Relax constraints on Machine_Attribute argument types:
[official-gcc.git] / gcc / cfgloopmanip.c
blob28cfa3cfc9aabb33e565d618f9407ed52401e6c4
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software
3 Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "cfghooks.h"
32 #include "output.h"
33 #include "tree-flow.h"
35 static void duplicate_subloops (struct loop *, struct loop *);
36 static void copy_loops_to (struct loop **, int,
37 struct loop *);
38 static void loop_redirect_edge (edge, basic_block);
39 static void remove_bbs (basic_block *, int);
40 static bool rpe_enum_p (const_basic_block, const void *);
41 static int find_path (edge, basic_block **);
42 static void fix_loop_placements (struct loop *, bool *);
43 static bool fix_bb_placement (basic_block);
44 static void fix_bb_placements (basic_block, bool *);
45 static void unloop (struct loop *, bool *);
47 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
49 /* Checks whether basic block BB is dominated by DATA. */
50 static bool
51 rpe_enum_p (const_basic_block bb, const void *data)
53 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
56 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
58 static void
59 remove_bbs (basic_block *bbs, int nbbs)
61 int i;
63 for (i = 0; i < nbbs; i++)
64 delete_basic_block (bbs[i]);
67 /* Find path -- i.e. the basic blocks dominated by edge E and put them
68 into array BBS, that will be allocated large enough to contain them.
69 E->dest must have exactly one predecessor for this to work (it is
70 easy to achieve and we do not put it here because we do not want to
71 alter anything by this function). The number of basic blocks in the
72 path is returned. */
73 static int
74 find_path (edge e, basic_block **bbs)
76 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
78 /* Find bbs in the path. */
79 *bbs = XCNEWVEC (basic_block, n_basic_blocks);
80 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
81 n_basic_blocks, e->dest);
84 /* Fix placement of basic block BB inside loop hierarchy --
85 Let L be a loop to that BB belongs. Then every successor of BB must either
86 1) belong to some superloop of loop L, or
87 2) be a header of loop K such that K->outer is superloop of L
88 Returns true if we had to move BB into other loop to enforce this condition,
89 false if the placement of BB was already correct (provided that placements
90 of its successors are correct). */
91 static bool
92 fix_bb_placement (basic_block bb)
94 edge e;
95 edge_iterator ei;
96 struct loop *loop = current_loops->tree_root, *act;
98 FOR_EACH_EDGE (e, ei, bb->succs)
100 if (e->dest == EXIT_BLOCK_PTR)
101 continue;
103 act = e->dest->loop_father;
104 if (act->header == e->dest)
105 act = loop_outer (act);
107 if (flow_loop_nested_p (loop, act))
108 loop = act;
111 if (loop == bb->loop_father)
112 return false;
114 remove_bb_from_loops (bb);
115 add_bb_to_loop (bb, loop);
117 return true;
120 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
121 of LOOP to that leads at least one exit edge of LOOP, and set it
122 as the immediate superloop of LOOP. Return true if the immediate superloop
123 of LOOP changed. */
125 static bool
126 fix_loop_placement (struct loop *loop)
128 unsigned i;
129 edge e;
130 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
131 struct loop *father = current_loops->tree_root, *act;
132 bool ret = false;
134 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
136 act = find_common_loop (loop, e->dest->loop_father);
137 if (flow_loop_nested_p (father, act))
138 father = act;
141 if (father != loop_outer (loop))
143 for (act = loop_outer (loop); act != father; act = loop_outer (act))
144 act->num_nodes -= loop->num_nodes;
145 flow_loop_tree_node_remove (loop);
146 flow_loop_tree_node_add (father, loop);
148 /* The exit edges of LOOP no longer exits its original immediate
149 superloops; remove them from the appropriate exit lists. */
150 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
151 rescan_loop_exit (e, false, false);
153 ret = true;
156 VEC_free (edge, heap, exits);
157 return ret;
160 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
161 enforce condition condition stated in description of fix_bb_placement. We
162 start from basic block FROM that had some of its successors removed, so that
163 his placement no longer has to be correct, and iteratively fix placement of
164 its predecessors that may change if placement of FROM changed. Also fix
165 placement of subloops of FROM->loop_father, that might also be altered due
166 to this change; the condition for them is similar, except that instead of
167 successors we consider edges coming out of the loops.
169 If the changes may invalidate the information about irreducible regions,
170 IRRED_INVALIDATED is set to true. */
172 static void
173 fix_bb_placements (basic_block from,
174 bool *irred_invalidated)
176 sbitmap in_queue;
177 basic_block *queue, *qtop, *qbeg, *qend;
178 struct loop *base_loop;
179 edge e;
181 /* We pass through blocks back-reachable from FROM, testing whether some
182 of their successors moved to outer loop. It may be necessary to
183 iterate several times, but it is finite, as we stop unless we move
184 the basic block up the loop structure. The whole story is a bit
185 more complicated due to presence of subloops, those are moved using
186 fix_loop_placement. */
188 base_loop = from->loop_father;
189 if (base_loop == current_loops->tree_root)
190 return;
192 in_queue = sbitmap_alloc (last_basic_block);
193 sbitmap_zero (in_queue);
194 SET_BIT (in_queue, from->index);
195 /* Prevent us from going out of the base_loop. */
196 SET_BIT (in_queue, base_loop->header->index);
198 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
199 qtop = queue + base_loop->num_nodes + 1;
200 qbeg = queue;
201 qend = queue + 1;
202 *qbeg = from;
204 while (qbeg != qend)
206 edge_iterator ei;
207 from = *qbeg;
208 qbeg++;
209 if (qbeg == qtop)
210 qbeg = queue;
211 RESET_BIT (in_queue, from->index);
213 if (from->loop_father->header == from)
215 /* Subloop header, maybe move the loop upward. */
216 if (!fix_loop_placement (from->loop_father))
217 continue;
219 else
221 /* Ordinary basic block. */
222 if (!fix_bb_placement (from))
223 continue;
226 FOR_EACH_EDGE (e, ei, from->succs)
228 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
229 *irred_invalidated = true;
232 /* Something has changed, insert predecessors into queue. */
233 FOR_EACH_EDGE (e, ei, from->preds)
235 basic_block pred = e->src;
236 struct loop *nca;
238 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
239 *irred_invalidated = true;
241 if (TEST_BIT (in_queue, pred->index))
242 continue;
244 /* If it is subloop, then it either was not moved, or
245 the path up the loop tree from base_loop do not contain
246 it. */
247 nca = find_common_loop (pred->loop_father, base_loop);
248 if (pred->loop_father != base_loop
249 && (nca == base_loop
250 || nca != pred->loop_father))
251 pred = pred->loop_father->header;
252 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
254 /* No point in processing it. */
255 continue;
258 if (TEST_BIT (in_queue, pred->index))
259 continue;
261 /* Schedule the basic block. */
262 *qend = pred;
263 qend++;
264 if (qend == qtop)
265 qend = queue;
266 SET_BIT (in_queue, pred->index);
269 free (in_queue);
270 free (queue);
273 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
274 and update loop structures and dominators. Return true if we were able
275 to remove the path, false otherwise (and nothing is affected then). */
276 bool
277 remove_path (edge e)
279 edge ae;
280 basic_block *rem_bbs, *bord_bbs, from, bb;
281 VEC (basic_block, heap) *dom_bbs;
282 int i, nrem, n_bord_bbs, nreml;
283 sbitmap seen;
284 bool irred_invalidated = false;
285 struct loop **deleted_loop;
287 if (!can_remove_branch_p (e))
288 return false;
290 /* Keep track of whether we need to update information about irreducible
291 regions. This is the case if the removed area is a part of the
292 irreducible region, or if the set of basic blocks that belong to a loop
293 that is inside an irreducible region is changed, or if such a loop is
294 removed. */
295 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
296 irred_invalidated = true;
298 /* We need to check whether basic blocks are dominated by the edge
299 e, but we only have basic block dominators. This is easy to
300 fix -- when e->dest has exactly one predecessor, this corresponds
301 to blocks dominated by e->dest, if not, split the edge. */
302 if (!single_pred_p (e->dest))
303 e = single_pred_edge (split_edge (e));
305 /* It may happen that by removing path we remove one or more loops
306 we belong to. In this case first unloop the loops, then proceed
307 normally. We may assume that e->dest is not a header of any loop,
308 as it now has exactly one predecessor. */
309 while (loop_outer (e->src->loop_father)
310 && dominated_by_p (CDI_DOMINATORS,
311 e->src->loop_father->latch, e->dest))
312 unloop (e->src->loop_father, &irred_invalidated);
314 /* Identify the path. */
315 nrem = find_path (e, &rem_bbs);
317 n_bord_bbs = 0;
318 bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
319 seen = sbitmap_alloc (last_basic_block);
320 sbitmap_zero (seen);
322 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
323 for (i = 0; i < nrem; i++)
324 SET_BIT (seen, rem_bbs[i]->index);
325 for (i = 0; i < nrem; i++)
327 edge_iterator ei;
328 bb = rem_bbs[i];
329 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
330 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
332 SET_BIT (seen, ae->dest->index);
333 bord_bbs[n_bord_bbs++] = ae->dest;
335 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
336 irred_invalidated = true;
340 /* Remove the path. */
341 from = e->src;
342 remove_branch (e);
343 dom_bbs = NULL;
345 /* Cancel loops contained in the path. */
346 deleted_loop = XNEWVEC (struct loop *, nrem);
347 nreml = 0;
348 for (i = 0; i < nrem; i++)
349 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
350 deleted_loop[nreml++] = rem_bbs[i]->loop_father;
352 for (i = 0; i < nreml; i++)
353 cancel_loop_tree (deleted_loop[i]);
354 free (deleted_loop);
356 remove_bbs (rem_bbs, nrem);
357 free (rem_bbs);
359 /* Find blocks whose dominators may be affected. */
360 sbitmap_zero (seen);
361 for (i = 0; i < n_bord_bbs; i++)
363 basic_block ldom;
365 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
366 if (TEST_BIT (seen, bb->index))
367 continue;
368 SET_BIT (seen, bb->index);
370 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
371 ldom;
372 ldom = next_dom_son (CDI_DOMINATORS, ldom))
373 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
374 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
377 free (seen);
379 /* Recount dominators. */
380 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
381 VEC_free (basic_block, heap, dom_bbs);
382 free (bord_bbs);
384 /* Fix placements of basic blocks inside loops and the placement of
385 loops in the loop tree. */
386 fix_bb_placements (from, &irred_invalidated);
387 fix_loop_placements (from->loop_father, &irred_invalidated);
389 if (irred_invalidated
390 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
391 mark_irreducible_loops ();
393 return true;
396 /* Creates place for a new LOOP in loops structure. */
398 static void
399 place_new_loop (struct loop *loop)
401 loop->num = number_of_loops ();
402 VEC_safe_push (loop_p, gc, current_loops->larray, loop);
405 /* Given LOOP structure with filled header and latch, find the body of the
406 corresponding loop and add it to loops tree. Insert the LOOP as a son of
407 outer. */
409 void
410 add_loop (struct loop *loop, struct loop *outer)
412 basic_block *bbs;
413 int i, n;
414 struct loop *subloop;
415 edge e;
416 edge_iterator ei;
418 /* Add it to loop structure. */
419 place_new_loop (loop);
420 flow_loop_tree_node_add (outer, loop);
422 /* Find its nodes. */
423 bbs = XNEWVEC (basic_block, n_basic_blocks);
424 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
426 for (i = 0; i < n; i++)
428 if (bbs[i]->loop_father == outer)
430 remove_bb_from_loops (bbs[i]);
431 add_bb_to_loop (bbs[i], loop);
432 continue;
435 loop->num_nodes++;
437 /* If we find a direct subloop of OUTER, move it to LOOP. */
438 subloop = bbs[i]->loop_father;
439 if (loop_outer (subloop) == outer
440 && subloop->header == bbs[i])
442 flow_loop_tree_node_remove (subloop);
443 flow_loop_tree_node_add (loop, subloop);
447 /* Update the information about loop exit edges. */
448 for (i = 0; i < n; i++)
450 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
452 rescan_loop_exit (e, false, false);
456 free (bbs);
459 /* Multiply all frequencies in LOOP by NUM/DEN. */
460 void
461 scale_loop_frequencies (struct loop *loop, int num, int den)
463 basic_block *bbs;
465 bbs = get_loop_body (loop);
466 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
467 free (bbs);
470 /* Recompute dominance information for basic blocks outside LOOP. */
472 static void
473 update_dominators_in_loop (struct loop *loop)
475 VEC (basic_block, heap) *dom_bbs = NULL;
476 sbitmap seen;
477 basic_block *body;
478 unsigned i;
480 seen = sbitmap_alloc (last_basic_block);
481 sbitmap_zero (seen);
482 body = get_loop_body (loop);
484 for (i = 0; i < loop->num_nodes; i++)
485 SET_BIT (seen, body[i]->index);
487 for (i = 0; i < loop->num_nodes; i++)
489 basic_block ldom;
491 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
492 ldom;
493 ldom = next_dom_son (CDI_DOMINATORS, ldom))
494 if (!TEST_BIT (seen, ldom->index))
496 SET_BIT (seen, ldom->index);
497 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
501 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
502 free (body);
503 free (seen);
504 VEC_free (basic_block, heap, dom_bbs);
507 /* Creates an if region as shown above. CONDITION is used to create
508 the test for the if.
511 | ------------- -------------
512 | | pred_bb | | pred_bb |
513 | ------------- -------------
514 | | |
515 | | | ENTRY_EDGE
516 | | ENTRY_EDGE V
517 | | ====> -------------
518 | | | cond_bb |
519 | | | CONDITION |
520 | | -------------
521 | V / \
522 | ------------- e_false / \ e_true
523 | | succ_bb | V V
524 | ------------- ----------- -----------
525 | | false_bb | | true_bb |
526 | ----------- -----------
527 | \ /
528 | \ /
529 | V V
530 | -------------
531 | | join_bb |
532 | -------------
533 | | exit_edge (result)
535 | -----------
536 | | succ_bb |
537 | -----------
541 edge
542 create_empty_if_region_on_edge (edge entry_edge, tree condition)
545 basic_block succ_bb, cond_bb, true_bb, false_bb, join_bb;
546 edge e_true, e_false, exit_edge;
547 gimple cond_stmt;
548 tree simple_cond;
549 gimple_stmt_iterator gsi;
551 succ_bb = entry_edge->dest;
552 cond_bb = split_edge (entry_edge);
554 /* Insert condition in cond_bb. */
555 gsi = gsi_last_bb (cond_bb);
556 simple_cond =
557 force_gimple_operand_gsi (&gsi, condition, true, NULL,
558 false, GSI_NEW_STMT);
559 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
560 gsi = gsi_last_bb (cond_bb);
561 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
563 join_bb = split_edge (single_succ_edge (cond_bb));
565 e_true = single_succ_edge (cond_bb);
566 true_bb = split_edge (e_true);
568 e_false = make_edge (cond_bb, join_bb, 0);
569 false_bb = split_edge (e_false);
571 e_true->flags &= ~EDGE_FALLTHRU;
572 e_true->flags |= EDGE_TRUE_VALUE;
573 e_false->flags &= ~EDGE_FALLTHRU;
574 e_false->flags |= EDGE_FALSE_VALUE;
576 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
577 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
578 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
579 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
581 exit_edge = single_succ_edge (join_bb);
583 if (single_pred_p (exit_edge->dest))
584 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
586 return exit_edge;
589 /* create_empty_loop_on_edge
591 | ------------- ------------------------
592 | | pred_bb | | pred_bb |
593 | ------------- | IV_0 = INITIAL_VALUE |
594 | | ------------------------
595 | | ______ | ENTRY_EDGE
596 | | ENTRY_EDGE / V V
597 | | ====> | -----------------------------
598 | | | | IV_BEFORE = phi (IV_0, IV) |
599 | | | | loop_header |
600 | V | | IV_BEFORE <= UPPER_BOUND |
601 | ------------- | -----------------------\-----
602 | | succ_bb | | | \
603 | ------------- | | \ exit_e
604 | | V V---------
605 | | -------------- | succ_bb |
606 | | | loop_latch | ----------
607 | | |IV = IV_BEFORE + STRIDE
608 | | --------------
609 | \ /
610 | \ ___ /
612 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
613 that is used before the increment of IV. IV_BEFORE should be used for
614 adding code to the body that uses the IV. OUTER is the outer loop in
615 which the new loop should be inserted. */
617 struct loop *
618 create_empty_loop_on_edge (edge entry_edge,
619 tree initial_value,
620 tree stride, tree upper_bound,
621 tree iv,
622 tree *iv_before,
623 struct loop *outer)
625 basic_block loop_header, loop_latch, succ_bb, pred_bb;
626 struct loop *loop;
627 int freq;
628 gcov_type cnt;
629 gimple_stmt_iterator gsi;
630 bool insert_after;
631 gimple_seq stmts;
632 gimple cond_expr;
633 tree exit_test;
634 edge exit_e;
635 int prob;
636 tree upper_bound_gimplified;
638 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
640 /* Create header, latch and wire up the loop. */
641 pred_bb = entry_edge->src;
642 loop_header = split_edge (entry_edge);
643 loop_latch = split_edge (single_succ_edge (loop_header));
644 succ_bb = single_succ (loop_latch);
645 make_edge (loop_header, succ_bb, 0);
646 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
648 /* Set immediate dominator information. */
649 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
650 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
651 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
653 /* Initialize a loop structure and put it in a loop hierarchy. */
654 loop = alloc_loop ();
655 loop->header = loop_header;
656 loop->latch = loop_latch;
657 add_loop (loop, outer);
659 /* TODO: Fix frequencies and counts. */
660 freq = EDGE_FREQUENCY (entry_edge);
661 cnt = entry_edge->count;
663 prob = REG_BR_PROB_BASE / 2;
665 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
667 /* Update dominators. */
668 update_dominators_in_loop (loop);
670 /* Construct IV code in loop. */
671 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
672 if (stmts)
674 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
675 gsi_commit_edge_inserts ();
678 standard_iv_increment_position (loop, &gsi, &insert_after);
679 create_iv (initial_value, stride, iv, loop, &gsi, insert_after,
680 iv_before, NULL);
682 /* Modify edge flags. */
683 exit_e = single_exit (loop);
684 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
685 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
687 gsi = gsi_last_bb (exit_e->src);
689 upper_bound_gimplified =
690 force_gimple_operand_gsi (&gsi, upper_bound, true, NULL,
691 false, GSI_NEW_STMT);
692 gsi = gsi_last_bb (exit_e->src);
694 cond_expr = gimple_build_cond
695 (LE_EXPR, *iv_before, upper_bound_gimplified, NULL_TREE, NULL_TREE);
697 exit_test = gimple_cond_lhs (cond_expr);
698 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
699 false, GSI_NEW_STMT);
700 gimple_cond_set_lhs (cond_expr, exit_test);
701 gsi = gsi_last_bb (exit_e->src);
702 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
704 return loop;
707 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
708 latch to header and update loop tree and dominators
709 accordingly. Everything between them plus LATCH_EDGE destination must
710 be dominated by HEADER_EDGE destination, and back-reachable from
711 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
712 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
713 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
714 Returns the newly created loop. Frequencies and counts in the new loop
715 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
717 struct loop *
718 loopify (edge latch_edge, edge header_edge,
719 basic_block switch_bb, edge true_edge, edge false_edge,
720 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
722 basic_block succ_bb = latch_edge->dest;
723 basic_block pred_bb = header_edge->src;
724 struct loop *loop = alloc_loop ();
725 struct loop *outer = loop_outer (succ_bb->loop_father);
726 int freq;
727 gcov_type cnt;
728 edge e;
729 edge_iterator ei;
731 loop->header = header_edge->dest;
732 loop->latch = latch_edge->src;
734 freq = EDGE_FREQUENCY (header_edge);
735 cnt = header_edge->count;
737 /* Redirect edges. */
738 loop_redirect_edge (latch_edge, loop->header);
739 loop_redirect_edge (true_edge, succ_bb);
741 /* During loop versioning, one of the switch_bb edge is already properly
742 set. Do not redirect it again unless redirect_all_edges is true. */
743 if (redirect_all_edges)
745 loop_redirect_edge (header_edge, switch_bb);
746 loop_redirect_edge (false_edge, loop->header);
748 /* Update dominators. */
749 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
750 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
753 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
755 /* Compute new loop. */
756 add_loop (loop, outer);
758 /* Add switch_bb to appropriate loop. */
759 if (switch_bb->loop_father)
760 remove_bb_from_loops (switch_bb);
761 add_bb_to_loop (switch_bb, outer);
763 /* Fix frequencies. */
764 if (redirect_all_edges)
766 switch_bb->frequency = freq;
767 switch_bb->count = cnt;
768 FOR_EACH_EDGE (e, ei, switch_bb->succs)
770 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
773 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
774 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
775 update_dominators_in_loop (loop);
777 return loop;
780 /* Remove the latch edge of a LOOP and update loops to indicate that
781 the LOOP was removed. After this function, original loop latch will
782 have no successor, which caller is expected to fix somehow.
784 If this may cause the information about irreducible regions to become
785 invalid, IRRED_INVALIDATED is set to true. */
787 static void
788 unloop (struct loop *loop, bool *irred_invalidated)
790 basic_block *body;
791 struct loop *ploop;
792 unsigned i, n;
793 basic_block latch = loop->latch;
794 bool dummy = false;
796 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
797 *irred_invalidated = true;
799 /* This is relatively straightforward. The dominators are unchanged, as
800 loop header dominates loop latch, so the only thing we have to care of
801 is the placement of loops and basic blocks inside the loop tree. We
802 move them all to the loop->outer, and then let fix_bb_placements do
803 its work. */
805 body = get_loop_body (loop);
806 n = loop->num_nodes;
807 for (i = 0; i < n; i++)
808 if (body[i]->loop_father == loop)
810 remove_bb_from_loops (body[i]);
811 add_bb_to_loop (body[i], loop_outer (loop));
813 free(body);
815 while (loop->inner)
817 ploop = loop->inner;
818 flow_loop_tree_node_remove (ploop);
819 flow_loop_tree_node_add (loop_outer (loop), ploop);
822 /* Remove the loop and free its data. */
823 delete_loop (loop);
825 remove_edge (single_succ_edge (latch));
827 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
828 there is an irreducible region inside the cancelled loop, the flags will
829 be still correct. */
830 fix_bb_placements (latch, &dummy);
833 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
834 condition stated in description of fix_loop_placement holds for them.
835 It is used in case when we removed some edges coming out of LOOP, which
836 may cause the right placement of LOOP inside loop tree to change.
838 IRRED_INVALIDATED is set to true if a change in the loop structures might
839 invalidate the information about irreducible regions. */
841 static void
842 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
844 struct loop *outer;
846 while (loop_outer (loop))
848 outer = loop_outer (loop);
849 if (!fix_loop_placement (loop))
850 break;
852 /* Changing the placement of a loop in the loop tree may alter the
853 validity of condition 2) of the description of fix_bb_placement
854 for its preheader, because the successor is the header and belongs
855 to the loop. So call fix_bb_placements to fix up the placement
856 of the preheader and (possibly) of its predecessors. */
857 fix_bb_placements (loop_preheader_edge (loop)->src,
858 irred_invalidated);
859 loop = outer;
863 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
864 created loop into loops structure. */
865 struct loop *
866 duplicate_loop (struct loop *loop, struct loop *target)
868 struct loop *cloop;
869 cloop = alloc_loop ();
870 place_new_loop (cloop);
872 /* Mark the new loop as copy of LOOP. */
873 set_loop_copy (loop, cloop);
875 /* Add it to target. */
876 flow_loop_tree_node_add (target, cloop);
878 return cloop;
881 /* Copies structure of subloops of LOOP into TARGET loop, placing
882 newly created loops into loop tree. */
883 static void
884 duplicate_subloops (struct loop *loop, struct loop *target)
886 struct loop *aloop, *cloop;
888 for (aloop = loop->inner; aloop; aloop = aloop->next)
890 cloop = duplicate_loop (aloop, target);
891 duplicate_subloops (aloop, cloop);
895 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
896 into TARGET loop, placing newly created loops into loop tree. */
897 static void
898 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
900 struct loop *aloop;
901 int i;
903 for (i = 0; i < n; i++)
905 aloop = duplicate_loop (copied_loops[i], target);
906 duplicate_subloops (copied_loops[i], aloop);
910 /* Redirects edge E to basic block DEST. */
911 static void
912 loop_redirect_edge (edge e, basic_block dest)
914 if (e->dest == dest)
915 return;
917 redirect_edge_and_branch_force (e, dest);
920 /* Check whether LOOP's body can be duplicated. */
921 bool
922 can_duplicate_loop_p (const struct loop *loop)
924 int ret;
925 basic_block *bbs = get_loop_body (loop);
927 ret = can_copy_bbs_p (bbs, loop->num_nodes);
928 free (bbs);
930 return ret;
933 /* Sets probability and count of edge E to zero. The probability and count
934 is redistributed evenly to the remaining edges coming from E->src. */
936 static void
937 set_zero_probability (edge e)
939 basic_block bb = e->src;
940 edge_iterator ei;
941 edge ae, last = NULL;
942 unsigned n = EDGE_COUNT (bb->succs);
943 gcov_type cnt = e->count, cnt1;
944 unsigned prob = e->probability, prob1;
946 gcc_assert (n > 1);
947 cnt1 = cnt / (n - 1);
948 prob1 = prob / (n - 1);
950 FOR_EACH_EDGE (ae, ei, bb->succs)
952 if (ae == e)
953 continue;
955 ae->probability += prob1;
956 ae->count += cnt1;
957 last = ae;
960 /* Move the rest to one of the edges. */
961 last->probability += prob % (n - 1);
962 last->count += cnt % (n - 1);
964 e->probability = 0;
965 e->count = 0;
968 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
969 loop structure and dominators. E's destination must be LOOP header for
970 this to work, i.e. it must be entry or latch edge of this loop; these are
971 unique, as the loops must have preheaders for this function to work
972 correctly (in case E is latch, the function unrolls the loop, if E is entry
973 edge, it peels the loop). Store edges created by copying ORIG edge from
974 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
975 original LOOP body, the other copies are numbered in order given by control
976 flow through them) into TO_REMOVE array. Returns false if duplication is
977 impossible. */
979 bool
980 duplicate_loop_to_header_edge (struct loop *loop, edge e,
981 unsigned int ndupl, sbitmap wont_exit,
982 edge orig, VEC (edge, heap) **to_remove,
983 int flags)
985 struct loop *target, *aloop;
986 struct loop **orig_loops;
987 unsigned n_orig_loops;
988 basic_block header = loop->header, latch = loop->latch;
989 basic_block *new_bbs, *bbs, *first_active;
990 basic_block new_bb, bb, first_active_latch = NULL;
991 edge ae, latch_edge;
992 edge spec_edges[2], new_spec_edges[2];
993 #define SE_LATCH 0
994 #define SE_ORIG 1
995 unsigned i, j, n;
996 int is_latch = (latch == e->src);
997 int scale_act = 0, *scale_step = NULL, scale_main = 0;
998 int scale_after_exit = 0;
999 int p, freq_in, freq_le, freq_out_orig;
1000 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1001 int add_irreducible_flag;
1002 basic_block place_after;
1003 bitmap bbs_to_scale = NULL;
1004 bitmap_iterator bi;
1006 gcc_assert (e->dest == loop->header);
1007 gcc_assert (ndupl > 0);
1009 if (orig)
1011 /* Orig must be edge out of the loop. */
1012 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1013 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1016 n = loop->num_nodes;
1017 bbs = get_loop_body_in_dom_order (loop);
1018 gcc_assert (bbs[0] == loop->header);
1019 gcc_assert (bbs[n - 1] == loop->latch);
1021 /* Check whether duplication is possible. */
1022 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1024 free (bbs);
1025 return false;
1027 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1029 /* In case we are doing loop peeling and the loop is in the middle of
1030 irreducible region, the peeled copies will be inside it too. */
1031 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1032 gcc_assert (!is_latch || !add_irreducible_flag);
1034 /* Find edge from latch. */
1035 latch_edge = loop_latch_edge (loop);
1037 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1039 /* Calculate coefficients by that we have to scale frequencies
1040 of duplicated loop bodies. */
1041 freq_in = header->frequency;
1042 freq_le = EDGE_FREQUENCY (latch_edge);
1043 if (freq_in == 0)
1044 freq_in = 1;
1045 if (freq_in < freq_le)
1046 freq_in = freq_le;
1047 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1048 if (freq_out_orig > freq_in - freq_le)
1049 freq_out_orig = freq_in - freq_le;
1050 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1051 prob_pass_wont_exit =
1052 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1054 if (orig
1055 && REG_BR_PROB_BASE - orig->probability != 0)
1057 /* The blocks that are dominated by a removed exit edge ORIG have
1058 frequencies scaled by this. */
1059 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
1060 REG_BR_PROB_BASE - orig->probability);
1061 bbs_to_scale = BITMAP_ALLOC (NULL);
1062 for (i = 0; i < n; i++)
1064 if (bbs[i] != orig->src
1065 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1066 bitmap_set_bit (bbs_to_scale, i);
1070 scale_step = XNEWVEC (int, ndupl);
1072 for (i = 1; i <= ndupl; i++)
1073 scale_step[i - 1] = TEST_BIT (wont_exit, i)
1074 ? prob_pass_wont_exit
1075 : prob_pass_thru;
1077 /* Complete peeling is special as the probability of exit in last
1078 copy becomes 1. */
1079 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1081 int wanted_freq = EDGE_FREQUENCY (e);
1083 if (wanted_freq > freq_in)
1084 wanted_freq = freq_in;
1086 gcc_assert (!is_latch);
1087 /* First copy has frequency of incoming edge. Each subsequent
1088 frequency should be reduced by prob_pass_wont_exit. Caller
1089 should've managed the flags so all except for original loop
1090 has won't exist set. */
1091 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1092 /* Now simulate the duplication adjustments and compute header
1093 frequency of the last copy. */
1094 for (i = 0; i < ndupl; i++)
1095 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
1096 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1098 else if (is_latch)
1100 prob_pass_main = TEST_BIT (wont_exit, 0)
1101 ? prob_pass_wont_exit
1102 : prob_pass_thru;
1103 p = prob_pass_main;
1104 scale_main = REG_BR_PROB_BASE;
1105 for (i = 0; i < ndupl; i++)
1107 scale_main += p;
1108 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
1110 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
1111 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
1113 else
1115 scale_main = REG_BR_PROB_BASE;
1116 for (i = 0; i < ndupl; i++)
1117 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
1118 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1120 for (i = 0; i < ndupl; i++)
1121 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1122 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1123 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1126 /* Loop the new bbs will belong to. */
1127 target = e->src->loop_father;
1129 /* Original loops. */
1130 n_orig_loops = 0;
1131 for (aloop = loop->inner; aloop; aloop = aloop->next)
1132 n_orig_loops++;
1133 orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
1134 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1135 orig_loops[i] = aloop;
1137 set_loop_copy (loop, target);
1139 first_active = XNEWVEC (basic_block, n);
1140 if (is_latch)
1142 memcpy (first_active, bbs, n * sizeof (basic_block));
1143 first_active_latch = latch;
1146 spec_edges[SE_ORIG] = orig;
1147 spec_edges[SE_LATCH] = latch_edge;
1149 place_after = e->src;
1150 for (j = 0; j < ndupl; j++)
1152 /* Copy loops. */
1153 copy_loops_to (orig_loops, n_orig_loops, target);
1155 /* Copy bbs. */
1156 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1157 place_after);
1158 place_after = new_spec_edges[SE_LATCH]->src;
1160 if (flags & DLTHE_RECORD_COPY_NUMBER)
1161 for (i = 0; i < n; i++)
1163 gcc_assert (!new_bbs[i]->aux);
1164 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1167 /* Note whether the blocks and edges belong to an irreducible loop. */
1168 if (add_irreducible_flag)
1170 for (i = 0; i < n; i++)
1171 new_bbs[i]->flags |= BB_DUPLICATED;
1172 for (i = 0; i < n; i++)
1174 edge_iterator ei;
1175 new_bb = new_bbs[i];
1176 if (new_bb->loop_father == target)
1177 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1179 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1180 if ((ae->dest->flags & BB_DUPLICATED)
1181 && (ae->src->loop_father == target
1182 || ae->dest->loop_father == target))
1183 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1185 for (i = 0; i < n; i++)
1186 new_bbs[i]->flags &= ~BB_DUPLICATED;
1189 /* Redirect the special edges. */
1190 if (is_latch)
1192 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1193 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1194 loop->header);
1195 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1196 latch = loop->latch = new_bbs[n - 1];
1197 e = latch_edge = new_spec_edges[SE_LATCH];
1199 else
1201 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1202 loop->header);
1203 redirect_edge_and_branch_force (e, new_bbs[0]);
1204 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1205 e = new_spec_edges[SE_LATCH];
1208 /* Record exit edge in this copy. */
1209 if (orig && TEST_BIT (wont_exit, j + 1))
1211 if (to_remove)
1212 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
1213 set_zero_probability (new_spec_edges[SE_ORIG]);
1215 /* Scale the frequencies of the blocks dominated by the exit. */
1216 if (bbs_to_scale)
1218 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1220 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1221 REG_BR_PROB_BASE);
1226 /* Record the first copy in the control flow order if it is not
1227 the original loop (i.e. in case of peeling). */
1228 if (!first_active_latch)
1230 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1231 first_active_latch = new_bbs[n - 1];
1234 /* Set counts and frequencies. */
1235 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1237 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1238 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1241 free (new_bbs);
1242 free (orig_loops);
1244 /* Record the exit edge in the original loop body, and update the frequencies. */
1245 if (orig && TEST_BIT (wont_exit, 0))
1247 if (to_remove)
1248 VEC_safe_push (edge, heap, *to_remove, orig);
1249 set_zero_probability (orig);
1251 /* Scale the frequencies of the blocks dominated by the exit. */
1252 if (bbs_to_scale)
1254 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1256 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1257 REG_BR_PROB_BASE);
1262 /* Update the original loop. */
1263 if (!is_latch)
1264 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1265 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1267 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1268 free (scale_step);
1271 /* Update dominators of outer blocks if affected. */
1272 for (i = 0; i < n; i++)
1274 basic_block dominated, dom_bb;
1275 VEC (basic_block, heap) *dom_bbs;
1276 unsigned j;
1278 bb = bbs[i];
1279 bb->aux = 0;
1281 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1282 for (j = 0; VEC_iterate (basic_block, dom_bbs, j, dominated); j++)
1284 if (flow_bb_inside_loop_p (loop, dominated))
1285 continue;
1286 dom_bb = nearest_common_dominator (
1287 CDI_DOMINATORS, first_active[i], first_active_latch);
1288 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1290 VEC_free (basic_block, heap, dom_bbs);
1292 free (first_active);
1294 free (bbs);
1295 BITMAP_FREE (bbs_to_scale);
1297 return true;
1300 /* A callback for make_forwarder block, to redirect all edges except for
1301 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1302 whether to redirect it. */
1304 edge mfb_kj_edge;
1305 bool
1306 mfb_keep_just (edge e)
1308 return e != mfb_kj_edge;
1311 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1313 static bool
1314 has_preds_from_loop (basic_block block, struct loop *loop)
1316 edge e;
1317 edge_iterator ei;
1319 FOR_EACH_EDGE (e, ei, block->preds)
1320 if (e->src->loop_father == loop)
1321 return true;
1322 return false;
1325 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1326 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1327 entry; otherwise we also force preheader block to have only one successor.
1328 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1329 to be a fallthru predecessor to the loop header and to have only
1330 predecessors from outside of the loop.
1331 The function also updates dominators. */
1333 basic_block
1334 create_preheader (struct loop *loop, int flags)
1336 edge e, fallthru;
1337 basic_block dummy;
1338 int nentry = 0;
1339 bool irred = false;
1340 bool latch_edge_was_fallthru;
1341 edge one_succ_pred = NULL, single_entry = NULL;
1342 edge_iterator ei;
1344 FOR_EACH_EDGE (e, ei, loop->header->preds)
1346 if (e->src == loop->latch)
1347 continue;
1348 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1349 nentry++;
1350 single_entry = e;
1351 if (single_succ_p (e->src))
1352 one_succ_pred = e;
1354 gcc_assert (nentry);
1355 if (nentry == 1)
1357 bool need_forwarder_block = false;
1359 /* We do not allow entry block to be the loop preheader, since we
1360 cannot emit code there. */
1361 if (single_entry->src == ENTRY_BLOCK_PTR)
1362 need_forwarder_block = true;
1363 else
1365 /* If we want simple preheaders, also force the preheader to have
1366 just a single successor. */
1367 if ((flags & CP_SIMPLE_PREHEADERS)
1368 && !single_succ_p (single_entry->src))
1369 need_forwarder_block = true;
1370 /* If we want fallthru preheaders, also create forwarder block when
1371 preheader ends with a jump or has predecessors from loop. */
1372 else if ((flags & CP_FALLTHRU_PREHEADERS)
1373 && (JUMP_P (BB_END (single_entry->src))
1374 || has_preds_from_loop (single_entry->src, loop)))
1375 need_forwarder_block = true;
1377 if (! need_forwarder_block)
1378 return NULL;
1381 mfb_kj_edge = loop_latch_edge (loop);
1382 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1383 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1384 dummy = fallthru->src;
1385 loop->header = fallthru->dest;
1387 /* Try to be clever in placing the newly created preheader. The idea is to
1388 avoid breaking any "fallthruness" relationship between blocks.
1390 The preheader was created just before the header and all incoming edges
1391 to the header were redirected to the preheader, except the latch edge.
1392 So the only problematic case is when this latch edge was a fallthru
1393 edge: it is not anymore after the preheader creation so we have broken
1394 the fallthruness. We're therefore going to look for a better place. */
1395 if (latch_edge_was_fallthru)
1397 if (one_succ_pred)
1398 e = one_succ_pred;
1399 else
1400 e = EDGE_PRED (dummy, 0);
1402 move_block_after (dummy, e->src);
1405 if (irred)
1407 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1408 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1411 if (dump_file)
1412 fprintf (dump_file, "Created preheader block for loop %i\n",
1413 loop->num);
1415 if (flags & CP_FALLTHRU_PREHEADERS)
1416 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1417 && !JUMP_P (BB_END (dummy)));
1419 return dummy;
1422 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1424 void
1425 create_preheaders (int flags)
1427 loop_iterator li;
1428 struct loop *loop;
1430 if (!current_loops)
1431 return;
1433 FOR_EACH_LOOP (li, loop, 0)
1434 create_preheader (loop, flags);
1435 loops_state_set (LOOPS_HAVE_PREHEADERS);
1438 /* Forces all loop latches to have only single successor. */
1440 void
1441 force_single_succ_latches (void)
1443 loop_iterator li;
1444 struct loop *loop;
1445 edge e;
1447 FOR_EACH_LOOP (li, loop, 0)
1449 if (loop->latch != loop->header && single_succ_p (loop->latch))
1450 continue;
1452 e = find_edge (loop->latch, loop->header);
1454 split_edge (e);
1456 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1459 /* This function is called from loop_version. It splits the entry edge
1460 of the loop we want to version, adds the versioning condition, and
1461 adjust the edges to the two versions of the loop appropriately.
1462 e is an incoming edge. Returns the basic block containing the
1463 condition.
1465 --- edge e ---- > [second_head]
1467 Split it and insert new conditional expression and adjust edges.
1469 --- edge e ---> [cond expr] ---> [first_head]
1471 +---------> [second_head]
1473 THEN_PROB is the probability of then branch of the condition. */
1475 static basic_block
1476 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1477 edge e, void *cond_expr, unsigned then_prob)
1479 basic_block new_head = NULL;
1480 edge e1;
1482 gcc_assert (e->dest == second_head);
1484 /* Split edge 'e'. This will create a new basic block, where we can
1485 insert conditional expr. */
1486 new_head = split_edge (e);
1488 lv_add_condition_to_bb (first_head, second_head, new_head,
1489 cond_expr);
1491 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1492 e = single_succ_edge (new_head);
1493 e1 = make_edge (new_head, first_head,
1494 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1495 e1->probability = then_prob;
1496 e->probability = REG_BR_PROB_BASE - then_prob;
1497 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1498 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1500 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1501 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1503 /* Adjust loop header phi nodes. */
1504 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1506 return new_head;
1509 /* Main entry point for Loop Versioning transformation.
1511 This transformation given a condition and a loop, creates
1512 -if (condition) { loop_copy1 } else { loop_copy2 },
1513 where loop_copy1 is the loop transformed in one way, and loop_copy2
1514 is the loop transformed in another way (or unchanged). 'condition'
1515 may be a run time test for things that were not resolved by static
1516 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1518 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1519 is the ratio by that the frequencies in the original loop should
1520 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1521 new loop should be scaled.
1523 If PLACE_AFTER is true, we place the new loop after LOOP in the
1524 instruction stream, otherwise it is placed before LOOP. */
1526 struct loop *
1527 loop_version (struct loop *loop,
1528 void *cond_expr, basic_block *condition_bb,
1529 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1530 bool place_after)
1532 basic_block first_head, second_head;
1533 edge entry, latch_edge, true_edge, false_edge;
1534 int irred_flag;
1535 struct loop *nloop;
1536 basic_block cond_bb;
1538 /* Record entry and latch edges for the loop */
1539 entry = loop_preheader_edge (loop);
1540 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1541 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1543 /* Note down head of loop as first_head. */
1544 first_head = entry->dest;
1546 /* Duplicate loop. */
1547 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1548 NULL, NULL, NULL, 0))
1549 return NULL;
1551 /* After duplication entry edge now points to new loop head block.
1552 Note down new head as second_head. */
1553 second_head = entry->dest;
1555 /* Split loop entry edge and insert new block with cond expr. */
1556 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1557 entry, cond_expr, then_prob);
1558 if (condition_bb)
1559 *condition_bb = cond_bb;
1561 if (!cond_bb)
1563 entry->flags |= irred_flag;
1564 return NULL;
1567 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1569 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1570 nloop = loopify (latch_edge,
1571 single_pred_edge (get_bb_copy (loop->header)),
1572 cond_bb, true_edge, false_edge,
1573 false /* Do not redirect all edges. */,
1574 then_scale, else_scale);
1576 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1577 lv_flush_pending_stmts (latch_edge);
1579 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1580 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1581 lv_flush_pending_stmts (false_edge);
1582 /* Adjust irreducible flag. */
1583 if (irred_flag)
1585 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1586 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1587 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1588 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1591 if (place_after)
1593 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1594 unsigned i;
1596 after = loop->latch;
1598 for (i = 0; i < nloop->num_nodes; i++)
1600 move_block_after (bbs[i], after);
1601 after = bbs[i];
1603 free (bbs);
1606 /* At this point condition_bb is loop preheader with two successors,
1607 first_head and second_head. Make sure that loop preheader has only
1608 one successor. */
1609 split_edge (loop_preheader_edge (loop));
1610 split_edge (loop_preheader_edge (nloop));
1612 return nloop;
1615 /* The structure of loops might have changed. Some loops might get removed
1616 (and their headers and latches were set to NULL), loop exists might get
1617 removed (thus the loop nesting may be wrong), and some blocks and edges
1618 were changed (so the information about bb --> loop mapping does not have
1619 to be correct). But still for the remaining loops the header dominates
1620 the latch, and loops did not get new subloops (new loops might possibly
1621 get created, but we are not interested in them). Fix up the mess.
1623 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1624 marked in it. */
1626 void
1627 fix_loop_structure (bitmap changed_bbs)
1629 basic_block bb;
1630 struct loop *loop, *ploop;
1631 loop_iterator li;
1632 bool record_exits = false;
1633 struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
1635 /* Remove the old bb -> loop mapping. Remember the depth of the blocks in
1636 the loop hierarchy, so that we can recognize blocks whose loop nesting
1637 relationship has changed. */
1638 FOR_EACH_BB (bb)
1640 if (changed_bbs)
1641 bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
1642 bb->loop_father = current_loops->tree_root;
1645 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1647 release_recorded_exits ();
1648 record_exits = true;
1651 /* Remove the dead loops from structures. We start from the innermost
1652 loops, so that when we remove the loops, we know that the loops inside
1653 are preserved, and do not waste time relinking loops that will be
1654 removed later. */
1655 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1657 if (loop->header)
1658 continue;
1660 while (loop->inner)
1662 ploop = loop->inner;
1663 flow_loop_tree_node_remove (ploop);
1664 flow_loop_tree_node_add (loop_outer (loop), ploop);
1667 /* Remove the loop and free its data. */
1668 delete_loop (loop);
1671 /* Rescan the bodies of loops, starting from the outermost ones. We assume
1672 that no optimization interchanges the order of the loops, i.e., it cannot
1673 happen that L1 was superloop of L2 before and it is subloop of L2 now
1674 (without explicitly updating loop information). At the same time, we also
1675 determine the new loop structure. */
1676 current_loops->tree_root->num_nodes = n_basic_blocks;
1677 FOR_EACH_LOOP (li, loop, 0)
1679 superloop[loop->num] = loop->header->loop_father;
1680 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1683 /* Now fix the loop nesting. */
1684 FOR_EACH_LOOP (li, loop, 0)
1686 ploop = superloop[loop->num];
1687 if (ploop != loop_outer (loop))
1689 flow_loop_tree_node_remove (loop);
1690 flow_loop_tree_node_add (ploop, loop);
1693 free (superloop);
1695 /* Mark the blocks whose loop has changed. */
1696 if (changed_bbs)
1698 FOR_EACH_BB (bb)
1700 if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
1701 bitmap_set_bit (changed_bbs, bb->index);
1703 bb->aux = NULL;
1707 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
1708 create_preheaders (CP_SIMPLE_PREHEADERS);
1710 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1711 force_single_succ_latches ();
1713 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1714 mark_irreducible_loops ();
1716 if (record_exits)
1717 record_loop_exits ();
1719 #ifdef ENABLE_CHECKING
1720 verify_loop_structure ();
1721 #endif