1 /* Inlining decision heuristics.
2 Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Inlining decision heuristics
24 The implementation of inliner is organized as follows:
26 inlining heuristics limits
28 can_inline_edge_p allow to check that particular inlining is allowed
29 by the limits specified by user (allowed function growth, growth and so
32 Functions are inlined when it is obvious the result is profitable (such
33 as functions called once or when inlining reduce code size).
34 In addition to that we perform inlining of small functions and recursive
39 The inliner itself is split into two passes:
43 Simple local inlining pass inlining callees into current function.
44 This pass makes no use of whole unit analysis and thus it can do only
45 very simple decisions based on local properties.
47 The strength of the pass is that it is run in topological order
48 (reverse postorder) on the callgraph. Functions are converted into SSA
49 form just before this pass and optimized subsequently. As a result, the
50 callees of the function seen by the early inliner was already optimized
51 and results of early inlining adds a lot of optimization opportunities
52 for the local optimization.
54 The pass handle the obvious inlining decisions within the compilation
55 unit - inlining auto inline functions, inlining for size and
58 main strength of the pass is the ability to eliminate abstraction
59 penalty in C++ code (via combination of inlining and early
60 optimization) and thus improve quality of analysis done by real IPA
63 Because of lack of whole unit knowledge, the pass can not really make
64 good code size/performance tradeoffs. It however does very simple
65 speculative inlining allowing code size to grow by
66 EARLY_INLINING_INSNS when callee is leaf function. In this case the
67 optimizations performed later are very likely to eliminate the cost.
71 This is the real inliner able to handle inlining with whole program
72 knowledge. It performs following steps:
74 1) inlining of small functions. This is implemented by greedy
75 algorithm ordering all inlinable cgraph edges by their badness and
76 inlining them in this order as long as inline limits allows doing so.
78 This heuristics is not very good on inlining recursive calls. Recursive
79 calls can be inlined with results similar to loop unrolling. To do so,
80 special purpose recursive inliner is executed on function when
81 recursive edge is met as viable candidate.
83 2) Unreachable functions are removed from callgraph. Inlining leads
84 to devirtualization and other modification of callgraph so functions
85 may become unreachable during the process. Also functions declared as
86 extern inline or virtual functions are removed, since after inlining
87 we no longer need the offline bodies.
89 3) Functions called once and not exported from the unit are inlined.
90 This should almost always lead to reduction of code size by eliminating
91 the need for offline copy of the function. */
95 #include "coretypes.h"
98 #include "tree-inline.h"
99 #include "langhooks.h"
102 #include "diagnostic.h"
103 #include "gimple-pretty-print.h"
108 #include "tree-pass.h"
109 #include "coverage.h"
112 #include "tree-flow.h"
113 #include "ipa-prop.h"
116 #include "ipa-inline.h"
117 #include "ipa-utils.h"
119 /* Statistics we collect about inlining algorithm. */
120 static int overall_size
;
121 static gcov_type max_count
;
123 /* Return false when inlining edge E would lead to violating
124 limits on function unit growth or stack usage growth.
126 The relative function body growth limit is present generally
127 to avoid problems with non-linear behavior of the compiler.
128 To allow inlining huge functions into tiny wrapper, the limit
129 is always based on the bigger of the two functions considered.
131 For stack growth limits we always base the growth in stack usage
132 of the callers. We want to prevent applications from segfaulting
133 on stack overflow when functions with huge stack frames gets
137 caller_growth_limits (struct cgraph_edge
*e
)
139 struct cgraph_node
*to
= e
->caller
;
140 struct cgraph_node
*what
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
143 HOST_WIDE_INT stack_size_limit
= 0, inlined_stack
;
144 struct inline_summary
*info
, *what_info
, *outer_info
= inline_summary (to
);
146 /* Look for function e->caller is inlined to. While doing
147 so work out the largest function body on the way. As
148 described above, we want to base our function growth
149 limits based on that. Not on the self size of the
150 outer function, not on the self size of inline code
151 we immediately inline to. This is the most relaxed
152 interpretation of the rule "do not grow large functions
153 too much in order to prevent compiler from exploding". */
156 info
= inline_summary (to
);
157 if (limit
< info
->self_size
)
158 limit
= info
->self_size
;
159 if (stack_size_limit
< info
->estimated_self_stack_size
)
160 stack_size_limit
= info
->estimated_self_stack_size
;
161 if (to
->global
.inlined_to
)
162 to
= to
->callers
->caller
;
167 what_info
= inline_summary (what
);
169 if (limit
< what_info
->self_size
)
170 limit
= what_info
->self_size
;
172 limit
+= limit
* PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH
) / 100;
174 /* Check the size after inlining against the function limits. But allow
175 the function to shrink if it went over the limits by forced inlining. */
176 newsize
= estimate_size_after_inlining (to
, e
);
177 if (newsize
>= info
->size
178 && newsize
> PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS
)
181 e
->inline_failed
= CIF_LARGE_FUNCTION_GROWTH_LIMIT
;
185 if (!what_info
->estimated_stack_size
)
188 /* FIXME: Stack size limit often prevents inlining in Fortran programs
189 due to large i/o datastructures used by the Fortran front-end.
190 We ought to ignore this limit when we know that the edge is executed
191 on every invocation of the caller (i.e. its call statement dominates
192 exit block). We do not track this information, yet. */
193 stack_size_limit
+= ((gcov_type
)stack_size_limit
194 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH
) / 100);
196 inlined_stack
= (outer_info
->stack_frame_offset
197 + outer_info
->estimated_self_stack_size
198 + what_info
->estimated_stack_size
);
199 /* Check new stack consumption with stack consumption at the place
201 if (inlined_stack
> stack_size_limit
202 /* If function already has large stack usage from sibling
203 inline call, we can inline, too.
204 This bit overoptimistically assume that we are good at stack
206 && inlined_stack
> info
->estimated_stack_size
207 && inlined_stack
> PARAM_VALUE (PARAM_LARGE_STACK_FRAME
))
209 e
->inline_failed
= CIF_LARGE_STACK_FRAME_GROWTH_LIMIT
;
215 /* Dump info about why inlining has failed. */
218 report_inline_failed_reason (struct cgraph_edge
*e
)
222 fprintf (dump_file
, " not inlinable: %s/%i -> %s/%i, %s\n",
223 xstrdup (cgraph_node_name (e
->caller
)), e
->caller
->uid
,
224 xstrdup (cgraph_node_name (e
->callee
)), e
->callee
->uid
,
225 cgraph_inline_failed_string (e
->inline_failed
));
229 /* Decide if we can inline the edge and possibly update
230 inline_failed reason.
231 We check whether inlining is possible at all and whether
232 caller growth limits allow doing so.
234 if REPORT is true, output reason to the dump file. */
237 can_inline_edge_p (struct cgraph_edge
*e
, bool report
)
239 bool inlinable
= true;
240 enum availability avail
;
241 struct cgraph_node
*callee
242 = cgraph_function_or_thunk_node (e
->callee
, &avail
);
243 tree caller_tree
= DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e
->caller
->symbol
.decl
);
245 = callee
? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee
->symbol
.decl
) : NULL
;
246 struct function
*caller_cfun
= DECL_STRUCT_FUNCTION (e
->caller
->symbol
.decl
);
247 struct function
*callee_cfun
248 = callee
? DECL_STRUCT_FUNCTION (callee
->symbol
.decl
) : NULL
;
250 if (!caller_cfun
&& e
->caller
->clone_of
)
251 caller_cfun
= DECL_STRUCT_FUNCTION (e
->caller
->clone_of
->symbol
.decl
);
253 if (!callee_cfun
&& callee
&& callee
->clone_of
)
254 callee_cfun
= DECL_STRUCT_FUNCTION (callee
->clone_of
->symbol
.decl
);
256 gcc_assert (e
->inline_failed
);
258 if (!callee
|| !callee
->analyzed
)
260 e
->inline_failed
= CIF_BODY_NOT_AVAILABLE
;
263 else if (!inline_summary (callee
)->inlinable
)
265 e
->inline_failed
= CIF_FUNCTION_NOT_INLINABLE
;
268 else if (avail
<= AVAIL_OVERWRITABLE
)
270 e
->inline_failed
= CIF_OVERWRITABLE
;
273 else if (e
->call_stmt_cannot_inline_p
)
275 e
->inline_failed
= CIF_MISMATCHED_ARGUMENTS
;
278 /* Don't inline if the functions have different EH personalities. */
279 else if (DECL_FUNCTION_PERSONALITY (e
->caller
->symbol
.decl
)
280 && DECL_FUNCTION_PERSONALITY (callee
->symbol
.decl
)
281 && (DECL_FUNCTION_PERSONALITY (e
->caller
->symbol
.decl
)
282 != DECL_FUNCTION_PERSONALITY (callee
->symbol
.decl
)))
284 e
->inline_failed
= CIF_EH_PERSONALITY
;
287 /* TM pure functions should not be inlined into non-TM_pure
289 else if (is_tm_pure (callee
->symbol
.decl
)
290 && !is_tm_pure (e
->caller
->symbol
.decl
))
292 e
->inline_failed
= CIF_UNSPECIFIED
;
295 /* Don't inline if the callee can throw non-call exceptions but the
297 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
298 Move the flag into cgraph node or mirror it in the inline summary. */
299 else if (callee_cfun
&& callee_cfun
->can_throw_non_call_exceptions
300 && !(caller_cfun
&& caller_cfun
->can_throw_non_call_exceptions
))
302 e
->inline_failed
= CIF_NON_CALL_EXCEPTIONS
;
305 /* Check compatibility of target optimization options. */
306 else if (!targetm
.target_option
.can_inline_p (e
->caller
->symbol
.decl
,
307 callee
->symbol
.decl
))
309 e
->inline_failed
= CIF_TARGET_OPTION_MISMATCH
;
312 /* Check if caller growth allows the inlining. */
313 else if (!DECL_DISREGARD_INLINE_LIMITS (callee
->symbol
.decl
)
314 && !lookup_attribute ("flatten",
316 (e
->caller
->global
.inlined_to
317 ? e
->caller
->global
.inlined_to
->symbol
.decl
318 : e
->caller
->symbol
.decl
))
319 && !caller_growth_limits (e
))
321 /* Don't inline a function with a higher optimization level than the
322 caller. FIXME: this is really just tip of iceberg of handling
323 optimization attribute. */
324 else if (caller_tree
!= callee_tree
)
326 struct cl_optimization
*caller_opt
327 = TREE_OPTIMIZATION ((caller_tree
)
329 : optimization_default_node
);
331 struct cl_optimization
*callee_opt
332 = TREE_OPTIMIZATION ((callee_tree
)
334 : optimization_default_node
);
336 if (((caller_opt
->x_optimize
> callee_opt
->x_optimize
)
337 || (caller_opt
->x_optimize_size
!= callee_opt
->x_optimize_size
))
338 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
339 && !DECL_DISREGARD_INLINE_LIMITS (e
->callee
->symbol
.decl
))
341 e
->inline_failed
= CIF_OPTIMIZATION_MISMATCH
;
346 if (!inlinable
&& report
)
347 report_inline_failed_reason (e
);
352 /* Return true if the edge E is inlinable during early inlining. */
355 can_early_inline_edge_p (struct cgraph_edge
*e
)
357 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
,
359 /* Early inliner might get called at WPA stage when IPA pass adds new
360 function. In this case we can not really do any of early inlining
361 because function bodies are missing. */
362 if (!gimple_has_body_p (callee
->symbol
.decl
))
364 e
->inline_failed
= CIF_BODY_NOT_AVAILABLE
;
367 /* In early inliner some of callees may not be in SSA form yet
368 (i.e. the callgraph is cyclic and we did not process
369 the callee by early inliner, yet). We don't have CIF code for this
370 case; later we will re-do the decision in the real inliner. */
371 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e
->caller
->symbol
.decl
))
372 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee
->symbol
.decl
)))
375 fprintf (dump_file
, " edge not inlinable: not in SSA form\n");
378 if (!can_inline_edge_p (e
, true))
384 /* Return true when N is leaf function. Accept cheap builtins
385 in leaf functions. */
388 leaf_node_p (struct cgraph_node
*n
)
390 struct cgraph_edge
*e
;
391 for (e
= n
->callees
; e
; e
= e
->next_callee
)
392 if (!is_inexpensive_builtin (e
->callee
->symbol
.decl
))
398 /* Return true if we are interested in inlining small function. */
401 want_early_inline_function_p (struct cgraph_edge
*e
)
403 bool want_inline
= true;
404 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
406 if (DECL_DISREGARD_INLINE_LIMITS (callee
->symbol
.decl
))
408 else if (!DECL_DECLARED_INLINE_P (callee
->symbol
.decl
)
409 && !flag_inline_small_functions
)
411 e
->inline_failed
= CIF_FUNCTION_NOT_INLINE_CANDIDATE
;
412 report_inline_failed_reason (e
);
417 int growth
= estimate_edge_growth (e
);
420 else if (!cgraph_maybe_hot_edge_p (e
)
424 fprintf (dump_file
, " will not early inline: %s/%i->%s/%i, "
425 "call is cold and code would grow by %i\n",
426 xstrdup (cgraph_node_name (e
->caller
)), e
->caller
->uid
,
427 xstrdup (cgraph_node_name (callee
)), callee
->uid
,
431 else if (!leaf_node_p (callee
)
435 fprintf (dump_file
, " will not early inline: %s/%i->%s/%i, "
436 "callee is not leaf and code would grow by %i\n",
437 xstrdup (cgraph_node_name (e
->caller
)), e
->caller
->uid
,
438 xstrdup (cgraph_node_name (callee
)), callee
->uid
,
442 else if (growth
> PARAM_VALUE (PARAM_EARLY_INLINING_INSNS
))
445 fprintf (dump_file
, " will not early inline: %s/%i->%s/%i, "
446 "growth %i exceeds --param early-inlining-insns\n",
447 xstrdup (cgraph_node_name (e
->caller
)), e
->caller
->uid
,
448 xstrdup (cgraph_node_name (callee
)), callee
->uid
,
456 /* Return true if we are interested in inlining small function.
457 When REPORT is true, report reason to dump file. */
460 want_inline_small_function_p (struct cgraph_edge
*e
, bool report
)
462 bool want_inline
= true;
463 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
465 if (DECL_DISREGARD_INLINE_LIMITS (callee
->symbol
.decl
))
467 else if (!DECL_DECLARED_INLINE_P (callee
->symbol
.decl
)
468 && !flag_inline_small_functions
)
470 e
->inline_failed
= CIF_FUNCTION_NOT_INLINE_CANDIDATE
;
475 int growth
= estimate_edge_growth (e
);
479 else if (DECL_DECLARED_INLINE_P (callee
->symbol
.decl
)
480 && growth
>= MAX_INLINE_INSNS_SINGLE
)
482 e
->inline_failed
= CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
;
485 /* Before giving up based on fact that caller size will grow, allow
486 functions that are called few times and eliminating the offline
487 copy will lead to overall code size reduction.
488 Not all of these will be handled by subsequent inlining of functions
489 called once: in particular weak functions are not handled or funcitons
490 that inline to multiple calls but a lot of bodies is optimized out.
491 Finally we want to inline earlier to allow inlining of callbacks.
493 This is slightly wrong on aggressive side: it is entirely possible
494 that function is called many times with a context where inlining
495 reduces code size and few times with a context where inlining increase
496 code size. Resoluting growth estimate will be negative even if it
497 would make more sense to keep offline copy and do not inline into the
498 call sites that makes the code size grow.
500 When badness orders the calls in a way that code reducing calls come
501 first, this situation is not a problem at all: after inlining all
502 "good" calls, we will realize that keeping the function around is
504 else if (growth
<= MAX_INLINE_INSNS_SINGLE
505 /* Unlike for functions called once, we play unsafe with
506 COMDATs. We can allow that since we know functions
507 in consideration are small (and thus risk is small) and
508 moreover grow estimates already accounts that COMDAT
509 functions may or may not disappear when eliminated from
510 current unit. With good probability making aggressive
511 choice in all units is going to make overall program
514 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
516 cgraph_will_be_removed_from_program_if_no_direct_calls */
517 && !DECL_EXTERNAL (callee
->symbol
.decl
)
518 && cgraph_can_remove_if_no_direct_calls_p (callee
)
519 && estimate_growth (callee
) <= 0)
521 else if (!DECL_DECLARED_INLINE_P (callee
->symbol
.decl
)
522 && !flag_inline_functions
)
524 e
->inline_failed
= CIF_NOT_DECLARED_INLINED
;
527 else if (!DECL_DECLARED_INLINE_P (callee
->symbol
.decl
)
528 && growth
>= MAX_INLINE_INSNS_AUTO
)
530 e
->inline_failed
= CIF_MAX_INLINE_INSNS_AUTO_LIMIT
;
533 /* If call is cold, do not inline when function body would grow. */
534 else if (!cgraph_maybe_hot_edge_p (e
))
536 e
->inline_failed
= CIF_UNLIKELY_CALL
;
540 if (!want_inline
&& report
)
541 report_inline_failed_reason (e
);
545 /* EDGE is self recursive edge.
546 We hand two cases - when function A is inlining into itself
547 or when function A is being inlined into another inliner copy of function
550 In first case OUTER_NODE points to the toplevel copy of A, while
551 in the second case OUTER_NODE points to the outermost copy of A in B.
553 In both cases we want to be extra selective since
554 inlining the call will just introduce new recursive calls to appear. */
557 want_inline_self_recursive_call_p (struct cgraph_edge
*edge
,
558 struct cgraph_node
*outer_node
,
562 char const *reason
= NULL
;
563 bool want_inline
= true;
564 int caller_freq
= CGRAPH_FREQ_BASE
;
565 int max_depth
= PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO
);
567 if (DECL_DECLARED_INLINE_P (edge
->caller
->symbol
.decl
))
568 max_depth
= PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH
);
570 if (!cgraph_maybe_hot_edge_p (edge
))
572 reason
= "recursive call is cold";
575 else if (max_count
&& !outer_node
->count
)
577 reason
= "not executed in profile";
580 else if (depth
> max_depth
)
582 reason
= "--param max-inline-recursive-depth exceeded.";
586 if (outer_node
->global
.inlined_to
)
587 caller_freq
= outer_node
->callers
->frequency
;
591 /* Inlining of self recursive function into copy of itself within other function
592 is transformation similar to loop peeling.
594 Peeling is profitable if we can inline enough copies to make probability
595 of actual call to the self recursive function very small. Be sure that
596 the probability of recursion is small.
598 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
599 This way the expected number of recision is at most max_depth. */
602 int max_prob
= CGRAPH_FREQ_BASE
- ((CGRAPH_FREQ_BASE
+ max_depth
- 1)
605 for (i
= 1; i
< depth
; i
++)
606 max_prob
= max_prob
* max_prob
/ CGRAPH_FREQ_BASE
;
608 && (edge
->count
* CGRAPH_FREQ_BASE
/ outer_node
->count
611 reason
= "profile of recursive call is too large";
615 && (edge
->frequency
* CGRAPH_FREQ_BASE
/ caller_freq
618 reason
= "frequency of recursive call is too large";
622 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
623 depth is large. We reduce function call overhead and increase chances that
624 things fit in hardware return predictor.
626 Recursive inlining might however increase cost of stack frame setup
627 actually slowing down functions whose recursion tree is wide rather than
630 Deciding reliably on when to do recursive inlining without profile feedback
631 is tricky. For now we disable recursive inlining when probability of self
634 Recursive inlining of self recursive call within loop also results in large loop
635 depths that generally optimize badly. We may want to throttle down inlining
636 in those cases. In particular this seems to happen in one of libstdc++ rb tree
641 && (edge
->count
* 100 / outer_node
->count
642 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY
)))
644 reason
= "profile of recursive call is too small";
648 && (edge
->frequency
* 100 / caller_freq
649 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY
)))
651 reason
= "frequency of recursive call is too small";
655 if (!want_inline
&& dump_file
)
656 fprintf (dump_file
, " not inlining recursively: %s\n", reason
);
660 /* Return true when NODE has caller other than EDGE.
661 Worker for cgraph_for_node_and_aliases. */
664 check_caller_edge (struct cgraph_node
*node
, void *edge
)
666 return (node
->callers
667 && node
->callers
!= edge
);
671 /* Decide if NODE is called once inlining it would eliminate need
672 for the offline copy of function. */
675 want_inline_function_called_once_p (struct cgraph_node
*node
)
677 struct cgraph_node
*function
= cgraph_function_or_thunk_node (node
, NULL
);
678 /* Already inlined? */
679 if (function
->global
.inlined_to
)
681 /* Zero or more then one callers? */
683 || node
->callers
->next_caller
)
685 /* Maybe other aliases has more direct calls. */
686 if (cgraph_for_node_and_aliases (node
, check_caller_edge
, node
->callers
, true))
688 /* Recursive call makes no sense to inline. */
689 if (cgraph_edge_recursive_p (node
->callers
))
691 /* External functions are not really in the unit, so inlining
692 them when called once would just increase the program size. */
693 if (DECL_EXTERNAL (function
->symbol
.decl
))
695 /* Offline body must be optimized out. */
696 if (!cgraph_will_be_removed_from_program_if_no_direct_calls (function
))
698 if (!can_inline_edge_p (node
->callers
, true))
704 /* Return relative time improvement for inlining EDGE in range
708 relative_time_benefit (struct inline_summary
*callee_info
,
709 struct cgraph_edge
*edge
,
713 gcov_type uninlined_call_time
;
715 uninlined_call_time
=
718 + inline_edge_summary (edge
)->call_stmt_time
) * edge
->frequency
719 + CGRAPH_FREQ_BASE
/ 2) / CGRAPH_FREQ_BASE
;
720 /* Compute relative time benefit, i.e. how much the call becomes faster.
721 ??? perhaps computing how much the caller+calle together become faster
722 would lead to more realistic results. */
723 if (!uninlined_call_time
)
724 uninlined_call_time
= 1;
726 (uninlined_call_time
- time_growth
) * 256 / (uninlined_call_time
);
727 relbenefit
= MIN (relbenefit
, 512);
728 relbenefit
= MAX (relbenefit
, 1);
733 /* A cost model driving the inlining heuristics in a way so the edges with
734 smallest badness are inlined first. After each inlining is performed
735 the costs of all caller edges of nodes affected are recomputed so the
736 metrics may accurately depend on values such as number of inlinable callers
737 of the function or function body size. */
740 edge_badness (struct cgraph_edge
*edge
, bool dump
)
743 int growth
, time_growth
;
744 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (edge
->callee
,
746 struct inline_summary
*callee_info
= inline_summary (callee
);
748 if (DECL_DISREGARD_INLINE_LIMITS (callee
->symbol
.decl
))
751 growth
= estimate_edge_growth (edge
);
752 time_growth
= estimate_edge_time (edge
);
756 fprintf (dump_file
, " Badness calculation for %s -> %s\n",
757 xstrdup (cgraph_node_name (edge
->caller
)),
758 xstrdup (cgraph_node_name (callee
)));
759 fprintf (dump_file
, " size growth %i, time growth %i\n",
764 /* Always prefer inlining saving code size. */
767 badness
= INT_MIN
/ 2 + growth
;
769 fprintf (dump_file
, " %i: Growth %i <= 0\n", (int) badness
,
773 /* When profiling is available, compute badness as:
775 relative_edge_count * relative_time_benefit
776 goodness = -------------------------------------------
780 The fraction is upside down, because on edge counts and time beneits
781 the bounds are known. Edge growth is essentially unlimited. */
785 int relbenefit
= relative_time_benefit (callee_info
, edge
, time_growth
);
788 ((double) edge
->count
* INT_MIN
/ 2 / max_count
/ 512) *
789 relative_time_benefit (callee_info
, edge
, time_growth
)) / growth
;
791 /* Be sure that insanity of the profile won't lead to increasing counts
792 in the scalling and thus to overflow in the computation above. */
793 gcc_assert (max_count
>= edge
->count
);
797 " %i (relative %f): profile info. Relative count %f"
798 " * Relative benefit %f\n",
799 (int) badness
, (double) badness
/ INT_MIN
,
800 (double) edge
->count
/ max_count
,
801 relbenefit
* 100 / 256.0);
805 /* When function local profile is available. Compute badness as:
809 badness = -------------------------------------- + growth_for-all
810 relative_time_benefit * edge_frequency
813 else if (flag_guess_branch_prob
)
815 int div
= edge
->frequency
* (1<<10) / CGRAPH_FREQ_MAX
;
818 gcc_checking_assert (edge
->frequency
<= CGRAPH_FREQ_MAX
);
819 div
*= relative_time_benefit (callee_info
, edge
, time_growth
);
821 /* frequency is normalized in range 1...2^10.
822 relbenefit in range 1...2^9
823 DIV should be in range 1....2^19. */
824 gcc_checking_assert (div
>= 1 && div
<= (1<<19));
826 /* Result must be integer in range 0...INT_MAX.
827 Set the base of fixed point calculation so we don't lose much of
828 precision for small bandesses (those are interesting) yet we don't
829 overflow for growths that are still in interesting range.
831 Fixed point arithmetic with point at 8th bit. */
832 badness
= ((gcov_type
)growth
) * (1<<(19+8));
833 badness
= (badness
+ div
/ 2) / div
;
835 /* Overall growth of inlining all calls of function matters: we want to
836 inline so offline copy of function is no longer needed.
838 Additionally functions that can be fully inlined without much of
839 effort are better inline candidates than functions that can be fully
840 inlined only after noticeable overall unit growths. The latter
841 are better in a sense compressing of code size by factoring out common
842 code into separate function shared by multiple code paths.
844 We might mix the valud into the fraction by taking into account
845 relative growth of the unit, but for now just add the number
846 into resulting fraction. */
847 if (badness
> INT_MAX
/ 2)
849 badness
= INT_MAX
/ 2;
851 fprintf (dump_file
, "Badness overflow\n");
856 " %i: guessed profile. frequency %f,"
857 " benefit %f%%, divisor %i\n",
858 (int) badness
, (double)edge
->frequency
/ CGRAPH_FREQ_BASE
,
859 relative_time_benefit (callee_info
, edge
, time_growth
) * 100 / 256.0, div
);
862 /* When function local profile is not available or it does not give
863 useful information (ie frequency is zero), base the cost on
864 loop nest and overall size growth, so we optimize for overall number
865 of functions fully inlined in program. */
868 int nest
= MIN (inline_edge_summary (edge
)->loop_depth
, 8);
869 badness
= growth
* 256;
871 /* Decrease badness if call is nested. */
879 fprintf (dump_file
, " %i: no profile. nest %i\n", (int) badness
,
883 /* Ensure that we did not overflow in all the fixed point math above. */
884 gcc_assert (badness
>= INT_MIN
);
885 gcc_assert (badness
<= INT_MAX
- 1);
886 /* Make recursive inlining happen always after other inlining is done. */
887 if (cgraph_edge_recursive_p (edge
))
893 /* Recompute badness of EDGE and update its key in HEAP if needed. */
895 update_edge_key (fibheap_t heap
, struct cgraph_edge
*edge
)
897 int badness
= edge_badness (edge
, false);
900 fibnode_t n
= (fibnode_t
) edge
->aux
;
901 gcc_checking_assert (n
->data
== edge
);
903 /* fibheap_replace_key only decrease the keys.
904 When we increase the key we do not update heap
905 and instead re-insert the element once it becomes
906 a minimum of heap. */
907 if (badness
< n
->key
)
909 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
912 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
913 xstrdup (cgraph_node_name (edge
->caller
)),
915 xstrdup (cgraph_node_name (edge
->callee
)),
920 fibheap_replace_key (heap
, n
, badness
);
921 gcc_checking_assert (n
->key
== badness
);
926 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
929 " enqueuing call %s/%i -> %s/%i, badness %i\n",
930 xstrdup (cgraph_node_name (edge
->caller
)),
932 xstrdup (cgraph_node_name (edge
->callee
)),
936 edge
->aux
= fibheap_insert (heap
, badness
, edge
);
942 All caller edges needs to be resetted because
943 size estimates change. Similarly callees needs reset
944 because better context may be known. */
947 reset_edge_caches (struct cgraph_node
*node
)
949 struct cgraph_edge
*edge
;
950 struct cgraph_edge
*e
= node
->callees
;
951 struct cgraph_node
*where
= node
;
955 if (where
->global
.inlined_to
)
956 where
= where
->global
.inlined_to
;
958 /* WHERE body size has changed, the cached growth is invalid. */
959 reset_node_growth_cache (where
);
961 for (edge
= where
->callers
; edge
; edge
= edge
->next_caller
)
962 if (edge
->inline_failed
)
963 reset_edge_growth_cache (edge
);
964 for (i
= 0; ipa_ref_list_referring_iterate (&where
->symbol
.ref_list
,
966 if (ref
->use
== IPA_REF_ALIAS
)
967 reset_edge_caches (ipa_ref_referring_node (ref
));
973 if (!e
->inline_failed
&& e
->callee
->callees
)
974 e
= e
->callee
->callees
;
977 if (e
->inline_failed
)
978 reset_edge_growth_cache (e
);
985 if (e
->caller
== node
)
987 e
= e
->caller
->callers
;
989 while (!e
->next_callee
);
995 /* Recompute HEAP nodes for each of caller of NODE.
996 UPDATED_NODES track nodes we already visited, to avoid redundant work.
997 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
998 it is inlinable. Otherwise check all edges. */
1001 update_caller_keys (fibheap_t heap
, struct cgraph_node
*node
,
1002 bitmap updated_nodes
,
1003 struct cgraph_edge
*check_inlinablity_for
)
1005 struct cgraph_edge
*edge
;
1007 struct ipa_ref
*ref
;
1009 if ((!node
->alias
&& !inline_summary (node
)->inlinable
)
1010 || cgraph_function_body_availability (node
) <= AVAIL_OVERWRITABLE
1011 || node
->global
.inlined_to
)
1013 if (!bitmap_set_bit (updated_nodes
, node
->uid
))
1016 for (i
= 0; ipa_ref_list_referring_iterate (&node
->symbol
.ref_list
,
1018 if (ref
->use
== IPA_REF_ALIAS
)
1020 struct cgraph_node
*alias
= ipa_ref_referring_node (ref
);
1021 update_caller_keys (heap
, alias
, updated_nodes
, check_inlinablity_for
);
1024 for (edge
= node
->callers
; edge
; edge
= edge
->next_caller
)
1025 if (edge
->inline_failed
)
1027 if (!check_inlinablity_for
1028 || check_inlinablity_for
== edge
)
1030 if (can_inline_edge_p (edge
, false)
1031 && want_inline_small_function_p (edge
, false))
1032 update_edge_key (heap
, edge
);
1035 report_inline_failed_reason (edge
);
1036 fibheap_delete_node (heap
, (fibnode_t
) edge
->aux
);
1041 update_edge_key (heap
, edge
);
1045 /* Recompute HEAP nodes for each uninlined call in NODE.
1046 This is used when we know that edge badnesses are going only to increase
1047 (we introduced new call site) and thus all we need is to insert newly
1048 created edges into heap. */
1051 update_callee_keys (fibheap_t heap
, struct cgraph_node
*node
,
1052 bitmap updated_nodes
)
1054 struct cgraph_edge
*e
= node
->callees
;
1059 if (!e
->inline_failed
&& e
->callee
->callees
)
1060 e
= e
->callee
->callees
;
1063 enum availability avail
;
1064 struct cgraph_node
*callee
;
1065 /* We do not reset callee growth cache here. Since we added a new call,
1066 growth chould have just increased and consequentely badness metric
1067 don't need updating. */
1068 if (e
->inline_failed
1069 && (callee
= cgraph_function_or_thunk_node (e
->callee
, &avail
))
1070 && inline_summary (callee
)->inlinable
1071 && cgraph_function_body_availability (callee
) >= AVAIL_AVAILABLE
1072 && !bitmap_bit_p (updated_nodes
, callee
->uid
))
1074 if (can_inline_edge_p (e
, false)
1075 && want_inline_small_function_p (e
, false))
1076 update_edge_key (heap
, e
);
1079 report_inline_failed_reason (e
);
1080 fibheap_delete_node (heap
, (fibnode_t
) e
->aux
);
1090 if (e
->caller
== node
)
1092 e
= e
->caller
->callers
;
1094 while (!e
->next_callee
);
1100 /* Enqueue all recursive calls from NODE into priority queue depending on
1101 how likely we want to recursively inline the call. */
1104 lookup_recursive_calls (struct cgraph_node
*node
, struct cgraph_node
*where
,
1107 struct cgraph_edge
*e
;
1108 enum availability avail
;
1110 for (e
= where
->callees
; e
; e
= e
->next_callee
)
1111 if (e
->callee
== node
1112 || (cgraph_function_or_thunk_node (e
->callee
, &avail
) == node
1113 && avail
> AVAIL_OVERWRITABLE
))
1115 /* When profile feedback is available, prioritize by expected number
1117 fibheap_insert (heap
,
1118 !max_count
? -e
->frequency
1119 : -(e
->count
/ ((max_count
+ (1<<24) - 1) / (1<<24))),
1122 for (e
= where
->callees
; e
; e
= e
->next_callee
)
1123 if (!e
->inline_failed
)
1124 lookup_recursive_calls (node
, e
->callee
, heap
);
1127 /* Decide on recursive inlining: in the case function has recursive calls,
1128 inline until body size reaches given argument. If any new indirect edges
1129 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1133 recursive_inlining (struct cgraph_edge
*edge
,
1134 VEC (cgraph_edge_p
, heap
) **new_edges
)
1136 int limit
= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO
);
1138 struct cgraph_node
*node
;
1139 struct cgraph_edge
*e
;
1140 struct cgraph_node
*master_clone
= NULL
, *next
;
1144 node
= edge
->caller
;
1145 if (node
->global
.inlined_to
)
1146 node
= node
->global
.inlined_to
;
1148 if (DECL_DECLARED_INLINE_P (node
->symbol
.decl
))
1149 limit
= PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE
);
1151 /* Make sure that function is small enough to be considered for inlining. */
1152 if (estimate_size_after_inlining (node
, edge
) >= limit
)
1154 heap
= fibheap_new ();
1155 lookup_recursive_calls (node
, node
, heap
);
1156 if (fibheap_empty (heap
))
1158 fibheap_delete (heap
);
1164 " Performing recursive inlining on %s\n",
1165 cgraph_node_name (node
));
1167 /* Do the inlining and update list of recursive call during process. */
1168 while (!fibheap_empty (heap
))
1170 struct cgraph_edge
*curr
1171 = (struct cgraph_edge
*) fibheap_extract_min (heap
);
1172 struct cgraph_node
*cnode
;
1174 if (estimate_size_after_inlining (node
, curr
) > limit
)
1177 if (!can_inline_edge_p (curr
, true))
1181 for (cnode
= curr
->caller
;
1182 cnode
->global
.inlined_to
; cnode
= cnode
->callers
->caller
)
1183 if (node
->symbol
.decl
1184 == cgraph_function_or_thunk_node (curr
->callee
, NULL
)->symbol
.decl
)
1187 if (!want_inline_self_recursive_call_p (curr
, node
, false, depth
))
1193 " Inlining call of depth %i", depth
);
1196 fprintf (dump_file
, " called approx. %.2f times per call",
1197 (double)curr
->count
/ node
->count
);
1199 fprintf (dump_file
, "\n");
1203 /* We need original clone to copy around. */
1204 master_clone
= cgraph_clone_node (node
, node
->symbol
.decl
,
1205 node
->count
, CGRAPH_FREQ_BASE
,
1207 for (e
= master_clone
->callees
; e
; e
= e
->next_callee
)
1208 if (!e
->inline_failed
)
1209 clone_inlined_nodes (e
, true, false, NULL
);
1212 cgraph_redirect_edge_callee (curr
, master_clone
);
1213 inline_call (curr
, false, new_edges
, &overall_size
);
1214 lookup_recursive_calls (node
, curr
->callee
, heap
);
1218 if (!fibheap_empty (heap
) && dump_file
)
1219 fprintf (dump_file
, " Recursive inlining growth limit met.\n");
1220 fibheap_delete (heap
);
1227 "\n Inlined %i times, "
1228 "body grown from size %i to %i, time %i to %i\n", n
,
1229 inline_summary (master_clone
)->size
, inline_summary (node
)->size
,
1230 inline_summary (master_clone
)->time
, inline_summary (node
)->time
);
1232 /* Remove master clone we used for inlining. We rely that clones inlined
1233 into master clone gets queued just before master clone so we don't
1235 for (node
= cgraph_first_function (); node
!= master_clone
;
1238 next
= cgraph_next_function (node
);
1239 if (node
->global
.inlined_to
== master_clone
)
1240 cgraph_remove_node (node
);
1242 cgraph_remove_node (master_clone
);
1247 /* Given whole compilation unit estimate of INSNS, compute how large we can
1248 allow the unit to grow. */
1251 compute_max_insns (int insns
)
1253 int max_insns
= insns
;
1254 if (max_insns
< PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
))
1255 max_insns
= PARAM_VALUE (PARAM_LARGE_UNIT_INSNS
);
1257 return ((HOST_WIDEST_INT
) max_insns
1258 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH
)) / 100);
1262 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1265 add_new_edges_to_heap (fibheap_t heap
, VEC (cgraph_edge_p
, heap
) *new_edges
)
1267 while (VEC_length (cgraph_edge_p
, new_edges
) > 0)
1269 struct cgraph_edge
*edge
= VEC_pop (cgraph_edge_p
, new_edges
);
1271 gcc_assert (!edge
->aux
);
1272 if (edge
->inline_failed
1273 && can_inline_edge_p (edge
, true)
1274 && want_inline_small_function_p (edge
, true))
1275 edge
->aux
= fibheap_insert (heap
, edge_badness (edge
, false), edge
);
1280 /* We use greedy algorithm for inlining of small functions:
1281 All inline candidates are put into prioritized heap ordered in
1284 The inlining of small functions is bounded by unit growth parameters. */
1287 inline_small_functions (void)
1289 struct cgraph_node
*node
;
1290 struct cgraph_edge
*edge
;
1291 fibheap_t heap
= fibheap_new ();
1292 bitmap updated_nodes
= BITMAP_ALLOC (NULL
);
1293 int min_size
, max_size
;
1294 VEC (cgraph_edge_p
, heap
) *new_indirect_edges
= NULL
;
1295 int initial_size
= 0;
1297 if (flag_indirect_inlining
)
1298 new_indirect_edges
= VEC_alloc (cgraph_edge_p
, heap
, 8);
1302 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1305 /* Compute overall unit size and other global parameters used by badness
1309 initialize_growth_caches ();
1311 FOR_EACH_DEFINED_FUNCTION (node
)
1312 if (!node
->global
.inlined_to
)
1314 if (cgraph_function_with_gimple_body_p (node
)
1315 || node
->thunk
.thunk_p
)
1317 struct inline_summary
*info
= inline_summary (node
);
1319 if (!DECL_EXTERNAL (node
->symbol
.decl
))
1320 initial_size
+= info
->size
;
1323 for (edge
= node
->callers
; edge
; edge
= edge
->next_caller
)
1324 if (max_count
< edge
->count
)
1325 max_count
= edge
->count
;
1328 overall_size
= initial_size
;
1329 max_size
= compute_max_insns (overall_size
);
1330 min_size
= overall_size
;
1332 /* Populate the heeap with all edges we might inline. */
1334 FOR_EACH_DEFINED_FUNCTION (node
)
1335 if (!node
->global
.inlined_to
)
1338 fprintf (dump_file
, "Enqueueing calls of %s/%i.\n",
1339 cgraph_node_name (node
), node
->uid
);
1341 for (edge
= node
->callers
; edge
; edge
= edge
->next_caller
)
1342 if (edge
->inline_failed
1343 && can_inline_edge_p (edge
, true)
1344 && want_inline_small_function_p (edge
, true)
1345 && edge
->inline_failed
)
1347 gcc_assert (!edge
->aux
);
1348 update_edge_key (heap
, edge
);
1352 gcc_assert (in_lto_p
1354 || (profile_info
&& flag_branch_probabilities
));
1356 while (!fibheap_empty (heap
))
1358 int old_size
= overall_size
;
1359 struct cgraph_node
*where
, *callee
;
1360 int badness
= fibheap_min_key (heap
);
1361 int current_badness
;
1365 edge
= (struct cgraph_edge
*) fibheap_extract_min (heap
);
1366 gcc_assert (edge
->aux
);
1368 if (!edge
->inline_failed
)
1371 /* Be sure that caches are maintained consistent.
1372 We can not make this ENABLE_CHECKING only because it cause different
1373 updates of the fibheap queue. */
1374 cached_badness
= edge_badness (edge
, false);
1375 reset_edge_growth_cache (edge
);
1376 reset_node_growth_cache (edge
->callee
);
1378 /* When updating the edge costs, we only decrease badness in the keys.
1379 Increases of badness are handled lazilly; when we see key with out
1380 of date value on it, we re-insert it now. */
1381 current_badness
= edge_badness (edge
, false);
1382 gcc_assert (cached_badness
== current_badness
);
1383 gcc_assert (current_badness
>= badness
);
1384 if (current_badness
!= badness
)
1386 edge
->aux
= fibheap_insert (heap
, current_badness
, edge
);
1390 if (!can_inline_edge_p (edge
, true))
1393 callee
= cgraph_function_or_thunk_node (edge
->callee
, NULL
);
1394 growth
= estimate_edge_growth (edge
);
1398 "\nConsidering %s with %i size\n",
1399 cgraph_node_name (callee
),
1400 inline_summary (callee
)->size
);
1402 " to be inlined into %s in %s:%i\n"
1403 " Estimated growth after inlined into all is %+i insns.\n"
1404 " Estimated badness is %i, frequency %.2f.\n",
1405 cgraph_node_name (edge
->caller
),
1406 flag_wpa
? "unknown"
1407 : gimple_filename ((const_gimple
) edge
->call_stmt
),
1409 : gimple_lineno ((const_gimple
) edge
->call_stmt
),
1410 estimate_growth (callee
),
1412 edge
->frequency
/ (double)CGRAPH_FREQ_BASE
);
1414 fprintf (dump_file
," Called "HOST_WIDEST_INT_PRINT_DEC
"x\n",
1416 if (dump_flags
& TDF_DETAILS
)
1417 edge_badness (edge
, true);
1420 if (overall_size
+ growth
> max_size
1421 && !DECL_DISREGARD_INLINE_LIMITS (callee
->symbol
.decl
))
1423 edge
->inline_failed
= CIF_INLINE_UNIT_GROWTH_LIMIT
;
1424 report_inline_failed_reason (edge
);
1428 if (!want_inline_small_function_p (edge
, true))
1431 /* Heuristics for inlining small functions works poorly for
1432 recursive calls where we do efect similar to loop unrolling.
1433 When inliing such edge seems profitable, leave decision on
1434 specific inliner. */
1435 if (cgraph_edge_recursive_p (edge
))
1437 where
= edge
->caller
;
1438 if (where
->global
.inlined_to
)
1439 where
= where
->global
.inlined_to
;
1440 if (!recursive_inlining (edge
,
1441 flag_indirect_inlining
1442 ? &new_indirect_edges
: NULL
))
1444 edge
->inline_failed
= CIF_RECURSIVE_INLINING
;
1447 reset_edge_caches (where
);
1448 /* Recursive inliner inlines all recursive calls of the function
1449 at once. Consequently we need to update all callee keys. */
1450 if (flag_indirect_inlining
)
1451 add_new_edges_to_heap (heap
, new_indirect_edges
);
1452 update_callee_keys (heap
, where
, updated_nodes
);
1456 struct cgraph_node
*outer_node
= NULL
;
1459 /* Consider the case where self recursive function A is inlined into B.
1460 This is desired optimization in some cases, since it leads to effect
1461 similar of loop peeling and we might completely optimize out the
1462 recursive call. However we must be extra selective. */
1464 where
= edge
->caller
;
1465 while (where
->global
.inlined_to
)
1467 if (where
->symbol
.decl
== callee
->symbol
.decl
)
1468 outer_node
= where
, depth
++;
1469 where
= where
->callers
->caller
;
1472 && !want_inline_self_recursive_call_p (edge
, outer_node
,
1476 = (DECL_DISREGARD_INLINE_LIMITS (edge
->callee
->symbol
.decl
)
1477 ? CIF_RECURSIVE_INLINING
: CIF_UNSPECIFIED
);
1480 else if (depth
&& dump_file
)
1481 fprintf (dump_file
, " Peeling recursion with depth %i\n", depth
);
1483 gcc_checking_assert (!callee
->global
.inlined_to
);
1484 inline_call (edge
, true, &new_indirect_edges
, &overall_size
);
1485 if (flag_indirect_inlining
)
1486 add_new_edges_to_heap (heap
, new_indirect_edges
);
1488 reset_edge_caches (edge
->callee
);
1489 reset_node_growth_cache (callee
);
1491 update_callee_keys (heap
, edge
->callee
, updated_nodes
);
1493 where
= edge
->caller
;
1494 if (where
->global
.inlined_to
)
1495 where
= where
->global
.inlined_to
;
1497 /* Our profitability metric can depend on local properties
1498 such as number of inlinable calls and size of the function body.
1499 After inlining these properties might change for the function we
1500 inlined into (since it's body size changed) and for the functions
1501 called by function we inlined (since number of it inlinable callers
1503 update_caller_keys (heap
, where
, updated_nodes
, NULL
);
1504 bitmap_clear (updated_nodes
);
1509 " Inlined into %s which now has time %i and size %i,"
1510 "net change of %+i.\n",
1511 cgraph_node_name (edge
->caller
),
1512 inline_summary (edge
->caller
)->time
,
1513 inline_summary (edge
->caller
)->size
,
1514 overall_size
- old_size
);
1516 if (min_size
> overall_size
)
1518 min_size
= overall_size
;
1519 max_size
= compute_max_insns (min_size
);
1522 fprintf (dump_file
, "New minimal size reached: %i\n", min_size
);
1526 free_growth_caches ();
1527 if (new_indirect_edges
)
1528 VEC_free (cgraph_edge_p
, heap
, new_indirect_edges
);
1529 fibheap_delete (heap
);
1532 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1533 initial_size
, overall_size
,
1534 initial_size
? overall_size
* 100 / (initial_size
) - 100: 0);
1535 BITMAP_FREE (updated_nodes
);
1538 /* Flatten NODE. Performed both during early inlining and
1539 at IPA inlining time. */
1542 flatten_function (struct cgraph_node
*node
, bool early
)
1544 struct cgraph_edge
*e
;
1546 /* We shouldn't be called recursively when we are being processed. */
1547 gcc_assert (node
->symbol
.aux
== NULL
);
1549 node
->symbol
.aux
= (void *) node
;
1551 for (e
= node
->callees
; e
; e
= e
->next_callee
)
1553 struct cgraph_node
*orig_callee
;
1554 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
1556 /* We've hit cycle? It is time to give up. */
1557 if (callee
->symbol
.aux
)
1561 "Not inlining %s into %s to avoid cycle.\n",
1562 xstrdup (cgraph_node_name (callee
)),
1563 xstrdup (cgraph_node_name (e
->caller
)));
1564 e
->inline_failed
= CIF_RECURSIVE_INLINING
;
1568 /* When the edge is already inlined, we just need to recurse into
1569 it in order to fully flatten the leaves. */
1570 if (!e
->inline_failed
)
1572 flatten_function (callee
, early
);
1576 /* Flatten attribute needs to be processed during late inlining. For
1577 extra code quality we however do flattening during early optimization,
1580 ? !can_inline_edge_p (e
, true)
1581 : !can_early_inline_edge_p (e
))
1584 if (cgraph_edge_recursive_p (e
))
1587 fprintf (dump_file
, "Not inlining: recursive call.\n");
1591 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node
->symbol
.decl
))
1592 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee
->symbol
.decl
)))
1595 fprintf (dump_file
, "Not inlining: SSA form does not match.\n");
1599 /* Inline the edge and flatten the inline clone. Avoid
1600 recursing through the original node if the node was cloned. */
1602 fprintf (dump_file
, " Inlining %s into %s.\n",
1603 xstrdup (cgraph_node_name (callee
)),
1604 xstrdup (cgraph_node_name (e
->caller
)));
1605 orig_callee
= callee
;
1606 inline_call (e
, true, NULL
, NULL
);
1607 if (e
->callee
!= orig_callee
)
1608 orig_callee
->symbol
.aux
= (void *) node
;
1609 flatten_function (e
->callee
, early
);
1610 if (e
->callee
!= orig_callee
)
1611 orig_callee
->symbol
.aux
= NULL
;
1614 node
->symbol
.aux
= NULL
;
1617 /* Decide on the inlining. We do so in the topological order to avoid
1618 expenses on updating data structures. */
1623 struct cgraph_node
*node
;
1625 struct cgraph_node
**order
=
1626 XCNEWVEC (struct cgraph_node
*, cgraph_n_nodes
);
1629 if (in_lto_p
&& optimize
)
1630 ipa_update_after_lto_read ();
1633 dump_inline_summaries (dump_file
);
1635 nnodes
= ipa_reverse_postorder (order
);
1637 FOR_EACH_FUNCTION (node
)
1638 node
->symbol
.aux
= 0;
1641 fprintf (dump_file
, "\nFlattening functions:\n");
1643 /* In the first pass handle functions to be flattened. Do this with
1644 a priority so none of our later choices will make this impossible. */
1645 for (i
= nnodes
- 1; i
>= 0; i
--)
1649 /* Handle nodes to be flattened.
1650 Ideally when processing callees we stop inlining at the
1651 entry of cycles, possibly cloning that entry point and
1652 try to flatten itself turning it into a self-recursive
1654 if (lookup_attribute ("flatten",
1655 DECL_ATTRIBUTES (node
->symbol
.decl
)) != NULL
)
1659 "Flattening %s\n", cgraph_node_name (node
));
1660 flatten_function (node
, false);
1664 inline_small_functions ();
1665 symtab_remove_unreachable_nodes (true, dump_file
);
1668 /* We already perform some inlining of functions called once during
1669 inlining small functions above. After unreachable nodes are removed,
1670 we still might do a quick check that nothing new is found. */
1671 if (flag_inline_functions_called_once
)
1675 fprintf (dump_file
, "\nDeciding on functions called once:\n");
1677 /* Inlining one function called once has good chance of preventing
1678 inlining other function into the same callee. Ideally we should
1679 work in priority order, but probably inlining hot functions first
1680 is good cut without the extra pain of maintaining the queue.
1682 ??? this is not really fitting the bill perfectly: inlining function
1683 into callee often leads to better optimization of callee due to
1684 increased context for optimization.
1685 For example if main() function calls a function that outputs help
1686 and then function that does the main optmization, we should inline
1687 the second with priority even if both calls are cold by themselves.
1689 We probably want to implement new predicate replacing our use of
1690 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
1692 for (cold
= 0; cold
<= 1; cold
++)
1694 FOR_EACH_DEFINED_FUNCTION (node
)
1696 if (want_inline_function_called_once_p (node
)
1698 || cgraph_maybe_hot_edge_p (node
->callers
)))
1700 struct cgraph_node
*caller
= node
->callers
->caller
;
1705 "\nInlining %s size %i.\n",
1706 cgraph_node_name (node
),
1707 inline_summary (node
)->size
);
1709 " Called once from %s %i insns.\n",
1710 cgraph_node_name (node
->callers
->caller
),
1711 inline_summary (node
->callers
->caller
)->size
);
1714 inline_call (node
->callers
, true, NULL
, NULL
);
1717 " Inlined into %s which now has %i size\n",
1718 cgraph_node_name (caller
),
1719 inline_summary (caller
)->size
);
1725 /* Free ipa-prop structures if they are no longer needed. */
1727 ipa_free_all_structures_after_iinln ();
1731 "\nInlined %i calls, eliminated %i functions\n\n",
1732 ncalls_inlined
, nfunctions_inlined
);
1735 dump_inline_summaries (dump_file
);
1736 /* In WPA we use inline summaries for partitioning process. */
1738 inline_free_summary ();
1742 /* Inline always-inline function calls in NODE. */
1745 inline_always_inline_functions (struct cgraph_node
*node
)
1747 struct cgraph_edge
*e
;
1748 bool inlined
= false;
1750 for (e
= node
->callees
; e
; e
= e
->next_callee
)
1752 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
1753 if (!DECL_DISREGARD_INLINE_LIMITS (callee
->symbol
.decl
))
1756 if (cgraph_edge_recursive_p (e
))
1759 fprintf (dump_file
, " Not inlining recursive call to %s.\n",
1760 cgraph_node_name (e
->callee
));
1761 e
->inline_failed
= CIF_RECURSIVE_INLINING
;
1765 if (!can_early_inline_edge_p (e
))
1769 fprintf (dump_file
, " Inlining %s into %s (always_inline).\n",
1770 xstrdup (cgraph_node_name (e
->callee
)),
1771 xstrdup (cgraph_node_name (e
->caller
)));
1772 inline_call (e
, true, NULL
, NULL
);
1779 /* Decide on the inlining. We do so in the topological order to avoid
1780 expenses on updating data structures. */
1783 early_inline_small_functions (struct cgraph_node
*node
)
1785 struct cgraph_edge
*e
;
1786 bool inlined
= false;
1788 for (e
= node
->callees
; e
; e
= e
->next_callee
)
1790 struct cgraph_node
*callee
= cgraph_function_or_thunk_node (e
->callee
, NULL
);
1791 if (!inline_summary (callee
)->inlinable
1792 || !e
->inline_failed
)
1795 /* Do not consider functions not declared inline. */
1796 if (!DECL_DECLARED_INLINE_P (callee
->symbol
.decl
)
1797 && !flag_inline_small_functions
1798 && !flag_inline_functions
)
1802 fprintf (dump_file
, "Considering inline candidate %s.\n",
1803 cgraph_node_name (callee
));
1805 if (!can_early_inline_edge_p (e
))
1808 if (cgraph_edge_recursive_p (e
))
1811 fprintf (dump_file
, " Not inlining: recursive call.\n");
1815 if (!want_early_inline_function_p (e
))
1819 fprintf (dump_file
, " Inlining %s into %s.\n",
1820 xstrdup (cgraph_node_name (callee
)),
1821 xstrdup (cgraph_node_name (e
->caller
)));
1822 inline_call (e
, true, NULL
, NULL
);
1829 /* Do inlining of small functions. Doing so early helps profiling and other
1830 passes to be somewhat more effective and avoids some code duplication in
1831 later real inlining pass for testcases with very many function calls. */
1833 early_inliner (void)
1835 struct cgraph_node
*node
= cgraph_get_node (current_function_decl
);
1836 struct cgraph_edge
*edge
;
1837 unsigned int todo
= 0;
1839 bool inlined
= false;
1844 /* Do nothing if datastructures for ipa-inliner are already computed. This
1845 happens when some pass decides to construct new function and
1846 cgraph_add_new_function calls lowering passes and early optimization on
1847 it. This may confuse ourself when early inliner decide to inline call to
1848 function clone, because function clones don't have parameter list in
1849 ipa-prop matching their signature. */
1850 if (ipa_node_params_vector
)
1853 #ifdef ENABLE_CHECKING
1854 verify_cgraph_node (node
);
1857 /* Even when not optimizing or not inlining inline always-inline
1859 inlined
= inline_always_inline_functions (node
);
1863 || !flag_early_inlining
1864 /* Never inline regular functions into always-inline functions
1865 during incremental inlining. This sucks as functions calling
1866 always inline functions will get less optimized, but at the
1867 same time inlining of functions calling always inline
1868 function into an always inline function might introduce
1869 cycles of edges to be always inlined in the callgraph.
1871 We might want to be smarter and just avoid this type of inlining. */
1872 || DECL_DISREGARD_INLINE_LIMITS (node
->symbol
.decl
))
1874 else if (lookup_attribute ("flatten",
1875 DECL_ATTRIBUTES (node
->symbol
.decl
)) != NULL
)
1877 /* When the function is marked to be flattened, recursively inline
1881 "Flattening %s\n", cgraph_node_name (node
));
1882 flatten_function (node
, true);
1887 /* We iterate incremental inlining to get trivial cases of indirect
1889 while (iterations
< PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS
)
1890 && early_inline_small_functions (node
))
1892 timevar_push (TV_INTEGRATION
);
1893 todo
|= optimize_inline_calls (current_function_decl
);
1895 /* Technically we ought to recompute inline parameters so the new
1896 iteration of early inliner works as expected. We however have
1897 values approximately right and thus we only need to update edge
1898 info that might be cleared out for newly discovered edges. */
1899 for (edge
= node
->callees
; edge
; edge
= edge
->next_callee
)
1901 struct inline_edge_summary
*es
= inline_edge_summary (edge
);
1903 = estimate_num_insns (edge
->call_stmt
, &eni_size_weights
);
1905 = estimate_num_insns (edge
->call_stmt
, &eni_time_weights
);
1906 if (edge
->callee
->symbol
.decl
1907 && !gimple_check_call_matching_types (edge
->call_stmt
,
1908 edge
->callee
->symbol
.decl
))
1909 edge
->call_stmt_cannot_inline_p
= true;
1911 timevar_pop (TV_INTEGRATION
);
1916 fprintf (dump_file
, "Iterations: %i\n", iterations
);
1921 timevar_push (TV_INTEGRATION
);
1922 todo
|= optimize_inline_calls (current_function_decl
);
1923 timevar_pop (TV_INTEGRATION
);
1926 cfun
->always_inline_functions_inlined
= true;
1931 struct gimple_opt_pass pass_early_inline
=
1935 "einline", /* name */
1937 early_inliner
, /* execute */
1940 0, /* static_pass_number */
1941 TV_INLINE_HEURISTICS
, /* tv_id */
1942 PROP_ssa
, /* properties_required */
1943 0, /* properties_provided */
1944 0, /* properties_destroyed */
1945 0, /* todo_flags_start */
1946 0 /* todo_flags_finish */
1951 /* When to run IPA inlining. Inlining of always-inline functions
1952 happens during early inlining.
1954 Enable inlining unconditoinally at -flto. We need size estimates to
1955 drive partitioning. */
1958 gate_ipa_inline (void)
1960 return optimize
|| flag_lto
|| flag_wpa
;
1963 struct ipa_opt_pass_d pass_ipa_inline
=
1967 "inline", /* name */
1968 gate_ipa_inline
, /* gate */
1969 ipa_inline
, /* execute */
1972 0, /* static_pass_number */
1973 TV_INLINE_HEURISTICS
, /* tv_id */
1974 0, /* properties_required */
1975 0, /* properties_provided */
1976 0, /* properties_destroyed */
1977 TODO_remove_functions
, /* todo_flags_finish */
1979 | TODO_remove_functions
| TODO_ggc_collect
/* todo_flags_finish */
1981 inline_generate_summary
, /* generate_summary */
1982 inline_write_summary
, /* write_summary */
1983 inline_read_summary
, /* read_summary */
1984 NULL
, /* write_optimization_summary */
1985 NULL
, /* read_optimization_summary */
1986 NULL
, /* stmt_fixup */
1988 inline_transform
, /* function_transform */
1989 NULL
, /* variable_transform */