Check in tree-dce enh to trunk
[official-gcc.git] / gcc / fortran / trans-types.c
blob1c15d644ab4f712717a3692526edd78c4d778e9f
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Paul Brook <paul@nowt.org>
5 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* trans-types.c -- gfortran backend types */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tree.h"
29 #include "langhooks.h"
30 #include "tm.h"
31 #include "target.h"
32 #include "ggc.h"
33 #include "toplev.h"
34 #include "gfortran.h"
35 #include "trans.h"
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "real.h"
39 #include "flags.h"
40 #include "dwarf2out.h"
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
56 static tree gfc_get_derived_type (gfc_symbol * derived);
58 tree gfc_array_index_type;
59 tree gfc_array_range_type;
60 tree gfc_character1_type_node;
61 tree pvoid_type_node;
62 tree ppvoid_type_node;
63 tree pchar_type_node;
64 tree pfunc_type_node;
66 tree gfc_charlen_type_node;
68 static GTY(()) tree gfc_desc_dim_type;
69 static GTY(()) tree gfc_max_array_element_size;
70 static GTY(()) tree gfc_array_descriptor_base[GFC_MAX_DIMENSIONS];
72 /* Arrays for all integral and real kinds. We'll fill this in at runtime
73 after the target has a chance to process command-line options. */
75 #define MAX_INT_KINDS 5
76 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
77 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
78 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
79 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
81 #define MAX_REAL_KINDS 5
82 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
83 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
84 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
86 #define MAX_CHARACTER_KINDS 2
87 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
88 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
89 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
92 /* The integer kind to use for array indices. This will be set to the
93 proper value based on target information from the backend. */
95 int gfc_index_integer_kind;
97 /* The default kinds of the various types. */
99 int gfc_default_integer_kind;
100 int gfc_max_integer_kind;
101 int gfc_default_real_kind;
102 int gfc_default_double_kind;
103 int gfc_default_character_kind;
104 int gfc_default_logical_kind;
105 int gfc_default_complex_kind;
106 int gfc_c_int_kind;
108 /* The kind size used for record offsets. If the target system supports
109 kind=8, this will be set to 8, otherwise it is set to 4. */
110 int gfc_intio_kind;
112 /* The integer kind used to store character lengths. */
113 int gfc_charlen_int_kind;
115 /* The size of the numeric storage unit and character storage unit. */
116 int gfc_numeric_storage_size;
117 int gfc_character_storage_size;
120 /* Validate that the f90_type of the given gfc_typespec is valid for
121 the type it represents. The f90_type represents the Fortran types
122 this C kind can be used with. For example, c_int has a f90_type of
123 BT_INTEGER and c_float has a f90_type of BT_REAL. Returns FAILURE
124 if a mismatch occurs between ts->f90_type and ts->type; SUCCESS if
125 they match. */
128 gfc_validate_c_kind (gfc_typespec *ts)
130 return ((ts->type == ts->f90_type) ? SUCCESS : FAILURE);
135 gfc_check_any_c_kind (gfc_typespec *ts)
137 int i;
139 for (i = 0; i < ISOCBINDING_NUMBER; i++)
141 /* Check for any C interoperable kind for the given type/kind in ts.
142 This can be used after verify_c_interop to make sure that the
143 Fortran kind being used exists in at least some form for C. */
144 if (c_interop_kinds_table[i].f90_type == ts->type &&
145 c_interop_kinds_table[i].value == ts->kind)
146 return SUCCESS;
149 return FAILURE;
153 static int
154 get_real_kind_from_node (tree type)
156 int i;
158 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
159 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
160 return gfc_real_kinds[i].kind;
162 return -4;
165 static int
166 get_int_kind_from_node (tree type)
168 int i;
170 if (!type)
171 return -2;
173 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
174 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
175 return gfc_integer_kinds[i].kind;
177 return -1;
180 static int
181 get_int_kind_from_width (int size)
183 int i;
185 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
186 if (gfc_integer_kinds[i].bit_size == size)
187 return gfc_integer_kinds[i].kind;
189 return -2;
192 static int
193 get_int_kind_from_minimal_width (int size)
195 int i;
197 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
198 if (gfc_integer_kinds[i].bit_size >= size)
199 return gfc_integer_kinds[i].kind;
201 return -2;
205 /* Generate the CInteropKind_t objects for the C interoperable
206 kinds. */
208 static
209 void init_c_interop_kinds (void)
211 int i;
212 tree intmax_type_node = INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
213 integer_type_node :
214 (LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE ?
215 long_integer_type_node :
216 long_long_integer_type_node);
218 /* init all pointers in the list to NULL */
219 for (i = 0; i < ISOCBINDING_NUMBER; i++)
221 /* Initialize the name and value fields. */
222 c_interop_kinds_table[i].name[0] = '\0';
223 c_interop_kinds_table[i].value = -100;
224 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
227 #define NAMED_INTCST(a,b,c,d) \
228 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
229 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
230 c_interop_kinds_table[a].value = c;
231 #define NAMED_REALCST(a,b,c) \
232 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
233 c_interop_kinds_table[a].f90_type = BT_REAL; \
234 c_interop_kinds_table[a].value = c;
235 #define NAMED_CMPXCST(a,b,c) \
236 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
237 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
238 c_interop_kinds_table[a].value = c;
239 #define NAMED_LOGCST(a,b,c) \
240 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
241 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
242 c_interop_kinds_table[a].value = c;
243 #define NAMED_CHARKNDCST(a,b,c) \
244 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
245 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
246 c_interop_kinds_table[a].value = c;
247 #define NAMED_CHARCST(a,b,c) \
248 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
249 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
250 c_interop_kinds_table[a].value = c;
251 #define DERIVED_TYPE(a,b,c) \
252 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
253 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
254 c_interop_kinds_table[a].value = c;
255 #define PROCEDURE(a,b) \
256 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
257 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
258 c_interop_kinds_table[a].value = 0;
259 #include "iso-c-binding.def"
263 /* Query the target to determine which machine modes are available for
264 computation. Choose KIND numbers for them. */
266 void
267 gfc_init_kinds (void)
269 enum machine_mode mode;
270 int i_index, r_index, kind;
271 bool saw_i4 = false, saw_i8 = false;
272 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
274 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
276 int kind, bitsize;
278 if (!targetm.scalar_mode_supported_p (mode))
279 continue;
281 /* The middle end doesn't support constants larger than 2*HWI.
282 Perhaps the target hook shouldn't have accepted these either,
283 but just to be safe... */
284 bitsize = GET_MODE_BITSIZE (mode);
285 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
286 continue;
288 gcc_assert (i_index != MAX_INT_KINDS);
290 /* Let the kind equal the bit size divided by 8. This insulates the
291 programmer from the underlying byte size. */
292 kind = bitsize / 8;
294 if (kind == 4)
295 saw_i4 = true;
296 if (kind == 8)
297 saw_i8 = true;
299 gfc_integer_kinds[i_index].kind = kind;
300 gfc_integer_kinds[i_index].radix = 2;
301 gfc_integer_kinds[i_index].digits = bitsize - 1;
302 gfc_integer_kinds[i_index].bit_size = bitsize;
304 gfc_logical_kinds[i_index].kind = kind;
305 gfc_logical_kinds[i_index].bit_size = bitsize;
307 i_index += 1;
310 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
311 used for large file access. */
313 if (saw_i8)
314 gfc_intio_kind = 8;
315 else
316 gfc_intio_kind = 4;
318 /* If we do not at least have kind = 4, everything is pointless. */
319 gcc_assert(saw_i4);
321 /* Set the maximum integer kind. Used with at least BOZ constants. */
322 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
324 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
326 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
327 int kind;
329 if (fmt == NULL)
330 continue;
331 if (!targetm.scalar_mode_supported_p (mode))
332 continue;
334 /* Only let float/double/long double go through because the fortran
335 library assumes these are the only floating point types. */
337 if (mode != TYPE_MODE (float_type_node)
338 && (mode != TYPE_MODE (double_type_node))
339 && (mode != TYPE_MODE (long_double_type_node)))
340 continue;
342 /* Let the kind equal the precision divided by 8, rounding up. Again,
343 this insulates the programmer from the underlying byte size.
345 Also, it effectively deals with IEEE extended formats. There, the
346 total size of the type may equal 16, but it's got 6 bytes of padding
347 and the increased size can get in the way of a real IEEE quad format
348 which may also be supported by the target.
350 We round up so as to handle IA-64 __floatreg (RFmode), which is an
351 82 bit type. Not to be confused with __float80 (XFmode), which is
352 an 80 bit type also supported by IA-64. So XFmode should come out
353 to be kind=10, and RFmode should come out to be kind=11. Egads. */
355 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
357 if (kind == 4)
358 saw_r4 = true;
359 if (kind == 8)
360 saw_r8 = true;
361 if (kind == 16)
362 saw_r16 = true;
364 /* Careful we don't stumble a wierd internal mode. */
365 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
366 /* Or have too many modes for the allocated space. */
367 gcc_assert (r_index != MAX_REAL_KINDS);
369 gfc_real_kinds[r_index].kind = kind;
370 gfc_real_kinds[r_index].radix = fmt->b;
371 gfc_real_kinds[r_index].digits = fmt->p;
372 gfc_real_kinds[r_index].min_exponent = fmt->emin;
373 gfc_real_kinds[r_index].max_exponent = fmt->emax;
374 if (fmt->pnan < fmt->p)
375 /* This is an IBM extended double format (or the MIPS variant)
376 made up of two IEEE doubles. The value of the long double is
377 the sum of the values of the two parts. The most significant
378 part is required to be the value of the long double rounded
379 to the nearest double. If we use emax of 1024 then we can't
380 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
381 rounding will make the most significant part overflow. */
382 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
383 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
384 r_index += 1;
387 /* Choose the default integer kind. We choose 4 unless the user
388 directs us otherwise. */
389 if (gfc_option.flag_default_integer)
391 if (!saw_i8)
392 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
393 gfc_default_integer_kind = 8;
395 /* Even if the user specified that the default integer kind be 8,
396 the numerica storage size isn't 64. In this case, a warning will
397 be issued when NUMERIC_STORAGE_SIZE is used. */
398 gfc_numeric_storage_size = 4 * 8;
400 else if (saw_i4)
402 gfc_default_integer_kind = 4;
403 gfc_numeric_storage_size = 4 * 8;
405 else
407 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
408 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
411 /* Choose the default real kind. Again, we choose 4 when possible. */
412 if (gfc_option.flag_default_real)
414 if (!saw_r8)
415 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
416 gfc_default_real_kind = 8;
418 else if (saw_r4)
419 gfc_default_real_kind = 4;
420 else
421 gfc_default_real_kind = gfc_real_kinds[0].kind;
423 /* Choose the default double kind. If -fdefault-real and -fdefault-double
424 are specified, we use kind=8, if it's available. If -fdefault-real is
425 specified without -fdefault-double, we use kind=16, if it's available.
426 Otherwise we do not change anything. */
427 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
428 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
430 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
431 gfc_default_double_kind = 8;
432 else if (gfc_option.flag_default_real && saw_r16)
433 gfc_default_double_kind = 16;
434 else if (saw_r4 && saw_r8)
435 gfc_default_double_kind = 8;
436 else
438 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
439 real ... occupies two contiguous numeric storage units.
441 Therefore we must be supplied a kind twice as large as we chose
442 for single precision. There are loopholes, in that double
443 precision must *occupy* two storage units, though it doesn't have
444 to *use* two storage units. Which means that you can make this
445 kind artificially wide by padding it. But at present there are
446 no GCC targets for which a two-word type does not exist, so we
447 just let gfc_validate_kind abort and tell us if something breaks. */
449 gfc_default_double_kind
450 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
453 /* The default logical kind is constrained to be the same as the
454 default integer kind. Similarly with complex and real. */
455 gfc_default_logical_kind = gfc_default_integer_kind;
456 gfc_default_complex_kind = gfc_default_real_kind;
458 /* We only have two character kinds: ASCII and UCS-4.
459 ASCII corresponds to a 8-bit integer type, if one is available.
460 UCS-4 corresponds to a 32-bit integer type, if one is available. */
461 i_index = 0;
462 if ((kind = get_int_kind_from_width (8)) > 0)
464 gfc_character_kinds[i_index].kind = kind;
465 gfc_character_kinds[i_index].bit_size = 8;
466 gfc_character_kinds[i_index].name = "ascii";
467 i_index++;
469 if ((kind = get_int_kind_from_width (32)) > 0)
471 gfc_character_kinds[i_index].kind = kind;
472 gfc_character_kinds[i_index].bit_size = 32;
473 gfc_character_kinds[i_index].name = "iso_10646";
474 i_index++;
477 /* Choose the smallest integer kind for our default character. */
478 gfc_default_character_kind = gfc_character_kinds[0].kind;
479 gfc_character_storage_size = gfc_default_character_kind * 8;
481 /* Choose the integer kind the same size as "void*" for our index kind. */
482 gfc_index_integer_kind = POINTER_SIZE / 8;
483 /* Pick a kind the same size as the C "int" type. */
484 gfc_c_int_kind = INT_TYPE_SIZE / 8;
486 /* initialize the C interoperable kinds */
487 init_c_interop_kinds();
490 /* Make sure that a valid kind is present. Returns an index into the
491 associated kinds array, -1 if the kind is not present. */
493 static int
494 validate_integer (int kind)
496 int i;
498 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
499 if (gfc_integer_kinds[i].kind == kind)
500 return i;
502 return -1;
505 static int
506 validate_real (int kind)
508 int i;
510 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
511 if (gfc_real_kinds[i].kind == kind)
512 return i;
514 return -1;
517 static int
518 validate_logical (int kind)
520 int i;
522 for (i = 0; gfc_logical_kinds[i].kind; i++)
523 if (gfc_logical_kinds[i].kind == kind)
524 return i;
526 return -1;
529 static int
530 validate_character (int kind)
532 int i;
534 for (i = 0; gfc_character_kinds[i].kind; i++)
535 if (gfc_character_kinds[i].kind == kind)
536 return i;
538 return -1;
541 /* Validate a kind given a basic type. The return value is the same
542 for the child functions, with -1 indicating nonexistence of the
543 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
546 gfc_validate_kind (bt type, int kind, bool may_fail)
548 int rc;
550 switch (type)
552 case BT_REAL: /* Fall through */
553 case BT_COMPLEX:
554 rc = validate_real (kind);
555 break;
556 case BT_INTEGER:
557 rc = validate_integer (kind);
558 break;
559 case BT_LOGICAL:
560 rc = validate_logical (kind);
561 break;
562 case BT_CHARACTER:
563 rc = validate_character (kind);
564 break;
566 default:
567 gfc_internal_error ("gfc_validate_kind(): Got bad type");
570 if (rc < 0 && !may_fail)
571 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
573 return rc;
577 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
578 Reuse common type nodes where possible. Recognize if the kind matches up
579 with a C type. This will be used later in determining which routines may
580 be scarfed from libm. */
582 static tree
583 gfc_build_int_type (gfc_integer_info *info)
585 int mode_precision = info->bit_size;
587 if (mode_precision == CHAR_TYPE_SIZE)
588 info->c_char = 1;
589 if (mode_precision == SHORT_TYPE_SIZE)
590 info->c_short = 1;
591 if (mode_precision == INT_TYPE_SIZE)
592 info->c_int = 1;
593 if (mode_precision == LONG_TYPE_SIZE)
594 info->c_long = 1;
595 if (mode_precision == LONG_LONG_TYPE_SIZE)
596 info->c_long_long = 1;
598 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
599 return intQI_type_node;
600 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
601 return intHI_type_node;
602 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
603 return intSI_type_node;
604 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
605 return intDI_type_node;
606 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
607 return intTI_type_node;
609 return make_signed_type (mode_precision);
612 static tree
613 gfc_build_uint_type (int size)
615 if (size == CHAR_TYPE_SIZE)
616 return unsigned_char_type_node;
617 if (size == SHORT_TYPE_SIZE)
618 return short_unsigned_type_node;
619 if (size == INT_TYPE_SIZE)
620 return unsigned_type_node;
621 if (size == LONG_TYPE_SIZE)
622 return long_unsigned_type_node;
623 if (size == LONG_LONG_TYPE_SIZE)
624 return long_long_unsigned_type_node;
626 return make_unsigned_type (size);
630 static tree
631 gfc_build_real_type (gfc_real_info *info)
633 int mode_precision = info->mode_precision;
634 tree new_type;
636 if (mode_precision == FLOAT_TYPE_SIZE)
637 info->c_float = 1;
638 if (mode_precision == DOUBLE_TYPE_SIZE)
639 info->c_double = 1;
640 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
641 info->c_long_double = 1;
643 if (TYPE_PRECISION (float_type_node) == mode_precision)
644 return float_type_node;
645 if (TYPE_PRECISION (double_type_node) == mode_precision)
646 return double_type_node;
647 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
648 return long_double_type_node;
650 new_type = make_node (REAL_TYPE);
651 TYPE_PRECISION (new_type) = mode_precision;
652 layout_type (new_type);
653 return new_type;
656 static tree
657 gfc_build_complex_type (tree scalar_type)
659 tree new_type;
661 if (scalar_type == NULL)
662 return NULL;
663 if (scalar_type == float_type_node)
664 return complex_float_type_node;
665 if (scalar_type == double_type_node)
666 return complex_double_type_node;
667 if (scalar_type == long_double_type_node)
668 return complex_long_double_type_node;
670 new_type = make_node (COMPLEX_TYPE);
671 TREE_TYPE (new_type) = scalar_type;
672 layout_type (new_type);
673 return new_type;
676 static tree
677 gfc_build_logical_type (gfc_logical_info *info)
679 int bit_size = info->bit_size;
680 tree new_type;
682 if (bit_size == BOOL_TYPE_SIZE)
684 info->c_bool = 1;
685 return boolean_type_node;
688 new_type = make_unsigned_type (bit_size);
689 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
690 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
691 TYPE_PRECISION (new_type) = 1;
693 return new_type;
696 #if 0
697 /* Return the bit size of the C "size_t". */
699 static unsigned int
700 c_size_t_size (void)
702 #ifdef SIZE_TYPE
703 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
704 return INT_TYPE_SIZE;
705 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
706 return LONG_TYPE_SIZE;
707 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
708 return SHORT_TYPE_SIZE;
709 gcc_unreachable ();
710 #else
711 return LONG_TYPE_SIZE;
712 #endif
714 #endif
716 /* Create the backend type nodes. We map them to their
717 equivalent C type, at least for now. We also give
718 names to the types here, and we push them in the
719 global binding level context.*/
721 void
722 gfc_init_types (void)
724 char name_buf[18];
725 int index;
726 tree type;
727 unsigned n;
728 unsigned HOST_WIDE_INT hi;
729 unsigned HOST_WIDE_INT lo;
731 /* Create and name the types. */
732 #define PUSH_TYPE(name, node) \
733 pushdecl (build_decl (TYPE_DECL, get_identifier (name), node))
735 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
737 type = gfc_build_int_type (&gfc_integer_kinds[index]);
738 gfc_integer_types[index] = type;
739 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
740 gfc_integer_kinds[index].kind);
741 PUSH_TYPE (name_buf, type);
744 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
746 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
747 gfc_logical_types[index] = type;
748 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
749 gfc_logical_kinds[index].kind);
750 PUSH_TYPE (name_buf, type);
753 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
755 type = gfc_build_real_type (&gfc_real_kinds[index]);
756 gfc_real_types[index] = type;
757 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
758 gfc_real_kinds[index].kind);
759 PUSH_TYPE (name_buf, type);
761 type = gfc_build_complex_type (type);
762 gfc_complex_types[index] = type;
763 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
764 gfc_real_kinds[index].kind);
765 PUSH_TYPE (name_buf, type);
768 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
770 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
771 type = build_qualified_type (type, TYPE_UNQUALIFIED);
772 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
773 gfc_character_kinds[index].kind);
774 PUSH_TYPE (name_buf, type);
775 gfc_character_types[index] = type;
776 gfc_pcharacter_types[index] = build_pointer_type (type);
778 gfc_character1_type_node = gfc_character_types[0];
780 PUSH_TYPE ("byte", unsigned_char_type_node);
781 PUSH_TYPE ("void", void_type_node);
783 /* DBX debugging output gets upset if these aren't set. */
784 if (!TYPE_NAME (integer_type_node))
785 PUSH_TYPE ("c_integer", integer_type_node);
786 if (!TYPE_NAME (char_type_node))
787 PUSH_TYPE ("c_char", char_type_node);
789 #undef PUSH_TYPE
791 pvoid_type_node = build_pointer_type (void_type_node);
792 ppvoid_type_node = build_pointer_type (pvoid_type_node);
793 pchar_type_node = build_pointer_type (gfc_character1_type_node);
794 pfunc_type_node
795 = build_pointer_type (build_function_type (void_type_node, NULL_TREE));
797 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
798 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
799 since this function is called before gfc_init_constants. */
800 gfc_array_range_type
801 = build_range_type (gfc_array_index_type,
802 build_int_cst (gfc_array_index_type, 0),
803 NULL_TREE);
805 /* The maximum array element size that can be handled is determined
806 by the number of bits available to store this field in the array
807 descriptor. */
809 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
810 lo = ~ (unsigned HOST_WIDE_INT) 0;
811 if (n > HOST_BITS_PER_WIDE_INT)
812 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
813 else
814 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
815 gfc_max_array_element_size
816 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
818 size_type_node = gfc_array_index_type;
820 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
821 boolean_true_node = build_int_cst (boolean_type_node, 1);
822 boolean_false_node = build_int_cst (boolean_type_node, 0);
824 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
825 gfc_charlen_int_kind = 4;
826 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
829 /* Get the type node for the given type and kind. */
831 tree
832 gfc_get_int_type (int kind)
834 int index = gfc_validate_kind (BT_INTEGER, kind, true);
835 return index < 0 ? 0 : gfc_integer_types[index];
838 tree
839 gfc_get_real_type (int kind)
841 int index = gfc_validate_kind (BT_REAL, kind, true);
842 return index < 0 ? 0 : gfc_real_types[index];
845 tree
846 gfc_get_complex_type (int kind)
848 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
849 return index < 0 ? 0 : gfc_complex_types[index];
852 tree
853 gfc_get_logical_type (int kind)
855 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
856 return index < 0 ? 0 : gfc_logical_types[index];
859 tree
860 gfc_get_char_type (int kind)
862 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
863 return index < 0 ? 0 : gfc_character_types[index];
866 tree
867 gfc_get_pchar_type (int kind)
869 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
870 return index < 0 ? 0 : gfc_pcharacter_types[index];
874 /* Create a character type with the given kind and length. */
876 tree
877 gfc_get_character_type_len (int kind, tree len)
879 tree bounds, type;
881 gfc_validate_kind (BT_CHARACTER, kind, false);
883 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
884 type = build_array_type (gfc_get_char_type (kind), bounds);
885 TYPE_STRING_FLAG (type) = 1;
887 return type;
891 /* Get a type node for a character kind. */
893 tree
894 gfc_get_character_type (int kind, gfc_charlen * cl)
896 tree len;
898 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
900 return gfc_get_character_type_len (kind, len);
903 /* Covert a basic type. This will be an array for character types. */
905 tree
906 gfc_typenode_for_spec (gfc_typespec * spec)
908 tree basetype;
910 switch (spec->type)
912 case BT_UNKNOWN:
913 gcc_unreachable ();
915 case BT_INTEGER:
916 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
917 has been resolved. This is done so we can convert C_PTR and
918 C_FUNPTR to simple variables that get translated to (void *). */
919 if (spec->f90_type == BT_VOID)
921 if (spec->derived
922 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
923 basetype = ptr_type_node;
924 else
925 basetype = pfunc_type_node;
927 else
928 basetype = gfc_get_int_type (spec->kind);
929 break;
931 case BT_REAL:
932 basetype = gfc_get_real_type (spec->kind);
933 break;
935 case BT_COMPLEX:
936 basetype = gfc_get_complex_type (spec->kind);
937 break;
939 case BT_LOGICAL:
940 basetype = gfc_get_logical_type (spec->kind);
941 break;
943 case BT_CHARACTER:
944 basetype = gfc_get_character_type (spec->kind, spec->cl);
945 break;
947 case BT_DERIVED:
948 basetype = gfc_get_derived_type (spec->derived);
950 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
951 type and kind to fit a (void *) and the basetype returned was a
952 ptr_type_node. We need to pass up this new information to the
953 symbol that was declared of type C_PTR or C_FUNPTR. */
954 if (spec->derived->attr.is_iso_c)
956 spec->type = spec->derived->ts.type;
957 spec->kind = spec->derived->ts.kind;
958 spec->f90_type = spec->derived->ts.f90_type;
960 break;
961 case BT_VOID:
962 /* This is for the second arg to c_f_pointer and c_f_procpointer
963 of the iso_c_binding module, to accept any ptr type. */
964 basetype = ptr_type_node;
965 if (spec->f90_type == BT_VOID)
967 if (spec->derived
968 && spec->derived->intmod_sym_id == ISOCBINDING_PTR)
969 basetype = ptr_type_node;
970 else
971 basetype = pfunc_type_node;
973 break;
974 default:
975 gcc_unreachable ();
977 return basetype;
980 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
982 static tree
983 gfc_conv_array_bound (gfc_expr * expr)
985 /* If expr is an integer constant, return that. */
986 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
987 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
989 /* Otherwise return NULL. */
990 return NULL_TREE;
993 tree
994 gfc_get_element_type (tree type)
996 tree element;
998 if (GFC_ARRAY_TYPE_P (type))
1000 if (TREE_CODE (type) == POINTER_TYPE)
1001 type = TREE_TYPE (type);
1002 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1003 element = TREE_TYPE (type);
1005 else
1007 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1008 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1010 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1011 element = TREE_TYPE (element);
1013 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1014 element = TREE_TYPE (element);
1017 return element;
1020 /* Build an array. This function is called from gfc_sym_type().
1021 Actually returns array descriptor type.
1023 Format of array descriptors is as follows:
1025 struct gfc_array_descriptor
1027 array *data
1028 index offset;
1029 index dtype;
1030 struct descriptor_dimension dimension[N_DIM];
1033 struct descriptor_dimension
1035 index stride;
1036 index lbound;
1037 index ubound;
1040 Translation code should use gfc_conv_descriptor_* rather than
1041 accessing the descriptor directly. Any changes to the array
1042 descriptor type will require changes in gfc_conv_descriptor_* and
1043 gfc_build_array_initializer.
1045 This is represented internally as a RECORD_TYPE. The index nodes
1046 are gfc_array_index_type and the data node is a pointer to the
1047 data. See below for the handling of character types.
1049 The dtype member is formatted as follows:
1050 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1051 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1052 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1054 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1055 this generated poor code for assumed/deferred size arrays. These
1056 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1057 of the GENERIC grammar. Also, there is no way to explicitly set
1058 the array stride, so all data must be packed(1). I've tried to
1059 mark all the functions which would require modification with a GCC
1060 ARRAYS comment.
1062 The data component points to the first element in the array. The
1063 offset field is the position of the origin of the array (ie element
1064 (0, 0 ...)). This may be outsite the bounds of the array.
1066 An element is accessed by
1067 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1068 This gives good performance as the computation does not involve the
1069 bounds of the array. For packed arrays, this is optimized further
1070 by substituting the known strides.
1072 This system has one problem: all array bounds must be within 2^31
1073 elements of the origin (2^63 on 64-bit machines). For example
1074 integer, dimension (80000:90000, 80000:90000, 2) :: array
1075 may not work properly on 32-bit machines because 80000*80000 >
1076 2^31, so the calculation for stride02 would overflow. This may
1077 still work, but I haven't checked, and it relies on the overflow
1078 doing the right thing.
1080 The way to fix this problem is to access elements as follows:
1081 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1082 Obviously this is much slower. I will make this a compile time
1083 option, something like -fsmall-array-offsets. Mixing code compiled
1084 with and without this switch will work.
1086 (1) This can be worked around by modifying the upper bound of the
1087 previous dimension. This requires extra fields in the descriptor
1088 (both real_ubound and fake_ubound). */
1091 /* Returns true if the array sym does not require a descriptor. */
1094 gfc_is_nodesc_array (gfc_symbol * sym)
1096 gcc_assert (sym->attr.dimension);
1098 /* We only want local arrays. */
1099 if (sym->attr.pointer || sym->attr.allocatable)
1100 return 0;
1102 if (sym->attr.dummy)
1104 if (sym->as->type != AS_ASSUMED_SHAPE)
1105 return 1;
1106 else
1107 return 0;
1110 if (sym->attr.result || sym->attr.function)
1111 return 0;
1113 gcc_assert (sym->as->type == AS_EXPLICIT);
1115 return 1;
1119 /* Create an array descriptor type. */
1121 static tree
1122 gfc_build_array_type (tree type, gfc_array_spec * as,
1123 enum gfc_array_kind akind)
1125 tree lbound[GFC_MAX_DIMENSIONS];
1126 tree ubound[GFC_MAX_DIMENSIONS];
1127 int n;
1129 for (n = 0; n < as->rank; n++)
1131 /* Create expressions for the known bounds of the array. */
1132 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1133 lbound[n] = gfc_index_one_node;
1134 else
1135 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1136 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1139 if (as->type == AS_ASSUMED_SHAPE)
1140 akind = GFC_ARRAY_ASSUMED_SHAPE;
1141 return gfc_get_array_type_bounds (type, as->rank, lbound, ubound, 0, akind);
1144 /* Returns the struct descriptor_dimension type. */
1146 static tree
1147 gfc_get_desc_dim_type (void)
1149 tree type;
1150 tree decl;
1151 tree fieldlist;
1153 if (gfc_desc_dim_type)
1154 return gfc_desc_dim_type;
1156 /* Build the type node. */
1157 type = make_node (RECORD_TYPE);
1159 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1160 TYPE_PACKED (type) = 1;
1162 /* Consists of the stride, lbound and ubound members. */
1163 decl = build_decl (FIELD_DECL,
1164 get_identifier ("stride"), gfc_array_index_type);
1165 DECL_CONTEXT (decl) = type;
1166 TREE_NO_WARNING (decl) = 1;
1167 fieldlist = decl;
1169 decl = build_decl (FIELD_DECL,
1170 get_identifier ("lbound"), gfc_array_index_type);
1171 DECL_CONTEXT (decl) = type;
1172 TREE_NO_WARNING (decl) = 1;
1173 fieldlist = chainon (fieldlist, decl);
1175 decl = build_decl (FIELD_DECL,
1176 get_identifier ("ubound"), gfc_array_index_type);
1177 DECL_CONTEXT (decl) = type;
1178 TREE_NO_WARNING (decl) = 1;
1179 fieldlist = chainon (fieldlist, decl);
1181 /* Finish off the type. */
1182 TYPE_FIELDS (type) = fieldlist;
1184 gfc_finish_type (type);
1185 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1187 gfc_desc_dim_type = type;
1188 return type;
1192 /* Return the DTYPE for an array. This describes the type and type parameters
1193 of the array. */
1194 /* TODO: Only call this when the value is actually used, and make all the
1195 unknown cases abort. */
1197 tree
1198 gfc_get_dtype (tree type)
1200 tree size;
1201 int n;
1202 HOST_WIDE_INT i;
1203 tree tmp;
1204 tree dtype;
1205 tree etype;
1206 int rank;
1208 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1210 if (GFC_TYPE_ARRAY_DTYPE (type))
1211 return GFC_TYPE_ARRAY_DTYPE (type);
1213 rank = GFC_TYPE_ARRAY_RANK (type);
1214 etype = gfc_get_element_type (type);
1216 switch (TREE_CODE (etype))
1218 case INTEGER_TYPE:
1219 n = GFC_DTYPE_INTEGER;
1220 break;
1222 case BOOLEAN_TYPE:
1223 n = GFC_DTYPE_LOGICAL;
1224 break;
1226 case REAL_TYPE:
1227 n = GFC_DTYPE_REAL;
1228 break;
1230 case COMPLEX_TYPE:
1231 n = GFC_DTYPE_COMPLEX;
1232 break;
1234 /* We will never have arrays of arrays. */
1235 case RECORD_TYPE:
1236 n = GFC_DTYPE_DERIVED;
1237 break;
1239 case ARRAY_TYPE:
1240 n = GFC_DTYPE_CHARACTER;
1241 break;
1243 default:
1244 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1245 /* We can strange array types for temporary arrays. */
1246 return gfc_index_zero_node;
1249 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1250 size = TYPE_SIZE_UNIT (etype);
1252 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1253 if (size && INTEGER_CST_P (size))
1255 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1256 internal_error ("Array element size too big");
1258 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1260 dtype = build_int_cst (gfc_array_index_type, i);
1262 if (size && !INTEGER_CST_P (size))
1264 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1265 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1266 fold_convert (gfc_array_index_type, size), tmp);
1267 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1269 /* If we don't know the size we leave it as zero. This should never happen
1270 for anything that is actually used. */
1271 /* TODO: Check this is actually true, particularly when repacking
1272 assumed size parameters. */
1274 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1275 return dtype;
1279 /* Build an array type for use without a descriptor, packed according
1280 to the value of PACKED. */
1282 tree
1283 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed)
1285 tree range;
1286 tree type;
1287 tree tmp;
1288 int n;
1289 int known_stride;
1290 int known_offset;
1291 mpz_t offset;
1292 mpz_t stride;
1293 mpz_t delta;
1294 gfc_expr *expr;
1296 mpz_init_set_ui (offset, 0);
1297 mpz_init_set_ui (stride, 1);
1298 mpz_init (delta);
1300 /* We don't use build_array_type because this does not include include
1301 lang-specific information (i.e. the bounds of the array) when checking
1302 for duplicates. */
1303 type = make_node (ARRAY_TYPE);
1305 GFC_ARRAY_TYPE_P (type) = 1;
1306 TYPE_LANG_SPECIFIC (type) = (struct lang_type *)
1307 ggc_alloc_cleared (sizeof (struct lang_type));
1309 known_stride = (packed != PACKED_NO);
1310 known_offset = 1;
1311 for (n = 0; n < as->rank; n++)
1313 /* Fill in the stride and bound components of the type. */
1314 if (known_stride)
1315 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1316 else
1317 tmp = NULL_TREE;
1318 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1320 expr = as->lower[n];
1321 if (expr->expr_type == EXPR_CONSTANT)
1323 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1324 gfc_index_integer_kind);
1326 else
1328 known_stride = 0;
1329 tmp = NULL_TREE;
1331 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1333 if (known_stride)
1335 /* Calculate the offset. */
1336 mpz_mul (delta, stride, as->lower[n]->value.integer);
1337 mpz_sub (offset, offset, delta);
1339 else
1340 known_offset = 0;
1342 expr = as->upper[n];
1343 if (expr && expr->expr_type == EXPR_CONSTANT)
1345 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1346 gfc_index_integer_kind);
1348 else
1350 tmp = NULL_TREE;
1351 known_stride = 0;
1353 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1355 if (known_stride)
1357 /* Calculate the stride. */
1358 mpz_sub (delta, as->upper[n]->value.integer,
1359 as->lower[n]->value.integer);
1360 mpz_add_ui (delta, delta, 1);
1361 mpz_mul (stride, stride, delta);
1364 /* Only the first stride is known for partial packed arrays. */
1365 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1366 known_stride = 0;
1369 if (known_offset)
1371 GFC_TYPE_ARRAY_OFFSET (type) =
1372 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1374 else
1375 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1377 if (known_stride)
1379 GFC_TYPE_ARRAY_SIZE (type) =
1380 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1382 else
1383 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1385 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1386 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1387 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1388 NULL_TREE);
1389 /* TODO: use main type if it is unbounded. */
1390 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1391 build_pointer_type (build_array_type (etype, range));
1393 if (known_stride)
1395 mpz_sub_ui (stride, stride, 1);
1396 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1398 else
1399 range = NULL_TREE;
1401 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1402 TYPE_DOMAIN (type) = range;
1404 build_pointer_type (etype);
1405 TREE_TYPE (type) = etype;
1407 layout_type (type);
1409 mpz_clear (offset);
1410 mpz_clear (stride);
1411 mpz_clear (delta);
1413 /* In debug info represent packed arrays as multi-dimensional
1414 if they have rank > 1 and with proper bounds, instead of flat
1415 arrays. */
1416 if (known_offset && write_symbols != NO_DEBUG)
1418 tree gtype = etype, rtype, type_decl;
1420 for (n = as->rank - 1; n >= 0; n--)
1422 rtype = build_range_type (gfc_array_index_type,
1423 GFC_TYPE_ARRAY_LBOUND (type, n),
1424 GFC_TYPE_ARRAY_UBOUND (type, n));
1425 gtype = build_array_type (gtype, rtype);
1427 TYPE_NAME (type) = type_decl = build_decl (TYPE_DECL, NULL, gtype);
1428 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1431 if (packed != PACKED_STATIC || !known_stride)
1433 /* For dummy arrays and automatic (heap allocated) arrays we
1434 want a pointer to the array. */
1435 type = build_pointer_type (type);
1436 GFC_ARRAY_TYPE_P (type) = 1;
1437 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1439 return type;
1442 /* Return or create the base type for an array descriptor. */
1444 static tree
1445 gfc_get_array_descriptor_base (int dimen)
1447 tree fat_type, fieldlist, decl, arraytype;
1448 char name[16 + GFC_RANK_DIGITS + 1];
1450 gcc_assert (dimen >= 1 && dimen <= GFC_MAX_DIMENSIONS);
1451 if (gfc_array_descriptor_base[dimen - 1])
1452 return gfc_array_descriptor_base[dimen - 1];
1454 /* Build the type node. */
1455 fat_type = make_node (RECORD_TYPE);
1457 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen);
1458 TYPE_NAME (fat_type) = get_identifier (name);
1460 /* Add the data member as the first element of the descriptor. */
1461 decl = build_decl (FIELD_DECL, get_identifier ("data"), ptr_type_node);
1463 DECL_CONTEXT (decl) = fat_type;
1464 fieldlist = decl;
1466 /* Add the base component. */
1467 decl = build_decl (FIELD_DECL, get_identifier ("offset"),
1468 gfc_array_index_type);
1469 DECL_CONTEXT (decl) = fat_type;
1470 TREE_NO_WARNING (decl) = 1;
1471 fieldlist = chainon (fieldlist, decl);
1473 /* Add the dtype component. */
1474 decl = build_decl (FIELD_DECL, get_identifier ("dtype"),
1475 gfc_array_index_type);
1476 DECL_CONTEXT (decl) = fat_type;
1477 TREE_NO_WARNING (decl) = 1;
1478 fieldlist = chainon (fieldlist, decl);
1480 /* Build the array type for the stride and bound components. */
1481 arraytype =
1482 build_array_type (gfc_get_desc_dim_type (),
1483 build_range_type (gfc_array_index_type,
1484 gfc_index_zero_node,
1485 gfc_rank_cst[dimen - 1]));
1487 decl = build_decl (FIELD_DECL, get_identifier ("dim"), arraytype);
1488 DECL_CONTEXT (decl) = fat_type;
1489 TREE_NO_WARNING (decl) = 1;
1490 fieldlist = chainon (fieldlist, decl);
1492 /* Finish off the type. */
1493 TYPE_FIELDS (fat_type) = fieldlist;
1495 gfc_finish_type (fat_type);
1496 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1498 gfc_array_descriptor_base[dimen - 1] = fat_type;
1499 return fat_type;
1502 /* Build an array (descriptor) type with given bounds. */
1504 tree
1505 gfc_get_array_type_bounds (tree etype, int dimen, tree * lbound,
1506 tree * ubound, int packed,
1507 enum gfc_array_kind akind)
1509 char name[8 + GFC_RANK_DIGITS + GFC_MAX_SYMBOL_LEN];
1510 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1511 const char *typename;
1512 int n;
1514 base_type = gfc_get_array_descriptor_base (dimen);
1515 fat_type = build_variant_type_copy (base_type);
1517 tmp = TYPE_NAME (etype);
1518 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1519 tmp = DECL_NAME (tmp);
1520 if (tmp)
1521 typename = IDENTIFIER_POINTER (tmp);
1522 else
1523 typename = "unknown";
1524 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen,
1525 GFC_MAX_SYMBOL_LEN, typename);
1526 TYPE_NAME (fat_type) = get_identifier (name);
1528 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1529 TYPE_LANG_SPECIFIC (fat_type) = (struct lang_type *)
1530 ggc_alloc_cleared (sizeof (struct lang_type));
1532 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1533 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1534 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1536 /* Build an array descriptor record type. */
1537 if (packed != 0)
1538 stride = gfc_index_one_node;
1539 else
1540 stride = NULL_TREE;
1541 for (n = 0; n < dimen; n++)
1543 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1545 if (lbound)
1546 lower = lbound[n];
1547 else
1548 lower = NULL_TREE;
1550 if (lower != NULL_TREE)
1552 if (INTEGER_CST_P (lower))
1553 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1554 else
1555 lower = NULL_TREE;
1558 upper = ubound[n];
1559 if (upper != NULL_TREE)
1561 if (INTEGER_CST_P (upper))
1562 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1563 else
1564 upper = NULL_TREE;
1567 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1569 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1570 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1571 gfc_index_one_node);
1572 stride =
1573 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1574 /* Check the folding worked. */
1575 gcc_assert (INTEGER_CST_P (stride));
1577 else
1578 stride = NULL_TREE;
1580 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1582 /* TODO: known offsets for descriptors. */
1583 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1585 /* We define data as an array with the correct size if possible.
1586 Much better than doing pointer arithmetic. */
1587 if (stride)
1588 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1589 int_const_binop (MINUS_EXPR, stride,
1590 integer_one_node, 0));
1591 else
1592 rtype = gfc_array_range_type;
1593 arraytype = build_array_type (etype, rtype);
1594 arraytype = build_pointer_type (arraytype);
1595 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1597 return fat_type;
1600 /* Build a pointer type. This function is called from gfc_sym_type(). */
1602 static tree
1603 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1605 /* Array pointer types aren't actually pointers. */
1606 if (sym->attr.dimension)
1607 return type;
1608 else
1609 return build_pointer_type (type);
1612 /* Return the type for a symbol. Special handling is required for character
1613 types to get the correct level of indirection.
1614 For functions return the return type.
1615 For subroutines return void_type_node.
1616 Calling this multiple times for the same symbol should be avoided,
1617 especially for character and array types. */
1619 tree
1620 gfc_sym_type (gfc_symbol * sym)
1622 tree type;
1623 int byref;
1625 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1626 return void_type_node;
1628 /* In the case of a function the fake result variable may have a
1629 type different from the function type, so don't return early in
1630 that case. */
1631 if (sym->backend_decl && !sym->attr.function)
1632 return TREE_TYPE (sym->backend_decl);
1634 if (sym->ts.type == BT_CHARACTER && sym->attr.is_bind_c
1635 && (sym->attr.function || sym->attr.result))
1636 type = gfc_character1_type_node;
1637 else
1638 type = gfc_typenode_for_spec (&sym->ts);
1640 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1641 byref = 1;
1642 else
1643 byref = 0;
1645 if (sym->attr.dimension)
1647 if (gfc_is_nodesc_array (sym))
1649 /* If this is a character argument of unknown length, just use the
1650 base type. */
1651 if (sym->ts.type != BT_CHARACTER
1652 || !(sym->attr.dummy || sym->attr.function)
1653 || sym->ts.cl->backend_decl)
1655 type = gfc_get_nodesc_array_type (type, sym->as,
1656 byref ? PACKED_FULL
1657 : PACKED_STATIC);
1658 byref = 0;
1661 else
1663 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
1664 if (sym->attr.pointer)
1665 akind = GFC_ARRAY_POINTER;
1666 else if (sym->attr.allocatable)
1667 akind = GFC_ARRAY_ALLOCATABLE;
1668 type = gfc_build_array_type (type, sym->as, akind);
1671 else
1673 if (sym->attr.allocatable || sym->attr.pointer)
1674 type = gfc_build_pointer_type (sym, type);
1675 if (sym->attr.pointer)
1676 GFC_POINTER_TYPE_P (type) = 1;
1679 /* We currently pass all parameters by reference.
1680 See f95_get_function_decl. For dummy function parameters return the
1681 function type. */
1682 if (byref)
1684 /* We must use pointer types for potentially absent variables. The
1685 optimizers assume a reference type argument is never NULL. */
1686 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1687 type = build_pointer_type (type);
1688 else
1689 type = build_reference_type (type);
1692 return (type);
1695 /* Layout and output debug info for a record type. */
1697 void
1698 gfc_finish_type (tree type)
1700 tree decl;
1702 decl = build_decl (TYPE_DECL, NULL_TREE, type);
1703 TYPE_STUB_DECL (type) = decl;
1704 layout_type (type);
1705 rest_of_type_compilation (type, 1);
1706 rest_of_decl_compilation (decl, 1, 0);
1709 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1710 or RECORD_TYPE pointed to by STYPE. The new field is chained
1711 to the fieldlist pointed to by FIELDLIST.
1713 Returns a pointer to the new field. */
1715 tree
1716 gfc_add_field_to_struct (tree *fieldlist, tree context,
1717 tree name, tree type)
1719 tree decl;
1721 decl = build_decl (FIELD_DECL, name, type);
1723 DECL_CONTEXT (decl) = context;
1724 DECL_INITIAL (decl) = 0;
1725 DECL_ALIGN (decl) = 0;
1726 DECL_USER_ALIGN (decl) = 0;
1727 TREE_CHAIN (decl) = NULL_TREE;
1728 *fieldlist = chainon (*fieldlist, decl);
1730 return decl;
1734 /* Copy the backend_decl and component backend_decls if
1735 the two derived type symbols are "equal", as described
1736 in 4.4.2 and resolved by gfc_compare_derived_types. */
1738 static int
1739 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to)
1741 gfc_component *to_cm;
1742 gfc_component *from_cm;
1744 if (from->backend_decl == NULL
1745 || !gfc_compare_derived_types (from, to))
1746 return 0;
1748 to->backend_decl = from->backend_decl;
1750 to_cm = to->components;
1751 from_cm = from->components;
1753 /* Copy the component declarations. If a component is itself
1754 a derived type, we need a copy of its component declarations.
1755 This is done by recursing into gfc_get_derived_type and
1756 ensures that the component's component declarations have
1757 been built. If it is a character, we need the character
1758 length, as well. */
1759 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1761 to_cm->backend_decl = from_cm->backend_decl;
1762 if (!from_cm->pointer && from_cm->ts.type == BT_DERIVED)
1763 gfc_get_derived_type (to_cm->ts.derived);
1765 else if (from_cm->ts.type == BT_CHARACTER)
1766 to_cm->ts.cl->backend_decl = from_cm->ts.cl->backend_decl;
1769 return 1;
1773 /* Build a tree node for a derived type. If there are equal
1774 derived types, with different local names, these are built
1775 at the same time. If an equal derived type has been built
1776 in a parent namespace, this is used. */
1778 static tree
1779 gfc_get_derived_type (gfc_symbol * derived)
1781 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1782 gfc_component *c;
1783 gfc_dt_list *dt;
1785 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1787 /* See if it's one of the iso_c_binding derived types. */
1788 if (derived->attr.is_iso_c == 1)
1790 if (derived->backend_decl)
1791 return derived->backend_decl;
1793 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1794 derived->backend_decl = ptr_type_node;
1795 else
1796 derived->backend_decl = pfunc_type_node;
1798 /* Create a backend_decl for the __c_ptr_c_address field. */
1799 derived->components->backend_decl =
1800 gfc_add_field_to_struct (&(derived->backend_decl->type.values),
1801 derived->backend_decl,
1802 get_identifier (derived->components->name),
1803 gfc_typenode_for_spec (
1804 &(derived->components->ts)));
1806 derived->ts.kind = gfc_index_integer_kind;
1807 derived->ts.type = BT_INTEGER;
1808 /* Set the f90_type to BT_VOID as a way to recognize something of type
1809 BT_INTEGER that needs to fit a void * for the purpose of the
1810 iso_c_binding derived types. */
1811 derived->ts.f90_type = BT_VOID;
1813 return derived->backend_decl;
1816 /* derived->backend_decl != 0 means we saw it before, but its
1817 components' backend_decl may have not been built. */
1818 if (derived->backend_decl)
1820 /* Its components' backend_decl have been built. */
1821 if (TYPE_FIELDS (derived->backend_decl))
1822 return derived->backend_decl;
1823 else
1824 typenode = derived->backend_decl;
1826 else
1829 /* We see this derived type first time, so build the type node. */
1830 typenode = make_node (RECORD_TYPE);
1831 TYPE_NAME (typenode) = get_identifier (derived->name);
1832 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
1833 derived->backend_decl = typenode;
1836 /* Go through the derived type components, building them as
1837 necessary. The reason for doing this now is that it is
1838 possible to recurse back to this derived type through a
1839 pointer component (PR24092). If this happens, the fields
1840 will be built and so we can return the type. */
1841 for (c = derived->components; c; c = c->next)
1843 if (c->ts.type != BT_DERIVED)
1844 continue;
1846 if (!c->pointer || c->ts.derived->backend_decl == NULL)
1847 c->ts.derived->backend_decl = gfc_get_derived_type (c->ts.derived);
1849 if (c->ts.derived && c->ts.derived->attr.is_iso_c)
1851 /* Need to copy the modified ts from the derived type. The
1852 typespec was modified because C_PTR/C_FUNPTR are translated
1853 into (void *) from derived types. */
1854 c->ts.type = c->ts.derived->ts.type;
1855 c->ts.kind = c->ts.derived->ts.kind;
1856 c->ts.f90_type = c->ts.derived->ts.f90_type;
1857 if (c->initializer)
1859 c->initializer->ts.type = c->ts.type;
1860 c->initializer->ts.kind = c->ts.kind;
1861 c->initializer->ts.f90_type = c->ts.f90_type;
1862 c->initializer->expr_type = EXPR_NULL;
1867 if (TYPE_FIELDS (derived->backend_decl))
1868 return derived->backend_decl;
1870 /* Build the type member list. Install the newly created RECORD_TYPE
1871 node as DECL_CONTEXT of each FIELD_DECL. */
1872 fieldlist = NULL_TREE;
1873 for (c = derived->components; c; c = c->next)
1875 if (c->ts.type == BT_DERIVED)
1876 field_type = c->ts.derived->backend_decl;
1877 else
1879 if (c->ts.type == BT_CHARACTER)
1881 /* Evaluate the string length. */
1882 gfc_conv_const_charlen (c->ts.cl);
1883 gcc_assert (c->ts.cl->backend_decl);
1886 field_type = gfc_typenode_for_spec (&c->ts);
1889 /* This returns an array descriptor type. Initialization may be
1890 required. */
1891 if (c->dimension)
1893 if (c->pointer || c->allocatable)
1895 enum gfc_array_kind akind;
1896 if (c->pointer)
1897 akind = GFC_ARRAY_POINTER;
1898 else
1899 akind = GFC_ARRAY_ALLOCATABLE;
1900 /* Pointers to arrays aren't actually pointer types. The
1901 descriptors are separate, but the data is common. */
1902 field_type = gfc_build_array_type (field_type, c->as, akind);
1904 else
1905 field_type = gfc_get_nodesc_array_type (field_type, c->as,
1906 PACKED_STATIC);
1908 else if (c->pointer)
1909 field_type = build_pointer_type (field_type);
1911 field = gfc_add_field_to_struct (&fieldlist, typenode,
1912 get_identifier (c->name),
1913 field_type);
1914 if (c->loc.lb)
1915 gfc_set_decl_location (field, &c->loc);
1916 else if (derived->declared_at.lb)
1917 gfc_set_decl_location (field, &derived->declared_at);
1919 DECL_PACKED (field) |= TYPE_PACKED (typenode);
1921 gcc_assert (field);
1922 if (!c->backend_decl)
1923 c->backend_decl = field;
1926 /* Now we have the final fieldlist. Record it, then lay out the
1927 derived type, including the fields. */
1928 TYPE_FIELDS (typenode) = fieldlist;
1930 gfc_finish_type (typenode);
1931 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
1933 derived->backend_decl = typenode;
1935 /* Add this backend_decl to all the other, equal derived types. */
1936 for (dt = gfc_derived_types; dt; dt = dt->next)
1937 copy_dt_decls_ifequal (derived, dt->derived);
1939 return derived->backend_decl;
1944 gfc_return_by_reference (gfc_symbol * sym)
1946 if (!sym->attr.function)
1947 return 0;
1949 if (sym->attr.dimension)
1950 return 1;
1952 if (sym->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
1953 return 1;
1955 /* Possibly return complex numbers by reference for g77 compatibility.
1956 We don't do this for calls to intrinsics (as the library uses the
1957 -fno-f2c calling convention), nor for calls to functions which always
1958 require an explicit interface, as no compatibility problems can
1959 arise there. */
1960 if (gfc_option.flag_f2c
1961 && sym->ts.type == BT_COMPLEX
1962 && !sym->attr.intrinsic && !sym->attr.always_explicit)
1963 return 1;
1965 return 0;
1968 static tree
1969 gfc_get_mixed_entry_union (gfc_namespace *ns)
1971 tree type;
1972 tree decl;
1973 tree fieldlist;
1974 char name[GFC_MAX_SYMBOL_LEN + 1];
1975 gfc_entry_list *el, *el2;
1977 gcc_assert (ns->proc_name->attr.mixed_entry_master);
1978 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
1980 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
1982 /* Build the type node. */
1983 type = make_node (UNION_TYPE);
1985 TYPE_NAME (type) = get_identifier (name);
1986 fieldlist = NULL;
1988 for (el = ns->entries; el; el = el->next)
1990 /* Search for duplicates. */
1991 for (el2 = ns->entries; el2 != el; el2 = el2->next)
1992 if (el2->sym->result == el->sym->result)
1993 break;
1995 if (el == el2)
1997 decl = build_decl (FIELD_DECL,
1998 get_identifier (el->sym->result->name),
1999 gfc_sym_type (el->sym->result));
2000 DECL_CONTEXT (decl) = type;
2001 fieldlist = chainon (fieldlist, decl);
2005 /* Finish off the type. */
2006 TYPE_FIELDS (type) = fieldlist;
2008 gfc_finish_type (type);
2009 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2010 return type;
2013 tree
2014 gfc_get_function_type (gfc_symbol * sym)
2016 tree type;
2017 tree typelist;
2018 gfc_formal_arglist *f;
2019 gfc_symbol *arg;
2020 int nstr;
2021 int alternate_return;
2023 /* Make sure this symbol is a function, a subroutine or the main
2024 program. */
2025 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2026 || sym->attr.flavor == FL_PROGRAM);
2028 if (sym->backend_decl)
2029 return TREE_TYPE (sym->backend_decl);
2031 nstr = 0;
2032 alternate_return = 0;
2033 typelist = NULL_TREE;
2035 if (sym->attr.entry_master)
2037 /* Additional parameter for selecting an entry point. */
2038 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2041 if (sym->result)
2042 arg = sym->result;
2043 else
2044 arg = sym;
2046 if (arg->ts.type == BT_CHARACTER)
2047 gfc_conv_const_charlen (arg->ts.cl);
2049 /* Some functions we use an extra parameter for the return value. */
2050 if (gfc_return_by_reference (sym))
2052 type = gfc_sym_type (arg);
2053 if (arg->ts.type == BT_COMPLEX
2054 || arg->attr.dimension
2055 || arg->ts.type == BT_CHARACTER)
2056 type = build_reference_type (type);
2058 typelist = gfc_chainon_list (typelist, type);
2059 if (arg->ts.type == BT_CHARACTER)
2060 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2063 /* Build the argument types for the function. */
2064 for (f = sym->formal; f; f = f->next)
2066 arg = f->sym;
2067 if (arg)
2069 /* Evaluate constant character lengths here so that they can be
2070 included in the type. */
2071 if (arg->ts.type == BT_CHARACTER)
2072 gfc_conv_const_charlen (arg->ts.cl);
2074 if (arg->attr.flavor == FL_PROCEDURE)
2076 type = gfc_get_function_type (arg);
2077 type = build_pointer_type (type);
2079 else
2080 type = gfc_sym_type (arg);
2082 /* Parameter Passing Convention
2084 We currently pass all parameters by reference.
2085 Parameters with INTENT(IN) could be passed by value.
2086 The problem arises if a function is called via an implicit
2087 prototype. In this situation the INTENT is not known.
2088 For this reason all parameters to global functions must be
2089 passed by reference. Passing by value would potentially
2090 generate bad code. Worse there would be no way of telling that
2091 this code was bad, except that it would give incorrect results.
2093 Contained procedures could pass by value as these are never
2094 used without an explicit interface, and cannot be passed as
2095 actual parameters for a dummy procedure. */
2096 if (arg->ts.type == BT_CHARACTER)
2097 nstr++;
2098 typelist = gfc_chainon_list (typelist, type);
2100 else
2102 if (sym->attr.subroutine)
2103 alternate_return = 1;
2107 /* Add hidden string length parameters. */
2108 while (nstr--)
2109 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2111 if (typelist)
2112 typelist = gfc_chainon_list (typelist, void_type_node);
2114 if (alternate_return)
2115 type = integer_type_node;
2116 else if (!sym->attr.function || gfc_return_by_reference (sym))
2117 type = void_type_node;
2118 else if (sym->attr.mixed_entry_master)
2119 type = gfc_get_mixed_entry_union (sym->ns);
2120 else if (gfc_option.flag_f2c
2121 && sym->ts.type == BT_REAL
2122 && sym->ts.kind == gfc_default_real_kind
2123 && !sym->attr.always_explicit)
2125 /* Special case: f2c calling conventions require that (scalar)
2126 default REAL functions return the C type double instead. f2c
2127 compatibility is only an issue with functions that don't
2128 require an explicit interface, as only these could be
2129 implemented in Fortran 77. */
2130 sym->ts.kind = gfc_default_double_kind;
2131 type = gfc_typenode_for_spec (&sym->ts);
2132 sym->ts.kind = gfc_default_real_kind;
2134 else
2135 type = gfc_sym_type (sym);
2137 type = build_function_type (type, typelist);
2139 return type;
2142 /* Language hooks for middle-end access to type nodes. */
2144 /* Return an integer type with BITS bits of precision,
2145 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2147 tree
2148 gfc_type_for_size (unsigned bits, int unsignedp)
2150 if (!unsignedp)
2152 int i;
2153 for (i = 0; i <= MAX_INT_KINDS; ++i)
2155 tree type = gfc_integer_types[i];
2156 if (type && bits == TYPE_PRECISION (type))
2157 return type;
2160 /* Handle TImode as a special case because it is used by some backends
2161 (eg. ARM) even though it is not available for normal use. */
2162 #if HOST_BITS_PER_WIDE_INT >= 64
2163 if (bits == TYPE_PRECISION (intTI_type_node))
2164 return intTI_type_node;
2165 #endif
2167 else
2169 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2170 return unsigned_intQI_type_node;
2171 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2172 return unsigned_intHI_type_node;
2173 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2174 return unsigned_intSI_type_node;
2175 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2176 return unsigned_intDI_type_node;
2177 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2178 return unsigned_intTI_type_node;
2181 return NULL_TREE;
2184 /* Return a data type that has machine mode MODE. If the mode is an
2185 integer, then UNSIGNEDP selects between signed and unsigned types. */
2187 tree
2188 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2190 int i;
2191 tree *base;
2193 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2194 base = gfc_real_types;
2195 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2196 base = gfc_complex_types;
2197 else if (SCALAR_INT_MODE_P (mode))
2198 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2199 else if (VECTOR_MODE_P (mode))
2201 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2202 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2203 if (inner_type != NULL_TREE)
2204 return build_vector_type_for_mode (inner_type, mode);
2205 return NULL_TREE;
2207 else
2208 return NULL_TREE;
2210 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2212 tree type = base[i];
2213 if (type && mode == TYPE_MODE (type))
2214 return type;
2217 return NULL_TREE;
2220 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2221 in that case. */
2223 bool
2224 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2226 int rank, dim;
2227 bool indirect = false;
2228 tree etype, ptype, field, t, base_decl;
2229 tree data_off, offset_off, dim_off, dim_size, elem_size;
2230 tree lower_suboff, upper_suboff, stride_suboff;
2232 if (! GFC_DESCRIPTOR_TYPE_P (type))
2234 if (! POINTER_TYPE_P (type))
2235 return false;
2236 type = TREE_TYPE (type);
2237 if (! GFC_DESCRIPTOR_TYPE_P (type))
2238 return false;
2239 indirect = true;
2242 rank = GFC_TYPE_ARRAY_RANK (type);
2243 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2244 return false;
2246 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2247 gcc_assert (POINTER_TYPE_P (etype));
2248 etype = TREE_TYPE (etype);
2249 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2250 etype = TREE_TYPE (etype);
2251 /* Can't handle variable sized elements yet. */
2252 if (int_size_in_bytes (etype) <= 0)
2253 return false;
2254 /* Nor non-constant lower bounds in assumed shape arrays. */
2255 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2257 for (dim = 0; dim < rank; dim++)
2258 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2259 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2260 return false;
2263 memset (info, '\0', sizeof (*info));
2264 info->ndimensions = rank;
2265 info->element_type = etype;
2266 ptype = build_pointer_type (gfc_array_index_type);
2267 if (indirect)
2269 info->base_decl = build_decl (VAR_DECL, NULL_TREE,
2270 build_pointer_type (ptype));
2271 base_decl = build1 (INDIRECT_REF, ptype, info->base_decl);
2273 else
2274 info->base_decl = base_decl = build_decl (VAR_DECL, NULL_TREE, ptype);
2276 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2277 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2278 data_off = byte_position (field);
2279 field = TREE_CHAIN (field);
2280 offset_off = byte_position (field);
2281 field = TREE_CHAIN (field);
2282 field = TREE_CHAIN (field);
2283 dim_off = byte_position (field);
2284 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2285 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2286 stride_suboff = byte_position (field);
2287 field = TREE_CHAIN (field);
2288 lower_suboff = byte_position (field);
2289 field = TREE_CHAIN (field);
2290 upper_suboff = byte_position (field);
2292 t = base_decl;
2293 if (!integer_zerop (data_off))
2294 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2295 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2296 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2297 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2298 info->allocated = build2 (NE_EXPR, boolean_type_node,
2299 info->data_location, null_pointer_node);
2300 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER)
2301 info->associated = build2 (NE_EXPR, boolean_type_node,
2302 info->data_location, null_pointer_node);
2304 for (dim = 0; dim < rank; dim++)
2306 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2307 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2308 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2309 info->dimen[dim].lower_bound = t;
2310 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2311 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2312 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2313 info->dimen[dim].upper_bound = t;
2314 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2316 /* Assumed shape arrays have known lower bounds. */
2317 info->dimen[dim].upper_bound
2318 = build2 (MINUS_EXPR, gfc_array_index_type,
2319 info->dimen[dim].upper_bound,
2320 info->dimen[dim].lower_bound);
2321 info->dimen[dim].lower_bound
2322 = fold_convert (gfc_array_index_type,
2323 GFC_TYPE_ARRAY_LBOUND (type, dim));
2324 info->dimen[dim].upper_bound
2325 = build2 (PLUS_EXPR, gfc_array_index_type,
2326 info->dimen[dim].lower_bound,
2327 info->dimen[dim].upper_bound);
2329 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2330 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2331 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2332 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2333 info->dimen[dim].stride = t;
2334 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2337 return true;
2340 #include "gt-fortran-trans-types.h"