1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 #include "coretypes.h"
26 #include "hard-reg-set.h"
28 #include "basic-block.h"
33 /* Checks whether BB is executed exactly once in each LOOP iteration. */
36 just_once_each_iteration_p (const struct loop
*loop
, basic_block bb
)
38 /* It must be executed at least once each iteration. */
39 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
43 if (bb
->loop_father
!= loop
)
46 /* But this was not enough. We might have some irreducible loop here. */
47 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
53 /* Structure representing edge of a graph. */
57 int src
, dest
; /* Source and destination. */
58 struct edge
*pred_next
, *succ_next
;
59 /* Next edge in predecessor and successor lists. */
60 void *data
; /* Data attached to the edge. */
63 /* Structure representing vertex of a graph. */
67 struct edge
*pred
, *succ
;
68 /* Lists of predecessors and successors. */
69 int component
; /* Number of dfs restarts before reaching the
71 int post
; /* Postorder number. */
74 /* Structure representing a graph. */
78 int n_vertices
; /* Number of vertices. */
79 struct vertex
*vertices
;
83 /* Dumps graph G into F. */
85 extern void dump_graph (FILE *, struct graph
*);
88 dump_graph (FILE *f
, struct graph
*g
)
93 for (i
= 0; i
< g
->n_vertices
; i
++)
95 if (!g
->vertices
[i
].pred
96 && !g
->vertices
[i
].succ
)
99 fprintf (f
, "%d (%d)\t<-", i
, g
->vertices
[i
].component
);
100 for (e
= g
->vertices
[i
].pred
; e
; e
= e
->pred_next
)
101 fprintf (f
, " %d", e
->src
);
105 for (e
= g
->vertices
[i
].succ
; e
; e
= e
->succ_next
)
106 fprintf (f
, " %d", e
->dest
);
111 /* Creates a new graph with N_VERTICES vertices. */
113 static struct graph
*
114 new_graph (int n_vertices
)
116 struct graph
*g
= XNEW (struct graph
);
118 g
->n_vertices
= n_vertices
;
119 g
->vertices
= XCNEWVEC (struct vertex
, n_vertices
);
124 /* Adds an edge from F to T to graph G, with DATA attached. */
127 add_edge (struct graph
*g
, int f
, int t
, void *data
)
129 struct edge
*e
= xmalloc (sizeof (struct edge
));
135 e
->pred_next
= g
->vertices
[t
].pred
;
136 g
->vertices
[t
].pred
= e
;
138 e
->succ_next
= g
->vertices
[f
].succ
;
139 g
->vertices
[f
].succ
= e
;
142 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
143 The vertices in postorder are stored into QT. If FORWARD is false,
144 backward dfs is run. */
147 dfs (struct graph
*g
, int *qs
, int nq
, int *qt
, bool forward
)
149 int i
, tick
= 0, v
, comp
= 0, top
;
151 struct edge
**stack
= xmalloc (sizeof (struct edge
*) * g
->n_vertices
);
153 for (i
= 0; i
< g
->n_vertices
; i
++)
155 g
->vertices
[i
].component
= -1;
156 g
->vertices
[i
].post
= -1;
159 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
160 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
161 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
162 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
164 for (i
= 0; i
< nq
; i
++)
167 if (g
->vertices
[v
].post
!= -1)
170 g
->vertices
[v
].component
= comp
++;
176 while (e
&& g
->vertices
[EDGE_DEST (e
)].component
!= -1)
183 g
->vertices
[v
].post
= tick
++;
197 g
->vertices
[v
].component
= comp
- 1;
204 /* Marks the edge E in graph G irreducible if it connects two vertices in the
208 check_irred (struct graph
*g
, struct edge
*e
)
212 /* All edges should lead from a component with higher number to the
213 one with lower one. */
214 gcc_assert (g
->vertices
[e
->src
].component
>= g
->vertices
[e
->dest
].component
);
216 if (g
->vertices
[e
->src
].component
!= g
->vertices
[e
->dest
].component
)
219 real
->flags
|= EDGE_IRREDUCIBLE_LOOP
;
220 if (flow_bb_inside_loop_p (real
->src
->loop_father
, real
->dest
))
221 real
->src
->flags
|= BB_IRREDUCIBLE_LOOP
;
224 /* Runs CALLBACK for all edges in G. */
227 for_each_edge (struct graph
*g
,
228 void (callback
) (struct graph
*, struct edge
*))
233 for (i
= 0; i
< g
->n_vertices
; i
++)
234 for (e
= g
->vertices
[i
].succ
; e
; e
= e
->succ_next
)
238 /* Releases the memory occupied by G. */
241 free_graph (struct graph
*g
)
246 for (i
= 0; i
< g
->n_vertices
; i
++)
247 for (e
= g
->vertices
[i
].succ
; e
; e
= n
)
256 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
257 throw away all latch edges and mark blocks inside any remaining cycle.
258 Everything is a bit complicated due to fact we do not want to do this
259 for parts of cycles that only "pass" through some loop -- i.e. for
260 each cycle, we want to mark blocks that belong directly to innermost
261 loop containing the whole cycle.
263 LOOPS is the loop tree. */
265 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
266 #define BB_REPR(BB) ((BB)->index + 1)
269 mark_irreducible_loops (struct loops
*loops
)
276 int *queue1
= XNEWVEC (int, last_basic_block
+ loops
->num
);
277 int *queue2
= XNEWVEC (int, last_basic_block
+ loops
->num
);
281 /* Reset the flags. */
282 FOR_BB_BETWEEN (act
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
284 act
->flags
&= ~BB_IRREDUCIBLE_LOOP
;
285 FOR_EACH_EDGE (e
, ei
, act
->succs
)
286 e
->flags
&= ~EDGE_IRREDUCIBLE_LOOP
;
289 /* Create the edge lists. */
290 g
= new_graph (last_basic_block
+ loops
->num
);
292 FOR_BB_BETWEEN (act
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
293 FOR_EACH_EDGE (e
, ei
, act
->succs
)
295 /* Ignore edges to exit. */
296 if (e
->dest
== EXIT_BLOCK_PTR
)
299 /* And latch edges. */
300 if (e
->dest
->loop_father
->header
== e
->dest
301 && e
->dest
->loop_father
->latch
== act
)
304 /* Edges inside a single loop should be left where they are. Edges
305 to subloop headers should lead to representative of the subloop,
306 but from the same place.
308 Edges exiting loops should lead from representative
309 of the son of nearest common ancestor of the loops in that
313 dest
= BB_REPR (e
->dest
);
315 if (e
->dest
->loop_father
->header
== e
->dest
)
316 dest
= LOOP_REPR (e
->dest
->loop_father
);
318 if (!flow_bb_inside_loop_p (act
->loop_father
, e
->dest
))
320 depth
= find_common_loop (act
->loop_father
,
321 e
->dest
->loop_father
)->depth
+ 1;
322 if (depth
== act
->loop_father
->depth
)
323 cloop
= act
->loop_father
;
325 cloop
= act
->loop_father
->pred
[depth
];
327 src
= LOOP_REPR (cloop
);
330 add_edge (g
, src
, dest
, e
);
333 /* Find the strongly connected components. Use the algorithm of Tarjan --
334 first determine the postorder dfs numbering in reversed graph, then
335 run the dfs on the original graph in the order given by decreasing
336 numbers assigned by the previous pass. */
338 FOR_BB_BETWEEN (act
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
340 queue1
[nq
++] = BB_REPR (act
);
342 for (i
= 1; i
< (int) loops
->num
; i
++)
343 if (loops
->parray
[i
])
344 queue1
[nq
++] = LOOP_REPR (loops
->parray
[i
]);
345 dfs (g
, queue1
, nq
, queue2
, false);
346 for (i
= 0; i
< nq
; i
++)
347 queue1
[i
] = queue2
[nq
- i
- 1];
348 dfs (g
, queue1
, nq
, NULL
, true);
350 /* Mark the irreducible loops. */
351 for_each_edge (g
, check_irred
);
357 loops
->state
|= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS
;
360 /* Counts number of insns inside LOOP. */
362 num_loop_insns (struct loop
*loop
)
364 basic_block
*bbs
, bb
;
365 unsigned i
, ninsns
= 0;
368 bbs
= get_loop_body (loop
);
369 for (i
= 0; i
< loop
->num_nodes
; i
++)
373 for (insn
= BB_HEAD (bb
); insn
!= BB_END (bb
); insn
= NEXT_INSN (insn
))
382 /* Counts number of insns executed on average per iteration LOOP. */
384 average_num_loop_insns (struct loop
*loop
)
386 basic_block
*bbs
, bb
;
387 unsigned i
, binsns
, ninsns
, ratio
;
391 bbs
= get_loop_body (loop
);
392 for (i
= 0; i
< loop
->num_nodes
; i
++)
397 for (insn
= BB_HEAD (bb
); insn
!= BB_END (bb
); insn
= NEXT_INSN (insn
))
401 ratio
= loop
->header
->frequency
== 0
403 : (bb
->frequency
* BB_FREQ_MAX
) / loop
->header
->frequency
;
404 ninsns
+= binsns
* ratio
;
408 ninsns
/= BB_FREQ_MAX
;
410 ninsns
= 1; /* To avoid division by zero. */
415 /* Returns expected number of LOOP iterations.
416 Compute upper bound on number of iterations in case they do not fit integer
417 to help loop peeling heuristics. Use exact counts if at all possible. */
419 expected_loop_iterations (const struct loop
*loop
)
424 if (loop
->latch
->count
|| loop
->header
->count
)
426 gcov_type count_in
, count_latch
, expected
;
431 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
432 if (e
->src
== loop
->latch
)
433 count_latch
= e
->count
;
435 count_in
+= e
->count
;
438 expected
= count_latch
* 2;
440 expected
= (count_latch
+ count_in
- 1) / count_in
;
442 /* Avoid overflows. */
443 return (expected
> REG_BR_PROB_BASE
? REG_BR_PROB_BASE
: expected
);
447 int freq_in
, freq_latch
;
452 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
453 if (e
->src
== loop
->latch
)
454 freq_latch
= EDGE_FREQUENCY (e
);
456 freq_in
+= EDGE_FREQUENCY (e
);
459 return freq_latch
* 2;
461 return (freq_latch
+ freq_in
- 1) / freq_in
;
465 /* Returns the maximum level of nesting of subloops of LOOP. */
468 get_loop_level (const struct loop
*loop
)
470 const struct loop
*ploop
;
473 for (ploop
= loop
->inner
; ploop
; ploop
= ploop
->next
)
475 l
= get_loop_level (ploop
);
482 /* Returns estimate on cost of computing SEQ. */
490 for (; seq
; seq
= NEXT_INSN (seq
))
492 set
= single_set (seq
);
494 cost
+= rtx_cost (set
, SET
);
502 /* The properties of the target. */
504 unsigned target_avail_regs
; /* Number of available registers. */
505 unsigned target_res_regs
; /* Number of reserved registers. */
506 unsigned target_small_cost
; /* The cost for register when there is a free one. */
507 unsigned target_pres_cost
; /* The cost for register when there are not too many
509 unsigned target_spill_cost
; /* The cost for register when we need to spill. */
511 /* Initialize the constants for computing set costs. */
514 init_set_costs (void)
517 rtx reg1
= gen_raw_REG (SImode
, FIRST_PSEUDO_REGISTER
);
518 rtx reg2
= gen_raw_REG (SImode
, FIRST_PSEUDO_REGISTER
+ 1);
519 rtx addr
= gen_raw_REG (Pmode
, FIRST_PSEUDO_REGISTER
+ 2);
520 rtx mem
= validize_mem (gen_rtx_MEM (SImode
, addr
));
523 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
524 if (TEST_HARD_REG_BIT (reg_class_contents
[GENERAL_REGS
], i
)
530 /* These are really just heuristic values. */
533 emit_move_insn (reg1
, reg2
);
536 target_small_cost
= seq_cost (seq
);
537 target_pres_cost
= 2 * target_small_cost
;
540 emit_move_insn (mem
, reg1
);
541 emit_move_insn (reg2
, mem
);
544 target_spill_cost
= seq_cost (seq
);
547 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
548 number of global registers used in loop. N_USES is the number of relevant
552 global_cost_for_size (unsigned size
, unsigned regs_used
, unsigned n_uses
)
554 unsigned regs_needed
= regs_used
+ size
;
557 if (regs_needed
+ target_res_regs
<= target_avail_regs
)
558 cost
+= target_small_cost
* size
;
559 else if (regs_needed
<= target_avail_regs
)
560 cost
+= target_pres_cost
* size
;
563 cost
+= target_pres_cost
* size
;
564 cost
+= target_spill_cost
* n_uses
* (regs_needed
- target_avail_regs
) / regs_needed
;
570 /* Sets EDGE_LOOP_EXIT flag for all exits of LOOPS. */
573 mark_loop_exit_edges (struct loops
*loops
)
585 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
587 if (bb
->loop_father
->outer
588 && loop_exit_edge_p (bb
->loop_father
, e
))
589 e
->flags
|= EDGE_LOOP_EXIT
;
591 e
->flags
&= ~EDGE_LOOP_EXIT
;