Mark ChangeLog
[official-gcc.git] / gcc / reload1.c
bloba2449da0969cfbd8fa3576690850b3f8d2412c9c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
28 #include "machmode.h"
29 #include "hard-reg-set.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "obstack.h"
33 #include "insn-config.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "reload.h"
42 #include "recog.h"
43 #include "output.h"
44 #include "real.h"
45 #include "toplev.h"
46 #include "except.h"
47 #include "tree.h"
48 #include "target.h"
50 /* This file contains the reload pass of the compiler, which is
51 run after register allocation has been done. It checks that
52 each insn is valid (operands required to be in registers really
53 are in registers of the proper class) and fixes up invalid ones
54 by copying values temporarily into registers for the insns
55 that need them.
57 The results of register allocation are described by the vector
58 reg_renumber; the insns still contain pseudo regs, but reg_renumber
59 can be used to find which hard reg, if any, a pseudo reg is in.
61 The technique we always use is to free up a few hard regs that are
62 called ``reload regs'', and for each place where a pseudo reg
63 must be in a hard reg, copy it temporarily into one of the reload regs.
65 Reload regs are allocated locally for every instruction that needs
66 reloads. When there are pseudos which are allocated to a register that
67 has been chosen as a reload reg, such pseudos must be ``spilled''.
68 This means that they go to other hard regs, or to stack slots if no other
69 available hard regs can be found. Spilling can invalidate more
70 insns, requiring additional need for reloads, so we must keep checking
71 until the process stabilizes.
73 For machines with different classes of registers, we must keep track
74 of the register class needed for each reload, and make sure that
75 we allocate enough reload registers of each class.
77 The file reload.c contains the code that checks one insn for
78 validity and reports the reloads that it needs. This file
79 is in charge of scanning the entire rtl code, accumulating the
80 reload needs, spilling, assigning reload registers to use for
81 fixing up each insn, and generating the new insns to copy values
82 into the reload registers. */
84 /* During reload_as_needed, element N contains a REG rtx for the hard reg
85 into which reg N has been reloaded (perhaps for a previous insn). */
86 static rtx *reg_last_reload_reg;
88 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
89 for an output reload that stores into reg N. */
90 static regset_head reg_has_output_reload;
92 /* Indicates which hard regs are reload-registers for an output reload
93 in the current insn. */
94 static HARD_REG_SET reg_is_output_reload;
96 /* Element N is the constant value to which pseudo reg N is equivalent,
97 or zero if pseudo reg N is not equivalent to a constant.
98 find_reloads looks at this in order to replace pseudo reg N
99 with the constant it stands for. */
100 rtx *reg_equiv_constant;
102 /* Element N is an invariant value to which pseudo reg N is equivalent.
103 eliminate_regs_in_insn uses this to replace pseudos in particular
104 contexts. */
105 rtx *reg_equiv_invariant;
107 /* Element N is a memory location to which pseudo reg N is equivalent,
108 prior to any register elimination (such as frame pointer to stack
109 pointer). Depending on whether or not it is a valid address, this value
110 is transferred to either reg_equiv_address or reg_equiv_mem. */
111 rtx *reg_equiv_memory_loc;
113 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
114 collector can keep track of what is inside. */
115 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
117 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
118 This is used when the address is not valid as a memory address
119 (because its displacement is too big for the machine.) */
120 rtx *reg_equiv_address;
122 /* Element N is the memory slot to which pseudo reg N is equivalent,
123 or zero if pseudo reg N is not equivalent to a memory slot. */
124 rtx *reg_equiv_mem;
126 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
127 alternate representations of the location of pseudo reg N. */
128 rtx *reg_equiv_alt_mem_list;
130 /* Widest width in which each pseudo reg is referred to (via subreg). */
131 static unsigned int *reg_max_ref_width;
133 /* Element N is the list of insns that initialized reg N from its equivalent
134 constant or memory slot. */
135 rtx *reg_equiv_init;
136 int reg_equiv_init_size;
138 /* Vector to remember old contents of reg_renumber before spilling. */
139 static short *reg_old_renumber;
141 /* During reload_as_needed, element N contains the last pseudo regno reloaded
142 into hard register N. If that pseudo reg occupied more than one register,
143 reg_reloaded_contents points to that pseudo for each spill register in
144 use; all of these must remain set for an inheritance to occur. */
145 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
147 /* During reload_as_needed, element N contains the insn for which
148 hard register N was last used. Its contents are significant only
149 when reg_reloaded_valid is set for this register. */
150 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
152 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
153 static HARD_REG_SET reg_reloaded_valid;
154 /* Indicate if the register was dead at the end of the reload.
155 This is only valid if reg_reloaded_contents is set and valid. */
156 static HARD_REG_SET reg_reloaded_dead;
158 /* Indicate whether the register's current value is one that is not
159 safe to retain across a call, even for registers that are normally
160 call-saved. */
161 static HARD_REG_SET reg_reloaded_call_part_clobbered;
163 /* Number of spill-regs so far; number of valid elements of spill_regs. */
164 static int n_spills;
166 /* In parallel with spill_regs, contains REG rtx's for those regs.
167 Holds the last rtx used for any given reg, or 0 if it has never
168 been used for spilling yet. This rtx is reused, provided it has
169 the proper mode. */
170 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
172 /* In parallel with spill_regs, contains nonzero for a spill reg
173 that was stored after the last time it was used.
174 The precise value is the insn generated to do the store. */
175 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
177 /* This is the register that was stored with spill_reg_store. This is a
178 copy of reload_out / reload_out_reg when the value was stored; if
179 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
180 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
182 /* This table is the inverse mapping of spill_regs:
183 indexed by hard reg number,
184 it contains the position of that reg in spill_regs,
185 or -1 for something that is not in spill_regs.
187 ?!? This is no longer accurate. */
188 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
190 /* This reg set indicates registers that can't be used as spill registers for
191 the currently processed insn. These are the hard registers which are live
192 during the insn, but not allocated to pseudos, as well as fixed
193 registers. */
194 static HARD_REG_SET bad_spill_regs;
196 /* These are the hard registers that can't be used as spill register for any
197 insn. This includes registers used for user variables and registers that
198 we can't eliminate. A register that appears in this set also can't be used
199 to retry register allocation. */
200 static HARD_REG_SET bad_spill_regs_global;
202 /* Describes order of use of registers for reloading
203 of spilled pseudo-registers. `n_spills' is the number of
204 elements that are actually valid; new ones are added at the end.
206 Both spill_regs and spill_reg_order are used on two occasions:
207 once during find_reload_regs, where they keep track of the spill registers
208 for a single insn, but also during reload_as_needed where they show all
209 the registers ever used by reload. For the latter case, the information
210 is calculated during finish_spills. */
211 static short spill_regs[FIRST_PSEUDO_REGISTER];
213 /* This vector of reg sets indicates, for each pseudo, which hard registers
214 may not be used for retrying global allocation because the register was
215 formerly spilled from one of them. If we allowed reallocating a pseudo to
216 a register that it was already allocated to, reload might not
217 terminate. */
218 static HARD_REG_SET *pseudo_previous_regs;
220 /* This vector of reg sets indicates, for each pseudo, which hard
221 registers may not be used for retrying global allocation because they
222 are used as spill registers during one of the insns in which the
223 pseudo is live. */
224 static HARD_REG_SET *pseudo_forbidden_regs;
226 /* All hard regs that have been used as spill registers for any insn are
227 marked in this set. */
228 static HARD_REG_SET used_spill_regs;
230 /* Index of last register assigned as a spill register. We allocate in
231 a round-robin fashion. */
232 static int last_spill_reg;
234 /* Nonzero if indirect addressing is supported on the machine; this means
235 that spilling (REG n) does not require reloading it into a register in
236 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
237 value indicates the level of indirect addressing supported, e.g., two
238 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
239 a hard register. */
240 static char spill_indirect_levels;
242 /* Nonzero if indirect addressing is supported when the innermost MEM is
243 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
244 which these are valid is the same as spill_indirect_levels, above. */
245 char indirect_symref_ok;
247 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
248 char double_reg_address_ok;
250 /* Record the stack slot for each spilled hard register. */
251 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
253 /* Width allocated so far for that stack slot. */
254 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
256 /* Record which pseudos needed to be spilled. */
257 static regset_head spilled_pseudos;
259 /* Used for communication between order_regs_for_reload and count_pseudo.
260 Used to avoid counting one pseudo twice. */
261 static regset_head pseudos_counted;
263 /* First uid used by insns created by reload in this function.
264 Used in find_equiv_reg. */
265 int reload_first_uid;
267 /* Flag set by local-alloc or global-alloc if anything is live in
268 a call-clobbered reg across calls. */
269 int caller_save_needed;
271 /* Set to 1 while reload_as_needed is operating.
272 Required by some machines to handle any generated moves differently. */
273 int reload_in_progress = 0;
275 /* These arrays record the insn_code of insns that may be needed to
276 perform input and output reloads of special objects. They provide a
277 place to pass a scratch register. */
278 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
279 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
281 /* This obstack is used for allocation of rtl during register elimination.
282 The allocated storage can be freed once find_reloads has processed the
283 insn. */
284 static struct obstack reload_obstack;
286 /* Points to the beginning of the reload_obstack. All insn_chain structures
287 are allocated first. */
288 static char *reload_startobj;
290 /* The point after all insn_chain structures. Used to quickly deallocate
291 memory allocated in copy_reloads during calculate_needs_all_insns. */
292 static char *reload_firstobj;
294 /* This points before all local rtl generated by register elimination.
295 Used to quickly free all memory after processing one insn. */
296 static char *reload_insn_firstobj;
298 /* List of insn_chain instructions, one for every insn that reload needs to
299 examine. */
300 struct insn_chain *reload_insn_chain;
302 /* List of all insns needing reloads. */
303 static struct insn_chain *insns_need_reload;
305 /* This structure is used to record information about register eliminations.
306 Each array entry describes one possible way of eliminating a register
307 in favor of another. If there is more than one way of eliminating a
308 particular register, the most preferred should be specified first. */
310 struct elim_table
312 int from; /* Register number to be eliminated. */
313 int to; /* Register number used as replacement. */
314 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
315 int can_eliminate; /* Nonzero if this elimination can be done. */
316 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
317 insns made by reload. */
318 HOST_WIDE_INT offset; /* Current offset between the two regs. */
319 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
320 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
321 rtx from_rtx; /* REG rtx for the register to be eliminated.
322 We cannot simply compare the number since
323 we might then spuriously replace a hard
324 register corresponding to a pseudo
325 assigned to the reg to be eliminated. */
326 rtx to_rtx; /* REG rtx for the replacement. */
329 static struct elim_table *reg_eliminate = 0;
331 /* This is an intermediate structure to initialize the table. It has
332 exactly the members provided by ELIMINABLE_REGS. */
333 static const struct elim_table_1
335 const int from;
336 const int to;
337 } reg_eliminate_1[] =
339 /* If a set of eliminable registers was specified, define the table from it.
340 Otherwise, default to the normal case of the frame pointer being
341 replaced by the stack pointer. */
343 #ifdef ELIMINABLE_REGS
344 ELIMINABLE_REGS;
345 #else
346 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
347 #endif
349 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
351 /* Record the number of pending eliminations that have an offset not equal
352 to their initial offset. If nonzero, we use a new copy of each
353 replacement result in any insns encountered. */
354 int num_not_at_initial_offset;
356 /* Count the number of registers that we may be able to eliminate. */
357 static int num_eliminable;
358 /* And the number of registers that are equivalent to a constant that
359 can be eliminated to frame_pointer / arg_pointer + constant. */
360 static int num_eliminable_invariants;
362 /* For each label, we record the offset of each elimination. If we reach
363 a label by more than one path and an offset differs, we cannot do the
364 elimination. This information is indexed by the difference of the
365 number of the label and the first label number. We can't offset the
366 pointer itself as this can cause problems on machines with segmented
367 memory. The first table is an array of flags that records whether we
368 have yet encountered a label and the second table is an array of arrays,
369 one entry in the latter array for each elimination. */
371 static int first_label_num;
372 static char *offsets_known_at;
373 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
375 /* Number of labels in the current function. */
377 static int num_labels;
379 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
380 static void maybe_fix_stack_asms (void);
381 static void copy_reloads (struct insn_chain *);
382 static void calculate_needs_all_insns (int);
383 static int find_reg (struct insn_chain *, int);
384 static void find_reload_regs (struct insn_chain *);
385 static void select_reload_regs (void);
386 static void delete_caller_save_insns (void);
388 static void spill_failure (rtx, enum reg_class);
389 static void count_spilled_pseudo (int, int, int);
390 static void delete_dead_insn (rtx);
391 static void alter_reg (int, int);
392 static void set_label_offsets (rtx, rtx, int);
393 static void check_eliminable_occurrences (rtx);
394 static void elimination_effects (rtx, enum machine_mode);
395 static int eliminate_regs_in_insn (rtx, int);
396 static void update_eliminable_offsets (void);
397 static void mark_not_eliminable (rtx, rtx, void *);
398 static void set_initial_elim_offsets (void);
399 static bool verify_initial_elim_offsets (void);
400 static void set_initial_label_offsets (void);
401 static void set_offsets_for_label (rtx);
402 static void init_elim_table (void);
403 static void update_eliminables (HARD_REG_SET *);
404 static void spill_hard_reg (unsigned int, int);
405 static int finish_spills (int);
406 static void scan_paradoxical_subregs (rtx);
407 static void count_pseudo (int);
408 static void order_regs_for_reload (struct insn_chain *);
409 static void reload_as_needed (int);
410 static void forget_old_reloads_1 (rtx, rtx, void *);
411 static void forget_marked_reloads (regset);
412 static int reload_reg_class_lower (const void *, const void *);
413 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
414 enum machine_mode);
415 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
416 enum machine_mode);
417 static int reload_reg_free_p (unsigned int, int, enum reload_type);
418 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
419 rtx, rtx, int, int);
420 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
421 rtx, rtx, int, int);
422 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
423 static int allocate_reload_reg (struct insn_chain *, int, int);
424 static int conflicts_with_override (rtx);
425 static void failed_reload (rtx, int);
426 static int set_reload_reg (int, int);
427 static void choose_reload_regs_init (struct insn_chain *, rtx *);
428 static void choose_reload_regs (struct insn_chain *);
429 static void merge_assigned_reloads (rtx);
430 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
431 rtx, int);
432 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
433 int);
434 static void do_input_reload (struct insn_chain *, struct reload *, int);
435 static void do_output_reload (struct insn_chain *, struct reload *, int);
436 static bool inherit_piecemeal_p (int, int);
437 static void emit_reload_insns (struct insn_chain *);
438 static void delete_output_reload (rtx, int, int);
439 static void delete_address_reloads (rtx, rtx);
440 static void delete_address_reloads_1 (rtx, rtx, rtx);
441 static rtx inc_for_reload (rtx, rtx, rtx, int);
442 #ifdef AUTO_INC_DEC
443 static void add_auto_inc_notes (rtx, rtx);
444 #endif
445 static void copy_eh_notes (rtx, rtx);
446 static int reloads_conflict (int, int);
447 static rtx gen_reload (rtx, rtx, int, enum reload_type);
448 static rtx emit_insn_if_valid_for_reload (rtx);
450 /* Initialize the reload pass once per compilation. */
452 void
453 init_reload (void)
455 int i;
457 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
458 Set spill_indirect_levels to the number of levels such addressing is
459 permitted, zero if it is not permitted at all. */
461 rtx tem
462 = gen_rtx_MEM (Pmode,
463 gen_rtx_PLUS (Pmode,
464 gen_rtx_REG (Pmode,
465 LAST_VIRTUAL_REGISTER + 1),
466 GEN_INT (4)));
467 spill_indirect_levels = 0;
469 while (memory_address_p (QImode, tem))
471 spill_indirect_levels++;
472 tem = gen_rtx_MEM (Pmode, tem);
475 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
477 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
478 indirect_symref_ok = memory_address_p (QImode, tem);
480 /* See if reg+reg is a valid (and offsettable) address. */
482 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
484 tem = gen_rtx_PLUS (Pmode,
485 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
486 gen_rtx_REG (Pmode, i));
488 /* This way, we make sure that reg+reg is an offsettable address. */
489 tem = plus_constant (tem, 4);
491 if (memory_address_p (QImode, tem))
493 double_reg_address_ok = 1;
494 break;
498 /* Initialize obstack for our rtl allocation. */
499 gcc_obstack_init (&reload_obstack);
500 reload_startobj = obstack_alloc (&reload_obstack, 0);
502 INIT_REG_SET (&spilled_pseudos);
503 INIT_REG_SET (&pseudos_counted);
506 /* List of insn chains that are currently unused. */
507 static struct insn_chain *unused_insn_chains = 0;
509 /* Allocate an empty insn_chain structure. */
510 struct insn_chain *
511 new_insn_chain (void)
513 struct insn_chain *c;
515 if (unused_insn_chains == 0)
517 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
518 INIT_REG_SET (&c->live_throughout);
519 INIT_REG_SET (&c->dead_or_set);
521 else
523 c = unused_insn_chains;
524 unused_insn_chains = c->next;
526 c->is_caller_save_insn = 0;
527 c->need_operand_change = 0;
528 c->need_reload = 0;
529 c->need_elim = 0;
530 return c;
533 /* Small utility function to set all regs in hard reg set TO which are
534 allocated to pseudos in regset FROM. */
536 void
537 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
539 unsigned int regno;
540 reg_set_iterator rsi;
542 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
544 int r = reg_renumber[regno];
545 int nregs;
547 if (r < 0)
549 /* reload_combine uses the information from
550 BASIC_BLOCK->global_live_at_start, which might still
551 contain registers that have not actually been allocated
552 since they have an equivalence. */
553 gcc_assert (reload_completed);
555 else
557 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
558 while (nregs-- > 0)
559 SET_HARD_REG_BIT (*to, r + nregs);
564 /* Replace all pseudos found in LOC with their corresponding
565 equivalences. */
567 static void
568 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
570 rtx x = *loc;
571 enum rtx_code code;
572 const char *fmt;
573 int i, j;
575 if (! x)
576 return;
578 code = GET_CODE (x);
579 if (code == REG)
581 unsigned int regno = REGNO (x);
583 if (regno < FIRST_PSEUDO_REGISTER)
584 return;
586 x = eliminate_regs (x, mem_mode, usage);
587 if (x != *loc)
589 *loc = x;
590 replace_pseudos_in (loc, mem_mode, usage);
591 return;
594 if (reg_equiv_constant[regno])
595 *loc = reg_equiv_constant[regno];
596 else if (reg_equiv_mem[regno])
597 *loc = reg_equiv_mem[regno];
598 else if (reg_equiv_address[regno])
599 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
600 else
602 gcc_assert (!REG_P (regno_reg_rtx[regno])
603 || REGNO (regno_reg_rtx[regno]) != regno);
604 *loc = regno_reg_rtx[regno];
607 return;
609 else if (code == MEM)
611 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
612 return;
615 /* Process each of our operands recursively. */
616 fmt = GET_RTX_FORMAT (code);
617 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
618 if (*fmt == 'e')
619 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
620 else if (*fmt == 'E')
621 for (j = 0; j < XVECLEN (x, i); j++)
622 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
626 /* Global variables used by reload and its subroutines. */
628 /* Set during calculate_needs if an insn needs register elimination. */
629 static int something_needs_elimination;
630 /* Set during calculate_needs if an insn needs an operand changed. */
631 static int something_needs_operands_changed;
633 /* Nonzero means we couldn't get enough spill regs. */
634 static int failure;
636 /* Main entry point for the reload pass.
638 FIRST is the first insn of the function being compiled.
640 GLOBAL nonzero means we were called from global_alloc
641 and should attempt to reallocate any pseudoregs that we
642 displace from hard regs we will use for reloads.
643 If GLOBAL is zero, we do not have enough information to do that,
644 so any pseudo reg that is spilled must go to the stack.
646 Return value is nonzero if reload failed
647 and we must not do any more for this function. */
650 reload (rtx first, int global)
652 int i;
653 rtx insn;
654 struct elim_table *ep;
655 basic_block bb;
657 /* Make sure even insns with volatile mem refs are recognizable. */
658 init_recog ();
660 failure = 0;
662 reload_firstobj = obstack_alloc (&reload_obstack, 0);
664 /* Make sure that the last insn in the chain
665 is not something that needs reloading. */
666 emit_note (NOTE_INSN_DELETED);
668 /* Enable find_equiv_reg to distinguish insns made by reload. */
669 reload_first_uid = get_max_uid ();
671 #ifdef SECONDARY_MEMORY_NEEDED
672 /* Initialize the secondary memory table. */
673 clear_secondary_mem ();
674 #endif
676 /* We don't have a stack slot for any spill reg yet. */
677 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
678 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
680 /* Initialize the save area information for caller-save, in case some
681 are needed. */
682 init_save_areas ();
684 /* Compute which hard registers are now in use
685 as homes for pseudo registers.
686 This is done here rather than (eg) in global_alloc
687 because this point is reached even if not optimizing. */
688 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
689 mark_home_live (i);
691 /* A function that receives a nonlocal goto must save all call-saved
692 registers. */
693 if (current_function_has_nonlocal_label)
694 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
695 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
696 regs_ever_live[i] = 1;
698 /* Find all the pseudo registers that didn't get hard regs
699 but do have known equivalent constants or memory slots.
700 These include parameters (known equivalent to parameter slots)
701 and cse'd or loop-moved constant memory addresses.
703 Record constant equivalents in reg_equiv_constant
704 so they will be substituted by find_reloads.
705 Record memory equivalents in reg_mem_equiv so they can
706 be substituted eventually by altering the REG-rtx's. */
708 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
709 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
710 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
711 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
712 reg_equiv_address = XCNEWVEC (rtx, max_regno);
713 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
714 reg_old_renumber = XCNEWVEC (short, max_regno);
715 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
716 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
717 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
719 CLEAR_HARD_REG_SET (bad_spill_regs_global);
721 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
722 to. Also find all paradoxical subregs and find largest such for
723 each pseudo. */
725 num_eliminable_invariants = 0;
726 for (insn = first; insn; insn = NEXT_INSN (insn))
728 rtx set = single_set (insn);
730 /* We may introduce USEs that we want to remove at the end, so
731 we'll mark them with QImode. Make sure there are no
732 previously-marked insns left by say regmove. */
733 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
734 && GET_MODE (insn) != VOIDmode)
735 PUT_MODE (insn, VOIDmode);
737 if (INSN_P (insn))
738 scan_paradoxical_subregs (PATTERN (insn));
740 if (set != 0 && REG_P (SET_DEST (set)))
742 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
743 rtx x;
745 if (! note)
746 continue;
748 i = REGNO (SET_DEST (set));
749 x = XEXP (note, 0);
751 if (i <= LAST_VIRTUAL_REGISTER)
752 continue;
754 if (! function_invariant_p (x)
755 || ! flag_pic
756 /* A function invariant is often CONSTANT_P but may
757 include a register. We promise to only pass
758 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
759 || (CONSTANT_P (x)
760 && LEGITIMATE_PIC_OPERAND_P (x)))
762 /* It can happen that a REG_EQUIV note contains a MEM
763 that is not a legitimate memory operand. As later
764 stages of reload assume that all addresses found
765 in the reg_equiv_* arrays were originally legitimate,
766 we ignore such REG_EQUIV notes. */
767 if (memory_operand (x, VOIDmode))
769 /* Always unshare the equivalence, so we can
770 substitute into this insn without touching the
771 equivalence. */
772 reg_equiv_memory_loc[i] = copy_rtx (x);
774 else if (function_invariant_p (x))
776 if (GET_CODE (x) == PLUS)
778 /* This is PLUS of frame pointer and a constant,
779 and might be shared. Unshare it. */
780 reg_equiv_invariant[i] = copy_rtx (x);
781 num_eliminable_invariants++;
783 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
785 reg_equiv_invariant[i] = x;
786 num_eliminable_invariants++;
788 else if (LEGITIMATE_CONSTANT_P (x))
789 reg_equiv_constant[i] = x;
790 else
792 reg_equiv_memory_loc[i]
793 = force_const_mem (GET_MODE (SET_DEST (set)), x);
794 if (! reg_equiv_memory_loc[i])
795 reg_equiv_init[i] = NULL_RTX;
798 else
800 reg_equiv_init[i] = NULL_RTX;
801 continue;
804 else
805 reg_equiv_init[i] = NULL_RTX;
809 if (dump_file)
810 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
811 if (reg_equiv_init[i])
813 fprintf (dump_file, "init_insns for %u: ", i);
814 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
815 fprintf (dump_file, "\n");
818 init_elim_table ();
820 first_label_num = get_first_label_num ();
821 num_labels = max_label_num () - first_label_num;
823 /* Allocate the tables used to store offset information at labels. */
824 /* We used to use alloca here, but the size of what it would try to
825 allocate would occasionally cause it to exceed the stack limit and
826 cause a core dump. */
827 offsets_known_at = XNEWVEC (char, num_labels);
828 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
830 /* Alter each pseudo-reg rtx to contain its hard reg number.
831 Assign stack slots to the pseudos that lack hard regs or equivalents.
832 Do not touch virtual registers. */
834 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
835 alter_reg (i, -1);
837 /* If we have some registers we think can be eliminated, scan all insns to
838 see if there is an insn that sets one of these registers to something
839 other than itself plus a constant. If so, the register cannot be
840 eliminated. Doing this scan here eliminates an extra pass through the
841 main reload loop in the most common case where register elimination
842 cannot be done. */
843 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
844 if (INSN_P (insn))
845 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
847 maybe_fix_stack_asms ();
849 insns_need_reload = 0;
850 something_needs_elimination = 0;
852 /* Initialize to -1, which means take the first spill register. */
853 last_spill_reg = -1;
855 /* Spill any hard regs that we know we can't eliminate. */
856 CLEAR_HARD_REG_SET (used_spill_regs);
857 /* There can be multiple ways to eliminate a register;
858 they should be listed adjacently.
859 Elimination for any register fails only if all possible ways fail. */
860 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
862 int from = ep->from;
863 int can_eliminate = 0;
866 can_eliminate |= ep->can_eliminate;
867 ep++;
869 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
870 if (! can_eliminate)
871 spill_hard_reg (from, 1);
874 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
875 if (frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
877 #endif
878 finish_spills (global);
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
889 int something_changed;
890 int did_spill;
892 HOST_WIDE_INT starting_frame_size;
894 /* Round size of stack frame to stack_alignment_needed. This must be done
895 here because the stack size may be a part of the offset computation
896 for register elimination, and there might have been new stack slots
897 created in the last iteration of this loop. */
898 if (cfun->stack_alignment_needed)
899 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
901 starting_frame_size = get_frame_size ();
903 set_initial_elim_offsets ();
904 set_initial_label_offsets ();
906 /* For each pseudo register that has an equivalent location defined,
907 try to eliminate any eliminable registers (such as the frame pointer)
908 assuming initial offsets for the replacement register, which
909 is the normal case.
911 If the resulting location is directly addressable, substitute
912 the MEM we just got directly for the old REG.
914 If it is not addressable but is a constant or the sum of a hard reg
915 and constant, it is probably not addressable because the constant is
916 out of range, in that case record the address; we will generate
917 hairy code to compute the address in a register each time it is
918 needed. Similarly if it is a hard register, but one that is not
919 valid as an address register.
921 If the location is not addressable, but does not have one of the
922 above forms, assign a stack slot. We have to do this to avoid the
923 potential of producing lots of reloads if, e.g., a location involves
924 a pseudo that didn't get a hard register and has an equivalent memory
925 location that also involves a pseudo that didn't get a hard register.
927 Perhaps at some point we will improve reload_when_needed handling
928 so this problem goes away. But that's very hairy. */
930 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
931 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
933 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
935 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
936 XEXP (x, 0)))
937 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
938 else if (CONSTANT_P (XEXP (x, 0))
939 || (REG_P (XEXP (x, 0))
940 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
941 || (GET_CODE (XEXP (x, 0)) == PLUS
942 && REG_P (XEXP (XEXP (x, 0), 0))
943 && (REGNO (XEXP (XEXP (x, 0), 0))
944 < FIRST_PSEUDO_REGISTER)
945 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
946 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
947 else
949 /* Make a new stack slot. Then indicate that something
950 changed so we go back and recompute offsets for
951 eliminable registers because the allocation of memory
952 below might change some offset. reg_equiv_{mem,address}
953 will be set up for this pseudo on the next pass around
954 the loop. */
955 reg_equiv_memory_loc[i] = 0;
956 reg_equiv_init[i] = 0;
957 alter_reg (i, -1);
961 if (caller_save_needed)
962 setup_save_areas ();
964 /* If we allocated another stack slot, redo elimination bookkeeping. */
965 if (starting_frame_size != get_frame_size ())
966 continue;
968 if (caller_save_needed)
970 save_call_clobbered_regs ();
971 /* That might have allocated new insn_chain structures. */
972 reload_firstobj = obstack_alloc (&reload_obstack, 0);
975 calculate_needs_all_insns (global);
977 CLEAR_REG_SET (&spilled_pseudos);
978 did_spill = 0;
980 something_changed = 0;
982 /* If we allocated any new memory locations, make another pass
983 since it might have changed elimination offsets. */
984 if (starting_frame_size != get_frame_size ())
985 something_changed = 1;
987 /* Even if the frame size remained the same, we might still have
988 changed elimination offsets, e.g. if find_reloads called
989 force_const_mem requiring the back end to allocate a constant
990 pool base register that needs to be saved on the stack. */
991 else if (!verify_initial_elim_offsets ())
992 something_changed = 1;
995 HARD_REG_SET to_spill;
996 CLEAR_HARD_REG_SET (to_spill);
997 update_eliminables (&to_spill);
998 AND_COMPL_HARD_REG_SET(used_spill_regs, to_spill);
1000 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1001 if (TEST_HARD_REG_BIT (to_spill, i))
1003 spill_hard_reg (i, 1);
1004 did_spill = 1;
1006 /* Regardless of the state of spills, if we previously had
1007 a register that we thought we could eliminate, but now can
1008 not eliminate, we must run another pass.
1010 Consider pseudos which have an entry in reg_equiv_* which
1011 reference an eliminable register. We must make another pass
1012 to update reg_equiv_* so that we do not substitute in the
1013 old value from when we thought the elimination could be
1014 performed. */
1015 something_changed = 1;
1019 select_reload_regs ();
1020 if (failure)
1021 goto failed;
1023 if (insns_need_reload != 0 || did_spill)
1024 something_changed |= finish_spills (global);
1026 if (! something_changed)
1027 break;
1029 if (caller_save_needed)
1030 delete_caller_save_insns ();
1032 obstack_free (&reload_obstack, reload_firstobj);
1035 /* If global-alloc was run, notify it of any register eliminations we have
1036 done. */
1037 if (global)
1038 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1039 if (ep->can_eliminate)
1040 mark_elimination (ep->from, ep->to);
1042 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1043 If that insn didn't set the register (i.e., it copied the register to
1044 memory), just delete that insn instead of the equivalencing insn plus
1045 anything now dead. If we call delete_dead_insn on that insn, we may
1046 delete the insn that actually sets the register if the register dies
1047 there and that is incorrect. */
1049 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1051 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1053 rtx list;
1054 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1056 rtx equiv_insn = XEXP (list, 0);
1058 /* If we already deleted the insn or if it may trap, we can't
1059 delete it. The latter case shouldn't happen, but can
1060 if an insn has a variable address, gets a REG_EH_REGION
1061 note added to it, and then gets converted into a load
1062 from a constant address. */
1063 if (NOTE_P (equiv_insn)
1064 || can_throw_internal (equiv_insn))
1066 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1067 delete_dead_insn (equiv_insn);
1068 else
1069 SET_INSN_DELETED (equiv_insn);
1074 /* Use the reload registers where necessary
1075 by generating move instructions to move the must-be-register
1076 values into or out of the reload registers. */
1078 if (insns_need_reload != 0 || something_needs_elimination
1079 || something_needs_operands_changed)
1081 HOST_WIDE_INT old_frame_size = get_frame_size ();
1083 reload_as_needed (global);
1085 gcc_assert (old_frame_size == get_frame_size ());
1087 gcc_assert (verify_initial_elim_offsets ());
1090 /* If we were able to eliminate the frame pointer, show that it is no
1091 longer live at the start of any basic block. If it ls live by
1092 virtue of being in a pseudo, that pseudo will be marked live
1093 and hence the frame pointer will be known to be live via that
1094 pseudo. */
1096 if (! frame_pointer_needed)
1097 FOR_EACH_BB (bb)
1098 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
1099 HARD_FRAME_POINTER_REGNUM);
1101 /* Come here (with failure set nonzero) if we can't get enough spill
1102 regs. */
1103 failed:
1105 CLEAR_REG_SET (&spilled_pseudos);
1106 reload_in_progress = 0;
1108 /* Now eliminate all pseudo regs by modifying them into
1109 their equivalent memory references.
1110 The REG-rtx's for the pseudos are modified in place,
1111 so all insns that used to refer to them now refer to memory.
1113 For a reg that has a reg_equiv_address, all those insns
1114 were changed by reloading so that no insns refer to it any longer;
1115 but the DECL_RTL of a variable decl may refer to it,
1116 and if so this causes the debugging info to mention the variable. */
1118 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1120 rtx addr = 0;
1122 if (reg_equiv_mem[i])
1123 addr = XEXP (reg_equiv_mem[i], 0);
1125 if (reg_equiv_address[i])
1126 addr = reg_equiv_address[i];
1128 if (addr)
1130 if (reg_renumber[i] < 0)
1132 rtx reg = regno_reg_rtx[i];
1134 REG_USERVAR_P (reg) = 0;
1135 PUT_CODE (reg, MEM);
1136 XEXP (reg, 0) = addr;
1137 if (reg_equiv_memory_loc[i])
1138 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1139 else
1141 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1142 MEM_ATTRS (reg) = 0;
1144 MEM_NOTRAP_P (reg) = 1;
1146 else if (reg_equiv_mem[i])
1147 XEXP (reg_equiv_mem[i], 0) = addr;
1151 /* We must set reload_completed now since the cleanup_subreg_operands call
1152 below will re-recognize each insn and reload may have generated insns
1153 which are only valid during and after reload. */
1154 reload_completed = 1;
1156 /* Make a pass over all the insns and delete all USEs which we inserted
1157 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1158 notes. Delete all CLOBBER insns, except those that refer to the return
1159 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1160 from misarranging variable-array code, and simplify (subreg (reg))
1161 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1162 are no longer useful or accurate. Strip and regenerate REG_INC notes
1163 that may have been moved around. */
1165 for (insn = first; insn; insn = NEXT_INSN (insn))
1166 if (INSN_P (insn))
1168 rtx *pnote;
1170 if (CALL_P (insn))
1171 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1172 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1174 if ((GET_CODE (PATTERN (insn)) == USE
1175 /* We mark with QImode USEs introduced by reload itself. */
1176 && (GET_MODE (insn) == QImode
1177 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1178 || (GET_CODE (PATTERN (insn)) == CLOBBER
1179 && (!MEM_P (XEXP (PATTERN (insn), 0))
1180 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1181 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1182 && XEXP (XEXP (PATTERN (insn), 0), 0)
1183 != stack_pointer_rtx))
1184 && (!REG_P (XEXP (PATTERN (insn), 0))
1185 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1187 delete_insn (insn);
1188 continue;
1191 /* Some CLOBBERs may survive until here and still reference unassigned
1192 pseudos with const equivalent, which may in turn cause ICE in later
1193 passes if the reference remains in place. */
1194 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1195 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1196 VOIDmode, PATTERN (insn));
1198 /* Discard obvious no-ops, even without -O. This optimization
1199 is fast and doesn't interfere with debugging. */
1200 if (NONJUMP_INSN_P (insn)
1201 && GET_CODE (PATTERN (insn)) == SET
1202 && REG_P (SET_SRC (PATTERN (insn)))
1203 && REG_P (SET_DEST (PATTERN (insn)))
1204 && (REGNO (SET_SRC (PATTERN (insn)))
1205 == REGNO (SET_DEST (PATTERN (insn)))))
1207 delete_insn (insn);
1208 continue;
1211 pnote = &REG_NOTES (insn);
1212 while (*pnote != 0)
1214 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1215 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1216 || REG_NOTE_KIND (*pnote) == REG_INC
1217 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1218 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1219 *pnote = XEXP (*pnote, 1);
1220 else
1221 pnote = &XEXP (*pnote, 1);
1224 #ifdef AUTO_INC_DEC
1225 add_auto_inc_notes (insn, PATTERN (insn));
1226 #endif
1228 /* Simplify (subreg (reg)) if it appears as an operand. */
1229 cleanup_subreg_operands (insn);
1231 /* Clean up invalid ASMs so that they don't confuse later passes.
1232 See PR 21299. */
1233 if (asm_noperands (PATTERN (insn)) >= 0)
1235 extract_insn (insn);
1236 if (!constrain_operands (1))
1238 error_for_asm (insn,
1239 "%<asm%> operand has impossible constraints");
1240 delete_insn (insn);
1241 continue;
1246 /* If we are doing stack checking, give a warning if this function's
1247 frame size is larger than we expect. */
1248 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1250 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1251 static int verbose_warned = 0;
1253 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1254 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1255 size += UNITS_PER_WORD;
1257 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1259 warning (0, "frame size too large for reliable stack checking");
1260 if (! verbose_warned)
1262 warning (0, "try reducing the number of local variables");
1263 verbose_warned = 1;
1268 /* Indicate that we no longer have known memory locations or constants. */
1269 if (reg_equiv_constant)
1270 free (reg_equiv_constant);
1271 if (reg_equiv_invariant)
1272 free (reg_equiv_invariant);
1273 reg_equiv_constant = 0;
1274 reg_equiv_invariant = 0;
1275 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1276 reg_equiv_memory_loc = 0;
1278 if (offsets_known_at)
1279 free (offsets_known_at);
1280 if (offsets_at)
1281 free (offsets_at);
1283 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1284 if (reg_equiv_alt_mem_list[i])
1285 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1286 free (reg_equiv_alt_mem_list);
1288 free (reg_equiv_mem);
1289 reg_equiv_init = 0;
1290 free (reg_equiv_address);
1291 free (reg_max_ref_width);
1292 free (reg_old_renumber);
1293 free (pseudo_previous_regs);
1294 free (pseudo_forbidden_regs);
1296 CLEAR_HARD_REG_SET (used_spill_regs);
1297 for (i = 0; i < n_spills; i++)
1298 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1300 /* Free all the insn_chain structures at once. */
1301 obstack_free (&reload_obstack, reload_startobj);
1302 unused_insn_chains = 0;
1303 fixup_abnormal_edges ();
1305 /* Replacing pseudos with their memory equivalents might have
1306 created shared rtx. Subsequent passes would get confused
1307 by this, so unshare everything here. */
1308 unshare_all_rtl_again (first);
1310 #ifdef STACK_BOUNDARY
1311 /* init_emit has set the alignment of the hard frame pointer
1312 to STACK_BOUNDARY. It is very likely no longer valid if
1313 the hard frame pointer was used for register allocation. */
1314 if (!frame_pointer_needed)
1315 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1316 #endif
1318 return failure;
1321 /* Yet another special case. Unfortunately, reg-stack forces people to
1322 write incorrect clobbers in asm statements. These clobbers must not
1323 cause the register to appear in bad_spill_regs, otherwise we'll call
1324 fatal_insn later. We clear the corresponding regnos in the live
1325 register sets to avoid this.
1326 The whole thing is rather sick, I'm afraid. */
1328 static void
1329 maybe_fix_stack_asms (void)
1331 #ifdef STACK_REGS
1332 const char *constraints[MAX_RECOG_OPERANDS];
1333 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1334 struct insn_chain *chain;
1336 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1338 int i, noperands;
1339 HARD_REG_SET clobbered, allowed;
1340 rtx pat;
1342 if (! INSN_P (chain->insn)
1343 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1344 continue;
1345 pat = PATTERN (chain->insn);
1346 if (GET_CODE (pat) != PARALLEL)
1347 continue;
1349 CLEAR_HARD_REG_SET (clobbered);
1350 CLEAR_HARD_REG_SET (allowed);
1352 /* First, make a mask of all stack regs that are clobbered. */
1353 for (i = 0; i < XVECLEN (pat, 0); i++)
1355 rtx t = XVECEXP (pat, 0, i);
1356 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1357 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1360 /* Get the operand values and constraints out of the insn. */
1361 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1362 constraints, operand_mode);
1364 /* For every operand, see what registers are allowed. */
1365 for (i = 0; i < noperands; i++)
1367 const char *p = constraints[i];
1368 /* For every alternative, we compute the class of registers allowed
1369 for reloading in CLS, and merge its contents into the reg set
1370 ALLOWED. */
1371 int cls = (int) NO_REGS;
1373 for (;;)
1375 char c = *p;
1377 if (c == '\0' || c == ',' || c == '#')
1379 /* End of one alternative - mark the regs in the current
1380 class, and reset the class. */
1381 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1382 cls = NO_REGS;
1383 p++;
1384 if (c == '#')
1385 do {
1386 c = *p++;
1387 } while (c != '\0' && c != ',');
1388 if (c == '\0')
1389 break;
1390 continue;
1393 switch (c)
1395 case '=': case '+': case '*': case '%': case '?': case '!':
1396 case '0': case '1': case '2': case '3': case '4': case 'm':
1397 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1398 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1399 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1400 case 'P':
1401 break;
1403 case 'p':
1404 cls = (int) reg_class_subunion[cls]
1405 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1406 break;
1408 case 'g':
1409 case 'r':
1410 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1411 break;
1413 default:
1414 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1415 cls = (int) reg_class_subunion[cls]
1416 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1417 else
1418 cls = (int) reg_class_subunion[cls]
1419 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1421 p += CONSTRAINT_LEN (c, p);
1424 /* Those of the registers which are clobbered, but allowed by the
1425 constraints, must be usable as reload registers. So clear them
1426 out of the life information. */
1427 AND_HARD_REG_SET (allowed, clobbered);
1428 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1429 if (TEST_HARD_REG_BIT (allowed, i))
1431 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1432 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1436 #endif
1439 /* Copy the global variables n_reloads and rld into the corresponding elts
1440 of CHAIN. */
1441 static void
1442 copy_reloads (struct insn_chain *chain)
1444 chain->n_reloads = n_reloads;
1445 chain->rld = obstack_alloc (&reload_obstack,
1446 n_reloads * sizeof (struct reload));
1447 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1448 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1451 /* Walk the chain of insns, and determine for each whether it needs reloads
1452 and/or eliminations. Build the corresponding insns_need_reload list, and
1453 set something_needs_elimination as appropriate. */
1454 static void
1455 calculate_needs_all_insns (int global)
1457 struct insn_chain **pprev_reload = &insns_need_reload;
1458 struct insn_chain *chain, *next = 0;
1460 something_needs_elimination = 0;
1462 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1463 for (chain = reload_insn_chain; chain != 0; chain = next)
1465 rtx insn = chain->insn;
1467 next = chain->next;
1469 /* Clear out the shortcuts. */
1470 chain->n_reloads = 0;
1471 chain->need_elim = 0;
1472 chain->need_reload = 0;
1473 chain->need_operand_change = 0;
1475 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1476 include REG_LABEL), we need to see what effects this has on the
1477 known offsets at labels. */
1479 if (LABEL_P (insn) || JUMP_P (insn)
1480 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1481 set_label_offsets (insn, insn, 0);
1483 if (INSN_P (insn))
1485 rtx old_body = PATTERN (insn);
1486 int old_code = INSN_CODE (insn);
1487 rtx old_notes = REG_NOTES (insn);
1488 int did_elimination = 0;
1489 int operands_changed = 0;
1490 rtx set = single_set (insn);
1492 /* Skip insns that only set an equivalence. */
1493 if (set && REG_P (SET_DEST (set))
1494 && reg_renumber[REGNO (SET_DEST (set))] < 0
1495 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1496 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1497 && reg_equiv_init[REGNO (SET_DEST (set))])
1498 continue;
1500 /* If needed, eliminate any eliminable registers. */
1501 if (num_eliminable || num_eliminable_invariants)
1502 did_elimination = eliminate_regs_in_insn (insn, 0);
1504 /* Analyze the instruction. */
1505 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1506 global, spill_reg_order);
1508 /* If a no-op set needs more than one reload, this is likely
1509 to be something that needs input address reloads. We
1510 can't get rid of this cleanly later, and it is of no use
1511 anyway, so discard it now.
1512 We only do this when expensive_optimizations is enabled,
1513 since this complements reload inheritance / output
1514 reload deletion, and it can make debugging harder. */
1515 if (flag_expensive_optimizations && n_reloads > 1)
1517 rtx set = single_set (insn);
1518 if (set
1519 && SET_SRC (set) == SET_DEST (set)
1520 && REG_P (SET_SRC (set))
1521 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1523 delete_insn (insn);
1524 /* Delete it from the reload chain. */
1525 if (chain->prev)
1526 chain->prev->next = next;
1527 else
1528 reload_insn_chain = next;
1529 if (next)
1530 next->prev = chain->prev;
1531 chain->next = unused_insn_chains;
1532 unused_insn_chains = chain;
1533 continue;
1536 if (num_eliminable)
1537 update_eliminable_offsets ();
1539 /* Remember for later shortcuts which insns had any reloads or
1540 register eliminations. */
1541 chain->need_elim = did_elimination;
1542 chain->need_reload = n_reloads > 0;
1543 chain->need_operand_change = operands_changed;
1545 /* Discard any register replacements done. */
1546 if (did_elimination)
1548 obstack_free (&reload_obstack, reload_insn_firstobj);
1549 PATTERN (insn) = old_body;
1550 INSN_CODE (insn) = old_code;
1551 REG_NOTES (insn) = old_notes;
1552 something_needs_elimination = 1;
1555 something_needs_operands_changed |= operands_changed;
1557 if (n_reloads != 0)
1559 copy_reloads (chain);
1560 *pprev_reload = chain;
1561 pprev_reload = &chain->next_need_reload;
1565 *pprev_reload = 0;
1568 /* Comparison function for qsort to decide which of two reloads
1569 should be handled first. *P1 and *P2 are the reload numbers. */
1571 static int
1572 reload_reg_class_lower (const void *r1p, const void *r2p)
1574 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1575 int t;
1577 /* Consider required reloads before optional ones. */
1578 t = rld[r1].optional - rld[r2].optional;
1579 if (t != 0)
1580 return t;
1582 /* Count all solitary classes before non-solitary ones. */
1583 t = ((reg_class_size[(int) rld[r2].class] == 1)
1584 - (reg_class_size[(int) rld[r1].class] == 1));
1585 if (t != 0)
1586 return t;
1588 /* Aside from solitaires, consider all multi-reg groups first. */
1589 t = rld[r2].nregs - rld[r1].nregs;
1590 if (t != 0)
1591 return t;
1593 /* Consider reloads in order of increasing reg-class number. */
1594 t = (int) rld[r1].class - (int) rld[r2].class;
1595 if (t != 0)
1596 return t;
1598 /* If reloads are equally urgent, sort by reload number,
1599 so that the results of qsort leave nothing to chance. */
1600 return r1 - r2;
1603 /* The cost of spilling each hard reg. */
1604 static int spill_cost[FIRST_PSEUDO_REGISTER];
1606 /* When spilling multiple hard registers, we use SPILL_COST for the first
1607 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1608 only the first hard reg for a multi-reg pseudo. */
1609 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1611 /* Update the spill cost arrays, considering that pseudo REG is live. */
1613 static void
1614 count_pseudo (int reg)
1616 int freq = REG_FREQ (reg);
1617 int r = reg_renumber[reg];
1618 int nregs;
1620 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1621 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1622 return;
1624 SET_REGNO_REG_SET (&pseudos_counted, reg);
1626 gcc_assert (r >= 0);
1628 spill_add_cost[r] += freq;
1630 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1631 while (nregs-- > 0)
1632 spill_cost[r + nregs] += freq;
1635 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1636 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1638 static void
1639 order_regs_for_reload (struct insn_chain *chain)
1641 unsigned i;
1642 HARD_REG_SET used_by_pseudos;
1643 HARD_REG_SET used_by_pseudos2;
1644 reg_set_iterator rsi;
1646 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1648 memset (spill_cost, 0, sizeof spill_cost);
1649 memset (spill_add_cost, 0, sizeof spill_add_cost);
1651 /* Count number of uses of each hard reg by pseudo regs allocated to it
1652 and then order them by decreasing use. First exclude hard registers
1653 that are live in or across this insn. */
1655 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1656 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1657 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1658 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1660 /* Now find out which pseudos are allocated to it, and update
1661 hard_reg_n_uses. */
1662 CLEAR_REG_SET (&pseudos_counted);
1664 EXECUTE_IF_SET_IN_REG_SET
1665 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1667 count_pseudo (i);
1669 EXECUTE_IF_SET_IN_REG_SET
1670 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1672 count_pseudo (i);
1674 CLEAR_REG_SET (&pseudos_counted);
1677 /* Vector of reload-numbers showing the order in which the reloads should
1678 be processed. */
1679 static short reload_order[MAX_RELOADS];
1681 /* This is used to keep track of the spill regs used in one insn. */
1682 static HARD_REG_SET used_spill_regs_local;
1684 /* We decided to spill hard register SPILLED, which has a size of
1685 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1686 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1687 update SPILL_COST/SPILL_ADD_COST. */
1689 static void
1690 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1692 int r = reg_renumber[reg];
1693 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1695 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1696 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1697 return;
1699 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1701 spill_add_cost[r] -= REG_FREQ (reg);
1702 while (nregs-- > 0)
1703 spill_cost[r + nregs] -= REG_FREQ (reg);
1706 /* Find reload register to use for reload number ORDER. */
1708 static int
1709 find_reg (struct insn_chain *chain, int order)
1711 int rnum = reload_order[order];
1712 struct reload *rl = rld + rnum;
1713 int best_cost = INT_MAX;
1714 int best_reg = -1;
1715 unsigned int i, j;
1716 int k;
1717 HARD_REG_SET not_usable;
1718 HARD_REG_SET used_by_other_reload;
1719 reg_set_iterator rsi;
1721 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1722 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1723 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1725 CLEAR_HARD_REG_SET (used_by_other_reload);
1726 for (k = 0; k < order; k++)
1728 int other = reload_order[k];
1730 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1731 for (j = 0; j < rld[other].nregs; j++)
1732 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1735 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1737 unsigned int regno = i;
1739 if (! TEST_HARD_REG_BIT (not_usable, regno)
1740 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1741 && HARD_REGNO_MODE_OK (regno, rl->mode))
1743 int this_cost = spill_cost[regno];
1744 int ok = 1;
1745 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1747 for (j = 1; j < this_nregs; j++)
1749 this_cost += spill_add_cost[regno + j];
1750 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1751 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1752 ok = 0;
1754 if (! ok)
1755 continue;
1756 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1757 this_cost--;
1758 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1759 this_cost--;
1760 if (this_cost < best_cost
1761 /* Among registers with equal cost, prefer caller-saved ones, or
1762 use REG_ALLOC_ORDER if it is defined. */
1763 || (this_cost == best_cost
1764 #ifdef REG_ALLOC_ORDER
1765 && (inv_reg_alloc_order[regno]
1766 < inv_reg_alloc_order[best_reg])
1767 #else
1768 && call_used_regs[regno]
1769 && ! call_used_regs[best_reg]
1770 #endif
1773 best_reg = regno;
1774 best_cost = this_cost;
1778 if (best_reg == -1)
1779 return 0;
1781 if (dump_file)
1782 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1784 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1785 rl->regno = best_reg;
1787 EXECUTE_IF_SET_IN_REG_SET
1788 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1790 count_spilled_pseudo (best_reg, rl->nregs, j);
1793 EXECUTE_IF_SET_IN_REG_SET
1794 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1796 count_spilled_pseudo (best_reg, rl->nregs, j);
1799 for (i = 0; i < rl->nregs; i++)
1801 gcc_assert (spill_cost[best_reg + i] == 0);
1802 gcc_assert (spill_add_cost[best_reg + i] == 0);
1803 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1805 return 1;
1808 /* Find more reload regs to satisfy the remaining need of an insn, which
1809 is given by CHAIN.
1810 Do it by ascending class number, since otherwise a reg
1811 might be spilled for a big class and might fail to count
1812 for a smaller class even though it belongs to that class. */
1814 static void
1815 find_reload_regs (struct insn_chain *chain)
1817 int i;
1819 /* In order to be certain of getting the registers we need,
1820 we must sort the reloads into order of increasing register class.
1821 Then our grabbing of reload registers will parallel the process
1822 that provided the reload registers. */
1823 for (i = 0; i < chain->n_reloads; i++)
1825 /* Show whether this reload already has a hard reg. */
1826 if (chain->rld[i].reg_rtx)
1828 int regno = REGNO (chain->rld[i].reg_rtx);
1829 chain->rld[i].regno = regno;
1830 chain->rld[i].nregs
1831 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1833 else
1834 chain->rld[i].regno = -1;
1835 reload_order[i] = i;
1838 n_reloads = chain->n_reloads;
1839 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1841 CLEAR_HARD_REG_SET (used_spill_regs_local);
1843 if (dump_file)
1844 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1846 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1848 /* Compute the order of preference for hard registers to spill. */
1850 order_regs_for_reload (chain);
1852 for (i = 0; i < n_reloads; i++)
1854 int r = reload_order[i];
1856 /* Ignore reloads that got marked inoperative. */
1857 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1858 && ! rld[r].optional
1859 && rld[r].regno == -1)
1860 if (! find_reg (chain, i))
1862 if (dump_file)
1863 fprintf(dump_file, "reload failure for reload %d\n", r);
1864 spill_failure (chain->insn, rld[r].class);
1865 failure = 1;
1866 return;
1870 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1871 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1873 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1876 static void
1877 select_reload_regs (void)
1879 struct insn_chain *chain;
1881 /* Try to satisfy the needs for each insn. */
1882 for (chain = insns_need_reload; chain != 0;
1883 chain = chain->next_need_reload)
1884 find_reload_regs (chain);
1887 /* Delete all insns that were inserted by emit_caller_save_insns during
1888 this iteration. */
1889 static void
1890 delete_caller_save_insns (void)
1892 struct insn_chain *c = reload_insn_chain;
1894 while (c != 0)
1896 while (c != 0 && c->is_caller_save_insn)
1898 struct insn_chain *next = c->next;
1899 rtx insn = c->insn;
1901 if (c == reload_insn_chain)
1902 reload_insn_chain = next;
1903 delete_insn (insn);
1905 if (next)
1906 next->prev = c->prev;
1907 if (c->prev)
1908 c->prev->next = next;
1909 c->next = unused_insn_chains;
1910 unused_insn_chains = c;
1911 c = next;
1913 if (c != 0)
1914 c = c->next;
1918 /* Handle the failure to find a register to spill.
1919 INSN should be one of the insns which needed this particular spill reg. */
1921 static void
1922 spill_failure (rtx insn, enum reg_class class)
1924 if (asm_noperands (PATTERN (insn)) >= 0)
1925 error_for_asm (insn, "can't find a register in class %qs while "
1926 "reloading %<asm%>",
1927 reg_class_names[class]);
1928 else
1930 error ("unable to find a register to spill in class %qs",
1931 reg_class_names[class]);
1933 if (dump_file)
1935 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
1936 debug_reload_to_stream (dump_file);
1938 fatal_insn ("this is the insn:", insn);
1942 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1943 data that is dead in INSN. */
1945 static void
1946 delete_dead_insn (rtx insn)
1948 rtx prev = prev_real_insn (insn);
1949 rtx prev_dest;
1951 /* If the previous insn sets a register that dies in our insn, delete it
1952 too. */
1953 if (prev && GET_CODE (PATTERN (prev)) == SET
1954 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1955 && reg_mentioned_p (prev_dest, PATTERN (insn))
1956 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1957 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1958 delete_dead_insn (prev);
1960 SET_INSN_DELETED (insn);
1963 /* Modify the home of pseudo-reg I.
1964 The new home is present in reg_renumber[I].
1966 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1967 or it may be -1, meaning there is none or it is not relevant.
1968 This is used so that all pseudos spilled from a given hard reg
1969 can share one stack slot. */
1971 static void
1972 alter_reg (int i, int from_reg)
1974 /* When outputting an inline function, this can happen
1975 for a reg that isn't actually used. */
1976 if (regno_reg_rtx[i] == 0)
1977 return;
1979 /* If the reg got changed to a MEM at rtl-generation time,
1980 ignore it. */
1981 if (!REG_P (regno_reg_rtx[i]))
1982 return;
1984 /* Modify the reg-rtx to contain the new hard reg
1985 number or else to contain its pseudo reg number. */
1986 REGNO (regno_reg_rtx[i])
1987 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1989 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1990 allocate a stack slot for it. */
1992 if (reg_renumber[i] < 0
1993 && REG_N_REFS (i) > 0
1994 && reg_equiv_constant[i] == 0
1995 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
1996 && reg_equiv_memory_loc[i] == 0)
1998 rtx x;
1999 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2000 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2001 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2002 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2003 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2004 int adjust = 0;
2006 /* Each pseudo reg has an inherent size which comes from its own mode,
2007 and a total size which provides room for paradoxical subregs
2008 which refer to the pseudo reg in wider modes.
2010 We can use a slot already allocated if it provides both
2011 enough inherent space and enough total space.
2012 Otherwise, we allocate a new slot, making sure that it has no less
2013 inherent space, and no less total space, then the previous slot. */
2014 if (from_reg == -1)
2016 /* No known place to spill from => no slot to reuse. */
2017 x = assign_stack_local (mode, total_size,
2018 min_align > inherent_align
2019 || total_size > inherent_size ? -1 : 0);
2020 if (BYTES_BIG_ENDIAN)
2021 /* Cancel the big-endian correction done in assign_stack_local.
2022 Get the address of the beginning of the slot.
2023 This is so we can do a big-endian correction unconditionally
2024 below. */
2025 adjust = inherent_size - total_size;
2027 /* Nothing can alias this slot except this pseudo. */
2028 set_mem_alias_set (x, new_alias_set ());
2031 /* Reuse a stack slot if possible. */
2032 else if (spill_stack_slot[from_reg] != 0
2033 && spill_stack_slot_width[from_reg] >= total_size
2034 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2035 >= inherent_size)
2036 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2037 x = spill_stack_slot[from_reg];
2039 /* Allocate a bigger slot. */
2040 else
2042 /* Compute maximum size needed, both for inherent size
2043 and for total size. */
2044 rtx stack_slot;
2046 if (spill_stack_slot[from_reg])
2048 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2049 > inherent_size)
2050 mode = GET_MODE (spill_stack_slot[from_reg]);
2051 if (spill_stack_slot_width[from_reg] > total_size)
2052 total_size = spill_stack_slot_width[from_reg];
2053 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2054 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2057 /* Make a slot with that size. */
2058 x = assign_stack_local (mode, total_size,
2059 min_align > inherent_align
2060 || total_size > inherent_size ? -1 : 0);
2061 stack_slot = x;
2063 /* All pseudos mapped to this slot can alias each other. */
2064 if (spill_stack_slot[from_reg])
2065 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2066 else
2067 set_mem_alias_set (x, new_alias_set ());
2069 if (BYTES_BIG_ENDIAN)
2071 /* Cancel the big-endian correction done in assign_stack_local.
2072 Get the address of the beginning of the slot.
2073 This is so we can do a big-endian correction unconditionally
2074 below. */
2075 adjust = GET_MODE_SIZE (mode) - total_size;
2076 if (adjust)
2077 stack_slot
2078 = adjust_address_nv (x, mode_for_size (total_size
2079 * BITS_PER_UNIT,
2080 MODE_INT, 1),
2081 adjust);
2084 spill_stack_slot[from_reg] = stack_slot;
2085 spill_stack_slot_width[from_reg] = total_size;
2088 /* On a big endian machine, the "address" of the slot
2089 is the address of the low part that fits its inherent mode. */
2090 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2091 adjust += (total_size - inherent_size);
2093 /* If we have any adjustment to make, or if the stack slot is the
2094 wrong mode, make a new stack slot. */
2095 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2097 /* If we have a decl for the original register, set it for the
2098 memory. If this is a shared MEM, make a copy. */
2099 if (REG_EXPR (regno_reg_rtx[i])
2100 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2102 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2104 /* We can do this only for the DECLs home pseudo, not for
2105 any copies of it, since otherwise when the stack slot
2106 is reused, nonoverlapping_memrefs_p might think they
2107 cannot overlap. */
2108 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2110 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2111 x = copy_rtx (x);
2113 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2117 /* Save the stack slot for later. */
2118 reg_equiv_memory_loc[i] = x;
2122 /* Mark the slots in regs_ever_live for the hard regs
2123 used by pseudo-reg number REGNO. */
2125 void
2126 mark_home_live (int regno)
2128 int i, lim;
2130 i = reg_renumber[regno];
2131 if (i < 0)
2132 return;
2133 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2134 while (i < lim)
2135 regs_ever_live[i++] = 1;
2138 /* This function handles the tracking of elimination offsets around branches.
2140 X is a piece of RTL being scanned.
2142 INSN is the insn that it came from, if any.
2144 INITIAL_P is nonzero if we are to set the offset to be the initial
2145 offset and zero if we are setting the offset of the label to be the
2146 current offset. */
2148 static void
2149 set_label_offsets (rtx x, rtx insn, int initial_p)
2151 enum rtx_code code = GET_CODE (x);
2152 rtx tem;
2153 unsigned int i;
2154 struct elim_table *p;
2156 switch (code)
2158 case LABEL_REF:
2159 if (LABEL_REF_NONLOCAL_P (x))
2160 return;
2162 x = XEXP (x, 0);
2164 /* ... fall through ... */
2166 case CODE_LABEL:
2167 /* If we know nothing about this label, set the desired offsets. Note
2168 that this sets the offset at a label to be the offset before a label
2169 if we don't know anything about the label. This is not correct for
2170 the label after a BARRIER, but is the best guess we can make. If
2171 we guessed wrong, we will suppress an elimination that might have
2172 been possible had we been able to guess correctly. */
2174 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2176 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2177 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2178 = (initial_p ? reg_eliminate[i].initial_offset
2179 : reg_eliminate[i].offset);
2180 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2183 /* Otherwise, if this is the definition of a label and it is
2184 preceded by a BARRIER, set our offsets to the known offset of
2185 that label. */
2187 else if (x == insn
2188 && (tem = prev_nonnote_insn (insn)) != 0
2189 && BARRIER_P (tem))
2190 set_offsets_for_label (insn);
2191 else
2192 /* If neither of the above cases is true, compare each offset
2193 with those previously recorded and suppress any eliminations
2194 where the offsets disagree. */
2196 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2197 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2198 != (initial_p ? reg_eliminate[i].initial_offset
2199 : reg_eliminate[i].offset))
2200 reg_eliminate[i].can_eliminate = 0;
2202 return;
2204 case JUMP_INSN:
2205 set_label_offsets (PATTERN (insn), insn, initial_p);
2207 /* ... fall through ... */
2209 case INSN:
2210 case CALL_INSN:
2211 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2212 and hence must have all eliminations at their initial offsets. */
2213 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2214 if (REG_NOTE_KIND (tem) == REG_LABEL)
2215 set_label_offsets (XEXP (tem, 0), insn, 1);
2216 return;
2218 case PARALLEL:
2219 case ADDR_VEC:
2220 case ADDR_DIFF_VEC:
2221 /* Each of the labels in the parallel or address vector must be
2222 at their initial offsets. We want the first field for PARALLEL
2223 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2225 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2226 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2227 insn, initial_p);
2228 return;
2230 case SET:
2231 /* We only care about setting PC. If the source is not RETURN,
2232 IF_THEN_ELSE, or a label, disable any eliminations not at
2233 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2234 isn't one of those possibilities. For branches to a label,
2235 call ourselves recursively.
2237 Note that this can disable elimination unnecessarily when we have
2238 a non-local goto since it will look like a non-constant jump to
2239 someplace in the current function. This isn't a significant
2240 problem since such jumps will normally be when all elimination
2241 pairs are back to their initial offsets. */
2243 if (SET_DEST (x) != pc_rtx)
2244 return;
2246 switch (GET_CODE (SET_SRC (x)))
2248 case PC:
2249 case RETURN:
2250 return;
2252 case LABEL_REF:
2253 set_label_offsets (SET_SRC (x), insn, initial_p);
2254 return;
2256 case IF_THEN_ELSE:
2257 tem = XEXP (SET_SRC (x), 1);
2258 if (GET_CODE (tem) == LABEL_REF)
2259 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2260 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2261 break;
2263 tem = XEXP (SET_SRC (x), 2);
2264 if (GET_CODE (tem) == LABEL_REF)
2265 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2266 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2267 break;
2268 return;
2270 default:
2271 break;
2274 /* If we reach here, all eliminations must be at their initial
2275 offset because we are doing a jump to a variable address. */
2276 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2277 if (p->offset != p->initial_offset)
2278 p->can_eliminate = 0;
2279 break;
2281 default:
2282 break;
2286 /* Scan X and replace any eliminable registers (such as fp) with a
2287 replacement (such as sp), plus an offset.
2289 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2290 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2291 MEM, we are allowed to replace a sum of a register and the constant zero
2292 with the register, which we cannot do outside a MEM. In addition, we need
2293 to record the fact that a register is referenced outside a MEM.
2295 If INSN is an insn, it is the insn containing X. If we replace a REG
2296 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2297 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2298 the REG is being modified.
2300 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2301 That's used when we eliminate in expressions stored in notes.
2302 This means, do not set ref_outside_mem even if the reference
2303 is outside of MEMs.
2305 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2306 replacements done assuming all offsets are at their initial values. If
2307 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2308 encounter, return the actual location so that find_reloads will do
2309 the proper thing. */
2311 static rtx
2312 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2313 bool may_use_invariant)
2315 enum rtx_code code = GET_CODE (x);
2316 struct elim_table *ep;
2317 int regno;
2318 rtx new;
2319 int i, j;
2320 const char *fmt;
2321 int copied = 0;
2323 if (! current_function_decl)
2324 return x;
2326 switch (code)
2328 case CONST_INT:
2329 case CONST_DOUBLE:
2330 case CONST_VECTOR:
2331 case CONST:
2332 case SYMBOL_REF:
2333 case CODE_LABEL:
2334 case PC:
2335 case CC0:
2336 case ASM_INPUT:
2337 case ADDR_VEC:
2338 case ADDR_DIFF_VEC:
2339 case RETURN:
2340 return x;
2342 case REG:
2343 regno = REGNO (x);
2345 /* First handle the case where we encounter a bare register that
2346 is eliminable. Replace it with a PLUS. */
2347 if (regno < FIRST_PSEUDO_REGISTER)
2349 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2350 ep++)
2351 if (ep->from_rtx == x && ep->can_eliminate)
2352 return plus_constant (ep->to_rtx, ep->previous_offset);
2355 else if (reg_renumber && reg_renumber[regno] < 0
2356 && reg_equiv_invariant && reg_equiv_invariant[regno])
2358 if (may_use_invariant)
2359 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2360 mem_mode, insn, true);
2361 /* There exists at least one use of REGNO that cannot be
2362 eliminated. Prevent the defining insn from being deleted. */
2363 reg_equiv_init[regno] = NULL_RTX;
2364 alter_reg (regno, -1);
2366 return x;
2368 /* You might think handling MINUS in a manner similar to PLUS is a
2369 good idea. It is not. It has been tried multiple times and every
2370 time the change has had to have been reverted.
2372 Other parts of reload know a PLUS is special (gen_reload for example)
2373 and require special code to handle code a reloaded PLUS operand.
2375 Also consider backends where the flags register is clobbered by a
2376 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2377 lea instruction comes to mind). If we try to reload a MINUS, we
2378 may kill the flags register that was holding a useful value.
2380 So, please before trying to handle MINUS, consider reload as a
2381 whole instead of this little section as well as the backend issues. */
2382 case PLUS:
2383 /* If this is the sum of an eliminable register and a constant, rework
2384 the sum. */
2385 if (REG_P (XEXP (x, 0))
2386 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2387 && CONSTANT_P (XEXP (x, 1)))
2389 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2390 ep++)
2391 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2393 /* The only time we want to replace a PLUS with a REG (this
2394 occurs when the constant operand of the PLUS is the negative
2395 of the offset) is when we are inside a MEM. We won't want
2396 to do so at other times because that would change the
2397 structure of the insn in a way that reload can't handle.
2398 We special-case the commonest situation in
2399 eliminate_regs_in_insn, so just replace a PLUS with a
2400 PLUS here, unless inside a MEM. */
2401 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2402 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2403 return ep->to_rtx;
2404 else
2405 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2406 plus_constant (XEXP (x, 1),
2407 ep->previous_offset));
2410 /* If the register is not eliminable, we are done since the other
2411 operand is a constant. */
2412 return x;
2415 /* If this is part of an address, we want to bring any constant to the
2416 outermost PLUS. We will do this by doing register replacement in
2417 our operands and seeing if a constant shows up in one of them.
2419 Note that there is no risk of modifying the structure of the insn,
2420 since we only get called for its operands, thus we are either
2421 modifying the address inside a MEM, or something like an address
2422 operand of a load-address insn. */
2425 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2426 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2428 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2430 /* If one side is a PLUS and the other side is a pseudo that
2431 didn't get a hard register but has a reg_equiv_constant,
2432 we must replace the constant here since it may no longer
2433 be in the position of any operand. */
2434 if (GET_CODE (new0) == PLUS && REG_P (new1)
2435 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2436 && reg_renumber[REGNO (new1)] < 0
2437 && reg_equiv_constant != 0
2438 && reg_equiv_constant[REGNO (new1)] != 0)
2439 new1 = reg_equiv_constant[REGNO (new1)];
2440 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2441 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2442 && reg_renumber[REGNO (new0)] < 0
2443 && reg_equiv_constant[REGNO (new0)] != 0)
2444 new0 = reg_equiv_constant[REGNO (new0)];
2446 new = form_sum (new0, new1);
2448 /* As above, if we are not inside a MEM we do not want to
2449 turn a PLUS into something else. We might try to do so here
2450 for an addition of 0 if we aren't optimizing. */
2451 if (! mem_mode && GET_CODE (new) != PLUS)
2452 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2453 else
2454 return new;
2457 return x;
2459 case MULT:
2460 /* If this is the product of an eliminable register and a
2461 constant, apply the distribute law and move the constant out
2462 so that we have (plus (mult ..) ..). This is needed in order
2463 to keep load-address insns valid. This case is pathological.
2464 We ignore the possibility of overflow here. */
2465 if (REG_P (XEXP (x, 0))
2466 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2467 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2468 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2469 ep++)
2470 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2472 if (! mem_mode
2473 /* Refs inside notes don't count for this purpose. */
2474 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2475 || GET_CODE (insn) == INSN_LIST)))
2476 ep->ref_outside_mem = 1;
2478 return
2479 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2480 ep->previous_offset * INTVAL (XEXP (x, 1)));
2483 /* ... fall through ... */
2485 case CALL:
2486 case COMPARE:
2487 /* See comments before PLUS about handling MINUS. */
2488 case MINUS:
2489 case DIV: case UDIV:
2490 case MOD: case UMOD:
2491 case AND: case IOR: case XOR:
2492 case ROTATERT: case ROTATE:
2493 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2494 case NE: case EQ:
2495 case GE: case GT: case GEU: case GTU:
2496 case LE: case LT: case LEU: case LTU:
2498 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2499 rtx new1 = XEXP (x, 1)
2500 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2502 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2503 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2505 return x;
2507 case EXPR_LIST:
2508 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2509 if (XEXP (x, 0))
2511 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2512 if (new != XEXP (x, 0))
2514 /* If this is a REG_DEAD note, it is not valid anymore.
2515 Using the eliminated version could result in creating a
2516 REG_DEAD note for the stack or frame pointer. */
2517 if (GET_MODE (x) == REG_DEAD)
2518 return (XEXP (x, 1)
2519 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2520 : NULL_RTX);
2522 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2526 /* ... fall through ... */
2528 case INSN_LIST:
2529 /* Now do eliminations in the rest of the chain. If this was
2530 an EXPR_LIST, this might result in allocating more memory than is
2531 strictly needed, but it simplifies the code. */
2532 if (XEXP (x, 1))
2534 new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2535 if (new != XEXP (x, 1))
2536 return
2537 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2539 return x;
2541 case PRE_INC:
2542 case POST_INC:
2543 case PRE_DEC:
2544 case POST_DEC:
2545 case STRICT_LOW_PART:
2546 case NEG: case NOT:
2547 case SIGN_EXTEND: case ZERO_EXTEND:
2548 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2549 case FLOAT: case FIX:
2550 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2551 case ABS:
2552 case SQRT:
2553 case FFS:
2554 case CLZ:
2555 case CTZ:
2556 case POPCOUNT:
2557 case PARITY:
2558 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2559 if (new != XEXP (x, 0))
2560 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2561 return x;
2563 case SUBREG:
2564 /* Similar to above processing, but preserve SUBREG_BYTE.
2565 Convert (subreg (mem)) to (mem) if not paradoxical.
2566 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2567 pseudo didn't get a hard reg, we must replace this with the
2568 eliminated version of the memory location because push_reload
2569 may do the replacement in certain circumstances. */
2570 if (REG_P (SUBREG_REG (x))
2571 && (GET_MODE_SIZE (GET_MODE (x))
2572 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2573 && reg_equiv_memory_loc != 0
2574 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2576 new = SUBREG_REG (x);
2578 else
2579 new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2581 if (new != SUBREG_REG (x))
2583 int x_size = GET_MODE_SIZE (GET_MODE (x));
2584 int new_size = GET_MODE_SIZE (GET_MODE (new));
2586 if (MEM_P (new)
2587 && ((x_size < new_size
2588 #ifdef WORD_REGISTER_OPERATIONS
2589 /* On these machines, combine can create rtl of the form
2590 (set (subreg:m1 (reg:m2 R) 0) ...)
2591 where m1 < m2, and expects something interesting to
2592 happen to the entire word. Moreover, it will use the
2593 (reg:m2 R) later, expecting all bits to be preserved.
2594 So if the number of words is the same, preserve the
2595 subreg so that push_reload can see it. */
2596 && ! ((x_size - 1) / UNITS_PER_WORD
2597 == (new_size -1 ) / UNITS_PER_WORD)
2598 #endif
2600 || x_size == new_size)
2602 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2603 else
2604 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2607 return x;
2609 case MEM:
2610 /* Our only special processing is to pass the mode of the MEM to our
2611 recursive call and copy the flags. While we are here, handle this
2612 case more efficiently. */
2613 return
2614 replace_equiv_address_nv (x,
2615 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2616 insn, true));
2618 case USE:
2619 /* Handle insn_list USE that a call to a pure function may generate. */
2620 new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2621 if (new != XEXP (x, 0))
2622 return gen_rtx_USE (GET_MODE (x), new);
2623 return x;
2625 case CLOBBER:
2626 case ASM_OPERANDS:
2627 case SET:
2628 gcc_unreachable ();
2630 default:
2631 break;
2634 /* Process each of our operands recursively. If any have changed, make a
2635 copy of the rtx. */
2636 fmt = GET_RTX_FORMAT (code);
2637 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2639 if (*fmt == 'e')
2641 new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2642 if (new != XEXP (x, i) && ! copied)
2644 x = shallow_copy_rtx (x);
2645 copied = 1;
2647 XEXP (x, i) = new;
2649 else if (*fmt == 'E')
2651 int copied_vec = 0;
2652 for (j = 0; j < XVECLEN (x, i); j++)
2654 new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2655 if (new != XVECEXP (x, i, j) && ! copied_vec)
2657 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2658 XVEC (x, i)->elem);
2659 if (! copied)
2661 x = shallow_copy_rtx (x);
2662 copied = 1;
2664 XVEC (x, i) = new_v;
2665 copied_vec = 1;
2667 XVECEXP (x, i, j) = new;
2672 return x;
2676 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2678 return eliminate_regs_1 (x, mem_mode, insn, false);
2681 /* Scan rtx X for modifications of elimination target registers. Update
2682 the table of eliminables to reflect the changed state. MEM_MODE is
2683 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2685 static void
2686 elimination_effects (rtx x, enum machine_mode mem_mode)
2688 enum rtx_code code = GET_CODE (x);
2689 struct elim_table *ep;
2690 int regno;
2691 int i, j;
2692 const char *fmt;
2694 switch (code)
2696 case CONST_INT:
2697 case CONST_DOUBLE:
2698 case CONST_VECTOR:
2699 case CONST:
2700 case SYMBOL_REF:
2701 case CODE_LABEL:
2702 case PC:
2703 case CC0:
2704 case ASM_INPUT:
2705 case ADDR_VEC:
2706 case ADDR_DIFF_VEC:
2707 case RETURN:
2708 return;
2710 case REG:
2711 regno = REGNO (x);
2713 /* First handle the case where we encounter a bare register that
2714 is eliminable. Replace it with a PLUS. */
2715 if (regno < FIRST_PSEUDO_REGISTER)
2717 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2718 ep++)
2719 if (ep->from_rtx == x && ep->can_eliminate)
2721 if (! mem_mode)
2722 ep->ref_outside_mem = 1;
2723 return;
2727 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2728 && reg_equiv_constant[regno]
2729 && ! function_invariant_p (reg_equiv_constant[regno]))
2730 elimination_effects (reg_equiv_constant[regno], mem_mode);
2731 return;
2733 case PRE_INC:
2734 case POST_INC:
2735 case PRE_DEC:
2736 case POST_DEC:
2737 case POST_MODIFY:
2738 case PRE_MODIFY:
2739 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2740 if (ep->to_rtx == XEXP (x, 0))
2742 int size = GET_MODE_SIZE (mem_mode);
2744 /* If more bytes than MEM_MODE are pushed, account for them. */
2745 #ifdef PUSH_ROUNDING
2746 if (ep->to_rtx == stack_pointer_rtx)
2747 size = PUSH_ROUNDING (size);
2748 #endif
2749 if (code == PRE_DEC || code == POST_DEC)
2750 ep->offset += size;
2751 else if (code == PRE_INC || code == POST_INC)
2752 ep->offset -= size;
2753 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2754 && GET_CODE (XEXP (x, 1)) == PLUS
2755 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2756 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2757 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2760 /* These two aren't unary operators. */
2761 if (code == POST_MODIFY || code == PRE_MODIFY)
2762 break;
2764 /* Fall through to generic unary operation case. */
2765 case STRICT_LOW_PART:
2766 case NEG: case NOT:
2767 case SIGN_EXTEND: case ZERO_EXTEND:
2768 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2769 case FLOAT: case FIX:
2770 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2771 case ABS:
2772 case SQRT:
2773 case FFS:
2774 case CLZ:
2775 case CTZ:
2776 case POPCOUNT:
2777 case PARITY:
2778 elimination_effects (XEXP (x, 0), mem_mode);
2779 return;
2781 case SUBREG:
2782 if (REG_P (SUBREG_REG (x))
2783 && (GET_MODE_SIZE (GET_MODE (x))
2784 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2785 && reg_equiv_memory_loc != 0
2786 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2787 return;
2789 elimination_effects (SUBREG_REG (x), mem_mode);
2790 return;
2792 case USE:
2793 /* If using a register that is the source of an eliminate we still
2794 think can be performed, note it cannot be performed since we don't
2795 know how this register is used. */
2796 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2797 if (ep->from_rtx == XEXP (x, 0))
2798 ep->can_eliminate = 0;
2800 elimination_effects (XEXP (x, 0), mem_mode);
2801 return;
2803 case CLOBBER:
2804 /* If clobbering a register that is the replacement register for an
2805 elimination we still think can be performed, note that it cannot
2806 be performed. Otherwise, we need not be concerned about it. */
2807 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2808 if (ep->to_rtx == XEXP (x, 0))
2809 ep->can_eliminate = 0;
2811 elimination_effects (XEXP (x, 0), mem_mode);
2812 return;
2814 case SET:
2815 /* Check for setting a register that we know about. */
2816 if (REG_P (SET_DEST (x)))
2818 /* See if this is setting the replacement register for an
2819 elimination.
2821 If DEST is the hard frame pointer, we do nothing because we
2822 assume that all assignments to the frame pointer are for
2823 non-local gotos and are being done at a time when they are valid
2824 and do not disturb anything else. Some machines want to
2825 eliminate a fake argument pointer (or even a fake frame pointer)
2826 with either the real frame or the stack pointer. Assignments to
2827 the hard frame pointer must not prevent this elimination. */
2829 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2830 ep++)
2831 if (ep->to_rtx == SET_DEST (x)
2832 && SET_DEST (x) != hard_frame_pointer_rtx)
2834 /* If it is being incremented, adjust the offset. Otherwise,
2835 this elimination can't be done. */
2836 rtx src = SET_SRC (x);
2838 if (GET_CODE (src) == PLUS
2839 && XEXP (src, 0) == SET_DEST (x)
2840 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2841 ep->offset -= INTVAL (XEXP (src, 1));
2842 else
2843 ep->can_eliminate = 0;
2847 elimination_effects (SET_DEST (x), 0);
2848 elimination_effects (SET_SRC (x), 0);
2849 return;
2851 case MEM:
2852 /* Our only special processing is to pass the mode of the MEM to our
2853 recursive call. */
2854 elimination_effects (XEXP (x, 0), GET_MODE (x));
2855 return;
2857 default:
2858 break;
2861 fmt = GET_RTX_FORMAT (code);
2862 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2864 if (*fmt == 'e')
2865 elimination_effects (XEXP (x, i), mem_mode);
2866 else if (*fmt == 'E')
2867 for (j = 0; j < XVECLEN (x, i); j++)
2868 elimination_effects (XVECEXP (x, i, j), mem_mode);
2872 /* Descend through rtx X and verify that no references to eliminable registers
2873 remain. If any do remain, mark the involved register as not
2874 eliminable. */
2876 static void
2877 check_eliminable_occurrences (rtx x)
2879 const char *fmt;
2880 int i;
2881 enum rtx_code code;
2883 if (x == 0)
2884 return;
2886 code = GET_CODE (x);
2888 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2890 struct elim_table *ep;
2892 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2893 if (ep->from_rtx == x)
2894 ep->can_eliminate = 0;
2895 return;
2898 fmt = GET_RTX_FORMAT (code);
2899 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2901 if (*fmt == 'e')
2902 check_eliminable_occurrences (XEXP (x, i));
2903 else if (*fmt == 'E')
2905 int j;
2906 for (j = 0; j < XVECLEN (x, i); j++)
2907 check_eliminable_occurrences (XVECEXP (x, i, j));
2912 /* Scan INSN and eliminate all eliminable registers in it.
2914 If REPLACE is nonzero, do the replacement destructively. Also
2915 delete the insn as dead it if it is setting an eliminable register.
2917 If REPLACE is zero, do all our allocations in reload_obstack.
2919 If no eliminations were done and this insn doesn't require any elimination
2920 processing (these are not identical conditions: it might be updating sp,
2921 but not referencing fp; this needs to be seen during reload_as_needed so
2922 that the offset between fp and sp can be taken into consideration), zero
2923 is returned. Otherwise, 1 is returned. */
2925 static int
2926 eliminate_regs_in_insn (rtx insn, int replace)
2928 int icode = recog_memoized (insn);
2929 rtx old_body = PATTERN (insn);
2930 int insn_is_asm = asm_noperands (old_body) >= 0;
2931 rtx old_set = single_set (insn);
2932 rtx new_body;
2933 int val = 0;
2934 int i;
2935 rtx substed_operand[MAX_RECOG_OPERANDS];
2936 rtx orig_operand[MAX_RECOG_OPERANDS];
2937 struct elim_table *ep;
2938 rtx plus_src, plus_cst_src;
2940 if (! insn_is_asm && icode < 0)
2942 gcc_assert (GET_CODE (PATTERN (insn)) == USE
2943 || GET_CODE (PATTERN (insn)) == CLOBBER
2944 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2945 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2946 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2947 return 0;
2950 if (old_set != 0 && REG_P (SET_DEST (old_set))
2951 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2953 /* Check for setting an eliminable register. */
2954 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2955 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2957 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2958 /* If this is setting the frame pointer register to the
2959 hardware frame pointer register and this is an elimination
2960 that will be done (tested above), this insn is really
2961 adjusting the frame pointer downward to compensate for
2962 the adjustment done before a nonlocal goto. */
2963 if (ep->from == FRAME_POINTER_REGNUM
2964 && ep->to == HARD_FRAME_POINTER_REGNUM)
2966 rtx base = SET_SRC (old_set);
2967 rtx base_insn = insn;
2968 HOST_WIDE_INT offset = 0;
2970 while (base != ep->to_rtx)
2972 rtx prev_insn, prev_set;
2974 if (GET_CODE (base) == PLUS
2975 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2977 offset += INTVAL (XEXP (base, 1));
2978 base = XEXP (base, 0);
2980 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2981 && (prev_set = single_set (prev_insn)) != 0
2982 && rtx_equal_p (SET_DEST (prev_set), base))
2984 base = SET_SRC (prev_set);
2985 base_insn = prev_insn;
2987 else
2988 break;
2991 if (base == ep->to_rtx)
2993 rtx src
2994 = plus_constant (ep->to_rtx, offset - ep->offset);
2996 new_body = old_body;
2997 if (! replace)
2999 new_body = copy_insn (old_body);
3000 if (REG_NOTES (insn))
3001 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3003 PATTERN (insn) = new_body;
3004 old_set = single_set (insn);
3006 /* First see if this insn remains valid when we
3007 make the change. If not, keep the INSN_CODE
3008 the same and let reload fit it up. */
3009 validate_change (insn, &SET_SRC (old_set), src, 1);
3010 validate_change (insn, &SET_DEST (old_set),
3011 ep->to_rtx, 1);
3012 if (! apply_change_group ())
3014 SET_SRC (old_set) = src;
3015 SET_DEST (old_set) = ep->to_rtx;
3018 val = 1;
3019 goto done;
3022 #endif
3024 /* In this case this insn isn't serving a useful purpose. We
3025 will delete it in reload_as_needed once we know that this
3026 elimination is, in fact, being done.
3028 If REPLACE isn't set, we can't delete this insn, but needn't
3029 process it since it won't be used unless something changes. */
3030 if (replace)
3032 delete_dead_insn (insn);
3033 return 1;
3035 val = 1;
3036 goto done;
3040 /* We allow one special case which happens to work on all machines we
3041 currently support: a single set with the source or a REG_EQUAL
3042 note being a PLUS of an eliminable register and a constant. */
3043 plus_src = plus_cst_src = 0;
3044 if (old_set && REG_P (SET_DEST (old_set)))
3046 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3047 plus_src = SET_SRC (old_set);
3048 /* First see if the source is of the form (plus (...) CST). */
3049 if (plus_src
3050 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3051 plus_cst_src = plus_src;
3052 else if (REG_P (SET_SRC (old_set))
3053 || plus_src)
3055 /* Otherwise, see if we have a REG_EQUAL note of the form
3056 (plus (...) CST). */
3057 rtx links;
3058 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3060 if (REG_NOTE_KIND (links) == REG_EQUAL
3061 && GET_CODE (XEXP (links, 0)) == PLUS
3062 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3064 plus_cst_src = XEXP (links, 0);
3065 break;
3070 /* Check that the first operand of the PLUS is a hard reg or
3071 the lowpart subreg of one. */
3072 if (plus_cst_src)
3074 rtx reg = XEXP (plus_cst_src, 0);
3075 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3076 reg = SUBREG_REG (reg);
3078 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3079 plus_cst_src = 0;
3082 if (plus_cst_src)
3084 rtx reg = XEXP (plus_cst_src, 0);
3085 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3087 if (GET_CODE (reg) == SUBREG)
3088 reg = SUBREG_REG (reg);
3090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3091 if (ep->from_rtx == reg && ep->can_eliminate)
3093 rtx to_rtx = ep->to_rtx;
3094 offset += ep->offset;
3095 offset = trunc_int_for_mode (offset, GET_MODE (reg));
3097 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3098 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3099 to_rtx);
3100 /* If we have a nonzero offset, and the source is already
3101 a simple REG, the following transformation would
3102 increase the cost of the insn by replacing a simple REG
3103 with (plus (reg sp) CST). So try only when we already
3104 had a PLUS before. */
3105 if (offset == 0 || plus_src)
3107 rtx new_src = plus_constant (to_rtx, offset);
3109 new_body = old_body;
3110 if (! replace)
3112 new_body = copy_insn (old_body);
3113 if (REG_NOTES (insn))
3114 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3116 PATTERN (insn) = new_body;
3117 old_set = single_set (insn);
3119 /* First see if this insn remains valid when we make the
3120 change. If not, try to replace the whole pattern with
3121 a simple set (this may help if the original insn was a
3122 PARALLEL that was only recognized as single_set due to
3123 REG_UNUSED notes). If this isn't valid either, keep
3124 the INSN_CODE the same and let reload fix it up. */
3125 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3127 rtx new_pat = gen_rtx_SET (VOIDmode,
3128 SET_DEST (old_set), new_src);
3130 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3131 SET_SRC (old_set) = new_src;
3134 else
3135 break;
3137 val = 1;
3138 /* This can't have an effect on elimination offsets, so skip right
3139 to the end. */
3140 goto done;
3144 /* Determine the effects of this insn on elimination offsets. */
3145 elimination_effects (old_body, 0);
3147 /* Eliminate all eliminable registers occurring in operands that
3148 can be handled by reload. */
3149 extract_insn (insn);
3150 for (i = 0; i < recog_data.n_operands; i++)
3152 orig_operand[i] = recog_data.operand[i];
3153 substed_operand[i] = recog_data.operand[i];
3155 /* For an asm statement, every operand is eliminable. */
3156 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3158 bool is_set_src, in_plus;
3160 /* Check for setting a register that we know about. */
3161 if (recog_data.operand_type[i] != OP_IN
3162 && REG_P (orig_operand[i]))
3164 /* If we are assigning to a register that can be eliminated, it
3165 must be as part of a PARALLEL, since the code above handles
3166 single SETs. We must indicate that we can no longer
3167 eliminate this reg. */
3168 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3169 ep++)
3170 if (ep->from_rtx == orig_operand[i])
3171 ep->can_eliminate = 0;
3174 /* Companion to the above plus substitution, we can allow
3175 invariants as the source of a plain move. */
3176 is_set_src = false;
3177 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3178 is_set_src = true;
3179 in_plus = false;
3180 if (plus_src
3181 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3182 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3183 in_plus = true;
3185 substed_operand[i]
3186 = eliminate_regs_1 (recog_data.operand[i], 0,
3187 replace ? insn : NULL_RTX,
3188 is_set_src || in_plus);
3189 if (substed_operand[i] != orig_operand[i])
3190 val = 1;
3191 /* Terminate the search in check_eliminable_occurrences at
3192 this point. */
3193 *recog_data.operand_loc[i] = 0;
3195 /* If an output operand changed from a REG to a MEM and INSN is an
3196 insn, write a CLOBBER insn. */
3197 if (recog_data.operand_type[i] != OP_IN
3198 && REG_P (orig_operand[i])
3199 && MEM_P (substed_operand[i])
3200 && replace)
3201 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3202 insn);
3206 for (i = 0; i < recog_data.n_dups; i++)
3207 *recog_data.dup_loc[i]
3208 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3210 /* If any eliminable remain, they aren't eliminable anymore. */
3211 check_eliminable_occurrences (old_body);
3213 /* Substitute the operands; the new values are in the substed_operand
3214 array. */
3215 for (i = 0; i < recog_data.n_operands; i++)
3216 *recog_data.operand_loc[i] = substed_operand[i];
3217 for (i = 0; i < recog_data.n_dups; i++)
3218 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3220 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3221 re-recognize the insn. We do this in case we had a simple addition
3222 but now can do this as a load-address. This saves an insn in this
3223 common case.
3224 If re-recognition fails, the old insn code number will still be used,
3225 and some register operands may have changed into PLUS expressions.
3226 These will be handled by find_reloads by loading them into a register
3227 again. */
3229 if (val)
3231 /* If we aren't replacing things permanently and we changed something,
3232 make another copy to ensure that all the RTL is new. Otherwise
3233 things can go wrong if find_reload swaps commutative operands
3234 and one is inside RTL that has been copied while the other is not. */
3235 new_body = old_body;
3236 if (! replace)
3238 new_body = copy_insn (old_body);
3239 if (REG_NOTES (insn))
3240 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3242 PATTERN (insn) = new_body;
3244 /* If we had a move insn but now we don't, rerecognize it. This will
3245 cause spurious re-recognition if the old move had a PARALLEL since
3246 the new one still will, but we can't call single_set without
3247 having put NEW_BODY into the insn and the re-recognition won't
3248 hurt in this rare case. */
3249 /* ??? Why this huge if statement - why don't we just rerecognize the
3250 thing always? */
3251 if (! insn_is_asm
3252 && old_set != 0
3253 && ((REG_P (SET_SRC (old_set))
3254 && (GET_CODE (new_body) != SET
3255 || !REG_P (SET_SRC (new_body))))
3256 /* If this was a load from or store to memory, compare
3257 the MEM in recog_data.operand to the one in the insn.
3258 If they are not equal, then rerecognize the insn. */
3259 || (old_set != 0
3260 && ((MEM_P (SET_SRC (old_set))
3261 && SET_SRC (old_set) != recog_data.operand[1])
3262 || (MEM_P (SET_DEST (old_set))
3263 && SET_DEST (old_set) != recog_data.operand[0])))
3264 /* If this was an add insn before, rerecognize. */
3265 || GET_CODE (SET_SRC (old_set)) == PLUS))
3267 int new_icode = recog (PATTERN (insn), insn, 0);
3268 if (new_icode >= 0)
3269 INSN_CODE (insn) = new_icode;
3273 /* Restore the old body. If there were any changes to it, we made a copy
3274 of it while the changes were still in place, so we'll correctly return
3275 a modified insn below. */
3276 if (! replace)
3278 /* Restore the old body. */
3279 for (i = 0; i < recog_data.n_operands; i++)
3280 *recog_data.operand_loc[i] = orig_operand[i];
3281 for (i = 0; i < recog_data.n_dups; i++)
3282 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3285 /* Update all elimination pairs to reflect the status after the current
3286 insn. The changes we make were determined by the earlier call to
3287 elimination_effects.
3289 We also detect cases where register elimination cannot be done,
3290 namely, if a register would be both changed and referenced outside a MEM
3291 in the resulting insn since such an insn is often undefined and, even if
3292 not, we cannot know what meaning will be given to it. Note that it is
3293 valid to have a register used in an address in an insn that changes it
3294 (presumably with a pre- or post-increment or decrement).
3296 If anything changes, return nonzero. */
3298 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3300 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3301 ep->can_eliminate = 0;
3303 ep->ref_outside_mem = 0;
3305 if (ep->previous_offset != ep->offset)
3306 val = 1;
3309 done:
3310 /* If we changed something, perform elimination in REG_NOTES. This is
3311 needed even when REPLACE is zero because a REG_DEAD note might refer
3312 to a register that we eliminate and could cause a different number
3313 of spill registers to be needed in the final reload pass than in
3314 the pre-passes. */
3315 if (val && REG_NOTES (insn) != 0)
3316 REG_NOTES (insn)
3317 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3319 return val;
3322 /* Loop through all elimination pairs.
3323 Recalculate the number not at initial offset.
3325 Compute the maximum offset (minimum offset if the stack does not
3326 grow downward) for each elimination pair. */
3328 static void
3329 update_eliminable_offsets (void)
3331 struct elim_table *ep;
3333 num_not_at_initial_offset = 0;
3334 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3336 ep->previous_offset = ep->offset;
3337 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3338 num_not_at_initial_offset++;
3342 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3343 replacement we currently believe is valid, mark it as not eliminable if X
3344 modifies DEST in any way other than by adding a constant integer to it.
3346 If DEST is the frame pointer, we do nothing because we assume that
3347 all assignments to the hard frame pointer are nonlocal gotos and are being
3348 done at a time when they are valid and do not disturb anything else.
3349 Some machines want to eliminate a fake argument pointer with either the
3350 frame or stack pointer. Assignments to the hard frame pointer must not
3351 prevent this elimination.
3353 Called via note_stores from reload before starting its passes to scan
3354 the insns of the function. */
3356 static void
3357 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3359 unsigned int i;
3361 /* A SUBREG of a hard register here is just changing its mode. We should
3362 not see a SUBREG of an eliminable hard register, but check just in
3363 case. */
3364 if (GET_CODE (dest) == SUBREG)
3365 dest = SUBREG_REG (dest);
3367 if (dest == hard_frame_pointer_rtx)
3368 return;
3370 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3371 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3372 && (GET_CODE (x) != SET
3373 || GET_CODE (SET_SRC (x)) != PLUS
3374 || XEXP (SET_SRC (x), 0) != dest
3375 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3377 reg_eliminate[i].can_eliminate_previous
3378 = reg_eliminate[i].can_eliminate = 0;
3379 num_eliminable--;
3383 /* Verify that the initial elimination offsets did not change since the
3384 last call to set_initial_elim_offsets. This is used to catch cases
3385 where something illegal happened during reload_as_needed that could
3386 cause incorrect code to be generated if we did not check for it. */
3388 static bool
3389 verify_initial_elim_offsets (void)
3391 HOST_WIDE_INT t;
3393 if (!num_eliminable)
3394 return true;
3396 #ifdef ELIMINABLE_REGS
3398 struct elim_table *ep;
3400 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3402 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3403 if (t != ep->initial_offset)
3404 return false;
3407 #else
3408 INITIAL_FRAME_POINTER_OFFSET (t);
3409 if (t != reg_eliminate[0].initial_offset)
3410 return false;
3411 #endif
3413 return true;
3416 /* Reset all offsets on eliminable registers to their initial values. */
3418 static void
3419 set_initial_elim_offsets (void)
3421 struct elim_table *ep = reg_eliminate;
3423 #ifdef ELIMINABLE_REGS
3424 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3426 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3427 ep->previous_offset = ep->offset = ep->initial_offset;
3429 #else
3430 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3431 ep->previous_offset = ep->offset = ep->initial_offset;
3432 #endif
3434 num_not_at_initial_offset = 0;
3437 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3439 static void
3440 set_initial_eh_label_offset (rtx label)
3442 set_label_offsets (label, NULL_RTX, 1);
3445 /* Initialize the known label offsets.
3446 Set a known offset for each forced label to be at the initial offset
3447 of each elimination. We do this because we assume that all
3448 computed jumps occur from a location where each elimination is
3449 at its initial offset.
3450 For all other labels, show that we don't know the offsets. */
3452 static void
3453 set_initial_label_offsets (void)
3455 rtx x;
3456 memset (offsets_known_at, 0, num_labels);
3458 for (x = forced_labels; x; x = XEXP (x, 1))
3459 if (XEXP (x, 0))
3460 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3462 for_each_eh_label (set_initial_eh_label_offset);
3465 /* Set all elimination offsets to the known values for the code label given
3466 by INSN. */
3468 static void
3469 set_offsets_for_label (rtx insn)
3471 unsigned int i;
3472 int label_nr = CODE_LABEL_NUMBER (insn);
3473 struct elim_table *ep;
3475 num_not_at_initial_offset = 0;
3476 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3478 ep->offset = ep->previous_offset
3479 = offsets_at[label_nr - first_label_num][i];
3480 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3481 num_not_at_initial_offset++;
3485 /* See if anything that happened changes which eliminations are valid.
3486 For example, on the SPARC, whether or not the frame pointer can
3487 be eliminated can depend on what registers have been used. We need
3488 not check some conditions again (such as flag_omit_frame_pointer)
3489 since they can't have changed. */
3491 static void
3492 update_eliminables (HARD_REG_SET *pset)
3494 int previous_frame_pointer_needed = frame_pointer_needed;
3495 struct elim_table *ep;
3497 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3498 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3499 #ifdef ELIMINABLE_REGS
3500 || ! CAN_ELIMINATE (ep->from, ep->to)
3501 #endif
3503 ep->can_eliminate = 0;
3505 /* Look for the case where we have discovered that we can't replace
3506 register A with register B and that means that we will now be
3507 trying to replace register A with register C. This means we can
3508 no longer replace register C with register B and we need to disable
3509 such an elimination, if it exists. This occurs often with A == ap,
3510 B == sp, and C == fp. */
3512 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3514 struct elim_table *op;
3515 int new_to = -1;
3517 if (! ep->can_eliminate && ep->can_eliminate_previous)
3519 /* Find the current elimination for ep->from, if there is a
3520 new one. */
3521 for (op = reg_eliminate;
3522 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3523 if (op->from == ep->from && op->can_eliminate)
3525 new_to = op->to;
3526 break;
3529 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3530 disable it. */
3531 for (op = reg_eliminate;
3532 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3533 if (op->from == new_to && op->to == ep->to)
3534 op->can_eliminate = 0;
3538 /* See if any registers that we thought we could eliminate the previous
3539 time are no longer eliminable. If so, something has changed and we
3540 must spill the register. Also, recompute the number of eliminable
3541 registers and see if the frame pointer is needed; it is if there is
3542 no elimination of the frame pointer that we can perform. */
3544 frame_pointer_needed = 1;
3545 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3547 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3548 && ep->to != HARD_FRAME_POINTER_REGNUM)
3549 frame_pointer_needed = 0;
3551 if (! ep->can_eliminate && ep->can_eliminate_previous)
3553 ep->can_eliminate_previous = 0;
3554 SET_HARD_REG_BIT (*pset, ep->from);
3555 num_eliminable--;
3559 /* If we didn't need a frame pointer last time, but we do now, spill
3560 the hard frame pointer. */
3561 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3562 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3565 /* Initialize the table of registers to eliminate. */
3567 static void
3568 init_elim_table (void)
3570 struct elim_table *ep;
3571 #ifdef ELIMINABLE_REGS
3572 const struct elim_table_1 *ep1;
3573 #endif
3575 if (!reg_eliminate)
3576 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3578 /* Does this function require a frame pointer? */
3580 frame_pointer_needed = (! flag_omit_frame_pointer
3581 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3582 and restore sp for alloca. So we can't eliminate
3583 the frame pointer in that case. At some point,
3584 we should improve this by emitting the
3585 sp-adjusting insns for this case. */
3586 || (current_function_calls_alloca
3587 && EXIT_IGNORE_STACK)
3588 || current_function_accesses_prior_frames
3589 || FRAME_POINTER_REQUIRED);
3591 num_eliminable = 0;
3593 #ifdef ELIMINABLE_REGS
3594 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3595 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3597 ep->from = ep1->from;
3598 ep->to = ep1->to;
3599 ep->can_eliminate = ep->can_eliminate_previous
3600 = (CAN_ELIMINATE (ep->from, ep->to)
3601 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3603 #else
3604 reg_eliminate[0].from = reg_eliminate_1[0].from;
3605 reg_eliminate[0].to = reg_eliminate_1[0].to;
3606 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3607 = ! frame_pointer_needed;
3608 #endif
3610 /* Count the number of eliminable registers and build the FROM and TO
3611 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3612 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3613 We depend on this. */
3614 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3616 num_eliminable += ep->can_eliminate;
3617 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3618 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3622 /* Kick all pseudos out of hard register REGNO.
3624 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3625 because we found we can't eliminate some register. In the case, no pseudos
3626 are allowed to be in the register, even if they are only in a block that
3627 doesn't require spill registers, unlike the case when we are spilling this
3628 hard reg to produce another spill register.
3630 Return nonzero if any pseudos needed to be kicked out. */
3632 static void
3633 spill_hard_reg (unsigned int regno, int cant_eliminate)
3635 int i;
3637 if (cant_eliminate)
3639 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3640 regs_ever_live[regno] = 1;
3643 /* Spill every pseudo reg that was allocated to this reg
3644 or to something that overlaps this reg. */
3646 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3647 if (reg_renumber[i] >= 0
3648 && (unsigned int) reg_renumber[i] <= regno
3649 && ((unsigned int) reg_renumber[i]
3650 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3651 [PSEUDO_REGNO_MODE (i)]
3652 > regno))
3653 SET_REGNO_REG_SET (&spilled_pseudos, i);
3656 /* After find_reload_regs has been run for all insn that need reloads,
3657 and/or spill_hard_regs was called, this function is used to actually
3658 spill pseudo registers and try to reallocate them. It also sets up the
3659 spill_regs array for use by choose_reload_regs. */
3661 static int
3662 finish_spills (int global)
3664 struct insn_chain *chain;
3665 int something_changed = 0;
3666 unsigned i;
3667 reg_set_iterator rsi;
3669 /* Build the spill_regs array for the function. */
3670 /* If there are some registers still to eliminate and one of the spill regs
3671 wasn't ever used before, additional stack space may have to be
3672 allocated to store this register. Thus, we may have changed the offset
3673 between the stack and frame pointers, so mark that something has changed.
3675 One might think that we need only set VAL to 1 if this is a call-used
3676 register. However, the set of registers that must be saved by the
3677 prologue is not identical to the call-used set. For example, the
3678 register used by the call insn for the return PC is a call-used register,
3679 but must be saved by the prologue. */
3681 n_spills = 0;
3682 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3683 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3685 spill_reg_order[i] = n_spills;
3686 spill_regs[n_spills++] = i;
3687 if (num_eliminable && ! regs_ever_live[i])
3688 something_changed = 1;
3689 regs_ever_live[i] = 1;
3691 else
3692 spill_reg_order[i] = -1;
3694 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3696 /* Record the current hard register the pseudo is allocated to in
3697 pseudo_previous_regs so we avoid reallocating it to the same
3698 hard reg in a later pass. */
3699 gcc_assert (reg_renumber[i] >= 0);
3701 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3702 /* Mark it as no longer having a hard register home. */
3703 reg_renumber[i] = -1;
3704 /* We will need to scan everything again. */
3705 something_changed = 1;
3708 /* Retry global register allocation if possible. */
3709 if (global)
3711 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3712 /* For every insn that needs reloads, set the registers used as spill
3713 regs in pseudo_forbidden_regs for every pseudo live across the
3714 insn. */
3715 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3717 EXECUTE_IF_SET_IN_REG_SET
3718 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3720 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3721 chain->used_spill_regs);
3723 EXECUTE_IF_SET_IN_REG_SET
3724 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3726 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3727 chain->used_spill_regs);
3731 /* Retry allocating the spilled pseudos. For each reg, merge the
3732 various reg sets that indicate which hard regs can't be used,
3733 and call retry_global_alloc.
3734 We change spill_pseudos here to only contain pseudos that did not
3735 get a new hard register. */
3736 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3737 if (reg_old_renumber[i] != reg_renumber[i])
3739 HARD_REG_SET forbidden;
3740 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3741 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3742 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3743 retry_global_alloc (i, forbidden);
3744 if (reg_renumber[i] >= 0)
3745 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3749 /* Fix up the register information in the insn chain.
3750 This involves deleting those of the spilled pseudos which did not get
3751 a new hard register home from the live_{before,after} sets. */
3752 for (chain = reload_insn_chain; chain; chain = chain->next)
3754 HARD_REG_SET used_by_pseudos;
3755 HARD_REG_SET used_by_pseudos2;
3757 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3758 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3760 /* Mark any unallocated hard regs as available for spills. That
3761 makes inheritance work somewhat better. */
3762 if (chain->need_reload)
3764 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3765 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3766 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3768 /* Save the old value for the sanity test below. */
3769 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3771 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3772 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3773 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3774 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3776 /* Make sure we only enlarge the set. */
3777 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3778 gcc_unreachable ();
3779 ok:;
3783 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3784 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3786 int regno = reg_renumber[i];
3787 if (reg_old_renumber[i] == regno)
3788 continue;
3790 alter_reg (i, reg_old_renumber[i]);
3791 reg_old_renumber[i] = regno;
3792 if (dump_file)
3794 if (regno == -1)
3795 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3796 else
3797 fprintf (dump_file, " Register %d now in %d.\n\n",
3798 i, reg_renumber[i]);
3802 return something_changed;
3805 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3807 static void
3808 scan_paradoxical_subregs (rtx x)
3810 int i;
3811 const char *fmt;
3812 enum rtx_code code = GET_CODE (x);
3814 switch (code)
3816 case REG:
3817 case CONST_INT:
3818 case CONST:
3819 case SYMBOL_REF:
3820 case LABEL_REF:
3821 case CONST_DOUBLE:
3822 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3823 case CC0:
3824 case PC:
3825 case USE:
3826 case CLOBBER:
3827 return;
3829 case SUBREG:
3830 if (REG_P (SUBREG_REG (x))
3831 && (GET_MODE_SIZE (GET_MODE (x))
3832 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
3833 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3834 = GET_MODE_SIZE (GET_MODE (x));
3835 return;
3837 default:
3838 break;
3841 fmt = GET_RTX_FORMAT (code);
3842 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3844 if (fmt[i] == 'e')
3845 scan_paradoxical_subregs (XEXP (x, i));
3846 else if (fmt[i] == 'E')
3848 int j;
3849 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3850 scan_paradoxical_subregs (XVECEXP (x, i, j));
3855 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3856 examine all of the reload insns between PREV and NEXT exclusive, and
3857 annotate all that may trap. */
3859 static void
3860 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3862 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3863 unsigned int trap_count;
3864 rtx i;
3866 if (note == NULL)
3867 return;
3869 if (may_trap_p (PATTERN (insn)))
3870 trap_count = 1;
3871 else
3873 remove_note (insn, note);
3874 trap_count = 0;
3877 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
3878 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
3880 trap_count++;
3881 REG_NOTES (i)
3882 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
3886 /* Reload pseudo-registers into hard regs around each insn as needed.
3887 Additional register load insns are output before the insn that needs it
3888 and perhaps store insns after insns that modify the reloaded pseudo reg.
3890 reg_last_reload_reg and reg_reloaded_contents keep track of
3891 which registers are already available in reload registers.
3892 We update these for the reloads that we perform,
3893 as the insns are scanned. */
3895 static void
3896 reload_as_needed (int live_known)
3898 struct insn_chain *chain;
3899 #if defined (AUTO_INC_DEC)
3900 int i;
3901 #endif
3902 rtx x;
3904 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3905 memset (spill_reg_store, 0, sizeof spill_reg_store);
3906 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
3907 INIT_REG_SET (&reg_has_output_reload);
3908 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3909 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3911 set_initial_elim_offsets ();
3913 for (chain = reload_insn_chain; chain; chain = chain->next)
3915 rtx prev = 0;
3916 rtx insn = chain->insn;
3917 rtx old_next = NEXT_INSN (insn);
3919 /* If we pass a label, copy the offsets from the label information
3920 into the current offsets of each elimination. */
3921 if (LABEL_P (insn))
3922 set_offsets_for_label (insn);
3924 else if (INSN_P (insn))
3926 regset_head regs_to_forget;
3927 INIT_REG_SET (&regs_to_forget);
3928 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
3930 /* If this is a USE and CLOBBER of a MEM, ensure that any
3931 references to eliminable registers have been removed. */
3933 if ((GET_CODE (PATTERN (insn)) == USE
3934 || GET_CODE (PATTERN (insn)) == CLOBBER)
3935 && MEM_P (XEXP (PATTERN (insn), 0)))
3936 XEXP (XEXP (PATTERN (insn), 0), 0)
3937 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3938 GET_MODE (XEXP (PATTERN (insn), 0)),
3939 NULL_RTX);
3941 /* If we need to do register elimination processing, do so.
3942 This might delete the insn, in which case we are done. */
3943 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3945 eliminate_regs_in_insn (insn, 1);
3946 if (NOTE_P (insn))
3948 update_eliminable_offsets ();
3949 CLEAR_REG_SET (&regs_to_forget);
3950 continue;
3954 /* If need_elim is nonzero but need_reload is zero, one might think
3955 that we could simply set n_reloads to 0. However, find_reloads
3956 could have done some manipulation of the insn (such as swapping
3957 commutative operands), and these manipulations are lost during
3958 the first pass for every insn that needs register elimination.
3959 So the actions of find_reloads must be redone here. */
3961 if (! chain->need_elim && ! chain->need_reload
3962 && ! chain->need_operand_change)
3963 n_reloads = 0;
3964 /* First find the pseudo regs that must be reloaded for this insn.
3965 This info is returned in the tables reload_... (see reload.h).
3966 Also modify the body of INSN by substituting RELOAD
3967 rtx's for those pseudo regs. */
3968 else
3970 CLEAR_REG_SET (&reg_has_output_reload);
3971 CLEAR_HARD_REG_SET (reg_is_output_reload);
3973 find_reloads (insn, 1, spill_indirect_levels, live_known,
3974 spill_reg_order);
3977 if (n_reloads > 0)
3979 rtx next = NEXT_INSN (insn);
3980 rtx p;
3982 prev = PREV_INSN (insn);
3984 /* Now compute which reload regs to reload them into. Perhaps
3985 reusing reload regs from previous insns, or else output
3986 load insns to reload them. Maybe output store insns too.
3987 Record the choices of reload reg in reload_reg_rtx. */
3988 choose_reload_regs (chain);
3990 /* Merge any reloads that we didn't combine for fear of
3991 increasing the number of spill registers needed but now
3992 discover can be safely merged. */
3993 if (SMALL_REGISTER_CLASSES)
3994 merge_assigned_reloads (insn);
3996 /* Generate the insns to reload operands into or out of
3997 their reload regs. */
3998 emit_reload_insns (chain);
4000 /* Substitute the chosen reload regs from reload_reg_rtx
4001 into the insn's body (or perhaps into the bodies of other
4002 load and store insn that we just made for reloading
4003 and that we moved the structure into). */
4004 subst_reloads (insn);
4006 /* Adjust the exception region notes for loads and stores. */
4007 if (flag_non_call_exceptions && !CALL_P (insn))
4008 fixup_eh_region_note (insn, prev, next);
4010 /* If this was an ASM, make sure that all the reload insns
4011 we have generated are valid. If not, give an error
4012 and delete them. */
4013 if (asm_noperands (PATTERN (insn)) >= 0)
4014 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4015 if (p != insn && INSN_P (p)
4016 && GET_CODE (PATTERN (p)) != USE
4017 && (recog_memoized (p) < 0
4018 || (extract_insn (p), ! constrain_operands (1))))
4020 error_for_asm (insn,
4021 "%<asm%> operand requires "
4022 "impossible reload");
4023 delete_insn (p);
4027 if (num_eliminable && chain->need_elim)
4028 update_eliminable_offsets ();
4030 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4031 is no longer validly lying around to save a future reload.
4032 Note that this does not detect pseudos that were reloaded
4033 for this insn in order to be stored in
4034 (obeying register constraints). That is correct; such reload
4035 registers ARE still valid. */
4036 forget_marked_reloads (&regs_to_forget);
4037 CLEAR_REG_SET (&regs_to_forget);
4039 /* There may have been CLOBBER insns placed after INSN. So scan
4040 between INSN and NEXT and use them to forget old reloads. */
4041 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4042 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4043 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4045 #ifdef AUTO_INC_DEC
4046 /* Likewise for regs altered by auto-increment in this insn.
4047 REG_INC notes have been changed by reloading:
4048 find_reloads_address_1 records substitutions for them,
4049 which have been performed by subst_reloads above. */
4050 for (i = n_reloads - 1; i >= 0; i--)
4052 rtx in_reg = rld[i].in_reg;
4053 if (in_reg)
4055 enum rtx_code code = GET_CODE (in_reg);
4056 /* PRE_INC / PRE_DEC will have the reload register ending up
4057 with the same value as the stack slot, but that doesn't
4058 hold true for POST_INC / POST_DEC. Either we have to
4059 convert the memory access to a true POST_INC / POST_DEC,
4060 or we can't use the reload register for inheritance. */
4061 if ((code == POST_INC || code == POST_DEC)
4062 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4063 REGNO (rld[i].reg_rtx))
4064 /* Make sure it is the inc/dec pseudo, and not
4065 some other (e.g. output operand) pseudo. */
4066 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4067 == REGNO (XEXP (in_reg, 0))))
4070 rtx reload_reg = rld[i].reg_rtx;
4071 enum machine_mode mode = GET_MODE (reload_reg);
4072 int n = 0;
4073 rtx p;
4075 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4077 /* We really want to ignore REG_INC notes here, so
4078 use PATTERN (p) as argument to reg_set_p . */
4079 if (reg_set_p (reload_reg, PATTERN (p)))
4080 break;
4081 n = count_occurrences (PATTERN (p), reload_reg, 0);
4082 if (! n)
4083 continue;
4084 if (n == 1)
4086 n = validate_replace_rtx (reload_reg,
4087 gen_rtx_fmt_e (code,
4088 mode,
4089 reload_reg),
4092 /* We must also verify that the constraints
4093 are met after the replacement. */
4094 extract_insn (p);
4095 if (n)
4096 n = constrain_operands (1);
4097 else
4098 break;
4100 /* If the constraints were not met, then
4101 undo the replacement. */
4102 if (!n)
4104 validate_replace_rtx (gen_rtx_fmt_e (code,
4105 mode,
4106 reload_reg),
4107 reload_reg, p);
4108 break;
4112 break;
4114 if (n == 1)
4116 REG_NOTES (p)
4117 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4118 REG_NOTES (p));
4119 /* Mark this as having an output reload so that the
4120 REG_INC processing code below won't invalidate
4121 the reload for inheritance. */
4122 SET_HARD_REG_BIT (reg_is_output_reload,
4123 REGNO (reload_reg));
4124 SET_REGNO_REG_SET (&reg_has_output_reload,
4125 REGNO (XEXP (in_reg, 0)));
4127 else
4128 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4129 NULL);
4131 else if ((code == PRE_INC || code == PRE_DEC)
4132 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4133 REGNO (rld[i].reg_rtx))
4134 /* Make sure it is the inc/dec pseudo, and not
4135 some other (e.g. output operand) pseudo. */
4136 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4137 == REGNO (XEXP (in_reg, 0))))
4139 SET_HARD_REG_BIT (reg_is_output_reload,
4140 REGNO (rld[i].reg_rtx));
4141 SET_REGNO_REG_SET (&reg_has_output_reload,
4142 REGNO (XEXP (in_reg, 0)));
4146 /* If a pseudo that got a hard register is auto-incremented,
4147 we must purge records of copying it into pseudos without
4148 hard registers. */
4149 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4150 if (REG_NOTE_KIND (x) == REG_INC)
4152 /* See if this pseudo reg was reloaded in this insn.
4153 If so, its last-reload info is still valid
4154 because it is based on this insn's reload. */
4155 for (i = 0; i < n_reloads; i++)
4156 if (rld[i].out == XEXP (x, 0))
4157 break;
4159 if (i == n_reloads)
4160 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4162 #endif
4164 /* A reload reg's contents are unknown after a label. */
4165 if (LABEL_P (insn))
4166 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4168 /* Don't assume a reload reg is still good after a call insn
4169 if it is a call-used reg, or if it contains a value that will
4170 be partially clobbered by the call. */
4171 else if (CALL_P (insn))
4173 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4174 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4178 /* Clean up. */
4179 free (reg_last_reload_reg);
4180 CLEAR_REG_SET (&reg_has_output_reload);
4183 /* Discard all record of any value reloaded from X,
4184 or reloaded in X from someplace else;
4185 unless X is an output reload reg of the current insn.
4187 X may be a hard reg (the reload reg)
4188 or it may be a pseudo reg that was reloaded from.
4190 When DATA is non-NULL just mark the registers in regset
4191 to be forgotten later. */
4193 static void
4194 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4195 void *data)
4197 unsigned int regno;
4198 unsigned int nr;
4199 regset regs = (regset) data;
4201 /* note_stores does give us subregs of hard regs,
4202 subreg_regno_offset requires a hard reg. */
4203 while (GET_CODE (x) == SUBREG)
4205 /* We ignore the subreg offset when calculating the regno,
4206 because we are using the entire underlying hard register
4207 below. */
4208 x = SUBREG_REG (x);
4211 if (!REG_P (x))
4212 return;
4214 regno = REGNO (x);
4216 if (regno >= FIRST_PSEUDO_REGISTER)
4217 nr = 1;
4218 else
4220 unsigned int i;
4222 nr = hard_regno_nregs[regno][GET_MODE (x)];
4223 /* Storing into a spilled-reg invalidates its contents.
4224 This can happen if a block-local pseudo is allocated to that reg
4225 and it wasn't spilled because this block's total need is 0.
4226 Then some insn might have an optional reload and use this reg. */
4227 if (!regs)
4228 for (i = 0; i < nr; i++)
4229 /* But don't do this if the reg actually serves as an output
4230 reload reg in the current instruction. */
4231 if (n_reloads == 0
4232 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4234 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4235 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4236 spill_reg_store[regno + i] = 0;
4240 if (regs)
4241 while (nr-- > 0)
4242 SET_REGNO_REG_SET (regs, regno + nr);
4243 else
4245 /* Since value of X has changed,
4246 forget any value previously copied from it. */
4248 while (nr-- > 0)
4249 /* But don't forget a copy if this is the output reload
4250 that establishes the copy's validity. */
4251 if (n_reloads == 0
4252 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4253 reg_last_reload_reg[regno + nr] = 0;
4257 /* Forget the reloads marked in regset by previous function. */
4258 static void
4259 forget_marked_reloads (regset regs)
4261 unsigned int reg;
4262 reg_set_iterator rsi;
4263 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4265 if (reg < FIRST_PSEUDO_REGISTER
4266 /* But don't do this if the reg actually serves as an output
4267 reload reg in the current instruction. */
4268 && (n_reloads == 0
4269 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4271 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4272 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, reg);
4273 spill_reg_store[reg] = 0;
4275 if (n_reloads == 0
4276 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4277 reg_last_reload_reg[reg] = 0;
4281 /* The following HARD_REG_SETs indicate when each hard register is
4282 used for a reload of various parts of the current insn. */
4284 /* If reg is unavailable for all reloads. */
4285 static HARD_REG_SET reload_reg_unavailable;
4286 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4287 static HARD_REG_SET reload_reg_used;
4288 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4289 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4290 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4291 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4292 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4293 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4294 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4295 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4296 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4297 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4298 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4299 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4300 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4301 static HARD_REG_SET reload_reg_used_in_op_addr;
4302 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4303 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4304 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4305 static HARD_REG_SET reload_reg_used_in_insn;
4306 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4307 static HARD_REG_SET reload_reg_used_in_other_addr;
4309 /* If reg is in use as a reload reg for any sort of reload. */
4310 static HARD_REG_SET reload_reg_used_at_all;
4312 /* If reg is use as an inherited reload. We just mark the first register
4313 in the group. */
4314 static HARD_REG_SET reload_reg_used_for_inherit;
4316 /* Records which hard regs are used in any way, either as explicit use or
4317 by being allocated to a pseudo during any point of the current insn. */
4318 static HARD_REG_SET reg_used_in_insn;
4320 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4321 TYPE. MODE is used to indicate how many consecutive regs are
4322 actually used. */
4324 static void
4325 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4326 enum machine_mode mode)
4328 unsigned int nregs = hard_regno_nregs[regno][mode];
4329 unsigned int i;
4331 for (i = regno; i < nregs + regno; i++)
4333 switch (type)
4335 case RELOAD_OTHER:
4336 SET_HARD_REG_BIT (reload_reg_used, i);
4337 break;
4339 case RELOAD_FOR_INPUT_ADDRESS:
4340 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4341 break;
4343 case RELOAD_FOR_INPADDR_ADDRESS:
4344 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4345 break;
4347 case RELOAD_FOR_OUTPUT_ADDRESS:
4348 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4349 break;
4351 case RELOAD_FOR_OUTADDR_ADDRESS:
4352 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4353 break;
4355 case RELOAD_FOR_OPERAND_ADDRESS:
4356 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4357 break;
4359 case RELOAD_FOR_OPADDR_ADDR:
4360 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4361 break;
4363 case RELOAD_FOR_OTHER_ADDRESS:
4364 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4365 break;
4367 case RELOAD_FOR_INPUT:
4368 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4369 break;
4371 case RELOAD_FOR_OUTPUT:
4372 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4373 break;
4375 case RELOAD_FOR_INSN:
4376 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4377 break;
4380 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4384 /* Similarly, but show REGNO is no longer in use for a reload. */
4386 static void
4387 clear_reload_reg_in_use (unsigned int regno, int opnum,
4388 enum reload_type type, enum machine_mode mode)
4390 unsigned int nregs = hard_regno_nregs[regno][mode];
4391 unsigned int start_regno, end_regno, r;
4392 int i;
4393 /* A complication is that for some reload types, inheritance might
4394 allow multiple reloads of the same types to share a reload register.
4395 We set check_opnum if we have to check only reloads with the same
4396 operand number, and check_any if we have to check all reloads. */
4397 int check_opnum = 0;
4398 int check_any = 0;
4399 HARD_REG_SET *used_in_set;
4401 switch (type)
4403 case RELOAD_OTHER:
4404 used_in_set = &reload_reg_used;
4405 break;
4407 case RELOAD_FOR_INPUT_ADDRESS:
4408 used_in_set = &reload_reg_used_in_input_addr[opnum];
4409 break;
4411 case RELOAD_FOR_INPADDR_ADDRESS:
4412 check_opnum = 1;
4413 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4414 break;
4416 case RELOAD_FOR_OUTPUT_ADDRESS:
4417 used_in_set = &reload_reg_used_in_output_addr[opnum];
4418 break;
4420 case RELOAD_FOR_OUTADDR_ADDRESS:
4421 check_opnum = 1;
4422 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4423 break;
4425 case RELOAD_FOR_OPERAND_ADDRESS:
4426 used_in_set = &reload_reg_used_in_op_addr;
4427 break;
4429 case RELOAD_FOR_OPADDR_ADDR:
4430 check_any = 1;
4431 used_in_set = &reload_reg_used_in_op_addr_reload;
4432 break;
4434 case RELOAD_FOR_OTHER_ADDRESS:
4435 used_in_set = &reload_reg_used_in_other_addr;
4436 check_any = 1;
4437 break;
4439 case RELOAD_FOR_INPUT:
4440 used_in_set = &reload_reg_used_in_input[opnum];
4441 break;
4443 case RELOAD_FOR_OUTPUT:
4444 used_in_set = &reload_reg_used_in_output[opnum];
4445 break;
4447 case RELOAD_FOR_INSN:
4448 used_in_set = &reload_reg_used_in_insn;
4449 break;
4450 default:
4451 gcc_unreachable ();
4453 /* We resolve conflicts with remaining reloads of the same type by
4454 excluding the intervals of reload registers by them from the
4455 interval of freed reload registers. Since we only keep track of
4456 one set of interval bounds, we might have to exclude somewhat
4457 more than what would be necessary if we used a HARD_REG_SET here.
4458 But this should only happen very infrequently, so there should
4459 be no reason to worry about it. */
4461 start_regno = regno;
4462 end_regno = regno + nregs;
4463 if (check_opnum || check_any)
4465 for (i = n_reloads - 1; i >= 0; i--)
4467 if (rld[i].when_needed == type
4468 && (check_any || rld[i].opnum == opnum)
4469 && rld[i].reg_rtx)
4471 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4472 unsigned int conflict_end
4473 = (conflict_start
4474 + hard_regno_nregs[conflict_start][rld[i].mode]);
4476 /* If there is an overlap with the first to-be-freed register,
4477 adjust the interval start. */
4478 if (conflict_start <= start_regno && conflict_end > start_regno)
4479 start_regno = conflict_end;
4480 /* Otherwise, if there is a conflict with one of the other
4481 to-be-freed registers, adjust the interval end. */
4482 if (conflict_start > start_regno && conflict_start < end_regno)
4483 end_regno = conflict_start;
4488 for (r = start_regno; r < end_regno; r++)
4489 CLEAR_HARD_REG_BIT (*used_in_set, r);
4492 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4493 specified by OPNUM and TYPE. */
4495 static int
4496 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4498 int i;
4500 /* In use for a RELOAD_OTHER means it's not available for anything. */
4501 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4502 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4503 return 0;
4505 switch (type)
4507 case RELOAD_OTHER:
4508 /* In use for anything means we can't use it for RELOAD_OTHER. */
4509 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4510 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4511 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4512 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4513 return 0;
4515 for (i = 0; i < reload_n_operands; i++)
4516 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4517 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4518 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4519 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4520 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4521 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4522 return 0;
4524 return 1;
4526 case RELOAD_FOR_INPUT:
4527 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4528 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4529 return 0;
4531 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4532 return 0;
4534 /* If it is used for some other input, can't use it. */
4535 for (i = 0; i < reload_n_operands; i++)
4536 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4537 return 0;
4539 /* If it is used in a later operand's address, can't use it. */
4540 for (i = opnum + 1; i < reload_n_operands; i++)
4541 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4542 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4543 return 0;
4545 return 1;
4547 case RELOAD_FOR_INPUT_ADDRESS:
4548 /* Can't use a register if it is used for an input address for this
4549 operand or used as an input in an earlier one. */
4550 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4551 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4552 return 0;
4554 for (i = 0; i < opnum; i++)
4555 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4556 return 0;
4558 return 1;
4560 case RELOAD_FOR_INPADDR_ADDRESS:
4561 /* Can't use a register if it is used for an input address
4562 for this operand or used as an input in an earlier
4563 one. */
4564 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4565 return 0;
4567 for (i = 0; i < opnum; i++)
4568 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4569 return 0;
4571 return 1;
4573 case RELOAD_FOR_OUTPUT_ADDRESS:
4574 /* Can't use a register if it is used for an output address for this
4575 operand or used as an output in this or a later operand. Note
4576 that multiple output operands are emitted in reverse order, so
4577 the conflicting ones are those with lower indices. */
4578 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4579 return 0;
4581 for (i = 0; i <= opnum; i++)
4582 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4583 return 0;
4585 return 1;
4587 case RELOAD_FOR_OUTADDR_ADDRESS:
4588 /* Can't use a register if it is used for an output address
4589 for this operand or used as an output in this or a
4590 later operand. Note that multiple output operands are
4591 emitted in reverse order, so the conflicting ones are
4592 those with lower indices. */
4593 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4594 return 0;
4596 for (i = 0; i <= opnum; i++)
4597 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4598 return 0;
4600 return 1;
4602 case RELOAD_FOR_OPERAND_ADDRESS:
4603 for (i = 0; i < reload_n_operands; i++)
4604 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4605 return 0;
4607 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4608 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4610 case RELOAD_FOR_OPADDR_ADDR:
4611 for (i = 0; i < reload_n_operands; i++)
4612 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4613 return 0;
4615 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4617 case RELOAD_FOR_OUTPUT:
4618 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4619 outputs, or an operand address for this or an earlier output.
4620 Note that multiple output operands are emitted in reverse order,
4621 so the conflicting ones are those with higher indices. */
4622 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4623 return 0;
4625 for (i = 0; i < reload_n_operands; i++)
4626 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4627 return 0;
4629 for (i = opnum; i < reload_n_operands; i++)
4630 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4631 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4632 return 0;
4634 return 1;
4636 case RELOAD_FOR_INSN:
4637 for (i = 0; i < reload_n_operands; i++)
4638 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4639 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4640 return 0;
4642 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4643 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4645 case RELOAD_FOR_OTHER_ADDRESS:
4646 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4648 default:
4649 gcc_unreachable ();
4653 /* Return 1 if the value in reload reg REGNO, as used by a reload
4654 needed for the part of the insn specified by OPNUM and TYPE,
4655 is still available in REGNO at the end of the insn.
4657 We can assume that the reload reg was already tested for availability
4658 at the time it is needed, and we should not check this again,
4659 in case the reg has already been marked in use. */
4661 static int
4662 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4664 int i;
4666 switch (type)
4668 case RELOAD_OTHER:
4669 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4670 its value must reach the end. */
4671 return 1;
4673 /* If this use is for part of the insn,
4674 its value reaches if no subsequent part uses the same register.
4675 Just like the above function, don't try to do this with lots
4676 of fallthroughs. */
4678 case RELOAD_FOR_OTHER_ADDRESS:
4679 /* Here we check for everything else, since these don't conflict
4680 with anything else and everything comes later. */
4682 for (i = 0; i < reload_n_operands; i++)
4683 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4684 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4685 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4686 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4687 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4688 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4689 return 0;
4691 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4692 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4693 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4694 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4696 case RELOAD_FOR_INPUT_ADDRESS:
4697 case RELOAD_FOR_INPADDR_ADDRESS:
4698 /* Similar, except that we check only for this and subsequent inputs
4699 and the address of only subsequent inputs and we do not need
4700 to check for RELOAD_OTHER objects since they are known not to
4701 conflict. */
4703 for (i = opnum; i < reload_n_operands; i++)
4704 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4705 return 0;
4707 for (i = opnum + 1; i < reload_n_operands; i++)
4708 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4709 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4710 return 0;
4712 for (i = 0; i < reload_n_operands; i++)
4713 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4714 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4715 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4716 return 0;
4718 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4719 return 0;
4721 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4722 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4723 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4725 case RELOAD_FOR_INPUT:
4726 /* Similar to input address, except we start at the next operand for
4727 both input and input address and we do not check for
4728 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4729 would conflict. */
4731 for (i = opnum + 1; i < reload_n_operands; i++)
4732 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4733 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4734 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4735 return 0;
4737 /* ... fall through ... */
4739 case RELOAD_FOR_OPERAND_ADDRESS:
4740 /* Check outputs and their addresses. */
4742 for (i = 0; i < reload_n_operands; i++)
4743 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4744 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4745 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4746 return 0;
4748 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4750 case RELOAD_FOR_OPADDR_ADDR:
4751 for (i = 0; i < reload_n_operands; i++)
4752 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4753 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4754 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4755 return 0;
4757 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4758 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4759 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4761 case RELOAD_FOR_INSN:
4762 /* These conflict with other outputs with RELOAD_OTHER. So
4763 we need only check for output addresses. */
4765 opnum = reload_n_operands;
4767 /* ... fall through ... */
4769 case RELOAD_FOR_OUTPUT:
4770 case RELOAD_FOR_OUTPUT_ADDRESS:
4771 case RELOAD_FOR_OUTADDR_ADDRESS:
4772 /* We already know these can't conflict with a later output. So the
4773 only thing to check are later output addresses.
4774 Note that multiple output operands are emitted in reverse order,
4775 so the conflicting ones are those with lower indices. */
4776 for (i = 0; i < opnum; i++)
4777 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4778 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4779 return 0;
4781 return 1;
4783 default:
4784 gcc_unreachable ();
4788 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4789 Return 0 otherwise.
4791 This function uses the same algorithm as reload_reg_free_p above. */
4793 static int
4794 reloads_conflict (int r1, int r2)
4796 enum reload_type r1_type = rld[r1].when_needed;
4797 enum reload_type r2_type = rld[r2].when_needed;
4798 int r1_opnum = rld[r1].opnum;
4799 int r2_opnum = rld[r2].opnum;
4801 /* RELOAD_OTHER conflicts with everything. */
4802 if (r2_type == RELOAD_OTHER)
4803 return 1;
4805 /* Otherwise, check conflicts differently for each type. */
4807 switch (r1_type)
4809 case RELOAD_FOR_INPUT:
4810 return (r2_type == RELOAD_FOR_INSN
4811 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4812 || r2_type == RELOAD_FOR_OPADDR_ADDR
4813 || r2_type == RELOAD_FOR_INPUT
4814 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4815 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4816 && r2_opnum > r1_opnum));
4818 case RELOAD_FOR_INPUT_ADDRESS:
4819 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4820 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4822 case RELOAD_FOR_INPADDR_ADDRESS:
4823 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4824 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4826 case RELOAD_FOR_OUTPUT_ADDRESS:
4827 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4828 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4830 case RELOAD_FOR_OUTADDR_ADDRESS:
4831 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4832 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4834 case RELOAD_FOR_OPERAND_ADDRESS:
4835 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4836 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4838 case RELOAD_FOR_OPADDR_ADDR:
4839 return (r2_type == RELOAD_FOR_INPUT
4840 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4842 case RELOAD_FOR_OUTPUT:
4843 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4844 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4845 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4846 && r2_opnum >= r1_opnum));
4848 case RELOAD_FOR_INSN:
4849 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4850 || r2_type == RELOAD_FOR_INSN
4851 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4853 case RELOAD_FOR_OTHER_ADDRESS:
4854 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4856 case RELOAD_OTHER:
4857 return 1;
4859 default:
4860 gcc_unreachable ();
4864 /* Indexed by reload number, 1 if incoming value
4865 inherited from previous insns. */
4866 static char reload_inherited[MAX_RELOADS];
4868 /* For an inherited reload, this is the insn the reload was inherited from,
4869 if we know it. Otherwise, this is 0. */
4870 static rtx reload_inheritance_insn[MAX_RELOADS];
4872 /* If nonzero, this is a place to get the value of the reload,
4873 rather than using reload_in. */
4874 static rtx reload_override_in[MAX_RELOADS];
4876 /* For each reload, the hard register number of the register used,
4877 or -1 if we did not need a register for this reload. */
4878 static int reload_spill_index[MAX_RELOADS];
4880 /* Subroutine of free_for_value_p, used to check a single register.
4881 START_REGNO is the starting regno of the full reload register
4882 (possibly comprising multiple hard registers) that we are considering. */
4884 static int
4885 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4886 enum reload_type type, rtx value, rtx out,
4887 int reloadnum, int ignore_address_reloads)
4889 int time1;
4890 /* Set if we see an input reload that must not share its reload register
4891 with any new earlyclobber, but might otherwise share the reload
4892 register with an output or input-output reload. */
4893 int check_earlyclobber = 0;
4894 int i;
4895 int copy = 0;
4897 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4898 return 0;
4900 if (out == const0_rtx)
4902 copy = 1;
4903 out = NULL_RTX;
4906 /* We use some pseudo 'time' value to check if the lifetimes of the
4907 new register use would overlap with the one of a previous reload
4908 that is not read-only or uses a different value.
4909 The 'time' used doesn't have to be linear in any shape or form, just
4910 monotonic.
4911 Some reload types use different 'buckets' for each operand.
4912 So there are MAX_RECOG_OPERANDS different time values for each
4913 such reload type.
4914 We compute TIME1 as the time when the register for the prospective
4915 new reload ceases to be live, and TIME2 for each existing
4916 reload as the time when that the reload register of that reload
4917 becomes live.
4918 Where there is little to be gained by exact lifetime calculations,
4919 we just make conservative assumptions, i.e. a longer lifetime;
4920 this is done in the 'default:' cases. */
4921 switch (type)
4923 case RELOAD_FOR_OTHER_ADDRESS:
4924 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4925 time1 = copy ? 0 : 1;
4926 break;
4927 case RELOAD_OTHER:
4928 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4929 break;
4930 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4931 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4932 respectively, to the time values for these, we get distinct time
4933 values. To get distinct time values for each operand, we have to
4934 multiply opnum by at least three. We round that up to four because
4935 multiply by four is often cheaper. */
4936 case RELOAD_FOR_INPADDR_ADDRESS:
4937 time1 = opnum * 4 + 2;
4938 break;
4939 case RELOAD_FOR_INPUT_ADDRESS:
4940 time1 = opnum * 4 + 3;
4941 break;
4942 case RELOAD_FOR_INPUT:
4943 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4944 executes (inclusive). */
4945 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4946 break;
4947 case RELOAD_FOR_OPADDR_ADDR:
4948 /* opnum * 4 + 4
4949 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4950 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4951 break;
4952 case RELOAD_FOR_OPERAND_ADDRESS:
4953 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4954 is executed. */
4955 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4956 break;
4957 case RELOAD_FOR_OUTADDR_ADDRESS:
4958 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4959 break;
4960 case RELOAD_FOR_OUTPUT_ADDRESS:
4961 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4962 break;
4963 default:
4964 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4967 for (i = 0; i < n_reloads; i++)
4969 rtx reg = rld[i].reg_rtx;
4970 if (reg && REG_P (reg)
4971 && ((unsigned) regno - true_regnum (reg)
4972 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4973 && i != reloadnum)
4975 rtx other_input = rld[i].in;
4977 /* If the other reload loads the same input value, that
4978 will not cause a conflict only if it's loading it into
4979 the same register. */
4980 if (true_regnum (reg) != start_regno)
4981 other_input = NULL_RTX;
4982 if (! other_input || ! rtx_equal_p (other_input, value)
4983 || rld[i].out || out)
4985 int time2;
4986 switch (rld[i].when_needed)
4988 case RELOAD_FOR_OTHER_ADDRESS:
4989 time2 = 0;
4990 break;
4991 case RELOAD_FOR_INPADDR_ADDRESS:
4992 /* find_reloads makes sure that a
4993 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4994 by at most one - the first -
4995 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4996 address reload is inherited, the address address reload
4997 goes away, so we can ignore this conflict. */
4998 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4999 && ignore_address_reloads
5000 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5001 Then the address address is still needed to store
5002 back the new address. */
5003 && ! rld[reloadnum].out)
5004 continue;
5005 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5006 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5007 reloads go away. */
5008 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5009 && ignore_address_reloads
5010 /* Unless we are reloading an auto_inc expression. */
5011 && ! rld[reloadnum].out)
5012 continue;
5013 time2 = rld[i].opnum * 4 + 2;
5014 break;
5015 case RELOAD_FOR_INPUT_ADDRESS:
5016 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5017 && ignore_address_reloads
5018 && ! rld[reloadnum].out)
5019 continue;
5020 time2 = rld[i].opnum * 4 + 3;
5021 break;
5022 case RELOAD_FOR_INPUT:
5023 time2 = rld[i].opnum * 4 + 4;
5024 check_earlyclobber = 1;
5025 break;
5026 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5027 == MAX_RECOG_OPERAND * 4 */
5028 case RELOAD_FOR_OPADDR_ADDR:
5029 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5030 && ignore_address_reloads
5031 && ! rld[reloadnum].out)
5032 continue;
5033 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5034 break;
5035 case RELOAD_FOR_OPERAND_ADDRESS:
5036 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5037 check_earlyclobber = 1;
5038 break;
5039 case RELOAD_FOR_INSN:
5040 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5041 break;
5042 case RELOAD_FOR_OUTPUT:
5043 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5044 instruction is executed. */
5045 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5046 break;
5047 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5048 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5049 value. */
5050 case RELOAD_FOR_OUTADDR_ADDRESS:
5051 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5052 && ignore_address_reloads
5053 && ! rld[reloadnum].out)
5054 continue;
5055 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5056 break;
5057 case RELOAD_FOR_OUTPUT_ADDRESS:
5058 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5059 break;
5060 case RELOAD_OTHER:
5061 /* If there is no conflict in the input part, handle this
5062 like an output reload. */
5063 if (! rld[i].in || rtx_equal_p (other_input, value))
5065 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5066 /* Earlyclobbered outputs must conflict with inputs. */
5067 if (earlyclobber_operand_p (rld[i].out))
5068 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5070 break;
5072 time2 = 1;
5073 /* RELOAD_OTHER might be live beyond instruction execution,
5074 but this is not obvious when we set time2 = 1. So check
5075 here if there might be a problem with the new reload
5076 clobbering the register used by the RELOAD_OTHER. */
5077 if (out)
5078 return 0;
5079 break;
5080 default:
5081 return 0;
5083 if ((time1 >= time2
5084 && (! rld[i].in || rld[i].out
5085 || ! rtx_equal_p (other_input, value)))
5086 || (out && rld[reloadnum].out_reg
5087 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5088 return 0;
5093 /* Earlyclobbered outputs must conflict with inputs. */
5094 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5095 return 0;
5097 return 1;
5100 /* Return 1 if the value in reload reg REGNO, as used by a reload
5101 needed for the part of the insn specified by OPNUM and TYPE,
5102 may be used to load VALUE into it.
5104 MODE is the mode in which the register is used, this is needed to
5105 determine how many hard regs to test.
5107 Other read-only reloads with the same value do not conflict
5108 unless OUT is nonzero and these other reloads have to live while
5109 output reloads live.
5110 If OUT is CONST0_RTX, this is a special case: it means that the
5111 test should not be for using register REGNO as reload register, but
5112 for copying from register REGNO into the reload register.
5114 RELOADNUM is the number of the reload we want to load this value for;
5115 a reload does not conflict with itself.
5117 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5118 reloads that load an address for the very reload we are considering.
5120 The caller has to make sure that there is no conflict with the return
5121 register. */
5123 static int
5124 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5125 enum reload_type type, rtx value, rtx out, int reloadnum,
5126 int ignore_address_reloads)
5128 int nregs = hard_regno_nregs[regno][mode];
5129 while (nregs-- > 0)
5130 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5131 value, out, reloadnum,
5132 ignore_address_reloads))
5133 return 0;
5134 return 1;
5137 /* Return nonzero if the rtx X is invariant over the current function. */
5138 /* ??? Actually, the places where we use this expect exactly what is
5139 tested here, and not everything that is function invariant. In
5140 particular, the frame pointer and arg pointer are special cased;
5141 pic_offset_table_rtx is not, and we must not spill these things to
5142 memory. */
5145 function_invariant_p (rtx x)
5147 if (CONSTANT_P (x))
5148 return 1;
5149 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5150 return 1;
5151 if (GET_CODE (x) == PLUS
5152 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5153 && CONSTANT_P (XEXP (x, 1)))
5154 return 1;
5155 return 0;
5158 /* Determine whether the reload reg X overlaps any rtx'es used for
5159 overriding inheritance. Return nonzero if so. */
5161 static int
5162 conflicts_with_override (rtx x)
5164 int i;
5165 for (i = 0; i < n_reloads; i++)
5166 if (reload_override_in[i]
5167 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5168 return 1;
5169 return 0;
5172 /* Give an error message saying we failed to find a reload for INSN,
5173 and clear out reload R. */
5174 static void
5175 failed_reload (rtx insn, int r)
5177 if (asm_noperands (PATTERN (insn)) < 0)
5178 /* It's the compiler's fault. */
5179 fatal_insn ("could not find a spill register", insn);
5181 /* It's the user's fault; the operand's mode and constraint
5182 don't match. Disable this reload so we don't crash in final. */
5183 error_for_asm (insn,
5184 "%<asm%> operand constraint incompatible with operand size");
5185 rld[r].in = 0;
5186 rld[r].out = 0;
5187 rld[r].reg_rtx = 0;
5188 rld[r].optional = 1;
5189 rld[r].secondary_p = 1;
5192 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5193 for reload R. If it's valid, get an rtx for it. Return nonzero if
5194 successful. */
5195 static int
5196 set_reload_reg (int i, int r)
5198 int regno;
5199 rtx reg = spill_reg_rtx[i];
5201 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5202 spill_reg_rtx[i] = reg
5203 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5205 regno = true_regnum (reg);
5207 /* Detect when the reload reg can't hold the reload mode.
5208 This used to be one `if', but Sequent compiler can't handle that. */
5209 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5211 enum machine_mode test_mode = VOIDmode;
5212 if (rld[r].in)
5213 test_mode = GET_MODE (rld[r].in);
5214 /* If rld[r].in has VOIDmode, it means we will load it
5215 in whatever mode the reload reg has: to wit, rld[r].mode.
5216 We have already tested that for validity. */
5217 /* Aside from that, we need to test that the expressions
5218 to reload from or into have modes which are valid for this
5219 reload register. Otherwise the reload insns would be invalid. */
5220 if (! (rld[r].in != 0 && test_mode != VOIDmode
5221 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5222 if (! (rld[r].out != 0
5223 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5225 /* The reg is OK. */
5226 last_spill_reg = i;
5228 /* Mark as in use for this insn the reload regs we use
5229 for this. */
5230 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5231 rld[r].when_needed, rld[r].mode);
5233 rld[r].reg_rtx = reg;
5234 reload_spill_index[r] = spill_regs[i];
5235 return 1;
5238 return 0;
5241 /* Find a spill register to use as a reload register for reload R.
5242 LAST_RELOAD is nonzero if this is the last reload for the insn being
5243 processed.
5245 Set rld[R].reg_rtx to the register allocated.
5247 We return 1 if successful, or 0 if we couldn't find a spill reg and
5248 we didn't change anything. */
5250 static int
5251 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5252 int last_reload)
5254 int i, pass, count;
5256 /* If we put this reload ahead, thinking it is a group,
5257 then insist on finding a group. Otherwise we can grab a
5258 reg that some other reload needs.
5259 (That can happen when we have a 68000 DATA_OR_FP_REG
5260 which is a group of data regs or one fp reg.)
5261 We need not be so restrictive if there are no more reloads
5262 for this insn.
5264 ??? Really it would be nicer to have smarter handling
5265 for that kind of reg class, where a problem like this is normal.
5266 Perhaps those classes should be avoided for reloading
5267 by use of more alternatives. */
5269 int force_group = rld[r].nregs > 1 && ! last_reload;
5271 /* If we want a single register and haven't yet found one,
5272 take any reg in the right class and not in use.
5273 If we want a consecutive group, here is where we look for it.
5275 We use two passes so we can first look for reload regs to
5276 reuse, which are already in use for other reloads in this insn,
5277 and only then use additional registers.
5278 I think that maximizing reuse is needed to make sure we don't
5279 run out of reload regs. Suppose we have three reloads, and
5280 reloads A and B can share regs. These need two regs.
5281 Suppose A and B are given different regs.
5282 That leaves none for C. */
5283 for (pass = 0; pass < 2; pass++)
5285 /* I is the index in spill_regs.
5286 We advance it round-robin between insns to use all spill regs
5287 equally, so that inherited reloads have a chance
5288 of leapfrogging each other. */
5290 i = last_spill_reg;
5292 for (count = 0; count < n_spills; count++)
5294 int class = (int) rld[r].class;
5295 int regnum;
5297 i++;
5298 if (i >= n_spills)
5299 i -= n_spills;
5300 regnum = spill_regs[i];
5302 if ((reload_reg_free_p (regnum, rld[r].opnum,
5303 rld[r].when_needed)
5304 || (rld[r].in
5305 /* We check reload_reg_used to make sure we
5306 don't clobber the return register. */
5307 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5308 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5309 rld[r].when_needed, rld[r].in,
5310 rld[r].out, r, 1)))
5311 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5312 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5313 /* Look first for regs to share, then for unshared. But
5314 don't share regs used for inherited reloads; they are
5315 the ones we want to preserve. */
5316 && (pass
5317 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5318 regnum)
5319 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5320 regnum))))
5322 int nr = hard_regno_nregs[regnum][rld[r].mode];
5323 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5324 (on 68000) got us two FP regs. If NR is 1,
5325 we would reject both of them. */
5326 if (force_group)
5327 nr = rld[r].nregs;
5328 /* If we need only one reg, we have already won. */
5329 if (nr == 1)
5331 /* But reject a single reg if we demand a group. */
5332 if (force_group)
5333 continue;
5334 break;
5336 /* Otherwise check that as many consecutive regs as we need
5337 are available here. */
5338 while (nr > 1)
5340 int regno = regnum + nr - 1;
5341 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5342 && spill_reg_order[regno] >= 0
5343 && reload_reg_free_p (regno, rld[r].opnum,
5344 rld[r].when_needed)))
5345 break;
5346 nr--;
5348 if (nr == 1)
5349 break;
5353 /* If we found something on pass 1, omit pass 2. */
5354 if (count < n_spills)
5355 break;
5358 /* We should have found a spill register by now. */
5359 if (count >= n_spills)
5360 return 0;
5362 /* I is the index in SPILL_REG_RTX of the reload register we are to
5363 allocate. Get an rtx for it and find its register number. */
5365 return set_reload_reg (i, r);
5368 /* Initialize all the tables needed to allocate reload registers.
5369 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5370 is the array we use to restore the reg_rtx field for every reload. */
5372 static void
5373 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5375 int i;
5377 for (i = 0; i < n_reloads; i++)
5378 rld[i].reg_rtx = save_reload_reg_rtx[i];
5380 memset (reload_inherited, 0, MAX_RELOADS);
5381 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5382 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5384 CLEAR_HARD_REG_SET (reload_reg_used);
5385 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5386 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5387 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5388 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5389 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5391 CLEAR_HARD_REG_SET (reg_used_in_insn);
5393 HARD_REG_SET tmp;
5394 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5395 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5396 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5397 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5398 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5399 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5402 for (i = 0; i < reload_n_operands; i++)
5404 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5405 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5406 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5407 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5408 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5409 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5412 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5414 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5416 for (i = 0; i < n_reloads; i++)
5417 /* If we have already decided to use a certain register,
5418 don't use it in another way. */
5419 if (rld[i].reg_rtx)
5420 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5421 rld[i].when_needed, rld[i].mode);
5424 /* Assign hard reg targets for the pseudo-registers we must reload
5425 into hard regs for this insn.
5426 Also output the instructions to copy them in and out of the hard regs.
5428 For machines with register classes, we are responsible for
5429 finding a reload reg in the proper class. */
5431 static void
5432 choose_reload_regs (struct insn_chain *chain)
5434 rtx insn = chain->insn;
5435 int i, j;
5436 unsigned int max_group_size = 1;
5437 enum reg_class group_class = NO_REGS;
5438 int pass, win, inheritance;
5440 rtx save_reload_reg_rtx[MAX_RELOADS];
5442 /* In order to be certain of getting the registers we need,
5443 we must sort the reloads into order of increasing register class.
5444 Then our grabbing of reload registers will parallel the process
5445 that provided the reload registers.
5447 Also note whether any of the reloads wants a consecutive group of regs.
5448 If so, record the maximum size of the group desired and what
5449 register class contains all the groups needed by this insn. */
5451 for (j = 0; j < n_reloads; j++)
5453 reload_order[j] = j;
5454 reload_spill_index[j] = -1;
5456 if (rld[j].nregs > 1)
5458 max_group_size = MAX (rld[j].nregs, max_group_size);
5459 group_class
5460 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5463 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5466 if (n_reloads > 1)
5467 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5469 /* If -O, try first with inheritance, then turning it off.
5470 If not -O, don't do inheritance.
5471 Using inheritance when not optimizing leads to paradoxes
5472 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5473 because one side of the comparison might be inherited. */
5474 win = 0;
5475 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5477 choose_reload_regs_init (chain, save_reload_reg_rtx);
5479 /* Process the reloads in order of preference just found.
5480 Beyond this point, subregs can be found in reload_reg_rtx.
5482 This used to look for an existing reloaded home for all of the
5483 reloads, and only then perform any new reloads. But that could lose
5484 if the reloads were done out of reg-class order because a later
5485 reload with a looser constraint might have an old home in a register
5486 needed by an earlier reload with a tighter constraint.
5488 To solve this, we make two passes over the reloads, in the order
5489 described above. In the first pass we try to inherit a reload
5490 from a previous insn. If there is a later reload that needs a
5491 class that is a proper subset of the class being processed, we must
5492 also allocate a spill register during the first pass.
5494 Then make a second pass over the reloads to allocate any reloads
5495 that haven't been given registers yet. */
5497 for (j = 0; j < n_reloads; j++)
5499 int r = reload_order[j];
5500 rtx search_equiv = NULL_RTX;
5502 /* Ignore reloads that got marked inoperative. */
5503 if (rld[r].out == 0 && rld[r].in == 0
5504 && ! rld[r].secondary_p)
5505 continue;
5507 /* If find_reloads chose to use reload_in or reload_out as a reload
5508 register, we don't need to chose one. Otherwise, try even if it
5509 found one since we might save an insn if we find the value lying
5510 around.
5511 Try also when reload_in is a pseudo without a hard reg. */
5512 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5513 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5514 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5515 && !MEM_P (rld[r].in)
5516 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5517 continue;
5519 #if 0 /* No longer needed for correct operation.
5520 It might give better code, or might not; worth an experiment? */
5521 /* If this is an optional reload, we can't inherit from earlier insns
5522 until we are sure that any non-optional reloads have been allocated.
5523 The following code takes advantage of the fact that optional reloads
5524 are at the end of reload_order. */
5525 if (rld[r].optional != 0)
5526 for (i = 0; i < j; i++)
5527 if ((rld[reload_order[i]].out != 0
5528 || rld[reload_order[i]].in != 0
5529 || rld[reload_order[i]].secondary_p)
5530 && ! rld[reload_order[i]].optional
5531 && rld[reload_order[i]].reg_rtx == 0)
5532 allocate_reload_reg (chain, reload_order[i], 0);
5533 #endif
5535 /* First see if this pseudo is already available as reloaded
5536 for a previous insn. We cannot try to inherit for reloads
5537 that are smaller than the maximum number of registers needed
5538 for groups unless the register we would allocate cannot be used
5539 for the groups.
5541 We could check here to see if this is a secondary reload for
5542 an object that is already in a register of the desired class.
5543 This would avoid the need for the secondary reload register.
5544 But this is complex because we can't easily determine what
5545 objects might want to be loaded via this reload. So let a
5546 register be allocated here. In `emit_reload_insns' we suppress
5547 one of the loads in the case described above. */
5549 if (inheritance)
5551 int byte = 0;
5552 int regno = -1;
5553 enum machine_mode mode = VOIDmode;
5555 if (rld[r].in == 0)
5557 else if (REG_P (rld[r].in))
5559 regno = REGNO (rld[r].in);
5560 mode = GET_MODE (rld[r].in);
5562 else if (REG_P (rld[r].in_reg))
5564 regno = REGNO (rld[r].in_reg);
5565 mode = GET_MODE (rld[r].in_reg);
5567 else if (GET_CODE (rld[r].in_reg) == SUBREG
5568 && REG_P (SUBREG_REG (rld[r].in_reg)))
5570 byte = SUBREG_BYTE (rld[r].in_reg);
5571 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5572 if (regno < FIRST_PSEUDO_REGISTER)
5573 regno = subreg_regno (rld[r].in_reg);
5574 mode = GET_MODE (rld[r].in_reg);
5576 #ifdef AUTO_INC_DEC
5577 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
5578 && REG_P (XEXP (rld[r].in_reg, 0)))
5580 regno = REGNO (XEXP (rld[r].in_reg, 0));
5581 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5582 rld[r].out = rld[r].in;
5584 #endif
5585 #if 0
5586 /* This won't work, since REGNO can be a pseudo reg number.
5587 Also, it takes much more hair to keep track of all the things
5588 that can invalidate an inherited reload of part of a pseudoreg. */
5589 else if (GET_CODE (rld[r].in) == SUBREG
5590 && REG_P (SUBREG_REG (rld[r].in)))
5591 regno = subreg_regno (rld[r].in);
5592 #endif
5594 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5596 enum reg_class class = rld[r].class, last_class;
5597 rtx last_reg = reg_last_reload_reg[regno];
5598 enum machine_mode need_mode;
5600 i = REGNO (last_reg);
5601 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5602 last_class = REGNO_REG_CLASS (i);
5604 if (byte == 0)
5605 need_mode = mode;
5606 else
5607 need_mode
5608 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5609 + byte * BITS_PER_UNIT,
5610 GET_MODE_CLASS (mode));
5612 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5613 >= GET_MODE_SIZE (need_mode))
5614 #ifdef CANNOT_CHANGE_MODE_CLASS
5615 /* Verify that the register in "i" can be obtained
5616 from LAST_REG. */
5617 && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
5618 GET_MODE (last_reg),
5619 mode)
5620 #endif
5621 && reg_reloaded_contents[i] == regno
5622 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5623 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5624 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5625 /* Even if we can't use this register as a reload
5626 register, we might use it for reload_override_in,
5627 if copying it to the desired class is cheap
5628 enough. */
5629 || ((REGISTER_MOVE_COST (mode, last_class, class)
5630 < MEMORY_MOVE_COST (mode, class, 1))
5631 && (secondary_reload_class (1, class, mode,
5632 last_reg)
5633 == NO_REGS)
5634 #ifdef SECONDARY_MEMORY_NEEDED
5635 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5636 mode)
5637 #endif
5640 && (rld[r].nregs == max_group_size
5641 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5643 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5644 rld[r].when_needed, rld[r].in,
5645 const0_rtx, r, 1))
5647 /* If a group is needed, verify that all the subsequent
5648 registers still have their values intact. */
5649 int nr = hard_regno_nregs[i][rld[r].mode];
5650 int k;
5652 for (k = 1; k < nr; k++)
5653 if (reg_reloaded_contents[i + k] != regno
5654 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5655 break;
5657 if (k == nr)
5659 int i1;
5660 int bad_for_class;
5662 last_reg = (GET_MODE (last_reg) == mode
5663 ? last_reg : gen_rtx_REG (mode, i));
5665 bad_for_class = 0;
5666 for (k = 0; k < nr; k++)
5667 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5668 i+k);
5670 /* We found a register that contains the
5671 value we need. If this register is the
5672 same as an `earlyclobber' operand of the
5673 current insn, just mark it as a place to
5674 reload from since we can't use it as the
5675 reload register itself. */
5677 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5678 if (reg_overlap_mentioned_for_reload_p
5679 (reg_last_reload_reg[regno],
5680 reload_earlyclobbers[i1]))
5681 break;
5683 if (i1 != n_earlyclobbers
5684 || ! (free_for_value_p (i, rld[r].mode,
5685 rld[r].opnum,
5686 rld[r].when_needed, rld[r].in,
5687 rld[r].out, r, 1))
5688 /* Don't use it if we'd clobber a pseudo reg. */
5689 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5690 && rld[r].out
5691 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5692 /* Don't clobber the frame pointer. */
5693 || (i == HARD_FRAME_POINTER_REGNUM
5694 && frame_pointer_needed
5695 && rld[r].out)
5696 /* Don't really use the inherited spill reg
5697 if we need it wider than we've got it. */
5698 || (GET_MODE_SIZE (rld[r].mode)
5699 > GET_MODE_SIZE (mode))
5700 || bad_for_class
5702 /* If find_reloads chose reload_out as reload
5703 register, stay with it - that leaves the
5704 inherited register for subsequent reloads. */
5705 || (rld[r].out && rld[r].reg_rtx
5706 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5708 if (! rld[r].optional)
5710 reload_override_in[r] = last_reg;
5711 reload_inheritance_insn[r]
5712 = reg_reloaded_insn[i];
5715 else
5717 int k;
5718 /* We can use this as a reload reg. */
5719 /* Mark the register as in use for this part of
5720 the insn. */
5721 mark_reload_reg_in_use (i,
5722 rld[r].opnum,
5723 rld[r].when_needed,
5724 rld[r].mode);
5725 rld[r].reg_rtx = last_reg;
5726 reload_inherited[r] = 1;
5727 reload_inheritance_insn[r]
5728 = reg_reloaded_insn[i];
5729 reload_spill_index[r] = i;
5730 for (k = 0; k < nr; k++)
5731 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5732 i + k);
5739 /* Here's another way to see if the value is already lying around. */
5740 if (inheritance
5741 && rld[r].in != 0
5742 && ! reload_inherited[r]
5743 && rld[r].out == 0
5744 && (CONSTANT_P (rld[r].in)
5745 || GET_CODE (rld[r].in) == PLUS
5746 || REG_P (rld[r].in)
5747 || MEM_P (rld[r].in))
5748 && (rld[r].nregs == max_group_size
5749 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5750 search_equiv = rld[r].in;
5751 /* If this is an output reload from a simple move insn, look
5752 if an equivalence for the input is available. */
5753 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5755 rtx set = single_set (insn);
5757 if (set
5758 && rtx_equal_p (rld[r].out, SET_DEST (set))
5759 && CONSTANT_P (SET_SRC (set)))
5760 search_equiv = SET_SRC (set);
5763 if (search_equiv)
5765 rtx equiv
5766 = find_equiv_reg (search_equiv, insn, rld[r].class,
5767 -1, NULL, 0, rld[r].mode);
5768 int regno = 0;
5770 if (equiv != 0)
5772 if (REG_P (equiv))
5773 regno = REGNO (equiv);
5774 else
5776 /* This must be a SUBREG of a hard register.
5777 Make a new REG since this might be used in an
5778 address and not all machines support SUBREGs
5779 there. */
5780 gcc_assert (GET_CODE (equiv) == SUBREG);
5781 regno = subreg_regno (equiv);
5782 equiv = gen_rtx_REG (rld[r].mode, regno);
5783 /* If we choose EQUIV as the reload register, but the
5784 loop below decides to cancel the inheritance, we'll
5785 end up reloading EQUIV in rld[r].mode, not the mode
5786 it had originally. That isn't safe when EQUIV isn't
5787 available as a spill register since its value might
5788 still be live at this point. */
5789 for (i = regno; i < regno + (int) rld[r].nregs; i++)
5790 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5791 equiv = 0;
5795 /* If we found a spill reg, reject it unless it is free
5796 and of the desired class. */
5797 if (equiv != 0)
5799 int regs_used = 0;
5800 int bad_for_class = 0;
5801 int max_regno = regno + rld[r].nregs;
5803 for (i = regno; i < max_regno; i++)
5805 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5807 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5811 if ((regs_used
5812 && ! free_for_value_p (regno, rld[r].mode,
5813 rld[r].opnum, rld[r].when_needed,
5814 rld[r].in, rld[r].out, r, 1))
5815 || bad_for_class)
5816 equiv = 0;
5819 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5820 equiv = 0;
5822 /* We found a register that contains the value we need.
5823 If this register is the same as an `earlyclobber' operand
5824 of the current insn, just mark it as a place to reload from
5825 since we can't use it as the reload register itself. */
5827 if (equiv != 0)
5828 for (i = 0; i < n_earlyclobbers; i++)
5829 if (reg_overlap_mentioned_for_reload_p (equiv,
5830 reload_earlyclobbers[i]))
5832 if (! rld[r].optional)
5833 reload_override_in[r] = equiv;
5834 equiv = 0;
5835 break;
5838 /* If the equiv register we have found is explicitly clobbered
5839 in the current insn, it depends on the reload type if we
5840 can use it, use it for reload_override_in, or not at all.
5841 In particular, we then can't use EQUIV for a
5842 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5844 if (equiv != 0)
5846 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
5847 switch (rld[r].when_needed)
5849 case RELOAD_FOR_OTHER_ADDRESS:
5850 case RELOAD_FOR_INPADDR_ADDRESS:
5851 case RELOAD_FOR_INPUT_ADDRESS:
5852 case RELOAD_FOR_OPADDR_ADDR:
5853 break;
5854 case RELOAD_OTHER:
5855 case RELOAD_FOR_INPUT:
5856 case RELOAD_FOR_OPERAND_ADDRESS:
5857 if (! rld[r].optional)
5858 reload_override_in[r] = equiv;
5859 /* Fall through. */
5860 default:
5861 equiv = 0;
5862 break;
5864 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5865 switch (rld[r].when_needed)
5867 case RELOAD_FOR_OTHER_ADDRESS:
5868 case RELOAD_FOR_INPADDR_ADDRESS:
5869 case RELOAD_FOR_INPUT_ADDRESS:
5870 case RELOAD_FOR_OPADDR_ADDR:
5871 case RELOAD_FOR_OPERAND_ADDRESS:
5872 case RELOAD_FOR_INPUT:
5873 break;
5874 case RELOAD_OTHER:
5875 if (! rld[r].optional)
5876 reload_override_in[r] = equiv;
5877 /* Fall through. */
5878 default:
5879 equiv = 0;
5880 break;
5884 /* If we found an equivalent reg, say no code need be generated
5885 to load it, and use it as our reload reg. */
5886 if (equiv != 0
5887 && (regno != HARD_FRAME_POINTER_REGNUM
5888 || !frame_pointer_needed))
5890 int nr = hard_regno_nregs[regno][rld[r].mode];
5891 int k;
5892 rld[r].reg_rtx = equiv;
5893 reload_inherited[r] = 1;
5895 /* If reg_reloaded_valid is not set for this register,
5896 there might be a stale spill_reg_store lying around.
5897 We must clear it, since otherwise emit_reload_insns
5898 might delete the store. */
5899 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5900 spill_reg_store[regno] = NULL_RTX;
5901 /* If any of the hard registers in EQUIV are spill
5902 registers, mark them as in use for this insn. */
5903 for (k = 0; k < nr; k++)
5905 i = spill_reg_order[regno + k];
5906 if (i >= 0)
5908 mark_reload_reg_in_use (regno, rld[r].opnum,
5909 rld[r].when_needed,
5910 rld[r].mode);
5911 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5912 regno + k);
5918 /* If we found a register to use already, or if this is an optional
5919 reload, we are done. */
5920 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5921 continue;
5923 #if 0
5924 /* No longer needed for correct operation. Might or might
5925 not give better code on the average. Want to experiment? */
5927 /* See if there is a later reload that has a class different from our
5928 class that intersects our class or that requires less register
5929 than our reload. If so, we must allocate a register to this
5930 reload now, since that reload might inherit a previous reload
5931 and take the only available register in our class. Don't do this
5932 for optional reloads since they will force all previous reloads
5933 to be allocated. Also don't do this for reloads that have been
5934 turned off. */
5936 for (i = j + 1; i < n_reloads; i++)
5938 int s = reload_order[i];
5940 if ((rld[s].in == 0 && rld[s].out == 0
5941 && ! rld[s].secondary_p)
5942 || rld[s].optional)
5943 continue;
5945 if ((rld[s].class != rld[r].class
5946 && reg_classes_intersect_p (rld[r].class,
5947 rld[s].class))
5948 || rld[s].nregs < rld[r].nregs)
5949 break;
5952 if (i == n_reloads)
5953 continue;
5955 allocate_reload_reg (chain, r, j == n_reloads - 1);
5956 #endif
5959 /* Now allocate reload registers for anything non-optional that
5960 didn't get one yet. */
5961 for (j = 0; j < n_reloads; j++)
5963 int r = reload_order[j];
5965 /* Ignore reloads that got marked inoperative. */
5966 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5967 continue;
5969 /* Skip reloads that already have a register allocated or are
5970 optional. */
5971 if (rld[r].reg_rtx != 0 || rld[r].optional)
5972 continue;
5974 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5975 break;
5978 /* If that loop got all the way, we have won. */
5979 if (j == n_reloads)
5981 win = 1;
5982 break;
5985 /* Loop around and try without any inheritance. */
5988 if (! win)
5990 /* First undo everything done by the failed attempt
5991 to allocate with inheritance. */
5992 choose_reload_regs_init (chain, save_reload_reg_rtx);
5994 /* Some sanity tests to verify that the reloads found in the first
5995 pass are identical to the ones we have now. */
5996 gcc_assert (chain->n_reloads == n_reloads);
5998 for (i = 0; i < n_reloads; i++)
6000 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6001 continue;
6002 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6003 for (j = 0; j < n_spills; j++)
6004 if (spill_regs[j] == chain->rld[i].regno)
6005 if (! set_reload_reg (j, i))
6006 failed_reload (chain->insn, i);
6010 /* If we thought we could inherit a reload, because it seemed that
6011 nothing else wanted the same reload register earlier in the insn,
6012 verify that assumption, now that all reloads have been assigned.
6013 Likewise for reloads where reload_override_in has been set. */
6015 /* If doing expensive optimizations, do one preliminary pass that doesn't
6016 cancel any inheritance, but removes reloads that have been needed only
6017 for reloads that we know can be inherited. */
6018 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6020 for (j = 0; j < n_reloads; j++)
6022 int r = reload_order[j];
6023 rtx check_reg;
6024 if (reload_inherited[r] && rld[r].reg_rtx)
6025 check_reg = rld[r].reg_rtx;
6026 else if (reload_override_in[r]
6027 && (REG_P (reload_override_in[r])
6028 || GET_CODE (reload_override_in[r]) == SUBREG))
6029 check_reg = reload_override_in[r];
6030 else
6031 continue;
6032 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6033 rld[r].opnum, rld[r].when_needed, rld[r].in,
6034 (reload_inherited[r]
6035 ? rld[r].out : const0_rtx),
6036 r, 1))
6038 if (pass)
6039 continue;
6040 reload_inherited[r] = 0;
6041 reload_override_in[r] = 0;
6043 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6044 reload_override_in, then we do not need its related
6045 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6046 likewise for other reload types.
6047 We handle this by removing a reload when its only replacement
6048 is mentioned in reload_in of the reload we are going to inherit.
6049 A special case are auto_inc expressions; even if the input is
6050 inherited, we still need the address for the output. We can
6051 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6052 If we succeeded removing some reload and we are doing a preliminary
6053 pass just to remove such reloads, make another pass, since the
6054 removal of one reload might allow us to inherit another one. */
6055 else if (rld[r].in
6056 && rld[r].out != rld[r].in
6057 && remove_address_replacements (rld[r].in) && pass)
6058 pass = 2;
6062 /* Now that reload_override_in is known valid,
6063 actually override reload_in. */
6064 for (j = 0; j < n_reloads; j++)
6065 if (reload_override_in[j])
6066 rld[j].in = reload_override_in[j];
6068 /* If this reload won't be done because it has been canceled or is
6069 optional and not inherited, clear reload_reg_rtx so other
6070 routines (such as subst_reloads) don't get confused. */
6071 for (j = 0; j < n_reloads; j++)
6072 if (rld[j].reg_rtx != 0
6073 && ((rld[j].optional && ! reload_inherited[j])
6074 || (rld[j].in == 0 && rld[j].out == 0
6075 && ! rld[j].secondary_p)))
6077 int regno = true_regnum (rld[j].reg_rtx);
6079 if (spill_reg_order[regno] >= 0)
6080 clear_reload_reg_in_use (regno, rld[j].opnum,
6081 rld[j].when_needed, rld[j].mode);
6082 rld[j].reg_rtx = 0;
6083 reload_spill_index[j] = -1;
6086 /* Record which pseudos and which spill regs have output reloads. */
6087 for (j = 0; j < n_reloads; j++)
6089 int r = reload_order[j];
6091 i = reload_spill_index[r];
6093 /* I is nonneg if this reload uses a register.
6094 If rld[r].reg_rtx is 0, this is an optional reload
6095 that we opted to ignore. */
6096 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6097 && rld[r].reg_rtx != 0)
6099 int nregno = REGNO (rld[r].out_reg);
6100 int nr = 1;
6102 if (nregno < FIRST_PSEUDO_REGISTER)
6103 nr = hard_regno_nregs[nregno][rld[r].mode];
6105 while (--nr >= 0)
6106 SET_REGNO_REG_SET (&reg_has_output_reload,
6107 nregno + nr);
6109 if (i >= 0)
6111 nr = hard_regno_nregs[i][rld[r].mode];
6112 while (--nr >= 0)
6113 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6116 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6117 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6118 || rld[r].when_needed == RELOAD_FOR_INSN);
6123 /* Deallocate the reload register for reload R. This is called from
6124 remove_address_replacements. */
6126 void
6127 deallocate_reload_reg (int r)
6129 int regno;
6131 if (! rld[r].reg_rtx)
6132 return;
6133 regno = true_regnum (rld[r].reg_rtx);
6134 rld[r].reg_rtx = 0;
6135 if (spill_reg_order[regno] >= 0)
6136 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6137 rld[r].mode);
6138 reload_spill_index[r] = -1;
6141 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6142 reloads of the same item for fear that we might not have enough reload
6143 registers. However, normally they will get the same reload register
6144 and hence actually need not be loaded twice.
6146 Here we check for the most common case of this phenomenon: when we have
6147 a number of reloads for the same object, each of which were allocated
6148 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6149 reload, and is not modified in the insn itself. If we find such,
6150 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6151 This will not increase the number of spill registers needed and will
6152 prevent redundant code. */
6154 static void
6155 merge_assigned_reloads (rtx insn)
6157 int i, j;
6159 /* Scan all the reloads looking for ones that only load values and
6160 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6161 assigned and not modified by INSN. */
6163 for (i = 0; i < n_reloads; i++)
6165 int conflicting_input = 0;
6166 int max_input_address_opnum = -1;
6167 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6169 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6170 || rld[i].out != 0 || rld[i].reg_rtx == 0
6171 || reg_set_p (rld[i].reg_rtx, insn))
6172 continue;
6174 /* Look at all other reloads. Ensure that the only use of this
6175 reload_reg_rtx is in a reload that just loads the same value
6176 as we do. Note that any secondary reloads must be of the identical
6177 class since the values, modes, and result registers are the
6178 same, so we need not do anything with any secondary reloads. */
6180 for (j = 0; j < n_reloads; j++)
6182 if (i == j || rld[j].reg_rtx == 0
6183 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6184 rld[i].reg_rtx))
6185 continue;
6187 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6188 && rld[j].opnum > max_input_address_opnum)
6189 max_input_address_opnum = rld[j].opnum;
6191 /* If the reload regs aren't exactly the same (e.g, different modes)
6192 or if the values are different, we can't merge this reload.
6193 But if it is an input reload, we might still merge
6194 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6196 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6197 || rld[j].out != 0 || rld[j].in == 0
6198 || ! rtx_equal_p (rld[i].in, rld[j].in))
6200 if (rld[j].when_needed != RELOAD_FOR_INPUT
6201 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6202 || rld[i].opnum > rld[j].opnum)
6203 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6204 break;
6205 conflicting_input = 1;
6206 if (min_conflicting_input_opnum > rld[j].opnum)
6207 min_conflicting_input_opnum = rld[j].opnum;
6211 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6212 we, in fact, found any matching reloads. */
6214 if (j == n_reloads
6215 && max_input_address_opnum <= min_conflicting_input_opnum)
6217 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6219 for (j = 0; j < n_reloads; j++)
6220 if (i != j && rld[j].reg_rtx != 0
6221 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6222 && (! conflicting_input
6223 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6224 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6226 rld[i].when_needed = RELOAD_OTHER;
6227 rld[j].in = 0;
6228 reload_spill_index[j] = -1;
6229 transfer_replacements (i, j);
6232 /* If this is now RELOAD_OTHER, look for any reloads that load
6233 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6234 if they were for inputs, RELOAD_OTHER for outputs. Note that
6235 this test is equivalent to looking for reloads for this operand
6236 number. */
6237 /* We must take special care with RELOAD_FOR_OUTPUT_ADDRESS; it may
6238 share registers with a RELOAD_FOR_INPUT, so we can not change it
6239 to RELOAD_FOR_OTHER_ADDRESS. We should never need to, since we
6240 do not modify RELOAD_FOR_OUTPUT. */
6242 if (rld[i].when_needed == RELOAD_OTHER)
6243 for (j = 0; j < n_reloads; j++)
6244 if (rld[j].in != 0
6245 && rld[j].when_needed != RELOAD_OTHER
6246 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6247 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6248 && (! conflicting_input
6249 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6250 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6251 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6252 rld[i].in))
6254 int k;
6256 rld[j].when_needed
6257 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6258 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6259 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6261 /* Check to see if we accidentally converted two
6262 reloads that use the same reload register with
6263 different inputs to the same type. If so, the
6264 resulting code won't work. */
6265 if (rld[j].reg_rtx)
6266 for (k = 0; k < j; k++)
6267 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6268 || rld[k].when_needed != rld[j].when_needed
6269 || !rtx_equal_p (rld[k].reg_rtx,
6270 rld[j].reg_rtx)
6271 || rtx_equal_p (rld[k].in,
6272 rld[j].in));
6278 /* These arrays are filled by emit_reload_insns and its subroutines. */
6279 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6280 static rtx other_input_address_reload_insns = 0;
6281 static rtx other_input_reload_insns = 0;
6282 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6283 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6284 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6285 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6286 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6287 static rtx operand_reload_insns = 0;
6288 static rtx other_operand_reload_insns = 0;
6289 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6291 /* Values to be put in spill_reg_store are put here first. */
6292 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6293 static HARD_REG_SET reg_reloaded_died;
6295 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6296 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6297 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6298 adjusted register, and return true. Otherwise, return false. */
6299 static bool
6300 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6301 enum reg_class new_class,
6302 enum machine_mode new_mode)
6305 rtx reg;
6307 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6309 unsigned regno = REGNO (reg);
6311 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6312 continue;
6313 if (GET_MODE (reg) != new_mode)
6315 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6316 continue;
6317 if (hard_regno_nregs[regno][new_mode]
6318 > hard_regno_nregs[regno][GET_MODE (reg)])
6319 continue;
6320 reg = reload_adjust_reg_for_mode (reg, new_mode);
6322 *reload_reg = reg;
6323 return true;
6325 return false;
6328 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6329 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6330 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6331 adjusted register, and return true. Otherwise, return false. */
6332 static bool
6333 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6334 enum insn_code icode)
6337 enum reg_class new_class = scratch_reload_class (icode);
6338 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6340 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6341 new_class, new_mode);
6344 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6345 has the number J. OLD contains the value to be used as input. */
6347 static void
6348 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6349 rtx old, int j)
6351 rtx insn = chain->insn;
6352 rtx reloadreg = rl->reg_rtx;
6353 rtx oldequiv_reg = 0;
6354 rtx oldequiv = 0;
6355 int special = 0;
6356 enum machine_mode mode;
6357 rtx *where;
6359 /* Determine the mode to reload in.
6360 This is very tricky because we have three to choose from.
6361 There is the mode the insn operand wants (rl->inmode).
6362 There is the mode of the reload register RELOADREG.
6363 There is the intrinsic mode of the operand, which we could find
6364 by stripping some SUBREGs.
6365 It turns out that RELOADREG's mode is irrelevant:
6366 we can change that arbitrarily.
6368 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6369 then the reload reg may not support QImode moves, so use SImode.
6370 If foo is in memory due to spilling a pseudo reg, this is safe,
6371 because the QImode value is in the least significant part of a
6372 slot big enough for a SImode. If foo is some other sort of
6373 memory reference, then it is impossible to reload this case,
6374 so previous passes had better make sure this never happens.
6376 Then consider a one-word union which has SImode and one of its
6377 members is a float, being fetched as (SUBREG:SF union:SI).
6378 We must fetch that as SFmode because we could be loading into
6379 a float-only register. In this case OLD's mode is correct.
6381 Consider an immediate integer: it has VOIDmode. Here we need
6382 to get a mode from something else.
6384 In some cases, there is a fourth mode, the operand's
6385 containing mode. If the insn specifies a containing mode for
6386 this operand, it overrides all others.
6388 I am not sure whether the algorithm here is always right,
6389 but it does the right things in those cases. */
6391 mode = GET_MODE (old);
6392 if (mode == VOIDmode)
6393 mode = rl->inmode;
6395 /* delete_output_reload is only invoked properly if old contains
6396 the original pseudo register. Since this is replaced with a
6397 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6398 find the pseudo in RELOAD_IN_REG. */
6399 if (reload_override_in[j]
6400 && REG_P (rl->in_reg))
6402 oldequiv = old;
6403 old = rl->in_reg;
6405 if (oldequiv == 0)
6406 oldequiv = old;
6407 else if (REG_P (oldequiv))
6408 oldequiv_reg = oldequiv;
6409 else if (GET_CODE (oldequiv) == SUBREG)
6410 oldequiv_reg = SUBREG_REG (oldequiv);
6412 /* If we are reloading from a register that was recently stored in
6413 with an output-reload, see if we can prove there was
6414 actually no need to store the old value in it. */
6416 if (optimize && REG_P (oldequiv)
6417 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6418 && spill_reg_store[REGNO (oldequiv)]
6419 && REG_P (old)
6420 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6421 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6422 rl->out_reg)))
6423 delete_output_reload (insn, j, REGNO (oldequiv));
6425 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6426 then load RELOADREG from OLDEQUIV. Note that we cannot use
6427 gen_lowpart_common since it can do the wrong thing when
6428 RELOADREG has a multi-word mode. Note that RELOADREG
6429 must always be a REG here. */
6431 if (GET_MODE (reloadreg) != mode)
6432 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6433 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6434 oldequiv = SUBREG_REG (oldequiv);
6435 if (GET_MODE (oldequiv) != VOIDmode
6436 && mode != GET_MODE (oldequiv))
6437 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6439 /* Switch to the right place to emit the reload insns. */
6440 switch (rl->when_needed)
6442 case RELOAD_OTHER:
6443 where = &other_input_reload_insns;
6444 break;
6445 case RELOAD_FOR_INPUT:
6446 where = &input_reload_insns[rl->opnum];
6447 break;
6448 case RELOAD_FOR_INPUT_ADDRESS:
6449 where = &input_address_reload_insns[rl->opnum];
6450 break;
6451 case RELOAD_FOR_INPADDR_ADDRESS:
6452 where = &inpaddr_address_reload_insns[rl->opnum];
6453 break;
6454 case RELOAD_FOR_OUTPUT_ADDRESS:
6455 where = &output_address_reload_insns[rl->opnum];
6456 break;
6457 case RELOAD_FOR_OUTADDR_ADDRESS:
6458 where = &outaddr_address_reload_insns[rl->opnum];
6459 break;
6460 case RELOAD_FOR_OPERAND_ADDRESS:
6461 where = &operand_reload_insns;
6462 break;
6463 case RELOAD_FOR_OPADDR_ADDR:
6464 where = &other_operand_reload_insns;
6465 break;
6466 case RELOAD_FOR_OTHER_ADDRESS:
6467 where = &other_input_address_reload_insns;
6468 break;
6469 default:
6470 gcc_unreachable ();
6473 push_to_sequence (*where);
6475 /* Auto-increment addresses must be reloaded in a special way. */
6476 if (rl->out && ! rl->out_reg)
6478 /* We are not going to bother supporting the case where a
6479 incremented register can't be copied directly from
6480 OLDEQUIV since this seems highly unlikely. */
6481 gcc_assert (rl->secondary_in_reload < 0);
6483 if (reload_inherited[j])
6484 oldequiv = reloadreg;
6486 old = XEXP (rl->in_reg, 0);
6488 if (optimize && REG_P (oldequiv)
6489 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6490 && spill_reg_store[REGNO (oldequiv)]
6491 && REG_P (old)
6492 && (dead_or_set_p (insn,
6493 spill_reg_stored_to[REGNO (oldequiv)])
6494 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6495 old)))
6496 delete_output_reload (insn, j, REGNO (oldequiv));
6498 /* Prevent normal processing of this reload. */
6499 special = 1;
6500 /* Output a special code sequence for this case. */
6501 new_spill_reg_store[REGNO (reloadreg)]
6502 = inc_for_reload (reloadreg, oldequiv, rl->out,
6503 rl->inc);
6506 /* If we are reloading a pseudo-register that was set by the previous
6507 insn, see if we can get rid of that pseudo-register entirely
6508 by redirecting the previous insn into our reload register. */
6510 else if (optimize && REG_P (old)
6511 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6512 && dead_or_set_p (insn, old)
6513 /* This is unsafe if some other reload
6514 uses the same reg first. */
6515 && ! conflicts_with_override (reloadreg)
6516 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6517 rl->when_needed, old, rl->out, j, 0))
6519 rtx temp = PREV_INSN (insn);
6520 while (temp && NOTE_P (temp))
6521 temp = PREV_INSN (temp);
6522 if (temp
6523 && NONJUMP_INSN_P (temp)
6524 && GET_CODE (PATTERN (temp)) == SET
6525 && SET_DEST (PATTERN (temp)) == old
6526 /* Make sure we can access insn_operand_constraint. */
6527 && asm_noperands (PATTERN (temp)) < 0
6528 /* This is unsafe if operand occurs more than once in current
6529 insn. Perhaps some occurrences aren't reloaded. */
6530 && count_occurrences (PATTERN (insn), old, 0) == 1)
6532 rtx old = SET_DEST (PATTERN (temp));
6533 /* Store into the reload register instead of the pseudo. */
6534 SET_DEST (PATTERN (temp)) = reloadreg;
6536 /* Verify that resulting insn is valid. */
6537 extract_insn (temp);
6538 if (constrain_operands (1))
6540 /* If the previous insn is an output reload, the source is
6541 a reload register, and its spill_reg_store entry will
6542 contain the previous destination. This is now
6543 invalid. */
6544 if (REG_P (SET_SRC (PATTERN (temp)))
6545 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6547 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6548 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6551 /* If these are the only uses of the pseudo reg,
6552 pretend for GDB it lives in the reload reg we used. */
6553 if (REG_N_DEATHS (REGNO (old)) == 1
6554 && REG_N_SETS (REGNO (old)) == 1)
6556 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6557 alter_reg (REGNO (old), -1);
6559 special = 1;
6561 else
6563 SET_DEST (PATTERN (temp)) = old;
6568 /* We can't do that, so output an insn to load RELOADREG. */
6570 /* If we have a secondary reload, pick up the secondary register
6571 and icode, if any. If OLDEQUIV and OLD are different or
6572 if this is an in-out reload, recompute whether or not we
6573 still need a secondary register and what the icode should
6574 be. If we still need a secondary register and the class or
6575 icode is different, go back to reloading from OLD if using
6576 OLDEQUIV means that we got the wrong type of register. We
6577 cannot have different class or icode due to an in-out reload
6578 because we don't make such reloads when both the input and
6579 output need secondary reload registers. */
6581 if (! special && rl->secondary_in_reload >= 0)
6583 rtx second_reload_reg = 0;
6584 rtx third_reload_reg = 0;
6585 int secondary_reload = rl->secondary_in_reload;
6586 rtx real_oldequiv = oldequiv;
6587 rtx real_old = old;
6588 rtx tmp;
6589 enum insn_code icode;
6590 enum insn_code tertiary_icode = CODE_FOR_nothing;
6592 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6593 and similarly for OLD.
6594 See comments in get_secondary_reload in reload.c. */
6595 /* If it is a pseudo that cannot be replaced with its
6596 equivalent MEM, we must fall back to reload_in, which
6597 will have all the necessary substitutions registered.
6598 Likewise for a pseudo that can't be replaced with its
6599 equivalent constant.
6601 Take extra care for subregs of such pseudos. Note that
6602 we cannot use reg_equiv_mem in this case because it is
6603 not in the right mode. */
6605 tmp = oldequiv;
6606 if (GET_CODE (tmp) == SUBREG)
6607 tmp = SUBREG_REG (tmp);
6608 if (REG_P (tmp)
6609 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6610 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6611 || reg_equiv_constant[REGNO (tmp)] != 0))
6613 if (! reg_equiv_mem[REGNO (tmp)]
6614 || num_not_at_initial_offset
6615 || GET_CODE (oldequiv) == SUBREG)
6616 real_oldequiv = rl->in;
6617 else
6618 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6621 tmp = old;
6622 if (GET_CODE (tmp) == SUBREG)
6623 tmp = SUBREG_REG (tmp);
6624 if (REG_P (tmp)
6625 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6626 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6627 || reg_equiv_constant[REGNO (tmp)] != 0))
6629 if (! reg_equiv_mem[REGNO (tmp)]
6630 || num_not_at_initial_offset
6631 || GET_CODE (old) == SUBREG)
6632 real_old = rl->in;
6633 else
6634 real_old = reg_equiv_mem[REGNO (tmp)];
6637 second_reload_reg = rld[secondary_reload].reg_rtx;
6638 if (rld[secondary_reload].secondary_in_reload >= 0)
6640 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
6642 third_reload_reg = rld[tertiary_reload].reg_rtx;
6643 tertiary_icode = rld[secondary_reload].secondary_in_icode;
6644 /* We'd have to add more code for quartary reloads. */
6645 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
6647 icode = rl->secondary_in_icode;
6649 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6650 || (rl->in != 0 && rl->out != 0))
6652 secondary_reload_info sri, sri2;
6653 enum reg_class new_class, new_t_class;
6655 sri.icode = CODE_FOR_nothing;
6656 sri.prev_sri = NULL;
6657 new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
6658 mode, &sri);
6660 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
6661 second_reload_reg = 0;
6662 else if (new_class == NO_REGS)
6664 if (reload_adjust_reg_for_icode (&second_reload_reg,
6665 third_reload_reg, sri.icode))
6666 icode = sri.icode, third_reload_reg = 0;
6667 else
6668 oldequiv = old, real_oldequiv = real_old;
6670 else if (sri.icode != CODE_FOR_nothing)
6671 /* We currently lack a way to express this in reloads. */
6672 gcc_unreachable ();
6673 else
6675 sri2.icode = CODE_FOR_nothing;
6676 sri2.prev_sri = &sri;
6677 new_t_class = targetm.secondary_reload (1, real_oldequiv,
6678 new_class, mode, &sri);
6679 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
6681 if (reload_adjust_reg_for_temp (&second_reload_reg,
6682 third_reload_reg,
6683 new_class, mode))
6684 third_reload_reg = 0, tertiary_icode = sri2.icode;
6685 else
6686 oldequiv = old, real_oldequiv = real_old;
6688 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
6690 rtx intermediate = second_reload_reg;
6692 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6693 new_class, mode)
6694 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
6695 sri2.icode))
6697 second_reload_reg = intermediate;
6698 tertiary_icode = sri2.icode;
6700 else
6701 oldequiv = old, real_oldequiv = real_old;
6703 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
6705 rtx intermediate = second_reload_reg;
6707 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6708 new_class, mode)
6709 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
6710 new_t_class, mode))
6712 second_reload_reg = intermediate;
6713 tertiary_icode = sri2.icode;
6715 else
6716 oldequiv = old, real_oldequiv = real_old;
6718 else
6719 /* This could be handled more intelligently too. */
6720 oldequiv = old, real_oldequiv = real_old;
6724 /* If we still need a secondary reload register, check
6725 to see if it is being used as a scratch or intermediate
6726 register and generate code appropriately. If we need
6727 a scratch register, use REAL_OLDEQUIV since the form of
6728 the insn may depend on the actual address if it is
6729 a MEM. */
6731 if (second_reload_reg)
6733 if (icode != CODE_FOR_nothing)
6735 /* We'd have to add extra code to handle this case. */
6736 gcc_assert (!third_reload_reg);
6738 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6739 second_reload_reg));
6740 special = 1;
6742 else
6744 /* See if we need a scratch register to load the
6745 intermediate register (a tertiary reload). */
6746 if (tertiary_icode != CODE_FOR_nothing)
6748 emit_insn ((GEN_FCN (tertiary_icode)
6749 (second_reload_reg, real_oldequiv,
6750 third_reload_reg)));
6752 else if (third_reload_reg)
6754 gen_reload (third_reload_reg, real_oldequiv,
6755 rl->opnum,
6756 rl->when_needed);
6757 gen_reload (second_reload_reg, third_reload_reg,
6758 rl->opnum,
6759 rl->when_needed);
6761 else
6762 gen_reload (second_reload_reg, real_oldequiv,
6763 rl->opnum,
6764 rl->when_needed);
6766 oldequiv = second_reload_reg;
6771 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6773 rtx real_oldequiv = oldequiv;
6775 if ((REG_P (oldequiv)
6776 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6777 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6778 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6779 || (GET_CODE (oldequiv) == SUBREG
6780 && REG_P (SUBREG_REG (oldequiv))
6781 && (REGNO (SUBREG_REG (oldequiv))
6782 >= FIRST_PSEUDO_REGISTER)
6783 && ((reg_equiv_memory_loc
6784 [REGNO (SUBREG_REG (oldequiv))] != 0)
6785 || (reg_equiv_constant
6786 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6787 || (CONSTANT_P (oldequiv)
6788 && (PREFERRED_RELOAD_CLASS (oldequiv,
6789 REGNO_REG_CLASS (REGNO (reloadreg)))
6790 == NO_REGS)))
6791 real_oldequiv = rl->in;
6792 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6793 rl->when_needed);
6796 if (flag_non_call_exceptions)
6797 copy_eh_notes (insn, get_insns ());
6799 /* End this sequence. */
6800 *where = get_insns ();
6801 end_sequence ();
6803 /* Update reload_override_in so that delete_address_reloads_1
6804 can see the actual register usage. */
6805 if (oldequiv_reg)
6806 reload_override_in[j] = oldequiv;
6809 /* Generate insns to for the output reload RL, which is for the insn described
6810 by CHAIN and has the number J. */
6811 static void
6812 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6813 int j)
6815 rtx reloadreg = rl->reg_rtx;
6816 rtx insn = chain->insn;
6817 int special = 0;
6818 rtx old = rl->out;
6819 enum machine_mode mode = GET_MODE (old);
6820 rtx p;
6822 if (rl->when_needed == RELOAD_OTHER)
6823 start_sequence ();
6824 else
6825 push_to_sequence (output_reload_insns[rl->opnum]);
6827 /* Determine the mode to reload in.
6828 See comments above (for input reloading). */
6830 if (mode == VOIDmode)
6832 /* VOIDmode should never happen for an output. */
6833 if (asm_noperands (PATTERN (insn)) < 0)
6834 /* It's the compiler's fault. */
6835 fatal_insn ("VOIDmode on an output", insn);
6836 error_for_asm (insn, "output operand is constant in %<asm%>");
6837 /* Prevent crash--use something we know is valid. */
6838 mode = word_mode;
6839 old = gen_rtx_REG (mode, REGNO (reloadreg));
6842 if (GET_MODE (reloadreg) != mode)
6843 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6845 /* If we need two reload regs, set RELOADREG to the intermediate
6846 one, since it will be stored into OLD. We might need a secondary
6847 register only for an input reload, so check again here. */
6849 if (rl->secondary_out_reload >= 0)
6851 rtx real_old = old;
6852 int secondary_reload = rl->secondary_out_reload;
6853 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
6855 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6856 && reg_equiv_mem[REGNO (old)] != 0)
6857 real_old = reg_equiv_mem[REGNO (old)];
6859 if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
6861 rtx second_reloadreg = reloadreg;
6862 reloadreg = rld[secondary_reload].reg_rtx;
6864 /* See if RELOADREG is to be used as a scratch register
6865 or as an intermediate register. */
6866 if (rl->secondary_out_icode != CODE_FOR_nothing)
6868 /* We'd have to add extra code to handle this case. */
6869 gcc_assert (tertiary_reload < 0);
6871 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6872 (real_old, second_reloadreg, reloadreg)));
6873 special = 1;
6875 else
6877 /* See if we need both a scratch and intermediate reload
6878 register. */
6880 enum insn_code tertiary_icode
6881 = rld[secondary_reload].secondary_out_icode;
6883 /* We'd have to add more code for quartary reloads. */
6884 gcc_assert (tertiary_reload < 0
6885 || rld[tertiary_reload].secondary_out_reload < 0);
6887 if (GET_MODE (reloadreg) != mode)
6888 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6890 if (tertiary_icode != CODE_FOR_nothing)
6892 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6893 rtx tem;
6895 /* Copy primary reload reg to secondary reload reg.
6896 (Note that these have been swapped above, then
6897 secondary reload reg to OLD using our insn.) */
6899 /* If REAL_OLD is a paradoxical SUBREG, remove it
6900 and try to put the opposite SUBREG on
6901 RELOADREG. */
6902 if (GET_CODE (real_old) == SUBREG
6903 && (GET_MODE_SIZE (GET_MODE (real_old))
6904 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6905 && 0 != (tem = gen_lowpart_common
6906 (GET_MODE (SUBREG_REG (real_old)),
6907 reloadreg)))
6908 real_old = SUBREG_REG (real_old), reloadreg = tem;
6910 gen_reload (reloadreg, second_reloadreg,
6911 rl->opnum, rl->when_needed);
6912 emit_insn ((GEN_FCN (tertiary_icode)
6913 (real_old, reloadreg, third_reloadreg)));
6914 special = 1;
6917 else
6919 /* Copy between the reload regs here and then to
6920 OUT later. */
6922 gen_reload (reloadreg, second_reloadreg,
6923 rl->opnum, rl->when_needed);
6924 if (tertiary_reload >= 0)
6926 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6928 gen_reload (third_reloadreg, reloadreg,
6929 rl->opnum, rl->when_needed);
6930 reloadreg = third_reloadreg;
6937 /* Output the last reload insn. */
6938 if (! special)
6940 rtx set;
6942 /* Don't output the last reload if OLD is not the dest of
6943 INSN and is in the src and is clobbered by INSN. */
6944 if (! flag_expensive_optimizations
6945 || !REG_P (old)
6946 || !(set = single_set (insn))
6947 || rtx_equal_p (old, SET_DEST (set))
6948 || !reg_mentioned_p (old, SET_SRC (set))
6949 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
6950 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
6951 gen_reload (old, reloadreg, rl->opnum,
6952 rl->when_needed);
6955 /* Look at all insns we emitted, just to be safe. */
6956 for (p = get_insns (); p; p = NEXT_INSN (p))
6957 if (INSN_P (p))
6959 rtx pat = PATTERN (p);
6961 /* If this output reload doesn't come from a spill reg,
6962 clear any memory of reloaded copies of the pseudo reg.
6963 If this output reload comes from a spill reg,
6964 reg_has_output_reload will make this do nothing. */
6965 note_stores (pat, forget_old_reloads_1, NULL);
6967 if (reg_mentioned_p (rl->reg_rtx, pat))
6969 rtx set = single_set (insn);
6970 if (reload_spill_index[j] < 0
6971 && set
6972 && SET_SRC (set) == rl->reg_rtx)
6974 int src = REGNO (SET_SRC (set));
6976 reload_spill_index[j] = src;
6977 SET_HARD_REG_BIT (reg_is_output_reload, src);
6978 if (find_regno_note (insn, REG_DEAD, src))
6979 SET_HARD_REG_BIT (reg_reloaded_died, src);
6981 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6983 int s = rl->secondary_out_reload;
6984 set = single_set (p);
6985 /* If this reload copies only to the secondary reload
6986 register, the secondary reload does the actual
6987 store. */
6988 if (s >= 0 && set == NULL_RTX)
6989 /* We can't tell what function the secondary reload
6990 has and where the actual store to the pseudo is
6991 made; leave new_spill_reg_store alone. */
6993 else if (s >= 0
6994 && SET_SRC (set) == rl->reg_rtx
6995 && SET_DEST (set) == rld[s].reg_rtx)
6997 /* Usually the next instruction will be the
6998 secondary reload insn; if we can confirm
6999 that it is, setting new_spill_reg_store to
7000 that insn will allow an extra optimization. */
7001 rtx s_reg = rld[s].reg_rtx;
7002 rtx next = NEXT_INSN (p);
7003 rld[s].out = rl->out;
7004 rld[s].out_reg = rl->out_reg;
7005 set = single_set (next);
7006 if (set && SET_SRC (set) == s_reg
7007 && ! new_spill_reg_store[REGNO (s_reg)])
7009 SET_HARD_REG_BIT (reg_is_output_reload,
7010 REGNO (s_reg));
7011 new_spill_reg_store[REGNO (s_reg)] = next;
7014 else
7015 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
7020 if (rl->when_needed == RELOAD_OTHER)
7022 emit_insn (other_output_reload_insns[rl->opnum]);
7023 other_output_reload_insns[rl->opnum] = get_insns ();
7025 else
7026 output_reload_insns[rl->opnum] = get_insns ();
7028 if (flag_non_call_exceptions)
7029 copy_eh_notes (insn, get_insns ());
7031 end_sequence ();
7034 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7035 and has the number J. */
7036 static void
7037 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7039 rtx insn = chain->insn;
7040 rtx old = (rl->in && MEM_P (rl->in)
7041 ? rl->in_reg : rl->in);
7043 if (old != 0
7044 /* AUTO_INC reloads need to be handled even if inherited. We got an
7045 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7046 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7047 && ! rtx_equal_p (rl->reg_rtx, old)
7048 && rl->reg_rtx != 0)
7049 emit_input_reload_insns (chain, rld + j, old, j);
7051 /* When inheriting a wider reload, we have a MEM in rl->in,
7052 e.g. inheriting a SImode output reload for
7053 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7054 if (optimize && reload_inherited[j] && rl->in
7055 && MEM_P (rl->in)
7056 && MEM_P (rl->in_reg)
7057 && reload_spill_index[j] >= 0
7058 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7059 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7061 /* If we are reloading a register that was recently stored in with an
7062 output-reload, see if we can prove there was
7063 actually no need to store the old value in it. */
7065 if (optimize
7066 /* Only attempt this for input reloads; for RELOAD_OTHER we miss
7067 that there may be multiple uses of the previous output reload.
7068 Restricting to RELOAD_FOR_INPUT is mostly paranoia. */
7069 && rl->when_needed == RELOAD_FOR_INPUT
7070 && (reload_inherited[j] || reload_override_in[j])
7071 && rl->reg_rtx
7072 && REG_P (rl->reg_rtx)
7073 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
7074 #if 0
7075 /* There doesn't seem to be any reason to restrict this to pseudos
7076 and doing so loses in the case where we are copying from a
7077 register of the wrong class. */
7078 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
7079 >= FIRST_PSEUDO_REGISTER)
7080 #endif
7081 /* The insn might have already some references to stackslots
7082 replaced by MEMs, while reload_out_reg still names the
7083 original pseudo. */
7084 && (dead_or_set_p (insn,
7085 spill_reg_stored_to[REGNO (rl->reg_rtx)])
7086 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
7087 rl->out_reg)))
7088 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
7091 /* Do output reloading for reload RL, which is for the insn described by
7092 CHAIN and has the number J.
7093 ??? At some point we need to support handling output reloads of
7094 JUMP_INSNs or insns that set cc0. */
7095 static void
7096 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7098 rtx note, old;
7099 rtx insn = chain->insn;
7100 /* If this is an output reload that stores something that is
7101 not loaded in this same reload, see if we can eliminate a previous
7102 store. */
7103 rtx pseudo = rl->out_reg;
7105 if (pseudo
7106 && optimize
7107 && REG_P (pseudo)
7108 && ! rtx_equal_p (rl->in_reg, pseudo)
7109 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7110 && reg_last_reload_reg[REGNO (pseudo)])
7112 int pseudo_no = REGNO (pseudo);
7113 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7115 /* We don't need to test full validity of last_regno for
7116 inherit here; we only want to know if the store actually
7117 matches the pseudo. */
7118 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7119 && reg_reloaded_contents[last_regno] == pseudo_no
7120 && spill_reg_store[last_regno]
7121 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7122 delete_output_reload (insn, j, last_regno);
7125 old = rl->out_reg;
7126 if (old == 0
7127 || rl->reg_rtx == old
7128 || rl->reg_rtx == 0)
7129 return;
7131 /* An output operand that dies right away does need a reload,
7132 but need not be copied from it. Show the new location in the
7133 REG_UNUSED note. */
7134 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7135 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7137 XEXP (note, 0) = rl->reg_rtx;
7138 return;
7140 /* Likewise for a SUBREG of an operand that dies. */
7141 else if (GET_CODE (old) == SUBREG
7142 && REG_P (SUBREG_REG (old))
7143 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7144 SUBREG_REG (old))))
7146 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7147 rl->reg_rtx);
7148 return;
7150 else if (GET_CODE (old) == SCRATCH)
7151 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7152 but we don't want to make an output reload. */
7153 return;
7155 /* If is a JUMP_INSN, we can't support output reloads yet. */
7156 gcc_assert (NONJUMP_INSN_P (insn));
7158 emit_output_reload_insns (chain, rld + j, j);
7161 /* Reload number R reloads from or to a group of hard registers starting at
7162 register REGNO. Return true if it can be treated for inheritance purposes
7163 like a group of reloads, each one reloading a single hard register.
7164 The caller has already checked that the spill register and REGNO use
7165 the same number of registers to store the reload value. */
7167 static bool
7168 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7170 #ifdef CANNOT_CHANGE_MODE_CLASS
7171 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7172 GET_MODE (rld[r].reg_rtx),
7173 reg_raw_mode[reload_spill_index[r]])
7174 && !REG_CANNOT_CHANGE_MODE_P (regno,
7175 GET_MODE (rld[r].reg_rtx),
7176 reg_raw_mode[regno]));
7177 #else
7178 return true;
7179 #endif
7182 /* Output insns to reload values in and out of the chosen reload regs. */
7184 static void
7185 emit_reload_insns (struct insn_chain *chain)
7187 rtx insn = chain->insn;
7189 int j;
7191 CLEAR_HARD_REG_SET (reg_reloaded_died);
7193 for (j = 0; j < reload_n_operands; j++)
7194 input_reload_insns[j] = input_address_reload_insns[j]
7195 = inpaddr_address_reload_insns[j]
7196 = output_reload_insns[j] = output_address_reload_insns[j]
7197 = outaddr_address_reload_insns[j]
7198 = other_output_reload_insns[j] = 0;
7199 other_input_address_reload_insns = 0;
7200 other_input_reload_insns = 0;
7201 operand_reload_insns = 0;
7202 other_operand_reload_insns = 0;
7204 /* Dump reloads into the dump file. */
7205 if (dump_file)
7207 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7208 debug_reload_to_stream (dump_file);
7211 /* Now output the instructions to copy the data into and out of the
7212 reload registers. Do these in the order that the reloads were reported,
7213 since reloads of base and index registers precede reloads of operands
7214 and the operands may need the base and index registers reloaded. */
7216 for (j = 0; j < n_reloads; j++)
7218 if (rld[j].reg_rtx
7219 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7220 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7222 do_input_reload (chain, rld + j, j);
7223 do_output_reload (chain, rld + j, j);
7226 /* Now write all the insns we made for reloads in the order expected by
7227 the allocation functions. Prior to the insn being reloaded, we write
7228 the following reloads:
7230 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7232 RELOAD_OTHER reloads.
7234 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7235 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7236 RELOAD_FOR_INPUT reload for the operand.
7238 RELOAD_FOR_OPADDR_ADDRS reloads.
7240 RELOAD_FOR_OPERAND_ADDRESS reloads.
7242 After the insn being reloaded, we write the following:
7244 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7245 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7246 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7247 reloads for the operand. The RELOAD_OTHER output reloads are
7248 output in descending order by reload number. */
7250 emit_insn_before (other_input_address_reload_insns, insn);
7251 emit_insn_before (other_input_reload_insns, insn);
7253 for (j = 0; j < reload_n_operands; j++)
7255 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7256 emit_insn_before (input_address_reload_insns[j], insn);
7257 emit_insn_before (input_reload_insns[j], insn);
7260 emit_insn_before (other_operand_reload_insns, insn);
7261 emit_insn_before (operand_reload_insns, insn);
7263 for (j = 0; j < reload_n_operands; j++)
7265 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7266 x = emit_insn_after (output_address_reload_insns[j], x);
7267 x = emit_insn_after (output_reload_insns[j], x);
7268 emit_insn_after (other_output_reload_insns[j], x);
7271 /* For all the spill regs newly reloaded in this instruction,
7272 record what they were reloaded from, so subsequent instructions
7273 can inherit the reloads.
7275 Update spill_reg_store for the reloads of this insn.
7276 Copy the elements that were updated in the loop above. */
7278 for (j = 0; j < n_reloads; j++)
7280 int r = reload_order[j];
7281 int i = reload_spill_index[r];
7283 /* If this is a non-inherited input reload from a pseudo, we must
7284 clear any memory of a previous store to the same pseudo. Only do
7285 something if there will not be an output reload for the pseudo
7286 being reloaded. */
7287 if (rld[r].in_reg != 0
7288 && ! (reload_inherited[r] || reload_override_in[r]))
7290 rtx reg = rld[r].in_reg;
7292 if (GET_CODE (reg) == SUBREG)
7293 reg = SUBREG_REG (reg);
7295 if (REG_P (reg)
7296 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7297 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7299 int nregno = REGNO (reg);
7301 if (reg_last_reload_reg[nregno])
7303 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7305 if (reg_reloaded_contents[last_regno] == nregno)
7306 spill_reg_store[last_regno] = 0;
7311 /* I is nonneg if this reload used a register.
7312 If rld[r].reg_rtx is 0, this is an optional reload
7313 that we opted to ignore. */
7315 if (i >= 0 && rld[r].reg_rtx != 0)
7317 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7318 int k;
7319 int part_reaches_end = 0;
7320 int all_reaches_end = 1;
7322 /* For a multi register reload, we need to check if all or part
7323 of the value lives to the end. */
7324 for (k = 0; k < nr; k++)
7326 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7327 rld[r].when_needed))
7328 part_reaches_end = 1;
7329 else
7330 all_reaches_end = 0;
7333 /* Ignore reloads that don't reach the end of the insn in
7334 entirety. */
7335 if (all_reaches_end)
7337 /* First, clear out memory of what used to be in this spill reg.
7338 If consecutive registers are used, clear them all. */
7340 for (k = 0; k < nr; k++)
7342 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7343 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7346 /* Maybe the spill reg contains a copy of reload_out. */
7347 if (rld[r].out != 0
7348 && (REG_P (rld[r].out)
7349 #ifdef AUTO_INC_DEC
7350 || ! rld[r].out_reg
7351 #endif
7352 || REG_P (rld[r].out_reg)))
7354 rtx out = (REG_P (rld[r].out)
7355 ? rld[r].out
7356 : rld[r].out_reg
7357 ? rld[r].out_reg
7358 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7359 int nregno = REGNO (out);
7360 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7361 : hard_regno_nregs[nregno]
7362 [GET_MODE (rld[r].reg_rtx)]);
7363 bool piecemeal;
7365 spill_reg_store[i] = new_spill_reg_store[i];
7366 spill_reg_stored_to[i] = out;
7367 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7369 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7370 && nr == nnr
7371 && inherit_piecemeal_p (r, nregno));
7373 /* If NREGNO is a hard register, it may occupy more than
7374 one register. If it does, say what is in the
7375 rest of the registers assuming that both registers
7376 agree on how many words the object takes. If not,
7377 invalidate the subsequent registers. */
7379 if (nregno < FIRST_PSEUDO_REGISTER)
7380 for (k = 1; k < nnr; k++)
7381 reg_last_reload_reg[nregno + k]
7382 = (piecemeal
7383 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7384 : 0);
7386 /* Now do the inverse operation. */
7387 for (k = 0; k < nr; k++)
7389 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7390 reg_reloaded_contents[i + k]
7391 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7392 ? nregno
7393 : nregno + k);
7394 reg_reloaded_insn[i + k] = insn;
7395 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7396 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7397 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7401 /* Maybe the spill reg contains a copy of reload_in. Only do
7402 something if there will not be an output reload for
7403 the register being reloaded. */
7404 else if (rld[r].out_reg == 0
7405 && rld[r].in != 0
7406 && ((REG_P (rld[r].in)
7407 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7408 && !REGNO_REG_SET_P (&reg_has_output_reload,
7409 REGNO (rld[r].in)))
7410 || (REG_P (rld[r].in_reg)
7411 && !REGNO_REG_SET_P (&reg_has_output_reload,
7412 REGNO (rld[r].in_reg))))
7413 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7415 int nregno;
7416 int nnr;
7417 rtx in;
7418 bool piecemeal;
7420 if (REG_P (rld[r].in)
7421 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7422 in = rld[r].in;
7423 else if (REG_P (rld[r].in_reg))
7424 in = rld[r].in_reg;
7425 else
7426 in = XEXP (rld[r].in_reg, 0);
7427 nregno = REGNO (in);
7429 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7430 : hard_regno_nregs[nregno]
7431 [GET_MODE (rld[r].reg_rtx)]);
7433 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7435 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7436 && nr == nnr
7437 && inherit_piecemeal_p (r, nregno));
7439 if (nregno < FIRST_PSEUDO_REGISTER)
7440 for (k = 1; k < nnr; k++)
7441 reg_last_reload_reg[nregno + k]
7442 = (piecemeal
7443 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7444 : 0);
7446 /* Unless we inherited this reload, show we haven't
7447 recently done a store.
7448 Previous stores of inherited auto_inc expressions
7449 also have to be discarded. */
7450 if (! reload_inherited[r]
7451 || (rld[r].out && ! rld[r].out_reg))
7452 spill_reg_store[i] = 0;
7454 for (k = 0; k < nr; k++)
7456 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7457 reg_reloaded_contents[i + k]
7458 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7459 ? nregno
7460 : nregno + k);
7461 reg_reloaded_insn[i + k] = insn;
7462 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7463 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7464 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7469 /* However, if part of the reload reaches the end, then we must
7470 invalidate the old info for the part that survives to the end. */
7471 else if (part_reaches_end)
7473 for (k = 0; k < nr; k++)
7474 if (reload_reg_reaches_end_p (i + k,
7475 rld[r].opnum,
7476 rld[r].when_needed))
7477 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7481 /* The following if-statement was #if 0'd in 1.34 (or before...).
7482 It's reenabled in 1.35 because supposedly nothing else
7483 deals with this problem. */
7485 /* If a register gets output-reloaded from a non-spill register,
7486 that invalidates any previous reloaded copy of it.
7487 But forget_old_reloads_1 won't get to see it, because
7488 it thinks only about the original insn. So invalidate it here.
7489 Also do the same thing for RELOAD_OTHER constraints where the
7490 output is discarded. */
7491 if (i < 0
7492 && ((rld[r].out != 0
7493 && (REG_P (rld[r].out)
7494 || (MEM_P (rld[r].out)
7495 && REG_P (rld[r].out_reg))))
7496 || (rld[r].out == 0 && rld[r].out_reg
7497 && REG_P (rld[r].out_reg))))
7499 rtx out = ((rld[r].out && REG_P (rld[r].out))
7500 ? rld[r].out : rld[r].out_reg);
7501 int nregno = REGNO (out);
7502 if (nregno >= FIRST_PSEUDO_REGISTER)
7504 rtx src_reg, store_insn = NULL_RTX;
7506 reg_last_reload_reg[nregno] = 0;
7508 /* If we can find a hard register that is stored, record
7509 the storing insn so that we may delete this insn with
7510 delete_output_reload. */
7511 src_reg = rld[r].reg_rtx;
7513 /* If this is an optional reload, try to find the source reg
7514 from an input reload. */
7515 if (! src_reg)
7517 rtx set = single_set (insn);
7518 if (set && SET_DEST (set) == rld[r].out)
7520 int k;
7522 src_reg = SET_SRC (set);
7523 store_insn = insn;
7524 for (k = 0; k < n_reloads; k++)
7526 if (rld[k].in == src_reg)
7528 src_reg = rld[k].reg_rtx;
7529 break;
7534 else
7535 store_insn = new_spill_reg_store[REGNO (src_reg)];
7536 if (src_reg && REG_P (src_reg)
7537 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7539 int src_regno = REGNO (src_reg);
7540 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7541 /* The place where to find a death note varies with
7542 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7543 necessarily checked exactly in the code that moves
7544 notes, so just check both locations. */
7545 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7546 if (! note && store_insn)
7547 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7548 while (nr-- > 0)
7550 spill_reg_store[src_regno + nr] = store_insn;
7551 spill_reg_stored_to[src_regno + nr] = out;
7552 reg_reloaded_contents[src_regno + nr] = nregno;
7553 reg_reloaded_insn[src_regno + nr] = store_insn;
7554 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7555 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7556 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7557 GET_MODE (src_reg)))
7558 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7559 src_regno + nr);
7560 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7561 if (note)
7562 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7563 else
7564 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7566 reg_last_reload_reg[nregno] = src_reg;
7567 /* We have to set reg_has_output_reload here, or else
7568 forget_old_reloads_1 will clear reg_last_reload_reg
7569 right away. */
7570 SET_REGNO_REG_SET (&reg_has_output_reload,
7571 nregno);
7574 else
7576 int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
7578 while (num_regs-- > 0)
7579 reg_last_reload_reg[nregno + num_regs] = 0;
7583 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7586 /* Go through the motions to emit INSN and test if it is strictly valid.
7587 Return the emitted insn if valid, else return NULL. */
7589 static rtx
7590 emit_insn_if_valid_for_reload (rtx insn)
7592 rtx last = get_last_insn ();
7593 int code;
7595 insn = emit_insn (insn);
7596 code = recog_memoized (insn);
7598 if (code >= 0)
7600 extract_insn (insn);
7601 /* We want constrain operands to treat this insn strictly in its
7602 validity determination, i.e., the way it would after reload has
7603 completed. */
7604 if (constrain_operands (1))
7605 return insn;
7608 delete_insns_since (last);
7609 return NULL;
7612 /* Emit code to perform a reload from IN (which may be a reload register) to
7613 OUT (which may also be a reload register). IN or OUT is from operand
7614 OPNUM with reload type TYPE.
7616 Returns first insn emitted. */
7618 static rtx
7619 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7621 rtx last = get_last_insn ();
7622 rtx tem;
7624 /* If IN is a paradoxical SUBREG, remove it and try to put the
7625 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7626 if (GET_CODE (in) == SUBREG
7627 && (GET_MODE_SIZE (GET_MODE (in))
7628 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7629 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7630 in = SUBREG_REG (in), out = tem;
7631 else if (GET_CODE (out) == SUBREG
7632 && (GET_MODE_SIZE (GET_MODE (out))
7633 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7634 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7635 out = SUBREG_REG (out), in = tem;
7637 /* How to do this reload can get quite tricky. Normally, we are being
7638 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7639 register that didn't get a hard register. In that case we can just
7640 call emit_move_insn.
7642 We can also be asked to reload a PLUS that adds a register or a MEM to
7643 another register, constant or MEM. This can occur during frame pointer
7644 elimination and while reloading addresses. This case is handled by
7645 trying to emit a single insn to perform the add. If it is not valid,
7646 we use a two insn sequence.
7648 Or we can be asked to reload an unary operand that was a fragment of
7649 an addressing mode, into a register. If it isn't recognized as-is,
7650 we try making the unop operand and the reload-register the same:
7651 (set reg:X (unop:X expr:Y))
7652 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7654 Finally, we could be called to handle an 'o' constraint by putting
7655 an address into a register. In that case, we first try to do this
7656 with a named pattern of "reload_load_address". If no such pattern
7657 exists, we just emit a SET insn and hope for the best (it will normally
7658 be valid on machines that use 'o').
7660 This entire process is made complex because reload will never
7661 process the insns we generate here and so we must ensure that
7662 they will fit their constraints and also by the fact that parts of
7663 IN might be being reloaded separately and replaced with spill registers.
7664 Because of this, we are, in some sense, just guessing the right approach
7665 here. The one listed above seems to work.
7667 ??? At some point, this whole thing needs to be rethought. */
7669 if (GET_CODE (in) == PLUS
7670 && (REG_P (XEXP (in, 0))
7671 || GET_CODE (XEXP (in, 0)) == SUBREG
7672 || MEM_P (XEXP (in, 0)))
7673 && (REG_P (XEXP (in, 1))
7674 || GET_CODE (XEXP (in, 1)) == SUBREG
7675 || CONSTANT_P (XEXP (in, 1))
7676 || MEM_P (XEXP (in, 1))))
7678 /* We need to compute the sum of a register or a MEM and another
7679 register, constant, or MEM, and put it into the reload
7680 register. The best possible way of doing this is if the machine
7681 has a three-operand ADD insn that accepts the required operands.
7683 The simplest approach is to try to generate such an insn and see if it
7684 is recognized and matches its constraints. If so, it can be used.
7686 It might be better not to actually emit the insn unless it is valid,
7687 but we need to pass the insn as an operand to `recog' and
7688 `extract_insn' and it is simpler to emit and then delete the insn if
7689 not valid than to dummy things up. */
7691 rtx op0, op1, tem, insn;
7692 int code;
7694 op0 = find_replacement (&XEXP (in, 0));
7695 op1 = find_replacement (&XEXP (in, 1));
7697 /* Since constraint checking is strict, commutativity won't be
7698 checked, so we need to do that here to avoid spurious failure
7699 if the add instruction is two-address and the second operand
7700 of the add is the same as the reload reg, which is frequently
7701 the case. If the insn would be A = B + A, rearrange it so
7702 it will be A = A + B as constrain_operands expects. */
7704 if (REG_P (XEXP (in, 1))
7705 && REGNO (out) == REGNO (XEXP (in, 1)))
7706 tem = op0, op0 = op1, op1 = tem;
7708 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7709 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7711 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7712 if (insn)
7713 return insn;
7715 /* If that failed, we must use a conservative two-insn sequence.
7717 Use a move to copy one operand into the reload register. Prefer
7718 to reload a constant, MEM or pseudo since the move patterns can
7719 handle an arbitrary operand. If OP1 is not a constant, MEM or
7720 pseudo and OP1 is not a valid operand for an add instruction, then
7721 reload OP1.
7723 After reloading one of the operands into the reload register, add
7724 the reload register to the output register.
7726 If there is another way to do this for a specific machine, a
7727 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7728 we emit below. */
7730 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7732 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7733 || (REG_P (op1)
7734 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7735 || (code != CODE_FOR_nothing
7736 && ! ((*insn_data[code].operand[2].predicate)
7737 (op1, insn_data[code].operand[2].mode))))
7738 tem = op0, op0 = op1, op1 = tem;
7740 gen_reload (out, op0, opnum, type);
7742 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7743 This fixes a problem on the 32K where the stack pointer cannot
7744 be used as an operand of an add insn. */
7746 if (rtx_equal_p (op0, op1))
7747 op1 = out;
7749 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7750 if (insn)
7752 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7753 REG_NOTES (insn)
7754 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7755 return insn;
7758 /* If that failed, copy the address register to the reload register.
7759 Then add the constant to the reload register. */
7761 gen_reload (out, op1, opnum, type);
7762 insn = emit_insn (gen_add2_insn (out, op0));
7763 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7766 #ifdef SECONDARY_MEMORY_NEEDED
7767 /* If we need a memory location to do the move, do it that way. */
7768 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7769 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7770 && (REG_P (out) || GET_CODE (out) == SUBREG)
7771 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7772 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7773 REGNO_REG_CLASS (reg_or_subregno (out)),
7774 GET_MODE (out)))
7776 /* Get the memory to use and rewrite both registers to its mode. */
7777 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7779 if (GET_MODE (loc) != GET_MODE (out))
7780 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7782 if (GET_MODE (loc) != GET_MODE (in))
7783 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7785 gen_reload (loc, in, opnum, type);
7786 gen_reload (out, loc, opnum, type);
7788 #endif
7789 else if (REG_P (out) && UNARY_P (in))
7791 rtx insn;
7792 rtx op1;
7793 rtx out_moded;
7794 rtx set;
7796 op1 = find_replacement (&XEXP (in, 0));
7797 if (op1 != XEXP (in, 0))
7798 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
7800 /* First, try a plain SET. */
7801 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7802 if (set)
7803 return set;
7805 /* If that failed, move the inner operand to the reload
7806 register, and try the same unop with the inner expression
7807 replaced with the reload register. */
7809 if (GET_MODE (op1) != GET_MODE (out))
7810 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
7811 else
7812 out_moded = out;
7814 gen_reload (out_moded, op1, opnum, type);
7816 insn
7817 = gen_rtx_SET (VOIDmode, out,
7818 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
7819 out_moded));
7820 insn = emit_insn_if_valid_for_reload (insn);
7821 if (insn)
7823 REG_NOTES (insn)
7824 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7825 return insn;
7828 fatal_insn ("Failure trying to reload:", set);
7830 /* If IN is a simple operand, use gen_move_insn. */
7831 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7833 tem = emit_insn (gen_move_insn (out, in));
7834 /* IN may contain a LABEL_REF, if so add a REG_LABEL note. */
7835 mark_jump_label (in, tem, 0);
7838 #ifdef HAVE_reload_load_address
7839 else if (HAVE_reload_load_address)
7840 emit_insn (gen_reload_load_address (out, in));
7841 #endif
7843 /* Otherwise, just write (set OUT IN) and hope for the best. */
7844 else
7845 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7847 /* Return the first insn emitted.
7848 We can not just return get_last_insn, because there may have
7849 been multiple instructions emitted. Also note that gen_move_insn may
7850 emit more than one insn itself, so we can not assume that there is one
7851 insn emitted per emit_insn_before call. */
7853 return last ? NEXT_INSN (last) : get_insns ();
7856 /* Delete a previously made output-reload whose result we now believe
7857 is not needed. First we double-check.
7859 INSN is the insn now being processed.
7860 LAST_RELOAD_REG is the hard register number for which we want to delete
7861 the last output reload.
7862 J is the reload-number that originally used REG. The caller has made
7863 certain that reload J doesn't use REG any longer for input. */
7865 static void
7866 delete_output_reload (rtx insn, int j, int last_reload_reg)
7868 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7869 rtx reg = spill_reg_stored_to[last_reload_reg];
7870 int k;
7871 int n_occurrences;
7872 int n_inherited = 0;
7873 rtx i1;
7874 rtx substed;
7876 /* It is possible that this reload has been only used to set another reload
7877 we eliminated earlier and thus deleted this instruction too. */
7878 if (INSN_DELETED_P (output_reload_insn))
7879 return;
7881 /* Get the raw pseudo-register referred to. */
7883 while (GET_CODE (reg) == SUBREG)
7884 reg = SUBREG_REG (reg);
7885 substed = reg_equiv_memory_loc[REGNO (reg)];
7887 /* This is unsafe if the operand occurs more often in the current
7888 insn than it is inherited. */
7889 for (k = n_reloads - 1; k >= 0; k--)
7891 rtx reg2 = rld[k].in;
7892 if (! reg2)
7893 continue;
7894 if (MEM_P (reg2) || reload_override_in[k])
7895 reg2 = rld[k].in_reg;
7896 #ifdef AUTO_INC_DEC
7897 if (rld[k].out && ! rld[k].out_reg)
7898 reg2 = XEXP (rld[k].in_reg, 0);
7899 #endif
7900 while (GET_CODE (reg2) == SUBREG)
7901 reg2 = SUBREG_REG (reg2);
7902 if (rtx_equal_p (reg2, reg))
7904 if (reload_inherited[k] || reload_override_in[k] || k == j)
7906 n_inherited++;
7907 reg2 = rld[k].out_reg;
7908 if (! reg2)
7909 continue;
7910 while (GET_CODE (reg2) == SUBREG)
7911 reg2 = XEXP (reg2, 0);
7912 if (rtx_equal_p (reg2, reg))
7913 n_inherited++;
7915 else
7916 return;
7919 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7920 if (substed)
7921 n_occurrences += count_occurrences (PATTERN (insn),
7922 eliminate_regs (substed, 0,
7923 NULL_RTX), 0);
7924 for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
7926 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
7927 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
7929 if (n_occurrences > n_inherited)
7930 return;
7932 /* If the pseudo-reg we are reloading is no longer referenced
7933 anywhere between the store into it and here,
7934 and we're within the same basic block, then the value can only
7935 pass through the reload reg and end up here.
7936 Otherwise, give up--return. */
7937 for (i1 = NEXT_INSN (output_reload_insn);
7938 i1 != insn; i1 = NEXT_INSN (i1))
7940 if (NOTE_INSN_BASIC_BLOCK_P (i1))
7941 return;
7942 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7943 && reg_mentioned_p (reg, PATTERN (i1)))
7945 /* If this is USE in front of INSN, we only have to check that
7946 there are no more references than accounted for by inheritance. */
7947 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7949 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7950 i1 = NEXT_INSN (i1);
7952 if (n_occurrences <= n_inherited && i1 == insn)
7953 break;
7954 return;
7958 /* We will be deleting the insn. Remove the spill reg information. */
7959 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7961 spill_reg_store[last_reload_reg + k] = 0;
7962 spill_reg_stored_to[last_reload_reg + k] = 0;
7965 /* The caller has already checked that REG dies or is set in INSN.
7966 It has also checked that we are optimizing, and thus some
7967 inaccuracies in the debugging information are acceptable.
7968 So we could just delete output_reload_insn. But in some cases
7969 we can improve the debugging information without sacrificing
7970 optimization - maybe even improving the code: See if the pseudo
7971 reg has been completely replaced with reload regs. If so, delete
7972 the store insn and forget we had a stack slot for the pseudo. */
7973 if (rld[j].out != rld[j].in
7974 && REG_N_DEATHS (REGNO (reg)) == 1
7975 && REG_N_SETS (REGNO (reg)) == 1
7976 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7977 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7979 rtx i2;
7981 /* We know that it was used only between here and the beginning of
7982 the current basic block. (We also know that the last use before
7983 INSN was the output reload we are thinking of deleting, but never
7984 mind that.) Search that range; see if any ref remains. */
7985 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7987 rtx set = single_set (i2);
7989 /* Uses which just store in the pseudo don't count,
7990 since if they are the only uses, they are dead. */
7991 if (set != 0 && SET_DEST (set) == reg)
7992 continue;
7993 if (LABEL_P (i2)
7994 || JUMP_P (i2))
7995 break;
7996 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
7997 && reg_mentioned_p (reg, PATTERN (i2)))
7999 /* Some other ref remains; just delete the output reload we
8000 know to be dead. */
8001 delete_address_reloads (output_reload_insn, insn);
8002 delete_insn (output_reload_insn);
8003 return;
8007 /* Delete the now-dead stores into this pseudo. Note that this
8008 loop also takes care of deleting output_reload_insn. */
8009 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8011 rtx set = single_set (i2);
8013 if (set != 0 && SET_DEST (set) == reg)
8015 delete_address_reloads (i2, insn);
8016 delete_insn (i2);
8018 if (LABEL_P (i2)
8019 || JUMP_P (i2))
8020 break;
8023 /* For the debugging info, say the pseudo lives in this reload reg. */
8024 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
8025 alter_reg (REGNO (reg), -1);
8027 else
8029 delete_address_reloads (output_reload_insn, insn);
8030 delete_insn (output_reload_insn);
8034 /* We are going to delete DEAD_INSN. Recursively delete loads of
8035 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8036 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8037 static void
8038 delete_address_reloads (rtx dead_insn, rtx current_insn)
8040 rtx set = single_set (dead_insn);
8041 rtx set2, dst, prev, next;
8042 if (set)
8044 rtx dst = SET_DEST (set);
8045 if (MEM_P (dst))
8046 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8048 /* If we deleted the store from a reloaded post_{in,de}c expression,
8049 we can delete the matching adds. */
8050 prev = PREV_INSN (dead_insn);
8051 next = NEXT_INSN (dead_insn);
8052 if (! prev || ! next)
8053 return;
8054 set = single_set (next);
8055 set2 = single_set (prev);
8056 if (! set || ! set2
8057 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8058 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8059 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8060 return;
8061 dst = SET_DEST (set);
8062 if (! rtx_equal_p (dst, SET_DEST (set2))
8063 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8064 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8065 || (INTVAL (XEXP (SET_SRC (set), 1))
8066 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8067 return;
8068 delete_related_insns (prev);
8069 delete_related_insns (next);
8072 /* Subfunction of delete_address_reloads: process registers found in X. */
8073 static void
8074 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8076 rtx prev, set, dst, i2;
8077 int i, j;
8078 enum rtx_code code = GET_CODE (x);
8080 if (code != REG)
8082 const char *fmt = GET_RTX_FORMAT (code);
8083 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8085 if (fmt[i] == 'e')
8086 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8087 else if (fmt[i] == 'E')
8089 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8090 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8091 current_insn);
8094 return;
8097 if (spill_reg_order[REGNO (x)] < 0)
8098 return;
8100 /* Scan backwards for the insn that sets x. This might be a way back due
8101 to inheritance. */
8102 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8104 code = GET_CODE (prev);
8105 if (code == CODE_LABEL || code == JUMP_INSN)
8106 return;
8107 if (!INSN_P (prev))
8108 continue;
8109 if (reg_set_p (x, PATTERN (prev)))
8110 break;
8111 if (reg_referenced_p (x, PATTERN (prev)))
8112 return;
8114 if (! prev || INSN_UID (prev) < reload_first_uid)
8115 return;
8116 /* Check that PREV only sets the reload register. */
8117 set = single_set (prev);
8118 if (! set)
8119 return;
8120 dst = SET_DEST (set);
8121 if (!REG_P (dst)
8122 || ! rtx_equal_p (dst, x))
8123 return;
8124 if (! reg_set_p (dst, PATTERN (dead_insn)))
8126 /* Check if DST was used in a later insn -
8127 it might have been inherited. */
8128 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8130 if (LABEL_P (i2))
8131 break;
8132 if (! INSN_P (i2))
8133 continue;
8134 if (reg_referenced_p (dst, PATTERN (i2)))
8136 /* If there is a reference to the register in the current insn,
8137 it might be loaded in a non-inherited reload. If no other
8138 reload uses it, that means the register is set before
8139 referenced. */
8140 if (i2 == current_insn)
8142 for (j = n_reloads - 1; j >= 0; j--)
8143 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8144 || reload_override_in[j] == dst)
8145 return;
8146 for (j = n_reloads - 1; j >= 0; j--)
8147 if (rld[j].in && rld[j].reg_rtx == dst)
8148 break;
8149 if (j >= 0)
8150 break;
8152 return;
8154 if (JUMP_P (i2))
8155 break;
8156 /* If DST is still live at CURRENT_INSN, check if it is used for
8157 any reload. Note that even if CURRENT_INSN sets DST, we still
8158 have to check the reloads. */
8159 if (i2 == current_insn)
8161 for (j = n_reloads - 1; j >= 0; j--)
8162 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8163 || reload_override_in[j] == dst)
8164 return;
8165 /* ??? We can't finish the loop here, because dst might be
8166 allocated to a pseudo in this block if no reload in this
8167 block needs any of the classes containing DST - see
8168 spill_hard_reg. There is no easy way to tell this, so we
8169 have to scan till the end of the basic block. */
8171 if (reg_set_p (dst, PATTERN (i2)))
8172 break;
8175 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8176 reg_reloaded_contents[REGNO (dst)] = -1;
8177 delete_insn (prev);
8180 /* Output reload-insns to reload VALUE into RELOADREG.
8181 VALUE is an autoincrement or autodecrement RTX whose operand
8182 is a register or memory location;
8183 so reloading involves incrementing that location.
8184 IN is either identical to VALUE, or some cheaper place to reload from.
8186 INC_AMOUNT is the number to increment or decrement by (always positive).
8187 This cannot be deduced from VALUE.
8189 Return the instruction that stores into RELOADREG. */
8191 static rtx
8192 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8194 /* REG or MEM to be copied and incremented. */
8195 rtx incloc = find_replacement (&XEXP (value, 0));
8196 /* Nonzero if increment after copying. */
8197 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8198 || GET_CODE (value) == POST_MODIFY);
8199 rtx last;
8200 rtx inc;
8201 rtx add_insn;
8202 int code;
8203 rtx store;
8204 rtx real_in = in == value ? incloc : in;
8206 /* No hard register is equivalent to this register after
8207 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8208 we could inc/dec that register as well (maybe even using it for
8209 the source), but I'm not sure it's worth worrying about. */
8210 if (REG_P (incloc))
8211 reg_last_reload_reg[REGNO (incloc)] = 0;
8213 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8215 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8216 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8218 else
8220 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8221 inc_amount = -inc_amount;
8223 inc = GEN_INT (inc_amount);
8226 /* If this is post-increment, first copy the location to the reload reg. */
8227 if (post && real_in != reloadreg)
8228 emit_insn (gen_move_insn (reloadreg, real_in));
8230 if (in == value)
8232 /* See if we can directly increment INCLOC. Use a method similar to
8233 that in gen_reload. */
8235 last = get_last_insn ();
8236 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8237 gen_rtx_PLUS (GET_MODE (incloc),
8238 incloc, inc)));
8240 code = recog_memoized (add_insn);
8241 if (code >= 0)
8243 extract_insn (add_insn);
8244 if (constrain_operands (1))
8246 /* If this is a pre-increment and we have incremented the value
8247 where it lives, copy the incremented value to RELOADREG to
8248 be used as an address. */
8250 if (! post)
8251 emit_insn (gen_move_insn (reloadreg, incloc));
8253 return add_insn;
8256 delete_insns_since (last);
8259 /* If couldn't do the increment directly, must increment in RELOADREG.
8260 The way we do this depends on whether this is pre- or post-increment.
8261 For pre-increment, copy INCLOC to the reload register, increment it
8262 there, then save back. */
8264 if (! post)
8266 if (in != reloadreg)
8267 emit_insn (gen_move_insn (reloadreg, real_in));
8268 emit_insn (gen_add2_insn (reloadreg, inc));
8269 store = emit_insn (gen_move_insn (incloc, reloadreg));
8271 else
8273 /* Postincrement.
8274 Because this might be a jump insn or a compare, and because RELOADREG
8275 may not be available after the insn in an input reload, we must do
8276 the incrementation before the insn being reloaded for.
8278 We have already copied IN to RELOADREG. Increment the copy in
8279 RELOADREG, save that back, then decrement RELOADREG so it has
8280 the original value. */
8282 emit_insn (gen_add2_insn (reloadreg, inc));
8283 store = emit_insn (gen_move_insn (incloc, reloadreg));
8284 if (GET_CODE (inc) == CONST_INT)
8285 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL(inc))));
8286 else
8287 emit_insn (gen_sub2_insn (reloadreg, inc));
8290 return store;
8293 #ifdef AUTO_INC_DEC
8294 static void
8295 add_auto_inc_notes (rtx insn, rtx x)
8297 enum rtx_code code = GET_CODE (x);
8298 const char *fmt;
8299 int i, j;
8301 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8303 REG_NOTES (insn)
8304 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8305 return;
8308 /* Scan all the operand sub-expressions. */
8309 fmt = GET_RTX_FORMAT (code);
8310 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8312 if (fmt[i] == 'e')
8313 add_auto_inc_notes (insn, XEXP (x, i));
8314 else if (fmt[i] == 'E')
8315 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8316 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8319 #endif
8321 /* Copy EH notes from an insn to its reloads. */
8322 static void
8323 copy_eh_notes (rtx insn, rtx x)
8325 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8326 if (eh_note)
8328 for (; x != 0; x = NEXT_INSN (x))
8330 if (may_trap_p (PATTERN (x)))
8331 REG_NOTES (x)
8332 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8333 REG_NOTES (x));
8338 /* This is used by reload pass, that does emit some instructions after
8339 abnormal calls moving basic block end, but in fact it wants to emit
8340 them on the edge. Looks for abnormal call edges, find backward the
8341 proper call and fix the damage.
8343 Similar handle instructions throwing exceptions internally. */
8344 void
8345 fixup_abnormal_edges (void)
8347 bool inserted = false;
8348 basic_block bb;
8350 FOR_EACH_BB (bb)
8352 edge e;
8353 edge_iterator ei;
8355 /* Look for cases we are interested in - calls or instructions causing
8356 exceptions. */
8357 FOR_EACH_EDGE (e, ei, bb->succs)
8359 if (e->flags & EDGE_ABNORMAL_CALL)
8360 break;
8361 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8362 == (EDGE_ABNORMAL | EDGE_EH))
8363 break;
8365 if (e && !CALL_P (BB_END (bb))
8366 && !can_throw_internal (BB_END (bb)))
8368 rtx insn;
8370 /* Get past the new insns generated. Allow notes, as the insns
8371 may be already deleted. */
8372 insn = BB_END (bb);
8373 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8374 && !can_throw_internal (insn)
8375 && insn != BB_HEAD (bb))
8376 insn = PREV_INSN (insn);
8378 if (CALL_P (insn) || can_throw_internal (insn))
8380 rtx stop, next;
8382 stop = NEXT_INSN (BB_END (bb));
8383 BB_END (bb) = insn;
8384 insn = NEXT_INSN (insn);
8386 FOR_EACH_EDGE (e, ei, bb->succs)
8387 if (e->flags & EDGE_FALLTHRU)
8388 break;
8390 while (insn && insn != stop)
8392 next = NEXT_INSN (insn);
8393 if (INSN_P (insn))
8395 delete_insn (insn);
8397 /* Sometimes there's still the return value USE.
8398 If it's placed after a trapping call (i.e. that
8399 call is the last insn anyway), we have no fallthru
8400 edge. Simply delete this use and don't try to insert
8401 on the non-existent edge. */
8402 if (GET_CODE (PATTERN (insn)) != USE)
8404 /* We're not deleting it, we're moving it. */
8405 INSN_DELETED_P (insn) = 0;
8406 PREV_INSN (insn) = NULL_RTX;
8407 NEXT_INSN (insn) = NULL_RTX;
8409 insert_insn_on_edge (insn, e);
8410 inserted = true;
8413 insn = next;
8417 /* It may be that we don't find any such trapping insn. In this
8418 case we discovered quite late that the insn that had been
8419 marked as can_throw_internal in fact couldn't trap at all.
8420 So we should in fact delete the EH edges out of the block. */
8421 else
8422 purge_dead_edges (bb);
8426 /* We've possibly turned single trapping insn into multiple ones. */
8427 if (flag_non_call_exceptions)
8429 sbitmap blocks;
8430 blocks = sbitmap_alloc (last_basic_block);
8431 sbitmap_ones (blocks);
8432 find_many_sub_basic_blocks (blocks);
8435 if (inserted)
8436 commit_edge_insertions ();
8438 #ifdef ENABLE_CHECKING
8439 /* Verify that we didn't turn one trapping insn into many, and that
8440 we found and corrected all of the problems wrt fixups on the
8441 fallthru edge. */
8442 verify_flow_info ();
8443 #endif