1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
36 #include "coretypes.h"
41 #include "gimple-expr.h"
45 #include "stringpool.h"
51 #include "rtl-error.h"
53 #include "fold-const.h"
54 #include "stor-layout.h"
61 #include "optabs-tree.h"
63 #include "langhooks.h"
64 #include "common/common-target.h"
66 #include "tree-pass.h"
70 #include "cfgcleanup.h"
71 #include "cfgexpand.h"
72 #include "shrink-wrap.h"
75 #include "tree-chkp.h"
80 /* So we can assign to cfun in this file. */
83 #ifndef STACK_ALIGNMENT_NEEDED
84 #define STACK_ALIGNMENT_NEEDED 1
87 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94 /* Similar, but round to the next highest integer that meets the
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98 /* Nonzero once virtual register instantiation has been done.
99 assign_stack_local uses frame_pointer_rtx when this is nonzero.
100 calls.c:emit_library_call_value_1 uses it to set up
101 post-instantiation libcalls. */
102 int virtuals_instantiated
;
104 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
105 static GTY(()) int funcdef_no
;
107 /* These variables hold pointers to functions to create and destroy
108 target specific, per-function data structures. */
109 struct machine_function
* (*init_machine_status
) (void);
111 /* The currently compiled function. */
112 struct function
*cfun
= 0;
114 /* These hashes record the prologue and epilogue insns. */
116 struct insn_cache_hasher
: ggc_cache_ptr_hash
<rtx_def
>
118 static hashval_t
hash (rtx x
) { return htab_hash_pointer (x
); }
119 static bool equal (rtx a
, rtx b
) { return a
== b
; }
123 hash_table
<insn_cache_hasher
> *prologue_insn_hash
;
125 hash_table
<insn_cache_hasher
> *epilogue_insn_hash
;
128 hash_table
<used_type_hasher
> *types_used_by_vars_hash
= NULL
;
129 vec
<tree
, va_gc
> *types_used_by_cur_var_decl
;
131 /* Forward declarations. */
133 static struct temp_slot
*find_temp_slot_from_address (rtx
);
134 static void pad_to_arg_alignment (struct args_size
*, int, struct args_size
*);
135 static void pad_below (struct args_size
*, machine_mode
, tree
);
136 static void reorder_blocks_1 (rtx_insn
*, tree
, vec
<tree
> *);
137 static int all_blocks (tree
, tree
*);
138 static tree
*get_block_vector (tree
, int *);
139 extern tree
debug_find_var_in_block_tree (tree
, tree
);
140 /* We always define `record_insns' even if it's not used so that we
141 can always export `prologue_epilogue_contains'. */
142 static void record_insns (rtx_insn
*, rtx
, hash_table
<insn_cache_hasher
> **)
144 static bool contains (const_rtx
, hash_table
<insn_cache_hasher
> *);
145 static void prepare_function_start (void);
146 static void do_clobber_return_reg (rtx
, void *);
147 static void do_use_return_reg (rtx
, void *);
150 /* Stack of nested functions. */
151 /* Keep track of the cfun stack. */
153 static vec
<function
*> function_context_stack
;
155 /* Save the current context for compilation of a nested function.
156 This is called from language-specific code. */
159 push_function_context (void)
162 allocate_struct_function (NULL
, false);
164 function_context_stack
.safe_push (cfun
);
168 /* Restore the last saved context, at the end of a nested function.
169 This function is called from language-specific code. */
172 pop_function_context (void)
174 struct function
*p
= function_context_stack
.pop ();
176 current_function_decl
= p
->decl
;
178 /* Reset variables that have known state during rtx generation. */
179 virtuals_instantiated
= 0;
180 generating_concat_p
= 1;
183 /* Clear out all parts of the state in F that can safely be discarded
184 after the function has been parsed, but not compiled, to let
185 garbage collection reclaim the memory. */
188 free_after_parsing (struct function
*f
)
193 /* Clear out all parts of the state in F that can safely be discarded
194 after the function has been compiled, to let garbage collection
195 reclaim the memory. */
198 free_after_compilation (struct function
*f
)
200 prologue_insn_hash
= NULL
;
201 epilogue_insn_hash
= NULL
;
203 free (crtl
->emit
.regno_pointer_align
);
205 memset (crtl
, 0, sizeof (struct rtl_data
));
209 f
->curr_properties
&= ~PROP_cfg
;
211 regno_reg_rtx
= NULL
;
214 /* Return size needed for stack frame based on slots so far allocated.
215 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
216 the caller may have to do that. */
219 get_frame_size (void)
221 if (FRAME_GROWS_DOWNWARD
)
222 return -frame_offset
;
227 /* Issue an error message and return TRUE if frame OFFSET overflows in
228 the signed target pointer arithmetics for function FUNC. Otherwise
232 frame_offset_overflow (HOST_WIDE_INT offset
, tree func
)
234 unsigned HOST_WIDE_INT size
= FRAME_GROWS_DOWNWARD
? -offset
: offset
;
236 if (size
> (HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (Pmode
) - 1))
237 /* Leave room for the fixed part of the frame. */
238 - 64 * UNITS_PER_WORD
)
240 error_at (DECL_SOURCE_LOCATION (func
),
241 "total size of local objects too large");
248 /* Return stack slot alignment in bits for TYPE and MODE. */
251 get_stack_local_alignment (tree type
, machine_mode mode
)
253 unsigned int alignment
;
256 alignment
= BIGGEST_ALIGNMENT
;
258 alignment
= GET_MODE_ALIGNMENT (mode
);
260 /* Allow the frond-end to (possibly) increase the alignment of this
263 type
= lang_hooks
.types
.type_for_mode (mode
, 0);
265 return STACK_SLOT_ALIGNMENT (type
, mode
, alignment
);
268 /* Determine whether it is possible to fit a stack slot of size SIZE and
269 alignment ALIGNMENT into an area in the stack frame that starts at
270 frame offset START and has a length of LENGTH. If so, store the frame
271 offset to be used for the stack slot in *POFFSET and return true;
272 return false otherwise. This function will extend the frame size when
273 given a start/length pair that lies at the end of the frame. */
276 try_fit_stack_local (HOST_WIDE_INT start
, HOST_WIDE_INT length
,
277 HOST_WIDE_INT size
, unsigned int alignment
,
278 HOST_WIDE_INT
*poffset
)
280 HOST_WIDE_INT this_frame_offset
;
281 int frame_off
, frame_alignment
, frame_phase
;
283 /* Calculate how many bytes the start of local variables is off from
285 frame_alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
286 frame_off
= STARTING_FRAME_OFFSET
% frame_alignment
;
287 frame_phase
= frame_off
? frame_alignment
- frame_off
: 0;
289 /* Round the frame offset to the specified alignment. */
291 /* We must be careful here, since FRAME_OFFSET might be negative and
292 division with a negative dividend isn't as well defined as we might
293 like. So we instead assume that ALIGNMENT is a power of two and
294 use logical operations which are unambiguous. */
295 if (FRAME_GROWS_DOWNWARD
)
297 = (FLOOR_ROUND (start
+ length
- size
- frame_phase
,
298 (unsigned HOST_WIDE_INT
) alignment
)
302 = (CEIL_ROUND (start
- frame_phase
,
303 (unsigned HOST_WIDE_INT
) alignment
)
306 /* See if it fits. If this space is at the edge of the frame,
307 consider extending the frame to make it fit. Our caller relies on
308 this when allocating a new slot. */
309 if (frame_offset
== start
&& this_frame_offset
< frame_offset
)
310 frame_offset
= this_frame_offset
;
311 else if (this_frame_offset
< start
)
313 else if (start
+ length
== frame_offset
314 && this_frame_offset
+ size
> start
+ length
)
315 frame_offset
= this_frame_offset
+ size
;
316 else if (this_frame_offset
+ size
> start
+ length
)
319 *poffset
= this_frame_offset
;
323 /* Create a new frame_space structure describing free space in the stack
324 frame beginning at START and ending at END, and chain it into the
325 function's frame_space_list. */
328 add_frame_space (HOST_WIDE_INT start
, HOST_WIDE_INT end
)
330 struct frame_space
*space
= ggc_alloc
<frame_space
> ();
331 space
->next
= crtl
->frame_space_list
;
332 crtl
->frame_space_list
= space
;
333 space
->start
= start
;
334 space
->length
= end
- start
;
337 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
338 with machine mode MODE.
340 ALIGN controls the amount of alignment for the address of the slot:
341 0 means according to MODE,
342 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
343 -2 means use BITS_PER_UNIT,
344 positive specifies alignment boundary in bits.
346 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
347 alignment and ASLK_RECORD_PAD bit set if we should remember
348 extra space we allocated for alignment purposes. When we are
349 called from assign_stack_temp_for_type, it is not set so we don't
350 track the same stack slot in two independent lists.
352 We do not round to stack_boundary here. */
355 assign_stack_local_1 (machine_mode mode
, HOST_WIDE_INT size
,
359 int bigend_correction
= 0;
360 HOST_WIDE_INT slot_offset
= 0, old_frame_offset
;
361 unsigned int alignment
, alignment_in_bits
;
365 alignment
= get_stack_local_alignment (NULL
, mode
);
366 alignment
/= BITS_PER_UNIT
;
368 else if (align
== -1)
370 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
371 size
= CEIL_ROUND (size
, alignment
);
373 else if (align
== -2)
374 alignment
= 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
376 alignment
= align
/ BITS_PER_UNIT
;
378 alignment_in_bits
= alignment
* BITS_PER_UNIT
;
380 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
381 if (alignment_in_bits
> MAX_SUPPORTED_STACK_ALIGNMENT
)
383 alignment_in_bits
= MAX_SUPPORTED_STACK_ALIGNMENT
;
384 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
387 if (SUPPORTS_STACK_ALIGNMENT
)
389 if (crtl
->stack_alignment_estimated
< alignment_in_bits
)
391 if (!crtl
->stack_realign_processed
)
392 crtl
->stack_alignment_estimated
= alignment_in_bits
;
395 /* If stack is realigned and stack alignment value
396 hasn't been finalized, it is OK not to increase
397 stack_alignment_estimated. The bigger alignment
398 requirement is recorded in stack_alignment_needed
400 gcc_assert (!crtl
->stack_realign_finalized
);
401 if (!crtl
->stack_realign_needed
)
403 /* It is OK to reduce the alignment as long as the
404 requested size is 0 or the estimated stack
405 alignment >= mode alignment. */
406 gcc_assert ((kind
& ASLK_REDUCE_ALIGN
)
408 || (crtl
->stack_alignment_estimated
409 >= GET_MODE_ALIGNMENT (mode
)));
410 alignment_in_bits
= crtl
->stack_alignment_estimated
;
411 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
417 if (crtl
->stack_alignment_needed
< alignment_in_bits
)
418 crtl
->stack_alignment_needed
= alignment_in_bits
;
419 if (crtl
->max_used_stack_slot_alignment
< alignment_in_bits
)
420 crtl
->max_used_stack_slot_alignment
= alignment_in_bits
;
422 if (mode
!= BLKmode
|| size
!= 0)
424 if (kind
& ASLK_RECORD_PAD
)
426 struct frame_space
**psp
;
428 for (psp
= &crtl
->frame_space_list
; *psp
; psp
= &(*psp
)->next
)
430 struct frame_space
*space
= *psp
;
431 if (!try_fit_stack_local (space
->start
, space
->length
, size
,
432 alignment
, &slot_offset
))
435 if (slot_offset
> space
->start
)
436 add_frame_space (space
->start
, slot_offset
);
437 if (slot_offset
+ size
< space
->start
+ space
->length
)
438 add_frame_space (slot_offset
+ size
,
439 space
->start
+ space
->length
);
444 else if (!STACK_ALIGNMENT_NEEDED
)
446 slot_offset
= frame_offset
;
450 old_frame_offset
= frame_offset
;
452 if (FRAME_GROWS_DOWNWARD
)
454 frame_offset
-= size
;
455 try_fit_stack_local (frame_offset
, size
, size
, alignment
, &slot_offset
);
457 if (kind
& ASLK_RECORD_PAD
)
459 if (slot_offset
> frame_offset
)
460 add_frame_space (frame_offset
, slot_offset
);
461 if (slot_offset
+ size
< old_frame_offset
)
462 add_frame_space (slot_offset
+ size
, old_frame_offset
);
467 frame_offset
+= size
;
468 try_fit_stack_local (old_frame_offset
, size
, size
, alignment
, &slot_offset
);
470 if (kind
& ASLK_RECORD_PAD
)
472 if (slot_offset
> old_frame_offset
)
473 add_frame_space (old_frame_offset
, slot_offset
);
474 if (slot_offset
+ size
< frame_offset
)
475 add_frame_space (slot_offset
+ size
, frame_offset
);
480 /* On a big-endian machine, if we are allocating more space than we will use,
481 use the least significant bytes of those that are allocated. */
482 if (BYTES_BIG_ENDIAN
&& mode
!= BLKmode
&& GET_MODE_SIZE (mode
) < size
)
483 bigend_correction
= size
- GET_MODE_SIZE (mode
);
485 /* If we have already instantiated virtual registers, return the actual
486 address relative to the frame pointer. */
487 if (virtuals_instantiated
)
488 addr
= plus_constant (Pmode
, frame_pointer_rtx
,
490 (slot_offset
+ bigend_correction
491 + STARTING_FRAME_OFFSET
, Pmode
));
493 addr
= plus_constant (Pmode
, virtual_stack_vars_rtx
,
495 (slot_offset
+ bigend_correction
,
498 x
= gen_rtx_MEM (mode
, addr
);
499 set_mem_align (x
, alignment_in_bits
);
500 MEM_NOTRAP_P (x
) = 1;
502 vec_safe_push (stack_slot_list
, x
);
504 if (frame_offset_overflow (frame_offset
, current_function_decl
))
510 /* Wrap up assign_stack_local_1 with last parameter as false. */
513 assign_stack_local (machine_mode mode
, HOST_WIDE_INT size
, int align
)
515 return assign_stack_local_1 (mode
, size
, align
, ASLK_RECORD_PAD
);
518 /* In order to evaluate some expressions, such as function calls returning
519 structures in memory, we need to temporarily allocate stack locations.
520 We record each allocated temporary in the following structure.
522 Associated with each temporary slot is a nesting level. When we pop up
523 one level, all temporaries associated with the previous level are freed.
524 Normally, all temporaries are freed after the execution of the statement
525 in which they were created. However, if we are inside a ({...}) grouping,
526 the result may be in a temporary and hence must be preserved. If the
527 result could be in a temporary, we preserve it if we can determine which
528 one it is in. If we cannot determine which temporary may contain the
529 result, all temporaries are preserved. A temporary is preserved by
530 pretending it was allocated at the previous nesting level. */
532 struct GTY(()) temp_slot
{
533 /* Points to next temporary slot. */
534 struct temp_slot
*next
;
535 /* Points to previous temporary slot. */
536 struct temp_slot
*prev
;
537 /* The rtx to used to reference the slot. */
539 /* The size, in units, of the slot. */
541 /* The type of the object in the slot, or zero if it doesn't correspond
542 to a type. We use this to determine whether a slot can be reused.
543 It can be reused if objects of the type of the new slot will always
544 conflict with objects of the type of the old slot. */
546 /* The alignment (in bits) of the slot. */
548 /* Nonzero if this temporary is currently in use. */
550 /* Nesting level at which this slot is being used. */
552 /* The offset of the slot from the frame_pointer, including extra space
553 for alignment. This info is for combine_temp_slots. */
554 HOST_WIDE_INT base_offset
;
555 /* The size of the slot, including extra space for alignment. This
556 info is for combine_temp_slots. */
557 HOST_WIDE_INT full_size
;
560 /* Entry for the below hash table. */
561 struct GTY((for_user
)) temp_slot_address_entry
{
564 struct temp_slot
*temp_slot
;
567 struct temp_address_hasher
: ggc_ptr_hash
<temp_slot_address_entry
>
569 static hashval_t
hash (temp_slot_address_entry
*);
570 static bool equal (temp_slot_address_entry
*, temp_slot_address_entry
*);
573 /* A table of addresses that represent a stack slot. The table is a mapping
574 from address RTXen to a temp slot. */
575 static GTY(()) hash_table
<temp_address_hasher
> *temp_slot_address_table
;
576 static size_t n_temp_slots_in_use
;
578 /* Removes temporary slot TEMP from LIST. */
581 cut_slot_from_list (struct temp_slot
*temp
, struct temp_slot
**list
)
584 temp
->next
->prev
= temp
->prev
;
586 temp
->prev
->next
= temp
->next
;
590 temp
->prev
= temp
->next
= NULL
;
593 /* Inserts temporary slot TEMP to LIST. */
596 insert_slot_to_list (struct temp_slot
*temp
, struct temp_slot
**list
)
600 (*list
)->prev
= temp
;
605 /* Returns the list of used temp slots at LEVEL. */
607 static struct temp_slot
**
608 temp_slots_at_level (int level
)
610 if (level
>= (int) vec_safe_length (used_temp_slots
))
611 vec_safe_grow_cleared (used_temp_slots
, level
+ 1);
613 return &(*used_temp_slots
)[level
];
616 /* Returns the maximal temporary slot level. */
619 max_slot_level (void)
621 if (!used_temp_slots
)
624 return used_temp_slots
->length () - 1;
627 /* Moves temporary slot TEMP to LEVEL. */
630 move_slot_to_level (struct temp_slot
*temp
, int level
)
632 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
633 insert_slot_to_list (temp
, temp_slots_at_level (level
));
637 /* Make temporary slot TEMP available. */
640 make_slot_available (struct temp_slot
*temp
)
642 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
643 insert_slot_to_list (temp
, &avail_temp_slots
);
646 n_temp_slots_in_use
--;
649 /* Compute the hash value for an address -> temp slot mapping.
650 The value is cached on the mapping entry. */
652 temp_slot_address_compute_hash (struct temp_slot_address_entry
*t
)
654 int do_not_record
= 0;
655 return hash_rtx (t
->address
, GET_MODE (t
->address
),
656 &do_not_record
, NULL
, false);
659 /* Return the hash value for an address -> temp slot mapping. */
661 temp_address_hasher::hash (temp_slot_address_entry
*t
)
666 /* Compare two address -> temp slot mapping entries. */
668 temp_address_hasher::equal (temp_slot_address_entry
*t1
,
669 temp_slot_address_entry
*t2
)
671 return exp_equiv_p (t1
->address
, t2
->address
, 0, true);
674 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
676 insert_temp_slot_address (rtx address
, struct temp_slot
*temp_slot
)
678 struct temp_slot_address_entry
*t
= ggc_alloc
<temp_slot_address_entry
> ();
679 t
->address
= address
;
680 t
->temp_slot
= temp_slot
;
681 t
->hash
= temp_slot_address_compute_hash (t
);
682 *temp_slot_address_table
->find_slot_with_hash (t
, t
->hash
, INSERT
) = t
;
685 /* Remove an address -> temp slot mapping entry if the temp slot is
686 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
688 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry
**slot
, void *)
690 const struct temp_slot_address_entry
*t
= *slot
;
691 if (! t
->temp_slot
->in_use
)
692 temp_slot_address_table
->clear_slot (slot
);
696 /* Remove all mappings of addresses to unused temp slots. */
698 remove_unused_temp_slot_addresses (void)
700 /* Use quicker clearing if there aren't any active temp slots. */
701 if (n_temp_slots_in_use
)
702 temp_slot_address_table
->traverse
703 <void *, remove_unused_temp_slot_addresses_1
> (NULL
);
705 temp_slot_address_table
->empty ();
708 /* Find the temp slot corresponding to the object at address X. */
710 static struct temp_slot
*
711 find_temp_slot_from_address (rtx x
)
714 struct temp_slot_address_entry tmp
, *t
;
716 /* First try the easy way:
717 See if X exists in the address -> temp slot mapping. */
719 tmp
.temp_slot
= NULL
;
720 tmp
.hash
= temp_slot_address_compute_hash (&tmp
);
721 t
= temp_slot_address_table
->find_with_hash (&tmp
, tmp
.hash
);
725 /* If we have a sum involving a register, see if it points to a temp
727 if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 0))
728 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
730 else if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 1))
731 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
734 /* Last resort: Address is a virtual stack var address. */
735 if (GET_CODE (x
) == PLUS
736 && XEXP (x
, 0) == virtual_stack_vars_rtx
737 && CONST_INT_P (XEXP (x
, 1)))
740 for (i
= max_slot_level (); i
>= 0; i
--)
741 for (p
= *temp_slots_at_level (i
); p
; p
= p
->next
)
743 if (INTVAL (XEXP (x
, 1)) >= p
->base_offset
744 && INTVAL (XEXP (x
, 1)) < p
->base_offset
+ p
->full_size
)
752 /* Allocate a temporary stack slot and record it for possible later
755 MODE is the machine mode to be given to the returned rtx.
757 SIZE is the size in units of the space required. We do no rounding here
758 since assign_stack_local will do any required rounding.
760 TYPE is the type that will be used for the stack slot. */
763 assign_stack_temp_for_type (machine_mode mode
, HOST_WIDE_INT size
,
767 struct temp_slot
*p
, *best_p
= 0, *selected
= NULL
, **pp
;
770 /* If SIZE is -1 it means that somebody tried to allocate a temporary
771 of a variable size. */
772 gcc_assert (size
!= -1);
774 align
= get_stack_local_alignment (type
, mode
);
776 /* Try to find an available, already-allocated temporary of the proper
777 mode which meets the size and alignment requirements. Choose the
778 smallest one with the closest alignment.
780 If assign_stack_temp is called outside of the tree->rtl expansion,
781 we cannot reuse the stack slots (that may still refer to
782 VIRTUAL_STACK_VARS_REGNUM). */
783 if (!virtuals_instantiated
)
785 for (p
= avail_temp_slots
; p
; p
= p
->next
)
787 if (p
->align
>= align
&& p
->size
>= size
788 && GET_MODE (p
->slot
) == mode
789 && objects_must_conflict_p (p
->type
, type
)
790 && (best_p
== 0 || best_p
->size
> p
->size
791 || (best_p
->size
== p
->size
&& best_p
->align
> p
->align
)))
793 if (p
->align
== align
&& p
->size
== size
)
796 cut_slot_from_list (selected
, &avail_temp_slots
);
805 /* Make our best, if any, the one to use. */
809 cut_slot_from_list (selected
, &avail_temp_slots
);
811 /* If there are enough aligned bytes left over, make them into a new
812 temp_slot so that the extra bytes don't get wasted. Do this only
813 for BLKmode slots, so that we can be sure of the alignment. */
814 if (GET_MODE (best_p
->slot
) == BLKmode
)
816 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
817 HOST_WIDE_INT rounded_size
= CEIL_ROUND (size
, alignment
);
819 if (best_p
->size
- rounded_size
>= alignment
)
821 p
= ggc_alloc
<temp_slot
> ();
823 p
->size
= best_p
->size
- rounded_size
;
824 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
825 p
->full_size
= best_p
->full_size
- rounded_size
;
826 p
->slot
= adjust_address_nv (best_p
->slot
, BLKmode
, rounded_size
);
827 p
->align
= best_p
->align
;
828 p
->type
= best_p
->type
;
829 insert_slot_to_list (p
, &avail_temp_slots
);
831 vec_safe_push (stack_slot_list
, p
->slot
);
833 best_p
->size
= rounded_size
;
834 best_p
->full_size
= rounded_size
;
839 /* If we still didn't find one, make a new temporary. */
842 HOST_WIDE_INT frame_offset_old
= frame_offset
;
844 p
= ggc_alloc
<temp_slot
> ();
846 /* We are passing an explicit alignment request to assign_stack_local.
847 One side effect of that is assign_stack_local will not round SIZE
848 to ensure the frame offset remains suitably aligned.
850 So for requests which depended on the rounding of SIZE, we go ahead
851 and round it now. We also make sure ALIGNMENT is at least
852 BIGGEST_ALIGNMENT. */
853 gcc_assert (mode
!= BLKmode
|| align
== BIGGEST_ALIGNMENT
);
854 p
->slot
= assign_stack_local_1 (mode
,
864 /* The following slot size computation is necessary because we don't
865 know the actual size of the temporary slot until assign_stack_local
866 has performed all the frame alignment and size rounding for the
867 requested temporary. Note that extra space added for alignment
868 can be either above or below this stack slot depending on which
869 way the frame grows. We include the extra space if and only if it
870 is above this slot. */
871 if (FRAME_GROWS_DOWNWARD
)
872 p
->size
= frame_offset_old
- frame_offset
;
876 /* Now define the fields used by combine_temp_slots. */
877 if (FRAME_GROWS_DOWNWARD
)
879 p
->base_offset
= frame_offset
;
880 p
->full_size
= frame_offset_old
- frame_offset
;
884 p
->base_offset
= frame_offset_old
;
885 p
->full_size
= frame_offset
- frame_offset_old
;
894 p
->level
= temp_slot_level
;
895 n_temp_slots_in_use
++;
897 pp
= temp_slots_at_level (p
->level
);
898 insert_slot_to_list (p
, pp
);
899 insert_temp_slot_address (XEXP (p
->slot
, 0), p
);
901 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
902 slot
= gen_rtx_MEM (mode
, XEXP (p
->slot
, 0));
903 vec_safe_push (stack_slot_list
, slot
);
905 /* If we know the alias set for the memory that will be used, use
906 it. If there's no TYPE, then we don't know anything about the
907 alias set for the memory. */
908 set_mem_alias_set (slot
, type
? get_alias_set (type
) : 0);
909 set_mem_align (slot
, align
);
911 /* If a type is specified, set the relevant flags. */
913 MEM_VOLATILE_P (slot
) = TYPE_VOLATILE (type
);
914 MEM_NOTRAP_P (slot
) = 1;
919 /* Allocate a temporary stack slot and record it for possible later
920 reuse. First two arguments are same as in preceding function. */
923 assign_stack_temp (machine_mode mode
, HOST_WIDE_INT size
)
925 return assign_stack_temp_for_type (mode
, size
, NULL_TREE
);
928 /* Assign a temporary.
929 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
930 and so that should be used in error messages. In either case, we
931 allocate of the given type.
932 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
933 it is 0 if a register is OK.
934 DONT_PROMOTE is 1 if we should not promote values in register
938 assign_temp (tree type_or_decl
, int memory_required
,
939 int dont_promote ATTRIBUTE_UNUSED
)
947 if (DECL_P (type_or_decl
))
948 decl
= type_or_decl
, type
= TREE_TYPE (decl
);
950 decl
= NULL
, type
= type_or_decl
;
952 mode
= TYPE_MODE (type
);
954 unsignedp
= TYPE_UNSIGNED (type
);
957 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
958 end. See also create_tmp_var for the gimplification-time check. */
959 gcc_assert (!TREE_ADDRESSABLE (type
) && COMPLETE_TYPE_P (type
));
961 if (mode
== BLKmode
|| memory_required
)
963 HOST_WIDE_INT size
= int_size_in_bytes (type
);
966 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
967 problems with allocating the stack space. */
971 /* Unfortunately, we don't yet know how to allocate variable-sized
972 temporaries. However, sometimes we can find a fixed upper limit on
973 the size, so try that instead. */
975 size
= max_int_size_in_bytes (type
);
977 /* The size of the temporary may be too large to fit into an integer. */
978 /* ??? Not sure this should happen except for user silliness, so limit
979 this to things that aren't compiler-generated temporaries. The
980 rest of the time we'll die in assign_stack_temp_for_type. */
981 if (decl
&& size
== -1
982 && TREE_CODE (TYPE_SIZE_UNIT (type
)) == INTEGER_CST
)
984 error ("size of variable %q+D is too large", decl
);
988 tmp
= assign_stack_temp_for_type (mode
, size
, type
);
994 mode
= promote_mode (type
, mode
, &unsignedp
);
997 return gen_reg_rtx (mode
);
1000 /* Combine temporary stack slots which are adjacent on the stack.
1002 This allows for better use of already allocated stack space. This is only
1003 done for BLKmode slots because we can be sure that we won't have alignment
1004 problems in this case. */
1007 combine_temp_slots (void)
1009 struct temp_slot
*p
, *q
, *next
, *next_q
;
1012 /* We can't combine slots, because the information about which slot
1013 is in which alias set will be lost. */
1014 if (flag_strict_aliasing
)
1017 /* If there are a lot of temp slots, don't do anything unless
1018 high levels of optimization. */
1019 if (! flag_expensive_optimizations
)
1020 for (p
= avail_temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
1021 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
1024 for (p
= avail_temp_slots
; p
; p
= next
)
1030 if (GET_MODE (p
->slot
) != BLKmode
)
1033 for (q
= p
->next
; q
; q
= next_q
)
1039 if (GET_MODE (q
->slot
) != BLKmode
)
1042 if (p
->base_offset
+ p
->full_size
== q
->base_offset
)
1044 /* Q comes after P; combine Q into P. */
1046 p
->full_size
+= q
->full_size
;
1049 else if (q
->base_offset
+ q
->full_size
== p
->base_offset
)
1051 /* P comes after Q; combine P into Q. */
1053 q
->full_size
+= p
->full_size
;
1058 cut_slot_from_list (q
, &avail_temp_slots
);
1061 /* Either delete P or advance past it. */
1063 cut_slot_from_list (p
, &avail_temp_slots
);
1067 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1068 slot that previously was known by OLD_RTX. */
1071 update_temp_slot_address (rtx old_rtx
, rtx new_rtx
)
1073 struct temp_slot
*p
;
1075 if (rtx_equal_p (old_rtx
, new_rtx
))
1078 p
= find_temp_slot_from_address (old_rtx
);
1080 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1081 NEW_RTX is a register, see if one operand of the PLUS is a
1082 temporary location. If so, NEW_RTX points into it. Otherwise,
1083 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1084 in common between them. If so, try a recursive call on those
1088 if (GET_CODE (old_rtx
) != PLUS
)
1091 if (REG_P (new_rtx
))
1093 update_temp_slot_address (XEXP (old_rtx
, 0), new_rtx
);
1094 update_temp_slot_address (XEXP (old_rtx
, 1), new_rtx
);
1097 else if (GET_CODE (new_rtx
) != PLUS
)
1100 if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0)))
1101 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1));
1102 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0)))
1103 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1));
1104 else if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1)))
1105 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0));
1106 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1)))
1107 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0));
1112 /* Otherwise add an alias for the temp's address. */
1113 insert_temp_slot_address (new_rtx
, p
);
1116 /* If X could be a reference to a temporary slot, mark that slot as
1117 belonging to the to one level higher than the current level. If X
1118 matched one of our slots, just mark that one. Otherwise, we can't
1119 easily predict which it is, so upgrade all of them.
1121 This is called when an ({...}) construct occurs and a statement
1122 returns a value in memory. */
1125 preserve_temp_slots (rtx x
)
1127 struct temp_slot
*p
= 0, *next
;
1132 /* If X is a register that is being used as a pointer, see if we have
1133 a temporary slot we know it points to. */
1134 if (REG_P (x
) && REG_POINTER (x
))
1135 p
= find_temp_slot_from_address (x
);
1137 /* If X is not in memory or is at a constant address, it cannot be in
1138 a temporary slot. */
1139 if (p
== 0 && (!MEM_P (x
) || CONSTANT_P (XEXP (x
, 0))))
1142 /* First see if we can find a match. */
1144 p
= find_temp_slot_from_address (XEXP (x
, 0));
1148 if (p
->level
== temp_slot_level
)
1149 move_slot_to_level (p
, temp_slot_level
- 1);
1153 /* Otherwise, preserve all non-kept slots at this level. */
1154 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1157 move_slot_to_level (p
, temp_slot_level
- 1);
1161 /* Free all temporaries used so far. This is normally called at the
1162 end of generating code for a statement. */
1165 free_temp_slots (void)
1167 struct temp_slot
*p
, *next
;
1168 bool some_available
= false;
1170 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1173 make_slot_available (p
);
1174 some_available
= true;
1179 remove_unused_temp_slot_addresses ();
1180 combine_temp_slots ();
1184 /* Push deeper into the nesting level for stack temporaries. */
1187 push_temp_slots (void)
1192 /* Pop a temporary nesting level. All slots in use in the current level
1196 pop_temp_slots (void)
1202 /* Initialize temporary slots. */
1205 init_temp_slots (void)
1207 /* We have not allocated any temporaries yet. */
1208 avail_temp_slots
= 0;
1209 vec_alloc (used_temp_slots
, 0);
1210 temp_slot_level
= 0;
1211 n_temp_slots_in_use
= 0;
1213 /* Set up the table to map addresses to temp slots. */
1214 if (! temp_slot_address_table
)
1215 temp_slot_address_table
= hash_table
<temp_address_hasher
>::create_ggc (32);
1217 temp_slot_address_table
->empty ();
1220 /* Functions and data structures to keep track of the values hard regs
1221 had at the start of the function. */
1223 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1224 and has_hard_reg_initial_val.. */
1225 struct GTY(()) initial_value_pair
{
1229 /* ??? This could be a VEC but there is currently no way to define an
1230 opaque VEC type. This could be worked around by defining struct
1231 initial_value_pair in function.h. */
1232 struct GTY(()) initial_value_struct
{
1235 initial_value_pair
* GTY ((length ("%h.num_entries"))) entries
;
1238 /* If a pseudo represents an initial hard reg (or expression), return
1239 it, else return NULL_RTX. */
1242 get_hard_reg_initial_reg (rtx reg
)
1244 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1250 for (i
= 0; i
< ivs
->num_entries
; i
++)
1251 if (rtx_equal_p (ivs
->entries
[i
].pseudo
, reg
))
1252 return ivs
->entries
[i
].hard_reg
;
1257 /* Make sure that there's a pseudo register of mode MODE that stores the
1258 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1261 get_hard_reg_initial_val (machine_mode mode
, unsigned int regno
)
1263 struct initial_value_struct
*ivs
;
1266 rv
= has_hard_reg_initial_val (mode
, regno
);
1270 ivs
= crtl
->hard_reg_initial_vals
;
1273 ivs
= ggc_alloc
<initial_value_struct
> ();
1274 ivs
->num_entries
= 0;
1275 ivs
->max_entries
= 5;
1276 ivs
->entries
= ggc_vec_alloc
<initial_value_pair
> (5);
1277 crtl
->hard_reg_initial_vals
= ivs
;
1280 if (ivs
->num_entries
>= ivs
->max_entries
)
1282 ivs
->max_entries
+= 5;
1283 ivs
->entries
= GGC_RESIZEVEC (initial_value_pair
, ivs
->entries
,
1287 ivs
->entries
[ivs
->num_entries
].hard_reg
= gen_rtx_REG (mode
, regno
);
1288 ivs
->entries
[ivs
->num_entries
].pseudo
= gen_reg_rtx (mode
);
1290 return ivs
->entries
[ivs
->num_entries
++].pseudo
;
1293 /* See if get_hard_reg_initial_val has been used to create a pseudo
1294 for the initial value of hard register REGNO in mode MODE. Return
1295 the associated pseudo if so, otherwise return NULL. */
1298 has_hard_reg_initial_val (machine_mode mode
, unsigned int regno
)
1300 struct initial_value_struct
*ivs
;
1303 ivs
= crtl
->hard_reg_initial_vals
;
1305 for (i
= 0; i
< ivs
->num_entries
; i
++)
1306 if (GET_MODE (ivs
->entries
[i
].hard_reg
) == mode
1307 && REGNO (ivs
->entries
[i
].hard_reg
) == regno
)
1308 return ivs
->entries
[i
].pseudo
;
1314 emit_initial_value_sets (void)
1316 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1324 for (i
= 0; i
< ivs
->num_entries
; i
++)
1325 emit_move_insn (ivs
->entries
[i
].pseudo
, ivs
->entries
[i
].hard_reg
);
1329 emit_insn_at_entry (seq
);
1333 /* Return the hardreg-pseudoreg initial values pair entry I and
1334 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1336 initial_value_entry (int i
, rtx
*hreg
, rtx
*preg
)
1338 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1339 if (!ivs
|| i
>= ivs
->num_entries
)
1342 *hreg
= ivs
->entries
[i
].hard_reg
;
1343 *preg
= ivs
->entries
[i
].pseudo
;
1347 /* These routines are responsible for converting virtual register references
1348 to the actual hard register references once RTL generation is complete.
1350 The following four variables are used for communication between the
1351 routines. They contain the offsets of the virtual registers from their
1352 respective hard registers. */
1354 static int in_arg_offset
;
1355 static int var_offset
;
1356 static int dynamic_offset
;
1357 static int out_arg_offset
;
1358 static int cfa_offset
;
1360 /* In most machines, the stack pointer register is equivalent to the bottom
1363 #ifndef STACK_POINTER_OFFSET
1364 #define STACK_POINTER_OFFSET 0
1367 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1368 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1371 /* If not defined, pick an appropriate default for the offset of dynamically
1372 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1373 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1375 #ifndef STACK_DYNAMIC_OFFSET
1377 /* The bottom of the stack points to the actual arguments. If
1378 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1379 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1380 stack space for register parameters is not pushed by the caller, but
1381 rather part of the fixed stack areas and hence not included in
1382 `crtl->outgoing_args_size'. Nevertheless, we must allow
1383 for it when allocating stack dynamic objects. */
1385 #ifdef INCOMING_REG_PARM_STACK_SPACE
1386 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1387 ((ACCUMULATE_OUTGOING_ARGS \
1388 ? (crtl->outgoing_args_size \
1389 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1390 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1391 : 0) + (STACK_POINTER_OFFSET))
1393 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1394 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1395 + (STACK_POINTER_OFFSET))
1400 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1401 is a virtual register, return the equivalent hard register and set the
1402 offset indirectly through the pointer. Otherwise, return 0. */
1405 instantiate_new_reg (rtx x
, HOST_WIDE_INT
*poffset
)
1408 HOST_WIDE_INT offset
;
1410 if (x
== virtual_incoming_args_rtx
)
1412 if (stack_realign_drap
)
1414 /* Replace virtual_incoming_args_rtx with internal arg
1415 pointer if DRAP is used to realign stack. */
1416 new_rtx
= crtl
->args
.internal_arg_pointer
;
1420 new_rtx
= arg_pointer_rtx
, offset
= in_arg_offset
;
1422 else if (x
== virtual_stack_vars_rtx
)
1423 new_rtx
= frame_pointer_rtx
, offset
= var_offset
;
1424 else if (x
== virtual_stack_dynamic_rtx
)
1425 new_rtx
= stack_pointer_rtx
, offset
= dynamic_offset
;
1426 else if (x
== virtual_outgoing_args_rtx
)
1427 new_rtx
= stack_pointer_rtx
, offset
= out_arg_offset
;
1428 else if (x
== virtual_cfa_rtx
)
1430 #ifdef FRAME_POINTER_CFA_OFFSET
1431 new_rtx
= frame_pointer_rtx
;
1433 new_rtx
= arg_pointer_rtx
;
1435 offset
= cfa_offset
;
1437 else if (x
== virtual_preferred_stack_boundary_rtx
)
1439 new_rtx
= GEN_INT (crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
);
1449 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1450 registers present inside of *LOC. The expression is simplified,
1451 as much as possible, but is not to be considered "valid" in any sense
1452 implied by the target. Return true if any change is made. */
1455 instantiate_virtual_regs_in_rtx (rtx
*loc
)
1459 bool changed
= false;
1460 subrtx_ptr_iterator::array_type array
;
1461 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, NONCONST
)
1467 HOST_WIDE_INT offset
;
1468 switch (GET_CODE (x
))
1471 new_rtx
= instantiate_new_reg (x
, &offset
);
1474 *loc
= plus_constant (GET_MODE (x
), new_rtx
, offset
);
1477 iter
.skip_subrtxes ();
1481 new_rtx
= instantiate_new_reg (XEXP (x
, 0), &offset
);
1484 XEXP (x
, 0) = new_rtx
;
1485 *loc
= plus_constant (GET_MODE (x
), x
, offset
, true);
1487 iter
.skip_subrtxes ();
1491 /* FIXME -- from old code */
1492 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1493 we can commute the PLUS and SUBREG because pointers into the
1494 frame are well-behaved. */
1505 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1506 matches the predicate for insn CODE operand OPERAND. */
1509 safe_insn_predicate (int code
, int operand
, rtx x
)
1511 return code
< 0 || insn_operand_matches ((enum insn_code
) code
, operand
, x
);
1514 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1515 registers present inside of insn. The result will be a valid insn. */
1518 instantiate_virtual_regs_in_insn (rtx_insn
*insn
)
1520 HOST_WIDE_INT offset
;
1522 bool any_change
= false;
1523 rtx set
, new_rtx
, x
;
1526 /* There are some special cases to be handled first. */
1527 set
= single_set (insn
);
1530 /* We're allowed to assign to a virtual register. This is interpreted
1531 to mean that the underlying register gets assigned the inverse
1532 transformation. This is used, for example, in the handling of
1534 new_rtx
= instantiate_new_reg (SET_DEST (set
), &offset
);
1539 instantiate_virtual_regs_in_rtx (&SET_SRC (set
));
1540 x
= simplify_gen_binary (PLUS
, GET_MODE (new_rtx
), SET_SRC (set
),
1541 gen_int_mode (-offset
, GET_MODE (new_rtx
)));
1542 x
= force_operand (x
, new_rtx
);
1544 emit_move_insn (new_rtx
, x
);
1549 emit_insn_before (seq
, insn
);
1554 /* Handle a straight copy from a virtual register by generating a
1555 new add insn. The difference between this and falling through
1556 to the generic case is avoiding a new pseudo and eliminating a
1557 move insn in the initial rtl stream. */
1558 new_rtx
= instantiate_new_reg (SET_SRC (set
), &offset
);
1559 if (new_rtx
&& offset
!= 0
1560 && REG_P (SET_DEST (set
))
1561 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1565 x
= expand_simple_binop (GET_MODE (SET_DEST (set
)), PLUS
, new_rtx
,
1566 gen_int_mode (offset
,
1567 GET_MODE (SET_DEST (set
))),
1568 SET_DEST (set
), 1, OPTAB_LIB_WIDEN
);
1569 if (x
!= SET_DEST (set
))
1570 emit_move_insn (SET_DEST (set
), x
);
1575 emit_insn_before (seq
, insn
);
1580 extract_insn (insn
);
1581 insn_code
= INSN_CODE (insn
);
1583 /* Handle a plus involving a virtual register by determining if the
1584 operands remain valid if they're modified in place. */
1585 if (GET_CODE (SET_SRC (set
)) == PLUS
1586 && recog_data
.n_operands
>= 3
1587 && recog_data
.operand_loc
[1] == &XEXP (SET_SRC (set
), 0)
1588 && recog_data
.operand_loc
[2] == &XEXP (SET_SRC (set
), 1)
1589 && CONST_INT_P (recog_data
.operand
[2])
1590 && (new_rtx
= instantiate_new_reg (recog_data
.operand
[1], &offset
)))
1592 offset
+= INTVAL (recog_data
.operand
[2]);
1594 /* If the sum is zero, then replace with a plain move. */
1596 && REG_P (SET_DEST (set
))
1597 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1600 emit_move_insn (SET_DEST (set
), new_rtx
);
1604 emit_insn_before (seq
, insn
);
1609 x
= gen_int_mode (offset
, recog_data
.operand_mode
[2]);
1611 /* Using validate_change and apply_change_group here leaves
1612 recog_data in an invalid state. Since we know exactly what
1613 we want to check, do those two by hand. */
1614 if (safe_insn_predicate (insn_code
, 1, new_rtx
)
1615 && safe_insn_predicate (insn_code
, 2, x
))
1617 *recog_data
.operand_loc
[1] = recog_data
.operand
[1] = new_rtx
;
1618 *recog_data
.operand_loc
[2] = recog_data
.operand
[2] = x
;
1621 /* Fall through into the regular operand fixup loop in
1622 order to take care of operands other than 1 and 2. */
1628 extract_insn (insn
);
1629 insn_code
= INSN_CODE (insn
);
1632 /* In the general case, we expect virtual registers to appear only in
1633 operands, and then only as either bare registers or inside memories. */
1634 for (i
= 0; i
< recog_data
.n_operands
; ++i
)
1636 x
= recog_data
.operand
[i
];
1637 switch (GET_CODE (x
))
1641 rtx addr
= XEXP (x
, 0);
1643 if (!instantiate_virtual_regs_in_rtx (&addr
))
1647 x
= replace_equiv_address (x
, addr
, true);
1648 /* It may happen that the address with the virtual reg
1649 was valid (e.g. based on the virtual stack reg, which might
1650 be acceptable to the predicates with all offsets), whereas
1651 the address now isn't anymore, for instance when the address
1652 is still offsetted, but the base reg isn't virtual-stack-reg
1653 anymore. Below we would do a force_reg on the whole operand,
1654 but this insn might actually only accept memory. Hence,
1655 before doing that last resort, try to reload the address into
1656 a register, so this operand stays a MEM. */
1657 if (!safe_insn_predicate (insn_code
, i
, x
))
1659 addr
= force_reg (GET_MODE (addr
), addr
);
1660 x
= replace_equiv_address (x
, addr
, true);
1665 emit_insn_before (seq
, insn
);
1670 new_rtx
= instantiate_new_reg (x
, &offset
);
1671 if (new_rtx
== NULL
)
1679 /* Careful, special mode predicates may have stuff in
1680 insn_data[insn_code].operand[i].mode that isn't useful
1681 to us for computing a new value. */
1682 /* ??? Recognize address_operand and/or "p" constraints
1683 to see if (plus new offset) is a valid before we put
1684 this through expand_simple_binop. */
1685 x
= expand_simple_binop (GET_MODE (x
), PLUS
, new_rtx
,
1686 gen_int_mode (offset
, GET_MODE (x
)),
1687 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1690 emit_insn_before (seq
, insn
);
1695 new_rtx
= instantiate_new_reg (SUBREG_REG (x
), &offset
);
1696 if (new_rtx
== NULL
)
1701 new_rtx
= expand_simple_binop
1702 (GET_MODE (new_rtx
), PLUS
, new_rtx
,
1703 gen_int_mode (offset
, GET_MODE (new_rtx
)),
1704 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1707 emit_insn_before (seq
, insn
);
1709 x
= simplify_gen_subreg (recog_data
.operand_mode
[i
], new_rtx
,
1710 GET_MODE (new_rtx
), SUBREG_BYTE (x
));
1718 /* At this point, X contains the new value for the operand.
1719 Validate the new value vs the insn predicate. Note that
1720 asm insns will have insn_code -1 here. */
1721 if (!safe_insn_predicate (insn_code
, i
, x
))
1726 gcc_assert (REGNO (x
) <= LAST_VIRTUAL_REGISTER
);
1727 x
= copy_to_reg (x
);
1730 x
= force_reg (insn_data
[insn_code
].operand
[i
].mode
, x
);
1734 emit_insn_before (seq
, insn
);
1737 *recog_data
.operand_loc
[i
] = recog_data
.operand
[i
] = x
;
1743 /* Propagate operand changes into the duplicates. */
1744 for (i
= 0; i
< recog_data
.n_dups
; ++i
)
1745 *recog_data
.dup_loc
[i
]
1746 = copy_rtx (recog_data
.operand
[(unsigned)recog_data
.dup_num
[i
]]);
1748 /* Force re-recognition of the instruction for validation. */
1749 INSN_CODE (insn
) = -1;
1752 if (asm_noperands (PATTERN (insn
)) >= 0)
1754 if (!check_asm_operands (PATTERN (insn
)))
1756 error_for_asm (insn
, "impossible constraint in %<asm%>");
1757 /* For asm goto, instead of fixing up all the edges
1758 just clear the template and clear input operands
1759 (asm goto doesn't have any output operands). */
1762 rtx asm_op
= extract_asm_operands (PATTERN (insn
));
1763 ASM_OPERANDS_TEMPLATE (asm_op
) = ggc_strdup ("");
1764 ASM_OPERANDS_INPUT_VEC (asm_op
) = rtvec_alloc (0);
1765 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op
) = rtvec_alloc (0);
1773 if (recog_memoized (insn
) < 0)
1774 fatal_insn_not_found (insn
);
1778 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1779 do any instantiation required. */
1782 instantiate_decl_rtl (rtx x
)
1789 /* If this is a CONCAT, recurse for the pieces. */
1790 if (GET_CODE (x
) == CONCAT
)
1792 instantiate_decl_rtl (XEXP (x
, 0));
1793 instantiate_decl_rtl (XEXP (x
, 1));
1797 /* If this is not a MEM, no need to do anything. Similarly if the
1798 address is a constant or a register that is not a virtual register. */
1803 if (CONSTANT_P (addr
)
1805 && (REGNO (addr
) < FIRST_VIRTUAL_REGISTER
1806 || REGNO (addr
) > LAST_VIRTUAL_REGISTER
)))
1809 instantiate_virtual_regs_in_rtx (&XEXP (x
, 0));
1812 /* Helper for instantiate_decls called via walk_tree: Process all decls
1813 in the given DECL_VALUE_EXPR. */
1816 instantiate_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
1824 if (DECL_RTL_SET_P (t
))
1825 instantiate_decl_rtl (DECL_RTL (t
));
1826 if (TREE_CODE (t
) == PARM_DECL
&& DECL_NAMELESS (t
)
1827 && DECL_INCOMING_RTL (t
))
1828 instantiate_decl_rtl (DECL_INCOMING_RTL (t
));
1829 if ((TREE_CODE (t
) == VAR_DECL
1830 || TREE_CODE (t
) == RESULT_DECL
)
1831 && DECL_HAS_VALUE_EXPR_P (t
))
1833 tree v
= DECL_VALUE_EXPR (t
);
1834 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1841 /* Subroutine of instantiate_decls: Process all decls in the given
1842 BLOCK node and all its subblocks. */
1845 instantiate_decls_1 (tree let
)
1849 for (t
= BLOCK_VARS (let
); t
; t
= DECL_CHAIN (t
))
1851 if (DECL_RTL_SET_P (t
))
1852 instantiate_decl_rtl (DECL_RTL (t
));
1853 if (TREE_CODE (t
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (t
))
1855 tree v
= DECL_VALUE_EXPR (t
);
1856 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1860 /* Process all subblocks. */
1861 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= BLOCK_CHAIN (t
))
1862 instantiate_decls_1 (t
);
1865 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1866 all virtual registers in their DECL_RTL's. */
1869 instantiate_decls (tree fndecl
)
1874 /* Process all parameters of the function. */
1875 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= DECL_CHAIN (decl
))
1877 instantiate_decl_rtl (DECL_RTL (decl
));
1878 instantiate_decl_rtl (DECL_INCOMING_RTL (decl
));
1879 if (DECL_HAS_VALUE_EXPR_P (decl
))
1881 tree v
= DECL_VALUE_EXPR (decl
);
1882 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1886 if ((decl
= DECL_RESULT (fndecl
))
1887 && TREE_CODE (decl
) == RESULT_DECL
)
1889 if (DECL_RTL_SET_P (decl
))
1890 instantiate_decl_rtl (DECL_RTL (decl
));
1891 if (DECL_HAS_VALUE_EXPR_P (decl
))
1893 tree v
= DECL_VALUE_EXPR (decl
);
1894 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1898 /* Process the saved static chain if it exists. */
1899 decl
= DECL_STRUCT_FUNCTION (fndecl
)->static_chain_decl
;
1900 if (decl
&& DECL_HAS_VALUE_EXPR_P (decl
))
1901 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl
)));
1903 /* Now process all variables defined in the function or its subblocks. */
1904 instantiate_decls_1 (DECL_INITIAL (fndecl
));
1906 FOR_EACH_LOCAL_DECL (cfun
, ix
, decl
)
1907 if (DECL_RTL_SET_P (decl
))
1908 instantiate_decl_rtl (DECL_RTL (decl
));
1909 vec_free (cfun
->local_decls
);
1912 /* Pass through the INSNS of function FNDECL and convert virtual register
1913 references to hard register references. */
1916 instantiate_virtual_regs (void)
1920 /* Compute the offsets to use for this function. */
1921 in_arg_offset
= FIRST_PARM_OFFSET (current_function_decl
);
1922 var_offset
= STARTING_FRAME_OFFSET
;
1923 dynamic_offset
= STACK_DYNAMIC_OFFSET (current_function_decl
);
1924 out_arg_offset
= STACK_POINTER_OFFSET
;
1925 #ifdef FRAME_POINTER_CFA_OFFSET
1926 cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
1928 cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
1931 /* Initialize recognition, indicating that volatile is OK. */
1934 /* Scan through all the insns, instantiating every virtual register still
1936 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1939 /* These patterns in the instruction stream can never be recognized.
1940 Fortunately, they shouldn't contain virtual registers either. */
1941 if (GET_CODE (PATTERN (insn
)) == USE
1942 || GET_CODE (PATTERN (insn
)) == CLOBBER
1943 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
)
1945 else if (DEBUG_INSN_P (insn
))
1946 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn
));
1948 instantiate_virtual_regs_in_insn (insn
);
1950 if (insn
->deleted ())
1953 instantiate_virtual_regs_in_rtx (®_NOTES (insn
));
1955 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1957 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn
));
1960 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1961 instantiate_decls (current_function_decl
);
1963 targetm
.instantiate_decls ();
1965 /* Indicate that, from now on, assign_stack_local should use
1966 frame_pointer_rtx. */
1967 virtuals_instantiated
= 1;
1974 const pass_data pass_data_instantiate_virtual_regs
=
1976 RTL_PASS
, /* type */
1978 OPTGROUP_NONE
, /* optinfo_flags */
1979 TV_NONE
, /* tv_id */
1980 0, /* properties_required */
1981 0, /* properties_provided */
1982 0, /* properties_destroyed */
1983 0, /* todo_flags_start */
1984 0, /* todo_flags_finish */
1987 class pass_instantiate_virtual_regs
: public rtl_opt_pass
1990 pass_instantiate_virtual_regs (gcc::context
*ctxt
)
1991 : rtl_opt_pass (pass_data_instantiate_virtual_regs
, ctxt
)
1994 /* opt_pass methods: */
1995 virtual unsigned int execute (function
*)
1997 return instantiate_virtual_regs ();
2000 }; // class pass_instantiate_virtual_regs
2005 make_pass_instantiate_virtual_regs (gcc::context
*ctxt
)
2007 return new pass_instantiate_virtual_regs (ctxt
);
2011 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2012 This means a type for which function calls must pass an address to the
2013 function or get an address back from the function.
2014 EXP may be a type node or an expression (whose type is tested). */
2017 aggregate_value_p (const_tree exp
, const_tree fntype
)
2019 const_tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
2020 int i
, regno
, nregs
;
2024 switch (TREE_CODE (fntype
))
2028 tree fndecl
= get_callee_fndecl (fntype
);
2030 fntype
= TREE_TYPE (fndecl
);
2031 else if (CALL_EXPR_FN (fntype
))
2032 fntype
= TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype
)));
2034 /* For internal functions, assume nothing needs to be
2035 returned in memory. */
2040 fntype
= TREE_TYPE (fntype
);
2045 case IDENTIFIER_NODE
:
2049 /* We don't expect other tree types here. */
2053 if (VOID_TYPE_P (type
))
2056 /* If a record should be passed the same as its first (and only) member
2057 don't pass it as an aggregate. */
2058 if (TREE_CODE (type
) == RECORD_TYPE
&& TYPE_TRANSPARENT_AGGR (type
))
2059 return aggregate_value_p (first_field (type
), fntype
);
2061 /* If the front end has decided that this needs to be passed by
2062 reference, do so. */
2063 if ((TREE_CODE (exp
) == PARM_DECL
|| TREE_CODE (exp
) == RESULT_DECL
)
2064 && DECL_BY_REFERENCE (exp
))
2067 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2068 if (fntype
&& TREE_ADDRESSABLE (fntype
))
2071 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2072 and thus can't be returned in registers. */
2073 if (TREE_ADDRESSABLE (type
))
2076 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
2079 if (targetm
.calls
.return_in_memory (type
, fntype
))
2082 /* Make sure we have suitable call-clobbered regs to return
2083 the value in; if not, we must return it in memory. */
2084 reg
= hard_function_value (type
, 0, fntype
, 0);
2086 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2091 regno
= REGNO (reg
);
2092 nregs
= hard_regno_nregs
[regno
][TYPE_MODE (type
)];
2093 for (i
= 0; i
< nregs
; i
++)
2094 if (! call_used_regs
[regno
+ i
])
2100 /* Return true if we should assign DECL a pseudo register; false if it
2101 should live on the local stack. */
2104 use_register_for_decl (const_tree decl
)
2106 if (TREE_CODE (decl
) == SSA_NAME
)
2108 /* We often try to use the SSA_NAME, instead of its underlying
2109 decl, to get type information and guide decisions, to avoid
2110 differences of behavior between anonymous and named
2111 variables, but in this one case we have to go for the actual
2112 variable if there is one. The main reason is that, at least
2113 at -O0, we want to place user variables on the stack, but we
2114 don't mind using pseudos for anonymous or ignored temps.
2115 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2116 should go in pseudos, whereas their corresponding variables
2117 might have to go on the stack. So, disregarding the decl
2118 here would negatively impact debug info at -O0, enable
2119 coalescing between SSA_NAMEs that ought to get different
2120 stack/pseudo assignments, and get the incoming argument
2121 processing thoroughly confused by PARM_DECLs expected to live
2122 in stack slots but assigned to pseudos. */
2123 if (!SSA_NAME_VAR (decl
))
2124 return TYPE_MODE (TREE_TYPE (decl
)) != BLKmode
2125 && !(flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)));
2127 decl
= SSA_NAME_VAR (decl
);
2130 /* Honor volatile. */
2131 if (TREE_SIDE_EFFECTS (decl
))
2134 /* Honor addressability. */
2135 if (TREE_ADDRESSABLE (decl
))
2138 /* RESULT_DECLs are a bit special in that they're assigned without
2139 regard to use_register_for_decl, but we generally only store in
2140 them. If we coalesce their SSA NAMEs, we'd better return a
2141 result that matches the assignment in expand_function_start. */
2142 if (TREE_CODE (decl
) == RESULT_DECL
)
2144 /* If it's not an aggregate, we're going to use a REG or a
2145 PARALLEL containing a REG. */
2146 if (!aggregate_value_p (decl
, current_function_decl
))
2149 /* If expand_function_start determines the return value, we'll
2150 use MEM if it's not by reference. */
2151 if (cfun
->returns_pcc_struct
2152 || (targetm
.calls
.struct_value_rtx
2153 (TREE_TYPE (current_function_decl
), 1)))
2154 return DECL_BY_REFERENCE (decl
);
2156 /* Otherwise, we're taking an extra all.function_result_decl
2157 argument. It's set up in assign_parms_augmented_arg_list,
2158 under the (negated) conditions above, and then it's used to
2159 set up the RESULT_DECL rtl in assign_params, after looping
2160 over all parameters. Now, if the RESULT_DECL is not by
2161 reference, we'll use a MEM either way. */
2162 if (!DECL_BY_REFERENCE (decl
))
2165 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2166 the function_result_decl's assignment. Since it's a pointer,
2167 we can short-circuit a number of the tests below, and we must
2168 duplicat e them because we don't have the
2169 function_result_decl to test. */
2170 if (!targetm
.calls
.allocate_stack_slots_for_args ())
2172 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2175 /* We don't set DECL_REGISTER for the function_result_decl. */
2179 /* Decl is implicitly addressible by bound stores and loads
2180 if it is an aggregate holding bounds. */
2181 if (chkp_function_instrumented_p (current_function_decl
)
2183 && !BOUNDED_P (decl
)
2184 && chkp_type_has_pointer (TREE_TYPE (decl
)))
2187 /* Only register-like things go in registers. */
2188 if (DECL_MODE (decl
) == BLKmode
)
2191 /* If -ffloat-store specified, don't put explicit float variables
2193 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2194 propagates values across these stores, and it probably shouldn't. */
2195 if (flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)))
2198 if (!targetm
.calls
.allocate_stack_slots_for_args ())
2201 /* If we're not interested in tracking debugging information for
2202 this decl, then we can certainly put it in a register. */
2203 if (DECL_IGNORED_P (decl
))
2209 if (!DECL_REGISTER (decl
))
2212 switch (TREE_CODE (TREE_TYPE (decl
)))
2216 case QUAL_UNION_TYPE
:
2217 /* When not optimizing, disregard register keyword for variables with
2218 types containing methods, otherwise the methods won't be callable
2219 from the debugger. */
2220 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl
))))
2230 /* Structures to communicate between the subroutines of assign_parms.
2231 The first holds data persistent across all parameters, the second
2232 is cleared out for each parameter. */
2234 struct assign_parm_data_all
2236 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2237 should become a job of the target or otherwise encapsulated. */
2238 CUMULATIVE_ARGS args_so_far_v
;
2239 cumulative_args_t args_so_far
;
2240 struct args_size stack_args_size
;
2241 tree function_result_decl
;
2243 rtx_insn
*first_conversion_insn
;
2244 rtx_insn
*last_conversion_insn
;
2245 HOST_WIDE_INT pretend_args_size
;
2246 HOST_WIDE_INT extra_pretend_bytes
;
2247 int reg_parm_stack_space
;
2250 struct assign_parm_data_one
2256 machine_mode nominal_mode
;
2257 machine_mode passed_mode
;
2258 machine_mode promoted_mode
;
2259 struct locate_and_pad_arg_data locate
;
2261 BOOL_BITFIELD named_arg
: 1;
2262 BOOL_BITFIELD passed_pointer
: 1;
2263 BOOL_BITFIELD on_stack
: 1;
2264 BOOL_BITFIELD loaded_in_reg
: 1;
2267 struct bounds_parm_data
2269 assign_parm_data_one parm_data
;
2276 /* A subroutine of assign_parms. Initialize ALL. */
2279 assign_parms_initialize_all (struct assign_parm_data_all
*all
)
2281 tree fntype ATTRIBUTE_UNUSED
;
2283 memset (all
, 0, sizeof (*all
));
2285 fntype
= TREE_TYPE (current_function_decl
);
2287 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2288 INIT_CUMULATIVE_INCOMING_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
);
2290 INIT_CUMULATIVE_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
,
2291 current_function_decl
, -1);
2293 all
->args_so_far
= pack_cumulative_args (&all
->args_so_far_v
);
2295 #ifdef INCOMING_REG_PARM_STACK_SPACE
2296 all
->reg_parm_stack_space
2297 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl
);
2301 /* If ARGS contains entries with complex types, split the entry into two
2302 entries of the component type. Return a new list of substitutions are
2303 needed, else the old list. */
2306 split_complex_args (vec
<tree
> *args
)
2311 FOR_EACH_VEC_ELT (*args
, i
, p
)
2313 tree type
= TREE_TYPE (p
);
2314 if (TREE_CODE (type
) == COMPLEX_TYPE
2315 && targetm
.calls
.split_complex_arg (type
))
2318 tree subtype
= TREE_TYPE (type
);
2319 bool addressable
= TREE_ADDRESSABLE (p
);
2321 /* Rewrite the PARM_DECL's type with its component. */
2323 TREE_TYPE (p
) = subtype
;
2324 DECL_ARG_TYPE (p
) = TREE_TYPE (DECL_ARG_TYPE (p
));
2325 DECL_MODE (p
) = VOIDmode
;
2326 DECL_SIZE (p
) = NULL
;
2327 DECL_SIZE_UNIT (p
) = NULL
;
2328 /* If this arg must go in memory, put it in a pseudo here.
2329 We can't allow it to go in memory as per normal parms,
2330 because the usual place might not have the imag part
2331 adjacent to the real part. */
2332 DECL_ARTIFICIAL (p
) = addressable
;
2333 DECL_IGNORED_P (p
) = addressable
;
2334 TREE_ADDRESSABLE (p
) = 0;
2338 /* Build a second synthetic decl. */
2339 decl
= build_decl (EXPR_LOCATION (p
),
2340 PARM_DECL
, NULL_TREE
, subtype
);
2341 DECL_ARG_TYPE (decl
) = DECL_ARG_TYPE (p
);
2342 DECL_ARTIFICIAL (decl
) = addressable
;
2343 DECL_IGNORED_P (decl
) = addressable
;
2344 layout_decl (decl
, 0);
2345 args
->safe_insert (++i
, decl
);
2350 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2351 the hidden struct return argument, and (abi willing) complex args.
2352 Return the new parameter list. */
2355 assign_parms_augmented_arg_list (struct assign_parm_data_all
*all
)
2357 tree fndecl
= current_function_decl
;
2358 tree fntype
= TREE_TYPE (fndecl
);
2359 vec
<tree
> fnargs
= vNULL
;
2362 for (arg
= DECL_ARGUMENTS (fndecl
); arg
; arg
= DECL_CHAIN (arg
))
2363 fnargs
.safe_push (arg
);
2365 all
->orig_fnargs
= DECL_ARGUMENTS (fndecl
);
2367 /* If struct value address is treated as the first argument, make it so. */
2368 if (aggregate_value_p (DECL_RESULT (fndecl
), fndecl
)
2369 && ! cfun
->returns_pcc_struct
2370 && targetm
.calls
.struct_value_rtx (TREE_TYPE (fndecl
), 1) == 0)
2372 tree type
= build_pointer_type (TREE_TYPE (fntype
));
2375 decl
= build_decl (DECL_SOURCE_LOCATION (fndecl
),
2376 PARM_DECL
, get_identifier (".result_ptr"), type
);
2377 DECL_ARG_TYPE (decl
) = type
;
2378 DECL_ARTIFICIAL (decl
) = 1;
2379 DECL_NAMELESS (decl
) = 1;
2380 TREE_CONSTANT (decl
) = 1;
2381 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2382 changes, the end of the RESULT_DECL handling block in
2383 use_register_for_decl must be adjusted to match. */
2385 DECL_CHAIN (decl
) = all
->orig_fnargs
;
2386 all
->orig_fnargs
= decl
;
2387 fnargs
.safe_insert (0, decl
);
2389 all
->function_result_decl
= decl
;
2391 /* If function is instrumented then bounds of the
2392 passed structure address is the second argument. */
2393 if (chkp_function_instrumented_p (fndecl
))
2395 decl
= build_decl (DECL_SOURCE_LOCATION (fndecl
),
2396 PARM_DECL
, get_identifier (".result_bnd"),
2397 pointer_bounds_type_node
);
2398 DECL_ARG_TYPE (decl
) = pointer_bounds_type_node
;
2399 DECL_ARTIFICIAL (decl
) = 1;
2400 DECL_NAMELESS (decl
) = 1;
2401 TREE_CONSTANT (decl
) = 1;
2403 DECL_CHAIN (decl
) = DECL_CHAIN (all
->orig_fnargs
);
2404 DECL_CHAIN (all
->orig_fnargs
) = decl
;
2405 fnargs
.safe_insert (1, decl
);
2409 /* If the target wants to split complex arguments into scalars, do so. */
2410 if (targetm
.calls
.split_complex_arg
)
2411 split_complex_args (&fnargs
);
2416 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2417 data for the parameter. Incorporate ABI specifics such as pass-by-
2418 reference and type promotion. */
2421 assign_parm_find_data_types (struct assign_parm_data_all
*all
, tree parm
,
2422 struct assign_parm_data_one
*data
)
2424 tree nominal_type
, passed_type
;
2425 machine_mode nominal_mode
, passed_mode
, promoted_mode
;
2428 memset (data
, 0, sizeof (*data
));
2430 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2432 data
->named_arg
= 1; /* No variadic parms. */
2433 else if (DECL_CHAIN (parm
))
2434 data
->named_arg
= 1; /* Not the last non-variadic parm. */
2435 else if (targetm
.calls
.strict_argument_naming (all
->args_so_far
))
2436 data
->named_arg
= 1; /* Only variadic ones are unnamed. */
2438 data
->named_arg
= 0; /* Treat as variadic. */
2440 nominal_type
= TREE_TYPE (parm
);
2441 passed_type
= DECL_ARG_TYPE (parm
);
2443 /* Look out for errors propagating this far. Also, if the parameter's
2444 type is void then its value doesn't matter. */
2445 if (TREE_TYPE (parm
) == error_mark_node
2446 /* This can happen after weird syntax errors
2447 or if an enum type is defined among the parms. */
2448 || TREE_CODE (parm
) != PARM_DECL
2449 || passed_type
== NULL
2450 || VOID_TYPE_P (nominal_type
))
2452 nominal_type
= passed_type
= void_type_node
;
2453 nominal_mode
= passed_mode
= promoted_mode
= VOIDmode
;
2457 /* Find mode of arg as it is passed, and mode of arg as it should be
2458 during execution of this function. */
2459 passed_mode
= TYPE_MODE (passed_type
);
2460 nominal_mode
= TYPE_MODE (nominal_type
);
2462 /* If the parm is to be passed as a transparent union or record, use the
2463 type of the first field for the tests below. We have already verified
2464 that the modes are the same. */
2465 if ((TREE_CODE (passed_type
) == UNION_TYPE
2466 || TREE_CODE (passed_type
) == RECORD_TYPE
)
2467 && TYPE_TRANSPARENT_AGGR (passed_type
))
2468 passed_type
= TREE_TYPE (first_field (passed_type
));
2470 /* See if this arg was passed by invisible reference. */
2471 if (pass_by_reference (&all
->args_so_far_v
, passed_mode
,
2472 passed_type
, data
->named_arg
))
2474 passed_type
= nominal_type
= build_pointer_type (passed_type
);
2475 data
->passed_pointer
= true;
2476 passed_mode
= nominal_mode
= TYPE_MODE (nominal_type
);
2479 /* Find mode as it is passed by the ABI. */
2480 unsignedp
= TYPE_UNSIGNED (passed_type
);
2481 promoted_mode
= promote_function_mode (passed_type
, passed_mode
, &unsignedp
,
2482 TREE_TYPE (current_function_decl
), 0);
2485 data
->nominal_type
= nominal_type
;
2486 data
->passed_type
= passed_type
;
2487 data
->nominal_mode
= nominal_mode
;
2488 data
->passed_mode
= passed_mode
;
2489 data
->promoted_mode
= promoted_mode
;
2492 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2495 assign_parms_setup_varargs (struct assign_parm_data_all
*all
,
2496 struct assign_parm_data_one
*data
, bool no_rtl
)
2498 int varargs_pretend_bytes
= 0;
2500 targetm
.calls
.setup_incoming_varargs (all
->args_so_far
,
2501 data
->promoted_mode
,
2503 &varargs_pretend_bytes
, no_rtl
);
2505 /* If the back-end has requested extra stack space, record how much is
2506 needed. Do not change pretend_args_size otherwise since it may be
2507 nonzero from an earlier partial argument. */
2508 if (varargs_pretend_bytes
> 0)
2509 all
->pretend_args_size
= varargs_pretend_bytes
;
2512 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2513 the incoming location of the current parameter. */
2516 assign_parm_find_entry_rtl (struct assign_parm_data_all
*all
,
2517 struct assign_parm_data_one
*data
)
2519 HOST_WIDE_INT pretend_bytes
= 0;
2523 if (data
->promoted_mode
== VOIDmode
)
2525 data
->entry_parm
= data
->stack_parm
= const0_rtx
;
2529 entry_parm
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2530 data
->promoted_mode
,
2534 if (entry_parm
== 0)
2535 data
->promoted_mode
= data
->passed_mode
;
2537 /* Determine parm's home in the stack, in case it arrives in the stack
2538 or we should pretend it did. Compute the stack position and rtx where
2539 the argument arrives and its size.
2541 There is one complexity here: If this was a parameter that would
2542 have been passed in registers, but wasn't only because it is
2543 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2544 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2545 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2546 as it was the previous time. */
2547 in_regs
= (entry_parm
!= 0) || POINTER_BOUNDS_TYPE_P (data
->passed_type
);
2548 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2551 if (!in_regs
&& !data
->named_arg
)
2553 if (targetm
.calls
.pretend_outgoing_varargs_named (all
->args_so_far
))
2556 tem
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2557 data
->promoted_mode
,
2558 data
->passed_type
, true);
2559 in_regs
= tem
!= NULL
;
2563 /* If this parameter was passed both in registers and in the stack, use
2564 the copy on the stack. */
2565 if (targetm
.calls
.must_pass_in_stack (data
->promoted_mode
,
2573 partial
= targetm
.calls
.arg_partial_bytes (all
->args_so_far
,
2574 data
->promoted_mode
,
2577 data
->partial
= partial
;
2579 /* The caller might already have allocated stack space for the
2580 register parameters. */
2581 if (partial
!= 0 && all
->reg_parm_stack_space
== 0)
2583 /* Part of this argument is passed in registers and part
2584 is passed on the stack. Ask the prologue code to extend
2585 the stack part so that we can recreate the full value.
2587 PRETEND_BYTES is the size of the registers we need to store.
2588 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2589 stack space that the prologue should allocate.
2591 Internally, gcc assumes that the argument pointer is aligned
2592 to STACK_BOUNDARY bits. This is used both for alignment
2593 optimizations (see init_emit) and to locate arguments that are
2594 aligned to more than PARM_BOUNDARY bits. We must preserve this
2595 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2596 a stack boundary. */
2598 /* We assume at most one partial arg, and it must be the first
2599 argument on the stack. */
2600 gcc_assert (!all
->extra_pretend_bytes
&& !all
->pretend_args_size
);
2602 pretend_bytes
= partial
;
2603 all
->pretend_args_size
= CEIL_ROUND (pretend_bytes
, STACK_BYTES
);
2605 /* We want to align relative to the actual stack pointer, so
2606 don't include this in the stack size until later. */
2607 all
->extra_pretend_bytes
= all
->pretend_args_size
;
2611 locate_and_pad_parm (data
->promoted_mode
, data
->passed_type
, in_regs
,
2612 all
->reg_parm_stack_space
,
2613 entry_parm
? data
->partial
: 0, current_function_decl
,
2614 &all
->stack_args_size
, &data
->locate
);
2616 /* Update parm_stack_boundary if this parameter is passed in the
2618 if (!in_regs
&& crtl
->parm_stack_boundary
< data
->locate
.boundary
)
2619 crtl
->parm_stack_boundary
= data
->locate
.boundary
;
2621 /* Adjust offsets to include the pretend args. */
2622 pretend_bytes
= all
->extra_pretend_bytes
- pretend_bytes
;
2623 data
->locate
.slot_offset
.constant
+= pretend_bytes
;
2624 data
->locate
.offset
.constant
+= pretend_bytes
;
2626 data
->entry_parm
= entry_parm
;
2629 /* A subroutine of assign_parms. If there is actually space on the stack
2630 for this parm, count it in stack_args_size and return true. */
2633 assign_parm_is_stack_parm (struct assign_parm_data_all
*all
,
2634 struct assign_parm_data_one
*data
)
2636 /* Bounds are never passed on the stack to keep compatibility
2637 with not instrumented code. */
2638 if (POINTER_BOUNDS_TYPE_P (data
->passed_type
))
2640 /* Trivially true if we've no incoming register. */
2641 else if (data
->entry_parm
== NULL
)
2643 /* Also true if we're partially in registers and partially not,
2644 since we've arranged to drop the entire argument on the stack. */
2645 else if (data
->partial
!= 0)
2647 /* Also true if the target says that it's passed in both registers
2648 and on the stack. */
2649 else if (GET_CODE (data
->entry_parm
) == PARALLEL
2650 && XEXP (XVECEXP (data
->entry_parm
, 0, 0), 0) == NULL_RTX
)
2652 /* Also true if the target says that there's stack allocated for
2653 all register parameters. */
2654 else if (all
->reg_parm_stack_space
> 0)
2656 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2660 all
->stack_args_size
.constant
+= data
->locate
.size
.constant
;
2661 if (data
->locate
.size
.var
)
2662 ADD_PARM_SIZE (all
->stack_args_size
, data
->locate
.size
.var
);
2667 /* A subroutine of assign_parms. Given that this parameter is allocated
2668 stack space by the ABI, find it. */
2671 assign_parm_find_stack_rtl (tree parm
, struct assign_parm_data_one
*data
)
2673 rtx offset_rtx
, stack_parm
;
2674 unsigned int align
, boundary
;
2676 /* If we're passing this arg using a reg, make its stack home the
2677 aligned stack slot. */
2678 if (data
->entry_parm
)
2679 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.slot_offset
);
2681 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.offset
);
2683 stack_parm
= crtl
->args
.internal_arg_pointer
;
2684 if (offset_rtx
!= const0_rtx
)
2685 stack_parm
= gen_rtx_PLUS (Pmode
, stack_parm
, offset_rtx
);
2686 stack_parm
= gen_rtx_MEM (data
->promoted_mode
, stack_parm
);
2688 if (!data
->passed_pointer
)
2690 set_mem_attributes (stack_parm
, parm
, 1);
2691 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2692 while promoted mode's size is needed. */
2693 if (data
->promoted_mode
!= BLKmode
2694 && data
->promoted_mode
!= DECL_MODE (parm
))
2696 set_mem_size (stack_parm
, GET_MODE_SIZE (data
->promoted_mode
));
2697 if (MEM_EXPR (stack_parm
) && MEM_OFFSET_KNOWN_P (stack_parm
))
2699 int offset
= subreg_lowpart_offset (DECL_MODE (parm
),
2700 data
->promoted_mode
);
2702 set_mem_offset (stack_parm
, MEM_OFFSET (stack_parm
) - offset
);
2707 boundary
= data
->locate
.boundary
;
2708 align
= BITS_PER_UNIT
;
2710 /* If we're padding upward, we know that the alignment of the slot
2711 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2712 intentionally forcing upward padding. Otherwise we have to come
2713 up with a guess at the alignment based on OFFSET_RTX. */
2714 if (data
->locate
.where_pad
!= downward
|| data
->entry_parm
)
2716 else if (CONST_INT_P (offset_rtx
))
2718 align
= INTVAL (offset_rtx
) * BITS_PER_UNIT
| boundary
;
2719 align
= align
& -align
;
2721 set_mem_align (stack_parm
, align
);
2723 if (data
->entry_parm
)
2724 set_reg_attrs_for_parm (data
->entry_parm
, stack_parm
);
2726 data
->stack_parm
= stack_parm
;
2729 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2730 always valid and contiguous. */
2733 assign_parm_adjust_entry_rtl (struct assign_parm_data_one
*data
)
2735 rtx entry_parm
= data
->entry_parm
;
2736 rtx stack_parm
= data
->stack_parm
;
2738 /* If this parm was passed part in regs and part in memory, pretend it
2739 arrived entirely in memory by pushing the register-part onto the stack.
2740 In the special case of a DImode or DFmode that is split, we could put
2741 it together in a pseudoreg directly, but for now that's not worth
2743 if (data
->partial
!= 0)
2745 /* Handle calls that pass values in multiple non-contiguous
2746 locations. The Irix 6 ABI has examples of this. */
2747 if (GET_CODE (entry_parm
) == PARALLEL
)
2748 emit_group_store (validize_mem (copy_rtx (stack_parm
)), entry_parm
,
2750 int_size_in_bytes (data
->passed_type
));
2753 gcc_assert (data
->partial
% UNITS_PER_WORD
== 0);
2754 move_block_from_reg (REGNO (entry_parm
),
2755 validize_mem (copy_rtx (stack_parm
)),
2756 data
->partial
/ UNITS_PER_WORD
);
2759 entry_parm
= stack_parm
;
2762 /* If we didn't decide this parm came in a register, by default it came
2764 else if (entry_parm
== NULL
)
2765 entry_parm
= stack_parm
;
2767 /* When an argument is passed in multiple locations, we can't make use
2768 of this information, but we can save some copying if the whole argument
2769 is passed in a single register. */
2770 else if (GET_CODE (entry_parm
) == PARALLEL
2771 && data
->nominal_mode
!= BLKmode
2772 && data
->passed_mode
!= BLKmode
)
2774 size_t i
, len
= XVECLEN (entry_parm
, 0);
2776 for (i
= 0; i
< len
; i
++)
2777 if (XEXP (XVECEXP (entry_parm
, 0, i
), 0) != NULL_RTX
2778 && REG_P (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2779 && (GET_MODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2780 == data
->passed_mode
)
2781 && INTVAL (XEXP (XVECEXP (entry_parm
, 0, i
), 1)) == 0)
2783 entry_parm
= XEXP (XVECEXP (entry_parm
, 0, i
), 0);
2788 data
->entry_parm
= entry_parm
;
2791 /* A subroutine of assign_parms. Reconstitute any values which were
2792 passed in multiple registers and would fit in a single register. */
2795 assign_parm_remove_parallels (struct assign_parm_data_one
*data
)
2797 rtx entry_parm
= data
->entry_parm
;
2799 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2800 This can be done with register operations rather than on the
2801 stack, even if we will store the reconstituted parameter on the
2803 if (GET_CODE (entry_parm
) == PARALLEL
&& GET_MODE (entry_parm
) != BLKmode
)
2805 rtx parmreg
= gen_reg_rtx (GET_MODE (entry_parm
));
2806 emit_group_store (parmreg
, entry_parm
, data
->passed_type
,
2807 GET_MODE_SIZE (GET_MODE (entry_parm
)));
2808 entry_parm
= parmreg
;
2811 data
->entry_parm
= entry_parm
;
2814 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2815 always valid and properly aligned. */
2818 assign_parm_adjust_stack_rtl (struct assign_parm_data_one
*data
)
2820 rtx stack_parm
= data
->stack_parm
;
2822 /* If we can't trust the parm stack slot to be aligned enough for its
2823 ultimate type, don't use that slot after entry. We'll make another
2824 stack slot, if we need one. */
2826 && ((STRICT_ALIGNMENT
2827 && GET_MODE_ALIGNMENT (data
->nominal_mode
) > MEM_ALIGN (stack_parm
))
2828 || (data
->nominal_type
2829 && TYPE_ALIGN (data
->nominal_type
) > MEM_ALIGN (stack_parm
)
2830 && MEM_ALIGN (stack_parm
) < PREFERRED_STACK_BOUNDARY
)))
2833 /* If parm was passed in memory, and we need to convert it on entry,
2834 don't store it back in that same slot. */
2835 else if (data
->entry_parm
== stack_parm
2836 && data
->nominal_mode
!= BLKmode
2837 && data
->nominal_mode
!= data
->passed_mode
)
2840 /* If stack protection is in effect for this function, don't leave any
2841 pointers in their passed stack slots. */
2842 else if (crtl
->stack_protect_guard
2843 && (flag_stack_protect
== 2
2844 || data
->passed_pointer
2845 || POINTER_TYPE_P (data
->nominal_type
)))
2848 data
->stack_parm
= stack_parm
;
2851 /* A subroutine of assign_parms. Return true if the current parameter
2852 should be stored as a BLKmode in the current frame. */
2855 assign_parm_setup_block_p (struct assign_parm_data_one
*data
)
2857 if (data
->nominal_mode
== BLKmode
)
2859 if (GET_MODE (data
->entry_parm
) == BLKmode
)
2862 #ifdef BLOCK_REG_PADDING
2863 /* Only assign_parm_setup_block knows how to deal with register arguments
2864 that are padded at the least significant end. */
2865 if (REG_P (data
->entry_parm
)
2866 && GET_MODE_SIZE (data
->promoted_mode
) < UNITS_PER_WORD
2867 && (BLOCK_REG_PADDING (data
->passed_mode
, data
->passed_type
, 1)
2868 == (BYTES_BIG_ENDIAN
? upward
: downward
)))
2875 /* A subroutine of assign_parms. Arrange for the parameter to be
2876 present and valid in DATA->STACK_RTL. */
2879 assign_parm_setup_block (struct assign_parm_data_all
*all
,
2880 tree parm
, struct assign_parm_data_one
*data
)
2882 rtx entry_parm
= data
->entry_parm
;
2883 rtx stack_parm
= data
->stack_parm
;
2884 rtx target_reg
= NULL_RTX
;
2885 bool in_conversion_seq
= false;
2887 HOST_WIDE_INT size_stored
;
2889 if (GET_CODE (entry_parm
) == PARALLEL
)
2890 entry_parm
= emit_group_move_into_temps (entry_parm
);
2892 /* If we want the parameter in a pseudo, don't use a stack slot. */
2893 if (is_gimple_reg (parm
) && use_register_for_decl (parm
))
2895 tree def
= ssa_default_def (cfun
, parm
);
2897 machine_mode mode
= promote_ssa_mode (def
, NULL
);
2898 rtx reg
= gen_reg_rtx (mode
);
2899 if (GET_CODE (reg
) != CONCAT
)
2904 /* Avoid allocating a stack slot, if there isn't one
2905 preallocated by the ABI. It might seem like we should
2906 always prefer a pseudo, but converting between
2907 floating-point and integer modes goes through the stack
2908 on various machines, so it's better to use the reserved
2909 stack slot than to risk wasting it and allocating more
2910 for the conversion. */
2911 if (stack_parm
== NULL_RTX
)
2913 int save
= generating_concat_p
;
2914 generating_concat_p
= 0;
2915 stack_parm
= gen_reg_rtx (mode
);
2916 generating_concat_p
= save
;
2919 data
->stack_parm
= NULL
;
2922 size
= int_size_in_bytes (data
->passed_type
);
2923 size_stored
= CEIL_ROUND (size
, UNITS_PER_WORD
);
2924 if (stack_parm
== 0)
2926 SET_DECL_ALIGN (parm
, MAX (DECL_ALIGN (parm
), BITS_PER_WORD
));
2927 stack_parm
= assign_stack_local (BLKmode
, size_stored
,
2929 if (GET_MODE_SIZE (GET_MODE (entry_parm
)) == size
)
2930 PUT_MODE (stack_parm
, GET_MODE (entry_parm
));
2931 set_mem_attributes (stack_parm
, parm
, 1);
2934 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2935 calls that pass values in multiple non-contiguous locations. */
2936 if (REG_P (entry_parm
) || GET_CODE (entry_parm
) == PARALLEL
)
2940 /* Note that we will be storing an integral number of words.
2941 So we have to be careful to ensure that we allocate an
2942 integral number of words. We do this above when we call
2943 assign_stack_local if space was not allocated in the argument
2944 list. If it was, this will not work if PARM_BOUNDARY is not
2945 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2946 if it becomes a problem. Exception is when BLKmode arrives
2947 with arguments not conforming to word_mode. */
2949 if (data
->stack_parm
== 0)
2951 else if (GET_CODE (entry_parm
) == PARALLEL
)
2954 gcc_assert (!size
|| !(PARM_BOUNDARY
% BITS_PER_WORD
));
2956 mem
= validize_mem (copy_rtx (stack_parm
));
2958 /* Handle values in multiple non-contiguous locations. */
2959 if (GET_CODE (entry_parm
) == PARALLEL
&& !MEM_P (mem
))
2960 emit_group_store (mem
, entry_parm
, data
->passed_type
, size
);
2961 else if (GET_CODE (entry_parm
) == PARALLEL
)
2963 push_to_sequence2 (all
->first_conversion_insn
,
2964 all
->last_conversion_insn
);
2965 emit_group_store (mem
, entry_parm
, data
->passed_type
, size
);
2966 all
->first_conversion_insn
= get_insns ();
2967 all
->last_conversion_insn
= get_last_insn ();
2969 in_conversion_seq
= true;
2975 /* If SIZE is that of a mode no bigger than a word, just use
2976 that mode's store operation. */
2977 else if (size
<= UNITS_PER_WORD
)
2980 = mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
, 0);
2983 #ifdef BLOCK_REG_PADDING
2984 && (size
== UNITS_PER_WORD
2985 || (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
2986 != (BYTES_BIG_ENDIAN
? upward
: downward
)))
2992 /* We are really truncating a word_mode value containing
2993 SIZE bytes into a value of mode MODE. If such an
2994 operation requires no actual instructions, we can refer
2995 to the value directly in mode MODE, otherwise we must
2996 start with the register in word_mode and explicitly
2998 if (TRULY_NOOP_TRUNCATION (size
* BITS_PER_UNIT
, BITS_PER_WORD
))
2999 reg
= gen_rtx_REG (mode
, REGNO (entry_parm
));
3002 reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3003 reg
= convert_to_mode (mode
, copy_to_reg (reg
), 1);
3005 emit_move_insn (change_address (mem
, mode
, 0), reg
);
3008 #ifdef BLOCK_REG_PADDING
3009 /* Storing the register in memory as a full word, as
3010 move_block_from_reg below would do, and then using the
3011 MEM in a smaller mode, has the effect of shifting right
3012 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3013 shifting must be explicit. */
3014 else if (!MEM_P (mem
))
3018 /* If the assert below fails, we should have taken the
3019 mode != BLKmode path above, unless we have downward
3020 padding of smaller-than-word arguments on a machine
3021 with little-endian bytes, which would likely require
3022 additional changes to work correctly. */
3023 gcc_checking_assert (BYTES_BIG_ENDIAN
3024 && (BLOCK_REG_PADDING (mode
,
3025 data
->passed_type
, 1)
3028 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
3030 x
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3031 x
= expand_shift (RSHIFT_EXPR
, word_mode
, x
, by
,
3033 x
= force_reg (word_mode
, x
);
3034 x
= gen_lowpart_SUBREG (GET_MODE (mem
), x
);
3036 emit_move_insn (mem
, x
);
3040 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3041 machine must be aligned to the left before storing
3042 to memory. Note that the previous test doesn't
3043 handle all cases (e.g. SIZE == 3). */
3044 else if (size
!= UNITS_PER_WORD
3045 #ifdef BLOCK_REG_PADDING
3046 && (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
3054 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
3055 rtx reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
3057 x
= expand_shift (LSHIFT_EXPR
, word_mode
, reg
, by
, NULL_RTX
, 1);
3058 tem
= change_address (mem
, word_mode
, 0);
3059 emit_move_insn (tem
, x
);
3062 move_block_from_reg (REGNO (entry_parm
), mem
,
3063 size_stored
/ UNITS_PER_WORD
);
3065 else if (!MEM_P (mem
))
3067 gcc_checking_assert (size
> UNITS_PER_WORD
);
3068 #ifdef BLOCK_REG_PADDING
3069 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem
),
3070 data
->passed_type
, 0)
3073 emit_move_insn (mem
, entry_parm
);
3076 move_block_from_reg (REGNO (entry_parm
), mem
,
3077 size_stored
/ UNITS_PER_WORD
);
3079 else if (data
->stack_parm
== 0)
3081 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3082 emit_block_move (stack_parm
, data
->entry_parm
, GEN_INT (size
),
3084 all
->first_conversion_insn
= get_insns ();
3085 all
->last_conversion_insn
= get_last_insn ();
3087 in_conversion_seq
= true;
3092 if (!in_conversion_seq
)
3093 emit_move_insn (target_reg
, stack_parm
);
3096 push_to_sequence2 (all
->first_conversion_insn
,
3097 all
->last_conversion_insn
);
3098 emit_move_insn (target_reg
, stack_parm
);
3099 all
->first_conversion_insn
= get_insns ();
3100 all
->last_conversion_insn
= get_last_insn ();
3103 stack_parm
= target_reg
;
3106 data
->stack_parm
= stack_parm
;
3107 set_parm_rtl (parm
, stack_parm
);
3110 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3111 parameter. Get it there. Perform all ABI specified conversions. */
3114 assign_parm_setup_reg (struct assign_parm_data_all
*all
, tree parm
,
3115 struct assign_parm_data_one
*data
)
3117 rtx parmreg
, validated_mem
;
3118 rtx equiv_stack_parm
;
3119 machine_mode promoted_nominal_mode
;
3120 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (parm
));
3121 bool did_conversion
= false;
3122 bool need_conversion
, moved
;
3125 /* Store the parm in a pseudoregister during the function, but we may
3126 need to do it in a wider mode. Using 2 here makes the result
3127 consistent with promote_decl_mode and thus expand_expr_real_1. */
3128 promoted_nominal_mode
3129 = promote_function_mode (data
->nominal_type
, data
->nominal_mode
, &unsignedp
,
3130 TREE_TYPE (current_function_decl
), 2);
3132 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
3133 if (!DECL_ARTIFICIAL (parm
))
3134 mark_user_reg (parmreg
);
3136 /* If this was an item that we received a pointer to,
3137 set rtl appropriately. */
3138 if (data
->passed_pointer
)
3140 rtl
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
->passed_type
)), parmreg
);
3141 set_mem_attributes (rtl
, parm
, 1);
3146 assign_parm_remove_parallels (data
);
3148 /* Copy the value into the register, thus bridging between
3149 assign_parm_find_data_types and expand_expr_real_1. */
3151 equiv_stack_parm
= data
->stack_parm
;
3152 validated_mem
= validize_mem (copy_rtx (data
->entry_parm
));
3154 need_conversion
= (data
->nominal_mode
!= data
->passed_mode
3155 || promoted_nominal_mode
!= data
->promoted_mode
);
3159 && GET_MODE_CLASS (data
->nominal_mode
) == MODE_INT
3160 && data
->nominal_mode
== data
->passed_mode
3161 && data
->nominal_mode
== GET_MODE (data
->entry_parm
))
3163 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3164 mode, by the caller. We now have to convert it to
3165 NOMINAL_MODE, if different. However, PARMREG may be in
3166 a different mode than NOMINAL_MODE if it is being stored
3169 If ENTRY_PARM is a hard register, it might be in a register
3170 not valid for operating in its mode (e.g., an odd-numbered
3171 register for a DFmode). In that case, moves are the only
3172 thing valid, so we can't do a convert from there. This
3173 occurs when the calling sequence allow such misaligned
3176 In addition, the conversion may involve a call, which could
3177 clobber parameters which haven't been copied to pseudo
3180 First, we try to emit an insn which performs the necessary
3181 conversion. We verify that this insn does not clobber any
3184 enum insn_code icode
;
3187 icode
= can_extend_p (promoted_nominal_mode
, data
->passed_mode
,
3191 op1
= validated_mem
;
3192 if (icode
!= CODE_FOR_nothing
3193 && insn_operand_matches (icode
, 0, op0
)
3194 && insn_operand_matches (icode
, 1, op1
))
3196 enum rtx_code code
= unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
;
3197 rtx_insn
*insn
, *insns
;
3199 HARD_REG_SET hardregs
;
3202 /* If op1 is a hard register that is likely spilled, first
3203 force it into a pseudo, otherwise combiner might extend
3204 its lifetime too much. */
3205 if (GET_CODE (t
) == SUBREG
)
3208 && HARD_REGISTER_P (t
)
3209 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (t
))
3210 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t
))))
3212 t
= gen_reg_rtx (GET_MODE (op1
));
3213 emit_move_insn (t
, op1
);
3217 rtx_insn
*pat
= gen_extend_insn (op0
, t
, promoted_nominal_mode
,
3218 data
->passed_mode
, unsignedp
);
3220 insns
= get_insns ();
3223 CLEAR_HARD_REG_SET (hardregs
);
3224 for (insn
= insns
; insn
&& moved
; insn
= NEXT_INSN (insn
))
3227 note_stores (PATTERN (insn
), record_hard_reg_sets
,
3229 if (!hard_reg_set_empty_p (hardregs
))
3238 if (equiv_stack_parm
!= NULL_RTX
)
3239 equiv_stack_parm
= gen_rtx_fmt_e (code
, GET_MODE (parmreg
),
3246 /* Nothing to do. */
3248 else if (need_conversion
)
3250 /* We did not have an insn to convert directly, or the sequence
3251 generated appeared unsafe. We must first copy the parm to a
3252 pseudo reg, and save the conversion until after all
3253 parameters have been moved. */
3256 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3258 emit_move_insn (tempreg
, validated_mem
);
3260 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3261 tempreg
= convert_to_mode (data
->nominal_mode
, tempreg
, unsignedp
);
3263 if (GET_CODE (tempreg
) == SUBREG
3264 && GET_MODE (tempreg
) == data
->nominal_mode
3265 && REG_P (SUBREG_REG (tempreg
))
3266 && data
->nominal_mode
== data
->passed_mode
3267 && GET_MODE (SUBREG_REG (tempreg
)) == GET_MODE (data
->entry_parm
)
3268 && GET_MODE_SIZE (GET_MODE (tempreg
))
3269 < GET_MODE_SIZE (GET_MODE (data
->entry_parm
)))
3271 /* The argument is already sign/zero extended, so note it
3273 SUBREG_PROMOTED_VAR_P (tempreg
) = 1;
3274 SUBREG_PROMOTED_SET (tempreg
, unsignedp
);
3277 /* TREE_USED gets set erroneously during expand_assignment. */
3278 save_tree_used
= TREE_USED (parm
);
3279 SET_DECL_RTL (parm
, rtl
);
3280 expand_assignment (parm
, make_tree (data
->nominal_type
, tempreg
), false);
3281 SET_DECL_RTL (parm
, NULL_RTX
);
3282 TREE_USED (parm
) = save_tree_used
;
3283 all
->first_conversion_insn
= get_insns ();
3284 all
->last_conversion_insn
= get_last_insn ();
3287 did_conversion
= true;
3290 emit_move_insn (parmreg
, validated_mem
);
3292 /* If we were passed a pointer but the actual value can safely live
3293 in a register, retrieve it and use it directly. */
3294 if (data
->passed_pointer
&& TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
)
3296 /* We can't use nominal_mode, because it will have been set to
3297 Pmode above. We must use the actual mode of the parm. */
3298 if (use_register_for_decl (parm
))
3300 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
3301 mark_user_reg (parmreg
);
3305 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3306 TYPE_MODE (TREE_TYPE (parm
)),
3307 TYPE_ALIGN (TREE_TYPE (parm
)));
3309 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm
)),
3310 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm
))),
3312 set_mem_attributes (parmreg
, parm
, 1);
3315 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3316 the debug info in case it is not legitimate. */
3317 if (GET_MODE (parmreg
) != GET_MODE (rtl
))
3319 rtx tempreg
= gen_reg_rtx (GET_MODE (rtl
));
3320 int unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (parm
));
3322 push_to_sequence2 (all
->first_conversion_insn
,
3323 all
->last_conversion_insn
);
3324 emit_move_insn (tempreg
, rtl
);
3325 tempreg
= convert_to_mode (GET_MODE (parmreg
), tempreg
, unsigned_p
);
3326 emit_move_insn (MEM_P (parmreg
) ? copy_rtx (parmreg
) : parmreg
,
3328 all
->first_conversion_insn
= get_insns ();
3329 all
->last_conversion_insn
= get_last_insn ();
3332 did_conversion
= true;
3335 emit_move_insn (MEM_P (parmreg
) ? copy_rtx (parmreg
) : parmreg
, rtl
);
3339 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3341 data
->stack_parm
= NULL
;
3344 set_parm_rtl (parm
, rtl
);
3346 /* Mark the register as eliminable if we did no conversion and it was
3347 copied from memory at a fixed offset, and the arg pointer was not
3348 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3349 offset formed an invalid address, such memory-equivalences as we
3350 make here would screw up life analysis for it. */
3351 if (data
->nominal_mode
== data
->passed_mode
3353 && data
->stack_parm
!= 0
3354 && MEM_P (data
->stack_parm
)
3355 && data
->locate
.offset
.var
== 0
3356 && reg_mentioned_p (virtual_incoming_args_rtx
,
3357 XEXP (data
->stack_parm
, 0)))
3359 rtx_insn
*linsn
= get_last_insn ();
3363 /* Mark complex types separately. */
3364 if (GET_CODE (parmreg
) == CONCAT
)
3366 machine_mode submode
3367 = GET_MODE_INNER (GET_MODE (parmreg
));
3368 int regnor
= REGNO (XEXP (parmreg
, 0));
3369 int regnoi
= REGNO (XEXP (parmreg
, 1));
3370 rtx stackr
= adjust_address_nv (data
->stack_parm
, submode
, 0);
3371 rtx stacki
= adjust_address_nv (data
->stack_parm
, submode
,
3372 GET_MODE_SIZE (submode
));
3374 /* Scan backwards for the set of the real and
3376 for (sinsn
= linsn
; sinsn
!= 0;
3377 sinsn
= prev_nonnote_insn (sinsn
))
3379 set
= single_set (sinsn
);
3383 if (SET_DEST (set
) == regno_reg_rtx
[regnoi
])
3384 set_unique_reg_note (sinsn
, REG_EQUIV
, stacki
);
3385 else if (SET_DEST (set
) == regno_reg_rtx
[regnor
])
3386 set_unique_reg_note (sinsn
, REG_EQUIV
, stackr
);
3390 set_dst_reg_note (linsn
, REG_EQUIV
, equiv_stack_parm
, parmreg
);
3393 /* For pointer data type, suggest pointer register. */
3394 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
3395 mark_reg_pointer (parmreg
,
3396 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
3399 /* A subroutine of assign_parms. Allocate stack space to hold the current
3400 parameter. Get it there. Perform all ABI specified conversions. */
3403 assign_parm_setup_stack (struct assign_parm_data_all
*all
, tree parm
,
3404 struct assign_parm_data_one
*data
)
3406 /* Value must be stored in the stack slot STACK_PARM during function
3408 bool to_conversion
= false;
3410 assign_parm_remove_parallels (data
);
3412 if (data
->promoted_mode
!= data
->nominal_mode
)
3414 /* Conversion is required. */
3415 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3417 emit_move_insn (tempreg
, validize_mem (copy_rtx (data
->entry_parm
)));
3419 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3420 to_conversion
= true;
3422 data
->entry_parm
= convert_to_mode (data
->nominal_mode
, tempreg
,
3423 TYPE_UNSIGNED (TREE_TYPE (parm
)));
3425 if (data
->stack_parm
)
3427 int offset
= subreg_lowpart_offset (data
->nominal_mode
,
3428 GET_MODE (data
->stack_parm
));
3429 /* ??? This may need a big-endian conversion on sparc64. */
3431 = adjust_address (data
->stack_parm
, data
->nominal_mode
, 0);
3432 if (offset
&& MEM_OFFSET_KNOWN_P (data
->stack_parm
))
3433 set_mem_offset (data
->stack_parm
,
3434 MEM_OFFSET (data
->stack_parm
) + offset
);
3438 if (data
->entry_parm
!= data
->stack_parm
)
3442 if (data
->stack_parm
== 0)
3444 int align
= STACK_SLOT_ALIGNMENT (data
->passed_type
,
3445 GET_MODE (data
->entry_parm
),
3446 TYPE_ALIGN (data
->passed_type
));
3448 = assign_stack_local (GET_MODE (data
->entry_parm
),
3449 GET_MODE_SIZE (GET_MODE (data
->entry_parm
)),
3451 set_mem_attributes (data
->stack_parm
, parm
, 1);
3454 dest
= validize_mem (copy_rtx (data
->stack_parm
));
3455 src
= validize_mem (copy_rtx (data
->entry_parm
));
3459 /* Use a block move to handle potentially misaligned entry_parm. */
3461 push_to_sequence2 (all
->first_conversion_insn
,
3462 all
->last_conversion_insn
);
3463 to_conversion
= true;
3465 emit_block_move (dest
, src
,
3466 GEN_INT (int_size_in_bytes (data
->passed_type
)),
3472 src
= force_reg (GET_MODE (src
), src
);
3473 emit_move_insn (dest
, src
);
3479 all
->first_conversion_insn
= get_insns ();
3480 all
->last_conversion_insn
= get_last_insn ();
3484 set_parm_rtl (parm
, data
->stack_parm
);
3487 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3488 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3491 assign_parms_unsplit_complex (struct assign_parm_data_all
*all
,
3495 tree orig_fnargs
= all
->orig_fnargs
;
3498 for (parm
= orig_fnargs
; parm
; parm
= TREE_CHAIN (parm
), ++i
)
3500 if (TREE_CODE (TREE_TYPE (parm
)) == COMPLEX_TYPE
3501 && targetm
.calls
.split_complex_arg (TREE_TYPE (parm
)))
3503 rtx tmp
, real
, imag
;
3504 machine_mode inner
= GET_MODE_INNER (DECL_MODE (parm
));
3506 real
= DECL_RTL (fnargs
[i
]);
3507 imag
= DECL_RTL (fnargs
[i
+ 1]);
3508 if (inner
!= GET_MODE (real
))
3510 real
= gen_lowpart_SUBREG (inner
, real
);
3511 imag
= gen_lowpart_SUBREG (inner
, imag
);
3514 if (TREE_ADDRESSABLE (parm
))
3517 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (parm
));
3518 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3520 TYPE_ALIGN (TREE_TYPE (parm
)));
3522 /* split_complex_arg put the real and imag parts in
3523 pseudos. Move them to memory. */
3524 tmp
= assign_stack_local (DECL_MODE (parm
), size
, align
);
3525 set_mem_attributes (tmp
, parm
, 1);
3526 rmem
= adjust_address_nv (tmp
, inner
, 0);
3527 imem
= adjust_address_nv (tmp
, inner
, GET_MODE_SIZE (inner
));
3528 push_to_sequence2 (all
->first_conversion_insn
,
3529 all
->last_conversion_insn
);
3530 emit_move_insn (rmem
, real
);
3531 emit_move_insn (imem
, imag
);
3532 all
->first_conversion_insn
= get_insns ();
3533 all
->last_conversion_insn
= get_last_insn ();
3537 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3538 set_parm_rtl (parm
, tmp
);
3540 real
= DECL_INCOMING_RTL (fnargs
[i
]);
3541 imag
= DECL_INCOMING_RTL (fnargs
[i
+ 1]);
3542 if (inner
!= GET_MODE (real
))
3544 real
= gen_lowpart_SUBREG (inner
, real
);
3545 imag
= gen_lowpart_SUBREG (inner
, imag
);
3547 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3548 set_decl_incoming_rtl (parm
, tmp
, false);
3554 /* Load bounds of PARM from bounds table. */
3556 assign_parm_load_bounds (struct assign_parm_data_one
*data
,
3562 unsigned i
, offs
= 0;
3564 rtx slot
= NULL
, ptr
= NULL
;
3569 bitmap_obstack_initialize (NULL
);
3570 slots
= BITMAP_ALLOC (NULL
);
3571 chkp_find_bound_slots (TREE_TYPE (parm
), slots
);
3572 EXECUTE_IF_SET_IN_BITMAP (slots
, 0, i
, bi
)
3582 BITMAP_FREE (slots
);
3583 bitmap_obstack_release (NULL
);
3586 /* We may have bounds not associated with any pointer. */
3588 offs
= bnd_no
* POINTER_SIZE
/ BITS_PER_UNIT
;
3590 /* Find associated pointer. */
3593 /* If bounds are not associated with any bounds,
3594 then it is passed in a register or special slot. */
3595 gcc_assert (data
->entry_parm
);
3598 else if (MEM_P (entry
))
3599 slot
= adjust_address (entry
, Pmode
, offs
);
3600 else if (REG_P (entry
))
3601 ptr
= gen_rtx_REG (Pmode
, REGNO (entry
) + bnd_no
);
3602 else if (GET_CODE (entry
) == PARALLEL
)
3603 ptr
= chkp_get_value_with_offs (entry
, GEN_INT (offs
));
3606 data
->entry_parm
= targetm
.calls
.load_bounds_for_arg (slot
, ptr
,
3610 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3613 assign_bounds (vec
<bounds_parm_data
> &bndargs
,
3614 struct assign_parm_data_all
&all
,
3615 bool assign_regs
, bool assign_special
,
3619 bounds_parm_data
*pbdata
;
3621 if (!bndargs
.exists ())
3624 /* We make few passes to store input bounds. Firstly handle bounds
3625 passed in registers. After that we load bounds passed in special
3626 slots. Finally we load bounds from Bounds Table. */
3627 for (pass
= 0; pass
< 3; pass
++)
3628 FOR_EACH_VEC_ELT (bndargs
, i
, pbdata
)
3630 /* Pass 0 => regs only. */
3633 ||(!pbdata
->parm_data
.entry_parm
3634 || GET_CODE (pbdata
->parm_data
.entry_parm
) != REG
)))
3636 /* Pass 1 => slots only. */
3639 || (!pbdata
->parm_data
.entry_parm
3640 || GET_CODE (pbdata
->parm_data
.entry_parm
) == REG
)))
3642 /* Pass 2 => BT only. */
3645 || pbdata
->parm_data
.entry_parm
))
3648 if (!pbdata
->parm_data
.entry_parm
3649 || GET_CODE (pbdata
->parm_data
.entry_parm
) != REG
)
3650 assign_parm_load_bounds (&pbdata
->parm_data
, pbdata
->ptr_parm
,
3651 pbdata
->ptr_entry
, pbdata
->bound_no
);
3653 set_decl_incoming_rtl (pbdata
->bounds_parm
,
3654 pbdata
->parm_data
.entry_parm
, false);
3656 if (assign_parm_setup_block_p (&pbdata
->parm_data
))
3657 assign_parm_setup_block (&all
, pbdata
->bounds_parm
,
3658 &pbdata
->parm_data
);
3659 else if (pbdata
->parm_data
.passed_pointer
3660 || use_register_for_decl (pbdata
->bounds_parm
))
3661 assign_parm_setup_reg (&all
, pbdata
->bounds_parm
,
3662 &pbdata
->parm_data
);
3664 assign_parm_setup_stack (&all
, pbdata
->bounds_parm
,
3665 &pbdata
->parm_data
);
3669 /* Assign RTL expressions to the function's parameters. This may involve
3670 copying them into registers and using those registers as the DECL_RTL. */
3673 assign_parms (tree fndecl
)
3675 struct assign_parm_data_all all
;
3678 unsigned i
, bound_no
= 0;
3679 tree last_arg
= NULL
;
3680 rtx last_arg_entry
= NULL
;
3681 vec
<bounds_parm_data
> bndargs
= vNULL
;
3682 bounds_parm_data bdata
;
3684 crtl
->args
.internal_arg_pointer
3685 = targetm
.calls
.internal_arg_pointer ();
3687 assign_parms_initialize_all (&all
);
3688 fnargs
= assign_parms_augmented_arg_list (&all
);
3690 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3692 struct assign_parm_data_one data
;
3694 /* Extract the type of PARM; adjust it according to ABI. */
3695 assign_parm_find_data_types (&all
, parm
, &data
);
3697 /* Early out for errors and void parameters. */
3698 if (data
.passed_mode
== VOIDmode
)
3700 SET_DECL_RTL (parm
, const0_rtx
);
3701 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
);
3705 /* Estimate stack alignment from parameter alignment. */
3706 if (SUPPORTS_STACK_ALIGNMENT
)
3709 = targetm
.calls
.function_arg_boundary (data
.promoted_mode
,
3711 align
= MINIMUM_ALIGNMENT (data
.passed_type
, data
.promoted_mode
,
3713 if (TYPE_ALIGN (data
.nominal_type
) > align
)
3714 align
= MINIMUM_ALIGNMENT (data
.nominal_type
,
3715 TYPE_MODE (data
.nominal_type
),
3716 TYPE_ALIGN (data
.nominal_type
));
3717 if (crtl
->stack_alignment_estimated
< align
)
3719 gcc_assert (!crtl
->stack_realign_processed
);
3720 crtl
->stack_alignment_estimated
= align
;
3724 /* Find out where the parameter arrives in this function. */
3725 assign_parm_find_entry_rtl (&all
, &data
);
3727 /* Find out where stack space for this parameter might be. */
3728 if (assign_parm_is_stack_parm (&all
, &data
))
3730 assign_parm_find_stack_rtl (parm
, &data
);
3731 assign_parm_adjust_entry_rtl (&data
);
3733 if (!POINTER_BOUNDS_TYPE_P (data
.passed_type
))
3735 /* Remember where last non bounds arg was passed in case
3736 we have to load associated bounds for it from Bounds
3739 last_arg_entry
= data
.entry_parm
;
3742 /* Record permanently how this parm was passed. */
3743 if (data
.passed_pointer
)
3746 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
.passed_type
)),
3748 set_decl_incoming_rtl (parm
, incoming_rtl
, true);
3751 set_decl_incoming_rtl (parm
, data
.entry_parm
, false);
3753 assign_parm_adjust_stack_rtl (&data
);
3755 /* Bounds should be loaded in the particular order to
3756 have registers allocated correctly. Collect info about
3757 input bounds and load them later. */
3758 if (POINTER_BOUNDS_TYPE_P (data
.passed_type
))
3760 /* Expect bounds in instrumented functions only. */
3761 gcc_assert (chkp_function_instrumented_p (fndecl
));
3763 bdata
.parm_data
= data
;
3764 bdata
.bounds_parm
= parm
;
3765 bdata
.ptr_parm
= last_arg
;
3766 bdata
.ptr_entry
= last_arg_entry
;
3767 bdata
.bound_no
= bound_no
;
3768 bndargs
.safe_push (bdata
);
3772 if (assign_parm_setup_block_p (&data
))
3773 assign_parm_setup_block (&all
, parm
, &data
);
3774 else if (data
.passed_pointer
|| use_register_for_decl (parm
))
3775 assign_parm_setup_reg (&all
, parm
, &data
);
3777 assign_parm_setup_stack (&all
, parm
, &data
);
3780 if (cfun
->stdarg
&& !DECL_CHAIN (parm
))
3782 int pretend_bytes
= 0;
3784 assign_parms_setup_varargs (&all
, &data
, false);
3786 if (chkp_function_instrumented_p (fndecl
))
3788 /* We expect this is the last parm. Otherwise it is wrong
3789 to assign bounds right now. */
3790 gcc_assert (i
== (fnargs
.length () - 1));
3791 assign_bounds (bndargs
, all
, true, false, false);
3792 targetm
.calls
.setup_incoming_vararg_bounds (all
.args_so_far
,
3797 assign_bounds (bndargs
, all
, false, true, true);
3802 /* Update info on where next arg arrives in registers. */
3803 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.promoted_mode
,
3804 data
.passed_type
, data
.named_arg
);
3806 if (POINTER_BOUNDS_TYPE_P (data
.passed_type
))
3810 assign_bounds (bndargs
, all
, true, true, true);
3813 if (targetm
.calls
.split_complex_arg
)
3814 assign_parms_unsplit_complex (&all
, fnargs
);
3818 /* Output all parameter conversion instructions (possibly including calls)
3819 now that all parameters have been copied out of hard registers. */
3820 emit_insn (all
.first_conversion_insn
);
3822 /* Estimate reload stack alignment from scalar return mode. */
3823 if (SUPPORTS_STACK_ALIGNMENT
)
3825 if (DECL_RESULT (fndecl
))
3827 tree type
= TREE_TYPE (DECL_RESULT (fndecl
));
3828 machine_mode mode
= TYPE_MODE (type
);
3832 && !AGGREGATE_TYPE_P (type
))
3834 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
3835 if (crtl
->stack_alignment_estimated
< align
)
3837 gcc_assert (!crtl
->stack_realign_processed
);
3838 crtl
->stack_alignment_estimated
= align
;
3844 /* If we are receiving a struct value address as the first argument, set up
3845 the RTL for the function result. As this might require code to convert
3846 the transmitted address to Pmode, we do this here to ensure that possible
3847 preliminary conversions of the address have been emitted already. */
3848 if (all
.function_result_decl
)
3850 tree result
= DECL_RESULT (current_function_decl
);
3851 rtx addr
= DECL_RTL (all
.function_result_decl
);
3854 if (DECL_BY_REFERENCE (result
))
3856 SET_DECL_VALUE_EXPR (result
, all
.function_result_decl
);
3861 SET_DECL_VALUE_EXPR (result
,
3862 build1 (INDIRECT_REF
, TREE_TYPE (result
),
3863 all
.function_result_decl
));
3864 addr
= convert_memory_address (Pmode
, addr
);
3865 x
= gen_rtx_MEM (DECL_MODE (result
), addr
);
3866 set_mem_attributes (x
, result
, 1);
3869 DECL_HAS_VALUE_EXPR_P (result
) = 1;
3871 set_parm_rtl (result
, x
);
3874 /* We have aligned all the args, so add space for the pretend args. */
3875 crtl
->args
.pretend_args_size
= all
.pretend_args_size
;
3876 all
.stack_args_size
.constant
+= all
.extra_pretend_bytes
;
3877 crtl
->args
.size
= all
.stack_args_size
.constant
;
3879 /* Adjust function incoming argument size for alignment and
3882 crtl
->args
.size
= MAX (crtl
->args
.size
, all
.reg_parm_stack_space
);
3883 crtl
->args
.size
= CEIL_ROUND (crtl
->args
.size
,
3884 PARM_BOUNDARY
/ BITS_PER_UNIT
);
3886 if (ARGS_GROW_DOWNWARD
)
3888 crtl
->args
.arg_offset_rtx
3889 = (all
.stack_args_size
.var
== 0 ? GEN_INT (-all
.stack_args_size
.constant
)
3890 : expand_expr (size_diffop (all
.stack_args_size
.var
,
3891 size_int (-all
.stack_args_size
.constant
)),
3892 NULL_RTX
, VOIDmode
, EXPAND_NORMAL
));
3895 crtl
->args
.arg_offset_rtx
= ARGS_SIZE_RTX (all
.stack_args_size
);
3897 /* See how many bytes, if any, of its args a function should try to pop
3900 crtl
->args
.pops_args
= targetm
.calls
.return_pops_args (fndecl
,
3904 /* For stdarg.h function, save info about
3905 regs and stack space used by the named args. */
3907 crtl
->args
.info
= all
.args_so_far_v
;
3909 /* Set the rtx used for the function return value. Put this in its
3910 own variable so any optimizers that need this information don't have
3911 to include tree.h. Do this here so it gets done when an inlined
3912 function gets output. */
3915 = (DECL_RTL_SET_P (DECL_RESULT (fndecl
))
3916 ? DECL_RTL (DECL_RESULT (fndecl
)) : NULL_RTX
);
3918 /* If scalar return value was computed in a pseudo-reg, or was a named
3919 return value that got dumped to the stack, copy that to the hard
3921 if (DECL_RTL_SET_P (DECL_RESULT (fndecl
)))
3923 tree decl_result
= DECL_RESULT (fndecl
);
3924 rtx decl_rtl
= DECL_RTL (decl_result
);
3926 if (REG_P (decl_rtl
)
3927 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
3928 : DECL_REGISTER (decl_result
))
3932 real_decl_rtl
= targetm
.calls
.function_value (TREE_TYPE (decl_result
),
3934 if (chkp_function_instrumented_p (fndecl
))
3936 = targetm
.calls
.chkp_function_value_bounds (TREE_TYPE (decl_result
),
3938 REG_FUNCTION_VALUE_P (real_decl_rtl
) = 1;
3939 /* The delay slot scheduler assumes that crtl->return_rtx
3940 holds the hard register containing the return value, not a
3941 temporary pseudo. */
3942 crtl
->return_rtx
= real_decl_rtl
;
3947 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3948 For all seen types, gimplify their sizes. */
3951 gimplify_parm_type (tree
*tp
, int *walk_subtrees
, void *data
)
3958 if (POINTER_TYPE_P (t
))
3960 else if (TYPE_SIZE (t
) && !TREE_CONSTANT (TYPE_SIZE (t
))
3961 && !TYPE_SIZES_GIMPLIFIED (t
))
3963 gimplify_type_sizes (t
, (gimple_seq
*) data
);
3971 /* Gimplify the parameter list for current_function_decl. This involves
3972 evaluating SAVE_EXPRs of variable sized parameters and generating code
3973 to implement callee-copies reference parameters. Returns a sequence of
3974 statements to add to the beginning of the function. */
3977 gimplify_parameters (void)
3979 struct assign_parm_data_all all
;
3981 gimple_seq stmts
= NULL
;
3985 assign_parms_initialize_all (&all
);
3986 fnargs
= assign_parms_augmented_arg_list (&all
);
3988 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3990 struct assign_parm_data_one data
;
3992 /* Extract the type of PARM; adjust it according to ABI. */
3993 assign_parm_find_data_types (&all
, parm
, &data
);
3995 /* Early out for errors and void parameters. */
3996 if (data
.passed_mode
== VOIDmode
|| DECL_SIZE (parm
) == NULL
)
3999 /* Update info on where next arg arrives in registers. */
4000 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.promoted_mode
,
4001 data
.passed_type
, data
.named_arg
);
4003 /* ??? Once upon a time variable_size stuffed parameter list
4004 SAVE_EXPRs (amongst others) onto a pending sizes list. This
4005 turned out to be less than manageable in the gimple world.
4006 Now we have to hunt them down ourselves. */
4007 walk_tree_without_duplicates (&data
.passed_type
,
4008 gimplify_parm_type
, &stmts
);
4010 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) != INTEGER_CST
)
4012 gimplify_one_sizepos (&DECL_SIZE (parm
), &stmts
);
4013 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm
), &stmts
);
4016 if (data
.passed_pointer
)
4018 tree type
= TREE_TYPE (data
.passed_type
);
4019 if (reference_callee_copied (&all
.args_so_far_v
, TYPE_MODE (type
),
4020 type
, data
.named_arg
))
4024 /* For constant-sized objects, this is trivial; for
4025 variable-sized objects, we have to play games. */
4026 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) == INTEGER_CST
4027 && !(flag_stack_check
== GENERIC_STACK_CHECK
4028 && compare_tree_int (DECL_SIZE_UNIT (parm
),
4029 STACK_CHECK_MAX_VAR_SIZE
) > 0))
4031 local
= create_tmp_var (type
, get_name (parm
));
4032 DECL_IGNORED_P (local
) = 0;
4033 /* If PARM was addressable, move that flag over
4034 to the local copy, as its address will be taken,
4035 not the PARMs. Keep the parms address taken
4036 as we'll query that flag during gimplification. */
4037 if (TREE_ADDRESSABLE (parm
))
4038 TREE_ADDRESSABLE (local
) = 1;
4039 else if (TREE_CODE (type
) == COMPLEX_TYPE
4040 || TREE_CODE (type
) == VECTOR_TYPE
)
4041 DECL_GIMPLE_REG_P (local
) = 1;
4045 tree ptr_type
, addr
;
4047 ptr_type
= build_pointer_type (type
);
4048 addr
= create_tmp_reg (ptr_type
, get_name (parm
));
4049 DECL_IGNORED_P (addr
) = 0;
4050 local
= build_fold_indirect_ref (addr
);
4052 t
= builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN
);
4053 t
= build_call_expr (t
, 2, DECL_SIZE_UNIT (parm
),
4054 size_int (DECL_ALIGN (parm
)));
4056 /* The call has been built for a variable-sized object. */
4057 CALL_ALLOCA_FOR_VAR_P (t
) = 1;
4058 t
= fold_convert (ptr_type
, t
);
4059 t
= build2 (MODIFY_EXPR
, TREE_TYPE (addr
), addr
, t
);
4060 gimplify_and_add (t
, &stmts
);
4063 gimplify_assign (local
, parm
, &stmts
);
4065 SET_DECL_VALUE_EXPR (parm
, local
);
4066 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
4076 /* Compute the size and offset from the start of the stacked arguments for a
4077 parm passed in mode PASSED_MODE and with type TYPE.
4079 INITIAL_OFFSET_PTR points to the current offset into the stacked
4082 The starting offset and size for this parm are returned in
4083 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4084 nonzero, the offset is that of stack slot, which is returned in
4085 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4086 padding required from the initial offset ptr to the stack slot.
4088 IN_REGS is nonzero if the argument will be passed in registers. It will
4089 never be set if REG_PARM_STACK_SPACE is not defined.
4091 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4092 for arguments which are passed in registers.
4094 FNDECL is the function in which the argument was defined.
4096 There are two types of rounding that are done. The first, controlled by
4097 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4098 argument list to be aligned to the specific boundary (in bits). This
4099 rounding affects the initial and starting offsets, but not the argument
4102 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4103 optionally rounds the size of the parm to PARM_BOUNDARY. The
4104 initial offset is not affected by this rounding, while the size always
4105 is and the starting offset may be. */
4107 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4108 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4109 callers pass in the total size of args so far as
4110 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4113 locate_and_pad_parm (machine_mode passed_mode
, tree type
, int in_regs
,
4114 int reg_parm_stack_space
, int partial
,
4115 tree fndecl ATTRIBUTE_UNUSED
,
4116 struct args_size
*initial_offset_ptr
,
4117 struct locate_and_pad_arg_data
*locate
)
4120 enum direction where_pad
;
4121 unsigned int boundary
, round_boundary
;
4122 int part_size_in_regs
;
4124 /* If we have found a stack parm before we reach the end of the
4125 area reserved for registers, skip that area. */
4128 if (reg_parm_stack_space
> 0)
4130 if (initial_offset_ptr
->var
)
4132 initial_offset_ptr
->var
4133 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
4134 ssize_int (reg_parm_stack_space
));
4135 initial_offset_ptr
->constant
= 0;
4137 else if (initial_offset_ptr
->constant
< reg_parm_stack_space
)
4138 initial_offset_ptr
->constant
= reg_parm_stack_space
;
4142 part_size_in_regs
= (reg_parm_stack_space
== 0 ? partial
: 0);
4145 = type
? size_in_bytes (type
) : size_int (GET_MODE_SIZE (passed_mode
));
4146 where_pad
= FUNCTION_ARG_PADDING (passed_mode
, type
);
4147 boundary
= targetm
.calls
.function_arg_boundary (passed_mode
, type
);
4148 round_boundary
= targetm
.calls
.function_arg_round_boundary (passed_mode
,
4150 locate
->where_pad
= where_pad
;
4152 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4153 if (boundary
> MAX_SUPPORTED_STACK_ALIGNMENT
)
4154 boundary
= MAX_SUPPORTED_STACK_ALIGNMENT
;
4156 locate
->boundary
= boundary
;
4158 if (SUPPORTS_STACK_ALIGNMENT
)
4160 /* stack_alignment_estimated can't change after stack has been
4162 if (crtl
->stack_alignment_estimated
< boundary
)
4164 if (!crtl
->stack_realign_processed
)
4165 crtl
->stack_alignment_estimated
= boundary
;
4168 /* If stack is realigned and stack alignment value
4169 hasn't been finalized, it is OK not to increase
4170 stack_alignment_estimated. The bigger alignment
4171 requirement is recorded in stack_alignment_needed
4173 gcc_assert (!crtl
->stack_realign_finalized
4174 && crtl
->stack_realign_needed
);
4179 /* Remember if the outgoing parameter requires extra alignment on the
4180 calling function side. */
4181 if (crtl
->stack_alignment_needed
< boundary
)
4182 crtl
->stack_alignment_needed
= boundary
;
4183 if (crtl
->preferred_stack_boundary
< boundary
)
4184 crtl
->preferred_stack_boundary
= boundary
;
4186 if (ARGS_GROW_DOWNWARD
)
4188 locate
->slot_offset
.constant
= -initial_offset_ptr
->constant
;
4189 if (initial_offset_ptr
->var
)
4190 locate
->slot_offset
.var
= size_binop (MINUS_EXPR
, ssize_int (0),
4191 initial_offset_ptr
->var
);
4195 if (where_pad
!= none
4196 && (!tree_fits_uhwi_p (sizetree
)
4197 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
4198 s2
= round_up (s2
, round_boundary
/ BITS_PER_UNIT
);
4199 SUB_PARM_SIZE (locate
->slot_offset
, s2
);
4202 locate
->slot_offset
.constant
+= part_size_in_regs
;
4204 if (!in_regs
|| reg_parm_stack_space
> 0)
4205 pad_to_arg_alignment (&locate
->slot_offset
, boundary
,
4206 &locate
->alignment_pad
);
4208 locate
->size
.constant
= (-initial_offset_ptr
->constant
4209 - locate
->slot_offset
.constant
);
4210 if (initial_offset_ptr
->var
)
4211 locate
->size
.var
= size_binop (MINUS_EXPR
,
4212 size_binop (MINUS_EXPR
,
4214 initial_offset_ptr
->var
),
4215 locate
->slot_offset
.var
);
4217 /* Pad_below needs the pre-rounded size to know how much to pad
4219 locate
->offset
= locate
->slot_offset
;
4220 if (where_pad
== downward
)
4221 pad_below (&locate
->offset
, passed_mode
, sizetree
);
4226 if (!in_regs
|| reg_parm_stack_space
> 0)
4227 pad_to_arg_alignment (initial_offset_ptr
, boundary
,
4228 &locate
->alignment_pad
);
4229 locate
->slot_offset
= *initial_offset_ptr
;
4231 #ifdef PUSH_ROUNDING
4232 if (passed_mode
!= BLKmode
)
4233 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
4236 /* Pad_below needs the pre-rounded size to know how much to pad below
4237 so this must be done before rounding up. */
4238 locate
->offset
= locate
->slot_offset
;
4239 if (where_pad
== downward
)
4240 pad_below (&locate
->offset
, passed_mode
, sizetree
);
4242 if (where_pad
!= none
4243 && (!tree_fits_uhwi_p (sizetree
)
4244 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
4245 sizetree
= round_up (sizetree
, round_boundary
/ BITS_PER_UNIT
);
4247 ADD_PARM_SIZE (locate
->size
, sizetree
);
4249 locate
->size
.constant
-= part_size_in_regs
;
4252 #ifdef FUNCTION_ARG_OFFSET
4253 locate
->offset
.constant
+= FUNCTION_ARG_OFFSET (passed_mode
, type
);
4257 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4258 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4261 pad_to_arg_alignment (struct args_size
*offset_ptr
, int boundary
,
4262 struct args_size
*alignment_pad
)
4264 tree save_var
= NULL_TREE
;
4265 HOST_WIDE_INT save_constant
= 0;
4266 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
4267 HOST_WIDE_INT sp_offset
= STACK_POINTER_OFFSET
;
4269 #ifdef SPARC_STACK_BOUNDARY_HACK
4270 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4271 the real alignment of %sp. However, when it does this, the
4272 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4273 if (SPARC_STACK_BOUNDARY_HACK
)
4277 if (boundary
> PARM_BOUNDARY
)
4279 save_var
= offset_ptr
->var
;
4280 save_constant
= offset_ptr
->constant
;
4283 alignment_pad
->var
= NULL_TREE
;
4284 alignment_pad
->constant
= 0;
4286 if (boundary
> BITS_PER_UNIT
)
4288 if (offset_ptr
->var
)
4290 tree sp_offset_tree
= ssize_int (sp_offset
);
4291 tree offset
= size_binop (PLUS_EXPR
,
4292 ARGS_SIZE_TREE (*offset_ptr
),
4295 if (ARGS_GROW_DOWNWARD
)
4296 rounded
= round_down (offset
, boundary
/ BITS_PER_UNIT
);
4298 rounded
= round_up (offset
, boundary
/ BITS_PER_UNIT
);
4300 offset_ptr
->var
= size_binop (MINUS_EXPR
, rounded
, sp_offset_tree
);
4301 /* ARGS_SIZE_TREE includes constant term. */
4302 offset_ptr
->constant
= 0;
4303 if (boundary
> PARM_BOUNDARY
)
4304 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
4309 offset_ptr
->constant
= -sp_offset
+
4311 ? FLOOR_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
)
4312 : CEIL_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
));
4314 if (boundary
> PARM_BOUNDARY
)
4315 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
4321 pad_below (struct args_size
*offset_ptr
, machine_mode passed_mode
, tree sizetree
)
4323 if (passed_mode
!= BLKmode
)
4325 if (GET_MODE_BITSIZE (passed_mode
) % PARM_BOUNDARY
)
4326 offset_ptr
->constant
4327 += (((GET_MODE_BITSIZE (passed_mode
) + PARM_BOUNDARY
- 1)
4328 / PARM_BOUNDARY
* PARM_BOUNDARY
/ BITS_PER_UNIT
)
4329 - GET_MODE_SIZE (passed_mode
));
4333 if (TREE_CODE (sizetree
) != INTEGER_CST
4334 || (TREE_INT_CST_LOW (sizetree
) * BITS_PER_UNIT
) % PARM_BOUNDARY
)
4336 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4337 tree s2
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
4339 ADD_PARM_SIZE (*offset_ptr
, s2
);
4340 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
4346 /* True if register REGNO was alive at a place where `setjmp' was
4347 called and was set more than once or is an argument. Such regs may
4348 be clobbered by `longjmp'. */
4351 regno_clobbered_at_setjmp (bitmap setjmp_crosses
, int regno
)
4353 /* There appear to be cases where some local vars never reach the
4354 backend but have bogus regnos. */
4355 if (regno
>= max_reg_num ())
4358 return ((REG_N_SETS (regno
) > 1
4359 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
4361 && REGNO_REG_SET_P (setjmp_crosses
, regno
));
4364 /* Walk the tree of blocks describing the binding levels within a
4365 function and warn about variables the might be killed by setjmp or
4366 vfork. This is done after calling flow_analysis before register
4367 allocation since that will clobber the pseudo-regs to hard
4371 setjmp_vars_warning (bitmap setjmp_crosses
, tree block
)
4375 for (decl
= BLOCK_VARS (block
); decl
; decl
= DECL_CHAIN (decl
))
4377 if (TREE_CODE (decl
) == VAR_DECL
4378 && DECL_RTL_SET_P (decl
)
4379 && REG_P (DECL_RTL (decl
))
4380 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4381 warning (OPT_Wclobbered
, "variable %q+D might be clobbered by"
4382 " %<longjmp%> or %<vfork%>", decl
);
4385 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= BLOCK_CHAIN (sub
))
4386 setjmp_vars_warning (setjmp_crosses
, sub
);
4389 /* Do the appropriate part of setjmp_vars_warning
4390 but for arguments instead of local variables. */
4393 setjmp_args_warning (bitmap setjmp_crosses
)
4396 for (decl
= DECL_ARGUMENTS (current_function_decl
);
4397 decl
; decl
= DECL_CHAIN (decl
))
4398 if (DECL_RTL (decl
) != 0
4399 && REG_P (DECL_RTL (decl
))
4400 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4401 warning (OPT_Wclobbered
,
4402 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4406 /* Generate warning messages for variables live across setjmp. */
4409 generate_setjmp_warnings (void)
4411 bitmap setjmp_crosses
= regstat_get_setjmp_crosses ();
4413 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
4414 || bitmap_empty_p (setjmp_crosses
))
4417 setjmp_vars_warning (setjmp_crosses
, DECL_INITIAL (current_function_decl
));
4418 setjmp_args_warning (setjmp_crosses
);
4422 /* Reverse the order of elements in the fragment chain T of blocks,
4423 and return the new head of the chain (old last element).
4424 In addition to that clear BLOCK_SAME_RANGE flags when needed
4425 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4426 its super fragment origin. */
4429 block_fragments_nreverse (tree t
)
4431 tree prev
= 0, block
, next
, prev_super
= 0;
4432 tree super
= BLOCK_SUPERCONTEXT (t
);
4433 if (BLOCK_FRAGMENT_ORIGIN (super
))
4434 super
= BLOCK_FRAGMENT_ORIGIN (super
);
4435 for (block
= t
; block
; block
= next
)
4437 next
= BLOCK_FRAGMENT_CHAIN (block
);
4438 BLOCK_FRAGMENT_CHAIN (block
) = prev
;
4439 if ((prev
&& !BLOCK_SAME_RANGE (prev
))
4440 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block
))
4442 BLOCK_SAME_RANGE (block
) = 0;
4443 prev_super
= BLOCK_SUPERCONTEXT (block
);
4444 BLOCK_SUPERCONTEXT (block
) = super
;
4447 t
= BLOCK_FRAGMENT_ORIGIN (t
);
4448 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t
))
4450 BLOCK_SAME_RANGE (t
) = 0;
4451 BLOCK_SUPERCONTEXT (t
) = super
;
4455 /* Reverse the order of elements in the chain T of blocks,
4456 and return the new head of the chain (old last element).
4457 Also do the same on subblocks and reverse the order of elements
4458 in BLOCK_FRAGMENT_CHAIN as well. */
4461 blocks_nreverse_all (tree t
)
4463 tree prev
= 0, block
, next
;
4464 for (block
= t
; block
; block
= next
)
4466 next
= BLOCK_CHAIN (block
);
4467 BLOCK_CHAIN (block
) = prev
;
4468 if (BLOCK_FRAGMENT_CHAIN (block
)
4469 && BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
)
4471 BLOCK_FRAGMENT_CHAIN (block
)
4472 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block
));
4473 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block
)))
4474 BLOCK_SAME_RANGE (block
) = 0;
4476 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4483 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4484 and create duplicate blocks. */
4485 /* ??? Need an option to either create block fragments or to create
4486 abstract origin duplicates of a source block. It really depends
4487 on what optimization has been performed. */
4490 reorder_blocks (void)
4492 tree block
= DECL_INITIAL (current_function_decl
);
4494 if (block
== NULL_TREE
)
4497 auto_vec
<tree
, 10> block_stack
;
4499 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4500 clear_block_marks (block
);
4502 /* Prune the old trees away, so that they don't get in the way. */
4503 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
4504 BLOCK_CHAIN (block
) = NULL_TREE
;
4506 /* Recreate the block tree from the note nesting. */
4507 reorder_blocks_1 (get_insns (), block
, &block_stack
);
4508 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4511 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4514 clear_block_marks (tree block
)
4518 TREE_ASM_WRITTEN (block
) = 0;
4519 clear_block_marks (BLOCK_SUBBLOCKS (block
));
4520 block
= BLOCK_CHAIN (block
);
4525 reorder_blocks_1 (rtx_insn
*insns
, tree current_block
,
4526 vec
<tree
> *p_block_stack
)
4529 tree prev_beg
= NULL_TREE
, prev_end
= NULL_TREE
;
4531 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
4535 if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_BEG
)
4537 tree block
= NOTE_BLOCK (insn
);
4540 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
);
4544 BLOCK_SAME_RANGE (prev_end
) = 0;
4545 prev_end
= NULL_TREE
;
4547 /* If we have seen this block before, that means it now
4548 spans multiple address regions. Create a new fragment. */
4549 if (TREE_ASM_WRITTEN (block
))
4551 tree new_block
= copy_node (block
);
4553 BLOCK_SAME_RANGE (new_block
) = 0;
4554 BLOCK_FRAGMENT_ORIGIN (new_block
) = origin
;
4555 BLOCK_FRAGMENT_CHAIN (new_block
)
4556 = BLOCK_FRAGMENT_CHAIN (origin
);
4557 BLOCK_FRAGMENT_CHAIN (origin
) = new_block
;
4559 NOTE_BLOCK (insn
) = new_block
;
4563 if (prev_beg
== current_block
&& prev_beg
)
4564 BLOCK_SAME_RANGE (block
) = 1;
4568 BLOCK_SUBBLOCKS (block
) = 0;
4569 TREE_ASM_WRITTEN (block
) = 1;
4570 /* When there's only one block for the entire function,
4571 current_block == block and we mustn't do this, it
4572 will cause infinite recursion. */
4573 if (block
!= current_block
)
4576 if (block
!= origin
)
4577 gcc_assert (BLOCK_SUPERCONTEXT (origin
) == current_block
4578 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4581 if (p_block_stack
->is_empty ())
4582 super
= current_block
;
4585 super
= p_block_stack
->last ();
4586 gcc_assert (super
== current_block
4587 || BLOCK_FRAGMENT_ORIGIN (super
)
4590 BLOCK_SUPERCONTEXT (block
) = super
;
4591 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
4592 BLOCK_SUBBLOCKS (current_block
) = block
;
4593 current_block
= origin
;
4595 p_block_stack
->safe_push (block
);
4597 else if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_END
)
4599 NOTE_BLOCK (insn
) = p_block_stack
->pop ();
4600 current_block
= BLOCK_SUPERCONTEXT (current_block
);
4601 if (BLOCK_FRAGMENT_ORIGIN (current_block
))
4602 current_block
= BLOCK_FRAGMENT_ORIGIN (current_block
);
4603 prev_beg
= NULL_TREE
;
4604 prev_end
= BLOCK_SAME_RANGE (NOTE_BLOCK (insn
))
4605 ? NOTE_BLOCK (insn
) : NULL_TREE
;
4610 prev_beg
= NULL_TREE
;
4612 BLOCK_SAME_RANGE (prev_end
) = 0;
4613 prev_end
= NULL_TREE
;
4618 /* Reverse the order of elements in the chain T of blocks,
4619 and return the new head of the chain (old last element). */
4622 blocks_nreverse (tree t
)
4624 tree prev
= 0, block
, next
;
4625 for (block
= t
; block
; block
= next
)
4627 next
= BLOCK_CHAIN (block
);
4628 BLOCK_CHAIN (block
) = prev
;
4634 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4635 by modifying the last node in chain 1 to point to chain 2. */
4638 block_chainon (tree op1
, tree op2
)
4647 for (t1
= op1
; BLOCK_CHAIN (t1
); t1
= BLOCK_CHAIN (t1
))
4649 BLOCK_CHAIN (t1
) = op2
;
4651 #ifdef ENABLE_TREE_CHECKING
4654 for (t2
= op2
; t2
; t2
= BLOCK_CHAIN (t2
))
4655 gcc_assert (t2
!= t1
);
4662 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4663 non-NULL, list them all into VECTOR, in a depth-first preorder
4664 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4668 all_blocks (tree block
, tree
*vector
)
4674 TREE_ASM_WRITTEN (block
) = 0;
4676 /* Record this block. */
4678 vector
[n_blocks
] = block
;
4682 /* Record the subblocks, and their subblocks... */
4683 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
4684 vector
? vector
+ n_blocks
: 0);
4685 block
= BLOCK_CHAIN (block
);
4691 /* Return a vector containing all the blocks rooted at BLOCK. The
4692 number of elements in the vector is stored in N_BLOCKS_P. The
4693 vector is dynamically allocated; it is the caller's responsibility
4694 to call `free' on the pointer returned. */
4697 get_block_vector (tree block
, int *n_blocks_p
)
4701 *n_blocks_p
= all_blocks (block
, NULL
);
4702 block_vector
= XNEWVEC (tree
, *n_blocks_p
);
4703 all_blocks (block
, block_vector
);
4705 return block_vector
;
4708 static GTY(()) int next_block_index
= 2;
4710 /* Set BLOCK_NUMBER for all the blocks in FN. */
4713 number_blocks (tree fn
)
4719 /* For SDB and XCOFF debugging output, we start numbering the blocks
4720 from 1 within each function, rather than keeping a running
4722 #if SDB_DEBUGGING_INFO || defined (XCOFF_DEBUGGING_INFO)
4723 if (write_symbols
== SDB_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
4724 next_block_index
= 1;
4727 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
4729 /* The top-level BLOCK isn't numbered at all. */
4730 for (i
= 1; i
< n_blocks
; ++i
)
4731 /* We number the blocks from two. */
4732 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
4734 free (block_vector
);
4739 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4742 debug_find_var_in_block_tree (tree var
, tree block
)
4746 for (t
= BLOCK_VARS (block
); t
; t
= TREE_CHAIN (t
))
4750 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= TREE_CHAIN (t
))
4752 tree ret
= debug_find_var_in_block_tree (var
, t
);
4760 /* Keep track of whether we're in a dummy function context. If we are,
4761 we don't want to invoke the set_current_function hook, because we'll
4762 get into trouble if the hook calls target_reinit () recursively or
4763 when the initial initialization is not yet complete. */
4765 static bool in_dummy_function
;
4767 /* Invoke the target hook when setting cfun. Update the optimization options
4768 if the function uses different options than the default. */
4771 invoke_set_current_function_hook (tree fndecl
)
4773 if (!in_dummy_function
)
4775 tree opts
= ((fndecl
)
4776 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl
)
4777 : optimization_default_node
);
4780 opts
= optimization_default_node
;
4782 /* Change optimization options if needed. */
4783 if (optimization_current_node
!= opts
)
4785 optimization_current_node
= opts
;
4786 cl_optimization_restore (&global_options
, TREE_OPTIMIZATION (opts
));
4789 targetm
.set_current_function (fndecl
);
4790 this_fn_optabs
= this_target_optabs
;
4792 if (opts
!= optimization_default_node
)
4794 init_tree_optimization_optabs (opts
);
4795 if (TREE_OPTIMIZATION_OPTABS (opts
))
4796 this_fn_optabs
= (struct target_optabs
*)
4797 TREE_OPTIMIZATION_OPTABS (opts
);
4802 /* cfun should never be set directly; use this function. */
4805 set_cfun (struct function
*new_cfun
)
4807 if (cfun
!= new_cfun
)
4810 invoke_set_current_function_hook (new_cfun
? new_cfun
->decl
: NULL_TREE
);
4811 redirect_edge_var_map_empty ();
4815 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4817 static vec
<function
*> cfun_stack
;
4819 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4820 current_function_decl accordingly. */
4823 push_cfun (struct function
*new_cfun
)
4825 gcc_assert ((!cfun
&& !current_function_decl
)
4826 || (cfun
&& current_function_decl
== cfun
->decl
));
4827 cfun_stack
.safe_push (cfun
);
4828 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4829 set_cfun (new_cfun
);
4832 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4837 struct function
*new_cfun
= cfun_stack
.pop ();
4838 /* When in_dummy_function, we do have a cfun but current_function_decl is
4839 NULL. We also allow pushing NULL cfun and subsequently changing
4840 current_function_decl to something else and have both restored by
4842 gcc_checking_assert (in_dummy_function
4844 || current_function_decl
== cfun
->decl
);
4845 set_cfun (new_cfun
);
4846 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4849 /* Return value of funcdef and increase it. */
4851 get_next_funcdef_no (void)
4853 return funcdef_no
++;
4856 /* Return value of funcdef. */
4858 get_last_funcdef_no (void)
4863 /* Allocate a function structure for FNDECL and set its contents
4864 to the defaults. Set cfun to the newly-allocated object.
4865 Some of the helper functions invoked during initialization assume
4866 that cfun has already been set. Therefore, assign the new object
4867 directly into cfun and invoke the back end hook explicitly at the
4868 very end, rather than initializing a temporary and calling set_cfun
4871 ABSTRACT_P is true if this is a function that will never be seen by
4872 the middle-end. Such functions are front-end concepts (like C++
4873 function templates) that do not correspond directly to functions
4874 placed in object files. */
4877 allocate_struct_function (tree fndecl
, bool abstract_p
)
4879 tree fntype
= fndecl
? TREE_TYPE (fndecl
) : NULL_TREE
;
4881 cfun
= ggc_cleared_alloc
<function
> ();
4883 init_eh_for_function ();
4885 if (init_machine_status
)
4886 cfun
->machine
= (*init_machine_status
) ();
4888 #ifdef OVERRIDE_ABI_FORMAT
4889 OVERRIDE_ABI_FORMAT (fndecl
);
4892 if (fndecl
!= NULL_TREE
)
4894 DECL_STRUCT_FUNCTION (fndecl
) = cfun
;
4895 cfun
->decl
= fndecl
;
4896 current_function_funcdef_no
= get_next_funcdef_no ();
4899 invoke_set_current_function_hook (fndecl
);
4901 if (fndecl
!= NULL_TREE
)
4903 tree result
= DECL_RESULT (fndecl
);
4907 /* Now that we have activated any function-specific attributes
4908 that might affect layout, particularly vector modes, relayout
4909 each of the parameters and the result. */
4910 relayout_decl (result
);
4911 for (tree parm
= DECL_ARGUMENTS (fndecl
); parm
;
4912 parm
= DECL_CHAIN (parm
))
4913 relayout_decl (parm
);
4915 /* Similarly relayout the function decl. */
4916 targetm
.target_option
.relayout_function (fndecl
);
4919 if (!abstract_p
&& aggregate_value_p (result
, fndecl
))
4921 #ifdef PCC_STATIC_STRUCT_RETURN
4922 cfun
->returns_pcc_struct
= 1;
4924 cfun
->returns_struct
= 1;
4927 cfun
->stdarg
= stdarg_p (fntype
);
4929 /* Assume all registers in stdarg functions need to be saved. */
4930 cfun
->va_list_gpr_size
= VA_LIST_MAX_GPR_SIZE
;
4931 cfun
->va_list_fpr_size
= VA_LIST_MAX_FPR_SIZE
;
4933 /* ??? This could be set on a per-function basis by the front-end
4934 but is this worth the hassle? */
4935 cfun
->can_throw_non_call_exceptions
= flag_non_call_exceptions
;
4936 cfun
->can_delete_dead_exceptions
= flag_delete_dead_exceptions
;
4938 if (!profile_flag
&& !flag_instrument_function_entry_exit
)
4939 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl
) = 1;
4943 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4944 instead of just setting it. */
4947 push_struct_function (tree fndecl
)
4949 /* When in_dummy_function we might be in the middle of a pop_cfun and
4950 current_function_decl and cfun may not match. */
4951 gcc_assert (in_dummy_function
4952 || (!cfun
&& !current_function_decl
)
4953 || (cfun
&& current_function_decl
== cfun
->decl
));
4954 cfun_stack
.safe_push (cfun
);
4955 current_function_decl
= fndecl
;
4956 allocate_struct_function (fndecl
, false);
4959 /* Reset crtl and other non-struct-function variables to defaults as
4960 appropriate for emitting rtl at the start of a function. */
4963 prepare_function_start (void)
4965 gcc_assert (!get_last_insn ());
4968 init_varasm_status ();
4970 default_rtl_profile ();
4972 if (flag_stack_usage_info
)
4974 cfun
->su
= ggc_cleared_alloc
<stack_usage
> ();
4975 cfun
->su
->static_stack_size
= -1;
4978 cse_not_expected
= ! optimize
;
4980 /* Caller save not needed yet. */
4981 caller_save_needed
= 0;
4983 /* We haven't done register allocation yet. */
4986 /* Indicate that we have not instantiated virtual registers yet. */
4987 virtuals_instantiated
= 0;
4989 /* Indicate that we want CONCATs now. */
4990 generating_concat_p
= 1;
4992 /* Indicate we have no need of a frame pointer yet. */
4993 frame_pointer_needed
= 0;
4997 push_dummy_function (bool with_decl
)
4999 tree fn_decl
, fn_type
, fn_result_decl
;
5001 gcc_assert (!in_dummy_function
);
5002 in_dummy_function
= true;
5006 fn_type
= build_function_type_list (void_type_node
, NULL_TREE
);
5007 fn_decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, NULL_TREE
,
5009 fn_result_decl
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
5010 NULL_TREE
, void_type_node
);
5011 DECL_RESULT (fn_decl
) = fn_result_decl
;
5014 fn_decl
= NULL_TREE
;
5016 push_struct_function (fn_decl
);
5019 /* Initialize the rtl expansion mechanism so that we can do simple things
5020 like generate sequences. This is used to provide a context during global
5021 initialization of some passes. You must call expand_dummy_function_end
5022 to exit this context. */
5025 init_dummy_function_start (void)
5027 push_dummy_function (false);
5028 prepare_function_start ();
5031 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5032 and initialize static variables for generating RTL for the statements
5036 init_function_start (tree subr
)
5038 /* Initialize backend, if needed. */
5041 prepare_function_start ();
5042 decide_function_section (subr
);
5044 /* Warn if this value is an aggregate type,
5045 regardless of which calling convention we are using for it. */
5046 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
5047 warning (OPT_Waggregate_return
, "function returns an aggregate");
5050 /* Expand code to verify the stack_protect_guard. This is invoked at
5051 the end of a function to be protected. */
5054 stack_protect_epilogue (void)
5056 tree guard_decl
= targetm
.stack_protect_guard ();
5057 rtx_code_label
*label
= gen_label_rtx ();
5061 x
= expand_normal (crtl
->stack_protect_guard
);
5062 y
= expand_normal (guard_decl
);
5064 /* Allow the target to compare Y with X without leaking either into
5066 if (targetm
.have_stack_protect_test ()
5067 && ((seq
= targetm
.gen_stack_protect_test (x
, y
, label
)) != NULL_RTX
))
5070 emit_cmp_and_jump_insns (x
, y
, EQ
, NULL_RTX
, ptr_mode
, 1, label
);
5072 /* The noreturn predictor has been moved to the tree level. The rtl-level
5073 predictors estimate this branch about 20%, which isn't enough to get
5074 things moved out of line. Since this is the only extant case of adding
5075 a noreturn function at the rtl level, it doesn't seem worth doing ought
5076 except adding the prediction by hand. */
5077 rtx_insn
*tmp
= get_last_insn ();
5079 predict_insn_def (tmp
, PRED_NORETURN
, TAKEN
);
5081 expand_call (targetm
.stack_protect_fail (), NULL_RTX
, /*ignore=*/true);
5086 /* Start the RTL for a new function, and set variables used for
5088 SUBR is the FUNCTION_DECL node.
5089 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5090 the function's parameters, which must be run at any return statement. */
5093 expand_function_start (tree subr
)
5095 /* Make sure volatile mem refs aren't considered
5096 valid operands of arithmetic insns. */
5097 init_recog_no_volatile ();
5101 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
5104 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
5106 /* Make the label for return statements to jump to. Do not special
5107 case machines with special return instructions -- they will be
5108 handled later during jump, ifcvt, or epilogue creation. */
5109 return_label
= gen_label_rtx ();
5111 /* Initialize rtx used to return the value. */
5112 /* Do this before assign_parms so that we copy the struct value address
5113 before any library calls that assign parms might generate. */
5115 /* Decide whether to return the value in memory or in a register. */
5116 tree res
= DECL_RESULT (subr
);
5117 if (aggregate_value_p (res
, subr
))
5119 /* Returning something that won't go in a register. */
5120 rtx value_address
= 0;
5122 #ifdef PCC_STATIC_STRUCT_RETURN
5123 if (cfun
->returns_pcc_struct
)
5125 int size
= int_size_in_bytes (TREE_TYPE (res
));
5126 value_address
= assemble_static_space (size
);
5131 rtx sv
= targetm
.calls
.struct_value_rtx (TREE_TYPE (subr
), 2);
5132 /* Expect to be passed the address of a place to store the value.
5133 If it is passed as an argument, assign_parms will take care of
5137 value_address
= gen_reg_rtx (Pmode
);
5138 emit_move_insn (value_address
, sv
);
5143 rtx x
= value_address
;
5144 if (!DECL_BY_REFERENCE (res
))
5146 x
= gen_rtx_MEM (DECL_MODE (res
), x
);
5147 set_mem_attributes (x
, res
, 1);
5149 set_parm_rtl (res
, x
);
5152 else if (DECL_MODE (res
) == VOIDmode
)
5153 /* If return mode is void, this decl rtl should not be used. */
5154 set_parm_rtl (res
, NULL_RTX
);
5157 /* Compute the return values into a pseudo reg, which we will copy
5158 into the true return register after the cleanups are done. */
5159 tree return_type
= TREE_TYPE (res
);
5161 /* If we may coalesce this result, make sure it has the expected mode
5162 in case it was promoted. But we need not bother about BLKmode. */
5163 machine_mode promoted_mode
5164 = flag_tree_coalesce_vars
&& is_gimple_reg (res
)
5165 ? promote_ssa_mode (ssa_default_def (cfun
, res
), NULL
)
5168 if (promoted_mode
!= BLKmode
)
5169 set_parm_rtl (res
, gen_reg_rtx (promoted_mode
));
5170 else if (TYPE_MODE (return_type
) != BLKmode
5171 && targetm
.calls
.return_in_msb (return_type
))
5172 /* expand_function_end will insert the appropriate padding in
5173 this case. Use the return value's natural (unpadded) mode
5174 within the function proper. */
5175 set_parm_rtl (res
, gen_reg_rtx (TYPE_MODE (return_type
)));
5178 /* In order to figure out what mode to use for the pseudo, we
5179 figure out what the mode of the eventual return register will
5180 actually be, and use that. */
5181 rtx hard_reg
= hard_function_value (return_type
, subr
, 0, 1);
5183 /* Structures that are returned in registers are not
5184 aggregate_value_p, so we may see a PARALLEL or a REG. */
5185 if (REG_P (hard_reg
))
5186 set_parm_rtl (res
, gen_reg_rtx (GET_MODE (hard_reg
)));
5189 gcc_assert (GET_CODE (hard_reg
) == PARALLEL
);
5190 set_parm_rtl (res
, gen_group_rtx (hard_reg
));
5194 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5195 result to the real return register(s). */
5196 DECL_REGISTER (res
) = 1;
5198 if (chkp_function_instrumented_p (current_function_decl
))
5200 tree return_type
= TREE_TYPE (res
);
5201 rtx bounds
= targetm
.calls
.chkp_function_value_bounds (return_type
,
5203 SET_DECL_BOUNDS_RTL (res
, bounds
);
5207 /* Initialize rtx for parameters and local variables.
5208 In some cases this requires emitting insns. */
5209 assign_parms (subr
);
5211 /* If function gets a static chain arg, store it. */
5212 if (cfun
->static_chain_decl
)
5214 tree parm
= cfun
->static_chain_decl
;
5219 local
= gen_reg_rtx (promote_decl_mode (parm
, &unsignedp
));
5220 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
5222 set_decl_incoming_rtl (parm
, chain
, false);
5223 set_parm_rtl (parm
, local
);
5224 mark_reg_pointer (local
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
5226 if (GET_MODE (local
) != GET_MODE (chain
))
5228 convert_move (local
, chain
, unsignedp
);
5229 insn
= get_last_insn ();
5232 insn
= emit_move_insn (local
, chain
);
5234 /* Mark the register as eliminable, similar to parameters. */
5236 && reg_mentioned_p (arg_pointer_rtx
, XEXP (chain
, 0)))
5237 set_dst_reg_note (insn
, REG_EQUIV
, chain
, local
);
5239 /* If we aren't optimizing, save the static chain onto the stack. */
5242 tree saved_static_chain_decl
5243 = build_decl (DECL_SOURCE_LOCATION (parm
), VAR_DECL
,
5244 DECL_NAME (parm
), TREE_TYPE (parm
));
5245 rtx saved_static_chain_rtx
5246 = assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
5247 SET_DECL_RTL (saved_static_chain_decl
, saved_static_chain_rtx
);
5248 emit_move_insn (saved_static_chain_rtx
, chain
);
5249 SET_DECL_VALUE_EXPR (parm
, saved_static_chain_decl
);
5250 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
5254 /* If the function receives a non-local goto, then store the
5255 bits we need to restore the frame pointer. */
5256 if (cfun
->nonlocal_goto_save_area
)
5261 tree var
= TREE_OPERAND (cfun
->nonlocal_goto_save_area
, 0);
5262 gcc_assert (DECL_RTL_SET_P (var
));
5264 t_save
= build4 (ARRAY_REF
,
5265 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
5266 cfun
->nonlocal_goto_save_area
,
5267 integer_zero_node
, NULL_TREE
, NULL_TREE
);
5268 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5269 gcc_assert (GET_MODE (r_save
) == Pmode
);
5271 emit_move_insn (r_save
, targetm
.builtin_setjmp_frame_value ());
5272 update_nonlocal_goto_save_area ();
5275 /* The following was moved from init_function_start.
5276 The move is supposed to make sdb output more accurate. */
5277 /* Indicate the beginning of the function body,
5278 as opposed to parm setup. */
5279 emit_note (NOTE_INSN_FUNCTION_BEG
);
5281 gcc_assert (NOTE_P (get_last_insn ()));
5283 parm_birth_insn
= get_last_insn ();
5288 PROFILE_HOOK (current_function_funcdef_no
);
5292 /* If we are doing generic stack checking, the probe should go here. */
5293 if (flag_stack_check
== GENERIC_STACK_CHECK
)
5294 stack_check_probe_note
= emit_note (NOTE_INSN_DELETED
);
5298 pop_dummy_function (void)
5301 in_dummy_function
= false;
5304 /* Undo the effects of init_dummy_function_start. */
5306 expand_dummy_function_end (void)
5308 gcc_assert (in_dummy_function
);
5310 /* End any sequences that failed to be closed due to syntax errors. */
5311 while (in_sequence_p ())
5314 /* Outside function body, can't compute type's actual size
5315 until next function's body starts. */
5317 free_after_parsing (cfun
);
5318 free_after_compilation (cfun
);
5319 pop_dummy_function ();
5322 /* Helper for diddle_return_value. */
5325 diddle_return_value_1 (void (*doit
) (rtx
, void *), void *arg
, rtx outgoing
)
5330 if (REG_P (outgoing
))
5331 (*doit
) (outgoing
, arg
);
5332 else if (GET_CODE (outgoing
) == PARALLEL
)
5336 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
5338 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
5340 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
5346 /* Call DOIT for each hard register used as a return value from
5347 the current function. */
5350 diddle_return_value (void (*doit
) (rtx
, void *), void *arg
)
5352 diddle_return_value_1 (doit
, arg
, crtl
->return_bnd
);
5353 diddle_return_value_1 (doit
, arg
, crtl
->return_rtx
);
5357 do_clobber_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
5363 clobber_return_register (void)
5365 diddle_return_value (do_clobber_return_reg
, NULL
);
5367 /* In case we do use pseudo to return value, clobber it too. */
5368 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
5370 tree decl_result
= DECL_RESULT (current_function_decl
);
5371 rtx decl_rtl
= DECL_RTL (decl_result
);
5372 if (REG_P (decl_rtl
) && REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
)
5374 do_clobber_return_reg (decl_rtl
, NULL
);
5380 do_use_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
5386 use_return_register (void)
5388 diddle_return_value (do_use_return_reg
, NULL
);
5391 /* Set the location of the insn chain starting at INSN to LOC. */
5394 set_insn_locations (rtx_insn
*insn
, int loc
)
5396 while (insn
!= NULL
)
5399 INSN_LOCATION (insn
) = loc
;
5400 insn
= NEXT_INSN (insn
);
5404 /* Generate RTL for the end of the current function. */
5407 expand_function_end (void)
5409 /* If arg_pointer_save_area was referenced only from a nested
5410 function, we will not have initialized it yet. Do that now. */
5411 if (arg_pointer_save_area
&& ! crtl
->arg_pointer_save_area_init
)
5412 get_arg_pointer_save_area ();
5414 /* If we are doing generic stack checking and this function makes calls,
5415 do a stack probe at the start of the function to ensure we have enough
5416 space for another stack frame. */
5417 if (flag_stack_check
== GENERIC_STACK_CHECK
)
5419 rtx_insn
*insn
, *seq
;
5421 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
5424 rtx max_frame_size
= GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
);
5426 if (STACK_CHECK_MOVING_SP
)
5427 anti_adjust_stack_and_probe (max_frame_size
, true);
5429 probe_stack_range (STACK_OLD_CHECK_PROTECT
, max_frame_size
);
5432 set_insn_locations (seq
, prologue_location
);
5433 emit_insn_before (seq
, stack_check_probe_note
);
5438 /* End any sequences that failed to be closed due to syntax errors. */
5439 while (in_sequence_p ())
5442 clear_pending_stack_adjust ();
5443 do_pending_stack_adjust ();
5445 /* Output a linenumber for the end of the function.
5446 SDB depends on this. */
5447 set_curr_insn_location (input_location
);
5449 /* Before the return label (if any), clobber the return
5450 registers so that they are not propagated live to the rest of
5451 the function. This can only happen with functions that drop
5452 through; if there had been a return statement, there would
5453 have either been a return rtx, or a jump to the return label.
5455 We delay actual code generation after the current_function_value_rtx
5457 rtx_insn
*clobber_after
= get_last_insn ();
5459 /* Output the label for the actual return from the function. */
5460 emit_label (return_label
);
5462 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
5464 /* Let except.c know where it should emit the call to unregister
5465 the function context for sjlj exceptions. */
5466 if (flag_exceptions
)
5467 sjlj_emit_function_exit_after (get_last_insn ());
5471 /* We want to ensure that instructions that may trap are not
5472 moved into the epilogue by scheduling, because we don't
5473 always emit unwind information for the epilogue. */
5474 if (cfun
->can_throw_non_call_exceptions
)
5475 emit_insn (gen_blockage ());
5478 /* If this is an implementation of throw, do what's necessary to
5479 communicate between __builtin_eh_return and the epilogue. */
5480 expand_eh_return ();
5482 /* If scalar return value was computed in a pseudo-reg, or was a named
5483 return value that got dumped to the stack, copy that to the hard
5485 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
5487 tree decl_result
= DECL_RESULT (current_function_decl
);
5488 rtx decl_rtl
= DECL_RTL (decl_result
);
5490 if (REG_P (decl_rtl
)
5491 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
5492 : DECL_REGISTER (decl_result
))
5494 rtx real_decl_rtl
= crtl
->return_rtx
;
5496 /* This should be set in assign_parms. */
5497 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl
));
5499 /* If this is a BLKmode structure being returned in registers,
5500 then use the mode computed in expand_return. Note that if
5501 decl_rtl is memory, then its mode may have been changed,
5502 but that crtl->return_rtx has not. */
5503 if (GET_MODE (real_decl_rtl
) == BLKmode
)
5504 PUT_MODE (real_decl_rtl
, GET_MODE (decl_rtl
));
5506 /* If a non-BLKmode return value should be padded at the least
5507 significant end of the register, shift it left by the appropriate
5508 amount. BLKmode results are handled using the group load/store
5510 if (TYPE_MODE (TREE_TYPE (decl_result
)) != BLKmode
5511 && REG_P (real_decl_rtl
)
5512 && targetm
.calls
.return_in_msb (TREE_TYPE (decl_result
)))
5514 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl
),
5515 REGNO (real_decl_rtl
)),
5517 shift_return_value (GET_MODE (decl_rtl
), true, real_decl_rtl
);
5519 else if (GET_CODE (real_decl_rtl
) == PARALLEL
)
5521 /* If expand_function_start has created a PARALLEL for decl_rtl,
5522 move the result to the real return registers. Otherwise, do
5523 a group load from decl_rtl for a named return. */
5524 if (GET_CODE (decl_rtl
) == PARALLEL
)
5525 emit_group_move (real_decl_rtl
, decl_rtl
);
5527 emit_group_load (real_decl_rtl
, decl_rtl
,
5528 TREE_TYPE (decl_result
),
5529 int_size_in_bytes (TREE_TYPE (decl_result
)));
5531 /* In the case of complex integer modes smaller than a word, we'll
5532 need to generate some non-trivial bitfield insertions. Do that
5533 on a pseudo and not the hard register. */
5534 else if (GET_CODE (decl_rtl
) == CONCAT
5535 && GET_MODE_CLASS (GET_MODE (decl_rtl
)) == MODE_COMPLEX_INT
5536 && GET_MODE_BITSIZE (GET_MODE (decl_rtl
)) <= BITS_PER_WORD
)
5538 int old_generating_concat_p
;
5541 old_generating_concat_p
= generating_concat_p
;
5542 generating_concat_p
= 0;
5543 tmp
= gen_reg_rtx (GET_MODE (decl_rtl
));
5544 generating_concat_p
= old_generating_concat_p
;
5546 emit_move_insn (tmp
, decl_rtl
);
5547 emit_move_insn (real_decl_rtl
, tmp
);
5549 /* If a named return value dumped decl_return to memory, then
5550 we may need to re-do the PROMOTE_MODE signed/unsigned
5552 else if (GET_MODE (real_decl_rtl
) != GET_MODE (decl_rtl
))
5554 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (decl_result
));
5555 promote_function_mode (TREE_TYPE (decl_result
),
5556 GET_MODE (decl_rtl
), &unsignedp
,
5557 TREE_TYPE (current_function_decl
), 1);
5559 convert_move (real_decl_rtl
, decl_rtl
, unsignedp
);
5562 emit_move_insn (real_decl_rtl
, decl_rtl
);
5566 /* If returning a structure, arrange to return the address of the value
5567 in a place where debuggers expect to find it.
5569 If returning a structure PCC style,
5570 the caller also depends on this value.
5571 And cfun->returns_pcc_struct is not necessarily set. */
5572 if ((cfun
->returns_struct
|| cfun
->returns_pcc_struct
)
5573 && !targetm
.calls
.omit_struct_return_reg
)
5575 rtx value_address
= DECL_RTL (DECL_RESULT (current_function_decl
));
5576 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
5579 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl
)))
5580 type
= TREE_TYPE (type
);
5582 value_address
= XEXP (value_address
, 0);
5584 outgoing
= targetm
.calls
.function_value (build_pointer_type (type
),
5585 current_function_decl
, true);
5587 /* Mark this as a function return value so integrate will delete the
5588 assignment and USE below when inlining this function. */
5589 REG_FUNCTION_VALUE_P (outgoing
) = 1;
5591 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5592 value_address
= convert_memory_address (GET_MODE (outgoing
),
5595 emit_move_insn (outgoing
, value_address
);
5597 /* Show return register used to hold result (in this case the address
5599 crtl
->return_rtx
= outgoing
;
5602 /* Emit the actual code to clobber return register. Don't emit
5603 it if clobber_after is a barrier, then the previous basic block
5604 certainly doesn't fall thru into the exit block. */
5605 if (!BARRIER_P (clobber_after
))
5608 clobber_return_register ();
5609 rtx_insn
*seq
= get_insns ();
5612 emit_insn_after (seq
, clobber_after
);
5615 /* Output the label for the naked return from the function. */
5616 if (naked_return_label
)
5617 emit_label (naked_return_label
);
5619 /* @@@ This is a kludge. We want to ensure that instructions that
5620 may trap are not moved into the epilogue by scheduling, because
5621 we don't always emit unwind information for the epilogue. */
5622 if (cfun
->can_throw_non_call_exceptions
5623 && targetm_common
.except_unwind_info (&global_options
) != UI_SJLJ
)
5624 emit_insn (gen_blockage ());
5626 /* If stack protection is enabled for this function, check the guard. */
5627 if (crtl
->stack_protect_guard
)
5628 stack_protect_epilogue ();
5630 /* If we had calls to alloca, and this machine needs
5631 an accurate stack pointer to exit the function,
5632 insert some code to save and restore the stack pointer. */
5633 if (! EXIT_IGNORE_STACK
5634 && cfun
->calls_alloca
)
5639 emit_stack_save (SAVE_FUNCTION
, &tem
);
5640 rtx_insn
*seq
= get_insns ();
5642 emit_insn_before (seq
, parm_birth_insn
);
5644 emit_stack_restore (SAVE_FUNCTION
, tem
);
5647 /* ??? This should no longer be necessary since stupid is no longer with
5648 us, but there are some parts of the compiler (eg reload_combine, and
5649 sh mach_dep_reorg) that still try and compute their own lifetime info
5650 instead of using the general framework. */
5651 use_return_register ();
5655 get_arg_pointer_save_area (void)
5657 rtx ret
= arg_pointer_save_area
;
5661 ret
= assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
5662 arg_pointer_save_area
= ret
;
5665 if (! crtl
->arg_pointer_save_area_init
)
5667 /* Save the arg pointer at the beginning of the function. The
5668 generated stack slot may not be a valid memory address, so we
5669 have to check it and fix it if necessary. */
5671 emit_move_insn (validize_mem (copy_rtx (ret
)),
5672 crtl
->args
.internal_arg_pointer
);
5673 rtx_insn
*seq
= get_insns ();
5676 push_topmost_sequence ();
5677 emit_insn_after (seq
, entry_of_function ());
5678 pop_topmost_sequence ();
5680 crtl
->arg_pointer_save_area_init
= true;
5686 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5687 for the first time. */
5690 record_insns (rtx_insn
*insns
, rtx end
, hash_table
<insn_cache_hasher
> **hashp
)
5693 hash_table
<insn_cache_hasher
> *hash
= *hashp
;
5696 *hashp
= hash
= hash_table
<insn_cache_hasher
>::create_ggc (17);
5698 for (tmp
= insns
; tmp
!= end
; tmp
= NEXT_INSN (tmp
))
5700 rtx
*slot
= hash
->find_slot (tmp
, INSERT
);
5701 gcc_assert (*slot
== NULL
);
5706 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5707 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5708 insn, then record COPY as well. */
5711 maybe_copy_prologue_epilogue_insn (rtx insn
, rtx copy
)
5713 hash_table
<insn_cache_hasher
> *hash
;
5716 hash
= epilogue_insn_hash
;
5717 if (!hash
|| !hash
->find (insn
))
5719 hash
= prologue_insn_hash
;
5720 if (!hash
|| !hash
->find (insn
))
5724 slot
= hash
->find_slot (copy
, INSERT
);
5725 gcc_assert (*slot
== NULL
);
5729 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5730 we can be running after reorg, SEQUENCE rtl is possible. */
5733 contains (const_rtx insn
, hash_table
<insn_cache_hasher
> *hash
)
5738 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
5740 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (PATTERN (insn
));
5742 for (i
= seq
->len () - 1; i
>= 0; i
--)
5743 if (hash
->find (seq
->element (i
)))
5748 return hash
->find (const_cast<rtx
> (insn
)) != NULL
;
5752 prologue_epilogue_contains (const_rtx insn
)
5754 if (contains (insn
, prologue_insn_hash
))
5756 if (contains (insn
, epilogue_insn_hash
))
5762 /* Set JUMP_LABEL for a return insn. */
5765 set_return_jump_label (rtx_insn
*returnjump
)
5767 rtx pat
= PATTERN (returnjump
);
5768 if (GET_CODE (pat
) == PARALLEL
)
5769 pat
= XVECEXP (pat
, 0, 0);
5770 if (ANY_RETURN_P (pat
))
5771 JUMP_LABEL (returnjump
) = pat
;
5773 JUMP_LABEL (returnjump
) = ret_rtx
;
5776 /* Return a sequence to be used as the split prologue for the current
5777 function, or NULL. */
5780 make_split_prologue_seq (void)
5782 if (!flag_split_stack
5783 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun
->decl
)))
5787 emit_insn (targetm
.gen_split_stack_prologue ());
5788 rtx_insn
*seq
= get_insns ();
5791 record_insns (seq
, NULL
, &prologue_insn_hash
);
5792 set_insn_locations (seq
, prologue_location
);
5797 /* Return a sequence to be used as the prologue for the current function,
5801 make_prologue_seq (void)
5803 if (!targetm
.have_prologue ())
5807 rtx_insn
*seq
= targetm
.gen_prologue ();
5810 /* Insert an explicit USE for the frame pointer
5811 if the profiling is on and the frame pointer is required. */
5812 if (crtl
->profile
&& frame_pointer_needed
)
5813 emit_use (hard_frame_pointer_rtx
);
5815 /* Retain a map of the prologue insns. */
5816 record_insns (seq
, NULL
, &prologue_insn_hash
);
5817 emit_note (NOTE_INSN_PROLOGUE_END
);
5819 /* Ensure that instructions are not moved into the prologue when
5820 profiling is on. The call to the profiling routine can be
5821 emitted within the live range of a call-clobbered register. */
5822 if (!targetm
.profile_before_prologue () && crtl
->profile
)
5823 emit_insn (gen_blockage ());
5827 set_insn_locations (seq
, prologue_location
);
5832 /* Return a sequence to be used as the epilogue for the current function,
5836 make_epilogue_seq (void)
5838 if (!targetm
.have_epilogue ())
5842 emit_note (NOTE_INSN_EPILOGUE_BEG
);
5843 rtx_insn
*seq
= targetm
.gen_epilogue ();
5845 emit_jump_insn (seq
);
5847 /* Retain a map of the epilogue insns. */
5848 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5849 set_insn_locations (seq
, epilogue_location
);
5852 rtx_insn
*returnjump
= get_last_insn ();
5855 if (JUMP_P (returnjump
))
5856 set_return_jump_label (returnjump
);
5862 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5863 this into place with notes indicating where the prologue ends and where
5864 the epilogue begins. Update the basic block information when possible.
5866 Notes on epilogue placement:
5867 There are several kinds of edges to the exit block:
5868 * a single fallthru edge from LAST_BB
5869 * possibly, edges from blocks containing sibcalls
5870 * possibly, fake edges from infinite loops
5872 The epilogue is always emitted on the fallthru edge from the last basic
5873 block in the function, LAST_BB, into the exit block.
5875 If LAST_BB is empty except for a label, it is the target of every
5876 other basic block in the function that ends in a return. If a
5877 target has a return or simple_return pattern (possibly with
5878 conditional variants), these basic blocks can be changed so that a
5879 return insn is emitted into them, and their target is adjusted to
5880 the real exit block.
5882 Notes on shrink wrapping: We implement a fairly conservative
5883 version of shrink-wrapping rather than the textbook one. We only
5884 generate a single prologue and a single epilogue. This is
5885 sufficient to catch a number of interesting cases involving early
5888 First, we identify the blocks that require the prologue to occur before
5889 them. These are the ones that modify a call-saved register, or reference
5890 any of the stack or frame pointer registers. To simplify things, we then
5891 mark everything reachable from these blocks as also requiring a prologue.
5892 This takes care of loops automatically, and avoids the need to examine
5893 whether MEMs reference the frame, since it is sufficient to check for
5894 occurrences of the stack or frame pointer.
5896 We then compute the set of blocks for which the need for a prologue
5897 is anticipatable (borrowing terminology from the shrink-wrapping
5898 description in Muchnick's book). These are the blocks which either
5899 require a prologue themselves, or those that have only successors
5900 where the prologue is anticipatable. The prologue needs to be
5901 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5902 is not. For the moment, we ensure that only one such edge exists.
5904 The epilogue is placed as described above, but we make a
5905 distinction between inserting return and simple_return patterns
5906 when modifying other blocks that end in a return. Blocks that end
5907 in a sibcall omit the sibcall_epilogue if the block is not in
5911 thread_prologue_and_epilogue_insns (void)
5915 /* Can't deal with multiple successors of the entry block at the
5916 moment. Function should always have at least one entry
5918 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
5920 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5921 edge orig_entry_edge
= entry_edge
;
5923 rtx_insn
*split_prologue_seq
= make_split_prologue_seq ();
5924 rtx_insn
*prologue_seq
= make_prologue_seq ();
5925 rtx_insn
*epilogue_seq
= make_epilogue_seq ();
5927 /* Try to perform a kind of shrink-wrapping, making sure the
5928 prologue/epilogue is emitted only around those parts of the
5929 function that require it. */
5931 try_shrink_wrapping (&entry_edge
, prologue_seq
);
5934 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
5936 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5937 this marker for the splits of EH_RETURN patterns, and nothing else
5938 uses the flag in the meantime. */
5939 epilogue_completed
= 1;
5941 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5942 some targets, these get split to a special version of the epilogue
5943 code. In order to be able to properly annotate these with unwind
5944 info, try to split them now. If we get a valid split, drop an
5945 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5948 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5950 rtx_insn
*prev
, *last
, *trial
;
5952 if (e
->flags
& EDGE_FALLTHRU
)
5954 last
= BB_END (e
->src
);
5955 if (!eh_returnjump_p (last
))
5958 prev
= PREV_INSN (last
);
5959 trial
= try_split (PATTERN (last
), last
, 1);
5963 record_insns (NEXT_INSN (prev
), NEXT_INSN (trial
), &epilogue_insn_hash
);
5964 emit_note_after (NOTE_INSN_EPILOGUE_BEG
, prev
);
5967 edge exit_fallthru_edge
= find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
5969 if (exit_fallthru_edge
)
5973 insert_insn_on_edge (epilogue_seq
, exit_fallthru_edge
);
5974 commit_edge_insertions ();
5976 /* The epilogue insns we inserted may cause the exit edge to no longer
5978 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5980 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
5981 && returnjump_p (BB_END (e
->src
)))
5982 e
->flags
&= ~EDGE_FALLTHRU
;
5985 else if (next_active_insn (BB_END (exit_fallthru_edge
->src
)))
5987 /* We have a fall-through edge to the exit block, the source is not
5988 at the end of the function, and there will be an assembler epilogue
5989 at the end of the function.
5990 We can't use force_nonfallthru here, because that would try to
5991 use return. Inserting a jump 'by hand' is extremely messy, so
5992 we take advantage of cfg_layout_finalize using
5993 fixup_fallthru_exit_predecessor. */
5994 cfg_layout_initialize (0);
5996 FOR_EACH_BB_FN (cur_bb
, cfun
)
5997 if (cur_bb
->index
>= NUM_FIXED_BLOCKS
5998 && cur_bb
->next_bb
->index
>= NUM_FIXED_BLOCKS
)
5999 cur_bb
->aux
= cur_bb
->next_bb
;
6000 cfg_layout_finalize ();
6004 /* Insert the prologue. */
6006 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
6008 if (split_prologue_seq
|| prologue_seq
)
6010 if (split_prologue_seq
)
6011 insert_insn_on_edge (split_prologue_seq
, orig_entry_edge
);
6014 insert_insn_on_edge (prologue_seq
, entry_edge
);
6016 commit_edge_insertions ();
6018 /* Look for basic blocks within the prologue insns. */
6019 auto_sbitmap
blocks (last_basic_block_for_fn (cfun
));
6020 bitmap_clear (blocks
);
6021 bitmap_set_bit (blocks
, entry_edge
->dest
->index
);
6022 bitmap_set_bit (blocks
, orig_entry_edge
->dest
->index
);
6023 find_many_sub_basic_blocks (blocks
);
6026 default_rtl_profile ();
6028 /* Emit sibling epilogues before any sibling call sites. */
6029 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
6030 (e
= ei_safe_edge (ei
));
6033 /* Skip those already handled, the ones that run without prologue. */
6034 if (e
->flags
& EDGE_IGNORE
)
6036 e
->flags
&= ~EDGE_IGNORE
;
6040 rtx_insn
*insn
= BB_END (e
->src
);
6042 if (!(CALL_P (insn
) && SIBLING_CALL_P (insn
)))
6045 if (rtx_insn
*ep_seq
= targetm
.gen_sibcall_epilogue ())
6048 emit_note (NOTE_INSN_EPILOGUE_BEG
);
6050 rtx_insn
*seq
= get_insns ();
6053 /* Retain a map of the epilogue insns. Used in life analysis to
6054 avoid getting rid of sibcall epilogue insns. Do this before we
6055 actually emit the sequence. */
6056 record_insns (seq
, NULL
, &epilogue_insn_hash
);
6057 set_insn_locations (seq
, epilogue_location
);
6059 emit_insn_before (seq
, insn
);
6065 rtx_insn
*insn
, *next
;
6067 /* Similarly, move any line notes that appear after the epilogue.
6068 There is no need, however, to be quite so anal about the existence
6069 of such a note. Also possibly move
6070 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6072 for (insn
= epilogue_seq
; insn
; insn
= next
)
6074 next
= NEXT_INSN (insn
);
6076 && (NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
))
6077 reorder_insns (insn
, insn
, PREV_INSN (epilogue_seq
));
6081 /* Threading the prologue and epilogue changes the artificial refs
6082 in the entry and exit blocks. */
6083 epilogue_completed
= 1;
6084 df_update_entry_exit_and_calls ();
6087 /* Reposition the prologue-end and epilogue-begin notes after
6088 instruction scheduling. */
6091 reposition_prologue_and_epilogue_notes (void)
6093 if (!targetm
.have_prologue ()
6094 && !targetm
.have_epilogue ()
6095 && !targetm
.have_sibcall_epilogue ())
6098 /* Since the hash table is created on demand, the fact that it is
6099 non-null is a signal that it is non-empty. */
6100 if (prologue_insn_hash
!= NULL
)
6102 size_t len
= prologue_insn_hash
->elements ();
6103 rtx_insn
*insn
, *last
= NULL
, *note
= NULL
;
6105 /* Scan from the beginning until we reach the last prologue insn. */
6106 /* ??? While we do have the CFG intact, there are two problems:
6107 (1) The prologue can contain loops (typically probing the stack),
6108 which means that the end of the prologue isn't in the first bb.
6109 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6110 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
6114 if (NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
6117 else if (contains (insn
, prologue_insn_hash
))
6129 /* Scan forward looking for the PROLOGUE_END note. It should
6130 be right at the beginning of the block, possibly with other
6131 insn notes that got moved there. */
6132 for (note
= NEXT_INSN (last
); ; note
= NEXT_INSN (note
))
6135 && NOTE_KIND (note
) == NOTE_INSN_PROLOGUE_END
)
6140 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6142 last
= NEXT_INSN (last
);
6143 reorder_insns (note
, note
, last
);
6147 if (epilogue_insn_hash
!= NULL
)
6152 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6154 rtx_insn
*insn
, *first
= NULL
, *note
= NULL
;
6155 basic_block bb
= e
->src
;
6157 /* Scan from the beginning until we reach the first epilogue insn. */
6158 FOR_BB_INSNS (bb
, insn
)
6162 if (NOTE_KIND (insn
) == NOTE_INSN_EPILOGUE_BEG
)
6169 else if (first
== NULL
&& contains (insn
, epilogue_insn_hash
))
6179 /* If the function has a single basic block, and no real
6180 epilogue insns (e.g. sibcall with no cleanup), the
6181 epilogue note can get scheduled before the prologue
6182 note. If we have frame related prologue insns, having
6183 them scanned during the epilogue will result in a crash.
6184 In this case re-order the epilogue note to just before
6185 the last insn in the block. */
6187 first
= BB_END (bb
);
6189 if (PREV_INSN (first
) != note
)
6190 reorder_insns (note
, note
, PREV_INSN (first
));
6196 /* Returns the name of function declared by FNDECL. */
6198 fndecl_name (tree fndecl
)
6202 return lang_hooks
.decl_printable_name (fndecl
, 2);
6205 /* Returns the name of function FN. */
6207 function_name (struct function
*fn
)
6209 tree fndecl
= (fn
== NULL
) ? NULL
: fn
->decl
;
6210 return fndecl_name (fndecl
);
6213 /* Returns the name of the current function. */
6215 current_function_name (void)
6217 return function_name (cfun
);
6222 rest_of_handle_check_leaf_regs (void)
6224 #ifdef LEAF_REGISTERS
6225 crtl
->uses_only_leaf_regs
6226 = optimize
> 0 && only_leaf_regs_used () && leaf_function_p ();
6231 /* Insert a TYPE into the used types hash table of CFUN. */
6234 used_types_insert_helper (tree type
, struct function
*func
)
6236 if (type
!= NULL
&& func
!= NULL
)
6238 if (func
->used_types_hash
== NULL
)
6239 func
->used_types_hash
= hash_set
<tree
>::create_ggc (37);
6241 func
->used_types_hash
->add (type
);
6245 /* Given a type, insert it into the used hash table in cfun. */
6247 used_types_insert (tree t
)
6249 while (POINTER_TYPE_P (t
) || TREE_CODE (t
) == ARRAY_TYPE
)
6254 if (TREE_CODE (t
) == ERROR_MARK
)
6256 if (TYPE_NAME (t
) == NULL_TREE
6257 || TYPE_NAME (t
) == TYPE_NAME (TYPE_MAIN_VARIANT (t
)))
6258 t
= TYPE_MAIN_VARIANT (t
);
6259 if (debug_info_level
> DINFO_LEVEL_NONE
)
6262 used_types_insert_helper (t
, cfun
);
6265 /* So this might be a type referenced by a global variable.
6266 Record that type so that we can later decide to emit its
6267 debug information. */
6268 vec_safe_push (types_used_by_cur_var_decl
, t
);
6273 /* Helper to Hash a struct types_used_by_vars_entry. */
6276 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry
*entry
)
6278 gcc_assert (entry
&& entry
->var_decl
&& entry
->type
);
6280 return iterative_hash_object (entry
->type
,
6281 iterative_hash_object (entry
->var_decl
, 0));
6284 /* Hash function of the types_used_by_vars_entry hash table. */
6287 used_type_hasher::hash (types_used_by_vars_entry
*entry
)
6289 return hash_types_used_by_vars_entry (entry
);
6292 /*Equality function of the types_used_by_vars_entry hash table. */
6295 used_type_hasher::equal (types_used_by_vars_entry
*e1
,
6296 types_used_by_vars_entry
*e2
)
6298 return (e1
->var_decl
== e2
->var_decl
&& e1
->type
== e2
->type
);
6301 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6304 types_used_by_var_decl_insert (tree type
, tree var_decl
)
6306 if (type
!= NULL
&& var_decl
!= NULL
)
6308 types_used_by_vars_entry
**slot
;
6309 struct types_used_by_vars_entry e
;
6310 e
.var_decl
= var_decl
;
6312 if (types_used_by_vars_hash
== NULL
)
6313 types_used_by_vars_hash
6314 = hash_table
<used_type_hasher
>::create_ggc (37);
6316 slot
= types_used_by_vars_hash
->find_slot (&e
, INSERT
);
6319 struct types_used_by_vars_entry
*entry
;
6320 entry
= ggc_alloc
<types_used_by_vars_entry
> ();
6322 entry
->var_decl
= var_decl
;
6330 const pass_data pass_data_leaf_regs
=
6332 RTL_PASS
, /* type */
6333 "*leaf_regs", /* name */
6334 OPTGROUP_NONE
, /* optinfo_flags */
6335 TV_NONE
, /* tv_id */
6336 0, /* properties_required */
6337 0, /* properties_provided */
6338 0, /* properties_destroyed */
6339 0, /* todo_flags_start */
6340 0, /* todo_flags_finish */
6343 class pass_leaf_regs
: public rtl_opt_pass
6346 pass_leaf_regs (gcc::context
*ctxt
)
6347 : rtl_opt_pass (pass_data_leaf_regs
, ctxt
)
6350 /* opt_pass methods: */
6351 virtual unsigned int execute (function
*)
6353 return rest_of_handle_check_leaf_regs ();
6356 }; // class pass_leaf_regs
6361 make_pass_leaf_regs (gcc::context
*ctxt
)
6363 return new pass_leaf_regs (ctxt
);
6367 rest_of_handle_thread_prologue_and_epilogue (void)
6369 /* prepare_shrink_wrap is sensitive to the block structure of the control
6370 flow graph, so clean it up first. */
6374 /* On some machines, the prologue and epilogue code, or parts thereof,
6375 can be represented as RTL. Doing so lets us schedule insns between
6376 it and the rest of the code and also allows delayed branch
6377 scheduling to operate in the epilogue. */
6378 thread_prologue_and_epilogue_insns ();
6380 /* Some non-cold blocks may now be only reachable from cold blocks.
6382 fixup_partitions ();
6384 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6386 cleanup_cfg (optimize
? CLEANUP_EXPENSIVE
: 0);
6388 /* The stack usage info is finalized during prologue expansion. */
6389 if (flag_stack_usage_info
)
6390 output_stack_usage ();
6397 const pass_data pass_data_thread_prologue_and_epilogue
=
6399 RTL_PASS
, /* type */
6400 "pro_and_epilogue", /* name */
6401 OPTGROUP_NONE
, /* optinfo_flags */
6402 TV_THREAD_PROLOGUE_AND_EPILOGUE
, /* tv_id */
6403 0, /* properties_required */
6404 0, /* properties_provided */
6405 0, /* properties_destroyed */
6406 0, /* todo_flags_start */
6407 ( TODO_df_verify
| TODO_df_finish
), /* todo_flags_finish */
6410 class pass_thread_prologue_and_epilogue
: public rtl_opt_pass
6413 pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
6414 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue
, ctxt
)
6417 /* opt_pass methods: */
6418 virtual unsigned int execute (function
*)
6420 return rest_of_handle_thread_prologue_and_epilogue ();
6423 }; // class pass_thread_prologue_and_epilogue
6428 make_pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
6430 return new pass_thread_prologue_and_epilogue (ctxt
);
6434 /* This mini-pass fixes fall-out from SSA in asm statements that have
6435 in-out constraints. Say you start with
6438 asm ("": "+mr" (inout));
6441 which is transformed very early to use explicit output and match operands:
6444 asm ("": "=mr" (inout) : "0" (inout));
6447 Or, after SSA and copyprop,
6449 asm ("": "=mr" (inout_2) : "0" (inout_1));
6452 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6453 they represent two separate values, so they will get different pseudo
6454 registers during expansion. Then, since the two operands need to match
6455 per the constraints, but use different pseudo registers, reload can
6456 only register a reload for these operands. But reloads can only be
6457 satisfied by hardregs, not by memory, so we need a register for this
6458 reload, just because we are presented with non-matching operands.
6459 So, even though we allow memory for this operand, no memory can be
6460 used for it, just because the two operands don't match. This can
6461 cause reload failures on register-starved targets.
6463 So it's a symptom of reload not being able to use memory for reloads
6464 or, alternatively it's also a symptom of both operands not coming into
6465 reload as matching (in which case the pseudo could go to memory just
6466 fine, as the alternative allows it, and no reload would be necessary).
6467 We fix the latter problem here, by transforming
6469 asm ("": "=mr" (inout_2) : "0" (inout_1));
6474 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6477 match_asm_constraints_1 (rtx_insn
*insn
, rtx
*p_sets
, int noutputs
)
6480 bool changed
= false;
6481 rtx op
= SET_SRC (p_sets
[0]);
6482 int ninputs
= ASM_OPERANDS_INPUT_LENGTH (op
);
6483 rtvec inputs
= ASM_OPERANDS_INPUT_VEC (op
);
6484 bool *output_matched
= XALLOCAVEC (bool, noutputs
);
6486 memset (output_matched
, 0, noutputs
* sizeof (bool));
6487 for (i
= 0; i
< ninputs
; i
++)
6491 const char *constraint
= ASM_OPERANDS_INPUT_CONSTRAINT (op
, i
);
6495 if (*constraint
== '%')
6498 match
= strtoul (constraint
, &end
, 10);
6499 if (end
== constraint
)
6502 gcc_assert (match
< noutputs
);
6503 output
= SET_DEST (p_sets
[match
]);
6504 input
= RTVEC_ELT (inputs
, i
);
6505 /* Only do the transformation for pseudos. */
6506 if (! REG_P (output
)
6507 || rtx_equal_p (output
, input
)
6508 || (GET_MODE (input
) != VOIDmode
6509 && GET_MODE (input
) != GET_MODE (output
)))
6512 /* We can't do anything if the output is also used as input,
6513 as we're going to overwrite it. */
6514 for (j
= 0; j
< ninputs
; j
++)
6515 if (reg_overlap_mentioned_p (output
, RTVEC_ELT (inputs
, j
)))
6520 /* Avoid changing the same input several times. For
6521 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6522 only change in once (to out1), rather than changing it
6523 first to out1 and afterwards to out2. */
6526 for (j
= 0; j
< noutputs
; j
++)
6527 if (output_matched
[j
] && input
== SET_DEST (p_sets
[j
]))
6532 output_matched
[match
] = true;
6535 emit_move_insn (output
, input
);
6536 insns
= get_insns ();
6538 emit_insn_before (insns
, insn
);
6540 /* Now replace all mentions of the input with output. We can't
6541 just replace the occurrence in inputs[i], as the register might
6542 also be used in some other input (or even in an address of an
6543 output), which would mean possibly increasing the number of
6544 inputs by one (namely 'output' in addition), which might pose
6545 a too complicated problem for reload to solve. E.g. this situation:
6547 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6549 Here 'input' is used in two occurrences as input (once for the
6550 input operand, once for the address in the second output operand).
6551 If we would replace only the occurrence of the input operand (to
6552 make the matching) we would be left with this:
6555 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6557 Now we suddenly have two different input values (containing the same
6558 value, but different pseudos) where we formerly had only one.
6559 With more complicated asms this might lead to reload failures
6560 which wouldn't have happen without this pass. So, iterate over
6561 all operands and replace all occurrences of the register used. */
6562 for (j
= 0; j
< noutputs
; j
++)
6563 if (!rtx_equal_p (SET_DEST (p_sets
[j
]), input
)
6564 && reg_overlap_mentioned_p (input
, SET_DEST (p_sets
[j
])))
6565 SET_DEST (p_sets
[j
]) = replace_rtx (SET_DEST (p_sets
[j
]),
6567 for (j
= 0; j
< ninputs
; j
++)
6568 if (reg_overlap_mentioned_p (input
, RTVEC_ELT (inputs
, j
)))
6569 RTVEC_ELT (inputs
, j
) = replace_rtx (RTVEC_ELT (inputs
, j
),
6576 df_insn_rescan (insn
);
6579 /* Add the decl D to the local_decls list of FUN. */
6582 add_local_decl (struct function
*fun
, tree d
)
6584 gcc_assert (TREE_CODE (d
) == VAR_DECL
);
6585 vec_safe_push (fun
->local_decls
, d
);
6590 const pass_data pass_data_match_asm_constraints
=
6592 RTL_PASS
, /* type */
6593 "asmcons", /* name */
6594 OPTGROUP_NONE
, /* optinfo_flags */
6595 TV_NONE
, /* tv_id */
6596 0, /* properties_required */
6597 0, /* properties_provided */
6598 0, /* properties_destroyed */
6599 0, /* todo_flags_start */
6600 0, /* todo_flags_finish */
6603 class pass_match_asm_constraints
: public rtl_opt_pass
6606 pass_match_asm_constraints (gcc::context
*ctxt
)
6607 : rtl_opt_pass (pass_data_match_asm_constraints
, ctxt
)
6610 /* opt_pass methods: */
6611 virtual unsigned int execute (function
*);
6613 }; // class pass_match_asm_constraints
6616 pass_match_asm_constraints::execute (function
*fun
)
6623 if (!crtl
->has_asm_statement
)
6626 df_set_flags (DF_DEFER_INSN_RESCAN
);
6627 FOR_EACH_BB_FN (bb
, fun
)
6629 FOR_BB_INSNS (bb
, insn
)
6634 pat
= PATTERN (insn
);
6635 if (GET_CODE (pat
) == PARALLEL
)
6636 p_sets
= &XVECEXP (pat
, 0, 0), noutputs
= XVECLEN (pat
, 0);
6637 else if (GET_CODE (pat
) == SET
)
6638 p_sets
= &PATTERN (insn
), noutputs
= 1;
6642 if (GET_CODE (*p_sets
) == SET
6643 && GET_CODE (SET_SRC (*p_sets
)) == ASM_OPERANDS
)
6644 match_asm_constraints_1 (insn
, p_sets
, noutputs
);
6648 return TODO_df_finish
;
6654 make_pass_match_asm_constraints (gcc::context
*ctxt
)
6656 return new pass_match_asm_constraints (ctxt
);
6660 #include "gt-function.h"