1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
5 Hacked by Michael Tiemann (tiemann@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 /* Instruction reorganization pass.
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
39 The MIPS and AMD 29000 have a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
44 The Motorola 88000 conditionally exposes its branch delay slot,
45 so code is shorter when it is turned off, but will run faster
46 when useful insns are scheduled there.
48 The IBM ROMP has two forms of branch and call insns, both with and
49 without a delay slot. Much like the 88k, insns not using the delay
50 slot can be shorted (2 bytes vs. 4 bytes), but will run slowed.
52 The SPARC always has a branch delay slot, but its effects can be
53 annulled when the branch is not taken. This means that failing to
54 find other sources of insns, we can hoist an insn from the branch
55 target that would only be safe to execute knowing that the branch
58 The HP-PA always has a branch delay slot. For unconditional branches
59 its effects can be annulled when the branch is taken. The effects
60 of the delay slot in a conditional branch can be nullified for forward
61 taken branches, or for untaken backward branches. This means
62 we can hoist insns from the fall-through path for forward branches or
63 steal insns from the target of backward branches.
65 The TMS320C3x and C4x have three branch delay slots. When the three
66 slots are filled, the branch penalty is zero. Most insns can fill the
67 delay slots except jump insns.
69 Three techniques for filling delay slots have been implemented so far:
71 (1) `fill_simple_delay_slots' is the simplest, most efficient way
72 to fill delay slots. This pass first looks for insns which come
73 from before the branch and which are safe to execute after the
74 branch. Then it searches after the insn requiring delay slots or,
75 in the case of a branch, for insns that are after the point at
76 which the branch merges into the fallthrough code, if such a point
77 exists. When such insns are found, the branch penalty decreases
78 and no code expansion takes place.
80 (2) `fill_eager_delay_slots' is more complicated: it is used for
81 scheduling conditional jumps, or for scheduling jumps which cannot
82 be filled using (1). A machine need not have annulled jumps to use
83 this strategy, but it helps (by keeping more options open).
84 `fill_eager_delay_slots' tries to guess the direction the branch
85 will go; if it guesses right 100% of the time, it can reduce the
86 branch penalty as much as `fill_simple_delay_slots' does. If it
87 guesses wrong 100% of the time, it might as well schedule nops (or
88 on the m88k, unexpose the branch slot). When
89 `fill_eager_delay_slots' takes insns from the fall-through path of
90 the jump, usually there is no code expansion; when it takes insns
91 from the branch target, there is code expansion if it is not the
92 only way to reach that target.
94 (3) `relax_delay_slots' uses a set of rules to simplify code that
95 has been reorganized by (1) and (2). It finds cases where
96 conditional test can be eliminated, jumps can be threaded, extra
97 insns can be eliminated, etc. It is the job of (1) and (2) to do a
98 good job of scheduling locally; `relax_delay_slots' takes care of
99 making the various individual schedules work well together. It is
100 especially tuned to handle the control flow interactions of branch
101 insns. It does nothing for insns with delay slots that do not
104 On machines that use CC0, we are very conservative. We will not make
105 a copy of an insn involving CC0 since we want to maintain a 1-1
106 correspondence between the insn that sets and uses CC0. The insns are
107 allowed to be separated by placing an insn that sets CC0 (but not an insn
108 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
109 delay slot. In that case, we point each insn at the other with REG_CC_USER
110 and REG_CC_SETTER notes. Note that these restrictions affect very few
111 machines because most RISC machines with delay slots will not use CC0
112 (the RT is the only known exception at this point).
116 The Acorn Risc Machine can conditionally execute most insns, so
117 it is profitable to move single insns into a position to execute
118 based on the condition code of the previous insn.
120 The HP-PA can conditionally nullify insns, providing a similar
121 effect to the ARM, differing mostly in which insn is "in charge". */
129 #include "function.h"
130 #include "insn-config.h"
131 #include "conditions.h"
132 #include "hard-reg-set.h"
133 #include "basic-block.h"
139 #include "insn-attr.h"
140 #include "resource.h"
146 #define obstack_chunk_alloc xmalloc
147 #define obstack_chunk_free free
149 #ifndef ANNUL_IFTRUE_SLOTS
150 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
152 #ifndef ANNUL_IFFALSE_SLOTS
153 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
156 /* Insns which have delay slots that have not yet been filled. */
158 static struct obstack unfilled_slots_obstack
;
159 static rtx
*unfilled_firstobj
;
161 /* Define macros to refer to the first and last slot containing unfilled
162 insns. These are used because the list may move and its address
163 should be recomputed at each use. */
165 #define unfilled_slots_base \
166 ((rtx *) obstack_base (&unfilled_slots_obstack))
168 #define unfilled_slots_next \
169 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
171 /* Points to the label before the end of the function. */
172 static rtx end_of_function_label
;
174 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
175 not always monotonically increase. */
176 static int *uid_to_ruid
;
178 /* Highest valid index in `uid_to_ruid'. */
181 static int stop_search_p
PARAMS ((rtx
, int));
182 static int resource_conflicts_p
PARAMS ((struct resources
*,
183 struct resources
*));
184 static int insn_references_resource_p
PARAMS ((rtx
, struct resources
*, int));
185 static int insn_sets_resource_p
PARAMS ((rtx
, struct resources
*, int));
186 static rtx find_end_label
PARAMS ((void));
187 static rtx emit_delay_sequence
PARAMS ((rtx
, rtx
, int));
188 static rtx add_to_delay_list
PARAMS ((rtx
, rtx
));
189 static rtx delete_from_delay_slot
PARAMS ((rtx
));
190 static void delete_scheduled_jump
PARAMS ((rtx
));
191 static void note_delay_statistics
PARAMS ((int, int));
192 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
193 static rtx optimize_skip
PARAMS ((rtx
));
195 static int get_jump_flags
PARAMS ((rtx
, rtx
));
196 static int rare_destination
PARAMS ((rtx
));
197 static int mostly_true_jump
PARAMS ((rtx
, rtx
));
198 static rtx get_branch_condition
PARAMS ((rtx
, rtx
));
199 static int condition_dominates_p
PARAMS ((rtx
, rtx
));
200 static int redirect_with_delay_slots_safe_p
PARAMS ((rtx
, rtx
, rtx
));
201 static int redirect_with_delay_list_safe_p
PARAMS ((rtx
, rtx
, rtx
));
202 static int check_annul_list_true_false
PARAMS ((int, rtx
));
203 static rtx steal_delay_list_from_target
PARAMS ((rtx
, rtx
, rtx
, rtx
,
207 int, int *, int *, rtx
*));
208 static rtx steal_delay_list_from_fallthrough
PARAMS ((rtx
, rtx
, rtx
, rtx
,
213 static void try_merge_delay_insns
PARAMS ((rtx
, rtx
));
214 static rtx redundant_insn
PARAMS ((rtx
, rtx
, rtx
));
215 static int own_thread_p
PARAMS ((rtx
, rtx
, int));
216 static void update_block
PARAMS ((rtx
, rtx
));
217 static int reorg_redirect_jump
PARAMS ((rtx
, rtx
));
218 static void update_reg_dead_notes
PARAMS ((rtx
, rtx
));
219 static void fix_reg_dead_note
PARAMS ((rtx
, rtx
));
220 static void update_reg_unused_notes
PARAMS ((rtx
, rtx
));
221 static void fill_simple_delay_slots
PARAMS ((int));
222 static rtx fill_slots_from_thread
PARAMS ((rtx
, rtx
, rtx
, rtx
, int, int,
223 int, int, int *, rtx
));
224 static void fill_eager_delay_slots
PARAMS ((void));
225 static void relax_delay_slots
PARAMS ((rtx
));
227 static void make_return_insns
PARAMS ((rtx
));
230 /* Return TRUE if this insn should stop the search for insn to fill delay
231 slots. LABELS_P indicates that labels should terminate the search.
232 In all cases, jumps terminate the search. */
235 stop_search_p (insn
, labels_p
)
242 switch (GET_CODE (insn
))
256 /* OK unless it contains a delay slot or is an `asm' insn of some type.
257 We don't know anything about these. */
258 return (GET_CODE (PATTERN (insn
)) == SEQUENCE
259 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
260 || asm_noperands (PATTERN (insn
)) >= 0);
267 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
268 resource set contains a volatile memory reference. Otherwise, return FALSE. */
271 resource_conflicts_p (res1
, res2
)
272 struct resources
*res1
, *res2
;
274 if ((res1
->cc
&& res2
->cc
) || (res1
->memory
&& res2
->memory
)
275 || (res1
->unch_memory
&& res2
->unch_memory
)
276 || res1
->volatil
|| res2
->volatil
)
280 return (res1
->regs
& res2
->regs
) != HARD_CONST (0);
285 for (i
= 0; i
< HARD_REG_SET_LONGS
; i
++)
286 if ((res1
->regs
[i
] & res2
->regs
[i
]) != 0)
293 /* Return TRUE if any resource marked in RES, a `struct resources', is
294 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
295 routine is using those resources.
297 We compute this by computing all the resources referenced by INSN and
298 seeing if this conflicts with RES. It might be faster to directly check
299 ourselves, and this is the way it used to work, but it means duplicating
300 a large block of complex code. */
303 insn_references_resource_p (insn
, res
, include_delayed_effects
)
305 struct resources
*res
;
306 int include_delayed_effects
;
308 struct resources insn_res
;
310 CLEAR_RESOURCE (&insn_res
);
311 mark_referenced_resources (insn
, &insn_res
, include_delayed_effects
);
312 return resource_conflicts_p (&insn_res
, res
);
315 /* Return TRUE if INSN modifies resources that are marked in RES.
316 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
317 included. CC0 is only modified if it is explicitly set; see comments
318 in front of mark_set_resources for details. */
321 insn_sets_resource_p (insn
, res
, include_delayed_effects
)
323 struct resources
*res
;
324 int include_delayed_effects
;
326 struct resources insn_sets
;
328 CLEAR_RESOURCE (&insn_sets
);
329 mark_set_resources (insn
, &insn_sets
, 0, include_delayed_effects
);
330 return resource_conflicts_p (&insn_sets
, res
);
333 /* Find a label at the end of the function or before a RETURN. If there is
341 /* If we found one previously, return it. */
342 if (end_of_function_label
)
343 return end_of_function_label
;
345 /* Otherwise, see if there is a label at the end of the function. If there
346 is, it must be that RETURN insns aren't needed, so that is our return
347 label and we don't have to do anything else. */
349 insn
= get_last_insn ();
350 while (GET_CODE (insn
) == NOTE
351 || (GET_CODE (insn
) == INSN
352 && (GET_CODE (PATTERN (insn
)) == USE
353 || GET_CODE (PATTERN (insn
)) == CLOBBER
)))
354 insn
= PREV_INSN (insn
);
356 /* When a target threads its epilogue we might already have a
357 suitable return insn. If so put a label before it for the
358 end_of_function_label. */
359 if (GET_CODE (insn
) == BARRIER
360 && GET_CODE (PREV_INSN (insn
)) == JUMP_INSN
361 && GET_CODE (PATTERN (PREV_INSN (insn
))) == RETURN
)
363 rtx temp
= PREV_INSN (PREV_INSN (insn
));
364 end_of_function_label
= gen_label_rtx ();
365 LABEL_NUSES (end_of_function_label
) = 0;
367 /* Put the label before an USE insns that may proceed the RETURN insn. */
368 while (GET_CODE (temp
) == USE
)
369 temp
= PREV_INSN (temp
);
371 emit_label_after (end_of_function_label
, temp
);
374 else if (GET_CODE (insn
) == CODE_LABEL
)
375 end_of_function_label
= insn
;
378 end_of_function_label
= gen_label_rtx ();
379 LABEL_NUSES (end_of_function_label
) = 0;
380 /* If the basic block reorder pass moves the return insn to
381 some other place try to locate it again and put our
382 end_of_function_label there. */
383 while (insn
&& ! (GET_CODE (insn
) == JUMP_INSN
384 && (GET_CODE (PATTERN (insn
)) == RETURN
)))
385 insn
= PREV_INSN (insn
);
388 insn
= PREV_INSN (insn
);
390 /* Put the label before an USE insns that may proceed the
392 while (GET_CODE (insn
) == USE
)
393 insn
= PREV_INSN (insn
);
395 emit_label_after (end_of_function_label
, insn
);
399 /* Otherwise, make a new label and emit a RETURN and BARRIER,
401 emit_label (end_of_function_label
);
405 /* The return we make may have delay slots too. */
406 rtx insn
= gen_return ();
407 insn
= emit_jump_insn (insn
);
409 if (num_delay_slots (insn
) > 0)
410 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
416 /* Show one additional use for this label so it won't go away until
418 ++LABEL_NUSES (end_of_function_label
);
420 return end_of_function_label
;
423 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
424 the pattern of INSN with the SEQUENCE.
426 Chain the insns so that NEXT_INSN of each insn in the sequence points to
427 the next and NEXT_INSN of the last insn in the sequence points to
428 the first insn after the sequence. Similarly for PREV_INSN. This makes
429 it easier to scan all insns.
431 Returns the SEQUENCE that replaces INSN. */
434 emit_delay_sequence (insn
, list
, length
)
443 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
444 rtvec seqv
= rtvec_alloc (length
+ 1);
445 rtx seq
= gen_rtx_SEQUENCE (VOIDmode
, seqv
);
446 rtx seq_insn
= make_insn_raw (seq
);
447 rtx first
= get_insns ();
448 rtx last
= get_last_insn ();
450 /* Make a copy of the insn having delay slots. */
451 rtx delay_insn
= copy_rtx (insn
);
453 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
454 confuse further processing. Update LAST in case it was the last insn.
455 We will put the BARRIER back in later. */
456 if (NEXT_INSN (insn
) && GET_CODE (NEXT_INSN (insn
)) == BARRIER
)
458 delete_related_insns (NEXT_INSN (insn
));
459 last
= get_last_insn ();
463 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
464 NEXT_INSN (seq_insn
) = NEXT_INSN (insn
);
465 PREV_INSN (seq_insn
) = PREV_INSN (insn
);
468 PREV_INSN (NEXT_INSN (seq_insn
)) = seq_insn
;
471 NEXT_INSN (PREV_INSN (seq_insn
)) = seq_insn
;
473 /* Note the calls to set_new_first_and_last_insn must occur after
474 SEQ_INSN has been completely spliced into the insn stream.
476 Otherwise CUR_INSN_UID will get set to an incorrect value because
477 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
479 set_new_first_and_last_insn (first
, seq_insn
);
482 set_new_first_and_last_insn (seq_insn
, last
);
484 /* Build our SEQUENCE and rebuild the insn chain. */
485 XVECEXP (seq
, 0, 0) = delay_insn
;
486 INSN_DELETED_P (delay_insn
) = 0;
487 PREV_INSN (delay_insn
) = PREV_INSN (seq_insn
);
489 for (li
= list
; li
; li
= XEXP (li
, 1), i
++)
491 rtx tem
= XEXP (li
, 0);
494 /* Show that this copy of the insn isn't deleted. */
495 INSN_DELETED_P (tem
) = 0;
497 XVECEXP (seq
, 0, i
) = tem
;
498 PREV_INSN (tem
) = XVECEXP (seq
, 0, i
- 1);
499 NEXT_INSN (XVECEXP (seq
, 0, i
- 1)) = tem
;
501 for (note
= REG_NOTES (tem
); note
; note
= next
)
503 next
= XEXP (note
, 1);
504 switch (REG_NOTE_KIND (note
))
507 /* Remove any REG_DEAD notes because we can't rely on them now
508 that the insn has been moved. */
509 remove_note (tem
, note
);
513 /* Keep the label reference count up to date. */
514 if (GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
515 LABEL_NUSES (XEXP (note
, 0)) ++;
524 NEXT_INSN (XVECEXP (seq
, 0, length
)) = NEXT_INSN (seq_insn
);
526 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
527 last insn in that SEQUENCE to point to us. Similarly for the first
528 insn in the following insn if it is a SEQUENCE. */
530 if (PREV_INSN (seq_insn
) && GET_CODE (PREV_INSN (seq_insn
)) == INSN
531 && GET_CODE (PATTERN (PREV_INSN (seq_insn
))) == SEQUENCE
)
532 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn
)), 0,
533 XVECLEN (PATTERN (PREV_INSN (seq_insn
)), 0) - 1))
536 if (NEXT_INSN (seq_insn
) && GET_CODE (NEXT_INSN (seq_insn
)) == INSN
537 && GET_CODE (PATTERN (NEXT_INSN (seq_insn
))) == SEQUENCE
)
538 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn
)), 0, 0)) = seq_insn
;
540 /* If there used to be a BARRIER, put it back. */
542 emit_barrier_after (seq_insn
);
550 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
551 be in the order in which the insns are to be executed. */
554 add_to_delay_list (insn
, delay_list
)
558 /* If we have an empty list, just make a new list element. If
559 INSN has its block number recorded, clear it since we may
560 be moving the insn to a new block. */
564 clear_hashed_info_for_insn (insn
);
565 return gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
568 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
570 XEXP (delay_list
, 1) = add_to_delay_list (insn
, XEXP (delay_list
, 1));
575 /* Delete INSN from the delay slot of the insn that it is in, which may
576 produce an insn with no delay slots. Return the new insn. */
579 delete_from_delay_slot (insn
)
582 rtx trial
, seq_insn
, seq
, prev
;
586 /* We first must find the insn containing the SEQUENCE with INSN in its
587 delay slot. Do this by finding an insn, TRIAL, where
588 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
591 PREV_INSN (NEXT_INSN (trial
)) == trial
;
592 trial
= NEXT_INSN (trial
))
595 seq_insn
= PREV_INSN (NEXT_INSN (trial
));
596 seq
= PATTERN (seq_insn
);
598 /* Create a delay list consisting of all the insns other than the one
599 we are deleting (unless we were the only one). */
600 if (XVECLEN (seq
, 0) > 2)
601 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
602 if (XVECEXP (seq
, 0, i
) != insn
)
603 delay_list
= add_to_delay_list (XVECEXP (seq
, 0, i
), delay_list
);
605 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
606 list, and rebuild the delay list if non-empty. */
607 prev
= PREV_INSN (seq_insn
);
608 trial
= XVECEXP (seq
, 0, 0);
609 delete_related_insns (seq_insn
);
610 add_insn_after (trial
, prev
);
612 if (GET_CODE (trial
) == JUMP_INSN
613 && (simplejump_p (trial
) || GET_CODE (PATTERN (trial
)) == RETURN
))
614 emit_barrier_after (trial
);
616 /* If there are any delay insns, remit them. Otherwise clear the
619 trial
= emit_delay_sequence (trial
, delay_list
, XVECLEN (seq
, 0) - 2);
620 else if (GET_CODE (trial
) == JUMP_INSN
621 || GET_CODE (trial
) == CALL_INSN
622 || GET_CODE (trial
) == INSN
)
623 INSN_ANNULLED_BRANCH_P (trial
) = 0;
625 INSN_FROM_TARGET_P (insn
) = 0;
627 /* Show we need to fill this insn again. */
628 obstack_ptr_grow (&unfilled_slots_obstack
, trial
);
633 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
634 the insn that sets CC0 for it and delete it too. */
637 delete_scheduled_jump (insn
)
640 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
641 delete the insn that sets the condition code, but it is hard to find it.
642 Since this case is rare anyway, don't bother trying; there would likely
643 be other insns that became dead anyway, which we wouldn't know to
647 if (reg_mentioned_p (cc0_rtx
, insn
))
649 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
651 /* If a reg-note was found, it points to an insn to set CC0. This
652 insn is in the delay list of some other insn. So delete it from
653 the delay list it was in. */
656 if (! FIND_REG_INC_NOTE (XEXP (note
, 0), NULL_RTX
)
657 && sets_cc0_p (PATTERN (XEXP (note
, 0))) == 1)
658 delete_from_delay_slot (XEXP (note
, 0));
662 /* The insn setting CC0 is our previous insn, but it may be in
663 a delay slot. It will be the last insn in the delay slot, if
665 rtx trial
= previous_insn (insn
);
666 if (GET_CODE (trial
) == NOTE
)
667 trial
= prev_nonnote_insn (trial
);
668 if (sets_cc0_p (PATTERN (trial
)) != 1
669 || FIND_REG_INC_NOTE (trial
, NULL_RTX
))
671 if (PREV_INSN (NEXT_INSN (trial
)) == trial
)
672 delete_related_insns (trial
);
674 delete_from_delay_slot (trial
);
679 delete_related_insns (insn
);
682 /* Counters for delay-slot filling. */
684 #define NUM_REORG_FUNCTIONS 2
685 #define MAX_DELAY_HISTOGRAM 3
686 #define MAX_REORG_PASSES 2
688 static int num_insns_needing_delays
[NUM_REORG_FUNCTIONS
][MAX_REORG_PASSES
];
690 static int num_filled_delays
[NUM_REORG_FUNCTIONS
][MAX_DELAY_HISTOGRAM
+1][MAX_REORG_PASSES
];
692 static int reorg_pass_number
;
695 note_delay_statistics (slots_filled
, index
)
696 int slots_filled
, index
;
698 num_insns_needing_delays
[index
][reorg_pass_number
]++;
699 if (slots_filled
> MAX_DELAY_HISTOGRAM
)
700 slots_filled
= MAX_DELAY_HISTOGRAM
;
701 num_filled_delays
[index
][slots_filled
][reorg_pass_number
]++;
704 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
706 /* Optimize the following cases:
708 1. When a conditional branch skips over only one instruction,
709 use an annulling branch and put that insn in the delay slot.
710 Use either a branch that annuls when the condition if true or
711 invert the test with a branch that annuls when the condition is
712 false. This saves insns, since otherwise we must copy an insn
715 (orig) (skip) (otherwise)
716 Bcc.n L1 Bcc',a L1 Bcc,a L1'
723 2. When a conditional branch skips over only one instruction,
724 and after that, it unconditionally branches somewhere else,
725 perform the similar optimization. This saves executing the
726 second branch in the case where the inverted condition is true.
735 This should be expanded to skip over N insns, where N is the number
736 of delay slots required. */
742 rtx trial
= next_nonnote_insn (insn
);
743 rtx next_trial
= next_active_insn (trial
);
748 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
751 || GET_CODE (trial
) != INSN
752 || GET_CODE (PATTERN (trial
)) == SEQUENCE
753 || recog_memoized (trial
) < 0
754 || (! eligible_for_annul_false (insn
, 0, trial
, flags
)
755 && ! eligible_for_annul_true (insn
, 0, trial
, flags
))
756 || can_throw_internal (trial
))
759 /* There are two cases where we are just executing one insn (we assume
760 here that a branch requires only one insn; this should be generalized
761 at some point): Where the branch goes around a single insn or where
762 we have one insn followed by a branch to the same label we branch to.
763 In both of these cases, inverting the jump and annulling the delay
764 slot give the same effect in fewer insns. */
765 if ((next_trial
== next_active_insn (JUMP_LABEL (insn
))
766 && ! (next_trial
== 0 && current_function_epilogue_delay_list
!= 0))
768 && GET_CODE (next_trial
) == JUMP_INSN
769 && JUMP_LABEL (insn
) == JUMP_LABEL (next_trial
)
770 && (simplejump_p (next_trial
)
771 || GET_CODE (PATTERN (next_trial
)) == RETURN
)))
773 if (eligible_for_annul_false (insn
, 0, trial
, flags
))
775 if (invert_jump (insn
, JUMP_LABEL (insn
), 1))
776 INSN_FROM_TARGET_P (trial
) = 1;
777 else if (! eligible_for_annul_true (insn
, 0, trial
, flags
))
781 delay_list
= add_to_delay_list (trial
, NULL_RTX
);
782 next_trial
= next_active_insn (trial
);
783 update_block (trial
, trial
);
784 delete_related_insns (trial
);
786 /* Also, if we are targeting an unconditional
787 branch, thread our jump to the target of that branch. Don't
788 change this into a RETURN here, because it may not accept what
789 we have in the delay slot. We'll fix this up later. */
790 if (next_trial
&& GET_CODE (next_trial
) == JUMP_INSN
791 && (simplejump_p (next_trial
)
792 || GET_CODE (PATTERN (next_trial
)) == RETURN
))
794 target_label
= JUMP_LABEL (next_trial
);
795 if (target_label
== 0)
796 target_label
= find_end_label ();
798 /* Recompute the flags based on TARGET_LABEL since threading
799 the jump to TARGET_LABEL may change the direction of the
800 jump (which may change the circumstances in which the
801 delay slot is nullified). */
802 flags
= get_jump_flags (insn
, target_label
);
803 if (eligible_for_annul_true (insn
, 0, trial
, flags
))
804 reorg_redirect_jump (insn
, target_label
);
807 INSN_ANNULLED_BRANCH_P (insn
) = 1;
814 /* Encode and return branch direction and prediction information for
815 INSN assuming it will jump to LABEL.
817 Non conditional branches return no direction information and
818 are predicted as very likely taken. */
821 get_jump_flags (insn
, label
)
826 /* get_jump_flags can be passed any insn with delay slots, these may
827 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
828 direction information, and only if they are conditional jumps.
830 If LABEL is zero, then there is no way to determine the branch
832 if (GET_CODE (insn
) == JUMP_INSN
833 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
834 && INSN_UID (insn
) <= max_uid
836 && INSN_UID (label
) <= max_uid
)
838 = (uid_to_ruid
[INSN_UID (label
)] > uid_to_ruid
[INSN_UID (insn
)])
839 ? ATTR_FLAG_forward
: ATTR_FLAG_backward
;
840 /* No valid direction information. */
844 /* If insn is a conditional branch call mostly_true_jump to get
845 determine the branch prediction.
847 Non conditional branches are predicted as very likely taken. */
848 if (GET_CODE (insn
) == JUMP_INSN
849 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
853 prediction
= mostly_true_jump (insn
, get_branch_condition (insn
, label
));
857 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
860 flags
|= ATTR_FLAG_likely
;
863 flags
|= ATTR_FLAG_unlikely
;
866 flags
|= (ATTR_FLAG_very_unlikely
| ATTR_FLAG_unlikely
);
874 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
879 /* Return 1 if INSN is a destination that will be branched to rarely (the
880 return point of a function); return 2 if DEST will be branched to very
881 rarely (a call to a function that doesn't return). Otherwise,
885 rare_destination (insn
)
891 for (; insn
; insn
= next
)
893 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
894 insn
= XVECEXP (PATTERN (insn
), 0, 0);
896 next
= NEXT_INSN (insn
);
898 switch (GET_CODE (insn
))
903 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
904 don't scan past JUMP_INSNs, so any barrier we find here must
905 have been after a CALL_INSN and hence mean the call doesn't
909 if (GET_CODE (PATTERN (insn
)) == RETURN
)
911 else if (simplejump_p (insn
)
912 && jump_count
++ < 10)
913 next
= JUMP_LABEL (insn
);
922 /* If we got here it means we hit the end of the function. So this
923 is an unlikely destination. */
928 /* Return truth value of the statement that this branch
929 is mostly taken. If we think that the branch is extremely likely
930 to be taken, we return 2. If the branch is slightly more likely to be
931 taken, return 1. If the branch is slightly less likely to be taken,
932 return 0 and if the branch is highly unlikely to be taken, return -1.
934 CONDITION, if non-zero, is the condition that JUMP_INSN is testing. */
937 mostly_true_jump (jump_insn
, condition
)
938 rtx jump_insn
, condition
;
940 rtx target_label
= JUMP_LABEL (jump_insn
);
942 int rare_dest
= rare_destination (target_label
);
943 int rare_fallthrough
= rare_destination (NEXT_INSN (jump_insn
));
945 /* If branch probabilities are available, then use that number since it
946 always gives a correct answer. */
947 note
= find_reg_note (jump_insn
, REG_BR_PROB
, 0);
950 int prob
= INTVAL (XEXP (note
, 0));
952 if (prob
>= REG_BR_PROB_BASE
* 9 / 10)
954 else if (prob
>= REG_BR_PROB_BASE
/ 2)
956 else if (prob
>= REG_BR_PROB_BASE
/ 10)
962 /* ??? Ought to use estimate_probability instead. */
964 /* If this is a branch outside a loop, it is highly unlikely. */
965 if (GET_CODE (PATTERN (jump_insn
)) == SET
966 && GET_CODE (SET_SRC (PATTERN (jump_insn
))) == IF_THEN_ELSE
967 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn
)), 1)) == LABEL_REF
968 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn
)), 1)))
969 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn
)), 2)) == LABEL_REF
970 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn
)), 2)))))
975 /* If this is the test of a loop, it is very likely true. We scan
976 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
977 before the next real insn, we assume the branch is to the top of
979 for (insn
= PREV_INSN (target_label
);
980 insn
&& GET_CODE (insn
) == NOTE
;
981 insn
= PREV_INSN (insn
))
982 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
985 /* If this is a jump to the test of a loop, it is likely true. We scan
986 forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP
987 before the next real insn, we assume the branch is to the loop branch
989 for (insn
= NEXT_INSN (target_label
);
990 insn
&& GET_CODE (insn
) == NOTE
;
991 insn
= PREV_INSN (insn
))
992 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_VTOP
)
996 /* Look at the relative rarities of the fallthrough and destination. If
997 they differ, we can predict the branch that way. */
999 switch (rare_fallthrough
- rare_dest
)
1013 /* If we couldn't figure out what this jump was, assume it won't be
1014 taken. This should be rare. */
1018 /* EQ tests are usually false and NE tests are usually true. Also,
1019 most quantities are positive, so we can make the appropriate guesses
1020 about signed comparisons against zero. */
1021 switch (GET_CODE (condition
))
1024 /* Unconditional branch. */
1032 if (XEXP (condition
, 1) == const0_rtx
)
1037 if (XEXP (condition
, 1) == const0_rtx
)
1045 /* Predict backward branches usually take, forward branches usually not. If
1046 we don't know whether this is forward or backward, assume the branch
1047 will be taken, since most are. */
1048 return (target_label
== 0 || INSN_UID (jump_insn
) > max_uid
1049 || INSN_UID (target_label
) > max_uid
1050 || (uid_to_ruid
[INSN_UID (jump_insn
)]
1051 > uid_to_ruid
[INSN_UID (target_label
)]));
1054 /* Return the condition under which INSN will branch to TARGET. If TARGET
1055 is zero, return the condition under which INSN will return. If INSN is
1056 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1057 type of jump, or it doesn't go to TARGET, return 0. */
1060 get_branch_condition (insn
, target
)
1064 rtx pat
= PATTERN (insn
);
1067 if (condjump_in_parallel_p (insn
))
1068 pat
= XVECEXP (pat
, 0, 0);
1070 if (GET_CODE (pat
) == RETURN
)
1071 return target
== 0 ? const_true_rtx
: 0;
1073 else if (GET_CODE (pat
) != SET
|| SET_DEST (pat
) != pc_rtx
)
1076 src
= SET_SRC (pat
);
1077 if (GET_CODE (src
) == LABEL_REF
&& XEXP (src
, 0) == target
)
1078 return const_true_rtx
;
1080 else if (GET_CODE (src
) == IF_THEN_ELSE
1081 && ((target
== 0 && GET_CODE (XEXP (src
, 1)) == RETURN
)
1082 || (GET_CODE (XEXP (src
, 1)) == LABEL_REF
1083 && XEXP (XEXP (src
, 1), 0) == target
))
1084 && XEXP (src
, 2) == pc_rtx
)
1085 return XEXP (src
, 0);
1087 else if (GET_CODE (src
) == IF_THEN_ELSE
1088 && ((target
== 0 && GET_CODE (XEXP (src
, 2)) == RETURN
)
1089 || (GET_CODE (XEXP (src
, 2)) == LABEL_REF
1090 && XEXP (XEXP (src
, 2), 0) == target
))
1091 && XEXP (src
, 1) == pc_rtx
)
1094 rev
= reversed_comparison_code (XEXP (src
, 0), insn
);
1096 return gen_rtx_fmt_ee (rev
, GET_MODE (XEXP (src
, 0)),
1097 XEXP (XEXP (src
, 0), 0),
1098 XEXP (XEXP (src
, 0), 1));
1104 /* Return non-zero if CONDITION is more strict than the condition of
1105 INSN, i.e., if INSN will always branch if CONDITION is true. */
1108 condition_dominates_p (condition
, insn
)
1112 rtx other_condition
= get_branch_condition (insn
, JUMP_LABEL (insn
));
1113 enum rtx_code code
= GET_CODE (condition
);
1114 enum rtx_code other_code
;
1116 if (rtx_equal_p (condition
, other_condition
)
1117 || other_condition
== const_true_rtx
)
1120 else if (condition
== const_true_rtx
|| other_condition
== 0)
1123 other_code
= GET_CODE (other_condition
);
1124 if (GET_RTX_LENGTH (code
) != 2 || GET_RTX_LENGTH (other_code
) != 2
1125 || ! rtx_equal_p (XEXP (condition
, 0), XEXP (other_condition
, 0))
1126 || ! rtx_equal_p (XEXP (condition
, 1), XEXP (other_condition
, 1)))
1129 return comparison_dominates_p (code
, other_code
);
1132 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1133 any insns already in the delay slot of JUMP. */
1136 redirect_with_delay_slots_safe_p (jump
, newlabel
, seq
)
1137 rtx jump
, newlabel
, seq
;
1140 rtx pat
= PATTERN (seq
);
1142 /* Make sure all the delay slots of this jump would still
1143 be valid after threading the jump. If they are still
1144 valid, then return non-zero. */
1146 flags
= get_jump_flags (jump
, newlabel
);
1147 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1149 #ifdef ANNUL_IFFALSE_SLOTS
1150 (INSN_ANNULLED_BRANCH_P (jump
)
1151 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1152 ? eligible_for_annul_false (jump
, i
- 1,
1153 XVECEXP (pat
, 0, i
), flags
) :
1155 #ifdef ANNUL_IFTRUE_SLOTS
1156 (INSN_ANNULLED_BRANCH_P (jump
)
1157 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1158 ? eligible_for_annul_true (jump
, i
- 1,
1159 XVECEXP (pat
, 0, i
), flags
) :
1161 eligible_for_delay (jump
, i
- 1, XVECEXP (pat
, 0, i
), flags
)))
1164 return (i
== XVECLEN (pat
, 0));
1167 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1168 any insns we wish to place in the delay slot of JUMP. */
1171 redirect_with_delay_list_safe_p (jump
, newlabel
, delay_list
)
1172 rtx jump
, newlabel
, delay_list
;
1177 /* Make sure all the insns in DELAY_LIST would still be
1178 valid after threading the jump. If they are still
1179 valid, then return non-zero. */
1181 flags
= get_jump_flags (jump
, newlabel
);
1182 for (li
= delay_list
, i
= 0; li
; li
= XEXP (li
, 1), i
++)
1184 #ifdef ANNUL_IFFALSE_SLOTS
1185 (INSN_ANNULLED_BRANCH_P (jump
)
1186 && INSN_FROM_TARGET_P (XEXP (li
, 0)))
1187 ? eligible_for_annul_false (jump
, i
, XEXP (li
, 0), flags
) :
1189 #ifdef ANNUL_IFTRUE_SLOTS
1190 (INSN_ANNULLED_BRANCH_P (jump
)
1191 && ! INSN_FROM_TARGET_P (XEXP (li
, 0)))
1192 ? eligible_for_annul_true (jump
, i
, XEXP (li
, 0), flags
) :
1194 eligible_for_delay (jump
, i
, XEXP (li
, 0), flags
)))
1197 return (li
== NULL
);
1200 /* DELAY_LIST is a list of insns that have already been placed into delay
1201 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1202 If not, return 0; otherwise return 1. */
1205 check_annul_list_true_false (annul_true_p
, delay_list
)
1213 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1215 rtx trial
= XEXP (temp
, 0);
1217 if ((annul_true_p
&& INSN_FROM_TARGET_P (trial
))
1218 || (!annul_true_p
&& !INSN_FROM_TARGET_P (trial
)))
1226 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1227 the condition tested by INSN is CONDITION and the resources shown in
1228 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1229 from SEQ's delay list, in addition to whatever insns it may execute
1230 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1231 needed while searching for delay slot insns. Return the concatenated
1232 delay list if possible, otherwise, return 0.
1234 SLOTS_TO_FILL is the total number of slots required by INSN, and
1235 PSLOTS_FILLED points to the number filled so far (also the number of
1236 insns in DELAY_LIST). It is updated with the number that have been
1237 filled from the SEQUENCE, if any.
1239 PANNUL_P points to a non-zero value if we already know that we need
1240 to annul INSN. If this routine determines that annulling is needed,
1241 it may set that value non-zero.
1243 PNEW_THREAD points to a location that is to receive the place at which
1244 execution should continue. */
1247 steal_delay_list_from_target (insn
, condition
, seq
, delay_list
,
1248 sets
, needed
, other_needed
,
1249 slots_to_fill
, pslots_filled
, pannul_p
,
1251 rtx insn
, condition
;
1254 struct resources
*sets
, *needed
, *other_needed
;
1261 int slots_remaining
= slots_to_fill
- *pslots_filled
;
1262 int total_slots_filled
= *pslots_filled
;
1263 rtx new_delay_list
= 0;
1264 int must_annul
= *pannul_p
;
1267 struct resources cc_set
;
1269 /* We can't do anything if there are more delay slots in SEQ than we
1270 can handle, or if we don't know that it will be a taken branch.
1271 We know that it will be a taken branch if it is either an unconditional
1272 branch or a conditional branch with a stricter branch condition.
1274 Also, exit if the branch has more than one set, since then it is computing
1275 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1276 ??? It may be possible to move other sets into INSN in addition to
1277 moving the instructions in the delay slots.
1279 We can not steal the delay list if one of the instructions in the
1280 current delay_list modifies the condition codes and the jump in the
1281 sequence is a conditional jump. We can not do this because we can
1282 not change the direction of the jump because the condition codes
1283 will effect the direction of the jump in the sequence. */
1285 CLEAR_RESOURCE (&cc_set
);
1286 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1288 rtx trial
= XEXP (temp
, 0);
1290 mark_set_resources (trial
, &cc_set
, 0, MARK_SRC_DEST_CALL
);
1291 if (insn_references_resource_p (XVECEXP (seq
, 0, 0), &cc_set
, 0))
1295 if (XVECLEN (seq
, 0) - 1 > slots_remaining
1296 || ! condition_dominates_p (condition
, XVECEXP (seq
, 0, 0))
1297 || ! single_set (XVECEXP (seq
, 0, 0)))
1300 #ifdef MD_CAN_REDIRECT_BRANCH
1301 /* On some targets, branches with delay slots can have a limited
1302 displacement. Give the back end a chance to tell us we can't do
1304 if (! MD_CAN_REDIRECT_BRANCH (insn
, XVECEXP (seq
, 0, 0)))
1308 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1310 rtx trial
= XVECEXP (seq
, 0, i
);
1313 if (insn_references_resource_p (trial
, sets
, 0)
1314 || insn_sets_resource_p (trial
, needed
, 0)
1315 || insn_sets_resource_p (trial
, sets
, 0)
1317 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1319 || find_reg_note (trial
, REG_CC_USER
, NULL_RTX
)
1321 /* If TRIAL is from the fallthrough code of an annulled branch insn
1322 in SEQ, we cannot use it. */
1323 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq
, 0, 0))
1324 && ! INSN_FROM_TARGET_P (trial
)))
1327 /* If this insn was already done (usually in a previous delay slot),
1328 pretend we put it in our delay slot. */
1329 if (redundant_insn (trial
, insn
, new_delay_list
))
1332 /* We will end up re-vectoring this branch, so compute flags
1333 based on jumping to the new label. */
1334 flags
= get_jump_flags (insn
, JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1337 && ((condition
== const_true_rtx
1338 || (! insn_sets_resource_p (trial
, other_needed
, 0)
1339 && ! may_trap_p (PATTERN (trial
)))))
1340 ? eligible_for_delay (insn
, total_slots_filled
, trial
, flags
)
1341 : (must_annul
|| (delay_list
== NULL
&& new_delay_list
== NULL
))
1343 check_annul_list_true_false (0, delay_list
)
1344 && check_annul_list_true_false (0, new_delay_list
)
1345 && eligible_for_annul_false (insn
, total_slots_filled
,
1350 temp
= copy_rtx (trial
);
1351 INSN_FROM_TARGET_P (temp
) = 1;
1352 new_delay_list
= add_to_delay_list (temp
, new_delay_list
);
1353 total_slots_filled
++;
1355 if (--slots_remaining
== 0)
1362 /* Show the place to which we will be branching. */
1363 *pnew_thread
= next_active_insn (JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1365 /* Add any new insns to the delay list and update the count of the
1366 number of slots filled. */
1367 *pslots_filled
= total_slots_filled
;
1371 if (delay_list
== 0)
1372 return new_delay_list
;
1374 for (temp
= new_delay_list
; temp
; temp
= XEXP (temp
, 1))
1375 delay_list
= add_to_delay_list (XEXP (temp
, 0), delay_list
);
1380 /* Similar to steal_delay_list_from_target except that SEQ is on the
1381 fallthrough path of INSN. Here we only do something if the delay insn
1382 of SEQ is an unconditional branch. In that case we steal its delay slot
1383 for INSN since unconditional branches are much easier to fill. */
1386 steal_delay_list_from_fallthrough (insn
, condition
, seq
,
1387 delay_list
, sets
, needed
, other_needed
,
1388 slots_to_fill
, pslots_filled
, pannul_p
)
1389 rtx insn
, condition
;
1392 struct resources
*sets
, *needed
, *other_needed
;
1399 int must_annul
= *pannul_p
;
1402 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
1404 /* We can't do anything if SEQ's delay insn isn't an
1405 unconditional branch. */
1407 if (! simplejump_p (XVECEXP (seq
, 0, 0))
1408 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 0))) != RETURN
)
1411 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1413 rtx trial
= XVECEXP (seq
, 0, i
);
1415 /* If TRIAL sets CC0, stealing it will move it too far from the use
1417 if (insn_references_resource_p (trial
, sets
, 0)
1418 || insn_sets_resource_p (trial
, needed
, 0)
1419 || insn_sets_resource_p (trial
, sets
, 0)
1421 || sets_cc0_p (PATTERN (trial
))
1427 /* If this insn was already done, we don't need it. */
1428 if (redundant_insn (trial
, insn
, delay_list
))
1430 delete_from_delay_slot (trial
);
1435 && ((condition
== const_true_rtx
1436 || (! insn_sets_resource_p (trial
, other_needed
, 0)
1437 && ! may_trap_p (PATTERN (trial
)))))
1438 ? eligible_for_delay (insn
, *pslots_filled
, trial
, flags
)
1439 : (must_annul
|| delay_list
== NULL
) && (must_annul
= 1,
1440 check_annul_list_true_false (1, delay_list
)
1441 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
1445 delete_from_delay_slot (trial
);
1446 delay_list
= add_to_delay_list (trial
, delay_list
);
1448 if (++(*pslots_filled
) == slots_to_fill
)
1460 /* Try merging insns starting at THREAD which match exactly the insns in
1463 If all insns were matched and the insn was previously annulling, the
1464 annul bit will be cleared.
1466 For each insn that is merged, if the branch is or will be non-annulling,
1467 we delete the merged insn. */
1470 try_merge_delay_insns (insn
, thread
)
1473 rtx trial
, next_trial
;
1474 rtx delay_insn
= XVECEXP (PATTERN (insn
), 0, 0);
1475 int annul_p
= INSN_ANNULLED_BRANCH_P (delay_insn
);
1476 int slot_number
= 1;
1477 int num_slots
= XVECLEN (PATTERN (insn
), 0);
1478 rtx next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1479 struct resources set
, needed
;
1480 rtx merged_insns
= 0;
1484 flags
= get_jump_flags (delay_insn
, JUMP_LABEL (delay_insn
));
1486 CLEAR_RESOURCE (&needed
);
1487 CLEAR_RESOURCE (&set
);
1489 /* If this is not an annulling branch, take into account anything needed in
1490 INSN's delay slot. This prevents two increments from being incorrectly
1491 folded into one. If we are annulling, this would be the correct
1492 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1493 will essentially disable this optimization. This method is somewhat of
1494 a kludge, but I don't see a better way.) */
1496 for (i
= 1 ; i
< num_slots
; i
++)
1497 if (XVECEXP (PATTERN (insn
), 0, i
))
1498 mark_referenced_resources (XVECEXP (PATTERN (insn
), 0, i
), &needed
, 1);
1500 for (trial
= thread
; !stop_search_p (trial
, 1); trial
= next_trial
)
1502 rtx pat
= PATTERN (trial
);
1503 rtx oldtrial
= trial
;
1505 next_trial
= next_nonnote_insn (trial
);
1507 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1508 if (GET_CODE (trial
) == INSN
1509 && (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
))
1512 if (GET_CODE (next_to_match
) == GET_CODE (trial
)
1514 /* We can't share an insn that sets cc0. */
1515 && ! sets_cc0_p (pat
)
1517 && ! insn_references_resource_p (trial
, &set
, 1)
1518 && ! insn_sets_resource_p (trial
, &set
, 1)
1519 && ! insn_sets_resource_p (trial
, &needed
, 1)
1520 && (trial
= try_split (pat
, trial
, 0)) != 0
1521 /* Update next_trial, in case try_split succeeded. */
1522 && (next_trial
= next_nonnote_insn (trial
))
1523 /* Likewise THREAD. */
1524 && (thread
= oldtrial
== thread
? trial
: thread
)
1525 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (trial
))
1526 /* Have to test this condition if annul condition is different
1527 from (and less restrictive than) non-annulling one. */
1528 && eligible_for_delay (delay_insn
, slot_number
- 1, trial
, flags
))
1533 update_block (trial
, thread
);
1534 if (trial
== thread
)
1535 thread
= next_active_insn (thread
);
1537 delete_related_insns (trial
);
1538 INSN_FROM_TARGET_P (next_to_match
) = 0;
1541 merged_insns
= gen_rtx_INSN_LIST (VOIDmode
, trial
, merged_insns
);
1543 if (++slot_number
== num_slots
)
1546 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1549 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
1550 mark_referenced_resources (trial
, &needed
, 1);
1553 /* See if we stopped on a filled insn. If we did, try to see if its
1554 delay slots match. */
1555 if (slot_number
!= num_slots
1556 && trial
&& GET_CODE (trial
) == INSN
1557 && GET_CODE (PATTERN (trial
)) == SEQUENCE
1558 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial
), 0, 0)))
1560 rtx pat
= PATTERN (trial
);
1561 rtx filled_insn
= XVECEXP (pat
, 0, 0);
1563 /* Account for resources set/needed by the filled insn. */
1564 mark_set_resources (filled_insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1565 mark_referenced_resources (filled_insn
, &needed
, 1);
1567 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1569 rtx dtrial
= XVECEXP (pat
, 0, i
);
1571 if (! insn_references_resource_p (dtrial
, &set
, 1)
1572 && ! insn_sets_resource_p (dtrial
, &set
, 1)
1573 && ! insn_sets_resource_p (dtrial
, &needed
, 1)
1575 && ! sets_cc0_p (PATTERN (dtrial
))
1577 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (dtrial
))
1578 && eligible_for_delay (delay_insn
, slot_number
- 1, dtrial
, flags
))
1584 update_block (dtrial
, thread
);
1585 new = delete_from_delay_slot (dtrial
);
1586 if (INSN_DELETED_P (thread
))
1588 INSN_FROM_TARGET_P (next_to_match
) = 0;
1591 merged_insns
= gen_rtx_INSN_LIST (SImode
, dtrial
,
1594 if (++slot_number
== num_slots
)
1597 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1601 /* Keep track of the set/referenced resources for the delay
1602 slots of any trial insns we encounter. */
1603 mark_set_resources (dtrial
, &set
, 0, MARK_SRC_DEST_CALL
);
1604 mark_referenced_resources (dtrial
, &needed
, 1);
1609 /* If all insns in the delay slot have been matched and we were previously
1610 annulling the branch, we need not any more. In that case delete all the
1611 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1612 the delay list so that we know that it isn't only being used at the
1614 if (slot_number
== num_slots
&& annul_p
)
1616 for (; merged_insns
; merged_insns
= XEXP (merged_insns
, 1))
1618 if (GET_MODE (merged_insns
) == SImode
)
1622 update_block (XEXP (merged_insns
, 0), thread
);
1623 new = delete_from_delay_slot (XEXP (merged_insns
, 0));
1624 if (INSN_DELETED_P (thread
))
1629 update_block (XEXP (merged_insns
, 0), thread
);
1630 delete_related_insns (XEXP (merged_insns
, 0));
1634 INSN_ANNULLED_BRANCH_P (delay_insn
) = 0;
1636 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1637 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
)) = 0;
1641 /* See if INSN is redundant with an insn in front of TARGET. Often this
1642 is called when INSN is a candidate for a delay slot of TARGET.
1643 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1644 of INSN. Often INSN will be redundant with an insn in a delay slot of
1645 some previous insn. This happens when we have a series of branches to the
1646 same label; in that case the first insn at the target might want to go
1647 into each of the delay slots.
1649 If we are not careful, this routine can take up a significant fraction
1650 of the total compilation time (4%), but only wins rarely. Hence we
1651 speed this routine up by making two passes. The first pass goes back
1652 until it hits a label and sees if it find an insn with an identical
1653 pattern. Only in this (relatively rare) event does it check for
1656 We do not split insns we encounter. This could cause us not to find a
1657 redundant insn, but the cost of splitting seems greater than the possible
1658 gain in rare cases. */
1661 redundant_insn (insn
, target
, delay_list
)
1666 rtx target_main
= target
;
1667 rtx ipat
= PATTERN (insn
);
1669 struct resources needed
, set
;
1671 unsigned insns_to_search
;
1673 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1674 are allowed to not actually assign to such a register. */
1675 if (find_reg_note (insn
, REG_UNUSED
, NULL_RTX
) != 0)
1678 /* Scan backwards looking for a match. */
1679 for (trial
= PREV_INSN (target
),
1680 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1681 trial
&& insns_to_search
> 0;
1682 trial
= PREV_INSN (trial
), --insns_to_search
)
1684 if (GET_CODE (trial
) == CODE_LABEL
)
1687 if (! INSN_P (trial
))
1690 pat
= PATTERN (trial
);
1691 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1694 if (GET_CODE (pat
) == SEQUENCE
)
1696 /* Stop for a CALL and its delay slots because it is difficult to
1697 track its resource needs correctly. */
1698 if (GET_CODE (XVECEXP (pat
, 0, 0)) == CALL_INSN
)
1701 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1702 slots because it is difficult to track its resource needs
1705 #ifdef INSN_SETS_ARE_DELAYED
1706 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1710 #ifdef INSN_REFERENCES_ARE_DELAYED
1711 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1715 /* See if any of the insns in the delay slot match, updating
1716 resource requirements as we go. */
1717 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1718 if (GET_CODE (XVECEXP (pat
, 0, i
)) == GET_CODE (insn
)
1719 && rtx_equal_p (PATTERN (XVECEXP (pat
, 0, i
)), ipat
)
1720 && ! find_reg_note (XVECEXP (pat
, 0, i
), REG_UNUSED
, NULL_RTX
))
1723 /* If found a match, exit this loop early. */
1728 else if (GET_CODE (trial
) == GET_CODE (insn
) && rtx_equal_p (pat
, ipat
)
1729 && ! find_reg_note (trial
, REG_UNUSED
, NULL_RTX
))
1733 /* If we didn't find an insn that matches, return 0. */
1737 /* See what resources this insn sets and needs. If they overlap, or
1738 if this insn references CC0, it can't be redundant. */
1740 CLEAR_RESOURCE (&needed
);
1741 CLEAR_RESOURCE (&set
);
1742 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1743 mark_referenced_resources (insn
, &needed
, 1);
1745 /* If TARGET is a SEQUENCE, get the main insn. */
1746 if (GET_CODE (target
) == INSN
&& GET_CODE (PATTERN (target
)) == SEQUENCE
)
1747 target_main
= XVECEXP (PATTERN (target
), 0, 0);
1749 if (resource_conflicts_p (&needed
, &set
)
1751 || reg_mentioned_p (cc0_rtx
, ipat
)
1753 /* The insn requiring the delay may not set anything needed or set by
1755 || insn_sets_resource_p (target_main
, &needed
, 1)
1756 || insn_sets_resource_p (target_main
, &set
, 1))
1759 /* Insns we pass may not set either NEEDED or SET, so merge them for
1761 needed
.memory
|= set
.memory
;
1762 needed
.unch_memory
|= set
.unch_memory
;
1763 IOR_HARD_REG_SET (needed
.regs
, set
.regs
);
1765 /* This insn isn't redundant if it conflicts with an insn that either is
1766 or will be in a delay slot of TARGET. */
1770 if (insn_sets_resource_p (XEXP (delay_list
, 0), &needed
, 1))
1772 delay_list
= XEXP (delay_list
, 1);
1775 if (GET_CODE (target
) == INSN
&& GET_CODE (PATTERN (target
)) == SEQUENCE
)
1776 for (i
= 1; i
< XVECLEN (PATTERN (target
), 0); i
++)
1777 if (insn_sets_resource_p (XVECEXP (PATTERN (target
), 0, i
), &needed
, 1))
1780 /* Scan backwards until we reach a label or an insn that uses something
1781 INSN sets or sets something insn uses or sets. */
1783 for (trial
= PREV_INSN (target
),
1784 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1785 trial
&& GET_CODE (trial
) != CODE_LABEL
&& insns_to_search
> 0;
1786 trial
= PREV_INSN (trial
), --insns_to_search
)
1788 if (GET_CODE (trial
) != INSN
&& GET_CODE (trial
) != CALL_INSN
1789 && GET_CODE (trial
) != JUMP_INSN
)
1792 pat
= PATTERN (trial
);
1793 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1796 if (GET_CODE (pat
) == SEQUENCE
)
1798 /* If this is a CALL_INSN and its delay slots, it is hard to track
1799 the resource needs properly, so give up. */
1800 if (GET_CODE (XVECEXP (pat
, 0, 0)) == CALL_INSN
)
1803 /* If this is an INSN or JUMP_INSN with delayed effects, it
1804 is hard to track the resource needs properly, so give up. */
1806 #ifdef INSN_SETS_ARE_DELAYED
1807 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1811 #ifdef INSN_REFERENCES_ARE_DELAYED
1812 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1816 /* See if any of the insns in the delay slot match, updating
1817 resource requirements as we go. */
1818 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1820 rtx candidate
= XVECEXP (pat
, 0, i
);
1822 /* If an insn will be annulled if the branch is false, it isn't
1823 considered as a possible duplicate insn. */
1824 if (rtx_equal_p (PATTERN (candidate
), ipat
)
1825 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat
, 0, 0))
1826 && INSN_FROM_TARGET_P (candidate
)))
1828 /* Show that this insn will be used in the sequel. */
1829 INSN_FROM_TARGET_P (candidate
) = 0;
1833 /* Unless this is an annulled insn from the target of a branch,
1834 we must stop if it sets anything needed or set by INSN. */
1835 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat
, 0, 0))
1836 || ! INSN_FROM_TARGET_P (candidate
))
1837 && insn_sets_resource_p (candidate
, &needed
, 1))
1841 /* If the insn requiring the delay slot conflicts with INSN, we
1843 if (insn_sets_resource_p (XVECEXP (pat
, 0, 0), &needed
, 1))
1848 /* See if TRIAL is the same as INSN. */
1849 pat
= PATTERN (trial
);
1850 if (rtx_equal_p (pat
, ipat
))
1853 /* Can't go any further if TRIAL conflicts with INSN. */
1854 if (insn_sets_resource_p (trial
, &needed
, 1))
1862 /* Return 1 if THREAD can only be executed in one way. If LABEL is non-zero,
1863 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1864 is non-zero, we are allowed to fall into this thread; otherwise, we are
1867 If LABEL is used more than one or we pass a label other than LABEL before
1868 finding an active insn, we do not own this thread. */
1871 own_thread_p (thread
, label
, allow_fallthrough
)
1874 int allow_fallthrough
;
1879 /* We don't own the function end. */
1883 /* Get the first active insn, or THREAD, if it is an active insn. */
1884 active_insn
= next_active_insn (PREV_INSN (thread
));
1886 for (insn
= thread
; insn
!= active_insn
; insn
= NEXT_INSN (insn
))
1887 if (GET_CODE (insn
) == CODE_LABEL
1888 && (insn
!= label
|| LABEL_NUSES (insn
) != 1))
1891 if (allow_fallthrough
)
1894 /* Ensure that we reach a BARRIER before any insn or label. */
1895 for (insn
= prev_nonnote_insn (thread
);
1896 insn
== 0 || GET_CODE (insn
) != BARRIER
;
1897 insn
= prev_nonnote_insn (insn
))
1899 || GET_CODE (insn
) == CODE_LABEL
1900 || (GET_CODE (insn
) == INSN
1901 && GET_CODE (PATTERN (insn
)) != USE
1902 && GET_CODE (PATTERN (insn
)) != CLOBBER
))
1908 /* Called when INSN is being moved from a location near the target of a jump.
1909 We leave a marker of the form (use (INSN)) immediately in front
1910 of WHERE for mark_target_live_regs. These markers will be deleted when
1913 We used to try to update the live status of registers if WHERE is at
1914 the start of a basic block, but that can't work since we may remove a
1915 BARRIER in relax_delay_slots. */
1918 update_block (insn
, where
)
1922 /* Ignore if this was in a delay slot and it came from the target of
1924 if (INSN_FROM_TARGET_P (insn
))
1927 emit_insn_before (gen_rtx_USE (VOIDmode
, insn
), where
);
1929 /* INSN might be making a value live in a block where it didn't use to
1930 be. So recompute liveness information for this block. */
1932 incr_ticks_for_insn (insn
);
1935 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1936 the basic block containing the jump. */
1939 reorg_redirect_jump (jump
, nlabel
)
1943 incr_ticks_for_insn (jump
);
1944 return redirect_jump (jump
, nlabel
, 1);
1947 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1948 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1949 that reference values used in INSN. If we find one, then we move the
1950 REG_DEAD note to INSN.
1952 This is needed to handle the case where an later insn (after INSN) has a
1953 REG_DEAD note for a register used by INSN, and this later insn subsequently
1954 gets moved before a CODE_LABEL because it is a redundant insn. In this
1955 case, mark_target_live_regs may be confused into thinking the register
1956 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1959 update_reg_dead_notes (insn
, delayed_insn
)
1960 rtx insn
, delayed_insn
;
1964 for (p
= next_nonnote_insn (insn
); p
!= delayed_insn
;
1965 p
= next_nonnote_insn (p
))
1966 for (link
= REG_NOTES (p
); link
; link
= next
)
1968 next
= XEXP (link
, 1);
1970 if (REG_NOTE_KIND (link
) != REG_DEAD
1971 || GET_CODE (XEXP (link
, 0)) != REG
)
1974 if (reg_referenced_p (XEXP (link
, 0), PATTERN (insn
)))
1976 /* Move the REG_DEAD note from P to INSN. */
1977 remove_note (p
, link
);
1978 XEXP (link
, 1) = REG_NOTES (insn
);
1979 REG_NOTES (insn
) = link
;
1984 /* Called when an insn redundant with start_insn is deleted. If there
1985 is a REG_DEAD note for the target of start_insn between start_insn
1986 and stop_insn, then the REG_DEAD note needs to be deleted since the
1987 value no longer dies there.
1989 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1990 confused into thinking the register is dead. */
1993 fix_reg_dead_note (start_insn
, stop_insn
)
1994 rtx start_insn
, stop_insn
;
1998 for (p
= next_nonnote_insn (start_insn
); p
!= stop_insn
;
1999 p
= next_nonnote_insn (p
))
2000 for (link
= REG_NOTES (p
); link
; link
= next
)
2002 next
= XEXP (link
, 1);
2004 if (REG_NOTE_KIND (link
) != REG_DEAD
2005 || GET_CODE (XEXP (link
, 0)) != REG
)
2008 if (reg_set_p (XEXP (link
, 0), PATTERN (start_insn
)))
2010 remove_note (p
, link
);
2016 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
2018 This handles the case of udivmodXi4 instructions which optimize their
2019 output depending on whether any REG_UNUSED notes are present.
2020 we must make sure that INSN calculates as many results as REDUNDANT_INSN
2024 update_reg_unused_notes (insn
, redundant_insn
)
2025 rtx insn
, redundant_insn
;
2029 for (link
= REG_NOTES (insn
); link
; link
= next
)
2031 next
= XEXP (link
, 1);
2033 if (REG_NOTE_KIND (link
) != REG_UNUSED
2034 || GET_CODE (XEXP (link
, 0)) != REG
)
2037 if (! find_regno_note (redundant_insn
, REG_UNUSED
,
2038 REGNO (XEXP (link
, 0))))
2039 remove_note (insn
, link
);
2043 /* Scan a function looking for insns that need a delay slot and find insns to
2044 put into the delay slot.
2046 NON_JUMPS_P is non-zero if we are to only try to fill non-jump insns (such
2047 as calls). We do these first since we don't want jump insns (that are
2048 easier to fill) to get the only insns that could be used for non-jump insns.
2049 When it is zero, only try to fill JUMP_INSNs.
2051 When slots are filled in this manner, the insns (including the
2052 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2053 it is possible to tell whether a delay slot has really been filled
2054 or not. `final' knows how to deal with this, by communicating
2055 through FINAL_SEQUENCE. */
2058 fill_simple_delay_slots (non_jumps_p
)
2061 rtx insn
, pat
, trial
, next_trial
;
2063 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2064 struct resources needed
, set
;
2065 int slots_to_fill
, slots_filled
;
2068 for (i
= 0; i
< num_unfilled_slots
; i
++)
2071 /* Get the next insn to fill. If it has already had any slots assigned,
2072 we can't do anything with it. Maybe we'll improve this later. */
2074 insn
= unfilled_slots_base
[i
];
2076 || INSN_DELETED_P (insn
)
2077 || (GET_CODE (insn
) == INSN
2078 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2079 || (GET_CODE (insn
) == JUMP_INSN
&& non_jumps_p
)
2080 || (GET_CODE (insn
) != JUMP_INSN
&& ! non_jumps_p
))
2083 /* It may have been that this insn used to need delay slots, but
2084 now doesn't; ignore in that case. This can happen, for example,
2085 on the HP PA RISC, where the number of delay slots depends on
2086 what insns are nearby. */
2087 slots_to_fill
= num_delay_slots (insn
);
2089 /* Some machine description have defined instructions to have
2090 delay slots only in certain circumstances which may depend on
2091 nearby insns (which change due to reorg's actions).
2093 For example, the PA port normally has delay slots for unconditional
2096 However, the PA port claims such jumps do not have a delay slot
2097 if they are immediate successors of certain CALL_INSNs. This
2098 allows the port to favor filling the delay slot of the call with
2099 the unconditional jump. */
2100 if (slots_to_fill
== 0)
2103 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2104 says how many. After initialization, first try optimizing
2107 nop add %o7,.-L1,%o7
2111 If this case applies, the delay slot of the call is filled with
2112 the unconditional jump. This is done first to avoid having the
2113 delay slot of the call filled in the backward scan. Also, since
2114 the unconditional jump is likely to also have a delay slot, that
2115 insn must exist when it is subsequently scanned.
2117 This is tried on each insn with delay slots as some machines
2118 have insns which perform calls, but are not represented as
2124 if (GET_CODE (insn
) == JUMP_INSN
)
2125 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2127 flags
= get_jump_flags (insn
, NULL_RTX
);
2129 if ((trial
= next_active_insn (insn
))
2130 && GET_CODE (trial
) == JUMP_INSN
2131 && simplejump_p (trial
)
2132 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2133 && no_labels_between_p (insn
, trial
)
2134 && ! can_throw_internal (trial
))
2138 delay_list
= add_to_delay_list (trial
, delay_list
);
2140 /* TRIAL may have had its delay slot filled, then unfilled. When
2141 the delay slot is unfilled, TRIAL is placed back on the unfilled
2142 slots obstack. Unfortunately, it is placed on the end of the
2143 obstack, not in its original location. Therefore, we must search
2144 from entry i + 1 to the end of the unfilled slots obstack to
2145 try and find TRIAL. */
2146 tmp
= &unfilled_slots_base
[i
+ 1];
2147 while (*tmp
!= trial
&& tmp
!= unfilled_slots_next
)
2150 /* Remove the unconditional jump from consideration for delay slot
2151 filling and unthread it. */
2155 rtx next
= NEXT_INSN (trial
);
2156 rtx prev
= PREV_INSN (trial
);
2158 NEXT_INSN (prev
) = next
;
2160 PREV_INSN (next
) = prev
;
2164 /* Now, scan backwards from the insn to search for a potential
2165 delay-slot candidate. Stop searching when a label or jump is hit.
2167 For each candidate, if it is to go into the delay slot (moved
2168 forward in execution sequence), it must not need or set any resources
2169 that were set by later insns and must not set any resources that
2170 are needed for those insns.
2172 The delay slot insn itself sets resources unless it is a call
2173 (in which case the called routine, not the insn itself, is doing
2176 if (slots_filled
< slots_to_fill
)
2178 CLEAR_RESOURCE (&needed
);
2179 CLEAR_RESOURCE (&set
);
2180 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST
);
2181 mark_referenced_resources (insn
, &needed
, 0);
2183 for (trial
= prev_nonnote_insn (insn
); ! stop_search_p (trial
, 1);
2186 next_trial
= prev_nonnote_insn (trial
);
2188 /* This must be an INSN or CALL_INSN. */
2189 pat
= PATTERN (trial
);
2191 /* USE and CLOBBER at this level was just for flow; ignore it. */
2192 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2195 /* Check for resource conflict first, to avoid unnecessary
2197 if (! insn_references_resource_p (trial
, &set
, 1)
2198 && ! insn_sets_resource_p (trial
, &set
, 1)
2199 && ! insn_sets_resource_p (trial
, &needed
, 1)
2201 /* Can't separate set of cc0 from its use. */
2202 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2204 && ! can_throw_internal (trial
))
2206 trial
= try_split (pat
, trial
, 1);
2207 next_trial
= prev_nonnote_insn (trial
);
2208 if (eligible_for_delay (insn
, slots_filled
, trial
, flags
))
2210 /* In this case, we are searching backward, so if we
2211 find insns to put on the delay list, we want
2212 to put them at the head, rather than the
2213 tail, of the list. */
2215 update_reg_dead_notes (trial
, insn
);
2216 delay_list
= gen_rtx_INSN_LIST (VOIDmode
,
2218 update_block (trial
, trial
);
2219 delete_related_insns (trial
);
2220 if (slots_to_fill
== ++slots_filled
)
2226 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2227 mark_referenced_resources (trial
, &needed
, 1);
2231 /* If all needed slots haven't been filled, we come here. */
2233 /* Try to optimize case of jumping around a single insn. */
2234 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2235 if (slots_filled
!= slots_to_fill
2237 && GET_CODE (insn
) == JUMP_INSN
2238 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
2240 delay_list
= optimize_skip (insn
);
2246 /* Try to get insns from beyond the insn needing the delay slot.
2247 These insns can neither set or reference resources set in insns being
2248 skipped, cannot set resources in the insn being skipped, and, if this
2249 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2250 call might not return).
2252 There used to be code which continued past the target label if
2253 we saw all uses of the target label. This code did not work,
2254 because it failed to account for some instructions which were
2255 both annulled and marked as from the target. This can happen as a
2256 result of optimize_skip. Since this code was redundant with
2257 fill_eager_delay_slots anyways, it was just deleted. */
2259 if (slots_filled
!= slots_to_fill
2260 /* If this instruction could throw an exception which is
2261 caught in the same function, then it's not safe to fill
2262 the delay slot with an instruction from beyond this
2263 point. For example, consider:
2274 Even though `i' is a local variable, we must be sure not
2275 to put `i = 3' in the delay slot if `f' might throw an
2278 Presumably, we should also check to see if we could get
2279 back to this function via `setjmp'. */
2280 && ! can_throw_internal (insn
)
2281 && (GET_CODE (insn
) != JUMP_INSN
2282 || ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
2283 && ! simplejump_p (insn
)
2284 && JUMP_LABEL (insn
) != 0)))
2286 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2287 label. Otherwise, zero. */
2289 int maybe_never
= 0;
2290 rtx pat
, trial_delay
;
2292 CLEAR_RESOURCE (&needed
);
2293 CLEAR_RESOURCE (&set
);
2295 if (GET_CODE (insn
) == CALL_INSN
)
2297 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2298 mark_referenced_resources (insn
, &needed
, 1);
2303 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2304 mark_referenced_resources (insn
, &needed
, 1);
2305 if (GET_CODE (insn
) == JUMP_INSN
)
2306 target
= JUMP_LABEL (insn
);
2310 for (trial
= next_nonnote_insn (insn
); trial
; trial
= next_trial
)
2312 next_trial
= next_nonnote_insn (trial
);
2314 if (GET_CODE (trial
) == CODE_LABEL
2315 || GET_CODE (trial
) == BARRIER
)
2318 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2319 pat
= PATTERN (trial
);
2321 /* Stand-alone USE and CLOBBER are just for flow. */
2322 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2325 /* If this already has filled delay slots, get the insn needing
2327 if (GET_CODE (pat
) == SEQUENCE
)
2328 trial_delay
= XVECEXP (pat
, 0, 0);
2330 trial_delay
= trial
;
2332 /* Stop our search when seeing an unconditional jump. */
2333 if (GET_CODE (trial_delay
) == JUMP_INSN
)
2336 /* See if we have a resource problem before we try to
2338 if (GET_CODE (pat
) != SEQUENCE
2339 && ! insn_references_resource_p (trial
, &set
, 1)
2340 && ! insn_sets_resource_p (trial
, &set
, 1)
2341 && ! insn_sets_resource_p (trial
, &needed
, 1)
2343 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2345 && ! (maybe_never
&& may_trap_p (pat
))
2346 && (trial
= try_split (pat
, trial
, 0))
2347 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2348 && ! can_throw_internal(trial
))
2350 next_trial
= next_nonnote_insn (trial
);
2351 delay_list
= add_to_delay_list (trial
, delay_list
);
2354 if (reg_mentioned_p (cc0_rtx
, pat
))
2355 link_cc0_insns (trial
);
2358 delete_related_insns (trial
);
2359 if (slots_to_fill
== ++slots_filled
)
2364 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2365 mark_referenced_resources (trial
, &needed
, 1);
2367 /* Ensure we don't put insns between the setting of cc and the
2368 comparison by moving a setting of cc into an earlier delay
2369 slot since these insns could clobber the condition code. */
2372 /* If this is a call or jump, we might not get here. */
2373 if (GET_CODE (trial_delay
) == CALL_INSN
2374 || GET_CODE (trial_delay
) == JUMP_INSN
)
2378 /* If there are slots left to fill and our search was stopped by an
2379 unconditional branch, try the insn at the branch target. We can
2380 redirect the branch if it works.
2382 Don't do this if the insn at the branch target is a branch. */
2383 if (slots_to_fill
!= slots_filled
2385 && GET_CODE (trial
) == JUMP_INSN
2386 && simplejump_p (trial
)
2387 && (target
== 0 || JUMP_LABEL (trial
) == target
)
2388 && (next_trial
= next_active_insn (JUMP_LABEL (trial
))) != 0
2389 && ! (GET_CODE (next_trial
) == INSN
2390 && GET_CODE (PATTERN (next_trial
)) == SEQUENCE
)
2391 && GET_CODE (next_trial
) != JUMP_INSN
2392 && ! insn_references_resource_p (next_trial
, &set
, 1)
2393 && ! insn_sets_resource_p (next_trial
, &set
, 1)
2394 && ! insn_sets_resource_p (next_trial
, &needed
, 1)
2396 && ! reg_mentioned_p (cc0_rtx
, PATTERN (next_trial
))
2398 && ! (maybe_never
&& may_trap_p (PATTERN (next_trial
)))
2399 && (next_trial
= try_split (PATTERN (next_trial
), next_trial
, 0))
2400 && eligible_for_delay (insn
, slots_filled
, next_trial
, flags
)
2401 && ! can_throw_internal (trial
))
2403 rtx new_label
= next_active_insn (next_trial
);
2406 new_label
= get_label_before (new_label
);
2408 new_label
= find_end_label ();
2411 = add_to_delay_list (copy_rtx (next_trial
), delay_list
);
2413 reorg_redirect_jump (trial
, new_label
);
2415 /* If we merged because we both jumped to the same place,
2416 redirect the original insn also. */
2418 reorg_redirect_jump (insn
, new_label
);
2422 /* If this is an unconditional jump, then try to get insns from the
2423 target of the jump. */
2424 if (GET_CODE (insn
) == JUMP_INSN
2425 && simplejump_p (insn
)
2426 && slots_filled
!= slots_to_fill
)
2428 = fill_slots_from_thread (insn
, const_true_rtx
,
2429 next_active_insn (JUMP_LABEL (insn
)),
2431 own_thread_p (JUMP_LABEL (insn
),
2432 JUMP_LABEL (insn
), 0),
2433 slots_to_fill
, &slots_filled
,
2437 unfilled_slots_base
[i
]
2438 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
2440 if (slots_to_fill
== slots_filled
)
2441 unfilled_slots_base
[i
] = 0;
2443 note_delay_statistics (slots_filled
, 0);
2446 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2447 /* See if the epilogue needs any delay slots. Try to fill them if so.
2448 The only thing we can do is scan backwards from the end of the
2449 function. If we did this in a previous pass, it is incorrect to do it
2451 if (current_function_epilogue_delay_list
)
2454 slots_to_fill
= DELAY_SLOTS_FOR_EPILOGUE
;
2455 if (slots_to_fill
== 0)
2459 CLEAR_RESOURCE (&set
);
2461 /* The frame pointer and stack pointer are needed at the beginning of
2462 the epilogue, so instructions setting them can not be put in the
2463 epilogue delay slot. However, everything else needed at function
2464 end is safe, so we don't want to use end_of_function_needs here. */
2465 CLEAR_RESOURCE (&needed
);
2466 if (frame_pointer_needed
)
2468 SET_HARD_REG_BIT (needed
.regs
, FRAME_POINTER_REGNUM
);
2469 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2470 SET_HARD_REG_BIT (needed
.regs
, HARD_FRAME_POINTER_REGNUM
);
2472 #ifdef EXIT_IGNORE_STACK
2473 if (! EXIT_IGNORE_STACK
2474 || current_function_sp_is_unchanging
)
2476 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2479 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2481 #ifdef EPILOGUE_USES
2482 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2484 if (EPILOGUE_USES (i
))
2485 SET_HARD_REG_BIT (needed
.regs
, i
);
2489 for (trial
= get_last_insn (); ! stop_search_p (trial
, 1);
2490 trial
= PREV_INSN (trial
))
2492 if (GET_CODE (trial
) == NOTE
)
2494 pat
= PATTERN (trial
);
2495 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2498 if (! insn_references_resource_p (trial
, &set
, 1)
2499 && ! insn_sets_resource_p (trial
, &needed
, 1)
2500 && ! insn_sets_resource_p (trial
, &set
, 1)
2502 /* Don't want to mess with cc0 here. */
2503 && ! reg_mentioned_p (cc0_rtx
, pat
)
2505 && ! can_throw_internal (trial
))
2507 trial
= try_split (pat
, trial
, 1);
2508 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial
, slots_filled
))
2510 /* Here as well we are searching backward, so put the
2511 insns we find on the head of the list. */
2513 current_function_epilogue_delay_list
2514 = gen_rtx_INSN_LIST (VOIDmode
, trial
,
2515 current_function_epilogue_delay_list
);
2516 mark_end_of_function_resources (trial
, 1);
2517 update_block (trial
, trial
);
2518 delete_related_insns (trial
);
2520 /* Clear deleted bit so final.c will output the insn. */
2521 INSN_DELETED_P (trial
) = 0;
2523 if (slots_to_fill
== ++slots_filled
)
2529 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2530 mark_referenced_resources (trial
, &needed
, 1);
2533 note_delay_statistics (slots_filled
, 0);
2537 /* Try to find insns to place in delay slots.
2539 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2540 or is an unconditional branch if CONDITION is const_true_rtx.
2541 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2543 THREAD is a flow-of-control, either the insns to be executed if the
2544 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2546 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2547 to see if any potential delay slot insns set things needed there.
2549 LIKELY is non-zero if it is extremely likely that the branch will be
2550 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2551 end of a loop back up to the top.
2553 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2554 thread. I.e., it is the fallthrough code of our jump or the target of the
2555 jump when we are the only jump going there.
2557 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2558 case, we can only take insns from the head of the thread for our delay
2559 slot. We then adjust the jump to point after the insns we have taken. */
2562 fill_slots_from_thread (insn
, condition
, thread
, opposite_thread
, likely
,
2563 thread_if_true
, own_thread
,
2564 slots_to_fill
, pslots_filled
, delay_list
)
2567 rtx thread
, opposite_thread
;
2571 int slots_to_fill
, *pslots_filled
;
2575 struct resources opposite_needed
, set
, needed
;
2581 /* Validate our arguments. */
2582 if ((condition
== const_true_rtx
&& ! thread_if_true
)
2583 || (! own_thread
&& ! thread_if_true
))
2586 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2588 /* If our thread is the end of subroutine, we can't get any delay
2593 /* If this is an unconditional branch, nothing is needed at the
2594 opposite thread. Otherwise, compute what is needed there. */
2595 if (condition
== const_true_rtx
)
2596 CLEAR_RESOURCE (&opposite_needed
);
2598 mark_target_live_regs (get_insns (), opposite_thread
, &opposite_needed
);
2600 /* If the insn at THREAD can be split, do it here to avoid having to
2601 update THREAD and NEW_THREAD if it is done in the loop below. Also
2602 initialize NEW_THREAD. */
2604 new_thread
= thread
= try_split (PATTERN (thread
), thread
, 0);
2606 /* Scan insns at THREAD. We are looking for an insn that can be removed
2607 from THREAD (it neither sets nor references resources that were set
2608 ahead of it and it doesn't set anything needs by the insns ahead of
2609 it) and that either can be placed in an annulling insn or aren't
2610 needed at OPPOSITE_THREAD. */
2612 CLEAR_RESOURCE (&needed
);
2613 CLEAR_RESOURCE (&set
);
2615 /* If we do not own this thread, we must stop as soon as we find
2616 something that we can't put in a delay slot, since all we can do
2617 is branch into THREAD at a later point. Therefore, labels stop
2618 the search if this is not the `true' thread. */
2620 for (trial
= thread
;
2621 ! stop_search_p (trial
, ! thread_if_true
) && (! lose
|| own_thread
);
2622 trial
= next_nonnote_insn (trial
))
2626 /* If we have passed a label, we no longer own this thread. */
2627 if (GET_CODE (trial
) == CODE_LABEL
)
2633 pat
= PATTERN (trial
);
2634 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2637 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2638 don't separate or copy insns that set and use CC0. */
2639 if (! insn_references_resource_p (trial
, &set
, 1)
2640 && ! insn_sets_resource_p (trial
, &set
, 1)
2641 && ! insn_sets_resource_p (trial
, &needed
, 1)
2643 && ! (reg_mentioned_p (cc0_rtx
, pat
)
2644 && (! own_thread
|| ! sets_cc0_p (pat
)))
2646 && ! can_throw_internal (trial
))
2650 /* If TRIAL is redundant with some insn before INSN, we don't
2651 actually need to add it to the delay list; we can merely pretend
2653 if ((prior_insn
= redundant_insn (trial
, insn
, delay_list
)))
2655 fix_reg_dead_note (prior_insn
, insn
);
2658 update_block (trial
, thread
);
2659 if (trial
== thread
)
2661 thread
= next_active_insn (thread
);
2662 if (new_thread
== trial
)
2663 new_thread
= thread
;
2666 delete_related_insns (trial
);
2670 update_reg_unused_notes (prior_insn
, trial
);
2671 new_thread
= next_active_insn (trial
);
2677 /* There are two ways we can win: If TRIAL doesn't set anything
2678 needed at the opposite thread and can't trap, or if it can
2679 go into an annulled delay slot. */
2681 && (condition
== const_true_rtx
2682 || (! insn_sets_resource_p (trial
, &opposite_needed
, 1)
2683 && ! may_trap_p (pat
))))
2686 trial
= try_split (pat
, trial
, 0);
2687 if (new_thread
== old_trial
)
2689 if (thread
== old_trial
)
2691 pat
= PATTERN (trial
);
2692 if (eligible_for_delay (insn
, *pslots_filled
, trial
, flags
))
2696 #ifdef ANNUL_IFTRUE_SLOTS
2699 #ifdef ANNUL_IFFALSE_SLOTS
2705 trial
= try_split (pat
, trial
, 0);
2706 if (new_thread
== old_trial
)
2708 if (thread
== old_trial
)
2710 pat
= PATTERN (trial
);
2711 if ((must_annul
|| delay_list
== NULL
) && (thread_if_true
2712 ? check_annul_list_true_false (0, delay_list
)
2713 && eligible_for_annul_false (insn
, *pslots_filled
, trial
, flags
)
2714 : check_annul_list_true_false (1, delay_list
)
2715 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
2723 if (reg_mentioned_p (cc0_rtx
, pat
))
2724 link_cc0_insns (trial
);
2727 /* If we own this thread, delete the insn. If this is the
2728 destination of a branch, show that a basic block status
2729 may have been updated. In any case, mark the new
2730 starting point of this thread. */
2735 update_block (trial
, thread
);
2736 if (trial
== thread
)
2738 thread
= next_active_insn (thread
);
2739 if (new_thread
== trial
)
2740 new_thread
= thread
;
2743 /* We are moving this insn, not deleting it. We must
2744 temporarily increment the use count on any referenced
2745 label lest it be deleted by delete_related_insns. */
2746 note
= find_reg_note (trial
, REG_LABEL
, 0);
2747 /* REG_LABEL could be NOTE_INSN_DELETED_LABEL too. */
2748 if (note
&& GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
2749 LABEL_NUSES (XEXP (note
, 0))++;
2751 delete_related_insns (trial
);
2753 if (note
&& GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
2754 LABEL_NUSES (XEXP (note
, 0))--;
2757 new_thread
= next_active_insn (trial
);
2759 temp
= own_thread
? trial
: copy_rtx (trial
);
2761 INSN_FROM_TARGET_P (temp
) = 1;
2763 delay_list
= add_to_delay_list (temp
, delay_list
);
2765 if (slots_to_fill
== ++(*pslots_filled
))
2767 /* Even though we have filled all the slots, we
2768 may be branching to a location that has a
2769 redundant insn. Skip any if so. */
2770 while (new_thread
&& ! own_thread
2771 && ! insn_sets_resource_p (new_thread
, &set
, 1)
2772 && ! insn_sets_resource_p (new_thread
, &needed
, 1)
2773 && ! insn_references_resource_p (new_thread
,
2776 = redundant_insn (new_thread
, insn
,
2779 /* We know we do not own the thread, so no need
2780 to call update_block and delete_insn. */
2781 fix_reg_dead_note (prior_insn
, insn
);
2782 update_reg_unused_notes (prior_insn
, new_thread
);
2783 new_thread
= next_active_insn (new_thread
);
2793 /* This insn can't go into a delay slot. */
2795 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2796 mark_referenced_resources (trial
, &needed
, 1);
2798 /* Ensure we don't put insns between the setting of cc and the comparison
2799 by moving a setting of cc into an earlier delay slot since these insns
2800 could clobber the condition code. */
2803 /* If this insn is a register-register copy and the next insn has
2804 a use of our destination, change it to use our source. That way,
2805 it will become a candidate for our delay slot the next time
2806 through this loop. This case occurs commonly in loops that
2809 We could check for more complex cases than those tested below,
2810 but it doesn't seem worth it. It might also be a good idea to try
2811 to swap the two insns. That might do better.
2813 We can't do this if the next insn modifies our destination, because
2814 that would make the replacement into the insn invalid. We also can't
2815 do this if it modifies our source, because it might be an earlyclobber
2816 operand. This latter test also prevents updating the contents of
2819 if (GET_CODE (trial
) == INSN
&& GET_CODE (pat
) == SET
2820 && GET_CODE (SET_SRC (pat
)) == REG
2821 && GET_CODE (SET_DEST (pat
)) == REG
)
2823 rtx next
= next_nonnote_insn (trial
);
2825 if (next
&& GET_CODE (next
) == INSN
2826 && GET_CODE (PATTERN (next
)) != USE
2827 && ! reg_set_p (SET_DEST (pat
), next
)
2828 && ! reg_set_p (SET_SRC (pat
), next
)
2829 && reg_referenced_p (SET_DEST (pat
), PATTERN (next
))
2830 && ! modified_in_p (SET_DEST (pat
), next
))
2831 validate_replace_rtx (SET_DEST (pat
), SET_SRC (pat
), next
);
2835 /* If we stopped on a branch insn that has delay slots, see if we can
2836 steal some of the insns in those slots. */
2837 if (trial
&& GET_CODE (trial
) == INSN
2838 && GET_CODE (PATTERN (trial
)) == SEQUENCE
2839 && GET_CODE (XVECEXP (PATTERN (trial
), 0, 0)) == JUMP_INSN
)
2841 /* If this is the `true' thread, we will want to follow the jump,
2842 so we can only do this if we have taken everything up to here. */
2843 if (thread_if_true
&& trial
== new_thread
)
2846 = steal_delay_list_from_target (insn
, condition
, PATTERN (trial
),
2847 delay_list
, &set
, &needed
,
2848 &opposite_needed
, slots_to_fill
,
2849 pslots_filled
, &must_annul
,
2851 /* If we owned the thread and are told that it branched
2852 elsewhere, make sure we own the thread at the new location. */
2853 if (own_thread
&& trial
!= new_thread
)
2854 own_thread
= own_thread_p (new_thread
, new_thread
, 0);
2856 else if (! thread_if_true
)
2858 = steal_delay_list_from_fallthrough (insn
, condition
,
2860 delay_list
, &set
, &needed
,
2861 &opposite_needed
, slots_to_fill
,
2862 pslots_filled
, &must_annul
);
2865 /* If we haven't found anything for this delay slot and it is very
2866 likely that the branch will be taken, see if the insn at our target
2867 increments or decrements a register with an increment that does not
2868 depend on the destination register. If so, try to place the opposite
2869 arithmetic insn after the jump insn and put the arithmetic insn in the
2870 delay slot. If we can't do this, return. */
2871 if (delay_list
== 0 && likely
&& new_thread
2872 && GET_CODE (new_thread
) == INSN
2873 && GET_CODE (PATTERN (new_thread
)) != ASM_INPUT
2874 && asm_noperands (PATTERN (new_thread
)) < 0)
2876 rtx pat
= PATTERN (new_thread
);
2881 pat
= PATTERN (trial
);
2883 if (GET_CODE (trial
) != INSN
2884 || GET_CODE (pat
) != SET
2885 || ! eligible_for_delay (insn
, 0, trial
, flags
)
2886 || can_throw_internal (trial
))
2889 dest
= SET_DEST (pat
), src
= SET_SRC (pat
);
2890 if ((GET_CODE (src
) == PLUS
|| GET_CODE (src
) == MINUS
)
2891 && rtx_equal_p (XEXP (src
, 0), dest
)
2892 && ! reg_overlap_mentioned_p (dest
, XEXP (src
, 1))
2893 && ! side_effects_p (pat
))
2895 rtx other
= XEXP (src
, 1);
2899 /* If this is a constant adjustment, use the same code with
2900 the negated constant. Otherwise, reverse the sense of the
2902 if (GET_CODE (other
) == CONST_INT
)
2903 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
), GET_MODE (src
), dest
,
2904 negate_rtx (GET_MODE (src
), other
));
2906 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
) == PLUS
? MINUS
: PLUS
,
2907 GET_MODE (src
), dest
, other
);
2909 ninsn
= emit_insn_after (gen_rtx_SET (VOIDmode
, dest
, new_arith
),
2912 if (recog_memoized (ninsn
) < 0
2913 || (extract_insn (ninsn
), ! constrain_operands (1)))
2915 delete_related_insns (ninsn
);
2921 update_block (trial
, thread
);
2922 if (trial
== thread
)
2924 thread
= next_active_insn (thread
);
2925 if (new_thread
== trial
)
2926 new_thread
= thread
;
2928 delete_related_insns (trial
);
2931 new_thread
= next_active_insn (trial
);
2933 ninsn
= own_thread
? trial
: copy_rtx (trial
);
2935 INSN_FROM_TARGET_P (ninsn
) = 1;
2937 delay_list
= add_to_delay_list (ninsn
, NULL_RTX
);
2942 if (delay_list
&& must_annul
)
2943 INSN_ANNULLED_BRANCH_P (insn
) = 1;
2945 /* If we are to branch into the middle of this thread, find an appropriate
2946 label or make a new one if none, and redirect INSN to it. If we hit the
2947 end of the function, use the end-of-function label. */
2948 if (new_thread
!= thread
)
2952 if (! thread_if_true
)
2955 if (new_thread
&& GET_CODE (new_thread
) == JUMP_INSN
2956 && (simplejump_p (new_thread
)
2957 || GET_CODE (PATTERN (new_thread
)) == RETURN
)
2958 && redirect_with_delay_list_safe_p (insn
,
2959 JUMP_LABEL (new_thread
),
2961 new_thread
= follow_jumps (JUMP_LABEL (new_thread
));
2963 if (new_thread
== 0)
2964 label
= find_end_label ();
2965 else if (GET_CODE (new_thread
) == CODE_LABEL
)
2968 label
= get_label_before (new_thread
);
2970 reorg_redirect_jump (insn
, label
);
2976 /* Make another attempt to find insns to place in delay slots.
2978 We previously looked for insns located in front of the delay insn
2979 and, for non-jump delay insns, located behind the delay insn.
2981 Here only try to schedule jump insns and try to move insns from either
2982 the target or the following insns into the delay slot. If annulling is
2983 supported, we will be likely to do this. Otherwise, we can do this only
2987 fill_eager_delay_slots ()
2991 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2993 for (i
= 0; i
< num_unfilled_slots
; i
++)
2996 rtx target_label
, insn_at_target
, fallthrough_insn
;
2999 int own_fallthrough
;
3000 int prediction
, slots_to_fill
, slots_filled
;
3002 insn
= unfilled_slots_base
[i
];
3004 || INSN_DELETED_P (insn
)
3005 || GET_CODE (insn
) != JUMP_INSN
3006 || ! (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
3009 slots_to_fill
= num_delay_slots (insn
);
3010 /* Some machine description have defined instructions to have
3011 delay slots only in certain circumstances which may depend on
3012 nearby insns (which change due to reorg's actions).
3014 For example, the PA port normally has delay slots for unconditional
3017 However, the PA port claims such jumps do not have a delay slot
3018 if they are immediate successors of certain CALL_INSNs. This
3019 allows the port to favor filling the delay slot of the call with
3020 the unconditional jump. */
3021 if (slots_to_fill
== 0)
3025 target_label
= JUMP_LABEL (insn
);
3026 condition
= get_branch_condition (insn
, target_label
);
3031 /* Get the next active fallthrough and target insns and see if we own
3032 them. Then see whether the branch is likely true. We don't need
3033 to do a lot of this for unconditional branches. */
3035 insn_at_target
= next_active_insn (target_label
);
3036 own_target
= own_thread_p (target_label
, target_label
, 0);
3038 if (condition
== const_true_rtx
)
3040 own_fallthrough
= 0;
3041 fallthrough_insn
= 0;
3046 fallthrough_insn
= next_active_insn (insn
);
3047 own_fallthrough
= own_thread_p (NEXT_INSN (insn
), NULL_RTX
, 1);
3048 prediction
= mostly_true_jump (insn
, condition
);
3051 /* If this insn is expected to branch, first try to get insns from our
3052 target, then our fallthrough insns. If it is not expected to branch,
3053 try the other order. */
3058 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3059 fallthrough_insn
, prediction
== 2, 1,
3061 slots_to_fill
, &slots_filled
, delay_list
);
3063 if (delay_list
== 0 && own_fallthrough
)
3065 /* Even though we didn't find anything for delay slots,
3066 we might have found a redundant insn which we deleted
3067 from the thread that was filled. So we have to recompute
3068 the next insn at the target. */
3069 target_label
= JUMP_LABEL (insn
);
3070 insn_at_target
= next_active_insn (target_label
);
3073 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3074 insn_at_target
, 0, 0,
3076 slots_to_fill
, &slots_filled
,
3082 if (own_fallthrough
)
3084 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3085 insn_at_target
, 0, 0,
3087 slots_to_fill
, &slots_filled
,
3090 if (delay_list
== 0)
3092 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3093 next_active_insn (insn
), 0, 1,
3095 slots_to_fill
, &slots_filled
,
3100 unfilled_slots_base
[i
]
3101 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
3103 if (slots_to_fill
== slots_filled
)
3104 unfilled_slots_base
[i
] = 0;
3106 note_delay_statistics (slots_filled
, 1);
3110 /* Once we have tried two ways to fill a delay slot, make a pass over the
3111 code to try to improve the results and to do such things as more jump
3115 relax_delay_slots (first
)
3118 rtx insn
, next
, pat
;
3119 rtx trial
, delay_insn
, target_label
;
3121 /* Look at every JUMP_INSN and see if we can improve it. */
3122 for (insn
= first
; insn
; insn
= next
)
3126 next
= next_active_insn (insn
);
3128 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3129 the next insn, or jumps to a label that is not the last of a
3130 group of consecutive labels. */
3131 if (GET_CODE (insn
) == JUMP_INSN
3132 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3133 && (target_label
= JUMP_LABEL (insn
)) != 0)
3135 target_label
= follow_jumps (target_label
);
3136 target_label
= prev_label (next_active_insn (target_label
));
3138 if (target_label
== 0)
3139 target_label
= find_end_label ();
3141 if (next_active_insn (target_label
) == next
3142 && ! condjump_in_parallel_p (insn
))
3148 if (target_label
!= JUMP_LABEL (insn
))
3149 reorg_redirect_jump (insn
, target_label
);
3151 /* See if this jump branches around an unconditional jump.
3152 If so, invert this jump and point it to the target of the
3154 if (next
&& GET_CODE (next
) == JUMP_INSN
3155 && (simplejump_p (next
) || GET_CODE (PATTERN (next
)) == RETURN
)
3156 && next_active_insn (target_label
) == next_active_insn (next
)
3157 && no_labels_between_p (insn
, next
))
3159 rtx label
= JUMP_LABEL (next
);
3161 /* Be careful how we do this to avoid deleting code or
3162 labels that are momentarily dead. See similar optimization
3165 We also need to ensure we properly handle the case when
3166 invert_jump fails. */
3168 ++LABEL_NUSES (target_label
);
3170 ++LABEL_NUSES (label
);
3172 if (invert_jump (insn
, label
, 1))
3174 delete_related_insns (next
);
3179 --LABEL_NUSES (label
);
3181 if (--LABEL_NUSES (target_label
) == 0)
3182 delete_related_insns (target_label
);
3188 /* If this is an unconditional jump and the previous insn is a
3189 conditional jump, try reversing the condition of the previous
3190 insn and swapping our targets. The next pass might be able to
3193 Don't do this if we expect the conditional branch to be true, because
3194 we would then be making the more common case longer. */
3196 if (GET_CODE (insn
) == JUMP_INSN
3197 && (simplejump_p (insn
) || GET_CODE (PATTERN (insn
)) == RETURN
)
3198 && (other
= prev_active_insn (insn
)) != 0
3199 && (condjump_p (other
) || condjump_in_parallel_p (other
))
3200 && no_labels_between_p (other
, insn
)
3201 && 0 > mostly_true_jump (other
,
3202 get_branch_condition (other
,
3203 JUMP_LABEL (other
))))
3205 rtx other_target
= JUMP_LABEL (other
);
3206 target_label
= JUMP_LABEL (insn
);
3208 if (invert_jump (other
, target_label
, 0))
3209 reorg_redirect_jump (insn
, other_target
);
3212 /* Now look only at cases where we have filled a delay slot. */
3213 if (GET_CODE (insn
) != INSN
3214 || GET_CODE (PATTERN (insn
)) != SEQUENCE
)
3217 pat
= PATTERN (insn
);
3218 delay_insn
= XVECEXP (pat
, 0, 0);
3220 /* See if the first insn in the delay slot is redundant with some
3221 previous insn. Remove it from the delay slot if so; then set up
3222 to reprocess this insn. */
3223 if (redundant_insn (XVECEXP (pat
, 0, 1), delay_insn
, 0))
3225 delete_from_delay_slot (XVECEXP (pat
, 0, 1));
3226 next
= prev_active_insn (next
);
3230 /* See if we have a RETURN insn with a filled delay slot followed
3231 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3232 the first RETURN (but not it's delay insn). This gives the same
3233 effect in fewer instructions.
3235 Only do so if optimizing for size since this results in slower, but
3238 && GET_CODE (PATTERN (delay_insn
)) == RETURN
3240 && GET_CODE (next
) == JUMP_INSN
3241 && GET_CODE (PATTERN (next
)) == RETURN
)
3246 /* Delete the RETURN and just execute the delay list insns.
3248 We do this by deleting the INSN containing the SEQUENCE, then
3249 re-emitting the insns separately, and then deleting the RETURN.
3250 This allows the count of the jump target to be properly
3253 /* Clear the from target bit, since these insns are no longer
3255 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3256 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3258 trial
= PREV_INSN (insn
);
3259 delete_related_insns (insn
);
3260 if (GET_CODE (pat
) != SEQUENCE
)
3263 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3265 rtx this_insn
= XVECEXP (pat
, 0, i
);
3266 add_insn_after (this_insn
, after
);
3269 delete_scheduled_jump (delay_insn
);
3273 /* Now look only at the cases where we have a filled JUMP_INSN. */
3274 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) != JUMP_INSN
3275 || ! (condjump_p (XVECEXP (PATTERN (insn
), 0, 0))
3276 || condjump_in_parallel_p (XVECEXP (PATTERN (insn
), 0, 0))))
3279 target_label
= JUMP_LABEL (delay_insn
);
3283 /* If this jump goes to another unconditional jump, thread it, but
3284 don't convert a jump into a RETURN here. */
3285 trial
= follow_jumps (target_label
);
3286 /* We use next_real_insn instead of next_active_insn, so that
3287 the special USE insns emitted by reorg won't be ignored.
3288 If they are ignored, then they will get deleted if target_label
3289 is now unreachable, and that would cause mark_target_live_regs
3291 trial
= prev_label (next_real_insn (trial
));
3292 if (trial
== 0 && target_label
!= 0)
3293 trial
= find_end_label ();
3295 if (trial
!= target_label
3296 && redirect_with_delay_slots_safe_p (delay_insn
, trial
, insn
))
3298 reorg_redirect_jump (delay_insn
, trial
);
3299 target_label
= trial
;
3302 /* If the first insn at TARGET_LABEL is redundant with a previous
3303 insn, redirect the jump to the following insn process again. */
3304 trial
= next_active_insn (target_label
);
3305 if (trial
&& GET_CODE (PATTERN (trial
)) != SEQUENCE
3306 && redundant_insn (trial
, insn
, 0)
3307 && ! can_throw_internal (trial
))
3311 /* Figure out where to emit the special USE insn so we don't
3312 later incorrectly compute register live/death info. */
3313 tmp
= next_active_insn (trial
);
3315 tmp
= find_end_label ();
3317 /* Insert the special USE insn and update dataflow info. */
3318 update_block (trial
, tmp
);
3320 /* Now emit a label before the special USE insn, and
3321 redirect our jump to the new label. */
3322 target_label
= get_label_before (PREV_INSN (tmp
));
3323 reorg_redirect_jump (delay_insn
, target_label
);
3328 /* Similarly, if it is an unconditional jump with one insn in its
3329 delay list and that insn is redundant, thread the jump. */
3330 if (trial
&& GET_CODE (PATTERN (trial
)) == SEQUENCE
3331 && XVECLEN (PATTERN (trial
), 0) == 2
3332 && GET_CODE (XVECEXP (PATTERN (trial
), 0, 0)) == JUMP_INSN
3333 && (simplejump_p (XVECEXP (PATTERN (trial
), 0, 0))
3334 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial
), 0, 0))) == RETURN
)
3335 && redundant_insn (XVECEXP (PATTERN (trial
), 0, 1), insn
, 0))
3337 target_label
= JUMP_LABEL (XVECEXP (PATTERN (trial
), 0, 0));
3338 if (target_label
== 0)
3339 target_label
= find_end_label ();
3341 if (redirect_with_delay_slots_safe_p (delay_insn
, target_label
,
3344 reorg_redirect_jump (delay_insn
, target_label
);
3351 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3352 && prev_active_insn (target_label
) == insn
3353 && ! condjump_in_parallel_p (delay_insn
)
3355 /* If the last insn in the delay slot sets CC0 for some insn,
3356 various code assumes that it is in a delay slot. We could
3357 put it back where it belonged and delete the register notes,
3358 but it doesn't seem worthwhile in this uncommon case. */
3359 && ! find_reg_note (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1),
3360 REG_CC_USER
, NULL_RTX
)
3367 /* All this insn does is execute its delay list and jump to the
3368 following insn. So delete the jump and just execute the delay
3371 We do this by deleting the INSN containing the SEQUENCE, then
3372 re-emitting the insns separately, and then deleting the jump.
3373 This allows the count of the jump target to be properly
3376 /* Clear the from target bit, since these insns are no longer
3378 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3379 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3381 trial
= PREV_INSN (insn
);
3382 delete_related_insns (insn
);
3383 if (GET_CODE (pat
) != SEQUENCE
)
3386 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3388 rtx this_insn
= XVECEXP (pat
, 0, i
);
3389 add_insn_after (this_insn
, after
);
3392 delete_scheduled_jump (delay_insn
);
3396 /* See if this is an unconditional jump around a single insn which is
3397 identical to the one in its delay slot. In this case, we can just
3398 delete the branch and the insn in its delay slot. */
3399 if (next
&& GET_CODE (next
) == INSN
3400 && prev_label (next_active_insn (next
)) == target_label
3401 && simplejump_p (insn
)
3402 && XVECLEN (pat
, 0) == 2
3403 && rtx_equal_p (PATTERN (next
), PATTERN (XVECEXP (pat
, 0, 1))))
3405 delete_related_insns (insn
);
3409 /* See if this jump (with its delay slots) branches around another
3410 jump (without delay slots). If so, invert this jump and point
3411 it to the target of the second jump. We cannot do this for
3412 annulled jumps, though. Again, don't convert a jump to a RETURN
3414 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3415 && next
&& GET_CODE (next
) == JUMP_INSN
3416 && (simplejump_p (next
) || GET_CODE (PATTERN (next
)) == RETURN
)
3417 && next_active_insn (target_label
) == next_active_insn (next
)
3418 && no_labels_between_p (insn
, next
))
3420 rtx label
= JUMP_LABEL (next
);
3421 rtx old_label
= JUMP_LABEL (delay_insn
);
3424 label
= find_end_label ();
3426 /* find_end_label can generate a new label. Check this first. */
3427 if (no_labels_between_p (insn
, next
)
3428 && redirect_with_delay_slots_safe_p (delay_insn
, label
, insn
))
3430 /* Be careful how we do this to avoid deleting code or labels
3431 that are momentarily dead. See similar optimization in
3434 ++LABEL_NUSES (old_label
);
3436 if (invert_jump (delay_insn
, label
, 1))
3440 /* Must update the INSN_FROM_TARGET_P bits now that
3441 the branch is reversed, so that mark_target_live_regs
3442 will handle the delay slot insn correctly. */
3443 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
3445 rtx slot
= XVECEXP (PATTERN (insn
), 0, i
);
3446 INSN_FROM_TARGET_P (slot
) = ! INSN_FROM_TARGET_P (slot
);
3449 delete_related_insns (next
);
3453 if (old_label
&& --LABEL_NUSES (old_label
) == 0)
3454 delete_related_insns (old_label
);
3459 /* If we own the thread opposite the way this insn branches, see if we
3460 can merge its delay slots with following insns. */
3461 if (INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3462 && own_thread_p (NEXT_INSN (insn
), 0, 1))
3463 try_merge_delay_insns (insn
, next
);
3464 else if (! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3465 && own_thread_p (target_label
, target_label
, 0))
3466 try_merge_delay_insns (insn
, next_active_insn (target_label
));
3468 /* If we get here, we haven't deleted INSN. But we may have deleted
3469 NEXT, so recompute it. */
3470 next
= next_active_insn (insn
);
3476 /* Look for filled jumps to the end of function label. We can try to convert
3477 them into RETURN insns if the insns in the delay slot are valid for the
3481 make_return_insns (first
)
3484 rtx insn
, jump_insn
, pat
;
3485 rtx real_return_label
= end_of_function_label
;
3488 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3489 /* If a previous pass filled delay slots in the epilogue, things get a
3490 bit more complicated, as those filler insns would generally (without
3491 data flow analysis) have to be executed after any existing branch
3492 delay slot filler insns. It is also unknown whether such a
3493 transformation would actually be profitable. Note that the existing
3494 code only cares for branches with (some) filled delay slots. */
3495 if (current_function_epilogue_delay_list
!= NULL
)
3499 /* See if there is a RETURN insn in the function other than the one we
3500 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3501 into a RETURN to jump to it. */
3502 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3503 if (GET_CODE (insn
) == JUMP_INSN
&& GET_CODE (PATTERN (insn
)) == RETURN
)
3505 real_return_label
= get_label_before (insn
);
3509 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3510 was equal to END_OF_FUNCTION_LABEL. */
3511 LABEL_NUSES (real_return_label
)++;
3513 /* Clear the list of insns to fill so we can use it. */
3514 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3516 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3520 /* Only look at filled JUMP_INSNs that go to the end of function
3522 if (GET_CODE (insn
) != INSN
3523 || GET_CODE (PATTERN (insn
)) != SEQUENCE
3524 || GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) != JUMP_INSN
3525 || JUMP_LABEL (XVECEXP (PATTERN (insn
), 0, 0)) != end_of_function_label
)
3528 pat
= PATTERN (insn
);
3529 jump_insn
= XVECEXP (pat
, 0, 0);
3531 /* If we can't make the jump into a RETURN, try to redirect it to the best
3532 RETURN and go on to the next insn. */
3533 if (! reorg_redirect_jump (jump_insn
, NULL_RTX
))
3535 /* Make sure redirecting the jump will not invalidate the delay
3537 if (redirect_with_delay_slots_safe_p (jump_insn
,
3540 reorg_redirect_jump (jump_insn
, real_return_label
);
3544 /* See if this RETURN can accept the insns current in its delay slot.
3545 It can if it has more or an equal number of slots and the contents
3546 of each is valid. */
3548 flags
= get_jump_flags (jump_insn
, JUMP_LABEL (jump_insn
));
3549 slots
= num_delay_slots (jump_insn
);
3550 if (slots
>= XVECLEN (pat
, 0) - 1)
3552 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3554 #ifdef ANNUL_IFFALSE_SLOTS
3555 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3556 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3557 ? eligible_for_annul_false (jump_insn
, i
- 1,
3558 XVECEXP (pat
, 0, i
), flags
) :
3560 #ifdef ANNUL_IFTRUE_SLOTS
3561 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3562 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3563 ? eligible_for_annul_true (jump_insn
, i
- 1,
3564 XVECEXP (pat
, 0, i
), flags
) :
3566 eligible_for_delay (jump_insn
, i
- 1,
3567 XVECEXP (pat
, 0, i
), flags
)))
3573 if (i
== XVECLEN (pat
, 0))
3576 /* We have to do something with this insn. If it is an unconditional
3577 RETURN, delete the SEQUENCE and output the individual insns,
3578 followed by the RETURN. Then set things up so we try to find
3579 insns for its delay slots, if it needs some. */
3580 if (GET_CODE (PATTERN (jump_insn
)) == RETURN
)
3582 rtx prev
= PREV_INSN (insn
);
3584 delete_related_insns (insn
);
3585 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3586 prev
= emit_insn_after (PATTERN (XVECEXP (pat
, 0, i
)), prev
);
3588 insn
= emit_jump_insn_after (PATTERN (jump_insn
), prev
);
3589 emit_barrier_after (insn
);
3592 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3595 /* It is probably more efficient to keep this with its current
3596 delay slot as a branch to a RETURN. */
3597 reorg_redirect_jump (jump_insn
, real_return_label
);
3600 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3601 new delay slots we have created. */
3602 if (--LABEL_NUSES (real_return_label
) == 0)
3603 delete_related_insns (real_return_label
);
3605 fill_simple_delay_slots (1);
3606 fill_simple_delay_slots (0);
3610 /* Try to find insns to place in delay slots. */
3613 dbr_schedule (first
, file
)
3617 rtx insn
, next
, epilogue_insn
= 0;
3620 int old_flag_no_peephole
= flag_no_peephole
;
3622 /* Execute `final' once in prescan mode to delete any insns that won't be
3623 used. Don't let final try to do any peephole optimization--it will
3624 ruin dataflow information for this pass. */
3626 flag_no_peephole
= 1;
3627 final (first
, 0, NO_DEBUG
, 1, 1);
3628 flag_no_peephole
= old_flag_no_peephole
;
3631 /* If the current function has no insns other than the prologue and
3632 epilogue, then do not try to fill any delay slots. */
3633 if (n_basic_blocks
== 0)
3636 /* Find the highest INSN_UID and allocate and initialize our map from
3637 INSN_UID's to position in code. */
3638 for (max_uid
= 0, insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3640 if (INSN_UID (insn
) > max_uid
)
3641 max_uid
= INSN_UID (insn
);
3642 if (GET_CODE (insn
) == NOTE
3643 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EPILOGUE_BEG
)
3644 epilogue_insn
= insn
;
3647 uid_to_ruid
= (int *) xmalloc ((max_uid
+ 1) * sizeof (int));
3648 for (i
= 0, insn
= first
; insn
; i
++, insn
= NEXT_INSN (insn
))
3649 uid_to_ruid
[INSN_UID (insn
)] = i
;
3651 /* Initialize the list of insns that need filling. */
3652 if (unfilled_firstobj
== 0)
3654 gcc_obstack_init (&unfilled_slots_obstack
);
3655 unfilled_firstobj
= (rtx
*) obstack_alloc (&unfilled_slots_obstack
, 0);
3658 for (insn
= next_active_insn (first
); insn
; insn
= next_active_insn (insn
))
3662 INSN_ANNULLED_BRANCH_P (insn
) = 0;
3663 INSN_FROM_TARGET_P (insn
) = 0;
3665 /* Skip vector tables. We can't get attributes for them. */
3666 if (GET_CODE (insn
) == JUMP_INSN
3667 && (GET_CODE (PATTERN (insn
)) == ADDR_VEC
3668 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
))
3671 if (num_delay_slots (insn
) > 0)
3672 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3674 /* Ensure all jumps go to the last of a set of consecutive labels. */
3675 if (GET_CODE (insn
) == JUMP_INSN
3676 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3677 && JUMP_LABEL (insn
) != 0
3678 && ((target
= prev_label (next_active_insn (JUMP_LABEL (insn
))))
3679 != JUMP_LABEL (insn
)))
3680 redirect_jump (insn
, target
, 1);
3683 init_resource_info (epilogue_insn
);
3685 /* Show we haven't computed an end-of-function label yet. */
3686 end_of_function_label
= 0;
3688 /* Initialize the statistics for this function. */
3689 memset ((char *) num_insns_needing_delays
, 0, sizeof num_insns_needing_delays
);
3690 memset ((char *) num_filled_delays
, 0, sizeof num_filled_delays
);
3692 /* Now do the delay slot filling. Try everything twice in case earlier
3693 changes make more slots fillable. */
3695 for (reorg_pass_number
= 0;
3696 reorg_pass_number
< MAX_REORG_PASSES
;
3697 reorg_pass_number
++)
3699 fill_simple_delay_slots (1);
3700 fill_simple_delay_slots (0);
3701 fill_eager_delay_slots ();
3702 relax_delay_slots (first
);
3705 /* Delete any USE insns made by update_block; subsequent passes don't need
3706 them or know how to deal with them. */
3707 for (insn
= first
; insn
; insn
= next
)
3709 next
= NEXT_INSN (insn
);
3711 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == USE
3712 && INSN_P (XEXP (PATTERN (insn
), 0)))
3713 next
= delete_related_insns (insn
);
3716 /* If we made an end of function label, indicate that it is now
3717 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3718 If it is now unused, delete it. */
3719 if (end_of_function_label
&& --LABEL_NUSES (end_of_function_label
) == 0)
3720 delete_related_insns (end_of_function_label
);
3723 if (HAVE_return
&& end_of_function_label
!= 0)
3724 make_return_insns (first
);
3727 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3729 /* It is not clear why the line below is needed, but it does seem to be. */
3730 unfilled_firstobj
= (rtx
*) obstack_alloc (&unfilled_slots_obstack
, 0);
3734 int i
, j
, need_comma
;
3735 int total_delay_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3736 int total_annul_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3738 for (reorg_pass_number
= 0;
3739 reorg_pass_number
< MAX_REORG_PASSES
;
3740 reorg_pass_number
++)
3742 fprintf (file
, ";; Reorg pass #%d:\n", reorg_pass_number
+ 1);
3743 for (i
= 0; i
< NUM_REORG_FUNCTIONS
; i
++)
3746 fprintf (file
, ";; Reorg function #%d\n", i
);
3748 fprintf (file
, ";; %d insns needing delay slots\n;; ",
3749 num_insns_needing_delays
[i
][reorg_pass_number
]);
3751 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3752 if (num_filled_delays
[i
][j
][reorg_pass_number
])
3755 fprintf (file
, ", ");
3757 fprintf (file
, "%d got %d delays",
3758 num_filled_delays
[i
][j
][reorg_pass_number
], j
);
3760 fprintf (file
, "\n");
3763 memset ((char *) total_delay_slots
, 0, sizeof total_delay_slots
);
3764 memset ((char *) total_annul_slots
, 0, sizeof total_annul_slots
);
3765 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3767 if (! INSN_DELETED_P (insn
)
3768 && GET_CODE (insn
) == INSN
3769 && GET_CODE (PATTERN (insn
)) != USE
3770 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3772 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3774 j
= XVECLEN (PATTERN (insn
), 0) - 1;
3775 if (j
> MAX_DELAY_HISTOGRAM
)
3776 j
= MAX_DELAY_HISTOGRAM
;
3777 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn
), 0, 0)))
3778 total_annul_slots
[j
]++;
3780 total_delay_slots
[j
]++;
3782 else if (num_delay_slots (insn
) > 0)
3783 total_delay_slots
[0]++;
3786 fprintf (file
, ";; Reorg totals: ");
3788 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3790 if (total_delay_slots
[j
])
3793 fprintf (file
, ", ");
3795 fprintf (file
, "%d got %d delays", total_delay_slots
[j
], j
);
3798 fprintf (file
, "\n");
3799 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3800 fprintf (file
, ";; Reorg annuls: ");
3802 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3804 if (total_annul_slots
[j
])
3807 fprintf (file
, ", ");
3809 fprintf (file
, "%d got %d delays", total_annul_slots
[j
], j
);
3812 fprintf (file
, "\n");
3814 fprintf (file
, "\n");
3817 /* For all JUMP insns, fill in branch prediction notes, so that during
3818 assembler output a target can set branch prediction bits in the code.
3819 We have to do this now, as up until this point the destinations of
3820 JUMPS can be moved around and changed, but past right here that cannot
3822 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3826 if (GET_CODE (insn
) == INSN
)
3828 rtx pat
= PATTERN (insn
);
3830 if (GET_CODE (pat
) == SEQUENCE
)
3831 insn
= XVECEXP (pat
, 0, 0);
3833 if (GET_CODE (insn
) != JUMP_INSN
)
3836 pred_flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
3837 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_BR_PRED
,
3838 GEN_INT (pred_flags
),
3841 free_resource_info ();
3844 #endif /* DELAY_SLOTS */