c++: Fix crash in gimplifier with paren init of aggregates [PR94155]
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_win.cpp
blob36dde49d8708343337fe5b965b5408cec8c50d19
1 //===-- sanitizer_win.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and ThreadSanitizer
10 // run-time libraries and implements windows-specific functions from
11 // sanitizer_libc.h.
12 //===----------------------------------------------------------------------===//
14 #include "sanitizer_platform.h"
15 #if SANITIZER_WINDOWS
17 #define WIN32_LEAN_AND_MEAN
18 #define NOGDI
19 #include <windows.h>
20 #include <io.h>
21 #include <psapi.h>
22 #include <stdlib.h>
24 #include "sanitizer_common.h"
25 #include "sanitizer_file.h"
26 #include "sanitizer_libc.h"
27 #include "sanitizer_mutex.h"
28 #include "sanitizer_placement_new.h"
29 #include "sanitizer_win_defs.h"
31 #if defined(PSAPI_VERSION) && PSAPI_VERSION == 1
32 #pragma comment(lib, "psapi")
33 #endif
34 #if SANITIZER_WIN_TRACE
35 #include <traceloggingprovider.h>
36 // Windows trace logging provider init
37 #pragma comment(lib, "advapi32.lib")
38 TRACELOGGING_DECLARE_PROVIDER(g_asan_provider);
39 // GUID must be the same in utils/AddressSanitizerLoggingProvider.wprp
40 TRACELOGGING_DEFINE_PROVIDER(g_asan_provider, "AddressSanitizerLoggingProvider",
41 (0x6c6c766d, 0x3846, 0x4e6a, 0xa4, 0xfb, 0x5b,
42 0x53, 0x0b, 0xd0, 0xf3, 0xfa));
43 #else
44 #define TraceLoggingUnregister(x)
45 #endif
47 // A macro to tell the compiler that this part of the code cannot be reached,
48 // if the compiler supports this feature. Since we're using this in
49 // code that is called when terminating the process, the expansion of the
50 // macro should not terminate the process to avoid infinite recursion.
51 #if defined(__clang__)
52 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
53 #elif defined(__GNUC__) && \
54 (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
55 # define BUILTIN_UNREACHABLE() __builtin_unreachable()
56 #elif defined(_MSC_VER)
57 # define BUILTIN_UNREACHABLE() __assume(0)
58 #else
59 # define BUILTIN_UNREACHABLE()
60 #endif
62 namespace __sanitizer {
64 #include "sanitizer_syscall_generic.inc"
66 // --------------------- sanitizer_common.h
67 uptr GetPageSize() {
68 SYSTEM_INFO si;
69 GetSystemInfo(&si);
70 return si.dwPageSize;
73 uptr GetMmapGranularity() {
74 SYSTEM_INFO si;
75 GetSystemInfo(&si);
76 return si.dwAllocationGranularity;
79 uptr GetMaxUserVirtualAddress() {
80 SYSTEM_INFO si;
81 GetSystemInfo(&si);
82 return (uptr)si.lpMaximumApplicationAddress;
85 uptr GetMaxVirtualAddress() {
86 return GetMaxUserVirtualAddress();
89 bool FileExists(const char *filename) {
90 return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES;
93 uptr internal_getpid() {
94 return GetProcessId(GetCurrentProcess());
97 // In contrast to POSIX, on Windows GetCurrentThreadId()
98 // returns a system-unique identifier.
99 tid_t GetTid() {
100 return GetCurrentThreadId();
103 uptr GetThreadSelf() {
104 return GetTid();
107 #if !SANITIZER_GO
108 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
109 uptr *stack_bottom) {
110 CHECK(stack_top);
111 CHECK(stack_bottom);
112 MEMORY_BASIC_INFORMATION mbi;
113 CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0);
114 // FIXME: is it possible for the stack to not be a single allocation?
115 // Are these values what ASan expects to get (reserved, not committed;
116 // including stack guard page) ?
117 *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize;
118 *stack_bottom = (uptr)mbi.AllocationBase;
120 #endif // #if !SANITIZER_GO
122 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
123 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
124 if (rv == 0)
125 ReportMmapFailureAndDie(size, mem_type, "allocate",
126 GetLastError(), raw_report);
127 return rv;
130 void UnmapOrDie(void *addr, uptr size) {
131 if (!size || !addr)
132 return;
134 MEMORY_BASIC_INFORMATION mbi;
135 CHECK(VirtualQuery(addr, &mbi, sizeof(mbi)));
137 // MEM_RELEASE can only be used to unmap whole regions previously mapped with
138 // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that
139 // fails try MEM_DECOMMIT.
140 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
141 if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) {
142 Report("ERROR: %s failed to "
143 "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n",
144 SanitizerToolName, size, size, addr, GetLastError());
145 CHECK("unable to unmap" && 0);
150 static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type,
151 const char *mmap_type) {
152 error_t last_error = GetLastError();
153 if (last_error == ERROR_NOT_ENOUGH_MEMORY)
154 return nullptr;
155 ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error);
158 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
159 void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
160 if (rv == 0)
161 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
162 return rv;
165 // We want to map a chunk of address space aligned to 'alignment'.
166 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
167 const char *mem_type) {
168 CHECK(IsPowerOfTwo(size));
169 CHECK(IsPowerOfTwo(alignment));
171 // Windows will align our allocations to at least 64K.
172 alignment = Max(alignment, GetMmapGranularity());
174 uptr mapped_addr =
175 (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
176 if (!mapped_addr)
177 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
179 // If we got it right on the first try, return. Otherwise, unmap it and go to
180 // the slow path.
181 if (IsAligned(mapped_addr, alignment))
182 return (void*)mapped_addr;
183 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
184 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
186 // If we didn't get an aligned address, overallocate, find an aligned address,
187 // unmap, and try to allocate at that aligned address.
188 int retries = 0;
189 const int kMaxRetries = 10;
190 for (; retries < kMaxRetries &&
191 (mapped_addr == 0 || !IsAligned(mapped_addr, alignment));
192 retries++) {
193 // Overallocate size + alignment bytes.
194 mapped_addr =
195 (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS);
196 if (!mapped_addr)
197 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
199 // Find the aligned address.
200 uptr aligned_addr = RoundUpTo(mapped_addr, alignment);
202 // Free the overallocation.
203 if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0)
204 ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError());
206 // Attempt to allocate exactly the number of bytes we need at the aligned
207 // address. This may fail for a number of reasons, in which case we continue
208 // the loop.
209 mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size,
210 MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
213 // Fail if we can't make this work quickly.
214 if (retries == kMaxRetries && mapped_addr == 0)
215 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned");
217 return (void *)mapped_addr;
220 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) {
221 // FIXME: is this really "NoReserve"? On Win32 this does not matter much,
222 // but on Win64 it does.
223 (void)name; // unsupported
224 #if !SANITIZER_GO && SANITIZER_WINDOWS64
225 // On asan/Windows64, use MEM_COMMIT would result in error
226 // 1455:ERROR_COMMITMENT_LIMIT.
227 // Asan uses exception handler to commit page on demand.
228 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE);
229 #else
230 void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT,
231 PAGE_READWRITE);
232 #endif
233 if (p == 0) {
234 Report("ERROR: %s failed to "
235 "allocate %p (%zd) bytes at %p (error code: %d)\n",
236 SanitizerToolName, size, size, fixed_addr, GetLastError());
237 return false;
239 return true;
242 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size, const char *name) {
243 // FIXME: Windows support large pages too. Might be worth checking
244 return MmapFixedNoReserve(fixed_addr, size, name);
247 // Memory space mapped by 'MmapFixedOrDie' must have been reserved by
248 // 'MmapFixedNoAccess'.
249 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name) {
250 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
251 MEM_COMMIT, PAGE_READWRITE);
252 if (p == 0) {
253 char mem_type[30];
254 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
255 fixed_addr);
256 ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError());
258 return p;
261 // Uses fixed_addr for now.
262 // Will use offset instead once we've implemented this function for real.
263 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr size, const char *name) {
264 return reinterpret_cast<uptr>(MmapFixedOrDieOnFatalError(fixed_addr, size));
267 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr size,
268 const char *name) {
269 return reinterpret_cast<uptr>(MmapFixedOrDie(fixed_addr, size));
272 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
273 // Only unmap if it covers the entire range.
274 CHECK((addr == reinterpret_cast<uptr>(base_)) && (size == size_));
275 // We unmap the whole range, just null out the base.
276 base_ = nullptr;
277 size_ = 0;
278 UnmapOrDie(reinterpret_cast<void*>(addr), size);
281 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size, const char *name) {
282 void *p = VirtualAlloc((LPVOID)fixed_addr, size,
283 MEM_COMMIT, PAGE_READWRITE);
284 if (p == 0) {
285 char mem_type[30];
286 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
287 fixed_addr);
288 return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate");
290 return p;
293 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
294 // FIXME: make this really NoReserve?
295 return MmapOrDie(size, mem_type);
298 uptr ReservedAddressRange::Init(uptr size, const char *name, uptr fixed_addr) {
299 base_ = fixed_addr ? MmapFixedNoAccess(fixed_addr, size) : MmapNoAccess(size);
300 size_ = size;
301 name_ = name;
302 (void)os_handle_; // unsupported
303 return reinterpret_cast<uptr>(base_);
307 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
308 (void)name; // unsupported
309 void *res = VirtualAlloc((LPVOID)fixed_addr, size,
310 MEM_RESERVE, PAGE_NOACCESS);
311 if (res == 0)
312 Report("WARNING: %s failed to "
313 "mprotect %p (%zd) bytes at %p (error code: %d)\n",
314 SanitizerToolName, size, size, fixed_addr, GetLastError());
315 return res;
318 void *MmapNoAccess(uptr size) {
319 void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS);
320 if (res == 0)
321 Report("WARNING: %s failed to "
322 "mprotect %p (%zd) bytes (error code: %d)\n",
323 SanitizerToolName, size, size, GetLastError());
324 return res;
327 bool MprotectNoAccess(uptr addr, uptr size) {
328 DWORD old_protection;
329 return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection);
332 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
333 // This is almost useless on 32-bits.
334 // FIXME: add madvise-analog when we move to 64-bits.
337 void SetShadowRegionHugePageMode(uptr addr, uptr size) {
338 // FIXME: probably similar to ReleaseMemoryToOS.
341 bool DontDumpShadowMemory(uptr addr, uptr length) {
342 // This is almost useless on 32-bits.
343 // FIXME: add madvise-analog when we move to 64-bits.
344 return true;
347 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
348 uptr *largest_gap_found,
349 uptr *max_occupied_addr) {
350 uptr address = 0;
351 while (true) {
352 MEMORY_BASIC_INFORMATION info;
353 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
354 return 0;
356 if (info.State == MEM_FREE) {
357 uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding,
358 alignment);
359 if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize)
360 return shadow_address;
363 // Move to the next region.
364 address = (uptr)info.BaseAddress + info.RegionSize;
366 return 0;
369 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
370 MEMORY_BASIC_INFORMATION mbi;
371 CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi)));
372 return mbi.Protect == PAGE_NOACCESS &&
373 (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end;
376 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
377 UNIMPLEMENTED();
380 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
381 UNIMPLEMENTED();
384 static const int kMaxEnvNameLength = 128;
385 static const DWORD kMaxEnvValueLength = 32767;
387 namespace {
389 struct EnvVariable {
390 char name[kMaxEnvNameLength];
391 char value[kMaxEnvValueLength];
394 } // namespace
396 static const int kEnvVariables = 5;
397 static EnvVariable env_vars[kEnvVariables];
398 static int num_env_vars;
400 const char *GetEnv(const char *name) {
401 // Note: this implementation caches the values of the environment variables
402 // and limits their quantity.
403 for (int i = 0; i < num_env_vars; i++) {
404 if (0 == internal_strcmp(name, env_vars[i].name))
405 return env_vars[i].value;
407 CHECK_LT(num_env_vars, kEnvVariables);
408 DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value,
409 kMaxEnvValueLength);
410 if (rv > 0 && rv < kMaxEnvValueLength) {
411 CHECK_LT(internal_strlen(name), kMaxEnvNameLength);
412 internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength);
413 num_env_vars++;
414 return env_vars[num_env_vars - 1].value;
416 return 0;
419 const char *GetPwd() {
420 UNIMPLEMENTED();
423 u32 GetUid() {
424 UNIMPLEMENTED();
427 namespace {
428 struct ModuleInfo {
429 const char *filepath;
430 uptr base_address;
431 uptr end_address;
434 #if !SANITIZER_GO
435 int CompareModulesBase(const void *pl, const void *pr) {
436 const ModuleInfo *l = (const ModuleInfo *)pl, *r = (const ModuleInfo *)pr;
437 if (l->base_address < r->base_address)
438 return -1;
439 return l->base_address > r->base_address;
441 #endif
442 } // namespace
444 #if !SANITIZER_GO
445 void DumpProcessMap() {
446 Report("Dumping process modules:\n");
447 ListOfModules modules;
448 modules.init();
449 uptr num_modules = modules.size();
451 InternalMmapVector<ModuleInfo> module_infos(num_modules);
452 for (size_t i = 0; i < num_modules; ++i) {
453 module_infos[i].filepath = modules[i].full_name();
454 module_infos[i].base_address = modules[i].ranges().front()->beg;
455 module_infos[i].end_address = modules[i].ranges().back()->end;
457 qsort(module_infos.data(), num_modules, sizeof(ModuleInfo),
458 CompareModulesBase);
460 for (size_t i = 0; i < num_modules; ++i) {
461 const ModuleInfo &mi = module_infos[i];
462 if (mi.end_address != 0) {
463 Printf("\t%p-%p %s\n", mi.base_address, mi.end_address,
464 mi.filepath[0] ? mi.filepath : "[no name]");
465 } else if (mi.filepath[0]) {
466 Printf("\t??\?-??? %s\n", mi.filepath);
467 } else {
468 Printf("\t???\n");
472 #endif
474 void PrintModuleMap() { }
476 void DisableCoreDumperIfNecessary() {
477 // Do nothing.
480 void ReExec() {
481 UNIMPLEMENTED();
484 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args) {}
486 bool StackSizeIsUnlimited() {
487 UNIMPLEMENTED();
490 void SetStackSizeLimitInBytes(uptr limit) {
491 UNIMPLEMENTED();
494 bool AddressSpaceIsUnlimited() {
495 UNIMPLEMENTED();
498 void SetAddressSpaceUnlimited() {
499 UNIMPLEMENTED();
502 bool IsPathSeparator(const char c) {
503 return c == '\\' || c == '/';
506 static bool IsAlpha(char c) {
507 c = ToLower(c);
508 return c >= 'a' && c <= 'z';
511 bool IsAbsolutePath(const char *path) {
512 return path != nullptr && IsAlpha(path[0]) && path[1] == ':' &&
513 IsPathSeparator(path[2]);
516 void SleepForSeconds(int seconds) {
517 Sleep(seconds * 1000);
520 void SleepForMillis(int millis) {
521 Sleep(millis);
524 u64 NanoTime() {
525 static LARGE_INTEGER frequency = {};
526 LARGE_INTEGER counter;
527 if (UNLIKELY(frequency.QuadPart == 0)) {
528 QueryPerformanceFrequency(&frequency);
529 CHECK_NE(frequency.QuadPart, 0);
531 QueryPerformanceCounter(&counter);
532 counter.QuadPart *= 1000ULL * 1000000ULL;
533 counter.QuadPart /= frequency.QuadPart;
534 return counter.QuadPart;
537 u64 MonotonicNanoTime() { return NanoTime(); }
539 void Abort() {
540 internal__exit(3);
543 #if !SANITIZER_GO
544 // Read the file to extract the ImageBase field from the PE header. If ASLR is
545 // disabled and this virtual address is available, the loader will typically
546 // load the image at this address. Therefore, we call it the preferred base. Any
547 // addresses in the DWARF typically assume that the object has been loaded at
548 // this address.
549 static uptr GetPreferredBase(const char *modname) {
550 fd_t fd = OpenFile(modname, RdOnly, nullptr);
551 if (fd == kInvalidFd)
552 return 0;
553 FileCloser closer(fd);
555 // Read just the DOS header.
556 IMAGE_DOS_HEADER dos_header;
557 uptr bytes_read;
558 if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) ||
559 bytes_read != sizeof(dos_header))
560 return 0;
562 // The file should start with the right signature.
563 if (dos_header.e_magic != IMAGE_DOS_SIGNATURE)
564 return 0;
566 // The layout at e_lfanew is:
567 // "PE\0\0"
568 // IMAGE_FILE_HEADER
569 // IMAGE_OPTIONAL_HEADER
570 // Seek to e_lfanew and read all that data.
571 char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)];
572 if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) ==
573 INVALID_SET_FILE_POINTER)
574 return 0;
575 if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) ||
576 bytes_read != sizeof(buf))
577 return 0;
579 // Check for "PE\0\0" before the PE header.
580 char *pe_sig = &buf[0];
581 if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0)
582 return 0;
584 // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted.
585 IMAGE_OPTIONAL_HEADER *pe_header =
586 (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER));
588 // Check for more magic in the PE header.
589 if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC)
590 return 0;
592 // Finally, return the ImageBase.
593 return (uptr)pe_header->ImageBase;
596 void ListOfModules::init() {
597 clearOrInit();
598 HANDLE cur_process = GetCurrentProcess();
600 // Query the list of modules. Start by assuming there are no more than 256
601 // modules and retry if that's not sufficient.
602 HMODULE *hmodules = 0;
603 uptr modules_buffer_size = sizeof(HMODULE) * 256;
604 DWORD bytes_required;
605 while (!hmodules) {
606 hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__);
607 CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size,
608 &bytes_required));
609 if (bytes_required > modules_buffer_size) {
610 // Either there turned out to be more than 256 hmodules, or new hmodules
611 // could have loaded since the last try. Retry.
612 UnmapOrDie(hmodules, modules_buffer_size);
613 hmodules = 0;
614 modules_buffer_size = bytes_required;
618 // |num_modules| is the number of modules actually present,
619 size_t num_modules = bytes_required / sizeof(HMODULE);
620 for (size_t i = 0; i < num_modules; ++i) {
621 HMODULE handle = hmodules[i];
622 MODULEINFO mi;
623 if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi)))
624 continue;
626 // Get the UTF-16 path and convert to UTF-8.
627 wchar_t modname_utf16[kMaxPathLength];
628 int modname_utf16_len =
629 GetModuleFileNameW(handle, modname_utf16, kMaxPathLength);
630 if (modname_utf16_len == 0)
631 modname_utf16[0] = '\0';
632 char module_name[kMaxPathLength];
633 int module_name_len =
634 ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1,
635 &module_name[0], kMaxPathLength, NULL, NULL);
636 module_name[module_name_len] = '\0';
638 uptr base_address = (uptr)mi.lpBaseOfDll;
639 uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage;
641 // Adjust the base address of the module so that we get a VA instead of an
642 // RVA when computing the module offset. This helps llvm-symbolizer find the
643 // right DWARF CU. In the common case that the image is loaded at it's
644 // preferred address, we will now print normal virtual addresses.
645 uptr preferred_base = GetPreferredBase(&module_name[0]);
646 uptr adjusted_base = base_address - preferred_base;
648 LoadedModule cur_module;
649 cur_module.set(module_name, adjusted_base);
650 // We add the whole module as one single address range.
651 cur_module.addAddressRange(base_address, end_address, /*executable*/ true,
652 /*writable*/ true);
653 modules_.push_back(cur_module);
655 UnmapOrDie(hmodules, modules_buffer_size);
658 void ListOfModules::fallbackInit() { clear(); }
660 // We can't use atexit() directly at __asan_init time as the CRT is not fully
661 // initialized at this point. Place the functions into a vector and use
662 // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers).
663 InternalMmapVectorNoCtor<void (*)(void)> atexit_functions;
665 int Atexit(void (*function)(void)) {
666 atexit_functions.push_back(function);
667 return 0;
670 static int RunAtexit() {
671 TraceLoggingUnregister(g_asan_provider);
672 int ret = 0;
673 for (uptr i = 0; i < atexit_functions.size(); ++i) {
674 ret |= atexit(atexit_functions[i]);
676 return ret;
679 #pragma section(".CRT$XID", long, read)
680 __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit;
681 #endif
683 // ------------------ sanitizer_libc.h
684 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) {
685 // FIXME: Use the wide variants to handle Unicode filenames.
686 fd_t res;
687 if (mode == RdOnly) {
688 res = CreateFileA(filename, GENERIC_READ,
689 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
690 nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
691 } else if (mode == WrOnly) {
692 res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS,
693 FILE_ATTRIBUTE_NORMAL, nullptr);
694 } else {
695 UNIMPLEMENTED();
697 CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd);
698 CHECK(res != kStderrFd || kStderrFd == kInvalidFd);
699 if (res == kInvalidFd && last_error)
700 *last_error = GetLastError();
701 return res;
704 void CloseFile(fd_t fd) {
705 CloseHandle(fd);
708 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
709 error_t *error_p) {
710 CHECK(fd != kInvalidFd);
712 // bytes_read can't be passed directly to ReadFile:
713 // uptr is unsigned long long on 64-bit Windows.
714 unsigned long num_read_long;
716 bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr);
717 if (!success && error_p)
718 *error_p = GetLastError();
719 if (bytes_read)
720 *bytes_read = num_read_long;
721 return success;
724 bool SupportsColoredOutput(fd_t fd) {
725 // FIXME: support colored output.
726 return false;
729 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
730 error_t *error_p) {
731 CHECK(fd != kInvalidFd);
733 // Handle null optional parameters.
734 error_t dummy_error;
735 error_p = error_p ? error_p : &dummy_error;
736 uptr dummy_bytes_written;
737 bytes_written = bytes_written ? bytes_written : &dummy_bytes_written;
739 // Initialize output parameters in case we fail.
740 *error_p = 0;
741 *bytes_written = 0;
743 // Map the conventional Unix fds 1 and 2 to Windows handles. They might be
744 // closed, in which case this will fail.
745 if (fd == kStdoutFd || fd == kStderrFd) {
746 fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE);
747 if (fd == 0) {
748 *error_p = ERROR_INVALID_HANDLE;
749 return false;
753 DWORD bytes_written_32;
754 if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) {
755 *error_p = GetLastError();
756 return false;
757 } else {
758 *bytes_written = bytes_written_32;
759 return true;
763 uptr internal_sched_yield() {
764 Sleep(0);
765 return 0;
768 void internal__exit(int exitcode) {
769 TraceLoggingUnregister(g_asan_provider);
770 // ExitProcess runs some finalizers, so use TerminateProcess to avoid that.
771 // The debugger doesn't stop on TerminateProcess like it does on ExitProcess,
772 // so add our own breakpoint here.
773 if (::IsDebuggerPresent())
774 __debugbreak();
775 TerminateProcess(GetCurrentProcess(), exitcode);
776 BUILTIN_UNREACHABLE();
779 uptr internal_ftruncate(fd_t fd, uptr size) {
780 UNIMPLEMENTED();
783 uptr GetRSS() {
784 PROCESS_MEMORY_COUNTERS counters;
785 if (!GetProcessMemoryInfo(GetCurrentProcess(), &counters, sizeof(counters)))
786 return 0;
787 return counters.WorkingSetSize;
790 void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; }
791 void internal_join_thread(void *th) { }
793 // ---------------------- BlockingMutex ---------------- {{{1
795 BlockingMutex::BlockingMutex() {
796 CHECK(sizeof(SRWLOCK) <= sizeof(opaque_storage_));
797 internal_memset(this, 0, sizeof(*this));
800 void BlockingMutex::Lock() {
801 AcquireSRWLockExclusive((PSRWLOCK)opaque_storage_);
802 CHECK_EQ(owner_, 0);
803 owner_ = GetThreadSelf();
806 void BlockingMutex::Unlock() {
807 CheckLocked();
808 owner_ = 0;
809 ReleaseSRWLockExclusive((PSRWLOCK)opaque_storage_);
812 void BlockingMutex::CheckLocked() {
813 CHECK_EQ(owner_, GetThreadSelf());
816 uptr GetTlsSize() {
817 return 0;
820 void InitTlsSize() {
823 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
824 uptr *tls_addr, uptr *tls_size) {
825 #if SANITIZER_GO
826 *stk_addr = 0;
827 *stk_size = 0;
828 *tls_addr = 0;
829 *tls_size = 0;
830 #else
831 uptr stack_top, stack_bottom;
832 GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
833 *stk_addr = stack_bottom;
834 *stk_size = stack_top - stack_bottom;
835 *tls_addr = 0;
836 *tls_size = 0;
837 #endif
840 void ReportFile::Write(const char *buffer, uptr length) {
841 SpinMutexLock l(mu);
842 ReopenIfNecessary();
843 if (!WriteToFile(fd, buffer, length)) {
844 // stderr may be closed, but we may be able to print to the debugger
845 // instead. This is the case when launching a program from Visual Studio,
846 // and the following routine should write to its console.
847 OutputDebugStringA(buffer);
851 void SetAlternateSignalStack() {
852 // FIXME: Decide what to do on Windows.
855 void UnsetAlternateSignalStack() {
856 // FIXME: Decide what to do on Windows.
859 void InstallDeadlySignalHandlers(SignalHandlerType handler) {
860 (void)handler;
861 // FIXME: Decide what to do on Windows.
864 HandleSignalMode GetHandleSignalMode(int signum) {
865 // FIXME: Decide what to do on Windows.
866 return kHandleSignalNo;
869 // Check based on flags if we should handle this exception.
870 bool IsHandledDeadlyException(DWORD exceptionCode) {
871 switch (exceptionCode) {
872 case EXCEPTION_ACCESS_VIOLATION:
873 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
874 case EXCEPTION_STACK_OVERFLOW:
875 case EXCEPTION_DATATYPE_MISALIGNMENT:
876 case EXCEPTION_IN_PAGE_ERROR:
877 return common_flags()->handle_segv;
878 case EXCEPTION_ILLEGAL_INSTRUCTION:
879 case EXCEPTION_PRIV_INSTRUCTION:
880 case EXCEPTION_BREAKPOINT:
881 return common_flags()->handle_sigill;
882 case EXCEPTION_FLT_DENORMAL_OPERAND:
883 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
884 case EXCEPTION_FLT_INEXACT_RESULT:
885 case EXCEPTION_FLT_INVALID_OPERATION:
886 case EXCEPTION_FLT_OVERFLOW:
887 case EXCEPTION_FLT_STACK_CHECK:
888 case EXCEPTION_FLT_UNDERFLOW:
889 case EXCEPTION_INT_DIVIDE_BY_ZERO:
890 case EXCEPTION_INT_OVERFLOW:
891 return common_flags()->handle_sigfpe;
893 return false;
896 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
897 SYSTEM_INFO si;
898 GetNativeSystemInfo(&si);
899 uptr page_size = si.dwPageSize;
900 uptr page_mask = ~(page_size - 1);
902 for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask;
903 page <= end;) {
904 MEMORY_BASIC_INFORMATION info;
905 if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info))
906 return false;
908 if (info.Protect == 0 || info.Protect == PAGE_NOACCESS ||
909 info.Protect == PAGE_EXECUTE)
910 return false;
912 if (info.RegionSize == 0)
913 return false;
915 page += info.RegionSize;
918 return true;
921 bool SignalContext::IsStackOverflow() const {
922 return (DWORD)GetType() == EXCEPTION_STACK_OVERFLOW;
925 void SignalContext::InitPcSpBp() {
926 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
927 CONTEXT *context_record = (CONTEXT *)context;
929 pc = (uptr)exception_record->ExceptionAddress;
930 #ifdef _WIN64
931 bp = (uptr)context_record->Rbp;
932 sp = (uptr)context_record->Rsp;
933 #else
934 bp = (uptr)context_record->Ebp;
935 sp = (uptr)context_record->Esp;
936 #endif
939 uptr SignalContext::GetAddress() const {
940 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
941 return exception_record->ExceptionInformation[1];
944 bool SignalContext::IsMemoryAccess() const {
945 return GetWriteFlag() != SignalContext::UNKNOWN;
948 bool SignalContext::IsTrueFaultingAddress() const {
949 // FIXME: Provide real implementation for this. See Linux and Mac variants.
950 return IsMemoryAccess();
953 SignalContext::WriteFlag SignalContext::GetWriteFlag() const {
954 EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo;
955 // The contents of this array are documented at
956 // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx
957 // The first element indicates read as 0, write as 1, or execute as 8. The
958 // second element is the faulting address.
959 switch (exception_record->ExceptionInformation[0]) {
960 case 0:
961 return SignalContext::READ;
962 case 1:
963 return SignalContext::WRITE;
964 case 8:
965 return SignalContext::UNKNOWN;
967 return SignalContext::UNKNOWN;
970 void SignalContext::DumpAllRegisters(void *context) {
971 // FIXME: Implement this.
974 int SignalContext::GetType() const {
975 return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode;
978 const char *SignalContext::Describe() const {
979 unsigned code = GetType();
980 // Get the string description of the exception if this is a known deadly
981 // exception.
982 switch (code) {
983 case EXCEPTION_ACCESS_VIOLATION:
984 return "access-violation";
985 case EXCEPTION_ARRAY_BOUNDS_EXCEEDED:
986 return "array-bounds-exceeded";
987 case EXCEPTION_STACK_OVERFLOW:
988 return "stack-overflow";
989 case EXCEPTION_DATATYPE_MISALIGNMENT:
990 return "datatype-misalignment";
991 case EXCEPTION_IN_PAGE_ERROR:
992 return "in-page-error";
993 case EXCEPTION_ILLEGAL_INSTRUCTION:
994 return "illegal-instruction";
995 case EXCEPTION_PRIV_INSTRUCTION:
996 return "priv-instruction";
997 case EXCEPTION_BREAKPOINT:
998 return "breakpoint";
999 case EXCEPTION_FLT_DENORMAL_OPERAND:
1000 return "flt-denormal-operand";
1001 case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1002 return "flt-divide-by-zero";
1003 case EXCEPTION_FLT_INEXACT_RESULT:
1004 return "flt-inexact-result";
1005 case EXCEPTION_FLT_INVALID_OPERATION:
1006 return "flt-invalid-operation";
1007 case EXCEPTION_FLT_OVERFLOW:
1008 return "flt-overflow";
1009 case EXCEPTION_FLT_STACK_CHECK:
1010 return "flt-stack-check";
1011 case EXCEPTION_FLT_UNDERFLOW:
1012 return "flt-underflow";
1013 case EXCEPTION_INT_DIVIDE_BY_ZERO:
1014 return "int-divide-by-zero";
1015 case EXCEPTION_INT_OVERFLOW:
1016 return "int-overflow";
1018 return "unknown exception";
1021 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) {
1022 // FIXME: Actually implement this function.
1023 CHECK_GT(buf_len, 0);
1024 buf[0] = 0;
1025 return 0;
1028 uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) {
1029 return ReadBinaryName(buf, buf_len);
1032 void CheckVMASize() {
1033 // Do nothing.
1036 void InitializePlatformEarly() {
1037 // Do nothing.
1040 void MaybeReexec() {
1041 // No need to re-exec on Windows.
1044 void CheckASLR() {
1045 // Do nothing
1048 void CheckMPROTECT() {
1049 // Do nothing
1052 char **GetArgv() {
1053 // FIXME: Actually implement this function.
1054 return 0;
1057 char **GetEnviron() {
1058 // FIXME: Actually implement this function.
1059 return 0;
1062 pid_t StartSubprocess(const char *program, const char *const argv[],
1063 fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) {
1064 // FIXME: implement on this platform
1065 // Should be implemented based on
1066 // SymbolizerProcess::StarAtSymbolizerSubprocess
1067 // from lib/sanitizer_common/sanitizer_symbolizer_win.cpp.
1068 return -1;
1071 bool IsProcessRunning(pid_t pid) {
1072 // FIXME: implement on this platform.
1073 return false;
1076 int WaitForProcess(pid_t pid) { return -1; }
1078 // FIXME implement on this platform.
1079 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { }
1081 void CheckNoDeepBind(const char *filename, int flag) {
1082 // Do nothing.
1085 // FIXME: implement on this platform.
1086 bool GetRandom(void *buffer, uptr length, bool blocking) {
1087 UNIMPLEMENTED();
1090 u32 GetNumberOfCPUs() {
1091 SYSTEM_INFO sysinfo = {};
1092 GetNativeSystemInfo(&sysinfo);
1093 return sysinfo.dwNumberOfProcessors;
1096 #if SANITIZER_WIN_TRACE
1097 // TODO(mcgov): Rename this project-wide to PlatformLogInit
1098 void AndroidLogInit(void) {
1099 HRESULT hr = TraceLoggingRegister(g_asan_provider);
1100 if (!SUCCEEDED(hr))
1101 return;
1104 void SetAbortMessage(const char *) {}
1106 void LogFullErrorReport(const char *buffer) {
1107 if (common_flags()->log_to_syslog) {
1108 InternalMmapVector<wchar_t> filename;
1109 DWORD filename_length = 0;
1110 do {
1111 filename.resize(filename.size() + 0x100);
1112 filename_length =
1113 GetModuleFileNameW(NULL, filename.begin(), filename.size());
1114 } while (filename_length >= filename.size());
1115 TraceLoggingWrite(g_asan_provider, "AsanReportEvent",
1116 TraceLoggingValue(filename.begin(), "ExecutableName"),
1117 TraceLoggingValue(buffer, "AsanReportContents"));
1120 #endif // SANITIZER_WIN_TRACE
1122 } // namespace __sanitizer
1124 #endif // _WIN32