303 tree l_const, r_const;
6304 tree lntype, rntype, result;
6305 HOST_WIDE_INT first_bit, end_bit;
6306 int volatilep;
6308 /* Start by getting the comparison codes. Fail if anything is volatile.
6309 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
6310 it were surrounded with a NE_EXPR. */
6312 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
6313 return 0;
6315 lcode = TREE_CODE (lhs);
6316 rcode = TREE_CODE (rhs);
6318 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
6320 lhs = build2 (NE_EXPR, truth_type, lhs,
6321 build_int_cst (TREE_TYPE (lhs), 0));
6322 lcode = NE_EXPR;
6325 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
6327 rhs = build2 (NE_EXPR, truth_type, rhs,
6328 build_int_cst (TREE_TYPE (rhs), 0));
6329 rcode = NE_EXPR;
6332 if (TREE_CODE_CLASS (lcode) != tcc_comparison
6333 || TREE_CODE_CLASS (rcode) != tcc_comparison)
6334 return 0;
6336 ll_arg = TREE_OPERAND (lhs, 0);
6337 lr_arg = TREE_OPERAND (lhs, 1);
6338 rl_arg = TREE_OPERAND (rhs, 0);
6339 rr_arg = TREE_OPERAND (rhs, 1);
6341 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
6342 if (simple_operand_p (ll_arg)
6343 && simple_operand_p (lr_arg))
6345 if (operand_equal_p (ll_arg, rl_arg, 0)
6346 && operand_equal_p (lr_arg, rr_arg, 0))
6348 result = combine_comparisons (loc, code, lcode, rcode,
6349 truth_type, ll_arg, lr_arg);
6350 if (result)
6351 return result;
6353 else if (operand_equal_p (ll_arg, rr_arg, 0)
6354 && operand_equal_p (lr_arg, rl_arg, 0))
6356 result = combine_comparisons (loc, code, lcode,
6357 swap_tree_comparison (rcode),
6358 truth_type, ll_arg, lr_arg);
6359 if (result)
6360 return result;
6364 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
6365 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
6367 /* If the RHS can be evaluated unconditionally and its operands are
6368 simple, it wins to evaluate the RHS unconditionally on machines
6369 with expensive branches. In this case, this isn't a comparison
6370 that can be merged. */
6372 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
6373 false) >= 2
6374 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
6375 && simple_operand_p (rl_arg)
6376 && simple_operand_p (rr_arg))
6378 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
6379 if (code == TRUTH_OR_EXPR
6380 && lcode == NE_EXPR && integer_zerop (lr_arg)
6381 && rcode == NE_EXPR && integer_zerop (rr_arg)
6382 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
6383 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
6384 return build2_loc (loc, NE_EXPR, truth_type,
6385 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
6386 ll_arg, rl_arg),
6387 build_int_cst (TREE_TYPE (ll_arg), 0));
6389 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
6390 if (code == TRUTH_AND_EXPR
6391 && lcode == EQ_EXPR && integer_zerop (lr_arg)
6392 && rcode == EQ_EXPR && integer_zerop (rr_arg)
6393 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
6394 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
6395 return build2_loc (loc, EQ_EXPR, truth_type,
6396 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
6397 ll_arg, rl_arg),
6398 build_int_cst (TREE_TYPE (ll_arg), 0));
6401 /* See if the comparisons can be merged. Then get all the parameters for
6402 each side. */
6404 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
6405 || (rcode != EQ_EXPR && rcode != NE_EXPR))
6406 return 0;
6408 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
6409 volatilep = 0;
6410 ll_inner = decode_field_reference (loc, &ll_arg,
6411 &ll_bitsize, &ll_bitpos, &ll_mode,
6412 &ll_unsignedp, &ll_reversep, &volatilep,
6413 &ll_mask, &ll_and_mask);
6414 lr_inner = decode_field_reference (loc, &lr_arg,
6415 &lr_bitsize, &lr_bitpos, &lr_mode,
6416 &lr_unsignedp, &lr_reversep, &volatilep,
6417 &lr_mask, &lr_and_mask);
6418 rl_inner = decode_field_reference (loc, &rl_arg,
6419 &rl_bitsize, &rl_bitpos, &rl_mode,
6420 &rl_unsignedp, &rl_reversep, &volatilep,
6421 &rl_mask, &rl_and_mask);
6422 rr_inner = decode_field_reference (loc, &rr_arg,
6423 &rr_bitsize, &rr_bitpos, &rr_mode,
6424 &rr_unsignedp, &rr_reversep, &volatilep,
6425 &rr_mask, &rr_and_mask);
6427 /* It must be true that the inner operation on the lhs of each
6428 comparison must be the same if we are to be able to do anything.
6429 Then see if we have constants. If not, the same must be true for
6430 the rhs's. */
6431 if (volatilep
6432 || ll_reversep != rl_reversep
6433 || ll_inner == 0 || rl_inner == 0
6434 || ! operand_equal_p (ll_inner, rl_inner, 0))
6435 return 0;
6437 if (TREE_CODE (lr_arg) == INTEGER_CST
6438 && TREE_CODE (rr_arg) == INTEGER_CST)
6440 l_const = lr_arg, r_const = rr_arg;
6441 lr_reversep = ll_reversep;
6443 else if (lr_reversep != rr_reversep
6444 || lr_inner == 0 || rr_inner == 0
6445 || ! operand_equal_p (lr_inner, rr_inner, 0))
6446 return 0;
6447 else
6448 l_const = r_const = 0;
6450 /* If either comparison code is not correct for our logical operation,
6451 fail. However, we can convert a one-bit comparison against zero into
6452 the opposite comparison against that bit being set in the field. */
6454 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
6455 if (lcode != wanted_code)
6457 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
6459 /* Make the left operand unsigned, since we are only interested
6460 in the value of one bit. Otherwise we are doing the wrong
6461 thing below. */
6462 ll_unsignedp = 1;
6463 l_const = ll_mask;
6465 else
6466 return 0;
6469 /* This is analogous to the code for l_const above. */
6470 if (rcode != wanted_code)
6472 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
6474 rl_unsignedp = 1;
6475 r_const = rl_mask;
6477 else
6478 return 0;
6481 /* See if we can find a mode that contains both fields being compared on
6482 the left. If we can't, fail. Otherwise, update all constants and masks
6483 to be relative to a field of that size. */
6484 first_bit = MIN (ll_bitpos, rl_bitpos);
6485 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
6486 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6487 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD,
6488 volatilep, &lnmode))
6489 return 0;
6491 lnbitsize = GET_MODE_BITSIZE (lnmode);
6492 lnbitpos = first_bit & ~ (lnbitsize - 1);
6493 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
6494 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
6496 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6498 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
6499 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
6502 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
6503 size_int (xll_bitpos));
6504 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
6505 size_int (xrl_bitpos));
6506 if (ll_mask == NULL_TREE || rl_mask == NULL_TREE)
6507 return 0;
6509 if (l_const)
6511 l_const = fold_convert_loc (loc, lntype, l_const);
6512 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
6513 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
6514 if (l_const == NULL_TREE)
6515 return 0;
6516 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
6517 fold_build1_loc (loc, BIT_NOT_EXPR,
6518 lntype, ll_mask))))
6520 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6522 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6525 if (r_const)
6527 r_const = fold_convert_loc (loc, lntype, r_const);
6528 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
6529 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
6530 if (r_const == NULL_TREE)
6531 return 0;
6532 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
6533 fold_build1_loc (loc, BIT_NOT_EXPR,
6534 lntype, rl_mask))))
6536 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
6538 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
6542 /* If the right sides are not constant, do the same for it. Also,
6543 disallow this optimization if a size, signedness or storage order
6544 mismatch occurs between the left and right sides. */
6545 if (l_const == 0)
6547 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
6548 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
6549 || ll_reversep != lr_reversep
6550 /* Make sure the two fields on the right
6551 correspond to the left without being swapped. */
6552 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
6553 return 0;
6555 first_bit = MIN (lr_bitpos, rr_bitpos);
6556 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
6557 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0,
6558 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD,
6559 volatilep, &rnmode))
6560 return 0;
6562 rnbitsize = GET_MODE_BITSIZE (rnmode);
6563 rnbitpos = first_bit & ~ (rnbitsize - 1);
6564 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
6565 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
6567 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
6569 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
6570 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
6573 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6574 rntype, lr_mask),
6575 size_int (xlr_bitpos));
6576 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
6577 rntype, rr_mask),
6578 size_int (xrr_bitpos));
6579 if (lr_mask == NULL_TREE || rr_mask == NULL_TREE)
6580 return 0;
6582 /* Make a mask that corresponds to both fields being compared.
6583 Do this for both items being compared. If the operands are the
6584 same size and the bits being compared are in the same position
6585 then we can do this by masking both and comparing the masked
6586 results. */
6587 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6588 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
6589 if (lnbitsize == rnbitsize
6590 && xll_bitpos == xlr_bitpos
6591 && lnbitpos >= 0
6592 && rnbitpos >= 0)
6594 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
6595 lntype, lnbitsize, lnbitpos,
6596 ll_unsignedp || rl_unsignedp, ll_reversep);
6597 if (! all_ones_mask_p (ll_mask, lnbitsize))
6598 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
6600 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
6601 rntype, rnbitsize, rnbitpos,
6602 lr_unsignedp || rr_unsignedp, lr_reversep);
6603 if (! all_ones_mask_p (lr_mask, rnbitsize))
6604 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
6606 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6609 /* There is still another way we can do something: If both pairs of
6610 fields being compared are adjacent, we may be able to make a wider
6611 field containing them both.
6613 Note that we still must mask the lhs/rhs expressions. Furthermore,
6614 the mask must be shifted to account for the shift done by
6615 make_bit_field_ref. */
6616 if (((ll_bitsize + ll_bitpos == rl_bitpos
6617 && lr_bitsize + lr_bitpos == rr_bitpos)
6618 || (ll_bitpos == rl_bitpos + rl_bitsize
6619 && lr_bitpos == rr_bitpos + rr_bitsize))
6620 && ll_bitpos >= 0
6621 && rl_bitpos >= 0
6622 && lr_bitpos >= 0
6623 && rr_bitpos >= 0)
6625 tree type;
6627 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
6628 ll_bitsize + rl_bitsize,
6629 MIN (ll_bitpos, rl_bitpos),
6630 ll_unsignedp, ll_reversep);
6631 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
6632 lr_bitsize + rr_bitsize,
6633 MIN (lr_bitpos, rr_bitpos),
6634 lr_unsignedp, lr_reversep);
6636 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
6637 size_int (MIN (xll_bitpos, xrl_bitpos)));
6638 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
6639 size_int (MIN (xlr_bitpos, xrr_bitpos)));
6640 if (ll_mask == NULL_TREE || lr_mask == NULL_TREE)
6641 return 0;
6643 /* Convert to the smaller type before masking out unwanted bits. */
6644 type = lntype;
6645 if (lntype != rntype)
6647 if (lnbitsize > rnbitsize)
6649 lhs = fold_convert_loc (loc, rntype, lhs);
6650 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
6651 type = rntype;
6653 else if (lnbitsize < rnbitsize)
6655 rhs = fold_convert_loc (loc, lntype, rhs);
6656 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
6657 type = lntype;
6661 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
6662 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
6664 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
6665 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
6667 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
6670 return 0;
6673 /* Handle the case of comparisons with constants. If there is something in
6674 common between the masks, those bits of the constants must be the same.
6675 If not, the condition is always false. Test for this to avoid generating
6676 incorrect code below. */
6677 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
6678 if (! integer_zerop (result)
6679 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
6680 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
6682 if (wanted_code == NE_EXPR)
6684 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6685 return constant_boolean_node (true, truth_type);
6687 else
6689 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6690 return constant_boolean_node (false, truth_type);
6694 if (lnbitpos < 0)
6695 return 0;
6697 /* Construct the expression we will return. First get the component
6698 reference we will make. Unless the mask is all ones the width of
6699 that field, perform the mask operation. Then compare with the
6700 merged constant. */
6701 result = make_bit_field_ref (loc, ll_inner, ll_arg,
6702 lntype, lnbitsize, lnbitpos,
6703 ll_unsignedp || rl_unsignedp, ll_reversep);
6705 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
6706 if (! all_ones_mask_p (ll_mask, lnbitsize))
6707 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
6709 return build2_loc (loc, wanted_code, truth_type, result,
6710 const_binop (BIT_IOR_EXPR, l_const, r_const));
6713 /* T is an integer expression that is being multiplied, divided, or taken a
6714 modulus (CODE says which and what kind of divide or modulus) by a
6715 constant C. See if we can eliminate that operation by folding it with
6716 other operations already in T. WIDE_TYPE, if non-null, is a type that
6717 should be used for the computation if wider than our type.
6719 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6720 (X * 2) + (Y * 4). We must, however, be assured that either the original
6721 expression would not overflow or that overflow is undefined for the type
6722 in the language in question.
6724 If we return a non-null expression, it is an equivalent form of the
6725 original computation, but need not be in the original type.
6727 We set *STRICT_OVERFLOW_P to true if the return values depends on
6728 signed overflow being undefined. Otherwise we do not change
6729 *STRICT_OVERFLOW_P. */
6731 static tree
6732 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6733 bool *strict_overflow_p)
6735 /* To avoid exponential search depth, refuse to allow recursion past
6736 three levels. Beyond that (1) it's highly unlikely that we'll find
6737 something interesting and (2) we've probably processed it before
6738 when we built the inner expression. */
6740 static int depth;
6741 tree ret;
6743 if (depth > 3)
6744 return NULL;
6746 depth++;
6747 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6748 depth--;
6750 return ret;
6753 static tree
6754 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6755 bool *strict_overflow_p)
6757 tree type = TREE_TYPE (t);
6758 enum tree_code tcode = TREE_CODE (t);
6759 tree ctype = (wide_type != 0
6760 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type))
6761 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)))
6762 ? wide_type : type);
6763 tree t1, t2;
6764 int same_p = tcode == code;
6765 tree op0 = NULL_TREE, op1 = NULL_TREE;
6766 bool sub_strict_overflow_p;
6768 /* Don't deal with constants of zero here; they confuse the code below. */
6769 if (integer_zerop (c))
6770 return NULL_TREE;
6772 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6773 op0 = TREE_OPERAND (t, 0);
6775 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6776 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6778 /* Note that we need not handle conditional operations here since fold
6779 already handles those cases. So just do arithmetic here. */
6780 switch (tcode)
6782 case INTEGER_CST:
6783 /* For a constant, we can always simplify if we are a multiply
6784 or (for divide and modulus) if it is a multiple of our constant. */
6785 if (code == MULT_EXPR
6786 || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c),
6787 TYPE_SIGN (type)))
6789 tree tem = const_binop (code, fold_convert (ctype, t),
6790 fold_convert (ctype, c));
6791 /* If the multiplication overflowed, we lost information on it.
6792 See PR68142 and PR69845. */
6793 if (TREE_OVERFLOW (tem))
6794 return NULL_TREE;
6795 return tem;
6797 break;
6799 CASE_CONVERT: case NON_LVALUE_EXPR:
6800 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0)))
6801 break;
6802 /* If op0 is an expression ... */
6803 if ((COMPARISON_CLASS_P (op0)
6804 || UNARY_CLASS_P (op0)
6805 || BINARY_CLASS_P (op0)
6806 || VL_EXP_CLASS_P (op0)
6807 || EXPRESSION_CLASS_P (op0))
6808 /* ... and has wrapping overflow, and its type is smaller
6809 than ctype, then we cannot pass through as widening. */
6810 && ((TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))
6811 && (TYPE_PRECISION (ctype)
6812 > TYPE_PRECISION (TREE_TYPE (op0))))
6813 /* ... or this is a truncation (t is narrower than op0),
6814 then we cannot pass through this narrowing. */
6815 || (TYPE_PRECISION (type)
6816 < TYPE_PRECISION (TREE_TYPE (op0)))
6817 /* ... or signedness changes for division or modulus,
6818 then we cannot pass through this conversion. */
6819 || (code != MULT_EXPR
6820 && (TYPE_UNSIGNED (ctype)
6821 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6822 /* ... or has undefined overflow while the converted to
6823 type has not, we cannot do the operation in the inner type
6824 as that would introduce undefined overflow. */
6825 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))
6826 && !TYPE_OVERFLOW_UNDEFINED (type))))
6827 break;
6829 /* Pass the constant down and see if we can make a simplification. If
6830 we can, replace this expression with the inner simplification for
6831 possible later conversion to our or some other type. */
6832 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6833 && TREE_CODE (t2) == INTEGER_CST
6834 && !TREE_OVERFLOW (t2)
6835 && (t1 = extract_muldiv (op0, t2, code,
6836 code == MULT_EXPR ? ctype : NULL_TREE,
6837 strict_overflow_p)) != 0)
6838 return t1;
6839 break;
6841 case ABS_EXPR:
6842 /* If widening the type changes it from signed to unsigned, then we
6843 must avoid building ABS_EXPR itself as unsigned. */
6844 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6846 tree cstype = (*signed_type_for) (ctype);
6847 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6848 != 0)
6850 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6851 return fold_convert (ctype, t1);
6853 break;
6855 /* If the constant is negative, we cannot simplify this. */
6856 if (tree_int_cst_sgn (c) == -1)
6857 break;
6858 /* FALLTHROUGH */
6859 case NEGATE_EXPR:
6860 /* For division and modulus, type can't be unsigned, as e.g.
6861 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6862 For signed types, even with wrapping overflow, this is fine. */
6863 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6864 break;
6865 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6866 != 0)
6867 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6868 break;
6870 case MIN_EXPR: case MAX_EXPR:
6871 /* If widening the type changes the signedness, then we can't perform
6872 this optimization as that changes the result. */
6873 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6874 break;
6876 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6877 sub_strict_overflow_p = false;
6878 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6879 &sub_strict_overflow_p)) != 0
6880 && (t2 = extract_muldiv (op1, c, code, wide_type,
6881 &sub_strict_overflow_p)) != 0)
6883 if (tree_int_cst_sgn (c) < 0)
6884 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6885 if (sub_strict_overflow_p)
6886 *strict_overflow_p = true;
6887 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6888 fold_convert (ctype, t2));
6890 break;
6892 case LSHIFT_EXPR: case RSHIFT_EXPR:
6893 /* If the second operand is constant, this is a multiplication
6894 or floor division, by a power of two, so we can treat it that
6895 way unless the multiplier or divisor overflows. Signed
6896 left-shift overflow is implementation-defined rather than
6897 undefined in C90, so do not convert signed left shift into
6898 multiplication. */
6899 if (TREE_CODE (op1) == INTEGER_CST
6900 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6901 /* const_binop may not detect overflow correctly,
6902 so check for it explicitly here. */
6903 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)),
6904 wi::to_wide (op1))
6905 && (t1 = fold_convert (ctype,
6906 const_binop (LSHIFT_EXPR, size_one_node,
6907 op1))) != 0
6908 && !TREE_OVERFLOW (t1))
6909 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6910 ? MULT_EXPR : FLOOR_DIV_EXPR,
6911 ctype,
6912 fold_convert (ctype, op0),
6913 t1),
6914 c, code, wide_type, strict_overflow_p);
6915 break;
6917 case PLUS_EXPR: case MINUS_EXPR:
6918 /* See if we can eliminate the operation on both sides. If we can, we
6919 can return a new PLUS or MINUS. If we can't, the only remaining
6920 cases where we can do anything are if the second operand is a
6921 constant. */
6922 sub_strict_overflow_p = false;
6923 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6924 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6925 if (t1 != 0 && t2 != 0
6926 && TYPE_OVERFLOW_WRAPS (ctype)
6927 && (code == MULT_EXPR
6928 /* If not multiplication, we can only do this if both operands
6929 are divisible by c. */
6930 || (multiple_of_p (ctype, op0, c)
6931 && multiple_of_p (ctype, op1, c))))
6933 if (sub_strict_overflow_p)
6934 *strict_overflow_p = true;
6935 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6936 fold_convert (ctype, t2));
6939 /* If this was a subtraction, negate OP1 and set it to be an addition.
6940 This simplifies the logic below. */
6941 if (tcode == MINUS_EXPR)
6943 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6944 /* If OP1 was not easily negatable, the constant may be OP0. */
6945 if (TREE_CODE (op0) == INTEGER_CST)
6947 std::swap (op0, op1);
6948 std::swap (t1, t2);
6952 if (TREE_CODE (op1) != INTEGER_CST)
6953 break;
6955 /* If either OP1 or C are negative, this optimization is not safe for
6956 some of the division and remainder types while for others we need
6957 to change the code. */
6958 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6960 if (code == CEIL_DIV_EXPR)
6961 code = FLOOR_DIV_EXPR;
6962 else if (code == FLOOR_DIV_EXPR)
6963 code = CEIL_DIV_EXPR;
6964 else if (code != MULT_EXPR
6965 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6966 break;
6969 /* If it's a multiply or a division/modulus operation of a multiple
6970 of our constant, do the operation and verify it doesn't overflow. */
6971 if (code == MULT_EXPR
6972 || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
6973 TYPE_SIGN (type)))
6975 op1 = const_binop (code, fold_convert (ctype, op1),
6976 fold_convert (ctype, c));
6977 /* We allow the constant to overflow with wrapping semantics. */
6978 if (op1 == 0
6979 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6980 break;
6982 else
6983 break;
6985 /* If we have an unsigned type, we cannot widen the operation since it
6986 will change the result if the original computation overflowed. */
6987 if (TYPE_UNSIGNED (ctype) && ctype != type)
6988 break;
6990 /* The last case is if we are a multiply. In that case, we can
6991 apply the distributive law to commute the multiply and addition
6992 if the multiplication of the constants doesn't overflow
6993 and overflow is defined. With undefined overflow
6994 op0 * c might overflow, while (op0 + orig_op1) * c doesn't.
6995 But fold_plusminus_mult_expr would factor back any power-of-two
6996 value so do not distribute in the first place in this case. */
6997 if (code == MULT_EXPR
6998 && TYPE_OVERFLOW_WRAPS (ctype)
6999 && !(tree_fits_shwi_p (c) && pow2p_hwi (absu_hwi (tree_to_shwi (c)))))
7000 return fold_build2 (tcode, ctype,
7001 fold_build2 (code, ctype,
7002 fold_convert (ctype, op0),
7003 fold_convert (ctype, c)),
7004 op1);
7006 break;
7008 case MULT_EXPR:
7009 /* We have a special case here if we are doing something like
7010 (C * 8) % 4 since we know that's zero. */
7011 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
7012 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
7013 /* If the multiplication can overflow we cannot optimize this. */
7014 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
7015 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
7016 && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
7017 TYPE_SIGN (type)))
7019 *strict_overflow_p = true;
7020 return omit_one_operand (type, integer_zero_node, op0);
7023 /* ... fall through ... */
7025 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
7026 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
7027 /* If we can extract our operation from the LHS, do so and return a
7028 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
7029 do something only if the second operand is a constant. */
7030 if (same_p
7031 && TYPE_OVERFLOW_WRAPS (ctype)
7032 && (t1 = extract_muldiv (op0, c, code, wide_type,
7033 strict_overflow_p)) != 0)
7034 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
7035 fold_convert (ctype, op1));
7036 else if (tcode == MULT_EXPR && code == MULT_EXPR
7037 && TYPE_OVERFLOW_WRAPS (ctype)
7038 && (t1 = extract_muldiv (op1, c, code, wide_type,
7039 strict_overflow_p)) != 0)
7040 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
7041 fold_convert (ctype, t1));
7042 else if (TREE_CODE (op1) != INTEGER_CST)
7043 return 0;
7045 /* If these are the same operation types, we can associate them
7046 assuming no overflow. */
7047 if (tcode == code)
7049 bool overflow_p = false;
7050 wi::overflow_type overflow_mul;
7051 signop sign = TYPE_SIGN (ctype);
7052 unsigned prec = TYPE_PRECISION (ctype);
7053 wide_int mul = wi::mul (wi::to_wide (op1, prec),
7054 wi::to_wide (c, prec),
7055 sign, &overflow_mul);
7056 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
7057 if (overflow_mul
7058 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
7059 overflow_p = true;
7060 if (!overflow_p)
7061 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
7062 wide_int_to_tree (ctype, mul));
7065 /* If these operations "cancel" each other, we have the main
7066 optimizations of this pass, which occur when either constant is a
7067 multiple of the other, in which case we replace this with either an
7068 operation or CODE or TCODE.
7070 If we have an unsigned type, we cannot do this since it will change
7071 the result if the original computation overflowed. */
7072 if (TYPE_OVERFLOW_UNDEFINED (ctype)
7073 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
7074 || (tcode == MULT_EXPR
7075 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
7076 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
7077 && code != MULT_EXPR)))
7079 if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c),
7080 TYPE_SIGN (type)))
7082 if (TYPE_OVERFLOW_UNDEFINED (ctype))
7083 *strict_overflow_p = true;
7084 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
7085 fold_convert (ctype,
7086 const_binop (TRUNC_DIV_EXPR,
7087 op1, c)));
7089 else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1),
7090 TYPE_SIGN (type)))
7092 if (TYPE_OVERFLOW_UNDEFINED (ctype))
7093 *strict_overflow_p = true;
7094 return fold_build2 (code, ctype, fold_convert (ctype, op0),
7095 fold_convert (ctype,
7096 const_binop (TRUNC_DIV_EXPR,
7097 c, op1)));
7100 break;
7102 default:
7103 break;
7106 return 0;
7109 /* Return a node which has the indicated constant VALUE (either 0 or
7110 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
7111 and is of the indicated TYPE. */
7113 tree
7114 constant_boolean_node (bool value, tree type)
7116 if (type == integer_type_node)
7117 return value ? integer_one_node : integer_zero_node;
7118 else if (type == boolean_type_node)
7119 return value ? boolean_true_node : boolean_false_node;
7120 else if (TREE_CODE (type) == VECTOR_TYPE)
7121 return build_vector_from_val (type,
7122 build_int_cst (TREE_TYPE (type),
7123 value ? -1 : 0));
7124 else
7125 return fold_convert (type, value ? integer_one_node : integer_zero_node);
7129 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
7130 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
7131 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
7132 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
7133 COND is the first argument to CODE; otherwise (as in the example
7134 given here), it is the second argument. TYPE is the type of the
7135 original expression. Return NULL_TREE if no simplification is
7136 possible. */
7138 static tree
7139 fold_binary_op_with_conditional_arg (location_t loc,
7140 enum tree_code code,
7141 tree type, tree op0, tree op1,
7142 tree cond, tree arg, int cond_first_p)
7144 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
7145 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
7146 tree test, true_value, false_value;
7147 tree lhs = NULL_TREE;
7148 tree rhs = NULL_TREE;
7149 enum tree_code cond_code = COND_EXPR;
7151 /* Do not move possibly trapping operations into the conditional as this
7152 pessimizes code and causes gimplification issues when applied late. */
7153 if (operation_could_trap_p (code, FLOAT_TYPE_P (type),
7154 ANY_INTEGRAL_TYPE_P (type)
7155 && TYPE_OVERFLOW_TRAPS (type), op1))
7156 return NULL_TREE;
7158 if (TREE_CODE (cond) == COND_EXPR
7159 || TREE_CODE (cond) == VEC_COND_EXPR)
7161 test = TREE_OPERAND (cond, 0);
7162 true_value = TREE_OPERAND (cond, 1);
7163 false_value = TREE_OPERAND (cond, 2);
7164 /* If this operand throws an expression, then it does not make
7165 sense to try to perform a logical or arithmetic operation
7166 involving it. */
7167 if (VOID_TYPE_P (TREE_TYPE (true_value)))
7168 lhs = true_value;
7169 if (VOID_TYPE_P (TREE_TYPE (false_value)))
7170 rhs = false_value;
7172 else if (!(TREE_CODE (type) != VECTOR_TYPE
7173 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
7175 tree testtype = TREE_TYPE (cond);
7176 test = cond;
7177 true_value = constant_boolean_node (true, testtype);
7178 false_value = constant_boolean_node (false, testtype);
7180 else
7181 /* Detect the case of mixing vector and scalar types - bail out. */
7182 return NULL_TREE;
7184 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
7185 cond_code = VEC_COND_EXPR;
7187 /* This transformation is only worthwhile if we don't have to wrap ARG
7188 in a SAVE_EXPR and the operation can be simplified without recursing
7189 on at least one of the branches once its pushed inside the COND_EXPR. */
7190 if (!TREE_CONSTANT (arg)
7191 && (TREE_SIDE_EFFECTS (arg)
7192 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
7193 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
7194 return NULL_TREE;
7196 arg = fold_convert_loc (loc, arg_type, arg);
7197 if (lhs == 0)
7199 true_value = fold_convert_loc (loc, cond_type, true_value);
7200 if (cond_first_p)
7201 lhs = fold_build2_loc (loc, code, type, true_value, arg);
7202 else
7203 lhs = fold_build2_loc (loc, code, type, arg, true_value);
7205 if (rhs == 0)
7207 false_value = fold_convert_loc (loc, cond_type, false_value);
7208 if (cond_first_p)
7209 rhs = fold_build2_loc (loc, code, type, false_value, arg);
7210 else
7211 rhs = fold_build2_loc (loc, code, type, arg, false_value);
7214 /* Check that we have simplified at least one of the branches. */
7215 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
7216 return NULL_TREE;
7218 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
7222 /* Subroutine of fold() that checks for the addition of ARG +/- 0.0.
7224 If !NEGATE, return true if ZERO_ARG is +/-0.0 and, for all ARG of
7225 type TYPE, ARG + ZERO_ARG is the same as ARG. If NEGATE, return true
7226 if ARG - ZERO_ARG is the same as X.
7228 If ARG is NULL, check for any value of type TYPE.
7230 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
7231 and finite. The problematic cases are when X is zero, and its mode
7232 has signed zeros. In the case of rounding towards -infinity,
7233 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
7234 modes, X + 0 is not the same as X because -0 + 0 is 0. */
7236 bool
7237 fold_real_zero_addition_p (const_tree type, const_tree arg,
7238 const_tree zero_arg, int negate)
7240 if (!real_zerop (zero_arg))
7241 return false;
7243 /* Don't allow the fold with -fsignaling-nans. */
7244 if (arg ? tree_expr_maybe_signaling_nan_p (arg) : HONOR_SNANS (type))
7245 return false;
7247 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
7248 if (!HONOR_SIGNED_ZEROS (type))
7249 return true;
7251 /* There is no case that is safe for all rounding modes. */
7252 if (HONOR_SIGN_DEPENDENT_ROUNDING (type))
7253 return false;
7255 /* In a vector or complex, we would need to check the sign of all zeros. */
7256 if (TREE_CODE (zero_arg) == VECTOR_CST)
7257 zero_arg = uniform_vector_p (zero_arg);
7258 if (!zero_arg || TREE_CODE (zero_arg) != REAL_CST)
7259 return false;
7261 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
7262 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (zero_arg)))
7263 negate = !negate;
7265 /* The mode has signed zeros, and we have to honor their sign.
7266 In this situation, there are only two cases we can return true for.
7267 (i) X - 0 is the same as X with default rounding.
7268 (ii) X + 0 is X when X can't possibly be -0.0. */
7269 return negate || (arg && !tree_expr_maybe_real_minus_zero_p (arg));
7272 /* Subroutine of match.pd that optimizes comparisons of a division by
7273 a nonzero integer constant against an integer constant, i.e.
7274 X/C1 op C2.
7276 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
7277 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
7279 enum tree_code
7280 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo,
7281 tree *hi, bool *neg_overflow)
7283 tree prod, tmp, type = TREE_TYPE (c1);
7284 signop sign = TYPE_SIGN (type);
7285 wi::overflow_type overflow;
7287 /* We have to do this the hard way to detect unsigned overflow.
7288 prod = int_const_binop (MULT_EXPR, c1, c2); */
7289 wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow);
7290 prod = force_fit_type (type, val, -1, overflow);
7291 *neg_overflow = false;
7293 if (sign == UNSIGNED)
7295 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
7296 *lo = prod;
7298 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
7299 val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow);
7300 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod));
7302 else if (tree_int_cst_sgn (c1) >= 0)
7304 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1));
7305 switch (tree_int_cst_sgn (c2))
7307 case -1:
7308 *neg_overflow = true;
7309 *lo = int_const_binop (MINUS_EXPR, prod, tmp);
7310 *hi = prod;
7311 break;
7313 case 0:
7314 *lo = fold_negate_const (tmp, type);
7315 *hi = tmp;
7316 break;
7318 case 1:
7319 *hi = int_const_binop (PLUS_EXPR, prod, tmp);
7320 *lo = prod;
7321 break;
7323 default:
7324 gcc_unreachable ();
7327 else
7329 /* A negative divisor reverses the relational operators. */
7330 code = swap_tree_comparison (code);
7332 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1));
7333 switch (tree_int_cst_sgn (c2))
7335 case -1:
7336 *hi = int_const_binop (MINUS_EXPR, prod, tmp);
7337 *lo = prod;
7338 break;
7340 case 0:
7341 *hi = fold_negate_const (tmp, type);
7342 *lo = tmp;
7343 break;
7345 case 1:
7346 *neg_overflow = true;
7347 *lo = int_const_binop (PLUS_EXPR, prod, tmp);
7348 *hi = prod;
7349 break;
7351 default:
7352 gcc_unreachable ();
7356 if (code != EQ_EXPR && code != NE_EXPR)
7357 return code;
7359 if (TREE_OVERFLOW (*lo)
7360 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0))
7361 *lo = NULL_TREE;
7362 if (TREE_OVERFLOW (*hi)
7363 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0))
7364 *hi = NULL_TREE;
7366 return code;
7370 /* If CODE with arguments ARG0 and ARG1 represents a single bit
7371 equality/inequality test, then return a simplified form of the test
7372 using a sign testing. Otherwise return NULL. TYPE is the desired
7373 result type. */
7375 static tree
7376 fold_single_bit_test_into_sign_test (location_t loc,
7377 enum tree_code code, tree arg0, tree arg1,
7378 tree result_type)
7380 /* If this is testing a single bit, we can optimize the test. */
7381 if ((code == NE_EXPR || code == EQ_EXPR)
7382 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
7383 && integer_pow2p (TREE_OPERAND (arg0, 1)))
7385 /* If we have (A & C) != 0 where C is the sign bit of A, convert
7386 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
7387 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
7389 if (arg00 != NULL_TREE
7390 /* This is only a win if casting to a signed type is cheap,
7391 i.e. when arg00's type is not a partial mode. */
7392 && type_has_mode_precision_p (TREE_TYPE (arg00)))
7394 tree stype = signed_type_for (TREE_TYPE (arg00));
7395 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
7396 result_type,
7397 fold_convert_loc (loc, stype, arg00),
7398 build_int_cst (stype, 0));
7402 return NULL_TREE;
7405 /* If CODE with arguments ARG0 and ARG1 represents a single bit
7406 equality/inequality test, then return a simplified form of
7407 the test using shifts and logical operations. Otherwise return
7408 NULL. TYPE is the desired result type. */
7410 tree
7411 fold_single_bit_test (location_t loc, enum tree_code code,
7412 tree arg0, tree arg1, tree result_type)
7414 /* If this is testing a single bit, we can optimize the test. */
7415 if ((code == NE_EXPR || code == EQ_EXPR)
7416 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
7417 && integer_pow2p (TREE_OPERAND (arg0, 1)))
7419 tree inner = TREE_OPERAND (arg0, 0);
7420 tree type = TREE_TYPE (arg0);
7421 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
7422 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
7423 int ops_unsigned;
7424 tree signed_type, unsigned_type, intermediate_type;
7425 tree tem, one;
7427 /* First, see if we can fold the single bit test into a sign-bit
7428 test. */
7429 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
7430 result_type);
7431 if (tem)
7432 return tem;
7434 /* Otherwise we have (A & C) != 0 where C is a single bit,
7435 convert that into ((A >> C2) & 1). Where C2 = log2(C).
7436 Similarly for (A & C) == 0. */
7438 /* If INNER is a right shift of a constant and it plus BITNUM does
7439 not overflow, adjust BITNUM and INNER. */
7440 if (TREE_CODE (inner) == RSHIFT_EXPR
7441 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
7442 && bitnum < TYPE_PRECISION (type)
7443 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)),
7444 TYPE_PRECISION (type) - bitnum))
7446 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
7447 inner = TREE_OPERAND (inner, 0);
7450 /* If we are going to be able to omit the AND below, we must do our
7451 operations as unsigned. If we must use the AND, we have a choice.
7452 Normally unsigned is faster, but for some machines signed is. */
7453 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
7454 && !flag_syntax_only) ? 0 : 1;
7456 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
7457 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
7458 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
7459 inner = fold_convert_loc (loc, intermediate_type, inner);
7461 if (bitnum != 0)
7462 inner = build2 (RSHIFT_EXPR, intermediate_type,
7463 inner, size_int (bitnum));
7465 one = build_int_cst (intermediate_type, 1);
7467 if (code == EQ_EXPR)
7468 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
7470 /* Put the AND last so it can combine with more things. */
7471 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
7473 /* Make sure to return the proper type. */
7474 inner = fold_convert_loc (loc, result_type, inner);
7476 return inner;
7478 return NULL_TREE;
7481 /* Test whether it is preferable to swap two operands, ARG0 and
7482 ARG1, for example because ARG0 is an integer constant and ARG1
7483 isn't. */
7485 bool
7486 tree_swap_operands_p (const_tree arg0, const_tree arg1)
7488 if (CONSTANT_CLASS_P (arg1))
7489 return 0;
7490 if (CONSTANT_CLASS_P (arg0))
7491 return 1;
7493 STRIP_NOPS (arg0);
7494 STRIP_NOPS (arg1);
7496 if (TREE_CONSTANT (arg1))
7497 return 0;
7498 if (TREE_CONSTANT (arg0))
7499 return 1;
7501 /* It is preferable to swap two SSA_NAME to ensure a canonical form
7502 for commutative and comparison operators. Ensuring a canonical
7503 form allows the optimizers to find additional redundancies without
7504 having to explicitly check for both orderings. */
7505 if (TREE_CODE (arg0) == SSA_NAME
7506 && TREE_CODE (arg1) == SSA_NAME
7507 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
7508 return 1;
7510 /* Put SSA_NAMEs last. */
7511 if (TREE_CODE (arg1) == SSA_NAME)
7512 return 0;
7513 if (TREE_CODE (arg0) == SSA_NAME)
7514 return 1;
7516 /* Put variables last. */
7517 if (DECL_P (arg1))
7518 return 0;
7519 if (DECL_P (arg0))
7520 return 1;
7522 return 0;
7526 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7527 means A >= Y && A != MAX, but in this case we know that
7528 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7530 static tree
7531 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
7533 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7535 if (TREE_CODE (bound) == LT_EXPR)
7536 a = TREE_OPERAND (bound, 0);
7537 else if (TREE_CODE (bound) == GT_EXPR)
7538 a = TREE_OPERAND (bound, 1);
7539 else
7540 return NULL_TREE;
7542 typea = TREE_TYPE (a);
7543 if (!INTEGRAL_TYPE_P (typea)
7544 && !POINTER_TYPE_P (typea))
7545 return NULL_TREE;
7547 if (TREE_CODE (ineq) == LT_EXPR)
7549 a1 = TREE_OPERAND (ineq, 1);
7550 y = TREE_OPERAND (ineq, 0);
7552 else if (TREE_CODE (ineq) == GT_EXPR)
7554 a1 = TREE_OPERAND (ineq, 0);
7555 y = TREE_OPERAND (ineq, 1);
7557 else
7558 return NULL_TREE;
7560 if (TREE_TYPE (a1) != typea)
7561 return NULL_TREE;
7563 if (POINTER_TYPE_P (typea))
7565 /* Convert the pointer types into integer before taking the difference. */
7566 tree ta = fold_convert_loc (loc, ssizetype, a);
7567 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
7568 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
7570 else
7571 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
7573 if (!diff || !integer_onep (diff))
7574 return NULL_TREE;
7576 return fold_build2_loc (loc, GE_EXPR, type, a, y);
7579 /* Fold a sum or difference of at least one multiplication.
7580 Returns the folded tree or NULL if no simplification could be made. */
7582 static tree
7583 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
7584 tree arg0, tree arg1)
7586 tree arg00, arg01, arg10, arg11;
7587 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7589 /* (A * C) +- (B * C) -> (A+-B) * C.
7590 (A * C) +- A -> A * (C+-1).
7591 We are most concerned about the case where C is a constant,
7592 but other combinations show up during loop reduction. Since
7593 it is not difficult, try all four possibilities. */
7595 if (TREE_CODE (arg0) == MULT_EXPR)
7597 arg00 = TREE_OPERAND (arg0, 0);
7598 arg01 = TREE_OPERAND (arg0, 1);
7600 else if (TREE_CODE (arg0) == INTEGER_CST)
7602 arg00 = build_one_cst (type);
7603 arg01 = arg0;
7605 else
7607 /* We cannot generate constant 1 for fract. */
7608 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7609 return NULL_TREE;
7610 arg00 = arg0;
7611 arg01 = build_one_cst (type);
7613 if (TREE_CODE (arg1) == MULT_EXPR)
7615 arg10 = TREE_OPERAND (arg1, 0);
7616 arg11 = TREE_OPERAND (arg1, 1);
7618 else if (TREE_CODE (arg1) == INTEGER_CST)
7620 arg10 = build_one_cst (type);
7621 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7622 the purpose of this canonicalization. */
7623 if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1)))
7624 && negate_expr_p (arg1)
7625 && code == PLUS_EXPR)
7627 arg11 = negate_expr (arg1);
7628 code = MINUS_EXPR;
7630 else
7631 arg11 = arg1;
7633 else
7635 /* We cannot generate constant 1 for fract. */
7636 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7637 return NULL_TREE;
7638 arg10 = arg1;
7639 arg11 = build_one_cst (type);
7641 same = NULL_TREE;
7643 /* Prefer factoring a common non-constant. */
7644 if (operand_equal_p (arg00, arg10, 0))
7645 same = arg00, alt0 = arg01, alt1 = arg11;
7646 else if (operand_equal_p (arg01, arg11, 0))
7647 same = arg01, alt0 = arg00, alt1 = arg10;
7648 else if (operand_equal_p (arg00, arg11, 0))
7649 same = arg00, alt0 = arg01, alt1 = arg10;
7650 else if (operand_equal_p (arg01, arg10, 0))
7651 same = arg01, alt0 = arg00, alt1 = arg11;
7653 /* No identical multiplicands; see if we can find a common
7654 power-of-two factor in non-power-of-two multiplies. This
7655 can help in multi-dimensional array access. */
7656 else if (tree_fits_shwi_p (arg01) && tree_fits_shwi_p (arg11))
7658 HOST_WIDE_INT int01 = tree_to_shwi (arg01);
7659 HOST_WIDE_INT int11 = tree_to_shwi (arg11);
7660 HOST_WIDE_INT tmp;
7661 bool swap = false;
7662 tree maybe_same;
7664 /* Move min of absolute values to int11. */
7665 if (absu_hwi (int01) < absu_hwi (int11))
7667 tmp = int01, int01 = int11, int11 = tmp;
7668 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7669 maybe_same = arg01;
7670 swap = true;
7672 else
7673 maybe_same = arg11;
7675 const unsigned HOST_WIDE_INT factor = absu_hwi (int11);
7676 if (factor > 1
7677 && pow2p_hwi (factor)
7678 && (int01 & (factor - 1)) == 0
7679 /* The remainder should not be a constant, otherwise we
7680 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7681 increased the number of multiplications necessary. */
7682 && TREE_CODE (arg10) != INTEGER_CST)
7684 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7685 build_int_cst (TREE_TYPE (arg00),
7686 int01 / int11));
7687 alt1 = arg10;
7688 same = maybe_same;
7689 if (swap)
7690 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7694 if (!same)
7695 return NULL_TREE;
7697 if (! ANY_INTEGRAL_TYPE_P (type)
7698 || TYPE_OVERFLOW_WRAPS (type)
7699 /* We are neither factoring zero nor minus one. */
7700 || TREE_CODE (same) == INTEGER_CST)
7701 return fold_build2_loc (loc, MULT_EXPR, type,
7702 fold_build2_loc (loc, code, type,
7703 fold_convert_loc (loc, type, alt0),
7704 fold_convert_loc (loc, type, alt1)),
7705 fold_convert_loc (loc, type, same));
7707 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7708 same may be minus one and thus the multiplication may overflow. Perform
7709 the sum operation in an unsigned type. */
7710 tree utype = unsigned_type_for (type);
7711 tree tem = fold_build2_loc (loc, code, utype,
7712 fold_convert_loc (loc, utype, alt0),
7713 fold_convert_loc (loc, utype, alt1));
7714 /* If the sum evaluated to a constant that is not -INF the multiplication
7715 cannot overflow. */
7716 if (TREE_CODE (tem) == INTEGER_CST
7717 && (wi::to_wide (tem)
7718 != wi::min_value (TYPE_PRECISION (utype), SIGNED)))
7719 return fold_build2_loc (loc, MULT_EXPR, type,
7720 fold_convert (type, tem), same);
7722 /* Do not resort to unsigned multiplication because
7723 we lose the no-overflow property of the expression. */
7724 return NULL_TREE;
7727 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7728 specified by EXPR into the buffer PTR of length LEN bytes.
7729 Return the number of bytes placed in the buffer, or zero
7730 upon failure. */
7732 static int
7733 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7735 tree type = TREE_TYPE (expr);
7736 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
7737 int byte, offset, word, words;
7738 unsigned char value;
7740 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7741 return 0;
7742 if (off == -1)
7743 off = 0;
7745 if (ptr == NULL)
7746 /* Dry run. */
7747 return MIN (len, total_bytes - off);
7749 words = total_bytes / UNITS_PER_WORD;
7751 for (byte = 0; byte < total_bytes; byte++)
7753 int bitpos = byte * BITS_PER_UNIT;
7754 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7755 number of bytes. */
7756 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7758 if (total_bytes > UNITS_PER_WORD)
7760 word = byte / UNITS_PER_WORD;
7761 if (WORDS_BIG_ENDIAN)
7762 word = (words - 1) - word;
7763 offset = word * UNITS_PER_WORD;
7764 if (BYTES_BIG_ENDIAN)
7765 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7766 else
7767 offset += byte % UNITS_PER_WORD;
7769 else
7770 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7771 if (offset >= off && offset - off < len)
7772 ptr[offset - off] = value;
7774 return MIN (len, total_bytes - off);
7778 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7779 specified by EXPR into the buffer PTR of length LEN bytes.
7780 Return the number of bytes placed in the buffer, or zero
7781 upon failure. */
7783 static int
7784 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7786 tree type = TREE_TYPE (expr);
7787 scalar_mode mode = SCALAR_TYPE_MODE (type);
7788 int total_bytes = GET_MODE_SIZE (mode);
7789 FIXED_VALUE_TYPE value;
7790 tree i_value, i_type;
7792 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7793 return 0;
7795 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7797 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes)
7798 return 0;
7800 value = TREE_FIXED_CST (expr);
7801 i_value = double_int_to_tree (i_type, value.data);
7803 return native_encode_int (i_value, ptr, len, off);
7807 /* Subroutine of native_encode_expr. Encode the REAL_CST
7808 specified by EXPR into the buffer PTR of length LEN bytes.
7809 Return the number of bytes placed in the buffer, or zero
7810 upon failure. */
7812 static int
7813 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7815 tree type = TREE_TYPE (expr);
7816 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type));
7817 int byte, offset, word, words, bitpos;
7818 unsigned char value;
7820 /* There are always 32 bits in each long, no matter the size of
7821 the hosts long. We handle floating point representations with
7822 up to 192 bits. */
7823 long tmp[6];
7825 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7826 return 0;
7827 if (off == -1)
7828 off = 0;
7830 if (ptr == NULL)
7831 /* Dry run. */
7832 return MIN (len, total_bytes - off);
7834 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7836 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7838 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7839 bitpos += BITS_PER_UNIT)
7841 byte = (bitpos / BITS_PER_UNIT) & 3;
7842 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7844 if (UNITS_PER_WORD < 4)
7846 word = byte / UNITS_PER_WORD;
7847 if (WORDS_BIG_ENDIAN)
7848 word = (words - 1) - word;
7849 offset = word * UNITS_PER_WORD;
7850 if (BYTES_BIG_ENDIAN)
7851 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7852 else
7853 offset += byte % UNITS_PER_WORD;
7855 else
7857 offset = byte;
7858 if (BYTES_BIG_ENDIAN)
7860 /* Reverse bytes within each long, or within the entire float
7861 if it's smaller than a long (for HFmode). */
7862 offset = MIN (3, total_bytes - 1) - offset;
7863 gcc_assert (offset >= 0);
7866 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7867 if (offset >= off
7868 && offset - off < len)
7869 ptr[offset - off] = value;
7871 return MIN (len, total_bytes - off);
7874 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7875 specified by EXPR into the buffer PTR of length LEN bytes.
7876 Return the number of bytes placed in the buffer, or zero
7877 upon failure. */
7879 static int
7880 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7882 int rsize, isize;
7883 tree part;
7885 part = TREE_REALPART (expr);
7886 rsize = native_encode_expr (part, ptr, len, off);
7887 if (off == -1 && rsize == 0)
7888 return 0;
7889 part = TREE_IMAGPART (expr);
7890 if (off != -1)
7891 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part))));
7892 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL,
7893 len - rsize, off);
7894 if (off == -1 && isize != rsize)
7895 return 0;
7896 return rsize + isize;
7899 /* Like native_encode_vector, but only encode the first COUNT elements.
7900 The other arguments are as for native_encode_vector. */
7902 static int
7903 native_encode_vector_part (const_tree expr, unsigned char *ptr, int len,
7904 int off, unsigned HOST_WIDE_INT count)
7906 tree itype = TREE_TYPE (TREE_TYPE (expr));
7907 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (expr))
7908 && TYPE_PRECISION (itype) <= BITS_PER_UNIT)
7910 /* This is the only case in which elements can be smaller than a byte.
7911 Element 0 is always in the lsb of the containing byte. */
7912 unsigned int elt_bits = TYPE_PRECISION (itype);
7913 int total_bytes = CEIL (elt_bits * count, BITS_PER_UNIT);
7914 if ((off == -1 && total_bytes > len) || off >= total_bytes)
7915 return 0;
7917 if (off == -1)
7918 off = 0;
7920 /* Zero the buffer and then set bits later where necessary. */
7921 int extract_bytes = MIN (len, total_bytes - off);
7922 if (ptr)
7923 memset (ptr, 0, extract_bytes);
7925 unsigned int elts_per_byte = BITS_PER_UNIT / elt_bits;
7926 unsigned int first_elt = off * elts_per_byte;
7927 unsigned int extract_elts = extract_bytes * elts_per_byte;
7928 for (unsigned int i = 0; i < extract_elts; ++i)
7930 tree elt = VECTOR_CST_ELT (expr, first_elt + i);
7931 if (TREE_CODE (elt) != INTEGER_CST)
7932 return 0;
7934 if (ptr && wi::extract_uhwi (wi::to_wide (elt), 0, 1))
7936 unsigned int bit = i * elt_bits;
7937 ptr[bit / BITS_PER_UNIT] |= 1 << (bit % BITS_PER_UNIT);
7940 return extract_bytes;
7943 int offset = 0;
7944 int size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype));
7945 for (unsigned HOST_WIDE_INT i = 0; i < count; i++)
7947 if (off >= size)
7949 off -= size;
7950 continue;
7952 tree elem = VECTOR_CST_ELT (expr, i);
7953 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL,
7954 len - offset, off);
7955 if ((off == -1 && res != size) || res == 0)
7956 return 0;
7957 offset += res;
7958 if (offset >= len)
7959 return (off == -1 && i < count - 1) ? 0 : offset;
7960 if (off != -1)
7961 off = 0;
7963 return offset;
7966 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7967 specified by EXPR into the buffer PTR of length LEN bytes.
7968 Return the number of bytes placed in the buffer, or zero
7969 upon failure. */
7971 static int
7972 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7974 unsigned HOST_WIDE_INT count;
7975 if (!VECTOR_CST_NELTS (expr).is_constant (&count))
7976 return 0;
7977 return native_encode_vector_part (expr, ptr, len, off, count);
7981 /* Subroutine of native_encode_expr. Encode the STRING_CST
7982 specified by EXPR into the buffer PTR of length LEN bytes.
7983 Return the number of bytes placed in the buffer, or zero
7984 upon failure. */
7986 static int
7987 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7989 tree type = TREE_TYPE (expr);
7991 /* Wide-char strings are encoded in target byte-order so native
7992 encoding them is trivial. */
7993 if (BITS_PER_UNIT != CHAR_BIT
7994 || TREE_CODE (type) != ARRAY_TYPE
7995 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7996 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7997 return 0;
7999 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr)));
8000 if ((off == -1 && total_bytes > len) || off >= total_bytes)
8001 return 0;
8002 if (off == -1)
8003 off = 0;
8004 len = MIN (total_bytes - off, len);
8005 if (ptr == NULL)
8006 /* Dry run. */;
8007 else
8009 int written = 0;
8010 if (off < TREE_STRING_LENGTH (expr))
8012 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
8013 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
8015 memset (ptr + written, 0, len - written);
8017 return len;
8021 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST, REAL_CST,
8022 FIXED_CST, COMPLEX_CST, STRING_CST, or VECTOR_CST specified by EXPR into
8023 the buffer PTR of size LEN bytes. If PTR is NULL, don't actually store
8024 anything, just do a dry run. Fail either if OFF is -1 and LEN isn't
8025 sufficient to encode the entire EXPR, or if OFF is out of bounds.
8026 Otherwise, start at byte offset OFF and encode at most LEN bytes.
8027 Return the number of bytes placed in the buffer, or zero upon failure. */
8030 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
8032 /* We don't support starting at negative offset and -1 is special. */
8033 if (off < -1)
8034 return 0;
8036 switch (TREE_CODE (expr))
8038 case INTEGER_CST:
8039 return native_encode_int (expr, ptr, len, off);
8041 case REAL_CST:
8042 return native_encode_real (expr, ptr, len, off);
8044 case FIXED_CST:
8045 return native_encode_fixed (expr, ptr, len, off);
8047 case COMPLEX_CST:
8048 return native_encode_complex (expr, ptr, len, off);
8050 case VECTOR_CST:
8051 return native_encode_vector (expr, ptr, len, off);
8053 case STRING_CST:
8054 return native_encode_string (expr, ptr, len, off);
8056 default:
8057 return 0;
8061 /* Try to find a type whose byte size is smaller or equal to LEN bytes larger
8062 or equal to FIELDSIZE bytes, with underlying mode precision/size multiple
8063 of BITS_PER_UNIT. As native_{interpret,encode}_int works in term of
8064 machine modes, we can't just use build_nonstandard_integer_type. */
8066 tree
8067 find_bitfield_repr_type (int fieldsize, int len)
8069 machine_mode mode;
8070 for (int pass = 0; pass < 2; pass++)
8072 enum mode_class mclass = pass ? MODE_PARTIAL_INT : MODE_INT;
8073 FOR_EACH_MODE_IN_CLASS (mode, mclass)
8074 if (known_ge (GET_MODE_SIZE (mode), fieldsize)
8075 && known_eq (GET_MODE_PRECISION (mode),
8076 GET_MODE_BITSIZE (mode))
8077 && known_le (GET_MODE_SIZE (mode), len))
8079 tree ret = lang_hooks.types.type_for_mode (mode, 1);
8080 if (ret && TYPE_MODE (ret) == mode)
8081 return ret;
8085 for (int i = 0; i < NUM_INT_N_ENTS; i ++)
8086 if (int_n_enabled_p[i]
8087 && int_n_data[i].bitsize >= (unsigned) (BITS_PER_UNIT * fieldsize)
8088 && int_n_trees[i].unsigned_type)
8090 tree ret = int_n_trees[i].unsigned_type;
8091 mode = TYPE_MODE (ret);
8092 if (known_ge (GET_MODE_SIZE (mode), fieldsize)
8093 && known_eq (GET_MODE_PRECISION (mode),
8094 GET_MODE_BITSIZE (mode))
8095 && known_le (GET_MODE_SIZE (mode), len))
8096 return ret;
8099 return NULL_TREE;
8102 /* Similar to native_encode_expr, but also handle CONSTRUCTORs, VCEs,
8103 NON_LVALUE_EXPRs and nops. If MASK is non-NULL (then PTR has
8104 to be non-NULL and OFF zero), then in addition to filling the
8105 bytes pointed by PTR with the value also clear any bits pointed
8106 by MASK that are known to be initialized, keep them as is for
8107 e.g. uninitialized padding bits or uninitialized fields. */
8110 native_encode_initializer (tree init, unsigned char *ptr, int len,
8111 int off, unsigned char *mask)
8113 int r;
8115 /* We don't support starting at negative offset and -1 is special. */
8116 if (off < -1 || init == NULL_TREE)
8117 return 0;
8119 gcc_assert (mask == NULL || (off == 0 && ptr));
8121 STRIP_NOPS (init);
8122 switch (TREE_CODE (init))
8124 case VIEW_CONVERT_EXPR:
8125 case NON_LVALUE_EXPR:
8126 return native_encode_initializer (TREE_OPERAND (init, 0), ptr, len, off,
8127 mask);
8128 default:
8129 r = native_encode_expr (init, ptr, len, off);
8130 if (mask)
8131 memset (mask, 0, r);
8132 return r;
8133 case CONSTRUCTOR:
8134 tree type = TREE_TYPE (init);
8135 HOST_WIDE_INT total_bytes = int_size_in_bytes (type);
8136 if (total_bytes < 0)
8137 return 0;
8138 if ((off == -1 && total_bytes > len) || off >= total_bytes)
8139 return 0;
8140 int o = off == -1 ? 0 : off;
8141 if (TREE_CODE (type) == ARRAY_TYPE)
8143 tree min_index;
8144 unsigned HOST_WIDE_INT cnt;
8145 HOST_WIDE_INT curpos = 0, fieldsize, valueinit = -1;
8146 constructor_elt *ce;
8148 if (!TYPE_DOMAIN (type)
8149 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST)
8150 return 0;
8152 fieldsize = int_size_in_bytes (TREE_TYPE (type));
8153 if (fieldsize <= 0)
8154 return 0;
8156 min_index = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
8157 if (ptr)
8158 memset (ptr, '\0', MIN (total_bytes - off, len));
8160 for (cnt = 0; ; cnt++)
8162 tree val = NULL_TREE, index = NULL_TREE;
8163 HOST_WIDE_INT pos = curpos, count = 0;
8164 bool full = false;
8165 if (vec_safe_iterate (CONSTRUCTOR_ELTS (init), cnt, &ce))
8167 val = ce->value;
8168 index = ce->index;
8170 else if (mask == NULL
8171 || CONSTRUCTOR_NO_CLEARING (init)
8172 || curpos >= total_bytes)
8173 break;
8174 else
8175 pos = total_bytes;
8177 if (index && TREE_CODE (index) == RANGE_EXPR)
8179 if (TREE_CODE (TREE_OPERAND (index, 0)) != INTEGER_CST
8180 || TREE_CODE (TREE_OPERAND (index, 1)) != INTEGER_CST)
8181 return 0;
8182 offset_int wpos
8183 = wi::sext (wi::to_offset (TREE_OPERAND (index, 0))
8184 - wi::to_offset (min_index),
8185 TYPE_PRECISION (sizetype));
8186 wpos *= fieldsize;
8187 if (!wi::fits_shwi_p (pos))
8188 return 0;
8189 pos = wpos.to_shwi ();
8190 offset_int wcount
8191 = wi::sext (wi::to_offset (TREE_OPERAND (index, 1))
8192 - wi::to_offset (TREE_OPERAND (index, 0)),
8193 TYPE_PRECISION (sizetype));
8194 if (!wi::fits_shwi_p (wcount))
8195 return 0;
8196 count = wcount.to_shwi ();
8198 else if (index)
8200 if (TREE_CODE (index) != INTEGER_CST)
8201 return 0;
8202 offset_int wpos
8203 = wi::sext (wi::to_offset (index)
8204 - wi::to_offset (min_index),
8205 TYPE_PRECISION (sizetype));
8206 wpos *= fieldsize;
8207 if (!wi::fits_shwi_p (wpos))
8208 return 0;
8209 pos = wpos.to_shwi ();
8212 if (mask && !CONSTRUCTOR_NO_CLEARING (init) && curpos != pos)
8214 if (valueinit == -1)
8216 tree zero = build_zero_cst (TREE_TYPE (type));
8217 r = native_encode_initializer (zero, ptr + curpos,
8218 fieldsize, 0,
8219 mask + curpos);
8220 if (TREE_CODE (zero) == CONSTRUCTOR)
8221 ggc_free (zero);
8222 if (!r)
8223 return 0;
8224 valueinit = curpos;
8225 curpos += fieldsize;
8227 while (curpos != pos)
8229 memcpy (ptr + curpos, ptr + valueinit, fieldsize);
8230 memcpy (mask + curpos, mask + valueinit, fieldsize);
8231 curpos += fieldsize;
8235 curpos = pos;
8236 if (val)
8239 if (off == -1
8240 || (curpos >= off
8241 && (curpos + fieldsize
8242 <= (HOST_WIDE_INT) off + len)))
8244 if (full)
8246 if (ptr)
8247 memcpy (ptr + (curpos - o), ptr + (pos - o),
8248 fieldsize);
8249 if (mask)
8250 memcpy (mask + curpos, mask + pos, fieldsize);
8252 else if (!native_encode_initializer (val,
8254 ? ptr + curpos - o
8255 : NULL,
8256 fieldsize,
8257 off == -1 ? -1
8258 : 0,
8259 mask
8260 ? mask + curpos
8261 : NULL))
8262 return 0;
8263 else
8265 full = true;
8266 pos = curpos;
8269 else if (curpos + fieldsize > off
8270 && curpos < (HOST_WIDE_INT) off + len)
8272 /* Partial overlap. */
8273 unsigned char *p = NULL;
8274 int no = 0;
8275 int l;
8276 gcc_assert (mask == NULL);
8277 if (curpos >= off)
8279 if (ptr)
8280 p = ptr + curpos - off;
8281 l = MIN ((HOST_WIDE_INT) off + len - curpos,
8282 fieldsize);
8284 else
8286 p = ptr;
8287 no = off - curpos;
8288 l = len;
8290 if (!native_encode_initializer (val, p, l, no, NULL))
8291 return 0;
8293 curpos += fieldsize;
8295 while (count-- != 0);
8297 return MIN (total_bytes - off, len);
8299 else if (TREE_CODE (type) == RECORD_TYPE
8300 || TREE_CODE (type) == UNION_TYPE)
8302 unsigned HOST_WIDE_INT cnt;
8303 constructor_elt *ce;
8304 tree fld_base = TYPE_FIELDS (type);
8305 tree to_free = NULL_TREE;
8307 gcc_assert (TREE_CODE (type) == RECORD_TYPE || mask == NULL);
8308 if (ptr != NULL)
8309 memset (ptr, '\0', MIN (total_bytes - o, len));
8310 for (cnt = 0; ; cnt++)
8312 tree val = NULL_TREE, field = NULL_TREE;
8313 HOST_WIDE_INT pos = 0, fieldsize;
8314 unsigned HOST_WIDE_INT bpos = 0, epos = 0;
8316 if (to_free)
8318 ggc_free (to_free);
8319 to_free = NULL_TREE;
8322 if (vec_safe_iterate (CONSTRUCTOR_ELTS (init), cnt, &ce))
8324 val = ce->value;
8325 field = ce->index;
8326 if (field == NULL_TREE)
8327 return 0;
8329 pos = int_byte_position (field);
8330 if (off != -1 && (HOST_WIDE_INT) off + len <= pos)
8331 continue;
8333 else if (mask == NULL
8334 || CONSTRUCTOR_NO_CLEARING (init))
8335 break;
8336 else
8337 pos = total_bytes;
8339 if (mask && !CONSTRUCTOR_NO_CLEARING (init))
8341 tree fld;
8342 for (fld = fld_base; fld; fld = DECL_CHAIN (fld))
8344 if (TREE_CODE (fld) != FIELD_DECL)
8345 continue;
8346 if (fld == field)
8347 break;
8348 if (DECL_PADDING_P (fld))
8349 continue;
8350 if (DECL_SIZE_UNIT (fld) == NULL_TREE
8351 || !tree_fits_shwi_p (DECL_SIZE_UNIT (fld)))
8352 return 0;
8353 if (integer_zerop (DECL_SIZE_UNIT (fld)))
8354 continue;
8355 break;
8357 if (fld == NULL_TREE)
8359 if (ce == NULL)
8360 break;
8361 return 0;
8363 fld_base = DECL_CHAIN (fld);
8364 if (fld != field)
8366 cnt--;
8367 field = fld;
8368 pos = int_byte_position (field);
8369 val = build_zero_cst (TREE_TYPE (fld));
8370 if (TREE_CODE (val) == CONSTRUCTOR)
8371 to_free = val;
8375 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
8376 && TYPE_DOMAIN (TREE_TYPE (field))
8377 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
8379 if (mask || off != -1)
8380 return 0;
8381 if (val == NULL_TREE)
8382 continue;
8383 if (TREE_CODE (TREE_TYPE (val)) != ARRAY_TYPE)
8384 return 0;
8385 fieldsize = int_size_in_bytes (TREE_TYPE (val));
8386 if (fieldsize < 0
8387 || (int) fieldsize != fieldsize
8388 || (pos + fieldsize) > INT_MAX)
8389 return 0;
8390 if (pos + fieldsize > total_bytes)
8392 if (ptr != NULL && total_bytes < len)
8393 memset (ptr + total_bytes, '\0',
8394 MIN (pos + fieldsize, len) - total_bytes);
8395 total_bytes = pos + fieldsize;
8398 else
8400 if (DECL_SIZE_UNIT (field) == NULL_TREE
8401 || !tree_fits_shwi_p (DECL_SIZE_UNIT (field)))
8402 return 0;
8403 fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
8405 if (fieldsize == 0)
8406 continue;
8408 if (DECL_BIT_FIELD (field))
8410 if (!tree_fits_uhwi_p (DECL_FIELD_BIT_OFFSET (field)))
8411 return 0;
8412 fieldsize = TYPE_PRECISION (TREE_TYPE (field));
8413 bpos = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field));
8414 if (bpos % BITS_PER_UNIT)
8415 bpos %= BITS_PER_UNIT;
8416 else
8417 bpos = 0;
8418 fieldsize += bpos;
8419 epos = fieldsize % BITS_PER_UNIT;
8420 fieldsize += BITS_PER_UNIT - 1;
8421 fieldsize /= BITS_PER_UNIT;
8424 if (off != -1 && pos + fieldsize <= off)
8425 continue;
8427 if (val == NULL_TREE)
8428 continue;
8430 if (DECL_BIT_FIELD (field))
8432 /* FIXME: Handle PDP endian. */
8433 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
8434 return 0;
8436 if (TREE_CODE (val) != INTEGER_CST)
8437 return 0;
8439 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
8440 tree repr_type = NULL_TREE;
8441 HOST_WIDE_INT rpos = 0;
8442 if (repr && INTEGRAL_TYPE_P (TREE_TYPE (repr)))
8444 rpos = int_byte_position (repr);
8445 repr_type = TREE_TYPE (repr);
8447 else
8449 repr_type = find_bitfield_repr_type (fieldsize, len);
8450 if (repr_type == NULL_TREE)
8451 return 0;
8452 HOST_WIDE_INT repr_size = int_size_in_bytes (repr_type);
8453 gcc_assert (repr_size > 0 && repr_size <= len);
8454 if (pos + repr_size <= o + len)
8455 rpos = pos;
8456 else
8458 rpos = o + len - repr_size;
8459 gcc_assert (rpos <= pos);
8463 if (rpos > pos)
8464 return 0;
8465 wide_int w = wi::to_wide (val, TYPE_PRECISION (repr_type));
8466 int diff = (TYPE_PRECISION (repr_type)
8467 - TYPE_PRECISION (TREE_TYPE (field)));
8468 HOST_WIDE_INT bitoff = (pos - rpos) * BITS_PER_UNIT + bpos;
8469 if (!BYTES_BIG_ENDIAN)
8470 w = wi::lshift (w, bitoff);
8471 else
8472 w = wi::lshift (w, diff - bitoff);
8473 val = wide_int_to_tree (repr_type, w);
8475 unsigned char buf[MAX_BITSIZE_MODE_ANY_INT
8476 / BITS_PER_UNIT + 1];
8477 int l = native_encode_int (val, buf, sizeof buf, 0);
8478 if (l * BITS_PER_UNIT != TYPE_PRECISION (repr_type))
8479 return 0;
8481 if (ptr == NULL)
8482 continue;
8484 /* If the bitfield does not start at byte boundary, handle
8485 the partial byte at the start. */
8486 if (bpos
8487 && (off == -1 || (pos >= off && len >= 1)))
8489 if (!BYTES_BIG_ENDIAN)
8491 int msk = (1 << bpos) - 1;
8492 buf[pos - rpos] &= ~msk;
8493 buf[pos - rpos] |= ptr[pos - o] & msk;
8494 if (mask)
8496 if (fieldsize > 1 || epos == 0)
8497 mask[pos] &= msk;
8498 else
8499 mask[pos] &= (msk | ~((1 << epos) - 1));
8502 else
8504 int msk = (1 << (BITS_PER_UNIT - bpos)) - 1;
8505 buf[pos - rpos] &= msk;
8506 buf[pos - rpos] |= ptr[pos - o] & ~msk;
8507 if (mask)
8509 if (fieldsize > 1 || epos == 0)
8510 mask[pos] &= ~msk;
8511 else
8512 mask[pos] &= (~msk
8513 | ((1 << (BITS_PER_UNIT - epos))
8514 - 1));
8518 /* If the bitfield does not end at byte boundary, handle
8519 the partial byte at the end. */
8520 if (epos
8521 && (off == -1
8522 || pos + fieldsize <= (HOST_WIDE_INT) off + len))
8524 if (!BYTES_BIG_ENDIAN)
8526 int msk = (1 << epos) - 1;
8527 buf[pos - rpos + fieldsize - 1] &= msk;
8528 buf[pos - rpos + fieldsize - 1]
8529 |= ptr[pos + fieldsize - 1 - o] & ~msk;
8530 if (mask && (fieldsize > 1 || bpos == 0))
8531 mask[pos + fieldsize - 1] &= ~msk;
8533 else
8535 int msk = (1 << (BITS_PER_UNIT - epos)) - 1;
8536 buf[pos - rpos + fieldsize - 1] &= ~msk;
8537 buf[pos - rpos + fieldsize - 1]
8538 |= ptr[pos + fieldsize - 1 - o] & msk;
8539 if (mask && (fieldsize > 1 || bpos == 0))
8540 mask[pos + fieldsize - 1] &= msk;
8543 if (off == -1
8544 || (pos >= off
8545 && (pos + fieldsize <= (HOST_WIDE_INT) off + len)))
8547 memcpy (ptr + pos - o, buf + (pos - rpos), fieldsize);
8548 if (mask && (fieldsize > (bpos != 0) + (epos != 0)))
8549 memset (mask + pos + (bpos != 0), 0,
8550 fieldsize - (bpos != 0) - (epos != 0));
8552 else
8554 /* Partial overlap. */
8555 HOST_WIDE_INT fsz = fieldsize;
8556 gcc_assert (mask == NULL);
8557 if (pos < off)
8559 fsz -= (off - pos);
8560 pos = off;
8562 if (pos + fsz > (HOST_WIDE_INT) off + len)
8563 fsz = (HOST_WIDE_INT) off + len - pos;
8564 memcpy (ptr + pos - off, buf + (pos - rpos), fsz);
8566 continue;
8569 if (off == -1
8570 || (pos >= off
8571 && (pos + fieldsize <= (HOST_WIDE_INT) off + len)))
8573 int fldsize = fieldsize;
8574 if (off == -1)
8576 tree fld = DECL_CHAIN (field);
8577 while (fld)
8579 if (TREE_CODE (fld) == FIELD_DECL)
8580 break;
8581 fld = DECL_CHAIN (fld);
8583 if (fld == NULL_TREE)
8584 fldsize = len - pos;
8586 r = native_encode_initializer (val, ptr ? ptr + pos - o
8587 : NULL,
8588 fldsize,
8589 off == -1 ? -1 : 0,
8590 mask ? mask + pos : NULL);
8591 if (!r)
8592 return 0;
8593 if (off == -1
8594 && fldsize != fieldsize
8595 && r > fieldsize
8596 && pos + r > total_bytes)
8597 total_bytes = pos + r;
8599 else
8601 /* Partial overlap. */
8602 unsigned char *p = NULL;
8603 int no = 0;
8604 int l;
8605 gcc_assert (mask == NULL);
8606 if (pos >= off)
8608 if (ptr)
8609 p = ptr + pos - off;
8610 l = MIN ((HOST_WIDE_INT) off + len - pos,
8611 fieldsize);
8613 else
8615 p = ptr;
8616 no = off - pos;
8617 l = len;
8619 if (!native_encode_initializer (val, p, l, no, NULL))
8620 return 0;
8623 return MIN (total_bytes - off, len);
8625 return 0;
8630 /* Subroutine of native_interpret_expr. Interpret the contents of
8631 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
8632 If the buffer cannot be interpreted, return NULL_TREE. */
8634 static tree
8635 native_interpret_int (tree type, const unsigned char *ptr, int len)
8637 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type));
8639 if (total_bytes > len
8640 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
8641 return NULL_TREE;
8643 wide_int result = wi::from_buffer (ptr, total_bytes);
8645 return wide_int_to_tree (type, result);
8649 /* Subroutine of native_interpret_expr. Interpret the contents of
8650 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
8651 If the buffer cannot be interpreted, return NULL_TREE. */
8653 static tree
8654 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
8656 scalar_mode mode = SCALAR_TYPE_MODE (type);
8657 int total_bytes = GET_MODE_SIZE (mode);
8658 double_int result;
8659 FIXED_VALUE_TYPE fixed_value;
8661 if (total_bytes > len
8662 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
8663 return NULL_TREE;
8665 result = double_int::from_buffer (ptr, total_bytes);
8666 fixed_value = fixed_from_double_int (result, mode);
8668 return build_fixed (type, fixed_value);
8672 /* Subroutine of native_interpret_expr. Interpret the contents of
8673 the buffer PTR of length LEN as a REAL_CST of type TYPE.
8674 If the buffer cannot be interpreted, return NULL_TREE. */
8676 tree
8677 native_interpret_real (tree type, const unsigned char *ptr, int len)
8679 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
8680 int total_bytes = GET_MODE_SIZE (mode);
8681 unsigned char value;
8682 /* There are always 32 bits in each long, no matter the size of
8683 the hosts long. We handle floating point representations with
8684 up to 192 bits. */
8685 REAL_VALUE_TYPE r;
8686 long tmp[6];
8688 if (total_bytes > len || total_bytes > 24)
8689 return NULL_TREE;
8690 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
8692 memset (tmp, 0, sizeof (tmp));
8693 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
8694 bitpos += BITS_PER_UNIT)
8696 /* Both OFFSET and BYTE index within a long;
8697 bitpos indexes the whole float. */
8698 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
8699 if (UNITS_PER_WORD < 4)
8701 int word = byte / UNITS_PER_WORD;
8702 if (WORDS_BIG_ENDIAN)
8703 word = (words - 1) - word;
8704 offset = word * UNITS_PER_WORD;
8705 if (BYTES_BIG_ENDIAN)
8706 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
8707 else
8708 offset += byte % UNITS_PER_WORD;
8710 else
8712 offset = byte;
8713 if (BYTES_BIG_ENDIAN)
8715 /* Reverse bytes within each long, or within the entire float
8716 if it's smaller than a long (for HFmode). */
8717 offset = MIN (3, total_bytes - 1) - offset;
8718 gcc_assert (offset >= 0);
8721 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
8723 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
8726 real_from_target (&r, tmp, mode);
8727 return build_real (type, r);
8731 /* Subroutine of native_interpret_expr. Interpret the contents of
8732 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
8733 If the buffer cannot be interpreted, return NULL_TREE. */
8735 static tree
8736 native_interpret_complex (tree type, const unsigned char *ptr, int len)
8738 tree etype, rpart, ipart;
8739 int size;
8741 etype = TREE_TYPE (type);
8742 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
8743 if (size * 2 > len)
8744 return NULL_TREE;
8745 rpart = native_interpret_expr (etype, ptr, size);
8746 if (!rpart)
8747 return NULL_TREE;
8748 ipart = native_interpret_expr (etype, ptr+size, size);
8749 if (!ipart)
8750 return NULL_TREE;
8751 return build_complex (type, rpart, ipart);
8754 /* Read a vector of type TYPE from the target memory image given by BYTES,
8755 which contains LEN bytes. The vector is known to be encodable using
8756 NPATTERNS interleaved patterns with NELTS_PER_PATTERN elements each.
8758 Return the vector on success, otherwise return null. */
8760 static tree
8761 native_interpret_vector_part (tree type, const unsigned char *bytes,
8762 unsigned int len, unsigned int npatterns,
8763 unsigned int nelts_per_pattern)
8765 tree elt_type = TREE_TYPE (type);
8766 if (VECTOR_BOOLEAN_TYPE_P (type)
8767 && TYPE_PRECISION (elt_type) <= BITS_PER_UNIT)
8769 /* This is the only case in which elements can be smaller than a byte.
8770 Element 0 is always in the lsb of the containing byte. */
8771 unsigned int elt_bits = TYPE_PRECISION (elt_type);
8772 if (elt_bits * npatterns * nelts_per_pattern > len * BITS_PER_UNIT)
8773 return NULL_TREE;
8775 tree_vector_builder builder (type, npatterns, nelts_per_pattern);
8776 for (unsigned int i = 0; i < builder.encoded_nelts (); ++i)
8778 unsigned int bit_index = i * elt_bits;
8779 unsigned int byte_index = bit_index / BITS_PER_UNIT;
8780 unsigned int lsb = bit_index % BITS_PER_UNIT;
8781 builder.quick_push (bytes[byte_index] & (1 << lsb)
8782 ? build_all_ones_cst (elt_type)
8783 : build_zero_cst (elt_type));
8785 return builder.build ();
8788 unsigned int elt_bytes = tree_to_uhwi (TYPE_SIZE_UNIT (elt_type));
8789 if (elt_bytes * npatterns * nelts_per_pattern > len)
8790 return NULL_TREE;
8792 tree_vector_builder builder (type, npatterns, nelts_per_pattern);
8793 for (unsigned int i = 0; i < builder.encoded_nelts (); ++i)
8795 tree elt = native_interpret_expr (elt_type, bytes, elt_bytes);
8796 if (!elt)
8797 return NULL_TREE;
8798 builder.quick_push (elt);
8799 bytes += elt_bytes;
8801 return builder.build ();
8804 /* Subroutine of native_interpret_expr. Interpret the contents of
8805 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
8806 If the buffer cannot be interpreted, return NULL_TREE. */
8808 static tree
8809 native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len)
8811 tree etype;
8812 unsigned int size;
8813 unsigned HOST_WIDE_INT count;
8815 etype = TREE_TYPE (type);
8816 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype));
8817 if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&count)
8818 || size * count > len)
8819 return NULL_TREE;
8821 return native_interpret_vector_part (type, ptr, len, count, 1);
8825 /* Subroutine of fold_view_convert_expr. Interpret the contents of
8826 the buffer PTR of length LEN as a constant of type TYPE. For
8827 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
8828 we return a REAL_CST, etc... If the buffer cannot be interpreted,
8829 return NULL_TREE. */
8831 tree
8832 native_interpret_expr (tree type, const unsigned char *ptr, int len)
8834 switch (TREE_CODE (type))
8836 case INTEGER_TYPE:
8837 case ENUMERAL_TYPE:
8838 case BOOLEAN_TYPE:
8839 case POINTER_TYPE:
8840 case REFERENCE_TYPE:
8841 case OFFSET_TYPE:
8842 return native_interpret_int (type, ptr, len);
8844 case REAL_TYPE:
8845 if (tree ret = native_interpret_real (type, ptr, len))
8847 /* For floating point values in composite modes, punt if this
8848 folding doesn't preserve bit representation. As the mode doesn't
8849 have fixed precision while GCC pretends it does, there could be
8850 valid values that GCC can't really represent accurately.
8851 See PR95450. Even for other modes, e.g. x86 XFmode can have some
8852 bit combinationations which GCC doesn't preserve. */
8853 unsigned char buf[24];
8854 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type);
8855 int total_bytes = GET_MODE_SIZE (mode);
8856 if (native_encode_expr (ret, buf, total_bytes, 0) != total_bytes
8857 || memcmp (ptr, buf, total_bytes) != 0)
8858 return NULL_TREE;
8859 return ret;
8861 return NULL_TREE;
8863 case FIXED_POINT_TYPE:
8864 return native_interpret_fixed (type, ptr, len);
8866 case COMPLEX_TYPE:
8867 return native_interpret_complex (type, ptr, len);
8869 case VECTOR_TYPE:
8870 return native_interpret_vector (type, ptr, len);
8872 default:
8873 return NULL_TREE;
8877 /* Returns true if we can interpret the contents of a native encoding
8878 as TYPE. */
8880 bool
8881 can_native_interpret_type_p (tree type)
8883 switch (TREE_CODE (type))
8885 case INTEGER_TYPE:
8886 case ENUMERAL_TYPE:
8887 case BOOLEAN_TYPE:
8888 case POINTER_TYPE:
8889 case REFERENCE_TYPE:
8890 case FIXED_POINT_TYPE:
8891 case REAL_TYPE:
8892 case COMPLEX_TYPE:
8893 case VECTOR_TYPE:
8894 case OFFSET_TYPE:
8895 return true;
8896 default:
8897 return false;
8901 /* Attempt to interpret aggregate of TYPE from bytes encoded in target
8902 byte order at PTR + OFF with LEN bytes. Does not handle unions. */
8904 tree
8905 native_interpret_aggregate (tree type, const unsigned char *ptr, int off,
8906 int len)
8908 vec<constructor_elt, va_gc> *elts = NULL;
8909 if (TREE_CODE (type) == ARRAY_TYPE)
8911 HOST_WIDE_INT eltsz = int_size_in_bytes (TREE_TYPE (type));
8912 if (eltsz < 0 || eltsz > len || TYPE_DOMAIN (type) == NULL_TREE)
8913 return NULL_TREE;
8915 HOST_WIDE_INT cnt = 0;
8916 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
8918 if (!tree_fits_shwi_p (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
8919 return NULL_TREE;
8920 cnt = tree_to_shwi (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) + 1;
8922 if (eltsz == 0)
8923 cnt = 0;
8924 HOST_WIDE_INT pos = 0;
8925 for (HOST_WIDE_INT i = 0; i < cnt; i++, pos += eltsz)
8927 tree v = NULL_TREE;
8928 if (pos >= len || pos + eltsz > len)
8929 return NULL_TREE;
8930 if (can_native_interpret_type_p (TREE_TYPE (type)))
8932 v = native_interpret_expr (TREE_TYPE (type),
8933 ptr + off + pos, eltsz);
8934 if (v == NULL_TREE)
8935 return NULL_TREE;
8937 else if (TREE_CODE (TREE_TYPE (type)) == RECORD_TYPE
8938 || TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE)
8939 v = native_interpret_aggregate (TREE_TYPE (type), ptr, off + pos,
8940 eltsz);
8941 if (v == NULL_TREE)
8942 return NULL_TREE;
8943 CONSTRUCTOR_APPEND_ELT (elts, size_int (i), v);
8945 return build_constructor (type, elts);
8947 if (TREE_CODE (type) != RECORD_TYPE)
8948 return NULL_TREE;
8949 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
8951 if (TREE_CODE (field) != FIELD_DECL || DECL_PADDING_P (field))
8952 continue;
8953 tree fld = field;
8954 HOST_WIDE_INT bitoff = 0, pos = 0, sz = 0;
8955 int diff = 0;
8956 tree v = NULL_TREE;
8957 if (DECL_BIT_FIELD (field))
8959 fld = DECL_BIT_FIELD_REPRESENTATIVE (field);
8960 if (fld && INTEGRAL_TYPE_P (TREE_TYPE (fld)))
8962 poly_int64 bitoffset;
8963 poly_uint64 field_offset, fld_offset;
8964 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
8965 && poly_int_tree_p (DECL_FIELD_OFFSET (fld), &fld_offset))
8966 bitoffset = (field_offset - fld_offset) * BITS_PER_UNIT;
8967 else
8968 bitoffset = 0;
8969 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
8970 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (fld)));
8971 diff = (TYPE_PRECISION (TREE_TYPE (fld))
8972 - TYPE_PRECISION (TREE_TYPE (field)));
8973 if (!bitoffset.is_constant (&bitoff)
8974 || bitoff < 0
8975 || bitoff > diff)
8976 return NULL_TREE;
8978 else
8980 if (!tree_fits_uhwi_p (DECL_FIELD_BIT_OFFSET (field)))
8981 return NULL_TREE;
8982 int fieldsize = TYPE_PRECISION (TREE_TYPE (field));
8983 int bpos = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field));
8984 bpos %= BITS_PER_UNIT;
8985 fieldsize += bpos;
8986 fieldsize += BITS_PER_UNIT - 1;
8987 fieldsize /= BITS_PER_UNIT;
8988 tree repr_type = find_bitfield_repr_type (fieldsize, len);
8989 if (repr_type == NULL_TREE)
8990 return NULL_TREE;
8991 sz = int_size_in_bytes (repr_type);
8992 if (sz < 0 || sz > len)
8993 return NULL_TREE;
8994 pos = int_byte_position (field);
8995 if (pos < 0 || pos > len || pos + fieldsize > len)
8996 return NULL_TREE;
8997 HOST_WIDE_INT rpos;
8998 if (pos + sz <= len)
8999 rpos = pos;
9000 else
9002 rpos = len - sz;
9003 gcc_assert (rpos <= pos);
9005 bitoff = (HOST_WIDE_INT) (pos - rpos) * BITS_PER_UNIT + bpos;
9006 pos = rpos;
9007 diff = (TYPE_PRECISION (repr_type)
9008 - TYPE_PRECISION (TREE_TYPE (field)));
9009 v = native_interpret_expr (repr_type, ptr + off + pos, sz);
9010 if (v == NULL_TREE)
9011 return NULL_TREE;
9012 fld = NULL_TREE;
9016 if (fld)
9018 sz = int_size_in_bytes (TREE_TYPE (fld));
9019 if (sz < 0 || sz > len)
9020 return NULL_TREE;
9021 tree byte_pos = byte_position (fld);
9022 if (!tree_fits_shwi_p (byte_pos))
9023 return NULL_TREE;
9024 pos = tree_to_shwi (byte_pos);
9025 if (pos < 0 || pos > len || pos + sz > len)
9026 return NULL_TREE;
9028 if (fld == NULL_TREE)
9029 /* Already handled above. */;
9030 else if (can_native_interpret_type_p (TREE_TYPE (fld)))
9032 v = native_interpret_expr (TREE_TYPE (fld),
9033 ptr + off + pos, sz);
9034 if (v == NULL_TREE)
9035 return NULL_TREE;
9037 else if (TREE_CODE (TREE_TYPE (fld)) == RECORD_TYPE
9038 || TREE_CODE (TREE_TYPE (fld)) == ARRAY_TYPE)
9039 v = native_interpret_aggregate (TREE_TYPE (fld), ptr, off + pos, sz);
9040 if (v == NULL_TREE)
9041 return NULL_TREE;
9042 if (fld != field)
9044 if (TREE_CODE (v) != INTEGER_CST)
9045 return NULL_TREE;
9047 /* FIXME: Figure out how to handle PDP endian bitfields. */
9048 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9049 return NULL_TREE;
9050 if (!BYTES_BIG_ENDIAN)
9051 v = wide_int_to_tree (TREE_TYPE (field),
9052 wi::lrshift (wi::to_wide (v), bitoff));
9053 else
9054 v = wide_int_to_tree (TREE_TYPE (field),
9055 wi::lrshift (wi::to_wide (v),
9056 diff - bitoff));
9058 CONSTRUCTOR_APPEND_ELT (elts, field, v);
9060 return build_constructor (type, elts);
9063 /* Routines for manipulation of native_encode_expr encoded data if the encoded
9064 or extracted constant positions and/or sizes aren't byte aligned. */
9066 /* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
9067 bits between adjacent elements. AMNT should be within
9068 [0, BITS_PER_UNIT).
9069 Example, AMNT = 2:
9070 00011111|11100000 << 2 = 01111111|10000000
9071 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
9073 void
9074 shift_bytes_in_array_left (unsigned char *ptr, unsigned int sz,
9075 unsigned int amnt)
9077 if (amnt == 0)
9078 return;
9080 unsigned char carry_over = 0U;
9081 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
9082 unsigned char clear_mask = (~0U) << amnt;
9084 for (unsigned int i = 0; i < sz; i++)
9086 unsigned prev_carry_over = carry_over;
9087 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
9089 ptr[i] <<= amnt;
9090 if (i != 0)
9092 ptr[i] &= clear_mask;
9093 ptr[i] |= prev_carry_over;
9098 /* Like shift_bytes_in_array_left but for big-endian.
9099 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
9100 bits between adjacent elements. AMNT should be within
9101 [0, BITS_PER_UNIT).
9102 Example, AMNT = 2:
9103 00011111|11100000 >> 2 = 00000111|11111000
9104 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
9106 void
9107 shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
9108 unsigned int amnt)
9110 if (amnt == 0)
9111 return;
9113 unsigned char carry_over = 0U;
9114 unsigned char carry_mask = ~(~0U << amnt);
9116 for (unsigned int i = 0; i < sz; i++)
9118 unsigned prev_carry_over = carry_over;
9119 carry_over = ptr[i] & carry_mask;
9121 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
9122 ptr[i] >>= amnt;
9123 ptr[i] |= prev_carry_over;
9127 /* Try to view-convert VECTOR_CST EXPR to VECTOR_TYPE TYPE by operating
9128 directly on the VECTOR_CST encoding, in a way that works for variable-
9129 length vectors. Return the resulting VECTOR_CST on success or null
9130 on failure. */
9132 static tree
9133 fold_view_convert_vector_encoding (tree type, tree expr)
9135 tree expr_type = TREE_TYPE (expr);
9136 poly_uint64 type_bits, expr_bits;
9137 if (!poly_int_tree_p (TYPE_SIZE (type), &type_bits)
9138 || !poly_int_tree_p (TYPE_SIZE (expr_type), &expr_bits))
9139 return NULL_TREE;
9141 poly_uint64 type_units = TYPE_VECTOR_SUBPARTS (type);
9142 poly_uint64 expr_units = TYPE_VECTOR_SUBPARTS (expr_type);
9143 unsigned int type_elt_bits = vector_element_size (type_bits, type_units);
9144 unsigned int expr_elt_bits = vector_element_size (expr_bits, expr_units);
9146 /* We can only preserve the semantics of a stepped pattern if the new
9147 vector element is an integer of the same size. */
9148 if (VECTOR_CST_STEPPED_P (expr)
9149 && (!INTEGRAL_TYPE_P (type) || type_elt_bits != expr_elt_bits))
9150 return NULL_TREE;
9152 /* The number of bits needed to encode one element from every pattern
9153 of the original vector. */
9154 unsigned int expr_sequence_bits
9155 = VECTOR_CST_NPATTERNS (expr) * expr_elt_bits;
9157 /* The number of bits needed to encode one element from every pattern
9158 of the result. */
9159 unsigned int type_sequence_bits
9160 = least_common_multiple (expr_sequence_bits, type_elt_bits);
9162 /* Don't try to read more bytes than are available, which can happen
9163 for constant-sized vectors if TYPE has larger elements than EXPR_TYPE.
9164 The general VIEW_CONVERT handling can cope with that case, so there's
9165 no point complicating things here. */
9166 unsigned int nelts_per_pattern = VECTOR_CST_NELTS_PER_PATTERN (expr);
9167 unsigned int buffer_bytes = CEIL (nelts_per_pattern * type_sequence_bits,
9168 BITS_PER_UNIT);
9169 unsigned int buffer_bits = buffer_bytes * BITS_PER_UNIT;
9170 if (known_gt (buffer_bits, expr_bits))
9171 return NULL_TREE;
9173 /* Get enough bytes of EXPR to form the new encoding. */
9174 auto_vec<unsigned char, 128> buffer (buffer_bytes);
9175 buffer.quick_grow (buffer_bytes);
9176 if (native_encode_vector_part (expr, buffer.address (), buffer_bytes, 0,
9177 buffer_bits / expr_elt_bits)
9178 != (int) buffer_bytes)
9179 return NULL_TREE;
9181 /* Reencode the bytes as TYPE. */
9182 unsigned int type_npatterns = type_sequence_bits / type_elt_bits;
9183 return native_interpret_vector_part (type, &buffer[0], buffer.length (),
9184 type_npatterns, nelts_per_pattern);
9187 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
9188 TYPE at compile-time. If we're unable to perform the conversion
9189 return NULL_TREE. */
9191 static tree
9192 fold_view_convert_expr (tree type, tree expr)
9194 /* We support up to 512-bit values (for V8DFmode). */
9195 unsigned char buffer[64];
9196 int len;
9198 /* Check that the host and target are sane. */
9199 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
9200 return NULL_TREE;
9202 if (VECTOR_TYPE_P (type) && TREE_CODE (expr) == VECTOR_CST)
9203 if (tree res = fold_view_convert_vector_encoding (type, expr))
9204 return res;
9206 len = native_encode_expr (expr, buffer, sizeof (buffer));
9207 if (len == 0)
9208 return NULL_TREE;
9210 return native_interpret_expr (type, buffer, len);
9213 /* Build an expression for the address of T. Folds away INDIRECT_REF
9214 to avoid confusing the gimplify process. */
9216 tree
9217 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
9219 /* The size of the object is not relevant when talking about its address. */
9220 if (TREE_CODE (t) == WITH_SIZE_EXPR)
9221 t = TREE_OPERAND (t, 0);
9223 if (TREE_CODE (t) == INDIRECT_REF)
9225 t = TREE_OPERAND (t, 0);
9227 if (TREE_TYPE (t) != ptrtype)
9228 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
9230 else if (TREE_CODE (t) == MEM_REF
9231 && integer_zerop (TREE_OPERAND (t, 1)))
9233 t = TREE_OPERAND (t, 0);
9235 if (TREE_TYPE (t) != ptrtype)
9236 t = fold_convert_loc (loc, ptrtype, t);
9238 else if (TREE_CODE (t) == MEM_REF
9239 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
9240 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
9241 TREE_OPERAND (t, 0),
9242 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
9243 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
9245 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
9247 if (TREE_TYPE (t) != ptrtype)
9248 t = fold_convert_loc (loc, ptrtype, t);
9250 else
9251 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
9253 return t;
9256 /* Build an expression for the address of T. */
9258 tree
9259 build_fold_addr_expr_loc (location_t loc, tree t)
9261 tree ptrtype = build_pointer_type (TREE_TYPE (t));
9263 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
9266 /* Fold a unary expression of code CODE and type TYPE with operand
9267 OP0. Return the folded expression if folding is successful.
9268 Otherwise, return NULL_TREE. */
9270 tree
9271 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
9273 tree tem;
9274 tree arg0;
9275 enum tree_code_class kind = TREE_CODE_CLASS (code);
9277 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9278 && TREE_CODE_LENGTH (code) == 1);
9280 arg0 = op0;
9281 if (arg0)
9283 if (CONVERT_EXPR_CODE_P (code)
9284 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
9286 /* Don't use STRIP_NOPS, because signedness of argument type
9287 matters. */
9288 STRIP_SIGN_NOPS (arg0);
9290 else
9292 /* Strip any conversions that don't change the mode. This
9293 is safe for every expression, except for a comparison
9294 expression because its signedness is derived from its
9295 operands.
9297 Note that this is done as an internal manipulation within
9298 the constant folder, in order to find the simplest
9299 representation of the arguments so that their form can be
9300 studied. In any cases, the appropriate type conversions
9301 should be put back in the tree that will get out of the
9302 constant folder. */
9303 STRIP_NOPS (arg0);
9306 if (CONSTANT_CLASS_P (arg0))
9308 tree tem = const_unop (code, type, arg0);
9309 if (tem)
9311 if (TREE_TYPE (tem) != type)
9312 tem = fold_convert_loc (loc, type, tem);
9313 return tem;
9318 tem = generic_simplify (loc, code, type, op0);
9319 if (tem)
9320 return tem;
9322 if (TREE_CODE_CLASS (code) == tcc_unary)
9324 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9325 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9326 fold_build1_loc (loc, code, type,
9327 fold_convert_loc (loc, TREE_TYPE (op0),
9328 TREE_OPERAND (arg0, 1))));
9329 else if (TREE_CODE (arg0) == COND_EXPR)
9331 tree arg01 = TREE_OPERAND (arg0, 1);
9332 tree arg02 = TREE_OPERAND (arg0, 2);
9333 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
9334 arg01 = fold_build1_loc (loc, code, type,
9335 fold_convert_loc (loc,
9336 TREE_TYPE (op0), arg01));
9337 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
9338 arg02 = fold_build1_loc (loc, code, type,
9339 fold_convert_loc (loc,
9340 TREE_TYPE (op0), arg02));
9341 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
9342 arg01, arg02);
9344 /* If this was a conversion, and all we did was to move into
9345 inside the COND_EXPR, bring it back out. But leave it if
9346 it is a conversion from integer to integer and the
9347 result precision is no wider than a word since such a
9348 conversion is cheap and may be optimized away by combine,
9349 while it couldn't if it were outside the COND_EXPR. Then return
9350 so we don't get into an infinite recursion loop taking the
9351 conversion out and then back in. */
9353 if ((CONVERT_EXPR_CODE_P (code)
9354 || code == NON_LVALUE_EXPR)
9355 && TREE_CODE (tem) == COND_EXPR
9356 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
9357 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
9358 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
9359 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
9360 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
9361 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
9362 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9363 && (INTEGRAL_TYPE_P
9364 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
9365 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
9366 || flag_syntax_only))
9367 tem = build1_loc (loc, code, type,
9368 build3 (COND_EXPR,
9369 TREE_TYPE (TREE_OPERAND
9370 (TREE_OPERAND (tem, 1), 0)),
9371 TREE_OPERAND (tem, 0),
9372 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
9373 TREE_OPERAND (TREE_OPERAND (tem, 2),
9374 0)));
9375 return tem;
9379 switch (code)
9381 case NON_LVALUE_EXPR:
9382 if (!maybe_lvalue_p (op0))
9383 return fold_convert_loc (loc, type, op0);
9384 return NULL_TREE;
9386 CASE_CONVERT:
9387 case FLOAT_EXPR:
9388 case FIX_TRUNC_EXPR:
9389 if (COMPARISON_CLASS_P (op0))
9391 /* If we have (type) (a CMP b) and type is an integral type, return
9392 new expression involving the new type. Canonicalize
9393 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
9394 non-integral type.
9395 Do not fold the result as that would not simplify further, also
9396 folding again results in recursions. */
9397 if (TREE_CODE (type) == BOOLEAN_TYPE)
9398 return build2_loc (loc, TREE_CODE (op0), type,
9399 TREE_OPERAND (op0, 0),
9400 TREE_OPERAND (op0, 1));
9401 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
9402 && TREE_CODE (type) != VECTOR_TYPE)
9403 return build3_loc (loc, COND_EXPR, type, op0,
9404 constant_boolean_node (true, type),
9405 constant_boolean_node (false, type));
9408 /* Handle (T *)&A.B.C for A being of type T and B and C
9409 living at offset zero. This occurs frequently in
9410 C++ upcasting and then accessing the base. */
9411 if (TREE_CODE (op0) == ADDR_EXPR
9412 && POINTER_TYPE_P (type)
9413 && handled_component_p (TREE_OPERAND (op0, 0)))
9415 poly_int64 bitsize, bitpos;
9416 tree offset;
9417 machine_mode mode;
9418 int unsignedp, reversep, volatilep;
9419 tree base
9420 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
9421 &offset, &mode, &unsignedp, &reversep,
9422 &volatilep);
9423 /* If the reference was to a (constant) zero offset, we can use
9424 the address of the base if it has the same base type
9425 as the result type and the pointer type is unqualified. */
9426 if (!offset
9427 && known_eq (bitpos, 0)
9428 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
9429 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
9430 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
9431 return fold_convert_loc (loc, type,
9432 build_fold_addr_expr_loc (loc, base));
9435 if (TREE_CODE (op0) == MODIFY_EXPR
9436 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
9437 /* Detect assigning a bitfield. */
9438 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
9439 && DECL_BIT_FIELD
9440 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
9442 /* Don't leave an assignment inside a conversion
9443 unless assigning a bitfield. */
9444 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
9445 /* First do the assignment, then return converted constant. */
9446 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
9447 suppress_warning (tem /* What warning? */);
9448 TREE_USED (tem) = 1;
9449 return tem;
9452 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
9453 constants (if x has signed type, the sign bit cannot be set
9454 in c). This folds extension into the BIT_AND_EXPR.
9455 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
9456 very likely don't have maximal range for their precision and this
9457 transformation effectively doesn't preserve non-maximal ranges. */
9458 if (TREE_CODE (type) == INTEGER_TYPE
9459 && TREE_CODE (op0) == BIT_AND_EXPR
9460 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
9462 tree and_expr = op0;
9463 tree and0 = TREE_OPERAND (and_expr, 0);
9464 tree and1 = TREE_OPERAND (and_expr, 1);
9465 int change = 0;
9467 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
9468 || (TYPE_PRECISION (type)
9469 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
9470 change = 1;
9471 else if (TYPE_PRECISION (TREE_TYPE (and1))
9472 <= HOST_BITS_PER_WIDE_INT
9473 && tree_fits_uhwi_p (and1))
9475 unsigned HOST_WIDE_INT cst;
9477 cst = tree_to_uhwi (and1);
9478 cst &= HOST_WIDE_INT_M1U
9479 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
9480 change = (cst == 0);
9481 if (change
9482 && !flag_syntax_only
9483 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0)))
9484 == ZERO_EXTEND))
9486 tree uns = unsigned_type_for (TREE_TYPE (and0));
9487 and0 = fold_convert_loc (loc, uns, and0);
9488 and1 = fold_convert_loc (loc, uns, and1);
9491 if (change)
9493 tem = force_fit_type (type, wi::to_widest (and1), 0,
9494 TREE_OVERFLOW (and1));
9495 return fold_build2_loc (loc, BIT_AND_EXPR, type,
9496 fold_convert_loc (loc, type, and0), tem);
9500 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
9501 cast (T1)X will fold away. We assume that this happens when X itself
9502 is a cast. */
9503 if (POINTER_TYPE_P (type)
9504 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
9505 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
9507 tree arg00 = TREE_OPERAND (arg0, 0);
9508 tree arg01 = TREE_OPERAND (arg0, 1);
9510 /* If -fsanitize=alignment, avoid this optimization in GENERIC
9511 when the pointed type needs higher alignment than
9512 the p+ first operand's pointed type. */
9513 if (!in_gimple_form
9514 && sanitize_flags_p (SANITIZE_ALIGNMENT)
9515 && (min_align_of_type (TREE_TYPE (type))
9516 > min_align_of_type (TREE_TYPE (TREE_TYPE (arg00)))))
9517 return NULL_TREE;
9519 arg00 = fold_convert_loc (loc, type, arg00);
9520 return fold_build_pointer_plus_loc (loc, arg00, arg01);
9523 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
9524 of the same precision, and X is an integer type not narrower than
9525 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
9526 if (INTEGRAL_TYPE_P (type)
9527 && TREE_CODE (op0) == BIT_NOT_EXPR
9528 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9529 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
9530 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
9532 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
9533 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9534 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
9535 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
9536 fold_convert_loc (loc, type, tem));
9539 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
9540 type of X and Y (integer types only). */
9541 if (INTEGRAL_TYPE_P (type)
9542 && TREE_CODE (op0) == MULT_EXPR
9543 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9544 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
9546 /* Be careful not to introduce new overflows. */
9547 tree mult_type;
9548 if (TYPE_OVERFLOW_WRAPS (type))
9549 mult_type = type;
9550 else
9551 mult_type = unsigned_type_for (type);
9553 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
9555 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
9556 fold_convert_loc (loc, mult_type,
9557 TREE_OPERAND (op0, 0)),
9558 fold_convert_loc (loc, mult_type,
9559 TREE_OPERAND (op0, 1)));
9560 return fold_convert_loc (loc, type, tem);
9564 return NULL_TREE;
9566 case VIEW_CONVERT_EXPR:
9567 if (TREE_CODE (op0) == MEM_REF)
9569 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
9570 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
9571 tem = fold_build2_loc (loc, MEM_REF, type,
9572 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
9573 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
9574 return tem;
9577 return NULL_TREE;
9579 case NEGATE_EXPR:
9580 tem = fold_negate_expr (loc, arg0);
9581 if (tem)
9582 return fold_convert_loc (loc, type, tem);
9583 return NULL_TREE;
9585 case ABS_EXPR:
9586 /* Convert fabs((double)float) into (double)fabsf(float). */
9587 if (TREE_CODE (arg0) == NOP_EXPR
9588 && TREE_CODE (type) == REAL_TYPE)
9590 tree targ0 = strip_float_extensions (arg0);
9591 if (targ0 != arg0)
9592 return fold_convert_loc (loc, type,
9593 fold_build1_loc (loc, ABS_EXPR,
9594 TREE_TYPE (targ0),
9595 targ0));
9597 return NULL_TREE;
9599 case BIT_NOT_EXPR:
9600 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
9601 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9602 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
9603 fold_convert_loc (loc, type,
9604 TREE_OPERAND (arg0, 0)))))
9605 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
9606 fold_convert_loc (loc, type,
9607 TREE_OPERAND (arg0, 1)));
9608 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
9609 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
9610 fold_convert_loc (loc, type,
9611 TREE_OPERAND (arg0, 1)))))
9612 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
9613 fold_convert_loc (loc, type,
9614 TREE_OPERAND (arg0, 0)), tem);
9616 return NULL_TREE;
9618 case TRUTH_NOT_EXPR:
9619 /* Note that the operand of this must be an int
9620 and its values must be 0 or 1.
9621 ("true" is a fixed value perhaps depending on the language,
9622 but we don't handle values other than 1 correctly yet.) */
9623 tem = fold_truth_not_expr (loc, arg0);
9624 if (!tem)
9625 return NULL_TREE;
9626 return fold_convert_loc (loc, type, tem);
9628 case INDIRECT_REF:
9629 /* Fold *&X to X if X is an lvalue. */
9630 if (TREE_CODE (op0) == ADDR_EXPR)
9632 tree op00 = TREE_OPERAND (op0, 0);
9633 if ((VAR_P (op00)
9634 || TREE_CODE (op00) == PARM_DECL
9635 || TREE_CODE (op00) == RESULT_DECL)
9636 && !TREE_READONLY (op00))
9637 return op00;
9639 return NULL_TREE;
9641 default:
9642 return NULL_TREE;
9643 } /* switch (code) */
9647 /* If the operation was a conversion do _not_ mark a resulting constant
9648 with TREE_OVERFLOW if the original constant was not. These conversions
9649 have implementation defined behavior and retaining the TREE_OVERFLOW
9650 flag here would confuse later passes such as VRP. */
9651 tree
9652 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
9653 tree type, tree op0)
9655 tree res = fold_unary_loc (loc, code, type, op0);
9656 if (res
9657 && TREE_CODE (res) == INTEGER_CST
9658 && TREE_CODE (op0) == INTEGER_CST
9659 && CONVERT_EXPR_CODE_P (code))
9660 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
9662 return res;
9665 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
9666 operands OP0 and OP1. LOC is the location of the resulting expression.
9667 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
9668 Return the folded expression if folding is successful. Otherwise,
9669 return NULL_TREE. */
9670 static tree
9671 fold_truth_andor (location_t loc, enum tree_code code, tree type,
9672 tree arg0, tree arg1, tree op0, tree op1)
9674 tree tem;
9676 /* We only do these simplifications if we are optimizing. */
9677 if (!optimize)
9678 return NULL_TREE;
9680 /* Check for things like (A || B) && (A || C). We can convert this
9681 to A || (B && C). Note that either operator can be any of the four
9682 truth and/or operations and the transformation will still be
9683 valid. Also note that we only care about order for the
9684 ANDIF and ORIF operators. If B contains side effects, this
9685 might change the truth-value of A. */
9686 if (TREE_CODE (arg0) == TREE_CODE (arg1)
9687 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
9688 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
9689 || TREE_CODE (arg0) == TRUTH_AND_EXPR
9690 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
9691 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
9693 tree a00 = TREE_OPERAND (arg0, 0);
9694 tree a01 = TREE_OPERAND (arg0, 1);
9695 tree a10 = TREE_OPERAND (arg1, 0);
9696 tree a11 = TREE_OPERAND (arg1, 1);
9697 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
9698 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
9699 && (code == TRUTH_AND_EXPR
9700 || code == TRUTH_OR_EXPR));
9702 if (operand_equal_p (a00, a10, 0))
9703 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
9704 fold_build2_loc (loc, code, type, a01, a11));
9705 else if (commutative && operand_equal_p (a00, a11, 0))
9706 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
9707 fold_build2_loc (loc, code, type, a01, a10));
9708 else if (commutative && operand_equal_p (a01, a10, 0))
9709 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
9710 fold_build2_loc (loc, code, type, a00, a11));
9712 /* This case if tricky because we must either have commutative
9713 operators or else A10 must not have side-effects. */
9715 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
9716 && operand_equal_p (a01, a11, 0))
9717 return fold_build2_loc (loc, TREE_CODE (arg0), type,
9718 fold_build2_loc (loc, code, type, a00, a10),
9719 a01);
9722 /* See if we can build a range comparison. */
9723 if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0)
9724 return tem;
9726 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
9727 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
9729 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
9730 if (tem)
9731 return fold_build2_loc (loc, code, type, tem, arg1);
9734 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
9735 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
9737 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
9738 if (tem)
9739 return fold_build2_loc (loc, code, type, arg0, tem);
9742 /* Check for the possibility of merging component references. If our
9743 lhs is another similar operation, try to merge its rhs with our
9744 rhs. Then try to merge our lhs and rhs. */
9745 if (TREE_CODE (arg0) == code
9746 && (tem = fold_truth_andor_1 (loc, code, type,
9747 TREE_OPERAND (arg0, 1), arg1)) != 0)
9748 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
9750 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
9751 return tem;
9753 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT;
9754 if (param_logical_op_non_short_circuit != -1)
9755 logical_op_non_short_circuit
9756 = param_logical_op_non_short_circuit;
9757 if (logical_op_non_short_circuit
9758 && !sanitize_coverage_p ()
9759 && (code == TRUTH_AND_EXPR
9760 || code == TRUTH_ANDIF_EXPR
9761 || code == TRUTH_OR_EXPR
9762 || code == TRUTH_ORIF_EXPR))
9764 enum tree_code ncode, icode;
9766 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
9767 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
9768 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
9770 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
9771 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
9772 We don't want to pack more than two leafs to a non-IF AND/OR
9773 expression.
9774 If tree-code of left-hand operand isn't an AND/OR-IF code and not
9775 equal to IF-CODE, then we don't want to add right-hand operand.
9776 If the inner right-hand side of left-hand operand has
9777 side-effects, or isn't simple, then we can't add to it,
9778 as otherwise we might destroy if-sequence. */
9779 if (TREE_CODE (arg0) == icode
9780 && simple_operand_p_2 (arg1)
9781 /* Needed for sequence points to handle trappings, and
9782 side-effects. */
9783 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
9785 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
9786 arg1);
9787 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
9788 tem);
9790 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
9791 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
9792 else if (TREE_CODE (arg1) == icode
9793 && simple_operand_p_2 (arg0)
9794 /* Needed for sequence points to handle trappings, and
9795 side-effects. */
9796 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
9798 tem = fold_build2_loc (loc, ncode, type,
9799 arg0, TREE_OPERAND (arg1, 0));
9800 return fold_build2_loc (loc, icode, type, tem,
9801 TREE_OPERAND (arg1, 1));
9803 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
9804 into (A OR B).
9805 For sequence point consistancy, we need to check for trapping,
9806 and side-effects. */
9807 else if (code == icode && simple_operand_p_2 (arg0)
9808 && simple_operand_p_2 (arg1))
9809 return fold_build2_loc (loc, ncode, type, arg0, arg1);
9812 return NULL_TREE;
9815 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
9816 by changing CODE to reduce the magnitude of constants involved in
9817 ARG0 of the comparison.
9818 Returns a canonicalized comparison tree if a simplification was
9819 possible, otherwise returns NULL_TREE.
9820 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
9821 valid if signed overflow is undefined. */
9823 static tree
9824 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
9825 tree arg0, tree arg1,
9826 bool *strict_overflow_p)
9828 enum tree_code code0 = TREE_CODE (arg0);
9829 tree t, cst0 = NULL_TREE;
9830 int sgn0;
9832 /* Match A +- CST code arg1. We can change this only if overflow
9833 is undefined. */
9834 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9835 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
9836 /* In principle pointers also have undefined overflow behavior,
9837 but that causes problems elsewhere. */
9838 && !POINTER_TYPE_P (TREE_TYPE (arg0))
9839 && (code0 == MINUS_EXPR
9840 || code0 == PLUS_EXPR)
9841 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
9842 return NULL_TREE;
9844 /* Identify the constant in arg0 and its sign. */
9845 cst0 = TREE_OPERAND (arg0, 1);
9846 sgn0 = tree_int_cst_sgn (cst0);
9848 /* Overflowed constants and zero will cause problems. */
9849 if (integer_zerop (cst0)
9850 || TREE_OVERFLOW (cst0))
9851 return NULL_TREE;
9853 /* See if we can reduce the magnitude of the constant in
9854 arg0 by changing the comparison code. */
9855 /* A - CST < arg1 -> A - CST-1 <= arg1. */
9856 if (code == LT_EXPR
9857 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
9858 code = LE_EXPR;
9859 /* A + CST > arg1 -> A + CST-1 >= arg1. */
9860 else if (code == GT_EXPR
9861 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
9862 code = GE_EXPR;
9863 /* A + CST <= arg1 -> A + CST-1 < arg1. */
9864 else if (code == LE_EXPR
9865 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
9866 code = LT_EXPR;
9867 /* A - CST >= arg1 -> A - CST-1 > arg1. */
9868 else if (code == GE_EXPR
9869 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
9870 code = GT_EXPR;
9871 else
9872 return NULL_TREE;
9873 *strict_overflow_p = true;
9875 /* Now build the constant reduced in magnitude. But not if that
9876 would produce one outside of its types range. */
9877 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
9878 && ((sgn0 == 1
9879 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
9880 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
9881 || (sgn0 == -1
9882 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
9883 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
9884 return NULL_TREE;
9886 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
9887 cst0, build_int_cst (TREE_TYPE (cst0), 1));
9888 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
9889 t = fold_convert (TREE_TYPE (arg1), t);
9891 return fold_build2_loc (loc, code, type, t, arg1);
9894 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
9895 overflow further. Try to decrease the magnitude of constants involved
9896 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
9897 and put sole constants at the second argument position.
9898 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
9900 static tree
9901 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
9902 tree arg0, tree arg1)
9904 tree t;
9905 bool strict_overflow_p;
9906 const char * const warnmsg = G_("assuming signed overflow does not occur "
9907 "when reducing constant in comparison");
9909 /* Try canonicalization by simplifying arg0. */
9910 strict_overflow_p = false;
9911 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
9912 &strict_overflow_p);
9913 if (t)
9915 if (strict_overflow_p)
9916 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
9917 return t;
9920 /* Try canonicalization by simplifying arg1 using the swapped
9921 comparison. */
9922 code = swap_tree_comparison (code);
9923 strict_overflow_p = false;
9924 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
9925 &strict_overflow_p);
9926 if (t && strict_overflow_p)
9927 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
9928 return t;
9931 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
9932 space. This is used to avoid issuing overflow warnings for
9933 expressions like &p->x which cannot wrap. */
9935 static bool
9936 pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos)
9938 if (!POINTER_TYPE_P (TREE_TYPE (base)))
9939 return true;
9941 if (maybe_lt (bitpos, 0))
9942 return true;
9944 poly_wide_int wi_offset;
9945 int precision = TYPE_PRECISION (TREE_TYPE (base));
9946 if (offset == NULL_TREE)
9947 wi_offset = wi::zero (precision);
9948 else if (!poly_int_tree_p (offset) || TREE_OVERFLOW (offset))
9949 return true;
9950 else
9951 wi_offset = wi::to_poly_wide (offset);
9953 wi::overflow_type overflow;
9954 poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos),
9955 precision);
9956 poly_wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
9957 if (overflow)
9958 return true;
9960 poly_uint64 total_hwi, size;
9961 if (!total.to_uhwi (&total_hwi)
9962 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))),
9963 &size)
9964 || known_eq (size, 0U))
9965 return true;
9967 if (known_le (total_hwi, size))
9968 return false;
9970 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
9971 array. */
9972 if (TREE_CODE (base) == ADDR_EXPR
9973 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))),
9974 &size)
9975 && maybe_ne (size, 0U)
9976 && known_le (total_hwi, size))
9977 return false;
9979 return true;
9982 /* Return a positive integer when the symbol DECL is known to have
9983 a nonzero address, zero when it's known not to (e.g., it's a weak
9984 symbol), and a negative integer when the symbol is not yet in the
9985 symbol table and so whether or not its address is zero is unknown.
9986 For function local objects always return positive integer. */
9987 static int
9988 maybe_nonzero_address (tree decl)
9990 /* Normally, don't do anything for variables and functions before symtab is
9991 built; it is quite possible that DECL will be declared weak later.
9992 But if folding_initializer, we need a constant answer now, so create
9993 the symtab entry and prevent later weak declaration. */
9994 if (DECL_P (decl) && decl_in_symtab_p (decl))
9995 if (struct symtab_node *symbol
9996 = (folding_initializer
9997 ? symtab_node::get_create (decl)
9998 : symtab_node::get (decl)))
9999 return symbol->nonzero_address ();
10001 /* Function local objects are never NULL. */
10002 if (DECL_P (decl)
10003 && (DECL_CONTEXT (decl)
10004 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
10005 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl))))
10006 return 1;
10008 return -1;
10011 /* Subroutine of fold_binary. This routine performs all of the
10012 transformations that are common to the equality/inequality
10013 operators (EQ_EXPR and NE_EXPR) and the ordering operators
10014 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
10015 fold_binary should call fold_binary. Fold a comparison with
10016 tree code CODE and type TYPE with operands OP0 and OP1. Return
10017 the folded comparison or NULL_TREE. */
10019 static tree
10020 fold_comparison (location_t loc, enum tree_code code, tree type,
10021 tree op0, tree op1)
10023 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
10024 tree arg0, arg1, tem;
10026 arg0 = op0;
10027 arg1 = op1;
10029 STRIP_SIGN_NOPS (arg0);
10030 STRIP_SIGN_NOPS (arg1);
10032 /* For comparisons of pointers we can decompose it to a compile time
10033 comparison of the base objects and the offsets into the object.
10034 This requires at least one operand being an ADDR_EXPR or a
10035 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
10036 if (POINTER_TYPE_P (TREE_TYPE (arg0))
10037 && (TREE_CODE (arg0) == ADDR_EXPR
10038 || TREE_CODE (arg1) == ADDR_EXPR
10039 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10040 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
10042 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
10043 poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0;
10044 machine_mode mode;
10045 int volatilep, reversep, unsignedp;
10046 bool indirect_base0 = false, indirect_base1 = false;
10048 /* Get base and offset for the access. Strip ADDR_EXPR for
10049 get_inner_reference, but put it back by stripping INDIRECT_REF
10050 off the base object if possible. indirect_baseN will be true
10051 if baseN is not an address but refers to the object itself. */
10052 base0 = arg0;
10053 if (TREE_CODE (arg0) == ADDR_EXPR)
10055 base0
10056 = get_inner_reference (TREE_OPERAND (arg0, 0),
10057 &bitsize, &bitpos0, &offset0, &mode,
10058 &unsignedp, &reversep, &volatilep);
10059 if (TREE_CODE (base0) == INDIRECT_REF)
10060 base0 = TREE_OPERAND (base0, 0);
10061 else
10062 indirect_base0 = true;
10064 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10066 base0 = TREE_OPERAND (arg0, 0);
10067 STRIP_SIGN_NOPS (base0);
10068 if (TREE_CODE (base0) == ADDR_EXPR)
10070 base0
10071 = get_inner_reference (TREE_OPERAND (base0, 0),
10072 &bitsize, &bitpos0, &offset0, &mode,
10073 &unsignedp, &reversep, &volatilep);
10074 if (TREE_CODE (base0) == INDIRECT_REF)
10075 base0 = TREE_OPERAND (base0, 0);
10076 else
10077 indirect_base0 = true;
10079 if (offset0 == NULL_TREE || integer_zerop (offset0))
10080 offset0 = TREE_OPERAND (arg0, 1);
10081 else
10082 offset0 = size_binop (PLUS_EXPR, offset0,
10083 TREE_OPERAND (arg0, 1));
10084 if (poly_int_tree_p (offset0))
10086 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset0),
10087 TYPE_PRECISION (sizetype));
10088 tem <<= LOG2_BITS_PER_UNIT;
10089 tem += bitpos0;
10090 if (tem.to_shwi (&bitpos0))
10091 offset0 = NULL_TREE;
10095 base1 = arg1;
10096 if (TREE_CODE (arg1) == ADDR_EXPR)
10098 base1
10099 = get_inner_reference (TREE_OPERAND (arg1, 0),
10100 &bitsize, &bitpos1, &offset1, &mode,
10101 &unsignedp, &reversep, &volatilep);
10102 if (TREE_CODE (base1) == INDIRECT_REF)
10103 base1 = TREE_OPERAND (base1, 0);
10104 else
10105 indirect_base1 = true;
10107 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10109 base1 = TREE_OPERAND (arg1, 0);
10110 STRIP_SIGN_NOPS (base1);
10111 if (TREE_CODE (base1) == ADDR_EXPR)
10113 base1
10114 = get_inner_reference (TREE_OPERAND (base1, 0),
10115 &bitsize, &bitpos1, &offset1, &mode,
10116 &unsignedp, &reversep, &volatilep);
10117 if (TREE_CODE (base1) == INDIRECT_REF)
10118 base1 = TREE_OPERAND (base1, 0);
10119 else
10120 indirect_base1 = true;
10122 if (offset1 == NULL_TREE || integer_zerop (offset1))
10123 offset1 = TREE_OPERAND (arg1, 1);
10124 else
10125 offset1 = size_binop (PLUS_EXPR, offset1,
10126 TREE_OPERAND (arg1, 1));
10127 if (poly_int_tree_p (offset1))
10129 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset1),
10130 TYPE_PRECISION (sizetype));
10131 tem <<= LOG2_BITS_PER_UNIT;
10132 tem += bitpos1;
10133 if (tem.to_shwi (&bitpos1))
10134 offset1 = NULL_TREE;
10138 /* If we have equivalent bases we might be able to simplify. */
10139 if (indirect_base0 == indirect_base1
10140 && operand_equal_p (base0, base1,
10141 indirect_base0 ? OEP_ADDRESS_OF : 0))
10143 /* We can fold this expression to a constant if the non-constant
10144 offset parts are equal. */
10145 if ((offset0 == offset1
10146 || (offset0 && offset1
10147 && operand_equal_p (offset0, offset1, 0)))
10148 && (equality_code
10149 || (indirect_base0
10150 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
10151 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
10153 if (!equality_code
10154 && maybe_ne (bitpos0, bitpos1)
10155 && (pointer_may_wrap_p (base0, offset0, bitpos0)
10156 || pointer_may_wrap_p (base1, offset1, bitpos1)))
10157 fold_overflow_warning (("assuming pointer wraparound does not "
10158 "occur when comparing P +- C1 with "
10159 "P +- C2"),
10160 WARN_STRICT_OVERFLOW_CONDITIONAL);
10162 switch (code)
10164 case EQ_EXPR:
10165 if (known_eq (bitpos0, bitpos1))
10166 return constant_boolean_node (true, type);
10167 if (known_ne (bitpos0, bitpos1))
10168 return constant_boolean_node (false, type);
10169 break;
10170 case NE_EXPR:
10171 if (known_ne (bitpos0, bitpos1))
10172 return constant_boolean_node (true, type);
10173 if (known_eq (bitpos0, bitpos1))
10174 return constant_boolean_node (false, type);
10175 break;
10176 case LT_EXPR:
10177 if (known_lt (bitpos0, bitpos1))
10178 return constant_boolean_node (true, type);
10179 if (known_ge (bitpos0, bitpos1))
10180 return constant_boolean_node (false, type);
10181 break;
10182 case LE_EXPR:
10183 if (known_le (bitpos0, bitpos1))
10184 return constant_boolean_node (true, type);
10185 if (known_gt (bitpos0, bitpos1))
10186 return constant_boolean_node (false, type);
10187 break;
10188 case GE_EXPR:
10189 if (known_ge (bitpos0, bitpos1))
10190 return constant_boolean_node (true, type);
10191 if (known_lt (bitpos0, bitpos1))
10192 return constant_boolean_node (false, type);
10193 break;
10194 case GT_EXPR:
10195 if (known_gt (bitpos0, bitpos1))
10196 return constant_boolean_node (true, type);
10197 if (known_le (bitpos0, bitpos1))
10198 return constant_boolean_node (false, type);
10199 break;
10200 default:;
10203 /* We can simplify the comparison to a comparison of the variable
10204 offset parts if the constant offset parts are equal.
10205 Be careful to use signed sizetype here because otherwise we
10206 mess with array offsets in the wrong way. This is possible
10207 because pointer arithmetic is restricted to retain within an
10208 object and overflow on pointer differences is undefined as of
10209 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
10210 else if (known_eq (bitpos0, bitpos1)
10211 && (equality_code
10212 || (indirect_base0
10213 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
10214 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
10216 /* By converting to signed sizetype we cover middle-end pointer
10217 arithmetic which operates on unsigned pointer types of size
10218 type size and ARRAY_REF offsets which are properly sign or
10219 zero extended from their type in case it is narrower than
10220 sizetype. */
10221 if (offset0 == NULL_TREE)
10222 offset0 = build_int_cst (ssizetype, 0);
10223 else
10224 offset0 = fold_convert_loc (loc, ssizetype, offset0);
10225 if (offset1 == NULL_TREE)
10226 offset1 = build_int_cst (ssizetype, 0);
10227 else
10228 offset1 = fold_convert_loc (loc, ssizetype, offset1);
10230 if (!equality_code
10231 && (pointer_may_wrap_p (base0, offset0, bitpos0)
10232 || pointer_may_wrap_p (base1, offset1, bitpos1)))
10233 fold_overflow_warning (("assuming pointer wraparound does not "
10234 "occur when comparing P +- C1 with "
10235 "P +- C2"),
10236 WARN_STRICT_OVERFLOW_COMPARISON);
10238 return fold_build2_loc (loc, code, type, offset0, offset1);
10241 /* For equal offsets we can simplify to a comparison of the
10242 base addresses. */
10243 else if (known_eq (bitpos0, bitpos1)
10244 && (indirect_base0
10245 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
10246 && (indirect_base1
10247 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
10248 && ((offset0 == offset1)
10249 || (offset0 && offset1
10250 && operand_equal_p (offset0, offset1, 0))))
10252 if (indirect_base0)
10253 base0 = build_fold_addr_expr_loc (loc, base0);
10254 if (indirect_base1)
10255 base1 = build_fold_addr_expr_loc (loc, base1);
10256 return fold_build2_loc (loc, code, type, base0, base1);
10258 /* Comparison between an ordinary (non-weak) symbol and a null
10259 pointer can be eliminated since such symbols must have a non
10260 null address. In C, relational expressions between pointers
10261 to objects and null pointers are undefined. The results
10262 below follow the C++ rules with the additional property that
10263 every object pointer compares greater than a null pointer.
10265 else if (((DECL_P (base0)
10266 && maybe_nonzero_address (base0) > 0
10267 /* Avoid folding references to struct members at offset 0 to
10268 prevent tests like '&ptr->firstmember == 0' from getting
10269 eliminated. When ptr is null, although the -> expression
10270 is strictly speaking invalid, GCC retains it as a matter
10271 of QoI. See PR c/44555. */
10272 && (offset0 == NULL_TREE && known_ne (bitpos0, 0)))
10273 || CONSTANT_CLASS_P (base0))
10274 && indirect_base0
10275 /* The caller guarantees that when one of the arguments is
10276 constant (i.e., null in this case) it is second. */
10277 && integer_zerop (arg1))
10279 switch (code)
10281 case EQ_EXPR:
10282 case LE_EXPR:
10283 case LT_EXPR:
10284 return constant_boolean_node (false, type);
10285 case GE_EXPR:
10286 case GT_EXPR:
10287 case NE_EXPR:
10288 return constant_boolean_node (true, type);
10289 default:
10290 gcc_unreachable ();
10295 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
10296 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
10297 the resulting offset is smaller in absolute value than the
10298 original one and has the same sign. */
10299 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10300 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
10301 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10302 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10303 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
10304 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
10305 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10306 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
10308 tree const1 = TREE_OPERAND (arg0, 1);
10309 tree const2 = TREE_OPERAND (arg1, 1);
10310 tree variable1 = TREE_OPERAND (arg0, 0);
10311 tree variable2 = TREE_OPERAND (arg1, 0);
10312 tree cst;
10313 const char * const warnmsg = G_("assuming signed overflow does not "
10314 "occur when combining constants around "
10315 "a comparison");
10317 /* Put the constant on the side where it doesn't overflow and is
10318 of lower absolute value and of same sign than before. */
10319 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
10320 ? MINUS_EXPR : PLUS_EXPR,
10321 const2, const1);
10322 if (!TREE_OVERFLOW (cst)
10323 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
10324 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
10326 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
10327 return fold_build2_loc (loc, code, type,
10328 variable1,
10329 fold_build2_loc (loc, TREE_CODE (arg1),
10330 TREE_TYPE (arg1),
10331 variable2, cst));
10334 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
10335 ? MINUS_EXPR : PLUS_EXPR,
10336 const1, const2);
10337 if (!TREE_OVERFLOW (cst)
10338 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
10339 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
10341 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
10342 return fold_build2_loc (loc, code, type,
10343 fold_build2_loc (loc, TREE_CODE (arg0),
10344 TREE_TYPE (arg0),
10345 variable1, cst),
10346 variable2);
10350 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
10351 if (tem)
10352 return tem;
10354 /* If we are comparing an expression that just has comparisons
10355 of two integer values, arithmetic expressions of those comparisons,
10356 and constants, we can simplify it. There are only three cases
10357 to check: the two values can either be equal, the first can be
10358 greater, or the second can be greater. Fold the expression for
10359 those three values. Since each value must be 0 or 1, we have
10360 eight possibilities, each of which corresponds to the constant 0
10361 or 1 or one of the six possible comparisons.
10363 This handles common cases like (a > b) == 0 but also handles
10364 expressions like ((x > y) - (y > x)) > 0, which supposedly
10365 occur in macroized code. */
10367 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
10369 tree cval1 = 0, cval2 = 0;
10371 if (twoval_comparison_p (arg0, &cval1, &cval2)
10372 /* Don't handle degenerate cases here; they should already
10373 have been handled anyway. */
10374 && cval1 != 0 && cval2 != 0
10375 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
10376 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
10377 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
10378 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
10379 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
10380 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
10381 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
10383 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
10384 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
10386 /* We can't just pass T to eval_subst in case cval1 or cval2
10387 was the same as ARG1. */
10389 tree high_result
10390 = fold_build2_loc (loc, code, type,
10391 eval_subst (loc, arg0, cval1, maxval,
10392 cval2, minval),
10393 arg1);
10394 tree equal_result
10395 = fold_build2_loc (loc, code, type,
10396 eval_subst (loc, arg0, cval1, maxval,
10397 cval2, maxval),
10398 arg1);
10399 tree low_result
10400 = fold_build2_loc (loc, code, type,
10401 eval_subst (loc, arg0, cval1, minval,
10402 cval2, maxval),
10403 arg1);
10405 /* All three of these results should be 0 or 1. Confirm they are.
10406 Then use those values to select the proper code to use. */
10408 if (TREE_CODE (high_result) == INTEGER_CST
10409 && TREE_CODE (equal_result) == INTEGER_CST
10410 && TREE_CODE (low_result) == INTEGER_CST)
10412 /* Make a 3-bit mask with the high-order bit being the
10413 value for `>', the next for '=', and the low for '<'. */
10414 switch ((integer_onep (high_result) * 4)
10415 + (integer_onep (equal_result) * 2)
10416 + integer_onep (low_result))
10418 case 0:
10419 /* Always false. */
10420 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10421 case 1:
10422 code = LT_EXPR;
10423 break;
10424 case 2:
10425 code = EQ_EXPR;
10426 break;
10427 case 3:
10428 code = LE_EXPR;
10429 break;
10430 case 4:
10431 code = GT_EXPR;
10432 break;
10433 case 5:
10434 code = NE_EXPR;
10435 break;
10436 case 6:
10437 code = GE_EXPR;
10438 break;
10439 case 7:
10440 /* Always true. */
10441 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10444 return fold_build2_loc (loc, code, type, cval1, cval2);
10449 return NULL_TREE;
10453 /* Subroutine of fold_binary. Optimize complex multiplications of the
10454 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
10455 argument EXPR represents the expression "z" of type TYPE. */
10457 static tree
10458 fold_mult_zconjz (location_t loc, tree type, tree expr)
10460 tree itype = TREE_TYPE (type);
10461 tree rpart, ipart, tem;
10463 if (TREE_CODE (expr) == COMPLEX_EXPR)
10465 rpart = TREE_OPERAND (expr, 0);
10466 ipart = TREE_OPERAND (expr, 1);
10468 else if (TREE_CODE (expr) == COMPLEX_CST)
10470 rpart = TREE_REALPART (expr);
10471 ipart = TREE_IMAGPART (expr);
10473 else
10475 expr = save_expr (expr);
10476 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
10477 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
10480 rpart = save_expr (rpart);
10481 ipart = save_expr (ipart);
10482 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
10483 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
10484 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
10485 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
10486 build_zero_cst (itype));
10490 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
10491 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
10492 true if successful. */
10494 static bool
10495 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts)
10497 unsigned HOST_WIDE_INT i, nunits;
10499 if (TREE_CODE (arg) == VECTOR_CST
10500 && VECTOR_CST_NELTS (arg).is_constant (&nunits))
10502 for (i = 0; i < nunits; ++i)
10503 elts[i] = VECTOR_CST_ELT (arg, i);
10505 else if (TREE_CODE (arg) == CONSTRUCTOR)
10507 constructor_elt *elt;
10509 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
10510 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
10511 return false;
10512 else
10513 elts[i] = elt->value;
10515 else
10516 return false;
10517 for (; i < nelts; i++)
10518 elts[i]
10519 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
10520 return true;
10523 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
10524 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
10525 NULL_TREE otherwise. */
10527 tree
10528 fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel)
10530 unsigned int i;
10531 unsigned HOST_WIDE_INT nelts;
10532 bool need_ctor = false;
10534 if (!sel.length ().is_constant (&nelts))
10535 return NULL_TREE;
10536 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts)
10537 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts)
10538 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts));
10539 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
10540 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
10541 return NULL_TREE;
10543 tree *in_elts = XALLOCAVEC (tree, nelts * 2);
10544 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts)
10545 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts))
10546 return NULL_TREE;
10548 tree_vector_builder out_elts (type, nelts, 1);
10549 for (i = 0; i < nelts; i++)
10551 HOST_WIDE_INT index;
10552 if (!sel[i].is_constant (&index))
10553 return NULL_TREE;
10554 if (!CONSTANT_CLASS_P (in_elts[index]))
10555 need_ctor = true;
10556 out_elts.quick_push (unshare_expr (in_elts[index]));
10559 if (need_ctor)
10561 vec<constructor_elt, va_gc> *v;
10562 vec_alloc (v, nelts);
10563 for (i = 0; i < nelts; i++)
10564 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]);
10565 return build_constructor (type, v);
10567 else
10568 return out_elts.build ();
10571 /* Try to fold a pointer difference of type TYPE two address expressions of
10572 array references AREF0 and AREF1 using location LOC. Return a
10573 simplified expression for the difference or NULL_TREE. */
10575 static tree
10576 fold_addr_of_array_ref_difference (location_t loc, tree type,
10577 tree aref0, tree aref1,
10578 bool use_pointer_diff)
10580 tree base0 = TREE_OPERAND (aref0, 0);
10581 tree base1 = TREE_OPERAND (aref1, 0);
10582 tree base_offset = build_int_cst (type, 0);
10584 /* If the bases are array references as well, recurse. If the bases
10585 are pointer indirections compute the difference of the pointers.
10586 If the bases are equal, we are set. */
10587 if ((TREE_CODE (base0) == ARRAY_REF
10588 && TREE_CODE (base1) == ARRAY_REF
10589 && (base_offset
10590 = fold_addr_of_array_ref_difference (loc, type, base0, base1,
10591 use_pointer_diff)))
10592 || (INDIRECT_REF_P (base0)
10593 && INDIRECT_REF_P (base1)
10594 && (base_offset
10595 = use_pointer_diff
10596 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type,
10597 TREE_OPERAND (base0, 0),
10598 TREE_OPERAND (base1, 0))
10599 : fold_binary_loc (loc, MINUS_EXPR, type,
10600 fold_convert (type,
10601 TREE_OPERAND (base0, 0)),
10602 fold_convert (type,
10603 TREE_OPERAND (base1, 0)))))
10604 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
10606 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
10607 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
10608 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
10609 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1);
10610 return fold_build2_loc (loc, PLUS_EXPR, type,
10611 base_offset,
10612 fold_build2_loc (loc, MULT_EXPR, type,
10613 diff, esz));
10615 return NULL_TREE;
10618 /* If the real or vector real constant CST of type TYPE has an exact
10619 inverse, return it, else return NULL. */
10621 tree
10622 exact_inverse (tree type, tree cst)
10624 REAL_VALUE_TYPE r;
10625 tree unit_type;
10626 machine_mode mode;
10628 switch (TREE_CODE (cst))
10630 case REAL_CST:
10631 r = TREE_REAL_CST (cst);
10633 if (exact_real_inverse (TYPE_MODE (type), &r))
10634 return build_real (type, r);
10636 return NULL_TREE;
10638 case VECTOR_CST:
10640 unit_type = TREE_TYPE (type);
10641 mode = TYPE_MODE (unit_type);
10643 tree_vector_builder elts;
10644 if (!elts.new_unary_operation (type, cst, false))
10645 return NULL_TREE;
10646 unsigned int count = elts.encoded_nelts ();
10647 for (unsigned int i = 0; i < count; ++i)
10649 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
10650 if (!exact_real_inverse (mode, &r))
10651 return NULL_TREE;
10652 elts.quick_push (build_real (unit_type, r));
10655 return elts.build ();
10658 default:
10659 return NULL_TREE;
10663 /* Mask out the tz least significant bits of X of type TYPE where
10664 tz is the number of trailing zeroes in Y. */
10665 static wide_int
10666 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
10668 int tz = wi::ctz (y);
10669 if (tz > 0)
10670 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
10671 return x;
10674 /* Return true when T is an address and is known to be nonzero.
10675 For floating point we further ensure that T is not denormal.
10676 Similar logic is present in nonzero_address in rtlanal.h.
10678 If the return value is based on the assumption that signed overflow
10679 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
10680 change *STRICT_OVERFLOW_P. */
10682 static bool
10683 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
10685 tree type = TREE_TYPE (t);
10686 enum tree_code code;
10688 /* Doing something useful for floating point would need more work. */
10689 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
10690 return false;
10692 code = TREE_CODE (t);
10693 switch (TREE_CODE_CLASS (code))
10695 case tcc_unary:
10696 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
10697 strict_overflow_p);
10698 case tcc_binary:
10699 case tcc_comparison:
10700 return tree_binary_nonzero_warnv_p (code, type,
10701 TREE_OPERAND (t, 0),
10702 TREE_OPERAND (t, 1),
10703 strict_overflow_p);
10704 case tcc_constant:
10705 case tcc_declaration:
10706 case tcc_reference:
10707 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
10709 default:
10710 break;
10713 switch (code)
10715 case TRUTH_NOT_EXPR:
10716 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
10717 strict_overflow_p);
10719 case TRUTH_AND_EXPR:
10720 case TRUTH_OR_EXPR:
10721 case TRUTH_XOR_EXPR:
10722 return tree_binary_nonzero_warnv_p (code, type,
10723 TREE_OPERAND (t, 0),
10724 TREE_OPERAND (t, 1),
10725 strict_overflow_p);
10727 case COND_EXPR:
10728 case CONSTRUCTOR:
10729 case OBJ_TYPE_REF:
10730 case ASSERT_EXPR:
10731 case ADDR_EXPR:
10732 case WITH_SIZE_EXPR:
10733 case SSA_NAME:
10734 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
10736 case COMPOUND_EXPR:
10737 case MODIFY_EXPR:
10738 case BIND_EXPR:
10739 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
10740 strict_overflow_p);
10742 case SAVE_EXPR:
10743 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
10744 strict_overflow_p);
10746 case CALL_EXPR:
10748 tree fndecl = get_callee_fndecl (t);
10749 if (!fndecl) return false;
10750 if (flag_delete_null_pointer_checks && !flag_check_new
10751 && DECL_IS_OPERATOR_NEW_P (fndecl)
10752 && !TREE_NOTHROW (fndecl))
10753 return true;
10754 if (flag_delete_null_pointer_checks
10755 && lookup_attribute ("returns_nonnull",
10756 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
10757 return true;
10758 return alloca_call_p (t);
10761 default:
10762 break;
10764 return false;
10767 /* Return true when T is an address and is known to be nonzero.
10768 Handle warnings about undefined signed overflow. */
10770 bool
10771 tree_expr_nonzero_p (tree t)
10773 bool ret, strict_overflow_p;
10775 strict_overflow_p = false;
10776 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
10777 if (strict_overflow_p)
10778 fold_overflow_warning (("assuming signed overflow does not occur when "
10779 "determining that expression is always "
10780 "non-zero"),
10781 WARN_STRICT_OVERFLOW_MISC);
10782 return ret;
10785 /* Return true if T is known not to be equal to an integer W. */
10787 bool
10788 expr_not_equal_to (tree t, const wide_int &w)
10790 int_range_max vr;
10791 switch (TREE_CODE (t))
10793 case INTEGER_CST:
10794 return wi::to_wide (t) != w;
10796 case SSA_NAME:
10797 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
10798 return false;
10800 if (cfun)
10801 get_range_query (cfun)->range_of_expr (vr, t);
10802 else
10803 get_global_range_query ()->range_of_expr (vr, t);
10805 if (!vr.undefined_p ()
10806 && !vr.contains_p (wide_int_to_tree (TREE_TYPE (t), w)))
10807 return true;
10808 /* If T has some known zero bits and W has any of those bits set,
10809 then T is known not to be equal to W. */
10810 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
10811 TYPE_PRECISION (TREE_TYPE (t))), 0))
10812 return true;
10813 return false;
10815 default:
10816 return false;
10820 /* Fold a binary expression of code CODE and type TYPE with operands
10821 OP0 and OP1. LOC is the location of the resulting expression.
10822 Return the folded expression if folding is successful. Otherwise,
10823 return NULL_TREE. */
10825 tree
10826 fold_binary_loc (location_t loc, enum tree_code code, tree type,
10827 tree op0, tree op1)
10829 enum tree_code_class kind = TREE_CODE_CLASS (code);
10830 tree arg0, arg1, tem;
10831 tree t1 = NULL_TREE;
10832 bool strict_overflow_p;
10833 unsigned int prec;
10835 gcc_assert (IS_EXPR_CODE_CLASS (kind)
10836 && TREE_CODE_LENGTH (code) == 2
10837 && op0 != NULL_TREE
10838 && op1 != NULL_TREE);
10840 arg0 = op0;
10841 arg1 = op1;
10843 /* Strip any conversions that don't change the mode. This is
10844 safe for every expression, except for a comparison expression
10845 because its signedness is derived from its operands. So, in
10846 the latter case, only strip conversions that don't change the
10847 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
10848 preserved.
10850 Note that this is done as an internal manipulation within the
10851 constant folder, in order to find the simplest representation
10852 of the arguments so that their form can be studied. In any
10853 cases, the appropriate type conversions should be put back in
10854 the tree that will get out of the constant folder. */
10856 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
10858 STRIP_SIGN_NOPS (arg0);
10859 STRIP_SIGN_NOPS (arg1);
10861 else
10863 STRIP_NOPS (arg0);
10864 STRIP_NOPS (arg1);
10867 /* Note that TREE_CONSTANT isn't enough: static var addresses are
10868 constant but we can't do arithmetic on them. */
10869 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
10871 tem = const_binop (code, type, arg0, arg1);
10872 if (tem != NULL_TREE)
10874 if (TREE_TYPE (tem) != type)
10875 tem = fold_convert_loc (loc, type, tem);
10876 return tem;
10880 /* If this is a commutative operation, and ARG0 is a constant, move it
10881 to ARG1 to reduce the number of tests below. */
10882 if (commutative_tree_code (code)
10883 && tree_swap_operands_p (arg0, arg1))
10884 return fold_build2_loc (loc, code, type, op1, op0);
10886 /* Likewise if this is a comparison, and ARG0 is a constant, move it
10887 to ARG1 to reduce the number of tests below. */
10888 if (kind == tcc_comparison
10889 && tree_swap_operands_p (arg0, arg1))
10890 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
10892 tem = generic_simplify (loc, code, type, op0, op1);
10893 if (tem)
10894 return tem;
10896 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
10898 First check for cases where an arithmetic operation is applied to a
10899 compound, conditional, or comparison operation. Push the arithmetic
10900 operation inside the compound or conditional to see if any folding
10901 can then be done. Convert comparison to conditional for this purpose.
10902 The also optimizes non-constant cases that used to be done in
10903 expand_expr.
10905 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
10906 one of the operands is a comparison and the other is a comparison, a
10907 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
10908 code below would make the expression more complex. Change it to a
10909 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
10910 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
10912 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
10913 || code == EQ_EXPR || code == NE_EXPR)
10914 && !VECTOR_TYPE_P (TREE_TYPE (arg0))
10915 && ((truth_value_p (TREE_CODE (arg0))
10916 && (truth_value_p (TREE_CODE (arg1))
10917 || (TREE_CODE (arg1) == BIT_AND_EXPR
10918 && integer_onep (TREE_OPERAND (arg1, 1)))))
10919 || (truth_value_p (TREE_CODE (arg1))
10920 && (truth_value_p (TREE_CODE (arg0))
10921 || (TREE_CODE (arg0) == BIT_AND_EXPR
10922 && integer_onep (TREE_OPERAND (arg0, 1)))))))
10924 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
10925 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
10926 : TRUTH_XOR_EXPR,
10927 boolean_type_node,
10928 fold_convert_loc (loc, boolean_type_node, arg0),
10929 fold_convert_loc (loc, boolean_type_node, arg1));
10931 if (code == EQ_EXPR)
10932 tem = invert_truthvalue_loc (loc, tem);
10934 return fold_convert_loc (loc, type, tem);
10937 if (TREE_CODE_CLASS (code) == tcc_binary
10938 || TREE_CODE_CLASS (code) == tcc_comparison)
10940 if (TREE_CODE (arg0) == COMPOUND_EXPR)
10942 tem = fold_build2_loc (loc, code, type,
10943 fold_convert_loc (loc, TREE_TYPE (op0),
10944 TREE_OPERAND (arg0, 1)), op1);
10945 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
10946 tem);
10948 if (TREE_CODE (arg1) == COMPOUND_EXPR)
10950 tem = fold_build2_loc (loc, code, type, op0,
10951 fold_convert_loc (loc, TREE_TYPE (op1),
10952 TREE_OPERAND (arg1, 1)));
10953 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
10954 tem);
10957 if (TREE_CODE (arg0) == COND_EXPR
10958 || TREE_CODE (arg0) == VEC_COND_EXPR
10959 || COMPARISON_CLASS_P (arg0))
10961 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
10962 arg0, arg1,
10963 /*cond_first_p=*/1);
10964 if (tem != NULL_TREE)
10965 return tem;
10968 if (TREE_CODE (arg1) == COND_EXPR
10969 || TREE_CODE (arg1) == VEC_COND_EXPR
10970 || COMPARISON_CLASS_P (arg1))
10972 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
10973 arg1, arg0,
10974 /*cond_first_p=*/0);
10975 if (tem != NULL_TREE)
10976 return tem;
10980 switch (code)
10982 case MEM_REF:
10983 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
10984 if (TREE_CODE (arg0) == ADDR_EXPR
10985 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
10987 tree iref = TREE_OPERAND (arg0, 0);
10988 return fold_build2 (MEM_REF, type,
10989 TREE_OPERAND (iref, 0),
10990 int_const_binop (PLUS_EXPR, arg1,
10991 TREE_OPERAND (iref, 1)));
10994 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
10995 if (TREE_CODE (arg0) == ADDR_EXPR
10996 && handled_component_p (TREE_OPERAND (arg0, 0)))
10998 tree base;
10999 poly_int64 coffset;
11000 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
11001 &coffset);
11002 if (!base)
11003 return NULL_TREE;
11004 return fold_build2 (MEM_REF, type,
11005 build1 (ADDR_EXPR, TREE_TYPE (arg0), base),
11006 int_const_binop (PLUS_EXPR, arg1,
11007 size_int (coffset)));
11010 return NULL_TREE;
11012 case POINTER_PLUS_EXPR:
11013 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
11014 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
11015 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
11016 return fold_convert_loc (loc, type,
11017 fold_build2_loc (loc, PLUS_EXPR, sizetype,
11018 fold_convert_loc (loc, sizetype,
11019 arg1),
11020 fold_convert_loc (loc, sizetype,
11021 arg0)));
11023 return NULL_TREE;
11025 case PLUS_EXPR:
11026 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
11028 /* X + (X / CST) * -CST is X % CST. */
11029 if (TREE_CODE (arg1) == MULT_EXPR
11030 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
11031 && operand_equal_p (arg0,
11032 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
11034 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
11035 tree cst1 = TREE_OPERAND (arg1, 1);
11036 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
11037 cst1, cst0);
11038 if (sum && integer_zerop (sum))
11039 return fold_convert_loc (loc, type,
11040 fold_build2_loc (loc, TRUNC_MOD_EXPR,
11041 TREE_TYPE (arg0), arg0,
11042 cst0));
11046 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
11047 one. Make sure the type is not saturating and has the signedness of
11048 the stripped operands, as fold_plusminus_mult_expr will re-associate.
11049 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
11050 if ((TREE_CODE (arg0) == MULT_EXPR
11051 || TREE_CODE (arg1) == MULT_EXPR)
11052 && !TYPE_SATURATING (type)
11053 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
11054 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
11055 && (!FLOAT_TYPE_P (type) || flag_associative_math))
11057 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
11058 if (tem)
11059 return tem;
11062 if (! FLOAT_TYPE_P (type))
11064 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
11065 (plus (plus (mult) (mult)) (foo)) so that we can
11066 take advantage of the factoring cases below. */
11067 if (ANY_INTEGRAL_TYPE_P (type)
11068 && TYPE_OVERFLOW_WRAPS (type)
11069 && (((TREE_CODE (arg0) == PLUS_EXPR
11070 || TREE_CODE (arg0) == MINUS_EXPR)
11071 && TREE_CODE (arg1) == MULT_EXPR)
11072 || ((TREE_CODE (arg1) == PLUS_EXPR
11073 || TREE_CODE (arg1) == MINUS_EXPR)
11074 && TREE_CODE (arg0) == MULT_EXPR)))
11076 tree parg0, parg1, parg, marg;
11077 enum tree_code pcode;
11079 if (TREE_CODE (arg1) == MULT_EXPR)
11080 parg = arg0, marg = arg1;
11081 else
11082 parg = arg1, marg = arg0;
11083 pcode = TREE_CODE (parg);
11084 parg0 = TREE_OPERAND (parg, 0);
11085 parg1 = TREE_OPERAND (parg, 1);
11086 STRIP_NOPS (parg0);
11087 STRIP_NOPS (parg1);
11089 if (TREE_CODE (parg0) == MULT_EXPR
11090 && TREE_CODE (parg1) != MULT_EXPR)
11091 return fold_build2_loc (loc, pcode, type,
11092 fold_build2_loc (loc, PLUS_EXPR, type,
11093 fold_convert_loc (loc, type,
11094 parg0),
11095 fold_convert_loc (loc, type,
11096 marg)),
11097 fold_convert_loc (loc, type, parg1));
11098 if (TREE_CODE (parg0) != MULT_EXPR
11099 && TREE_CODE (parg1) == MULT_EXPR)
11100 return
11101 fold_build2_loc (loc, PLUS_EXPR, type,
11102 fold_convert_loc (loc, type, parg0),
11103 fold_build2_loc (loc, pcode, type,
11104 fold_convert_loc (loc, type, marg),
11105 fold_convert_loc (loc, type,
11106 parg1)));
11109 else
11111 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
11112 to __complex__ ( x, y ). This is not the same for SNaNs or
11113 if signed zeros are involved. */
11114 if (!HONOR_SNANS (arg0)
11115 && !HONOR_SIGNED_ZEROS (arg0)
11116 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
11118 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
11119 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
11120 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
11121 bool arg0rz = false, arg0iz = false;
11122 if ((arg0r && (arg0rz = real_zerop (arg0r)))
11123 || (arg0i && (arg0iz = real_zerop (arg0i))))
11125 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
11126 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
11127 if (arg0rz && arg1i && real_zerop (arg1i))
11129 tree rp = arg1r ? arg1r
11130 : build1 (REALPART_EXPR, rtype, arg1);
11131 tree ip = arg0i ? arg0i
11132 : build1 (IMAGPART_EXPR, rtype, arg0);
11133 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
11135 else if (arg0iz && arg1r && real_zerop (arg1r))
11137 tree rp = arg0r ? arg0r
11138 : build1 (REALPART_EXPR, rtype, arg0);
11139 tree ip = arg1i ? arg1i
11140 : build1 (IMAGPART_EXPR, rtype, arg1);
11141 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
11146 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
11147 We associate floats only if the user has specified
11148 -fassociative-math. */
11149 if (flag_associative_math
11150 && TREE_CODE (arg1) == PLUS_EXPR
11151 && TREE_CODE (arg0) != MULT_EXPR)
11153 tree tree10 = TREE_OPERAND (arg1, 0);
11154 tree tree11 = TREE_OPERAND (arg1, 1);
11155 if (TREE_CODE (tree11) == MULT_EXPR
11156 && TREE_CODE (tree10) == MULT_EXPR)
11158 tree tree0;
11159 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
11160 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
11163 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
11164 We associate floats only if the user has specified
11165 -fassociative-math. */
11166 if (flag_associative_math
11167 && TREE_CODE (arg0) == PLUS_EXPR
11168 && TREE_CODE (arg1) != MULT_EXPR)
11170 tree tree00 = TREE_OPERAND (arg0, 0);
11171 tree tree01 = TREE_OPERAND (arg0, 1);
11172 if (TREE_CODE (tree01) == MULT_EXPR
11173 && TREE_CODE (tree00) == MULT_EXPR)
11175 tree tree0;
11176 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
11177 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
11182 bit_rotate:
11183 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
11184 is a rotate of A by C1 bits. */
11185 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
11186 is a rotate of A by B bits.
11187 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
11188 though in this case CODE must be | and not + or ^, otherwise
11189 it doesn't return A when B is 0. */
11191 enum tree_code code0, code1;
11192 tree rtype;
11193 code0 = TREE_CODE (arg0);
11194 code1 = TREE_CODE (arg1);
11195 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
11196 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
11197 && operand_equal_p (TREE_OPERAND (arg0, 0),
11198 TREE_OPERAND (arg1, 0), 0)
11199 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
11200 TYPE_UNSIGNED (rtype))
11201 /* Only create rotates in complete modes. Other cases are not
11202 expanded properly. */
11203 && (element_precision (rtype)
11204 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
11206 tree tree01, tree11;
11207 tree orig_tree01, orig_tree11;
11208 enum tree_code code01, code11;
11210 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1);
11211 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1);
11212 STRIP_NOPS (tree01);
11213 STRIP_NOPS (tree11);
11214 code01 = TREE_CODE (tree01);
11215 code11 = TREE_CODE (tree11);
11216 if (code11 != MINUS_EXPR
11217 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR))
11219 std::swap (code0, code1);
11220 std::swap (code01, code11);
11221 std::swap (tree01, tree11);
11222 std::swap (orig_tree01, orig_tree11);
11224 if (code01 == INTEGER_CST
11225 && code11 == INTEGER_CST
11226 && (wi::to_widest (tree01) + wi::to_widest (tree11)
11227 == element_precision (rtype)))
11229 tem = build2_loc (loc, LROTATE_EXPR,
11230 rtype, TREE_OPERAND (arg0, 0),
11231 code0 == LSHIFT_EXPR
11232 ? orig_tree01 : orig_tree11);
11233 return fold_convert_loc (loc, type, tem);
11235 else if (code11 == MINUS_EXPR)
11237 tree tree110, tree111;
11238 tree110 = TREE_OPERAND (tree11, 0);
11239 tree111 = TREE_OPERAND (tree11, 1);
11240 STRIP_NOPS (tree110);
11241 STRIP_NOPS (tree111);
11242 if (TREE_CODE (tree110) == INTEGER_CST
11243 && compare_tree_int (tree110,
11244 element_precision (rtype)) == 0
11245 && operand_equal_p (tree01, tree111, 0))
11247 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
11248 ? LROTATE_EXPR : RROTATE_EXPR),
11249 rtype, TREE_OPERAND (arg0, 0),
11250 orig_tree01);
11251 return fold_convert_loc (loc, type, tem);
11254 else if (code == BIT_IOR_EXPR
11255 && code11 == BIT_AND_EXPR
11256 && pow2p_hwi (element_precision (rtype)))
11258 tree tree110, tree111;
11259 tree110 = TREE_OPERAND (tree11, 0);
11260 tree111 = TREE_OPERAND (tree11, 1);
11261 STRIP_NOPS (tree110);
11262 STRIP_NOPS (tree111);
11263 if (TREE_CODE (tree110) == NEGATE_EXPR
11264 && TREE_CODE (tree111) == INTEGER_CST
11265 && compare_tree_int (tree111,
11266 element_precision (rtype) - 1) == 0
11267 && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0))
11269 tem = build2_loc (loc, (code0 == LSHIFT_EXPR
11270 ? LROTATE_EXPR : RROTATE_EXPR),
11271 rtype, TREE_OPERAND (arg0, 0),
11272 orig_tree01);
11273 return fold_convert_loc (loc, type, tem);
11279 associate:
11280 /* In most languages, can't associate operations on floats through
11281 parentheses. Rather than remember where the parentheses were, we
11282 don't associate floats at all, unless the user has specified
11283 -fassociative-math.
11284 And, we need to make sure type is not saturating. */
11286 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
11287 && !TYPE_SATURATING (type))
11289 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0;
11290 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1;
11291 tree atype = type;
11292 bool ok = true;
11294 /* Split both trees into variables, constants, and literals. Then
11295 associate each group together, the constants with literals,
11296 then the result with variables. This increases the chances of
11297 literals being recombined later and of generating relocatable
11298 expressions for the sum of a constant and literal. */
11299 var0 = split_tree (arg0, type, code,
11300 &minus_var0, &con0, &minus_con0,
11301 &lit0, &minus_lit0, 0);
11302 var1 = split_tree (arg1, type, code,
11303 &minus_var1, &con1, &minus_con1,
11304 &lit1, &minus_lit1, code == MINUS_EXPR);
11306 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
11307 if (code == MINUS_EXPR)
11308 code = PLUS_EXPR;
11310 /* With undefined overflow prefer doing association in a type
11311 which wraps on overflow, if that is one of the operand types. */
11312 if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
11313 && !TYPE_OVERFLOW_WRAPS (type))
11315 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11316 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
11317 atype = TREE_TYPE (arg0);
11318 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
11319 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
11320 atype = TREE_TYPE (arg1);
11321 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
11324 /* With undefined overflow we can only associate constants with one
11325 variable, and constants whose association doesn't overflow. */
11326 if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype))
11327 && !TYPE_OVERFLOW_WRAPS (atype))
11329 if ((var0 && var1) || (minus_var0 && minus_var1))
11331 /* ??? If split_tree would handle NEGATE_EXPR we could
11332 simply reject these cases and the allowed cases would
11333 be the var0/minus_var1 ones. */
11334 tree tmp0 = var0 ? var0 : minus_var0;
11335 tree tmp1 = var1 ? var1 : minus_var1;
11336 bool one_neg = false;
11338 if (TREE_CODE (tmp0) == NEGATE_EXPR)
11340 tmp0 = TREE_OPERAND (tmp0, 0);
11341 one_neg = !one_neg;
11343 if (CONVERT_EXPR_P (tmp0)
11344 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
11345 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
11346 <= TYPE_PRECISION (atype)))
11347 tmp0 = TREE_OPERAND (tmp0, 0);
11348 if (TREE_CODE (tmp1) == NEGATE_EXPR)
11350 tmp1 = TREE_OPERAND (tmp1, 0);
11351 one_neg = !one_neg;
11353 if (CONVERT_EXPR_P (tmp1)
11354 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
11355 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
11356 <= TYPE_PRECISION (atype)))
11357 tmp1 = TREE_OPERAND (tmp1, 0);
11358 /* The only case we can still associate with two variables
11359 is if they cancel out. */
11360 if (!one_neg
11361 || !operand_equal_p (tmp0, tmp1, 0))
11362 ok = false;
11364 else if ((var0 && minus_var1
11365 && ! operand_equal_p (var0, minus_var1, 0))
11366 || (minus_var0 && var1
11367 && ! operand_equal_p (minus_var0, var1, 0)))
11368 ok = false;
11371 /* Only do something if we found more than two objects. Otherwise,
11372 nothing has changed and we risk infinite recursion. */
11373 if (ok
11374 && ((var0 != 0) + (var1 != 0)
11375 + (minus_var0 != 0) + (minus_var1 != 0)
11376 + (con0 != 0) + (con1 != 0)
11377 + (minus_con0 != 0) + (minus_con1 != 0)
11378 + (lit0 != 0) + (lit1 != 0)
11379 + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2)
11381 var0 = associate_trees (loc, var0, var1, code, atype);
11382 minus_var0 = associate_trees (loc, minus_var0, minus_var1,
11383 code, atype);
11384 con0 = associate_trees (loc, con0, con1, code, atype);
11385 minus_con0 = associate_trees (loc, minus_con0, minus_con1,
11386 code, atype);
11387 lit0 = associate_trees (loc, lit0, lit1, code, atype);
11388 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
11389 code, atype);
11391 if (minus_var0 && var0)
11393 var0 = associate_trees (loc, var0, minus_var0,
11394 MINUS_EXPR, atype);
11395 minus_var0 = 0;
11397 if (minus_con0 && con0)
11399 con0 = associate_trees (loc, con0, minus_con0,
11400 MINUS_EXPR, atype);
11401 minus_con0 = 0;
11404 /* Preserve the MINUS_EXPR if the negative part of the literal is
11405 greater than the positive part. Otherwise, the multiplicative
11406 folding code (i.e extract_muldiv) may be fooled in case
11407 unsigned constants are subtracted, like in the following
11408 example: ((X*2 + 4) - 8U)/2. */
11409 if (minus_lit0 && lit0)
11411 if (TREE_CODE (lit0) == INTEGER_CST
11412 && TREE_CODE (minus_lit0) == INTEGER_CST
11413 && tree_int_cst_lt (lit0, minus_lit0)
11414 /* But avoid ending up with only negated parts. */
11415 && (var0 || con0))
11417 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
11418 MINUS_EXPR, atype);
11419 lit0 = 0;
11421 else
11423 lit0 = associate_trees (loc, lit0, minus_lit0,
11424 MINUS_EXPR, atype);
11425 minus_lit0 = 0;
11429 /* Don't introduce overflows through reassociation. */
11430 if ((lit0 && TREE_OVERFLOW_P (lit0))
11431 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0)))
11432 return NULL_TREE;
11434 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
11435 con0 = associate_trees (loc, con0, lit0, code, atype);
11436 lit0 = 0;
11437 minus_con0 = associate_trees (loc, minus_con0, minus_lit0,
11438 code, atype);
11439 minus_lit0 = 0;
11441 /* Eliminate minus_con0. */
11442 if (minus_con0)
11444 if (con0)
11445 con0 = associate_trees (loc, con0, minus_con0,
11446 MINUS_EXPR, atype);
11447 else if (var0)
11448 var0 = associate_trees (loc, var0, minus_con0,
11449 MINUS_EXPR, atype);
11450 else
11451 gcc_unreachable ();
11452 minus_con0 = 0;
11455 /* Eliminate minus_var0. */
11456 if (minus_var0)
11458 if (con0)
11459 con0 = associate_trees (loc, con0, minus_var0,
11460 MINUS_EXPR, atype);
11461 else
11462 gcc_unreachable ();
11463 minus_var0 = 0;
11466 return
11467 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
11468 code, atype));
11472 return NULL_TREE;
11474 case POINTER_DIFF_EXPR:
11475 case MINUS_EXPR:
11476 /* Fold &a[i] - &a[j] to i-j. */
11477 if (TREE_CODE (arg0) == ADDR_EXPR
11478 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
11479 && TREE_CODE (arg1) == ADDR_EXPR
11480 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
11482 tree tem = fold_addr_of_array_ref_difference (loc, type,
11483 TREE_OPERAND (arg0, 0),
11484 TREE_OPERAND (arg1, 0),
11485 code
11486 == POINTER_DIFF_EXPR);
11487 if (tem)
11488 return tem;
11491 /* Further transformations are not for pointers. */
11492 if (code == POINTER_DIFF_EXPR)
11493 return NULL_TREE;
11495 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
11496 if (TREE_CODE (arg0) == NEGATE_EXPR
11497 && negate_expr_p (op1)
11498 /* If arg0 is e.g. unsigned int and type is int, then this could
11499 introduce UB, because if A is INT_MIN at runtime, the original
11500 expression can be well defined while the latter is not.
11501 See PR83269. */
11502 && !(ANY_INTEGRAL_TYPE_P (type)
11503 && TYPE_OVERFLOW_UNDEFINED (type)
11504 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11505 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
11506 return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (op1),
11507 fold_convert_loc (loc, type,
11508 TREE_OPERAND (arg0, 0)));
11510 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
11511 __complex__ ( x, -y ). This is not the same for SNaNs or if
11512 signed zeros are involved. */
11513 if (!HONOR_SNANS (arg0)
11514 && !HONOR_SIGNED_ZEROS (arg0)
11515 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
11517 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
11518 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
11519 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
11520 bool arg0rz = false, arg0iz = false;
11521 if ((arg0r && (arg0rz = real_zerop (arg0r)))
11522 || (arg0i && (arg0iz = real_zerop (arg0i))))
11524 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
11525 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
11526 if (arg0rz && arg1i && real_zerop (arg1i))
11528 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
11529 arg1r ? arg1r
11530 : build1 (REALPART_EXPR, rtype, arg1));
11531 tree ip = arg0i ? arg0i
11532 : build1 (IMAGPART_EXPR, rtype, arg0);
11533 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
11535 else if (arg0iz && arg1r && real_zerop (arg1r))
11537 tree rp = arg0r ? arg0r
11538 : build1 (REALPART_EXPR, rtype, arg0);
11539 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
11540 arg1i ? arg1i
11541 : build1 (IMAGPART_EXPR, rtype, arg1));
11542 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
11547 /* A - B -> A + (-B) if B is easily negatable. */
11548 if (negate_expr_p (op1)
11549 && ! TYPE_OVERFLOW_SANITIZED (type)
11550 && ((FLOAT_TYPE_P (type)
11551 /* Avoid this transformation if B is a positive REAL_CST. */
11552 && (TREE_CODE (op1) != REAL_CST
11553 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
11554 || INTEGRAL_TYPE_P (type)))
11555 return fold_build2_loc (loc, PLUS_EXPR, type,
11556 fold_convert_loc (loc, type, arg0),
11557 negate_expr (op1));
11559 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
11560 one. Make sure the type is not saturating and has the signedness of
11561 the stripped operands, as fold_plusminus_mult_expr will re-associate.
11562 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
11563 if ((TREE_CODE (arg0) == MULT_EXPR
11564 || TREE_CODE (arg1) == MULT_EXPR)
11565 && !TYPE_SATURATING (type)
11566 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
11567 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
11568 && (!FLOAT_TYPE_P (type) || flag_associative_math))
11570 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
11571 if (tem)
11572 return tem;
11575 goto associate;
11577 case MULT_EXPR:
11578 if (! FLOAT_TYPE_P (type))
11580 /* Transform x * -C into -x * C if x is easily negatable. */
11581 if (TREE_CODE (op1) == INTEGER_CST
11582 && tree_int_cst_sgn (op1) == -1
11583 && negate_expr_p (op0)
11584 && negate_expr_p (op1)
11585 && (tem = negate_expr (op1)) != op1
11586 && ! TREE_OVERFLOW (tem))
11587 return fold_build2_loc (loc, MULT_EXPR, type,
11588 fold_convert_loc (loc, type,
11589 negate_expr (op0)), tem);
11591 strict_overflow_p = false;
11592 if (TREE_CODE (arg1) == INTEGER_CST
11593 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11594 &strict_overflow_p)) != 0)
11596 if (strict_overflow_p)
11597 fold_overflow_warning (("assuming signed overflow does not "
11598 "occur when simplifying "
11599 "multiplication"),
11600 WARN_STRICT_OVERFLOW_MISC);
11601 return fold_convert_loc (loc, type, tem);
11604 /* Optimize z * conj(z) for integer complex numbers. */
11605 if (TREE_CODE (arg0) == CONJ_EXPR
11606 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11607 return fold_mult_zconjz (loc, type, arg1);
11608 if (TREE_CODE (arg1) == CONJ_EXPR
11609 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11610 return fold_mult_zconjz (loc, type, arg0);
11612 else
11614 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
11615 This is not the same for NaNs or if signed zeros are
11616 involved. */
11617 if (!HONOR_NANS (arg0)
11618 && !HONOR_SIGNED_ZEROS (arg0)
11619 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
11620 && TREE_CODE (arg1) == COMPLEX_CST
11621 && real_zerop (TREE_REALPART (arg1)))
11623 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
11624 if (real_onep (TREE_IMAGPART (arg1)))
11625 return
11626 fold_build2_loc (loc, COMPLEX_EXPR, type,
11627 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
11628 rtype, arg0)),
11629 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
11630 else if (real_minus_onep (TREE_IMAGPART (arg1)))
11631 return
11632 fold_build2_loc (loc, COMPLEX_EXPR, type,
11633 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
11634 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
11635 rtype, arg0)));
11638 /* Optimize z * conj(z) for floating point complex numbers.
11639 Guarded by flag_unsafe_math_optimizations as non-finite
11640 imaginary components don't produce scalar results. */
11641 if (flag_unsafe_math_optimizations
11642 && TREE_CODE (arg0) == CONJ_EXPR
11643 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11644 return fold_mult_zconjz (loc, type, arg1);
11645 if (flag_unsafe_math_optimizations
11646 && TREE_CODE (arg1) == CONJ_EXPR
11647 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11648 return fold_mult_zconjz (loc, type, arg0);
11650 goto associate;
11652 case BIT_IOR_EXPR:
11653 /* Canonicalize (X & C1) | C2. */
11654 if (TREE_CODE (arg0) == BIT_AND_EXPR
11655 && TREE_CODE (arg1) == INTEGER_CST
11656 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11658 int width = TYPE_PRECISION (type), w;
11659 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1));
11660 wide_int c2 = wi::to_wide (arg1);
11662 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
11663 if ((c1 & c2) == c1)
11664 return omit_one_operand_loc (loc, type, arg1,
11665 TREE_OPERAND (arg0, 0));
11667 wide_int msk = wi::mask (width, false,
11668 TYPE_PRECISION (TREE_TYPE (arg1)));
11670 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
11671 if (wi::bit_and_not (msk, c1 | c2) == 0)
11673 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11674 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
11677 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
11678 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
11679 mode which allows further optimizations. */
11680 c1 &= msk;
11681 c2 &= msk;
11682 wide_int c3 = wi::bit_and_not (c1, c2);
11683 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
11685 wide_int mask = wi::mask (w, false,
11686 TYPE_PRECISION (type));
11687 if (((c1 | c2) & mask) == mask
11688 && wi::bit_and_not (c1, mask) == 0)
11690 c3 = mask;
11691 break;
11695 if (c3 != c1)
11697 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11698 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem,
11699 wide_int_to_tree (type, c3));
11700 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1);
11704 /* See if this can be simplified into a rotate first. If that
11705 is unsuccessful continue in the association code. */
11706 goto bit_rotate;
11708 case BIT_XOR_EXPR:
11709 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
11710 if (TREE_CODE (arg0) == BIT_AND_EXPR
11711 && INTEGRAL_TYPE_P (type)
11712 && integer_onep (TREE_OPERAND (arg0, 1))
11713 && integer_onep (arg1))
11714 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
11715 build_zero_cst (TREE_TYPE (arg0)));
11717 /* See if this can be simplified into a rotate first. If that
11718 is unsuccessful continue in the association code. */
11719 goto bit_rotate;
11721 case BIT_AND_EXPR:
11722 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
11723 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11724 && INTEGRAL_TYPE_P (type)
11725 && integer_onep (TREE_OPERAND (arg0, 1))
11726 && integer_onep (arg1))
11728 tree tem2;
11729 tem = TREE_OPERAND (arg0, 0);
11730 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
11731 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
11732 tem, tem2);
11733 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
11734 build_zero_cst (TREE_TYPE (tem)));
11736 /* Fold ~X & 1 as (X & 1) == 0. */
11737 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11738 && INTEGRAL_TYPE_P (type)
11739 && integer_onep (arg1))
11741 tree tem2;
11742 tem = TREE_OPERAND (arg0, 0);
11743 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
11744 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
11745 tem, tem2);
11746 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
11747 build_zero_cst (TREE_TYPE (tem)));
11749 /* Fold !X & 1 as X == 0. */
11750 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11751 && integer_onep (arg1))
11753 tem = TREE_OPERAND (arg0, 0);
11754 return fold_build2_loc (loc, EQ_EXPR, type, tem,
11755 build_zero_cst (TREE_TYPE (tem)));
11758 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
11759 multiple of 1 << CST. */
11760 if (TREE_CODE (arg1) == INTEGER_CST)
11762 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
11763 wide_int ncst1 = -cst1;
11764 if ((cst1 & ncst1) == ncst1
11765 && multiple_of_p (type, arg0,
11766 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
11767 return fold_convert_loc (loc, type, arg0);
11770 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
11771 bits from CST2. */
11772 if (TREE_CODE (arg1) == INTEGER_CST
11773 && TREE_CODE (arg0) == MULT_EXPR
11774 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11776 wi::tree_to_wide_ref warg1 = wi::to_wide (arg1);
11777 wide_int masked
11778 = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1)));
11780 if (masked == 0)
11781 return omit_two_operands_loc (loc, type, build_zero_cst (type),
11782 arg0, arg1);
11783 else if (masked != warg1)
11785 /* Avoid the transform if arg1 is a mask of some
11786 mode which allows further optimizations. */
11787 int pop = wi::popcount (warg1);
11788 if (!(pop >= BITS_PER_UNIT
11789 && pow2p_hwi (pop)
11790 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
11791 return fold_build2_loc (loc, code, type, op0,
11792 wide_int_to_tree (type, masked));
11796 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11797 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
11798 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
11800 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
11802 wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED);
11803 if (mask == -1)
11804 return
11805 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11808 goto associate;
11810 case RDIV_EXPR:
11811 /* Don't touch a floating-point divide by zero unless the mode
11812 of the constant can represent infinity. */
11813 if (TREE_CODE (arg1) == REAL_CST
11814 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
11815 && real_zerop (arg1))
11816 return NULL_TREE;
11818 /* (-A) / (-B) -> A / B */
11819 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11820 return fold_build2_loc (loc, RDIV_EXPR, type,
11821 TREE_OPERAND (arg0, 0),
11822 negate_expr (arg1));
11823 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11824 return fold_build2_loc (loc, RDIV_EXPR, type,
11825 negate_expr (arg0),
11826 TREE_OPERAND (arg1, 0));
11827 return NULL_TREE;
11829 case TRUNC_DIV_EXPR:
11830 /* Fall through */
11832 case FLOOR_DIV_EXPR:
11833 /* Simplify A / (B << N) where A and B are positive and B is
11834 a power of 2, to A >> (N + log2(B)). */
11835 strict_overflow_p = false;
11836 if (TREE_CODE (arg1) == LSHIFT_EXPR
11837 && (TYPE_UNSIGNED (type)
11838 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11840 tree sval = TREE_OPERAND (arg1, 0);
11841 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11843 tree sh_cnt = TREE_OPERAND (arg1, 1);
11844 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
11845 wi::exact_log2 (wi::to_wide (sval)));
11847 if (strict_overflow_p)
11848 fold_overflow_warning (("assuming signed overflow does not "
11849 "occur when simplifying A / (B << N)"),
11850 WARN_STRICT_OVERFLOW_MISC);
11852 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
11853 sh_cnt, pow2);
11854 return fold_build2_loc (loc, RSHIFT_EXPR, type,
11855 fold_convert_loc (loc, type, arg0), sh_cnt);
11859 /* Fall through */
11861 case ROUND_DIV_EXPR:
11862 case CEIL_DIV_EXPR:
11863 case EXACT_DIV_EXPR:
11864 if (integer_zerop (arg1))
11865 return NULL_TREE;
11867 /* Convert -A / -B to A / B when the type is signed and overflow is
11868 undefined. */
11869 if ((!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11870 && TREE_CODE (op0) == NEGATE_EXPR
11871 && negate_expr_p (op1))
11873 if (ANY_INTEGRAL_TYPE_P (type))
11874 fold_overflow_warning (("assuming signed overflow does not occur "
11875 "when distributing negation across "
11876 "division"),
11877 WARN_STRICT_OVERFLOW_MISC);
11878 return fold_build2_loc (loc, code, type,
11879 fold_convert_loc (loc, type,
11880 TREE_OPERAND (arg0, 0)),
11881 negate_expr (op1));
11883 if ((!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11884 && TREE_CODE (arg1) == NEGATE_EXPR
11885 && negate_expr_p (op0))
11887 if (ANY_INTEGRAL_TYPE_P (type))
11888 fold_overflow_warning (("assuming signed overflow does not occur "
11889 "when distributing negation across "
11890 "division"),
11891 WARN_STRICT_OVERFLOW_MISC);
11892 return fold_build2_loc (loc, code, type,
11893 negate_expr (op0),
11894 fold_convert_loc (loc, type,
11895 TREE_OPERAND (arg1, 0)));
11898 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11899 operation, EXACT_DIV_EXPR.
11901 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11902 At one time others generated faster code, it's not clear if they do
11903 after the last round to changes to the DIV code in expmed.cc. */
11904 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11905 && multiple_of_p (type, arg0, arg1))
11906 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
11907 fold_convert (type, arg0),
11908 fold_convert (type, arg1));
11910 strict_overflow_p = false;
11911 if (TREE_CODE (arg1) == INTEGER_CST
11912 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11913 &strict_overflow_p)) != 0)
11915 if (strict_overflow_p)
11916 fold_overflow_warning (("assuming signed overflow does not occur "
11917 "when simplifying division"),
11918 WARN_STRICT_OVERFLOW_MISC);
11919 return fold_convert_loc (loc, type, tem);
11922 return NULL_TREE;
11924 case CEIL_MOD_EXPR:
11925 case FLOOR_MOD_EXPR:
11926 case ROUND_MOD_EXPR:
11927 case TRUNC_MOD_EXPR:
11928 strict_overflow_p = false;
11929 if (TREE_CODE (arg1) == INTEGER_CST
11930 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11931 &strict_overflow_p)) != 0)
11933 if (strict_overflow_p)
11934 fold_overflow_warning (("assuming signed overflow does not occur "
11935 "when simplifying modulus"),
11936 WARN_STRICT_OVERFLOW_MISC);
11937 return fold_convert_loc (loc, type, tem);
11940 return NULL_TREE;
11942 case LROTATE_EXPR:
11943 case RROTATE_EXPR:
11944 case RSHIFT_EXPR:
11945 case LSHIFT_EXPR:
11946 /* Since negative shift count is not well-defined,
11947 don't try to compute it in the compiler. */
11948 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11949 return NULL_TREE;
11951 prec = element_precision (type);
11953 /* If we have a rotate of a bit operation with the rotate count and
11954 the second operand of the bit operation both constant,
11955 permute the two operations. */
11956 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11957 && (TREE_CODE (arg0) == BIT_AND_EXPR
11958 || TREE_CODE (arg0) == BIT_IOR_EXPR
11959 || TREE_CODE (arg0) == BIT_XOR_EXPR)
11960 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11962 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11963 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
11964 return fold_build2_loc (loc, TREE_CODE (arg0), type,
11965 fold_build2_loc (loc, code, type,
11966 arg00, arg1),
11967 fold_build2_loc (loc, code, type,
11968 arg01, arg1));
11971 /* Two consecutive rotates adding up to the some integer
11972 multiple of the precision of the type can be ignored. */
11973 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11974 && TREE_CODE (arg0) == RROTATE_EXPR
11975 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11976 && wi::umod_trunc (wi::to_wide (arg1)
11977 + wi::to_wide (TREE_OPERAND (arg0, 1)),
11978 prec) == 0)
11979 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
11981 return NULL_TREE;
11983 case MIN_EXPR:
11984 case MAX_EXPR:
11985 goto associate;
11987 case TRUTH_ANDIF_EXPR:
11988 /* Note that the operands of this must be ints
11989 and their values must be 0 or 1.
11990 ("true" is a fixed value perhaps depending on the language.) */
11991 /* If first arg is constant zero, return it. */
11992 if (integer_zerop (arg0))
11993 return fold_convert_loc (loc, type, arg0);
11994 /* FALLTHRU */
11995 case TRUTH_AND_EXPR:
11996 /* If either arg is constant true, drop it. */
11997 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11998 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
11999 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
12000 /* Preserve sequence points. */
12001 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12002 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12003 /* If second arg is constant zero, result is zero, but first arg
12004 must be evaluated. */
12005 if (integer_zerop (arg1))
12006 return omit_one_operand_loc (loc, type, arg1, arg0);
12007 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
12008 case will be handled here. */
12009 if (integer_zerop (arg0))
12010 return omit_one_operand_loc (loc, type, arg0, arg1);
12012 /* !X && X is always false. */
12013 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12014 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12015 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
12016 /* X && !X is always false. */
12017 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12018 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12019 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12021 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
12022 means A >= Y && A != MAX, but in this case we know that
12023 A < X <= MAX. */
12025 if (!TREE_SIDE_EFFECTS (arg0)
12026 && !TREE_SIDE_EFFECTS (arg1))
12028 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
12029 if (tem && !operand_equal_p (tem, arg0, 0))
12030 return fold_build2_loc (loc, code, type, tem, arg1);
12032 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
12033 if (tem && !operand_equal_p (tem, arg1, 0))
12034 return fold_build2_loc (loc, code, type, arg0, tem);
12037 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12038 != NULL_TREE)
12039 return tem;
12041 return NULL_TREE;
12043 case TRUTH_ORIF_EXPR:
12044 /* Note that the operands of this must be ints
12045 and their values must be 0 or true.
12046 ("true" is a fixed value perhaps depending on the language.) */
12047 /* If first arg is constant true, return it. */
12048 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12049 return fold_convert_loc (loc, type, arg0);
12050 /* FALLTHRU */
12051 case TRUTH_OR_EXPR:
12052 /* If either arg is constant zero, drop it. */
12053 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
12054 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
12055 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
12056 /* Preserve sequence points. */
12057 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12058 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12059 /* If second arg is constant true, result is true, but we must
12060 evaluate first arg. */
12061 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
12062 return omit_one_operand_loc (loc, type, arg1, arg0);
12063 /* Likewise for first arg, but note this only occurs here for
12064 TRUTH_OR_EXPR. */
12065 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12066 return omit_one_operand_loc (loc, type, arg0, arg1);
12068 /* !X || X is always true. */
12069 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12070 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12071 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12072 /* X || !X is always true. */
12073 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12074 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12075 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12077 /* (X && !Y) || (!X && Y) is X ^ Y */
12078 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
12079 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
12081 tree a0, a1, l0, l1, n0, n1;
12083 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
12084 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
12086 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
12087 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
12089 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
12090 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
12092 if ((operand_equal_p (n0, a0, 0)
12093 && operand_equal_p (n1, a1, 0))
12094 || (operand_equal_p (n0, a1, 0)
12095 && operand_equal_p (n1, a0, 0)))
12096 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
12099 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
12100 != NULL_TREE)
12101 return tem;
12103 return NULL_TREE;
12105 case TRUTH_XOR_EXPR:
12106 /* If the second arg is constant zero, drop it. */
12107 if (integer_zerop (arg1))
12108 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12109 /* If the second arg is constant true, this is a logical inversion. */
12110 if (integer_onep (arg1))
12112 tem = invert_truthvalue_loc (loc, arg0);
12113 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
12115 /* Identical arguments cancel to zero. */
12116 if (operand_equal_p (arg0, arg1, 0))
12117 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
12119 /* !X ^ X is always true. */
12120 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12121 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12122 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
12124 /* X ^ !X is always true. */
12125 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12126 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12127 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
12129 return NULL_TREE;
12131 case EQ_EXPR:
12132 case NE_EXPR:
12133 STRIP_NOPS (arg0);
12134 STRIP_NOPS (arg1);
12136 tem = fold_comparison (loc, code, type, op0, op1);
12137 if (tem != NULL_TREE)
12138 return tem;
12140 /* bool_var != 1 becomes !bool_var. */
12141 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12142 && code == NE_EXPR)
12143 return fold_convert_loc (loc, type,
12144 fold_build1_loc (loc, TRUTH_NOT_EXPR,
12145 TREE_TYPE (arg0), arg0));
12147 /* bool_var == 0 becomes !bool_var. */
12148 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12149 && code == EQ_EXPR)
12150 return fold_convert_loc (loc, type,
12151 fold_build1_loc (loc, TRUTH_NOT_EXPR,
12152 TREE_TYPE (arg0), arg0));
12154 /* !exp != 0 becomes !exp */
12155 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
12156 && code == NE_EXPR)
12157 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
12159 /* If this is an EQ or NE comparison with zero and ARG0 is
12160 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12161 two operations, but the latter can be done in one less insn
12162 on machines that have only two-operand insns or on which a
12163 constant cannot be the first operand. */
12164 if (TREE_CODE (arg0) == BIT_AND_EXPR
12165 && integer_zerop (arg1))
12167 tree arg00 = TREE_OPERAND (arg0, 0);
12168 tree arg01 = TREE_OPERAND (arg0, 1);
12169 if (TREE_CODE (arg00) == LSHIFT_EXPR
12170 && integer_onep (TREE_OPERAND (arg00, 0)))
12172 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
12173 arg01, TREE_OPERAND (arg00, 1));
12174 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12175 build_one_cst (TREE_TYPE (arg0)));
12176 return fold_build2_loc (loc, code, type,
12177 fold_convert_loc (loc, TREE_TYPE (arg1),
12178 tem), arg1);
12180 else if (TREE_CODE (arg01) == LSHIFT_EXPR
12181 && integer_onep (TREE_OPERAND (arg01, 0)))
12183 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
12184 arg00, TREE_OPERAND (arg01, 1));
12185 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12186 build_one_cst (TREE_TYPE (arg0)));
12187 return fold_build2_loc (loc, code, type,
12188 fold_convert_loc (loc, TREE_TYPE (arg1),
12189 tem), arg1);
12193 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
12194 C1 is a valid shift constant, and C2 is a power of two, i.e.
12195 a single bit. */
12196 if (TREE_CODE (arg0) == BIT_AND_EXPR
12197 && integer_pow2p (TREE_OPERAND (arg0, 1))
12198 && integer_zerop (arg1))
12200 tree arg00 = TREE_OPERAND (arg0, 0);
12201 STRIP_NOPS (arg00);
12202 if (TREE_CODE (arg00) == RSHIFT_EXPR
12203 && TREE_CODE (TREE_OPERAND (arg00, 1)) == INTEGER_CST)
12205 tree itype = TREE_TYPE (arg00);
12206 tree arg001 = TREE_OPERAND (arg00, 1);
12207 prec = TYPE_PRECISION (itype);
12209 /* Check for a valid shift count. */
12210 if (wi::ltu_p (wi::to_wide (arg001), prec))
12212 tree arg01 = TREE_OPERAND (arg0, 1);
12213 tree arg000 = TREE_OPERAND (arg00, 0);
12214 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
12215 /* If (C2 << C1) doesn't overflow, then
12216 ((X >> C1) & C2) != 0 can be rewritten as
12217 (X & (C2 << C1)) != 0. */
12218 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
12220 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype,
12221 arg01, arg001);
12222 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype,
12223 arg000, tem);
12224 return fold_build2_loc (loc, code, type, tem,
12225 fold_convert_loc (loc, itype, arg1));
12227 /* Otherwise, for signed (arithmetic) shifts,
12228 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
12229 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
12230 else if (!TYPE_UNSIGNED (itype))
12231 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR
12232 : LT_EXPR,
12233 type, arg000,
12234 build_int_cst (itype, 0));
12235 /* Otherwise, of unsigned (logical) shifts,
12236 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
12237 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
12238 else
12239 return omit_one_operand_loc (loc, type,
12240 code == EQ_EXPR ? integer_one_node
12241 : integer_zero_node,
12242 arg000);
12247 /* If this is a comparison of a field, we may be able to simplify it. */
12248 if ((TREE_CODE (arg0) == COMPONENT_REF
12249 || TREE_CODE (arg0) == BIT_FIELD_REF)
12250 /* Handle the constant case even without -O
12251 to make sure the warnings are given. */
12252 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
12254 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
12255 if (t1)
12256 return t1;
12259 /* Optimize comparisons of strlen vs zero to a compare of the
12260 first character of the string vs zero. To wit,
12261 strlen(ptr) == 0 => *ptr == 0
12262 strlen(ptr) != 0 => *ptr != 0
12263 Other cases should reduce to one of these two (or a constant)
12264 due to the return value of strlen being unsigned. */
12265 if (TREE_CODE (arg0) == CALL_EXPR && integer_zerop (arg1))
12267 tree fndecl = get_callee_fndecl (arg0);
12269 if (fndecl
12270 && fndecl_built_in_p (fndecl, BUILT_IN_STRLEN)
12271 && call_expr_nargs (arg0) == 1
12272 && (TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0)))
12273 == POINTER_TYPE))
12275 tree ptrtype
12276 = build_pointer_type (build_qualified_type (char_type_node,
12277 TYPE_QUAL_CONST));
12278 tree ptr = fold_convert_loc (loc, ptrtype,
12279 CALL_EXPR_ARG (arg0, 0));
12280 tree iref = build_fold_indirect_ref_loc (loc, ptr);
12281 return fold_build2_loc (loc, code, type, iref,
12282 build_int_cst (TREE_TYPE (iref), 0));
12286 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12287 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12288 if (TREE_CODE (arg0) == RSHIFT_EXPR
12289 && integer_zerop (arg1)
12290 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12292 tree arg00 = TREE_OPERAND (arg0, 0);
12293 tree arg01 = TREE_OPERAND (arg0, 1);
12294 tree itype = TREE_TYPE (arg00);
12295 if (wi::to_wide (arg01) == element_precision (itype) - 1)
12297 if (TYPE_UNSIGNED (itype))
12299 itype = signed_type_for (itype);
12300 arg00 = fold_convert_loc (loc, itype, arg00);
12302 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12303 type, arg00, build_zero_cst (itype));
12307 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12308 (X & C) == 0 when C is a single bit. */
12309 if (TREE_CODE (arg0) == BIT_AND_EXPR
12310 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12311 && integer_zerop (arg1)
12312 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12314 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
12315 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12316 TREE_OPERAND (arg0, 1));
12317 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12318 type, tem,
12319 fold_convert_loc (loc, TREE_TYPE (arg0),
12320 arg1));
12323 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12324 constant C is a power of two, i.e. a single bit. */
12325 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12326 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12327 && integer_zerop (arg1)
12328 && integer_pow2p (TREE_OPERAND (arg0, 1))
12329 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12330 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12332 tree arg00 = TREE_OPERAND (arg0, 0);
12333 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12334 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12337 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12338 when is C is a power of two, i.e. a single bit. */
12339 if (TREE_CODE (arg0) == BIT_AND_EXPR
12340 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12341 && integer_zerop (arg1)
12342 && integer_pow2p (TREE_OPERAND (arg0, 1))
12343 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12344 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12346 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12347 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
12348 arg000, TREE_OPERAND (arg0, 1));
12349 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12350 tem, build_int_cst (TREE_TYPE (tem), 0));
12353 if (integer_zerop (arg1)
12354 && tree_expr_nonzero_p (arg0))
12356 tree res = constant_boolean_node (code==NE_EXPR, type);
12357 return omit_one_operand_loc (loc, type, res, arg0);
12360 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12361 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12363 tree arg00 = TREE_OPERAND (arg0, 0);
12364 tree arg01 = TREE_OPERAND (arg0, 1);
12365 tree arg10 = TREE_OPERAND (arg1, 0);
12366 tree arg11 = TREE_OPERAND (arg1, 1);
12367 tree itype = TREE_TYPE (arg0);
12369 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12370 operand_equal_p guarantees no side-effects so we don't need
12371 to use omit_one_operand on Z. */
12372 if (operand_equal_p (arg01, arg11, 0))
12373 return fold_build2_loc (loc, code, type, arg00,
12374 fold_convert_loc (loc, TREE_TYPE (arg00),
12375 arg10));
12376 if (operand_equal_p (arg01, arg10, 0))
12377 return fold_build2_loc (loc, code, type, arg00,
12378 fold_convert_loc (loc, TREE_TYPE (arg00),
12379 arg11));
12380 if (operand_equal_p (arg00, arg11, 0))
12381 return fold_build2_loc (loc, code, type, arg01,
12382 fold_convert_loc (loc, TREE_TYPE (arg01),
12383 arg10));
12384 if (operand_equal_p (arg00, arg10, 0))
12385 return fold_build2_loc (loc, code, type, arg01,
12386 fold_convert_loc (loc, TREE_TYPE (arg01),
12387 arg11));
12389 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12390 if (TREE_CODE (arg01) == INTEGER_CST
12391 && TREE_CODE (arg11) == INTEGER_CST)
12393 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
12394 fold_convert_loc (loc, itype, arg11));
12395 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
12396 return fold_build2_loc (loc, code, type, tem,
12397 fold_convert_loc (loc, itype, arg10));
12401 /* Attempt to simplify equality/inequality comparisons of complex
12402 values. Only lower the comparison if the result is known or
12403 can be simplified to a single scalar comparison. */
12404 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12405 || TREE_CODE (arg0) == COMPLEX_CST)
12406 && (TREE_CODE (arg1) == COMPLEX_EXPR
12407 || TREE_CODE (arg1) == COMPLEX_CST))
12409 tree real0, imag0, real1, imag1;
12410 tree rcond, icond;
12412 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12414 real0 = TREE_OPERAND (arg0, 0);
12415 imag0 = TREE_OPERAND (arg0, 1);
12417 else
12419 real0 = TREE_REALPART (arg0);
12420 imag0 = TREE_IMAGPART (arg0);
12423 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12425 real1 = TREE_OPERAND (arg1, 0);
12426 imag1 = TREE_OPERAND (arg1, 1);
12428 else
12430 real1 = TREE_REALPART (arg1);
12431 imag1 = TREE_IMAGPART (arg1);
12434 rcond = fold_binary_loc (loc, code, type, real0, real1);
12435 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12437 if (integer_zerop (rcond))
12439 if (code == EQ_EXPR)
12440 return omit_two_operands_loc (loc, type, boolean_false_node,
12441 imag0, imag1);
12442 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
12444 else
12446 if (code == NE_EXPR)
12447 return omit_two_operands_loc (loc, type, boolean_true_node,
12448 imag0, imag1);
12449 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
12453 icond = fold_binary_loc (loc, code, type, imag0, imag1);
12454 if (icond && TREE_CODE (icond) == INTEGER_CST)
12456 if (integer_zerop (icond))
12458 if (code == EQ_EXPR)
12459 return omit_two_operands_loc (loc, type, boolean_false_node,
12460 real0, real1);
12461 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
12463 else
12465 if (code == NE_EXPR)
12466 return omit_two_operands_loc (loc, type, boolean_true_node,
12467 real0, real1);
12468 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
12473 return NULL_TREE;
12475 case LT_EXPR:
12476 case GT_EXPR:
12477 case LE_EXPR:
12478 case GE_EXPR:
12479 tem = fold_comparison (loc, code, type, op0, op1);
12480 if (tem != NULL_TREE)
12481 return tem;
12483 /* Transform comparisons of the form X +- C CMP X. */
12484 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12485 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12486 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12487 && !HONOR_SNANS (arg0))
12489 tree arg01 = TREE_OPERAND (arg0, 1);
12490 enum tree_code code0 = TREE_CODE (arg0);
12491 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12493 /* (X - c) > X becomes false. */
12494 if (code == GT_EXPR
12495 && ((code0 == MINUS_EXPR && is_positive >= 0)
12496 || (code0 == PLUS_EXPR && is_positive <= 0)))
12497 return constant_boolean_node (0, type);
12499 /* Likewise (X + c) < X becomes false. */
12500 if (code == LT_EXPR
12501 && ((code0 == PLUS_EXPR && is_positive >= 0)
12502 || (code0 == MINUS_EXPR && is_positive <= 0)))
12503 return constant_boolean_node (0, type);
12505 /* Convert (X - c) <= X to true. */
12506 if (!HONOR_NANS (arg1)
12507 && code == LE_EXPR
12508 && ((code0 == MINUS_EXPR && is_positive >= 0)
12509 || (code0 == PLUS_EXPR && is_positive <= 0)))
12510 return constant_boolean_node (1, type);
12512 /* Convert (X + c) >= X to true. */
12513 if (!HONOR_NANS (arg1)
12514 && code == GE_EXPR
12515 && ((code0 == PLUS_EXPR && is_positive >= 0)
12516 || (code0 == MINUS_EXPR && is_positive <= 0)))
12517 return constant_boolean_node (1, type);
12520 /* If we are comparing an ABS_EXPR with a constant, we can
12521 convert all the cases into explicit comparisons, but they may
12522 well not be faster than doing the ABS and one comparison.
12523 But ABS (X) <= C is a range comparison, which becomes a subtraction
12524 and a comparison, and is probably faster. */
12525 if (code == LE_EXPR
12526 && TREE_CODE (arg1) == INTEGER_CST
12527 && TREE_CODE (arg0) == ABS_EXPR
12528 && ! TREE_SIDE_EFFECTS (arg0)
12529 && (tem = negate_expr (arg1)) != 0
12530 && TREE_CODE (tem) == INTEGER_CST
12531 && !TREE_OVERFLOW (tem))
12532 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
12533 build2 (GE_EXPR, type,
12534 TREE_OPERAND (arg0, 0), tem),
12535 build2 (LE_EXPR, type,
12536 TREE_OPERAND (arg0, 0), arg1));
12538 /* Convert ABS_EXPR<x> >= 0 to true. */
12539 strict_overflow_p = false;
12540 if (code == GE_EXPR
12541 && (integer_zerop (arg1)
12542 || (! HONOR_NANS (arg0)
12543 && real_zerop (arg1)))
12544 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12546 if (strict_overflow_p)
12547 fold_overflow_warning (("assuming signed overflow does not occur "
12548 "when simplifying comparison of "
12549 "absolute value and zero"),
12550 WARN_STRICT_OVERFLOW_CONDITIONAL);
12551 return omit_one_operand_loc (loc, type,
12552 constant_boolean_node (true, type),
12553 arg0);
12556 /* Convert ABS_EXPR<x> < 0 to false. */
12557 strict_overflow_p = false;
12558 if (code == LT_EXPR
12559 && (integer_zerop (arg1) || real_zerop (arg1))
12560 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12562 if (strict_overflow_p)
12563 fold_overflow_warning (("assuming signed overflow does not occur "
12564 "when simplifying comparison of "
12565 "absolute value and zero"),
12566 WARN_STRICT_OVERFLOW_CONDITIONAL);
12567 return omit_one_operand_loc (loc, type,
12568 constant_boolean_node (false, type),
12569 arg0);
12572 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
12573 and similarly for >= into !=. */
12574 if ((code == LT_EXPR || code == GE_EXPR)
12575 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12576 && TREE_CODE (arg1) == LSHIFT_EXPR
12577 && integer_onep (TREE_OPERAND (arg1, 0)))
12578 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12579 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12580 TREE_OPERAND (arg1, 1)),
12581 build_zero_cst (TREE_TYPE (arg0)));
12583 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
12584 otherwise Y might be >= # of bits in X's type and thus e.g.
12585 (unsigned char) (1 << Y) for Y 15 might be 0.
12586 If the cast is widening, then 1 << Y should have unsigned type,
12587 otherwise if Y is number of bits in the signed shift type minus 1,
12588 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
12589 31 might be 0xffffffff80000000. */
12590 if ((code == LT_EXPR || code == GE_EXPR)
12591 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12592 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (arg0)))
12593 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12594 && CONVERT_EXPR_P (arg1)
12595 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
12596 && (element_precision (TREE_TYPE (arg1))
12597 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
12598 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
12599 || (element_precision (TREE_TYPE (arg1))
12600 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
12601 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
12603 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12604 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
12605 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12606 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
12607 build_zero_cst (TREE_TYPE (arg0)));
12610 return NULL_TREE;
12612 case UNORDERED_EXPR:
12613 case ORDERED_EXPR:
12614 case UNLT_EXPR:
12615 case UNLE_EXPR:
12616 case UNGT_EXPR:
12617 case UNGE_EXPR:
12618 case UNEQ_EXPR:
12619 case LTGT_EXPR:
12620 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
12622 tree targ0 = strip_float_extensions (arg0);
12623 tree targ1 = strip_float_extensions (arg1);
12624 tree newtype = TREE_TYPE (targ0);
12626 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
12627 newtype = TREE_TYPE (targ1);
12629 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
12630 return fold_build2_loc (loc, code, type,
12631 fold_convert_loc (loc, newtype, targ0),
12632 fold_convert_loc (loc, newtype, targ1));
12635 return NULL_TREE;
12637 case COMPOUND_EXPR:
12638 /* When pedantic, a compound expression can be neither an lvalue
12639 nor an integer constant expression. */
12640 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
12641 return NULL_TREE;
12642 /* Don't let (0, 0) be null pointer constant. */
12643 tem = integer_zerop (arg1) ? build1_loc (loc, NOP_EXPR, type, arg1)
12644 : fold_convert_loc (loc, type, arg1);
12645 return tem;
12647 case ASSERT_EXPR:
12648 /* An ASSERT_EXPR should never be passed to fold_binary. */
12649 gcc_unreachable ();
12651 default:
12652 return NULL_TREE;
12653 } /* switch (code) */
12656 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
12657 ((A & N) + B) & M -> (A + B) & M
12658 Similarly if (N & M) == 0,
12659 ((A | N) + B) & M -> (A + B) & M
12660 and for - instead of + (or unary - instead of +)
12661 and/or ^ instead of |.
12662 If B is constant and (B & M) == 0, fold into A & M.
12664 This function is a helper for match.pd patterns. Return non-NULL
12665 type in which the simplified operation should be performed only
12666 if any optimization is possible.
12668 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
12669 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
12670 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
12671 +/-. */
12672 tree
12673 fold_bit_and_mask (tree type, tree arg1, enum tree_code code,
12674 tree arg00, enum tree_code code00, tree arg000, tree arg001,
12675 tree arg01, enum tree_code code01, tree arg010, tree arg011,
12676 tree *pmop)
12678 gcc_assert (TREE_CODE (arg1) == INTEGER_CST);
12679 gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR || code == NEGATE_EXPR);
12680 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1);
12681 if (~cst1 == 0
12682 || (cst1 & (cst1 + 1)) != 0
12683 || !INTEGRAL_TYPE_P (type)
12684 || (!TYPE_OVERFLOW_WRAPS (type)
12685 && TREE_CODE (type) != INTEGER_TYPE)
12686 || (wi::max_value (type) & cst1) != cst1)
12687 return NULL_TREE;
12689 enum tree_code codes[2] = { code00, code01 };
12690 tree arg0xx[4] = { arg000, arg001, arg010, arg011 };
12691 int which = 0;
12692 wide_int cst0;
12694 /* Now we know that arg0 is (C + D) or (C - D) or -C and
12695 arg1 (M) is == (1LL << cst) - 1.
12696 Store C into PMOP[0] and D into PMOP[1]. */
12697 pmop[0] = arg00;
12698 pmop[1] = arg01;
12699 which = code != NEGATE_EXPR;
12701 for (; which >= 0; which--)
12702 switch (codes[which])
12704 case BIT_AND_EXPR:
12705 case BIT_IOR_EXPR:
12706 case BIT_XOR_EXPR:
12707 gcc_assert (TREE_CODE (arg0xx[2 * which + 1]) == INTEGER_CST);
12708 cst0 = wi::to_wide (arg0xx[2 * which + 1]) & cst1;
12709 if (codes[which] == BIT_AND_EXPR)
12711 if (cst0 != cst1)
12712 break;
12714 else if (cst0 != 0)
12715 break;
12716 /* If C or D is of the form (A & N) where
12717 (N & M) == M, or of the form (A | N) or
12718 (A ^ N) where (N & M) == 0, replace it with A. */
12719 pmop[which] = arg0xx[2 * which];
12720 break;
12721 case ERROR_MARK:
12722 if (TREE_CODE (pmop[which]) != INTEGER_CST)
12723 break;
12724 /* If C or D is a N where (N & M) == 0, it can be
12725 omitted (replaced with 0). */
12726 if ((code == PLUS_EXPR
12727 || (code == MINUS_EXPR && which == 0))
12728 && (cst1 & wi::to_wide (pmop[which])) == 0)
12729 pmop[which] = build_int_cst (type, 0);
12730 /* Similarly, with C - N where (-N & M) == 0. */
12731 if (code == MINUS_EXPR
12732 && which == 1
12733 && (cst1 & -wi::to_wide (pmop[which])) == 0)
12734 pmop[which] = build_int_cst (type, 0);
12735 break;
12736 default:
12737 gcc_unreachable ();
12740 /* Only build anything new if we optimized one or both arguments above. */
12741 if (pmop[0] == arg00 && pmop[1] == arg01)
12742 return NULL_TREE;
12744 if (TYPE_OVERFLOW_WRAPS (type))
12745 return type;
12746 else
12747 return unsigned_type_for (type);
12750 /* Used by contains_label_[p1]. */
12752 struct contains_label_data
12754 hash_set<tree> *pset;
12755 bool inside_switch_p;
12758 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
12759 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
12760 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
12762 static tree
12763 contains_label_1 (tree *tp, int *walk_subtrees, void *data)
12765 contains_label_data *d = (contains_label_data *) data;
12766 switch (TREE_CODE (*tp))
12768 case LABEL_EXPR:
12769 return *tp;
12771 case CASE_LABEL_EXPR:
12772 if (!d->inside_switch_p)
12773 return *tp;
12774 return NULL_TREE;
12776 case SWITCH_EXPR:
12777 if (!d->inside_switch_p)
12779 if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset))
12780 return *tp;
12781 d->inside_switch_p = true;
12782 if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset))
12783 return *tp;
12784 d->inside_switch_p = false;
12785 *walk_subtrees = 0;
12787 return NULL_TREE;
12789 case GOTO_EXPR:
12790 *walk_subtrees = 0;
12791 return NULL_TREE;
12793 default:
12794 return NULL_TREE;
12798 /* Return whether the sub-tree ST contains a label which is accessible from
12799 outside the sub-tree. */
12801 static bool
12802 contains_label_p (tree st)
12804 hash_set<tree> pset;
12805 contains_label_data data = { &pset, false };
12806 return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE;
12809 /* Fold a ternary expression of code CODE and type TYPE with operands
12810 OP0, OP1, and OP2. Return the folded expression if folding is
12811 successful. Otherwise, return NULL_TREE. */
12813 tree
12814 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
12815 tree op0, tree op1, tree op2)
12817 tree tem;
12818 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
12819 enum tree_code_class kind = TREE_CODE_CLASS (code);
12821 gcc_assert (IS_EXPR_CODE_CLASS (kind)
12822 && TREE_CODE_LENGTH (code) == 3);
12824 /* If this is a commutative operation, and OP0 is a constant, move it
12825 to OP1 to reduce the number of tests below. */
12826 if (commutative_ternary_tree_code (code)
12827 && tree_swap_operands_p (op0, op1))
12828 return fold_build3_loc (loc, code, type, op1, op0, op2);
12830 tem = generic_simplify (loc, code, type, op0, op1, op2);
12831 if (tem)
12832 return tem;
12834 /* Strip any conversions that don't change the mode. This is safe
12835 for every expression, except for a comparison expression because
12836 its signedness is derived from its operands. So, in the latter
12837 case, only strip conversions that don't change the signedness.
12839 Note that this is done as an internal manipulation within the
12840 constant folder, in order to find the simplest representation of
12841 the arguments so that their form can be studied. In any cases,
12842 the appropriate type conversions should be put back in the tree
12843 that will get out of the constant folder. */
12844 if (op0)
12846 arg0 = op0;
12847 STRIP_NOPS (arg0);
12850 if (op1)
12852 arg1 = op1;
12853 STRIP_NOPS (arg1);
12856 if (op2)
12858 arg2 = op2;
12859 STRIP_NOPS (arg2);
12862 switch (code)
12864 case COMPONENT_REF:
12865 if (TREE_CODE (arg0) == CONSTRUCTOR
12866 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
12868 unsigned HOST_WIDE_INT idx;
12869 tree field, value;
12870 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
12871 if (field == arg1)
12872 return value;
12874 return NULL_TREE;
12876 case COND_EXPR:
12877 case VEC_COND_EXPR:
12878 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
12879 so all simple results must be passed through pedantic_non_lvalue. */
12880 if (TREE_CODE (arg0) == INTEGER_CST)
12882 tree unused_op = integer_zerop (arg0) ? op1 : op2;
12883 tem = integer_zerop (arg0) ? op2 : op1;
12884 /* Only optimize constant conditions when the selected branch
12885 has the same type as the COND_EXPR. This avoids optimizing
12886 away "c ? x : throw", where the throw has a void type.
12887 Avoid throwing away that operand which contains label. */
12888 if ((!TREE_SIDE_EFFECTS (unused_op)
12889 || !contains_label_p (unused_op))
12890 && (! VOID_TYPE_P (TREE_TYPE (tem))
12891 || VOID_TYPE_P (type)))
12892 return protected_set_expr_location_unshare (tem, loc);
12893 return NULL_TREE;
12895 else if (TREE_CODE (arg0) == VECTOR_CST)
12897 unsigned HOST_WIDE_INT nelts;
12898 if ((TREE_CODE (arg1) == VECTOR_CST
12899 || TREE_CODE (arg1) == CONSTRUCTOR)
12900 && (TREE_CODE (arg2) == VECTOR_CST
12901 || TREE_CODE (arg2) == CONSTRUCTOR)
12902 && TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
12904 vec_perm_builder sel (nelts, nelts, 1);
12905 for (unsigned int i = 0; i < nelts; i++)
12907 tree val = VECTOR_CST_ELT (arg0, i);
12908 if (integer_all_onesp (val))
12909 sel.quick_push (i);
12910 else if (integer_zerop (val))
12911 sel.quick_push (nelts + i);
12912 else /* Currently unreachable. */
12913 return NULL_TREE;
12915 vec_perm_indices indices (sel, 2, nelts);
12916 tree t = fold_vec_perm (type, arg1, arg2, indices);
12917 if (t != NULL_TREE)
12918 return t;
12922 /* If we have A op B ? A : C, we may be able to convert this to a
12923 simpler expression, depending on the operation and the values
12924 of B and C. Signed zeros prevent all of these transformations,
12925 for reasons given above each one.
12927 Also try swapping the arguments and inverting the conditional. */
12928 if (COMPARISON_CLASS_P (arg0)
12929 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1)
12930 && !HONOR_SIGNED_ZEROS (op1))
12932 tem = fold_cond_expr_with_comparison (loc, type, TREE_CODE (arg0),
12933 TREE_OPERAND (arg0, 0),
12934 TREE_OPERAND (arg0, 1),
12935 op1, op2);
12936 if (tem)
12937 return tem;
12940 if (COMPARISON_CLASS_P (arg0)
12941 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2)
12942 && !HONOR_SIGNED_ZEROS (op2))
12944 enum tree_code comp_code = TREE_CODE (arg0);
12945 tree arg00 = TREE_OPERAND (arg0, 0);
12946 tree arg01 = TREE_OPERAND (arg0, 1);
12947 comp_code = invert_tree_comparison (comp_code, HONOR_NANS (arg00));
12948 if (comp_code != ERROR_MARK)
12949 tem = fold_cond_expr_with_comparison (loc, type, comp_code,
12950 arg00,
12951 arg01,
12952 op2, op1);
12953 if (tem)
12954 return tem;
12957 /* If the second operand is simpler than the third, swap them
12958 since that produces better jump optimization results. */
12959 if (truth_value_p (TREE_CODE (arg0))
12960 && tree_swap_operands_p (op1, op2))
12962 location_t loc0 = expr_location_or (arg0, loc);
12963 /* See if this can be inverted. If it can't, possibly because
12964 it was a floating-point inequality comparison, don't do
12965 anything. */
12966 tem = fold_invert_truthvalue (loc0, arg0);
12967 if (tem)
12968 return fold_build3_loc (loc, code, type, tem, op2, op1);
12971 /* Convert A ? 1 : 0 to simply A. */
12972 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
12973 : (integer_onep (op1)
12974 && !VECTOR_TYPE_P (type)))
12975 && integer_zerop (op2)
12976 /* If we try to convert OP0 to our type, the
12977 call to fold will try to move the conversion inside
12978 a COND, which will recurse. In that case, the COND_EXPR
12979 is probably the best choice, so leave it alone. */
12980 && type == TREE_TYPE (arg0))
12981 return protected_set_expr_location_unshare (arg0, loc);
12983 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
12984 over COND_EXPR in cases such as floating point comparisons. */
12985 if (integer_zerop (op1)
12986 && code == COND_EXPR
12987 && integer_onep (op2)
12988 && !VECTOR_TYPE_P (type)
12989 && truth_value_p (TREE_CODE (arg0)))
12990 return fold_convert_loc (loc, type,
12991 invert_truthvalue_loc (loc, arg0));
12993 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
12994 if (TREE_CODE (arg0) == LT_EXPR
12995 && integer_zerop (TREE_OPERAND (arg0, 1))
12996 && integer_zerop (op2)
12997 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
12999 /* sign_bit_p looks through both zero and sign extensions,
13000 but for this optimization only sign extensions are
13001 usable. */
13002 tree tem2 = TREE_OPERAND (arg0, 0);
13003 while (tem != tem2)
13005 if (TREE_CODE (tem2) != NOP_EXPR
13006 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
13008 tem = NULL_TREE;
13009 break;
13011 tem2 = TREE_OPERAND (tem2, 0);
13013 /* sign_bit_p only checks ARG1 bits within A's precision.
13014 If <sign bit of A> has wider type than A, bits outside
13015 of A's precision in <sign bit of A> need to be checked.
13016 If they are all 0, this optimization needs to be done
13017 in unsigned A's type, if they are all 1 in signed A's type,
13018 otherwise this can't be done. */
13019 if (tem
13020 && TYPE_PRECISION (TREE_TYPE (tem))
13021 < TYPE_PRECISION (TREE_TYPE (arg1))
13022 && TYPE_PRECISION (TREE_TYPE (tem))
13023 < TYPE_PRECISION (type))
13025 int inner_width, outer_width;
13026 tree tem_type;
13028 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
13029 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
13030 if (outer_width > TYPE_PRECISION (type))
13031 outer_width = TYPE_PRECISION (type);
13033 wide_int mask = wi::shifted_mask
13034 (inner_width, outer_width - inner_width, false,
13035 TYPE_PRECISION (TREE_TYPE (arg1)));
13037 wide_int common = mask & wi::to_wide (arg1);
13038 if (common == mask)
13040 tem_type = signed_type_for (TREE_TYPE (tem));
13041 tem = fold_convert_loc (loc, tem_type, tem);
13043 else if (common == 0)
13045 tem_type = unsigned_type_for (TREE_TYPE (tem));
13046 tem = fold_convert_loc (loc, tem_type, tem);
13048 else
13049 tem = NULL;
13052 if (tem)
13053 return
13054 fold_convert_loc (loc, type,
13055 fold_build2_loc (loc, BIT_AND_EXPR,
13056 TREE_TYPE (tem), tem,
13057 fold_convert_loc (loc,
13058 TREE_TYPE (tem),
13059 arg1)));
13062 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13063 already handled above. */
13064 if (TREE_CODE (arg0) == BIT_AND_EXPR
13065 && integer_onep (TREE_OPERAND (arg0, 1))
13066 && integer_zerop (op2)
13067 && integer_pow2p (arg1))
13069 tree tem = TREE_OPERAND (arg0, 0);
13070 STRIP_NOPS (tem);
13071 if (TREE_CODE (tem) == RSHIFT_EXPR
13072 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
13073 && (unsigned HOST_WIDE_INT) tree_log2 (arg1)
13074 == tree_to_uhwi (TREE_OPERAND (tem, 1)))
13075 return fold_build2_loc (loc, BIT_AND_EXPR, type,
13076 fold_convert_loc (loc, type,
13077 TREE_OPERAND (tem, 0)),
13078 op1);
13081 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13082 is probably obsolete because the first operand should be a
13083 truth value (that's why we have the two cases above), but let's
13084 leave it in until we can confirm this for all front-ends. */
13085 if (integer_zerop (op2)
13086 && TREE_CODE (arg0) == NE_EXPR
13087 && integer_zerop (TREE_OPERAND (arg0, 1))
13088 && integer_pow2p (arg1)
13089 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13090 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13091 arg1, OEP_ONLY_CONST)
13092 /* operand_equal_p compares just value, not precision, so e.g.
13093 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR
13094 second operand 32-bit -128, which is not a power of two (or vice
13095 versa. */
13096 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)))
13097 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
13099 /* Disable the transformations below for vectors, since
13100 fold_binary_op_with_conditional_arg may undo them immediately,
13101 yielding an infinite loop. */
13102 if (code == VEC_COND_EXPR)
13103 return NULL_TREE;
13105 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13106 if (integer_zerop (op2)
13107 && truth_value_p (TREE_CODE (arg0))
13108 && truth_value_p (TREE_CODE (arg1))
13109 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13110 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
13111 : TRUTH_ANDIF_EXPR,
13112 type, fold_convert_loc (loc, type, arg0), op1);
13114 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13115 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
13116 && truth_value_p (TREE_CODE (arg0))
13117 && truth_value_p (TREE_CODE (arg1))
13118 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13120 location_t loc0 = expr_location_or (arg0, loc);
13121 /* Only perform transformation if ARG0 is easily inverted. */
13122 tem = fold_invert_truthvalue (loc0, arg0);
13123 if (tem)
13124 return fold_build2_loc (loc, code == VEC_COND_EXPR
13125 ? BIT_IOR_EXPR
13126 : TRUTH_ORIF_EXPR,
13127 type, fold_convert_loc (loc, type, tem),
13128 op1);
13131 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13132 if (integer_zerop (arg1)
13133 && truth_value_p (TREE_CODE (arg0))
13134 && truth_value_p (TREE_CODE (op2))
13135 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13137 location_t loc0 = expr_location_or (arg0, loc);
13138 /* Only perform transformation if ARG0 is easily inverted. */
13139 tem = fold_invert_truthvalue (loc0, arg0);
13140 if (tem)
13141 return fold_build2_loc (loc, code == VEC_COND_EXPR
13142 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
13143 type, fold_convert_loc (loc, type, tem),
13144 op2);
13147 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13148 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
13149 && truth_value_p (TREE_CODE (arg0))
13150 && truth_value_p (TREE_CODE (op2))
13151 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
13152 return fold_build2_loc (loc, code == VEC_COND_EXPR
13153 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
13154 type, fold_convert_loc (loc, type, arg0), op2);
13156 return NULL_TREE;
13158 case CALL_EXPR:
13159 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13160 of fold_ternary on them. */
13161 gcc_unreachable ();
13163 case BIT_FIELD_REF:
13164 if (TREE_CODE (arg0) == VECTOR_CST
13165 && (type == TREE_TYPE (TREE_TYPE (arg0))
13166 || (VECTOR_TYPE_P (type)
13167 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0))))
13168 && tree_fits_uhwi_p (op1)
13169 && tree_fits_uhwi_p (op2))
13171 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
13172 unsigned HOST_WIDE_INT width
13173 = (TREE_CODE (eltype) == BOOLEAN_TYPE
13174 ? TYPE_PRECISION (eltype) : tree_to_uhwi (TYPE_SIZE (eltype)));
13175 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
13176 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
13178 if (n != 0
13179 && (idx % width) == 0
13180 && (n % width) == 0
13181 && known_le ((idx + n) / width,
13182 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))))
13184 idx = idx / width;
13185 n = n / width;
13187 if (TREE_CODE (arg0) == VECTOR_CST)
13189 if (n == 1)
13191 tem = VECTOR_CST_ELT (arg0, idx);
13192 if (VECTOR_TYPE_P (type))
13193 tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem);
13194 return tem;
13197 tree_vector_builder vals (type, n, 1);
13198 for (unsigned i = 0; i < n; ++i)
13199 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i));
13200 return vals.build ();
13205 /* On constants we can use native encode/interpret to constant
13206 fold (nearly) all BIT_FIELD_REFs. */
13207 if (CONSTANT_CLASS_P (arg0)
13208 && can_native_interpret_type_p (type)
13209 && BITS_PER_UNIT == 8
13210 && tree_fits_uhwi_p (op1)
13211 && tree_fits_uhwi_p (op2))
13213 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
13214 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
13215 /* Limit us to a reasonable amount of work. To relax the
13216 other limitations we need bit-shifting of the buffer
13217 and rounding up the size. */
13218 if (bitpos % BITS_PER_UNIT == 0
13219 && bitsize % BITS_PER_UNIT == 0
13220 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
13222 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
13223 unsigned HOST_WIDE_INT len
13224 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
13225 bitpos / BITS_PER_UNIT);
13226 if (len > 0
13227 && len * BITS_PER_UNIT >= bitsize)
13229 tree v = native_interpret_expr (type, b,
13230 bitsize / BITS_PER_UNIT);
13231 if (v)
13232 return v;
13237 return NULL_TREE;
13239 case VEC_PERM_EXPR:
13240 /* Perform constant folding of BIT_INSERT_EXPR. */
13241 if (TREE_CODE (arg2) == VECTOR_CST
13242 && TREE_CODE (op0) == VECTOR_CST
13243 && TREE_CODE (op1) == VECTOR_CST)
13245 /* Build a vector of integers from the tree mask. */
13246 vec_perm_builder builder;
13247 if (!tree_to_vec_perm_builder (&builder, arg2))
13248 return NULL_TREE;
13250 /* Create a vec_perm_indices for the integer vector. */
13251 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
13252 bool single_arg = (op0 == op1);
13253 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
13254 return fold_vec_perm (type, op0, op1, sel);
13256 return NULL_TREE;
13258 case BIT_INSERT_EXPR:
13259 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
13260 if (TREE_CODE (arg0) == INTEGER_CST
13261 && TREE_CODE (arg1) == INTEGER_CST)
13263 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
13264 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
13265 wide_int tem = (wi::to_wide (arg0)
13266 & wi::shifted_mask (bitpos, bitsize, true,
13267 TYPE_PRECISION (type)));
13268 wide_int tem2
13269 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
13270 bitsize), bitpos);
13271 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
13273 else if (TREE_CODE (arg0) == VECTOR_CST
13274 && CONSTANT_CLASS_P (arg1)
13275 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
13276 TREE_TYPE (arg1)))
13278 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
13279 unsigned HOST_WIDE_INT elsize
13280 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
13281 if (bitpos % elsize == 0)
13283 unsigned k = bitpos / elsize;
13284 unsigned HOST_WIDE_INT nelts;
13285 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
13286 return arg0;
13287 else if (VECTOR_CST_NELTS (arg0).is_constant (&nelts))
13289 tree_vector_builder elts (type, nelts, 1);
13290 elts.quick_grow (nelts);
13291 for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i)
13292 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i));
13293 return elts.build ();
13297 return NULL_TREE;
13299 default:
13300 return NULL_TREE;
13301 } /* switch (code) */
13304 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
13305 of an array (or vector). *CTOR_IDX if non-NULL is updated with the
13306 constructor element index of the value returned. If the element is
13307 not found NULL_TREE is returned and *CTOR_IDX is updated to
13308 the index of the element after the ACCESS_INDEX position (which
13309 may be outside of the CTOR array). */
13311 tree
13312 get_array_ctor_element_at_index (tree ctor, offset_int access_index,
13313 unsigned *ctor_idx)
13315 tree index_type = NULL_TREE;
13316 signop index_sgn = UNSIGNED;
13317 offset_int low_bound = 0;
13319 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
13321 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
13322 if (domain_type && TYPE_MIN_VALUE (domain_type))
13324 /* Static constructors for variably sized objects makes no sense. */
13325 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
13326 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
13327 /* ??? When it is obvious that the range is signed, treat it so. */
13328 if (TYPE_UNSIGNED (index_type)
13329 && TYPE_MAX_VALUE (domain_type)
13330 && tree_int_cst_lt (TYPE_MAX_VALUE (domain_type),
13331 TYPE_MIN_VALUE (domain_type)))
13333 index_sgn = SIGNED;
13334 low_bound
13335 = offset_int::from (wi::to_wide (TYPE_MIN_VALUE (domain_type)),
13336 SIGNED);
13338 else
13340 index_sgn = TYPE_SIGN (index_type);
13341 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
13346 if (index_type)
13347 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
13348 index_sgn);
13350 offset_int index = low_bound;
13351 if (index_type)
13352 index = wi::ext (index, TYPE_PRECISION (index_type), index_sgn);
13354 offset_int max_index = index;
13355 unsigned cnt;
13356 tree cfield, cval;
13357 bool first_p = true;
13359 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
13361 /* Array constructor might explicitly set index, or specify a range,
13362 or leave index NULL meaning that it is next index after previous
13363 one. */
13364 if (cfield)
13366 if (TREE_CODE (cfield) == INTEGER_CST)
13367 max_index = index
13368 = offset_int::from (wi::to_wide (cfield), index_sgn);
13369 else
13371 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
13372 index = offset_int::from (wi::to_wide (TREE_OPERAND (cfield, 0)),
13373 index_sgn);
13374 max_index
13375 = offset_int::from (wi::to_wide (TREE_OPERAND (cfield, 1)),
13376 index_sgn);
13377 gcc_checking_assert (wi::le_p (index, max_index, index_sgn));
13380 else if (!first_p)
13382 index = max_index + 1;
13383 if (index_type)
13384 index = wi::ext (index, TYPE_PRECISION (index_type), index_sgn);
13385 gcc_checking_assert (wi::gt_p (index, max_index, index_sgn));
13386 max_index = index;
13388 else
13389 first_p = false;
13391 /* Do we have match? */
13392 if (wi::cmp (access_index, index, index_sgn) >= 0)
13394 if (wi::cmp (access_index, max_index, index_sgn) <= 0)
13396 if (ctor_idx)
13397 *ctor_idx = cnt;
13398 return cval;
13401 else if (in_gimple_form)
13402 /* We're past the element we search for. Note during parsing
13403 the elements might not be sorted.
13404 ??? We should use a binary search and a flag on the
13405 CONSTRUCTOR as to whether elements are sorted in declaration
13406 order. */
13407 break;
13409 if (ctor_idx)
13410 *ctor_idx = cnt;
13411 return NULL_TREE;
13414 /* Perform constant folding and related simplification of EXPR.
13415 The related simplifications include x*1 => x, x*0 => 0, etc.,
13416 and application of the associative law.
13417 NOP_EXPR conversions may be removed freely (as long as we
13418 are careful not to change the type of the overall expression).
13419 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13420 but we can constant-fold them if they have constant operands. */
13422 #ifdef ENABLE_FOLD_CHECKING
13423 # define fold(x) fold_1 (x)
13424 static tree fold_1 (tree);
13425 static
13426 #endif
13427 tree
13428 fold (tree expr)
13430 const tree t = expr;
13431 enum tree_code code = TREE_CODE (t);
13432 enum tree_code_class kind = TREE_CODE_CLASS (code);
13433 tree tem;
13434 location_t loc = EXPR_LOCATION (expr);
13436 /* Return right away if a constant. */
13437 if (kind == tcc_constant)
13438 return t;
13440 /* CALL_EXPR-like objects with variable numbers of operands are
13441 treated specially. */
13442 if (kind == tcc_vl_exp)
13444 if (code == CALL_EXPR)
13446 tem = fold_call_expr (loc, expr, false);
13447 return tem ? tem : expr;
13449 return expr;
13452 if (IS_EXPR_CODE_CLASS (kind))
13454 tree type = TREE_TYPE (t);
13455 tree op0, op1, op2;
13457 switch (TREE_CODE_LENGTH (code))
13459 case 1:
13460 op0 = TREE_OPERAND (t, 0);
13461 tem = fold_unary_loc (loc, code, type, op0);
13462 return tem ? tem : expr;
13463 case 2:
13464 op0 = TREE_OPERAND (t, 0);
13465 op1 = TREE_OPERAND (t, 1);
13466 tem = fold_binary_loc (loc, code, type, op0, op1);
13467 return tem ? tem : expr;
13468 case 3:
13469 op0 = TREE_OPERAND (t, 0);
13470 op1 = TREE_OPERAND (t, 1);
13471 op2 = TREE_OPERAND (t, 2);
13472 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13473 return tem ? tem : expr;
13474 default:
13475 break;
13479 switch (code)
13481 case ARRAY_REF:
13483 tree op0 = TREE_OPERAND (t, 0);
13484 tree op1 = TREE_OPERAND (t, 1);
13486 if (TREE_CODE (op1) == INTEGER_CST
13487 && TREE_CODE (op0) == CONSTRUCTOR
13488 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
13490 tree val = get_array_ctor_element_at_index (op0,
13491 wi::to_offset (op1));
13492 if (val)
13493 return val;
13496 return t;
13499 /* Return a VECTOR_CST if possible. */
13500 case CONSTRUCTOR:
13502 tree type = TREE_TYPE (t);
13503 if (TREE_CODE (type) != VECTOR_TYPE)
13504 return t;
13506 unsigned i;
13507 tree val;
13508 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
13509 if (! CONSTANT_CLASS_P (val))
13510 return t;
13512 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
13515 case CONST_DECL:
13516 return fold (DECL_INITIAL (t));
13518 default:
13519 return t;
13520 } /* switch (code) */
13523 #ifdef ENABLE_FOLD_CHECKING
13524 #undef fold
13526 static void fold_checksum_tree (const_tree, struct md5_ctx *,
13527 hash_table<nofree_ptr_hash<const tree_node> > *);
13528 static void fold_check_failed (const_tree, const_tree);
13529 void print_fold_checksum (const_tree);
13531 /* When --enable-checking=fold, compute a digest of expr before
13532 and after actual fold call to see if fold did not accidentally
13533 change original expr. */
13535 tree
13536 fold (tree expr)
13538 tree ret;
13539 struct md5_ctx ctx;
13540 unsigned char checksum_before[16], checksum_after[16];
13541 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13543 md5_init_ctx (&ctx);
13544 fold_checksum_tree (expr, &ctx, &ht);
13545 md5_finish_ctx (&ctx, checksum_before);
13546 ht.empty ();
13548 ret = fold_1 (expr);
13550 md5_init_ctx (&ctx);
13551 fold_checksum_tree (expr, &ctx, &ht);
13552 md5_finish_ctx (&ctx, checksum_after);
13554 if (memcmp (checksum_before, checksum_after, 16))
13555 fold_check_failed (expr, ret);
13557 return ret;
13560 void
13561 print_fold_checksum (const_tree expr)
13563 struct md5_ctx ctx;
13564 unsigned char checksum[16], cnt;
13565 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13567 md5_init_ctx (&ctx);
13568 fold_checksum_tree (expr, &ctx, &ht);
13569 md5_finish_ctx (&ctx, checksum);
13570 for (cnt = 0; cnt < 16; ++cnt)
13571 fprintf (stderr, "%02x", checksum[cnt]);
13572 putc ('\n', stderr);
13575 static void
13576 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
13578 internal_error ("fold check: original tree changed by fold");
13581 static void
13582 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
13583 hash_table<nofree_ptr_hash <const tree_node> > *ht)
13585 const tree_node **slot;
13586 enum tree_code code;
13587 union tree_node *buf;
13588 int i, len;
13590 recursive_label:
13591 if (expr == NULL)
13592 return;
13593 slot = ht->find_slot (expr, INSERT);
13594 if (*slot != NULL)
13595 return;
13596 *slot = expr;
13597 code = TREE_CODE (expr);
13598 if (TREE_CODE_CLASS (code) == tcc_declaration
13599 && HAS_DECL_ASSEMBLER_NAME_P (expr))
13601 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
13602 size_t sz = tree_size (expr);
13603 buf = XALLOCAVAR (union tree_node, sz);
13604 memcpy ((char *) buf, expr, sz);
13605 SET_DECL_ASSEMBLER_NAME ((tree) buf, NULL);
13606 buf->decl_with_vis.symtab_node = NULL;
13607 buf->base.nowarning_flag = 0;
13608 expr = (tree) buf;
13610 else if (TREE_CODE_CLASS (code) == tcc_type
13611 && (TYPE_POINTER_TO (expr)
13612 || TYPE_REFERENCE_TO (expr)
13613 || TYPE_CACHED_VALUES_P (expr)
13614 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
13615 || TYPE_NEXT_VARIANT (expr)
13616 || TYPE_ALIAS_SET_KNOWN_P (expr)))
13618 /* Allow these fields to be modified. */
13619 tree tmp;
13620 size_t sz = tree_size (expr);
13621 buf = XALLOCAVAR (union tree_node, sz);
13622 memcpy ((char *) buf, expr, sz);
13623 expr = tmp = (tree) buf;
13624 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13625 TYPE_POINTER_TO (tmp) = NULL;
13626 TYPE_REFERENCE_TO (tmp) = NULL;
13627 TYPE_NEXT_VARIANT (tmp) = NULL;
13628 TYPE_ALIAS_SET (tmp) = -1;
13629 if (TYPE_CACHED_VALUES_P (tmp))
13631 TYPE_CACHED_VALUES_P (tmp) = 0;
13632 TYPE_CACHED_VALUES (tmp) = NULL;
13635 else if (warning_suppressed_p (expr) && (DECL_P (expr) || EXPR_P (expr)))
13637 /* Allow the no-warning bit to be set. Perhaps we shouldn't allow
13638 that and change builtins.cc etc. instead - see PR89543. */
13639 size_t sz = tree_size (expr);
13640 buf = XALLOCAVAR (union tree_node, sz);
13641 memcpy ((char *) buf, expr, sz);
13642 buf->base.nowarning_flag = 0;
13643 expr = (tree) buf;
13645 md5_process_bytes (expr, tree_size (expr), ctx);
13646 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
13647 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13648 if (TREE_CODE_CLASS (code) != tcc_type
13649 && TREE_CODE_CLASS (code) != tcc_declaration
13650 && code != TREE_LIST
13651 && code != SSA_NAME
13652 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
13653 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
13654 switch (TREE_CODE_CLASS (code))
13656 case tcc_constant:
13657 switch (code)
13659 case STRING_CST:
13660 md5_process_bytes (TREE_STRING_POINTER (expr),
13661 TREE_STRING_LENGTH (expr), ctx);
13662 break;
13663 case COMPLEX_CST:
13664 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
13665 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
13666 break;
13667 case VECTOR_CST:
13668 len = vector_cst_encoded_nelts (expr);
13669 for (i = 0; i < len; ++i)
13670 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht);
13671 break;
13672 default:
13673 break;
13675 break;
13676 case tcc_exceptional:
13677 switch (code)
13679 case TREE_LIST:
13680 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
13681 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
13682 expr = TREE_CHAIN (expr);
13683 goto recursive_label;
13684 break;
13685 case TREE_VEC:
13686 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
13687 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
13688 break;
13689 default:
13690 break;
13692 break;
13693 case tcc_expression:
13694 case tcc_reference:
13695 case tcc_comparison:
13696 case tcc_unary:
13697 case tcc_binary:
13698 case tcc_statement:
13699 case tcc_vl_exp:
13700 len = TREE_OPERAND_LENGTH (expr);
13701 for (i = 0; i < len; ++i)
13702 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
13703 break;
13704 case tcc_declaration:
13705 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
13706 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
13707 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
13709 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
13710 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
13711 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
13712 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
13713 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
13716 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
13718 if (TREE_CODE (expr) == FUNCTION_DECL)
13720 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
13721 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
13723 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
13725 break;
13726 case tcc_type:
13727 if (TREE_CODE (expr) == ENUMERAL_TYPE)
13728 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
13729 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
13730 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
13731 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
13732 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
13733 if (INTEGRAL_TYPE_P (expr)
13734 || SCALAR_FLOAT_TYPE_P (expr))
13736 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
13737 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
13739 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
13740 if (TREE_CODE (expr) == RECORD_TYPE
13741 || TREE_CODE (expr) == UNION_TYPE
13742 || TREE_CODE (expr) == QUAL_UNION_TYPE)
13743 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
13744 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
13745 break;
13746 default:
13747 break;
13751 /* Helper function for outputting the checksum of a tree T. When
13752 debugging with gdb, you can "define mynext" to be "next" followed
13753 by "call debug_fold_checksum (op0)", then just trace down till the
13754 outputs differ. */
13756 DEBUG_FUNCTION void
13757 debug_fold_checksum (const_tree t)
13759 int i;
13760 unsigned char checksum[16];
13761 struct md5_ctx ctx;
13762 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13764 md5_init_ctx (&ctx);
13765 fold_checksum_tree (t, &ctx, &ht);
13766 md5_finish_ctx (&ctx, checksum);
13767 ht.empty ();
13769 for (i = 0; i < 16; i++)
13770 fprintf (stderr, "%d ", checksum[i]);
13772 fprintf (stderr, "\n");
13775 #endif
13777 /* Fold a unary tree expression with code CODE of type TYPE with an
13778 operand OP0. LOC is the location of the resulting expression.
13779 Return a folded expression if successful. Otherwise, return a tree
13780 expression with code CODE of type TYPE with an operand OP0. */
13782 tree
13783 fold_build1_loc (location_t loc,
13784 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
13786 tree tem;
13787 #ifdef ENABLE_FOLD_CHECKING
13788 unsigned char checksum_before[16], checksum_after[16];
13789 struct md5_ctx ctx;
13790 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13792 md5_init_ctx (&ctx);
13793 fold_checksum_tree (op0, &ctx, &ht);
13794 md5_finish_ctx (&ctx, checksum_before);
13795 ht.empty ();
13796 #endif
13798 tem = fold_unary_loc (loc, code, type, op0);
13799 if (!tem)
13800 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT);
13802 #ifdef ENABLE_FOLD_CHECKING
13803 md5_init_ctx (&ctx);
13804 fold_checksum_tree (op0, &ctx, &ht);
13805 md5_finish_ctx (&ctx, checksum_after);
13807 if (memcmp (checksum_before, checksum_after, 16))
13808 fold_check_failed (op0, tem);
13809 #endif
13810 return tem;
13813 /* Fold a binary tree expression with code CODE of type TYPE with
13814 operands OP0 and OP1. LOC is the location of the resulting
13815 expression. Return a folded expression if successful. Otherwise,
13816 return a tree expression with code CODE of type TYPE with operands
13817 OP0 and OP1. */
13819 tree
13820 fold_build2_loc (location_t loc,
13821 enum tree_code code, tree type, tree op0, tree op1
13822 MEM_STAT_DECL)
13824 tree tem;
13825 #ifdef ENABLE_FOLD_CHECKING
13826 unsigned char checksum_before_op0[16],
13827 checksum_before_op1[16],
13828 checksum_after_op0[16],
13829 checksum_after_op1[16];
13830 struct md5_ctx ctx;
13831 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13833 md5_init_ctx (&ctx);
13834 fold_checksum_tree (op0, &ctx, &ht);
13835 md5_finish_ctx (&ctx, checksum_before_op0);
13836 ht.empty ();
13838 md5_init_ctx (&ctx);
13839 fold_checksum_tree (op1, &ctx, &ht);
13840 md5_finish_ctx (&ctx, checksum_before_op1);
13841 ht.empty ();
13842 #endif
13844 tem = fold_binary_loc (loc, code, type, op0, op1);
13845 if (!tem)
13846 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
13848 #ifdef ENABLE_FOLD_CHECKING
13849 md5_init_ctx (&ctx);
13850 fold_checksum_tree (op0, &ctx, &ht);
13851 md5_finish_ctx (&ctx, checksum_after_op0);
13852 ht.empty ();
13854 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13855 fold_check_failed (op0, tem);
13857 md5_init_ctx (&ctx);
13858 fold_checksum_tree (op1, &ctx, &ht);
13859 md5_finish_ctx (&ctx, checksum_after_op1);
13861 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13862 fold_check_failed (op1, tem);
13863 #endif
13864 return tem;
13867 /* Fold a ternary tree expression with code CODE of type TYPE with
13868 operands OP0, OP1, and OP2. Return a folded expression if
13869 successful. Otherwise, return a tree expression with code CODE of
13870 type TYPE with operands OP0, OP1, and OP2. */
13872 tree
13873 fold_build3_loc (location_t loc, enum tree_code code, tree type,
13874 tree op0, tree op1, tree op2 MEM_STAT_DECL)
13876 tree tem;
13877 #ifdef ENABLE_FOLD_CHECKING
13878 unsigned char checksum_before_op0[16],
13879 checksum_before_op1[16],
13880 checksum_before_op2[16],
13881 checksum_after_op0[16],
13882 checksum_after_op1[16],
13883 checksum_after_op2[16];
13884 struct md5_ctx ctx;
13885 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13887 md5_init_ctx (&ctx);
13888 fold_checksum_tree (op0, &ctx, &ht);
13889 md5_finish_ctx (&ctx, checksum_before_op0);
13890 ht.empty ();
13892 md5_init_ctx (&ctx);
13893 fold_checksum_tree (op1, &ctx, &ht);
13894 md5_finish_ctx (&ctx, checksum_before_op1);
13895 ht.empty ();
13897 md5_init_ctx (&ctx);
13898 fold_checksum_tree (op2, &ctx, &ht);
13899 md5_finish_ctx (&ctx, checksum_before_op2);
13900 ht.empty ();
13901 #endif
13903 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
13904 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
13905 if (!tem)
13906 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
13908 #ifdef ENABLE_FOLD_CHECKING
13909 md5_init_ctx (&ctx);
13910 fold_checksum_tree (op0, &ctx, &ht);
13911 md5_finish_ctx (&ctx, checksum_after_op0);
13912 ht.empty ();
13914 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13915 fold_check_failed (op0, tem);
13917 md5_init_ctx (&ctx);
13918 fold_checksum_tree (op1, &ctx, &ht);
13919 md5_finish_ctx (&ctx, checksum_after_op1);
13920 ht.empty ();
13922 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13923 fold_check_failed (op1, tem);
13925 md5_init_ctx (&ctx);
13926 fold_checksum_tree (op2, &ctx, &ht);
13927 md5_finish_ctx (&ctx, checksum_after_op2);
13929 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
13930 fold_check_failed (op2, tem);
13931 #endif
13932 return tem;
13935 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
13936 arguments in ARGARRAY, and a null static chain.
13937 Return a folded expression if successful. Otherwise, return a CALL_EXPR
13938 of type TYPE from the given operands as constructed by build_call_array. */
13940 tree
13941 fold_build_call_array_loc (location_t loc, tree type, tree fn,
13942 int nargs, tree *argarray)
13944 tree tem;
13945 #ifdef ENABLE_FOLD_CHECKING
13946 unsigned char checksum_before_fn[16],
13947 checksum_before_arglist[16],
13948 checksum_after_fn[16],
13949 checksum_after_arglist[16];
13950 struct md5_ctx ctx;
13951 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
13952 int i;
13954 md5_init_ctx (&ctx);
13955 fold_checksum_tree (fn, &ctx, &ht);
13956 md5_finish_ctx (&ctx, checksum_before_fn);
13957 ht.empty ();
13959 md5_init_ctx (&ctx);
13960 for (i = 0; i < nargs; i++)
13961 fold_checksum_tree (argarray[i], &ctx, &ht);
13962 md5_finish_ctx (&ctx, checksum_before_arglist);
13963 ht.empty ();
13964 #endif
13966 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
13967 if (!tem)
13968 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
13970 #ifdef ENABLE_FOLD_CHECKING
13971 md5_init_ctx (&ctx);
13972 fold_checksum_tree (fn, &ctx, &ht);
13973 md5_finish_ctx (&ctx, checksum_after_fn);
13974 ht.empty ();
13976 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
13977 fold_check_failed (fn, tem);
13979 md5_init_ctx (&ctx);
13980 for (i = 0; i < nargs; i++)
13981 fold_checksum_tree (argarray[i], &ctx, &ht);
13982 md5_finish_ctx (&ctx, checksum_after_arglist);
13984 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
13985 fold_check_failed (NULL_TREE, tem);
13986 #endif
13987 return tem;
13990 /* Perform constant folding and related simplification of initializer
13991 expression EXPR. These behave identically to "fold_buildN" but ignore
13992 potential run-time traps and exceptions that fold must preserve. */
13994 #define START_FOLD_INIT \
13995 int saved_signaling_nans = flag_signaling_nans;\
13996 int saved_trapping_math = flag_trapping_math;\
13997 int saved_rounding_math = flag_rounding_math;\
13998 int saved_trapv = flag_trapv;\
13999 int saved_folding_initializer = folding_initializer;\
14000 flag_signaling_nans = 0;\
14001 flag_trapping_math = 0;\
14002 flag_rounding_math = 0;\
14003 flag_trapv = 0;\
14004 folding_initializer = 1;
14006 #define END_FOLD_INIT \
14007 flag_signaling_nans = saved_signaling_nans;\
14008 flag_trapping_math = saved_trapping_math;\
14009 flag_rounding_math = saved_rounding_math;\
14010 flag_trapv = saved_trapv;\
14011 folding_initializer = saved_folding_initializer;
14013 tree
14014 fold_init (tree expr)
14016 tree result;
14017 START_FOLD_INIT;
14019 result = fold (expr);
14021 END_FOLD_INIT;
14022 return result;
14025 tree
14026 fold_build1_initializer_loc (location_t loc, enum tree_code code,
14027 tree type, tree op)
14029 tree result;
14030 START_FOLD_INIT;
14032 result = fold_build1_loc (loc, code, type, op);
14034 END_FOLD_INIT;
14035 return result;
14038 tree
14039 fold_build2_initializer_loc (location_t loc, enum tree_code code,
14040 tree type, tree op0, tree op1)
14042 tree result;
14043 START_FOLD_INIT;
14045 result = fold_build2_loc (loc, code, type, op0, op1);
14047 END_FOLD_INIT;
14048 return result;
14051 tree
14052 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
14053 int nargs, tree *argarray)
14055 tree result;
14056 START_FOLD_INIT;
14058 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
14060 END_FOLD_INIT;
14061 return result;
14064 tree
14065 fold_binary_initializer_loc (location_t loc, tree_code code, tree type,
14066 tree lhs, tree rhs)
14068 tree result;
14069 START_FOLD_INIT;
14071 result = fold_binary_loc (loc, code, type, lhs, rhs);
14073 END_FOLD_INIT;
14074 return result;
14077 #undef START_FOLD_INIT
14078 #undef END_FOLD_INIT
14080 /* Determine if first argument is a multiple of second argument. Return 0 if
14081 it is not, or we cannot easily determined it to be.
14083 An example of the sort of thing we care about (at this point; this routine
14084 could surely be made more general, and expanded to do what the *_DIV_EXPR's
14085 fold cases do now) is discovering that
14087 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14089 is a multiple of
14091 SAVE_EXPR (J * 8)
14093 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
14095 This code also handles discovering that
14097 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14099 is a multiple of 8 so we don't have to worry about dealing with a
14100 possible remainder.
14102 Note that we *look* inside a SAVE_EXPR only to determine how it was
14103 calculated; it is not safe for fold to do much of anything else with the
14104 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
14105 at run time. For example, the latter example above *cannot* be implemented
14106 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
14107 evaluation time of the original SAVE_EXPR is not necessarily the same at
14108 the time the new expression is evaluated. The only optimization of this
14109 sort that would be valid is changing
14111 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
14113 divided by 8 to
14115 SAVE_EXPR (I) * SAVE_EXPR (J)
14117 (where the same SAVE_EXPR (J) is used in the original and the
14118 transformed version).
14120 NOWRAP specifies whether all outer operations in TYPE should
14121 be considered not wrapping. Any type conversion within TOP acts
14122 as a barrier and we will fall back to NOWRAP being false.
14123 NOWRAP is mostly used to treat expressions in TYPE_SIZE and friends
14124 as not wrapping even though they are generally using unsigned arithmetic. */
14127 multiple_of_p (tree type, const_tree top, const_tree bottom, bool nowrap)
14129 gimple *stmt;
14130 tree op1, op2;
14132 if (operand_equal_p (top, bottom, 0))
14133 return 1;
14135 if (TREE_CODE (type) != INTEGER_TYPE)
14136 return 0;
14138 switch (TREE_CODE (top))
14140 case BIT_AND_EXPR:
14141 /* Bitwise and provides a power of two multiple. If the mask is
14142 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
14143 if (!integer_pow2p (bottom))
14144 return 0;
14145 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom, nowrap)
14146 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom, nowrap));
14148 case MULT_EXPR:
14149 /* If the multiplication can wrap we cannot recurse further unless
14150 the bottom is a power of two which is where wrapping does not
14151 matter. */
14152 if (!nowrap
14153 && !TYPE_OVERFLOW_UNDEFINED (type)
14154 && !integer_pow2p (bottom))
14155 return 0;
14156 if (TREE_CODE (bottom) == INTEGER_CST)
14158 op1 = TREE_OPERAND (top, 0);
14159 op2 = TREE_OPERAND (top, 1);
14160 if (TREE_CODE (op1) == INTEGER_CST)
14161 std::swap (op1, op2);
14162 if (TREE_CODE (op2) == INTEGER_CST)
14164 if (multiple_of_p (type, op2, bottom, nowrap))
14165 return 1;
14166 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
14167 if (multiple_of_p (type, bottom, op2, nowrap))
14169 widest_int w = wi::sdiv_trunc (wi::to_widest (bottom),
14170 wi::to_widest (op2));
14171 if (wi::fits_to_tree_p (w, TREE_TYPE (bottom)))
14173 op2 = wide_int_to_tree (TREE_TYPE (bottom), w);
14174 return multiple_of_p (type, op1, op2, nowrap);
14177 return multiple_of_p (type, op1, bottom, nowrap);
14180 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom, nowrap)
14181 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom, nowrap));
14183 case LSHIFT_EXPR:
14184 /* Handle X << CST as X * (1 << CST) and only process the constant. */
14185 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
14187 op1 = TREE_OPERAND (top, 1);
14188 if (wi::to_widest (op1) < TYPE_PRECISION (type))
14190 wide_int mul_op
14191 = wi::one (TYPE_PRECISION (type)) << wi::to_wide (op1);
14192 return multiple_of_p (type,
14193 wide_int_to_tree (type, mul_op), bottom,
14194 nowrap);
14197 return 0;
14199 case MINUS_EXPR:
14200 case PLUS_EXPR:
14201 /* If the addition or subtraction can wrap we cannot recurse further
14202 unless bottom is a power of two which is where wrapping does not
14203 matter. */
14204 if (!nowrap
14205 && !TYPE_OVERFLOW_UNDEFINED (type)
14206 && !integer_pow2p (bottom))
14207 return 0;
14209 /* Handle cases like op0 + 0xfffffffd as op0 - 3 if the expression has
14210 unsigned type. For example, (X / 3) + 0xfffffffd is multiple of 3,
14211 but 0xfffffffd is not. */
14212 op1 = TREE_OPERAND (top, 1);
14213 if (TREE_CODE (top) == PLUS_EXPR
14214 && nowrap
14215 && TYPE_UNSIGNED (type)
14216 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
14217 op1 = fold_build1 (NEGATE_EXPR, type, op1);
14219 /* It is impossible to prove if op0 +- op1 is multiple of bottom
14220 precisely, so be conservative here checking if both op0 and op1
14221 are multiple of bottom. Note we check the second operand first
14222 since it's usually simpler. */
14223 return (multiple_of_p (type, op1, bottom, nowrap)
14224 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom, nowrap));
14226 CASE_CONVERT:
14227 /* Can't handle conversions from non-integral or wider integral type. */
14228 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
14229 || (TYPE_PRECISION (type)
14230 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
14231 return 0;
14232 /* NOWRAP only extends to operations in the outermost type so
14233 make sure to strip it off here. */
14234 return multiple_of_p (TREE_TYPE (TREE_OPERAND (top, 0)),
14235 TREE_OPERAND (top, 0), bottom, false);
14237 case SAVE_EXPR:
14238 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom, nowrap);
14240 case COND_EXPR:
14241 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom, nowrap)
14242 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom, nowrap));
14244 case INTEGER_CST:
14245 if (TREE_CODE (bottom) != INTEGER_CST || integer_zerop (bottom))
14246 return 0;
14247 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
14248 SIGNED);
14250 case SSA_NAME:
14251 if (TREE_CODE (bottom) == INTEGER_CST
14252 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
14253 && gimple_code (stmt) == GIMPLE_ASSIGN)
14255 enum tree_code code = gimple_assign_rhs_code (stmt);
14257 /* Check for special cases to see if top is defined as multiple
14258 of bottom:
14260 top = (X & ~(bottom - 1) ; bottom is power of 2
14264 Y = X % bottom
14265 top = X - Y. */
14266 if (code == BIT_AND_EXPR
14267 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
14268 && TREE_CODE (op2) == INTEGER_CST
14269 && integer_pow2p (bottom)
14270 && wi::multiple_of_p (wi::to_widest (op2),
14271 wi::to_widest (bottom), UNSIGNED))
14272 return 1;
14274 op1 = gimple_assign_rhs1 (stmt);
14275 if (code == MINUS_EXPR
14276 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
14277 && TREE_CODE (op2) == SSA_NAME
14278 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
14279 && gimple_code (stmt) == GIMPLE_ASSIGN
14280 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
14281 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
14282 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
14283 return 1;
14286 /* fall through */
14288 default:
14289 if (POLY_INT_CST_P (top) && poly_int_tree_p (bottom))
14290 return multiple_p (wi::to_poly_widest (top),
14291 wi::to_poly_widest (bottom));
14293 return 0;
14297 /* Return true if expression X cannot be (or contain) a NaN or infinity.
14298 This function returns true for integer expressions, and returns
14299 false if uncertain. */
14301 bool
14302 tree_expr_finite_p (const_tree x)
14304 machine_mode mode = element_mode (x);
14305 if (!HONOR_NANS (mode) && !HONOR_INFINITIES (mode))
14306 return true;
14307 switch (TREE_CODE (x))
14309 case REAL_CST:
14310 return real_isfinite (TREE_REAL_CST_PTR (x));
14311 case COMPLEX_CST:
14312 return tree_expr_finite_p (TREE_REALPART (x))
14313 && tree_expr_finite_p (TREE_IMAGPART (x));
14314 case FLOAT_EXPR:
14315 return true;
14316 case ABS_EXPR:
14317 case CONVERT_EXPR:
14318 case NON_LVALUE_EXPR:
14319 case NEGATE_EXPR:
14320 case SAVE_EXPR:
14321 return tree_expr_finite_p (TREE_OPERAND (x, 0));
14322 case MIN_EXPR:
14323 case MAX_EXPR:
14324 return tree_expr_finite_p (TREE_OPERAND (x, 0))
14325 && tree_expr_finite_p (TREE_OPERAND (x, 1));
14326 case COND_EXPR:
14327 return tree_expr_finite_p (TREE_OPERAND (x, 1))
14328 && tree_expr_finite_p (TREE_OPERAND (x, 2));
14329 case CALL_EXPR:
14330 switch (get_call_combined_fn (x))
14332 CASE_CFN_FABS:
14333 return tree_expr_finite_p (CALL_EXPR_ARG (x, 0));
14334 CASE_CFN_FMAX:
14335 CASE_CFN_FMIN:
14336 return tree_expr_finite_p (CALL_EXPR_ARG (x, 0))
14337 && tree_expr_finite_p (CALL_EXPR_ARG (x, 1));
14338 default:
14339 return false;
14342 default:
14343 return false;
14347 /* Return true if expression X evaluates to an infinity.
14348 This function returns false for integer expressions. */
14350 bool
14351 tree_expr_infinite_p (const_tree x)
14353 if (!HONOR_INFINITIES (x))
14354 return false;
14355 switch (TREE_CODE (x))
14357 case REAL_CST:
14358 return real_isinf (TREE_REAL_CST_PTR (x));
14359 case ABS_EXPR:
14360 case NEGATE_EXPR:
14361 case NON_LVALUE_EXPR:
14362 case SAVE_EXPR:
14363 return tree_expr_infinite_p (TREE_OPERAND (x, 0));
14364 case COND_EXPR:
14365 return tree_expr_infinite_p (TREE_OPERAND (x, 1))
14366 && tree_expr_infinite_p (TREE_OPERAND (x, 2));
14367 default:
14368 return false;
14372 /* Return true if expression X could evaluate to an infinity.
14373 This function returns false for integer expressions, and returns
14374 true if uncertain. */
14376 bool
14377 tree_expr_maybe_infinite_p (const_tree x)
14379 if (!HONOR_INFINITIES (x))
14380 return false;
14381 switch (TREE_CODE (x))
14383 case REAL_CST:
14384 return real_isinf (TREE_REAL_CST_PTR (x));
14385 case FLOAT_EXPR:
14386 return false;
14387 case ABS_EXPR:
14388 case NEGATE_EXPR:
14389 return tree_expr_maybe_infinite_p (TREE_OPERAND (x, 0));
14390 case COND_EXPR:
14391 return tree_expr_maybe_infinite_p (TREE_OPERAND (x, 1))
14392 || tree_expr_maybe_infinite_p (TREE_OPERAND (x, 2));
14393 default:
14394 return true;
14398 /* Return true if expression X evaluates to a signaling NaN.
14399 This function returns false for integer expressions. */
14401 bool
14402 tree_expr_signaling_nan_p (const_tree x)
14404 if (!HONOR_SNANS (x))
14405 return false;
14406 switch (TREE_CODE (x))
14408 case REAL_CST:
14409 return real_issignaling_nan (TREE_REAL_CST_PTR (x));
14410 case NON_LVALUE_EXPR:
14411 case SAVE_EXPR:
14412 return tree_expr_signaling_nan_p (TREE_OPERAND (x, 0));
14413 case COND_EXPR:
14414 return tree_expr_signaling_nan_p (TREE_OPERAND (x, 1))
14415 && tree_expr_signaling_nan_p (TREE_OPERAND (x, 2));
14416 default:
14417 return false;
14421 /* Return true if expression X could evaluate to a signaling NaN.
14422 This function returns false for integer expressions, and returns
14423 true if uncertain. */
14425 bool
14426 tree_expr_maybe_signaling_nan_p (const_tree x)
14428 if (!HONOR_SNANS (x))
14429 return false;
14430 switch (TREE_CODE (x))
14432 case REAL_CST:
14433 return real_issignaling_nan (TREE_REAL_CST_PTR (x));
14434 case FLOAT_EXPR:
14435 return false;
14436 case ABS_EXPR:
14437 case CONVERT_EXPR:
14438 case NEGATE_EXPR:
14439 case NON_LVALUE_EXPR:
14440 case SAVE_EXPR:
14441 return tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 0));
14442 case MIN_EXPR:
14443 case MAX_EXPR:
14444 return tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 0))
14445 || tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 1));
14446 case COND_EXPR:
14447 return tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 1))
14448 || tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 2));
14449 case CALL_EXPR:
14450 switch (get_call_combined_fn (x))
14452 CASE_CFN_FABS:
14453 return tree_expr_maybe_signaling_nan_p (CALL_EXPR_ARG (x, 0));
14454 CASE_CFN_FMAX:
14455 CASE_CFN_FMIN:
14456 return tree_expr_maybe_signaling_nan_p (CALL_EXPR_ARG (x, 0))
14457 || tree_expr_maybe_signaling_nan_p (CALL_EXPR_ARG (x, 1));
14458 default:
14459 return true;
14461 default:
14462 return true;
14466 /* Return true if expression X evaluates to a NaN.
14467 This function returns false for integer expressions. */
14469 bool
14470 tree_expr_nan_p (const_tree x)
14472 if (!HONOR_NANS (x))
14473 return false;
14474 switch (TREE_CODE (x))
14476 case REAL_CST:
14477 return real_isnan (TREE_REAL_CST_PTR (x));
14478 case NON_LVALUE_EXPR:
14479 case SAVE_EXPR:
14480 return tree_expr_nan_p (TREE_OPERAND (x, 0));
14481 case COND_EXPR:
14482 return tree_expr_nan_p (TREE_OPERAND (x, 1))
14483 && tree_expr_nan_p (TREE_OPERAND (x, 2));
14484 default:
14485 return false;
14489 /* Return true if expression X could evaluate to a NaN.
14490 This function returns false for integer expressions, and returns
14491 true if uncertain. */
14493 bool
14494 tree_expr_maybe_nan_p (const_tree x)
14496 if (!HONOR_NANS (x))
14497 return false;
14498 switch (TREE_CODE (x))
14500 case REAL_CST:
14501 return real_isnan (TREE_REAL_CST_PTR (x));
14502 case FLOAT_EXPR:
14503 return false;
14504 case PLUS_EXPR:
14505 case MINUS_EXPR:
14506 case MULT_EXPR:
14507 return !tree_expr_finite_p (TREE_OPERAND (x, 0))
14508 || !tree_expr_finite_p (TREE_OPERAND (x, 1));
14509 case ABS_EXPR:
14510 case CONVERT_EXPR:
14511 case NEGATE_EXPR:
14512 case NON_LVALUE_EXPR:
14513 case SAVE_EXPR:
14514 return tree_expr_maybe_nan_p (TREE_OPERAND (x, 0));
14515 case MIN_EXPR:
14516 case MAX_EXPR:
14517 return tree_expr_maybe_nan_p (TREE_OPERAND (x, 0))
14518 || tree_expr_maybe_nan_p (TREE_OPERAND (x, 1));
14519 case COND_EXPR:
14520 return tree_expr_maybe_nan_p (TREE_OPERAND (x, 1))
14521 || tree_expr_maybe_nan_p (TREE_OPERAND (x, 2));
14522 case CALL_EXPR:
14523 switch (get_call_combined_fn (x))
14525 CASE_CFN_FABS:
14526 return tree_expr_maybe_nan_p (CALL_EXPR_ARG (x, 0));
14527 CASE_CFN_FMAX:
14528 CASE_CFN_FMIN:
14529 return tree_expr_maybe_nan_p (CALL_EXPR_ARG (x, 0))
14530 || tree_expr_maybe_nan_p (CALL_EXPR_ARG (x, 1));
14531 default:
14532 return true;
14534 default:
14535 return true;
14539 /* Return true if expression X could evaluate to -0.0.
14540 This function returns true if uncertain. */
14542 bool
14543 tree_expr_maybe_real_minus_zero_p (const_tree x)
14545 if (!HONOR_SIGNED_ZEROS (x))
14546 return false;
14547 switch (TREE_CODE (x))
14549 case REAL_CST:
14550 return REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (x));
14551 case INTEGER_CST:
14552 case FLOAT_EXPR:
14553 case ABS_EXPR:
14554 return false;
14555 case NON_LVALUE_EXPR:
14556 case SAVE_EXPR:
14557 return tree_expr_maybe_real_minus_zero_p (TREE_OPERAND (x, 0));
14558 case COND_EXPR:
14559 return tree_expr_maybe_real_minus_zero_p (TREE_OPERAND (x, 1))
14560 || tree_expr_maybe_real_minus_zero_p (TREE_OPERAND (x, 2));
14561 case CALL_EXPR:
14562 switch (get_call_combined_fn (x))
14564 CASE_CFN_FABS:
14565 return false;
14566 default:
14567 break;
14569 default:
14570 break;
14572 /* Ideally !(tree_expr_nonzero_p (X) || tree_expr_nonnegative_p (X))
14573 * but currently those predicates require tree and not const_tree. */
14574 return true;
14577 #define tree_expr_nonnegative_warnv_p(X, Y) \
14578 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
14580 #define RECURSE(X) \
14581 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
14583 /* Return true if CODE or TYPE is known to be non-negative. */
14585 static bool
14586 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
14588 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14589 && truth_value_p (code))
14590 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14591 have a signed:1 type (where the value is -1 and 0). */
14592 return true;
14593 return false;
14596 /* Return true if (CODE OP0) is known to be non-negative. If the return
14597 value is based on the assumption that signed overflow is undefined,
14598 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14599 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
14601 bool
14602 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14603 bool *strict_overflow_p, int depth)
14605 if (TYPE_UNSIGNED (type))
14606 return true;
14608 switch (code)
14610 case ABS_EXPR:
14611 /* We can't return 1 if flag_wrapv is set because
14612 ABS_EXPR<INT_MIN> = INT_MIN. */
14613 if (!ANY_INTEGRAL_TYPE_P (type))
14614 return true;
14615 if (TYPE_OVERFLOW_UNDEFINED (type))
14617 *strict_overflow_p = true;
14618 return true;
14620 break;
14622 case NON_LVALUE_EXPR:
14623 case FLOAT_EXPR:
14624 case FIX_TRUNC_EXPR:
14625 return RECURSE (op0);
14627 CASE_CONVERT:
14629 tree inner_type = TREE_TYPE (op0);
14630 tree outer_type = type;
14632 if (TREE_CODE (outer_type) == REAL_TYPE)
14634 if (TREE_CODE (inner_type) == REAL_TYPE)
14635 return RECURSE (op0);
14636 if (INTEGRAL_TYPE_P (inner_type))
14638 if (TYPE_UNSIGNED (inner_type))
14639 return true;
14640 return RECURSE (op0);
14643 else if (INTEGRAL_TYPE_P (outer_type))
14645 if (TREE_CODE (inner_type) == REAL_TYPE)
14646 return RECURSE (op0);
14647 if (INTEGRAL_TYPE_P (inner_type))
14648 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
14649 && TYPE_UNSIGNED (inner_type);
14652 break;
14654 default:
14655 return tree_simple_nonnegative_warnv_p (code, type);
14658 /* We don't know sign of `t', so be conservative and return false. */
14659 return false;
14662 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
14663 value is based on the assumption that signed overflow is undefined,
14664 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14665 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
14667 bool
14668 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14669 tree op1, bool *strict_overflow_p,
14670 int depth)
14672 if (TYPE_UNSIGNED (type))
14673 return true;
14675 switch (code)
14677 case POINTER_PLUS_EXPR:
14678 case PLUS_EXPR:
14679 if (FLOAT_TYPE_P (type))
14680 return RECURSE (op0) && RECURSE (op1);
14682 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
14683 both unsigned and at least 2 bits shorter than the result. */
14684 if (TREE_CODE (type) == INTEGER_TYPE
14685 && TREE_CODE (op0) == NOP_EXPR
14686 && TREE_CODE (op1) == NOP_EXPR)
14688 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
14689 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
14690 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
14691 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
14693 unsigned int prec = MAX (TYPE_PRECISION (inner1),
14694 TYPE_PRECISION (inner2)) + 1;
14695 return prec < TYPE_PRECISION (type);
14698 break;
14700 case MULT_EXPR:
14701 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
14703 /* x * x is always non-negative for floating point x
14704 or without overflow. */
14705 if (operand_equal_p (op0, op1, 0)
14706 || (RECURSE (op0) && RECURSE (op1)))
14708 if (ANY_INTEGRAL_TYPE_P (type)
14709 && TYPE_OVERFLOW_UNDEFINED (type))
14710 *strict_overflow_p = true;
14711 return true;
14715 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
14716 both unsigned and their total bits is shorter than the result. */
14717 if (TREE_CODE (type) == INTEGER_TYPE
14718 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
14719 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
14721 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
14722 ? TREE_TYPE (TREE_OPERAND (op0, 0))
14723 : TREE_TYPE (op0);
14724 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
14725 ? TREE_TYPE (TREE_OPERAND (op1, 0))
14726 : TREE_TYPE (op1);
14728 bool unsigned0 = TYPE_UNSIGNED (inner0);
14729 bool unsigned1 = TYPE_UNSIGNED (inner1);
14731 if (TREE_CODE (op0) == INTEGER_CST)
14732 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
14734 if (TREE_CODE (op1) == INTEGER_CST)
14735 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
14737 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
14738 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
14740 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
14741 ? tree_int_cst_min_precision (op0, UNSIGNED)
14742 : TYPE_PRECISION (inner0);
14744 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
14745 ? tree_int_cst_min_precision (op1, UNSIGNED)
14746 : TYPE_PRECISION (inner1);
14748 return precision0 + precision1 < TYPE_PRECISION (type);
14751 return false;
14753 case BIT_AND_EXPR:
14754 return RECURSE (op0) || RECURSE (op1);
14756 case MAX_EXPR:
14757 /* Usually RECURSE (op0) || RECURSE (op1) but NaNs complicate
14758 things. */
14759 if (tree_expr_maybe_nan_p (op0) || tree_expr_maybe_nan_p (op1))
14760 return RECURSE (op0) && RECURSE (op1);
14761 return RECURSE (op0) || RECURSE (op1);
14763 case BIT_IOR_EXPR:
14764 case BIT_XOR_EXPR:
14765 case MIN_EXPR:
14766 case RDIV_EXPR:
14767 case TRUNC_DIV_EXPR:
14768 case CEIL_DIV_EXPR:
14769 case FLOOR_DIV_EXPR:
14770 case ROUND_DIV_EXPR:
14771 return RECURSE (op0) && RECURSE (op1);
14773 case TRUNC_MOD_EXPR:
14774 return RECURSE (op0);
14776 case FLOOR_MOD_EXPR:
14777 return RECURSE (op1);
14779 case CEIL_MOD_EXPR:
14780 case ROUND_MOD_EXPR:
14781 default:
14782 return tree_simple_nonnegative_warnv_p (code, type);
14785 /* We don't know sign of `t', so be conservative and return false. */
14786 return false;
14789 /* Return true if T is known to be non-negative. If the return
14790 value is based on the assumption that signed overflow is undefined,
14791 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14792 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
14794 bool
14795 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
14797 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14798 return true;
14800 switch (TREE_CODE (t))
14802 case INTEGER_CST:
14803 return tree_int_cst_sgn (t) >= 0;
14805 case REAL_CST:
14806 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
14808 case FIXED_CST:
14809 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
14811 case COND_EXPR:
14812 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
14814 case SSA_NAME:
14815 /* Limit the depth of recursion to avoid quadratic behavior.
14816 This is expected to catch almost all occurrences in practice.
14817 If this code misses important cases that unbounded recursion
14818 would not, passes that need this information could be revised
14819 to provide it through dataflow propagation. */
14820 return (!name_registered_for_update_p (t)
14821 && depth < param_max_ssa_name_query_depth
14822 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
14823 strict_overflow_p, depth));
14825 default:
14826 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
14830 /* Return true if T is known to be non-negative. If the return
14831 value is based on the assumption that signed overflow is undefined,
14832 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14833 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
14835 bool
14836 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
14837 bool *strict_overflow_p, int depth)
14839 switch (fn)
14841 CASE_CFN_ACOS:
14842 CASE_CFN_ACOSH:
14843 CASE_CFN_CABS:
14844 CASE_CFN_COSH:
14845 CASE_CFN_ERFC:
14846 CASE_CFN_EXP:
14847 CASE_CFN_EXP10:
14848 CASE_CFN_EXP2:
14849 CASE_CFN_FABS:
14850 CASE_CFN_FDIM:
14851 CASE_CFN_HYPOT:
14852 CASE_CFN_POW10:
14853 CASE_CFN_FFS:
14854 CASE_CFN_PARITY:
14855 CASE_CFN_POPCOUNT:
14856 CASE_CFN_CLZ:
14857 CASE_CFN_CLRSB:
14858 case CFN_BUILT_IN_BSWAP16:
14859 case CFN_BUILT_IN_BSWAP32:
14860 case CFN_BUILT_IN_BSWAP64:
14861 case CFN_BUILT_IN_BSWAP128:
14862 /* Always true. */
14863 return true;
14865 CASE_CFN_SQRT:
14866 CASE_CFN_SQRT_FN:
14867 /* sqrt(-0.0) is -0.0. */
14868 if (!HONOR_SIGNED_ZEROS (type))
14869 return true;
14870 return RECURSE (arg0);
14872 CASE_CFN_ASINH:
14873 CASE_CFN_ATAN:
14874 CASE_CFN_ATANH:
14875 CASE_CFN_CBRT:
14876 CASE_CFN_CEIL:
14877 CASE_CFN_CEIL_FN:
14878 CASE_CFN_ERF:
14879 CASE_CFN_EXPM1:
14880 CASE_CFN_FLOOR:
14881 CASE_CFN_FLOOR_FN:
14882 CASE_CFN_FMOD:
14883 CASE_CFN_FREXP:
14884 CASE_CFN_ICEIL:
14885 CASE_CFN_IFLOOR:
14886 CASE_CFN_IRINT:
14887 CASE_CFN_IROUND:
14888 CASE_CFN_LCEIL:
14889 CASE_CFN_LDEXP:
14890 CASE_CFN_LFLOOR:
14891 CASE_CFN_LLCEIL:
14892 CASE_CFN_LLFLOOR:
14893 CASE_CFN_LLRINT:
14894 CASE_CFN_LLROUND:
14895 CASE_CFN_LRINT:
14896 CASE_CFN_LROUND:
14897 CASE_CFN_MODF:
14898 CASE_CFN_NEARBYINT:
14899 CASE_CFN_NEARBYINT_FN:
14900 CASE_CFN_RINT:
14901 CASE_CFN_RINT_FN:
14902 CASE_CFN_ROUND:
14903 CASE_CFN_ROUND_FN:
14904 CASE_CFN_ROUNDEVEN:
14905 CASE_CFN_ROUNDEVEN_FN:
14906 CASE_CFN_SCALB:
14907 CASE_CFN_SCALBLN:
14908 CASE_CFN_SCALBN:
14909 CASE_CFN_SIGNBIT:
14910 CASE_CFN_SIGNIFICAND:
14911 CASE_CFN_SINH:
14912 CASE_CFN_TANH:
14913 CASE_CFN_TRUNC:
14914 CASE_CFN_TRUNC_FN:
14915 /* True if the 1st argument is nonnegative. */
14916 return RECURSE (arg0);
14918 CASE_CFN_FMAX:
14919 CASE_CFN_FMAX_FN:
14920 /* Usually RECURSE (arg0) || RECURSE (arg1) but NaNs complicate
14921 things. In the presence of sNaNs, we're only guaranteed to be
14922 non-negative if both operands are non-negative. In the presence
14923 of qNaNs, we're non-negative if either operand is non-negative
14924 and can't be a qNaN, or if both operands are non-negative. */
14925 if (tree_expr_maybe_signaling_nan_p (arg0) ||
14926 tree_expr_maybe_signaling_nan_p (arg1))
14927 return RECURSE (arg0) && RECURSE (arg1);
14928 return RECURSE (arg0) ? (!tree_expr_maybe_nan_p (arg0)
14929 || RECURSE (arg1))
14930 : (RECURSE (arg1)
14931 && !tree_expr_maybe_nan_p (arg1));
14933 CASE_CFN_FMIN:
14934 CASE_CFN_FMIN_FN:
14935 /* True if the 1st AND 2nd arguments are nonnegative. */
14936 return RECURSE (arg0) && RECURSE (arg1);
14938 CASE_CFN_COPYSIGN:
14939 CASE_CFN_COPYSIGN_FN:
14940 /* True if the 2nd argument is nonnegative. */
14941 return RECURSE (arg1);
14943 CASE_CFN_POWI:
14944 /* True if the 1st argument is nonnegative or the second
14945 argument is an even integer. */
14946 if (TREE_CODE (arg1) == INTEGER_CST
14947 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
14948 return true;
14949 return RECURSE (arg0);
14951 CASE_CFN_POW:
14952 /* True if the 1st argument is nonnegative or the second
14953 argument is an even integer valued real. */
14954 if (TREE_CODE (arg1) == REAL_CST)
14956 REAL_VALUE_TYPE c;
14957 HOST_WIDE_INT n;
14959 c = TREE_REAL_CST (arg1);
14960 n = real_to_integer (&c);
14961 if ((n & 1) == 0)
14963 REAL_VALUE_TYPE cint;
14964 real_from_integer (&cint, VOIDmode, n, SIGNED);
14965 if (real_identical (&c, &cint))
14966 return true;
14969 return RECURSE (arg0);
14971 default:
14972 break;
14974 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
14977 /* Return true if T is known to be non-negative. If the return
14978 value is based on the assumption that signed overflow is undefined,
14979 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14980 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
14982 static bool
14983 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
14985 enum tree_code code = TREE_CODE (t);
14986 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14987 return true;
14989 switch (code)
14991 case TARGET_EXPR:
14993 tree temp = TARGET_EXPR_SLOT (t);
14994 t = TARGET_EXPR_INITIAL (t);
14996 /* If the initializer is non-void, then it's a normal expression
14997 that will be assigned to the slot. */
14998 if (!VOID_TYPE_P (t))
14999 return RECURSE (t);
15001 /* Otherwise, the initializer sets the slot in some way. One common
15002 way is an assignment statement at the end of the initializer. */
15003 while (1)
15005 if (TREE_CODE (t) == BIND_EXPR)
15006 t = expr_last (BIND_EXPR_BODY (t));
15007 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
15008 || TREE_CODE (t) == TRY_CATCH_EXPR)
15009 t = expr_last (TREE_OPERAND (t, 0));
15010 else if (TREE_CODE (t) == STATEMENT_LIST)
15011 t = expr_last (t);
15012 else
15013 break;
15015 if (TREE_CODE (t) == MODIFY_EXPR
15016 && TREE_OPERAND (t, 0) == temp)
15017 return RECURSE (TREE_OPERAND (t, 1));
15019 return false;
15022 case CALL_EXPR:
15024 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
15025 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
15027 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
15028 get_call_combined_fn (t),
15029 arg0,
15030 arg1,
15031 strict_overflow_p, depth);
15033 case COMPOUND_EXPR:
15034 case MODIFY_EXPR:
15035 return RECURSE (TREE_OPERAND (t, 1));
15037 case BIND_EXPR:
15038 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
15040 case SAVE_EXPR:
15041 return RECURSE (TREE_OPERAND (t, 0));
15043 default:
15044 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
15048 #undef RECURSE
15049 #undef tree_expr_nonnegative_warnv_p
15051 /* Return true if T is known to be non-negative. If the return
15052 value is based on the assumption that signed overflow is undefined,
15053 set *STRICT_OVERFLOW_P to true; otherwise, don't change
15054 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
15056 bool
15057 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
15059 enum tree_code code;
15060 if (t == error_mark_node)
15061 return false;
15063 code = TREE_CODE (t);
15064 switch (TREE_CODE_CLASS (code))
15066 case tcc_binary:
15067 case tcc_comparison:
15068 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
15069 TREE_TYPE (t),
15070 TREE_OPERAND (t, 0),
15071 TREE_OPERAND (t, 1),
15072 strict_overflow_p, depth);
15074 case tcc_unary:
15075 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
15076 TREE_TYPE (t),
15077 TREE_OPERAND (t, 0),
15078 strict_overflow_p, depth);
15080 case tcc_constant:
15081 case tcc_declaration:
15082 case tcc_reference:
15083 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
15085 default:
15086 break;
15089 switch (code)
15091 case TRUTH_AND_EXPR:
15092 case TRUTH_OR_EXPR:
15093 case TRUTH_XOR_EXPR:
15094 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
15095 TREE_TYPE (t),
15096 TREE_OPERAND (t, 0),
15097 TREE_OPERAND (t, 1),
15098 strict_overflow_p, depth);
15099 case TRUTH_NOT_EXPR:
15100 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
15101 TREE_TYPE (t),
15102 TREE_OPERAND (t, 0),
15103 strict_overflow_p, depth);
15105 case COND_EXPR:
15106 case CONSTRUCTOR:
15107 case OBJ_TYPE_REF:
15108 case ASSERT_EXPR:
15109 case ADDR_EXPR:
15110 case WITH_SIZE_EXPR:
15111 case SSA_NAME:
15112 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
15114 default:
15115 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
15119 /* Return true if `t' is known to be non-negative. Handle warnings
15120 about undefined signed overflow. */
15122 bool
15123 tree_expr_nonnegative_p (tree t)
15125 bool ret, strict_overflow_p;
15127 strict_overflow_p = false;
15128 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
15129 if (strict_overflow_p)
15130 fold_overflow_warning (("assuming signed overflow does not occur when "
15131 "determining that expression is always "
15132 "non-negative"),
15133 WARN_STRICT_OVERFLOW_MISC);
15134 return ret;
15138 /* Return true when (CODE OP0) is an address and is known to be nonzero.
15139 For floating point we further ensure that T is not denormal.
15140 Similar logic is present in nonzero_address in rtlanal.h.
15142 If the return value is based on the assumption that signed overflow
15143 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15144 change *STRICT_OVERFLOW_P. */
15146 bool
15147 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
15148 bool *strict_overflow_p)
15150 switch (code)
15152 case ABS_EXPR:
15153 return tree_expr_nonzero_warnv_p (op0,
15154 strict_overflow_p);
15156 case NOP_EXPR:
15158 tree inner_type = TREE_TYPE (op0);
15159 tree outer_type = type;
15161 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
15162 && tree_expr_nonzero_warnv_p (op0,
15163 strict_overflow_p));
15165 break;
15167 case NON_LVALUE_EXPR:
15168 return tree_expr_nonzero_warnv_p (op0,
15169 strict_overflow_p);
15171 default:
15172 break;
15175 return false;
15178 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
15179 For floating point we further ensure that T is not denormal.
15180 Similar logic is present in nonzero_address in rtlanal.h.
15182 If the return value is based on the assumption that signed overflow
15183 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15184 change *STRICT_OVERFLOW_P. */
15186 bool
15187 tree_binary_nonzero_warnv_p (enum tree_code code,
15188 tree type,
15189 tree op0,
15190 tree op1, bool *strict_overflow_p)
15192 bool sub_strict_overflow_p;
15193 switch (code)
15195 case POINTER_PLUS_EXPR:
15196 case PLUS_EXPR:
15197 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
15199 /* With the presence of negative values it is hard
15200 to say something. */
15201 sub_strict_overflow_p = false;
15202 if (!tree_expr_nonnegative_warnv_p (op0,
15203 &sub_strict_overflow_p)
15204 || !tree_expr_nonnegative_warnv_p (op1,
15205 &sub_strict_overflow_p))
15206 return false;
15207 /* One of operands must be positive and the other non-negative. */
15208 /* We don't set *STRICT_OVERFLOW_P here: even if this value
15209 overflows, on a twos-complement machine the sum of two
15210 nonnegative numbers can never be zero. */
15211 return (tree_expr_nonzero_warnv_p (op0,
15212 strict_overflow_p)
15213 || tree_expr_nonzero_warnv_p (op1,
15214 strict_overflow_p));
15216 break;
15218 case MULT_EXPR:
15219 if (TYPE_OVERFLOW_UNDEFINED (type))
15221 if (tree_expr_nonzero_warnv_p (op0,
15222 strict_overflow_p)
15223 && tree_expr_nonzero_warnv_p (op1,
15224 strict_overflow_p))
15226 *strict_overflow_p = true;
15227 return true;
15230 break;
15232 case MIN_EXPR:
15233 sub_strict_overflow_p = false;
15234 if (tree_expr_nonzero_warnv_p (op0,
15235 &sub_strict_overflow_p)
15236 && tree_expr_nonzero_warnv_p (op1,
15237 &sub_strict_overflow_p))
15239 if (sub_strict_overflow_p)
15240 *strict_overflow_p = true;
15242 break;
15244 case MAX_EXPR:
15245 sub_strict_overflow_p = false;
15246 if (tree_expr_nonzero_warnv_p (op0,
15247 &sub_strict_overflow_p))
15249 if (sub_strict_overflow_p)
15250 *strict_overflow_p = true;
15252 /* When both operands are nonzero, then MAX must be too. */
15253 if (tree_expr_nonzero_warnv_p (op1,
15254 strict_overflow_p))
15255 return true;
15257 /* MAX where operand 0 is positive is positive. */
15258 return tree_expr_nonnegative_warnv_p (op0,
15259 strict_overflow_p);
15261 /* MAX where operand 1 is positive is positive. */
15262 else if (tree_expr_nonzero_warnv_p (op1,
15263 &sub_strict_overflow_p)
15264 && tree_expr_nonnegative_warnv_p (op1,
15265 &sub_strict_overflow_p))
15267 if (sub_strict_overflow_p)
15268 *strict_overflow_p = true;
15269 return true;
15271 break;
15273 case BIT_IOR_EXPR:
15274 return (tree_expr_nonzero_warnv_p (op1,
15275 strict_overflow_p)
15276 || tree_expr_nonzero_warnv_p (op0,
15277 strict_overflow_p));
15279 default:
15280 break;
15283 return false;
15286 /* Return true when T is an address and is known to be nonzero.
15287 For floating point we further ensure that T is not denormal.
15288 Similar logic is present in nonzero_address in rtlanal.h.
15290 If the return value is based on the assumption that signed overflow
15291 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15292 change *STRICT_OVERFLOW_P. */
15294 bool
15295 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15297 bool sub_strict_overflow_p;
15298 switch (TREE_CODE (t))
15300 case INTEGER_CST:
15301 return !integer_zerop (t);
15303 case ADDR_EXPR:
15305 tree base = TREE_OPERAND (t, 0);
15307 if (!DECL_P (base))
15308 base = get_base_address (base);
15310 if (base && TREE_CODE (base) == TARGET_EXPR)
15311 base = TARGET_EXPR_SLOT (base);
15313 if (!base)
15314 return false;
15316 /* For objects in symbol table check if we know they are non-zero.
15317 Don't do anything for variables and functions before symtab is built;
15318 it is quite possible that they will be declared weak later. */
15319 int nonzero_addr = maybe_nonzero_address (base);
15320 if (nonzero_addr >= 0)
15321 return nonzero_addr;
15323 /* Constants are never weak. */
15324 if (CONSTANT_CLASS_P (base))
15325 return true;
15327 return false;
15330 case COND_EXPR:
15331 sub_strict_overflow_p = false;
15332 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15333 &sub_strict_overflow_p)
15334 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
15335 &sub_strict_overflow_p))
15337 if (sub_strict_overflow_p)
15338 *strict_overflow_p = true;
15339 return true;
15341 break;
15343 case SSA_NAME:
15344 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
15345 break;
15346 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t))));
15348 default:
15349 break;
15351 return false;
15354 #define integer_valued_real_p(X) \
15355 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
15357 #define RECURSE(X) \
15358 ((integer_valued_real_p) (X, depth + 1))
15360 /* Return true if the floating point result of (CODE OP0) has an
15361 integer value. We also allow +Inf, -Inf and NaN to be considered
15362 integer values. Return false for signaling NaN.
15364 DEPTH is the current nesting depth of the query. */
15366 bool
15367 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
15369 switch (code)
15371 case FLOAT_EXPR:
15372 return true;
15374 case ABS_EXPR:
15375 return RECURSE (op0);
15377 CASE_CONVERT:
15379 tree type = TREE_TYPE (op0);
15380 if (TREE_CODE (type) == INTEGER_TYPE)
15381 return true;
15382 if (TREE_CODE (type) == REAL_TYPE)
15383 return RECURSE (op0);
15384 break;
15387 default:
15388 break;
15390 return false;
15393 /* Return true if the floating point result of (CODE OP0 OP1) has an
15394 integer value. We also allow +Inf, -Inf and NaN to be considered
15395 integer values. Return false for signaling NaN.
15397 DEPTH is the current nesting depth of the query. */
15399 bool
15400 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
15402 switch (code)
15404 case PLUS_EXPR:
15405 case MINUS_EXPR:
15406 case MULT_EXPR:
15407 case MIN_EXPR:
15408 case MAX_EXPR:
15409 return RECURSE (op0) && RECURSE (op1);
15411 default:
15412 break;
15414 return false;
15417 /* Return true if the floating point result of calling FNDECL with arguments
15418 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
15419 considered integer values. Return false for signaling NaN. If FNDECL
15420 takes fewer than 2 arguments, the remaining ARGn are null.
15422 DEPTH is the current nesting depth of the query. */
15424 bool
15425 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
15427 switch (fn)
15429 CASE_CFN_CEIL:
15430 CASE_CFN_CEIL_FN:
15431 CASE_CFN_FLOOR:
15432 CASE_CFN_FLOOR_FN:
15433 CASE_CFN_NEARBYINT:
15434 CASE_CFN_NEARBYINT_FN:
15435 CASE_CFN_RINT:
15436 CASE_CFN_RINT_FN:
15437 CASE_CFN_ROUND:
15438 CASE_CFN_ROUND_FN:
15439 CASE_CFN_ROUNDEVEN:
15440 CASE_CFN_ROUNDEVEN_FN:
15441 CASE_CFN_TRUNC:
15442 CASE_CFN_TRUNC_FN:
15443 return true;
15445 CASE_CFN_FMIN:
15446 CASE_CFN_FMIN_FN:
15447 CASE_CFN_FMAX:
15448 CASE_CFN_FMAX_FN:
15449 return RECURSE (arg0) && RECURSE (arg1);
15451 default:
15452 break;
15454 return false;
15457 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
15458 has an integer value. We also allow +Inf, -Inf and NaN to be
15459 considered integer values. Return false for signaling NaN.
15461 DEPTH is the current nesting depth of the query. */
15463 bool
15464 integer_valued_real_single_p (tree t, int depth)
15466 switch (TREE_CODE (t))
15468 case REAL_CST:
15469 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
15471 case COND_EXPR:
15472 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
15474 case SSA_NAME:
15475 /* Limit the depth of recursion to avoid quadratic behavior.
15476 This is expected to catch almost all occurrences in practice.
15477 If this code misses important cases that unbounded recursion
15478 would not, passes that need this information could be revised
15479 to provide it through dataflow propagation. */
15480 return (!name_registered_for_update_p (t)
15481 && depth < param_max_ssa_name_query_depth
15482 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
15483 depth));
15485 default:
15486 break;
15488 return false;
15491 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
15492 has an integer value. We also allow +Inf, -Inf and NaN to be
15493 considered integer values. Return false for signaling NaN.
15495 DEPTH is the current nesting depth of the query. */
15497 static bool
15498 integer_valued_real_invalid_p (tree t, int depth)
15500 switch (TREE_CODE (t))
15502 case COMPOUND_EXPR:
15503 case MODIFY_EXPR:
15504 case BIND_EXPR:
15505 return RECURSE (TREE_OPERAND (t, 1));
15507 case SAVE_EXPR:
15508 return RECURSE (TREE_OPERAND (t, 0));
15510 default:
15511 break;
15513 return false;
15516 #undef RECURSE
15517 #undef integer_valued_real_p
15519 /* Return true if the floating point expression T has an integer value.
15520 We also allow +Inf, -Inf and NaN to be considered integer values.
15521 Return false for signaling NaN.
15523 DEPTH is the current nesting depth of the query. */
15525 bool
15526 integer_valued_real_p (tree t, int depth)
15528 if (t == error_mark_node)
15529 return false;
15531 STRIP_ANY_LOCATION_WRAPPER (t);
15533 tree_code code = TREE_CODE (t);
15534 switch (TREE_CODE_CLASS (code))
15536 case tcc_binary:
15537 case tcc_comparison:
15538 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
15539 TREE_OPERAND (t, 1), depth);
15541 case tcc_unary:
15542 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
15544 case tcc_constant:
15545 case tcc_declaration:
15546 case tcc_reference:
15547 return integer_valued_real_single_p (t, depth);
15549 default:
15550 break;
15553 switch (code)
15555 case COND_EXPR:
15556 case SSA_NAME:
15557 return integer_valued_real_single_p (t, depth);
15559 case CALL_EXPR:
15561 tree arg0 = (call_expr_nargs (t) > 0
15562 ? CALL_EXPR_ARG (t, 0)
15563 : NULL_TREE);
15564 tree arg1 = (call_expr_nargs (t) > 1
15565 ? CALL_EXPR_ARG (t, 1)
15566 : NULL_TREE);
15567 return integer_valued_real_call_p (get_call_combined_fn (t),
15568 arg0, arg1, depth);
15571 default:
15572 return integer_valued_real_invalid_p (t, depth);
15576 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
15577 attempt to fold the expression to a constant without modifying TYPE,
15578 OP0 or OP1.
15580 If the expression could be simplified to a constant, then return
15581 the constant. If the expression would not be simplified to a
15582 constant, then return NULL_TREE. */
15584 tree
15585 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
15587 tree tem = fold_binary (code, type, op0, op1);
15588 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15591 /* Given the components of a unary expression CODE, TYPE and OP0,
15592 attempt to fold the expression to a constant without modifying
15593 TYPE or OP0.
15595 If the expression could be simplified to a constant, then return
15596 the constant. If the expression would not be simplified to a
15597 constant, then return NULL_TREE. */
15599 tree
15600 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
15602 tree tem = fold_unary (code, type, op0);
15603 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15606 /* If EXP represents referencing an element in a constant string
15607 (either via pointer arithmetic or array indexing), return the
15608 tree representing the value accessed, otherwise return NULL. */
15610 tree
15611 fold_read_from_constant_string (tree exp)
15613 if ((TREE_CODE (exp) == INDIRECT_REF
15614 || TREE_CODE (exp) == ARRAY_REF)
15615 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
15617 tree exp1 = TREE_OPERAND (exp, 0);
15618 tree index;
15619 tree string;
15620 location_t loc = EXPR_LOCATION (exp);
15622 if (TREE_CODE (exp) == INDIRECT_REF)
15623 string = string_constant (exp1, &index, NULL, NULL);
15624 else
15626 tree low_bound = array_ref_low_bound (exp);
15627 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
15629 /* Optimize the special-case of a zero lower bound.
15631 We convert the low_bound to sizetype to avoid some problems
15632 with constant folding. (E.g. suppose the lower bound is 1,
15633 and its mode is QI. Without the conversion,l (ARRAY
15634 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
15635 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
15636 if (! integer_zerop (low_bound))
15637 index = size_diffop_loc (loc, index,
15638 fold_convert_loc (loc, sizetype, low_bound));
15640 string = exp1;
15643 scalar_int_mode char_mode;
15644 if (string
15645 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
15646 && TREE_CODE (string) == STRING_CST
15647 && tree_fits_uhwi_p (index)
15648 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
15649 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))),
15650 &char_mode)
15651 && GET_MODE_SIZE (char_mode) == 1)
15652 return build_int_cst_type (TREE_TYPE (exp),
15653 (TREE_STRING_POINTER (string)
15654 [TREE_INT_CST_LOW (index)]));
15656 return NULL;
15659 /* Folds a read from vector element at IDX of vector ARG. */
15661 tree
15662 fold_read_from_vector (tree arg, poly_uint64 idx)
15664 unsigned HOST_WIDE_INT i;
15665 if (known_lt (idx, TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)))
15666 && known_ge (idx, 0u)
15667 && idx.is_constant (&i))
15669 if (TREE_CODE (arg) == VECTOR_CST)
15670 return VECTOR_CST_ELT (arg, i);
15671 else if (TREE_CODE (arg) == CONSTRUCTOR)
15673 if (CONSTRUCTOR_NELTS (arg)
15674 && VECTOR_TYPE_P (TREE_TYPE (CONSTRUCTOR_ELT (arg, 0)->value)))
15675 return NULL_TREE;
15676 if (i >= CONSTRUCTOR_NELTS (arg))
15677 return build_zero_cst (TREE_TYPE (TREE_TYPE (arg)));
15678 return CONSTRUCTOR_ELT (arg, i)->value;
15681 return NULL_TREE;
15684 /* Return the tree for neg (ARG0) when ARG0 is known to be either
15685 an integer constant, real, or fixed-point constant.
15687 TYPE is the type of the result. */
15689 static tree
15690 fold_negate_const (tree arg0, tree type)
15692 tree t = NULL_TREE;
15694 switch (TREE_CODE (arg0))
15696 case REAL_CST:
15697 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15698 break;
15700 case FIXED_CST:
15702 FIXED_VALUE_TYPE f;
15703 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
15704 &(TREE_FIXED_CST (arg0)), NULL,
15705 TYPE_SATURATING (type));
15706 t = build_fixed (type, f);
15707 /* Propagate overflow flags. */
15708 if (overflow_p | TREE_OVERFLOW (arg0))
15709 TREE_OVERFLOW (t) = 1;
15710 break;
15713 default:
15714 if (poly_int_tree_p (arg0))
15716 wi::overflow_type overflow;
15717 poly_wide_int res = wi::neg (wi::to_poly_wide (arg0), &overflow);
15718 t = force_fit_type (type, res, 1,
15719 (overflow && ! TYPE_UNSIGNED (type))
15720 || TREE_OVERFLOW (arg0));
15721 break;
15724 gcc_unreachable ();
15727 return t;
15730 /* Return the tree for abs (ARG0) when ARG0 is known to be either
15731 an integer constant or real constant.
15733 TYPE is the type of the result. */
15735 tree
15736 fold_abs_const (tree arg0, tree type)
15738 tree t = NULL_TREE;
15740 switch (TREE_CODE (arg0))
15742 case INTEGER_CST:
15744 /* If the value is unsigned or non-negative, then the absolute value
15745 is the same as the ordinary value. */
15746 wide_int val = wi::to_wide (arg0);
15747 wi::overflow_type overflow = wi::OVF_NONE;
15748 if (!wi::neg_p (val, TYPE_SIGN (TREE_TYPE (arg0))))
15751 /* If the value is negative, then the absolute value is
15752 its negation. */
15753 else
15754 val = wi::neg (val, &overflow);
15756 /* Force to the destination type, set TREE_OVERFLOW for signed
15757 TYPE only. */
15758 t = force_fit_type (type, val, 1, overflow | TREE_OVERFLOW (arg0));
15760 break;
15762 case REAL_CST:
15763 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
15764 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
15765 else
15766 t = arg0;
15767 break;
15769 default:
15770 gcc_unreachable ();
15773 return t;
15776 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
15777 constant. TYPE is the type of the result. */
15779 static tree
15780 fold_not_const (const_tree arg0, tree type)
15782 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
15784 return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0));
15787 /* Given CODE, a relational operator, the target type, TYPE and two
15788 constant operands OP0 and OP1, return the result of the
15789 relational operation. If the result is not a compile time
15790 constant, then return NULL_TREE. */
15792 static tree
15793 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
15795 int result, invert;
15797 /* From here on, the only cases we handle are when the result is
15798 known to be a constant. */
15800 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
15802 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
15803 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
15805 /* Handle the cases where either operand is a NaN. */
15806 if (real_isnan (c0) || real_isnan (c1))
15808 switch (code)
15810 case EQ_EXPR:
15811 case ORDERED_EXPR:
15812 result = 0;
15813 break;
15815 case NE_EXPR:
15816 case UNORDERED_EXPR:
15817 case UNLT_EXPR:
15818 case UNLE_EXPR:
15819 case UNGT_EXPR:
15820 case UNGE_EXPR:
15821 case UNEQ_EXPR:
15822 result = 1;
15823 break;
15825 case LT_EXPR:
15826 case LE_EXPR:
15827 case GT_EXPR:
15828 case GE_EXPR:
15829 case LTGT_EXPR:
15830 if (flag_trapping_math)
15831 return NULL_TREE;
15832 result = 0;
15833 break;
15835 default:
15836 gcc_unreachable ();
15839 return constant_boolean_node (result, type);
15842 return constant_boolean_node (real_compare (code, c0, c1), type);
15845 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
15847 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
15848 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
15849 return constant_boolean_node (fixed_compare (code, c0, c1), type);
15852 /* Handle equality/inequality of complex constants. */
15853 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
15855 tree rcond = fold_relational_const (code, type,
15856 TREE_REALPART (op0),
15857 TREE_REALPART (op1));
15858 tree icond = fold_relational_const (code, type,
15859 TREE_IMAGPART (op0),
15860 TREE_IMAGPART (op1));
15861 if (code == EQ_EXPR)
15862 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
15863 else if (code == NE_EXPR)
15864 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
15865 else
15866 return NULL_TREE;
15869 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
15871 if (!VECTOR_TYPE_P (type))
15873 /* Have vector comparison with scalar boolean result. */
15874 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
15875 && known_eq (VECTOR_CST_NELTS (op0),
15876 VECTOR_CST_NELTS (op1)));
15877 unsigned HOST_WIDE_INT nunits;
15878 if (!VECTOR_CST_NELTS (op0).is_constant (&nunits))
15879 return NULL_TREE;
15880 for (unsigned i = 0; i < nunits; i++)
15882 tree elem0 = VECTOR_CST_ELT (op0, i);
15883 tree elem1 = VECTOR_CST_ELT (op1, i);
15884 tree tmp = fold_relational_const (EQ_EXPR, type, elem0, elem1);
15885 if (tmp == NULL_TREE)
15886 return NULL_TREE;
15887 if (integer_zerop (tmp))
15888 return constant_boolean_node (code == NE_EXPR, type);
15890 return constant_boolean_node (code == EQ_EXPR, type);
15892 tree_vector_builder elts;
15893 if (!elts.new_binary_operation (type, op0, op1, false))
15894 return NULL_TREE;
15895 unsigned int count = elts.encoded_nelts ();
15896 for (unsigned i = 0; i < count; i++)
15898 tree elem_type = TREE_TYPE (type);
15899 tree elem0 = VECTOR_CST_ELT (op0, i);
15900 tree elem1 = VECTOR_CST_ELT (op1, i);
15902 tree tem = fold_relational_const (code, elem_type,
15903 elem0, elem1);
15905 if (tem == NULL_TREE)
15906 return NULL_TREE;
15908 elts.quick_push (build_int_cst (elem_type,
15909 integer_zerop (tem) ? 0 : -1));
15912 return elts.build ();
15915 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
15917 To compute GT, swap the arguments and do LT.
15918 To compute GE, do LT and invert the result.
15919 To compute LE, swap the arguments, do LT and invert the result.
15920 To compute NE, do EQ and invert the result.
15922 Therefore, the code below must handle only EQ and LT. */
15924 if (code == LE_EXPR || code == GT_EXPR)
15926 std::swap (op0, op1);
15927 code = swap_tree_comparison (code);
15930 /* Note that it is safe to invert for real values here because we
15931 have already handled the one case that it matters. */
15933 invert = 0;
15934 if (code == NE_EXPR || code == GE_EXPR)
15936 invert = 1;
15937 code = invert_tree_comparison (code, false);
15940 /* Compute a result for LT or EQ if args permit;
15941 Otherwise return T. */
15942 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
15944 if (code == EQ_EXPR)
15945 result = tree_int_cst_equal (op0, op1);
15946 else
15947 result = tree_int_cst_lt (op0, op1);
15949 else
15950 return NULL_TREE;
15952 if (invert)
15953 result ^= 1;
15954 return constant_boolean_node (result, type);
15957 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
15958 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
15959 itself. */
15961 tree
15962 fold_build_cleanup_point_expr (tree type, tree expr)
15964 /* If the expression does not have side effects then we don't have to wrap
15965 it with a cleanup point expression. */
15966 if (!TREE_SIDE_EFFECTS (expr))
15967 return expr;
15969 /* If the expression is a return, check to see if the expression inside the
15970 return has no side effects or the right hand side of the modify expression
15971 inside the return. If either don't have side effects set we don't need to
15972 wrap the expression in a cleanup point expression. Note we don't check the
15973 left hand side of the modify because it should always be a return decl. */
15974 if (TREE_CODE (expr) == RETURN_EXPR)
15976 tree op = TREE_OPERAND (expr, 0);
15977 if (!op || !TREE_SIDE_EFFECTS (op))
15978 return expr;
15979 op = TREE_OPERAND (op, 1);
15980 if (!TREE_SIDE_EFFECTS (op))
15981 return expr;
15984 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr);
15987 /* Given a pointer value OP0 and a type TYPE, return a simplified version
15988 of an indirection through OP0, or NULL_TREE if no simplification is
15989 possible. */
15991 tree
15992 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
15994 tree sub = op0;
15995 tree subtype;
15996 poly_uint64 const_op01;
15998 STRIP_NOPS (sub);
15999 subtype = TREE_TYPE (sub);
16000 if (!POINTER_TYPE_P (subtype)
16001 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0)))
16002 return NULL_TREE;
16004 if (TREE_CODE (sub) == ADDR_EXPR)
16006 tree op = TREE_OPERAND (sub, 0);
16007 tree optype = TREE_TYPE (op);
16009 /* *&CONST_DECL -> to the value of the const decl. */
16010 if (TREE_CODE (op) == CONST_DECL)
16011 return DECL_INITIAL (op);
16012 /* *&p => p; make sure to handle *&"str"[cst] here. */
16013 if (type == optype)
16015 tree fop = fold_read_from_constant_string (op);
16016 if (fop)
16017 return fop;
16018 else
16019 return op;
16021 /* *(foo *)&fooarray => fooarray[0] */
16022 else if (TREE_CODE (optype) == ARRAY_TYPE
16023 && type == TREE_TYPE (optype)
16024 && (!in_gimple_form
16025 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
16027 tree type_domain = TYPE_DOMAIN (optype);
16028 tree min_val = size_zero_node;
16029 if (type_domain && TYPE_MIN_VALUE (type_domain))
16030 min_val = TYPE_MIN_VALUE (type_domain);
16031 if (in_gimple_form
16032 && TREE_CODE (min_val) != INTEGER_CST)
16033 return NULL_TREE;
16034 return build4_loc (loc, ARRAY_REF, type, op, min_val,
16035 NULL_TREE, NULL_TREE);
16037 /* *(foo *)&complexfoo => __real__ complexfoo */
16038 else if (TREE_CODE (optype) == COMPLEX_TYPE
16039 && type == TREE_TYPE (optype))
16040 return fold_build1_loc (loc, REALPART_EXPR, type, op);
16041 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
16042 else if (VECTOR_TYPE_P (optype)
16043 && type == TREE_TYPE (optype))
16045 tree part_width = TYPE_SIZE (type);
16046 tree index = bitsize_int (0);
16047 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width,
16048 index);
16052 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
16053 && poly_int_tree_p (TREE_OPERAND (sub, 1), &const_op01))
16055 tree op00 = TREE_OPERAND (sub, 0);
16056 tree op01 = TREE_OPERAND (sub, 1);
16058 STRIP_NOPS (op00);
16059 if (TREE_CODE (op00) == ADDR_EXPR)
16061 tree op00type;
16062 op00 = TREE_OPERAND (op00, 0);
16063 op00type = TREE_TYPE (op00);
16065 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
16066 if (VECTOR_TYPE_P (op00type)
16067 && type == TREE_TYPE (op00type)
16068 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
16069 but we want to treat offsets with MSB set as negative.
16070 For the code below negative offsets are invalid and
16071 TYPE_SIZE of the element is something unsigned, so
16072 check whether op01 fits into poly_int64, which implies
16073 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
16074 then just use poly_uint64 because we want to treat the
16075 value as unsigned. */
16076 && tree_fits_poly_int64_p (op01))
16078 tree part_width = TYPE_SIZE (type);
16079 poly_uint64 max_offset
16080 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
16081 * TYPE_VECTOR_SUBPARTS (op00type));
16082 if (known_lt (const_op01, max_offset))
16084 tree index = bitsize_int (const_op01 * BITS_PER_UNIT);
16085 return fold_build3_loc (loc,
16086 BIT_FIELD_REF, type, op00,
16087 part_width, index);
16090 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
16091 else if (TREE_CODE (op00type) == COMPLEX_TYPE
16092 && type == TREE_TYPE (op00type))
16094 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)),
16095 const_op01))
16096 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
16098 /* ((foo *)&fooarray)[1] => fooarray[1] */
16099 else if (TREE_CODE (op00type) == ARRAY_TYPE
16100 && type == TREE_TYPE (op00type))
16102 tree type_domain = TYPE_DOMAIN (op00type);
16103 tree min_val = size_zero_node;
16104 if (type_domain && TYPE_MIN_VALUE (type_domain))
16105 min_val = TYPE_MIN_VALUE (type_domain);
16106 poly_uint64 type_size, index;
16107 if (poly_int_tree_p (min_val)
16108 && poly_int_tree_p (TYPE_SIZE_UNIT (type), &type_size)
16109 && multiple_p (const_op01, type_size, &index))
16111 poly_offset_int off = index + wi::to_poly_offset (min_val);
16112 op01 = wide_int_to_tree (sizetype, off);
16113 return build4_loc (loc, ARRAY_REF, type, op00, op01,
16114 NULL_TREE, NULL_TREE);
16120 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
16121 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
16122 && type == TREE_TYPE (TREE_TYPE (subtype))
16123 && (!in_gimple_form
16124 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
16126 tree type_domain;
16127 tree min_val = size_zero_node;
16128 sub = build_fold_indirect_ref_loc (loc, sub);
16129 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
16130 if (type_domain && TYPE_MIN_VALUE (type_domain))
16131 min_val = TYPE_MIN_VALUE (type_domain);
16132 if (in_gimple_form
16133 && TREE_CODE (min_val) != INTEGER_CST)
16134 return NULL_TREE;
16135 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
16136 NULL_TREE);
16139 return NULL_TREE;
16142 /* Builds an expression for an indirection through T, simplifying some
16143 cases. */
16145 tree
16146 build_fold_indirect_ref_loc (location_t loc, tree t)
16148 tree type = TREE_TYPE (TREE_TYPE (t));
16149 tree sub = fold_indirect_ref_1 (loc, type, t);
16151 if (sub)
16152 return sub;
16154 return build1_loc (loc, INDIRECT_REF, type, t);
16157 /* Given an INDIRECT_REF T, return either T or a simplified version. */
16159 tree
16160 fold_indirect_ref_loc (location_t loc, tree t)
16162 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
16164 if (sub)
16165 return sub;
16166 else
16167 return t;
16170 /* Strip non-trapping, non-side-effecting tree nodes from an expression
16171 whose result is ignored. The type of the returned tree need not be
16172 the same as the original expression. */
16174 tree
16175 fold_ignored_result (tree t)
16177 if (!TREE_SIDE_EFFECTS (t))
16178 return integer_zero_node;
16180 for (;;)
16181 switch (TREE_CODE_CLASS (TREE_CODE (t)))
16183 case tcc_unary:
16184 t = TREE_OPERAND (t, 0);
16185 break;
16187 case tcc_binary:
16188 case tcc_comparison:
16189 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
16190 t = TREE_OPERAND (t, 0);
16191 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
16192 t = TREE_OPERAND (t, 1);
16193 else
16194 return t;
16195 break;
16197 case tcc_expression:
16198 switch (TREE_CODE (t))
16200 case COMPOUND_EXPR:
16201 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
16202 return t;
16203 t = TREE_OPERAND (t, 0);
16204 break;
16206 case COND_EXPR:
16207 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
16208 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
16209 return t;
16210 t = TREE_OPERAND (t, 0);
16211 break;
16213 default:
16214 return t;
16216 break;
16218 default:
16219 return t;
16223 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
16225 tree
16226 round_up_loc (location_t loc, tree value, unsigned int divisor)
16228 tree div = NULL_TREE;
16230 if (divisor == 1)
16231 return value;
16233 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16234 have to do anything. Only do this when we are not given a const,
16235 because in that case, this check is more expensive than just
16236 doing it. */
16237 if (TREE_CODE (value) != INTEGER_CST)
16239 div = build_int_cst (TREE_TYPE (value), divisor);
16241 if (multiple_of_p (TREE_TYPE (value), value, div))
16242 return value;
16245 /* If divisor is a power of two, simplify this to bit manipulation. */
16246 if (pow2_or_zerop (divisor))
16248 if (TREE_CODE (value) == INTEGER_CST)
16250 wide_int val = wi::to_wide (value);
16251 bool overflow_p;
16253 if ((val & (divisor - 1)) == 0)
16254 return value;
16256 overflow_p = TREE_OVERFLOW (value);
16257 val += divisor - 1;
16258 val &= (int) -divisor;
16259 if (val == 0)
16260 overflow_p = true;
16262 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
16264 else
16266 tree t;
16268 t = build_int_cst (TREE_TYPE (value), divisor - 1);
16269 value = size_binop_loc (loc, PLUS_EXPR, value, t);
16270 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
16271 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
16274 else
16276 if (!div)
16277 div = build_int_cst (TREE_TYPE (value), divisor);
16278 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
16279 value = size_binop_loc (loc, MULT_EXPR, value, div);
16282 return value;
16285 /* Likewise, but round down. */
16287 tree
16288 round_down_loc (location_t loc, tree value, int divisor)
16290 tree div = NULL_TREE;
16292 gcc_assert (divisor > 0);
16293 if (divisor == 1)
16294 return value;
16296 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
16297 have to do anything. Only do this when we are not given a const,
16298 because in that case, this check is more expensive than just
16299 doing it. */
16300 if (TREE_CODE (value) != INTEGER_CST)
16302 div = build_int_cst (TREE_TYPE (value), divisor);
16304 if (multiple_of_p (TREE_TYPE (value), value, div))
16305 return value;
16308 /* If divisor is a power of two, simplify this to bit manipulation. */
16309 if (pow2_or_zerop (divisor))
16311 tree t;
16313 t = build_int_cst (TREE_TYPE (value), -divisor);
16314 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
16316 else
16318 if (!div)
16319 div = build_int_cst (TREE_TYPE (value), divisor);
16320 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
16321 value = size_binop_loc (loc, MULT_EXPR, value, div);
16324 return value;
16327 /* Returns the pointer to the base of the object addressed by EXP and
16328 extracts the information about the offset of the access, storing it
16329 to PBITPOS and POFFSET. */
16331 static tree
16332 split_address_to_core_and_offset (tree exp,
16333 poly_int64_pod *pbitpos, tree *poffset)
16335 tree core;
16336 machine_mode mode;
16337 int unsignedp, reversep, volatilep;
16338 poly_int64 bitsize;
16339 location_t loc = EXPR_LOCATION (exp);
16341 if (TREE_CODE (exp) == ADDR_EXPR)
16343 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
16344 poffset, &mode, &unsignedp, &reversep,
16345 &volatilep);
16346 core = build_fold_addr_expr_loc (loc, core);
16348 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR)
16350 core = TREE_OPERAND (exp, 0);
16351 STRIP_NOPS (core);
16352 *pbitpos = 0;
16353 *poffset = TREE_OPERAND (exp, 1);
16354 if (poly_int_tree_p (*poffset))
16356 poly_offset_int tem
16357 = wi::sext (wi::to_poly_offset (*poffset),
16358 TYPE_PRECISION (TREE_TYPE (*poffset)));
16359 tem <<= LOG2_BITS_PER_UNIT;
16360 if (tem.to_shwi (pbitpos))
16361 *poffset = NULL_TREE;
16364 else
16366 core = exp;
16367 *pbitpos = 0;
16368 *poffset = NULL_TREE;
16371 return core;
16374 /* Returns true if addresses of E1 and E2 differ by a constant, false
16375 otherwise. If they do, E1 - E2 is stored in *DIFF. */
16377 bool
16378 ptr_difference_const (tree e1, tree e2, poly_int64_pod *diff)
16380 tree core1, core2;
16381 poly_int64 bitpos1, bitpos2;
16382 tree toffset1, toffset2, tdiff, type;
16384 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
16385 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
16387 poly_int64 bytepos1, bytepos2;
16388 if (!multiple_p (bitpos1, BITS_PER_UNIT, &bytepos1)
16389 || !multiple_p (bitpos2, BITS_PER_UNIT, &bytepos2)
16390 || !operand_equal_p (core1, core2, 0))
16391 return false;
16393 if (toffset1 && toffset2)
16395 type = TREE_TYPE (toffset1);
16396 if (type != TREE_TYPE (toffset2))
16397 toffset2 = fold_convert (type, toffset2);
16399 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
16400 if (!cst_and_fits_in_hwi (tdiff))
16401 return false;
16403 *diff = int_cst_value (tdiff);
16405 else if (toffset1 || toffset2)
16407 /* If only one of the offsets is non-constant, the difference cannot
16408 be a constant. */
16409 return false;
16411 else
16412 *diff = 0;
16414 *diff += bytepos1 - bytepos2;
16415 return true;
16418 /* Return OFF converted to a pointer offset type suitable as offset for
16419 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
16420 tree
16421 convert_to_ptrofftype_loc (location_t loc, tree off)
16423 if (ptrofftype_p (TREE_TYPE (off)))
16424 return off;
16425 return fold_convert_loc (loc, sizetype, off);
16428 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
16429 tree
16430 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
16432 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
16433 ptr, convert_to_ptrofftype_loc (loc, off));
16436 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
16437 tree
16438 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
16440 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
16441 ptr, size_int (off));
16444 /* Return a pointer to a NUL-terminated string containing the sequence
16445 of bytes corresponding to the representation of the object referred to
16446 by SRC (or a subsequence of such bytes within it if SRC is a reference
16447 to an initialized constant array plus some constant offset).
16448 Set *STRSIZE the number of bytes in the constant sequence including
16449 the terminating NUL byte. *STRSIZE is equal to sizeof(A) - OFFSET
16450 where A is the array that stores the constant sequence that SRC points
16451 to and OFFSET is the byte offset of SRC from the beginning of A. SRC
16452 need not point to a string or even an array of characters but may point
16453 to an object of any type. */
16455 const char *
16456 getbyterep (tree src, unsigned HOST_WIDE_INT *strsize)
16458 /* The offset into the array A storing the string, and A's byte size. */
16459 tree offset_node;
16460 tree mem_size;
16462 if (strsize)
16463 *strsize = 0;
16465 if (strsize)
16466 src = byte_representation (src, &offset_node, &mem_size, NULL);
16467 else
16468 src = string_constant (src, &offset_node, &mem_size, NULL);
16469 if (!src)
16470 return NULL;
16472 unsigned HOST_WIDE_INT offset = 0;
16473 if (offset_node != NULL_TREE)
16475 if (!tree_fits_uhwi_p (offset_node))
16476 return NULL;
16477 else
16478 offset = tree_to_uhwi (offset_node);
16481 if (!tree_fits_uhwi_p (mem_size))
16482 return NULL;
16484 /* ARRAY_SIZE is the byte size of the array the constant sequence
16485 is stored in and equal to sizeof A. INIT_BYTES is the number
16486 of bytes in the constant sequence used to initialize the array,
16487 including any embedded NULs as well as the terminating NUL (for
16488 strings), but not including any trailing zeros/NULs past
16489 the terminating one appended implicitly to a string literal to
16490 zero out the remainder of the array it's stored in. For example,
16491 given:
16492 const char a[7] = "abc\0d";
16493 n = strlen (a + 1);
16494 ARRAY_SIZE is 7, INIT_BYTES is 6, and OFFSET is 1. For a valid
16495 (i.e., nul-terminated) string with no embedded nuls, INIT_BYTES
16496 is equal to strlen (A) + 1. */
16497 const unsigned HOST_WIDE_INT array_size = tree_to_uhwi (mem_size);
16498 unsigned HOST_WIDE_INT init_bytes = TREE_STRING_LENGTH (src);
16499 const char *string = TREE_STRING_POINTER (src);
16501 /* Ideally this would turn into a gcc_checking_assert over time. */
16502 if (init_bytes > array_size)
16503 init_bytes = array_size;
16505 if (init_bytes == 0 || offset >= array_size)
16506 return NULL;
16508 if (strsize)
16510 /* Compute and store the number of characters from the beginning
16511 of the substring at OFFSET to the end, including the terminating
16512 nul. Offsets past the initial length refer to null strings. */
16513 if (offset < init_bytes)
16514 *strsize = init_bytes - offset;
16515 else
16516 *strsize = 1;
16518 else
16520 tree eltype = TREE_TYPE (TREE_TYPE (src));
16521 /* Support only properly NUL-terminated single byte strings. */
16522 if (tree_to_uhwi (TYPE_SIZE_UNIT (eltype)) != 1)
16523 return NULL;
16524 if (string[init_bytes - 1] != '\0')
16525 return NULL;
16528 return offset < init_bytes ? string + offset : "";
16531 /* Return a pointer to a NUL-terminated string corresponding to
16532 the expression STR referencing a constant string, possibly
16533 involving a constant offset. Return null if STR either doesn't
16534 reference a constant string or if it involves a nonconstant
16535 offset. */
16537 const char *
16538 c_getstr (tree str)
16540 return getbyterep (str, NULL);
16543 /* Given a tree T, compute which bits in T may be nonzero. */
16545 wide_int
16546 tree_nonzero_bits (const_tree t)
16548 switch (TREE_CODE (t))
16550 case INTEGER_CST:
16551 return wi::to_wide (t);
16552 case SSA_NAME:
16553 return get_nonzero_bits (t);
16554 case NON_LVALUE_EXPR:
16555 case SAVE_EXPR:
16556 return tree_nonzero_bits (TREE_OPERAND (t, 0));
16557 case BIT_AND_EXPR:
16558 return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t, 0)),
16559 tree_nonzero_bits (TREE_OPERAND (t, 1)));
16560 case BIT_IOR_EXPR:
16561 case BIT_XOR_EXPR:
16562 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 0)),
16563 tree_nonzero_bits (TREE_OPERAND (t, 1)));
16564 case COND_EXPR:
16565 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 1)),
16566 tree_nonzero_bits (TREE_OPERAND (t, 2)));
16567 CASE_CONVERT:
16568 return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t, 0)),
16569 TYPE_PRECISION (TREE_TYPE (t)),
16570 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t, 0))));
16571 case PLUS_EXPR:
16572 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
16574 wide_int nzbits1 = tree_nonzero_bits (TREE_OPERAND (t, 0));
16575 wide_int nzbits2 = tree_nonzero_bits (TREE_OPERAND (t, 1));
16576 if (wi::bit_and (nzbits1, nzbits2) == 0)
16577 return wi::bit_or (nzbits1, nzbits2);
16579 break;
16580 case LSHIFT_EXPR:
16581 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
16583 tree type = TREE_TYPE (t);
16584 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
16585 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
16586 TYPE_PRECISION (type));
16587 return wi::neg_p (arg1)
16588 ? wi::rshift (nzbits, -arg1, TYPE_SIGN (type))
16589 : wi::lshift (nzbits, arg1);
16591 break;
16592 case RSHIFT_EXPR:
16593 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
16595 tree type = TREE_TYPE (t);
16596 wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0));
16597 wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1),
16598 TYPE_PRECISION (type));
16599 return wi::neg_p (arg1)
16600 ? wi::lshift (nzbits, -arg1)
16601 : wi::rshift (nzbits, arg1, TYPE_SIGN (type));
16603 break;
16604 default:
16605 break;
16608 return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t)));
16611 /* Helper function for address compare simplifications in match.pd.
16612 OP0 and OP1 are ADDR_EXPR operands being compared by CODE.
16613 TYPE is the type of comparison operands.
16614 BASE0, BASE1, OFF0 and OFF1 are set by the function.
16615 GENERIC is true if GENERIC folding and false for GIMPLE folding.
16616 Returns 0 if OP0 is known to be unequal to OP1 regardless of OFF{0,1},
16617 1 if bases are known to be equal and OP0 cmp OP1 depends on OFF0 cmp OFF1,
16618 and 2 if unknown. */
16621 address_compare (tree_code code, tree type, tree op0, tree op1,
16622 tree &base0, tree &base1, poly_int64 &off0, poly_int64 &off1,
16623 bool generic)
16625 gcc_checking_assert (TREE_CODE (op0) == ADDR_EXPR);
16626 gcc_checking_assert (TREE_CODE (op1) == ADDR_EXPR);
16627 base0 = get_addr_base_and_unit_offset (TREE_OPERAND (op0, 0), &off0);
16628 base1 = get_addr_base_and_unit_offset (TREE_OPERAND (op1, 0), &off1);
16629 if (base0 && TREE_CODE (base0) == MEM_REF)
16631 off0 += mem_ref_offset (base0).force_shwi ();
16632 base0 = TREE_OPERAND (base0, 0);
16634 if (base1 && TREE_CODE (base1) == MEM_REF)
16636 off1 += mem_ref_offset (base1).force_shwi ();
16637 base1 = TREE_OPERAND (base1, 0);
16639 if (base0 == NULL_TREE || base1 == NULL_TREE)
16640 return 2;
16642 int equal = 2;
16643 /* Punt in GENERIC on variables with value expressions;
16644 the value expressions might point to fields/elements
16645 of other vars etc. */
16646 if (generic
16647 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
16648 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
16649 return 2;
16650 else if (decl_in_symtab_p (base0) && decl_in_symtab_p (base1))
16652 symtab_node *node0 = symtab_node::get_create (base0);
16653 symtab_node *node1 = symtab_node::get_create (base1);
16654 equal = node0->equal_address_to (node1);
16656 else if ((DECL_P (base0)
16657 || TREE_CODE (base0) == SSA_NAME
16658 || TREE_CODE (base0) == STRING_CST)
16659 && (DECL_P (base1)
16660 || TREE_CODE (base1) == SSA_NAME
16661 || TREE_CODE (base1) == STRING_CST))
16662 equal = (base0 == base1);
16663 /* Assume different STRING_CSTs with the same content will be
16664 merged. */
16665 if (equal == 0
16666 && TREE_CODE (base0) == STRING_CST
16667 && TREE_CODE (base1) == STRING_CST
16668 && TREE_STRING_LENGTH (base0) == TREE_STRING_LENGTH (base1)
16669 && memcmp (TREE_STRING_POINTER (base0), TREE_STRING_POINTER (base1),
16670 TREE_STRING_LENGTH (base0)) == 0)
16671 equal = 1;
16672 if (equal == 1)
16674 if (code == EQ_EXPR
16675 || code == NE_EXPR
16676 /* If the offsets are equal we can ignore overflow. */
16677 || known_eq (off0, off1)
16678 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))
16679 /* Or if we compare using pointers to decls or strings. */
16680 || (POINTER_TYPE_P (type)
16681 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST)))
16682 return 1;
16683 return 2;
16685 if (equal != 0)
16686 return equal;
16687 if (code != EQ_EXPR && code != NE_EXPR)
16688 return 2;
16690 /* At this point we know (or assume) the two pointers point at
16691 different objects. */
16692 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
16693 off0.is_constant (&ioff0);
16694 off1.is_constant (&ioff1);
16695 /* Punt on non-zero offsets from functions. */
16696 if ((TREE_CODE (base0) == FUNCTION_DECL && ioff0)
16697 || (TREE_CODE (base1) == FUNCTION_DECL && ioff1))
16698 return 2;
16699 /* Or if the bases are neither decls nor string literals. */
16700 if (!DECL_P (base0) && TREE_CODE (base0) != STRING_CST)
16701 return 2;
16702 if (!DECL_P (base1) && TREE_CODE (base1) != STRING_CST)
16703 return 2;
16704 /* For initializers, assume addresses of different functions are
16705 different. */
16706 if (folding_initializer
16707 && TREE_CODE (base0) == FUNCTION_DECL
16708 && TREE_CODE (base1) == FUNCTION_DECL)
16709 return 0;
16711 /* Compute whether one address points to the start of one
16712 object and another one to the end of another one. */
16713 poly_int64 size0 = 0, size1 = 0;
16714 if (TREE_CODE (base0) == STRING_CST)
16716 if (ioff0 < 0 || ioff0 > TREE_STRING_LENGTH (base0))
16717 equal = 2;
16718 else
16719 size0 = TREE_STRING_LENGTH (base0);
16721 else if (TREE_CODE (base0) == FUNCTION_DECL)
16722 size0 = 1;
16723 else
16725 tree sz0 = DECL_SIZE_UNIT (base0);
16726 if (!tree_fits_poly_int64_p (sz0))
16727 equal = 2;
16728 else
16729 size0 = tree_to_poly_int64 (sz0);
16731 if (TREE_CODE (base1) == STRING_CST)
16733 if (ioff1 < 0 || ioff1 > TREE_STRING_LENGTH (base1))
16734 equal = 2;
16735 else
16736 size1 = TREE_STRING_LENGTH (base1);
16738 else if (TREE_CODE (base1) == FUNCTION_DECL)
16739 size1 = 1;
16740 else
16742 tree sz1 = DECL_SIZE_UNIT (base1);
16743 if (!tree_fits_poly_int64_p (sz1))
16744 equal = 2;
16745 else
16746 size1 = tree_to_poly_int64 (sz1);
16748 if (equal == 0)
16750 /* If one offset is pointing (or could be) to the beginning of one
16751 object and the other is pointing to one past the last byte of the
16752 other object, punt. */
16753 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
16754 equal = 2;
16755 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
16756 equal = 2;
16757 /* If both offsets are the same, there are some cases we know that are
16758 ok. Either if we know they aren't zero, or if we know both sizes
16759 are no zero. */
16760 if (equal == 2
16761 && known_eq (off0, off1)
16762 && (known_ne (off0, 0)
16763 || (known_ne (size0, 0) && known_ne (size1, 0))))
16764 equal = 0;
16767 /* At this point, equal is 2 if either one or both pointers are out of
16768 bounds of their object, or one points to start of its object and the
16769 other points to end of its object. This is unspecified behavior
16770 e.g. in C++. Otherwise equal is 0. */
16771 if (folding_cxx_constexpr && equal)
16772 return equal;
16774 /* When both pointers point to string literals, even when equal is 0,
16775 due to tail merging of string literals the pointers might be the same. */
16776 if (TREE_CODE (base0) == STRING_CST && TREE_CODE (base1) == STRING_CST)
16778 if (ioff0 < 0
16779 || ioff1 < 0
16780 || ioff0 > TREE_STRING_LENGTH (base0)
16781 || ioff1 > TREE_STRING_LENGTH (base1))
16782 return 2;
16784 /* If the bytes in the string literals starting at the pointers
16785 differ, the pointers need to be different. */
16786 if (memcmp (TREE_STRING_POINTER (base0) + ioff0,
16787 TREE_STRING_POINTER (base1) + ioff1,
16788 MIN (TREE_STRING_LENGTH (base0) - ioff0,
16789 TREE_STRING_LENGTH (base1) - ioff1)) == 0)
16791 HOST_WIDE_INT ioffmin = MIN (ioff0, ioff1);
16792 if (memcmp (TREE_STRING_POINTER (base0) + ioff0 - ioffmin,
16793 TREE_STRING_POINTER (base1) + ioff1 - ioffmin,
16794 ioffmin) == 0)
16795 /* If even the bytes in the string literal before the
16796 pointers are the same, the string literals could be
16797 tail merged. */
16798 return 2;
16800 return 0;
16803 if (folding_cxx_constexpr)
16804 return 0;
16806 /* If this is a pointer comparison, ignore for now even
16807 valid equalities where one pointer is the offset zero
16808 of one object and the other to one past end of another one. */
16809 if (!INTEGRAL_TYPE_P (type))
16810 return 0;
16812 /* Assume that string literals can't be adjacent to variables
16813 (automatic or global). */
16814 if (TREE_CODE (base0) == STRING_CST || TREE_CODE (base1) == STRING_CST)
16815 return 0;
16817 /* Assume that automatic variables can't be adjacent to global
16818 variables. */
16819 if (is_global_var (base0) != is_global_var (base1))
16820 return 0;
16822 return equal;
16825 /* Return the single non-zero element of a CONSTRUCTOR or NULL_TREE. */
16826 tree
16827 ctor_single_nonzero_element (const_tree t)
16829 unsigned HOST_WIDE_INT idx;
16830 constructor_elt *ce;
16831 tree elt = NULL_TREE;
16833 if (TREE_CODE (t) != CONSTRUCTOR)
16834 return NULL_TREE;
16835 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (t), idx, &ce); idx++)
16836 if (!integer_zerop (ce->value) && !real_zerop (ce->value))
16838 if (elt)
16839 return NULL_TREE;
16840 elt = ce->value;
16842 return elt;
16845 #if CHECKING_P
16847 namespace selftest {
16849 /* Helper functions for writing tests of folding trees. */
16851 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
16853 static void
16854 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
16855 tree constant)
16857 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
16860 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
16861 wrapping WRAPPED_EXPR. */
16863 static void
16864 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
16865 tree wrapped_expr)
16867 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
16868 ASSERT_NE (wrapped_expr, result);
16869 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
16870 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
16873 /* Verify that various arithmetic binary operations are folded
16874 correctly. */
16876 static void
16877 test_arithmetic_folding ()
16879 tree type = integer_type_node;
16880 tree x = create_tmp_var_raw (type, "x");
16881 tree zero = build_zero_cst (type);
16882 tree one = build_int_cst (type, 1);
16884 /* Addition. */
16885 /* 1 <-- (0 + 1) */
16886 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
16887 one);
16888 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
16889 one);
16891 /* (nonlvalue)x <-- (x + 0) */
16892 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
16895 /* Subtraction. */
16896 /* 0 <-- (x - x) */
16897 assert_binop_folds_to_const (x, MINUS_EXPR, x,
16898 zero);
16899 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
16902 /* Multiplication. */
16903 /* 0 <-- (x * 0) */
16904 assert_binop_folds_to_const (x, MULT_EXPR, zero,
16905 zero);
16907 /* (nonlvalue)x <-- (x * 1) */
16908 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
16912 /* Verify that various binary operations on vectors are folded
16913 correctly. */
16915 static void
16916 test_vector_folding ()
16918 tree inner_type = integer_type_node;
16919 tree type = build_vector_type (inner_type, 4);
16920 tree zero = build_zero_cst (type);
16921 tree one = build_one_cst (type);
16922 tree index = build_index_vector (type, 0, 1);
16924 /* Verify equality tests that return a scalar boolean result. */
16925 tree res_type = boolean_type_node;
16926 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
16927 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
16928 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
16929 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
16930 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, index, one)));
16931 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type,
16932 index, one)));
16933 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type,
16934 index, index)));
16935 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type,
16936 index, index)));
16939 /* Verify folding of VEC_DUPLICATE_EXPRs. */
16941 static void
16942 test_vec_duplicate_folding ()
16944 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype);
16945 machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode);
16946 /* This will be 1 if VEC_MODE isn't a vector mode. */
16947 poly_uint64 nunits = GET_MODE_NUNITS (vec_mode);
16949 tree type = build_vector_type (ssizetype, nunits);
16950 tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5));
16951 tree dup5_cst = build_vector_from_val (type, ssize_int (5));
16952 ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0));
16955 /* Run all of the selftests within this file. */
16957 void
16958 fold_const_cc_tests ()
16960 test_arithmetic_folding ();
16961 test_vector_folding ();
16962 test_vec_duplicate_folding ();
16965 } // namespace selftest
16967 #endif /* CHECKING_P */