2015-01-13 Thomas Preud'homme <thomas.preudhomme@arm.com>
[official-gcc.git] / gcc / tree-ssa-math-opts.c
blob16fa1681ce2fd446854db7255f03625927d88bc2
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "hash-set.h"
93 #include "machmode.h"
94 #include "vec.h"
95 #include "double-int.h"
96 #include "input.h"
97 #include "alias.h"
98 #include "symtab.h"
99 #include "wide-int.h"
100 #include "inchash.h"
101 #include "tree.h"
102 #include "fold-const.h"
103 #include "predict.h"
104 #include "hard-reg-set.h"
105 #include "input.h"
106 #include "function.h"
107 #include "dominance.h"
108 #include "cfg.h"
109 #include "basic-block.h"
110 #include "tree-ssa-alias.h"
111 #include "internal-fn.h"
112 #include "gimple-fold.h"
113 #include "gimple-expr.h"
114 #include "is-a.h"
115 #include "gimple.h"
116 #include "gimple-iterator.h"
117 #include "gimplify.h"
118 #include "gimplify-me.h"
119 #include "stor-layout.h"
120 #include "gimple-ssa.h"
121 #include "tree-cfg.h"
122 #include "tree-phinodes.h"
123 #include "ssa-iterators.h"
124 #include "stringpool.h"
125 #include "tree-ssanames.h"
126 #include "expr.h"
127 #include "tree-dfa.h"
128 #include "tree-ssa.h"
129 #include "tree-pass.h"
130 #include "alloc-pool.h"
131 #include "target.h"
132 #include "gimple-pretty-print.h"
133 #include "builtins.h"
135 /* FIXME: RTL headers have to be included here for optabs. */
136 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
137 #include "expr.h" /* Because optabs.h wants sepops. */
138 #include "insn-codes.h"
139 #include "optabs.h"
141 /* This structure represents one basic block that either computes a
142 division, or is a common dominator for basic block that compute a
143 division. */
144 struct occurrence {
145 /* The basic block represented by this structure. */
146 basic_block bb;
148 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
149 inserted in BB. */
150 tree recip_def;
152 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
153 was inserted in BB. */
154 gimple recip_def_stmt;
156 /* Pointer to a list of "struct occurrence"s for blocks dominated
157 by BB. */
158 struct occurrence *children;
160 /* Pointer to the next "struct occurrence"s in the list of blocks
161 sharing a common dominator. */
162 struct occurrence *next;
164 /* The number of divisions that are in BB before compute_merit. The
165 number of divisions that are in BB or post-dominate it after
166 compute_merit. */
167 int num_divisions;
169 /* True if the basic block has a division, false if it is a common
170 dominator for basic blocks that do. If it is false and trapping
171 math is active, BB is not a candidate for inserting a reciprocal. */
172 bool bb_has_division;
175 static struct
177 /* Number of 1.0/X ops inserted. */
178 int rdivs_inserted;
180 /* Number of 1.0/FUNC ops inserted. */
181 int rfuncs_inserted;
182 } reciprocal_stats;
184 static struct
186 /* Number of cexpi calls inserted. */
187 int inserted;
188 } sincos_stats;
190 static struct
192 /* Number of hand-written 16-bit nop / bswaps found. */
193 int found_16bit;
195 /* Number of hand-written 32-bit nop / bswaps found. */
196 int found_32bit;
198 /* Number of hand-written 64-bit nop / bswaps found. */
199 int found_64bit;
200 } nop_stats, bswap_stats;
202 static struct
204 /* Number of widening multiplication ops inserted. */
205 int widen_mults_inserted;
207 /* Number of integer multiply-and-accumulate ops inserted. */
208 int maccs_inserted;
210 /* Number of fp fused multiply-add ops inserted. */
211 int fmas_inserted;
212 } widen_mul_stats;
214 /* The instance of "struct occurrence" representing the highest
215 interesting block in the dominator tree. */
216 static struct occurrence *occ_head;
218 /* Allocation pool for getting instances of "struct occurrence". */
219 static alloc_pool occ_pool;
223 /* Allocate and return a new struct occurrence for basic block BB, and
224 whose children list is headed by CHILDREN. */
225 static struct occurrence *
226 occ_new (basic_block bb, struct occurrence *children)
228 struct occurrence *occ;
230 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
231 memset (occ, 0, sizeof (struct occurrence));
233 occ->bb = bb;
234 occ->children = children;
235 return occ;
239 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
240 list of "struct occurrence"s, one per basic block, having IDOM as
241 their common dominator.
243 We try to insert NEW_OCC as deep as possible in the tree, and we also
244 insert any other block that is a common dominator for BB and one
245 block already in the tree. */
247 static void
248 insert_bb (struct occurrence *new_occ, basic_block idom,
249 struct occurrence **p_head)
251 struct occurrence *occ, **p_occ;
253 for (p_occ = p_head; (occ = *p_occ) != NULL; )
255 basic_block bb = new_occ->bb, occ_bb = occ->bb;
256 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
257 if (dom == bb)
259 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
260 from its list. */
261 *p_occ = occ->next;
262 occ->next = new_occ->children;
263 new_occ->children = occ;
265 /* Try the next block (it may as well be dominated by BB). */
268 else if (dom == occ_bb)
270 /* OCC_BB dominates BB. Tail recurse to look deeper. */
271 insert_bb (new_occ, dom, &occ->children);
272 return;
275 else if (dom != idom)
277 gcc_assert (!dom->aux);
279 /* There is a dominator between IDOM and BB, add it and make
280 two children out of NEW_OCC and OCC. First, remove OCC from
281 its list. */
282 *p_occ = occ->next;
283 new_occ->next = occ;
284 occ->next = NULL;
286 /* None of the previous blocks has DOM as a dominator: if we tail
287 recursed, we would reexamine them uselessly. Just switch BB with
288 DOM, and go on looking for blocks dominated by DOM. */
289 new_occ = occ_new (dom, new_occ);
292 else
294 /* Nothing special, go on with the next element. */
295 p_occ = &occ->next;
299 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
300 new_occ->next = *p_head;
301 *p_head = new_occ;
304 /* Register that we found a division in BB. */
306 static inline void
307 register_division_in (basic_block bb)
309 struct occurrence *occ;
311 occ = (struct occurrence *) bb->aux;
312 if (!occ)
314 occ = occ_new (bb, NULL);
315 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
318 occ->bb_has_division = true;
319 occ->num_divisions++;
323 /* Compute the number of divisions that postdominate each block in OCC and
324 its children. */
326 static void
327 compute_merit (struct occurrence *occ)
329 struct occurrence *occ_child;
330 basic_block dom = occ->bb;
332 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
334 basic_block bb;
335 if (occ_child->children)
336 compute_merit (occ_child);
338 if (flag_exceptions)
339 bb = single_noncomplex_succ (dom);
340 else
341 bb = dom;
343 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
344 occ->num_divisions += occ_child->num_divisions;
349 /* Return whether USE_STMT is a floating-point division by DEF. */
350 static inline bool
351 is_division_by (gimple use_stmt, tree def)
353 return is_gimple_assign (use_stmt)
354 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
355 && gimple_assign_rhs2 (use_stmt) == def
356 /* Do not recognize x / x as valid division, as we are getting
357 confused later by replacing all immediate uses x in such
358 a stmt. */
359 && gimple_assign_rhs1 (use_stmt) != def;
362 /* Walk the subset of the dominator tree rooted at OCC, setting the
363 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
364 the given basic block. The field may be left NULL, of course,
365 if it is not possible or profitable to do the optimization.
367 DEF_BSI is an iterator pointing at the statement defining DEF.
368 If RECIP_DEF is set, a dominator already has a computation that can
369 be used. */
371 static void
372 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
373 tree def, tree recip_def, int threshold)
375 tree type;
376 gassign *new_stmt;
377 gimple_stmt_iterator gsi;
378 struct occurrence *occ_child;
380 if (!recip_def
381 && (occ->bb_has_division || !flag_trapping_math)
382 && occ->num_divisions >= threshold)
384 /* Make a variable with the replacement and substitute it. */
385 type = TREE_TYPE (def);
386 recip_def = create_tmp_reg (type, "reciptmp");
387 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
388 build_one_cst (type), def);
390 if (occ->bb_has_division)
392 /* Case 1: insert before an existing division. */
393 gsi = gsi_after_labels (occ->bb);
394 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
395 gsi_next (&gsi);
397 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
399 else if (def_gsi && occ->bb == def_gsi->bb)
401 /* Case 2: insert right after the definition. Note that this will
402 never happen if the definition statement can throw, because in
403 that case the sole successor of the statement's basic block will
404 dominate all the uses as well. */
405 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
407 else
409 /* Case 3: insert in a basic block not containing defs/uses. */
410 gsi = gsi_after_labels (occ->bb);
411 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
414 reciprocal_stats.rdivs_inserted++;
416 occ->recip_def_stmt = new_stmt;
419 occ->recip_def = recip_def;
420 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
421 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
425 /* Replace the division at USE_P with a multiplication by the reciprocal, if
426 possible. */
428 static inline void
429 replace_reciprocal (use_operand_p use_p)
431 gimple use_stmt = USE_STMT (use_p);
432 basic_block bb = gimple_bb (use_stmt);
433 struct occurrence *occ = (struct occurrence *) bb->aux;
435 if (optimize_bb_for_speed_p (bb)
436 && occ->recip_def && use_stmt != occ->recip_def_stmt)
438 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
439 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
440 SET_USE (use_p, occ->recip_def);
441 fold_stmt_inplace (&gsi);
442 update_stmt (use_stmt);
447 /* Free OCC and return one more "struct occurrence" to be freed. */
449 static struct occurrence *
450 free_bb (struct occurrence *occ)
452 struct occurrence *child, *next;
454 /* First get the two pointers hanging off OCC. */
455 next = occ->next;
456 child = occ->children;
457 occ->bb->aux = NULL;
458 pool_free (occ_pool, occ);
460 /* Now ensure that we don't recurse unless it is necessary. */
461 if (!child)
462 return next;
463 else
465 while (next)
466 next = free_bb (next);
468 return child;
473 /* Look for floating-point divisions among DEF's uses, and try to
474 replace them by multiplications with the reciprocal. Add
475 as many statements computing the reciprocal as needed.
477 DEF must be a GIMPLE register of a floating-point type. */
479 static void
480 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
482 use_operand_p use_p;
483 imm_use_iterator use_iter;
484 struct occurrence *occ;
485 int count = 0, threshold;
487 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
489 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
491 gimple use_stmt = USE_STMT (use_p);
492 if (is_division_by (use_stmt, def))
494 register_division_in (gimple_bb (use_stmt));
495 count++;
499 /* Do the expensive part only if we can hope to optimize something. */
500 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
501 if (count >= threshold)
503 gimple use_stmt;
504 for (occ = occ_head; occ; occ = occ->next)
506 compute_merit (occ);
507 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
510 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
512 if (is_division_by (use_stmt, def))
514 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
515 replace_reciprocal (use_p);
520 for (occ = occ_head; occ; )
521 occ = free_bb (occ);
523 occ_head = NULL;
526 /* Go through all the floating-point SSA_NAMEs, and call
527 execute_cse_reciprocals_1 on each of them. */
528 namespace {
530 const pass_data pass_data_cse_reciprocals =
532 GIMPLE_PASS, /* type */
533 "recip", /* name */
534 OPTGROUP_NONE, /* optinfo_flags */
535 TV_NONE, /* tv_id */
536 PROP_ssa, /* properties_required */
537 0, /* properties_provided */
538 0, /* properties_destroyed */
539 0, /* todo_flags_start */
540 TODO_update_ssa, /* todo_flags_finish */
543 class pass_cse_reciprocals : public gimple_opt_pass
545 public:
546 pass_cse_reciprocals (gcc::context *ctxt)
547 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
550 /* opt_pass methods: */
551 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
552 virtual unsigned int execute (function *);
554 }; // class pass_cse_reciprocals
556 unsigned int
557 pass_cse_reciprocals::execute (function *fun)
559 basic_block bb;
560 tree arg;
562 occ_pool = create_alloc_pool ("dominators for recip",
563 sizeof (struct occurrence),
564 n_basic_blocks_for_fn (fun) / 3 + 1);
566 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
567 calculate_dominance_info (CDI_DOMINATORS);
568 calculate_dominance_info (CDI_POST_DOMINATORS);
570 #ifdef ENABLE_CHECKING
571 FOR_EACH_BB_FN (bb, fun)
572 gcc_assert (!bb->aux);
573 #endif
575 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
576 if (FLOAT_TYPE_P (TREE_TYPE (arg))
577 && is_gimple_reg (arg))
579 tree name = ssa_default_def (fun, arg);
580 if (name)
581 execute_cse_reciprocals_1 (NULL, name);
584 FOR_EACH_BB_FN (bb, fun)
586 tree def;
588 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
589 gsi_next (&gsi))
591 gphi *phi = gsi.phi ();
592 def = PHI_RESULT (phi);
593 if (! virtual_operand_p (def)
594 && FLOAT_TYPE_P (TREE_TYPE (def)))
595 execute_cse_reciprocals_1 (NULL, def);
598 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
599 gsi_next (&gsi))
601 gimple stmt = gsi_stmt (gsi);
603 if (gimple_has_lhs (stmt)
604 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
605 && FLOAT_TYPE_P (TREE_TYPE (def))
606 && TREE_CODE (def) == SSA_NAME)
607 execute_cse_reciprocals_1 (&gsi, def);
610 if (optimize_bb_for_size_p (bb))
611 continue;
613 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
614 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
615 gsi_next (&gsi))
617 gimple stmt = gsi_stmt (gsi);
618 tree fndecl;
620 if (is_gimple_assign (stmt)
621 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
623 tree arg1 = gimple_assign_rhs2 (stmt);
624 gimple stmt1;
626 if (TREE_CODE (arg1) != SSA_NAME)
627 continue;
629 stmt1 = SSA_NAME_DEF_STMT (arg1);
631 if (is_gimple_call (stmt1)
632 && gimple_call_lhs (stmt1)
633 && (fndecl = gimple_call_fndecl (stmt1))
634 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
635 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
637 enum built_in_function code;
638 bool md_code, fail;
639 imm_use_iterator ui;
640 use_operand_p use_p;
642 code = DECL_FUNCTION_CODE (fndecl);
643 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
645 fndecl = targetm.builtin_reciprocal (code, md_code, false);
646 if (!fndecl)
647 continue;
649 /* Check that all uses of the SSA name are divisions,
650 otherwise replacing the defining statement will do
651 the wrong thing. */
652 fail = false;
653 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
655 gimple stmt2 = USE_STMT (use_p);
656 if (is_gimple_debug (stmt2))
657 continue;
658 if (!is_gimple_assign (stmt2)
659 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
660 || gimple_assign_rhs1 (stmt2) == arg1
661 || gimple_assign_rhs2 (stmt2) != arg1)
663 fail = true;
664 break;
667 if (fail)
668 continue;
670 gimple_replace_ssa_lhs (stmt1, arg1);
671 gimple_call_set_fndecl (stmt1, fndecl);
672 update_stmt (stmt1);
673 reciprocal_stats.rfuncs_inserted++;
675 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
677 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
678 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
679 fold_stmt_inplace (&gsi);
680 update_stmt (stmt);
687 statistics_counter_event (fun, "reciprocal divs inserted",
688 reciprocal_stats.rdivs_inserted);
689 statistics_counter_event (fun, "reciprocal functions inserted",
690 reciprocal_stats.rfuncs_inserted);
692 free_dominance_info (CDI_DOMINATORS);
693 free_dominance_info (CDI_POST_DOMINATORS);
694 free_alloc_pool (occ_pool);
695 return 0;
698 } // anon namespace
700 gimple_opt_pass *
701 make_pass_cse_reciprocals (gcc::context *ctxt)
703 return new pass_cse_reciprocals (ctxt);
706 /* Records an occurrence at statement USE_STMT in the vector of trees
707 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
708 is not yet initialized. Returns true if the occurrence was pushed on
709 the vector. Adjusts *TOP_BB to be the basic block dominating all
710 statements in the vector. */
712 static bool
713 maybe_record_sincos (vec<gimple> *stmts,
714 basic_block *top_bb, gimple use_stmt)
716 basic_block use_bb = gimple_bb (use_stmt);
717 if (*top_bb
718 && (*top_bb == use_bb
719 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
720 stmts->safe_push (use_stmt);
721 else if (!*top_bb
722 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
724 stmts->safe_push (use_stmt);
725 *top_bb = use_bb;
727 else
728 return false;
730 return true;
733 /* Look for sin, cos and cexpi calls with the same argument NAME and
734 create a single call to cexpi CSEing the result in this case.
735 We first walk over all immediate uses of the argument collecting
736 statements that we can CSE in a vector and in a second pass replace
737 the statement rhs with a REALPART or IMAGPART expression on the
738 result of the cexpi call we insert before the use statement that
739 dominates all other candidates. */
741 static bool
742 execute_cse_sincos_1 (tree name)
744 gimple_stmt_iterator gsi;
745 imm_use_iterator use_iter;
746 tree fndecl, res, type;
747 gimple def_stmt, use_stmt, stmt;
748 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
749 auto_vec<gimple> stmts;
750 basic_block top_bb = NULL;
751 int i;
752 bool cfg_changed = false;
754 type = TREE_TYPE (name);
755 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
757 if (gimple_code (use_stmt) != GIMPLE_CALL
758 || !gimple_call_lhs (use_stmt)
759 || !(fndecl = gimple_call_fndecl (use_stmt))
760 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
761 continue;
763 switch (DECL_FUNCTION_CODE (fndecl))
765 CASE_FLT_FN (BUILT_IN_COS):
766 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
767 break;
769 CASE_FLT_FN (BUILT_IN_SIN):
770 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
771 break;
773 CASE_FLT_FN (BUILT_IN_CEXPI):
774 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
775 break;
777 default:;
781 if (seen_cos + seen_sin + seen_cexpi <= 1)
782 return false;
784 /* Simply insert cexpi at the beginning of top_bb but not earlier than
785 the name def statement. */
786 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
787 if (!fndecl)
788 return false;
789 stmt = gimple_build_call (fndecl, 1, name);
790 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
791 gimple_call_set_lhs (stmt, res);
793 def_stmt = SSA_NAME_DEF_STMT (name);
794 if (!SSA_NAME_IS_DEFAULT_DEF (name)
795 && gimple_code (def_stmt) != GIMPLE_PHI
796 && gimple_bb (def_stmt) == top_bb)
798 gsi = gsi_for_stmt (def_stmt);
799 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
801 else
803 gsi = gsi_after_labels (top_bb);
804 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
806 sincos_stats.inserted++;
808 /* And adjust the recorded old call sites. */
809 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
811 tree rhs = NULL;
812 fndecl = gimple_call_fndecl (use_stmt);
814 switch (DECL_FUNCTION_CODE (fndecl))
816 CASE_FLT_FN (BUILT_IN_COS):
817 rhs = fold_build1 (REALPART_EXPR, type, res);
818 break;
820 CASE_FLT_FN (BUILT_IN_SIN):
821 rhs = fold_build1 (IMAGPART_EXPR, type, res);
822 break;
824 CASE_FLT_FN (BUILT_IN_CEXPI):
825 rhs = res;
826 break;
828 default:;
829 gcc_unreachable ();
832 /* Replace call with a copy. */
833 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
835 gsi = gsi_for_stmt (use_stmt);
836 gsi_replace (&gsi, stmt, true);
837 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
838 cfg_changed = true;
841 return cfg_changed;
844 /* To evaluate powi(x,n), the floating point value x raised to the
845 constant integer exponent n, we use a hybrid algorithm that
846 combines the "window method" with look-up tables. For an
847 introduction to exponentiation algorithms and "addition chains",
848 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
849 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
850 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
851 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
853 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
854 multiplications to inline before calling the system library's pow
855 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
856 so this default never requires calling pow, powf or powl. */
858 #ifndef POWI_MAX_MULTS
859 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
860 #endif
862 /* The size of the "optimal power tree" lookup table. All
863 exponents less than this value are simply looked up in the
864 powi_table below. This threshold is also used to size the
865 cache of pseudo registers that hold intermediate results. */
866 #define POWI_TABLE_SIZE 256
868 /* The size, in bits of the window, used in the "window method"
869 exponentiation algorithm. This is equivalent to a radix of
870 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
871 #define POWI_WINDOW_SIZE 3
873 /* The following table is an efficient representation of an
874 "optimal power tree". For each value, i, the corresponding
875 value, j, in the table states than an optimal evaluation
876 sequence for calculating pow(x,i) can be found by evaluating
877 pow(x,j)*pow(x,i-j). An optimal power tree for the first
878 100 integers is given in Knuth's "Seminumerical algorithms". */
880 static const unsigned char powi_table[POWI_TABLE_SIZE] =
882 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
883 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
884 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
885 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
886 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
887 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
888 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
889 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
890 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
891 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
892 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
893 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
894 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
895 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
896 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
897 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
898 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
899 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
900 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
901 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
902 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
903 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
904 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
905 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
906 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
907 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
908 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
909 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
910 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
911 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
912 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
913 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
917 /* Return the number of multiplications required to calculate
918 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
919 subroutine of powi_cost. CACHE is an array indicating
920 which exponents have already been calculated. */
922 static int
923 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
925 /* If we've already calculated this exponent, then this evaluation
926 doesn't require any additional multiplications. */
927 if (cache[n])
928 return 0;
930 cache[n] = true;
931 return powi_lookup_cost (n - powi_table[n], cache)
932 + powi_lookup_cost (powi_table[n], cache) + 1;
935 /* Return the number of multiplications required to calculate
936 powi(x,n) for an arbitrary x, given the exponent N. This
937 function needs to be kept in sync with powi_as_mults below. */
939 static int
940 powi_cost (HOST_WIDE_INT n)
942 bool cache[POWI_TABLE_SIZE];
943 unsigned HOST_WIDE_INT digit;
944 unsigned HOST_WIDE_INT val;
945 int result;
947 if (n == 0)
948 return 0;
950 /* Ignore the reciprocal when calculating the cost. */
951 val = (n < 0) ? -n : n;
953 /* Initialize the exponent cache. */
954 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
955 cache[1] = true;
957 result = 0;
959 while (val >= POWI_TABLE_SIZE)
961 if (val & 1)
963 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
964 result += powi_lookup_cost (digit, cache)
965 + POWI_WINDOW_SIZE + 1;
966 val >>= POWI_WINDOW_SIZE;
968 else
970 val >>= 1;
971 result++;
975 return result + powi_lookup_cost (val, cache);
978 /* Recursive subroutine of powi_as_mults. This function takes the
979 array, CACHE, of already calculated exponents and an exponent N and
980 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
982 static tree
983 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
984 HOST_WIDE_INT n, tree *cache)
986 tree op0, op1, ssa_target;
987 unsigned HOST_WIDE_INT digit;
988 gassign *mult_stmt;
990 if (n < POWI_TABLE_SIZE && cache[n])
991 return cache[n];
993 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
995 if (n < POWI_TABLE_SIZE)
997 cache[n] = ssa_target;
998 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
999 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
1001 else if (n & 1)
1003 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
1004 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1005 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1007 else
1009 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1010 op1 = op0;
1013 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
1014 gimple_set_location (mult_stmt, loc);
1015 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1017 return ssa_target;
1020 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1021 This function needs to be kept in sync with powi_cost above. */
1023 static tree
1024 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1025 tree arg0, HOST_WIDE_INT n)
1027 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1028 gassign *div_stmt;
1029 tree target;
1031 if (n == 0)
1032 return build_real (type, dconst1);
1034 memset (cache, 0, sizeof (cache));
1035 cache[1] = arg0;
1037 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1038 if (n >= 0)
1039 return result;
1041 /* If the original exponent was negative, reciprocate the result. */
1042 target = make_temp_ssa_name (type, NULL, "powmult");
1043 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1044 build_real (type, dconst1), result);
1045 gimple_set_location (div_stmt, loc);
1046 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1048 return target;
1051 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1052 location info LOC. If the arguments are appropriate, create an
1053 equivalent sequence of statements prior to GSI using an optimal
1054 number of multiplications, and return an expession holding the
1055 result. */
1057 static tree
1058 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1059 tree arg0, HOST_WIDE_INT n)
1061 /* Avoid largest negative number. */
1062 if (n != -n
1063 && ((n >= -1 && n <= 2)
1064 || (optimize_function_for_speed_p (cfun)
1065 && powi_cost (n) <= POWI_MAX_MULTS)))
1066 return powi_as_mults (gsi, loc, arg0, n);
1068 return NULL_TREE;
1071 /* Build a gimple call statement that calls FN with argument ARG.
1072 Set the lhs of the call statement to a fresh SSA name. Insert the
1073 statement prior to GSI's current position, and return the fresh
1074 SSA name. */
1076 static tree
1077 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1078 tree fn, tree arg)
1080 gcall *call_stmt;
1081 tree ssa_target;
1083 call_stmt = gimple_build_call (fn, 1, arg);
1084 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1085 gimple_set_lhs (call_stmt, ssa_target);
1086 gimple_set_location (call_stmt, loc);
1087 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1089 return ssa_target;
1092 /* Build a gimple binary operation with the given CODE and arguments
1093 ARG0, ARG1, assigning the result to a new SSA name for variable
1094 TARGET. Insert the statement prior to GSI's current position, and
1095 return the fresh SSA name.*/
1097 static tree
1098 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1099 const char *name, enum tree_code code,
1100 tree arg0, tree arg1)
1102 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1103 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
1104 gimple_set_location (stmt, loc);
1105 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1106 return result;
1109 /* Build a gimple reference operation with the given CODE and argument
1110 ARG, assigning the result to a new SSA name of TYPE with NAME.
1111 Insert the statement prior to GSI's current position, and return
1112 the fresh SSA name. */
1114 static inline tree
1115 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1116 const char *name, enum tree_code code, tree arg0)
1118 tree result = make_temp_ssa_name (type, NULL, name);
1119 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1120 gimple_set_location (stmt, loc);
1121 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1122 return result;
1125 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1126 prior to GSI's current position, and return the fresh SSA name. */
1128 static tree
1129 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1130 tree type, tree val)
1132 tree result = make_ssa_name (type);
1133 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
1134 gimple_set_location (stmt, loc);
1135 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1136 return result;
1139 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1140 with location info LOC. If possible, create an equivalent and
1141 less expensive sequence of statements prior to GSI, and return an
1142 expession holding the result. */
1144 static tree
1145 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1146 tree arg0, tree arg1)
1148 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1149 REAL_VALUE_TYPE c2, dconst3;
1150 HOST_WIDE_INT n;
1151 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1152 machine_mode mode;
1153 bool hw_sqrt_exists, c_is_int, c2_is_int;
1155 /* If the exponent isn't a constant, there's nothing of interest
1156 to be done. */
1157 if (TREE_CODE (arg1) != REAL_CST)
1158 return NULL_TREE;
1160 /* If the exponent is equivalent to an integer, expand to an optimal
1161 multiplication sequence when profitable. */
1162 c = TREE_REAL_CST (arg1);
1163 n = real_to_integer (&c);
1164 real_from_integer (&cint, VOIDmode, n, SIGNED);
1165 c_is_int = real_identical (&c, &cint);
1167 if (c_is_int
1168 && ((n >= -1 && n <= 2)
1169 || (flag_unsafe_math_optimizations
1170 && optimize_bb_for_speed_p (gsi_bb (*gsi))
1171 && powi_cost (n) <= POWI_MAX_MULTS)))
1172 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1174 /* Attempt various optimizations using sqrt and cbrt. */
1175 type = TREE_TYPE (arg0);
1176 mode = TYPE_MODE (type);
1177 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1179 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1180 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1181 sqrt(-0) = -0. */
1182 if (sqrtfn
1183 && REAL_VALUES_EQUAL (c, dconsthalf)
1184 && !HONOR_SIGNED_ZEROS (mode))
1185 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1187 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1188 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1189 so do this optimization even if -Os. Don't do this optimization
1190 if we don't have a hardware sqrt insn. */
1191 dconst1_4 = dconst1;
1192 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1193 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1195 if (flag_unsafe_math_optimizations
1196 && sqrtfn
1197 && REAL_VALUES_EQUAL (c, dconst1_4)
1198 && hw_sqrt_exists)
1200 /* sqrt(x) */
1201 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1203 /* sqrt(sqrt(x)) */
1204 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1207 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1208 optimizing for space. Don't do this optimization if we don't have
1209 a hardware sqrt insn. */
1210 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
1211 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1213 if (flag_unsafe_math_optimizations
1214 && sqrtfn
1215 && optimize_function_for_speed_p (cfun)
1216 && REAL_VALUES_EQUAL (c, dconst3_4)
1217 && hw_sqrt_exists)
1219 /* sqrt(x) */
1220 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1222 /* sqrt(sqrt(x)) */
1223 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1225 /* sqrt(x) * sqrt(sqrt(x)) */
1226 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1227 sqrt_arg0, sqrt_sqrt);
1230 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1231 optimizations since 1./3. is not exactly representable. If x
1232 is negative and finite, the correct value of pow(x,1./3.) is
1233 a NaN with the "invalid" exception raised, because the value
1234 of 1./3. actually has an even denominator. The correct value
1235 of cbrt(x) is a negative real value. */
1236 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1237 dconst1_3 = real_value_truncate (mode, dconst_third ());
1239 if (flag_unsafe_math_optimizations
1240 && cbrtfn
1241 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1242 && REAL_VALUES_EQUAL (c, dconst1_3))
1243 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1245 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1246 if we don't have a hardware sqrt insn. */
1247 dconst1_6 = dconst1_3;
1248 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1250 if (flag_unsafe_math_optimizations
1251 && sqrtfn
1252 && cbrtfn
1253 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1254 && optimize_function_for_speed_p (cfun)
1255 && hw_sqrt_exists
1256 && REAL_VALUES_EQUAL (c, dconst1_6))
1258 /* sqrt(x) */
1259 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1261 /* cbrt(sqrt(x)) */
1262 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1265 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1266 and c not an integer, into
1268 sqrt(x) * powi(x, n/2), n > 0;
1269 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1271 Do not calculate the powi factor when n/2 = 0. */
1272 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1273 n = real_to_integer (&c2);
1274 real_from_integer (&cint, VOIDmode, n, SIGNED);
1275 c2_is_int = real_identical (&c2, &cint);
1277 if (flag_unsafe_math_optimizations
1278 && sqrtfn
1279 && c2_is_int
1280 && !c_is_int
1281 && optimize_function_for_speed_p (cfun))
1283 tree powi_x_ndiv2 = NULL_TREE;
1285 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1286 possible or profitable, give up. Skip the degenerate case when
1287 n is 1 or -1, where the result is always 1. */
1288 if (absu_hwi (n) != 1)
1290 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1291 abs_hwi (n / 2));
1292 if (!powi_x_ndiv2)
1293 return NULL_TREE;
1296 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1297 result of the optimal multiply sequence just calculated. */
1298 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1300 if (absu_hwi (n) == 1)
1301 result = sqrt_arg0;
1302 else
1303 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1304 sqrt_arg0, powi_x_ndiv2);
1306 /* If n is negative, reciprocate the result. */
1307 if (n < 0)
1308 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1309 build_real (type, dconst1), result);
1310 return result;
1313 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1315 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1316 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1318 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1319 different from pow(x, 1./3.) due to rounding and behavior with
1320 negative x, we need to constrain this transformation to unsafe
1321 math and positive x or finite math. */
1322 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
1323 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1324 real_round (&c2, mode, &c2);
1325 n = real_to_integer (&c2);
1326 real_from_integer (&cint, VOIDmode, n, SIGNED);
1327 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1328 real_convert (&c2, mode, &c2);
1330 if (flag_unsafe_math_optimizations
1331 && cbrtfn
1332 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1333 && real_identical (&c2, &c)
1334 && !c2_is_int
1335 && optimize_function_for_speed_p (cfun)
1336 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1338 tree powi_x_ndiv3 = NULL_TREE;
1340 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1341 possible or profitable, give up. Skip the degenerate case when
1342 abs(n) < 3, where the result is always 1. */
1343 if (absu_hwi (n) >= 3)
1345 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1346 abs_hwi (n / 3));
1347 if (!powi_x_ndiv3)
1348 return NULL_TREE;
1351 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1352 as that creates an unnecessary variable. Instead, just produce
1353 either cbrt(x) or cbrt(x) * cbrt(x). */
1354 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1356 if (absu_hwi (n) % 3 == 1)
1357 powi_cbrt_x = cbrt_x;
1358 else
1359 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1360 cbrt_x, cbrt_x);
1362 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1363 if (absu_hwi (n) < 3)
1364 result = powi_cbrt_x;
1365 else
1366 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1367 powi_x_ndiv3, powi_cbrt_x);
1369 /* If n is negative, reciprocate the result. */
1370 if (n < 0)
1371 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1372 build_real (type, dconst1), result);
1374 return result;
1377 /* No optimizations succeeded. */
1378 return NULL_TREE;
1381 /* ARG is the argument to a cabs builtin call in GSI with location info
1382 LOC. Create a sequence of statements prior to GSI that calculates
1383 sqrt(R*R + I*I), where R and I are the real and imaginary components
1384 of ARG, respectively. Return an expression holding the result. */
1386 static tree
1387 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1389 tree real_part, imag_part, addend1, addend2, sum, result;
1390 tree type = TREE_TYPE (TREE_TYPE (arg));
1391 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1392 machine_mode mode = TYPE_MODE (type);
1394 if (!flag_unsafe_math_optimizations
1395 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1396 || !sqrtfn
1397 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1398 return NULL_TREE;
1400 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1401 REALPART_EXPR, arg);
1402 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1403 real_part, real_part);
1404 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1405 IMAGPART_EXPR, arg);
1406 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1407 imag_part, imag_part);
1408 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1409 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1411 return result;
1414 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1415 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1416 an optimal number of multiplies, when n is a constant. */
1418 namespace {
1420 const pass_data pass_data_cse_sincos =
1422 GIMPLE_PASS, /* type */
1423 "sincos", /* name */
1424 OPTGROUP_NONE, /* optinfo_flags */
1425 TV_NONE, /* tv_id */
1426 PROP_ssa, /* properties_required */
1427 0, /* properties_provided */
1428 0, /* properties_destroyed */
1429 0, /* todo_flags_start */
1430 TODO_update_ssa, /* todo_flags_finish */
1433 class pass_cse_sincos : public gimple_opt_pass
1435 public:
1436 pass_cse_sincos (gcc::context *ctxt)
1437 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1440 /* opt_pass methods: */
1441 virtual bool gate (function *)
1443 /* We no longer require either sincos or cexp, since powi expansion
1444 piggybacks on this pass. */
1445 return optimize;
1448 virtual unsigned int execute (function *);
1450 }; // class pass_cse_sincos
1452 unsigned int
1453 pass_cse_sincos::execute (function *fun)
1455 basic_block bb;
1456 bool cfg_changed = false;
1458 calculate_dominance_info (CDI_DOMINATORS);
1459 memset (&sincos_stats, 0, sizeof (sincos_stats));
1461 FOR_EACH_BB_FN (bb, fun)
1463 gimple_stmt_iterator gsi;
1464 bool cleanup_eh = false;
1466 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1468 gimple stmt = gsi_stmt (gsi);
1469 tree fndecl;
1471 /* Only the last stmt in a bb could throw, no need to call
1472 gimple_purge_dead_eh_edges if we change something in the middle
1473 of a basic block. */
1474 cleanup_eh = false;
1476 if (is_gimple_call (stmt)
1477 && gimple_call_lhs (stmt)
1478 && (fndecl = gimple_call_fndecl (stmt))
1479 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1481 tree arg, arg0, arg1, result;
1482 HOST_WIDE_INT n;
1483 location_t loc;
1485 switch (DECL_FUNCTION_CODE (fndecl))
1487 CASE_FLT_FN (BUILT_IN_COS):
1488 CASE_FLT_FN (BUILT_IN_SIN):
1489 CASE_FLT_FN (BUILT_IN_CEXPI):
1490 /* Make sure we have either sincos or cexp. */
1491 if (!targetm.libc_has_function (function_c99_math_complex)
1492 && !targetm.libc_has_function (function_sincos))
1493 break;
1495 arg = gimple_call_arg (stmt, 0);
1496 if (TREE_CODE (arg) == SSA_NAME)
1497 cfg_changed |= execute_cse_sincos_1 (arg);
1498 break;
1500 CASE_FLT_FN (BUILT_IN_POW):
1501 arg0 = gimple_call_arg (stmt, 0);
1502 arg1 = gimple_call_arg (stmt, 1);
1504 loc = gimple_location (stmt);
1505 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1507 if (result)
1509 tree lhs = gimple_get_lhs (stmt);
1510 gassign *new_stmt = gimple_build_assign (lhs, result);
1511 gimple_set_location (new_stmt, loc);
1512 unlink_stmt_vdef (stmt);
1513 gsi_replace (&gsi, new_stmt, true);
1514 cleanup_eh = true;
1515 if (gimple_vdef (stmt))
1516 release_ssa_name (gimple_vdef (stmt));
1518 break;
1520 CASE_FLT_FN (BUILT_IN_POWI):
1521 arg0 = gimple_call_arg (stmt, 0);
1522 arg1 = gimple_call_arg (stmt, 1);
1523 loc = gimple_location (stmt);
1525 if (real_minus_onep (arg0))
1527 tree t0, t1, cond, one, minus_one;
1528 gassign *stmt;
1530 t0 = TREE_TYPE (arg0);
1531 t1 = TREE_TYPE (arg1);
1532 one = build_real (t0, dconst1);
1533 minus_one = build_real (t0, dconstm1);
1535 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1536 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1537 arg1, build_int_cst (t1, 1));
1538 gimple_set_location (stmt, loc);
1539 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1541 result = make_temp_ssa_name (t0, NULL, "powi");
1542 stmt = gimple_build_assign (result, COND_EXPR, cond,
1543 minus_one, one);
1544 gimple_set_location (stmt, loc);
1545 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1547 else
1549 if (!tree_fits_shwi_p (arg1))
1550 break;
1552 n = tree_to_shwi (arg1);
1553 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1556 if (result)
1558 tree lhs = gimple_get_lhs (stmt);
1559 gassign *new_stmt = gimple_build_assign (lhs, result);
1560 gimple_set_location (new_stmt, loc);
1561 unlink_stmt_vdef (stmt);
1562 gsi_replace (&gsi, new_stmt, true);
1563 cleanup_eh = true;
1564 if (gimple_vdef (stmt))
1565 release_ssa_name (gimple_vdef (stmt));
1567 break;
1569 CASE_FLT_FN (BUILT_IN_CABS):
1570 arg0 = gimple_call_arg (stmt, 0);
1571 loc = gimple_location (stmt);
1572 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1574 if (result)
1576 tree lhs = gimple_get_lhs (stmt);
1577 gassign *new_stmt = gimple_build_assign (lhs, result);
1578 gimple_set_location (new_stmt, loc);
1579 unlink_stmt_vdef (stmt);
1580 gsi_replace (&gsi, new_stmt, true);
1581 cleanup_eh = true;
1582 if (gimple_vdef (stmt))
1583 release_ssa_name (gimple_vdef (stmt));
1585 break;
1587 default:;
1591 if (cleanup_eh)
1592 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1595 statistics_counter_event (fun, "sincos statements inserted",
1596 sincos_stats.inserted);
1598 free_dominance_info (CDI_DOMINATORS);
1599 return cfg_changed ? TODO_cleanup_cfg : 0;
1602 } // anon namespace
1604 gimple_opt_pass *
1605 make_pass_cse_sincos (gcc::context *ctxt)
1607 return new pass_cse_sincos (ctxt);
1610 /* A symbolic number is used to detect byte permutation and selection
1611 patterns. Therefore the field N contains an artificial number
1612 consisting of octet sized markers:
1614 0 - target byte has the value 0
1615 FF - target byte has an unknown value (eg. due to sign extension)
1616 1..size - marker value is the target byte index minus one.
1618 To detect permutations on memory sources (arrays and structures), a symbolic
1619 number is also associated a base address (the array or structure the load is
1620 made from), an offset from the base address and a range which gives the
1621 difference between the highest and lowest accessed memory location to make
1622 such a symbolic number. The range is thus different from size which reflects
1623 the size of the type of current expression. Note that for non memory source,
1624 range holds the same value as size.
1626 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1627 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1628 still have a size of 2 but this time a range of 1. */
1630 struct symbolic_number {
1631 uint64_t n;
1632 tree type;
1633 tree base_addr;
1634 tree offset;
1635 HOST_WIDE_INT bytepos;
1636 tree alias_set;
1637 tree vuse;
1638 unsigned HOST_WIDE_INT range;
1641 #define BITS_PER_MARKER 8
1642 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1643 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1644 #define HEAD_MARKER(n, size) \
1645 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1647 /* The number which the find_bswap_or_nop_1 result should match in
1648 order to have a nop. The number is masked according to the size of
1649 the symbolic number before using it. */
1650 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1651 (uint64_t)0x08070605 << 32 | 0x04030201)
1653 /* The number which the find_bswap_or_nop_1 result should match in
1654 order to have a byte swap. The number is masked according to the
1655 size of the symbolic number before using it. */
1656 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1657 (uint64_t)0x01020304 << 32 | 0x05060708)
1659 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1660 number N. Return false if the requested operation is not permitted
1661 on a symbolic number. */
1663 static inline bool
1664 do_shift_rotate (enum tree_code code,
1665 struct symbolic_number *n,
1666 int count)
1668 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1669 unsigned head_marker;
1671 if (count % BITS_PER_UNIT != 0)
1672 return false;
1673 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
1675 /* Zero out the extra bits of N in order to avoid them being shifted
1676 into the significant bits. */
1677 if (size < 64 / BITS_PER_MARKER)
1678 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1680 switch (code)
1682 case LSHIFT_EXPR:
1683 n->n <<= count;
1684 break;
1685 case RSHIFT_EXPR:
1686 head_marker = HEAD_MARKER (n->n, size);
1687 n->n >>= count;
1688 /* Arithmetic shift of signed type: result is dependent on the value. */
1689 if (!TYPE_UNSIGNED (n->type) && head_marker)
1690 for (i = 0; i < count / BITS_PER_MARKER; i++)
1691 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1692 << ((size - 1 - i) * BITS_PER_MARKER);
1693 break;
1694 case LROTATE_EXPR:
1695 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
1696 break;
1697 case RROTATE_EXPR:
1698 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
1699 break;
1700 default:
1701 return false;
1703 /* Zero unused bits for size. */
1704 if (size < 64 / BITS_PER_MARKER)
1705 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1706 return true;
1709 /* Perform sanity checking for the symbolic number N and the gimple
1710 statement STMT. */
1712 static inline bool
1713 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1715 tree lhs_type;
1717 lhs_type = gimple_expr_type (stmt);
1719 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1720 return false;
1722 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1723 return false;
1725 return true;
1728 /* Initialize the symbolic number N for the bswap pass from the base element
1729 SRC manipulated by the bitwise OR expression. */
1731 static bool
1732 init_symbolic_number (struct symbolic_number *n, tree src)
1734 int size;
1736 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1738 /* Set up the symbolic number N by setting each byte to a value between 1 and
1739 the byte size of rhs1. The highest order byte is set to n->size and the
1740 lowest order byte to 1. */
1741 n->type = TREE_TYPE (src);
1742 size = TYPE_PRECISION (n->type);
1743 if (size % BITS_PER_UNIT != 0)
1744 return false;
1745 size /= BITS_PER_UNIT;
1746 if (size > 64 / BITS_PER_MARKER)
1747 return false;
1748 n->range = size;
1749 n->n = CMPNOP;
1751 if (size < 64 / BITS_PER_MARKER)
1752 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
1754 return true;
1757 /* Check if STMT might be a byte swap or a nop from a memory source and returns
1758 the answer. If so, REF is that memory source and the base of the memory area
1759 accessed and the offset of the access from that base are recorded in N. */
1761 bool
1762 find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1764 /* Leaf node is an array or component ref. Memorize its base and
1765 offset from base to compare to other such leaf node. */
1766 HOST_WIDE_INT bitsize, bitpos;
1767 machine_mode mode;
1768 int unsignedp, volatilep;
1769 tree offset, base_addr;
1771 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1772 return false;
1774 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1775 &unsignedp, &volatilep, false);
1777 if (TREE_CODE (base_addr) == MEM_REF)
1779 offset_int bit_offset = 0;
1780 tree off = TREE_OPERAND (base_addr, 1);
1782 if (!integer_zerop (off))
1784 offset_int boff, coff = mem_ref_offset (base_addr);
1785 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1786 bit_offset += boff;
1789 base_addr = TREE_OPERAND (base_addr, 0);
1791 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1792 if (wi::neg_p (bit_offset))
1794 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1795 offset_int tem = bit_offset.and_not (mask);
1796 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1797 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1798 bit_offset -= tem;
1799 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
1800 if (offset)
1801 offset = size_binop (PLUS_EXPR, offset,
1802 wide_int_to_tree (sizetype, tem));
1803 else
1804 offset = wide_int_to_tree (sizetype, tem);
1807 bitpos += bit_offset.to_shwi ();
1810 if (bitpos % BITS_PER_UNIT)
1811 return false;
1812 if (bitsize % BITS_PER_UNIT)
1813 return false;
1815 if (!init_symbolic_number (n, ref))
1816 return false;
1817 n->base_addr = base_addr;
1818 n->offset = offset;
1819 n->bytepos = bitpos / BITS_PER_UNIT;
1820 n->alias_set = reference_alias_ptr_type (ref);
1821 n->vuse = gimple_vuse (stmt);
1822 return true;
1825 /* Compute the symbolic number N representing the result of a bitwise OR on 2
1826 symbolic number N1 and N2 whose source statements are respectively
1827 SOURCE_STMT1 and SOURCE_STMT2. */
1829 static gimple
1830 perform_symbolic_merge (gimple source_stmt1, struct symbolic_number *n1,
1831 gimple source_stmt2, struct symbolic_number *n2,
1832 struct symbolic_number *n)
1834 int i, size;
1835 uint64_t mask;
1836 gimple source_stmt;
1837 struct symbolic_number *n_start;
1839 /* Sources are different, cancel bswap if they are not memory location with
1840 the same base (array, structure, ...). */
1841 if (gimple_assign_rhs1 (source_stmt1) != gimple_assign_rhs1 (source_stmt2))
1843 int64_t inc;
1844 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
1845 struct symbolic_number *toinc_n_ptr, *n_end;
1847 if (!n1->base_addr || !n2->base_addr
1848 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
1849 return NULL;
1851 if (!n1->offset != !n2->offset ||
1852 (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
1853 return NULL;
1855 if (n1->bytepos < n2->bytepos)
1857 n_start = n1;
1858 start_sub = n2->bytepos - n1->bytepos;
1859 source_stmt = source_stmt1;
1861 else
1863 n_start = n2;
1864 start_sub = n1->bytepos - n2->bytepos;
1865 source_stmt = source_stmt2;
1868 /* Find the highest address at which a load is performed and
1869 compute related info. */
1870 end1 = n1->bytepos + (n1->range - 1);
1871 end2 = n2->bytepos + (n2->range - 1);
1872 if (end1 < end2)
1874 end = end2;
1875 end_sub = end2 - end1;
1877 else
1879 end = end1;
1880 end_sub = end1 - end2;
1882 n_end = (end2 > end1) ? n2 : n1;
1884 /* Find symbolic number whose lsb is the most significant. */
1885 if (BYTES_BIG_ENDIAN)
1886 toinc_n_ptr = (n_end == n1) ? n2 : n1;
1887 else
1888 toinc_n_ptr = (n_start == n1) ? n2 : n1;
1890 n->range = end - n_start->bytepos + 1;
1892 /* Check that the range of memory covered can be represented by
1893 a symbolic number. */
1894 if (n->range > 64 / BITS_PER_MARKER)
1895 return NULL;
1897 /* Reinterpret byte marks in symbolic number holding the value of
1898 bigger weight according to target endianness. */
1899 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
1900 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
1901 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
1903 unsigned marker =
1904 (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
1905 if (marker && marker != MARKER_BYTE_UNKNOWN)
1906 toinc_n_ptr->n += inc;
1909 else
1911 n->range = n1->range;
1912 n_start = n1;
1913 source_stmt = source_stmt1;
1916 if (!n1->alias_set
1917 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
1918 n->alias_set = n1->alias_set;
1919 else
1920 n->alias_set = ptr_type_node;
1921 n->vuse = n_start->vuse;
1922 n->base_addr = n_start->base_addr;
1923 n->offset = n_start->offset;
1924 n->bytepos = n_start->bytepos;
1925 n->type = n_start->type;
1926 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1928 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
1930 uint64_t masked1, masked2;
1932 masked1 = n1->n & mask;
1933 masked2 = n2->n & mask;
1934 if (masked1 && masked2 && masked1 != masked2)
1935 return NULL;
1937 n->n = n1->n | n2->n;
1939 return source_stmt;
1942 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1943 the operation given by the rhs of STMT on the result. If the operation
1944 could successfully be executed the function returns a gimple stmt whose
1945 rhs's first tree is the expression of the source operand and NULL
1946 otherwise. */
1948 static gimple
1949 find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
1951 enum tree_code code;
1952 tree rhs1, rhs2 = NULL;
1953 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
1954 enum gimple_rhs_class rhs_class;
1956 if (!limit || !is_gimple_assign (stmt))
1957 return NULL;
1959 rhs1 = gimple_assign_rhs1 (stmt);
1961 if (find_bswap_or_nop_load (stmt, rhs1, n))
1962 return stmt;
1964 if (TREE_CODE (rhs1) != SSA_NAME)
1965 return NULL;
1967 code = gimple_assign_rhs_code (stmt);
1968 rhs_class = gimple_assign_rhs_class (stmt);
1969 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1971 if (rhs_class == GIMPLE_BINARY_RHS)
1972 rhs2 = gimple_assign_rhs2 (stmt);
1974 /* Handle unary rhs and binary rhs with integer constants as second
1975 operand. */
1977 if (rhs_class == GIMPLE_UNARY_RHS
1978 || (rhs_class == GIMPLE_BINARY_RHS
1979 && TREE_CODE (rhs2) == INTEGER_CST))
1981 if (code != BIT_AND_EXPR
1982 && code != LSHIFT_EXPR
1983 && code != RSHIFT_EXPR
1984 && code != LROTATE_EXPR
1985 && code != RROTATE_EXPR
1986 && !CONVERT_EXPR_CODE_P (code))
1987 return NULL;
1989 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
1991 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1992 we have to initialize the symbolic number. */
1993 if (!source_stmt1)
1995 if (gimple_assign_load_p (stmt)
1996 || !init_symbolic_number (n, rhs1))
1997 return NULL;
1998 source_stmt1 = stmt;
2001 switch (code)
2003 case BIT_AND_EXPR:
2005 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2006 uint64_t val = int_cst_value (rhs2), mask = 0;
2007 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
2009 /* Only constants masking full bytes are allowed. */
2010 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
2011 if ((val & tmp) != 0 && (val & tmp) != tmp)
2012 return NULL;
2013 else if (val & tmp)
2014 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
2016 n->n &= mask;
2018 break;
2019 case LSHIFT_EXPR:
2020 case RSHIFT_EXPR:
2021 case LROTATE_EXPR:
2022 case RROTATE_EXPR:
2023 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
2024 return NULL;
2025 break;
2026 CASE_CONVERT:
2028 int i, type_size, old_type_size;
2029 tree type;
2031 type = gimple_expr_type (stmt);
2032 type_size = TYPE_PRECISION (type);
2033 if (type_size % BITS_PER_UNIT != 0)
2034 return NULL;
2035 type_size /= BITS_PER_UNIT;
2036 if (type_size > 64 / BITS_PER_MARKER)
2037 return NULL;
2039 /* Sign extension: result is dependent on the value. */
2040 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2041 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
2042 && HEAD_MARKER (n->n, old_type_size))
2043 for (i = 0; i < type_size - old_type_size; i++)
2044 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
2045 << ((type_size - 1 - i) * BITS_PER_MARKER);
2047 if (type_size < 64 / BITS_PER_MARKER)
2049 /* If STMT casts to a smaller type mask out the bits not
2050 belonging to the target type. */
2051 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
2053 n->type = type;
2054 if (!n->base_addr)
2055 n->range = type_size;
2057 break;
2058 default:
2059 return NULL;
2061 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
2064 /* Handle binary rhs. */
2066 if (rhs_class == GIMPLE_BINARY_RHS)
2068 struct symbolic_number n1, n2;
2069 gimple source_stmt, source_stmt2;
2071 if (code != BIT_IOR_EXPR)
2072 return NULL;
2074 if (TREE_CODE (rhs2) != SSA_NAME)
2075 return NULL;
2077 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2079 switch (code)
2081 case BIT_IOR_EXPR:
2082 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
2084 if (!source_stmt1)
2085 return NULL;
2087 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
2089 if (!source_stmt2)
2090 return NULL;
2092 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
2093 return NULL;
2095 if (!n1.vuse != !n2.vuse ||
2096 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
2097 return NULL;
2099 source_stmt =
2100 perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
2102 if (!source_stmt)
2103 return NULL;
2105 if (!verify_symbolic_number_p (n, stmt))
2106 return NULL;
2108 break;
2109 default:
2110 return NULL;
2112 return source_stmt;
2114 return NULL;
2117 /* Check if STMT completes a bswap implementation or a read in a given
2118 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2119 accordingly. It also sets N to represent the kind of operations
2120 performed: size of the resulting expression and whether it works on
2121 a memory source, and if so alias-set and vuse. At last, the
2122 function returns a stmt whose rhs's first tree is the source
2123 expression. */
2125 static gimple
2126 find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
2128 /* The number which the find_bswap_or_nop_1 result should match in order
2129 to have a full byte swap. The number is shifted to the right
2130 according to the size of the symbolic number before using it. */
2131 uint64_t cmpxchg = CMPXCHG;
2132 uint64_t cmpnop = CMPNOP;
2134 gimple source_stmt;
2135 int limit;
2137 /* The last parameter determines the depth search limit. It usually
2138 correlates directly to the number n of bytes to be touched. We
2139 increase that number by log2(n) + 1 here in order to also
2140 cover signed -> unsigned conversions of the src operand as can be seen
2141 in libgcc, and for initial shift/and operation of the src operand. */
2142 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2143 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
2144 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
2146 if (!source_stmt)
2147 return NULL;
2149 /* Find real size of result (highest non zero byte). */
2150 if (n->base_addr)
2152 int rsize;
2153 uint64_t tmpn;
2155 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
2156 n->range = rsize;
2159 /* Zero out the extra bits of N and CMP*. */
2160 if (n->range < (int) sizeof (int64_t))
2162 uint64_t mask;
2164 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2165 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
2166 cmpnop &= mask;
2169 /* A complete byte swap should make the symbolic number to start with
2170 the largest digit in the highest order byte. Unchanged symbolic
2171 number indicates a read with same endianness as target architecture. */
2172 if (n->n == cmpnop)
2173 *bswap = false;
2174 else if (n->n == cmpxchg)
2175 *bswap = true;
2176 else
2177 return NULL;
2179 /* Useless bit manipulation performed by code. */
2180 if (!n->base_addr && n->n == cmpnop)
2181 return NULL;
2183 n->range *= BITS_PER_UNIT;
2184 return source_stmt;
2187 namespace {
2189 const pass_data pass_data_optimize_bswap =
2191 GIMPLE_PASS, /* type */
2192 "bswap", /* name */
2193 OPTGROUP_NONE, /* optinfo_flags */
2194 TV_NONE, /* tv_id */
2195 PROP_ssa, /* properties_required */
2196 0, /* properties_provided */
2197 0, /* properties_destroyed */
2198 0, /* todo_flags_start */
2199 0, /* todo_flags_finish */
2202 class pass_optimize_bswap : public gimple_opt_pass
2204 public:
2205 pass_optimize_bswap (gcc::context *ctxt)
2206 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2209 /* opt_pass methods: */
2210 virtual bool gate (function *)
2212 return flag_expensive_optimizations && optimize;
2215 virtual unsigned int execute (function *);
2217 }; // class pass_optimize_bswap
2219 /* Perform the bswap optimization: replace the expression computed in the rhs
2220 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2221 Which of these alternatives replace the rhs is given by N->base_addr (non
2222 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2223 load to perform are also given in N while the builtin bswap invoke is given
2224 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2225 load statements involved to construct the rhs in CUR_STMT and N->range gives
2226 the size of the rhs expression for maintaining some statistics.
2228 Note that if the replacement involve a load, CUR_STMT is moved just after
2229 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2230 changing of basic block. */
2232 static bool
2233 bswap_replace (gimple cur_stmt, gimple src_stmt, tree fndecl, tree bswap_type,
2234 tree load_type, struct symbolic_number *n, bool bswap)
2236 gimple_stmt_iterator gsi;
2237 tree src, tmp, tgt;
2238 gimple bswap_stmt;
2240 gsi = gsi_for_stmt (cur_stmt);
2241 src = gimple_assign_rhs1 (src_stmt);
2242 tgt = gimple_assign_lhs (cur_stmt);
2244 /* Need to load the value from memory first. */
2245 if (n->base_addr)
2247 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
2248 tree addr_expr, addr_tmp, val_expr, val_tmp;
2249 tree load_offset_ptr, aligned_load_type;
2250 gimple addr_stmt, load_stmt;
2251 unsigned align;
2253 align = get_object_alignment (src);
2254 if (bswap
2255 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2256 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
2257 return false;
2259 /* Move cur_stmt just before one of the load of the original
2260 to ensure it has the same VUSE. See PR61517 for what could
2261 go wrong. */
2262 gsi_move_before (&gsi, &gsi_ins);
2263 gsi = gsi_for_stmt (cur_stmt);
2265 /* Compute address to load from and cast according to the size
2266 of the load. */
2267 addr_expr = build_fold_addr_expr (unshare_expr (src));
2268 if (is_gimple_min_invariant (addr_expr))
2269 addr_tmp = addr_expr;
2270 else
2272 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2273 "load_src");
2274 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
2275 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
2278 /* Perform the load. */
2279 aligned_load_type = load_type;
2280 if (align < TYPE_ALIGN (load_type))
2281 aligned_load_type = build_aligned_type (load_type, align);
2282 load_offset_ptr = build_int_cst (n->alias_set, 0);
2283 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2284 load_offset_ptr);
2286 if (!bswap)
2288 if (n->range == 16)
2289 nop_stats.found_16bit++;
2290 else if (n->range == 32)
2291 nop_stats.found_32bit++;
2292 else
2294 gcc_assert (n->range == 64);
2295 nop_stats.found_64bit++;
2298 /* Convert the result of load if necessary. */
2299 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2301 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2302 "load_dst");
2303 load_stmt = gimple_build_assign (val_tmp, val_expr);
2304 gimple_set_vuse (load_stmt, n->vuse);
2305 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2306 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
2308 else
2310 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
2311 gimple_set_vuse (cur_stmt, n->vuse);
2313 update_stmt (cur_stmt);
2315 if (dump_file)
2317 fprintf (dump_file,
2318 "%d bit load in target endianness found at: ",
2319 (int)n->range);
2320 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2322 return true;
2324 else
2326 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2327 load_stmt = gimple_build_assign (val_tmp, val_expr);
2328 gimple_set_vuse (load_stmt, n->vuse);
2329 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2331 src = val_tmp;
2334 if (n->range == 16)
2335 bswap_stats.found_16bit++;
2336 else if (n->range == 32)
2337 bswap_stats.found_32bit++;
2338 else
2340 gcc_assert (n->range == 64);
2341 bswap_stats.found_64bit++;
2344 tmp = src;
2346 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2347 are considered as rotation of 2N bit values by N bits is generally not
2348 equivalent to a bswap. Consider for instance 0x01020304 >> 16 which gives
2349 0x03040102 while a bswap for that value is 0x04030201. */
2350 if (bswap && n->range == 16)
2352 tree count = build_int_cst (NULL, BITS_PER_UNIT);
2353 bswap_type = TREE_TYPE (src);
2354 src = fold_build2 (LROTATE_EXPR, bswap_type, src, count);
2355 bswap_stmt = gimple_build_assign (NULL, src);
2357 else
2359 /* Convert the src expression if necessary. */
2360 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2362 gimple convert_stmt;
2363 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2364 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2365 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2368 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
2371 tmp = tgt;
2373 /* Convert the result if necessary. */
2374 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2376 gimple convert_stmt;
2377 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2378 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
2379 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2382 gimple_set_lhs (bswap_stmt, tmp);
2384 if (dump_file)
2386 fprintf (dump_file, "%d bit bswap implementation found at: ",
2387 (int)n->range);
2388 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
2391 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
2392 gsi_remove (&gsi, true);
2393 return true;
2396 /* Find manual byte swap implementations as well as load in a given
2397 endianness. Byte swaps are turned into a bswap builtin invokation
2398 while endian loads are converted to bswap builtin invokation or
2399 simple load according to the target endianness. */
2401 unsigned int
2402 pass_optimize_bswap::execute (function *fun)
2404 basic_block bb;
2405 bool bswap32_p, bswap64_p;
2406 bool changed = false;
2407 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
2409 if (BITS_PER_UNIT != 8)
2410 return 0;
2412 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
2413 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
2414 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
2415 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
2416 || (bswap32_p && word_mode == SImode)));
2418 /* Determine the argument type of the builtins. The code later on
2419 assumes that the return and argument type are the same. */
2420 if (bswap32_p)
2422 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2423 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2426 if (bswap64_p)
2428 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2429 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2432 memset (&nop_stats, 0, sizeof (nop_stats));
2433 memset (&bswap_stats, 0, sizeof (bswap_stats));
2435 FOR_EACH_BB_FN (bb, fun)
2437 gimple_stmt_iterator gsi;
2439 /* We do a reverse scan for bswap patterns to make sure we get the
2440 widest match. As bswap pattern matching doesn't handle previously
2441 inserted smaller bswap replacements as sub-patterns, the wider
2442 variant wouldn't be detected. */
2443 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
2445 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2446 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
2447 enum tree_code code;
2448 struct symbolic_number n;
2449 bool bswap;
2451 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2452 might be moved to a different basic block by bswap_replace and gsi
2453 must not points to it if that's the case. Moving the gsi_prev
2454 there make sure that gsi points to the statement previous to
2455 cur_stmt while still making sure that all statements are
2456 considered in this basic block. */
2457 gsi_prev (&gsi);
2459 if (!is_gimple_assign (cur_stmt))
2460 continue;
2462 code = gimple_assign_rhs_code (cur_stmt);
2463 switch (code)
2465 case LROTATE_EXPR:
2466 case RROTATE_EXPR:
2467 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2468 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2469 % BITS_PER_UNIT)
2470 continue;
2471 /* Fall through. */
2472 case BIT_IOR_EXPR:
2473 break;
2474 default:
2475 continue;
2478 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
2480 if (!src_stmt)
2481 continue;
2483 switch (n.range)
2485 case 16:
2486 /* Already in canonical form, nothing to do. */
2487 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2488 continue;
2489 load_type = uint16_type_node;
2490 break;
2491 case 32:
2492 load_type = uint32_type_node;
2493 if (bswap32_p)
2495 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2496 bswap_type = bswap32_type;
2498 break;
2499 case 64:
2500 load_type = uint64_type_node;
2501 if (bswap64_p)
2503 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2504 bswap_type = bswap64_type;
2506 break;
2507 default:
2508 continue;
2511 if (bswap && !fndecl && n.range != 16)
2512 continue;
2514 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2515 &n, bswap))
2516 changed = true;
2520 statistics_counter_event (fun, "16-bit nop implementations found",
2521 nop_stats.found_16bit);
2522 statistics_counter_event (fun, "32-bit nop implementations found",
2523 nop_stats.found_32bit);
2524 statistics_counter_event (fun, "64-bit nop implementations found",
2525 nop_stats.found_64bit);
2526 statistics_counter_event (fun, "16-bit bswap implementations found",
2527 bswap_stats.found_16bit);
2528 statistics_counter_event (fun, "32-bit bswap implementations found",
2529 bswap_stats.found_32bit);
2530 statistics_counter_event (fun, "64-bit bswap implementations found",
2531 bswap_stats.found_64bit);
2533 return (changed ? TODO_update_ssa : 0);
2536 } // anon namespace
2538 gimple_opt_pass *
2539 make_pass_optimize_bswap (gcc::context *ctxt)
2541 return new pass_optimize_bswap (ctxt);
2544 /* Return true if stmt is a type conversion operation that can be stripped
2545 when used in a widening multiply operation. */
2546 static bool
2547 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2549 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2551 if (TREE_CODE (result_type) == INTEGER_TYPE)
2553 tree op_type;
2554 tree inner_op_type;
2556 if (!CONVERT_EXPR_CODE_P (rhs_code))
2557 return false;
2559 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2561 /* If the type of OP has the same precision as the result, then
2562 we can strip this conversion. The multiply operation will be
2563 selected to create the correct extension as a by-product. */
2564 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2565 return true;
2567 /* We can also strip a conversion if it preserves the signed-ness of
2568 the operation and doesn't narrow the range. */
2569 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2571 /* If the inner-most type is unsigned, then we can strip any
2572 intermediate widening operation. If it's signed, then the
2573 intermediate widening operation must also be signed. */
2574 if ((TYPE_UNSIGNED (inner_op_type)
2575 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2576 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2577 return true;
2579 return false;
2582 return rhs_code == FIXED_CONVERT_EXPR;
2585 /* Return true if RHS is a suitable operand for a widening multiplication,
2586 assuming a target type of TYPE.
2587 There are two cases:
2589 - RHS makes some value at least twice as wide. Store that value
2590 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2592 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2593 but leave *TYPE_OUT untouched. */
2595 static bool
2596 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2597 tree *new_rhs_out)
2599 gimple stmt;
2600 tree type1, rhs1;
2602 if (TREE_CODE (rhs) == SSA_NAME)
2604 stmt = SSA_NAME_DEF_STMT (rhs);
2605 if (is_gimple_assign (stmt))
2607 if (! widening_mult_conversion_strippable_p (type, stmt))
2608 rhs1 = rhs;
2609 else
2611 rhs1 = gimple_assign_rhs1 (stmt);
2613 if (TREE_CODE (rhs1) == INTEGER_CST)
2615 *new_rhs_out = rhs1;
2616 *type_out = NULL;
2617 return true;
2621 else
2622 rhs1 = rhs;
2624 type1 = TREE_TYPE (rhs1);
2626 if (TREE_CODE (type1) != TREE_CODE (type)
2627 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2628 return false;
2630 *new_rhs_out = rhs1;
2631 *type_out = type1;
2632 return true;
2635 if (TREE_CODE (rhs) == INTEGER_CST)
2637 *new_rhs_out = rhs;
2638 *type_out = NULL;
2639 return true;
2642 return false;
2645 /* Return true if STMT performs a widening multiplication, assuming the
2646 output type is TYPE. If so, store the unwidened types of the operands
2647 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2648 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2649 and *TYPE2_OUT would give the operands of the multiplication. */
2651 static bool
2652 is_widening_mult_p (gimple stmt,
2653 tree *type1_out, tree *rhs1_out,
2654 tree *type2_out, tree *rhs2_out)
2656 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2658 if (TREE_CODE (type) != INTEGER_TYPE
2659 && TREE_CODE (type) != FIXED_POINT_TYPE)
2660 return false;
2662 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2663 rhs1_out))
2664 return false;
2666 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2667 rhs2_out))
2668 return false;
2670 if (*type1_out == NULL)
2672 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2673 return false;
2674 *type1_out = *type2_out;
2677 if (*type2_out == NULL)
2679 if (!int_fits_type_p (*rhs2_out, *type1_out))
2680 return false;
2681 *type2_out = *type1_out;
2684 /* Ensure that the larger of the two operands comes first. */
2685 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2687 tree tmp;
2688 tmp = *type1_out;
2689 *type1_out = *type2_out;
2690 *type2_out = tmp;
2691 tmp = *rhs1_out;
2692 *rhs1_out = *rhs2_out;
2693 *rhs2_out = tmp;
2696 return true;
2699 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2700 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2701 value is true iff we converted the statement. */
2703 static bool
2704 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2706 tree lhs, rhs1, rhs2, type, type1, type2;
2707 enum insn_code handler;
2708 machine_mode to_mode, from_mode, actual_mode;
2709 optab op;
2710 int actual_precision;
2711 location_t loc = gimple_location (stmt);
2712 bool from_unsigned1, from_unsigned2;
2714 lhs = gimple_assign_lhs (stmt);
2715 type = TREE_TYPE (lhs);
2716 if (TREE_CODE (type) != INTEGER_TYPE)
2717 return false;
2719 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2720 return false;
2722 to_mode = TYPE_MODE (type);
2723 from_mode = TYPE_MODE (type1);
2724 from_unsigned1 = TYPE_UNSIGNED (type1);
2725 from_unsigned2 = TYPE_UNSIGNED (type2);
2727 if (from_unsigned1 && from_unsigned2)
2728 op = umul_widen_optab;
2729 else if (!from_unsigned1 && !from_unsigned2)
2730 op = smul_widen_optab;
2731 else
2732 op = usmul_widen_optab;
2734 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2735 0, &actual_mode);
2737 if (handler == CODE_FOR_nothing)
2739 if (op != smul_widen_optab)
2741 /* We can use a signed multiply with unsigned types as long as
2742 there is a wider mode to use, or it is the smaller of the two
2743 types that is unsigned. Note that type1 >= type2, always. */
2744 if ((TYPE_UNSIGNED (type1)
2745 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2746 || (TYPE_UNSIGNED (type2)
2747 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2749 from_mode = GET_MODE_WIDER_MODE (from_mode);
2750 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2751 return false;
2754 op = smul_widen_optab;
2755 handler = find_widening_optab_handler_and_mode (op, to_mode,
2756 from_mode, 0,
2757 &actual_mode);
2759 if (handler == CODE_FOR_nothing)
2760 return false;
2762 from_unsigned1 = from_unsigned2 = false;
2764 else
2765 return false;
2768 /* Ensure that the inputs to the handler are in the correct precison
2769 for the opcode. This will be the full mode size. */
2770 actual_precision = GET_MODE_PRECISION (actual_mode);
2771 if (2 * actual_precision > TYPE_PRECISION (type))
2772 return false;
2773 if (actual_precision != TYPE_PRECISION (type1)
2774 || from_unsigned1 != TYPE_UNSIGNED (type1))
2775 rhs1 = build_and_insert_cast (gsi, loc,
2776 build_nonstandard_integer_type
2777 (actual_precision, from_unsigned1), rhs1);
2778 if (actual_precision != TYPE_PRECISION (type2)
2779 || from_unsigned2 != TYPE_UNSIGNED (type2))
2780 rhs2 = build_and_insert_cast (gsi, loc,
2781 build_nonstandard_integer_type
2782 (actual_precision, from_unsigned2), rhs2);
2784 /* Handle constants. */
2785 if (TREE_CODE (rhs1) == INTEGER_CST)
2786 rhs1 = fold_convert (type1, rhs1);
2787 if (TREE_CODE (rhs2) == INTEGER_CST)
2788 rhs2 = fold_convert (type2, rhs2);
2790 gimple_assign_set_rhs1 (stmt, rhs1);
2791 gimple_assign_set_rhs2 (stmt, rhs2);
2792 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2793 update_stmt (stmt);
2794 widen_mul_stats.widen_mults_inserted++;
2795 return true;
2798 /* Process a single gimple statement STMT, which is found at the
2799 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2800 rhs (given by CODE), and try to convert it into a
2801 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2802 is true iff we converted the statement. */
2804 static bool
2805 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2806 enum tree_code code)
2808 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2809 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2810 tree type, type1, type2, optype;
2811 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2812 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2813 optab this_optab;
2814 enum tree_code wmult_code;
2815 enum insn_code handler;
2816 machine_mode to_mode, from_mode, actual_mode;
2817 location_t loc = gimple_location (stmt);
2818 int actual_precision;
2819 bool from_unsigned1, from_unsigned2;
2821 lhs = gimple_assign_lhs (stmt);
2822 type = TREE_TYPE (lhs);
2823 if (TREE_CODE (type) != INTEGER_TYPE
2824 && TREE_CODE (type) != FIXED_POINT_TYPE)
2825 return false;
2827 if (code == MINUS_EXPR)
2828 wmult_code = WIDEN_MULT_MINUS_EXPR;
2829 else
2830 wmult_code = WIDEN_MULT_PLUS_EXPR;
2832 rhs1 = gimple_assign_rhs1 (stmt);
2833 rhs2 = gimple_assign_rhs2 (stmt);
2835 if (TREE_CODE (rhs1) == SSA_NAME)
2837 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2838 if (is_gimple_assign (rhs1_stmt))
2839 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2842 if (TREE_CODE (rhs2) == SSA_NAME)
2844 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2845 if (is_gimple_assign (rhs2_stmt))
2846 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2849 /* Allow for one conversion statement between the multiply
2850 and addition/subtraction statement. If there are more than
2851 one conversions then we assume they would invalidate this
2852 transformation. If that's not the case then they should have
2853 been folded before now. */
2854 if (CONVERT_EXPR_CODE_P (rhs1_code))
2856 conv1_stmt = rhs1_stmt;
2857 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2858 if (TREE_CODE (rhs1) == SSA_NAME)
2860 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2861 if (is_gimple_assign (rhs1_stmt))
2862 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2864 else
2865 return false;
2867 if (CONVERT_EXPR_CODE_P (rhs2_code))
2869 conv2_stmt = rhs2_stmt;
2870 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2871 if (TREE_CODE (rhs2) == SSA_NAME)
2873 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2874 if (is_gimple_assign (rhs2_stmt))
2875 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2877 else
2878 return false;
2881 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2882 is_widening_mult_p, but we still need the rhs returns.
2884 It might also appear that it would be sufficient to use the existing
2885 operands of the widening multiply, but that would limit the choice of
2886 multiply-and-accumulate instructions.
2888 If the widened-multiplication result has more than one uses, it is
2889 probably wiser not to do the conversion. */
2890 if (code == PLUS_EXPR
2891 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2893 if (!has_single_use (rhs1)
2894 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2895 &type2, &mult_rhs2))
2896 return false;
2897 add_rhs = rhs2;
2898 conv_stmt = conv1_stmt;
2900 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2902 if (!has_single_use (rhs2)
2903 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2904 &type2, &mult_rhs2))
2905 return false;
2906 add_rhs = rhs1;
2907 conv_stmt = conv2_stmt;
2909 else
2910 return false;
2912 to_mode = TYPE_MODE (type);
2913 from_mode = TYPE_MODE (type1);
2914 from_unsigned1 = TYPE_UNSIGNED (type1);
2915 from_unsigned2 = TYPE_UNSIGNED (type2);
2916 optype = type1;
2918 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2919 if (from_unsigned1 != from_unsigned2)
2921 if (!INTEGRAL_TYPE_P (type))
2922 return false;
2923 /* We can use a signed multiply with unsigned types as long as
2924 there is a wider mode to use, or it is the smaller of the two
2925 types that is unsigned. Note that type1 >= type2, always. */
2926 if ((from_unsigned1
2927 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2928 || (from_unsigned2
2929 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2931 from_mode = GET_MODE_WIDER_MODE (from_mode);
2932 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2933 return false;
2936 from_unsigned1 = from_unsigned2 = false;
2937 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2938 false);
2941 /* If there was a conversion between the multiply and addition
2942 then we need to make sure it fits a multiply-and-accumulate.
2943 The should be a single mode change which does not change the
2944 value. */
2945 if (conv_stmt)
2947 /* We use the original, unmodified data types for this. */
2948 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2949 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2950 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2951 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2953 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2955 /* Conversion is a truncate. */
2956 if (TYPE_PRECISION (to_type) < data_size)
2957 return false;
2959 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2961 /* Conversion is an extend. Check it's the right sort. */
2962 if (TYPE_UNSIGNED (from_type) != is_unsigned
2963 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2964 return false;
2966 /* else convert is a no-op for our purposes. */
2969 /* Verify that the machine can perform a widening multiply
2970 accumulate in this mode/signedness combination, otherwise
2971 this transformation is likely to pessimize code. */
2972 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2973 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2974 from_mode, 0, &actual_mode);
2976 if (handler == CODE_FOR_nothing)
2977 return false;
2979 /* Ensure that the inputs to the handler are in the correct precison
2980 for the opcode. This will be the full mode size. */
2981 actual_precision = GET_MODE_PRECISION (actual_mode);
2982 if (actual_precision != TYPE_PRECISION (type1)
2983 || from_unsigned1 != TYPE_UNSIGNED (type1))
2984 mult_rhs1 = build_and_insert_cast (gsi, loc,
2985 build_nonstandard_integer_type
2986 (actual_precision, from_unsigned1),
2987 mult_rhs1);
2988 if (actual_precision != TYPE_PRECISION (type2)
2989 || from_unsigned2 != TYPE_UNSIGNED (type2))
2990 mult_rhs2 = build_and_insert_cast (gsi, loc,
2991 build_nonstandard_integer_type
2992 (actual_precision, from_unsigned2),
2993 mult_rhs2);
2995 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2996 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2998 /* Handle constants. */
2999 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
3000 mult_rhs1 = fold_convert (type1, mult_rhs1);
3001 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
3002 mult_rhs2 = fold_convert (type2, mult_rhs2);
3004 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3005 add_rhs);
3006 update_stmt (gsi_stmt (*gsi));
3007 widen_mul_stats.maccs_inserted++;
3008 return true;
3011 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3012 with uses in additions and subtractions to form fused multiply-add
3013 operations. Returns true if successful and MUL_STMT should be removed. */
3015 static bool
3016 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
3018 tree mul_result = gimple_get_lhs (mul_stmt);
3019 tree type = TREE_TYPE (mul_result);
3020 gimple use_stmt, neguse_stmt;
3021 gassign *fma_stmt;
3022 use_operand_p use_p;
3023 imm_use_iterator imm_iter;
3025 if (FLOAT_TYPE_P (type)
3026 && flag_fp_contract_mode == FP_CONTRACT_OFF)
3027 return false;
3029 /* We don't want to do bitfield reduction ops. */
3030 if (INTEGRAL_TYPE_P (type)
3031 && (TYPE_PRECISION (type)
3032 != GET_MODE_PRECISION (TYPE_MODE (type))))
3033 return false;
3035 /* If the target doesn't support it, don't generate it. We assume that
3036 if fma isn't available then fms, fnma or fnms are not either. */
3037 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3038 return false;
3040 /* If the multiplication has zero uses, it is kept around probably because
3041 of -fnon-call-exceptions. Don't optimize it away in that case,
3042 it is DCE job. */
3043 if (has_zero_uses (mul_result))
3044 return false;
3046 /* Make sure that the multiplication statement becomes dead after
3047 the transformation, thus that all uses are transformed to FMAs.
3048 This means we assume that an FMA operation has the same cost
3049 as an addition. */
3050 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3052 enum tree_code use_code;
3053 tree result = mul_result;
3054 bool negate_p = false;
3056 use_stmt = USE_STMT (use_p);
3058 if (is_gimple_debug (use_stmt))
3059 continue;
3061 /* For now restrict this operations to single basic blocks. In theory
3062 we would want to support sinking the multiplication in
3063 m = a*b;
3064 if ()
3065 ma = m + c;
3066 else
3067 d = m;
3068 to form a fma in the then block and sink the multiplication to the
3069 else block. */
3070 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3071 return false;
3073 if (!is_gimple_assign (use_stmt))
3074 return false;
3076 use_code = gimple_assign_rhs_code (use_stmt);
3078 /* A negate on the multiplication leads to FNMA. */
3079 if (use_code == NEGATE_EXPR)
3081 ssa_op_iter iter;
3082 use_operand_p usep;
3084 result = gimple_assign_lhs (use_stmt);
3086 /* Make sure the negate statement becomes dead with this
3087 single transformation. */
3088 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3089 &use_p, &neguse_stmt))
3090 return false;
3092 /* Make sure the multiplication isn't also used on that stmt. */
3093 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3094 if (USE_FROM_PTR (usep) == mul_result)
3095 return false;
3097 /* Re-validate. */
3098 use_stmt = neguse_stmt;
3099 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3100 return false;
3101 if (!is_gimple_assign (use_stmt))
3102 return false;
3104 use_code = gimple_assign_rhs_code (use_stmt);
3105 negate_p = true;
3108 switch (use_code)
3110 case MINUS_EXPR:
3111 if (gimple_assign_rhs2 (use_stmt) == result)
3112 negate_p = !negate_p;
3113 break;
3114 case PLUS_EXPR:
3115 break;
3116 default:
3117 /* FMA can only be formed from PLUS and MINUS. */
3118 return false;
3121 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3122 by a MULT_EXPR that we'll visit later, we might be able to
3123 get a more profitable match with fnma.
3124 OTOH, if we don't, a negate / fma pair has likely lower latency
3125 that a mult / subtract pair. */
3126 if (use_code == MINUS_EXPR && !negate_p
3127 && gimple_assign_rhs1 (use_stmt) == result
3128 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3129 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3131 tree rhs2 = gimple_assign_rhs2 (use_stmt);
3133 if (TREE_CODE (rhs2) == SSA_NAME)
3135 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3136 if (has_single_use (rhs2)
3137 && is_gimple_assign (stmt2)
3138 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3139 return false;
3143 /* We can't handle a * b + a * b. */
3144 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3145 return false;
3147 /* While it is possible to validate whether or not the exact form
3148 that we've recognized is available in the backend, the assumption
3149 is that the transformation is never a loss. For instance, suppose
3150 the target only has the plain FMA pattern available. Consider
3151 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3152 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3153 still have 3 operations, but in the FMA form the two NEGs are
3154 independent and could be run in parallel. */
3157 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3159 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3160 enum tree_code use_code;
3161 tree addop, mulop1 = op1, result = mul_result;
3162 bool negate_p = false;
3164 if (is_gimple_debug (use_stmt))
3165 continue;
3167 use_code = gimple_assign_rhs_code (use_stmt);
3168 if (use_code == NEGATE_EXPR)
3170 result = gimple_assign_lhs (use_stmt);
3171 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3172 gsi_remove (&gsi, true);
3173 release_defs (use_stmt);
3175 use_stmt = neguse_stmt;
3176 gsi = gsi_for_stmt (use_stmt);
3177 use_code = gimple_assign_rhs_code (use_stmt);
3178 negate_p = true;
3181 if (gimple_assign_rhs1 (use_stmt) == result)
3183 addop = gimple_assign_rhs2 (use_stmt);
3184 /* a * b - c -> a * b + (-c) */
3185 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3186 addop = force_gimple_operand_gsi (&gsi,
3187 build1 (NEGATE_EXPR,
3188 type, addop),
3189 true, NULL_TREE, true,
3190 GSI_SAME_STMT);
3192 else
3194 addop = gimple_assign_rhs1 (use_stmt);
3195 /* a - b * c -> (-b) * c + a */
3196 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3197 negate_p = !negate_p;
3200 if (negate_p)
3201 mulop1 = force_gimple_operand_gsi (&gsi,
3202 build1 (NEGATE_EXPR,
3203 type, mulop1),
3204 true, NULL_TREE, true,
3205 GSI_SAME_STMT);
3207 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3208 FMA_EXPR, mulop1, op2, addop);
3209 gsi_replace (&gsi, fma_stmt, true);
3210 widen_mul_stats.fmas_inserted++;
3213 return true;
3216 /* Find integer multiplications where the operands are extended from
3217 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3218 where appropriate. */
3220 namespace {
3222 const pass_data pass_data_optimize_widening_mul =
3224 GIMPLE_PASS, /* type */
3225 "widening_mul", /* name */
3226 OPTGROUP_NONE, /* optinfo_flags */
3227 TV_NONE, /* tv_id */
3228 PROP_ssa, /* properties_required */
3229 0, /* properties_provided */
3230 0, /* properties_destroyed */
3231 0, /* todo_flags_start */
3232 TODO_update_ssa, /* todo_flags_finish */
3235 class pass_optimize_widening_mul : public gimple_opt_pass
3237 public:
3238 pass_optimize_widening_mul (gcc::context *ctxt)
3239 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3242 /* opt_pass methods: */
3243 virtual bool gate (function *)
3245 return flag_expensive_optimizations && optimize;
3248 virtual unsigned int execute (function *);
3250 }; // class pass_optimize_widening_mul
3252 unsigned int
3253 pass_optimize_widening_mul::execute (function *fun)
3255 basic_block bb;
3256 bool cfg_changed = false;
3258 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3260 FOR_EACH_BB_FN (bb, fun)
3262 gimple_stmt_iterator gsi;
3264 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
3266 gimple stmt = gsi_stmt (gsi);
3267 enum tree_code code;
3269 if (is_gimple_assign (stmt))
3271 code = gimple_assign_rhs_code (stmt);
3272 switch (code)
3274 case MULT_EXPR:
3275 if (!convert_mult_to_widen (stmt, &gsi)
3276 && convert_mult_to_fma (stmt,
3277 gimple_assign_rhs1 (stmt),
3278 gimple_assign_rhs2 (stmt)))
3280 gsi_remove (&gsi, true);
3281 release_defs (stmt);
3282 continue;
3284 break;
3286 case PLUS_EXPR:
3287 case MINUS_EXPR:
3288 convert_plusminus_to_widen (&gsi, stmt, code);
3289 break;
3291 default:;
3294 else if (is_gimple_call (stmt)
3295 && gimple_call_lhs (stmt))
3297 tree fndecl = gimple_call_fndecl (stmt);
3298 if (fndecl
3299 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3301 switch (DECL_FUNCTION_CODE (fndecl))
3303 case BUILT_IN_POWF:
3304 case BUILT_IN_POW:
3305 case BUILT_IN_POWL:
3306 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3307 && REAL_VALUES_EQUAL
3308 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3309 dconst2)
3310 && convert_mult_to_fma (stmt,
3311 gimple_call_arg (stmt, 0),
3312 gimple_call_arg (stmt, 0)))
3314 unlink_stmt_vdef (stmt);
3315 if (gsi_remove (&gsi, true)
3316 && gimple_purge_dead_eh_edges (bb))
3317 cfg_changed = true;
3318 release_defs (stmt);
3319 continue;
3321 break;
3323 default:;
3327 gsi_next (&gsi);
3331 statistics_counter_event (fun, "widening multiplications inserted",
3332 widen_mul_stats.widen_mults_inserted);
3333 statistics_counter_event (fun, "widening maccs inserted",
3334 widen_mul_stats.maccs_inserted);
3335 statistics_counter_event (fun, "fused multiply-adds inserted",
3336 widen_mul_stats.fmas_inserted);
3338 return cfg_changed ? TODO_cleanup_cfg : 0;
3341 } // anon namespace
3343 gimple_opt_pass *
3344 make_pass_optimize_widening_mul (gcc::context *ctxt)
3346 return new pass_optimize_widening_mul (ctxt);