1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
31 #include "insn-config.h"
35 #include "basic-block.h"
40 #include "tree-pass.h"
43 /* This pass does simple forward propagation and simplification when an
44 operand of an insn can only come from a single def. This pass uses
45 df.c, so it is global. However, we only do limited analysis of
46 available expressions.
48 1) The pass tries to propagate the source of the def into the use,
49 and checks if the result is independent of the substituted value.
50 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
51 zero, independent of the source register.
53 In particular, we propagate constants into the use site. Sometimes
54 RTL expansion did not put the constant in the same insn on purpose,
55 to satisfy a predicate, and the result will fail to be recognized;
56 but this happens rarely and in this case we can still create a
57 REG_EQUAL note. For multi-word operations, this
59 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
60 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
61 (set (subreg:SI (reg:DI 122) 0)
62 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
63 (set (subreg:SI (reg:DI 122) 4)
64 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66 can be simplified to the much simpler
68 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
69 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71 This particular propagation is also effective at putting together
72 complex addressing modes. We are more aggressive inside MEMs, in
73 that all definitions are propagated if the use is in a MEM; if the
74 result is a valid memory address we check address_cost to decide
75 whether the substitution is worthwhile.
77 2) The pass propagates register copies. This is not as effective as
78 the copy propagation done by CSE's canon_reg, which works by walking
79 the instruction chain, it can help the other transformations.
81 We should consider removing this optimization, and instead reorder the
82 RTL passes, because GCSE does this transformation too. With some luck,
83 the CSE pass at the end of rest_of_handle_gcse could also go away.
85 3) The pass looks for paradoxical subregs that are actually unnecessary.
88 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
89 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
90 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
91 (subreg:SI (reg:QI 121) 0)))
93 are very common on machines that can only do word-sized operations.
94 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
95 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
96 we can replace the paradoxical subreg with simply (reg:WIDE M). The
97 above will simplify this to
99 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
100 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
101 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103 where the first two insns are now dead. */
106 static int num_changes
;
109 DEF_VEC_ALLOC_P(df_ref
,heap
);
110 VEC(df_ref
,heap
) *use_def_ref
;
113 /* Return the only def in USE's use-def chain, or NULL if there is
114 more than one def in the chain. */
117 get_def_for_use (df_ref use
)
119 return VEC_index (df_ref
, use_def_ref
, DF_REF_ID (use
));
123 /* Return the only bit between FIRST and LAST that is set in B,
124 or -1 if there are zero or more than one such bits. */
127 bitmap_only_bit_between (const_bitmap b
, unsigned first
, unsigned last
)
135 bmp_iter_set_init (&bi
, b
, first
, &bit
);
136 if (bmp_iter_set (&bi
, &bit
) && bit
<= last
)
139 bmp_iter_next (&bi
, &bit2
);
140 if (!bmp_iter_set (&bi
, &bit2
) || bit2
> last
)
147 /* Fill the use_def_ref vector with values for the uses in USE_REC,
148 taking reaching definitions info from LOCAL_RD. TOP_FLAG says
149 which artificials uses should be used, when USE_REC is an
150 artificial use vector. */
153 process_uses (bitmap local_rd
, df_ref
*use_rec
, int top_flag
)
156 while ((use
= *use_rec
++) != NULL
)
157 if (top_flag
== (DF_REF_FLAGS (use
) & DF_REF_AT_TOP
))
159 unsigned int uregno
= DF_REF_REGNO (use
);
160 unsigned int first
= DF_DEFS_BEGIN (uregno
);
161 unsigned int last
= first
+ DF_DEFS_COUNT (uregno
) - 1;
162 int defno
= bitmap_only_bit_between (local_rd
, first
, last
);
163 df_ref def
= (defno
== -1) ? NULL
: DF_DEFS_GET (defno
);
165 VEC_replace (df_ref
, use_def_ref
, DF_REF_ID (use
), def
);
170 /* Do dataflow analysis and use reaching definitions to build
171 a vector holding the reaching definitions of uses that have a
175 build_single_def_use_links (void)
178 bitmap local_rd
= BITMAP_ALLOC (NULL
);
180 /* We use reaching definitions to compute our restricted use-def chains. */
181 df_set_flags (DF_EQ_NOTES
);
182 df_rd_add_problem ();
184 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES
);
186 use_def_ref
= VEC_alloc (df_ref
, heap
, DF_USES_TABLE_SIZE ());
187 VEC_safe_grow (df_ref
, heap
, use_def_ref
, DF_USES_TABLE_SIZE ());
191 int bb_index
= bb
->index
;
192 struct df_rd_bb_info
*bb_info
= df_rd_get_bb_info (bb_index
);
195 bitmap_copy (local_rd
, bb_info
->in
);
196 process_uses (local_rd
, df_get_artificial_uses (bb_index
), DF_REF_AT_TOP
);
198 df_rd_simulate_artificial_defs_at_top (bb
, local_rd
);
199 FOR_BB_INSNS (bb
, insn
)
202 unsigned int uid
= INSN_UID (insn
);
203 process_uses (local_rd
, DF_INSN_UID_USES (uid
), 0);
204 process_uses (local_rd
, DF_INSN_UID_EQ_USES (uid
), 0);
205 df_rd_simulate_one_insn (bb
, insn
, local_rd
);
208 process_uses (local_rd
, df_get_artificial_uses (bb_index
), 0);
211 BITMAP_FREE (local_rd
);
214 /* Do not try to replace constant addresses or addresses of local and
215 argument slots. These MEM expressions are made only once and inserted
216 in many instructions, as well as being used to control symbol table
217 output. It is not safe to clobber them.
219 There are some uncommon cases where the address is already in a register
220 for some reason, but we cannot take advantage of that because we have
221 no easy way to unshare the MEM. In addition, looking up all stack
222 addresses is costly. */
225 can_simplify_addr (rtx addr
)
229 if (CONSTANT_ADDRESS_P (addr
))
232 if (GET_CODE (addr
) == PLUS
)
233 reg
= XEXP (addr
, 0);
238 || (REGNO (reg
) != FRAME_POINTER_REGNUM
239 && REGNO (reg
) != HARD_FRAME_POINTER_REGNUM
240 && REGNO (reg
) != ARG_POINTER_REGNUM
));
243 /* Returns a canonical version of X for the address, from the point of view,
244 that all multiplications are represented as MULT instead of the multiply
245 by a power of 2 being represented as ASHIFT.
247 Every ASHIFT we find has been made by simplify_gen_binary and was not
248 there before, so it is not shared. So we can do this in place. */
251 canonicalize_address (rtx x
)
254 switch (GET_CODE (x
))
257 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
258 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
))
259 && INTVAL (XEXP (x
, 1)) >= 0)
261 HOST_WIDE_INT shift
= INTVAL (XEXP (x
, 1));
263 XEXP (x
, 1) = gen_int_mode ((HOST_WIDE_INT
) 1 << shift
,
271 if (GET_CODE (XEXP (x
, 0)) == PLUS
272 || GET_CODE (XEXP (x
, 0)) == ASHIFT
273 || GET_CODE (XEXP (x
, 0)) == CONST
)
274 canonicalize_address (XEXP (x
, 0));
288 /* OLD is a memory address. Return whether it is good to use NEW instead,
289 for a memory access in the given MODE. */
292 should_replace_address (rtx old_rtx
, rtx new_rtx
, enum machine_mode mode
,
297 if (rtx_equal_p (old_rtx
, new_rtx
) || !memory_address_p (mode
, new_rtx
))
300 /* Copy propagation is always ok. */
301 if (REG_P (old_rtx
) && REG_P (new_rtx
))
304 /* Prefer the new address if it is less expensive. */
305 gain
= address_cost (old_rtx
, mode
, speed
) - address_cost (new_rtx
, mode
, speed
);
307 /* If the addresses have equivalent cost, prefer the new address
308 if it has the highest `rtx_cost'. That has the potential of
309 eliminating the most insns without additional costs, and it
310 is the same that cse.c used to do. */
312 gain
= rtx_cost (new_rtx
, SET
, speed
) - rtx_cost (old_rtx
, SET
, speed
);
318 /* Flags for the last parameter of propagate_rtx_1. */
321 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
322 if it is false, propagate_rtx_1 returns false if, for at least
323 one occurrence OLD, it failed to collapse the result to a constant.
324 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
325 collapse to zero if replacing (reg:M B) with (reg:M A).
327 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
328 propagate_rtx_1 just tries to make cheaper and valid memory
332 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
333 outside memory addresses. This is needed because propagate_rtx_1 does
334 not do any analysis on memory; thus it is very conservative and in general
335 it will fail if non-read-only MEMs are found in the source expression.
337 PR_HANDLE_MEM is set when the source of the propagation was not
338 another MEM. Then, it is safe not to treat non-read-only MEMs as
339 ``opaque'' objects. */
342 /* Set when costs should be optimized for speed. */
343 PR_OPTIMIZE_FOR_SPEED
= 4
347 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
348 resulting expression. Replace *PX with a new RTL expression if an
349 occurrence of OLD was found.
351 This is only a wrapper around simplify-rtx.c: do not add any pattern
352 matching code here. (The sole exception is the handling of LO_SUM, but
353 that is because there is no simplify_gen_* function for LO_SUM). */
356 propagate_rtx_1 (rtx
*px
, rtx old_rtx
, rtx new_rtx
, int flags
)
358 rtx x
= *px
, tem
= NULL_RTX
, op0
, op1
, op2
;
359 enum rtx_code code
= GET_CODE (x
);
360 enum machine_mode mode
= GET_MODE (x
);
361 enum machine_mode op_mode
;
362 bool can_appear
= (flags
& PR_CAN_APPEAR
) != 0;
363 bool valid_ops
= true;
365 if (!(flags
& PR_HANDLE_MEM
) && MEM_P (x
) && !MEM_READONLY_P (x
))
367 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
368 they have side effects or not). */
369 *px
= (side_effects_p (x
)
370 ? gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
)
371 : gen_rtx_SCRATCH (GET_MODE (x
)));
375 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
376 address, and we are *not* inside one. */
383 /* If this is an expression, try recursive substitution. */
384 switch (GET_RTX_CLASS (code
))
388 op_mode
= GET_MODE (op0
);
389 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
390 if (op0
== XEXP (x
, 0))
392 tem
= simplify_gen_unary (code
, mode
, op0
, op_mode
);
399 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
400 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
401 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
403 tem
= simplify_gen_binary (code
, mode
, op0
, op1
);
407 case RTX_COMM_COMPARE
:
410 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
411 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
412 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
413 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
415 tem
= simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
419 case RTX_BITFIELD_OPS
:
423 op_mode
= GET_MODE (op0
);
424 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
425 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
426 valid_ops
&= propagate_rtx_1 (&op2
, old_rtx
, new_rtx
, flags
);
427 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
429 if (op_mode
== VOIDmode
)
430 op_mode
= GET_MODE (op0
);
431 tem
= simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
435 /* The only case we try to handle is a SUBREG. */
439 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
440 if (op0
== XEXP (x
, 0))
442 tem
= simplify_gen_subreg (mode
, op0
, GET_MODE (SUBREG_REG (x
)),
448 if (code
== MEM
&& x
!= new_rtx
)
453 /* There are some addresses that we cannot work on. */
454 if (!can_simplify_addr (op0
))
457 op0
= new_op0
= targetm
.delegitimize_address (op0
);
458 valid_ops
&= propagate_rtx_1 (&new_op0
, old_rtx
, new_rtx
,
459 flags
| PR_CAN_APPEAR
);
461 /* Dismiss transformation that we do not want to carry on. */
464 || !(GET_MODE (new_op0
) == GET_MODE (op0
)
465 || GET_MODE (new_op0
) == VOIDmode
))
468 canonicalize_address (new_op0
);
470 /* Copy propagations are always ok. Otherwise check the costs. */
471 if (!(REG_P (old_rtx
) && REG_P (new_rtx
))
472 && !should_replace_address (op0
, new_op0
, GET_MODE (x
),
473 flags
& PR_OPTIMIZE_FOR_SPEED
))
476 tem
= replace_equiv_address_nv (x
, new_op0
);
479 else if (code
== LO_SUM
)
484 /* The only simplification we do attempts to remove references to op0
485 or make it constant -- in both cases, op0's invalidity will not
486 make the result invalid. */
487 propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
| PR_CAN_APPEAR
);
488 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
489 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
492 /* (lo_sum (high x) x) -> x */
493 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
496 tem
= gen_rtx_LO_SUM (mode
, op0
, op1
);
498 /* OP1 is likely not a legitimate address, otherwise there would have
499 been no LO_SUM. We want it to disappear if it is invalid, return
500 false in that case. */
501 return memory_address_p (mode
, tem
);
504 else if (code
== REG
)
506 if (rtx_equal_p (x
, old_rtx
))
518 /* No change, no trouble. */
524 /* The replacement we made so far is valid, if all of the recursive
525 replacements were valid, or we could simplify everything to
527 return valid_ops
|| can_appear
|| CONSTANT_P (tem
);
531 /* for_each_rtx traversal function that returns 1 if BODY points to
532 a non-constant mem. */
535 varying_mem_p (rtx
*body
, void *data ATTRIBUTE_UNUSED
)
538 return MEM_P (x
) && !MEM_READONLY_P (x
);
542 /* Replace all occurrences of OLD in X with NEW and try to simplify the
543 resulting expression (in mode MODE). Return a new expression if it is
544 a constant, otherwise X.
546 Simplifications where occurrences of NEW collapse to a constant are always
547 accepted. All simplifications are accepted if NEW is a pseudo too.
548 Otherwise, we accept simplifications that have a lower or equal cost. */
551 propagate_rtx (rtx x
, enum machine_mode mode
, rtx old_rtx
, rtx new_rtx
,
558 if (REG_P (new_rtx
) && REGNO (new_rtx
) < FIRST_PSEUDO_REGISTER
)
562 if (REG_P (new_rtx
) || CONSTANT_P (new_rtx
))
563 flags
|= PR_CAN_APPEAR
;
564 if (!for_each_rtx (&new_rtx
, varying_mem_p
, NULL
))
565 flags
|= PR_HANDLE_MEM
;
568 flags
|= PR_OPTIMIZE_FOR_SPEED
;
571 collapsed
= propagate_rtx_1 (&tem
, old_rtx
, copy_rtx (new_rtx
), flags
);
572 if (tem
== x
|| !collapsed
)
575 /* gen_lowpart_common will not be able to process VOIDmode entities other
577 if (GET_MODE (tem
) == VOIDmode
&& GET_CODE (tem
) != CONST_INT
)
580 if (GET_MODE (tem
) == VOIDmode
)
581 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, tem
);
583 gcc_assert (GET_MODE (tem
) == mode
);
591 /* Return true if the register from reference REF is killed
592 between FROM to (but not including) TO. */
595 local_ref_killed_between_p (df_ref ref
, rtx from
, rtx to
)
599 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
605 for (def_rec
= DF_INSN_DEFS (insn
); *def_rec
; def_rec
++)
607 df_ref def
= *def_rec
;
608 if (DF_REF_REGNO (ref
) == DF_REF_REGNO (def
))
616 /* Check if the given DEF is available in INSN. This would require full
617 computation of available expressions; we check only restricted conditions:
618 - if DEF is the sole definition of its register, go ahead;
619 - in the same basic block, we check for no definitions killing the
620 definition of DEF_INSN;
621 - if USE's basic block has DEF's basic block as the sole predecessor,
622 we check if the definition is killed after DEF_INSN or before
623 TARGET_INSN insn, in their respective basic blocks. */
625 use_killed_between (df_ref use
, rtx def_insn
, rtx target_insn
)
627 basic_block def_bb
= BLOCK_FOR_INSN (def_insn
);
628 basic_block target_bb
= BLOCK_FOR_INSN (target_insn
);
632 /* In some obscure situations we can have a def reaching a use
633 that is _before_ the def. In other words the def does not
634 dominate the use even though the use and def are in the same
635 basic block. This can happen when a register may be used
636 uninitialized in a loop. In such cases, we must assume that
637 DEF is not available. */
638 if (def_bb
== target_bb
639 ? DF_INSN_LUID (def_insn
) >= DF_INSN_LUID (target_insn
)
640 : !dominated_by_p (CDI_DOMINATORS
, target_bb
, def_bb
))
643 /* Check if the reg in USE has only one definition. We already
644 know that this definition reaches use, or we wouldn't be here.
645 However, this is invalid for hard registers because if they are
646 live at the beginning of the function it does not mean that we
647 have an uninitialized access. */
648 regno
= DF_REF_REGNO (use
);
649 def
= DF_REG_DEF_CHAIN (regno
);
651 && DF_REF_NEXT_REG (def
) == NULL
652 && regno
>= FIRST_PSEUDO_REGISTER
)
655 /* Check locally if we are in the same basic block. */
656 if (def_bb
== target_bb
)
657 return local_ref_killed_between_p (use
, def_insn
, target_insn
);
659 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
660 if (single_pred_p (target_bb
)
661 && single_pred (target_bb
) == def_bb
)
665 /* See if USE is killed between DEF_INSN and the last insn in the
666 basic block containing DEF_INSN. */
667 x
= df_bb_regno_last_def_find (def_bb
, regno
);
668 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) >= DF_INSN_LUID (def_insn
))
671 /* See if USE is killed between TARGET_INSN and the first insn in the
672 basic block containing TARGET_INSN. */
673 x
= df_bb_regno_first_def_find (target_bb
, regno
);
674 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) < DF_INSN_LUID (target_insn
))
680 /* Otherwise assume the worst case. */
685 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
686 would require full computation of available expressions;
687 we check only restricted conditions, see use_killed_between. */
689 all_uses_available_at (rtx def_insn
, rtx target_insn
)
692 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
693 rtx def_set
= single_set (def_insn
);
695 gcc_assert (def_set
);
697 /* If target_insn comes right after def_insn, which is very common
698 for addresses, we can use a quicker test. */
699 if (NEXT_INSN (def_insn
) == target_insn
700 && REG_P (SET_DEST (def_set
)))
702 rtx def_reg
= SET_DEST (def_set
);
704 /* If the insn uses the reg that it defines, the substitution is
706 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
708 df_ref use
= *use_rec
;
709 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
712 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
714 df_ref use
= *use_rec
;
715 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
721 /* Look at all the uses of DEF_INSN, and see if they are not
722 killed between DEF_INSN and TARGET_INSN. */
723 for (use_rec
= DF_INSN_INFO_USES (insn_info
); *use_rec
; use_rec
++)
725 df_ref use
= *use_rec
;
726 if (use_killed_between (use
, def_insn
, target_insn
))
729 for (use_rec
= DF_INSN_INFO_EQ_USES (insn_info
); *use_rec
; use_rec
++)
731 df_ref use
= *use_rec
;
732 if (use_killed_between (use
, def_insn
, target_insn
))
741 struct find_occurrence_data
747 /* Callback for for_each_rtx, used in find_occurrence.
748 See if PX is the rtx we have to find. Return 1 to stop for_each_rtx
749 if successful, or 0 to continue traversing otherwise. */
752 find_occurrence_callback (rtx
*px
, void *data
)
754 struct find_occurrence_data
*fod
= (struct find_occurrence_data
*) data
;
756 rtx find
= fod
->find
;
767 /* Return a pointer to one of the occurrences of register FIND in *PX. */
770 find_occurrence (rtx
*px
, rtx find
)
772 struct find_occurrence_data data
;
774 gcc_assert (REG_P (find
)
775 || (GET_CODE (find
) == SUBREG
776 && REG_P (SUBREG_REG (find
))));
780 for_each_rtx (px
, find_occurrence_callback
, &data
);
785 /* Inside INSN, the expression rooted at *LOC has been changed, moving some
786 uses from USE_VEC. Find those that are present, and create new items
787 in the data flow object of the pass. Mark any new uses as having the
790 update_df (rtx insn
, rtx
*loc
, df_ref
*use_rec
, enum df_ref_type type
,
793 bool changed
= false;
795 /* Add a use for the registers that were propagated. */
798 df_ref use
= *use_rec
;
799 df_ref orig_use
= use
, new_use
;
802 enum machine_mode mode
= VOIDmode
;
803 rtx
*new_loc
= find_occurrence (loc
, DF_REF_REG (orig_use
));
809 if (DF_REF_FLAGS_IS_SET (orig_use
, DF_REF_SIGN_EXTRACT
| DF_REF_ZERO_EXTRACT
))
811 width
= DF_REF_EXTRACT_WIDTH (orig_use
);
812 offset
= DF_REF_EXTRACT_OFFSET (orig_use
);
813 mode
= DF_REF_EXTRACT_MODE (orig_use
);
816 /* Add a new insn use. Use the original type, because it says if the
817 use was within a MEM. */
818 new_use
= df_ref_create (DF_REF_REG (orig_use
), new_loc
,
819 insn
, BLOCK_FOR_INSN (insn
),
820 type
, DF_REF_FLAGS (orig_use
) | new_flags
,
821 width
, offset
, mode
);
823 /* Set up the use-def chain. */
824 gcc_assert (DF_REF_ID (new_use
) == (int) VEC_length (df_ref
, use_def_ref
));
825 VEC_safe_push (df_ref
, heap
, use_def_ref
, get_def_for_use (orig_use
));
829 df_insn_rescan (insn
);
833 /* Try substituting NEW into LOC, which originated from forward propagation
834 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
835 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
836 new insn is not recognized. Return whether the substitution was
840 try_fwprop_subst (df_ref use
, rtx
*loc
, rtx new_rtx
, rtx def_insn
, bool set_reg_equal
)
842 rtx insn
= DF_REF_INSN (use
);
843 enum df_ref_type type
= DF_REF_TYPE (use
);
844 int flags
= DF_REF_FLAGS (use
);
845 rtx set
= single_set (insn
);
846 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
847 int old_cost
= rtx_cost (SET_SRC (set
), SET
, speed
);
852 fprintf (dump_file
, "\nIn insn %d, replacing\n ", INSN_UID (insn
));
853 print_inline_rtx (dump_file
, *loc
, 2);
854 fprintf (dump_file
, "\n with ");
855 print_inline_rtx (dump_file
, new_rtx
, 2);
856 fprintf (dump_file
, "\n");
859 validate_unshare_change (insn
, loc
, new_rtx
, true);
860 if (!verify_changes (0))
863 fprintf (dump_file
, "Changes to insn %d not recognized\n",
868 else if (DF_REF_TYPE (use
) == DF_REF_REG_USE
869 && rtx_cost (SET_SRC (set
), SET
, speed
) > old_cost
)
872 fprintf (dump_file
, "Changes to insn %d not profitable\n",
880 fprintf (dump_file
, "Changed insn %d\n", INSN_UID (insn
));
886 confirm_change_group ();
890 if (!CONSTANT_P (new_rtx
))
892 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
893 update_df (insn
, loc
, DF_INSN_INFO_USES (insn_info
), type
, flags
);
894 update_df (insn
, loc
, DF_INSN_INFO_EQ_USES (insn_info
), type
, flags
);
901 /* Can also record a simplified value in a REG_EQUAL note,
902 making a new one if one does not already exist. */
906 fprintf (dump_file
, " Setting REG_EQUAL note\n");
908 set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (new_rtx
));
910 /* ??? Is this still necessary if we add the note through
911 set_unique_reg_note? */
912 if (!CONSTANT_P (new_rtx
))
914 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
915 update_df (insn
, loc
, DF_INSN_INFO_USES (insn_info
),
916 type
, DF_REF_IN_NOTE
);
917 update_df (insn
, loc
, DF_INSN_INFO_EQ_USES (insn_info
),
918 type
, DF_REF_IN_NOTE
);
927 /* If USE is a paradoxical subreg, see if it can be replaced by a pseudo. */
930 forward_propagate_subreg (df_ref use
, rtx def_insn
, rtx def_set
)
932 rtx use_reg
= DF_REF_REG (use
);
935 /* Only consider paradoxical subregs... */
936 enum machine_mode use_mode
= GET_MODE (use_reg
);
937 if (GET_CODE (use_reg
) != SUBREG
938 || !REG_P (SET_DEST (def_set
))
939 || GET_MODE_SIZE (use_mode
)
940 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg
))))
943 /* If this is a paradoxical SUBREG, we have no idea what value the
944 extra bits would have. However, if the operand is equivalent to
945 a SUBREG whose operand is the same as our mode, and all the modes
946 are within a word, we can just use the inner operand because
947 these SUBREGs just say how to treat the register. */
948 use_insn
= DF_REF_INSN (use
);
949 src
= SET_SRC (def_set
);
950 if (GET_CODE (src
) == SUBREG
951 && REG_P (SUBREG_REG (src
))
952 && GET_MODE (SUBREG_REG (src
)) == use_mode
953 && subreg_lowpart_p (src
)
954 && all_uses_available_at (def_insn
, use_insn
))
955 return try_fwprop_subst (use
, DF_REF_LOC (use
), SUBREG_REG (src
),
961 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
964 forward_propagate_asm (df_ref use
, rtx def_insn
, rtx def_set
, rtx reg
)
966 rtx use_insn
= DF_REF_INSN (use
), src
, use_pat
, asm_operands
, new_rtx
, *loc
;
970 gcc_assert ((DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
) == 0);
972 src
= SET_SRC (def_set
);
973 use_pat
= PATTERN (use_insn
);
975 /* In __asm don't replace if src might need more registers than
976 reg, as that could increase register pressure on the __asm. */
977 use_vec
= DF_INSN_USES (def_insn
);
978 if (use_vec
[0] && use_vec
[1])
981 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
982 asm_operands
= NULL_RTX
;
983 switch (GET_CODE (use_pat
))
986 asm_operands
= use_pat
;
989 if (MEM_P (SET_DEST (use_pat
)))
991 loc
= &SET_DEST (use_pat
);
992 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
994 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
996 asm_operands
= SET_SRC (use_pat
);
999 for (i
= 0; i
< XVECLEN (use_pat
, 0); i
++)
1000 if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == SET
)
1002 if (MEM_P (SET_DEST (XVECEXP (use_pat
, 0, i
))))
1004 loc
= &SET_DEST (XVECEXP (use_pat
, 0, i
));
1005 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
,
1008 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1010 asm_operands
= SET_SRC (XVECEXP (use_pat
, 0, i
));
1012 else if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == ASM_OPERANDS
)
1013 asm_operands
= XVECEXP (use_pat
, 0, i
);
1019 gcc_assert (asm_operands
&& GET_CODE (asm_operands
) == ASM_OPERANDS
);
1020 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (asm_operands
); i
++)
1022 loc
= &ASM_OPERANDS_INPUT (asm_operands
, i
);
1023 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1025 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1028 if (num_changes_pending () == 0 || !apply_change_group ())
1035 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1039 forward_propagate_and_simplify (df_ref use
, rtx def_insn
, rtx def_set
)
1041 rtx use_insn
= DF_REF_INSN (use
);
1042 rtx use_set
= single_set (use_insn
);
1043 rtx src
, reg
, new_rtx
, *loc
;
1045 enum machine_mode mode
;
1048 if (INSN_CODE (use_insn
) < 0)
1049 asm_use
= asm_noperands (PATTERN (use_insn
));
1051 if (!use_set
&& asm_use
< 0)
1054 /* Do not propagate into PC, CC0, etc. */
1055 if (use_set
&& GET_MODE (SET_DEST (use_set
)) == VOIDmode
)
1058 /* If def and use are subreg, check if they match. */
1059 reg
= DF_REF_REG (use
);
1060 if (GET_CODE (reg
) == SUBREG
1061 && GET_CODE (SET_DEST (def_set
)) == SUBREG
1062 && (SUBREG_BYTE (SET_DEST (def_set
)) != SUBREG_BYTE (reg
)
1063 || GET_MODE (SET_DEST (def_set
)) != GET_MODE (reg
)))
1066 /* Check if the def had a subreg, but the use has the whole reg. */
1067 if (REG_P (reg
) && GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1070 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1071 previous case, the optimization is possible and often useful indeed. */
1072 if (GET_CODE (reg
) == SUBREG
&& REG_P (SET_DEST (def_set
)))
1073 reg
= SUBREG_REG (reg
);
1075 /* Check if the substitution is valid (last, because it's the most
1076 expensive check!). */
1077 src
= SET_SRC (def_set
);
1078 if (!CONSTANT_P (src
) && !all_uses_available_at (def_insn
, use_insn
))
1081 /* Check if the def is loading something from the constant pool; in this
1082 case we would undo optimization such as compress_float_constant.
1083 Still, we can set a REG_EQUAL note. */
1084 if (MEM_P (src
) && MEM_READONLY_P (src
))
1086 rtx x
= avoid_constant_pool_reference (src
);
1087 if (x
!= src
&& use_set
)
1089 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1090 rtx old_rtx
= note
? XEXP (note
, 0) : SET_SRC (use_set
);
1091 rtx new_rtx
= simplify_replace_rtx (old_rtx
, src
, x
);
1092 if (old_rtx
!= new_rtx
)
1093 set_unique_reg_note (use_insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1099 return forward_propagate_asm (use
, def_insn
, def_set
, reg
);
1101 /* Else try simplifying. */
1103 if (DF_REF_TYPE (use
) == DF_REF_REG_MEM_STORE
)
1105 loc
= &SET_DEST (use_set
);
1106 set_reg_equal
= false;
1110 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1111 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1112 loc
= &XEXP (note
, 0);
1114 loc
= &SET_SRC (use_set
);
1116 /* Do not replace an existing REG_EQUAL note if the insn is not
1117 recognized. Either we're already replacing in the note, or
1118 we'll separately try plugging the definition in the note and
1120 set_reg_equal
= (note
== NULL_RTX
);
1123 if (GET_MODE (*loc
) == VOIDmode
)
1124 mode
= GET_MODE (SET_DEST (use_set
));
1126 mode
= GET_MODE (*loc
);
1128 new_rtx
= propagate_rtx (*loc
, mode
, reg
, src
,
1129 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
)));
1134 return try_fwprop_subst (use
, loc
, new_rtx
, def_insn
, set_reg_equal
);
1138 /* Given a use USE of an insn, if it has a single reaching
1139 definition, try to forward propagate it into that insn. */
1142 forward_propagate_into (df_ref use
)
1145 rtx def_insn
, def_set
, use_insn
;
1148 if (DF_REF_FLAGS (use
) & DF_REF_READ_WRITE
)
1150 if (DF_REF_IS_ARTIFICIAL (use
))
1153 /* Only consider uses that have a single definition. */
1154 def
= get_def_for_use (use
);
1157 if (DF_REF_FLAGS (def
) & DF_REF_READ_WRITE
)
1159 if (DF_REF_IS_ARTIFICIAL (def
))
1162 /* Do not propagate loop invariant definitions inside the loop. */
1163 if (DF_REF_BB (def
)->loop_father
!= DF_REF_BB (use
)->loop_father
)
1166 /* Check if the use is still present in the insn! */
1167 use_insn
= DF_REF_INSN (use
);
1168 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1169 parent
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1171 parent
= PATTERN (use_insn
);
1173 if (!reg_mentioned_p (DF_REF_REG (use
), parent
))
1176 def_insn
= DF_REF_INSN (def
);
1177 if (multiple_sets (def_insn
))
1179 def_set
= single_set (def_insn
);
1183 /* Only try one kind of propagation. If two are possible, we'll
1184 do it on the following iterations. */
1185 if (!forward_propagate_and_simplify (use
, def_insn
, def_set
))
1186 forward_propagate_subreg (use
, def_insn
, def_set
);
1194 calculate_dominance_info (CDI_DOMINATORS
);
1196 /* We do not always want to propagate into loops, so we have to find
1197 loops and be careful about them. But we have to call flow_loops_find
1198 before df_analyze, because flow_loops_find may introduce new jump
1199 insns (sadly) if we are not working in cfglayout mode. */
1200 loop_optimizer_init (0);
1202 build_single_def_use_links ();
1203 df_set_flags (DF_DEFER_INSN_RESCAN
);
1209 loop_optimizer_finalize ();
1211 VEC_free (df_ref
, heap
, use_def_ref
);
1212 free_dominance_info (CDI_DOMINATORS
);
1214 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1218 "\nNumber of successful forward propagations: %d\n\n",
1220 df_remove_problem (df_chain
);
1225 /* Main entry point. */
1230 return optimize
> 0 && flag_forward_propagate
;
1240 /* Go through all the uses. update_df will create new ones at the
1241 end, and we'll go through them as well.
1243 Do not forward propagate addresses into loops until after unrolling.
1244 CSE did so because it was able to fix its own mess, but we are not. */
1246 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1248 df_ref use
= DF_USES_GET (i
);
1250 if (DF_REF_TYPE (use
) == DF_REF_REG_USE
1251 || DF_REF_BB (use
)->loop_father
== NULL
1252 /* The outer most loop is not really a loop. */
1253 || loop_outer (DF_REF_BB (use
)->loop_father
) == NULL
)
1254 forward_propagate_into (use
);
1261 struct rtl_opt_pass pass_rtl_fwprop
=
1265 "fwprop1", /* name */
1266 gate_fwprop
, /* gate */
1267 fwprop
, /* execute */
1270 0, /* static_pass_number */
1271 TV_FWPROP
, /* tv_id */
1272 0, /* properties_required */
1273 0, /* properties_provided */
1274 0, /* properties_destroyed */
1275 0, /* todo_flags_start */
1276 TODO_df_finish
| TODO_verify_rtl_sharing
|
1277 TODO_dump_func
/* todo_flags_finish */
1287 /* Go through all the uses. update_df will create new ones at the
1288 end, and we'll go through them as well. */
1289 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1291 df_ref use
= DF_USES_GET (i
);
1293 if (DF_REF_TYPE (use
) != DF_REF_REG_USE
1294 && DF_REF_BB (use
)->loop_father
!= NULL
1295 /* The outer most loop is not really a loop. */
1296 && loop_outer (DF_REF_BB (use
)->loop_father
) != NULL
)
1297 forward_propagate_into (use
);
1305 struct rtl_opt_pass pass_rtl_fwprop_addr
=
1309 "fwprop2", /* name */
1310 gate_fwprop
, /* gate */
1311 fwprop_addr
, /* execute */
1314 0, /* static_pass_number */
1315 TV_FWPROP
, /* tv_id */
1316 0, /* properties_required */
1317 0, /* properties_provided */
1318 0, /* properties_destroyed */
1319 0, /* todo_flags_start */
1320 TODO_df_finish
| TODO_verify_rtl_sharing
|
1321 TODO_dump_func
/* todo_flags_finish */