c++: 'this' adjustment for devirtualized call
[official-gcc.git] / gcc / tree-sra.c
blob8dfc923ed7e3b8558e818c13a9f48aa3e4aa8dbe
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008-2021 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "backend.h"
78 #include "target.h"
79 #include "rtl.h"
80 #include "tree.h"
81 #include "gimple.h"
82 #include "predict.h"
83 #include "alloc-pool.h"
84 #include "tree-pass.h"
85 #include "ssa.h"
86 #include "cgraph.h"
87 #include "gimple-pretty-print.h"
88 #include "alias.h"
89 #include "fold-const.h"
90 #include "tree-eh.h"
91 #include "stor-layout.h"
92 #include "gimplify.h"
93 #include "gimple-iterator.h"
94 #include "gimplify-me.h"
95 #include "gimple-walk.h"
96 #include "tree-cfg.h"
97 #include "tree-dfa.h"
98 #include "tree-ssa.h"
99 #include "dbgcnt.h"
100 #include "builtins.h"
101 #include "tree-sra.h"
104 /* Enumeration of all aggregate reductions we can do. */
105 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
106 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
107 SRA_MODE_INTRA }; /* late intraprocedural SRA */
109 /* Global variable describing which aggregate reduction we are performing at
110 the moment. */
111 static enum sra_mode sra_mode;
113 struct assign_link;
115 /* ACCESS represents each access to an aggregate variable (as a whole or a
116 part). It can also represent a group of accesses that refer to exactly the
117 same fragment of an aggregate (i.e. those that have exactly the same offset
118 and size). Such representatives for a single aggregate, once determined,
119 are linked in a linked list and have the group fields set.
121 Moreover, when doing intraprocedural SRA, a tree is built from those
122 representatives (by the means of first_child and next_sibling pointers), in
123 which all items in a subtree are "within" the root, i.e. their offset is
124 greater or equal to offset of the root and offset+size is smaller or equal
125 to offset+size of the root. Children of an access are sorted by offset.
127 Note that accesses to parts of vector and complex number types always
128 represented by an access to the whole complex number or a vector. It is a
129 duty of the modifying functions to replace them appropriately. */
131 struct access
133 /* Values returned by `get_ref_base_and_extent' for each component reference
134 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
135 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
136 HOST_WIDE_INT offset;
137 HOST_WIDE_INT size;
138 tree base;
140 /* Expression. It is context dependent so do not use it to create new
141 expressions to access the original aggregate. See PR 42154 for a
142 testcase. */
143 tree expr;
144 /* Type. */
145 tree type;
147 /* The statement this access belongs to. */
148 gimple *stmt;
150 /* Next group representative for this aggregate. */
151 struct access *next_grp;
153 /* Pointer to the group representative. Pointer to itself if the struct is
154 the representative. */
155 struct access *group_representative;
157 /* After access tree has been constructed, this points to the parent of the
158 current access, if there is one. NULL for roots. */
159 struct access *parent;
161 /* If this access has any children (in terms of the definition above), this
162 points to the first one. */
163 struct access *first_child;
165 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
166 described above. */
167 struct access *next_sibling;
169 /* Pointers to the first and last element in the linked list of assign
170 links for propagation from LHS to RHS. */
171 struct assign_link *first_rhs_link, *last_rhs_link;
173 /* Pointers to the first and last element in the linked list of assign
174 links for propagation from LHS to RHS. */
175 struct assign_link *first_lhs_link, *last_lhs_link;
177 /* Pointer to the next access in the work queues. */
178 struct access *next_rhs_queued, *next_lhs_queued;
180 /* Replacement variable for this access "region." Never to be accessed
181 directly, always only by the means of get_access_replacement() and only
182 when grp_to_be_replaced flag is set. */
183 tree replacement_decl;
185 /* Is this access made in reverse storage order? */
186 unsigned reverse : 1;
188 /* Is this particular access write access? */
189 unsigned write : 1;
191 /* Is this access currently in the rhs work queue? */
192 unsigned grp_rhs_queued : 1;
194 /* Is this access currently in the lhs work queue? */
195 unsigned grp_lhs_queued : 1;
197 /* Does this group contain a write access? This flag is propagated down the
198 access tree. */
199 unsigned grp_write : 1;
201 /* Does this group contain a read access? This flag is propagated down the
202 access tree. */
203 unsigned grp_read : 1;
205 /* Does this group contain a read access that comes from an assignment
206 statement? This flag is propagated down the access tree. */
207 unsigned grp_assignment_read : 1;
209 /* Does this group contain a write access that comes from an assignment
210 statement? This flag is propagated down the access tree. */
211 unsigned grp_assignment_write : 1;
213 /* Does this group contain a read access through a scalar type? This flag is
214 not propagated in the access tree in any direction. */
215 unsigned grp_scalar_read : 1;
217 /* Does this group contain a write access through a scalar type? This flag
218 is not propagated in the access tree in any direction. */
219 unsigned grp_scalar_write : 1;
221 /* In a root of an access tree, true means that the entire tree should be
222 totally scalarized - that all scalar leafs should be scalarized and
223 non-root grp_total_scalarization accesses should be honored. Otherwise,
224 non-root accesses with grp_total_scalarization should never get scalar
225 replacements. */
226 unsigned grp_total_scalarization : 1;
228 /* Other passes of the analysis use this bit to make function
229 analyze_access_subtree create scalar replacements for this group if
230 possible. */
231 unsigned grp_hint : 1;
233 /* Is the subtree rooted in this access fully covered by scalar
234 replacements? */
235 unsigned grp_covered : 1;
237 /* If set to true, this access and all below it in an access tree must not be
238 scalarized. */
239 unsigned grp_unscalarizable_region : 1;
241 /* Whether data have been written to parts of the aggregate covered by this
242 access which is not to be scalarized. This flag is propagated up in the
243 access tree. */
244 unsigned grp_unscalarized_data : 1;
246 /* Set if all accesses in the group consist of the same chain of
247 COMPONENT_REFs and ARRAY_REFs. */
248 unsigned grp_same_access_path : 1;
250 /* Does this access and/or group contain a write access through a
251 BIT_FIELD_REF? */
252 unsigned grp_partial_lhs : 1;
254 /* Set when a scalar replacement should be created for this variable. */
255 unsigned grp_to_be_replaced : 1;
257 /* Set when we want a replacement for the sole purpose of having it in
258 generated debug statements. */
259 unsigned grp_to_be_debug_replaced : 1;
261 /* Should TREE_NO_WARNING of a replacement be set? */
262 unsigned grp_no_warning : 1;
265 typedef struct access *access_p;
268 /* Alloc pool for allocating access structures. */
269 static object_allocator<struct access> access_pool ("SRA accesses");
271 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
272 are used to propagate subaccesses from rhs to lhs and vice versa as long as
273 they don't conflict with what is already there. In the RHS->LHS direction,
274 we also propagate grp_write flag to lazily mark that the access contains any
275 meaningful data. */
276 struct assign_link
278 struct access *lacc, *racc;
279 struct assign_link *next_rhs, *next_lhs;
282 /* Alloc pool for allocating assign link structures. */
283 static object_allocator<assign_link> assign_link_pool ("SRA links");
285 /* Base (tree) -> Vector (vec<access_p> *) map. */
286 static hash_map<tree, auto_vec<access_p> > *base_access_vec;
288 /* Hash to limit creation of artificial accesses */
289 static hash_map<tree, unsigned> *propagation_budget;
291 /* Candidate hash table helpers. */
293 struct uid_decl_hasher : nofree_ptr_hash <tree_node>
295 static inline hashval_t hash (const tree_node *);
296 static inline bool equal (const tree_node *, const tree_node *);
299 /* Hash a tree in a uid_decl_map. */
301 inline hashval_t
302 uid_decl_hasher::hash (const tree_node *item)
304 return item->decl_minimal.uid;
307 /* Return true if the DECL_UID in both trees are equal. */
309 inline bool
310 uid_decl_hasher::equal (const tree_node *a, const tree_node *b)
312 return (a->decl_minimal.uid == b->decl_minimal.uid);
315 /* Set of candidates. */
316 static bitmap candidate_bitmap;
317 static hash_table<uid_decl_hasher> *candidates;
319 /* For a candidate UID return the candidates decl. */
321 static inline tree
322 candidate (unsigned uid)
324 tree_node t;
325 t.decl_minimal.uid = uid;
326 return candidates->find_with_hash (&t, static_cast <hashval_t> (uid));
329 /* Bitmap of candidates which we should try to entirely scalarize away and
330 those which cannot be (because they are and need be used as a whole). */
331 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
333 /* Bitmap of candidates in the constant pool, which cannot be scalarized
334 because this would produce non-constant expressions (e.g. Ada). */
335 static bitmap disqualified_constants;
337 /* Obstack for creation of fancy names. */
338 static struct obstack name_obstack;
340 /* Head of a linked list of accesses that need to have its subaccesses
341 propagated to their assignment counterparts. */
342 static struct access *rhs_work_queue_head, *lhs_work_queue_head;
344 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
345 representative fields are dumped, otherwise those which only describe the
346 individual access are. */
348 static struct
350 /* Number of processed aggregates is readily available in
351 analyze_all_variable_accesses and so is not stored here. */
353 /* Number of created scalar replacements. */
354 int replacements;
356 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
357 expression. */
358 int exprs;
360 /* Number of statements created by generate_subtree_copies. */
361 int subtree_copies;
363 /* Number of statements created by load_assign_lhs_subreplacements. */
364 int subreplacements;
366 /* Number of times sra_modify_assign has deleted a statement. */
367 int deleted;
369 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
370 RHS reparately due to type conversions or nonexistent matching
371 references. */
372 int separate_lhs_rhs_handling;
374 /* Number of parameters that were removed because they were unused. */
375 int deleted_unused_parameters;
377 /* Number of scalars passed as parameters by reference that have been
378 converted to be passed by value. */
379 int scalar_by_ref_to_by_val;
381 /* Number of aggregate parameters that were replaced by one or more of their
382 components. */
383 int aggregate_params_reduced;
385 /* Numbber of components created when splitting aggregate parameters. */
386 int param_reductions_created;
387 } sra_stats;
389 static void
390 dump_access (FILE *f, struct access *access, bool grp)
392 fprintf (f, "access { ");
393 fprintf (f, "base = (%d)'", DECL_UID (access->base));
394 print_generic_expr (f, access->base);
395 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
396 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
397 fprintf (f, ", expr = ");
398 print_generic_expr (f, access->expr);
399 fprintf (f, ", type = ");
400 print_generic_expr (f, access->type);
401 fprintf (f, ", reverse = %d", access->reverse);
402 if (grp)
403 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
404 "grp_assignment_write = %d, grp_scalar_read = %d, "
405 "grp_scalar_write = %d, grp_total_scalarization = %d, "
406 "grp_hint = %d, grp_covered = %d, "
407 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
408 "grp_same_access_path = %d, grp_partial_lhs = %d, "
409 "grp_to_be_replaced = %d, grp_to_be_debug_replaced = %d}\n",
410 access->grp_read, access->grp_write, access->grp_assignment_read,
411 access->grp_assignment_write, access->grp_scalar_read,
412 access->grp_scalar_write, access->grp_total_scalarization,
413 access->grp_hint, access->grp_covered,
414 access->grp_unscalarizable_region, access->grp_unscalarized_data,
415 access->grp_same_access_path, access->grp_partial_lhs,
416 access->grp_to_be_replaced, access->grp_to_be_debug_replaced);
417 else
418 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
419 "grp_partial_lhs = %d}\n",
420 access->write, access->grp_total_scalarization,
421 access->grp_partial_lhs);
424 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
426 static void
427 dump_access_tree_1 (FILE *f, struct access *access, int level)
431 int i;
433 for (i = 0; i < level; i++)
434 fputs ("* ", f);
436 dump_access (f, access, true);
438 if (access->first_child)
439 dump_access_tree_1 (f, access->first_child, level + 1);
441 access = access->next_sibling;
443 while (access);
446 /* Dump all access trees for a variable, given the pointer to the first root in
447 ACCESS. */
449 static void
450 dump_access_tree (FILE *f, struct access *access)
452 for (; access; access = access->next_grp)
453 dump_access_tree_1 (f, access, 0);
456 /* Return true iff ACC is non-NULL and has subaccesses. */
458 static inline bool
459 access_has_children_p (struct access *acc)
461 return acc && acc->first_child;
464 /* Return true iff ACC is (partly) covered by at least one replacement. */
466 static bool
467 access_has_replacements_p (struct access *acc)
469 struct access *child;
470 if (acc->grp_to_be_replaced)
471 return true;
472 for (child = acc->first_child; child; child = child->next_sibling)
473 if (access_has_replacements_p (child))
474 return true;
475 return false;
478 /* Return a vector of pointers to accesses for the variable given in BASE or
479 NULL if there is none. */
481 static vec<access_p> *
482 get_base_access_vector (tree base)
484 return base_access_vec->get (base);
487 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
488 in ACCESS. Return NULL if it cannot be found. */
490 static struct access *
491 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
492 HOST_WIDE_INT size)
494 while (access && (access->offset != offset || access->size != size))
496 struct access *child = access->first_child;
498 while (child && (child->offset + child->size <= offset))
499 child = child->next_sibling;
500 access = child;
503 /* Total scalarization does not replace single field structures with their
504 single field but rather creates an access for them underneath. Look for
505 it. */
506 if (access)
507 while (access->first_child
508 && access->first_child->offset == offset
509 && access->first_child->size == size)
510 access = access->first_child;
512 return access;
515 /* Return the first group representative for DECL or NULL if none exists. */
517 static struct access *
518 get_first_repr_for_decl (tree base)
520 vec<access_p> *access_vec;
522 access_vec = get_base_access_vector (base);
523 if (!access_vec)
524 return NULL;
526 return (*access_vec)[0];
529 /* Find an access representative for the variable BASE and given OFFSET and
530 SIZE. Requires that access trees have already been built. Return NULL if
531 it cannot be found. */
533 static struct access *
534 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
535 HOST_WIDE_INT size)
537 struct access *access;
539 access = get_first_repr_for_decl (base);
540 while (access && (access->offset + access->size <= offset))
541 access = access->next_grp;
542 if (!access)
543 return NULL;
545 return find_access_in_subtree (access, offset, size);
548 /* Add LINK to the linked list of assign links of RACC. */
550 static void
551 add_link_to_rhs (struct access *racc, struct assign_link *link)
553 gcc_assert (link->racc == racc);
555 if (!racc->first_rhs_link)
557 gcc_assert (!racc->last_rhs_link);
558 racc->first_rhs_link = link;
560 else
561 racc->last_rhs_link->next_rhs = link;
563 racc->last_rhs_link = link;
564 link->next_rhs = NULL;
567 /* Add LINK to the linked list of lhs assign links of LACC. */
569 static void
570 add_link_to_lhs (struct access *lacc, struct assign_link *link)
572 gcc_assert (link->lacc == lacc);
574 if (!lacc->first_lhs_link)
576 gcc_assert (!lacc->last_lhs_link);
577 lacc->first_lhs_link = link;
579 else
580 lacc->last_lhs_link->next_lhs = link;
582 lacc->last_lhs_link = link;
583 link->next_lhs = NULL;
586 /* Move all link structures in their linked list in OLD_ACC to the linked list
587 in NEW_ACC. */
588 static void
589 relink_to_new_repr (struct access *new_acc, struct access *old_acc)
591 if (old_acc->first_rhs_link)
594 if (new_acc->first_rhs_link)
596 gcc_assert (!new_acc->last_rhs_link->next_rhs);
597 gcc_assert (!old_acc->last_rhs_link
598 || !old_acc->last_rhs_link->next_rhs);
600 new_acc->last_rhs_link->next_rhs = old_acc->first_rhs_link;
601 new_acc->last_rhs_link = old_acc->last_rhs_link;
603 else
605 gcc_assert (!new_acc->last_rhs_link);
607 new_acc->first_rhs_link = old_acc->first_rhs_link;
608 new_acc->last_rhs_link = old_acc->last_rhs_link;
610 old_acc->first_rhs_link = old_acc->last_rhs_link = NULL;
612 else
613 gcc_assert (!old_acc->last_rhs_link);
615 if (old_acc->first_lhs_link)
618 if (new_acc->first_lhs_link)
620 gcc_assert (!new_acc->last_lhs_link->next_lhs);
621 gcc_assert (!old_acc->last_lhs_link
622 || !old_acc->last_lhs_link->next_lhs);
624 new_acc->last_lhs_link->next_lhs = old_acc->first_lhs_link;
625 new_acc->last_lhs_link = old_acc->last_lhs_link;
627 else
629 gcc_assert (!new_acc->last_lhs_link);
631 new_acc->first_lhs_link = old_acc->first_lhs_link;
632 new_acc->last_lhs_link = old_acc->last_lhs_link;
634 old_acc->first_lhs_link = old_acc->last_lhs_link = NULL;
636 else
637 gcc_assert (!old_acc->last_lhs_link);
641 /* Add ACCESS to the work to queue for propagation of subaccesses from RHS to
642 LHS (which is actually a stack). */
644 static void
645 add_access_to_rhs_work_queue (struct access *access)
647 if (access->first_rhs_link && !access->grp_rhs_queued)
649 gcc_assert (!access->next_rhs_queued);
650 access->next_rhs_queued = rhs_work_queue_head;
651 access->grp_rhs_queued = 1;
652 rhs_work_queue_head = access;
656 /* Add ACCESS to the work to queue for propagation of subaccesses from LHS to
657 RHS (which is actually a stack). */
659 static void
660 add_access_to_lhs_work_queue (struct access *access)
662 if (access->first_lhs_link && !access->grp_lhs_queued)
664 gcc_assert (!access->next_lhs_queued);
665 access->next_lhs_queued = lhs_work_queue_head;
666 access->grp_lhs_queued = 1;
667 lhs_work_queue_head = access;
671 /* Pop an access from the work queue for propagating from RHS to LHS, and
672 return it, assuming there is one. */
674 static struct access *
675 pop_access_from_rhs_work_queue (void)
677 struct access *access = rhs_work_queue_head;
679 rhs_work_queue_head = access->next_rhs_queued;
680 access->next_rhs_queued = NULL;
681 access->grp_rhs_queued = 0;
682 return access;
685 /* Pop an access from the work queue for propagating from LHS to RHS, and
686 return it, assuming there is one. */
688 static struct access *
689 pop_access_from_lhs_work_queue (void)
691 struct access *access = lhs_work_queue_head;
693 lhs_work_queue_head = access->next_lhs_queued;
694 access->next_lhs_queued = NULL;
695 access->grp_lhs_queued = 0;
696 return access;
699 /* Allocate necessary structures. */
701 static void
702 sra_initialize (void)
704 candidate_bitmap = BITMAP_ALLOC (NULL);
705 candidates = new hash_table<uid_decl_hasher>
706 (vec_safe_length (cfun->local_decls) / 2);
707 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
708 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
709 disqualified_constants = BITMAP_ALLOC (NULL);
710 gcc_obstack_init (&name_obstack);
711 base_access_vec = new hash_map<tree, auto_vec<access_p> >;
712 memset (&sra_stats, 0, sizeof (sra_stats));
715 /* Deallocate all general structures. */
717 static void
718 sra_deinitialize (void)
720 BITMAP_FREE (candidate_bitmap);
721 delete candidates;
722 candidates = NULL;
723 BITMAP_FREE (should_scalarize_away_bitmap);
724 BITMAP_FREE (cannot_scalarize_away_bitmap);
725 BITMAP_FREE (disqualified_constants);
726 access_pool.release ();
727 assign_link_pool.release ();
728 obstack_free (&name_obstack, NULL);
730 delete base_access_vec;
733 /* Return true if DECL is a VAR_DECL in the constant pool, false otherwise. */
735 static bool constant_decl_p (tree decl)
737 return VAR_P (decl) && DECL_IN_CONSTANT_POOL (decl);
740 /* Remove DECL from candidates for SRA and write REASON to the dump file if
741 there is one. */
743 static void
744 disqualify_candidate (tree decl, const char *reason)
746 if (bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)))
747 candidates->remove_elt_with_hash (decl, DECL_UID (decl));
748 if (constant_decl_p (decl))
749 bitmap_set_bit (disqualified_constants, DECL_UID (decl));
751 if (dump_file && (dump_flags & TDF_DETAILS))
753 fprintf (dump_file, "! Disqualifying ");
754 print_generic_expr (dump_file, decl);
755 fprintf (dump_file, " - %s\n", reason);
759 /* Return true iff the type contains a field or an element which does not allow
760 scalarization. Use VISITED_TYPES to avoid re-checking already checked
761 (sub-)types. */
763 static bool
764 type_internals_preclude_sra_p_1 (tree type, const char **msg,
765 hash_set<tree> *visited_types)
767 tree fld;
768 tree et;
770 if (visited_types->contains (type))
771 return false;
772 visited_types->add (type);
774 switch (TREE_CODE (type))
776 case RECORD_TYPE:
777 case UNION_TYPE:
778 case QUAL_UNION_TYPE:
779 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
780 if (TREE_CODE (fld) == FIELD_DECL)
782 if (TREE_CODE (fld) == FUNCTION_DECL)
783 continue;
784 tree ft = TREE_TYPE (fld);
786 if (TREE_THIS_VOLATILE (fld))
788 *msg = "volatile structure field";
789 return true;
791 if (!DECL_FIELD_OFFSET (fld))
793 *msg = "no structure field offset";
794 return true;
796 if (!DECL_SIZE (fld))
798 *msg = "zero structure field size";
799 return true;
801 if (!tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
803 *msg = "structure field offset not fixed";
804 return true;
806 if (!tree_fits_uhwi_p (DECL_SIZE (fld)))
808 *msg = "structure field size not fixed";
809 return true;
811 if (!tree_fits_shwi_p (bit_position (fld)))
813 *msg = "structure field size too big";
814 return true;
816 if (AGGREGATE_TYPE_P (ft)
817 && int_bit_position (fld) % BITS_PER_UNIT != 0)
819 *msg = "structure field is bit field";
820 return true;
823 if (AGGREGATE_TYPE_P (ft)
824 && type_internals_preclude_sra_p_1 (ft, msg, visited_types))
825 return true;
828 return false;
830 case ARRAY_TYPE:
831 et = TREE_TYPE (type);
833 if (TYPE_VOLATILE (et))
835 *msg = "element type is volatile";
836 return true;
839 if (AGGREGATE_TYPE_P (et)
840 && type_internals_preclude_sra_p_1 (et, msg, visited_types))
841 return true;
843 return false;
845 default:
846 return false;
850 /* Return true iff the type contains a field or an element which does not allow
851 scalarization. */
853 bool
854 type_internals_preclude_sra_p (tree type, const char **msg)
856 hash_set<tree> visited_types;
857 return type_internals_preclude_sra_p_1 (type, msg, &visited_types);
861 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
862 the three fields. Also add it to the vector of accesses corresponding to
863 the base. Finally, return the new access. */
865 static struct access *
866 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
868 struct access *access = access_pool.allocate ();
870 memset (access, 0, sizeof (struct access));
871 access->base = base;
872 access->offset = offset;
873 access->size = size;
875 base_access_vec->get_or_insert (base).safe_push (access);
877 return access;
880 static bool maybe_add_sra_candidate (tree);
882 /* Create and insert access for EXPR. Return created access, or NULL if it is
883 not possible. Also scan for uses of constant pool as we go along and add
884 to candidates. */
886 static struct access *
887 create_access (tree expr, gimple *stmt, bool write)
889 struct access *access;
890 poly_int64 poffset, psize, pmax_size;
891 tree base = expr;
892 bool reverse, unscalarizable_region = false;
894 base = get_ref_base_and_extent (expr, &poffset, &psize, &pmax_size,
895 &reverse);
897 /* For constant-pool entries, check we can substitute the constant value. */
898 if (constant_decl_p (base))
900 gcc_assert (!bitmap_bit_p (disqualified_constants, DECL_UID (base)));
901 if (expr != base
902 && !is_gimple_reg_type (TREE_TYPE (expr))
903 && dump_file && (dump_flags & TDF_DETAILS))
905 /* This occurs in Ada with accesses to ARRAY_RANGE_REFs,
906 and elements of multidimensional arrays (which are
907 multi-element arrays in their own right). */
908 fprintf (dump_file, "Allowing non-reg-type load of part"
909 " of constant-pool entry: ");
910 print_generic_expr (dump_file, expr);
912 maybe_add_sra_candidate (base);
915 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
916 return NULL;
918 HOST_WIDE_INT offset, size, max_size;
919 if (!poffset.is_constant (&offset)
920 || !psize.is_constant (&size)
921 || !pmax_size.is_constant (&max_size))
923 disqualify_candidate (base, "Encountered a polynomial-sized access.");
924 return NULL;
927 if (size != max_size)
929 size = max_size;
930 unscalarizable_region = true;
932 if (size == 0)
933 return NULL;
934 if (offset < 0)
936 disqualify_candidate (base, "Encountered a negative offset access.");
937 return NULL;
939 if (size < 0)
941 disqualify_candidate (base, "Encountered an unconstrained access.");
942 return NULL;
944 if (offset + size > tree_to_shwi (DECL_SIZE (base)))
946 disqualify_candidate (base, "Encountered an access beyond the base.");
947 return NULL;
950 access = create_access_1 (base, offset, size);
951 access->expr = expr;
952 access->type = TREE_TYPE (expr);
953 access->write = write;
954 access->grp_unscalarizable_region = unscalarizable_region;
955 access->stmt = stmt;
956 access->reverse = reverse;
958 return access;
962 /* Return true iff TYPE is scalarizable - i.e. a RECORD_TYPE or fixed-length
963 ARRAY_TYPE with fields that are either of gimple register types (excluding
964 bit-fields) or (recursively) scalarizable types. CONST_DECL must be true if
965 we are considering a decl from constant pool. If it is false, char arrays
966 will be refused. */
968 static bool
969 scalarizable_type_p (tree type, bool const_decl)
971 if (is_gimple_reg_type (type))
972 return true;
973 if (type_contains_placeholder_p (type))
974 return false;
976 bool have_predecessor_field = false;
977 HOST_WIDE_INT prev_pos = 0;
979 switch (TREE_CODE (type))
981 case RECORD_TYPE:
982 for (tree fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
983 if (TREE_CODE (fld) == FIELD_DECL)
985 tree ft = TREE_TYPE (fld);
987 if (zerop (DECL_SIZE (fld)))
988 continue;
990 HOST_WIDE_INT pos = int_bit_position (fld);
991 if (have_predecessor_field
992 && pos <= prev_pos)
993 return false;
995 have_predecessor_field = true;
996 prev_pos = pos;
998 if (DECL_BIT_FIELD (fld))
999 return false;
1001 if (!scalarizable_type_p (ft, const_decl))
1002 return false;
1005 return true;
1007 case ARRAY_TYPE:
1009 HOST_WIDE_INT min_elem_size;
1010 if (const_decl)
1011 min_elem_size = 0;
1012 else
1013 min_elem_size = BITS_PER_UNIT;
1015 if (TYPE_DOMAIN (type) == NULL_TREE
1016 || !tree_fits_shwi_p (TYPE_SIZE (type))
1017 || !tree_fits_shwi_p (TYPE_SIZE (TREE_TYPE (type)))
1018 || (tree_to_shwi (TYPE_SIZE (TREE_TYPE (type))) <= min_elem_size)
1019 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
1020 return false;
1021 if (tree_to_shwi (TYPE_SIZE (type)) == 0
1022 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)
1023 /* Zero-element array, should not prevent scalarization. */
1025 else if ((tree_to_shwi (TYPE_SIZE (type)) <= 0)
1026 || !tree_fits_shwi_p (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
1027 /* Variable-length array, do not allow scalarization. */
1028 return false;
1030 tree elem = TREE_TYPE (type);
1031 if (!scalarizable_type_p (elem, const_decl))
1032 return false;
1033 return true;
1035 default:
1036 return false;
1040 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1042 static inline bool
1043 contains_view_convert_expr_p (const_tree ref)
1045 while (handled_component_p (ref))
1047 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
1048 return true;
1049 ref = TREE_OPERAND (ref, 0);
1052 return false;
1055 /* Return true if REF contains a VIEW_CONVERT_EXPR or a COMPONENT_REF with a
1056 bit-field field declaration. If TYPE_CHANGING_P is non-NULL, set the bool
1057 it points to will be set if REF contains any of the above or a MEM_REF
1058 expression that effectively performs type conversion. */
1060 static bool
1061 contains_vce_or_bfcref_p (const_tree ref, bool *type_changing_p = NULL)
1063 while (handled_component_p (ref))
1065 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
1066 || (TREE_CODE (ref) == COMPONENT_REF
1067 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
1069 if (type_changing_p)
1070 *type_changing_p = true;
1071 return true;
1073 ref = TREE_OPERAND (ref, 0);
1076 if (!type_changing_p
1077 || TREE_CODE (ref) != MEM_REF
1078 || TREE_CODE (TREE_OPERAND (ref, 0)) != ADDR_EXPR)
1079 return false;
1081 tree mem = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
1082 if (TYPE_MAIN_VARIANT (TREE_TYPE (ref))
1083 != TYPE_MAIN_VARIANT (TREE_TYPE (mem)))
1084 *type_changing_p = true;
1086 return false;
1089 /* Search the given tree for a declaration by skipping handled components and
1090 exclude it from the candidates. */
1092 static void
1093 disqualify_base_of_expr (tree t, const char *reason)
1095 t = get_base_address (t);
1096 if (t && DECL_P (t))
1097 disqualify_candidate (t, reason);
1100 /* Scan expression EXPR and create access structures for all accesses to
1101 candidates for scalarization. Return the created access or NULL if none is
1102 created. */
1104 static struct access *
1105 build_access_from_expr_1 (tree expr, gimple *stmt, bool write)
1107 struct access *ret = NULL;
1108 bool partial_ref;
1110 if (TREE_CODE (expr) == BIT_FIELD_REF
1111 || TREE_CODE (expr) == IMAGPART_EXPR
1112 || TREE_CODE (expr) == REALPART_EXPR)
1114 expr = TREE_OPERAND (expr, 0);
1115 partial_ref = true;
1117 else
1118 partial_ref = false;
1120 if (storage_order_barrier_p (expr))
1122 disqualify_base_of_expr (expr, "storage order barrier.");
1123 return NULL;
1126 /* We need to dive through V_C_Es in order to get the size of its parameter
1127 and not the result type. Ada produces such statements. We are also
1128 capable of handling the topmost V_C_E but not any of those buried in other
1129 handled components. */
1130 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
1131 expr = TREE_OPERAND (expr, 0);
1133 if (contains_view_convert_expr_p (expr))
1135 disqualify_base_of_expr (expr, "V_C_E under a different handled "
1136 "component.");
1137 return NULL;
1139 if (TREE_THIS_VOLATILE (expr))
1141 disqualify_base_of_expr (expr, "part of a volatile reference.");
1142 return NULL;
1145 switch (TREE_CODE (expr))
1147 case MEM_REF:
1148 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR)
1149 return NULL;
1150 /* fall through */
1151 case VAR_DECL:
1152 case PARM_DECL:
1153 case RESULT_DECL:
1154 case COMPONENT_REF:
1155 case ARRAY_REF:
1156 case ARRAY_RANGE_REF:
1157 ret = create_access (expr, stmt, write);
1158 break;
1160 default:
1161 break;
1164 if (write && partial_ref && ret)
1165 ret->grp_partial_lhs = 1;
1167 return ret;
1170 /* Scan expression EXPR and create access structures for all accesses to
1171 candidates for scalarization. Return true if any access has been inserted.
1172 STMT must be the statement from which the expression is taken, WRITE must be
1173 true if the expression is a store and false otherwise. */
1175 static bool
1176 build_access_from_expr (tree expr, gimple *stmt, bool write)
1178 struct access *access;
1180 access = build_access_from_expr_1 (expr, stmt, write);
1181 if (access)
1183 /* This means the aggregate is accesses as a whole in a way other than an
1184 assign statement and thus cannot be removed even if we had a scalar
1185 replacement for everything. */
1186 if (cannot_scalarize_away_bitmap)
1187 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1188 return true;
1190 return false;
1193 /* Return the single non-EH successor edge of BB or NULL if there is none or
1194 more than one. */
1196 static edge
1197 single_non_eh_succ (basic_block bb)
1199 edge e, res = NULL;
1200 edge_iterator ei;
1202 FOR_EACH_EDGE (e, ei, bb->succs)
1203 if (!(e->flags & EDGE_EH))
1205 if (res)
1206 return NULL;
1207 res = e;
1210 return res;
1213 /* Disqualify LHS and RHS for scalarization if STMT has to terminate its BB and
1214 there is no alternative spot where to put statements SRA might need to
1215 generate after it. The spot we are looking for is an edge leading to a
1216 single non-EH successor, if it exists and is indeed single. RHS may be
1217 NULL, in that case ignore it. */
1219 static bool
1220 disqualify_if_bad_bb_terminating_stmt (gimple *stmt, tree lhs, tree rhs)
1222 if (stmt_ends_bb_p (stmt))
1224 if (single_non_eh_succ (gimple_bb (stmt)))
1225 return false;
1227 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1228 if (rhs)
1229 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1230 return true;
1232 return false;
1235 /* Return true if the nature of BASE is such that it contains data even if
1236 there is no write to it in the function. */
1238 static bool
1239 comes_initialized_p (tree base)
1241 return TREE_CODE (base) == PARM_DECL || constant_decl_p (base);
1244 /* Scan expressions occurring in STMT, create access structures for all accesses
1245 to candidates for scalarization and remove those candidates which occur in
1246 statements or expressions that prevent them from being split apart. Return
1247 true if any access has been inserted. */
1249 static bool
1250 build_accesses_from_assign (gimple *stmt)
1252 tree lhs, rhs;
1253 struct access *lacc, *racc;
1255 if (!gimple_assign_single_p (stmt)
1256 /* Scope clobbers don't influence scalarization. */
1257 || gimple_clobber_p (stmt))
1258 return false;
1260 lhs = gimple_assign_lhs (stmt);
1261 rhs = gimple_assign_rhs1 (stmt);
1263 if (disqualify_if_bad_bb_terminating_stmt (stmt, lhs, rhs))
1264 return false;
1266 racc = build_access_from_expr_1 (rhs, stmt, false);
1267 lacc = build_access_from_expr_1 (lhs, stmt, true);
1269 if (lacc)
1271 lacc->grp_assignment_write = 1;
1272 if (storage_order_barrier_p (rhs))
1273 lacc->grp_unscalarizable_region = 1;
1275 if (should_scalarize_away_bitmap && !is_gimple_reg_type (lacc->type))
1277 bool type_changing_p = false;
1278 contains_vce_or_bfcref_p (lhs, &type_changing_p);
1279 if (type_changing_p)
1280 bitmap_set_bit (cannot_scalarize_away_bitmap,
1281 DECL_UID (lacc->base));
1285 if (racc)
1287 racc->grp_assignment_read = 1;
1288 if (should_scalarize_away_bitmap && !is_gimple_reg_type (racc->type))
1290 bool type_changing_p = false;
1291 contains_vce_or_bfcref_p (rhs, &type_changing_p);
1293 if (type_changing_p || gimple_has_volatile_ops (stmt))
1294 bitmap_set_bit (cannot_scalarize_away_bitmap,
1295 DECL_UID (racc->base));
1296 else
1297 bitmap_set_bit (should_scalarize_away_bitmap,
1298 DECL_UID (racc->base));
1300 if (storage_order_barrier_p (lhs))
1301 racc->grp_unscalarizable_region = 1;
1304 if (lacc && racc
1305 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1306 && !lacc->grp_unscalarizable_region
1307 && !racc->grp_unscalarizable_region
1308 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1309 && lacc->size == racc->size
1310 && useless_type_conversion_p (lacc->type, racc->type))
1312 struct assign_link *link;
1314 link = assign_link_pool.allocate ();
1315 memset (link, 0, sizeof (struct assign_link));
1317 link->lacc = lacc;
1318 link->racc = racc;
1319 add_link_to_rhs (racc, link);
1320 add_link_to_lhs (lacc, link);
1321 add_access_to_rhs_work_queue (racc);
1322 add_access_to_lhs_work_queue (lacc);
1324 /* Let's delay marking the areas as written until propagation of accesses
1325 across link, unless the nature of rhs tells us that its data comes
1326 from elsewhere. */
1327 if (!comes_initialized_p (racc->base))
1328 lacc->write = false;
1331 return lacc || racc;
1334 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1335 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1337 static bool
1338 asm_visit_addr (gimple *, tree op, tree, void *)
1340 op = get_base_address (op);
1341 if (op
1342 && DECL_P (op))
1343 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1345 return false;
1348 /* Scan function and look for interesting expressions and create access
1349 structures for them. Return true iff any access is created. */
1351 static bool
1352 scan_function (void)
1354 basic_block bb;
1355 bool ret = false;
1357 FOR_EACH_BB_FN (bb, cfun)
1359 gimple_stmt_iterator gsi;
1360 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1362 gimple *stmt = gsi_stmt (gsi);
1363 tree t;
1364 unsigned i;
1366 switch (gimple_code (stmt))
1368 case GIMPLE_RETURN:
1369 t = gimple_return_retval (as_a <greturn *> (stmt));
1370 if (t != NULL_TREE)
1371 ret |= build_access_from_expr (t, stmt, false);
1372 break;
1374 case GIMPLE_ASSIGN:
1375 ret |= build_accesses_from_assign (stmt);
1376 break;
1378 case GIMPLE_CALL:
1379 for (i = 0; i < gimple_call_num_args (stmt); i++)
1380 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1381 stmt, false);
1383 t = gimple_call_lhs (stmt);
1384 if (t && !disqualify_if_bad_bb_terminating_stmt (stmt, t, NULL))
1385 ret |= build_access_from_expr (t, stmt, true);
1386 break;
1388 case GIMPLE_ASM:
1390 gasm *asm_stmt = as_a <gasm *> (stmt);
1391 walk_stmt_load_store_addr_ops (asm_stmt, NULL, NULL, NULL,
1392 asm_visit_addr);
1393 for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
1395 t = TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
1396 ret |= build_access_from_expr (t, asm_stmt, false);
1398 for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
1400 t = TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
1401 ret |= build_access_from_expr (t, asm_stmt, true);
1404 break;
1406 default:
1407 break;
1412 return ret;
1415 /* Helper of QSORT function. There are pointers to accesses in the array. An
1416 access is considered smaller than another if it has smaller offset or if the
1417 offsets are the same but is size is bigger. */
1419 static int
1420 compare_access_positions (const void *a, const void *b)
1422 const access_p *fp1 = (const access_p *) a;
1423 const access_p *fp2 = (const access_p *) b;
1424 const access_p f1 = *fp1;
1425 const access_p f2 = *fp2;
1427 if (f1->offset != f2->offset)
1428 return f1->offset < f2->offset ? -1 : 1;
1430 if (f1->size == f2->size)
1432 if (f1->type == f2->type)
1433 return 0;
1434 /* Put any non-aggregate type before any aggregate type. */
1435 else if (!is_gimple_reg_type (f1->type)
1436 && is_gimple_reg_type (f2->type))
1437 return 1;
1438 else if (is_gimple_reg_type (f1->type)
1439 && !is_gimple_reg_type (f2->type))
1440 return -1;
1441 /* Put any complex or vector type before any other scalar type. */
1442 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1443 && TREE_CODE (f1->type) != VECTOR_TYPE
1444 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1445 || TREE_CODE (f2->type) == VECTOR_TYPE))
1446 return 1;
1447 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1448 || TREE_CODE (f1->type) == VECTOR_TYPE)
1449 && TREE_CODE (f2->type) != COMPLEX_TYPE
1450 && TREE_CODE (f2->type) != VECTOR_TYPE)
1451 return -1;
1452 /* Put any integral type before any non-integral type. When splicing, we
1453 make sure that those with insufficient precision and occupying the
1454 same space are not scalarized. */
1455 else if (INTEGRAL_TYPE_P (f1->type)
1456 && !INTEGRAL_TYPE_P (f2->type))
1457 return -1;
1458 else if (!INTEGRAL_TYPE_P (f1->type)
1459 && INTEGRAL_TYPE_P (f2->type))
1460 return 1;
1461 /* Put the integral type with the bigger precision first. */
1462 else if (INTEGRAL_TYPE_P (f1->type)
1463 && INTEGRAL_TYPE_P (f2->type)
1464 && (TYPE_PRECISION (f2->type) != TYPE_PRECISION (f1->type)))
1465 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1466 /* Stabilize the sort. */
1467 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1470 /* We want the bigger accesses first, thus the opposite operator in the next
1471 line: */
1472 return f1->size > f2->size ? -1 : 1;
1476 /* Append a name of the declaration to the name obstack. A helper function for
1477 make_fancy_name. */
1479 static void
1480 make_fancy_decl_name (tree decl)
1482 char buffer[32];
1484 tree name = DECL_NAME (decl);
1485 if (name)
1486 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1487 IDENTIFIER_LENGTH (name));
1488 else
1490 sprintf (buffer, "D%u", DECL_UID (decl));
1491 obstack_grow (&name_obstack, buffer, strlen (buffer));
1495 /* Helper for make_fancy_name. */
1497 static void
1498 make_fancy_name_1 (tree expr)
1500 char buffer[32];
1501 tree index;
1503 if (DECL_P (expr))
1505 make_fancy_decl_name (expr);
1506 return;
1509 switch (TREE_CODE (expr))
1511 case COMPONENT_REF:
1512 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1513 obstack_1grow (&name_obstack, '$');
1514 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1515 break;
1517 case ARRAY_REF:
1518 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1519 obstack_1grow (&name_obstack, '$');
1520 /* Arrays with only one element may not have a constant as their
1521 index. */
1522 index = TREE_OPERAND (expr, 1);
1523 if (TREE_CODE (index) != INTEGER_CST)
1524 break;
1525 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1526 obstack_grow (&name_obstack, buffer, strlen (buffer));
1527 break;
1529 case ADDR_EXPR:
1530 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1531 break;
1533 case MEM_REF:
1534 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1535 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1537 obstack_1grow (&name_obstack, '$');
1538 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1539 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1540 obstack_grow (&name_obstack, buffer, strlen (buffer));
1542 break;
1544 case BIT_FIELD_REF:
1545 case REALPART_EXPR:
1546 case IMAGPART_EXPR:
1547 gcc_unreachable (); /* we treat these as scalars. */
1548 break;
1549 default:
1550 break;
1554 /* Create a human readable name for replacement variable of ACCESS. */
1556 static char *
1557 make_fancy_name (tree expr)
1559 make_fancy_name_1 (expr);
1560 obstack_1grow (&name_obstack, '\0');
1561 return XOBFINISH (&name_obstack, char *);
1564 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1565 EXP_TYPE at the given OFFSET and with storage order REVERSE. If BASE is
1566 something for which get_addr_base_and_unit_offset returns NULL, gsi must
1567 be non-NULL and is used to insert new statements either before or below
1568 the current one as specified by INSERT_AFTER. This function is not capable
1569 of handling bitfields. */
1571 tree
1572 build_ref_for_offset (location_t loc, tree base, poly_int64 offset,
1573 bool reverse, tree exp_type, gimple_stmt_iterator *gsi,
1574 bool insert_after)
1576 tree prev_base = base;
1577 tree off;
1578 tree mem_ref;
1579 poly_int64 base_offset;
1580 unsigned HOST_WIDE_INT misalign;
1581 unsigned int align;
1583 /* Preserve address-space information. */
1584 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1585 if (as != TYPE_ADDR_SPACE (exp_type))
1586 exp_type = build_qualified_type (exp_type,
1587 TYPE_QUALS (exp_type)
1588 | ENCODE_QUAL_ADDR_SPACE (as));
1590 poly_int64 byte_offset = exact_div (offset, BITS_PER_UNIT);
1591 get_object_alignment_1 (base, &align, &misalign);
1592 base = get_addr_base_and_unit_offset (base, &base_offset);
1594 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1595 offset such as array[var_index]. */
1596 if (!base)
1598 gassign *stmt;
1599 tree tmp, addr;
1601 gcc_checking_assert (gsi);
1602 tmp = make_ssa_name (build_pointer_type (TREE_TYPE (prev_base)));
1603 addr = build_fold_addr_expr (unshare_expr (prev_base));
1604 STRIP_USELESS_TYPE_CONVERSION (addr);
1605 stmt = gimple_build_assign (tmp, addr);
1606 gimple_set_location (stmt, loc);
1607 if (insert_after)
1608 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1609 else
1610 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1612 off = build_int_cst (reference_alias_ptr_type (prev_base), byte_offset);
1613 base = tmp;
1615 else if (TREE_CODE (base) == MEM_REF)
1617 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1618 base_offset + byte_offset);
1619 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1620 base = unshare_expr (TREE_OPERAND (base, 0));
1622 else
1624 off = build_int_cst (reference_alias_ptr_type (prev_base),
1625 base_offset + byte_offset);
1626 base = build_fold_addr_expr (unshare_expr (base));
1629 unsigned int align_bound = known_alignment (misalign + offset);
1630 if (align_bound != 0)
1631 align = MIN (align, align_bound);
1632 if (align != TYPE_ALIGN (exp_type))
1633 exp_type = build_aligned_type (exp_type, align);
1635 mem_ref = fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1636 REF_REVERSE_STORAGE_ORDER (mem_ref) = reverse;
1637 if (TREE_THIS_VOLATILE (prev_base))
1638 TREE_THIS_VOLATILE (mem_ref) = 1;
1639 if (TREE_SIDE_EFFECTS (prev_base))
1640 TREE_SIDE_EFFECTS (mem_ref) = 1;
1641 return mem_ref;
1644 /* Construct and return a memory reference that is equal to a portion of
1645 MODEL->expr but is based on BASE. If this cannot be done, return NULL. */
1647 static tree
1648 build_reconstructed_reference (location_t, tree base, struct access *model)
1650 tree expr = model->expr, prev_expr = NULL;
1651 while (!types_compatible_p (TREE_TYPE (expr), TREE_TYPE (base)))
1653 if (!handled_component_p (expr))
1654 return NULL_TREE;
1655 prev_expr = expr;
1656 expr = TREE_OPERAND (expr, 0);
1659 /* Guard against broken VIEW_CONVERT_EXPRs... */
1660 if (!prev_expr)
1661 return NULL_TREE;
1663 TREE_OPERAND (prev_expr, 0) = base;
1664 tree ref = unshare_expr (model->expr);
1665 TREE_OPERAND (prev_expr, 0) = expr;
1666 return ref;
1669 /* Construct a memory reference to a part of an aggregate BASE at the given
1670 OFFSET and of the same type as MODEL. In case this is a reference to a
1671 bit-field, the function will replicate the last component_ref of model's
1672 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1673 build_ref_for_offset. */
1675 static tree
1676 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1677 struct access *model, gimple_stmt_iterator *gsi,
1678 bool insert_after)
1680 gcc_assert (offset >= 0);
1681 if (TREE_CODE (model->expr) == COMPONENT_REF
1682 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1684 /* This access represents a bit-field. */
1685 tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
1687 offset -= int_bit_position (fld);
1688 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1689 t = build_ref_for_offset (loc, base, offset, model->reverse, exp_type,
1690 gsi, insert_after);
1691 /* The flag will be set on the record type. */
1692 REF_REVERSE_STORAGE_ORDER (t) = 0;
1693 return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
1694 NULL_TREE);
1696 else
1698 tree res;
1699 if (model->grp_same_access_path
1700 && !TREE_THIS_VOLATILE (base)
1701 && (TYPE_ADDR_SPACE (TREE_TYPE (base))
1702 == TYPE_ADDR_SPACE (TREE_TYPE (model->expr)))
1703 && offset <= model->offset
1704 /* build_reconstructed_reference can still fail if we have already
1705 massaged BASE because of another type incompatibility. */
1706 && (res = build_reconstructed_reference (loc, base, model)))
1707 return res;
1708 else
1709 return build_ref_for_offset (loc, base, offset, model->reverse,
1710 model->type, gsi, insert_after);
1714 /* Attempt to build a memory reference that we could but into a gimple
1715 debug_bind statement. Similar to build_ref_for_model but punts if it has to
1716 create statements and return s NULL instead. This function also ignores
1717 alignment issues and so its results should never end up in non-debug
1718 statements. */
1720 static tree
1721 build_debug_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1722 struct access *model)
1724 poly_int64 base_offset;
1725 tree off;
1727 if (TREE_CODE (model->expr) == COMPONENT_REF
1728 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1729 return NULL_TREE;
1731 base = get_addr_base_and_unit_offset (base, &base_offset);
1732 if (!base)
1733 return NULL_TREE;
1734 if (TREE_CODE (base) == MEM_REF)
1736 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1737 base_offset + offset / BITS_PER_UNIT);
1738 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1739 base = unshare_expr (TREE_OPERAND (base, 0));
1741 else
1743 off = build_int_cst (reference_alias_ptr_type (base),
1744 base_offset + offset / BITS_PER_UNIT);
1745 base = build_fold_addr_expr (unshare_expr (base));
1748 return fold_build2_loc (loc, MEM_REF, model->type, base, off);
1751 /* Construct a memory reference consisting of component_refs and array_refs to
1752 a part of an aggregate *RES (which is of type TYPE). The requested part
1753 should have type EXP_TYPE at be the given OFFSET. This function might not
1754 succeed, it returns true when it does and only then *RES points to something
1755 meaningful. This function should be used only to build expressions that we
1756 might need to present to user (e.g. in warnings). In all other situations,
1757 build_ref_for_model or build_ref_for_offset should be used instead. */
1759 static bool
1760 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1761 tree exp_type)
1763 while (1)
1765 tree fld;
1766 tree tr_size, index, minidx;
1767 HOST_WIDE_INT el_size;
1769 if (offset == 0 && exp_type
1770 && types_compatible_p (exp_type, type))
1771 return true;
1773 switch (TREE_CODE (type))
1775 case UNION_TYPE:
1776 case QUAL_UNION_TYPE:
1777 case RECORD_TYPE:
1778 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1780 HOST_WIDE_INT pos, size;
1781 tree tr_pos, expr, *expr_ptr;
1783 if (TREE_CODE (fld) != FIELD_DECL)
1784 continue;
1786 tr_pos = bit_position (fld);
1787 if (!tr_pos || !tree_fits_uhwi_p (tr_pos))
1788 continue;
1789 pos = tree_to_uhwi (tr_pos);
1790 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1791 tr_size = DECL_SIZE (fld);
1792 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1793 continue;
1794 size = tree_to_uhwi (tr_size);
1795 if (size == 0)
1797 if (pos != offset)
1798 continue;
1800 else if (pos > offset || (pos + size) <= offset)
1801 continue;
1803 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1804 NULL_TREE);
1805 expr_ptr = &expr;
1806 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1807 offset - pos, exp_type))
1809 *res = expr;
1810 return true;
1813 return false;
1815 case ARRAY_TYPE:
1816 tr_size = TYPE_SIZE (TREE_TYPE (type));
1817 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1818 return false;
1819 el_size = tree_to_uhwi (tr_size);
1821 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1822 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1823 return false;
1824 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1825 if (!integer_zerop (minidx))
1826 index = int_const_binop (PLUS_EXPR, index, minidx);
1827 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1828 NULL_TREE, NULL_TREE);
1829 offset = offset % el_size;
1830 type = TREE_TYPE (type);
1831 break;
1833 default:
1834 if (offset != 0)
1835 return false;
1837 if (exp_type)
1838 return false;
1839 else
1840 return true;
1845 /* Print message to dump file why a variable was rejected. */
1847 static void
1848 reject (tree var, const char *msg)
1850 if (dump_file && (dump_flags & TDF_DETAILS))
1852 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1853 print_generic_expr (dump_file, var);
1854 fprintf (dump_file, "\n");
1858 /* Return true if VAR is a candidate for SRA. */
1860 static bool
1861 maybe_add_sra_candidate (tree var)
1863 tree type = TREE_TYPE (var);
1864 const char *msg;
1865 tree_node **slot;
1867 if (!AGGREGATE_TYPE_P (type))
1869 reject (var, "not aggregate");
1870 return false;
1872 /* Allow constant-pool entries that "need to live in memory". */
1873 if (needs_to_live_in_memory (var) && !constant_decl_p (var))
1875 reject (var, "needs to live in memory");
1876 return false;
1878 if (TREE_THIS_VOLATILE (var))
1880 reject (var, "is volatile");
1881 return false;
1883 if (!COMPLETE_TYPE_P (type))
1885 reject (var, "has incomplete type");
1886 return false;
1888 if (!tree_fits_shwi_p (TYPE_SIZE (type)))
1890 reject (var, "type size not fixed");
1891 return false;
1893 if (tree_to_shwi (TYPE_SIZE (type)) == 0)
1895 reject (var, "type size is zero");
1896 return false;
1898 if (type_internals_preclude_sra_p (type, &msg))
1900 reject (var, msg);
1901 return false;
1903 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1904 we also want to schedule it rather late. Thus we ignore it in
1905 the early pass. */
1906 (sra_mode == SRA_MODE_EARLY_INTRA
1907 && is_va_list_type (type)))
1909 reject (var, "is va_list");
1910 return false;
1913 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1914 slot = candidates->find_slot_with_hash (var, DECL_UID (var), INSERT);
1915 *slot = var;
1917 if (dump_file && (dump_flags & TDF_DETAILS))
1919 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1920 print_generic_expr (dump_file, var);
1921 fprintf (dump_file, "\n");
1924 return true;
1927 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1928 those with type which is suitable for scalarization. */
1930 static bool
1931 find_var_candidates (void)
1933 tree var, parm;
1934 unsigned int i;
1935 bool ret = false;
1937 for (parm = DECL_ARGUMENTS (current_function_decl);
1938 parm;
1939 parm = DECL_CHAIN (parm))
1940 ret |= maybe_add_sra_candidate (parm);
1942 FOR_EACH_LOCAL_DECL (cfun, i, var)
1944 if (!VAR_P (var))
1945 continue;
1947 ret |= maybe_add_sra_candidate (var);
1950 return ret;
1953 /* Return true if EXP is a reference chain of COMPONENT_REFs and AREAY_REFs
1954 ending either with a DECL or a MEM_REF with zero offset. */
1956 static bool
1957 path_comparable_for_same_access (tree expr)
1959 while (handled_component_p (expr))
1961 if (TREE_CODE (expr) == ARRAY_REF)
1963 /* SSA name indices can occur here too when the array is of sie one.
1964 But we cannot just re-use array_refs with SSA names elsewhere in
1965 the function, so disallow non-constant indices. TODO: Remove this
1966 limitation after teaching build_reconstructed_reference to replace
1967 the index with the index type lower bound. */
1968 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST)
1969 return false;
1971 expr = TREE_OPERAND (expr, 0);
1974 if (TREE_CODE (expr) == MEM_REF)
1976 if (!zerop (TREE_OPERAND (expr, 1)))
1977 return false;
1979 else
1980 gcc_assert (DECL_P (expr));
1982 return true;
1985 /* Assuming that EXP1 consists of only COMPONENT_REFs and ARRAY_REFs, return
1986 true if the chain of these handled components are exactly the same as EXP2
1987 and the expression under them is the same DECL or an equivalent MEM_REF.
1988 The reference picked by compare_access_positions must go to EXP1. */
1990 static bool
1991 same_access_path_p (tree exp1, tree exp2)
1993 if (TREE_CODE (exp1) != TREE_CODE (exp2))
1995 /* Special case single-field structures loaded sometimes as the field
1996 and sometimes as the structure. If the field is of a scalar type,
1997 compare_access_positions will put it into exp1.
1999 TODO: The gimple register type condition can be removed if teach
2000 compare_access_positions to put inner types first. */
2001 if (is_gimple_reg_type (TREE_TYPE (exp1))
2002 && TREE_CODE (exp1) == COMPONENT_REF
2003 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (exp1, 0)))
2004 == TYPE_MAIN_VARIANT (TREE_TYPE (exp2))))
2005 exp1 = TREE_OPERAND (exp1, 0);
2006 else
2007 return false;
2010 if (!operand_equal_p (exp1, exp2, OEP_ADDRESS_OF))
2011 return false;
2013 return true;
2016 /* Sort all accesses for the given variable, check for partial overlaps and
2017 return NULL if there are any. If there are none, pick a representative for
2018 each combination of offset and size and create a linked list out of them.
2019 Return the pointer to the first representative and make sure it is the first
2020 one in the vector of accesses. */
2022 static struct access *
2023 sort_and_splice_var_accesses (tree var)
2025 int i, j, access_count;
2026 struct access *res, **prev_acc_ptr = &res;
2027 vec<access_p> *access_vec;
2028 bool first = true;
2029 HOST_WIDE_INT low = -1, high = 0;
2031 access_vec = get_base_access_vector (var);
2032 if (!access_vec)
2033 return NULL;
2034 access_count = access_vec->length ();
2036 /* Sort by <OFFSET, SIZE>. */
2037 access_vec->qsort (compare_access_positions);
2039 i = 0;
2040 while (i < access_count)
2042 struct access *access = (*access_vec)[i];
2043 bool grp_write = access->write;
2044 bool grp_read = !access->write;
2045 bool grp_scalar_write = access->write
2046 && is_gimple_reg_type (access->type);
2047 bool grp_scalar_read = !access->write
2048 && is_gimple_reg_type (access->type);
2049 bool grp_assignment_read = access->grp_assignment_read;
2050 bool grp_assignment_write = access->grp_assignment_write;
2051 bool multiple_scalar_reads = false;
2052 bool grp_partial_lhs = access->grp_partial_lhs;
2053 bool first_scalar = is_gimple_reg_type (access->type);
2054 bool unscalarizable_region = access->grp_unscalarizable_region;
2055 bool grp_same_access_path = true;
2056 bool bf_non_full_precision
2057 = (INTEGRAL_TYPE_P (access->type)
2058 && TYPE_PRECISION (access->type) != access->size
2059 && TREE_CODE (access->expr) == COMPONENT_REF
2060 && DECL_BIT_FIELD (TREE_OPERAND (access->expr, 1)));
2062 if (first || access->offset >= high)
2064 first = false;
2065 low = access->offset;
2066 high = access->offset + access->size;
2068 else if (access->offset > low && access->offset + access->size > high)
2069 return NULL;
2070 else
2071 gcc_assert (access->offset >= low
2072 && access->offset + access->size <= high);
2074 grp_same_access_path = path_comparable_for_same_access (access->expr);
2076 j = i + 1;
2077 while (j < access_count)
2079 struct access *ac2 = (*access_vec)[j];
2080 if (ac2->offset != access->offset || ac2->size != access->size)
2081 break;
2082 if (ac2->write)
2084 grp_write = true;
2085 grp_scalar_write = (grp_scalar_write
2086 || is_gimple_reg_type (ac2->type));
2088 else
2090 grp_read = true;
2091 if (is_gimple_reg_type (ac2->type))
2093 if (grp_scalar_read)
2094 multiple_scalar_reads = true;
2095 else
2096 grp_scalar_read = true;
2099 grp_assignment_read |= ac2->grp_assignment_read;
2100 grp_assignment_write |= ac2->grp_assignment_write;
2101 grp_partial_lhs |= ac2->grp_partial_lhs;
2102 unscalarizable_region |= ac2->grp_unscalarizable_region;
2103 relink_to_new_repr (access, ac2);
2105 /* If there are both aggregate-type and scalar-type accesses with
2106 this combination of size and offset, the comparison function
2107 should have put the scalars first. */
2108 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
2109 /* It also prefers integral types to non-integral. However, when the
2110 precision of the selected type does not span the entire area and
2111 should also be used for a non-integer (i.e. float), we must not
2112 let that happen. Normally analyze_access_subtree expands the type
2113 to cover the entire area but for bit-fields it doesn't. */
2114 if (bf_non_full_precision && !INTEGRAL_TYPE_P (ac2->type))
2116 if (dump_file && (dump_flags & TDF_DETAILS))
2118 fprintf (dump_file, "Cannot scalarize the following access "
2119 "because insufficient precision integer type was "
2120 "selected.\n ");
2121 dump_access (dump_file, access, false);
2123 unscalarizable_region = true;
2126 if (grp_same_access_path
2127 && !same_access_path_p (access->expr, ac2->expr))
2128 grp_same_access_path = false;
2130 ac2->group_representative = access;
2131 j++;
2134 i = j;
2136 access->group_representative = access;
2137 access->grp_write = grp_write;
2138 access->grp_read = grp_read;
2139 access->grp_scalar_read = grp_scalar_read;
2140 access->grp_scalar_write = grp_scalar_write;
2141 access->grp_assignment_read = grp_assignment_read;
2142 access->grp_assignment_write = grp_assignment_write;
2143 access->grp_hint = multiple_scalar_reads && !constant_decl_p (var);
2144 access->grp_partial_lhs = grp_partial_lhs;
2145 access->grp_unscalarizable_region = unscalarizable_region;
2146 access->grp_same_access_path = grp_same_access_path;
2148 *prev_acc_ptr = access;
2149 prev_acc_ptr = &access->next_grp;
2152 gcc_assert (res == (*access_vec)[0]);
2153 return res;
2156 /* Create a variable for the given ACCESS which determines the type, name and a
2157 few other properties. Return the variable declaration and store it also to
2158 ACCESS->replacement. REG_TREE is used when creating a declaration to base a
2159 default-definition SSA name on in order to facilitate an uninitialized
2160 warning. It is used instead of the actual ACCESS type if that is not of a
2161 gimple register type. */
2163 static tree
2164 create_access_replacement (struct access *access, tree reg_type = NULL_TREE)
2166 tree repl;
2168 tree type = access->type;
2169 if (reg_type && !is_gimple_reg_type (type))
2170 type = reg_type;
2172 if (access->grp_to_be_debug_replaced)
2174 repl = create_tmp_var_raw (access->type);
2175 DECL_CONTEXT (repl) = current_function_decl;
2177 else
2178 /* Drop any special alignment on the type if it's not on the main
2179 variant. This avoids issues with weirdo ABIs like AAPCS. */
2180 repl = create_tmp_var (build_qualified_type (TYPE_MAIN_VARIANT (type),
2181 TYPE_QUALS (type)), "SR");
2182 if (access->grp_partial_lhs
2183 && is_gimple_reg_type (type))
2184 DECL_NOT_GIMPLE_REG_P (repl) = 1;
2186 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
2187 DECL_ARTIFICIAL (repl) = 1;
2188 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
2190 if (DECL_NAME (access->base)
2191 && !DECL_IGNORED_P (access->base)
2192 && !DECL_ARTIFICIAL (access->base))
2194 char *pretty_name = make_fancy_name (access->expr);
2195 tree debug_expr = unshare_expr_without_location (access->expr), d;
2196 bool fail = false;
2198 DECL_NAME (repl) = get_identifier (pretty_name);
2199 DECL_NAMELESS (repl) = 1;
2200 obstack_free (&name_obstack, pretty_name);
2202 /* Get rid of any SSA_NAMEs embedded in debug_expr,
2203 as DECL_DEBUG_EXPR isn't considered when looking for still
2204 used SSA_NAMEs and thus they could be freed. All debug info
2205 generation cares is whether something is constant or variable
2206 and that get_ref_base_and_extent works properly on the
2207 expression. It cannot handle accesses at a non-constant offset
2208 though, so just give up in those cases. */
2209 for (d = debug_expr;
2210 !fail && (handled_component_p (d) || TREE_CODE (d) == MEM_REF);
2211 d = TREE_OPERAND (d, 0))
2212 switch (TREE_CODE (d))
2214 case ARRAY_REF:
2215 case ARRAY_RANGE_REF:
2216 if (TREE_OPERAND (d, 1)
2217 && TREE_CODE (TREE_OPERAND (d, 1)) != INTEGER_CST)
2218 fail = true;
2219 if (TREE_OPERAND (d, 3)
2220 && TREE_CODE (TREE_OPERAND (d, 3)) != INTEGER_CST)
2221 fail = true;
2222 /* FALLTHRU */
2223 case COMPONENT_REF:
2224 if (TREE_OPERAND (d, 2)
2225 && TREE_CODE (TREE_OPERAND (d, 2)) != INTEGER_CST)
2226 fail = true;
2227 break;
2228 case MEM_REF:
2229 if (TREE_CODE (TREE_OPERAND (d, 0)) != ADDR_EXPR)
2230 fail = true;
2231 else
2232 d = TREE_OPERAND (d, 0);
2233 break;
2234 default:
2235 break;
2237 if (!fail)
2239 SET_DECL_DEBUG_EXPR (repl, debug_expr);
2240 DECL_HAS_DEBUG_EXPR_P (repl) = 1;
2242 if (access->grp_no_warning)
2243 TREE_NO_WARNING (repl) = 1;
2244 else
2245 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
2247 else
2248 TREE_NO_WARNING (repl) = 1;
2250 if (dump_file)
2252 if (access->grp_to_be_debug_replaced)
2254 fprintf (dump_file, "Created a debug-only replacement for ");
2255 print_generic_expr (dump_file, access->base);
2256 fprintf (dump_file, " offset: %u, size: %u\n",
2257 (unsigned) access->offset, (unsigned) access->size);
2259 else
2261 fprintf (dump_file, "Created a replacement for ");
2262 print_generic_expr (dump_file, access->base);
2263 fprintf (dump_file, " offset: %u, size: %u: ",
2264 (unsigned) access->offset, (unsigned) access->size);
2265 print_generic_expr (dump_file, repl, TDF_UID);
2266 fprintf (dump_file, "\n");
2269 sra_stats.replacements++;
2271 return repl;
2274 /* Return ACCESS scalar replacement, which must exist. */
2276 static inline tree
2277 get_access_replacement (struct access *access)
2279 gcc_checking_assert (access->replacement_decl);
2280 return access->replacement_decl;
2284 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2285 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2286 to it is not "within" the root. Return false iff some accesses partially
2287 overlap. */
2289 static bool
2290 build_access_subtree (struct access **access)
2292 struct access *root = *access, *last_child = NULL;
2293 HOST_WIDE_INT limit = root->offset + root->size;
2295 *access = (*access)->next_grp;
2296 while (*access && (*access)->offset + (*access)->size <= limit)
2298 if (!last_child)
2299 root->first_child = *access;
2300 else
2301 last_child->next_sibling = *access;
2302 last_child = *access;
2303 (*access)->parent = root;
2304 (*access)->grp_write |= root->grp_write;
2306 if (!build_access_subtree (access))
2307 return false;
2310 if (*access && (*access)->offset < limit)
2311 return false;
2313 return true;
2316 /* Build a tree of access representatives, ACCESS is the pointer to the first
2317 one, others are linked in a list by the next_grp field. Return false iff
2318 some accesses partially overlap. */
2320 static bool
2321 build_access_trees (struct access *access)
2323 while (access)
2325 struct access *root = access;
2327 if (!build_access_subtree (&access))
2328 return false;
2329 root->next_grp = access;
2331 return true;
2334 /* Traverse the access forest where ROOT is the first root and verify that
2335 various important invariants hold true. */
2337 DEBUG_FUNCTION void
2338 verify_sra_access_forest (struct access *root)
2340 struct access *access = root;
2341 tree first_base = root->base;
2342 gcc_assert (DECL_P (first_base));
2345 gcc_assert (access->base == first_base);
2346 if (access->parent)
2347 gcc_assert (access->offset >= access->parent->offset
2348 && access->size <= access->parent->size);
2349 if (access->next_sibling)
2350 gcc_assert (access->next_sibling->offset
2351 >= access->offset + access->size);
2353 poly_int64 poffset, psize, pmax_size;
2354 bool reverse;
2355 tree base = get_ref_base_and_extent (access->expr, &poffset, &psize,
2356 &pmax_size, &reverse);
2357 HOST_WIDE_INT offset, size, max_size;
2358 if (!poffset.is_constant (&offset)
2359 || !psize.is_constant (&size)
2360 || !pmax_size.is_constant (&max_size))
2361 gcc_unreachable ();
2362 gcc_assert (base == first_base);
2363 gcc_assert (offset == access->offset);
2364 gcc_assert (access->grp_unscalarizable_region
2365 || access->grp_total_scalarization
2366 || size == max_size);
2367 gcc_assert (access->grp_unscalarizable_region
2368 || !is_gimple_reg_type (access->type)
2369 || size == access->size);
2370 gcc_assert (reverse == access->reverse);
2372 if (access->first_child)
2374 gcc_assert (access->first_child->parent == access);
2375 access = access->first_child;
2377 else if (access->next_sibling)
2379 gcc_assert (access->next_sibling->parent == access->parent);
2380 access = access->next_sibling;
2382 else
2384 while (access->parent && !access->next_sibling)
2385 access = access->parent;
2386 if (access->next_sibling)
2387 access = access->next_sibling;
2388 else
2390 gcc_assert (access == root);
2391 root = root->next_grp;
2392 access = root;
2396 while (access);
2399 /* Verify access forests of all candidates with accesses by calling
2400 verify_access_forest on each on them. */
2402 DEBUG_FUNCTION void
2403 verify_all_sra_access_forests (void)
2405 bitmap_iterator bi;
2406 unsigned i;
2407 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2409 tree var = candidate (i);
2410 struct access *access = get_first_repr_for_decl (var);
2411 if (access)
2413 gcc_assert (access->base == var);
2414 verify_sra_access_forest (access);
2419 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2420 array. */
2422 static bool
2423 expr_with_var_bounded_array_refs_p (tree expr)
2425 while (handled_component_p (expr))
2427 if (TREE_CODE (expr) == ARRAY_REF
2428 && !tree_fits_shwi_p (array_ref_low_bound (expr)))
2429 return true;
2430 expr = TREE_OPERAND (expr, 0);
2432 return false;
2435 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2436 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. If TOTALLY
2437 is set, we are totally scalarizing the aggregate. Also set all sorts of
2438 access flags appropriately along the way, notably always set grp_read and
2439 grp_assign_read according to MARK_READ and grp_write when MARK_WRITE is
2440 true.
2442 Creating a replacement for a scalar access is considered beneficial if its
2443 grp_hint ot TOTALLY is set (this means either that there is more than one
2444 direct read access or that we are attempting total scalarization) or
2445 according to the following table:
2447 Access written to through a scalar type (once or more times)
2449 | Written to in an assignment statement
2451 | | Access read as scalar _once_
2452 | | |
2453 | | | Read in an assignment statement
2454 | | | |
2455 | | | | Scalarize Comment
2456 -----------------------------------------------------------------------------
2457 0 0 0 0 No access for the scalar
2458 0 0 0 1 No access for the scalar
2459 0 0 1 0 No Single read - won't help
2460 0 0 1 1 No The same case
2461 0 1 0 0 No access for the scalar
2462 0 1 0 1 No access for the scalar
2463 0 1 1 0 Yes s = *g; return s.i;
2464 0 1 1 1 Yes The same case as above
2465 1 0 0 0 No Won't help
2466 1 0 0 1 Yes s.i = 1; *g = s;
2467 1 0 1 0 Yes s.i = 5; g = s.i;
2468 1 0 1 1 Yes The same case as above
2469 1 1 0 0 No Won't help.
2470 1 1 0 1 Yes s.i = 1; *g = s;
2471 1 1 1 0 Yes s = *g; return s.i;
2472 1 1 1 1 Yes Any of the above yeses */
2474 static bool
2475 analyze_access_subtree (struct access *root, struct access *parent,
2476 bool allow_replacements, bool totally)
2478 struct access *child;
2479 HOST_WIDE_INT limit = root->offset + root->size;
2480 HOST_WIDE_INT covered_to = root->offset;
2481 bool scalar = is_gimple_reg_type (root->type);
2482 bool hole = false, sth_created = false;
2484 if (parent)
2486 if (parent->grp_read)
2487 root->grp_read = 1;
2488 if (parent->grp_assignment_read)
2489 root->grp_assignment_read = 1;
2490 if (parent->grp_write)
2491 root->grp_write = 1;
2492 if (parent->grp_assignment_write)
2493 root->grp_assignment_write = 1;
2494 if (!parent->grp_same_access_path)
2495 root->grp_same_access_path = 0;
2498 if (root->grp_unscalarizable_region)
2499 allow_replacements = false;
2501 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2502 allow_replacements = false;
2504 for (child = root->first_child; child; child = child->next_sibling)
2506 hole |= covered_to < child->offset;
2507 sth_created |= analyze_access_subtree (child, root,
2508 allow_replacements && !scalar,
2509 totally);
2511 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2512 if (child->grp_covered)
2513 covered_to += child->size;
2514 else
2515 hole = true;
2518 if (allow_replacements && scalar && !root->first_child
2519 && (totally || !root->grp_total_scalarization)
2520 && (totally
2521 || root->grp_hint
2522 || ((root->grp_scalar_read || root->grp_assignment_read)
2523 && (root->grp_scalar_write || root->grp_assignment_write))))
2525 /* Always create access replacements that cover the whole access.
2526 For integral types this means the precision has to match.
2527 Avoid assumptions based on the integral type kind, too. */
2528 if (INTEGRAL_TYPE_P (root->type)
2529 && (TREE_CODE (root->type) != INTEGER_TYPE
2530 || TYPE_PRECISION (root->type) != root->size)
2531 /* But leave bitfield accesses alone. */
2532 && (TREE_CODE (root->expr) != COMPONENT_REF
2533 || !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
2535 tree rt = root->type;
2536 gcc_assert ((root->offset % BITS_PER_UNIT) == 0
2537 && (root->size % BITS_PER_UNIT) == 0);
2538 root->type = build_nonstandard_integer_type (root->size,
2539 TYPE_UNSIGNED (rt));
2540 root->expr = build_ref_for_offset (UNKNOWN_LOCATION, root->base,
2541 root->offset, root->reverse,
2542 root->type, NULL, false);
2544 if (dump_file && (dump_flags & TDF_DETAILS))
2546 fprintf (dump_file, "Changing the type of a replacement for ");
2547 print_generic_expr (dump_file, root->base);
2548 fprintf (dump_file, " offset: %u, size: %u ",
2549 (unsigned) root->offset, (unsigned) root->size);
2550 fprintf (dump_file, " to an integer.\n");
2554 root->grp_to_be_replaced = 1;
2555 root->replacement_decl = create_access_replacement (root);
2556 sth_created = true;
2557 hole = false;
2559 else
2561 if (allow_replacements
2562 && scalar && !root->first_child
2563 && !root->grp_total_scalarization
2564 && (root->grp_scalar_write || root->grp_assignment_write)
2565 && !bitmap_bit_p (cannot_scalarize_away_bitmap,
2566 DECL_UID (root->base)))
2568 gcc_checking_assert (!root->grp_scalar_read
2569 && !root->grp_assignment_read);
2570 sth_created = true;
2571 if (MAY_HAVE_DEBUG_BIND_STMTS)
2573 root->grp_to_be_debug_replaced = 1;
2574 root->replacement_decl = create_access_replacement (root);
2578 if (covered_to < limit)
2579 hole = true;
2580 if (scalar || !allow_replacements)
2581 root->grp_total_scalarization = 0;
2584 if (!hole || totally)
2585 root->grp_covered = 1;
2586 else if (root->grp_write || comes_initialized_p (root->base))
2587 root->grp_unscalarized_data = 1; /* not covered and written to */
2588 return sth_created;
2591 /* Analyze all access trees linked by next_grp by the means of
2592 analyze_access_subtree. */
2593 static bool
2594 analyze_access_trees (struct access *access)
2596 bool ret = false;
2598 while (access)
2600 if (analyze_access_subtree (access, NULL, true,
2601 access->grp_total_scalarization))
2602 ret = true;
2603 access = access->next_grp;
2606 return ret;
2609 /* Return true iff a potential new child of ACC at offset OFFSET and with size
2610 SIZE would conflict with an already existing one. If exactly such a child
2611 already exists in ACC, store a pointer to it in EXACT_MATCH. */
2613 static bool
2614 child_would_conflict_in_acc (struct access *acc, HOST_WIDE_INT norm_offset,
2615 HOST_WIDE_INT size, struct access **exact_match)
2617 struct access *child;
2619 for (child = acc->first_child; child; child = child->next_sibling)
2621 if (child->offset == norm_offset && child->size == size)
2623 *exact_match = child;
2624 return true;
2627 if (child->offset < norm_offset + size
2628 && child->offset + child->size > norm_offset)
2629 return true;
2632 return false;
2635 /* Create a new child access of PARENT, with all properties just like MODEL
2636 except for its offset and with its grp_write false and grp_read true.
2637 Return the new access or NULL if it cannot be created. Note that this
2638 access is created long after all splicing and sorting, it's not located in
2639 any access vector and is automatically a representative of its group. Set
2640 the gpr_write flag of the new accesss if SET_GRP_WRITE is true. */
2642 static struct access *
2643 create_artificial_child_access (struct access *parent, struct access *model,
2644 HOST_WIDE_INT new_offset,
2645 bool set_grp_read, bool set_grp_write)
2647 struct access **child;
2648 tree expr = parent->base;
2650 gcc_assert (!model->grp_unscalarizable_region);
2652 struct access *access = access_pool.allocate ();
2653 memset (access, 0, sizeof (struct access));
2654 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2655 model->type))
2657 access->grp_no_warning = true;
2658 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2659 new_offset, model, NULL, false);
2662 access->base = parent->base;
2663 access->expr = expr;
2664 access->offset = new_offset;
2665 access->size = model->size;
2666 access->type = model->type;
2667 access->parent = parent;
2668 access->grp_read = set_grp_read;
2669 access->grp_write = set_grp_write;
2670 access->reverse = model->reverse;
2672 child = &parent->first_child;
2673 while (*child && (*child)->offset < new_offset)
2674 child = &(*child)->next_sibling;
2676 access->next_sibling = *child;
2677 *child = access;
2679 return access;
2683 /* Beginning with ACCESS, traverse its whole access subtree and mark all
2684 sub-trees as written to. If any of them has not been marked so previously
2685 and has assignment links leading from it, re-enqueue it. */
2687 static void
2688 subtree_mark_written_and_rhs_enqueue (struct access *access)
2690 if (access->grp_write)
2691 return;
2692 access->grp_write = true;
2693 add_access_to_rhs_work_queue (access);
2695 struct access *child;
2696 for (child = access->first_child; child; child = child->next_sibling)
2697 subtree_mark_written_and_rhs_enqueue (child);
2700 /* If there is still budget to create a propagation access for DECL, return
2701 true and decrement the budget. Otherwise return false. */
2703 static bool
2704 budget_for_propagation_access (tree decl)
2706 unsigned b, *p = propagation_budget->get (decl);
2707 if (p)
2708 b = *p;
2709 else
2710 b = param_sra_max_propagations;
2712 if (b == 0)
2713 return false;
2714 b--;
2716 if (b == 0 && dump_file && (dump_flags & TDF_DETAILS))
2718 fprintf (dump_file, "The propagation budget of ");
2719 print_generic_expr (dump_file, decl);
2720 fprintf (dump_file, " (UID: %u) has been exhausted.\n", DECL_UID (decl));
2722 propagation_budget->put (decl, b);
2723 return true;
2726 /* Return true if ACC or any of its subaccesses has grp_child set. */
2728 static bool
2729 access_or_its_child_written (struct access *acc)
2731 if (acc->grp_write)
2732 return true;
2733 for (struct access *sub = acc->first_child; sub; sub = sub->next_sibling)
2734 if (access_or_its_child_written (sub))
2735 return true;
2736 return false;
2739 /* Propagate subaccesses and grp_write flags of RACC across an assignment link
2740 to LACC. Enqueue sub-accesses as necessary so that the write flag is
2741 propagated transitively. Return true if anything changed. Additionally, if
2742 RACC is a scalar access but LACC is not, change the type of the latter, if
2743 possible. */
2745 static bool
2746 propagate_subaccesses_from_rhs (struct access *lacc, struct access *racc)
2748 struct access *rchild;
2749 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2750 bool ret = false;
2752 /* IF the LHS is still not marked as being written to, we only need to do so
2753 if the RHS at this level actually was. */
2754 if (!lacc->grp_write)
2756 gcc_checking_assert (!comes_initialized_p (racc->base));
2757 if (racc->grp_write)
2759 subtree_mark_written_and_rhs_enqueue (lacc);
2760 ret = true;
2764 if (is_gimple_reg_type (lacc->type)
2765 || lacc->grp_unscalarizable_region
2766 || racc->grp_unscalarizable_region)
2768 if (!lacc->grp_write)
2770 ret = true;
2771 subtree_mark_written_and_rhs_enqueue (lacc);
2773 return ret;
2776 if (is_gimple_reg_type (racc->type))
2778 if (!lacc->grp_write)
2780 ret = true;
2781 subtree_mark_written_and_rhs_enqueue (lacc);
2783 if (!lacc->first_child && !racc->first_child)
2785 /* We are about to change the access type from aggregate to scalar,
2786 so we need to put the reverse flag onto the access, if any. */
2787 const bool reverse = TYPE_REVERSE_STORAGE_ORDER (lacc->type);
2788 tree t = lacc->base;
2790 lacc->type = racc->type;
2791 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2792 lacc->offset, racc->type))
2794 lacc->expr = t;
2795 lacc->grp_same_access_path = true;
2797 else
2799 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2800 lacc->base, lacc->offset,
2801 racc, NULL, false);
2802 if (TREE_CODE (lacc->expr) == MEM_REF)
2803 REF_REVERSE_STORAGE_ORDER (lacc->expr) = reverse;
2804 lacc->grp_no_warning = true;
2805 lacc->grp_same_access_path = false;
2807 lacc->reverse = reverse;
2809 return ret;
2812 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2814 struct access *new_acc = NULL;
2815 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2817 if (child_would_conflict_in_acc (lacc, norm_offset, rchild->size,
2818 &new_acc))
2820 if (new_acc)
2822 if (!new_acc->grp_write && rchild->grp_write)
2824 gcc_assert (!lacc->grp_write);
2825 subtree_mark_written_and_rhs_enqueue (new_acc);
2826 ret = true;
2829 rchild->grp_hint = 1;
2830 new_acc->grp_hint |= new_acc->grp_read;
2831 if (rchild->first_child
2832 && propagate_subaccesses_from_rhs (new_acc, rchild))
2834 ret = 1;
2835 add_access_to_rhs_work_queue (new_acc);
2838 else
2840 if (!lacc->grp_write)
2842 ret = true;
2843 subtree_mark_written_and_rhs_enqueue (lacc);
2846 continue;
2849 if (rchild->grp_unscalarizable_region
2850 || !budget_for_propagation_access (lacc->base))
2852 if (!lacc->grp_write && access_or_its_child_written (rchild))
2854 ret = true;
2855 subtree_mark_written_and_rhs_enqueue (lacc);
2857 continue;
2860 rchild->grp_hint = 1;
2861 /* Because get_ref_base_and_extent always includes padding in size for
2862 accesses to DECLs but not necessarily for COMPONENT_REFs of the same
2863 type, we might be actually attempting to here to create a child of the
2864 same type as the parent. */
2865 if (!types_compatible_p (lacc->type, rchild->type))
2866 new_acc = create_artificial_child_access (lacc, rchild, norm_offset,
2867 false,
2868 (lacc->grp_write
2869 || rchild->grp_write));
2870 else
2871 new_acc = lacc;
2872 gcc_checking_assert (new_acc);
2873 if (racc->first_child)
2874 propagate_subaccesses_from_rhs (new_acc, rchild);
2876 add_access_to_rhs_work_queue (lacc);
2877 ret = true;
2880 return ret;
2883 /* Propagate subaccesses of LACC across an assignment link to RACC if they
2884 should inhibit total scalarization of the corresponding area. No flags are
2885 being propagated in the process. Return true if anything changed. */
2887 static bool
2888 propagate_subaccesses_from_lhs (struct access *lacc, struct access *racc)
2890 if (is_gimple_reg_type (racc->type)
2891 || lacc->grp_unscalarizable_region
2892 || racc->grp_unscalarizable_region)
2893 return false;
2895 /* TODO: Do we want set some new racc flag to stop potential total
2896 scalarization if lacc is a scalar access (and none fo the two have
2897 children)? */
2899 bool ret = false;
2900 HOST_WIDE_INT norm_delta = racc->offset - lacc->offset;
2901 for (struct access *lchild = lacc->first_child;
2902 lchild;
2903 lchild = lchild->next_sibling)
2905 struct access *matching_acc = NULL;
2906 HOST_WIDE_INT norm_offset = lchild->offset + norm_delta;
2908 if (lchild->grp_unscalarizable_region
2909 || child_would_conflict_in_acc (racc, norm_offset, lchild->size,
2910 &matching_acc)
2911 || !budget_for_propagation_access (racc->base))
2913 if (matching_acc
2914 && propagate_subaccesses_from_lhs (lchild, matching_acc))
2915 add_access_to_lhs_work_queue (matching_acc);
2916 continue;
2919 /* Because get_ref_base_and_extent always includes padding in size for
2920 accesses to DECLs but not necessarily for COMPONENT_REFs of the same
2921 type, we might be actually attempting to here to create a child of the
2922 same type as the parent. */
2923 if (!types_compatible_p (racc->type, lchild->type))
2925 struct access *new_acc
2926 = create_artificial_child_access (racc, lchild, norm_offset,
2927 true, false);
2928 propagate_subaccesses_from_lhs (lchild, new_acc);
2930 else
2931 propagate_subaccesses_from_lhs (lchild, racc);
2932 ret = true;
2934 return ret;
2937 /* Propagate all subaccesses across assignment links. */
2939 static void
2940 propagate_all_subaccesses (void)
2942 propagation_budget = new hash_map<tree, unsigned>;
2943 while (rhs_work_queue_head)
2945 struct access *racc = pop_access_from_rhs_work_queue ();
2946 struct assign_link *link;
2948 if (racc->group_representative)
2949 racc= racc->group_representative;
2950 gcc_assert (racc->first_rhs_link);
2952 for (link = racc->first_rhs_link; link; link = link->next_rhs)
2954 struct access *lacc = link->lacc;
2956 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2957 continue;
2958 lacc = lacc->group_representative;
2960 bool reque_parents = false;
2961 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (racc->base)))
2963 if (!lacc->grp_write)
2965 subtree_mark_written_and_rhs_enqueue (lacc);
2966 reque_parents = true;
2969 else if (propagate_subaccesses_from_rhs (lacc, racc))
2970 reque_parents = true;
2972 if (reque_parents)
2975 add_access_to_rhs_work_queue (lacc);
2976 lacc = lacc->parent;
2978 while (lacc);
2982 while (lhs_work_queue_head)
2984 struct access *lacc = pop_access_from_lhs_work_queue ();
2985 struct assign_link *link;
2987 if (lacc->group_representative)
2988 lacc = lacc->group_representative;
2989 gcc_assert (lacc->first_lhs_link);
2991 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2992 continue;
2994 for (link = lacc->first_lhs_link; link; link = link->next_lhs)
2996 struct access *racc = link->racc;
2998 if (racc->group_representative)
2999 racc = racc->group_representative;
3000 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (racc->base)))
3001 continue;
3002 if (propagate_subaccesses_from_lhs (lacc, racc))
3003 add_access_to_lhs_work_queue (racc);
3006 delete propagation_budget;
3009 /* Return true if the forest beginning with ROOT does not contain
3010 unscalarizable regions or non-byte aligned accesses. */
3012 static bool
3013 can_totally_scalarize_forest_p (struct access *root)
3015 struct access *access = root;
3018 if (access->grp_unscalarizable_region
3019 || (access->offset % BITS_PER_UNIT) != 0
3020 || (access->size % BITS_PER_UNIT) != 0
3021 || (is_gimple_reg_type (access->type)
3022 && access->first_child))
3023 return false;
3025 if (access->first_child)
3026 access = access->first_child;
3027 else if (access->next_sibling)
3028 access = access->next_sibling;
3029 else
3031 while (access->parent && !access->next_sibling)
3032 access = access->parent;
3033 if (access->next_sibling)
3034 access = access->next_sibling;
3035 else
3037 gcc_assert (access == root);
3038 root = root->next_grp;
3039 access = root;
3043 while (access);
3044 return true;
3047 /* Create and return an ACCESS in PARENT spanning from POS with SIZE, TYPE and
3048 reference EXPR for total scalarization purposes and mark it as such. Within
3049 the children of PARENT, link it in between PTR and NEXT_SIBLING. */
3051 static struct access *
3052 create_total_scalarization_access (struct access *parent, HOST_WIDE_INT pos,
3053 HOST_WIDE_INT size, tree type, tree expr,
3054 struct access **ptr,
3055 struct access *next_sibling)
3057 struct access *access = access_pool.allocate ();
3058 memset (access, 0, sizeof (struct access));
3059 access->base = parent->base;
3060 access->offset = pos;
3061 access->size = size;
3062 access->expr = expr;
3063 access->type = type;
3064 access->parent = parent;
3065 access->grp_write = parent->grp_write;
3066 access->grp_total_scalarization = 1;
3067 access->grp_hint = 1;
3068 access->grp_same_access_path = path_comparable_for_same_access (expr);
3069 access->reverse = reverse_storage_order_for_component_p (expr);
3071 access->next_sibling = next_sibling;
3072 *ptr = access;
3073 return access;
3076 /* Create and return an ACCESS in PARENT spanning from POS with SIZE, TYPE and
3077 reference EXPR for total scalarization purposes and mark it as such, link it
3078 at *PTR and reshape the tree so that those elements at *PTR and their
3079 siblings which fall within the part described by POS and SIZE are moved to
3080 be children of the new access. If a partial overlap is detected, return
3081 NULL. */
3083 static struct access *
3084 create_total_access_and_reshape (struct access *parent, HOST_WIDE_INT pos,
3085 HOST_WIDE_INT size, tree type, tree expr,
3086 struct access **ptr)
3088 struct access **p = ptr;
3090 while (*p && (*p)->offset < pos + size)
3092 if ((*p)->offset + (*p)->size > pos + size)
3093 return NULL;
3094 p = &(*p)->next_sibling;
3097 struct access *next_child = *ptr;
3098 struct access *new_acc
3099 = create_total_scalarization_access (parent, pos, size, type, expr,
3100 ptr, *p);
3101 if (p != ptr)
3103 new_acc->first_child = next_child;
3104 *p = NULL;
3105 for (struct access *a = next_child; a; a = a->next_sibling)
3106 a->parent = new_acc;
3108 return new_acc;
3111 static bool totally_scalarize_subtree (struct access *root);
3113 /* Return true if INNER is either the same type as OUTER or if it is the type
3114 of a record field in OUTER at offset zero, possibly in nested
3115 sub-records. */
3117 static bool
3118 access_and_field_type_match_p (tree outer, tree inner)
3120 if (TYPE_MAIN_VARIANT (outer) == TYPE_MAIN_VARIANT (inner))
3121 return true;
3122 if (TREE_CODE (outer) != RECORD_TYPE)
3123 return false;
3124 tree fld = TYPE_FIELDS (outer);
3125 while (fld)
3127 if (TREE_CODE (fld) == FIELD_DECL)
3129 if (!zerop (DECL_FIELD_OFFSET (fld)))
3130 return false;
3131 if (TYPE_MAIN_VARIANT (TREE_TYPE (fld)) == inner)
3132 return true;
3133 if (TREE_CODE (TREE_TYPE (fld)) == RECORD_TYPE)
3134 fld = TYPE_FIELDS (TREE_TYPE (fld));
3135 else
3136 return false;
3138 else
3139 fld = DECL_CHAIN (fld);
3141 return false;
3144 /* Return type of total_should_skip_creating_access indicating whether a total
3145 scalarization access for a field/element should be created, whether it
3146 already exists or whether the entire total scalarization has to fail. */
3148 enum total_sra_field_state {TOTAL_FLD_CREATE, TOTAL_FLD_DONE, TOTAL_FLD_FAILED};
3150 /* Do all the necessary steps in total scalarization when the given aggregate
3151 type has a TYPE at POS with the given SIZE should be put into PARENT and
3152 when we have processed all its siblings with smaller offsets up until and
3153 including LAST_SEEN_SIBLING (which can be NULL).
3155 If some further siblings are to be skipped, set *LAST_SEEN_SIBLING as
3156 appropriate. Return TOTAL_FLD_CREATE id the caller should carry on with
3157 creating a new access, TOTAL_FLD_DONE if access or accesses capable of
3158 representing the described part of the aggregate for the purposes of total
3159 scalarization already exist or TOTAL_FLD_FAILED if there is a problem which
3160 prevents total scalarization from happening at all. */
3162 static enum total_sra_field_state
3163 total_should_skip_creating_access (struct access *parent,
3164 struct access **last_seen_sibling,
3165 tree type, HOST_WIDE_INT pos,
3166 HOST_WIDE_INT size)
3168 struct access *next_child;
3169 if (!*last_seen_sibling)
3170 next_child = parent->first_child;
3171 else
3172 next_child = (*last_seen_sibling)->next_sibling;
3174 /* First, traverse the chain of siblings until it points to an access with
3175 offset at least equal to POS. Check all skipped accesses whether they
3176 span the POS boundary and if so, return with a failure. */
3177 while (next_child && next_child->offset < pos)
3179 if (next_child->offset + next_child->size > pos)
3180 return TOTAL_FLD_FAILED;
3181 *last_seen_sibling = next_child;
3182 next_child = next_child->next_sibling;
3185 /* Now check whether next_child has exactly the right POS and SIZE and if so,
3186 whether it can represent what we need and can be totally scalarized
3187 itself. */
3188 if (next_child && next_child->offset == pos
3189 && next_child->size == size)
3191 if (!is_gimple_reg_type (next_child->type)
3192 && (!access_and_field_type_match_p (type, next_child->type)
3193 || !totally_scalarize_subtree (next_child)))
3194 return TOTAL_FLD_FAILED;
3196 *last_seen_sibling = next_child;
3197 return TOTAL_FLD_DONE;
3200 /* If the child we're looking at would partially overlap, we just cannot
3201 totally scalarize. */
3202 if (next_child
3203 && next_child->offset < pos + size
3204 && next_child->offset + next_child->size > pos + size)
3205 return TOTAL_FLD_FAILED;
3207 if (is_gimple_reg_type (type))
3209 /* We don't scalarize accesses that are children of other scalar type
3210 accesses, so if we go on and create an access for a register type,
3211 there should not be any pre-existing children. There are rare cases
3212 where the requested type is a vector but we already have register
3213 accesses for all its elements which is equally good. Detect that
3214 situation or whether we need to bail out. */
3216 HOST_WIDE_INT covered = pos;
3217 bool skipping = false;
3218 while (next_child
3219 && next_child->offset + next_child->size <= pos + size)
3221 if (next_child->offset != covered
3222 || !is_gimple_reg_type (next_child->type))
3223 return TOTAL_FLD_FAILED;
3225 covered += next_child->size;
3226 *last_seen_sibling = next_child;
3227 next_child = next_child->next_sibling;
3228 skipping = true;
3231 if (skipping)
3233 if (covered != pos + size)
3234 return TOTAL_FLD_FAILED;
3235 else
3236 return TOTAL_FLD_DONE;
3240 return TOTAL_FLD_CREATE;
3243 /* Go over sub-tree rooted in ROOT and attempt to create scalar accesses
3244 spanning all uncovered areas covered by ROOT, return false if the attempt
3245 failed. All created accesses will have grp_unscalarizable_region set (and
3246 should be ignored if the function returns false). */
3248 static bool
3249 totally_scalarize_subtree (struct access *root)
3251 gcc_checking_assert (!root->grp_unscalarizable_region);
3252 gcc_checking_assert (!is_gimple_reg_type (root->type));
3254 struct access *last_seen_sibling = NULL;
3256 switch (TREE_CODE (root->type))
3258 case RECORD_TYPE:
3259 for (tree fld = TYPE_FIELDS (root->type); fld; fld = DECL_CHAIN (fld))
3260 if (TREE_CODE (fld) == FIELD_DECL)
3262 tree ft = TREE_TYPE (fld);
3263 HOST_WIDE_INT fsize = tree_to_uhwi (DECL_SIZE (fld));
3264 if (!fsize)
3265 continue;
3267 HOST_WIDE_INT pos = root->offset + int_bit_position (fld);
3268 enum total_sra_field_state
3269 state = total_should_skip_creating_access (root,
3270 &last_seen_sibling,
3271 ft, pos, fsize);
3272 switch (state)
3274 case TOTAL_FLD_FAILED:
3275 return false;
3276 case TOTAL_FLD_DONE:
3277 continue;
3278 case TOTAL_FLD_CREATE:
3279 break;
3280 default:
3281 gcc_unreachable ();
3284 struct access **p = (last_seen_sibling
3285 ? &last_seen_sibling->next_sibling
3286 : &root->first_child);
3287 tree nref = build3 (COMPONENT_REF, ft, root->expr, fld, NULL_TREE);
3288 struct access *new_child
3289 = create_total_access_and_reshape (root, pos, fsize, ft, nref, p);
3290 if (!new_child)
3291 return false;
3293 if (!is_gimple_reg_type (ft)
3294 && !totally_scalarize_subtree (new_child))
3295 return false;
3296 last_seen_sibling = new_child;
3298 break;
3299 case ARRAY_TYPE:
3301 tree elemtype = TREE_TYPE (root->type);
3302 tree elem_size = TYPE_SIZE (elemtype);
3303 gcc_assert (elem_size && tree_fits_shwi_p (elem_size));
3304 HOST_WIDE_INT el_size = tree_to_shwi (elem_size);
3305 gcc_assert (el_size > 0);
3307 tree minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (root->type));
3308 gcc_assert (TREE_CODE (minidx) == INTEGER_CST);
3309 tree maxidx = TYPE_MAX_VALUE (TYPE_DOMAIN (root->type));
3310 /* Skip (some) zero-length arrays; others have MAXIDX == MINIDX - 1. */
3311 if (!maxidx)
3312 goto out;
3313 gcc_assert (TREE_CODE (maxidx) == INTEGER_CST);
3314 tree domain = TYPE_DOMAIN (root->type);
3315 /* MINIDX and MAXIDX are inclusive, and must be interpreted in
3316 DOMAIN (e.g. signed int, whereas min/max may be size_int). */
3317 offset_int idx = wi::to_offset (minidx);
3318 offset_int max = wi::to_offset (maxidx);
3319 if (!TYPE_UNSIGNED (domain))
3321 idx = wi::sext (idx, TYPE_PRECISION (domain));
3322 max = wi::sext (max, TYPE_PRECISION (domain));
3324 for (HOST_WIDE_INT pos = root->offset;
3325 idx <= max;
3326 pos += el_size, ++idx)
3328 enum total_sra_field_state
3329 state = total_should_skip_creating_access (root,
3330 &last_seen_sibling,
3331 elemtype, pos,
3332 el_size);
3333 switch (state)
3335 case TOTAL_FLD_FAILED:
3336 return false;
3337 case TOTAL_FLD_DONE:
3338 continue;
3339 case TOTAL_FLD_CREATE:
3340 break;
3341 default:
3342 gcc_unreachable ();
3345 struct access **p = (last_seen_sibling
3346 ? &last_seen_sibling->next_sibling
3347 : &root->first_child);
3348 tree nref = build4 (ARRAY_REF, elemtype, root->expr,
3349 wide_int_to_tree (domain, idx),
3350 NULL_TREE, NULL_TREE);
3351 struct access *new_child
3352 = create_total_access_and_reshape (root, pos, el_size, elemtype,
3353 nref, p);
3354 if (!new_child)
3355 return false;
3357 if (!is_gimple_reg_type (elemtype)
3358 && !totally_scalarize_subtree (new_child))
3359 return false;
3360 last_seen_sibling = new_child;
3363 break;
3364 default:
3365 gcc_unreachable ();
3368 out:
3369 return true;
3372 /* Go through all accesses collected throughout the (intraprocedural) analysis
3373 stage, exclude overlapping ones, identify representatives and build trees
3374 out of them, making decisions about scalarization on the way. Return true
3375 iff there are any to-be-scalarized variables after this stage. */
3377 static bool
3378 analyze_all_variable_accesses (void)
3380 int res = 0;
3381 bitmap tmp = BITMAP_ALLOC (NULL);
3382 bitmap_iterator bi;
3383 unsigned i;
3385 bitmap_copy (tmp, candidate_bitmap);
3386 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
3388 tree var = candidate (i);
3389 struct access *access;
3391 access = sort_and_splice_var_accesses (var);
3392 if (!access || !build_access_trees (access))
3393 disqualify_candidate (var,
3394 "No or inhibitingly overlapping accesses.");
3397 propagate_all_subaccesses ();
3399 bool optimize_speed_p = !optimize_function_for_size_p (cfun);
3400 /* If the user didn't set PARAM_SRA_MAX_SCALARIZATION_SIZE_<...>,
3401 fall back to a target default. */
3402 unsigned HOST_WIDE_INT max_scalarization_size
3403 = get_move_ratio (optimize_speed_p) * UNITS_PER_WORD;
3405 if (optimize_speed_p)
3407 if (global_options_set.x_param_sra_max_scalarization_size_speed)
3408 max_scalarization_size = param_sra_max_scalarization_size_speed;
3410 else
3412 if (global_options_set.x_param_sra_max_scalarization_size_size)
3413 max_scalarization_size = param_sra_max_scalarization_size_size;
3415 max_scalarization_size *= BITS_PER_UNIT;
3417 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
3418 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
3419 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
3421 tree var = candidate (i);
3422 if (!VAR_P (var))
3423 continue;
3425 if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (var))) > max_scalarization_size)
3427 if (dump_file && (dump_flags & TDF_DETAILS))
3429 fprintf (dump_file, "Too big to totally scalarize: ");
3430 print_generic_expr (dump_file, var);
3431 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
3433 continue;
3436 bool all_types_ok = true;
3437 for (struct access *access = get_first_repr_for_decl (var);
3438 access;
3439 access = access->next_grp)
3440 if (!can_totally_scalarize_forest_p (access)
3441 || !scalarizable_type_p (access->type, constant_decl_p (var)))
3443 all_types_ok = false;
3444 break;
3446 if (!all_types_ok)
3447 continue;
3449 if (dump_file && (dump_flags & TDF_DETAILS))
3451 fprintf (dump_file, "Will attempt to totally scalarize ");
3452 print_generic_expr (dump_file, var);
3453 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
3455 bool scalarized = true;
3456 for (struct access *access = get_first_repr_for_decl (var);
3457 access;
3458 access = access->next_grp)
3459 if (!is_gimple_reg_type (access->type)
3460 && !totally_scalarize_subtree (access))
3462 scalarized = false;
3463 break;
3466 if (scalarized)
3467 for (struct access *access = get_first_repr_for_decl (var);
3468 access;
3469 access = access->next_grp)
3470 access->grp_total_scalarization = true;
3473 if (flag_checking)
3474 verify_all_sra_access_forests ();
3476 bitmap_copy (tmp, candidate_bitmap);
3477 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
3479 tree var = candidate (i);
3480 struct access *access = get_first_repr_for_decl (var);
3482 if (analyze_access_trees (access))
3484 res++;
3485 if (dump_file && (dump_flags & TDF_DETAILS))
3487 fprintf (dump_file, "\nAccess trees for ");
3488 print_generic_expr (dump_file, var);
3489 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
3490 dump_access_tree (dump_file, access);
3491 fprintf (dump_file, "\n");
3494 else
3495 disqualify_candidate (var, "No scalar replacements to be created.");
3498 BITMAP_FREE (tmp);
3500 if (res)
3502 statistics_counter_event (cfun, "Scalarized aggregates", res);
3503 return true;
3505 else
3506 return false;
3509 /* Generate statements copying scalar replacements of accesses within a subtree
3510 into or out of AGG. ACCESS, all its children, siblings and their children
3511 are to be processed. AGG is an aggregate type expression (can be a
3512 declaration but does not have to be, it can for example also be a mem_ref or
3513 a series of handled components). TOP_OFFSET is the offset of the processed
3514 subtree which has to be subtracted from offsets of individual accesses to
3515 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
3516 replacements in the interval <start_offset, start_offset + chunk_size>,
3517 otherwise copy all. GSI is a statement iterator used to place the new
3518 statements. WRITE should be true when the statements should write from AGG
3519 to the replacement and false if vice versa. if INSERT_AFTER is true, new
3520 statements will be added after the current statement in GSI, they will be
3521 added before the statement otherwise. */
3523 static void
3524 generate_subtree_copies (struct access *access, tree agg,
3525 HOST_WIDE_INT top_offset,
3526 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
3527 gimple_stmt_iterator *gsi, bool write,
3528 bool insert_after, location_t loc)
3530 /* Never write anything into constant pool decls. See PR70602. */
3531 if (!write && constant_decl_p (agg))
3532 return;
3535 if (chunk_size && access->offset >= start_offset + chunk_size)
3536 return;
3538 if (access->grp_to_be_replaced
3539 && (chunk_size == 0
3540 || access->offset + access->size > start_offset))
3542 tree expr, repl = get_access_replacement (access);
3543 gassign *stmt;
3545 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
3546 access, gsi, insert_after);
3548 if (write)
3550 if (access->grp_partial_lhs)
3551 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
3552 !insert_after,
3553 insert_after ? GSI_NEW_STMT
3554 : GSI_SAME_STMT);
3555 stmt = gimple_build_assign (repl, expr);
3557 else
3559 TREE_NO_WARNING (repl) = 1;
3560 if (access->grp_partial_lhs)
3561 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
3562 !insert_after,
3563 insert_after ? GSI_NEW_STMT
3564 : GSI_SAME_STMT);
3565 stmt = gimple_build_assign (expr, repl);
3567 gimple_set_location (stmt, loc);
3569 if (insert_after)
3570 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
3571 else
3572 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
3573 update_stmt (stmt);
3574 sra_stats.subtree_copies++;
3576 else if (write
3577 && access->grp_to_be_debug_replaced
3578 && (chunk_size == 0
3579 || access->offset + access->size > start_offset))
3581 gdebug *ds;
3582 tree drhs = build_debug_ref_for_model (loc, agg,
3583 access->offset - top_offset,
3584 access);
3585 ds = gimple_build_debug_bind (get_access_replacement (access),
3586 drhs, gsi_stmt (*gsi));
3587 if (insert_after)
3588 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
3589 else
3590 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
3593 if (access->first_child)
3594 generate_subtree_copies (access->first_child, agg, top_offset,
3595 start_offset, chunk_size, gsi,
3596 write, insert_after, loc);
3598 access = access->next_sibling;
3600 while (access);
3603 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
3604 root of the subtree to be processed. GSI is the statement iterator used
3605 for inserting statements which are added after the current statement if
3606 INSERT_AFTER is true or before it otherwise. */
3608 static void
3609 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
3610 bool insert_after, location_t loc)
3613 struct access *child;
3615 if (access->grp_to_be_replaced)
3617 gassign *stmt;
3619 stmt = gimple_build_assign (get_access_replacement (access),
3620 build_zero_cst (access->type));
3621 if (insert_after)
3622 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
3623 else
3624 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
3625 update_stmt (stmt);
3626 gimple_set_location (stmt, loc);
3628 else if (access->grp_to_be_debug_replaced)
3630 gdebug *ds
3631 = gimple_build_debug_bind (get_access_replacement (access),
3632 build_zero_cst (access->type),
3633 gsi_stmt (*gsi));
3634 if (insert_after)
3635 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
3636 else
3637 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
3640 for (child = access->first_child; child; child = child->next_sibling)
3641 init_subtree_with_zero (child, gsi, insert_after, loc);
3644 /* Clobber all scalar replacements in an access subtree. ACCESS is the
3645 root of the subtree to be processed. GSI is the statement iterator used
3646 for inserting statements which are added after the current statement if
3647 INSERT_AFTER is true or before it otherwise. */
3649 static void
3650 clobber_subtree (struct access *access, gimple_stmt_iterator *gsi,
3651 bool insert_after, location_t loc)
3654 struct access *child;
3656 if (access->grp_to_be_replaced)
3658 tree rep = get_access_replacement (access);
3659 tree clobber = build_clobber (access->type);
3660 gimple *stmt = gimple_build_assign (rep, clobber);
3662 if (insert_after)
3663 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
3664 else
3665 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
3666 update_stmt (stmt);
3667 gimple_set_location (stmt, loc);
3670 for (child = access->first_child; child; child = child->next_sibling)
3671 clobber_subtree (child, gsi, insert_after, loc);
3674 /* Search for an access representative for the given expression EXPR and
3675 return it or NULL if it cannot be found. */
3677 static struct access *
3678 get_access_for_expr (tree expr)
3680 poly_int64 poffset, psize, pmax_size;
3681 HOST_WIDE_INT offset, max_size;
3682 tree base;
3683 bool reverse;
3685 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
3686 a different size than the size of its argument and we need the latter
3687 one. */
3688 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3689 expr = TREE_OPERAND (expr, 0);
3691 base = get_ref_base_and_extent (expr, &poffset, &psize, &pmax_size,
3692 &reverse);
3693 if (!known_size_p (pmax_size)
3694 || !pmax_size.is_constant (&max_size)
3695 || !poffset.is_constant (&offset)
3696 || !DECL_P (base))
3697 return NULL;
3699 if (tree basesize = DECL_SIZE (base))
3701 poly_int64 sz;
3702 if (offset < 0
3703 || !poly_int_tree_p (basesize, &sz)
3704 || known_le (sz, offset))
3705 return NULL;
3708 if (max_size == 0
3709 || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
3710 return NULL;
3712 return get_var_base_offset_size_access (base, offset, max_size);
3715 /* Replace the expression EXPR with a scalar replacement if there is one and
3716 generate other statements to do type conversion or subtree copying if
3717 necessary. GSI is used to place newly created statements, WRITE is true if
3718 the expression is being written to (it is on a LHS of a statement or output
3719 in an assembly statement). */
3721 static bool
3722 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
3724 location_t loc;
3725 struct access *access;
3726 tree type, bfr, orig_expr;
3727 bool partial_cplx_access = false;
3729 if (TREE_CODE (*expr) == BIT_FIELD_REF)
3731 bfr = *expr;
3732 expr = &TREE_OPERAND (*expr, 0);
3734 else
3735 bfr = NULL_TREE;
3737 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
3739 expr = &TREE_OPERAND (*expr, 0);
3740 partial_cplx_access = true;
3742 access = get_access_for_expr (*expr);
3743 if (!access)
3744 return false;
3745 type = TREE_TYPE (*expr);
3746 orig_expr = *expr;
3748 loc = gimple_location (gsi_stmt (*gsi));
3749 gimple_stmt_iterator alt_gsi = gsi_none ();
3750 if (write && stmt_ends_bb_p (gsi_stmt (*gsi)))
3752 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
3753 gsi = &alt_gsi;
3756 if (access->grp_to_be_replaced)
3758 tree repl = get_access_replacement (access);
3759 /* If we replace a non-register typed access simply use the original
3760 access expression to extract the scalar component afterwards.
3761 This happens if scalarizing a function return value or parameter
3762 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
3763 gcc.c-torture/compile/20011217-1.c.
3765 We also want to use this when accessing a complex or vector which can
3766 be accessed as a different type too, potentially creating a need for
3767 type conversion (see PR42196) and when scalarized unions are involved
3768 in assembler statements (see PR42398). */
3769 if (!bfr && !useless_type_conversion_p (type, access->type))
3771 tree ref;
3773 ref = build_ref_for_model (loc, orig_expr, 0, access, gsi, false);
3775 if (partial_cplx_access)
3777 /* VIEW_CONVERT_EXPRs in partial complex access are always fine in
3778 the case of a write because in such case the replacement cannot
3779 be a gimple register. In the case of a load, we have to
3780 differentiate in between a register an non-register
3781 replacement. */
3782 tree t = build1 (VIEW_CONVERT_EXPR, type, repl);
3783 gcc_checking_assert (!write || access->grp_partial_lhs);
3784 if (!access->grp_partial_lhs)
3786 tree tmp = make_ssa_name (type);
3787 gassign *stmt = gimple_build_assign (tmp, t);
3788 /* This is always a read. */
3789 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
3790 t = tmp;
3792 *expr = t;
3794 else if (write)
3796 gassign *stmt;
3798 if (access->grp_partial_lhs)
3799 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
3800 false, GSI_NEW_STMT);
3801 stmt = gimple_build_assign (repl, ref);
3802 gimple_set_location (stmt, loc);
3803 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
3805 else
3807 gassign *stmt;
3809 if (access->grp_partial_lhs)
3810 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
3811 true, GSI_SAME_STMT);
3812 stmt = gimple_build_assign (ref, repl);
3813 gimple_set_location (stmt, loc);
3814 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
3817 else
3818 *expr = repl;
3819 sra_stats.exprs++;
3821 else if (write && access->grp_to_be_debug_replaced)
3823 gdebug *ds = gimple_build_debug_bind (get_access_replacement (access),
3824 NULL_TREE,
3825 gsi_stmt (*gsi));
3826 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
3829 if (access->first_child)
3831 HOST_WIDE_INT start_offset, chunk_size;
3832 if (bfr
3833 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 1))
3834 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 2)))
3836 chunk_size = tree_to_uhwi (TREE_OPERAND (bfr, 1));
3837 start_offset = access->offset
3838 + tree_to_uhwi (TREE_OPERAND (bfr, 2));
3840 else
3841 start_offset = chunk_size = 0;
3843 generate_subtree_copies (access->first_child, orig_expr, access->offset,
3844 start_offset, chunk_size, gsi, write, write,
3845 loc);
3847 return true;
3850 /* Where scalar replacements of the RHS have been written to when a replacement
3851 of a LHS of an assigments cannot be direclty loaded from a replacement of
3852 the RHS. */
3853 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
3854 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
3855 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
3857 struct subreplacement_assignment_data
3859 /* Offset of the access representing the lhs of the assignment. */
3860 HOST_WIDE_INT left_offset;
3862 /* LHS and RHS of the original assignment. */
3863 tree assignment_lhs, assignment_rhs;
3865 /* Access representing the rhs of the whole assignment. */
3866 struct access *top_racc;
3868 /* Stmt iterator used for statement insertions after the original assignment.
3869 It points to the main GSI used to traverse a BB during function body
3870 modification. */
3871 gimple_stmt_iterator *new_gsi;
3873 /* Stmt iterator used for statement insertions before the original
3874 assignment. Keeps on pointing to the original statement. */
3875 gimple_stmt_iterator old_gsi;
3877 /* Location of the assignment. */
3878 location_t loc;
3880 /* Keeps the information whether we have needed to refresh replacements of
3881 the LHS and from which side of the assignments this takes place. */
3882 enum unscalarized_data_handling refreshed;
3885 /* Store all replacements in the access tree rooted in TOP_RACC either to their
3886 base aggregate if there are unscalarized data or directly to LHS of the
3887 statement that is pointed to by GSI otherwise. */
3889 static void
3890 handle_unscalarized_data_in_subtree (struct subreplacement_assignment_data *sad)
3892 tree src;
3893 if (sad->top_racc->grp_unscalarized_data)
3895 src = sad->assignment_rhs;
3896 sad->refreshed = SRA_UDH_RIGHT;
3898 else
3900 src = sad->assignment_lhs;
3901 sad->refreshed = SRA_UDH_LEFT;
3903 generate_subtree_copies (sad->top_racc->first_child, src,
3904 sad->top_racc->offset, 0, 0,
3905 &sad->old_gsi, false, false, sad->loc);
3908 /* Try to generate statements to load all sub-replacements in an access subtree
3909 formed by children of LACC from scalar replacements in the SAD->top_racc
3910 subtree. If that is not possible, refresh the SAD->top_racc base aggregate
3911 and load the accesses from it. */
3913 static void
3914 load_assign_lhs_subreplacements (struct access *lacc,
3915 struct subreplacement_assignment_data *sad)
3917 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
3919 HOST_WIDE_INT offset;
3920 offset = lacc->offset - sad->left_offset + sad->top_racc->offset;
3922 if (lacc->grp_to_be_replaced)
3924 struct access *racc;
3925 gassign *stmt;
3926 tree rhs;
3928 racc = find_access_in_subtree (sad->top_racc, offset, lacc->size);
3929 if (racc && racc->grp_to_be_replaced)
3931 rhs = get_access_replacement (racc);
3932 if (!useless_type_conversion_p (lacc->type, racc->type))
3933 rhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
3934 lacc->type, rhs);
3936 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
3937 rhs = force_gimple_operand_gsi (&sad->old_gsi, rhs, true,
3938 NULL_TREE, true, GSI_SAME_STMT);
3940 else
3942 /* No suitable access on the right hand side, need to load from
3943 the aggregate. See if we have to update it first... */
3944 if (sad->refreshed == SRA_UDH_NONE)
3945 handle_unscalarized_data_in_subtree (sad);
3947 if (sad->refreshed == SRA_UDH_LEFT)
3948 rhs = build_ref_for_model (sad->loc, sad->assignment_lhs,
3949 lacc->offset - sad->left_offset,
3950 lacc, sad->new_gsi, true);
3951 else
3952 rhs = build_ref_for_model (sad->loc, sad->assignment_rhs,
3953 lacc->offset - sad->left_offset,
3954 lacc, sad->new_gsi, true);
3955 if (lacc->grp_partial_lhs)
3956 rhs = force_gimple_operand_gsi (sad->new_gsi,
3957 rhs, true, NULL_TREE,
3958 false, GSI_NEW_STMT);
3961 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
3962 gsi_insert_after (sad->new_gsi, stmt, GSI_NEW_STMT);
3963 gimple_set_location (stmt, sad->loc);
3964 update_stmt (stmt);
3965 sra_stats.subreplacements++;
3967 else
3969 if (sad->refreshed == SRA_UDH_NONE
3970 && lacc->grp_read && !lacc->grp_covered)
3971 handle_unscalarized_data_in_subtree (sad);
3973 if (lacc && lacc->grp_to_be_debug_replaced)
3975 gdebug *ds;
3976 tree drhs;
3977 struct access *racc = find_access_in_subtree (sad->top_racc,
3978 offset,
3979 lacc->size);
3981 if (racc && racc->grp_to_be_replaced)
3983 if (racc->grp_write || constant_decl_p (racc->base))
3984 drhs = get_access_replacement (racc);
3985 else
3986 drhs = NULL;
3988 else if (sad->refreshed == SRA_UDH_LEFT)
3989 drhs = build_debug_ref_for_model (sad->loc, lacc->base,
3990 lacc->offset, lacc);
3991 else if (sad->refreshed == SRA_UDH_RIGHT)
3992 drhs = build_debug_ref_for_model (sad->loc, sad->top_racc->base,
3993 offset, lacc);
3994 else
3995 drhs = NULL_TREE;
3996 if (drhs
3997 && !useless_type_conversion_p (lacc->type, TREE_TYPE (drhs)))
3998 drhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
3999 lacc->type, drhs);
4000 ds = gimple_build_debug_bind (get_access_replacement (lacc),
4001 drhs, gsi_stmt (sad->old_gsi));
4002 gsi_insert_after (sad->new_gsi, ds, GSI_NEW_STMT);
4006 if (lacc->first_child)
4007 load_assign_lhs_subreplacements (lacc, sad);
4011 /* Result code for SRA assignment modification. */
4012 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
4013 SRA_AM_MODIFIED, /* stmt changed but not
4014 removed */
4015 SRA_AM_REMOVED }; /* stmt eliminated */
4017 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
4018 to the assignment and GSI is the statement iterator pointing at it. Returns
4019 the same values as sra_modify_assign. */
4021 static enum assignment_mod_result
4022 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
4024 tree lhs = gimple_assign_lhs (stmt);
4025 struct access *acc = get_access_for_expr (lhs);
4026 if (!acc)
4027 return SRA_AM_NONE;
4028 location_t loc = gimple_location (stmt);
4030 if (gimple_clobber_p (stmt))
4032 /* Clobber the replacement variable. */
4033 clobber_subtree (acc, gsi, !acc->grp_covered, loc);
4034 /* Remove clobbers of fully scalarized variables, they are dead. */
4035 if (acc->grp_covered)
4037 unlink_stmt_vdef (stmt);
4038 gsi_remove (gsi, true);
4039 release_defs (stmt);
4040 return SRA_AM_REMOVED;
4042 else
4043 return SRA_AM_MODIFIED;
4046 if (CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt)) > 0)
4048 /* I have never seen this code path trigger but if it can happen the
4049 following should handle it gracefully. */
4050 if (access_has_children_p (acc))
4051 generate_subtree_copies (acc->first_child, lhs, acc->offset, 0, 0, gsi,
4052 true, true, loc);
4053 return SRA_AM_MODIFIED;
4056 if (acc->grp_covered)
4058 init_subtree_with_zero (acc, gsi, false, loc);
4059 unlink_stmt_vdef (stmt);
4060 gsi_remove (gsi, true);
4061 release_defs (stmt);
4062 return SRA_AM_REMOVED;
4064 else
4066 init_subtree_with_zero (acc, gsi, true, loc);
4067 return SRA_AM_MODIFIED;
4071 /* Create and return a new suitable default definition SSA_NAME for RACC which
4072 is an access describing an uninitialized part of an aggregate that is being
4073 loaded. REG_TREE is used instead of the actual RACC type if that is not of
4074 a gimple register type. */
4076 static tree
4077 get_repl_default_def_ssa_name (struct access *racc, tree reg_type)
4079 gcc_checking_assert (!racc->grp_to_be_replaced
4080 && !racc->grp_to_be_debug_replaced);
4081 if (!racc->replacement_decl)
4082 racc->replacement_decl = create_access_replacement (racc, reg_type);
4083 return get_or_create_ssa_default_def (cfun, racc->replacement_decl);
4086 /* Examine both sides of the assignment statement pointed to by STMT, replace
4087 them with a scalare replacement if there is one and generate copying of
4088 replacements if scalarized aggregates have been used in the assignment. GSI
4089 is used to hold generated statements for type conversions and subtree
4090 copying. */
4092 static enum assignment_mod_result
4093 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
4095 struct access *lacc, *racc;
4096 tree lhs, rhs;
4097 bool modify_this_stmt = false;
4098 bool force_gimple_rhs = false;
4099 location_t loc;
4100 gimple_stmt_iterator orig_gsi = *gsi;
4102 if (!gimple_assign_single_p (stmt))
4103 return SRA_AM_NONE;
4104 lhs = gimple_assign_lhs (stmt);
4105 rhs = gimple_assign_rhs1 (stmt);
4107 if (TREE_CODE (rhs) == CONSTRUCTOR)
4108 return sra_modify_constructor_assign (stmt, gsi);
4110 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
4111 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
4112 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
4114 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (stmt),
4115 gsi, false);
4116 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (stmt),
4117 gsi, true);
4118 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
4121 lacc = get_access_for_expr (lhs);
4122 racc = get_access_for_expr (rhs);
4123 if (!lacc && !racc)
4124 return SRA_AM_NONE;
4125 /* Avoid modifying initializations of constant-pool replacements. */
4126 if (racc && (racc->replacement_decl == lhs))
4127 return SRA_AM_NONE;
4129 loc = gimple_location (stmt);
4130 if (lacc && lacc->grp_to_be_replaced)
4132 lhs = get_access_replacement (lacc);
4133 gimple_assign_set_lhs (stmt, lhs);
4134 modify_this_stmt = true;
4135 if (lacc->grp_partial_lhs)
4136 force_gimple_rhs = true;
4137 sra_stats.exprs++;
4140 if (racc && racc->grp_to_be_replaced)
4142 rhs = get_access_replacement (racc);
4143 modify_this_stmt = true;
4144 if (racc->grp_partial_lhs)
4145 force_gimple_rhs = true;
4146 sra_stats.exprs++;
4148 else if (racc
4149 && !racc->grp_unscalarized_data
4150 && !racc->grp_unscalarizable_region
4151 && TREE_CODE (lhs) == SSA_NAME
4152 && !access_has_replacements_p (racc))
4154 rhs = get_repl_default_def_ssa_name (racc, TREE_TYPE (lhs));
4155 modify_this_stmt = true;
4156 sra_stats.exprs++;
4159 if (modify_this_stmt)
4161 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
4163 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
4164 ??? This should move to fold_stmt which we simply should
4165 call after building a VIEW_CONVERT_EXPR here. */
4166 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
4167 && !contains_bitfld_component_ref_p (lhs))
4169 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
4170 gimple_assign_set_lhs (stmt, lhs);
4172 else if (lacc
4173 && AGGREGATE_TYPE_P (TREE_TYPE (rhs))
4174 && !contains_vce_or_bfcref_p (rhs))
4175 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
4177 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
4179 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
4180 rhs);
4181 if (is_gimple_reg_type (TREE_TYPE (lhs))
4182 && TREE_CODE (lhs) != SSA_NAME)
4183 force_gimple_rhs = true;
4188 if (lacc && lacc->grp_to_be_debug_replaced)
4190 tree dlhs = get_access_replacement (lacc);
4191 tree drhs = unshare_expr (rhs);
4192 if (!useless_type_conversion_p (TREE_TYPE (dlhs), TREE_TYPE (drhs)))
4194 if (AGGREGATE_TYPE_P (TREE_TYPE (drhs))
4195 && !contains_vce_or_bfcref_p (drhs))
4196 drhs = build_debug_ref_for_model (loc, drhs, 0, lacc);
4197 if (drhs
4198 && !useless_type_conversion_p (TREE_TYPE (dlhs),
4199 TREE_TYPE (drhs)))
4200 drhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
4201 TREE_TYPE (dlhs), drhs);
4203 gdebug *ds = gimple_build_debug_bind (dlhs, drhs, stmt);
4204 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
4207 /* From this point on, the function deals with assignments in between
4208 aggregates when at least one has scalar reductions of some of its
4209 components. There are three possible scenarios: Both the LHS and RHS have
4210 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
4212 In the first case, we would like to load the LHS components from RHS
4213 components whenever possible. If that is not possible, we would like to
4214 read it directly from the RHS (after updating it by storing in it its own
4215 components). If there are some necessary unscalarized data in the LHS,
4216 those will be loaded by the original assignment too. If neither of these
4217 cases happen, the original statement can be removed. Most of this is done
4218 by load_assign_lhs_subreplacements.
4220 In the second case, we would like to store all RHS scalarized components
4221 directly into LHS and if they cover the aggregate completely, remove the
4222 statement too. In the third case, we want the LHS components to be loaded
4223 directly from the RHS (DSE will remove the original statement if it
4224 becomes redundant).
4226 This is a bit complex but manageable when types match and when unions do
4227 not cause confusion in a way that we cannot really load a component of LHS
4228 from the RHS or vice versa (the access representing this level can have
4229 subaccesses that are accessible only through a different union field at a
4230 higher level - different from the one used in the examined expression).
4231 Unions are fun.
4233 Therefore, I specially handle a fourth case, happening when there is a
4234 specific type cast or it is impossible to locate a scalarized subaccess on
4235 the other side of the expression. If that happens, I simply "refresh" the
4236 RHS by storing in it is scalarized components leave the original statement
4237 there to do the copying and then load the scalar replacements of the LHS.
4238 This is what the first branch does. */
4240 if (modify_this_stmt
4241 || gimple_has_volatile_ops (stmt)
4242 || contains_vce_or_bfcref_p (rhs)
4243 || contains_vce_or_bfcref_p (lhs)
4244 || stmt_ends_bb_p (stmt))
4246 /* No need to copy into a constant-pool, it comes pre-initialized. */
4247 if (access_has_children_p (racc) && !constant_decl_p (racc->base))
4248 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
4249 gsi, false, false, loc);
4250 if (access_has_children_p (lacc))
4252 gimple_stmt_iterator alt_gsi = gsi_none ();
4253 if (stmt_ends_bb_p (stmt))
4255 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
4256 gsi = &alt_gsi;
4258 generate_subtree_copies (lacc->first_child, lhs, lacc->offset, 0, 0,
4259 gsi, true, true, loc);
4261 sra_stats.separate_lhs_rhs_handling++;
4263 /* This gimplification must be done after generate_subtree_copies,
4264 lest we insert the subtree copies in the middle of the gimplified
4265 sequence. */
4266 if (force_gimple_rhs)
4267 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
4268 true, GSI_SAME_STMT);
4269 if (gimple_assign_rhs1 (stmt) != rhs)
4271 modify_this_stmt = true;
4272 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
4273 gcc_assert (stmt == gsi_stmt (orig_gsi));
4276 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
4278 else
4280 if (access_has_children_p (lacc)
4281 && access_has_children_p (racc)
4282 /* When an access represents an unscalarizable region, it usually
4283 represents accesses with variable offset and thus must not be used
4284 to generate new memory accesses. */
4285 && !lacc->grp_unscalarizable_region
4286 && !racc->grp_unscalarizable_region)
4288 struct subreplacement_assignment_data sad;
4290 sad.left_offset = lacc->offset;
4291 sad.assignment_lhs = lhs;
4292 sad.assignment_rhs = rhs;
4293 sad.top_racc = racc;
4294 sad.old_gsi = *gsi;
4295 sad.new_gsi = gsi;
4296 sad.loc = gimple_location (stmt);
4297 sad.refreshed = SRA_UDH_NONE;
4299 if (lacc->grp_read && !lacc->grp_covered)
4300 handle_unscalarized_data_in_subtree (&sad);
4302 load_assign_lhs_subreplacements (lacc, &sad);
4303 if (sad.refreshed != SRA_UDH_RIGHT)
4305 gsi_next (gsi);
4306 unlink_stmt_vdef (stmt);
4307 gsi_remove (&sad.old_gsi, true);
4308 release_defs (stmt);
4309 sra_stats.deleted++;
4310 return SRA_AM_REMOVED;
4313 else
4315 if (access_has_children_p (racc)
4316 && !racc->grp_unscalarized_data
4317 && TREE_CODE (lhs) != SSA_NAME)
4319 if (dump_file)
4321 fprintf (dump_file, "Removing load: ");
4322 print_gimple_stmt (dump_file, stmt, 0);
4324 generate_subtree_copies (racc->first_child, lhs,
4325 racc->offset, 0, 0, gsi,
4326 false, false, loc);
4327 gcc_assert (stmt == gsi_stmt (*gsi));
4328 unlink_stmt_vdef (stmt);
4329 gsi_remove (gsi, true);
4330 release_defs (stmt);
4331 sra_stats.deleted++;
4332 return SRA_AM_REMOVED;
4334 /* Restore the aggregate RHS from its components so the
4335 prevailing aggregate copy does the right thing. */
4336 if (access_has_children_p (racc))
4337 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
4338 gsi, false, false, loc);
4339 /* Re-load the components of the aggregate copy destination.
4340 But use the RHS aggregate to load from to expose more
4341 optimization opportunities. */
4342 if (access_has_children_p (lacc))
4343 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
4344 0, 0, gsi, true, true, loc);
4347 return SRA_AM_NONE;
4351 /* Set any scalar replacements of values in the constant pool to the initial
4352 value of the constant. (Constant-pool decls like *.LC0 have effectively
4353 been initialized before the program starts, we must do the same for their
4354 replacements.) Thus, we output statements like 'SR.1 = *.LC0[0];' into
4355 the function's entry block. */
4357 static void
4358 initialize_constant_pool_replacements (void)
4360 gimple_seq seq = NULL;
4361 gimple_stmt_iterator gsi = gsi_start (seq);
4362 bitmap_iterator bi;
4363 unsigned i;
4365 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
4367 tree var = candidate (i);
4368 if (!constant_decl_p (var))
4369 continue;
4371 struct access *access = get_first_repr_for_decl (var);
4373 while (access)
4375 if (access->replacement_decl)
4377 gassign *stmt
4378 = gimple_build_assign (get_access_replacement (access),
4379 unshare_expr (access->expr));
4380 if (dump_file && (dump_flags & TDF_DETAILS))
4382 fprintf (dump_file, "Generating constant initializer: ");
4383 print_gimple_stmt (dump_file, stmt, 0);
4384 fprintf (dump_file, "\n");
4386 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
4387 update_stmt (stmt);
4390 if (access->first_child)
4391 access = access->first_child;
4392 else if (access->next_sibling)
4393 access = access->next_sibling;
4394 else
4396 while (access->parent && !access->next_sibling)
4397 access = access->parent;
4398 if (access->next_sibling)
4399 access = access->next_sibling;
4400 else
4401 access = access->next_grp;
4406 seq = gsi_seq (gsi);
4407 if (seq)
4408 gsi_insert_seq_on_edge_immediate (
4409 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
4412 /* Traverse the function body and all modifications as decided in
4413 analyze_all_variable_accesses. Return true iff the CFG has been
4414 changed. */
4416 static bool
4417 sra_modify_function_body (void)
4419 bool cfg_changed = false;
4420 basic_block bb;
4422 initialize_constant_pool_replacements ();
4424 FOR_EACH_BB_FN (bb, cfun)
4426 gimple_stmt_iterator gsi = gsi_start_bb (bb);
4427 while (!gsi_end_p (gsi))
4429 gimple *stmt = gsi_stmt (gsi);
4430 enum assignment_mod_result assign_result;
4431 bool modified = false, deleted = false;
4432 tree *t;
4433 unsigned i;
4435 switch (gimple_code (stmt))
4437 case GIMPLE_RETURN:
4438 t = gimple_return_retval_ptr (as_a <greturn *> (stmt));
4439 if (*t != NULL_TREE)
4440 modified |= sra_modify_expr (t, &gsi, false);
4441 break;
4443 case GIMPLE_ASSIGN:
4444 assign_result = sra_modify_assign (stmt, &gsi);
4445 modified |= assign_result == SRA_AM_MODIFIED;
4446 deleted = assign_result == SRA_AM_REMOVED;
4447 break;
4449 case GIMPLE_CALL:
4450 /* Operands must be processed before the lhs. */
4451 for (i = 0; i < gimple_call_num_args (stmt); i++)
4453 t = gimple_call_arg_ptr (stmt, i);
4454 modified |= sra_modify_expr (t, &gsi, false);
4457 if (gimple_call_lhs (stmt))
4459 t = gimple_call_lhs_ptr (stmt);
4460 modified |= sra_modify_expr (t, &gsi, true);
4462 break;
4464 case GIMPLE_ASM:
4466 gasm *asm_stmt = as_a <gasm *> (stmt);
4467 for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
4469 t = &TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
4470 modified |= sra_modify_expr (t, &gsi, false);
4472 for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
4474 t = &TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
4475 modified |= sra_modify_expr (t, &gsi, true);
4478 break;
4480 default:
4481 break;
4484 if (modified)
4486 update_stmt (stmt);
4487 if (maybe_clean_eh_stmt (stmt)
4488 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4489 cfg_changed = true;
4491 if (!deleted)
4492 gsi_next (&gsi);
4496 gsi_commit_edge_inserts ();
4497 return cfg_changed;
4500 /* Generate statements initializing scalar replacements of parts of function
4501 parameters. */
4503 static void
4504 initialize_parameter_reductions (void)
4506 gimple_stmt_iterator gsi;
4507 gimple_seq seq = NULL;
4508 tree parm;
4510 gsi = gsi_start (seq);
4511 for (parm = DECL_ARGUMENTS (current_function_decl);
4512 parm;
4513 parm = DECL_CHAIN (parm))
4515 vec<access_p> *access_vec;
4516 struct access *access;
4518 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4519 continue;
4520 access_vec = get_base_access_vector (parm);
4521 if (!access_vec)
4522 continue;
4524 for (access = (*access_vec)[0];
4525 access;
4526 access = access->next_grp)
4527 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
4528 EXPR_LOCATION (parm));
4531 seq = gsi_seq (gsi);
4532 if (seq)
4533 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
4536 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
4537 it reveals there are components of some aggregates to be scalarized, it runs
4538 the required transformations. */
4539 static unsigned int
4540 perform_intra_sra (void)
4542 int ret = 0;
4543 sra_initialize ();
4545 if (!find_var_candidates ())
4546 goto out;
4548 if (!scan_function ())
4549 goto out;
4551 if (!analyze_all_variable_accesses ())
4552 goto out;
4554 if (sra_modify_function_body ())
4555 ret = TODO_update_ssa | TODO_cleanup_cfg;
4556 else
4557 ret = TODO_update_ssa;
4558 initialize_parameter_reductions ();
4560 statistics_counter_event (cfun, "Scalar replacements created",
4561 sra_stats.replacements);
4562 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
4563 statistics_counter_event (cfun, "Subtree copy stmts",
4564 sra_stats.subtree_copies);
4565 statistics_counter_event (cfun, "Subreplacement stmts",
4566 sra_stats.subreplacements);
4567 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
4568 statistics_counter_event (cfun, "Separate LHS and RHS handling",
4569 sra_stats.separate_lhs_rhs_handling);
4571 out:
4572 sra_deinitialize ();
4573 return ret;
4576 /* Perform early intraprocedural SRA. */
4577 static unsigned int
4578 early_intra_sra (void)
4580 sra_mode = SRA_MODE_EARLY_INTRA;
4581 return perform_intra_sra ();
4584 /* Perform "late" intraprocedural SRA. */
4585 static unsigned int
4586 late_intra_sra (void)
4588 sra_mode = SRA_MODE_INTRA;
4589 return perform_intra_sra ();
4593 static bool
4594 gate_intra_sra (void)
4596 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
4600 namespace {
4602 const pass_data pass_data_sra_early =
4604 GIMPLE_PASS, /* type */
4605 "esra", /* name */
4606 OPTGROUP_NONE, /* optinfo_flags */
4607 TV_TREE_SRA, /* tv_id */
4608 ( PROP_cfg | PROP_ssa ), /* properties_required */
4609 0, /* properties_provided */
4610 0, /* properties_destroyed */
4611 0, /* todo_flags_start */
4612 TODO_update_ssa, /* todo_flags_finish */
4615 class pass_sra_early : public gimple_opt_pass
4617 public:
4618 pass_sra_early (gcc::context *ctxt)
4619 : gimple_opt_pass (pass_data_sra_early, ctxt)
4622 /* opt_pass methods: */
4623 virtual bool gate (function *) { return gate_intra_sra (); }
4624 virtual unsigned int execute (function *) { return early_intra_sra (); }
4626 }; // class pass_sra_early
4628 } // anon namespace
4630 gimple_opt_pass *
4631 make_pass_sra_early (gcc::context *ctxt)
4633 return new pass_sra_early (ctxt);
4636 namespace {
4638 const pass_data pass_data_sra =
4640 GIMPLE_PASS, /* type */
4641 "sra", /* name */
4642 OPTGROUP_NONE, /* optinfo_flags */
4643 TV_TREE_SRA, /* tv_id */
4644 ( PROP_cfg | PROP_ssa ), /* properties_required */
4645 0, /* properties_provided */
4646 0, /* properties_destroyed */
4647 TODO_update_address_taken, /* todo_flags_start */
4648 TODO_update_ssa, /* todo_flags_finish */
4651 class pass_sra : public gimple_opt_pass
4653 public:
4654 pass_sra (gcc::context *ctxt)
4655 : gimple_opt_pass (pass_data_sra, ctxt)
4658 /* opt_pass methods: */
4659 virtual bool gate (function *) { return gate_intra_sra (); }
4660 virtual unsigned int execute (function *) { return late_intra_sra (); }
4662 }; // class pass_sra
4664 } // anon namespace
4666 gimple_opt_pass *
4667 make_pass_sra (gcc::context *ctxt)
4669 return new pass_sra (ctxt);