Merge from branches/gcc-4_8-branch up to rev 207411.
[official-gcc.git] / gcc-4_8-branch / gcc / config / mips / mips.h
blobd6e721d30f5d9d725d0f9a09035e09aff2120f55
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989-2013 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 #include "config/vxworks-dummy.h"
27 #ifdef GENERATOR_FILE
28 /* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30 extern int target_flags_explicit;
31 #endif
33 /* MIPS external variables defined in mips.c. */
35 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
37 to work on a 64-bit machine. */
39 #define ABI_32 0
40 #define ABI_N32 1
41 #define ABI_64 2
42 #define ABI_EABI 3
43 #define ABI_O64 4
45 /* Masks that affect tuning.
47 PTF_AVOID_BRANCHLIKELY
48 Set if it is usually not profitable to use branch-likely instructions
49 for this target, typically because the branches are always predicted
50 taken and so incur a large overhead when not taken. */
51 #define PTF_AVOID_BRANCHLIKELY 0x1
53 /* Information about one recognized processor. Defined here for the
54 benefit of TARGET_CPU_CPP_BUILTINS. */
55 struct mips_cpu_info {
56 /* The 'canonical' name of the processor as far as GCC is concerned.
57 It's typically a manufacturer's prefix followed by a numerical
58 designation. It should be lowercase. */
59 const char *name;
61 /* The internal processor number that most closely matches this
62 entry. Several processors can have the same value, if there's no
63 difference between them from GCC's point of view. */
64 enum processor cpu;
66 /* The ISA level that the processor implements. */
67 int isa;
69 /* A mask of PTF_* values. */
70 unsigned int tune_flags;
73 #include "config/mips/mips-opts.h"
75 /* Macros to silence warnings about numbers being signed in traditional
76 C and unsigned in ISO C when compiled on 32-bit hosts. */
78 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
79 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
80 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
83 /* Run-time compilation parameters selecting different hardware subsets. */
85 /* True if we are generating position-independent VxWorks RTP code. */
86 #define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
88 /* True if the output file is marked as ".abicalls; .option pic0"
89 (-call_nonpic). */
90 #define TARGET_ABICALLS_PIC0 \
91 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
93 /* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
94 #define TARGET_ABICALLS_PIC2 \
95 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
97 /* True if the call patterns should be split into a jalr followed by
98 an instruction to restore $gp. It is only safe to split the load
99 from the call when every use of $gp is explicit.
101 See mips_must_initialize_gp_p for details about how we manage the
102 global pointer. */
104 #define TARGET_SPLIT_CALLS \
105 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
107 /* True if we're generating a form of -mabicalls in which we can use
108 operators like %hi and %lo to refer to locally-binding symbols.
109 We can only do this for -mno-shared, and only then if we can use
110 relocation operations instead of assembly macros. It isn't really
111 worth using absolute sequences for 64-bit symbols because GOT
112 accesses are so much shorter. */
114 #define TARGET_ABSOLUTE_ABICALLS \
115 (TARGET_ABICALLS \
116 && !TARGET_SHARED \
117 && TARGET_EXPLICIT_RELOCS \
118 && !ABI_HAS_64BIT_SYMBOLS)
120 /* True if we can optimize sibling calls. For simplicity, we only
121 handle cases in which call_insn_operand will reject invalid
122 sibcall addresses. There are two cases in which this isn't true:
124 - TARGET_MIPS16. call_insn_operand accepts constant addresses
125 but there is no direct jump instruction. It isn't worth
126 using sibling calls in this case anyway; they would usually
127 be longer than normal calls.
129 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
130 accepts global constants, but all sibcalls must be indirect. */
131 #define TARGET_SIBCALLS \
132 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
134 /* True if we need to use a global offset table to access some symbols. */
135 #define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
137 /* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
138 #define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
140 /* True if TARGET_USE_GOT and if $gp is a call-saved register. */
141 #define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
143 /* True if we should use .cprestore to store to the cprestore slot.
145 We continue to use .cprestore for explicit-reloc code so that JALs
146 inside inline asms will work correctly. */
147 #define TARGET_CPRESTORE_DIRECTIVE \
148 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
150 /* True if we can use the J and JAL instructions. */
151 #define TARGET_ABSOLUTE_JUMPS \
152 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
154 /* True if indirect calls must use register class PIC_FN_ADDR_REG.
155 This is true for both the PIC and non-PIC VxWorks RTP modes. */
156 #define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
158 /* True if .gpword or .gpdword should be used for switch tables. */
159 #define TARGET_GPWORD \
160 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
162 /* True if the output must have a writable .eh_frame.
163 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
164 #ifdef HAVE_LD_PERSONALITY_RELAXATION
165 #define TARGET_WRITABLE_EH_FRAME 0
166 #else
167 #define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
168 #endif
170 /* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
171 #ifdef HAVE_AS_DSPR1_MULT
172 #define ISA_HAS_DSP_MULT ISA_HAS_DSP
173 #else
174 #define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
175 #endif
177 /* Generate mips16 code */
178 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
179 /* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
180 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
181 /* Generate mips16e register save/restore sequences. */
182 #define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
184 /* True if we're generating a form of MIPS16 code in which general
185 text loads are allowed. */
186 #define TARGET_MIPS16_TEXT_LOADS \
187 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
189 /* True if we're generating a form of MIPS16 code in which PC-relative
190 loads are allowed. */
191 #define TARGET_MIPS16_PCREL_LOADS \
192 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
194 /* Generic ISA defines. */
195 #define ISA_MIPS1 (mips_isa == 1)
196 #define ISA_MIPS2 (mips_isa == 2)
197 #define ISA_MIPS3 (mips_isa == 3)
198 #define ISA_MIPS4 (mips_isa == 4)
199 #define ISA_MIPS32 (mips_isa == 32)
200 #define ISA_MIPS32R2 (mips_isa == 33)
201 #define ISA_MIPS64 (mips_isa == 64)
202 #define ISA_MIPS64R2 (mips_isa == 65)
204 /* Architecture target defines. */
205 #define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
206 #define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
207 #define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
208 #define TARGET_LOONGSON_3A (mips_arch == PROCESSOR_LOONGSON_3A)
209 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
210 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
211 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
212 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
213 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
214 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
215 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
216 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
217 #define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
218 || mips_arch == PROCESSOR_OCTEON2)
219 #define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2)
220 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
221 || mips_arch == PROCESSOR_SB1A)
222 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
223 #define TARGET_XLP (mips_arch == PROCESSOR_XLP)
225 /* Scheduling target defines. */
226 #define TUNE_20KC (mips_tune == PROCESSOR_20KC)
227 #define TUNE_24K (mips_tune == PROCESSOR_24KC \
228 || mips_tune == PROCESSOR_24KF2_1 \
229 || mips_tune == PROCESSOR_24KF1_1)
230 #define TUNE_74K (mips_tune == PROCESSOR_74KC \
231 || mips_tune == PROCESSOR_74KF2_1 \
232 || mips_tune == PROCESSOR_74KF1_1 \
233 || mips_tune == PROCESSOR_74KF3_2)
234 #define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
235 || mips_tune == PROCESSOR_LOONGSON_2F)
236 #define TUNE_LOONGSON_3A (mips_tune == PROCESSOR_LOONGSON_3A)
237 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
238 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
239 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
240 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
241 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
242 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
243 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
244 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
245 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
246 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
247 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
248 #define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
249 || mips_tune == PROCESSOR_OCTEON2)
250 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
251 || mips_tune == PROCESSOR_SB1A)
253 /* Whether vector modes and intrinsics for ST Microelectronics
254 Loongson-2E/2F processors should be enabled. In o32 pairs of
255 floating-point registers provide 64-bit values. */
256 #define TARGET_LOONGSON_VECTORS (TARGET_HARD_FLOAT_ABI \
257 && (TARGET_LOONGSON_2EF \
258 || TARGET_LOONGSON_3A))
260 /* True if the pre-reload scheduler should try to create chains of
261 multiply-add or multiply-subtract instructions. For example,
262 suppose we have:
264 t1 = a * b
265 t2 = t1 + c * d
266 t3 = e * f
267 t4 = t3 - g * h
269 t1 will have a higher priority than t2 and t3 will have a higher
270 priority than t4. However, before reload, there is no dependence
271 between t1 and t3, and they can often have similar priorities.
272 The scheduler will then tend to prefer:
274 t1 = a * b
275 t3 = e * f
276 t2 = t1 + c * d
277 t4 = t3 - g * h
279 which stops us from making full use of macc/madd-style instructions.
280 This sort of situation occurs frequently in Fourier transforms and
281 in unrolled loops.
283 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
284 queue so that chained multiply-add and multiply-subtract instructions
285 appear ahead of any other instruction that is likely to clobber lo.
286 In the example above, if t2 and t3 become ready at the same time,
287 the code ensures that t2 is scheduled first.
289 Multiply-accumulate instructions are a bigger win for some targets
290 than others, so this macro is defined on an opt-in basis. */
291 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
292 || TUNE_MIPS4120 \
293 || TUNE_MIPS4130 \
294 || TUNE_24K)
296 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
297 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
299 /* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
300 directly accessible, while the command-line options select
301 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
302 in use. */
303 #define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
304 #define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
306 /* False if SC acts as a memory barrier with respect to itself,
307 otherwise a SYNC will be emitted after SC for atomic operations
308 that require ordering between the SC and following loads and
309 stores. It does not tell anything about ordering of loads and
310 stores prior to and following the SC, only about the SC itself and
311 those loads and stores follow it. */
312 #define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
314 /* Define preprocessor macros for the -march and -mtune options.
315 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
316 processor. If INFO's canonical name is "foo", define PREFIX to
317 be "foo", and define an additional macro PREFIX_FOO. */
318 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
319 do \
321 char *macro, *p; \
323 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
324 for (p = macro; *p != 0; p++) \
325 if (*p == '+') \
326 *p = 'P'; \
327 else \
328 *p = TOUPPER (*p); \
330 builtin_define (macro); \
331 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
332 free (macro); \
334 while (0)
336 /* Target CPU builtins. */
337 #define TARGET_CPU_CPP_BUILTINS() \
338 do \
340 builtin_assert ("machine=mips"); \
341 builtin_assert ("cpu=mips"); \
342 builtin_define ("__mips__"); \
343 builtin_define ("_mips"); \
345 /* We do this here because __mips is defined below and so we \
346 can't use builtin_define_std. We don't ever want to define \
347 "mips" for VxWorks because some of the VxWorks headers \
348 construct include filenames from a root directory macro, \
349 an architecture macro and a filename, where the architecture \
350 macro expands to 'mips'. If we define 'mips' to 1, the \
351 architecture macro expands to 1 as well. */ \
352 if (!flag_iso && !TARGET_VXWORKS) \
353 builtin_define ("mips"); \
355 if (TARGET_64BIT) \
356 builtin_define ("__mips64"); \
358 /* Treat _R3000 and _R4000 like register-size \
359 defines, which is how they've historically \
360 been used. */ \
361 if (TARGET_64BIT) \
363 builtin_define_std ("R4000"); \
364 builtin_define ("_R4000"); \
366 else \
368 builtin_define_std ("R3000"); \
369 builtin_define ("_R3000"); \
372 if (TARGET_FLOAT64) \
373 builtin_define ("__mips_fpr=64"); \
374 else \
375 builtin_define ("__mips_fpr=32"); \
377 if (mips_base_mips16) \
378 builtin_define ("__mips16"); \
380 if (TARGET_MIPS3D) \
381 builtin_define ("__mips3d"); \
383 if (TARGET_SMARTMIPS) \
384 builtin_define ("__mips_smartmips"); \
386 if (TARGET_MCU) \
387 builtin_define ("__mips_mcu"); \
389 if (TARGET_DSP) \
391 builtin_define ("__mips_dsp"); \
392 if (TARGET_DSPR2) \
394 builtin_define ("__mips_dspr2"); \
395 builtin_define ("__mips_dsp_rev=2"); \
397 else \
398 builtin_define ("__mips_dsp_rev=1"); \
401 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
402 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
404 if (ISA_MIPS1) \
406 builtin_define ("__mips=1"); \
407 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
409 else if (ISA_MIPS2) \
411 builtin_define ("__mips=2"); \
412 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
414 else if (ISA_MIPS3) \
416 builtin_define ("__mips=3"); \
417 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
419 else if (ISA_MIPS4) \
421 builtin_define ("__mips=4"); \
422 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
424 else if (ISA_MIPS32) \
426 builtin_define ("__mips=32"); \
427 builtin_define ("__mips_isa_rev=1"); \
428 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
430 else if (ISA_MIPS32R2) \
432 builtin_define ("__mips=32"); \
433 builtin_define ("__mips_isa_rev=2"); \
434 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
436 else if (ISA_MIPS64) \
438 builtin_define ("__mips=64"); \
439 builtin_define ("__mips_isa_rev=1"); \
440 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
442 else if (ISA_MIPS64R2) \
444 builtin_define ("__mips=64"); \
445 builtin_define ("__mips_isa_rev=2"); \
446 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
449 switch (mips_abi) \
451 case ABI_32: \
452 builtin_define ("_ABIO32=1"); \
453 builtin_define ("_MIPS_SIM=_ABIO32"); \
454 break; \
456 case ABI_N32: \
457 builtin_define ("_ABIN32=2"); \
458 builtin_define ("_MIPS_SIM=_ABIN32"); \
459 break; \
461 case ABI_64: \
462 builtin_define ("_ABI64=3"); \
463 builtin_define ("_MIPS_SIM=_ABI64"); \
464 break; \
466 case ABI_O64: \
467 builtin_define ("_ABIO64=4"); \
468 builtin_define ("_MIPS_SIM=_ABIO64"); \
469 break; \
472 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
473 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
474 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
475 builtin_define_with_int_value ("_MIPS_FPSET", \
476 32 / MAX_FPRS_PER_FMT); \
478 /* These defines reflect the ABI in use, not whether the \
479 FPU is directly accessible. */ \
480 if (TARGET_NO_FLOAT) \
481 builtin_define ("__mips_no_float"); \
482 else if (TARGET_HARD_FLOAT_ABI) \
483 builtin_define ("__mips_hard_float"); \
484 else \
485 builtin_define ("__mips_soft_float"); \
487 if (TARGET_SINGLE_FLOAT) \
488 builtin_define ("__mips_single_float"); \
490 if (TARGET_PAIRED_SINGLE_FLOAT) \
491 builtin_define ("__mips_paired_single_float"); \
493 if (TARGET_BIG_ENDIAN) \
495 builtin_define_std ("MIPSEB"); \
496 builtin_define ("_MIPSEB"); \
498 else \
500 builtin_define_std ("MIPSEL"); \
501 builtin_define ("_MIPSEL"); \
504 /* Whether calls should go through $25. The separate __PIC__ \
505 macro indicates whether abicalls code might use a GOT. */ \
506 if (TARGET_ABICALLS) \
507 builtin_define ("__mips_abicalls"); \
509 /* Whether Loongson vector modes are enabled. */ \
510 if (TARGET_LOONGSON_VECTORS) \
511 builtin_define ("__mips_loongson_vector_rev"); \
513 /* Historical Octeon macro. */ \
514 if (TARGET_OCTEON) \
515 builtin_define ("__OCTEON__"); \
517 if (TARGET_SYNCI) \
518 builtin_define ("__mips_synci"); \
520 /* Macros dependent on the C dialect. */ \
521 if (preprocessing_asm_p ()) \
523 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
524 builtin_define ("_LANGUAGE_ASSEMBLY"); \
526 else if (c_dialect_cxx ()) \
528 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
529 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
530 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
532 else \
534 builtin_define_std ("LANGUAGE_C"); \
535 builtin_define ("_LANGUAGE_C"); \
537 if (c_dialect_objc ()) \
539 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
540 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
541 /* Bizarre, but retained for backwards compatibility. */ \
542 builtin_define_std ("LANGUAGE_C"); \
543 builtin_define ("_LANGUAGE_C"); \
546 if (mips_abi == ABI_EABI) \
547 builtin_define ("__mips_eabi"); \
549 if (TARGET_CACHE_BUILTIN) \
550 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
552 while (0)
554 /* Default target_flags if no switches are specified */
556 #ifndef TARGET_DEFAULT
557 #define TARGET_DEFAULT 0
558 #endif
560 #ifndef TARGET_CPU_DEFAULT
561 #define TARGET_CPU_DEFAULT 0
562 #endif
564 #ifndef TARGET_ENDIAN_DEFAULT
565 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
566 #endif
568 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
569 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
570 #endif
572 #ifdef IN_LIBGCC2
573 #undef TARGET_64BIT
574 /* Make this compile time constant for libgcc2 */
575 #ifdef __mips64
576 #define TARGET_64BIT 1
577 #else
578 #define TARGET_64BIT 0
579 #endif
580 #endif /* IN_LIBGCC2 */
582 /* Force the call stack unwinders in unwind.inc not to be MIPS16 code
583 when compiled with hardware floating point. This is because MIPS16
584 code cannot save and restore the floating-point registers, which is
585 important if in a mixed MIPS16/non-MIPS16 environment. */
587 #ifdef IN_LIBGCC2
588 #if __mips_hard_float
589 #define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
590 #endif
591 #endif /* IN_LIBGCC2 */
593 #define TARGET_LIBGCC_SDATA_SECTION ".sdata"
595 #ifndef MULTILIB_ENDIAN_DEFAULT
596 #if TARGET_ENDIAN_DEFAULT == 0
597 #define MULTILIB_ENDIAN_DEFAULT "EL"
598 #else
599 #define MULTILIB_ENDIAN_DEFAULT "EB"
600 #endif
601 #endif
603 #ifndef MULTILIB_ISA_DEFAULT
604 # if MIPS_ISA_DEFAULT == 1
605 # define MULTILIB_ISA_DEFAULT "mips1"
606 # else
607 # if MIPS_ISA_DEFAULT == 2
608 # define MULTILIB_ISA_DEFAULT "mips2"
609 # else
610 # if MIPS_ISA_DEFAULT == 3
611 # define MULTILIB_ISA_DEFAULT "mips3"
612 # else
613 # if MIPS_ISA_DEFAULT == 4
614 # define MULTILIB_ISA_DEFAULT "mips4"
615 # else
616 # if MIPS_ISA_DEFAULT == 32
617 # define MULTILIB_ISA_DEFAULT "mips32"
618 # else
619 # if MIPS_ISA_DEFAULT == 33
620 # define MULTILIB_ISA_DEFAULT "mips32r2"
621 # else
622 # if MIPS_ISA_DEFAULT == 64
623 # define MULTILIB_ISA_DEFAULT "mips64"
624 # else
625 # if MIPS_ISA_DEFAULT == 65
626 # define MULTILIB_ISA_DEFAULT "mips64r2"
627 # else
628 # define MULTILIB_ISA_DEFAULT "mips1"
629 # endif
630 # endif
631 # endif
632 # endif
633 # endif
634 # endif
635 # endif
636 # endif
637 #endif
639 #ifndef MIPS_ABI_DEFAULT
640 #define MIPS_ABI_DEFAULT ABI_32
641 #endif
643 /* Use the most portable ABI flag for the ASM specs. */
645 #if MIPS_ABI_DEFAULT == ABI_32
646 #define MULTILIB_ABI_DEFAULT "mabi=32"
647 #endif
649 #if MIPS_ABI_DEFAULT == ABI_O64
650 #define MULTILIB_ABI_DEFAULT "mabi=o64"
651 #endif
653 #if MIPS_ABI_DEFAULT == ABI_N32
654 #define MULTILIB_ABI_DEFAULT "mabi=n32"
655 #endif
657 #if MIPS_ABI_DEFAULT == ABI_64
658 #define MULTILIB_ABI_DEFAULT "mabi=64"
659 #endif
661 #if MIPS_ABI_DEFAULT == ABI_EABI
662 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
663 #endif
665 #ifndef MULTILIB_DEFAULTS
666 #define MULTILIB_DEFAULTS \
667 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
668 #endif
670 /* We must pass -EL to the linker by default for little endian embedded
671 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
672 linker will default to using big-endian output files. The OUTPUT_FORMAT
673 line must be in the linker script, otherwise -EB/-EL will not work. */
675 #ifndef ENDIAN_SPEC
676 #if TARGET_ENDIAN_DEFAULT == 0
677 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
678 #else
679 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
680 #endif
681 #endif
683 /* A spec condition that matches all non-mips16 -mips arguments. */
685 #define MIPS_ISA_LEVEL_OPTION_SPEC \
686 "mips1|mips2|mips3|mips4|mips32*|mips64*"
688 /* A spec condition that matches all non-mips16 architecture arguments. */
690 #define MIPS_ARCH_OPTION_SPEC \
691 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
693 /* A spec that infers a -mips argument from an -march argument,
694 or injects the default if no architecture is specified. */
696 #define MIPS_ISA_LEVEL_SPEC \
697 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
698 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
699 %{march=mips2|march=r6000:-mips2} \
700 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
701 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
702 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
703 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
704 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
705 |march=34k*|march=74k*|march=1004k*: -mips32r2} \
706 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
707 |march=xlr|march=loongson3a: -mips64} \
708 %{march=mips64r2|march=octeon|march=xlp: -mips64r2} \
709 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
711 /* A spec that infers a -mhard-float or -msoft-float setting from an
712 -march argument. Note that soft-float and hard-float code are not
713 link-compatible. */
715 #define MIPS_ARCH_FLOAT_SPEC \
716 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
717 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
718 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
719 |march=octeon|march=xlr: -msoft-float; \
720 march=*: -mhard-float}"
722 /* A spec condition that matches 32-bit options. It only works if
723 MIPS_ISA_LEVEL_SPEC has been applied. */
725 #define MIPS_32BIT_OPTION_SPEC \
726 "mips1|mips2|mips32*|mgp32"
728 /* Infer a -msynci setting from a -mips argument, on the assumption that
729 -msynci is desired where possible. */
730 #define MIPS_ISA_SYNCI_SPEC \
731 "%{msynci|mno-synci:;:%{mips32r2|mips64r2:-msynci;:-mno-synci}}"
733 #if MIPS_ABI_DEFAULT == ABI_O64 \
734 || MIPS_ABI_DEFAULT == ABI_N32 \
735 || MIPS_ABI_DEFAULT == ABI_64
736 #define OPT_ARCH64 "mabi=32|mgp32:;"
737 #define OPT_ARCH32 "mabi=32|mgp32"
738 #else
739 #define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
740 #define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
741 #endif
743 /* Support for a compile-time default CPU, et cetera. The rules are:
744 --with-arch is ignored if -march is specified or a -mips is specified
745 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
746 --with-tune is ignored if -mtune is specified; likewise
747 --with-tune-32 and --with-tune-64.
748 --with-abi is ignored if -mabi is specified.
749 --with-float is ignored if -mhard-float or -msoft-float are
750 specified.
751 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
752 specified. */
753 #define OPTION_DEFAULT_SPECS \
754 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
755 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
756 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
757 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
758 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
759 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
760 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
761 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
762 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
763 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
764 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
765 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }
767 /* A spec that infers the -mdsp setting from an -march argument. */
768 #define BASE_DRIVER_SELF_SPECS \
769 "%{!mno-dsp: \
770 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k*: -mdsp} \
771 %{march=74k*:%{!mno-dspr2: -mdspr2 -mdsp}}}"
773 #define DRIVER_SELF_SPECS BASE_DRIVER_SELF_SPECS
775 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
776 && ISA_HAS_COND_TRAP)
778 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
780 /* True if the ABI can only work with 64-bit integer registers. We
781 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
782 otherwise floating-point registers must also be 64-bit. */
783 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
785 /* Likewise for 32-bit regs. */
786 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
788 /* True if the file format uses 64-bit symbols. At present, this is
789 only true for n64, which uses 64-bit ELF. */
790 #define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
792 /* True if symbols are 64 bits wide. This is usually determined by
793 the ABI's file format, but it can be overridden by -msym32. Note that
794 overriding the size with -msym32 changes the ABI of relocatable objects,
795 although it doesn't change the ABI of a fully-linked object. */
796 #define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
797 && Pmode == DImode \
798 && !TARGET_SYM32)
800 /* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
801 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
802 || ISA_MIPS4 \
803 || ISA_MIPS64 \
804 || ISA_MIPS64R2)
806 /* ISA has branch likely instructions (e.g. mips2). */
807 /* Disable branchlikely for tx39 until compare rewrite. They haven't
808 been generated up to this point. */
809 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
811 /* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
812 #define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
813 || TARGET_MIPS5400 \
814 || TARGET_MIPS5500 \
815 || TARGET_MIPS7000 \
816 || TARGET_MIPS9000 \
817 || TARGET_MAD \
818 || ISA_MIPS32 \
819 || ISA_MIPS32R2 \
820 || ISA_MIPS64 \
821 || ISA_MIPS64R2) \
822 && !TARGET_MIPS16)
824 /* ISA has a three-operand multiplication instruction. */
825 #define ISA_HAS_DMUL3 (TARGET_64BIT \
826 && TARGET_OCTEON \
827 && !TARGET_MIPS16)
829 /* ISA has the floating-point conditional move instructions introduced
830 in mips4. */
831 #define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
832 || ISA_MIPS32 \
833 || ISA_MIPS32R2 \
834 || ISA_MIPS64 \
835 || ISA_MIPS64R2) \
836 && !TARGET_MIPS5500 \
837 && !TARGET_MIPS16)
839 /* ISA has the integer conditional move instructions introduced in mips4 and
840 ST Loongson 2E/2F. */
841 #define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE || TARGET_LOONGSON_2EF)
843 /* ISA has LDC1 and SDC1. */
844 #define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 && !TARGET_MIPS16)
846 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
847 branch on CC, and move (both FP and non-FP) on CC. */
848 #define ISA_HAS_8CC (ISA_MIPS4 \
849 || ISA_MIPS32 \
850 || ISA_MIPS32R2 \
851 || ISA_MIPS64 \
852 || ISA_MIPS64R2)
854 /* This is a catch all for other mips4 instructions: indexed load, the
855 FP madd and msub instructions, and the FP recip and recip sqrt
856 instructions. */
857 #define ISA_HAS_FP4 ((ISA_MIPS4 \
858 || (ISA_MIPS32R2 && TARGET_FLOAT64) \
859 || ISA_MIPS64 \
860 || ISA_MIPS64R2) \
861 && !TARGET_MIPS16)
863 /* ISA has paired-single instructions. */
864 #define ISA_HAS_PAIRED_SINGLE (ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2)
866 /* ISA has conditional trap instructions. */
867 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
868 && !TARGET_MIPS16)
870 /* ISA has integer multiply-accumulate instructions, madd and msub. */
871 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
872 || ISA_MIPS32R2 \
873 || ISA_MIPS64 \
874 || ISA_MIPS64R2) \
875 && !TARGET_MIPS16)
877 /* Integer multiply-accumulate instructions should be generated. */
878 #define GENERATE_MADD_MSUB (ISA_HAS_MADD_MSUB && !TUNE_74K)
880 /* ISA has floating-point madd and msub instructions 'd = a * b [+-] c'. */
881 #define ISA_HAS_FP_MADD4_MSUB4 ISA_HAS_FP4
883 /* ISA has floating-point madd and msub instructions 'c = a * b [+-] c'. */
884 #define ISA_HAS_FP_MADD3_MSUB3 TARGET_LOONGSON_2EF
886 /* ISA has floating-point nmadd and nmsub instructions
887 'd = -((a * b) [+-] c)'. */
888 #define ISA_HAS_NMADD4_NMSUB4(MODE) \
889 ((ISA_MIPS4 \
890 || (ISA_MIPS32R2 && (MODE) == V2SFmode) \
891 || ISA_MIPS64 \
892 || ISA_MIPS64R2) \
893 && (!TARGET_MIPS5400 || TARGET_MAD) \
894 && !TARGET_MIPS16)
896 /* ISA has floating-point nmadd and nmsub instructions
897 'c = -((a * b) [+-] c)'. */
898 #define ISA_HAS_NMADD3_NMSUB3(MODE) \
899 TARGET_LOONGSON_2EF
901 /* ISA has count leading zeroes/ones instruction (not implemented). */
902 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
903 || ISA_MIPS32R2 \
904 || ISA_MIPS64 \
905 || ISA_MIPS64R2) \
906 && !TARGET_MIPS16)
908 /* ISA has three operand multiply instructions that put
909 the high part in an accumulator: mulhi or mulhiu. */
910 #define ISA_HAS_MULHI ((TARGET_MIPS5400 \
911 || TARGET_MIPS5500 \
912 || TARGET_SR71K) \
913 && !TARGET_MIPS16)
915 /* ISA has three operand multiply instructions that
916 negates the result and puts the result in an accumulator. */
917 #define ISA_HAS_MULS ((TARGET_MIPS5400 \
918 || TARGET_MIPS5500 \
919 || TARGET_SR71K) \
920 && !TARGET_MIPS16)
922 /* ISA has three operand multiply instructions that subtracts the
923 result from a 4th operand and puts the result in an accumulator. */
924 #define ISA_HAS_MSAC ((TARGET_MIPS5400 \
925 || TARGET_MIPS5500 \
926 || TARGET_SR71K) \
927 && !TARGET_MIPS16)
929 /* ISA has three operand multiply instructions that the result
930 from a 4th operand and puts the result in an accumulator. */
931 #define ISA_HAS_MACC ((TARGET_MIPS4120 \
932 || TARGET_MIPS4130 \
933 || TARGET_MIPS5400 \
934 || TARGET_MIPS5500 \
935 || TARGET_SR71K) \
936 && !TARGET_MIPS16)
938 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
939 #define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
940 || TARGET_MIPS4130) \
941 && !TARGET_MIPS16)
943 /* ISA has the "ror" (rotate right) instructions. */
944 #define ISA_HAS_ROR ((ISA_MIPS32R2 \
945 || ISA_MIPS64R2 \
946 || TARGET_MIPS5400 \
947 || TARGET_MIPS5500 \
948 || TARGET_SR71K \
949 || TARGET_SMARTMIPS) \
950 && !TARGET_MIPS16)
952 /* ISA has the WSBH (word swap bytes within halfwords) instruction.
953 64-bit targets also provide DSBH and DSHD. */
954 #define ISA_HAS_WSBH ((ISA_MIPS32R2 || ISA_MIPS64R2) \
955 && !TARGET_MIPS16)
957 /* ISA has data prefetch instructions. This controls use of 'pref'. */
958 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
959 || TARGET_LOONGSON_2EF \
960 || ISA_MIPS32 \
961 || ISA_MIPS32R2 \
962 || ISA_MIPS64 \
963 || ISA_MIPS64R2) \
964 && !TARGET_MIPS16)
966 /* ISA has data indexed prefetch instructions. This controls use of
967 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
968 (prefx is a cop1x instruction, so can only be used if FP is
969 enabled.) */
970 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
971 || ISA_MIPS32R2 \
972 || ISA_MIPS64 \
973 || ISA_MIPS64R2) \
974 && !TARGET_MIPS16)
976 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
977 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
978 also requires TARGET_DOUBLE_FLOAT. */
979 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
981 /* ISA includes the MIPS32r2 seb and seh instructions. */
982 #define ISA_HAS_SEB_SEH ((ISA_MIPS32R2 \
983 || ISA_MIPS64R2) \
984 && !TARGET_MIPS16)
986 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
987 #define ISA_HAS_EXT_INS ((ISA_MIPS32R2 \
988 || ISA_MIPS64R2) \
989 && !TARGET_MIPS16)
991 /* ISA has instructions for accessing top part of 64-bit fp regs. */
992 #define ISA_HAS_MXHC1 (TARGET_FLOAT64 \
993 && (ISA_MIPS32R2 \
994 || ISA_MIPS64R2))
996 /* ISA has lwxs instruction (load w/scaled index address. */
997 #define ISA_HAS_LWXS (TARGET_SMARTMIPS && !TARGET_MIPS16)
999 /* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1000 #define ISA_HAS_LBX (TARGET_OCTEON2)
1001 #define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1002 #define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1003 #define ISA_HAS_LHUX (TARGET_OCTEON2)
1004 #define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1005 #define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1006 #define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1007 && TARGET_64BIT)
1009 /* The DSP ASE is available. */
1010 #define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1012 /* Revision 2 of the DSP ASE is available. */
1013 #define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1015 /* True if the result of a load is not available to the next instruction.
1016 A nop will then be needed between instructions like "lw $4,..."
1017 and "addiu $4,$4,1". */
1018 #define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
1019 && !TARGET_MIPS3900 \
1020 && !TARGET_MIPS16)
1022 /* Likewise mtc1 and mfc1. */
1023 #define ISA_HAS_XFER_DELAY (mips_isa <= 3 \
1024 && !TARGET_LOONGSON_2EF)
1026 /* Likewise floating-point comparisons. */
1027 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3 \
1028 && !TARGET_LOONGSON_2EF)
1030 /* True if mflo and mfhi can be immediately followed by instructions
1031 which write to the HI and LO registers.
1033 According to MIPS specifications, MIPS ISAs I, II, and III need
1034 (at least) two instructions between the reads of HI/LO and
1035 instructions which write them, and later ISAs do not. Contradicting
1036 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1037 the UM for the NEC Vr5000) document needing the instructions between
1038 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1039 MIPS64 and later ISAs to have the interlocks, plus any specific
1040 earlier-ISA CPUs for which CPU documentation declares that the
1041 instructions are really interlocked. */
1042 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
1043 || ISA_MIPS32R2 \
1044 || ISA_MIPS64 \
1045 || ISA_MIPS64R2 \
1046 || TARGET_MIPS5500 \
1047 || TARGET_LOONGSON_2EF)
1049 /* ISA includes synci, jr.hb and jalr.hb. */
1050 #define ISA_HAS_SYNCI ((ISA_MIPS32R2 \
1051 || ISA_MIPS64R2) \
1052 && !TARGET_MIPS16)
1054 /* ISA includes sync. */
1055 #define ISA_HAS_SYNC ((mips_isa >= 2 || TARGET_MIPS3900) && !TARGET_MIPS16)
1056 #define GENERATE_SYNC \
1057 (target_flags_explicit & MASK_LLSC \
1058 ? TARGET_LLSC && !TARGET_MIPS16 \
1059 : ISA_HAS_SYNC)
1061 /* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1062 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1063 instructions. */
1064 #define ISA_HAS_LL_SC (mips_isa >= 2 && !TARGET_MIPS16)
1065 #define GENERATE_LL_SC \
1066 (target_flags_explicit & MASK_LLSC \
1067 ? TARGET_LLSC && !TARGET_MIPS16 \
1068 : ISA_HAS_LL_SC)
1070 #define ISA_HAS_SWAP (TARGET_XLP)
1071 #define ISA_HAS_LDADD (TARGET_XLP)
1073 /* ISA includes the baddu instruction. */
1074 #define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
1076 /* ISA includes the bbit* instructions. */
1077 #define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
1079 /* ISA includes the cins instruction. */
1080 #define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
1082 /* ISA includes the exts instruction. */
1083 #define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
1085 /* ISA includes the seq and sne instructions. */
1086 #define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
1088 /* ISA includes the pop instruction. */
1089 #define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
1091 /* The CACHE instruction is available in non-MIPS16 code. */
1092 #define TARGET_CACHE_BUILTIN (mips_isa >= 3)
1094 /* The CACHE instruction is available. */
1095 #define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
1097 /* Tell collect what flags to pass to nm. */
1098 #ifndef NM_FLAGS
1099 #define NM_FLAGS "-Bn"
1100 #endif
1103 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
1104 the assembler. It may be overridden by subtargets.
1106 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1107 COFF debugging info. */
1109 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1110 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
1111 %{g} %{g0} %{g1} %{g2} %{g3} \
1112 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1113 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
1114 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
1115 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
1116 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
1117 #endif
1119 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1120 overridden by subtargets. */
1122 #ifndef SUBTARGET_ASM_SPEC
1123 #define SUBTARGET_ASM_SPEC ""
1124 #endif
1126 #undef ASM_SPEC
1127 #define ASM_SPEC "\
1128 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
1129 %{mips32*} %{mips64*} \
1130 %{mips16} %{mno-mips16:-no-mips16} \
1131 %{mips3d} %{mno-mips3d:-no-mips3d} \
1132 %{mdmx} %{mno-mdmx:-no-mdmx} \
1133 %{mdsp} %{mno-dsp} \
1134 %{mdspr2} %{mno-dspr2} \
1135 %{mmcu} %{mno-mcu} \
1136 %{msmartmips} %{mno-smartmips} \
1137 %{mmt} %{mno-mt} \
1138 %{mfix-vr4120} %{mfix-vr4130} \
1139 %{mfix-24k} \
1140 %{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
1141 %(subtarget_asm_debugging_spec) \
1142 %{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
1143 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
1144 %{mfp32} %{mfp64} \
1145 %{mshared} %{mno-shared} \
1146 %{msym32} %{mno-sym32} \
1147 %{mtune=*} \
1148 %(subtarget_asm_spec)"
1150 /* Extra switches sometimes passed to the linker. */
1152 #ifndef LINK_SPEC
1153 #define LINK_SPEC "\
1154 %(endian_spec) \
1155 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
1156 %{shared}"
1157 #endif /* LINK_SPEC defined */
1160 /* Specs for the compiler proper */
1162 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1163 overridden by subtargets. */
1164 #ifndef SUBTARGET_CC1_SPEC
1165 #define SUBTARGET_CC1_SPEC ""
1166 #endif
1168 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1170 #undef CC1_SPEC
1171 #define CC1_SPEC "\
1172 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
1173 %(subtarget_cc1_spec)"
1175 /* Preprocessor specs. */
1177 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1178 overridden by subtargets. */
1179 #ifndef SUBTARGET_CPP_SPEC
1180 #define SUBTARGET_CPP_SPEC ""
1181 #endif
1183 #define CPP_SPEC "%(subtarget_cpp_spec)"
1185 /* This macro defines names of additional specifications to put in the specs
1186 that can be used in various specifications like CC1_SPEC. Its definition
1187 is an initializer with a subgrouping for each command option.
1189 Each subgrouping contains a string constant, that defines the
1190 specification name, and a string constant that used by the GCC driver
1191 program.
1193 Do not define this macro if it does not need to do anything. */
1195 #define EXTRA_SPECS \
1196 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1197 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
1198 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1199 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
1200 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
1201 { "endian_spec", ENDIAN_SPEC }, \
1202 SUBTARGET_EXTRA_SPECS
1204 #ifndef SUBTARGET_EXTRA_SPECS
1205 #define SUBTARGET_EXTRA_SPECS
1206 #endif
1208 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
1209 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1211 #ifndef PREFERRED_DEBUGGING_TYPE
1212 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1213 #endif
1215 /* The size of DWARF addresses should be the same as the size of symbols
1216 in the target file format. They shouldn't depend on things like -msym32,
1217 because many DWARF consumers do not allow the mixture of address sizes
1218 that one would then get from linking -msym32 code with -msym64 code.
1220 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1221 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1222 #define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
1224 /* By default, turn on GDB extensions. */
1225 #define DEFAULT_GDB_EXTENSIONS 1
1227 /* Local compiler-generated symbols must have a prefix that the assembler
1228 understands. By default, this is $, although some targets (e.g.,
1229 NetBSD-ELF) need to override this. */
1231 #ifndef LOCAL_LABEL_PREFIX
1232 #define LOCAL_LABEL_PREFIX "$"
1233 #endif
1235 /* By default on the mips, external symbols do not have an underscore
1236 prepended, but some targets (e.g., NetBSD) require this. */
1238 #ifndef USER_LABEL_PREFIX
1239 #define USER_LABEL_PREFIX ""
1240 #endif
1242 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1243 since the length can run past this up to a continuation point. */
1244 #undef DBX_CONTIN_LENGTH
1245 #define DBX_CONTIN_LENGTH 1500
1247 /* How to renumber registers for dbx and gdb. */
1248 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
1250 /* The mapping from gcc register number to DWARF 2 CFA column number. */
1251 #define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
1253 /* The DWARF 2 CFA column which tracks the return address. */
1254 #define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1256 /* Before the prologue, RA lives in r31. */
1257 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
1259 /* Describe how we implement __builtin_eh_return. */
1260 #define EH_RETURN_DATA_REGNO(N) \
1261 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1263 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1265 #define EH_USES(N) mips_eh_uses (N)
1267 /* Offsets recorded in opcodes are a multiple of this alignment factor.
1268 The default for this in 64-bit mode is 8, which causes problems with
1269 SFmode register saves. */
1270 #define DWARF_CIE_DATA_ALIGNMENT -4
1272 /* Correct the offset of automatic variables and arguments. Note that
1273 the MIPS debug format wants all automatic variables and arguments
1274 to be in terms of the virtual frame pointer (stack pointer before
1275 any adjustment in the function), while the MIPS 3.0 linker wants
1276 the frame pointer to be the stack pointer after the initial
1277 adjustment. */
1279 #define DEBUGGER_AUTO_OFFSET(X) \
1280 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
1281 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1282 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
1284 /* Target machine storage layout */
1286 #define BITS_BIG_ENDIAN 0
1287 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1288 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1290 #define MAX_BITS_PER_WORD 64
1292 /* Width of a word, in units (bytes). */
1293 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1294 #ifndef IN_LIBGCC2
1295 #define MIN_UNITS_PER_WORD 4
1296 #endif
1298 /* For MIPS, width of a floating point register. */
1299 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1301 /* The number of consecutive floating-point registers needed to store the
1302 largest format supported by the FPU. */
1303 #define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1305 /* The number of consecutive floating-point registers needed to store the
1306 smallest format supported by the FPU. */
1307 #define MIN_FPRS_PER_FMT \
1308 (ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64 || ISA_MIPS64R2 \
1309 ? 1 : MAX_FPRS_PER_FMT)
1311 /* The largest size of value that can be held in floating-point
1312 registers and moved with a single instruction. */
1313 #define UNITS_PER_HWFPVALUE \
1314 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
1316 /* The largest size of value that can be held in floating-point
1317 registers. */
1318 #define UNITS_PER_FPVALUE \
1319 (TARGET_SOFT_FLOAT_ABI ? 0 \
1320 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1321 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1323 /* The number of bytes in a double. */
1324 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1326 /* Set the sizes of the core types. */
1327 #define SHORT_TYPE_SIZE 16
1328 #define INT_TYPE_SIZE 32
1329 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1330 #define LONG_LONG_TYPE_SIZE 64
1332 #define FLOAT_TYPE_SIZE 32
1333 #define DOUBLE_TYPE_SIZE 64
1334 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1336 /* Define the sizes of fixed-point types. */
1337 #define SHORT_FRACT_TYPE_SIZE 8
1338 #define FRACT_TYPE_SIZE 16
1339 #define LONG_FRACT_TYPE_SIZE 32
1340 #define LONG_LONG_FRACT_TYPE_SIZE 64
1342 #define SHORT_ACCUM_TYPE_SIZE 16
1343 #define ACCUM_TYPE_SIZE 32
1344 #define LONG_ACCUM_TYPE_SIZE 64
1345 /* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1346 doesn't support 128-bit integers for MIPS32 currently. */
1347 #define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1349 /* long double is not a fixed mode, but the idea is that, if we
1350 support long double, we also want a 128-bit integer type. */
1351 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1353 #ifdef IN_LIBGCC2
1354 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1355 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1356 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1357 # else
1358 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1359 # endif
1360 #endif
1362 /* Width in bits of a pointer. */
1363 #ifndef POINTER_SIZE
1364 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1365 #endif
1367 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1368 #define PARM_BOUNDARY BITS_PER_WORD
1370 /* Allocation boundary (in *bits*) for the code of a function. */
1371 #define FUNCTION_BOUNDARY 32
1373 /* Alignment of field after `int : 0' in a structure. */
1374 #define EMPTY_FIELD_BOUNDARY 32
1376 /* Every structure's size must be a multiple of this. */
1377 /* 8 is observed right on a DECstation and on riscos 4.02. */
1378 #define STRUCTURE_SIZE_BOUNDARY 8
1380 /* There is no point aligning anything to a rounder boundary than this. */
1381 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1383 /* All accesses must be aligned. */
1384 #define STRICT_ALIGNMENT 1
1386 /* Define this if you wish to imitate the way many other C compilers
1387 handle alignment of bitfields and the structures that contain
1388 them.
1390 The behavior is that the type written for a bit-field (`int',
1391 `short', or other integer type) imposes an alignment for the
1392 entire structure, as if the structure really did contain an
1393 ordinary field of that type. In addition, the bit-field is placed
1394 within the structure so that it would fit within such a field,
1395 not crossing a boundary for it.
1397 Thus, on most machines, a bit-field whose type is written as `int'
1398 would not cross a four-byte boundary, and would force four-byte
1399 alignment for the whole structure. (The alignment used may not
1400 be four bytes; it is controlled by the other alignment
1401 parameters.)
1403 If the macro is defined, its definition should be a C expression;
1404 a nonzero value for the expression enables this behavior. */
1406 #define PCC_BITFIELD_TYPE_MATTERS 1
1408 /* If defined, a C expression to compute the alignment given to a
1409 constant that is being placed in memory. CONSTANT is the constant
1410 and ALIGN is the alignment that the object would ordinarily have.
1411 The value of this macro is used instead of that alignment to align
1412 the object.
1414 If this macro is not defined, then ALIGN is used.
1416 The typical use of this macro is to increase alignment for string
1417 constants to be word aligned so that `strcpy' calls that copy
1418 constants can be done inline. */
1420 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1421 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1422 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1424 /* If defined, a C expression to compute the alignment for a static
1425 variable. TYPE is the data type, and ALIGN is the alignment that
1426 the object would ordinarily have. The value of this macro is used
1427 instead of that alignment to align the object.
1429 If this macro is not defined, then ALIGN is used.
1431 One use of this macro is to increase alignment of medium-size
1432 data to make it all fit in fewer cache lines. Another is to
1433 cause character arrays to be word-aligned so that `strcpy' calls
1434 that copy constants to character arrays can be done inline. */
1436 #undef DATA_ALIGNMENT
1437 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1438 ((((ALIGN) < BITS_PER_WORD) \
1439 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1440 || TREE_CODE (TYPE) == UNION_TYPE \
1441 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1443 /* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1444 character arrays to be word-aligned so that `strcpy' calls that copy
1445 constants to character arrays can be done inline, and 'strcmp' can be
1446 optimised to use word loads. */
1447 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1448 DATA_ALIGNMENT (TYPE, ALIGN)
1450 #define PAD_VARARGS_DOWN \
1451 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1453 /* Define if operations between registers always perform the operation
1454 on the full register even if a narrower mode is specified. */
1455 #define WORD_REGISTER_OPERATIONS
1457 /* When in 64-bit mode, move insns will sign extend SImode and CCmode
1458 moves. All other references are zero extended. */
1459 #define LOAD_EXTEND_OP(MODE) \
1460 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1461 ? SIGN_EXTEND : ZERO_EXTEND)
1463 /* Define this macro if it is advisable to hold scalars in registers
1464 in a wider mode than that declared by the program. In such cases,
1465 the value is constrained to be within the bounds of the declared
1466 type, but kept valid in the wider mode. The signedness of the
1467 extension may differ from that of the type. */
1469 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1470 if (GET_MODE_CLASS (MODE) == MODE_INT \
1471 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1473 if ((MODE) == SImode) \
1474 (UNSIGNEDP) = 0; \
1475 (MODE) = Pmode; \
1478 /* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1479 Extensions of pointers to word_mode must be signed. */
1480 #define POINTERS_EXTEND_UNSIGNED false
1482 /* Define if loading short immediate values into registers sign extends. */
1483 #define SHORT_IMMEDIATES_SIGN_EXTEND
1485 /* The [d]clz instructions have the natural values at 0. */
1487 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1488 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1490 /* Standard register usage. */
1492 /* Number of hardware registers. We have:
1494 - 32 integer registers
1495 - 32 floating point registers
1496 - 8 condition code registers
1497 - 2 accumulator registers (hi and lo)
1498 - 32 registers each for coprocessors 0, 2 and 3
1499 - 4 fake registers:
1500 - ARG_POINTER_REGNUM
1501 - FRAME_POINTER_REGNUM
1502 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
1503 - CPRESTORE_SLOT_REGNUM
1504 - 2 dummy entries that were used at various times in the past.
1505 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1506 - 6 DSP control registers */
1508 #define FIRST_PSEUDO_REGISTER 188
1510 /* By default, fix the kernel registers ($26 and $27), the global
1511 pointer ($28) and the stack pointer ($29). This can change
1512 depending on the command-line options.
1514 Regarding coprocessor registers: without evidence to the contrary,
1515 it's best to assume that each coprocessor register has a unique
1516 use. This can be overridden, in, e.g., mips_option_override or
1517 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1518 inappropriate for a particular target. */
1520 #define FIXED_REGISTERS \
1522 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1523 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1524 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1525 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1526 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1527 /* COP0 registers */ \
1528 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1529 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1530 /* COP2 registers */ \
1531 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1532 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1533 /* COP3 registers */ \
1534 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1535 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1536 /* 6 DSP accumulator registers & 6 control registers */ \
1537 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1541 /* Set up this array for o32 by default.
1543 Note that we don't mark $31 as a call-clobbered register. The idea is
1544 that it's really the call instructions themselves which clobber $31.
1545 We don't care what the called function does with it afterwards.
1547 This approach makes it easier to implement sibcalls. Unlike normal
1548 calls, sibcalls don't clobber $31, so the register reaches the
1549 called function in tact. EPILOGUE_USES says that $31 is useful
1550 to the called function. */
1552 #define CALL_USED_REGISTERS \
1554 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1555 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1556 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1557 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1558 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1559 /* COP0 registers */ \
1560 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1561 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1562 /* COP2 registers */ \
1563 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1564 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1565 /* COP3 registers */ \
1566 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1567 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1568 /* 6 DSP accumulator registers & 6 control registers */ \
1569 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1573 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1575 #define CALL_REALLY_USED_REGISTERS \
1576 { /* General registers. */ \
1577 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1578 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1579 /* Floating-point registers. */ \
1580 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1581 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1582 /* Others. */ \
1583 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
1584 /* COP0 registers */ \
1585 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1586 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1587 /* COP2 registers */ \
1588 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1589 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1590 /* COP3 registers */ \
1591 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1592 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1593 /* 6 DSP accumulator registers & 6 control registers */ \
1594 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1597 /* Internal macros to classify a register number as to whether it's a
1598 general purpose register, a floating point register, a
1599 multiply/divide register, or a status register. */
1601 #define GP_REG_FIRST 0
1602 #define GP_REG_LAST 31
1603 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1604 #define GP_DBX_FIRST 0
1605 #define K0_REG_NUM (GP_REG_FIRST + 26)
1606 #define K1_REG_NUM (GP_REG_FIRST + 27)
1607 #define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
1609 #define FP_REG_FIRST 32
1610 #define FP_REG_LAST 63
1611 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1612 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1614 #define MD_REG_FIRST 64
1615 #define MD_REG_LAST 65
1616 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1617 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1619 /* The DWARF 2 CFA column which tracks the return address from a
1620 signal handler context. This means that to maintain backwards
1621 compatibility, no hard register can be assigned this column if it
1622 would need to be handled by the DWARF unwinder. */
1623 #define DWARF_ALT_FRAME_RETURN_COLUMN 66
1625 #define ST_REG_FIRST 67
1626 #define ST_REG_LAST 74
1627 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1630 /* FIXME: renumber. */
1631 #define COP0_REG_FIRST 80
1632 #define COP0_REG_LAST 111
1633 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1635 #define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1636 #define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1637 #define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1639 #define COP2_REG_FIRST 112
1640 #define COP2_REG_LAST 143
1641 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1643 #define COP3_REG_FIRST 144
1644 #define COP3_REG_LAST 175
1645 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1647 /* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1648 #define ALL_COP_REG_FIRST COP0_REG_FIRST
1649 #define ALL_COP_REG_LAST COP3_REG_LAST
1650 #define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
1652 #define DSP_ACC_REG_FIRST 176
1653 #define DSP_ACC_REG_LAST 181
1654 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1656 #define AT_REGNUM (GP_REG_FIRST + 1)
1657 #define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1658 #define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
1660 /* A few bitfield locations for the coprocessor registers. */
1661 /* Request Interrupt Priority Level is from bit 10 to bit 15 of
1662 the cause register for the EIC interrupt mode. */
1663 #define CAUSE_IPL 10
1664 /* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1665 #define SR_IPL 10
1666 /* Exception Level is at bit 1 of the status register. */
1667 #define SR_EXL 1
1668 /* Interrupt Enable is at bit 0 of the status register. */
1669 #define SR_IE 0
1671 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1672 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1673 should be used instead. */
1674 #define FPSW_REGNUM ST_REG_FIRST
1676 #define GP_REG_P(REGNO) \
1677 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1678 #define M16_REG_P(REGNO) \
1679 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1680 #define FP_REG_P(REGNO) \
1681 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1682 #define MD_REG_P(REGNO) \
1683 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1684 #define ST_REG_P(REGNO) \
1685 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1686 #define COP0_REG_P(REGNO) \
1687 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1688 #define COP2_REG_P(REGNO) \
1689 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1690 #define COP3_REG_P(REGNO) \
1691 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1692 #define ALL_COP_REG_P(REGNO) \
1693 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1694 /* Test if REGNO is one of the 6 new DSP accumulators. */
1695 #define DSP_ACC_REG_P(REGNO) \
1696 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1697 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1698 #define ACC_REG_P(REGNO) \
1699 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1701 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1703 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1704 to initialize the mips16 gp pseudo register. */
1705 #define CONST_GP_P(X) \
1706 (GET_CODE (X) == CONST \
1707 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1708 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1710 /* Return coprocessor number from register number. */
1712 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1713 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1714 : COP3_REG_P (REGNO) ? '3' : '?')
1717 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1719 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1720 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1722 #define MODES_TIEABLE_P mips_modes_tieable_p
1724 /* Register to use for pushing function arguments. */
1725 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1727 /* These two registers don't really exist: they get eliminated to either
1728 the stack or hard frame pointer. */
1729 #define ARG_POINTER_REGNUM 77
1730 #define FRAME_POINTER_REGNUM 78
1732 /* $30 is not available on the mips16, so we use $17 as the frame
1733 pointer. */
1734 #define HARD_FRAME_POINTER_REGNUM \
1735 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1737 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
1738 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
1740 /* Register in which static-chain is passed to a function. */
1741 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
1743 /* Registers used as temporaries in prologue/epilogue code:
1745 - If a MIPS16 PIC function needs access to _gp, it first loads
1746 the value into MIPS16_PIC_TEMP and then copies it to $gp.
1748 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
1749 register. The register must not conflict with MIPS16_PIC_TEMP.
1751 - If we aren't generating MIPS16 code, the prologue can also use
1752 MIPS_PROLOGUE_TEMP2 as a general temporary register.
1754 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
1755 register.
1757 If we're generating MIPS16 code, these registers must come from the
1758 core set of 8. The prologue registers mustn't conflict with any
1759 incoming arguments, the static chain pointer, or the frame pointer.
1760 The epilogue temporary mustn't conflict with the return registers,
1761 the PIC call register ($25), the frame pointer, the EH stack adjustment,
1762 or the EH data registers.
1764 If we're generating interrupt handlers, we use K0 as a temporary register
1765 in prologue/epilogue code. */
1767 #define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
1768 #define MIPS_PROLOGUE_TEMP_REGNUM \
1769 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
1770 #define MIPS_PROLOGUE_TEMP2_REGNUM \
1771 (TARGET_MIPS16 \
1772 ? (gcc_unreachable (), INVALID_REGNUM) \
1773 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
1774 #define MIPS_EPILOGUE_TEMP_REGNUM \
1775 (cfun->machine->interrupt_handler_p \
1776 ? K0_REG_NUM \
1777 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1779 #define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
1780 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1781 #define MIPS_PROLOGUE_TEMP2(MODE) \
1782 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
1783 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1785 /* Define this macro if it is as good or better to call a constant
1786 function address than to call an address kept in a register. */
1787 #define NO_FUNCTION_CSE 1
1789 /* The ABI-defined global pointer. Sometimes we use a different
1790 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1791 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1793 /* We normally use $28 as the global pointer. However, when generating
1794 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1795 register instead. They can then avoid saving and restoring $28
1796 and perhaps avoid using a frame at all.
1798 When a leaf function uses something other than $28, mips_expand_prologue
1799 will modify pic_offset_table_rtx in place. Take the register number
1800 from there after reload. */
1801 #define PIC_OFFSET_TABLE_REGNUM \
1802 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1804 /* Define the classes of registers for register constraints in the
1805 machine description. Also define ranges of constants.
1807 One of the classes must always be named ALL_REGS and include all hard regs.
1808 If there is more than one class, another class must be named NO_REGS
1809 and contain no registers.
1811 The name GENERAL_REGS must be the name of a class (or an alias for
1812 another name such as ALL_REGS). This is the class of registers
1813 that is allowed by "g" or "r" in a register constraint.
1814 Also, registers outside this class are allocated only when
1815 instructions express preferences for them.
1817 The classes must be numbered in nondecreasing order; that is,
1818 a larger-numbered class must never be contained completely
1819 in a smaller-numbered class.
1821 For any two classes, it is very desirable that there be another
1822 class that represents their union. */
1824 enum reg_class
1826 NO_REGS, /* no registers in set */
1827 M16_REGS, /* mips16 directly accessible registers */
1828 T_REG, /* mips16 T register ($24) */
1829 M16_T_REGS, /* mips16 registers plus T register */
1830 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1831 V1_REG, /* Register $v1 ($3) used for TLS access. */
1832 LEA_REGS, /* Every GPR except $25 */
1833 GR_REGS, /* integer registers */
1834 FP_REGS, /* floating point registers */
1835 MD0_REG, /* first multiply/divide register */
1836 MD1_REG, /* second multiply/divide register */
1837 MD_REGS, /* multiply/divide registers (hi/lo) */
1838 COP0_REGS, /* generic coprocessor classes */
1839 COP2_REGS,
1840 COP3_REGS,
1841 ST_REGS, /* status registers (fp status) */
1842 DSP_ACC_REGS, /* DSP accumulator registers */
1843 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1844 FRAME_REGS, /* $arg and $frame */
1845 GR_AND_MD0_REGS, /* union classes */
1846 GR_AND_MD1_REGS,
1847 GR_AND_MD_REGS,
1848 GR_AND_ACC_REGS,
1849 ALL_REGS, /* all registers */
1850 LIM_REG_CLASSES /* max value + 1 */
1853 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1855 #define GENERAL_REGS GR_REGS
1857 /* An initializer containing the names of the register classes as C
1858 string constants. These names are used in writing some of the
1859 debugging dumps. */
1861 #define REG_CLASS_NAMES \
1863 "NO_REGS", \
1864 "M16_REGS", \
1865 "T_REG", \
1866 "M16_T_REGS", \
1867 "PIC_FN_ADDR_REG", \
1868 "V1_REG", \
1869 "LEA_REGS", \
1870 "GR_REGS", \
1871 "FP_REGS", \
1872 "MD0_REG", \
1873 "MD1_REG", \
1874 "MD_REGS", \
1875 /* coprocessor registers */ \
1876 "COP0_REGS", \
1877 "COP2_REGS", \
1878 "COP3_REGS", \
1879 "ST_REGS", \
1880 "DSP_ACC_REGS", \
1881 "ACC_REGS", \
1882 "FRAME_REGS", \
1883 "GR_AND_MD0_REGS", \
1884 "GR_AND_MD1_REGS", \
1885 "GR_AND_MD_REGS", \
1886 "GR_AND_ACC_REGS", \
1887 "ALL_REGS" \
1890 /* An initializer containing the contents of the register classes,
1891 as integers which are bit masks. The Nth integer specifies the
1892 contents of class N. The way the integer MASK is interpreted is
1893 that register R is in the class if `MASK & (1 << R)' is 1.
1895 When the machine has more than 32 registers, an integer does not
1896 suffice. Then the integers are replaced by sub-initializers,
1897 braced groupings containing several integers. Each
1898 sub-initializer must be suitable as an initializer for the type
1899 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1901 #define REG_CLASS_CONTENTS \
1903 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1904 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
1905 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
1906 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
1907 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
1908 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
1909 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
1910 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
1911 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
1912 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
1913 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
1914 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
1915 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
1916 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
1917 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
1918 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
1919 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
1920 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
1921 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
1922 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
1923 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
1924 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
1925 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
1926 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
1930 /* A C expression whose value is a register class containing hard
1931 register REGNO. In general there is more that one such class;
1932 choose a class which is "minimal", meaning that no smaller class
1933 also contains the register. */
1935 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1937 /* A macro whose definition is the name of the class to which a
1938 valid base register must belong. A base register is one used in
1939 an address which is the register value plus a displacement. */
1941 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1943 /* A macro whose definition is the name of the class to which a
1944 valid index register must belong. An index register is one used
1945 in an address where its value is either multiplied by a scale
1946 factor or added to another register (as well as added to a
1947 displacement). */
1949 #define INDEX_REG_CLASS NO_REGS
1951 /* We generally want to put call-clobbered registers ahead of
1952 call-saved ones. (IRA expects this.) */
1954 #define REG_ALLOC_ORDER \
1955 { /* Accumulator registers. When GPRs and accumulators have equal \
1956 cost, we generally prefer to use accumulators. For example, \
1957 a division of multiplication result is better allocated to LO, \
1958 so that we put the MFLO at the point of use instead of at the \
1959 point of definition. It's also needed if we're to take advantage \
1960 of the extra accumulators available with -mdspr2. In some cases, \
1961 it can also help to reduce register pressure. */ \
1962 64, 65,176,177,178,179,180,181, \
1963 /* Call-clobbered GPRs. */ \
1964 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1965 24, 25, 31, \
1966 /* The global pointer. This is call-clobbered for o32 and o64 \
1967 abicalls, call-saved for n32 and n64 abicalls, and a program \
1968 invariant otherwise. Putting it between the call-clobbered \
1969 and call-saved registers should cope with all eventualities. */ \
1970 28, \
1971 /* Call-saved GPRs. */ \
1972 16, 17, 18, 19, 20, 21, 22, 23, 30, \
1973 /* GPRs that can never be exposed to the register allocator. */ \
1974 0, 26, 27, 29, \
1975 /* Call-clobbered FPRs. */ \
1976 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1977 48, 49, 50, 51, \
1978 /* FPRs that are usually call-saved. The odd ones are actually \
1979 call-clobbered for n32, but listing them ahead of the even \
1980 registers might encourage the register allocator to fragment \
1981 the available FPR pairs. We need paired FPRs to store long \
1982 doubles, so it isn't clear that using a different order \
1983 for n32 would be a win. */ \
1984 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1985 /* None of the remaining classes have defined call-saved \
1986 registers. */ \
1987 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
1988 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
1989 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
1990 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
1991 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
1992 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
1993 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
1994 182,183,184,185,186,187 \
1997 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
1998 to be rearranged based on a particular function. On the mips16, we
1999 want to allocate $24 (T_REG) before other registers for
2000 instructions for which it is possible. */
2002 #define ADJUST_REG_ALLOC_ORDER mips_order_regs_for_local_alloc ()
2004 /* True if VALUE is an unsigned 6-bit number. */
2006 #define UIMM6_OPERAND(VALUE) \
2007 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2009 /* True if VALUE is a signed 10-bit number. */
2011 #define IMM10_OPERAND(VALUE) \
2012 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2014 /* True if VALUE is a signed 16-bit number. */
2016 #define SMALL_OPERAND(VALUE) \
2017 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2019 /* True if VALUE is an unsigned 16-bit number. */
2021 #define SMALL_OPERAND_UNSIGNED(VALUE) \
2022 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2024 /* True if VALUE can be loaded into a register using LUI. */
2026 #define LUI_OPERAND(VALUE) \
2027 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2028 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2030 /* Return a value X with the low 16 bits clear, and such that
2031 VALUE - X is a signed 16-bit value. */
2033 #define CONST_HIGH_PART(VALUE) \
2034 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2036 #define CONST_LOW_PART(VALUE) \
2037 ((VALUE) - CONST_HIGH_PART (VALUE))
2039 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2040 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2041 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
2043 /* The HI and LO registers can only be reloaded via the general
2044 registers. Condition code registers can only be loaded to the
2045 general registers, and from the floating point registers. */
2047 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
2048 mips_secondary_reload_class (CLASS, MODE, X, true)
2049 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
2050 mips_secondary_reload_class (CLASS, MODE, X, false)
2052 /* Return the maximum number of consecutive registers
2053 needed to represent mode MODE in a register of class CLASS. */
2055 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
2057 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
2058 mips_cannot_change_mode_class (FROM, TO, CLASS)
2060 /* Stack layout; function entry, exit and calling. */
2062 #define STACK_GROWS_DOWNWARD
2064 #define FRAME_GROWS_DOWNWARD flag_stack_protect
2066 /* Size of the area allocated in the frame to save the GP. */
2068 #define MIPS_GP_SAVE_AREA_SIZE \
2069 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2071 /* The offset of the first local variable from the frame pointer. See
2072 mips_compute_frame_info for details about the frame layout. */
2074 #define STARTING_FRAME_OFFSET \
2075 (FRAME_GROWS_DOWNWARD \
2076 ? 0 \
2077 : crtl->outgoing_args_size + MIPS_GP_SAVE_AREA_SIZE)
2079 #define RETURN_ADDR_RTX mips_return_addr
2081 /* Mask off the MIPS16 ISA bit in unwind addresses.
2083 The reason for this is a little subtle. When unwinding a call,
2084 we are given the call's return address, which on most targets
2085 is the address of the following instruction. However, what we
2086 actually want to find is the EH region for the call itself.
2087 The target-independent unwind code therefore searches for "RA - 1".
2089 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2090 RA - 1 is therefore the real (even-valued) start of the return
2091 instruction. EH region labels are usually odd-valued MIPS16 symbols
2092 too, so a search for an even address within a MIPS16 region would
2093 usually work.
2095 However, there is an exception. If the end of an EH region is also
2096 the end of a function, the end label is allowed to be even. This is
2097 necessary because a following non-MIPS16 function may also need EH
2098 information for its first instruction.
2100 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2101 non-ISA-encoded address. This probably isn't ideal, but it is
2102 the traditional (legacy) behavior. It is therefore only safe
2103 to search MIPS EH regions for an _odd-valued_ address.
2105 Masking off the ISA bit means that the target-independent code
2106 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
2107 #define MASK_RETURN_ADDR GEN_INT (-2)
2110 /* Similarly, don't use the least-significant bit to tell pointers to
2111 code from vtable index. */
2113 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2115 /* The eliminations to $17 are only used for mips16 code. See the
2116 definition of HARD_FRAME_POINTER_REGNUM. */
2118 #define ELIMINABLE_REGS \
2119 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2120 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2121 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2122 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2123 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2124 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2126 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2127 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
2129 /* Allocate stack space for arguments at the beginning of each function. */
2130 #define ACCUMULATE_OUTGOING_ARGS 1
2132 /* The argument pointer always points to the first argument. */
2133 #define FIRST_PARM_OFFSET(FNDECL) 0
2135 /* o32 and o64 reserve stack space for all argument registers. */
2136 #define REG_PARM_STACK_SPACE(FNDECL) \
2137 (TARGET_OLDABI \
2138 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
2139 : 0)
2141 /* Define this if it is the responsibility of the caller to
2142 allocate the area reserved for arguments passed in registers.
2143 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2144 of this macro is to determine whether the space is included in
2145 `crtl->outgoing_args_size'. */
2146 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
2148 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
2150 /* Symbolic macros for the registers used to return integer and floating
2151 point values. */
2153 #define GP_RETURN (GP_REG_FIRST + 2)
2154 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2156 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
2158 /* Symbolic macros for the first/last argument registers. */
2160 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2161 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2162 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2163 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
2165 /* 1 if N is a possible register number for function argument passing.
2166 We have no FP argument registers when soft-float. When FP registers
2167 are 32 bits, we can't directly reference the odd numbered ones. */
2169 #define FUNCTION_ARG_REGNO_P(N) \
2170 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2171 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2172 && !fixed_regs[N])
2174 /* This structure has to cope with two different argument allocation
2175 schemes. Most MIPS ABIs view the arguments as a structure, of which
2176 the first N words go in registers and the rest go on the stack. If I
2177 < N, the Ith word might go in Ith integer argument register or in a
2178 floating-point register. For these ABIs, we only need to remember
2179 the offset of the current argument into the structure.
2181 The EABI instead allocates the integer and floating-point arguments
2182 separately. The first N words of FP arguments go in FP registers,
2183 the rest go on the stack. Likewise, the first N words of the other
2184 arguments go in integer registers, and the rest go on the stack. We
2185 need to maintain three counts: the number of integer registers used,
2186 the number of floating-point registers used, and the number of words
2187 passed on the stack.
2189 We could keep separate information for the two ABIs (a word count for
2190 the standard ABIs, and three separate counts for the EABI). But it
2191 seems simpler to view the standard ABIs as forms of EABI that do not
2192 allocate floating-point registers.
2194 So for the standard ABIs, the first N words are allocated to integer
2195 registers, and mips_function_arg decides on an argument-by-argument
2196 basis whether that argument should really go in an integer register,
2197 or in a floating-point one. */
2199 typedef struct mips_args {
2200 /* Always true for varargs functions. Otherwise true if at least
2201 one argument has been passed in an integer register. */
2202 int gp_reg_found;
2204 /* The number of arguments seen so far. */
2205 unsigned int arg_number;
2207 /* The number of integer registers used so far. For all ABIs except
2208 EABI, this is the number of words that have been added to the
2209 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2210 unsigned int num_gprs;
2212 /* For EABI, the number of floating-point registers used so far. */
2213 unsigned int num_fprs;
2215 /* The number of words passed on the stack. */
2216 unsigned int stack_words;
2218 /* On the mips16, we need to keep track of which floating point
2219 arguments were passed in general registers, but would have been
2220 passed in the FP regs if this were a 32-bit function, so that we
2221 can move them to the FP regs if we wind up calling a 32-bit
2222 function. We record this information in fp_code, encoded in base
2223 four. A zero digit means no floating point argument, a one digit
2224 means an SFmode argument, and a two digit means a DFmode argument,
2225 and a three digit is not used. The low order digit is the first
2226 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2227 an SFmode argument. ??? A more sophisticated approach will be
2228 needed if MIPS_ABI != ABI_32. */
2229 int fp_code;
2231 /* True if the function has a prototype. */
2232 int prototype;
2233 } CUMULATIVE_ARGS;
2235 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2236 for a call to a function whose data type is FNTYPE.
2237 For a library call, FNTYPE is 0. */
2239 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2240 mips_init_cumulative_args (&CUM, FNTYPE)
2242 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2243 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2245 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2246 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2248 /* True if using EABI and varargs can be passed in floating-point
2249 registers. Under these conditions, we need a more complex form
2250 of va_list, which tracks GPR, FPR and stack arguments separately. */
2251 #define EABI_FLOAT_VARARGS_P \
2252 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2255 #define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
2257 /* Treat LOC as a byte offset from the stack pointer and round it up
2258 to the next fully-aligned offset. */
2259 #define MIPS_STACK_ALIGN(LOC) \
2260 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2263 /* Output assembler code to FILE to increment profiler label # LABELNO
2264 for profiling a function entry. */
2266 #define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
2268 /* The profiler preserves all interesting registers, including $31. */
2269 #define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2271 /* No mips port has ever used the profiler counter word, so don't emit it
2272 or the label for it. */
2274 #define NO_PROFILE_COUNTERS 1
2276 /* Define this macro if the code for function profiling should come
2277 before the function prologue. Normally, the profiling code comes
2278 after. */
2280 /* #define PROFILE_BEFORE_PROLOGUE */
2282 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2283 the stack pointer does not matter. The value is tested only in
2284 functions that have frame pointers.
2285 No definition is equivalent to always zero. */
2287 #define EXIT_IGNORE_STACK 1
2290 /* Trampolines are a block of code followed by two pointers. */
2292 #define TRAMPOLINE_SIZE \
2293 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
2295 /* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2296 pointers from a single LUI base. */
2298 #define TRAMPOLINE_ALIGNMENT 64
2300 /* mips_trampoline_init calls this library function to flush
2301 program and data caches. */
2303 #ifndef CACHE_FLUSH_FUNC
2304 #define CACHE_FLUSH_FUNC "_flush_cache"
2305 #endif
2307 #define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2308 /* Flush both caches. We need to flush the data cache in case \
2309 the system has a write-back cache. */ \
2310 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2311 LCT_NORMAL, VOIDmode, 3, ADDR, Pmode, SIZE, Pmode, \
2312 GEN_INT (3), TYPE_MODE (integer_type_node))
2315 /* Addressing modes, and classification of registers for them. */
2317 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2318 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2319 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2321 /* Maximum number of registers that can appear in a valid memory address. */
2323 #define MAX_REGS_PER_ADDRESS 1
2325 /* Check for constness inline but use mips_legitimate_address_p
2326 to check whether a constant really is an address. */
2328 #define CONSTANT_ADDRESS_P(X) \
2329 (CONSTANT_P (X) && memory_address_p (SImode, X))
2331 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2332 'the start of the function that this code is output in'. */
2334 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2335 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2336 asm_fprintf ((FILE), "%U%s", \
2337 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2338 else \
2339 asm_fprintf ((FILE), "%U%s", (NAME))
2341 /* Flag to mark a function decl symbol that requires a long call. */
2342 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2343 #define SYMBOL_REF_LONG_CALL_P(X) \
2344 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2346 /* This flag marks functions that cannot be lazily bound. */
2347 #define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2348 #define SYMBOL_REF_BIND_NOW_P(RTX) \
2349 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2351 /* True if we're generating a form of MIPS16 code in which jump tables
2352 are stored in the text section and encoded as 16-bit PC-relative
2353 offsets. This is only possible when general text loads are allowed,
2354 since the table access itself will be an "lh" instruction. If the
2355 PC-relative offsets grow too large, 32-bit offsets are used instead. */
2356 #define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2358 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2360 #define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
2362 /* Only use short offsets if their range will not overflow. */
2363 #define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
2364 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2365 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2366 : SImode)
2368 #define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
2370 /* Define this as 1 if `char' should by default be signed; else as 0. */
2371 #ifndef DEFAULT_SIGNED_CHAR
2372 #define DEFAULT_SIGNED_CHAR 1
2373 #endif
2375 /* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2376 we generally don't want to use them for copying arbitrary data.
2377 A single N-word move is usually the same cost as N single-word moves. */
2378 #define MOVE_MAX UNITS_PER_WORD
2379 #define MAX_MOVE_MAX 8
2381 /* Define this macro as a C expression which is nonzero if
2382 accessing less than a word of memory (i.e. a `char' or a
2383 `short') is no faster than accessing a word of memory, i.e., if
2384 such access require more than one instruction or if there is no
2385 difference in cost between byte and (aligned) word loads.
2387 On RISC machines, it tends to generate better code to define
2388 this as 1, since it avoids making a QI or HI mode register.
2390 But, generating word accesses for -mips16 is generally bad as shifts
2391 (often extended) would be needed for byte accesses. */
2392 #define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
2394 /* Standard MIPS integer shifts truncate the shift amount to the
2395 width of the shifted operand. However, Loongson vector shifts
2396 do not truncate the shift amount at all. */
2397 #define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_VECTORS)
2399 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2400 is done just by pretending it is already truncated. */
2401 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2402 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2405 /* Specify the machine mode that pointers have.
2406 After generation of rtl, the compiler makes no further distinction
2407 between pointers and any other objects of this machine mode. */
2409 #ifndef Pmode
2410 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2411 #endif
2413 /* Give call MEMs SImode since it is the "most permissive" mode
2414 for both 32-bit and 64-bit targets. */
2416 #define FUNCTION_MODE SImode
2419 /* We allocate $fcc registers by hand and can't cope with moves of
2420 CCmode registers to and from pseudos (or memory). */
2421 #define AVOID_CCMODE_COPIES
2423 /* A C expression for the cost of a branch instruction. A value of
2424 1 is the default; other values are interpreted relative to that. */
2426 #define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
2427 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2429 /* If defined, modifies the length assigned to instruction INSN as a
2430 function of the context in which it is used. LENGTH is an lvalue
2431 that contains the initially computed length of the insn and should
2432 be updated with the correct length of the insn. */
2433 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2434 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2436 /* Return the asm template for a non-MIPS16 conditional branch instruction.
2437 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2438 its operands. */
2439 #define MIPS_BRANCH(OPCODE, OPERANDS) \
2440 "%*" OPCODE "%?\t" OPERANDS "%/"
2442 /* Return an asm string that forces INSN to be treated as an absolute
2443 J or JAL instruction instead of an assembler macro. */
2444 #define MIPS_ABSOLUTE_JUMP(INSN) \
2445 (TARGET_ABICALLS_PIC2 \
2446 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2447 : INSN)
2449 /* Return the asm template for a call. INSN is the instruction's mnemonic
2450 ("j" or "jal"), OPERANDS are its operands, TARGET_OPNO is the operand
2451 number of the target. SIZE_OPNO is the operand number of the argument size
2452 operand that can optionally hold the call attributes. If SIZE_OPNO is not
2453 -1 and the call is indirect, use the function symbol from the call
2454 attributes to attach a R_MIPS_JALR relocation to the call.
2456 When generating GOT code without explicit relocation operators,
2457 all calls should use assembly macros. Otherwise, all indirect
2458 calls should use "jr" or "jalr"; we will arrange to restore $gp
2459 afterwards if necessary. Finally, we can only generate direct
2460 calls for -mabicalls by temporarily switching to non-PIC mode. */
2461 #define MIPS_CALL(INSN, OPERANDS, TARGET_OPNO, SIZE_OPNO) \
2462 (TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS \
2463 ? "%*" INSN "\t%" #TARGET_OPNO "%/" \
2464 : (REG_P (OPERANDS[TARGET_OPNO]) \
2465 && mips_get_pic_call_symbol (OPERANDS, SIZE_OPNO)) \
2466 ? ("%*.reloc\t1f,R_MIPS_JALR,%" #SIZE_OPNO "\n" \
2467 "1:\t" INSN "r\t%" #TARGET_OPNO "%/") \
2468 : REG_P (OPERANDS[TARGET_OPNO]) \
2469 ? "%*" INSN "r\t%" #TARGET_OPNO "%/" \
2470 : MIPS_ABSOLUTE_JUMP ("%*" INSN "\t%" #TARGET_OPNO "%/"))
2472 /* Control the assembler format that we output. */
2474 /* Output to assembler file text saying following lines
2475 may contain character constants, extra white space, comments, etc. */
2477 #ifndef ASM_APP_ON
2478 #define ASM_APP_ON " #APP\n"
2479 #endif
2481 /* Output to assembler file text saying following lines
2482 no longer contain unusual constructs. */
2484 #ifndef ASM_APP_OFF
2485 #define ASM_APP_OFF " #NO_APP\n"
2486 #endif
2488 #define REGISTER_NAMES \
2489 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2490 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2491 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2492 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2493 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2494 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2495 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2496 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2497 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2498 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
2499 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2500 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2501 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2502 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2503 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2504 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2505 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2506 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2507 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2508 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2509 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2510 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2511 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2512 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2514 /* List the "software" names for each register. Also list the numerical
2515 names for $fp and $sp. */
2517 #define ADDITIONAL_REGISTER_NAMES \
2519 { "$29", 29 + GP_REG_FIRST }, \
2520 { "$30", 30 + GP_REG_FIRST }, \
2521 { "at", 1 + GP_REG_FIRST }, \
2522 { "v0", 2 + GP_REG_FIRST }, \
2523 { "v1", 3 + GP_REG_FIRST }, \
2524 { "a0", 4 + GP_REG_FIRST }, \
2525 { "a1", 5 + GP_REG_FIRST }, \
2526 { "a2", 6 + GP_REG_FIRST }, \
2527 { "a3", 7 + GP_REG_FIRST }, \
2528 { "t0", 8 + GP_REG_FIRST }, \
2529 { "t1", 9 + GP_REG_FIRST }, \
2530 { "t2", 10 + GP_REG_FIRST }, \
2531 { "t3", 11 + GP_REG_FIRST }, \
2532 { "t4", 12 + GP_REG_FIRST }, \
2533 { "t5", 13 + GP_REG_FIRST }, \
2534 { "t6", 14 + GP_REG_FIRST }, \
2535 { "t7", 15 + GP_REG_FIRST }, \
2536 { "s0", 16 + GP_REG_FIRST }, \
2537 { "s1", 17 + GP_REG_FIRST }, \
2538 { "s2", 18 + GP_REG_FIRST }, \
2539 { "s3", 19 + GP_REG_FIRST }, \
2540 { "s4", 20 + GP_REG_FIRST }, \
2541 { "s5", 21 + GP_REG_FIRST }, \
2542 { "s6", 22 + GP_REG_FIRST }, \
2543 { "s7", 23 + GP_REG_FIRST }, \
2544 { "t8", 24 + GP_REG_FIRST }, \
2545 { "t9", 25 + GP_REG_FIRST }, \
2546 { "k0", 26 + GP_REG_FIRST }, \
2547 { "k1", 27 + GP_REG_FIRST }, \
2548 { "gp", 28 + GP_REG_FIRST }, \
2549 { "sp", 29 + GP_REG_FIRST }, \
2550 { "fp", 30 + GP_REG_FIRST }, \
2551 { "ra", 31 + GP_REG_FIRST } \
2554 #define DBR_OUTPUT_SEQEND(STREAM) \
2555 do \
2557 /* Undo the effect of '%*'. */ \
2558 mips_pop_asm_switch (&mips_nomacro); \
2559 mips_pop_asm_switch (&mips_noreorder); \
2560 /* Emit a blank line after the delay slot for emphasis. */ \
2561 fputs ("\n", STREAM); \
2563 while (0)
2565 /* The MIPS implementation uses some labels for its own purpose. The
2566 following lists what labels are created, and are all formed by the
2567 pattern $L[a-z].*. The machine independent portion of GCC creates
2568 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2570 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2571 $Lb[0-9]+ Begin blocks for MIPS debug support
2572 $Lc[0-9]+ Label for use in s<xx> operation.
2573 $Le[0-9]+ End blocks for MIPS debug support */
2575 #undef ASM_DECLARE_OBJECT_NAME
2576 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2577 mips_declare_object (STREAM, NAME, "", ":\n")
2579 /* Globalizing directive for a label. */
2580 #define GLOBAL_ASM_OP "\t.globl\t"
2582 /* This says how to define a global common symbol. */
2584 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2586 /* This says how to define a local common symbol (i.e., not visible to
2587 linker). */
2589 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2590 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2591 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2592 #endif
2594 /* This says how to output an external. It would be possible not to
2595 output anything and let undefined symbol become external. However
2596 the assembler uses length information on externals to allocate in
2597 data/sdata bss/sbss, thereby saving exec time. */
2599 #undef ASM_OUTPUT_EXTERNAL
2600 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2601 mips_output_external(STREAM,DECL,NAME)
2603 /* This is how to declare a function name. The actual work of
2604 emitting the label is moved to function_prologue, so that we can
2605 get the line number correctly emitted before the .ent directive,
2606 and after any .file directives. Define as empty so that the function
2607 is not declared before the .ent directive elsewhere. */
2609 #undef ASM_DECLARE_FUNCTION_NAME
2610 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2612 /* This is how to store into the string LABEL
2613 the symbol_ref name of an internal numbered label where
2614 PREFIX is the class of label and NUM is the number within the class.
2615 This is suitable for output with `assemble_name'. */
2617 #undef ASM_GENERATE_INTERNAL_LABEL
2618 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2619 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2621 /* Print debug labels as "foo = ." rather than "foo:" because they should
2622 represent a byte pointer rather than an ISA-encoded address. This is
2623 particularly important for code like:
2625 $LFBxxx = .
2626 .cfi_startproc
2628 .section .gcc_except_table,...
2630 .uleb128 foo-$LFBxxx
2632 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2633 likewise a byte pointer rather than an ISA-encoded address.
2635 At the time of writing, this hook is not used for the function end
2636 label:
2638 $LFExxx:
2639 .end foo
2641 But this doesn't matter, because GAS doesn't treat a pre-.end label
2642 as a MIPS16 one anyway. */
2644 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2645 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2647 /* This is how to output an element of a case-vector that is absolute. */
2649 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2650 fprintf (STREAM, "\t%s\t%sL%d\n", \
2651 ptr_mode == DImode ? ".dword" : ".word", \
2652 LOCAL_LABEL_PREFIX, \
2653 VALUE)
2655 /* This is how to output an element of a case-vector. We can make the
2656 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2657 is supported. */
2659 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2660 do { \
2661 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
2663 if (GET_MODE (BODY) == HImode) \
2664 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2665 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2666 else \
2667 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2668 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2670 else if (TARGET_GPWORD) \
2671 fprintf (STREAM, "\t%s\t%sL%d\n", \
2672 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2673 LOCAL_LABEL_PREFIX, VALUE); \
2674 else if (TARGET_RTP_PIC) \
2676 /* Make the entry relative to the start of the function. */ \
2677 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2678 fprintf (STREAM, "\t%s\t%sL%d-", \
2679 Pmode == DImode ? ".dword" : ".word", \
2680 LOCAL_LABEL_PREFIX, VALUE); \
2681 assemble_name (STREAM, XSTR (fnsym, 0)); \
2682 fprintf (STREAM, "\n"); \
2684 else \
2685 fprintf (STREAM, "\t%s\t%sL%d\n", \
2686 ptr_mode == DImode ? ".dword" : ".word", \
2687 LOCAL_LABEL_PREFIX, VALUE); \
2688 } while (0)
2690 /* This is how to output an assembler line
2691 that says to advance the location counter
2692 to a multiple of 2**LOG bytes. */
2694 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2695 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2697 /* This is how to output an assembler line to advance the location
2698 counter by SIZE bytes. */
2700 #undef ASM_OUTPUT_SKIP
2701 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2702 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2704 /* This is how to output a string. */
2705 #undef ASM_OUTPUT_ASCII
2706 #define ASM_OUTPUT_ASCII mips_output_ascii
2709 /* Default to -G 8 */
2710 #ifndef MIPS_DEFAULT_GVALUE
2711 #define MIPS_DEFAULT_GVALUE 8
2712 #endif
2714 /* Define the strings to put out for each section in the object file. */
2715 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2716 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2718 #undef READONLY_DATA_SECTION_ASM_OP
2719 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2721 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2722 do \
2724 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
2725 TARGET_64BIT ? "daddiu" : "addiu", \
2726 reg_names[STACK_POINTER_REGNUM], \
2727 reg_names[STACK_POINTER_REGNUM], \
2728 TARGET_64BIT ? "sd" : "sw", \
2729 reg_names[REGNO], \
2730 reg_names[STACK_POINTER_REGNUM]); \
2732 while (0)
2734 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2735 do \
2737 mips_push_asm_switch (&mips_noreorder); \
2738 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2739 TARGET_64BIT ? "ld" : "lw", \
2740 reg_names[REGNO], \
2741 reg_names[STACK_POINTER_REGNUM], \
2742 TARGET_64BIT ? "daddu" : "addu", \
2743 reg_names[STACK_POINTER_REGNUM], \
2744 reg_names[STACK_POINTER_REGNUM]); \
2745 mips_pop_asm_switch (&mips_noreorder); \
2747 while (0)
2749 /* How to start an assembler comment.
2750 The leading space is important (the mips native assembler requires it). */
2751 #ifndef ASM_COMMENT_START
2752 #define ASM_COMMENT_START " #"
2753 #endif
2755 #undef SIZE_TYPE
2756 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2758 #undef PTRDIFF_TYPE
2759 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2761 /* The maximum number of bytes that can be copied by one iteration of
2762 a movmemsi loop; see mips_block_move_loop. */
2763 #define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
2764 (UNITS_PER_WORD * 4)
2766 /* The maximum number of bytes that can be copied by a straight-line
2767 implementation of movmemsi; see mips_block_move_straight. We want
2768 to make sure that any loop-based implementation will iterate at
2769 least twice. */
2770 #define MIPS_MAX_MOVE_BYTES_STRAIGHT \
2771 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
2773 /* The base cost of a memcpy call, for MOVE_RATIO and friends. These
2774 values were determined experimentally by benchmarking with CSiBE.
2775 In theory, the call overhead is higher for TARGET_ABICALLS (especially
2776 for o32 where we have to restore $gp afterwards as well as make an
2777 indirect call), but in practice, bumping this up higher for
2778 TARGET_ABICALLS doesn't make much difference to code size. */
2780 #define MIPS_CALL_RATIO 8
2782 /* Any loop-based implementation of movmemsi will have at least
2783 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
2784 moves, so allow individual copies of fewer elements.
2786 When movmemsi is not available, use a value approximating
2787 the length of a memcpy call sequence, so that move_by_pieces
2788 will generate inline code if it is shorter than a function call.
2789 Since move_by_pieces_ninsns counts memory-to-memory moves, but
2790 we'll have to generate a load/store pair for each, halve the
2791 value of MIPS_CALL_RATIO to take that into account. */
2793 #define MOVE_RATIO(speed) \
2794 (HAVE_movmemsi \
2795 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
2796 : MIPS_CALL_RATIO / 2)
2798 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2799 mips_move_by_pieces_p (SIZE, ALIGN)
2801 /* For CLEAR_RATIO, when optimizing for size, give a better estimate
2802 of the length of a memset call, but use the default otherwise. */
2804 #define CLEAR_RATIO(speed)\
2805 ((speed) ? 15 : MIPS_CALL_RATIO)
2807 /* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
2808 optimizing for size adjust the ratio to account for the overhead of
2809 loading the constant and replicating it across the word. */
2811 #define SET_RATIO(speed) \
2812 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2814 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2815 mips_store_by_pieces_p (SIZE, ALIGN)
2817 /* Since the bits of the _init and _fini function is spread across
2818 many object files, each potentially with its own GP, we must assume
2819 we need to load our GP. We don't preserve $gp or $ra, since each
2820 init/fini chunk is supposed to initialize $gp, and crti/crtn
2821 already take care of preserving $ra and, when appropriate, $gp. */
2822 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2823 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2824 asm (SECTION_OP "\n\
2825 .set push\n\
2826 .set nomips16\n\
2827 .set noreorder\n\
2828 bal 1f\n\
2829 nop\n\
2830 1: .cpload $31\n\
2831 .set reorder\n\
2832 jal " USER_LABEL_PREFIX #FUNC "\n\
2833 .set pop\n\
2834 " TEXT_SECTION_ASM_OP);
2835 #endif /* Switch to #elif when we're no longer limited by K&R C. */
2836 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2837 || (defined _ABI64 && _MIPS_SIM == _ABI64)
2838 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2839 asm (SECTION_OP "\n\
2840 .set push\n\
2841 .set nomips16\n\
2842 .set noreorder\n\
2843 bal 1f\n\
2844 nop\n\
2845 1: .set reorder\n\
2846 .cpsetup $31, $2, 1b\n\
2847 jal " USER_LABEL_PREFIX #FUNC "\n\
2848 .set pop\n\
2849 " TEXT_SECTION_ASM_OP);
2850 #endif
2852 #ifndef HAVE_AS_TLS
2853 #define HAVE_AS_TLS 0
2854 #endif
2856 #ifndef USED_FOR_TARGET
2857 /* Information about ".set noFOO; ...; .set FOO" blocks. */
2858 struct mips_asm_switch {
2859 /* The FOO in the description above. */
2860 const char *name;
2862 /* The current block nesting level, or 0 if we aren't in a block. */
2863 int nesting_level;
2866 extern const enum reg_class mips_regno_to_class[];
2867 extern bool mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
2868 extern const char *current_function_file; /* filename current function is in */
2869 extern int num_source_filenames; /* current .file # */
2870 extern struct mips_asm_switch mips_noreorder;
2871 extern struct mips_asm_switch mips_nomacro;
2872 extern struct mips_asm_switch mips_noat;
2873 extern int mips_dbx_regno[];
2874 extern int mips_dwarf_regno[];
2875 extern bool mips_split_p[];
2876 extern bool mips_split_hi_p[];
2877 extern bool mips_use_pcrel_pool_p[];
2878 extern const char *mips_lo_relocs[];
2879 extern const char *mips_hi_relocs[];
2880 extern enum processor mips_arch; /* which cpu to codegen for */
2881 extern enum processor mips_tune; /* which cpu to schedule for */
2882 extern int mips_isa; /* architectural level */
2883 extern const struct mips_cpu_info *mips_arch_info;
2884 extern const struct mips_cpu_info *mips_tune_info;
2885 extern bool mips_base_mips16;
2886 extern GTY(()) struct target_globals *mips16_globals;
2887 #endif
2889 /* Enable querying of DFA units. */
2890 #define CPU_UNITS_QUERY 1
2892 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2893 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2895 /* As on most targets, we want the .eh_frame section to be read-only where
2896 possible. And as on most targets, this means two things:
2898 (a) Non-locally-binding pointers must have an indirect encoding,
2899 so that the addresses in the .eh_frame section itself become
2900 locally-binding.
2902 (b) A shared library's .eh_frame section must encode locally-binding
2903 pointers in a relative (relocation-free) form.
2905 However, MIPS has traditionally not allowed directives like:
2907 .long x-.
2909 in cases where "x" is in a different section, or is not defined in the
2910 same assembly file. We are therefore unable to emit the PC-relative
2911 form required by (b) at assembly time.
2913 Fortunately, the linker is able to convert absolute addresses into
2914 PC-relative addresses on our behalf. Unfortunately, only certain
2915 versions of the linker know how to do this for indirect pointers,
2916 and for personality data. We must fall back on using writable
2917 .eh_frame sections for shared libraries if the linker does not
2918 support this feature. */
2919 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2920 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
2922 /* For switching between MIPS16 and non-MIPS16 modes. */
2923 #define SWITCHABLE_TARGET 1
2925 /* Several named MIPS patterns depend on Pmode. These patterns have the
2926 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
2927 Add the appropriate suffix to generator function NAME and invoke it
2928 with arguments ARGS. */
2929 #define PMODE_INSN(NAME, ARGS) \
2930 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)