rs6000.c (TARGET_MANGLE_DECL_ASSEMBLER_NAME): Define as rs6000_mangle_decl_assembler_...
[official-gcc.git] / gcc / config / rs6000 / rs6000.c
blob726038ef2b74410d70d16dedd2a929cf4052630a
1 /* Subroutines used for code generation on IBM RS/6000.
2 Copyright (C) 1991-2018 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #define IN_TARGET_CODE 1
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "memmodel.h"
30 #include "gimple.h"
31 #include "cfghooks.h"
32 #include "cfgloop.h"
33 #include "df.h"
34 #include "tm_p.h"
35 #include "stringpool.h"
36 #include "expmed.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "ira.h"
40 #include "recog.h"
41 #include "cgraph.h"
42 #include "diagnostic-core.h"
43 #include "insn-attr.h"
44 #include "flags.h"
45 #include "alias.h"
46 #include "fold-const.h"
47 #include "attribs.h"
48 #include "stor-layout.h"
49 #include "calls.h"
50 #include "print-tree.h"
51 #include "varasm.h"
52 #include "explow.h"
53 #include "expr.h"
54 #include "output.h"
55 #include "dbxout.h"
56 #include "common/common-target.h"
57 #include "langhooks.h"
58 #include "reload.h"
59 #include "sched-int.h"
60 #include "gimplify.h"
61 #include "gimple-fold.h"
62 #include "gimple-iterator.h"
63 #include "gimple-ssa.h"
64 #include "gimple-walk.h"
65 #include "intl.h"
66 #include "params.h"
67 #include "tm-constrs.h"
68 #include "tree-vectorizer.h"
69 #include "target-globals.h"
70 #include "builtins.h"
71 #include "tree-vector-builder.h"
72 #include "context.h"
73 #include "tree-pass.h"
74 #include "except.h"
75 #if TARGET_XCOFF
76 #include "xcoffout.h" /* get declarations of xcoff_*_section_name */
77 #endif
78 #if TARGET_MACHO
79 #include "gstab.h" /* for N_SLINE */
80 #endif
81 #include "case-cfn-macros.h"
82 #include "ppc-auxv.h"
83 #include "tree-ssa-propagate.h"
85 /* This file should be included last. */
86 #include "target-def.h"
88 #ifndef TARGET_NO_PROTOTYPE
89 #define TARGET_NO_PROTOTYPE 0
90 #endif
92 /* Set -mabi=ieeelongdouble on some old targets. In the future, power server
93 systems will also set long double to be IEEE 128-bit. AIX and Darwin
94 explicitly redefine TARGET_IEEEQUAD and TARGET_IEEEQUAD_DEFAULT to 0, so
95 those systems will not pick up this default. This needs to be after all
96 of the include files, so that POWERPC_LINUX and POWERPC_FREEBSD are
97 properly defined. */
98 #ifndef TARGET_IEEEQUAD_DEFAULT
99 #if !defined (POWERPC_LINUX) && !defined (POWERPC_FREEBSD)
100 #define TARGET_IEEEQUAD_DEFAULT 1
101 #else
102 #define TARGET_IEEEQUAD_DEFAULT 0
103 #endif
104 #endif
106 static pad_direction rs6000_function_arg_padding (machine_mode, const_tree);
108 /* Structure used to define the rs6000 stack */
109 typedef struct rs6000_stack {
110 int reload_completed; /* stack info won't change from here on */
111 int first_gp_reg_save; /* first callee saved GP register used */
112 int first_fp_reg_save; /* first callee saved FP register used */
113 int first_altivec_reg_save; /* first callee saved AltiVec register used */
114 int lr_save_p; /* true if the link reg needs to be saved */
115 int cr_save_p; /* true if the CR reg needs to be saved */
116 unsigned int vrsave_mask; /* mask of vec registers to save */
117 int push_p; /* true if we need to allocate stack space */
118 int calls_p; /* true if the function makes any calls */
119 int world_save_p; /* true if we're saving *everything*:
120 r13-r31, cr, f14-f31, vrsave, v20-v31 */
121 enum rs6000_abi abi; /* which ABI to use */
122 int gp_save_offset; /* offset to save GP regs from initial SP */
123 int fp_save_offset; /* offset to save FP regs from initial SP */
124 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
125 int lr_save_offset; /* offset to save LR from initial SP */
126 int cr_save_offset; /* offset to save CR from initial SP */
127 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
128 int varargs_save_offset; /* offset to save the varargs registers */
129 int ehrd_offset; /* offset to EH return data */
130 int ehcr_offset; /* offset to EH CR field data */
131 int reg_size; /* register size (4 or 8) */
132 HOST_WIDE_INT vars_size; /* variable save area size */
133 int parm_size; /* outgoing parameter size */
134 int save_size; /* save area size */
135 int fixed_size; /* fixed size of stack frame */
136 int gp_size; /* size of saved GP registers */
137 int fp_size; /* size of saved FP registers */
138 int altivec_size; /* size of saved AltiVec registers */
139 int cr_size; /* size to hold CR if not in fixed area */
140 int vrsave_size; /* size to hold VRSAVE */
141 int altivec_padding_size; /* size of altivec alignment padding */
142 HOST_WIDE_INT total_size; /* total bytes allocated for stack */
143 int savres_strategy;
144 } rs6000_stack_t;
146 /* A C structure for machine-specific, per-function data.
147 This is added to the cfun structure. */
148 typedef struct GTY(()) machine_function
150 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
151 int ra_needs_full_frame;
152 /* Flags if __builtin_return_address (0) was used. */
153 int ra_need_lr;
154 /* Cache lr_save_p after expansion of builtin_eh_return. */
155 int lr_save_state;
156 /* Whether we need to save the TOC to the reserved stack location in the
157 function prologue. */
158 bool save_toc_in_prologue;
159 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
160 varargs save area. */
161 HOST_WIDE_INT varargs_save_offset;
162 /* Alternative internal arg pointer for -fsplit-stack. */
163 rtx split_stack_arg_pointer;
164 bool split_stack_argp_used;
165 /* Flag if r2 setup is needed with ELFv2 ABI. */
166 bool r2_setup_needed;
167 /* The number of components we use for separate shrink-wrapping. */
168 int n_components;
169 /* The components already handled by separate shrink-wrapping, which should
170 not be considered by the prologue and epilogue. */
171 bool gpr_is_wrapped_separately[32];
172 bool fpr_is_wrapped_separately[32];
173 bool lr_is_wrapped_separately;
174 bool toc_is_wrapped_separately;
175 } machine_function;
177 /* Support targetm.vectorize.builtin_mask_for_load. */
178 static GTY(()) tree altivec_builtin_mask_for_load;
180 /* Set to nonzero once AIX common-mode calls have been defined. */
181 static GTY(()) int common_mode_defined;
183 /* Label number of label created for -mrelocatable, to call to so we can
184 get the address of the GOT section */
185 static int rs6000_pic_labelno;
187 #ifdef USING_ELFOS_H
188 /* Counter for labels which are to be placed in .fixup. */
189 int fixuplabelno = 0;
190 #endif
192 /* Whether to use variant of AIX ABI for PowerPC64 Linux. */
193 int dot_symbols;
195 /* Specify the machine mode that pointers have. After generation of rtl, the
196 compiler makes no further distinction between pointers and any other objects
197 of this machine mode. */
198 scalar_int_mode rs6000_pmode;
200 #if TARGET_ELF
201 /* Note whether IEEE 128-bit floating point was passed or returned, either as
202 the __float128/_Float128 explicit type, or when long double is IEEE 128-bit
203 floating point. We changed the default C++ mangling for these types and we
204 may want to generate a weak alias of the old mangling (U10__float128) to the
205 new mangling (u9__ieee128). */
206 static bool rs6000_passes_ieee128;
207 #endif
209 /* Generate the manged name (i.e. U10__float128) used in GCC 8.1, and not the
210 name used in current releases (i.e. u9__ieee128). */
211 static bool ieee128_mangling_gcc_8_1;
213 /* Width in bits of a pointer. */
214 unsigned rs6000_pointer_size;
216 #ifdef HAVE_AS_GNU_ATTRIBUTE
217 # ifndef HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE
218 # define HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE 0
219 # endif
220 /* Flag whether floating point values have been passed/returned.
221 Note that this doesn't say whether fprs are used, since the
222 Tag_GNU_Power_ABI_FP .gnu.attributes value this flag controls
223 should be set for soft-float values passed in gprs and ieee128
224 values passed in vsx registers. */
225 static bool rs6000_passes_float;
226 static bool rs6000_passes_long_double;
227 /* Flag whether vector values have been passed/returned. */
228 static bool rs6000_passes_vector;
229 /* Flag whether small (<= 8 byte) structures have been returned. */
230 static bool rs6000_returns_struct;
231 #endif
233 /* Value is TRUE if register/mode pair is acceptable. */
234 static bool rs6000_hard_regno_mode_ok_p
235 [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
237 /* Maximum number of registers needed for a given register class and mode. */
238 unsigned char rs6000_class_max_nregs[NUM_MACHINE_MODES][LIM_REG_CLASSES];
240 /* How many registers are needed for a given register and mode. */
241 unsigned char rs6000_hard_regno_nregs[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
243 /* Map register number to register class. */
244 enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
246 static int dbg_cost_ctrl;
248 /* Built in types. */
249 tree rs6000_builtin_types[RS6000_BTI_MAX];
250 tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
252 /* Flag to say the TOC is initialized */
253 int toc_initialized, need_toc_init;
254 char toc_label_name[10];
256 /* Cached value of rs6000_variable_issue. This is cached in
257 rs6000_variable_issue hook and returned from rs6000_sched_reorder2. */
258 static short cached_can_issue_more;
260 static GTY(()) section *read_only_data_section;
261 static GTY(()) section *private_data_section;
262 static GTY(()) section *tls_data_section;
263 static GTY(()) section *tls_private_data_section;
264 static GTY(()) section *read_only_private_data_section;
265 static GTY(()) section *sdata2_section;
266 static GTY(()) section *toc_section;
268 struct builtin_description
270 const HOST_WIDE_INT mask;
271 const enum insn_code icode;
272 const char *const name;
273 const enum rs6000_builtins code;
276 /* Describe the vector unit used for modes. */
277 enum rs6000_vector rs6000_vector_unit[NUM_MACHINE_MODES];
278 enum rs6000_vector rs6000_vector_mem[NUM_MACHINE_MODES];
280 /* Register classes for various constraints that are based on the target
281 switches. */
282 enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
284 /* Describe the alignment of a vector. */
285 int rs6000_vector_align[NUM_MACHINE_MODES];
287 /* Map selected modes to types for builtins. */
288 static GTY(()) tree builtin_mode_to_type[MAX_MACHINE_MODE][2];
290 /* What modes to automatically generate reciprocal divide estimate (fre) and
291 reciprocal sqrt (frsqrte) for. */
292 unsigned char rs6000_recip_bits[MAX_MACHINE_MODE];
294 /* Masks to determine which reciprocal esitmate instructions to generate
295 automatically. */
296 enum rs6000_recip_mask {
297 RECIP_SF_DIV = 0x001, /* Use divide estimate */
298 RECIP_DF_DIV = 0x002,
299 RECIP_V4SF_DIV = 0x004,
300 RECIP_V2DF_DIV = 0x008,
302 RECIP_SF_RSQRT = 0x010, /* Use reciprocal sqrt estimate. */
303 RECIP_DF_RSQRT = 0x020,
304 RECIP_V4SF_RSQRT = 0x040,
305 RECIP_V2DF_RSQRT = 0x080,
307 /* Various combination of flags for -mrecip=xxx. */
308 RECIP_NONE = 0,
309 RECIP_ALL = (RECIP_SF_DIV | RECIP_DF_DIV | RECIP_V4SF_DIV
310 | RECIP_V2DF_DIV | RECIP_SF_RSQRT | RECIP_DF_RSQRT
311 | RECIP_V4SF_RSQRT | RECIP_V2DF_RSQRT),
313 RECIP_HIGH_PRECISION = RECIP_ALL,
315 /* On low precision machines like the power5, don't enable double precision
316 reciprocal square root estimate, since it isn't accurate enough. */
317 RECIP_LOW_PRECISION = (RECIP_ALL & ~(RECIP_DF_RSQRT | RECIP_V2DF_RSQRT))
320 /* -mrecip options. */
321 static struct
323 const char *string; /* option name */
324 unsigned int mask; /* mask bits to set */
325 } recip_options[] = {
326 { "all", RECIP_ALL },
327 { "none", RECIP_NONE },
328 { "div", (RECIP_SF_DIV | RECIP_DF_DIV | RECIP_V4SF_DIV
329 | RECIP_V2DF_DIV) },
330 { "divf", (RECIP_SF_DIV | RECIP_V4SF_DIV) },
331 { "divd", (RECIP_DF_DIV | RECIP_V2DF_DIV) },
332 { "rsqrt", (RECIP_SF_RSQRT | RECIP_DF_RSQRT | RECIP_V4SF_RSQRT
333 | RECIP_V2DF_RSQRT) },
334 { "rsqrtf", (RECIP_SF_RSQRT | RECIP_V4SF_RSQRT) },
335 { "rsqrtd", (RECIP_DF_RSQRT | RECIP_V2DF_RSQRT) },
338 /* Used by __builtin_cpu_is(), mapping from PLATFORM names to values. */
339 static const struct
341 const char *cpu;
342 unsigned int cpuid;
343 } cpu_is_info[] = {
344 { "power9", PPC_PLATFORM_POWER9 },
345 { "power8", PPC_PLATFORM_POWER8 },
346 { "power7", PPC_PLATFORM_POWER7 },
347 { "power6x", PPC_PLATFORM_POWER6X },
348 { "power6", PPC_PLATFORM_POWER6 },
349 { "power5+", PPC_PLATFORM_POWER5_PLUS },
350 { "power5", PPC_PLATFORM_POWER5 },
351 { "ppc970", PPC_PLATFORM_PPC970 },
352 { "power4", PPC_PLATFORM_POWER4 },
353 { "ppca2", PPC_PLATFORM_PPCA2 },
354 { "ppc476", PPC_PLATFORM_PPC476 },
355 { "ppc464", PPC_PLATFORM_PPC464 },
356 { "ppc440", PPC_PLATFORM_PPC440 },
357 { "ppc405", PPC_PLATFORM_PPC405 },
358 { "ppc-cell-be", PPC_PLATFORM_CELL_BE }
361 /* Used by __builtin_cpu_supports(), mapping from HWCAP names to masks. */
362 static const struct
364 const char *hwcap;
365 int mask;
366 unsigned int id;
367 } cpu_supports_info[] = {
368 /* AT_HWCAP masks. */
369 { "4xxmac", PPC_FEATURE_HAS_4xxMAC, 0 },
370 { "altivec", PPC_FEATURE_HAS_ALTIVEC, 0 },
371 { "arch_2_05", PPC_FEATURE_ARCH_2_05, 0 },
372 { "arch_2_06", PPC_FEATURE_ARCH_2_06, 0 },
373 { "archpmu", PPC_FEATURE_PERFMON_COMPAT, 0 },
374 { "booke", PPC_FEATURE_BOOKE, 0 },
375 { "cellbe", PPC_FEATURE_CELL_BE, 0 },
376 { "dfp", PPC_FEATURE_HAS_DFP, 0 },
377 { "efpdouble", PPC_FEATURE_HAS_EFP_DOUBLE, 0 },
378 { "efpsingle", PPC_FEATURE_HAS_EFP_SINGLE, 0 },
379 { "fpu", PPC_FEATURE_HAS_FPU, 0 },
380 { "ic_snoop", PPC_FEATURE_ICACHE_SNOOP, 0 },
381 { "mmu", PPC_FEATURE_HAS_MMU, 0 },
382 { "notb", PPC_FEATURE_NO_TB, 0 },
383 { "pa6t", PPC_FEATURE_PA6T, 0 },
384 { "power4", PPC_FEATURE_POWER4, 0 },
385 { "power5", PPC_FEATURE_POWER5, 0 },
386 { "power5+", PPC_FEATURE_POWER5_PLUS, 0 },
387 { "power6x", PPC_FEATURE_POWER6_EXT, 0 },
388 { "ppc32", PPC_FEATURE_32, 0 },
389 { "ppc601", PPC_FEATURE_601_INSTR, 0 },
390 { "ppc64", PPC_FEATURE_64, 0 },
391 { "ppcle", PPC_FEATURE_PPC_LE, 0 },
392 { "smt", PPC_FEATURE_SMT, 0 },
393 { "spe", PPC_FEATURE_HAS_SPE, 0 },
394 { "true_le", PPC_FEATURE_TRUE_LE, 0 },
395 { "ucache", PPC_FEATURE_UNIFIED_CACHE, 0 },
396 { "vsx", PPC_FEATURE_HAS_VSX, 0 },
398 /* AT_HWCAP2 masks. */
399 { "arch_2_07", PPC_FEATURE2_ARCH_2_07, 1 },
400 { "dscr", PPC_FEATURE2_HAS_DSCR, 1 },
401 { "ebb", PPC_FEATURE2_HAS_EBB, 1 },
402 { "htm", PPC_FEATURE2_HAS_HTM, 1 },
403 { "htm-nosc", PPC_FEATURE2_HTM_NOSC, 1 },
404 { "htm-no-suspend", PPC_FEATURE2_HTM_NO_SUSPEND, 1 },
405 { "isel", PPC_FEATURE2_HAS_ISEL, 1 },
406 { "tar", PPC_FEATURE2_HAS_TAR, 1 },
407 { "vcrypto", PPC_FEATURE2_HAS_VEC_CRYPTO, 1 },
408 { "arch_3_00", PPC_FEATURE2_ARCH_3_00, 1 },
409 { "ieee128", PPC_FEATURE2_HAS_IEEE128, 1 },
410 { "darn", PPC_FEATURE2_DARN, 1 },
411 { "scv", PPC_FEATURE2_SCV, 1 }
414 /* On PowerPC, we have a limited number of target clones that we care about
415 which means we can use an array to hold the options, rather than having more
416 elaborate data structures to identify each possible variation. Order the
417 clones from the default to the highest ISA. */
418 enum {
419 CLONE_DEFAULT = 0, /* default clone. */
420 CLONE_ISA_2_05, /* ISA 2.05 (power6). */
421 CLONE_ISA_2_06, /* ISA 2.06 (power7). */
422 CLONE_ISA_2_07, /* ISA 2.07 (power8). */
423 CLONE_ISA_3_00, /* ISA 3.00 (power9). */
424 CLONE_MAX
427 /* Map compiler ISA bits into HWCAP names. */
428 struct clone_map {
429 HOST_WIDE_INT isa_mask; /* rs6000_isa mask */
430 const char *name; /* name to use in __builtin_cpu_supports. */
433 static const struct clone_map rs6000_clone_map[CLONE_MAX] = {
434 { 0, "" }, /* Default options. */
435 { OPTION_MASK_CMPB, "arch_2_05" }, /* ISA 2.05 (power6). */
436 { OPTION_MASK_POPCNTD, "arch_2_06" }, /* ISA 2.06 (power7). */
437 { OPTION_MASK_P8_VECTOR, "arch_2_07" }, /* ISA 2.07 (power8). */
438 { OPTION_MASK_P9_VECTOR, "arch_3_00" }, /* ISA 3.00 (power9). */
442 /* Newer LIBCs explicitly export this symbol to declare that they provide
443 the AT_PLATFORM and AT_HWCAP/AT_HWCAP2 values in the TCB. We emit a
444 reference to this symbol whenever we expand a CPU builtin, so that
445 we never link against an old LIBC. */
446 const char *tcb_verification_symbol = "__parse_hwcap_and_convert_at_platform";
448 /* True if we have expanded a CPU builtin. */
449 bool cpu_builtin_p;
451 /* Pointer to function (in rs6000-c.c) that can define or undefine target
452 macros that have changed. Languages that don't support the preprocessor
453 don't link in rs6000-c.c, so we can't call it directly. */
454 void (*rs6000_target_modify_macros_ptr) (bool, HOST_WIDE_INT, HOST_WIDE_INT);
456 /* Simplfy register classes into simpler classifications. We assume
457 GPR_REG_TYPE - FPR_REG_TYPE are ordered so that we can use a simple range
458 check for standard register classes (gpr/floating/altivec/vsx) and
459 floating/vector classes (float/altivec/vsx). */
461 enum rs6000_reg_type {
462 NO_REG_TYPE,
463 PSEUDO_REG_TYPE,
464 GPR_REG_TYPE,
465 VSX_REG_TYPE,
466 ALTIVEC_REG_TYPE,
467 FPR_REG_TYPE,
468 SPR_REG_TYPE,
469 CR_REG_TYPE
472 /* Map register class to register type. */
473 static enum rs6000_reg_type reg_class_to_reg_type[N_REG_CLASSES];
475 /* First/last register type for the 'normal' register types (i.e. general
476 purpose, floating point, altivec, and VSX registers). */
477 #define IS_STD_REG_TYPE(RTYPE) IN_RANGE(RTYPE, GPR_REG_TYPE, FPR_REG_TYPE)
479 #define IS_FP_VECT_REG_TYPE(RTYPE) IN_RANGE(RTYPE, VSX_REG_TYPE, FPR_REG_TYPE)
482 /* Register classes we care about in secondary reload or go if legitimate
483 address. We only need to worry about GPR, FPR, and Altivec registers here,
484 along an ANY field that is the OR of the 3 register classes. */
486 enum rs6000_reload_reg_type {
487 RELOAD_REG_GPR, /* General purpose registers. */
488 RELOAD_REG_FPR, /* Traditional floating point regs. */
489 RELOAD_REG_VMX, /* Altivec (VMX) registers. */
490 RELOAD_REG_ANY, /* OR of GPR, FPR, Altivec masks. */
491 N_RELOAD_REG
494 /* For setting up register classes, loop through the 3 register classes mapping
495 into real registers, and skip the ANY class, which is just an OR of the
496 bits. */
497 #define FIRST_RELOAD_REG_CLASS RELOAD_REG_GPR
498 #define LAST_RELOAD_REG_CLASS RELOAD_REG_VMX
500 /* Map reload register type to a register in the register class. */
501 struct reload_reg_map_type {
502 const char *name; /* Register class name. */
503 int reg; /* Register in the register class. */
506 static const struct reload_reg_map_type reload_reg_map[N_RELOAD_REG] = {
507 { "Gpr", FIRST_GPR_REGNO }, /* RELOAD_REG_GPR. */
508 { "Fpr", FIRST_FPR_REGNO }, /* RELOAD_REG_FPR. */
509 { "VMX", FIRST_ALTIVEC_REGNO }, /* RELOAD_REG_VMX. */
510 { "Any", -1 }, /* RELOAD_REG_ANY. */
513 /* Mask bits for each register class, indexed per mode. Historically the
514 compiler has been more restrictive which types can do PRE_MODIFY instead of
515 PRE_INC and PRE_DEC, so keep track of sepaate bits for these two. */
516 typedef unsigned char addr_mask_type;
518 #define RELOAD_REG_VALID 0x01 /* Mode valid in register.. */
519 #define RELOAD_REG_MULTIPLE 0x02 /* Mode takes multiple registers. */
520 #define RELOAD_REG_INDEXED 0x04 /* Reg+reg addressing. */
521 #define RELOAD_REG_OFFSET 0x08 /* Reg+offset addressing. */
522 #define RELOAD_REG_PRE_INCDEC 0x10 /* PRE_INC/PRE_DEC valid. */
523 #define RELOAD_REG_PRE_MODIFY 0x20 /* PRE_MODIFY valid. */
524 #define RELOAD_REG_AND_M16 0x40 /* AND -16 addressing. */
525 #define RELOAD_REG_QUAD_OFFSET 0x80 /* quad offset is limited. */
527 /* Register type masks based on the type, of valid addressing modes. */
528 struct rs6000_reg_addr {
529 enum insn_code reload_load; /* INSN to reload for loading. */
530 enum insn_code reload_store; /* INSN to reload for storing. */
531 enum insn_code reload_fpr_gpr; /* INSN to move from FPR to GPR. */
532 enum insn_code reload_gpr_vsx; /* INSN to move from GPR to VSX. */
533 enum insn_code reload_vsx_gpr; /* INSN to move from VSX to GPR. */
534 addr_mask_type addr_mask[(int)N_RELOAD_REG]; /* Valid address masks. */
535 bool scalar_in_vmx_p; /* Scalar value can go in VMX. */
538 static struct rs6000_reg_addr reg_addr[NUM_MACHINE_MODES];
540 /* Helper function to say whether a mode supports PRE_INC or PRE_DEC. */
541 static inline bool
542 mode_supports_pre_incdec_p (machine_mode mode)
544 return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_PRE_INCDEC)
545 != 0);
548 /* Helper function to say whether a mode supports PRE_MODIFY. */
549 static inline bool
550 mode_supports_pre_modify_p (machine_mode mode)
552 return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_PRE_MODIFY)
553 != 0);
556 /* Return true if we have D-form addressing in altivec registers. */
557 static inline bool
558 mode_supports_vmx_dform (machine_mode mode)
560 return ((reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_OFFSET) != 0);
563 /* Return true if we have D-form addressing in VSX registers. This addressing
564 is more limited than normal d-form addressing in that the offset must be
565 aligned on a 16-byte boundary. */
566 static inline bool
567 mode_supports_dq_form (machine_mode mode)
569 return ((reg_addr[mode].addr_mask[RELOAD_REG_ANY] & RELOAD_REG_QUAD_OFFSET)
570 != 0);
573 /* Given that there exists at least one variable that is set (produced)
574 by OUT_INSN and read (consumed) by IN_INSN, return true iff
575 IN_INSN represents one or more memory store operations and none of
576 the variables set by OUT_INSN is used by IN_INSN as the address of a
577 store operation. If either IN_INSN or OUT_INSN does not represent
578 a "single" RTL SET expression (as loosely defined by the
579 implementation of the single_set function) or a PARALLEL with only
580 SETs, CLOBBERs, and USEs inside, this function returns false.
582 This rs6000-specific version of store_data_bypass_p checks for
583 certain conditions that result in assertion failures (and internal
584 compiler errors) in the generic store_data_bypass_p function and
585 returns false rather than calling store_data_bypass_p if one of the
586 problematic conditions is detected. */
589 rs6000_store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
591 rtx out_set, in_set;
592 rtx out_pat, in_pat;
593 rtx out_exp, in_exp;
594 int i, j;
596 in_set = single_set (in_insn);
597 if (in_set)
599 if (MEM_P (SET_DEST (in_set)))
601 out_set = single_set (out_insn);
602 if (!out_set)
604 out_pat = PATTERN (out_insn);
605 if (GET_CODE (out_pat) == PARALLEL)
607 for (i = 0; i < XVECLEN (out_pat, 0); i++)
609 out_exp = XVECEXP (out_pat, 0, i);
610 if ((GET_CODE (out_exp) == CLOBBER)
611 || (GET_CODE (out_exp) == USE))
612 continue;
613 else if (GET_CODE (out_exp) != SET)
614 return false;
620 else
622 in_pat = PATTERN (in_insn);
623 if (GET_CODE (in_pat) != PARALLEL)
624 return false;
626 for (i = 0; i < XVECLEN (in_pat, 0); i++)
628 in_exp = XVECEXP (in_pat, 0, i);
629 if ((GET_CODE (in_exp) == CLOBBER) || (GET_CODE (in_exp) == USE))
630 continue;
631 else if (GET_CODE (in_exp) != SET)
632 return false;
634 if (MEM_P (SET_DEST (in_exp)))
636 out_set = single_set (out_insn);
637 if (!out_set)
639 out_pat = PATTERN (out_insn);
640 if (GET_CODE (out_pat) != PARALLEL)
641 return false;
642 for (j = 0; j < XVECLEN (out_pat, 0); j++)
644 out_exp = XVECEXP (out_pat, 0, j);
645 if ((GET_CODE (out_exp) == CLOBBER)
646 || (GET_CODE (out_exp) == USE))
647 continue;
648 else if (GET_CODE (out_exp) != SET)
649 return false;
655 return store_data_bypass_p (out_insn, in_insn);
659 /* Processor costs (relative to an add) */
661 const struct processor_costs *rs6000_cost;
663 /* Instruction size costs on 32bit processors. */
664 static const
665 struct processor_costs size32_cost = {
666 COSTS_N_INSNS (1), /* mulsi */
667 COSTS_N_INSNS (1), /* mulsi_const */
668 COSTS_N_INSNS (1), /* mulsi_const9 */
669 COSTS_N_INSNS (1), /* muldi */
670 COSTS_N_INSNS (1), /* divsi */
671 COSTS_N_INSNS (1), /* divdi */
672 COSTS_N_INSNS (1), /* fp */
673 COSTS_N_INSNS (1), /* dmul */
674 COSTS_N_INSNS (1), /* sdiv */
675 COSTS_N_INSNS (1), /* ddiv */
676 32, /* cache line size */
677 0, /* l1 cache */
678 0, /* l2 cache */
679 0, /* streams */
680 0, /* SF->DF convert */
683 /* Instruction size costs on 64bit processors. */
684 static const
685 struct processor_costs size64_cost = {
686 COSTS_N_INSNS (1), /* mulsi */
687 COSTS_N_INSNS (1), /* mulsi_const */
688 COSTS_N_INSNS (1), /* mulsi_const9 */
689 COSTS_N_INSNS (1), /* muldi */
690 COSTS_N_INSNS (1), /* divsi */
691 COSTS_N_INSNS (1), /* divdi */
692 COSTS_N_INSNS (1), /* fp */
693 COSTS_N_INSNS (1), /* dmul */
694 COSTS_N_INSNS (1), /* sdiv */
695 COSTS_N_INSNS (1), /* ddiv */
696 128, /* cache line size */
697 0, /* l1 cache */
698 0, /* l2 cache */
699 0, /* streams */
700 0, /* SF->DF convert */
703 /* Instruction costs on RS64A processors. */
704 static const
705 struct processor_costs rs64a_cost = {
706 COSTS_N_INSNS (20), /* mulsi */
707 COSTS_N_INSNS (12), /* mulsi_const */
708 COSTS_N_INSNS (8), /* mulsi_const9 */
709 COSTS_N_INSNS (34), /* muldi */
710 COSTS_N_INSNS (65), /* divsi */
711 COSTS_N_INSNS (67), /* divdi */
712 COSTS_N_INSNS (4), /* fp */
713 COSTS_N_INSNS (4), /* dmul */
714 COSTS_N_INSNS (31), /* sdiv */
715 COSTS_N_INSNS (31), /* ddiv */
716 128, /* cache line size */
717 128, /* l1 cache */
718 2048, /* l2 cache */
719 1, /* streams */
720 0, /* SF->DF convert */
723 /* Instruction costs on MPCCORE processors. */
724 static const
725 struct processor_costs mpccore_cost = {
726 COSTS_N_INSNS (2), /* mulsi */
727 COSTS_N_INSNS (2), /* mulsi_const */
728 COSTS_N_INSNS (2), /* mulsi_const9 */
729 COSTS_N_INSNS (2), /* muldi */
730 COSTS_N_INSNS (6), /* divsi */
731 COSTS_N_INSNS (6), /* divdi */
732 COSTS_N_INSNS (4), /* fp */
733 COSTS_N_INSNS (5), /* dmul */
734 COSTS_N_INSNS (10), /* sdiv */
735 COSTS_N_INSNS (17), /* ddiv */
736 32, /* cache line size */
737 4, /* l1 cache */
738 16, /* l2 cache */
739 1, /* streams */
740 0, /* SF->DF convert */
743 /* Instruction costs on PPC403 processors. */
744 static const
745 struct processor_costs ppc403_cost = {
746 COSTS_N_INSNS (4), /* mulsi */
747 COSTS_N_INSNS (4), /* mulsi_const */
748 COSTS_N_INSNS (4), /* mulsi_const9 */
749 COSTS_N_INSNS (4), /* muldi */
750 COSTS_N_INSNS (33), /* divsi */
751 COSTS_N_INSNS (33), /* divdi */
752 COSTS_N_INSNS (11), /* fp */
753 COSTS_N_INSNS (11), /* dmul */
754 COSTS_N_INSNS (11), /* sdiv */
755 COSTS_N_INSNS (11), /* ddiv */
756 32, /* cache line size */
757 4, /* l1 cache */
758 16, /* l2 cache */
759 1, /* streams */
760 0, /* SF->DF convert */
763 /* Instruction costs on PPC405 processors. */
764 static const
765 struct processor_costs ppc405_cost = {
766 COSTS_N_INSNS (5), /* mulsi */
767 COSTS_N_INSNS (4), /* mulsi_const */
768 COSTS_N_INSNS (3), /* mulsi_const9 */
769 COSTS_N_INSNS (5), /* muldi */
770 COSTS_N_INSNS (35), /* divsi */
771 COSTS_N_INSNS (35), /* divdi */
772 COSTS_N_INSNS (11), /* fp */
773 COSTS_N_INSNS (11), /* dmul */
774 COSTS_N_INSNS (11), /* sdiv */
775 COSTS_N_INSNS (11), /* ddiv */
776 32, /* cache line size */
777 16, /* l1 cache */
778 128, /* l2 cache */
779 1, /* streams */
780 0, /* SF->DF convert */
783 /* Instruction costs on PPC440 processors. */
784 static const
785 struct processor_costs ppc440_cost = {
786 COSTS_N_INSNS (3), /* mulsi */
787 COSTS_N_INSNS (2), /* mulsi_const */
788 COSTS_N_INSNS (2), /* mulsi_const9 */
789 COSTS_N_INSNS (3), /* muldi */
790 COSTS_N_INSNS (34), /* divsi */
791 COSTS_N_INSNS (34), /* divdi */
792 COSTS_N_INSNS (5), /* fp */
793 COSTS_N_INSNS (5), /* dmul */
794 COSTS_N_INSNS (19), /* sdiv */
795 COSTS_N_INSNS (33), /* ddiv */
796 32, /* cache line size */
797 32, /* l1 cache */
798 256, /* l2 cache */
799 1, /* streams */
800 0, /* SF->DF convert */
803 /* Instruction costs on PPC476 processors. */
804 static const
805 struct processor_costs ppc476_cost = {
806 COSTS_N_INSNS (4), /* mulsi */
807 COSTS_N_INSNS (4), /* mulsi_const */
808 COSTS_N_INSNS (4), /* mulsi_const9 */
809 COSTS_N_INSNS (4), /* muldi */
810 COSTS_N_INSNS (11), /* divsi */
811 COSTS_N_INSNS (11), /* divdi */
812 COSTS_N_INSNS (6), /* fp */
813 COSTS_N_INSNS (6), /* dmul */
814 COSTS_N_INSNS (19), /* sdiv */
815 COSTS_N_INSNS (33), /* ddiv */
816 32, /* l1 cache line size */
817 32, /* l1 cache */
818 512, /* l2 cache */
819 1, /* streams */
820 0, /* SF->DF convert */
823 /* Instruction costs on PPC601 processors. */
824 static const
825 struct processor_costs ppc601_cost = {
826 COSTS_N_INSNS (5), /* mulsi */
827 COSTS_N_INSNS (5), /* mulsi_const */
828 COSTS_N_INSNS (5), /* mulsi_const9 */
829 COSTS_N_INSNS (5), /* muldi */
830 COSTS_N_INSNS (36), /* divsi */
831 COSTS_N_INSNS (36), /* divdi */
832 COSTS_N_INSNS (4), /* fp */
833 COSTS_N_INSNS (5), /* dmul */
834 COSTS_N_INSNS (17), /* sdiv */
835 COSTS_N_INSNS (31), /* ddiv */
836 32, /* cache line size */
837 32, /* l1 cache */
838 256, /* l2 cache */
839 1, /* streams */
840 0, /* SF->DF convert */
843 /* Instruction costs on PPC603 processors. */
844 static const
845 struct processor_costs ppc603_cost = {
846 COSTS_N_INSNS (5), /* mulsi */
847 COSTS_N_INSNS (3), /* mulsi_const */
848 COSTS_N_INSNS (2), /* mulsi_const9 */
849 COSTS_N_INSNS (5), /* muldi */
850 COSTS_N_INSNS (37), /* divsi */
851 COSTS_N_INSNS (37), /* divdi */
852 COSTS_N_INSNS (3), /* fp */
853 COSTS_N_INSNS (4), /* dmul */
854 COSTS_N_INSNS (18), /* sdiv */
855 COSTS_N_INSNS (33), /* ddiv */
856 32, /* cache line size */
857 8, /* l1 cache */
858 64, /* l2 cache */
859 1, /* streams */
860 0, /* SF->DF convert */
863 /* Instruction costs on PPC604 processors. */
864 static const
865 struct processor_costs ppc604_cost = {
866 COSTS_N_INSNS (4), /* mulsi */
867 COSTS_N_INSNS (4), /* mulsi_const */
868 COSTS_N_INSNS (4), /* mulsi_const9 */
869 COSTS_N_INSNS (4), /* muldi */
870 COSTS_N_INSNS (20), /* divsi */
871 COSTS_N_INSNS (20), /* divdi */
872 COSTS_N_INSNS (3), /* fp */
873 COSTS_N_INSNS (3), /* dmul */
874 COSTS_N_INSNS (18), /* sdiv */
875 COSTS_N_INSNS (32), /* ddiv */
876 32, /* cache line size */
877 16, /* l1 cache */
878 512, /* l2 cache */
879 1, /* streams */
880 0, /* SF->DF convert */
883 /* Instruction costs on PPC604e processors. */
884 static const
885 struct processor_costs ppc604e_cost = {
886 COSTS_N_INSNS (2), /* mulsi */
887 COSTS_N_INSNS (2), /* mulsi_const */
888 COSTS_N_INSNS (2), /* mulsi_const9 */
889 COSTS_N_INSNS (2), /* muldi */
890 COSTS_N_INSNS (20), /* divsi */
891 COSTS_N_INSNS (20), /* divdi */
892 COSTS_N_INSNS (3), /* fp */
893 COSTS_N_INSNS (3), /* dmul */
894 COSTS_N_INSNS (18), /* sdiv */
895 COSTS_N_INSNS (32), /* ddiv */
896 32, /* cache line size */
897 32, /* l1 cache */
898 1024, /* l2 cache */
899 1, /* streams */
900 0, /* SF->DF convert */
903 /* Instruction costs on PPC620 processors. */
904 static const
905 struct processor_costs ppc620_cost = {
906 COSTS_N_INSNS (5), /* mulsi */
907 COSTS_N_INSNS (4), /* mulsi_const */
908 COSTS_N_INSNS (3), /* mulsi_const9 */
909 COSTS_N_INSNS (7), /* muldi */
910 COSTS_N_INSNS (21), /* divsi */
911 COSTS_N_INSNS (37), /* divdi */
912 COSTS_N_INSNS (3), /* fp */
913 COSTS_N_INSNS (3), /* dmul */
914 COSTS_N_INSNS (18), /* sdiv */
915 COSTS_N_INSNS (32), /* ddiv */
916 128, /* cache line size */
917 32, /* l1 cache */
918 1024, /* l2 cache */
919 1, /* streams */
920 0, /* SF->DF convert */
923 /* Instruction costs on PPC630 processors. */
924 static const
925 struct processor_costs ppc630_cost = {
926 COSTS_N_INSNS (5), /* mulsi */
927 COSTS_N_INSNS (4), /* mulsi_const */
928 COSTS_N_INSNS (3), /* mulsi_const9 */
929 COSTS_N_INSNS (7), /* muldi */
930 COSTS_N_INSNS (21), /* divsi */
931 COSTS_N_INSNS (37), /* divdi */
932 COSTS_N_INSNS (3), /* fp */
933 COSTS_N_INSNS (3), /* dmul */
934 COSTS_N_INSNS (17), /* sdiv */
935 COSTS_N_INSNS (21), /* ddiv */
936 128, /* cache line size */
937 64, /* l1 cache */
938 1024, /* l2 cache */
939 1, /* streams */
940 0, /* SF->DF convert */
943 /* Instruction costs on Cell processor. */
944 /* COSTS_N_INSNS (1) ~ one add. */
945 static const
946 struct processor_costs ppccell_cost = {
947 COSTS_N_INSNS (9/2)+2, /* mulsi */
948 COSTS_N_INSNS (6/2), /* mulsi_const */
949 COSTS_N_INSNS (6/2), /* mulsi_const9 */
950 COSTS_N_INSNS (15/2)+2, /* muldi */
951 COSTS_N_INSNS (38/2), /* divsi */
952 COSTS_N_INSNS (70/2), /* divdi */
953 COSTS_N_INSNS (10/2), /* fp */
954 COSTS_N_INSNS (10/2), /* dmul */
955 COSTS_N_INSNS (74/2), /* sdiv */
956 COSTS_N_INSNS (74/2), /* ddiv */
957 128, /* cache line size */
958 32, /* l1 cache */
959 512, /* l2 cache */
960 6, /* streams */
961 0, /* SF->DF convert */
964 /* Instruction costs on PPC750 and PPC7400 processors. */
965 static const
966 struct processor_costs ppc750_cost = {
967 COSTS_N_INSNS (5), /* mulsi */
968 COSTS_N_INSNS (3), /* mulsi_const */
969 COSTS_N_INSNS (2), /* mulsi_const9 */
970 COSTS_N_INSNS (5), /* muldi */
971 COSTS_N_INSNS (17), /* divsi */
972 COSTS_N_INSNS (17), /* divdi */
973 COSTS_N_INSNS (3), /* fp */
974 COSTS_N_INSNS (3), /* dmul */
975 COSTS_N_INSNS (17), /* sdiv */
976 COSTS_N_INSNS (31), /* ddiv */
977 32, /* cache line size */
978 32, /* l1 cache */
979 512, /* l2 cache */
980 1, /* streams */
981 0, /* SF->DF convert */
984 /* Instruction costs on PPC7450 processors. */
985 static const
986 struct processor_costs ppc7450_cost = {
987 COSTS_N_INSNS (4), /* mulsi */
988 COSTS_N_INSNS (3), /* mulsi_const */
989 COSTS_N_INSNS (3), /* mulsi_const9 */
990 COSTS_N_INSNS (4), /* muldi */
991 COSTS_N_INSNS (23), /* divsi */
992 COSTS_N_INSNS (23), /* divdi */
993 COSTS_N_INSNS (5), /* fp */
994 COSTS_N_INSNS (5), /* dmul */
995 COSTS_N_INSNS (21), /* sdiv */
996 COSTS_N_INSNS (35), /* ddiv */
997 32, /* cache line size */
998 32, /* l1 cache */
999 1024, /* l2 cache */
1000 1, /* streams */
1001 0, /* SF->DF convert */
1004 /* Instruction costs on PPC8540 processors. */
1005 static const
1006 struct processor_costs ppc8540_cost = {
1007 COSTS_N_INSNS (4), /* mulsi */
1008 COSTS_N_INSNS (4), /* mulsi_const */
1009 COSTS_N_INSNS (4), /* mulsi_const9 */
1010 COSTS_N_INSNS (4), /* muldi */
1011 COSTS_N_INSNS (19), /* divsi */
1012 COSTS_N_INSNS (19), /* divdi */
1013 COSTS_N_INSNS (4), /* fp */
1014 COSTS_N_INSNS (4), /* dmul */
1015 COSTS_N_INSNS (29), /* sdiv */
1016 COSTS_N_INSNS (29), /* ddiv */
1017 32, /* cache line size */
1018 32, /* l1 cache */
1019 256, /* l2 cache */
1020 1, /* prefetch streams /*/
1021 0, /* SF->DF convert */
1024 /* Instruction costs on E300C2 and E300C3 cores. */
1025 static const
1026 struct processor_costs ppce300c2c3_cost = {
1027 COSTS_N_INSNS (4), /* mulsi */
1028 COSTS_N_INSNS (4), /* mulsi_const */
1029 COSTS_N_INSNS (4), /* mulsi_const9 */
1030 COSTS_N_INSNS (4), /* muldi */
1031 COSTS_N_INSNS (19), /* divsi */
1032 COSTS_N_INSNS (19), /* divdi */
1033 COSTS_N_INSNS (3), /* fp */
1034 COSTS_N_INSNS (4), /* dmul */
1035 COSTS_N_INSNS (18), /* sdiv */
1036 COSTS_N_INSNS (33), /* ddiv */
1038 16, /* l1 cache */
1039 16, /* l2 cache */
1040 1, /* prefetch streams /*/
1041 0, /* SF->DF convert */
1044 /* Instruction costs on PPCE500MC processors. */
1045 static const
1046 struct processor_costs ppce500mc_cost = {
1047 COSTS_N_INSNS (4), /* mulsi */
1048 COSTS_N_INSNS (4), /* mulsi_const */
1049 COSTS_N_INSNS (4), /* mulsi_const9 */
1050 COSTS_N_INSNS (4), /* muldi */
1051 COSTS_N_INSNS (14), /* divsi */
1052 COSTS_N_INSNS (14), /* divdi */
1053 COSTS_N_INSNS (8), /* fp */
1054 COSTS_N_INSNS (10), /* dmul */
1055 COSTS_N_INSNS (36), /* sdiv */
1056 COSTS_N_INSNS (66), /* ddiv */
1057 64, /* cache line size */
1058 32, /* l1 cache */
1059 128, /* l2 cache */
1060 1, /* prefetch streams /*/
1061 0, /* SF->DF convert */
1064 /* Instruction costs on PPCE500MC64 processors. */
1065 static const
1066 struct processor_costs ppce500mc64_cost = {
1067 COSTS_N_INSNS (4), /* mulsi */
1068 COSTS_N_INSNS (4), /* mulsi_const */
1069 COSTS_N_INSNS (4), /* mulsi_const9 */
1070 COSTS_N_INSNS (4), /* muldi */
1071 COSTS_N_INSNS (14), /* divsi */
1072 COSTS_N_INSNS (14), /* divdi */
1073 COSTS_N_INSNS (4), /* fp */
1074 COSTS_N_INSNS (10), /* dmul */
1075 COSTS_N_INSNS (36), /* sdiv */
1076 COSTS_N_INSNS (66), /* ddiv */
1077 64, /* cache line size */
1078 32, /* l1 cache */
1079 128, /* l2 cache */
1080 1, /* prefetch streams /*/
1081 0, /* SF->DF convert */
1084 /* Instruction costs on PPCE5500 processors. */
1085 static const
1086 struct processor_costs ppce5500_cost = {
1087 COSTS_N_INSNS (5), /* mulsi */
1088 COSTS_N_INSNS (5), /* mulsi_const */
1089 COSTS_N_INSNS (4), /* mulsi_const9 */
1090 COSTS_N_INSNS (5), /* muldi */
1091 COSTS_N_INSNS (14), /* divsi */
1092 COSTS_N_INSNS (14), /* divdi */
1093 COSTS_N_INSNS (7), /* fp */
1094 COSTS_N_INSNS (10), /* dmul */
1095 COSTS_N_INSNS (36), /* sdiv */
1096 COSTS_N_INSNS (66), /* ddiv */
1097 64, /* cache line size */
1098 32, /* l1 cache */
1099 128, /* l2 cache */
1100 1, /* prefetch streams /*/
1101 0, /* SF->DF convert */
1104 /* Instruction costs on PPCE6500 processors. */
1105 static const
1106 struct processor_costs ppce6500_cost = {
1107 COSTS_N_INSNS (5), /* mulsi */
1108 COSTS_N_INSNS (5), /* mulsi_const */
1109 COSTS_N_INSNS (4), /* mulsi_const9 */
1110 COSTS_N_INSNS (5), /* muldi */
1111 COSTS_N_INSNS (14), /* divsi */
1112 COSTS_N_INSNS (14), /* divdi */
1113 COSTS_N_INSNS (7), /* fp */
1114 COSTS_N_INSNS (10), /* dmul */
1115 COSTS_N_INSNS (36), /* sdiv */
1116 COSTS_N_INSNS (66), /* ddiv */
1117 64, /* cache line size */
1118 32, /* l1 cache */
1119 128, /* l2 cache */
1120 1, /* prefetch streams /*/
1121 0, /* SF->DF convert */
1124 /* Instruction costs on AppliedMicro Titan processors. */
1125 static const
1126 struct processor_costs titan_cost = {
1127 COSTS_N_INSNS (5), /* mulsi */
1128 COSTS_N_INSNS (5), /* mulsi_const */
1129 COSTS_N_INSNS (5), /* mulsi_const9 */
1130 COSTS_N_INSNS (5), /* muldi */
1131 COSTS_N_INSNS (18), /* divsi */
1132 COSTS_N_INSNS (18), /* divdi */
1133 COSTS_N_INSNS (10), /* fp */
1134 COSTS_N_INSNS (10), /* dmul */
1135 COSTS_N_INSNS (46), /* sdiv */
1136 COSTS_N_INSNS (72), /* ddiv */
1137 32, /* cache line size */
1138 32, /* l1 cache */
1139 512, /* l2 cache */
1140 1, /* prefetch streams /*/
1141 0, /* SF->DF convert */
1144 /* Instruction costs on POWER4 and POWER5 processors. */
1145 static const
1146 struct processor_costs power4_cost = {
1147 COSTS_N_INSNS (3), /* mulsi */
1148 COSTS_N_INSNS (2), /* mulsi_const */
1149 COSTS_N_INSNS (2), /* mulsi_const9 */
1150 COSTS_N_INSNS (4), /* muldi */
1151 COSTS_N_INSNS (18), /* divsi */
1152 COSTS_N_INSNS (34), /* divdi */
1153 COSTS_N_INSNS (3), /* fp */
1154 COSTS_N_INSNS (3), /* dmul */
1155 COSTS_N_INSNS (17), /* sdiv */
1156 COSTS_N_INSNS (17), /* ddiv */
1157 128, /* cache line size */
1158 32, /* l1 cache */
1159 1024, /* l2 cache */
1160 8, /* prefetch streams /*/
1161 0, /* SF->DF convert */
1164 /* Instruction costs on POWER6 processors. */
1165 static const
1166 struct processor_costs power6_cost = {
1167 COSTS_N_INSNS (8), /* mulsi */
1168 COSTS_N_INSNS (8), /* mulsi_const */
1169 COSTS_N_INSNS (8), /* mulsi_const9 */
1170 COSTS_N_INSNS (8), /* muldi */
1171 COSTS_N_INSNS (22), /* divsi */
1172 COSTS_N_INSNS (28), /* divdi */
1173 COSTS_N_INSNS (3), /* fp */
1174 COSTS_N_INSNS (3), /* dmul */
1175 COSTS_N_INSNS (13), /* sdiv */
1176 COSTS_N_INSNS (16), /* ddiv */
1177 128, /* cache line size */
1178 64, /* l1 cache */
1179 2048, /* l2 cache */
1180 16, /* prefetch streams */
1181 0, /* SF->DF convert */
1184 /* Instruction costs on POWER7 processors. */
1185 static const
1186 struct processor_costs power7_cost = {
1187 COSTS_N_INSNS (2), /* mulsi */
1188 COSTS_N_INSNS (2), /* mulsi_const */
1189 COSTS_N_INSNS (2), /* mulsi_const9 */
1190 COSTS_N_INSNS (2), /* muldi */
1191 COSTS_N_INSNS (18), /* divsi */
1192 COSTS_N_INSNS (34), /* divdi */
1193 COSTS_N_INSNS (3), /* fp */
1194 COSTS_N_INSNS (3), /* dmul */
1195 COSTS_N_INSNS (13), /* sdiv */
1196 COSTS_N_INSNS (16), /* ddiv */
1197 128, /* cache line size */
1198 32, /* l1 cache */
1199 256, /* l2 cache */
1200 12, /* prefetch streams */
1201 COSTS_N_INSNS (3), /* SF->DF convert */
1204 /* Instruction costs on POWER8 processors. */
1205 static const
1206 struct processor_costs power8_cost = {
1207 COSTS_N_INSNS (3), /* mulsi */
1208 COSTS_N_INSNS (3), /* mulsi_const */
1209 COSTS_N_INSNS (3), /* mulsi_const9 */
1210 COSTS_N_INSNS (3), /* muldi */
1211 COSTS_N_INSNS (19), /* divsi */
1212 COSTS_N_INSNS (35), /* divdi */
1213 COSTS_N_INSNS (3), /* fp */
1214 COSTS_N_INSNS (3), /* dmul */
1215 COSTS_N_INSNS (14), /* sdiv */
1216 COSTS_N_INSNS (17), /* ddiv */
1217 128, /* cache line size */
1218 32, /* l1 cache */
1219 256, /* l2 cache */
1220 12, /* prefetch streams */
1221 COSTS_N_INSNS (3), /* SF->DF convert */
1224 /* Instruction costs on POWER9 processors. */
1225 static const
1226 struct processor_costs power9_cost = {
1227 COSTS_N_INSNS (3), /* mulsi */
1228 COSTS_N_INSNS (3), /* mulsi_const */
1229 COSTS_N_INSNS (3), /* mulsi_const9 */
1230 COSTS_N_INSNS (3), /* muldi */
1231 COSTS_N_INSNS (8), /* divsi */
1232 COSTS_N_INSNS (12), /* divdi */
1233 COSTS_N_INSNS (3), /* fp */
1234 COSTS_N_INSNS (3), /* dmul */
1235 COSTS_N_INSNS (13), /* sdiv */
1236 COSTS_N_INSNS (18), /* ddiv */
1237 128, /* cache line size */
1238 32, /* l1 cache */
1239 512, /* l2 cache */
1240 8, /* prefetch streams */
1241 COSTS_N_INSNS (3), /* SF->DF convert */
1244 /* Instruction costs on POWER A2 processors. */
1245 static const
1246 struct processor_costs ppca2_cost = {
1247 COSTS_N_INSNS (16), /* mulsi */
1248 COSTS_N_INSNS (16), /* mulsi_const */
1249 COSTS_N_INSNS (16), /* mulsi_const9 */
1250 COSTS_N_INSNS (16), /* muldi */
1251 COSTS_N_INSNS (22), /* divsi */
1252 COSTS_N_INSNS (28), /* divdi */
1253 COSTS_N_INSNS (3), /* fp */
1254 COSTS_N_INSNS (3), /* dmul */
1255 COSTS_N_INSNS (59), /* sdiv */
1256 COSTS_N_INSNS (72), /* ddiv */
1258 16, /* l1 cache */
1259 2048, /* l2 cache */
1260 16, /* prefetch streams */
1261 0, /* SF->DF convert */
1265 /* Table that classifies rs6000 builtin functions (pure, const, etc.). */
1266 #undef RS6000_BUILTIN_0
1267 #undef RS6000_BUILTIN_1
1268 #undef RS6000_BUILTIN_2
1269 #undef RS6000_BUILTIN_3
1270 #undef RS6000_BUILTIN_A
1271 #undef RS6000_BUILTIN_D
1272 #undef RS6000_BUILTIN_H
1273 #undef RS6000_BUILTIN_P
1274 #undef RS6000_BUILTIN_X
1276 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) \
1277 { NAME, ICODE, MASK, ATTR },
1279 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) \
1280 { NAME, ICODE, MASK, ATTR },
1282 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) \
1283 { NAME, ICODE, MASK, ATTR },
1285 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) \
1286 { NAME, ICODE, MASK, ATTR },
1288 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) \
1289 { NAME, ICODE, MASK, ATTR },
1291 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) \
1292 { NAME, ICODE, MASK, ATTR },
1294 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) \
1295 { NAME, ICODE, MASK, ATTR },
1297 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) \
1298 { NAME, ICODE, MASK, ATTR },
1300 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) \
1301 { NAME, ICODE, MASK, ATTR },
1303 struct rs6000_builtin_info_type {
1304 const char *name;
1305 const enum insn_code icode;
1306 const HOST_WIDE_INT mask;
1307 const unsigned attr;
1310 static const struct rs6000_builtin_info_type rs6000_builtin_info[] =
1312 #include "rs6000-builtin.def"
1315 #undef RS6000_BUILTIN_0
1316 #undef RS6000_BUILTIN_1
1317 #undef RS6000_BUILTIN_2
1318 #undef RS6000_BUILTIN_3
1319 #undef RS6000_BUILTIN_A
1320 #undef RS6000_BUILTIN_D
1321 #undef RS6000_BUILTIN_H
1322 #undef RS6000_BUILTIN_P
1323 #undef RS6000_BUILTIN_X
1325 /* Support for -mveclibabi=<xxx> to control which vector library to use. */
1326 static tree (*rs6000_veclib_handler) (combined_fn, tree, tree);
1329 static bool rs6000_debug_legitimate_address_p (machine_mode, rtx, bool);
1330 static struct machine_function * rs6000_init_machine_status (void);
1331 static int rs6000_ra_ever_killed (void);
1332 static tree rs6000_handle_longcall_attribute (tree *, tree, tree, int, bool *);
1333 static tree rs6000_handle_altivec_attribute (tree *, tree, tree, int, bool *);
1334 static tree rs6000_handle_struct_attribute (tree *, tree, tree, int, bool *);
1335 static tree rs6000_builtin_vectorized_libmass (combined_fn, tree, tree);
1336 static void rs6000_emit_set_long_const (rtx, HOST_WIDE_INT);
1337 static int rs6000_memory_move_cost (machine_mode, reg_class_t, bool);
1338 static bool rs6000_debug_rtx_costs (rtx, machine_mode, int, int, int *, bool);
1339 static int rs6000_debug_address_cost (rtx, machine_mode, addr_space_t,
1340 bool);
1341 static int rs6000_debug_adjust_cost (rtx_insn *, int, rtx_insn *, int,
1342 unsigned int);
1343 static bool is_microcoded_insn (rtx_insn *);
1344 static bool is_nonpipeline_insn (rtx_insn *);
1345 static bool is_cracked_insn (rtx_insn *);
1346 static bool is_load_insn (rtx, rtx *);
1347 static bool is_store_insn (rtx, rtx *);
1348 static bool set_to_load_agen (rtx_insn *,rtx_insn *);
1349 static bool insn_terminates_group_p (rtx_insn *, enum group_termination);
1350 static bool insn_must_be_first_in_group (rtx_insn *);
1351 static bool insn_must_be_last_in_group (rtx_insn *);
1352 static void altivec_init_builtins (void);
1353 static tree builtin_function_type (machine_mode, machine_mode,
1354 machine_mode, machine_mode,
1355 enum rs6000_builtins, const char *name);
1356 static void rs6000_common_init_builtins (void);
1357 static void htm_init_builtins (void);
1358 static rs6000_stack_t *rs6000_stack_info (void);
1359 static void is_altivec_return_reg (rtx, void *);
1360 int easy_vector_constant (rtx, machine_mode);
1361 static rtx rs6000_debug_legitimize_address (rtx, rtx, machine_mode);
1362 static rtx rs6000_legitimize_tls_address (rtx, enum tls_model);
1363 static rtx rs6000_darwin64_record_arg (CUMULATIVE_ARGS *, const_tree,
1364 bool, bool);
1365 #if TARGET_MACHO
1366 static void macho_branch_islands (void);
1367 #endif
1368 static rtx rs6000_legitimize_reload_address (rtx, machine_mode, int, int,
1369 int, int *);
1370 static rtx rs6000_debug_legitimize_reload_address (rtx, machine_mode, int,
1371 int, int, int *);
1372 static bool rs6000_mode_dependent_address (const_rtx);
1373 static bool rs6000_debug_mode_dependent_address (const_rtx);
1374 static bool rs6000_offsettable_memref_p (rtx, machine_mode, bool);
1375 static enum reg_class rs6000_secondary_reload_class (enum reg_class,
1376 machine_mode, rtx);
1377 static enum reg_class rs6000_debug_secondary_reload_class (enum reg_class,
1378 machine_mode,
1379 rtx);
1380 static enum reg_class rs6000_preferred_reload_class (rtx, enum reg_class);
1381 static enum reg_class rs6000_debug_preferred_reload_class (rtx,
1382 enum reg_class);
1383 static bool rs6000_debug_secondary_memory_needed (machine_mode,
1384 reg_class_t,
1385 reg_class_t);
1386 static bool rs6000_debug_can_change_mode_class (machine_mode,
1387 machine_mode,
1388 reg_class_t);
1389 static bool rs6000_save_toc_in_prologue_p (void);
1390 static rtx rs6000_internal_arg_pointer (void);
1392 rtx (*rs6000_legitimize_reload_address_ptr) (rtx, machine_mode, int, int,
1393 int, int *)
1394 = rs6000_legitimize_reload_address;
1396 static bool (*rs6000_mode_dependent_address_ptr) (const_rtx)
1397 = rs6000_mode_dependent_address;
1399 enum reg_class (*rs6000_secondary_reload_class_ptr) (enum reg_class,
1400 machine_mode, rtx)
1401 = rs6000_secondary_reload_class;
1403 enum reg_class (*rs6000_preferred_reload_class_ptr) (rtx, enum reg_class)
1404 = rs6000_preferred_reload_class;
1406 const int INSN_NOT_AVAILABLE = -1;
1408 static void rs6000_print_isa_options (FILE *, int, const char *,
1409 HOST_WIDE_INT);
1410 static void rs6000_print_builtin_options (FILE *, int, const char *,
1411 HOST_WIDE_INT);
1412 static HOST_WIDE_INT rs6000_disable_incompatible_switches (void);
1414 static enum rs6000_reg_type register_to_reg_type (rtx, bool *);
1415 static bool rs6000_secondary_reload_move (enum rs6000_reg_type,
1416 enum rs6000_reg_type,
1417 machine_mode,
1418 secondary_reload_info *,
1419 bool);
1420 rtl_opt_pass *make_pass_analyze_swaps (gcc::context*);
1421 static bool rs6000_keep_leaf_when_profiled () __attribute__ ((unused));
1422 static tree rs6000_fold_builtin (tree, int, tree *, bool);
1424 /* Hash table stuff for keeping track of TOC entries. */
1426 struct GTY((for_user)) toc_hash_struct
1428 /* `key' will satisfy CONSTANT_P; in fact, it will satisfy
1429 ASM_OUTPUT_SPECIAL_POOL_ENTRY_P. */
1430 rtx key;
1431 machine_mode key_mode;
1432 int labelno;
1435 struct toc_hasher : ggc_ptr_hash<toc_hash_struct>
1437 static hashval_t hash (toc_hash_struct *);
1438 static bool equal (toc_hash_struct *, toc_hash_struct *);
1441 static GTY (()) hash_table<toc_hasher> *toc_hash_table;
1443 /* Hash table to keep track of the argument types for builtin functions. */
1445 struct GTY((for_user)) builtin_hash_struct
1447 tree type;
1448 machine_mode mode[4]; /* return value + 3 arguments. */
1449 unsigned char uns_p[4]; /* and whether the types are unsigned. */
1452 struct builtin_hasher : ggc_ptr_hash<builtin_hash_struct>
1454 static hashval_t hash (builtin_hash_struct *);
1455 static bool equal (builtin_hash_struct *, builtin_hash_struct *);
1458 static GTY (()) hash_table<builtin_hasher> *builtin_hash_table;
1461 /* Default register names. */
1462 char rs6000_reg_names[][8] =
1464 "0", "1", "2", "3", "4", "5", "6", "7",
1465 "8", "9", "10", "11", "12", "13", "14", "15",
1466 "16", "17", "18", "19", "20", "21", "22", "23",
1467 "24", "25", "26", "27", "28", "29", "30", "31",
1468 "0", "1", "2", "3", "4", "5", "6", "7",
1469 "8", "9", "10", "11", "12", "13", "14", "15",
1470 "16", "17", "18", "19", "20", "21", "22", "23",
1471 "24", "25", "26", "27", "28", "29", "30", "31",
1472 "mq", "lr", "ctr","ap",
1473 "0", "1", "2", "3", "4", "5", "6", "7",
1474 "ca",
1475 /* AltiVec registers. */
1476 "0", "1", "2", "3", "4", "5", "6", "7",
1477 "8", "9", "10", "11", "12", "13", "14", "15",
1478 "16", "17", "18", "19", "20", "21", "22", "23",
1479 "24", "25", "26", "27", "28", "29", "30", "31",
1480 "vrsave", "vscr",
1481 /* Soft frame pointer. */
1482 "sfp",
1483 /* HTM SPR registers. */
1484 "tfhar", "tfiar", "texasr"
1487 #ifdef TARGET_REGNAMES
1488 static const char alt_reg_names[][8] =
1490 "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7",
1491 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
1492 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23",
1493 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31",
1494 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7",
1495 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
1496 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
1497 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",
1498 "mq", "lr", "ctr", "ap",
1499 "%cr0", "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
1500 "ca",
1501 /* AltiVec registers. */
1502 "%v0", "%v1", "%v2", "%v3", "%v4", "%v5", "%v6", "%v7",
1503 "%v8", "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
1504 "%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
1505 "%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
1506 "vrsave", "vscr",
1507 /* Soft frame pointer. */
1508 "sfp",
1509 /* HTM SPR registers. */
1510 "tfhar", "tfiar", "texasr"
1512 #endif
1514 /* Table of valid machine attributes. */
1516 static const struct attribute_spec rs6000_attribute_table[] =
1518 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
1519 affects_type_identity, handler, exclude } */
1520 { "altivec", 1, 1, false, true, false, false,
1521 rs6000_handle_altivec_attribute, NULL },
1522 { "longcall", 0, 0, false, true, true, false,
1523 rs6000_handle_longcall_attribute, NULL },
1524 { "shortcall", 0, 0, false, true, true, false,
1525 rs6000_handle_longcall_attribute, NULL },
1526 { "ms_struct", 0, 0, false, false, false, false,
1527 rs6000_handle_struct_attribute, NULL },
1528 { "gcc_struct", 0, 0, false, false, false, false,
1529 rs6000_handle_struct_attribute, NULL },
1530 #ifdef SUBTARGET_ATTRIBUTE_TABLE
1531 SUBTARGET_ATTRIBUTE_TABLE,
1532 #endif
1533 { NULL, 0, 0, false, false, false, false, NULL, NULL }
1536 #ifndef TARGET_PROFILE_KERNEL
1537 #define TARGET_PROFILE_KERNEL 0
1538 #endif
1540 /* The VRSAVE bitmask puts bit %v0 as the most significant bit. */
1541 #define ALTIVEC_REG_BIT(REGNO) (0x80000000 >> ((REGNO) - FIRST_ALTIVEC_REGNO))
1543 /* Initialize the GCC target structure. */
1544 #undef TARGET_ATTRIBUTE_TABLE
1545 #define TARGET_ATTRIBUTE_TABLE rs6000_attribute_table
1546 #undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
1547 #define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES rs6000_set_default_type_attributes
1548 #undef TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P
1549 #define TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P rs6000_attribute_takes_identifier_p
1551 #undef TARGET_ASM_ALIGNED_DI_OP
1552 #define TARGET_ASM_ALIGNED_DI_OP DOUBLE_INT_ASM_OP
1554 /* Default unaligned ops are only provided for ELF. Find the ops needed
1555 for non-ELF systems. */
1556 #ifndef OBJECT_FORMAT_ELF
1557 #if TARGET_XCOFF
1558 /* For XCOFF. rs6000_assemble_integer will handle unaligned DIs on
1559 64-bit targets. */
1560 #undef TARGET_ASM_UNALIGNED_HI_OP
1561 #define TARGET_ASM_UNALIGNED_HI_OP "\t.vbyte\t2,"
1562 #undef TARGET_ASM_UNALIGNED_SI_OP
1563 #define TARGET_ASM_UNALIGNED_SI_OP "\t.vbyte\t4,"
1564 #undef TARGET_ASM_UNALIGNED_DI_OP
1565 #define TARGET_ASM_UNALIGNED_DI_OP "\t.vbyte\t8,"
1566 #else
1567 /* For Darwin. */
1568 #undef TARGET_ASM_UNALIGNED_HI_OP
1569 #define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
1570 #undef TARGET_ASM_UNALIGNED_SI_OP
1571 #define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
1572 #undef TARGET_ASM_UNALIGNED_DI_OP
1573 #define TARGET_ASM_UNALIGNED_DI_OP "\t.quad\t"
1574 #undef TARGET_ASM_ALIGNED_DI_OP
1575 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
1576 #endif
1577 #endif
1579 /* This hook deals with fixups for relocatable code and DI-mode objects
1580 in 64-bit code. */
1581 #undef TARGET_ASM_INTEGER
1582 #define TARGET_ASM_INTEGER rs6000_assemble_integer
1584 #if defined (HAVE_GAS_HIDDEN) && !TARGET_MACHO
1585 #undef TARGET_ASM_ASSEMBLE_VISIBILITY
1586 #define TARGET_ASM_ASSEMBLE_VISIBILITY rs6000_assemble_visibility
1587 #endif
1589 #undef TARGET_SET_UP_BY_PROLOGUE
1590 #define TARGET_SET_UP_BY_PROLOGUE rs6000_set_up_by_prologue
1592 #undef TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS
1593 #define TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS rs6000_get_separate_components
1594 #undef TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB
1595 #define TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB rs6000_components_for_bb
1596 #undef TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS
1597 #define TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS rs6000_disqualify_components
1598 #undef TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS
1599 #define TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS rs6000_emit_prologue_components
1600 #undef TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS
1601 #define TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS rs6000_emit_epilogue_components
1602 #undef TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS
1603 #define TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS rs6000_set_handled_components
1605 #undef TARGET_EXTRA_LIVE_ON_ENTRY
1606 #define TARGET_EXTRA_LIVE_ON_ENTRY rs6000_live_on_entry
1608 #undef TARGET_INTERNAL_ARG_POINTER
1609 #define TARGET_INTERNAL_ARG_POINTER rs6000_internal_arg_pointer
1611 #undef TARGET_HAVE_TLS
1612 #define TARGET_HAVE_TLS HAVE_AS_TLS
1614 #undef TARGET_CANNOT_FORCE_CONST_MEM
1615 #define TARGET_CANNOT_FORCE_CONST_MEM rs6000_cannot_force_const_mem
1617 #undef TARGET_DELEGITIMIZE_ADDRESS
1618 #define TARGET_DELEGITIMIZE_ADDRESS rs6000_delegitimize_address
1620 #undef TARGET_CONST_NOT_OK_FOR_DEBUG_P
1621 #define TARGET_CONST_NOT_OK_FOR_DEBUG_P rs6000_const_not_ok_for_debug_p
1623 #undef TARGET_LEGITIMATE_COMBINED_INSN
1624 #define TARGET_LEGITIMATE_COMBINED_INSN rs6000_legitimate_combined_insn
1626 #undef TARGET_ASM_FUNCTION_PROLOGUE
1627 #define TARGET_ASM_FUNCTION_PROLOGUE rs6000_output_function_prologue
1628 #undef TARGET_ASM_FUNCTION_EPILOGUE
1629 #define TARGET_ASM_FUNCTION_EPILOGUE rs6000_output_function_epilogue
1631 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
1632 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA rs6000_output_addr_const_extra
1634 #undef TARGET_LEGITIMIZE_ADDRESS
1635 #define TARGET_LEGITIMIZE_ADDRESS rs6000_legitimize_address
1637 #undef TARGET_SCHED_VARIABLE_ISSUE
1638 #define TARGET_SCHED_VARIABLE_ISSUE rs6000_variable_issue
1640 #undef TARGET_SCHED_ISSUE_RATE
1641 #define TARGET_SCHED_ISSUE_RATE rs6000_issue_rate
1642 #undef TARGET_SCHED_ADJUST_COST
1643 #define TARGET_SCHED_ADJUST_COST rs6000_adjust_cost
1644 #undef TARGET_SCHED_ADJUST_PRIORITY
1645 #define TARGET_SCHED_ADJUST_PRIORITY rs6000_adjust_priority
1646 #undef TARGET_SCHED_IS_COSTLY_DEPENDENCE
1647 #define TARGET_SCHED_IS_COSTLY_DEPENDENCE rs6000_is_costly_dependence
1648 #undef TARGET_SCHED_INIT
1649 #define TARGET_SCHED_INIT rs6000_sched_init
1650 #undef TARGET_SCHED_FINISH
1651 #define TARGET_SCHED_FINISH rs6000_sched_finish
1652 #undef TARGET_SCHED_REORDER
1653 #define TARGET_SCHED_REORDER rs6000_sched_reorder
1654 #undef TARGET_SCHED_REORDER2
1655 #define TARGET_SCHED_REORDER2 rs6000_sched_reorder2
1657 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
1658 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD rs6000_use_sched_lookahead
1660 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
1661 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD rs6000_use_sched_lookahead_guard
1663 #undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
1664 #define TARGET_SCHED_ALLOC_SCHED_CONTEXT rs6000_alloc_sched_context
1665 #undef TARGET_SCHED_INIT_SCHED_CONTEXT
1666 #define TARGET_SCHED_INIT_SCHED_CONTEXT rs6000_init_sched_context
1667 #undef TARGET_SCHED_SET_SCHED_CONTEXT
1668 #define TARGET_SCHED_SET_SCHED_CONTEXT rs6000_set_sched_context
1669 #undef TARGET_SCHED_FREE_SCHED_CONTEXT
1670 #define TARGET_SCHED_FREE_SCHED_CONTEXT rs6000_free_sched_context
1672 #undef TARGET_SCHED_CAN_SPECULATE_INSN
1673 #define TARGET_SCHED_CAN_SPECULATE_INSN rs6000_sched_can_speculate_insn
1675 #undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
1676 #define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD rs6000_builtin_mask_for_load
1677 #undef TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT
1678 #define TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT \
1679 rs6000_builtin_support_vector_misalignment
1680 #undef TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE
1681 #define TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE rs6000_vector_alignment_reachable
1682 #undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST
1683 #define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \
1684 rs6000_builtin_vectorization_cost
1685 #undef TARGET_VECTORIZE_PREFERRED_SIMD_MODE
1686 #define TARGET_VECTORIZE_PREFERRED_SIMD_MODE \
1687 rs6000_preferred_simd_mode
1688 #undef TARGET_VECTORIZE_INIT_COST
1689 #define TARGET_VECTORIZE_INIT_COST rs6000_init_cost
1690 #undef TARGET_VECTORIZE_ADD_STMT_COST
1691 #define TARGET_VECTORIZE_ADD_STMT_COST rs6000_add_stmt_cost
1692 #undef TARGET_VECTORIZE_FINISH_COST
1693 #define TARGET_VECTORIZE_FINISH_COST rs6000_finish_cost
1694 #undef TARGET_VECTORIZE_DESTROY_COST_DATA
1695 #define TARGET_VECTORIZE_DESTROY_COST_DATA rs6000_destroy_cost_data
1697 #undef TARGET_INIT_BUILTINS
1698 #define TARGET_INIT_BUILTINS rs6000_init_builtins
1699 #undef TARGET_BUILTIN_DECL
1700 #define TARGET_BUILTIN_DECL rs6000_builtin_decl
1702 #undef TARGET_FOLD_BUILTIN
1703 #define TARGET_FOLD_BUILTIN rs6000_fold_builtin
1704 #undef TARGET_GIMPLE_FOLD_BUILTIN
1705 #define TARGET_GIMPLE_FOLD_BUILTIN rs6000_gimple_fold_builtin
1707 #undef TARGET_EXPAND_BUILTIN
1708 #define TARGET_EXPAND_BUILTIN rs6000_expand_builtin
1710 #undef TARGET_MANGLE_TYPE
1711 #define TARGET_MANGLE_TYPE rs6000_mangle_type
1713 #undef TARGET_INIT_LIBFUNCS
1714 #define TARGET_INIT_LIBFUNCS rs6000_init_libfuncs
1716 #if TARGET_MACHO
1717 #undef TARGET_BINDS_LOCAL_P
1718 #define TARGET_BINDS_LOCAL_P darwin_binds_local_p
1719 #endif
1721 #undef TARGET_MS_BITFIELD_LAYOUT_P
1722 #define TARGET_MS_BITFIELD_LAYOUT_P rs6000_ms_bitfield_layout_p
1724 #undef TARGET_ASM_OUTPUT_MI_THUNK
1725 #define TARGET_ASM_OUTPUT_MI_THUNK rs6000_output_mi_thunk
1727 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
1728 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
1730 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
1731 #define TARGET_FUNCTION_OK_FOR_SIBCALL rs6000_function_ok_for_sibcall
1733 #undef TARGET_REGISTER_MOVE_COST
1734 #define TARGET_REGISTER_MOVE_COST rs6000_register_move_cost
1735 #undef TARGET_MEMORY_MOVE_COST
1736 #define TARGET_MEMORY_MOVE_COST rs6000_memory_move_cost
1737 #undef TARGET_CANNOT_COPY_INSN_P
1738 #define TARGET_CANNOT_COPY_INSN_P rs6000_cannot_copy_insn_p
1739 #undef TARGET_RTX_COSTS
1740 #define TARGET_RTX_COSTS rs6000_rtx_costs
1741 #undef TARGET_ADDRESS_COST
1742 #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
1743 #undef TARGET_INSN_COST
1744 #define TARGET_INSN_COST rs6000_insn_cost
1746 #undef TARGET_INIT_DWARF_REG_SIZES_EXTRA
1747 #define TARGET_INIT_DWARF_REG_SIZES_EXTRA rs6000_init_dwarf_reg_sizes_extra
1749 #undef TARGET_PROMOTE_FUNCTION_MODE
1750 #define TARGET_PROMOTE_FUNCTION_MODE rs6000_promote_function_mode
1752 #undef TARGET_RETURN_IN_MEMORY
1753 #define TARGET_RETURN_IN_MEMORY rs6000_return_in_memory
1755 #undef TARGET_RETURN_IN_MSB
1756 #define TARGET_RETURN_IN_MSB rs6000_return_in_msb
1758 #undef TARGET_SETUP_INCOMING_VARARGS
1759 #define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs
1761 /* Always strict argument naming on rs6000. */
1762 #undef TARGET_STRICT_ARGUMENT_NAMING
1763 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
1764 #undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
1765 #define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
1766 #undef TARGET_SPLIT_COMPLEX_ARG
1767 #define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
1768 #undef TARGET_MUST_PASS_IN_STACK
1769 #define TARGET_MUST_PASS_IN_STACK rs6000_must_pass_in_stack
1770 #undef TARGET_PASS_BY_REFERENCE
1771 #define TARGET_PASS_BY_REFERENCE rs6000_pass_by_reference
1772 #undef TARGET_ARG_PARTIAL_BYTES
1773 #define TARGET_ARG_PARTIAL_BYTES rs6000_arg_partial_bytes
1774 #undef TARGET_FUNCTION_ARG_ADVANCE
1775 #define TARGET_FUNCTION_ARG_ADVANCE rs6000_function_arg_advance
1776 #undef TARGET_FUNCTION_ARG
1777 #define TARGET_FUNCTION_ARG rs6000_function_arg
1778 #undef TARGET_FUNCTION_ARG_PADDING
1779 #define TARGET_FUNCTION_ARG_PADDING rs6000_function_arg_padding
1780 #undef TARGET_FUNCTION_ARG_BOUNDARY
1781 #define TARGET_FUNCTION_ARG_BOUNDARY rs6000_function_arg_boundary
1783 #undef TARGET_BUILD_BUILTIN_VA_LIST
1784 #define TARGET_BUILD_BUILTIN_VA_LIST rs6000_build_builtin_va_list
1786 #undef TARGET_EXPAND_BUILTIN_VA_START
1787 #define TARGET_EXPAND_BUILTIN_VA_START rs6000_va_start
1789 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
1790 #define TARGET_GIMPLIFY_VA_ARG_EXPR rs6000_gimplify_va_arg
1792 #undef TARGET_EH_RETURN_FILTER_MODE
1793 #define TARGET_EH_RETURN_FILTER_MODE rs6000_eh_return_filter_mode
1795 #undef TARGET_TRANSLATE_MODE_ATTRIBUTE
1796 #define TARGET_TRANSLATE_MODE_ATTRIBUTE rs6000_translate_mode_attribute
1798 #undef TARGET_SCALAR_MODE_SUPPORTED_P
1799 #define TARGET_SCALAR_MODE_SUPPORTED_P rs6000_scalar_mode_supported_p
1801 #undef TARGET_VECTOR_MODE_SUPPORTED_P
1802 #define TARGET_VECTOR_MODE_SUPPORTED_P rs6000_vector_mode_supported_p
1804 #undef TARGET_FLOATN_MODE
1805 #define TARGET_FLOATN_MODE rs6000_floatn_mode
1807 #undef TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
1808 #define TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN invalid_arg_for_unprototyped_fn
1810 #undef TARGET_MD_ASM_ADJUST
1811 #define TARGET_MD_ASM_ADJUST rs6000_md_asm_adjust
1813 #undef TARGET_OPTION_OVERRIDE
1814 #define TARGET_OPTION_OVERRIDE rs6000_option_override
1816 #undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
1817 #define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
1818 rs6000_builtin_vectorized_function
1820 #undef TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION
1821 #define TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION \
1822 rs6000_builtin_md_vectorized_function
1824 #undef TARGET_STACK_PROTECT_GUARD
1825 #define TARGET_STACK_PROTECT_GUARD rs6000_init_stack_protect_guard
1827 #if !TARGET_MACHO
1828 #undef TARGET_STACK_PROTECT_FAIL
1829 #define TARGET_STACK_PROTECT_FAIL rs6000_stack_protect_fail
1830 #endif
1832 #ifdef HAVE_AS_TLS
1833 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
1834 #define TARGET_ASM_OUTPUT_DWARF_DTPREL rs6000_output_dwarf_dtprel
1835 #endif
1837 /* Use a 32-bit anchor range. This leads to sequences like:
1839 addis tmp,anchor,high
1840 add dest,tmp,low
1842 where tmp itself acts as an anchor, and can be shared between
1843 accesses to the same 64k page. */
1844 #undef TARGET_MIN_ANCHOR_OFFSET
1845 #define TARGET_MIN_ANCHOR_OFFSET -0x7fffffff - 1
1846 #undef TARGET_MAX_ANCHOR_OFFSET
1847 #define TARGET_MAX_ANCHOR_OFFSET 0x7fffffff
1848 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
1849 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P rs6000_use_blocks_for_constant_p
1850 #undef TARGET_USE_BLOCKS_FOR_DECL_P
1851 #define TARGET_USE_BLOCKS_FOR_DECL_P rs6000_use_blocks_for_decl_p
1853 #undef TARGET_BUILTIN_RECIPROCAL
1854 #define TARGET_BUILTIN_RECIPROCAL rs6000_builtin_reciprocal
1856 #undef TARGET_SECONDARY_RELOAD
1857 #define TARGET_SECONDARY_RELOAD rs6000_secondary_reload
1858 #undef TARGET_SECONDARY_MEMORY_NEEDED
1859 #define TARGET_SECONDARY_MEMORY_NEEDED rs6000_secondary_memory_needed
1860 #undef TARGET_SECONDARY_MEMORY_NEEDED_MODE
1861 #define TARGET_SECONDARY_MEMORY_NEEDED_MODE rs6000_secondary_memory_needed_mode
1863 #undef TARGET_LEGITIMATE_ADDRESS_P
1864 #define TARGET_LEGITIMATE_ADDRESS_P rs6000_legitimate_address_p
1866 #undef TARGET_MODE_DEPENDENT_ADDRESS_P
1867 #define TARGET_MODE_DEPENDENT_ADDRESS_P rs6000_mode_dependent_address_p
1869 #undef TARGET_COMPUTE_PRESSURE_CLASSES
1870 #define TARGET_COMPUTE_PRESSURE_CLASSES rs6000_compute_pressure_classes
1872 #undef TARGET_CAN_ELIMINATE
1873 #define TARGET_CAN_ELIMINATE rs6000_can_eliminate
1875 #undef TARGET_CONDITIONAL_REGISTER_USAGE
1876 #define TARGET_CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage
1878 #undef TARGET_SCHED_REASSOCIATION_WIDTH
1879 #define TARGET_SCHED_REASSOCIATION_WIDTH rs6000_reassociation_width
1881 #undef TARGET_TRAMPOLINE_INIT
1882 #define TARGET_TRAMPOLINE_INIT rs6000_trampoline_init
1884 #undef TARGET_FUNCTION_VALUE
1885 #define TARGET_FUNCTION_VALUE rs6000_function_value
1887 #undef TARGET_OPTION_VALID_ATTRIBUTE_P
1888 #define TARGET_OPTION_VALID_ATTRIBUTE_P rs6000_valid_attribute_p
1890 #undef TARGET_OPTION_SAVE
1891 #define TARGET_OPTION_SAVE rs6000_function_specific_save
1893 #undef TARGET_OPTION_RESTORE
1894 #define TARGET_OPTION_RESTORE rs6000_function_specific_restore
1896 #undef TARGET_OPTION_PRINT
1897 #define TARGET_OPTION_PRINT rs6000_function_specific_print
1899 #undef TARGET_CAN_INLINE_P
1900 #define TARGET_CAN_INLINE_P rs6000_can_inline_p
1902 #undef TARGET_SET_CURRENT_FUNCTION
1903 #define TARGET_SET_CURRENT_FUNCTION rs6000_set_current_function
1905 #undef TARGET_LEGITIMATE_CONSTANT_P
1906 #define TARGET_LEGITIMATE_CONSTANT_P rs6000_legitimate_constant_p
1908 #undef TARGET_VECTORIZE_VEC_PERM_CONST
1909 #define TARGET_VECTORIZE_VEC_PERM_CONST rs6000_vectorize_vec_perm_const
1911 #undef TARGET_CAN_USE_DOLOOP_P
1912 #define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost
1914 #undef TARGET_ATOMIC_ASSIGN_EXPAND_FENV
1915 #define TARGET_ATOMIC_ASSIGN_EXPAND_FENV rs6000_atomic_assign_expand_fenv
1917 #undef TARGET_LIBGCC_CMP_RETURN_MODE
1918 #define TARGET_LIBGCC_CMP_RETURN_MODE rs6000_abi_word_mode
1919 #undef TARGET_LIBGCC_SHIFT_COUNT_MODE
1920 #define TARGET_LIBGCC_SHIFT_COUNT_MODE rs6000_abi_word_mode
1921 #undef TARGET_UNWIND_WORD_MODE
1922 #define TARGET_UNWIND_WORD_MODE rs6000_abi_word_mode
1924 #undef TARGET_OFFLOAD_OPTIONS
1925 #define TARGET_OFFLOAD_OPTIONS rs6000_offload_options
1927 #undef TARGET_C_MODE_FOR_SUFFIX
1928 #define TARGET_C_MODE_FOR_SUFFIX rs6000_c_mode_for_suffix
1930 #undef TARGET_INVALID_BINARY_OP
1931 #define TARGET_INVALID_BINARY_OP rs6000_invalid_binary_op
1933 #undef TARGET_OPTAB_SUPPORTED_P
1934 #define TARGET_OPTAB_SUPPORTED_P rs6000_optab_supported_p
1936 #undef TARGET_CUSTOM_FUNCTION_DESCRIPTORS
1937 #define TARGET_CUSTOM_FUNCTION_DESCRIPTORS 1
1939 #undef TARGET_COMPARE_VERSION_PRIORITY
1940 #define TARGET_COMPARE_VERSION_PRIORITY rs6000_compare_version_priority
1942 #undef TARGET_GENERATE_VERSION_DISPATCHER_BODY
1943 #define TARGET_GENERATE_VERSION_DISPATCHER_BODY \
1944 rs6000_generate_version_dispatcher_body
1946 #undef TARGET_GET_FUNCTION_VERSIONS_DISPATCHER
1947 #define TARGET_GET_FUNCTION_VERSIONS_DISPATCHER \
1948 rs6000_get_function_versions_dispatcher
1950 #undef TARGET_OPTION_FUNCTION_VERSIONS
1951 #define TARGET_OPTION_FUNCTION_VERSIONS common_function_versions
1953 #undef TARGET_HARD_REGNO_NREGS
1954 #define TARGET_HARD_REGNO_NREGS rs6000_hard_regno_nregs_hook
1955 #undef TARGET_HARD_REGNO_MODE_OK
1956 #define TARGET_HARD_REGNO_MODE_OK rs6000_hard_regno_mode_ok
1958 #undef TARGET_MODES_TIEABLE_P
1959 #define TARGET_MODES_TIEABLE_P rs6000_modes_tieable_p
1961 #undef TARGET_HARD_REGNO_CALL_PART_CLOBBERED
1962 #define TARGET_HARD_REGNO_CALL_PART_CLOBBERED \
1963 rs6000_hard_regno_call_part_clobbered
1965 #undef TARGET_SLOW_UNALIGNED_ACCESS
1966 #define TARGET_SLOW_UNALIGNED_ACCESS rs6000_slow_unaligned_access
1968 #undef TARGET_CAN_CHANGE_MODE_CLASS
1969 #define TARGET_CAN_CHANGE_MODE_CLASS rs6000_can_change_mode_class
1971 #undef TARGET_CONSTANT_ALIGNMENT
1972 #define TARGET_CONSTANT_ALIGNMENT rs6000_constant_alignment
1974 #undef TARGET_STARTING_FRAME_OFFSET
1975 #define TARGET_STARTING_FRAME_OFFSET rs6000_starting_frame_offset
1977 #if TARGET_ELF && RS6000_WEAK
1978 #undef TARGET_ASM_GLOBALIZE_DECL_NAME
1979 #define TARGET_ASM_GLOBALIZE_DECL_NAME rs6000_globalize_decl_name
1980 #endif
1982 #undef TARGET_SETJMP_PRESERVES_NONVOLATILE_REGS_P
1983 #define TARGET_SETJMP_PRESERVES_NONVOLATILE_REGS_P hook_bool_void_true
1985 #undef TARGET_MANGLE_DECL_ASSEMBLER_NAME
1986 #define TARGET_MANGLE_DECL_ASSEMBLER_NAME rs6000_mangle_decl_assembler_name
1989 /* Processor table. */
1990 struct rs6000_ptt
1992 const char *const name; /* Canonical processor name. */
1993 const enum processor_type processor; /* Processor type enum value. */
1994 const HOST_WIDE_INT target_enable; /* Target flags to enable. */
1997 static struct rs6000_ptt const processor_target_table[] =
1999 #define RS6000_CPU(NAME, CPU, FLAGS) { NAME, CPU, FLAGS },
2000 #include "rs6000-cpus.def"
2001 #undef RS6000_CPU
2004 /* Look up a processor name for -mcpu=xxx and -mtune=xxx. Return -1 if the
2005 name is invalid. */
2007 static int
2008 rs6000_cpu_name_lookup (const char *name)
2010 size_t i;
2012 if (name != NULL)
2014 for (i = 0; i < ARRAY_SIZE (processor_target_table); i++)
2015 if (! strcmp (name, processor_target_table[i].name))
2016 return (int)i;
2019 return -1;
2023 /* Return number of consecutive hard regs needed starting at reg REGNO
2024 to hold something of mode MODE.
2025 This is ordinarily the length in words of a value of mode MODE
2026 but can be less for certain modes in special long registers.
2028 POWER and PowerPC GPRs hold 32 bits worth;
2029 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
2031 static int
2032 rs6000_hard_regno_nregs_internal (int regno, machine_mode mode)
2034 unsigned HOST_WIDE_INT reg_size;
2036 /* 128-bit floating point usually takes 2 registers, unless it is IEEE
2037 128-bit floating point that can go in vector registers, which has VSX
2038 memory addressing. */
2039 if (FP_REGNO_P (regno))
2040 reg_size = (VECTOR_MEM_VSX_P (mode) || FLOAT128_VECTOR_P (mode)
2041 ? UNITS_PER_VSX_WORD
2042 : UNITS_PER_FP_WORD);
2044 else if (ALTIVEC_REGNO_P (regno))
2045 reg_size = UNITS_PER_ALTIVEC_WORD;
2047 else
2048 reg_size = UNITS_PER_WORD;
2050 return (GET_MODE_SIZE (mode) + reg_size - 1) / reg_size;
2053 /* Value is 1 if hard register REGNO can hold a value of machine-mode
2054 MODE. */
2055 static int
2056 rs6000_hard_regno_mode_ok_uncached (int regno, machine_mode mode)
2058 int last_regno = regno + rs6000_hard_regno_nregs[mode][regno] - 1;
2060 if (COMPLEX_MODE_P (mode))
2061 mode = GET_MODE_INNER (mode);
2063 /* PTImode can only go in GPRs. Quad word memory operations require even/odd
2064 register combinations, and use PTImode where we need to deal with quad
2065 word memory operations. Don't allow quad words in the argument or frame
2066 pointer registers, just registers 0..31. */
2067 if (mode == PTImode)
2068 return (IN_RANGE (regno, FIRST_GPR_REGNO, LAST_GPR_REGNO)
2069 && IN_RANGE (last_regno, FIRST_GPR_REGNO, LAST_GPR_REGNO)
2070 && ((regno & 1) == 0));
2072 /* VSX registers that overlap the FPR registers are larger than for non-VSX
2073 implementations. Don't allow an item to be split between a FP register
2074 and an Altivec register. Allow TImode in all VSX registers if the user
2075 asked for it. */
2076 if (TARGET_VSX && VSX_REGNO_P (regno)
2077 && (VECTOR_MEM_VSX_P (mode)
2078 || FLOAT128_VECTOR_P (mode)
2079 || reg_addr[mode].scalar_in_vmx_p
2080 || mode == TImode
2081 || (TARGET_VADDUQM && mode == V1TImode)))
2083 if (FP_REGNO_P (regno))
2084 return FP_REGNO_P (last_regno);
2086 if (ALTIVEC_REGNO_P (regno))
2088 if (GET_MODE_SIZE (mode) != 16 && !reg_addr[mode].scalar_in_vmx_p)
2089 return 0;
2091 return ALTIVEC_REGNO_P (last_regno);
2095 /* The GPRs can hold any mode, but values bigger than one register
2096 cannot go past R31. */
2097 if (INT_REGNO_P (regno))
2098 return INT_REGNO_P (last_regno);
2100 /* The float registers (except for VSX vector modes) can only hold floating
2101 modes and DImode. */
2102 if (FP_REGNO_P (regno))
2104 if (FLOAT128_VECTOR_P (mode))
2105 return false;
2107 if (SCALAR_FLOAT_MODE_P (mode)
2108 && (mode != TDmode || (regno % 2) == 0)
2109 && FP_REGNO_P (last_regno))
2110 return 1;
2112 if (GET_MODE_CLASS (mode) == MODE_INT)
2114 if(GET_MODE_SIZE (mode) == UNITS_PER_FP_WORD)
2115 return 1;
2117 if (TARGET_P8_VECTOR && (mode == SImode))
2118 return 1;
2120 if (TARGET_P9_VECTOR && (mode == QImode || mode == HImode))
2121 return 1;
2124 return 0;
2127 /* The CR register can only hold CC modes. */
2128 if (CR_REGNO_P (regno))
2129 return GET_MODE_CLASS (mode) == MODE_CC;
2131 if (CA_REGNO_P (regno))
2132 return mode == Pmode || mode == SImode;
2134 /* AltiVec only in AldyVec registers. */
2135 if (ALTIVEC_REGNO_P (regno))
2136 return (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
2137 || mode == V1TImode);
2139 /* We cannot put non-VSX TImode or PTImode anywhere except general register
2140 and it must be able to fit within the register set. */
2142 return GET_MODE_SIZE (mode) <= UNITS_PER_WORD;
2145 /* Implement TARGET_HARD_REGNO_NREGS. */
2147 static unsigned int
2148 rs6000_hard_regno_nregs_hook (unsigned int regno, machine_mode mode)
2150 return rs6000_hard_regno_nregs[mode][regno];
2153 /* Implement TARGET_HARD_REGNO_MODE_OK. */
2155 static bool
2156 rs6000_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
2158 return rs6000_hard_regno_mode_ok_p[mode][regno];
2161 /* Implement TARGET_MODES_TIEABLE_P.
2163 PTImode cannot tie with other modes because PTImode is restricted to even
2164 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
2165 57744).
2167 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
2168 128-bit floating point on VSX systems ties with other vectors. */
2170 static bool
2171 rs6000_modes_tieable_p (machine_mode mode1, machine_mode mode2)
2173 if (mode1 == PTImode)
2174 return mode2 == PTImode;
2175 if (mode2 == PTImode)
2176 return false;
2178 if (ALTIVEC_OR_VSX_VECTOR_MODE (mode1))
2179 return ALTIVEC_OR_VSX_VECTOR_MODE (mode2);
2180 if (ALTIVEC_OR_VSX_VECTOR_MODE (mode2))
2181 return false;
2183 if (SCALAR_FLOAT_MODE_P (mode1))
2184 return SCALAR_FLOAT_MODE_P (mode2);
2185 if (SCALAR_FLOAT_MODE_P (mode2))
2186 return false;
2188 if (GET_MODE_CLASS (mode1) == MODE_CC)
2189 return GET_MODE_CLASS (mode2) == MODE_CC;
2190 if (GET_MODE_CLASS (mode2) == MODE_CC)
2191 return false;
2193 return true;
2196 /* Implement TARGET_HARD_REGNO_CALL_PART_CLOBBERED. */
2198 static bool
2199 rs6000_hard_regno_call_part_clobbered (unsigned int regno, machine_mode mode)
2201 if (TARGET_32BIT
2202 && TARGET_POWERPC64
2203 && GET_MODE_SIZE (mode) > 4
2204 && INT_REGNO_P (regno))
2205 return true;
2207 if (TARGET_VSX
2208 && FP_REGNO_P (regno)
2209 && GET_MODE_SIZE (mode) > 8
2210 && !FLOAT128_2REG_P (mode))
2211 return true;
2213 return false;
2216 /* Print interesting facts about registers. */
2217 static void
2218 rs6000_debug_reg_print (int first_regno, int last_regno, const char *reg_name)
2220 int r, m;
2222 for (r = first_regno; r <= last_regno; ++r)
2224 const char *comma = "";
2225 int len;
2227 if (first_regno == last_regno)
2228 fprintf (stderr, "%s:\t", reg_name);
2229 else
2230 fprintf (stderr, "%s%d:\t", reg_name, r - first_regno);
2232 len = 8;
2233 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2234 if (rs6000_hard_regno_mode_ok_p[m][r] && rs6000_hard_regno_nregs[m][r])
2236 if (len > 70)
2238 fprintf (stderr, ",\n\t");
2239 len = 8;
2240 comma = "";
2243 if (rs6000_hard_regno_nregs[m][r] > 1)
2244 len += fprintf (stderr, "%s%s/%d", comma, GET_MODE_NAME (m),
2245 rs6000_hard_regno_nregs[m][r]);
2246 else
2247 len += fprintf (stderr, "%s%s", comma, GET_MODE_NAME (m));
2249 comma = ", ";
2252 if (call_used_regs[r])
2254 if (len > 70)
2256 fprintf (stderr, ",\n\t");
2257 len = 8;
2258 comma = "";
2261 len += fprintf (stderr, "%s%s", comma, "call-used");
2262 comma = ", ";
2265 if (fixed_regs[r])
2267 if (len > 70)
2269 fprintf (stderr, ",\n\t");
2270 len = 8;
2271 comma = "";
2274 len += fprintf (stderr, "%s%s", comma, "fixed");
2275 comma = ", ";
2278 if (len > 70)
2280 fprintf (stderr, ",\n\t");
2281 comma = "";
2284 len += fprintf (stderr, "%sreg-class = %s", comma,
2285 reg_class_names[(int)rs6000_regno_regclass[r]]);
2286 comma = ", ";
2288 if (len > 70)
2290 fprintf (stderr, ",\n\t");
2291 comma = "";
2294 fprintf (stderr, "%sregno = %d\n", comma, r);
2298 static const char *
2299 rs6000_debug_vector_unit (enum rs6000_vector v)
2301 const char *ret;
2303 switch (v)
2305 case VECTOR_NONE: ret = "none"; break;
2306 case VECTOR_ALTIVEC: ret = "altivec"; break;
2307 case VECTOR_VSX: ret = "vsx"; break;
2308 case VECTOR_P8_VECTOR: ret = "p8_vector"; break;
2309 default: ret = "unknown"; break;
2312 return ret;
2315 /* Inner function printing just the address mask for a particular reload
2316 register class. */
2317 DEBUG_FUNCTION char *
2318 rs6000_debug_addr_mask (addr_mask_type mask, bool keep_spaces)
2320 static char ret[8];
2321 char *p = ret;
2323 if ((mask & RELOAD_REG_VALID) != 0)
2324 *p++ = 'v';
2325 else if (keep_spaces)
2326 *p++ = ' ';
2328 if ((mask & RELOAD_REG_MULTIPLE) != 0)
2329 *p++ = 'm';
2330 else if (keep_spaces)
2331 *p++ = ' ';
2333 if ((mask & RELOAD_REG_INDEXED) != 0)
2334 *p++ = 'i';
2335 else if (keep_spaces)
2336 *p++ = ' ';
2338 if ((mask & RELOAD_REG_QUAD_OFFSET) != 0)
2339 *p++ = 'O';
2340 else if ((mask & RELOAD_REG_OFFSET) != 0)
2341 *p++ = 'o';
2342 else if (keep_spaces)
2343 *p++ = ' ';
2345 if ((mask & RELOAD_REG_PRE_INCDEC) != 0)
2346 *p++ = '+';
2347 else if (keep_spaces)
2348 *p++ = ' ';
2350 if ((mask & RELOAD_REG_PRE_MODIFY) != 0)
2351 *p++ = '+';
2352 else if (keep_spaces)
2353 *p++ = ' ';
2355 if ((mask & RELOAD_REG_AND_M16) != 0)
2356 *p++ = '&';
2357 else if (keep_spaces)
2358 *p++ = ' ';
2360 *p = '\0';
2362 return ret;
2365 /* Print the address masks in a human readble fashion. */
2366 DEBUG_FUNCTION void
2367 rs6000_debug_print_mode (ssize_t m)
2369 ssize_t rc;
2370 int spaces = 0;
2372 fprintf (stderr, "Mode: %-5s", GET_MODE_NAME (m));
2373 for (rc = 0; rc < N_RELOAD_REG; rc++)
2374 fprintf (stderr, " %s: %s", reload_reg_map[rc].name,
2375 rs6000_debug_addr_mask (reg_addr[m].addr_mask[rc], true));
2377 if ((reg_addr[m].reload_store != CODE_FOR_nothing)
2378 || (reg_addr[m].reload_load != CODE_FOR_nothing))
2380 fprintf (stderr, "%*s Reload=%c%c", spaces, "",
2381 (reg_addr[m].reload_store != CODE_FOR_nothing) ? 's' : '*',
2382 (reg_addr[m].reload_load != CODE_FOR_nothing) ? 'l' : '*');
2383 spaces = 0;
2385 else
2386 spaces += sizeof (" Reload=sl") - 1;
2388 if (reg_addr[m].scalar_in_vmx_p)
2390 fprintf (stderr, "%*s Upper=y", spaces, "");
2391 spaces = 0;
2393 else
2394 spaces += sizeof (" Upper=y") - 1;
2396 if (rs6000_vector_unit[m] != VECTOR_NONE
2397 || rs6000_vector_mem[m] != VECTOR_NONE)
2399 fprintf (stderr, "%*s vector: arith=%-10s mem=%s",
2400 spaces, "",
2401 rs6000_debug_vector_unit (rs6000_vector_unit[m]),
2402 rs6000_debug_vector_unit (rs6000_vector_mem[m]));
2405 fputs ("\n", stderr);
2408 #define DEBUG_FMT_ID "%-32s= "
2409 #define DEBUG_FMT_D DEBUG_FMT_ID "%d\n"
2410 #define DEBUG_FMT_WX DEBUG_FMT_ID "%#.12" HOST_WIDE_INT_PRINT "x: "
2411 #define DEBUG_FMT_S DEBUG_FMT_ID "%s\n"
2413 /* Print various interesting information with -mdebug=reg. */
2414 static void
2415 rs6000_debug_reg_global (void)
2417 static const char *const tf[2] = { "false", "true" };
2418 const char *nl = (const char *)0;
2419 int m;
2420 size_t m1, m2, v;
2421 char costly_num[20];
2422 char nop_num[20];
2423 char flags_buffer[40];
2424 const char *costly_str;
2425 const char *nop_str;
2426 const char *trace_str;
2427 const char *abi_str;
2428 const char *cmodel_str;
2429 struct cl_target_option cl_opts;
2431 /* Modes we want tieable information on. */
2432 static const machine_mode print_tieable_modes[] = {
2433 QImode,
2434 HImode,
2435 SImode,
2436 DImode,
2437 TImode,
2438 PTImode,
2439 SFmode,
2440 DFmode,
2441 TFmode,
2442 IFmode,
2443 KFmode,
2444 SDmode,
2445 DDmode,
2446 TDmode,
2447 V16QImode,
2448 V8HImode,
2449 V4SImode,
2450 V2DImode,
2451 V1TImode,
2452 V32QImode,
2453 V16HImode,
2454 V8SImode,
2455 V4DImode,
2456 V2TImode,
2457 V4SFmode,
2458 V2DFmode,
2459 V8SFmode,
2460 V4DFmode,
2461 CCmode,
2462 CCUNSmode,
2463 CCEQmode,
2466 /* Virtual regs we are interested in. */
2467 const static struct {
2468 int regno; /* register number. */
2469 const char *name; /* register name. */
2470 } virtual_regs[] = {
2471 { STACK_POINTER_REGNUM, "stack pointer:" },
2472 { TOC_REGNUM, "toc: " },
2473 { STATIC_CHAIN_REGNUM, "static chain: " },
2474 { RS6000_PIC_OFFSET_TABLE_REGNUM, "pic offset: " },
2475 { HARD_FRAME_POINTER_REGNUM, "hard frame: " },
2476 { ARG_POINTER_REGNUM, "arg pointer: " },
2477 { FRAME_POINTER_REGNUM, "frame pointer:" },
2478 { FIRST_PSEUDO_REGISTER, "first pseudo: " },
2479 { FIRST_VIRTUAL_REGISTER, "first virtual:" },
2480 { VIRTUAL_INCOMING_ARGS_REGNUM, "incoming_args:" },
2481 { VIRTUAL_STACK_VARS_REGNUM, "stack_vars: " },
2482 { VIRTUAL_STACK_DYNAMIC_REGNUM, "stack_dynamic:" },
2483 { VIRTUAL_OUTGOING_ARGS_REGNUM, "outgoing_args:" },
2484 { VIRTUAL_CFA_REGNUM, "cfa (frame): " },
2485 { VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM, "stack boundry:" },
2486 { LAST_VIRTUAL_REGISTER, "last virtual: " },
2489 fputs ("\nHard register information:\n", stderr);
2490 rs6000_debug_reg_print (FIRST_GPR_REGNO, LAST_GPR_REGNO, "gr");
2491 rs6000_debug_reg_print (FIRST_FPR_REGNO, LAST_FPR_REGNO, "fp");
2492 rs6000_debug_reg_print (FIRST_ALTIVEC_REGNO,
2493 LAST_ALTIVEC_REGNO,
2494 "vs");
2495 rs6000_debug_reg_print (LR_REGNO, LR_REGNO, "lr");
2496 rs6000_debug_reg_print (CTR_REGNO, CTR_REGNO, "ctr");
2497 rs6000_debug_reg_print (CR0_REGNO, CR7_REGNO, "cr");
2498 rs6000_debug_reg_print (CA_REGNO, CA_REGNO, "ca");
2499 rs6000_debug_reg_print (VRSAVE_REGNO, VRSAVE_REGNO, "vrsave");
2500 rs6000_debug_reg_print (VSCR_REGNO, VSCR_REGNO, "vscr");
2502 fputs ("\nVirtual/stack/frame registers:\n", stderr);
2503 for (v = 0; v < ARRAY_SIZE (virtual_regs); v++)
2504 fprintf (stderr, "%s regno = %3d\n", virtual_regs[v].name, virtual_regs[v].regno);
2506 fprintf (stderr,
2507 "\n"
2508 "d reg_class = %s\n"
2509 "f reg_class = %s\n"
2510 "v reg_class = %s\n"
2511 "wa reg_class = %s\n"
2512 "wb reg_class = %s\n"
2513 "wd reg_class = %s\n"
2514 "we reg_class = %s\n"
2515 "wf reg_class = %s\n"
2516 "wg reg_class = %s\n"
2517 "wh reg_class = %s\n"
2518 "wi reg_class = %s\n"
2519 "wj reg_class = %s\n"
2520 "wk reg_class = %s\n"
2521 "wl reg_class = %s\n"
2522 "wm reg_class = %s\n"
2523 "wo reg_class = %s\n"
2524 "wp reg_class = %s\n"
2525 "wq reg_class = %s\n"
2526 "wr reg_class = %s\n"
2527 "ws reg_class = %s\n"
2528 "wt reg_class = %s\n"
2529 "wu reg_class = %s\n"
2530 "wv reg_class = %s\n"
2531 "ww reg_class = %s\n"
2532 "wx reg_class = %s\n"
2533 "wy reg_class = %s\n"
2534 "wz reg_class = %s\n"
2535 "wA reg_class = %s\n"
2536 "wH reg_class = %s\n"
2537 "wI reg_class = %s\n"
2538 "wJ reg_class = %s\n"
2539 "wK reg_class = %s\n"
2540 "\n",
2541 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_d]],
2542 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_f]],
2543 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_v]],
2544 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wa]],
2545 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wb]],
2546 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wd]],
2547 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_we]],
2548 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wf]],
2549 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wg]],
2550 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wh]],
2551 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wi]],
2552 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wj]],
2553 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wk]],
2554 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wl]],
2555 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wm]],
2556 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wo]],
2557 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wp]],
2558 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wq]],
2559 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wr]],
2560 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_ws]],
2561 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wt]],
2562 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wu]],
2563 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wv]],
2564 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_ww]],
2565 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wx]],
2566 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wy]],
2567 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wz]],
2568 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wA]],
2569 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wH]],
2570 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wI]],
2571 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wJ]],
2572 reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wK]]);
2574 nl = "\n";
2575 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2576 rs6000_debug_print_mode (m);
2578 fputs ("\n", stderr);
2580 for (m1 = 0; m1 < ARRAY_SIZE (print_tieable_modes); m1++)
2582 machine_mode mode1 = print_tieable_modes[m1];
2583 bool first_time = true;
2585 nl = (const char *)0;
2586 for (m2 = 0; m2 < ARRAY_SIZE (print_tieable_modes); m2++)
2588 machine_mode mode2 = print_tieable_modes[m2];
2589 if (mode1 != mode2 && rs6000_modes_tieable_p (mode1, mode2))
2591 if (first_time)
2593 fprintf (stderr, "Tieable modes %s:", GET_MODE_NAME (mode1));
2594 nl = "\n";
2595 first_time = false;
2598 fprintf (stderr, " %s", GET_MODE_NAME (mode2));
2602 if (!first_time)
2603 fputs ("\n", stderr);
2606 if (nl)
2607 fputs (nl, stderr);
2609 if (rs6000_recip_control)
2611 fprintf (stderr, "\nReciprocal mask = 0x%x\n", rs6000_recip_control);
2613 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2614 if (rs6000_recip_bits[m])
2616 fprintf (stderr,
2617 "Reciprocal estimate mode: %-5s divide: %s rsqrt: %s\n",
2618 GET_MODE_NAME (m),
2619 (RS6000_RECIP_AUTO_RE_P (m)
2620 ? "auto"
2621 : (RS6000_RECIP_HAVE_RE_P (m) ? "have" : "none")),
2622 (RS6000_RECIP_AUTO_RSQRTE_P (m)
2623 ? "auto"
2624 : (RS6000_RECIP_HAVE_RSQRTE_P (m) ? "have" : "none")));
2627 fputs ("\n", stderr);
2630 if (rs6000_cpu_index >= 0)
2632 const char *name = processor_target_table[rs6000_cpu_index].name;
2633 HOST_WIDE_INT flags
2634 = processor_target_table[rs6000_cpu_index].target_enable;
2636 sprintf (flags_buffer, "-mcpu=%s flags", name);
2637 rs6000_print_isa_options (stderr, 0, flags_buffer, flags);
2639 else
2640 fprintf (stderr, DEBUG_FMT_S, "cpu", "<none>");
2642 if (rs6000_tune_index >= 0)
2644 const char *name = processor_target_table[rs6000_tune_index].name;
2645 HOST_WIDE_INT flags
2646 = processor_target_table[rs6000_tune_index].target_enable;
2648 sprintf (flags_buffer, "-mtune=%s flags", name);
2649 rs6000_print_isa_options (stderr, 0, flags_buffer, flags);
2651 else
2652 fprintf (stderr, DEBUG_FMT_S, "tune", "<none>");
2654 cl_target_option_save (&cl_opts, &global_options);
2655 rs6000_print_isa_options (stderr, 0, "rs6000_isa_flags",
2656 rs6000_isa_flags);
2658 rs6000_print_isa_options (stderr, 0, "rs6000_isa_flags_explicit",
2659 rs6000_isa_flags_explicit);
2661 rs6000_print_builtin_options (stderr, 0, "rs6000_builtin_mask",
2662 rs6000_builtin_mask);
2664 rs6000_print_isa_options (stderr, 0, "TARGET_DEFAULT", TARGET_DEFAULT);
2666 fprintf (stderr, DEBUG_FMT_S, "--with-cpu default",
2667 OPTION_TARGET_CPU_DEFAULT ? OPTION_TARGET_CPU_DEFAULT : "<none>");
2669 switch (rs6000_sched_costly_dep)
2671 case max_dep_latency:
2672 costly_str = "max_dep_latency";
2673 break;
2675 case no_dep_costly:
2676 costly_str = "no_dep_costly";
2677 break;
2679 case all_deps_costly:
2680 costly_str = "all_deps_costly";
2681 break;
2683 case true_store_to_load_dep_costly:
2684 costly_str = "true_store_to_load_dep_costly";
2685 break;
2687 case store_to_load_dep_costly:
2688 costly_str = "store_to_load_dep_costly";
2689 break;
2691 default:
2692 costly_str = costly_num;
2693 sprintf (costly_num, "%d", (int)rs6000_sched_costly_dep);
2694 break;
2697 fprintf (stderr, DEBUG_FMT_S, "sched_costly_dep", costly_str);
2699 switch (rs6000_sched_insert_nops)
2701 case sched_finish_regroup_exact:
2702 nop_str = "sched_finish_regroup_exact";
2703 break;
2705 case sched_finish_pad_groups:
2706 nop_str = "sched_finish_pad_groups";
2707 break;
2709 case sched_finish_none:
2710 nop_str = "sched_finish_none";
2711 break;
2713 default:
2714 nop_str = nop_num;
2715 sprintf (nop_num, "%d", (int)rs6000_sched_insert_nops);
2716 break;
2719 fprintf (stderr, DEBUG_FMT_S, "sched_insert_nops", nop_str);
2721 switch (rs6000_sdata)
2723 default:
2724 case SDATA_NONE:
2725 break;
2727 case SDATA_DATA:
2728 fprintf (stderr, DEBUG_FMT_S, "sdata", "data");
2729 break;
2731 case SDATA_SYSV:
2732 fprintf (stderr, DEBUG_FMT_S, "sdata", "sysv");
2733 break;
2735 case SDATA_EABI:
2736 fprintf (stderr, DEBUG_FMT_S, "sdata", "eabi");
2737 break;
2741 switch (rs6000_traceback)
2743 case traceback_default: trace_str = "default"; break;
2744 case traceback_none: trace_str = "none"; break;
2745 case traceback_part: trace_str = "part"; break;
2746 case traceback_full: trace_str = "full"; break;
2747 default: trace_str = "unknown"; break;
2750 fprintf (stderr, DEBUG_FMT_S, "traceback", trace_str);
2752 switch (rs6000_current_cmodel)
2754 case CMODEL_SMALL: cmodel_str = "small"; break;
2755 case CMODEL_MEDIUM: cmodel_str = "medium"; break;
2756 case CMODEL_LARGE: cmodel_str = "large"; break;
2757 default: cmodel_str = "unknown"; break;
2760 fprintf (stderr, DEBUG_FMT_S, "cmodel", cmodel_str);
2762 switch (rs6000_current_abi)
2764 case ABI_NONE: abi_str = "none"; break;
2765 case ABI_AIX: abi_str = "aix"; break;
2766 case ABI_ELFv2: abi_str = "ELFv2"; break;
2767 case ABI_V4: abi_str = "V4"; break;
2768 case ABI_DARWIN: abi_str = "darwin"; break;
2769 default: abi_str = "unknown"; break;
2772 fprintf (stderr, DEBUG_FMT_S, "abi", abi_str);
2774 if (rs6000_altivec_abi)
2775 fprintf (stderr, DEBUG_FMT_S, "altivec_abi", "true");
2777 if (rs6000_darwin64_abi)
2778 fprintf (stderr, DEBUG_FMT_S, "darwin64_abi", "true");
2780 fprintf (stderr, DEBUG_FMT_S, "soft_float",
2781 (TARGET_SOFT_FLOAT ? "true" : "false"));
2783 if (TARGET_LINK_STACK)
2784 fprintf (stderr, DEBUG_FMT_S, "link_stack", "true");
2786 if (TARGET_P8_FUSION)
2788 char options[80];
2790 strcpy (options, (TARGET_P9_FUSION) ? "power9" : "power8");
2791 if (TARGET_P8_FUSION_SIGN)
2792 strcat (options, ", sign");
2794 fprintf (stderr, DEBUG_FMT_S, "fusion", options);
2797 fprintf (stderr, DEBUG_FMT_S, "plt-format",
2798 TARGET_SECURE_PLT ? "secure" : "bss");
2799 fprintf (stderr, DEBUG_FMT_S, "struct-return",
2800 aix_struct_return ? "aix" : "sysv");
2801 fprintf (stderr, DEBUG_FMT_S, "always_hint", tf[!!rs6000_always_hint]);
2802 fprintf (stderr, DEBUG_FMT_S, "sched_groups", tf[!!rs6000_sched_groups]);
2803 fprintf (stderr, DEBUG_FMT_S, "align_branch",
2804 tf[!!rs6000_align_branch_targets]);
2805 fprintf (stderr, DEBUG_FMT_D, "tls_size", rs6000_tls_size);
2806 fprintf (stderr, DEBUG_FMT_D, "long_double_size",
2807 rs6000_long_double_type_size);
2808 if (rs6000_long_double_type_size > 64)
2810 fprintf (stderr, DEBUG_FMT_S, "long double type",
2811 TARGET_IEEEQUAD ? "IEEE" : "IBM");
2812 fprintf (stderr, DEBUG_FMT_S, "default long double type",
2813 TARGET_IEEEQUAD_DEFAULT ? "IEEE" : "IBM");
2815 fprintf (stderr, DEBUG_FMT_D, "sched_restricted_insns_priority",
2816 (int)rs6000_sched_restricted_insns_priority);
2817 fprintf (stderr, DEBUG_FMT_D, "Number of standard builtins",
2818 (int)END_BUILTINS);
2819 fprintf (stderr, DEBUG_FMT_D, "Number of rs6000 builtins",
2820 (int)RS6000_BUILTIN_COUNT);
2822 fprintf (stderr, DEBUG_FMT_D, "Enable float128 on VSX",
2823 (int)TARGET_FLOAT128_ENABLE_TYPE);
2825 if (TARGET_VSX)
2826 fprintf (stderr, DEBUG_FMT_D, "VSX easy 64-bit scalar element",
2827 (int)VECTOR_ELEMENT_SCALAR_64BIT);
2829 if (TARGET_DIRECT_MOVE_128)
2830 fprintf (stderr, DEBUG_FMT_D, "VSX easy 64-bit mfvsrld element",
2831 (int)VECTOR_ELEMENT_MFVSRLD_64BIT);
2835 /* Update the addr mask bits in reg_addr to help secondary reload and go if
2836 legitimate address support to figure out the appropriate addressing to
2837 use. */
2839 static void
2840 rs6000_setup_reg_addr_masks (void)
2842 ssize_t rc, reg, m, nregs;
2843 addr_mask_type any_addr_mask, addr_mask;
2845 for (m = 0; m < NUM_MACHINE_MODES; ++m)
2847 machine_mode m2 = (machine_mode) m;
2848 bool complex_p = false;
2849 bool small_int_p = (m2 == QImode || m2 == HImode || m2 == SImode);
2850 size_t msize;
2852 if (COMPLEX_MODE_P (m2))
2854 complex_p = true;
2855 m2 = GET_MODE_INNER (m2);
2858 msize = GET_MODE_SIZE (m2);
2860 /* SDmode is special in that we want to access it only via REG+REG
2861 addressing on power7 and above, since we want to use the LFIWZX and
2862 STFIWZX instructions to load it. */
2863 bool indexed_only_p = (m == SDmode && TARGET_NO_SDMODE_STACK);
2865 any_addr_mask = 0;
2866 for (rc = FIRST_RELOAD_REG_CLASS; rc <= LAST_RELOAD_REG_CLASS; rc++)
2868 addr_mask = 0;
2869 reg = reload_reg_map[rc].reg;
2871 /* Can mode values go in the GPR/FPR/Altivec registers? */
2872 if (reg >= 0 && rs6000_hard_regno_mode_ok_p[m][reg])
2874 bool small_int_vsx_p = (small_int_p
2875 && (rc == RELOAD_REG_FPR
2876 || rc == RELOAD_REG_VMX));
2878 nregs = rs6000_hard_regno_nregs[m][reg];
2879 addr_mask |= RELOAD_REG_VALID;
2881 /* Indicate if the mode takes more than 1 physical register. If
2882 it takes a single register, indicate it can do REG+REG
2883 addressing. Small integers in VSX registers can only do
2884 REG+REG addressing. */
2885 if (small_int_vsx_p)
2886 addr_mask |= RELOAD_REG_INDEXED;
2887 else if (nregs > 1 || m == BLKmode || complex_p)
2888 addr_mask |= RELOAD_REG_MULTIPLE;
2889 else
2890 addr_mask |= RELOAD_REG_INDEXED;
2892 /* Figure out if we can do PRE_INC, PRE_DEC, or PRE_MODIFY
2893 addressing. If we allow scalars into Altivec registers,
2894 don't allow PRE_INC, PRE_DEC, or PRE_MODIFY.
2896 For VSX systems, we don't allow update addressing for
2897 DFmode/SFmode if those registers can go in both the
2898 traditional floating point registers and Altivec registers.
2899 The load/store instructions for the Altivec registers do not
2900 have update forms. If we allowed update addressing, it seems
2901 to break IV-OPT code using floating point if the index type is
2902 int instead of long (PR target/81550 and target/84042). */
2904 if (TARGET_UPDATE
2905 && (rc == RELOAD_REG_GPR || rc == RELOAD_REG_FPR)
2906 && msize <= 8
2907 && !VECTOR_MODE_P (m2)
2908 && !FLOAT128_VECTOR_P (m2)
2909 && !complex_p
2910 && (m != E_DFmode || !TARGET_VSX)
2911 && (m != E_SFmode || !TARGET_P8_VECTOR)
2912 && !small_int_vsx_p)
2914 addr_mask |= RELOAD_REG_PRE_INCDEC;
2916 /* PRE_MODIFY is more restricted than PRE_INC/PRE_DEC in that
2917 we don't allow PRE_MODIFY for some multi-register
2918 operations. */
2919 switch (m)
2921 default:
2922 addr_mask |= RELOAD_REG_PRE_MODIFY;
2923 break;
2925 case E_DImode:
2926 if (TARGET_POWERPC64)
2927 addr_mask |= RELOAD_REG_PRE_MODIFY;
2928 break;
2930 case E_DFmode:
2931 case E_DDmode:
2932 if (TARGET_HARD_FLOAT)
2933 addr_mask |= RELOAD_REG_PRE_MODIFY;
2934 break;
2939 /* GPR and FPR registers can do REG+OFFSET addressing, except
2940 possibly for SDmode. ISA 3.0 (i.e. power9) adds D-form addressing
2941 for 64-bit scalars and 32-bit SFmode to altivec registers. */
2942 if ((addr_mask != 0) && !indexed_only_p
2943 && msize <= 8
2944 && (rc == RELOAD_REG_GPR
2945 || ((msize == 8 || m2 == SFmode)
2946 && (rc == RELOAD_REG_FPR
2947 || (rc == RELOAD_REG_VMX && TARGET_P9_VECTOR)))))
2948 addr_mask |= RELOAD_REG_OFFSET;
2950 /* VSX registers can do REG+OFFSET addresssing if ISA 3.0
2951 instructions are enabled. The offset for 128-bit VSX registers is
2952 only 12-bits. While GPRs can handle the full offset range, VSX
2953 registers can only handle the restricted range. */
2954 else if ((addr_mask != 0) && !indexed_only_p
2955 && msize == 16 && TARGET_P9_VECTOR
2956 && (ALTIVEC_OR_VSX_VECTOR_MODE (m2)
2957 || (m2 == TImode && TARGET_VSX)))
2959 addr_mask |= RELOAD_REG_OFFSET;
2960 if (rc == RELOAD_REG_FPR || rc == RELOAD_REG_VMX)
2961 addr_mask |= RELOAD_REG_QUAD_OFFSET;
2964 /* VMX registers can do (REG & -16) and ((REG+REG) & -16)
2965 addressing on 128-bit types. */
2966 if (rc == RELOAD_REG_VMX && msize == 16
2967 && (addr_mask & RELOAD_REG_VALID) != 0)
2968 addr_mask |= RELOAD_REG_AND_M16;
2970 reg_addr[m].addr_mask[rc] = addr_mask;
2971 any_addr_mask |= addr_mask;
2974 reg_addr[m].addr_mask[RELOAD_REG_ANY] = any_addr_mask;
2979 /* Initialize the various global tables that are based on register size. */
2980 static void
2981 rs6000_init_hard_regno_mode_ok (bool global_init_p)
2983 ssize_t r, m, c;
2984 int align64;
2985 int align32;
2987 /* Precalculate REGNO_REG_CLASS. */
2988 rs6000_regno_regclass[0] = GENERAL_REGS;
2989 for (r = 1; r < 32; ++r)
2990 rs6000_regno_regclass[r] = BASE_REGS;
2992 for (r = 32; r < 64; ++r)
2993 rs6000_regno_regclass[r] = FLOAT_REGS;
2995 for (r = 64; r < FIRST_PSEUDO_REGISTER; ++r)
2996 rs6000_regno_regclass[r] = NO_REGS;
2998 for (r = FIRST_ALTIVEC_REGNO; r <= LAST_ALTIVEC_REGNO; ++r)
2999 rs6000_regno_regclass[r] = ALTIVEC_REGS;
3001 rs6000_regno_regclass[CR0_REGNO] = CR0_REGS;
3002 for (r = CR1_REGNO; r <= CR7_REGNO; ++r)
3003 rs6000_regno_regclass[r] = CR_REGS;
3005 rs6000_regno_regclass[LR_REGNO] = LINK_REGS;
3006 rs6000_regno_regclass[CTR_REGNO] = CTR_REGS;
3007 rs6000_regno_regclass[CA_REGNO] = NO_REGS;
3008 rs6000_regno_regclass[VRSAVE_REGNO] = VRSAVE_REGS;
3009 rs6000_regno_regclass[VSCR_REGNO] = VRSAVE_REGS;
3010 rs6000_regno_regclass[TFHAR_REGNO] = SPR_REGS;
3011 rs6000_regno_regclass[TFIAR_REGNO] = SPR_REGS;
3012 rs6000_regno_regclass[TEXASR_REGNO] = SPR_REGS;
3013 rs6000_regno_regclass[ARG_POINTER_REGNUM] = BASE_REGS;
3014 rs6000_regno_regclass[FRAME_POINTER_REGNUM] = BASE_REGS;
3016 /* Precalculate register class to simpler reload register class. We don't
3017 need all of the register classes that are combinations of different
3018 classes, just the simple ones that have constraint letters. */
3019 for (c = 0; c < N_REG_CLASSES; c++)
3020 reg_class_to_reg_type[c] = NO_REG_TYPE;
3022 reg_class_to_reg_type[(int)GENERAL_REGS] = GPR_REG_TYPE;
3023 reg_class_to_reg_type[(int)BASE_REGS] = GPR_REG_TYPE;
3024 reg_class_to_reg_type[(int)VSX_REGS] = VSX_REG_TYPE;
3025 reg_class_to_reg_type[(int)VRSAVE_REGS] = SPR_REG_TYPE;
3026 reg_class_to_reg_type[(int)VSCR_REGS] = SPR_REG_TYPE;
3027 reg_class_to_reg_type[(int)LINK_REGS] = SPR_REG_TYPE;
3028 reg_class_to_reg_type[(int)CTR_REGS] = SPR_REG_TYPE;
3029 reg_class_to_reg_type[(int)LINK_OR_CTR_REGS] = SPR_REG_TYPE;
3030 reg_class_to_reg_type[(int)CR_REGS] = CR_REG_TYPE;
3031 reg_class_to_reg_type[(int)CR0_REGS] = CR_REG_TYPE;
3033 if (TARGET_VSX)
3035 reg_class_to_reg_type[(int)FLOAT_REGS] = VSX_REG_TYPE;
3036 reg_class_to_reg_type[(int)ALTIVEC_REGS] = VSX_REG_TYPE;
3038 else
3040 reg_class_to_reg_type[(int)FLOAT_REGS] = FPR_REG_TYPE;
3041 reg_class_to_reg_type[(int)ALTIVEC_REGS] = ALTIVEC_REG_TYPE;
3044 /* Precalculate the valid memory formats as well as the vector information,
3045 this must be set up before the rs6000_hard_regno_nregs_internal calls
3046 below. */
3047 gcc_assert ((int)VECTOR_NONE == 0);
3048 memset ((void *) &rs6000_vector_unit[0], '\0', sizeof (rs6000_vector_unit));
3049 memset ((void *) &rs6000_vector_mem[0], '\0', sizeof (rs6000_vector_unit));
3051 gcc_assert ((int)CODE_FOR_nothing == 0);
3052 memset ((void *) &reg_addr[0], '\0', sizeof (reg_addr));
3054 gcc_assert ((int)NO_REGS == 0);
3055 memset ((void *) &rs6000_constraints[0], '\0', sizeof (rs6000_constraints));
3057 /* The VSX hardware allows native alignment for vectors, but control whether the compiler
3058 believes it can use native alignment or still uses 128-bit alignment. */
3059 if (TARGET_VSX && !TARGET_VSX_ALIGN_128)
3061 align64 = 64;
3062 align32 = 32;
3064 else
3066 align64 = 128;
3067 align32 = 128;
3070 /* KF mode (IEEE 128-bit in VSX registers). We do not have arithmetic, so
3071 only set the memory modes. Include TFmode if -mabi=ieeelongdouble. */
3072 if (TARGET_FLOAT128_TYPE)
3074 rs6000_vector_mem[KFmode] = VECTOR_VSX;
3075 rs6000_vector_align[KFmode] = 128;
3077 if (FLOAT128_IEEE_P (TFmode))
3079 rs6000_vector_mem[TFmode] = VECTOR_VSX;
3080 rs6000_vector_align[TFmode] = 128;
3084 /* V2DF mode, VSX only. */
3085 if (TARGET_VSX)
3087 rs6000_vector_unit[V2DFmode] = VECTOR_VSX;
3088 rs6000_vector_mem[V2DFmode] = VECTOR_VSX;
3089 rs6000_vector_align[V2DFmode] = align64;
3092 /* V4SF mode, either VSX or Altivec. */
3093 if (TARGET_VSX)
3095 rs6000_vector_unit[V4SFmode] = VECTOR_VSX;
3096 rs6000_vector_mem[V4SFmode] = VECTOR_VSX;
3097 rs6000_vector_align[V4SFmode] = align32;
3099 else if (TARGET_ALTIVEC)
3101 rs6000_vector_unit[V4SFmode] = VECTOR_ALTIVEC;
3102 rs6000_vector_mem[V4SFmode] = VECTOR_ALTIVEC;
3103 rs6000_vector_align[V4SFmode] = align32;
3106 /* V16QImode, V8HImode, V4SImode are Altivec only, but possibly do VSX loads
3107 and stores. */
3108 if (TARGET_ALTIVEC)
3110 rs6000_vector_unit[V4SImode] = VECTOR_ALTIVEC;
3111 rs6000_vector_unit[V8HImode] = VECTOR_ALTIVEC;
3112 rs6000_vector_unit[V16QImode] = VECTOR_ALTIVEC;
3113 rs6000_vector_align[V4SImode] = align32;
3114 rs6000_vector_align[V8HImode] = align32;
3115 rs6000_vector_align[V16QImode] = align32;
3117 if (TARGET_VSX)
3119 rs6000_vector_mem[V4SImode] = VECTOR_VSX;
3120 rs6000_vector_mem[V8HImode] = VECTOR_VSX;
3121 rs6000_vector_mem[V16QImode] = VECTOR_VSX;
3123 else
3125 rs6000_vector_mem[V4SImode] = VECTOR_ALTIVEC;
3126 rs6000_vector_mem[V8HImode] = VECTOR_ALTIVEC;
3127 rs6000_vector_mem[V16QImode] = VECTOR_ALTIVEC;
3131 /* V2DImode, full mode depends on ISA 2.07 vector mode. Allow under VSX to
3132 do insert/splat/extract. Altivec doesn't have 64-bit integer support. */
3133 if (TARGET_VSX)
3135 rs6000_vector_mem[V2DImode] = VECTOR_VSX;
3136 rs6000_vector_unit[V2DImode]
3137 = (TARGET_P8_VECTOR) ? VECTOR_P8_VECTOR : VECTOR_NONE;
3138 rs6000_vector_align[V2DImode] = align64;
3140 rs6000_vector_mem[V1TImode] = VECTOR_VSX;
3141 rs6000_vector_unit[V1TImode]
3142 = (TARGET_P8_VECTOR) ? VECTOR_P8_VECTOR : VECTOR_NONE;
3143 rs6000_vector_align[V1TImode] = 128;
3146 /* DFmode, see if we want to use the VSX unit. Memory is handled
3147 differently, so don't set rs6000_vector_mem. */
3148 if (TARGET_VSX)
3150 rs6000_vector_unit[DFmode] = VECTOR_VSX;
3151 rs6000_vector_align[DFmode] = 64;
3154 /* SFmode, see if we want to use the VSX unit. */
3155 if (TARGET_P8_VECTOR)
3157 rs6000_vector_unit[SFmode] = VECTOR_VSX;
3158 rs6000_vector_align[SFmode] = 32;
3161 /* Allow TImode in VSX register and set the VSX memory macros. */
3162 if (TARGET_VSX)
3164 rs6000_vector_mem[TImode] = VECTOR_VSX;
3165 rs6000_vector_align[TImode] = align64;
3168 /* Register class constraints for the constraints that depend on compile
3169 switches. When the VSX code was added, different constraints were added
3170 based on the type (DFmode, V2DFmode, V4SFmode). For the vector types, all
3171 of the VSX registers are used. The register classes for scalar floating
3172 point types is set, based on whether we allow that type into the upper
3173 (Altivec) registers. GCC has register classes to target the Altivec
3174 registers for load/store operations, to select using a VSX memory
3175 operation instead of the traditional floating point operation. The
3176 constraints are:
3178 d - Register class to use with traditional DFmode instructions.
3179 f - Register class to use with traditional SFmode instructions.
3180 v - Altivec register.
3181 wa - Any VSX register.
3182 wc - Reserved to represent individual CR bits (used in LLVM).
3183 wd - Preferred register class for V2DFmode.
3184 wf - Preferred register class for V4SFmode.
3185 wg - Float register for power6x move insns.
3186 wh - FP register for direct move instructions.
3187 wi - FP or VSX register to hold 64-bit integers for VSX insns.
3188 wj - FP or VSX register to hold 64-bit integers for direct moves.
3189 wk - FP or VSX register to hold 64-bit doubles for direct moves.
3190 wl - Float register if we can do 32-bit signed int loads.
3191 wm - VSX register for ISA 2.07 direct move operations.
3192 wn - always NO_REGS.
3193 wr - GPR if 64-bit mode is permitted.
3194 ws - Register class to do ISA 2.06 DF operations.
3195 wt - VSX register for TImode in VSX registers.
3196 wu - Altivec register for ISA 2.07 VSX SF/SI load/stores.
3197 wv - Altivec register for ISA 2.06 VSX DF/DI load/stores.
3198 ww - Register class to do SF conversions in with VSX operations.
3199 wx - Float register if we can do 32-bit int stores.
3200 wy - Register class to do ISA 2.07 SF operations.
3201 wz - Float register if we can do 32-bit unsigned int loads.
3202 wH - Altivec register if SImode is allowed in VSX registers.
3203 wI - VSX register if SImode is allowed in VSX registers.
3204 wJ - VSX register if QImode/HImode are allowed in VSX registers.
3205 wK - Altivec register if QImode/HImode are allowed in VSX registers. */
3207 if (TARGET_HARD_FLOAT)
3209 rs6000_constraints[RS6000_CONSTRAINT_f] = FLOAT_REGS; /* SFmode */
3210 rs6000_constraints[RS6000_CONSTRAINT_d] = FLOAT_REGS; /* DFmode */
3213 if (TARGET_VSX)
3215 rs6000_constraints[RS6000_CONSTRAINT_wa] = VSX_REGS;
3216 rs6000_constraints[RS6000_CONSTRAINT_wd] = VSX_REGS; /* V2DFmode */
3217 rs6000_constraints[RS6000_CONSTRAINT_wf] = VSX_REGS; /* V4SFmode */
3218 rs6000_constraints[RS6000_CONSTRAINT_ws] = VSX_REGS; /* DFmode */
3219 rs6000_constraints[RS6000_CONSTRAINT_wv] = ALTIVEC_REGS; /* DFmode */
3220 rs6000_constraints[RS6000_CONSTRAINT_wi] = VSX_REGS; /* DImode */
3221 rs6000_constraints[RS6000_CONSTRAINT_wt] = VSX_REGS; /* TImode */
3224 /* Add conditional constraints based on various options, to allow us to
3225 collapse multiple insn patterns. */
3226 if (TARGET_ALTIVEC)
3227 rs6000_constraints[RS6000_CONSTRAINT_v] = ALTIVEC_REGS;
3229 if (TARGET_MFPGPR) /* DFmode */
3230 rs6000_constraints[RS6000_CONSTRAINT_wg] = FLOAT_REGS;
3232 if (TARGET_LFIWAX)
3233 rs6000_constraints[RS6000_CONSTRAINT_wl] = FLOAT_REGS; /* DImode */
3235 if (TARGET_DIRECT_MOVE)
3237 rs6000_constraints[RS6000_CONSTRAINT_wh] = FLOAT_REGS;
3238 rs6000_constraints[RS6000_CONSTRAINT_wj] /* DImode */
3239 = rs6000_constraints[RS6000_CONSTRAINT_wi];
3240 rs6000_constraints[RS6000_CONSTRAINT_wk] /* DFmode */
3241 = rs6000_constraints[RS6000_CONSTRAINT_ws];
3242 rs6000_constraints[RS6000_CONSTRAINT_wm] = VSX_REGS;
3245 if (TARGET_POWERPC64)
3247 rs6000_constraints[RS6000_CONSTRAINT_wr] = GENERAL_REGS;
3248 rs6000_constraints[RS6000_CONSTRAINT_wA] = BASE_REGS;
3251 if (TARGET_P8_VECTOR) /* SFmode */
3253 rs6000_constraints[RS6000_CONSTRAINT_wu] = ALTIVEC_REGS;
3254 rs6000_constraints[RS6000_CONSTRAINT_wy] = VSX_REGS;
3255 rs6000_constraints[RS6000_CONSTRAINT_ww] = VSX_REGS;
3257 else if (TARGET_VSX)
3258 rs6000_constraints[RS6000_CONSTRAINT_ww] = FLOAT_REGS;
3260 if (TARGET_STFIWX)
3261 rs6000_constraints[RS6000_CONSTRAINT_wx] = FLOAT_REGS; /* DImode */
3263 if (TARGET_LFIWZX)
3264 rs6000_constraints[RS6000_CONSTRAINT_wz] = FLOAT_REGS; /* DImode */
3266 if (TARGET_FLOAT128_TYPE)
3268 rs6000_constraints[RS6000_CONSTRAINT_wq] = VSX_REGS; /* KFmode */
3269 if (FLOAT128_IEEE_P (TFmode))
3270 rs6000_constraints[RS6000_CONSTRAINT_wp] = VSX_REGS; /* TFmode */
3273 if (TARGET_P9_VECTOR)
3275 /* Support for new D-form instructions. */
3276 rs6000_constraints[RS6000_CONSTRAINT_wb] = ALTIVEC_REGS;
3278 /* Support for ISA 3.0 (power9) vectors. */
3279 rs6000_constraints[RS6000_CONSTRAINT_wo] = VSX_REGS;
3282 /* Support for new direct moves (ISA 3.0 + 64bit). */
3283 if (TARGET_DIRECT_MOVE_128)
3284 rs6000_constraints[RS6000_CONSTRAINT_we] = VSX_REGS;
3286 /* Support small integers in VSX registers. */
3287 if (TARGET_P8_VECTOR)
3289 rs6000_constraints[RS6000_CONSTRAINT_wH] = ALTIVEC_REGS;
3290 rs6000_constraints[RS6000_CONSTRAINT_wI] = FLOAT_REGS;
3291 if (TARGET_P9_VECTOR)
3293 rs6000_constraints[RS6000_CONSTRAINT_wJ] = FLOAT_REGS;
3294 rs6000_constraints[RS6000_CONSTRAINT_wK] = ALTIVEC_REGS;
3298 /* Set up the reload helper and direct move functions. */
3299 if (TARGET_VSX || TARGET_ALTIVEC)
3301 if (TARGET_64BIT)
3303 reg_addr[V16QImode].reload_store = CODE_FOR_reload_v16qi_di_store;
3304 reg_addr[V16QImode].reload_load = CODE_FOR_reload_v16qi_di_load;
3305 reg_addr[V8HImode].reload_store = CODE_FOR_reload_v8hi_di_store;
3306 reg_addr[V8HImode].reload_load = CODE_FOR_reload_v8hi_di_load;
3307 reg_addr[V4SImode].reload_store = CODE_FOR_reload_v4si_di_store;
3308 reg_addr[V4SImode].reload_load = CODE_FOR_reload_v4si_di_load;
3309 reg_addr[V2DImode].reload_store = CODE_FOR_reload_v2di_di_store;
3310 reg_addr[V2DImode].reload_load = CODE_FOR_reload_v2di_di_load;
3311 reg_addr[V1TImode].reload_store = CODE_FOR_reload_v1ti_di_store;
3312 reg_addr[V1TImode].reload_load = CODE_FOR_reload_v1ti_di_load;
3313 reg_addr[V4SFmode].reload_store = CODE_FOR_reload_v4sf_di_store;
3314 reg_addr[V4SFmode].reload_load = CODE_FOR_reload_v4sf_di_load;
3315 reg_addr[V2DFmode].reload_store = CODE_FOR_reload_v2df_di_store;
3316 reg_addr[V2DFmode].reload_load = CODE_FOR_reload_v2df_di_load;
3317 reg_addr[DFmode].reload_store = CODE_FOR_reload_df_di_store;
3318 reg_addr[DFmode].reload_load = CODE_FOR_reload_df_di_load;
3319 reg_addr[DDmode].reload_store = CODE_FOR_reload_dd_di_store;
3320 reg_addr[DDmode].reload_load = CODE_FOR_reload_dd_di_load;
3321 reg_addr[SFmode].reload_store = CODE_FOR_reload_sf_di_store;
3322 reg_addr[SFmode].reload_load = CODE_FOR_reload_sf_di_load;
3324 if (FLOAT128_VECTOR_P (KFmode))
3326 reg_addr[KFmode].reload_store = CODE_FOR_reload_kf_di_store;
3327 reg_addr[KFmode].reload_load = CODE_FOR_reload_kf_di_load;
3330 if (FLOAT128_VECTOR_P (TFmode))
3332 reg_addr[TFmode].reload_store = CODE_FOR_reload_tf_di_store;
3333 reg_addr[TFmode].reload_load = CODE_FOR_reload_tf_di_load;
3336 /* Only provide a reload handler for SDmode if lfiwzx/stfiwx are
3337 available. */
3338 if (TARGET_NO_SDMODE_STACK)
3340 reg_addr[SDmode].reload_store = CODE_FOR_reload_sd_di_store;
3341 reg_addr[SDmode].reload_load = CODE_FOR_reload_sd_di_load;
3344 if (TARGET_VSX)
3346 reg_addr[TImode].reload_store = CODE_FOR_reload_ti_di_store;
3347 reg_addr[TImode].reload_load = CODE_FOR_reload_ti_di_load;
3350 if (TARGET_DIRECT_MOVE && !TARGET_DIRECT_MOVE_128)
3352 reg_addr[TImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxti;
3353 reg_addr[V1TImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv1ti;
3354 reg_addr[V2DFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv2df;
3355 reg_addr[V2DImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv2di;
3356 reg_addr[V4SFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv4sf;
3357 reg_addr[V4SImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv4si;
3358 reg_addr[V8HImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv8hi;
3359 reg_addr[V16QImode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxv16qi;
3360 reg_addr[SFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxsf;
3362 reg_addr[TImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprti;
3363 reg_addr[V1TImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv1ti;
3364 reg_addr[V2DFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv2df;
3365 reg_addr[V2DImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv2di;
3366 reg_addr[V4SFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv4sf;
3367 reg_addr[V4SImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv4si;
3368 reg_addr[V8HImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv8hi;
3369 reg_addr[V16QImode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprv16qi;
3370 reg_addr[SFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprsf;
3372 if (FLOAT128_VECTOR_P (KFmode))
3374 reg_addr[KFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxkf;
3375 reg_addr[KFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprkf;
3378 if (FLOAT128_VECTOR_P (TFmode))
3380 reg_addr[TFmode].reload_gpr_vsx = CODE_FOR_reload_gpr_from_vsxtf;
3381 reg_addr[TFmode].reload_vsx_gpr = CODE_FOR_reload_vsx_from_gprtf;
3385 else
3387 reg_addr[V16QImode].reload_store = CODE_FOR_reload_v16qi_si_store;
3388 reg_addr[V16QImode].reload_load = CODE_FOR_reload_v16qi_si_load;
3389 reg_addr[V8HImode].reload_store = CODE_FOR_reload_v8hi_si_store;
3390 reg_addr[V8HImode].reload_load = CODE_FOR_reload_v8hi_si_load;
3391 reg_addr[V4SImode].reload_store = CODE_FOR_reload_v4si_si_store;
3392 reg_addr[V4SImode].reload_load = CODE_FOR_reload_v4si_si_load;
3393 reg_addr[V2DImode].reload_store = CODE_FOR_reload_v2di_si_store;
3394 reg_addr[V2DImode].reload_load = CODE_FOR_reload_v2di_si_load;
3395 reg_addr[V1TImode].reload_store = CODE_FOR_reload_v1ti_si_store;
3396 reg_addr[V1TImode].reload_load = CODE_FOR_reload_v1ti_si_load;
3397 reg_addr[V4SFmode].reload_store = CODE_FOR_reload_v4sf_si_store;
3398 reg_addr[V4SFmode].reload_load = CODE_FOR_reload_v4sf_si_load;
3399 reg_addr[V2DFmode].reload_store = CODE_FOR_reload_v2df_si_store;
3400 reg_addr[V2DFmode].reload_load = CODE_FOR_reload_v2df_si_load;
3401 reg_addr[DFmode].reload_store = CODE_FOR_reload_df_si_store;
3402 reg_addr[DFmode].reload_load = CODE_FOR_reload_df_si_load;
3403 reg_addr[DDmode].reload_store = CODE_FOR_reload_dd_si_store;
3404 reg_addr[DDmode].reload_load = CODE_FOR_reload_dd_si_load;
3405 reg_addr[SFmode].reload_store = CODE_FOR_reload_sf_si_store;
3406 reg_addr[SFmode].reload_load = CODE_FOR_reload_sf_si_load;
3408 if (FLOAT128_VECTOR_P (KFmode))
3410 reg_addr[KFmode].reload_store = CODE_FOR_reload_kf_si_store;
3411 reg_addr[KFmode].reload_load = CODE_FOR_reload_kf_si_load;
3414 if (FLOAT128_IEEE_P (TFmode))
3416 reg_addr[TFmode].reload_store = CODE_FOR_reload_tf_si_store;
3417 reg_addr[TFmode].reload_load = CODE_FOR_reload_tf_si_load;
3420 /* Only provide a reload handler for SDmode if lfiwzx/stfiwx are
3421 available. */
3422 if (TARGET_NO_SDMODE_STACK)
3424 reg_addr[SDmode].reload_store = CODE_FOR_reload_sd_si_store;
3425 reg_addr[SDmode].reload_load = CODE_FOR_reload_sd_si_load;
3428 if (TARGET_VSX)
3430 reg_addr[TImode].reload_store = CODE_FOR_reload_ti_si_store;
3431 reg_addr[TImode].reload_load = CODE_FOR_reload_ti_si_load;
3434 if (TARGET_DIRECT_MOVE)
3436 reg_addr[DImode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdi;
3437 reg_addr[DDmode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdd;
3438 reg_addr[DFmode].reload_fpr_gpr = CODE_FOR_reload_fpr_from_gprdf;
3442 reg_addr[DFmode].scalar_in_vmx_p = true;
3443 reg_addr[DImode].scalar_in_vmx_p = true;
3445 if (TARGET_P8_VECTOR)
3447 reg_addr[SFmode].scalar_in_vmx_p = true;
3448 reg_addr[SImode].scalar_in_vmx_p = true;
3450 if (TARGET_P9_VECTOR)
3452 reg_addr[HImode].scalar_in_vmx_p = true;
3453 reg_addr[QImode].scalar_in_vmx_p = true;
3458 /* Precalculate HARD_REGNO_NREGS. */
3459 for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
3460 for (m = 0; m < NUM_MACHINE_MODES; ++m)
3461 rs6000_hard_regno_nregs[m][r]
3462 = rs6000_hard_regno_nregs_internal (r, (machine_mode)m);
3464 /* Precalculate TARGET_HARD_REGNO_MODE_OK. */
3465 for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
3466 for (m = 0; m < NUM_MACHINE_MODES; ++m)
3467 if (rs6000_hard_regno_mode_ok_uncached (r, (machine_mode)m))
3468 rs6000_hard_regno_mode_ok_p[m][r] = true;
3470 /* Precalculate CLASS_MAX_NREGS sizes. */
3471 for (c = 0; c < LIM_REG_CLASSES; ++c)
3473 int reg_size;
3475 if (TARGET_VSX && VSX_REG_CLASS_P (c))
3476 reg_size = UNITS_PER_VSX_WORD;
3478 else if (c == ALTIVEC_REGS)
3479 reg_size = UNITS_PER_ALTIVEC_WORD;
3481 else if (c == FLOAT_REGS)
3482 reg_size = UNITS_PER_FP_WORD;
3484 else
3485 reg_size = UNITS_PER_WORD;
3487 for (m = 0; m < NUM_MACHINE_MODES; ++m)
3489 machine_mode m2 = (machine_mode)m;
3490 int reg_size2 = reg_size;
3492 /* TDmode & IBM 128-bit floating point always takes 2 registers, even
3493 in VSX. */
3494 if (TARGET_VSX && VSX_REG_CLASS_P (c) && FLOAT128_2REG_P (m))
3495 reg_size2 = UNITS_PER_FP_WORD;
3497 rs6000_class_max_nregs[m][c]
3498 = (GET_MODE_SIZE (m2) + reg_size2 - 1) / reg_size2;
3502 /* Calculate which modes to automatically generate code to use a the
3503 reciprocal divide and square root instructions. In the future, possibly
3504 automatically generate the instructions even if the user did not specify
3505 -mrecip. The older machines double precision reciprocal sqrt estimate is
3506 not accurate enough. */
3507 memset (rs6000_recip_bits, 0, sizeof (rs6000_recip_bits));
3508 if (TARGET_FRES)
3509 rs6000_recip_bits[SFmode] = RS6000_RECIP_MASK_HAVE_RE;
3510 if (TARGET_FRE)
3511 rs6000_recip_bits[DFmode] = RS6000_RECIP_MASK_HAVE_RE;
3512 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode))
3513 rs6000_recip_bits[V4SFmode] = RS6000_RECIP_MASK_HAVE_RE;
3514 if (VECTOR_UNIT_VSX_P (V2DFmode))
3515 rs6000_recip_bits[V2DFmode] = RS6000_RECIP_MASK_HAVE_RE;
3517 if (TARGET_FRSQRTES)
3518 rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3519 if (TARGET_FRSQRTE)
3520 rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3521 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode))
3522 rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3523 if (VECTOR_UNIT_VSX_P (V2DFmode))
3524 rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_HAVE_RSQRTE;
3526 if (rs6000_recip_control)
3528 if (!flag_finite_math_only)
3529 warning (0, "%qs requires %qs or %qs", "-mrecip", "-ffinite-math",
3530 "-ffast-math");
3531 if (flag_trapping_math)
3532 warning (0, "%qs requires %qs or %qs", "-mrecip",
3533 "-fno-trapping-math", "-ffast-math");
3534 if (!flag_reciprocal_math)
3535 warning (0, "%qs requires %qs or %qs", "-mrecip", "-freciprocal-math",
3536 "-ffast-math");
3537 if (flag_finite_math_only && !flag_trapping_math && flag_reciprocal_math)
3539 if (RS6000_RECIP_HAVE_RE_P (SFmode)
3540 && (rs6000_recip_control & RECIP_SF_DIV) != 0)
3541 rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3543 if (RS6000_RECIP_HAVE_RE_P (DFmode)
3544 && (rs6000_recip_control & RECIP_DF_DIV) != 0)
3545 rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3547 if (RS6000_RECIP_HAVE_RE_P (V4SFmode)
3548 && (rs6000_recip_control & RECIP_V4SF_DIV) != 0)
3549 rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3551 if (RS6000_RECIP_HAVE_RE_P (V2DFmode)
3552 && (rs6000_recip_control & RECIP_V2DF_DIV) != 0)
3553 rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_AUTO_RE;
3555 if (RS6000_RECIP_HAVE_RSQRTE_P (SFmode)
3556 && (rs6000_recip_control & RECIP_SF_RSQRT) != 0)
3557 rs6000_recip_bits[SFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3559 if (RS6000_RECIP_HAVE_RSQRTE_P (DFmode)
3560 && (rs6000_recip_control & RECIP_DF_RSQRT) != 0)
3561 rs6000_recip_bits[DFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3563 if (RS6000_RECIP_HAVE_RSQRTE_P (V4SFmode)
3564 && (rs6000_recip_control & RECIP_V4SF_RSQRT) != 0)
3565 rs6000_recip_bits[V4SFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3567 if (RS6000_RECIP_HAVE_RSQRTE_P (V2DFmode)
3568 && (rs6000_recip_control & RECIP_V2DF_RSQRT) != 0)
3569 rs6000_recip_bits[V2DFmode] |= RS6000_RECIP_MASK_AUTO_RSQRTE;
3573 /* Update the addr mask bits in reg_addr to help secondary reload and go if
3574 legitimate address support to figure out the appropriate addressing to
3575 use. */
3576 rs6000_setup_reg_addr_masks ();
3578 if (global_init_p || TARGET_DEBUG_TARGET)
3580 if (TARGET_DEBUG_REG)
3581 rs6000_debug_reg_global ();
3583 if (TARGET_DEBUG_COST || TARGET_DEBUG_REG)
3584 fprintf (stderr,
3585 "SImode variable mult cost = %d\n"
3586 "SImode constant mult cost = %d\n"
3587 "SImode short constant mult cost = %d\n"
3588 "DImode multipliciation cost = %d\n"
3589 "SImode division cost = %d\n"
3590 "DImode division cost = %d\n"
3591 "Simple fp operation cost = %d\n"
3592 "DFmode multiplication cost = %d\n"
3593 "SFmode division cost = %d\n"
3594 "DFmode division cost = %d\n"
3595 "cache line size = %d\n"
3596 "l1 cache size = %d\n"
3597 "l2 cache size = %d\n"
3598 "simultaneous prefetches = %d\n"
3599 "\n",
3600 rs6000_cost->mulsi,
3601 rs6000_cost->mulsi_const,
3602 rs6000_cost->mulsi_const9,
3603 rs6000_cost->muldi,
3604 rs6000_cost->divsi,
3605 rs6000_cost->divdi,
3606 rs6000_cost->fp,
3607 rs6000_cost->dmul,
3608 rs6000_cost->sdiv,
3609 rs6000_cost->ddiv,
3610 rs6000_cost->cache_line_size,
3611 rs6000_cost->l1_cache_size,
3612 rs6000_cost->l2_cache_size,
3613 rs6000_cost->simultaneous_prefetches);
3617 #if TARGET_MACHO
3618 /* The Darwin version of SUBTARGET_OVERRIDE_OPTIONS. */
3620 static void
3621 darwin_rs6000_override_options (void)
3623 /* The Darwin ABI always includes AltiVec, can't be (validly) turned
3624 off. */
3625 rs6000_altivec_abi = 1;
3626 TARGET_ALTIVEC_VRSAVE = 1;
3627 rs6000_current_abi = ABI_DARWIN;
3629 if (DEFAULT_ABI == ABI_DARWIN
3630 && TARGET_64BIT)
3631 darwin_one_byte_bool = 1;
3633 if (TARGET_64BIT && ! TARGET_POWERPC64)
3635 rs6000_isa_flags |= OPTION_MASK_POWERPC64;
3636 warning (0, "%qs requires PowerPC64 architecture, enabling", "-m64");
3638 if (flag_mkernel)
3640 rs6000_default_long_calls = 1;
3641 rs6000_isa_flags |= OPTION_MASK_SOFT_FLOAT;
3644 /* Make -m64 imply -maltivec. Darwin's 64-bit ABI includes
3645 Altivec. */
3646 if (!flag_mkernel && !flag_apple_kext
3647 && TARGET_64BIT
3648 && ! (rs6000_isa_flags_explicit & OPTION_MASK_ALTIVEC))
3649 rs6000_isa_flags |= OPTION_MASK_ALTIVEC;
3651 /* Unless the user (not the configurer) has explicitly overridden
3652 it with -mcpu=G3 or -mno-altivec, then 10.5+ targets default to
3653 G4 unless targeting the kernel. */
3654 if (!flag_mkernel
3655 && !flag_apple_kext
3656 && strverscmp (darwin_macosx_version_min, "10.5") >= 0
3657 && ! (rs6000_isa_flags_explicit & OPTION_MASK_ALTIVEC)
3658 && ! global_options_set.x_rs6000_cpu_index)
3660 rs6000_isa_flags |= OPTION_MASK_ALTIVEC;
3663 #endif
3665 /* If not otherwise specified by a target, make 'long double' equivalent to
3666 'double'. */
3668 #ifndef RS6000_DEFAULT_LONG_DOUBLE_SIZE
3669 #define RS6000_DEFAULT_LONG_DOUBLE_SIZE 64
3670 #endif
3672 /* Return the builtin mask of the various options used that could affect which
3673 builtins were used. In the past we used target_flags, but we've run out of
3674 bits, and some options are no longer in target_flags. */
3676 HOST_WIDE_INT
3677 rs6000_builtin_mask_calculate (void)
3679 return (((TARGET_ALTIVEC) ? RS6000_BTM_ALTIVEC : 0)
3680 | ((TARGET_CMPB) ? RS6000_BTM_CMPB : 0)
3681 | ((TARGET_VSX) ? RS6000_BTM_VSX : 0)
3682 | ((TARGET_FRE) ? RS6000_BTM_FRE : 0)
3683 | ((TARGET_FRES) ? RS6000_BTM_FRES : 0)
3684 | ((TARGET_FRSQRTE) ? RS6000_BTM_FRSQRTE : 0)
3685 | ((TARGET_FRSQRTES) ? RS6000_BTM_FRSQRTES : 0)
3686 | ((TARGET_POPCNTD) ? RS6000_BTM_POPCNTD : 0)
3687 | ((rs6000_cpu == PROCESSOR_CELL) ? RS6000_BTM_CELL : 0)
3688 | ((TARGET_P8_VECTOR) ? RS6000_BTM_P8_VECTOR : 0)
3689 | ((TARGET_P9_VECTOR) ? RS6000_BTM_P9_VECTOR : 0)
3690 | ((TARGET_P9_MISC) ? RS6000_BTM_P9_MISC : 0)
3691 | ((TARGET_MODULO) ? RS6000_BTM_MODULO : 0)
3692 | ((TARGET_64BIT) ? RS6000_BTM_64BIT : 0)
3693 | ((TARGET_POWERPC64) ? RS6000_BTM_POWERPC64 : 0)
3694 | ((TARGET_CRYPTO) ? RS6000_BTM_CRYPTO : 0)
3695 | ((TARGET_HTM) ? RS6000_BTM_HTM : 0)
3696 | ((TARGET_DFP) ? RS6000_BTM_DFP : 0)
3697 | ((TARGET_HARD_FLOAT) ? RS6000_BTM_HARD_FLOAT : 0)
3698 | ((TARGET_LONG_DOUBLE_128
3699 && TARGET_HARD_FLOAT
3700 && !TARGET_IEEEQUAD) ? RS6000_BTM_LDBL128 : 0)
3701 | ((TARGET_FLOAT128_TYPE) ? RS6000_BTM_FLOAT128 : 0)
3702 | ((TARGET_FLOAT128_HW) ? RS6000_BTM_FLOAT128_HW : 0));
3705 /* Implement TARGET_MD_ASM_ADJUST. All asm statements are considered
3706 to clobber the XER[CA] bit because clobbering that bit without telling
3707 the compiler worked just fine with versions of GCC before GCC 5, and
3708 breaking a lot of older code in ways that are hard to track down is
3709 not such a great idea. */
3711 static rtx_insn *
3712 rs6000_md_asm_adjust (vec<rtx> &/*outputs*/, vec<rtx> &/*inputs*/,
3713 vec<const char *> &/*constraints*/,
3714 vec<rtx> &clobbers, HARD_REG_SET &clobbered_regs)
3716 clobbers.safe_push (gen_rtx_REG (SImode, CA_REGNO));
3717 SET_HARD_REG_BIT (clobbered_regs, CA_REGNO);
3718 return NULL;
3721 /* Override command line options.
3723 Combine build-specific configuration information with options
3724 specified on the command line to set various state variables which
3725 influence code generation, optimization, and expansion of built-in
3726 functions. Assure that command-line configuration preferences are
3727 compatible with each other and with the build configuration; issue
3728 warnings while adjusting configuration or error messages while
3729 rejecting configuration.
3731 Upon entry to this function:
3733 This function is called once at the beginning of
3734 compilation, and then again at the start and end of compiling
3735 each section of code that has a different configuration, as
3736 indicated, for example, by adding the
3738 __attribute__((__target__("cpu=power9")))
3740 qualifier to a function definition or, for example, by bracketing
3741 code between
3743 #pragma GCC target("altivec")
3747 #pragma GCC reset_options
3749 directives. Parameter global_init_p is true for the initial
3750 invocation, which initializes global variables, and false for all
3751 subsequent invocations.
3754 Various global state information is assumed to be valid. This
3755 includes OPTION_TARGET_CPU_DEFAULT, representing the name of the
3756 default CPU specified at build configure time, TARGET_DEFAULT,
3757 representing the default set of option flags for the default
3758 target, and global_options_set.x_rs6000_isa_flags, representing
3759 which options were requested on the command line.
3761 Upon return from this function:
3763 rs6000_isa_flags_explicit has a non-zero bit for each flag that
3764 was set by name on the command line. Additionally, if certain
3765 attributes are automatically enabled or disabled by this function
3766 in order to assure compatibility between options and
3767 configuration, the flags associated with those attributes are
3768 also set. By setting these "explicit bits", we avoid the risk
3769 that other code might accidentally overwrite these particular
3770 attributes with "default values".
3772 The various bits of rs6000_isa_flags are set to indicate the
3773 target options that have been selected for the most current
3774 compilation efforts. This has the effect of also turning on the
3775 associated TARGET_XXX values since these are macros which are
3776 generally defined to test the corresponding bit of the
3777 rs6000_isa_flags variable.
3779 The variable rs6000_builtin_mask is set to represent the target
3780 options for the most current compilation efforts, consistent with
3781 the current contents of rs6000_isa_flags. This variable controls
3782 expansion of built-in functions.
3784 Various other global variables and fields of global structures
3785 (over 50 in all) are initialized to reflect the desired options
3786 for the most current compilation efforts. */
3788 static bool
3789 rs6000_option_override_internal (bool global_init_p)
3791 bool ret = true;
3793 HOST_WIDE_INT set_masks;
3794 HOST_WIDE_INT ignore_masks;
3795 int cpu_index = -1;
3796 int tune_index;
3797 struct cl_target_option *main_target_opt
3798 = ((global_init_p || target_option_default_node == NULL)
3799 ? NULL : TREE_TARGET_OPTION (target_option_default_node));
3801 /* Print defaults. */
3802 if ((TARGET_DEBUG_REG || TARGET_DEBUG_TARGET) && global_init_p)
3803 rs6000_print_isa_options (stderr, 0, "TARGET_DEFAULT", TARGET_DEFAULT);
3805 /* Remember the explicit arguments. */
3806 if (global_init_p)
3807 rs6000_isa_flags_explicit = global_options_set.x_rs6000_isa_flags;
3809 /* On 64-bit Darwin, power alignment is ABI-incompatible with some C
3810 library functions, so warn about it. The flag may be useful for
3811 performance studies from time to time though, so don't disable it
3812 entirely. */
3813 if (global_options_set.x_rs6000_alignment_flags
3814 && rs6000_alignment_flags == MASK_ALIGN_POWER
3815 && DEFAULT_ABI == ABI_DARWIN
3816 && TARGET_64BIT)
3817 warning (0, "%qs is not supported for 64-bit Darwin;"
3818 " it is incompatible with the installed C and C++ libraries",
3819 "-malign-power");
3821 /* Numerous experiment shows that IRA based loop pressure
3822 calculation works better for RTL loop invariant motion on targets
3823 with enough (>= 32) registers. It is an expensive optimization.
3824 So it is on only for peak performance. */
3825 if (optimize >= 3 && global_init_p
3826 && !global_options_set.x_flag_ira_loop_pressure)
3827 flag_ira_loop_pressure = 1;
3829 /* -fsanitize=address needs to turn on -fasynchronous-unwind-tables in order
3830 for tracebacks to be complete but not if any -fasynchronous-unwind-tables
3831 options were already specified. */
3832 if (flag_sanitize & SANITIZE_USER_ADDRESS
3833 && !global_options_set.x_flag_asynchronous_unwind_tables)
3834 flag_asynchronous_unwind_tables = 1;
3836 /* Set the pointer size. */
3837 if (TARGET_64BIT)
3839 rs6000_pmode = DImode;
3840 rs6000_pointer_size = 64;
3842 else
3844 rs6000_pmode = SImode;
3845 rs6000_pointer_size = 32;
3848 /* Some OSs don't support saving the high part of 64-bit registers on context
3849 switch. Other OSs don't support saving Altivec registers. On those OSs,
3850 we don't touch the OPTION_MASK_POWERPC64 or OPTION_MASK_ALTIVEC settings;
3851 if the user wants either, the user must explicitly specify them and we
3852 won't interfere with the user's specification. */
3854 set_masks = POWERPC_MASKS;
3855 #ifdef OS_MISSING_POWERPC64
3856 if (OS_MISSING_POWERPC64)
3857 set_masks &= ~OPTION_MASK_POWERPC64;
3858 #endif
3859 #ifdef OS_MISSING_ALTIVEC
3860 if (OS_MISSING_ALTIVEC)
3861 set_masks &= ~(OPTION_MASK_ALTIVEC | OPTION_MASK_VSX
3862 | OTHER_VSX_VECTOR_MASKS);
3863 #endif
3865 /* Don't override by the processor default if given explicitly. */
3866 set_masks &= ~rs6000_isa_flags_explicit;
3868 /* Process the -mcpu=<xxx> and -mtune=<xxx> argument. If the user changed
3869 the cpu in a target attribute or pragma, but did not specify a tuning
3870 option, use the cpu for the tuning option rather than the option specified
3871 with -mtune on the command line. Process a '--with-cpu' configuration
3872 request as an implicit --cpu. */
3873 if (rs6000_cpu_index >= 0)
3874 cpu_index = rs6000_cpu_index;
3875 else if (main_target_opt != NULL && main_target_opt->x_rs6000_cpu_index >= 0)
3876 cpu_index = main_target_opt->x_rs6000_cpu_index;
3877 else if (OPTION_TARGET_CPU_DEFAULT)
3878 cpu_index = rs6000_cpu_name_lookup (OPTION_TARGET_CPU_DEFAULT);
3880 /* If we have a cpu, either through an explicit -mcpu=<xxx> or if the
3881 compiler was configured with --with-cpu=<xxx>, replace all of the ISA bits
3882 with those from the cpu, except for options that were explicitly set. If
3883 we don't have a cpu, do not override the target bits set in
3884 TARGET_DEFAULT. */
3885 if (cpu_index >= 0)
3887 rs6000_cpu_index = cpu_index;
3888 rs6000_isa_flags &= ~set_masks;
3889 rs6000_isa_flags |= (processor_target_table[cpu_index].target_enable
3890 & set_masks);
3892 else
3894 /* If no -mcpu=<xxx>, inherit any default options that were cleared via
3895 POWERPC_MASKS. Originally, TARGET_DEFAULT was used to initialize
3896 target_flags via the TARGET_DEFAULT_TARGET_FLAGS hook. When we switched
3897 to using rs6000_isa_flags, we need to do the initialization here.
3899 If there is a TARGET_DEFAULT, use that. Otherwise fall back to using
3900 -mcpu=powerpc, -mcpu=powerpc64, or -mcpu=powerpc64le defaults. */
3901 HOST_WIDE_INT flags;
3902 if (TARGET_DEFAULT)
3903 flags = TARGET_DEFAULT;
3904 else
3906 /* PowerPC 64-bit LE requires at least ISA 2.07. */
3907 const char *default_cpu = (!TARGET_POWERPC64
3908 ? "powerpc"
3909 : (BYTES_BIG_ENDIAN
3910 ? "powerpc64"
3911 : "powerpc64le"));
3912 int default_cpu_index = rs6000_cpu_name_lookup (default_cpu);
3913 flags = processor_target_table[default_cpu_index].target_enable;
3915 rs6000_isa_flags |= (flags & ~rs6000_isa_flags_explicit);
3918 if (rs6000_tune_index >= 0)
3919 tune_index = rs6000_tune_index;
3920 else if (cpu_index >= 0)
3921 rs6000_tune_index = tune_index = cpu_index;
3922 else
3924 size_t i;
3925 enum processor_type tune_proc
3926 = (TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT);
3928 tune_index = -1;
3929 for (i = 0; i < ARRAY_SIZE (processor_target_table); i++)
3930 if (processor_target_table[i].processor == tune_proc)
3932 tune_index = i;
3933 break;
3937 if (cpu_index >= 0)
3938 rs6000_cpu = processor_target_table[cpu_index].processor;
3939 else
3940 rs6000_cpu = TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT;
3942 gcc_assert (tune_index >= 0);
3943 rs6000_tune = processor_target_table[tune_index].processor;
3945 if (rs6000_cpu == PROCESSOR_PPCE300C2 || rs6000_cpu == PROCESSOR_PPCE300C3
3946 || rs6000_cpu == PROCESSOR_PPCE500MC || rs6000_cpu == PROCESSOR_PPCE500MC64
3947 || rs6000_cpu == PROCESSOR_PPCE5500)
3949 if (TARGET_ALTIVEC)
3950 error ("AltiVec not supported in this target");
3953 /* If we are optimizing big endian systems for space, use the load/store
3954 multiple instructions. */
3955 if (BYTES_BIG_ENDIAN && optimize_size)
3956 rs6000_isa_flags |= ~rs6000_isa_flags_explicit & OPTION_MASK_MULTIPLE;
3958 /* Don't allow -mmultiple on little endian systems unless the cpu is a 750,
3959 because the hardware doesn't support the instructions used in little
3960 endian mode, and causes an alignment trap. The 750 does not cause an
3961 alignment trap (except when the target is unaligned). */
3963 if (!BYTES_BIG_ENDIAN && rs6000_cpu != PROCESSOR_PPC750 && TARGET_MULTIPLE)
3965 rs6000_isa_flags &= ~OPTION_MASK_MULTIPLE;
3966 if ((rs6000_isa_flags_explicit & OPTION_MASK_MULTIPLE) != 0)
3967 warning (0, "%qs is not supported on little endian systems",
3968 "-mmultiple");
3971 /* If little-endian, default to -mstrict-align on older processors.
3972 Testing for htm matches power8 and later. */
3973 if (!BYTES_BIG_ENDIAN
3974 && !(processor_target_table[tune_index].target_enable & OPTION_MASK_HTM))
3975 rs6000_isa_flags |= ~rs6000_isa_flags_explicit & OPTION_MASK_STRICT_ALIGN;
3977 if (!rs6000_fold_gimple)
3978 fprintf (stderr,
3979 "gimple folding of rs6000 builtins has been disabled.\n");
3981 /* Add some warnings for VSX. */
3982 if (TARGET_VSX)
3984 const char *msg = NULL;
3985 if (!TARGET_HARD_FLOAT)
3987 if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
3988 msg = N_("-mvsx requires hardware floating point");
3989 else
3991 rs6000_isa_flags &= ~ OPTION_MASK_VSX;
3992 rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
3995 else if (TARGET_AVOID_XFORM > 0)
3996 msg = N_("-mvsx needs indexed addressing");
3997 else if (!TARGET_ALTIVEC && (rs6000_isa_flags_explicit
3998 & OPTION_MASK_ALTIVEC))
4000 if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
4001 msg = N_("-mvsx and -mno-altivec are incompatible");
4002 else
4003 msg = N_("-mno-altivec disables vsx");
4006 if (msg)
4008 warning (0, msg);
4009 rs6000_isa_flags &= ~ OPTION_MASK_VSX;
4010 rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
4014 /* If hard-float/altivec/vsx were explicitly turned off then don't allow
4015 the -mcpu setting to enable options that conflict. */
4016 if ((!TARGET_HARD_FLOAT || !TARGET_ALTIVEC || !TARGET_VSX)
4017 && (rs6000_isa_flags_explicit & (OPTION_MASK_SOFT_FLOAT
4018 | OPTION_MASK_ALTIVEC
4019 | OPTION_MASK_VSX)) != 0)
4020 rs6000_isa_flags &= ~((OPTION_MASK_P8_VECTOR | OPTION_MASK_CRYPTO
4021 | OPTION_MASK_DIRECT_MOVE)
4022 & ~rs6000_isa_flags_explicit);
4024 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4025 rs6000_print_isa_options (stderr, 0, "before defaults", rs6000_isa_flags);
4027 /* Handle explicit -mno-{altivec,vsx,power8-vector,power9-vector} and turn
4028 off all of the options that depend on those flags. */
4029 ignore_masks = rs6000_disable_incompatible_switches ();
4031 /* For the newer switches (vsx, dfp, etc.) set some of the older options,
4032 unless the user explicitly used the -mno-<option> to disable the code. */
4033 if (TARGET_P9_VECTOR || TARGET_MODULO || TARGET_P9_MISC)
4034 rs6000_isa_flags |= (ISA_3_0_MASKS_SERVER & ~ignore_masks);
4035 else if (TARGET_P9_MINMAX)
4037 if (cpu_index >= 0)
4039 if (cpu_index == PROCESSOR_POWER9)
4041 /* legacy behavior: allow -mcpu=power9 with certain
4042 capabilities explicitly disabled. */
4043 rs6000_isa_flags |= (ISA_3_0_MASKS_SERVER & ~ignore_masks);
4045 else
4046 error ("power9 target option is incompatible with %<%s=<xxx>%> "
4047 "for <xxx> less than power9", "-mcpu");
4049 else if ((ISA_3_0_MASKS_SERVER & rs6000_isa_flags_explicit)
4050 != (ISA_3_0_MASKS_SERVER & rs6000_isa_flags
4051 & rs6000_isa_flags_explicit))
4052 /* Enforce that none of the ISA_3_0_MASKS_SERVER flags
4053 were explicitly cleared. */
4054 error ("%qs incompatible with explicitly disabled options",
4055 "-mpower9-minmax");
4056 else
4057 rs6000_isa_flags |= ISA_3_0_MASKS_SERVER;
4059 else if (TARGET_P8_VECTOR || TARGET_DIRECT_MOVE || TARGET_CRYPTO)
4060 rs6000_isa_flags |= (ISA_2_7_MASKS_SERVER & ~ignore_masks);
4061 else if (TARGET_VSX)
4062 rs6000_isa_flags |= (ISA_2_6_MASKS_SERVER & ~ignore_masks);
4063 else if (TARGET_POPCNTD)
4064 rs6000_isa_flags |= (ISA_2_6_MASKS_EMBEDDED & ~ignore_masks);
4065 else if (TARGET_DFP)
4066 rs6000_isa_flags |= (ISA_2_5_MASKS_SERVER & ~ignore_masks);
4067 else if (TARGET_CMPB)
4068 rs6000_isa_flags |= (ISA_2_5_MASKS_EMBEDDED & ~ignore_masks);
4069 else if (TARGET_FPRND)
4070 rs6000_isa_flags |= (ISA_2_4_MASKS & ~ignore_masks);
4071 else if (TARGET_POPCNTB)
4072 rs6000_isa_flags |= (ISA_2_2_MASKS & ~ignore_masks);
4073 else if (TARGET_ALTIVEC)
4074 rs6000_isa_flags |= (OPTION_MASK_PPC_GFXOPT & ~ignore_masks);
4076 if (TARGET_CRYPTO && !TARGET_ALTIVEC)
4078 if (rs6000_isa_flags_explicit & OPTION_MASK_CRYPTO)
4079 error ("%qs requires %qs", "-mcrypto", "-maltivec");
4080 rs6000_isa_flags &= ~OPTION_MASK_CRYPTO;
4083 if (TARGET_DIRECT_MOVE && !TARGET_VSX)
4085 if (rs6000_isa_flags_explicit & OPTION_MASK_DIRECT_MOVE)
4086 error ("%qs requires %qs", "-mdirect-move", "-mvsx");
4087 rs6000_isa_flags &= ~OPTION_MASK_DIRECT_MOVE;
4090 if (TARGET_P8_VECTOR && !TARGET_ALTIVEC)
4092 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
4093 error ("%qs requires %qs", "-mpower8-vector", "-maltivec");
4094 rs6000_isa_flags &= ~OPTION_MASK_P8_VECTOR;
4097 if (TARGET_P8_VECTOR && !TARGET_VSX)
4099 if ((rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
4100 && (rs6000_isa_flags_explicit & OPTION_MASK_VSX))
4101 error ("%qs requires %qs", "-mpower8-vector", "-mvsx");
4102 else if ((rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR) == 0)
4104 rs6000_isa_flags &= ~OPTION_MASK_P8_VECTOR;
4105 if (rs6000_isa_flags_explicit & OPTION_MASK_VSX)
4106 rs6000_isa_flags_explicit |= OPTION_MASK_P8_VECTOR;
4108 else
4110 /* OPTION_MASK_P8_VECTOR is explicit, and OPTION_MASK_VSX is
4111 not explicit. */
4112 rs6000_isa_flags |= OPTION_MASK_VSX;
4113 rs6000_isa_flags_explicit |= OPTION_MASK_VSX;
4117 if (TARGET_DFP && !TARGET_HARD_FLOAT)
4119 if (rs6000_isa_flags_explicit & OPTION_MASK_DFP)
4120 error ("%qs requires %qs", "-mhard-dfp", "-mhard-float");
4121 rs6000_isa_flags &= ~OPTION_MASK_DFP;
4124 /* The quad memory instructions only works in 64-bit mode. In 32-bit mode,
4125 silently turn off quad memory mode. */
4126 if ((TARGET_QUAD_MEMORY || TARGET_QUAD_MEMORY_ATOMIC) && !TARGET_POWERPC64)
4128 if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY) != 0)
4129 warning (0, N_("-mquad-memory requires 64-bit mode"));
4131 if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY_ATOMIC) != 0)
4132 warning (0, N_("-mquad-memory-atomic requires 64-bit mode"));
4134 rs6000_isa_flags &= ~(OPTION_MASK_QUAD_MEMORY
4135 | OPTION_MASK_QUAD_MEMORY_ATOMIC);
4138 /* Non-atomic quad memory load/store are disabled for little endian, since
4139 the words are reversed, but atomic operations can still be done by
4140 swapping the words. */
4141 if (TARGET_QUAD_MEMORY && !WORDS_BIG_ENDIAN)
4143 if ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY) != 0)
4144 warning (0, N_("-mquad-memory is not available in little endian "
4145 "mode"));
4147 rs6000_isa_flags &= ~OPTION_MASK_QUAD_MEMORY;
4150 /* Assume if the user asked for normal quad memory instructions, they want
4151 the atomic versions as well, unless they explicity told us not to use quad
4152 word atomic instructions. */
4153 if (TARGET_QUAD_MEMORY
4154 && !TARGET_QUAD_MEMORY_ATOMIC
4155 && ((rs6000_isa_flags_explicit & OPTION_MASK_QUAD_MEMORY_ATOMIC) == 0))
4156 rs6000_isa_flags |= OPTION_MASK_QUAD_MEMORY_ATOMIC;
4158 /* If we can shrink-wrap the TOC register save separately, then use
4159 -msave-toc-indirect unless explicitly disabled. */
4160 if ((rs6000_isa_flags_explicit & OPTION_MASK_SAVE_TOC_INDIRECT) == 0
4161 && flag_shrink_wrap_separate
4162 && optimize_function_for_speed_p (cfun))
4163 rs6000_isa_flags |= OPTION_MASK_SAVE_TOC_INDIRECT;
4165 /* Enable power8 fusion if we are tuning for power8, even if we aren't
4166 generating power8 instructions. */
4167 if (!(rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION))
4168 rs6000_isa_flags |= (processor_target_table[tune_index].target_enable
4169 & OPTION_MASK_P8_FUSION);
4171 /* Setting additional fusion flags turns on base fusion. */
4172 if (!TARGET_P8_FUSION && TARGET_P8_FUSION_SIGN)
4174 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION)
4176 if (TARGET_P8_FUSION_SIGN)
4177 error ("%qs requires %qs", "-mpower8-fusion-sign",
4178 "-mpower8-fusion");
4180 rs6000_isa_flags &= ~OPTION_MASK_P8_FUSION;
4182 else
4183 rs6000_isa_flags |= OPTION_MASK_P8_FUSION;
4186 /* Power9 fusion is a superset over power8 fusion. */
4187 if (TARGET_P9_FUSION && !TARGET_P8_FUSION)
4189 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION)
4191 /* We prefer to not mention undocumented options in
4192 error messages. However, if users have managed to select
4193 power9-fusion without selecting power8-fusion, they
4194 already know about undocumented flags. */
4195 error ("%qs requires %qs", "-mpower9-fusion", "-mpower8-fusion");
4196 rs6000_isa_flags &= ~OPTION_MASK_P9_FUSION;
4198 else
4199 rs6000_isa_flags |= OPTION_MASK_P8_FUSION;
4202 /* Enable power9 fusion if we are tuning for power9, even if we aren't
4203 generating power9 instructions. */
4204 if (!(rs6000_isa_flags_explicit & OPTION_MASK_P9_FUSION))
4205 rs6000_isa_flags |= (processor_target_table[tune_index].target_enable
4206 & OPTION_MASK_P9_FUSION);
4208 /* Power8 does not fuse sign extended loads with the addis. If we are
4209 optimizing at high levels for speed, convert a sign extended load into a
4210 zero extending load, and an explicit sign extension. */
4211 if (TARGET_P8_FUSION
4212 && !(rs6000_isa_flags_explicit & OPTION_MASK_P8_FUSION_SIGN)
4213 && optimize_function_for_speed_p (cfun)
4214 && optimize >= 3)
4215 rs6000_isa_flags |= OPTION_MASK_P8_FUSION_SIGN;
4217 /* ISA 3.0 vector instructions include ISA 2.07. */
4218 if (TARGET_P9_VECTOR && !TARGET_P8_VECTOR)
4220 /* We prefer to not mention undocumented options in
4221 error messages. However, if users have managed to select
4222 power9-vector without selecting power8-vector, they
4223 already know about undocumented flags. */
4224 if ((rs6000_isa_flags_explicit & OPTION_MASK_P9_VECTOR) &&
4225 (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR))
4226 error ("%qs requires %qs", "-mpower9-vector", "-mpower8-vector");
4227 else if ((rs6000_isa_flags_explicit & OPTION_MASK_P9_VECTOR) == 0)
4229 rs6000_isa_flags &= ~OPTION_MASK_P9_VECTOR;
4230 if (rs6000_isa_flags_explicit & OPTION_MASK_P8_VECTOR)
4231 rs6000_isa_flags_explicit |= OPTION_MASK_P9_VECTOR;
4233 else
4235 /* OPTION_MASK_P9_VECTOR is explicit and
4236 OPTION_MASK_P8_VECTOR is not explicit. */
4237 rs6000_isa_flags |= OPTION_MASK_P8_VECTOR;
4238 rs6000_isa_flags_explicit |= OPTION_MASK_P8_VECTOR;
4242 /* Set -mallow-movmisalign to explicitly on if we have full ISA 2.07
4243 support. If we only have ISA 2.06 support, and the user did not specify
4244 the switch, leave it set to -1 so the movmisalign patterns are enabled,
4245 but we don't enable the full vectorization support */
4246 if (TARGET_ALLOW_MOVMISALIGN == -1 && TARGET_P8_VECTOR && TARGET_DIRECT_MOVE)
4247 TARGET_ALLOW_MOVMISALIGN = 1;
4249 else if (TARGET_ALLOW_MOVMISALIGN && !TARGET_VSX)
4251 if (TARGET_ALLOW_MOVMISALIGN > 0
4252 && global_options_set.x_TARGET_ALLOW_MOVMISALIGN)
4253 error ("%qs requires %qs", "-mallow-movmisalign", "-mvsx");
4255 TARGET_ALLOW_MOVMISALIGN = 0;
4258 /* Determine when unaligned vector accesses are permitted, and when
4259 they are preferred over masked Altivec loads. Note that if
4260 TARGET_ALLOW_MOVMISALIGN has been disabled by the user, then
4261 TARGET_EFFICIENT_UNALIGNED_VSX must be as well. The converse is
4262 not true. */
4263 if (TARGET_EFFICIENT_UNALIGNED_VSX)
4265 if (!TARGET_VSX)
4267 if (rs6000_isa_flags_explicit & OPTION_MASK_EFFICIENT_UNALIGNED_VSX)
4268 error ("%qs requires %qs", "-mefficient-unaligned-vsx", "-mvsx");
4270 rs6000_isa_flags &= ~OPTION_MASK_EFFICIENT_UNALIGNED_VSX;
4273 else if (!TARGET_ALLOW_MOVMISALIGN)
4275 if (rs6000_isa_flags_explicit & OPTION_MASK_EFFICIENT_UNALIGNED_VSX)
4276 error ("%qs requires %qs", "-munefficient-unaligned-vsx",
4277 "-mallow-movmisalign");
4279 rs6000_isa_flags &= ~OPTION_MASK_EFFICIENT_UNALIGNED_VSX;
4283 /* Use long double size to select the appropriate long double. We use
4284 TYPE_PRECISION to differentiate the 3 different long double types. We map
4285 128 into the precision used for TFmode. */
4286 int default_long_double_size = (RS6000_DEFAULT_LONG_DOUBLE_SIZE == 64
4287 ? 64
4288 : FLOAT_PRECISION_TFmode);
4290 /* Set long double size before the IEEE 128-bit tests. */
4291 if (!global_options_set.x_rs6000_long_double_type_size)
4293 if (main_target_opt != NULL
4294 && (main_target_opt->x_rs6000_long_double_type_size
4295 != default_long_double_size))
4296 error ("target attribute or pragma changes long double size");
4297 else
4298 rs6000_long_double_type_size = default_long_double_size;
4300 else if (rs6000_long_double_type_size == 128)
4301 rs6000_long_double_type_size = FLOAT_PRECISION_TFmode;
4303 /* Set -mabi=ieeelongdouble on some old targets. In the future, power server
4304 systems will also set long double to be IEEE 128-bit. AIX and Darwin
4305 explicitly redefine TARGET_IEEEQUAD and TARGET_IEEEQUAD_DEFAULT to 0, so
4306 those systems will not pick up this default. Warn if the user changes the
4307 default unless -Wno-psabi. */
4308 if (!global_options_set.x_rs6000_ieeequad)
4309 rs6000_ieeequad = TARGET_IEEEQUAD_DEFAULT;
4311 else if (rs6000_ieeequad != TARGET_IEEEQUAD_DEFAULT && TARGET_LONG_DOUBLE_128)
4313 static bool warned_change_long_double;
4314 if (!warned_change_long_double)
4316 warned_change_long_double = true;
4317 if (TARGET_IEEEQUAD)
4318 warning (OPT_Wpsabi, "Using IEEE extended precision long double");
4319 else
4320 warning (OPT_Wpsabi, "Using IBM extended precision long double");
4324 /* Enable the default support for IEEE 128-bit floating point on Linux VSX
4325 sytems. In GCC 7, we would enable the the IEEE 128-bit floating point
4326 infrastructure (-mfloat128-type) but not enable the actual __float128 type
4327 unless the user used the explicit -mfloat128. In GCC 8, we enable both
4328 the keyword as well as the type. */
4329 TARGET_FLOAT128_TYPE = TARGET_FLOAT128_ENABLE_TYPE && TARGET_VSX;
4331 /* IEEE 128-bit floating point requires VSX support. */
4332 if (TARGET_FLOAT128_KEYWORD)
4334 if (!TARGET_VSX)
4336 if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_KEYWORD) != 0)
4337 error ("%qs requires VSX support", "-mfloat128");
4339 TARGET_FLOAT128_TYPE = 0;
4340 rs6000_isa_flags &= ~(OPTION_MASK_FLOAT128_KEYWORD
4341 | OPTION_MASK_FLOAT128_HW);
4343 else if (!TARGET_FLOAT128_TYPE)
4345 TARGET_FLOAT128_TYPE = 1;
4346 warning (0, "The -mfloat128 option may not be fully supported");
4350 /* Enable the __float128 keyword under Linux by default. */
4351 if (TARGET_FLOAT128_TYPE && !TARGET_FLOAT128_KEYWORD
4352 && (rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_KEYWORD) == 0)
4353 rs6000_isa_flags |= OPTION_MASK_FLOAT128_KEYWORD;
4355 /* If we have are supporting the float128 type and full ISA 3.0 support,
4356 enable -mfloat128-hardware by default. However, don't enable the
4357 __float128 keyword if it was explicitly turned off. 64-bit mode is needed
4358 because sometimes the compiler wants to put things in an integer
4359 container, and if we don't have __int128 support, it is impossible. */
4360 if (TARGET_FLOAT128_TYPE && !TARGET_FLOAT128_HW && TARGET_64BIT
4361 && (rs6000_isa_flags & ISA_3_0_MASKS_IEEE) == ISA_3_0_MASKS_IEEE
4362 && !(rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW))
4363 rs6000_isa_flags |= OPTION_MASK_FLOAT128_HW;
4365 if (TARGET_FLOAT128_HW
4366 && (rs6000_isa_flags & ISA_3_0_MASKS_IEEE) != ISA_3_0_MASKS_IEEE)
4368 if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW) != 0)
4369 error ("%qs requires full ISA 3.0 support", "-mfloat128-hardware");
4371 rs6000_isa_flags &= ~OPTION_MASK_FLOAT128_HW;
4374 if (TARGET_FLOAT128_HW && !TARGET_64BIT)
4376 if ((rs6000_isa_flags_explicit & OPTION_MASK_FLOAT128_HW) != 0)
4377 error ("%qs requires %qs", "-mfloat128-hardware", "-m64");
4379 rs6000_isa_flags &= ~OPTION_MASK_FLOAT128_HW;
4382 /* Print the options after updating the defaults. */
4383 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4384 rs6000_print_isa_options (stderr, 0, "after defaults", rs6000_isa_flags);
4386 /* E500mc does "better" if we inline more aggressively. Respect the
4387 user's opinion, though. */
4388 if (rs6000_block_move_inline_limit == 0
4389 && (rs6000_tune == PROCESSOR_PPCE500MC
4390 || rs6000_tune == PROCESSOR_PPCE500MC64
4391 || rs6000_tune == PROCESSOR_PPCE5500
4392 || rs6000_tune == PROCESSOR_PPCE6500))
4393 rs6000_block_move_inline_limit = 128;
4395 /* store_one_arg depends on expand_block_move to handle at least the
4396 size of reg_parm_stack_space. */
4397 if (rs6000_block_move_inline_limit < (TARGET_POWERPC64 ? 64 : 32))
4398 rs6000_block_move_inline_limit = (TARGET_POWERPC64 ? 64 : 32);
4400 if (global_init_p)
4402 /* If the appropriate debug option is enabled, replace the target hooks
4403 with debug versions that call the real version and then prints
4404 debugging information. */
4405 if (TARGET_DEBUG_COST)
4407 targetm.rtx_costs = rs6000_debug_rtx_costs;
4408 targetm.address_cost = rs6000_debug_address_cost;
4409 targetm.sched.adjust_cost = rs6000_debug_adjust_cost;
4412 if (TARGET_DEBUG_ADDR)
4414 targetm.legitimate_address_p = rs6000_debug_legitimate_address_p;
4415 targetm.legitimize_address = rs6000_debug_legitimize_address;
4416 rs6000_secondary_reload_class_ptr
4417 = rs6000_debug_secondary_reload_class;
4418 targetm.secondary_memory_needed
4419 = rs6000_debug_secondary_memory_needed;
4420 targetm.can_change_mode_class
4421 = rs6000_debug_can_change_mode_class;
4422 rs6000_preferred_reload_class_ptr
4423 = rs6000_debug_preferred_reload_class;
4424 rs6000_legitimize_reload_address_ptr
4425 = rs6000_debug_legitimize_reload_address;
4426 rs6000_mode_dependent_address_ptr
4427 = rs6000_debug_mode_dependent_address;
4430 if (rs6000_veclibabi_name)
4432 if (strcmp (rs6000_veclibabi_name, "mass") == 0)
4433 rs6000_veclib_handler = rs6000_builtin_vectorized_libmass;
4434 else
4436 error ("unknown vectorization library ABI type (%qs) for "
4437 "%qs switch", rs6000_veclibabi_name, "-mveclibabi=");
4438 ret = false;
4443 /* Disable VSX and Altivec silently if the user switched cpus to power7 in a
4444 target attribute or pragma which automatically enables both options,
4445 unless the altivec ABI was set. This is set by default for 64-bit, but
4446 not for 32-bit. */
4447 if (main_target_opt != NULL && !main_target_opt->x_rs6000_altivec_abi)
4449 TARGET_FLOAT128_TYPE = 0;
4450 rs6000_isa_flags &= ~((OPTION_MASK_VSX | OPTION_MASK_ALTIVEC
4451 | OPTION_MASK_FLOAT128_KEYWORD)
4452 & ~rs6000_isa_flags_explicit);
4455 /* Enable Altivec ABI for AIX -maltivec. */
4456 if (TARGET_XCOFF && (TARGET_ALTIVEC || TARGET_VSX))
4458 if (main_target_opt != NULL && !main_target_opt->x_rs6000_altivec_abi)
4459 error ("target attribute or pragma changes AltiVec ABI");
4460 else
4461 rs6000_altivec_abi = 1;
4464 /* The AltiVec ABI is the default for PowerPC-64 GNU/Linux. For
4465 PowerPC-32 GNU/Linux, -maltivec implies the AltiVec ABI. It can
4466 be explicitly overridden in either case. */
4467 if (TARGET_ELF)
4469 if (!global_options_set.x_rs6000_altivec_abi
4470 && (TARGET_64BIT || TARGET_ALTIVEC || TARGET_VSX))
4472 if (main_target_opt != NULL &&
4473 !main_target_opt->x_rs6000_altivec_abi)
4474 error ("target attribute or pragma changes AltiVec ABI");
4475 else
4476 rs6000_altivec_abi = 1;
4480 /* Set the Darwin64 ABI as default for 64-bit Darwin.
4481 So far, the only darwin64 targets are also MACH-O. */
4482 if (TARGET_MACHO
4483 && DEFAULT_ABI == ABI_DARWIN
4484 && TARGET_64BIT)
4486 if (main_target_opt != NULL && !main_target_opt->x_rs6000_darwin64_abi)
4487 error ("target attribute or pragma changes darwin64 ABI");
4488 else
4490 rs6000_darwin64_abi = 1;
4491 /* Default to natural alignment, for better performance. */
4492 rs6000_alignment_flags = MASK_ALIGN_NATURAL;
4496 /* Place FP constants in the constant pool instead of TOC
4497 if section anchors enabled. */
4498 if (flag_section_anchors
4499 && !global_options_set.x_TARGET_NO_FP_IN_TOC)
4500 TARGET_NO_FP_IN_TOC = 1;
4502 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4503 rs6000_print_isa_options (stderr, 0, "before subtarget", rs6000_isa_flags);
4505 #ifdef SUBTARGET_OVERRIDE_OPTIONS
4506 SUBTARGET_OVERRIDE_OPTIONS;
4507 #endif
4508 #ifdef SUBSUBTARGET_OVERRIDE_OPTIONS
4509 SUBSUBTARGET_OVERRIDE_OPTIONS;
4510 #endif
4511 #ifdef SUB3TARGET_OVERRIDE_OPTIONS
4512 SUB3TARGET_OVERRIDE_OPTIONS;
4513 #endif
4515 if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET)
4516 rs6000_print_isa_options (stderr, 0, "after subtarget", rs6000_isa_flags);
4518 rs6000_always_hint = (rs6000_tune != PROCESSOR_POWER4
4519 && rs6000_tune != PROCESSOR_POWER5
4520 && rs6000_tune != PROCESSOR_POWER6
4521 && rs6000_tune != PROCESSOR_POWER7
4522 && rs6000_tune != PROCESSOR_POWER8
4523 && rs6000_tune != PROCESSOR_POWER9
4524 && rs6000_tune != PROCESSOR_PPCA2
4525 && rs6000_tune != PROCESSOR_CELL
4526 && rs6000_tune != PROCESSOR_PPC476);
4527 rs6000_sched_groups = (rs6000_tune == PROCESSOR_POWER4
4528 || rs6000_tune == PROCESSOR_POWER5
4529 || rs6000_tune == PROCESSOR_POWER7
4530 || rs6000_tune == PROCESSOR_POWER8);
4531 rs6000_align_branch_targets = (rs6000_tune == PROCESSOR_POWER4
4532 || rs6000_tune == PROCESSOR_POWER5
4533 || rs6000_tune == PROCESSOR_POWER6
4534 || rs6000_tune == PROCESSOR_POWER7
4535 || rs6000_tune == PROCESSOR_POWER8
4536 || rs6000_tune == PROCESSOR_POWER9
4537 || rs6000_tune == PROCESSOR_PPCE500MC
4538 || rs6000_tune == PROCESSOR_PPCE500MC64
4539 || rs6000_tune == PROCESSOR_PPCE5500
4540 || rs6000_tune == PROCESSOR_PPCE6500);
4542 /* Allow debug switches to override the above settings. These are set to -1
4543 in rs6000.opt to indicate the user hasn't directly set the switch. */
4544 if (TARGET_ALWAYS_HINT >= 0)
4545 rs6000_always_hint = TARGET_ALWAYS_HINT;
4547 if (TARGET_SCHED_GROUPS >= 0)
4548 rs6000_sched_groups = TARGET_SCHED_GROUPS;
4550 if (TARGET_ALIGN_BRANCH_TARGETS >= 0)
4551 rs6000_align_branch_targets = TARGET_ALIGN_BRANCH_TARGETS;
4553 rs6000_sched_restricted_insns_priority
4554 = (rs6000_sched_groups ? 1 : 0);
4556 /* Handle -msched-costly-dep option. */
4557 rs6000_sched_costly_dep
4558 = (rs6000_sched_groups ? true_store_to_load_dep_costly : no_dep_costly);
4560 if (rs6000_sched_costly_dep_str)
4562 if (! strcmp (rs6000_sched_costly_dep_str, "no"))
4563 rs6000_sched_costly_dep = no_dep_costly;
4564 else if (! strcmp (rs6000_sched_costly_dep_str, "all"))
4565 rs6000_sched_costly_dep = all_deps_costly;
4566 else if (! strcmp (rs6000_sched_costly_dep_str, "true_store_to_load"))
4567 rs6000_sched_costly_dep = true_store_to_load_dep_costly;
4568 else if (! strcmp (rs6000_sched_costly_dep_str, "store_to_load"))
4569 rs6000_sched_costly_dep = store_to_load_dep_costly;
4570 else
4571 rs6000_sched_costly_dep = ((enum rs6000_dependence_cost)
4572 atoi (rs6000_sched_costly_dep_str));
4575 /* Handle -minsert-sched-nops option. */
4576 rs6000_sched_insert_nops
4577 = (rs6000_sched_groups ? sched_finish_regroup_exact : sched_finish_none);
4579 if (rs6000_sched_insert_nops_str)
4581 if (! strcmp (rs6000_sched_insert_nops_str, "no"))
4582 rs6000_sched_insert_nops = sched_finish_none;
4583 else if (! strcmp (rs6000_sched_insert_nops_str, "pad"))
4584 rs6000_sched_insert_nops = sched_finish_pad_groups;
4585 else if (! strcmp (rs6000_sched_insert_nops_str, "regroup_exact"))
4586 rs6000_sched_insert_nops = sched_finish_regroup_exact;
4587 else
4588 rs6000_sched_insert_nops = ((enum rs6000_nop_insertion)
4589 atoi (rs6000_sched_insert_nops_str));
4592 /* Handle stack protector */
4593 if (!global_options_set.x_rs6000_stack_protector_guard)
4594 #ifdef TARGET_THREAD_SSP_OFFSET
4595 rs6000_stack_protector_guard = SSP_TLS;
4596 #else
4597 rs6000_stack_protector_guard = SSP_GLOBAL;
4598 #endif
4600 #ifdef TARGET_THREAD_SSP_OFFSET
4601 rs6000_stack_protector_guard_offset = TARGET_THREAD_SSP_OFFSET;
4602 rs6000_stack_protector_guard_reg = TARGET_64BIT ? 13 : 2;
4603 #endif
4605 if (global_options_set.x_rs6000_stack_protector_guard_offset_str)
4607 char *endp;
4608 const char *str = rs6000_stack_protector_guard_offset_str;
4610 errno = 0;
4611 long offset = strtol (str, &endp, 0);
4612 if (!*str || *endp || errno)
4613 error ("%qs is not a valid number in %qs", str,
4614 "-mstack-protector-guard-offset=");
4616 if (!IN_RANGE (offset, -0x8000, 0x7fff)
4617 || (TARGET_64BIT && (offset & 3)))
4618 error ("%qs is not a valid offset in %qs", str,
4619 "-mstack-protector-guard-offset=");
4621 rs6000_stack_protector_guard_offset = offset;
4624 if (global_options_set.x_rs6000_stack_protector_guard_reg_str)
4626 const char *str = rs6000_stack_protector_guard_reg_str;
4627 int reg = decode_reg_name (str);
4629 if (!IN_RANGE (reg, 1, 31))
4630 error ("%qs is not a valid base register in %qs", str,
4631 "-mstack-protector-guard-reg=");
4633 rs6000_stack_protector_guard_reg = reg;
4636 if (rs6000_stack_protector_guard == SSP_TLS
4637 && !IN_RANGE (rs6000_stack_protector_guard_reg, 1, 31))
4638 error ("%qs needs a valid base register", "-mstack-protector-guard=tls");
4640 if (global_init_p)
4642 #ifdef TARGET_REGNAMES
4643 /* If the user desires alternate register names, copy in the
4644 alternate names now. */
4645 if (TARGET_REGNAMES)
4646 memcpy (rs6000_reg_names, alt_reg_names, sizeof (rs6000_reg_names));
4647 #endif
4649 /* Set aix_struct_return last, after the ABI is determined.
4650 If -maix-struct-return or -msvr4-struct-return was explicitly
4651 used, don't override with the ABI default. */
4652 if (!global_options_set.x_aix_struct_return)
4653 aix_struct_return = (DEFAULT_ABI != ABI_V4 || DRAFT_V4_STRUCT_RET);
4655 #if 0
4656 /* IBM XL compiler defaults to unsigned bitfields. */
4657 if (TARGET_XL_COMPAT)
4658 flag_signed_bitfields = 0;
4659 #endif
4661 if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
4662 REAL_MODE_FORMAT (TFmode) = &ibm_extended_format;
4664 ASM_GENERATE_INTERNAL_LABEL (toc_label_name, "LCTOC", 1);
4666 /* We can only guarantee the availability of DI pseudo-ops when
4667 assembling for 64-bit targets. */
4668 if (!TARGET_64BIT)
4670 targetm.asm_out.aligned_op.di = NULL;
4671 targetm.asm_out.unaligned_op.di = NULL;
4675 /* Set branch target alignment, if not optimizing for size. */
4676 if (!optimize_size)
4678 /* Cell wants to be aligned 8byte for dual issue. Titan wants to be
4679 aligned 8byte to avoid misprediction by the branch predictor. */
4680 if (rs6000_tune == PROCESSOR_TITAN
4681 || rs6000_tune == PROCESSOR_CELL)
4683 if (flag_align_functions && !str_align_functions)
4684 str_align_functions = "8";
4685 if (flag_align_jumps && !str_align_jumps)
4686 str_align_jumps = "8";
4687 if (flag_align_loops && !str_align_loops)
4688 str_align_loops = "8";
4690 if (rs6000_align_branch_targets)
4692 if (flag_align_functions && !str_align_functions)
4693 str_align_functions = "16";
4694 if (flag_align_jumps && !str_align_jumps)
4695 str_align_jumps = "16";
4696 if (flag_align_loops && !str_align_loops)
4698 can_override_loop_align = 1;
4699 str_align_loops = "16";
4703 if (flag_align_jumps && !str_align_jumps)
4704 str_align_jumps = "16";
4705 if (flag_align_loops && !str_align_loops)
4706 str_align_loops = "16";
4709 /* Arrange to save and restore machine status around nested functions. */
4710 init_machine_status = rs6000_init_machine_status;
4712 /* We should always be splitting complex arguments, but we can't break
4713 Linux and Darwin ABIs at the moment. For now, only AIX is fixed. */
4714 if (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN)
4715 targetm.calls.split_complex_arg = NULL;
4717 /* The AIX and ELFv1 ABIs define standard function descriptors. */
4718 if (DEFAULT_ABI == ABI_AIX)
4719 targetm.calls.custom_function_descriptors = 0;
4722 /* Initialize rs6000_cost with the appropriate target costs. */
4723 if (optimize_size)
4724 rs6000_cost = TARGET_POWERPC64 ? &size64_cost : &size32_cost;
4725 else
4726 switch (rs6000_tune)
4728 case PROCESSOR_RS64A:
4729 rs6000_cost = &rs64a_cost;
4730 break;
4732 case PROCESSOR_MPCCORE:
4733 rs6000_cost = &mpccore_cost;
4734 break;
4736 case PROCESSOR_PPC403:
4737 rs6000_cost = &ppc403_cost;
4738 break;
4740 case PROCESSOR_PPC405:
4741 rs6000_cost = &ppc405_cost;
4742 break;
4744 case PROCESSOR_PPC440:
4745 rs6000_cost = &ppc440_cost;
4746 break;
4748 case PROCESSOR_PPC476:
4749 rs6000_cost = &ppc476_cost;
4750 break;
4752 case PROCESSOR_PPC601:
4753 rs6000_cost = &ppc601_cost;
4754 break;
4756 case PROCESSOR_PPC603:
4757 rs6000_cost = &ppc603_cost;
4758 break;
4760 case PROCESSOR_PPC604:
4761 rs6000_cost = &ppc604_cost;
4762 break;
4764 case PROCESSOR_PPC604e:
4765 rs6000_cost = &ppc604e_cost;
4766 break;
4768 case PROCESSOR_PPC620:
4769 rs6000_cost = &ppc620_cost;
4770 break;
4772 case PROCESSOR_PPC630:
4773 rs6000_cost = &ppc630_cost;
4774 break;
4776 case PROCESSOR_CELL:
4777 rs6000_cost = &ppccell_cost;
4778 break;
4780 case PROCESSOR_PPC750:
4781 case PROCESSOR_PPC7400:
4782 rs6000_cost = &ppc750_cost;
4783 break;
4785 case PROCESSOR_PPC7450:
4786 rs6000_cost = &ppc7450_cost;
4787 break;
4789 case PROCESSOR_PPC8540:
4790 case PROCESSOR_PPC8548:
4791 rs6000_cost = &ppc8540_cost;
4792 break;
4794 case PROCESSOR_PPCE300C2:
4795 case PROCESSOR_PPCE300C3:
4796 rs6000_cost = &ppce300c2c3_cost;
4797 break;
4799 case PROCESSOR_PPCE500MC:
4800 rs6000_cost = &ppce500mc_cost;
4801 break;
4803 case PROCESSOR_PPCE500MC64:
4804 rs6000_cost = &ppce500mc64_cost;
4805 break;
4807 case PROCESSOR_PPCE5500:
4808 rs6000_cost = &ppce5500_cost;
4809 break;
4811 case PROCESSOR_PPCE6500:
4812 rs6000_cost = &ppce6500_cost;
4813 break;
4815 case PROCESSOR_TITAN:
4816 rs6000_cost = &titan_cost;
4817 break;
4819 case PROCESSOR_POWER4:
4820 case PROCESSOR_POWER5:
4821 rs6000_cost = &power4_cost;
4822 break;
4824 case PROCESSOR_POWER6:
4825 rs6000_cost = &power6_cost;
4826 break;
4828 case PROCESSOR_POWER7:
4829 rs6000_cost = &power7_cost;
4830 break;
4832 case PROCESSOR_POWER8:
4833 rs6000_cost = &power8_cost;
4834 break;
4836 case PROCESSOR_POWER9:
4837 rs6000_cost = &power9_cost;
4838 break;
4840 case PROCESSOR_PPCA2:
4841 rs6000_cost = &ppca2_cost;
4842 break;
4844 default:
4845 gcc_unreachable ();
4848 if (global_init_p)
4850 maybe_set_param_value (PARAM_SIMULTANEOUS_PREFETCHES,
4851 rs6000_cost->simultaneous_prefetches,
4852 global_options.x_param_values,
4853 global_options_set.x_param_values);
4854 maybe_set_param_value (PARAM_L1_CACHE_SIZE, rs6000_cost->l1_cache_size,
4855 global_options.x_param_values,
4856 global_options_set.x_param_values);
4857 maybe_set_param_value (PARAM_L1_CACHE_LINE_SIZE,
4858 rs6000_cost->cache_line_size,
4859 global_options.x_param_values,
4860 global_options_set.x_param_values);
4861 maybe_set_param_value (PARAM_L2_CACHE_SIZE, rs6000_cost->l2_cache_size,
4862 global_options.x_param_values,
4863 global_options_set.x_param_values);
4865 /* Increase loop peeling limits based on performance analysis. */
4866 maybe_set_param_value (PARAM_MAX_PEELED_INSNS, 400,
4867 global_options.x_param_values,
4868 global_options_set.x_param_values);
4869 maybe_set_param_value (PARAM_MAX_COMPLETELY_PEELED_INSNS, 400,
4870 global_options.x_param_values,
4871 global_options_set.x_param_values);
4873 /* Use the 'model' -fsched-pressure algorithm by default. */
4874 maybe_set_param_value (PARAM_SCHED_PRESSURE_ALGORITHM,
4875 SCHED_PRESSURE_MODEL,
4876 global_options.x_param_values,
4877 global_options_set.x_param_values);
4879 /* If using typedef char *va_list, signal that
4880 __builtin_va_start (&ap, 0) can be optimized to
4881 ap = __builtin_next_arg (0). */
4882 if (DEFAULT_ABI != ABI_V4)
4883 targetm.expand_builtin_va_start = NULL;
4886 /* If not explicitly specified via option, decide whether to generate indexed
4887 load/store instructions. A value of -1 indicates that the
4888 initial value of this variable has not been overwritten. During
4889 compilation, TARGET_AVOID_XFORM is either 0 or 1. */
4890 if (TARGET_AVOID_XFORM == -1)
4891 /* Avoid indexed addressing when targeting Power6 in order to avoid the
4892 DERAT mispredict penalty. However the LVE and STVE altivec instructions
4893 need indexed accesses and the type used is the scalar type of the element
4894 being loaded or stored. */
4895 TARGET_AVOID_XFORM = (rs6000_tune == PROCESSOR_POWER6 && TARGET_CMPB
4896 && !TARGET_ALTIVEC);
4898 /* Set the -mrecip options. */
4899 if (rs6000_recip_name)
4901 char *p = ASTRDUP (rs6000_recip_name);
4902 char *q;
4903 unsigned int mask, i;
4904 bool invert;
4906 while ((q = strtok (p, ",")) != NULL)
4908 p = NULL;
4909 if (*q == '!')
4911 invert = true;
4912 q++;
4914 else
4915 invert = false;
4917 if (!strcmp (q, "default"))
4918 mask = ((TARGET_RECIP_PRECISION)
4919 ? RECIP_HIGH_PRECISION : RECIP_LOW_PRECISION);
4920 else
4922 for (i = 0; i < ARRAY_SIZE (recip_options); i++)
4923 if (!strcmp (q, recip_options[i].string))
4925 mask = recip_options[i].mask;
4926 break;
4929 if (i == ARRAY_SIZE (recip_options))
4931 error ("unknown option for %<%s=%s%>", "-mrecip", q);
4932 invert = false;
4933 mask = 0;
4934 ret = false;
4938 if (invert)
4939 rs6000_recip_control &= ~mask;
4940 else
4941 rs6000_recip_control |= mask;
4945 /* Set the builtin mask of the various options used that could affect which
4946 builtins were used. In the past we used target_flags, but we've run out
4947 of bits, and some options are no longer in target_flags. */
4948 rs6000_builtin_mask = rs6000_builtin_mask_calculate ();
4949 if (TARGET_DEBUG_BUILTIN || TARGET_DEBUG_TARGET)
4950 rs6000_print_builtin_options (stderr, 0, "builtin mask",
4951 rs6000_builtin_mask);
4953 /* Initialize all of the registers. */
4954 rs6000_init_hard_regno_mode_ok (global_init_p);
4956 /* Save the initial options in case the user does function specific options */
4957 if (global_init_p)
4958 target_option_default_node = target_option_current_node
4959 = build_target_option_node (&global_options);
4961 /* If not explicitly specified via option, decide whether to generate the
4962 extra blr's required to preserve the link stack on some cpus (eg, 476). */
4963 if (TARGET_LINK_STACK == -1)
4964 SET_TARGET_LINK_STACK (rs6000_tune == PROCESSOR_PPC476 && flag_pic);
4966 /* Deprecate use of -mno-speculate-indirect-jumps. */
4967 if (!rs6000_speculate_indirect_jumps)
4968 warning (0, "%qs is deprecated and not recommended in any circumstances",
4969 "-mno-speculate-indirect-jumps");
4971 return ret;
4974 /* Implement TARGET_OPTION_OVERRIDE. On the RS/6000 this is used to
4975 define the target cpu type. */
4977 static void
4978 rs6000_option_override (void)
4980 (void) rs6000_option_override_internal (true);
4984 /* Implement targetm.vectorize.builtin_mask_for_load. */
4985 static tree
4986 rs6000_builtin_mask_for_load (void)
4988 /* Don't use lvsl/vperm for P8 and similarly efficient machines. */
4989 if ((TARGET_ALTIVEC && !TARGET_VSX)
4990 || (TARGET_VSX && !TARGET_EFFICIENT_UNALIGNED_VSX))
4991 return altivec_builtin_mask_for_load;
4992 else
4993 return 0;
4996 /* Implement LOOP_ALIGN. */
4997 align_flags
4998 rs6000_loop_align (rtx label)
5000 basic_block bb;
5001 int ninsns;
5003 /* Don't override loop alignment if -falign-loops was specified. */
5004 if (!can_override_loop_align)
5005 return align_loops;
5007 bb = BLOCK_FOR_INSN (label);
5008 ninsns = num_loop_insns(bb->loop_father);
5010 /* Align small loops to 32 bytes to fit in an icache sector, otherwise return default. */
5011 if (ninsns > 4 && ninsns <= 8
5012 && (rs6000_tune == PROCESSOR_POWER4
5013 || rs6000_tune == PROCESSOR_POWER5
5014 || rs6000_tune == PROCESSOR_POWER6
5015 || rs6000_tune == PROCESSOR_POWER7
5016 || rs6000_tune == PROCESSOR_POWER8))
5017 return align_flags (5);
5018 else
5019 return align_loops;
5022 /* Return true iff, data reference of TYPE can reach vector alignment (16)
5023 after applying N number of iterations. This routine does not determine
5024 how may iterations are required to reach desired alignment. */
5026 static bool
5027 rs6000_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
5029 if (is_packed)
5030 return false;
5032 if (TARGET_32BIT)
5034 if (rs6000_alignment_flags == MASK_ALIGN_NATURAL)
5035 return true;
5037 if (rs6000_alignment_flags == MASK_ALIGN_POWER)
5038 return true;
5040 return false;
5042 else
5044 if (TARGET_MACHO)
5045 return false;
5047 /* Assuming that all other types are naturally aligned. CHECKME! */
5048 return true;
5052 /* Return true if the vector misalignment factor is supported by the
5053 target. */
5054 static bool
5055 rs6000_builtin_support_vector_misalignment (machine_mode mode,
5056 const_tree type,
5057 int misalignment,
5058 bool is_packed)
5060 if (TARGET_VSX)
5062 if (TARGET_EFFICIENT_UNALIGNED_VSX)
5063 return true;
5065 /* Return if movmisalign pattern is not supported for this mode. */
5066 if (optab_handler (movmisalign_optab, mode) == CODE_FOR_nothing)
5067 return false;
5069 if (misalignment == -1)
5071 /* Misalignment factor is unknown at compile time but we know
5072 it's word aligned. */
5073 if (rs6000_vector_alignment_reachable (type, is_packed))
5075 int element_size = TREE_INT_CST_LOW (TYPE_SIZE (type));
5077 if (element_size == 64 || element_size == 32)
5078 return true;
5081 return false;
5084 /* VSX supports word-aligned vector. */
5085 if (misalignment % 4 == 0)
5086 return true;
5088 return false;
5091 /* Implement targetm.vectorize.builtin_vectorization_cost. */
5092 static int
5093 rs6000_builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
5094 tree vectype, int misalign)
5096 unsigned elements;
5097 tree elem_type;
5099 switch (type_of_cost)
5101 case scalar_stmt:
5102 case scalar_load:
5103 case scalar_store:
5104 case vector_stmt:
5105 case vector_load:
5106 case vector_store:
5107 case vec_to_scalar:
5108 case scalar_to_vec:
5109 case cond_branch_not_taken:
5110 return 1;
5112 case vec_perm:
5113 if (TARGET_VSX)
5114 return 3;
5115 else
5116 return 1;
5118 case vec_promote_demote:
5119 if (TARGET_VSX)
5120 return 4;
5121 else
5122 return 1;
5124 case cond_branch_taken:
5125 return 3;
5127 case unaligned_load:
5128 case vector_gather_load:
5129 if (TARGET_EFFICIENT_UNALIGNED_VSX)
5130 return 1;
5132 if (TARGET_VSX && TARGET_ALLOW_MOVMISALIGN)
5134 elements = TYPE_VECTOR_SUBPARTS (vectype);
5135 if (elements == 2)
5136 /* Double word aligned. */
5137 return 2;
5139 if (elements == 4)
5141 switch (misalign)
5143 case 8:
5144 /* Double word aligned. */
5145 return 2;
5147 case -1:
5148 /* Unknown misalignment. */
5149 case 4:
5150 case 12:
5151 /* Word aligned. */
5152 return 22;
5154 default:
5155 gcc_unreachable ();
5160 if (TARGET_ALTIVEC)
5161 /* Misaligned loads are not supported. */
5162 gcc_unreachable ();
5164 return 2;
5166 case unaligned_store:
5167 case vector_scatter_store:
5168 if (TARGET_EFFICIENT_UNALIGNED_VSX)
5169 return 1;
5171 if (TARGET_VSX && TARGET_ALLOW_MOVMISALIGN)
5173 elements = TYPE_VECTOR_SUBPARTS (vectype);
5174 if (elements == 2)
5175 /* Double word aligned. */
5176 return 2;
5178 if (elements == 4)
5180 switch (misalign)
5182 case 8:
5183 /* Double word aligned. */
5184 return 2;
5186 case -1:
5187 /* Unknown misalignment. */
5188 case 4:
5189 case 12:
5190 /* Word aligned. */
5191 return 23;
5193 default:
5194 gcc_unreachable ();
5199 if (TARGET_ALTIVEC)
5200 /* Misaligned stores are not supported. */
5201 gcc_unreachable ();
5203 return 2;
5205 case vec_construct:
5206 /* This is a rough approximation assuming non-constant elements
5207 constructed into a vector via element insertion. FIXME:
5208 vec_construct is not granular enough for uniformly good
5209 decisions. If the initialization is a splat, this is
5210 cheaper than we estimate. Improve this someday. */
5211 elem_type = TREE_TYPE (vectype);
5212 /* 32-bit vectors loaded into registers are stored as double
5213 precision, so we need 2 permutes, 2 converts, and 1 merge
5214 to construct a vector of short floats from them. */
5215 if (SCALAR_FLOAT_TYPE_P (elem_type)
5216 && TYPE_PRECISION (elem_type) == 32)
5217 return 5;
5218 /* On POWER9, integer vector types are built up in GPRs and then
5219 use a direct move (2 cycles). For POWER8 this is even worse,
5220 as we need two direct moves and a merge, and the direct moves
5221 are five cycles. */
5222 else if (INTEGRAL_TYPE_P (elem_type))
5224 if (TARGET_P9_VECTOR)
5225 return TYPE_VECTOR_SUBPARTS (vectype) - 1 + 2;
5226 else
5227 return TYPE_VECTOR_SUBPARTS (vectype) - 1 + 5;
5229 else
5230 /* V2DFmode doesn't need a direct move. */
5231 return 2;
5233 default:
5234 gcc_unreachable ();
5238 /* Implement targetm.vectorize.preferred_simd_mode. */
5240 static machine_mode
5241 rs6000_preferred_simd_mode (scalar_mode mode)
5243 if (TARGET_VSX)
5244 switch (mode)
5246 case E_DFmode:
5247 return V2DFmode;
5248 default:;
5250 if (TARGET_ALTIVEC || TARGET_VSX)
5251 switch (mode)
5253 case E_SFmode:
5254 return V4SFmode;
5255 case E_TImode:
5256 return V1TImode;
5257 case E_DImode:
5258 return V2DImode;
5259 case E_SImode:
5260 return V4SImode;
5261 case E_HImode:
5262 return V8HImode;
5263 case E_QImode:
5264 return V16QImode;
5265 default:;
5267 return word_mode;
5270 typedef struct _rs6000_cost_data
5272 struct loop *loop_info;
5273 unsigned cost[3];
5274 } rs6000_cost_data;
5276 /* Test for likely overcommitment of vector hardware resources. If a
5277 loop iteration is relatively large, and too large a percentage of
5278 instructions in the loop are vectorized, the cost model may not
5279 adequately reflect delays from unavailable vector resources.
5280 Penalize the loop body cost for this case. */
5282 static void
5283 rs6000_density_test (rs6000_cost_data *data)
5285 const int DENSITY_PCT_THRESHOLD = 85;
5286 const int DENSITY_SIZE_THRESHOLD = 70;
5287 const int DENSITY_PENALTY = 10;
5288 struct loop *loop = data->loop_info;
5289 basic_block *bbs = get_loop_body (loop);
5290 int nbbs = loop->num_nodes;
5291 loop_vec_info loop_vinfo = loop_vec_info_for_loop (data->loop_info);
5292 int vec_cost = data->cost[vect_body], not_vec_cost = 0;
5293 int i, density_pct;
5295 for (i = 0; i < nbbs; i++)
5297 basic_block bb = bbs[i];
5298 gimple_stmt_iterator gsi;
5300 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5302 gimple *stmt = gsi_stmt (gsi);
5303 stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);
5305 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5306 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
5307 not_vec_cost++;
5311 free (bbs);
5312 density_pct = (vec_cost * 100) / (vec_cost + not_vec_cost);
5314 if (density_pct > DENSITY_PCT_THRESHOLD
5315 && vec_cost + not_vec_cost > DENSITY_SIZE_THRESHOLD)
5317 data->cost[vect_body] = vec_cost * (100 + DENSITY_PENALTY) / 100;
5318 if (dump_enabled_p ())
5319 dump_printf_loc (MSG_NOTE, vect_location,
5320 "density %d%%, cost %d exceeds threshold, penalizing "
5321 "loop body cost by %d%%", density_pct,
5322 vec_cost + not_vec_cost, DENSITY_PENALTY);
5326 /* Implement targetm.vectorize.init_cost. */
5328 /* For each vectorized loop, this var holds TRUE iff a non-memory vector
5329 instruction is needed by the vectorization. */
5330 static bool rs6000_vect_nonmem;
5332 static void *
5333 rs6000_init_cost (struct loop *loop_info)
5335 rs6000_cost_data *data = XNEW (struct _rs6000_cost_data);
5336 data->loop_info = loop_info;
5337 data->cost[vect_prologue] = 0;
5338 data->cost[vect_body] = 0;
5339 data->cost[vect_epilogue] = 0;
5340 rs6000_vect_nonmem = false;
5341 return data;
5344 /* Implement targetm.vectorize.add_stmt_cost. */
5346 static unsigned
5347 rs6000_add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
5348 struct _stmt_vec_info *stmt_info, int misalign,
5349 enum vect_cost_model_location where)
5351 rs6000_cost_data *cost_data = (rs6000_cost_data*) data;
5352 unsigned retval = 0;
5354 if (flag_vect_cost_model)
5356 tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
5357 int stmt_cost = rs6000_builtin_vectorization_cost (kind, vectype,
5358 misalign);
5359 /* Statements in an inner loop relative to the loop being
5360 vectorized are weighted more heavily. The value here is
5361 arbitrary and could potentially be improved with analysis. */
5362 if (where == vect_body && stmt_info && stmt_in_inner_loop_p (stmt_info))
5363 count *= 50; /* FIXME. */
5365 retval = (unsigned) (count * stmt_cost);
5366 cost_data->cost[where] += retval;
5368 /* Check whether we're doing something other than just a copy loop.
5369 Not all such loops may be profitably vectorized; see
5370 rs6000_finish_cost. */
5371 if ((kind == vec_to_scalar || kind == vec_perm
5372 || kind == vec_promote_demote || kind == vec_construct
5373 || kind == scalar_to_vec)
5374 || (where == vect_body && kind == vector_stmt))
5375 rs6000_vect_nonmem = true;
5378 return retval;
5381 /* Implement targetm.vectorize.finish_cost. */
5383 static void
5384 rs6000_finish_cost (void *data, unsigned *prologue_cost,
5385 unsigned *body_cost, unsigned *epilogue_cost)
5387 rs6000_cost_data *cost_data = (rs6000_cost_data*) data;
5389 if (cost_data->loop_info)
5390 rs6000_density_test (cost_data);
5392 /* Don't vectorize minimum-vectorization-factor, simple copy loops
5393 that require versioning for any reason. The vectorization is at
5394 best a wash inside the loop, and the versioning checks make
5395 profitability highly unlikely and potentially quite harmful. */
5396 if (cost_data->loop_info)
5398 loop_vec_info vec_info = loop_vec_info_for_loop (cost_data->loop_info);
5399 if (!rs6000_vect_nonmem
5400 && LOOP_VINFO_VECT_FACTOR (vec_info) == 2
5401 && LOOP_REQUIRES_VERSIONING (vec_info))
5402 cost_data->cost[vect_body] += 10000;
5405 *prologue_cost = cost_data->cost[vect_prologue];
5406 *body_cost = cost_data->cost[vect_body];
5407 *epilogue_cost = cost_data->cost[vect_epilogue];
5410 /* Implement targetm.vectorize.destroy_cost_data. */
5412 static void
5413 rs6000_destroy_cost_data (void *data)
5415 free (data);
5418 /* Handler for the Mathematical Acceleration Subsystem (mass) interface to a
5419 library with vectorized intrinsics. */
5421 static tree
5422 rs6000_builtin_vectorized_libmass (combined_fn fn, tree type_out,
5423 tree type_in)
5425 char name[32];
5426 const char *suffix = NULL;
5427 tree fntype, new_fndecl, bdecl = NULL_TREE;
5428 int n_args = 1;
5429 const char *bname;
5430 machine_mode el_mode, in_mode;
5431 int n, in_n;
5433 /* Libmass is suitable for unsafe math only as it does not correctly support
5434 parts of IEEE with the required precision such as denormals. Only support
5435 it if we have VSX to use the simd d2 or f4 functions.
5436 XXX: Add variable length support. */
5437 if (!flag_unsafe_math_optimizations || !TARGET_VSX)
5438 return NULL_TREE;
5440 el_mode = TYPE_MODE (TREE_TYPE (type_out));
5441 n = TYPE_VECTOR_SUBPARTS (type_out);
5442 in_mode = TYPE_MODE (TREE_TYPE (type_in));
5443 in_n = TYPE_VECTOR_SUBPARTS (type_in);
5444 if (el_mode != in_mode
5445 || n != in_n)
5446 return NULL_TREE;
5448 switch (fn)
5450 CASE_CFN_ATAN2:
5451 CASE_CFN_HYPOT:
5452 CASE_CFN_POW:
5453 n_args = 2;
5454 gcc_fallthrough ();
5456 CASE_CFN_ACOS:
5457 CASE_CFN_ACOSH:
5458 CASE_CFN_ASIN:
5459 CASE_CFN_ASINH:
5460 CASE_CFN_ATAN:
5461 CASE_CFN_ATANH:
5462 CASE_CFN_CBRT:
5463 CASE_CFN_COS:
5464 CASE_CFN_COSH:
5465 CASE_CFN_ERF:
5466 CASE_CFN_ERFC:
5467 CASE_CFN_EXP2:
5468 CASE_CFN_EXP:
5469 CASE_CFN_EXPM1:
5470 CASE_CFN_LGAMMA:
5471 CASE_CFN_LOG10:
5472 CASE_CFN_LOG1P:
5473 CASE_CFN_LOG2:
5474 CASE_CFN_LOG:
5475 CASE_CFN_SIN:
5476 CASE_CFN_SINH:
5477 CASE_CFN_SQRT:
5478 CASE_CFN_TAN:
5479 CASE_CFN_TANH:
5480 if (el_mode == DFmode && n == 2)
5482 bdecl = mathfn_built_in (double_type_node, fn);
5483 suffix = "d2"; /* pow -> powd2 */
5485 else if (el_mode == SFmode && n == 4)
5487 bdecl = mathfn_built_in (float_type_node, fn);
5488 suffix = "4"; /* powf -> powf4 */
5490 else
5491 return NULL_TREE;
5492 if (!bdecl)
5493 return NULL_TREE;
5494 break;
5496 default:
5497 return NULL_TREE;
5500 gcc_assert (suffix != NULL);
5501 bname = IDENTIFIER_POINTER (DECL_NAME (bdecl));
5502 if (!bname)
5503 return NULL_TREE;
5505 strcpy (name, bname + sizeof ("__builtin_") - 1);
5506 strcat (name, suffix);
5508 if (n_args == 1)
5509 fntype = build_function_type_list (type_out, type_in, NULL);
5510 else if (n_args == 2)
5511 fntype = build_function_type_list (type_out, type_in, type_in, NULL);
5512 else
5513 gcc_unreachable ();
5515 /* Build a function declaration for the vectorized function. */
5516 new_fndecl = build_decl (BUILTINS_LOCATION,
5517 FUNCTION_DECL, get_identifier (name), fntype);
5518 TREE_PUBLIC (new_fndecl) = 1;
5519 DECL_EXTERNAL (new_fndecl) = 1;
5520 DECL_IS_NOVOPS (new_fndecl) = 1;
5521 TREE_READONLY (new_fndecl) = 1;
5523 return new_fndecl;
5526 /* Returns a function decl for a vectorized version of the builtin function
5527 with builtin function code FN and the result vector type TYPE, or NULL_TREE
5528 if it is not available. */
5530 static tree
5531 rs6000_builtin_vectorized_function (unsigned int fn, tree type_out,
5532 tree type_in)
5534 machine_mode in_mode, out_mode;
5535 int in_n, out_n;
5537 if (TARGET_DEBUG_BUILTIN)
5538 fprintf (stderr, "rs6000_builtin_vectorized_function (%s, %s, %s)\n",
5539 combined_fn_name (combined_fn (fn)),
5540 GET_MODE_NAME (TYPE_MODE (type_out)),
5541 GET_MODE_NAME (TYPE_MODE (type_in)));
5543 if (TREE_CODE (type_out) != VECTOR_TYPE
5544 || TREE_CODE (type_in) != VECTOR_TYPE)
5545 return NULL_TREE;
5547 out_mode = TYPE_MODE (TREE_TYPE (type_out));
5548 out_n = TYPE_VECTOR_SUBPARTS (type_out);
5549 in_mode = TYPE_MODE (TREE_TYPE (type_in));
5550 in_n = TYPE_VECTOR_SUBPARTS (type_in);
5552 switch (fn)
5554 CASE_CFN_COPYSIGN:
5555 if (VECTOR_UNIT_VSX_P (V2DFmode)
5556 && out_mode == DFmode && out_n == 2
5557 && in_mode == DFmode && in_n == 2)
5558 return rs6000_builtin_decls[VSX_BUILTIN_CPSGNDP];
5559 if (VECTOR_UNIT_VSX_P (V4SFmode)
5560 && out_mode == SFmode && out_n == 4
5561 && in_mode == SFmode && in_n == 4)
5562 return rs6000_builtin_decls[VSX_BUILTIN_CPSGNSP];
5563 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5564 && out_mode == SFmode && out_n == 4
5565 && in_mode == SFmode && in_n == 4)
5566 return rs6000_builtin_decls[ALTIVEC_BUILTIN_COPYSIGN_V4SF];
5567 break;
5568 CASE_CFN_CEIL:
5569 if (VECTOR_UNIT_VSX_P (V2DFmode)
5570 && out_mode == DFmode && out_n == 2
5571 && in_mode == DFmode && in_n == 2)
5572 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIP];
5573 if (VECTOR_UNIT_VSX_P (V4SFmode)
5574 && out_mode == SFmode && out_n == 4
5575 && in_mode == SFmode && in_n == 4)
5576 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIP];
5577 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5578 && out_mode == SFmode && out_n == 4
5579 && in_mode == SFmode && in_n == 4)
5580 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIP];
5581 break;
5582 CASE_CFN_FLOOR:
5583 if (VECTOR_UNIT_VSX_P (V2DFmode)
5584 && out_mode == DFmode && out_n == 2
5585 && in_mode == DFmode && in_n == 2)
5586 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIM];
5587 if (VECTOR_UNIT_VSX_P (V4SFmode)
5588 && out_mode == SFmode && out_n == 4
5589 && in_mode == SFmode && in_n == 4)
5590 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIM];
5591 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5592 && out_mode == SFmode && out_n == 4
5593 && in_mode == SFmode && in_n == 4)
5594 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIM];
5595 break;
5596 CASE_CFN_FMA:
5597 if (VECTOR_UNIT_VSX_P (V2DFmode)
5598 && out_mode == DFmode && out_n == 2
5599 && in_mode == DFmode && in_n == 2)
5600 return rs6000_builtin_decls[VSX_BUILTIN_XVMADDDP];
5601 if (VECTOR_UNIT_VSX_P (V4SFmode)
5602 && out_mode == SFmode && out_n == 4
5603 && in_mode == SFmode && in_n == 4)
5604 return rs6000_builtin_decls[VSX_BUILTIN_XVMADDSP];
5605 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5606 && out_mode == SFmode && out_n == 4
5607 && in_mode == SFmode && in_n == 4)
5608 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VMADDFP];
5609 break;
5610 CASE_CFN_TRUNC:
5611 if (VECTOR_UNIT_VSX_P (V2DFmode)
5612 && out_mode == DFmode && out_n == 2
5613 && in_mode == DFmode && in_n == 2)
5614 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIZ];
5615 if (VECTOR_UNIT_VSX_P (V4SFmode)
5616 && out_mode == SFmode && out_n == 4
5617 && in_mode == SFmode && in_n == 4)
5618 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIZ];
5619 if (VECTOR_UNIT_ALTIVEC_P (V4SFmode)
5620 && out_mode == SFmode && out_n == 4
5621 && in_mode == SFmode && in_n == 4)
5622 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIZ];
5623 break;
5624 CASE_CFN_NEARBYINT:
5625 if (VECTOR_UNIT_VSX_P (V2DFmode)
5626 && flag_unsafe_math_optimizations
5627 && out_mode == DFmode && out_n == 2
5628 && in_mode == DFmode && in_n == 2)
5629 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPI];
5630 if (VECTOR_UNIT_VSX_P (V4SFmode)
5631 && flag_unsafe_math_optimizations
5632 && out_mode == SFmode && out_n == 4
5633 && in_mode == SFmode && in_n == 4)
5634 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPI];
5635 break;
5636 CASE_CFN_RINT:
5637 if (VECTOR_UNIT_VSX_P (V2DFmode)
5638 && !flag_trapping_math
5639 && out_mode == DFmode && out_n == 2
5640 && in_mode == DFmode && in_n == 2)
5641 return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIC];
5642 if (VECTOR_UNIT_VSX_P (V4SFmode)
5643 && !flag_trapping_math
5644 && out_mode == SFmode && out_n == 4
5645 && in_mode == SFmode && in_n == 4)
5646 return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIC];
5647 break;
5648 default:
5649 break;
5652 /* Generate calls to libmass if appropriate. */
5653 if (rs6000_veclib_handler)
5654 return rs6000_veclib_handler (combined_fn (fn), type_out, type_in);
5656 return NULL_TREE;
5659 /* Implement TARGET_VECTORIZE_BUILTIN_MD_VECTORIZED_FUNCTION. */
5661 static tree
5662 rs6000_builtin_md_vectorized_function (tree fndecl, tree type_out,
5663 tree type_in)
5665 machine_mode in_mode, out_mode;
5666 int in_n, out_n;
5668 if (TARGET_DEBUG_BUILTIN)
5669 fprintf (stderr, "rs6000_builtin_md_vectorized_function (%s, %s, %s)\n",
5670 IDENTIFIER_POINTER (DECL_NAME (fndecl)),
5671 GET_MODE_NAME (TYPE_MODE (type_out)),
5672 GET_MODE_NAME (TYPE_MODE (type_in)));
5674 if (TREE_CODE (type_out) != VECTOR_TYPE
5675 || TREE_CODE (type_in) != VECTOR_TYPE)
5676 return NULL_TREE;
5678 out_mode = TYPE_MODE (TREE_TYPE (type_out));
5679 out_n = TYPE_VECTOR_SUBPARTS (type_out);
5680 in_mode = TYPE_MODE (TREE_TYPE (type_in));
5681 in_n = TYPE_VECTOR_SUBPARTS (type_in);
5683 enum rs6000_builtins fn
5684 = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
5685 switch (fn)
5687 case RS6000_BUILTIN_RSQRTF:
5688 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode)
5689 && out_mode == SFmode && out_n == 4
5690 && in_mode == SFmode && in_n == 4)
5691 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRSQRTFP];
5692 break;
5693 case RS6000_BUILTIN_RSQRT:
5694 if (VECTOR_UNIT_VSX_P (V2DFmode)
5695 && out_mode == DFmode && out_n == 2
5696 && in_mode == DFmode && in_n == 2)
5697 return rs6000_builtin_decls[VSX_BUILTIN_RSQRT_2DF];
5698 break;
5699 case RS6000_BUILTIN_RECIPF:
5700 if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode)
5701 && out_mode == SFmode && out_n == 4
5702 && in_mode == SFmode && in_n == 4)
5703 return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRECIPFP];
5704 break;
5705 case RS6000_BUILTIN_RECIP:
5706 if (VECTOR_UNIT_VSX_P (V2DFmode)
5707 && out_mode == DFmode && out_n == 2
5708 && in_mode == DFmode && in_n == 2)
5709 return rs6000_builtin_decls[VSX_BUILTIN_RECIP_V2DF];
5710 break;
5711 default:
5712 break;
5714 return NULL_TREE;
5717 /* Default CPU string for rs6000*_file_start functions. */
5718 static const char *rs6000_default_cpu;
5720 /* Do anything needed at the start of the asm file. */
5722 static void
5723 rs6000_file_start (void)
5725 char buffer[80];
5726 const char *start = buffer;
5727 FILE *file = asm_out_file;
5729 rs6000_default_cpu = TARGET_CPU_DEFAULT;
5731 default_file_start ();
5733 if (flag_verbose_asm)
5735 sprintf (buffer, "\n%s rs6000/powerpc options:", ASM_COMMENT_START);
5737 if (rs6000_default_cpu != 0 && rs6000_default_cpu[0] != '\0')
5739 fprintf (file, "%s --with-cpu=%s", start, rs6000_default_cpu);
5740 start = "";
5743 if (global_options_set.x_rs6000_cpu_index)
5745 fprintf (file, "%s -mcpu=%s", start,
5746 processor_target_table[rs6000_cpu_index].name);
5747 start = "";
5750 if (global_options_set.x_rs6000_tune_index)
5752 fprintf (file, "%s -mtune=%s", start,
5753 processor_target_table[rs6000_tune_index].name);
5754 start = "";
5757 if (PPC405_ERRATUM77)
5759 fprintf (file, "%s PPC405CR_ERRATUM77", start);
5760 start = "";
5763 #ifdef USING_ELFOS_H
5764 switch (rs6000_sdata)
5766 case SDATA_NONE: fprintf (file, "%s -msdata=none", start); start = ""; break;
5767 case SDATA_DATA: fprintf (file, "%s -msdata=data", start); start = ""; break;
5768 case SDATA_SYSV: fprintf (file, "%s -msdata=sysv", start); start = ""; break;
5769 case SDATA_EABI: fprintf (file, "%s -msdata=eabi", start); start = ""; break;
5772 if (rs6000_sdata && g_switch_value)
5774 fprintf (file, "%s -G %d", start,
5775 g_switch_value);
5776 start = "";
5778 #endif
5780 if (*start == '\0')
5781 putc ('\n', file);
5784 #ifdef USING_ELFOS_H
5785 if (!(rs6000_default_cpu && rs6000_default_cpu[0])
5786 && !global_options_set.x_rs6000_cpu_index)
5788 fputs ("\t.machine ", asm_out_file);
5789 if ((rs6000_isa_flags & OPTION_MASK_MODULO) != 0)
5790 fputs ("power9\n", asm_out_file);
5791 else if ((rs6000_isa_flags & OPTION_MASK_DIRECT_MOVE) != 0)
5792 fputs ("power8\n", asm_out_file);
5793 else if ((rs6000_isa_flags & OPTION_MASK_POPCNTD) != 0)
5794 fputs ("power7\n", asm_out_file);
5795 else if ((rs6000_isa_flags & OPTION_MASK_CMPB) != 0)
5796 fputs ("power6\n", asm_out_file);
5797 else if ((rs6000_isa_flags & OPTION_MASK_POPCNTB) != 0)
5798 fputs ("power5\n", asm_out_file);
5799 else if ((rs6000_isa_flags & OPTION_MASK_MFCRF) != 0)
5800 fputs ("power4\n", asm_out_file);
5801 else if ((rs6000_isa_flags & OPTION_MASK_POWERPC64) != 0)
5802 fputs ("ppc64\n", asm_out_file);
5803 else
5804 fputs ("ppc\n", asm_out_file);
5806 #endif
5808 if (DEFAULT_ABI == ABI_ELFv2)
5809 fprintf (file, "\t.abiversion 2\n");
5813 /* Return nonzero if this function is known to have a null epilogue. */
5816 direct_return (void)
5818 if (reload_completed)
5820 rs6000_stack_t *info = rs6000_stack_info ();
5822 if (info->first_gp_reg_save == 32
5823 && info->first_fp_reg_save == 64
5824 && info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1
5825 && ! info->lr_save_p
5826 && ! info->cr_save_p
5827 && info->vrsave_size == 0
5828 && ! info->push_p)
5829 return 1;
5832 return 0;
5835 /* Return the number of instructions it takes to form a constant in an
5836 integer register. */
5839 num_insns_constant_wide (HOST_WIDE_INT value)
5841 /* signed constant loadable with addi */
5842 if (((unsigned HOST_WIDE_INT) value + 0x8000) < 0x10000)
5843 return 1;
5845 /* constant loadable with addis */
5846 else if ((value & 0xffff) == 0
5847 && (value >> 31 == -1 || value >> 31 == 0))
5848 return 1;
5850 else if (TARGET_POWERPC64)
5852 HOST_WIDE_INT low = ((value & 0xffffffff) ^ 0x80000000) - 0x80000000;
5853 HOST_WIDE_INT high = value >> 31;
5855 if (high == 0 || high == -1)
5856 return 2;
5858 high >>= 1;
5860 if (low == 0)
5861 return num_insns_constant_wide (high) + 1;
5862 else if (high == 0)
5863 return num_insns_constant_wide (low) + 1;
5864 else
5865 return (num_insns_constant_wide (high)
5866 + num_insns_constant_wide (low) + 1);
5869 else
5870 return 2;
5874 num_insns_constant (rtx op, machine_mode mode)
5876 HOST_WIDE_INT low, high;
5878 switch (GET_CODE (op))
5880 case CONST_INT:
5881 if ((INTVAL (op) >> 31) != 0 && (INTVAL (op) >> 31) != -1
5882 && rs6000_is_valid_and_mask (op, mode))
5883 return 2;
5884 else
5885 return num_insns_constant_wide (INTVAL (op));
5887 case CONST_WIDE_INT:
5889 int i;
5890 int ins = CONST_WIDE_INT_NUNITS (op) - 1;
5891 for (i = 0; i < CONST_WIDE_INT_NUNITS (op); i++)
5892 ins += num_insns_constant_wide (CONST_WIDE_INT_ELT (op, i));
5893 return ins;
5896 case CONST_DOUBLE:
5897 if (mode == SFmode || mode == SDmode)
5899 long l;
5901 if (DECIMAL_FLOAT_MODE_P (mode))
5902 REAL_VALUE_TO_TARGET_DECIMAL32
5903 (*CONST_DOUBLE_REAL_VALUE (op), l);
5904 else
5905 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), l);
5906 return num_insns_constant_wide ((HOST_WIDE_INT) l);
5909 long l[2];
5910 if (DECIMAL_FLOAT_MODE_P (mode))
5911 REAL_VALUE_TO_TARGET_DECIMAL64 (*CONST_DOUBLE_REAL_VALUE (op), l);
5912 else
5913 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
5914 high = l[WORDS_BIG_ENDIAN == 0];
5915 low = l[WORDS_BIG_ENDIAN != 0];
5917 if (TARGET_32BIT)
5918 return (num_insns_constant_wide (low)
5919 + num_insns_constant_wide (high));
5920 else
5922 if ((high == 0 && low >= 0)
5923 || (high == -1 && low < 0))
5924 return num_insns_constant_wide (low);
5926 else if (rs6000_is_valid_and_mask (op, mode))
5927 return 2;
5929 else if (low == 0)
5930 return num_insns_constant_wide (high) + 1;
5932 else
5933 return (num_insns_constant_wide (high)
5934 + num_insns_constant_wide (low) + 1);
5937 default:
5938 gcc_unreachable ();
5942 /* Interpret element ELT of the CONST_VECTOR OP as an integer value.
5943 If the mode of OP is MODE_VECTOR_INT, this simply returns the
5944 corresponding element of the vector, but for V4SFmode, the
5945 corresponding "float" is interpreted as an SImode integer. */
5947 HOST_WIDE_INT
5948 const_vector_elt_as_int (rtx op, unsigned int elt)
5950 rtx tmp;
5952 /* We can't handle V2DImode and V2DFmode vector constants here yet. */
5953 gcc_assert (GET_MODE (op) != V2DImode
5954 && GET_MODE (op) != V2DFmode);
5956 tmp = CONST_VECTOR_ELT (op, elt);
5957 if (GET_MODE (op) == V4SFmode)
5958 tmp = gen_lowpart (SImode, tmp);
5959 return INTVAL (tmp);
5962 /* Return true if OP can be synthesized with a particular vspltisb, vspltish
5963 or vspltisw instruction. OP is a CONST_VECTOR. Which instruction is used
5964 depends on STEP and COPIES, one of which will be 1. If COPIES > 1,
5965 all items are set to the same value and contain COPIES replicas of the
5966 vsplt's operand; if STEP > 1, one in STEP elements is set to the vsplt's
5967 operand and the others are set to the value of the operand's msb. */
5969 static bool
5970 vspltis_constant (rtx op, unsigned step, unsigned copies)
5972 machine_mode mode = GET_MODE (op);
5973 machine_mode inner = GET_MODE_INNER (mode);
5975 unsigned i;
5976 unsigned nunits;
5977 unsigned bitsize;
5978 unsigned mask;
5980 HOST_WIDE_INT val;
5981 HOST_WIDE_INT splat_val;
5982 HOST_WIDE_INT msb_val;
5984 if (mode == V2DImode || mode == V2DFmode || mode == V1TImode)
5985 return false;
5987 nunits = GET_MODE_NUNITS (mode);
5988 bitsize = GET_MODE_BITSIZE (inner);
5989 mask = GET_MODE_MASK (inner);
5991 val = const_vector_elt_as_int (op, BYTES_BIG_ENDIAN ? nunits - 1 : 0);
5992 splat_val = val;
5993 msb_val = val >= 0 ? 0 : -1;
5995 /* Construct the value to be splatted, if possible. If not, return 0. */
5996 for (i = 2; i <= copies; i *= 2)
5998 HOST_WIDE_INT small_val;
5999 bitsize /= 2;
6000 small_val = splat_val >> bitsize;
6001 mask >>= bitsize;
6002 if (splat_val != ((HOST_WIDE_INT)
6003 ((unsigned HOST_WIDE_INT) small_val << bitsize)
6004 | (small_val & mask)))
6005 return false;
6006 splat_val = small_val;
6009 /* Check if SPLAT_VAL can really be the operand of a vspltis[bhw]. */
6010 if (EASY_VECTOR_15 (splat_val))
6013 /* Also check if we can splat, and then add the result to itself. Do so if
6014 the value is positive, of if the splat instruction is using OP's mode;
6015 for splat_val < 0, the splat and the add should use the same mode. */
6016 else if (EASY_VECTOR_15_ADD_SELF (splat_val)
6017 && (splat_val >= 0 || (step == 1 && copies == 1)))
6020 /* Also check if are loading up the most significant bit which can be done by
6021 loading up -1 and shifting the value left by -1. */
6022 else if (EASY_VECTOR_MSB (splat_val, inner))
6025 else
6026 return false;
6028 /* Check if VAL is present in every STEP-th element, and the
6029 other elements are filled with its most significant bit. */
6030 for (i = 1; i < nunits; ++i)
6032 HOST_WIDE_INT desired_val;
6033 unsigned elt = BYTES_BIG_ENDIAN ? nunits - 1 - i : i;
6034 if ((i & (step - 1)) == 0)
6035 desired_val = val;
6036 else
6037 desired_val = msb_val;
6039 if (desired_val != const_vector_elt_as_int (op, elt))
6040 return false;
6043 return true;
6046 /* Like vsplitis_constant, but allow the value to be shifted left with a VSLDOI
6047 instruction, filling in the bottom elements with 0 or -1.
6049 Return 0 if the constant cannot be generated with VSLDOI. Return positive
6050 for the number of zeroes to shift in, or negative for the number of 0xff
6051 bytes to shift in.
6053 OP is a CONST_VECTOR. */
6056 vspltis_shifted (rtx op)
6058 machine_mode mode = GET_MODE (op);
6059 machine_mode inner = GET_MODE_INNER (mode);
6061 unsigned i, j;
6062 unsigned nunits;
6063 unsigned mask;
6065 HOST_WIDE_INT val;
6067 if (mode != V16QImode && mode != V8HImode && mode != V4SImode)
6068 return false;
6070 /* We need to create pseudo registers to do the shift, so don't recognize
6071 shift vector constants after reload. */
6072 if (!can_create_pseudo_p ())
6073 return false;
6075 nunits = GET_MODE_NUNITS (mode);
6076 mask = GET_MODE_MASK (inner);
6078 val = const_vector_elt_as_int (op, BYTES_BIG_ENDIAN ? 0 : nunits - 1);
6080 /* Check if the value can really be the operand of a vspltis[bhw]. */
6081 if (EASY_VECTOR_15 (val))
6084 /* Also check if we are loading up the most significant bit which can be done
6085 by loading up -1 and shifting the value left by -1. */
6086 else if (EASY_VECTOR_MSB (val, inner))
6089 else
6090 return 0;
6092 /* Check if VAL is present in every STEP-th element until we find elements
6093 that are 0 or all 1 bits. */
6094 for (i = 1; i < nunits; ++i)
6096 unsigned elt = BYTES_BIG_ENDIAN ? i : nunits - 1 - i;
6097 HOST_WIDE_INT elt_val = const_vector_elt_as_int (op, elt);
6099 /* If the value isn't the splat value, check for the remaining elements
6100 being 0/-1. */
6101 if (val != elt_val)
6103 if (elt_val == 0)
6105 for (j = i+1; j < nunits; ++j)
6107 unsigned elt2 = BYTES_BIG_ENDIAN ? j : nunits - 1 - j;
6108 if (const_vector_elt_as_int (op, elt2) != 0)
6109 return 0;
6112 return (nunits - i) * GET_MODE_SIZE (inner);
6115 else if ((elt_val & mask) == mask)
6117 for (j = i+1; j < nunits; ++j)
6119 unsigned elt2 = BYTES_BIG_ENDIAN ? j : nunits - 1 - j;
6120 if ((const_vector_elt_as_int (op, elt2) & mask) != mask)
6121 return 0;
6124 return -((nunits - i) * GET_MODE_SIZE (inner));
6127 else
6128 return 0;
6132 /* If all elements are equal, we don't need to do VLSDOI. */
6133 return 0;
6137 /* Return true if OP is of the given MODE and can be synthesized
6138 with a vspltisb, vspltish or vspltisw. */
6140 bool
6141 easy_altivec_constant (rtx op, machine_mode mode)
6143 unsigned step, copies;
6145 if (mode == VOIDmode)
6146 mode = GET_MODE (op);
6147 else if (mode != GET_MODE (op))
6148 return false;
6150 /* V2DI/V2DF was added with VSX. Only allow 0 and all 1's as easy
6151 constants. */
6152 if (mode == V2DFmode)
6153 return zero_constant (op, mode);
6155 else if (mode == V2DImode)
6157 if (GET_CODE (CONST_VECTOR_ELT (op, 0)) != CONST_INT
6158 || GET_CODE (CONST_VECTOR_ELT (op, 1)) != CONST_INT)
6159 return false;
6161 if (zero_constant (op, mode))
6162 return true;
6164 if (INTVAL (CONST_VECTOR_ELT (op, 0)) == -1
6165 && INTVAL (CONST_VECTOR_ELT (op, 1)) == -1)
6166 return true;
6168 return false;
6171 /* V1TImode is a special container for TImode. Ignore for now. */
6172 else if (mode == V1TImode)
6173 return false;
6175 /* Start with a vspltisw. */
6176 step = GET_MODE_NUNITS (mode) / 4;
6177 copies = 1;
6179 if (vspltis_constant (op, step, copies))
6180 return true;
6182 /* Then try with a vspltish. */
6183 if (step == 1)
6184 copies <<= 1;
6185 else
6186 step >>= 1;
6188 if (vspltis_constant (op, step, copies))
6189 return true;
6191 /* And finally a vspltisb. */
6192 if (step == 1)
6193 copies <<= 1;
6194 else
6195 step >>= 1;
6197 if (vspltis_constant (op, step, copies))
6198 return true;
6200 if (vspltis_shifted (op) != 0)
6201 return true;
6203 return false;
6206 /* Generate a VEC_DUPLICATE representing a vspltis[bhw] instruction whose
6207 result is OP. Abort if it is not possible. */
6210 gen_easy_altivec_constant (rtx op)
6212 machine_mode mode = GET_MODE (op);
6213 int nunits = GET_MODE_NUNITS (mode);
6214 rtx val = CONST_VECTOR_ELT (op, BYTES_BIG_ENDIAN ? nunits - 1 : 0);
6215 unsigned step = nunits / 4;
6216 unsigned copies = 1;
6218 /* Start with a vspltisw. */
6219 if (vspltis_constant (op, step, copies))
6220 return gen_rtx_VEC_DUPLICATE (V4SImode, gen_lowpart (SImode, val));
6222 /* Then try with a vspltish. */
6223 if (step == 1)
6224 copies <<= 1;
6225 else
6226 step >>= 1;
6228 if (vspltis_constant (op, step, copies))
6229 return gen_rtx_VEC_DUPLICATE (V8HImode, gen_lowpart (HImode, val));
6231 /* And finally a vspltisb. */
6232 if (step == 1)
6233 copies <<= 1;
6234 else
6235 step >>= 1;
6237 if (vspltis_constant (op, step, copies))
6238 return gen_rtx_VEC_DUPLICATE (V16QImode, gen_lowpart (QImode, val));
6240 gcc_unreachable ();
6243 /* Return true if OP is of the given MODE and can be synthesized with ISA 3.0
6244 instructions (xxspltib, vupkhsb/vextsb2w/vextb2d).
6246 Return the number of instructions needed (1 or 2) into the address pointed
6247 via NUM_INSNS_PTR.
6249 Return the constant that is being split via CONSTANT_PTR. */
6251 bool
6252 xxspltib_constant_p (rtx op,
6253 machine_mode mode,
6254 int *num_insns_ptr,
6255 int *constant_ptr)
6257 size_t nunits = GET_MODE_NUNITS (mode);
6258 size_t i;
6259 HOST_WIDE_INT value;
6260 rtx element;
6262 /* Set the returned values to out of bound values. */
6263 *num_insns_ptr = -1;
6264 *constant_ptr = 256;
6266 if (!TARGET_P9_VECTOR)
6267 return false;
6269 if (mode == VOIDmode)
6270 mode = GET_MODE (op);
6272 else if (mode != GET_MODE (op) && GET_MODE (op) != VOIDmode)
6273 return false;
6275 /* Handle (vec_duplicate <constant>). */
6276 if (GET_CODE (op) == VEC_DUPLICATE)
6278 if (mode != V16QImode && mode != V8HImode && mode != V4SImode
6279 && mode != V2DImode)
6280 return false;
6282 element = XEXP (op, 0);
6283 if (!CONST_INT_P (element))
6284 return false;
6286 value = INTVAL (element);
6287 if (!IN_RANGE (value, -128, 127))
6288 return false;
6291 /* Handle (const_vector [...]). */
6292 else if (GET_CODE (op) == CONST_VECTOR)
6294 if (mode != V16QImode && mode != V8HImode && mode != V4SImode
6295 && mode != V2DImode)
6296 return false;
6298 element = CONST_VECTOR_ELT (op, 0);
6299 if (!CONST_INT_P (element))
6300 return false;
6302 value = INTVAL (element);
6303 if (!IN_RANGE (value, -128, 127))
6304 return false;
6306 for (i = 1; i < nunits; i++)
6308 element = CONST_VECTOR_ELT (op, i);
6309 if (!CONST_INT_P (element))
6310 return false;
6312 if (value != INTVAL (element))
6313 return false;
6317 /* Handle integer constants being loaded into the upper part of the VSX
6318 register as a scalar. If the value isn't 0/-1, only allow it if the mode
6319 can go in Altivec registers. Prefer VSPLTISW/VUPKHSW over XXSPLITIB. */
6320 else if (CONST_INT_P (op))
6322 if (!SCALAR_INT_MODE_P (mode))
6323 return false;
6325 value = INTVAL (op);
6326 if (!IN_RANGE (value, -128, 127))
6327 return false;
6329 if (!IN_RANGE (value, -1, 0))
6331 if (!(reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_VALID))
6332 return false;
6334 if (EASY_VECTOR_15 (value))
6335 return false;
6339 else
6340 return false;
6342 /* See if we could generate vspltisw/vspltish directly instead of xxspltib +
6343 sign extend. Special case 0/-1 to allow getting any VSX register instead
6344 of an Altivec register. */
6345 if ((mode == V4SImode || mode == V8HImode) && !IN_RANGE (value, -1, 0)
6346 && EASY_VECTOR_15 (value))
6347 return false;
6349 /* Return # of instructions and the constant byte for XXSPLTIB. */
6350 if (mode == V16QImode)
6351 *num_insns_ptr = 1;
6353 else if (IN_RANGE (value, -1, 0))
6354 *num_insns_ptr = 1;
6356 else
6357 *num_insns_ptr = 2;
6359 *constant_ptr = (int) value;
6360 return true;
6363 const char *
6364 output_vec_const_move (rtx *operands)
6366 int shift;
6367 machine_mode mode;
6368 rtx dest, vec;
6370 dest = operands[0];
6371 vec = operands[1];
6372 mode = GET_MODE (dest);
6374 if (TARGET_VSX)
6376 bool dest_vmx_p = ALTIVEC_REGNO_P (REGNO (dest));
6377 int xxspltib_value = 256;
6378 int num_insns = -1;
6380 if (zero_constant (vec, mode))
6382 if (TARGET_P9_VECTOR)
6383 return "xxspltib %x0,0";
6385 else if (dest_vmx_p)
6386 return "vspltisw %0,0";
6388 else
6389 return "xxlxor %x0,%x0,%x0";
6392 if (all_ones_constant (vec, mode))
6394 if (TARGET_P9_VECTOR)
6395 return "xxspltib %x0,255";
6397 else if (dest_vmx_p)
6398 return "vspltisw %0,-1";
6400 else if (TARGET_P8_VECTOR)
6401 return "xxlorc %x0,%x0,%x0";
6403 else
6404 gcc_unreachable ();
6407 if (TARGET_P9_VECTOR
6408 && xxspltib_constant_p (vec, mode, &num_insns, &xxspltib_value))
6410 if (num_insns == 1)
6412 operands[2] = GEN_INT (xxspltib_value & 0xff);
6413 return "xxspltib %x0,%2";
6416 return "#";
6420 if (TARGET_ALTIVEC)
6422 rtx splat_vec;
6424 gcc_assert (ALTIVEC_REGNO_P (REGNO (dest)));
6425 if (zero_constant (vec, mode))
6426 return "vspltisw %0,0";
6428 if (all_ones_constant (vec, mode))
6429 return "vspltisw %0,-1";
6431 /* Do we need to construct a value using VSLDOI? */
6432 shift = vspltis_shifted (vec);
6433 if (shift != 0)
6434 return "#";
6436 splat_vec = gen_easy_altivec_constant (vec);
6437 gcc_assert (GET_CODE (splat_vec) == VEC_DUPLICATE);
6438 operands[1] = XEXP (splat_vec, 0);
6439 if (!EASY_VECTOR_15 (INTVAL (operands[1])))
6440 return "#";
6442 switch (GET_MODE (splat_vec))
6444 case E_V4SImode:
6445 return "vspltisw %0,%1";
6447 case E_V8HImode:
6448 return "vspltish %0,%1";
6450 case E_V16QImode:
6451 return "vspltisb %0,%1";
6453 default:
6454 gcc_unreachable ();
6458 gcc_unreachable ();
6461 /* Initialize vector TARGET to VALS. */
6463 void
6464 rs6000_expand_vector_init (rtx target, rtx vals)
6466 machine_mode mode = GET_MODE (target);
6467 machine_mode inner_mode = GET_MODE_INNER (mode);
6468 int n_elts = GET_MODE_NUNITS (mode);
6469 int n_var = 0, one_var = -1;
6470 bool all_same = true, all_const_zero = true;
6471 rtx x, mem;
6472 int i;
6474 for (i = 0; i < n_elts; ++i)
6476 x = XVECEXP (vals, 0, i);
6477 if (!(CONST_SCALAR_INT_P (x) || CONST_DOUBLE_P (x) || CONST_FIXED_P (x)))
6478 ++n_var, one_var = i;
6479 else if (x != CONST0_RTX (inner_mode))
6480 all_const_zero = false;
6482 if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
6483 all_same = false;
6486 if (n_var == 0)
6488 rtx const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
6489 bool int_vector_p = (GET_MODE_CLASS (mode) == MODE_VECTOR_INT);
6490 if ((int_vector_p || TARGET_VSX) && all_const_zero)
6492 /* Zero register. */
6493 emit_move_insn (target, CONST0_RTX (mode));
6494 return;
6496 else if (int_vector_p && easy_vector_constant (const_vec, mode))
6498 /* Splat immediate. */
6499 emit_insn (gen_rtx_SET (target, const_vec));
6500 return;
6502 else
6504 /* Load from constant pool. */
6505 emit_move_insn (target, const_vec);
6506 return;
6510 /* Double word values on VSX can use xxpermdi or lxvdsx. */
6511 if (VECTOR_MEM_VSX_P (mode) && (mode == V2DFmode || mode == V2DImode))
6513 rtx op[2];
6514 size_t i;
6515 size_t num_elements = all_same ? 1 : 2;
6516 for (i = 0; i < num_elements; i++)
6518 op[i] = XVECEXP (vals, 0, i);
6519 /* Just in case there is a SUBREG with a smaller mode, do a
6520 conversion. */
6521 if (GET_MODE (op[i]) != inner_mode)
6523 rtx tmp = gen_reg_rtx (inner_mode);
6524 convert_move (tmp, op[i], 0);
6525 op[i] = tmp;
6527 /* Allow load with splat double word. */
6528 else if (MEM_P (op[i]))
6530 if (!all_same)
6531 op[i] = force_reg (inner_mode, op[i]);
6533 else if (!REG_P (op[i]))
6534 op[i] = force_reg (inner_mode, op[i]);
6537 if (all_same)
6539 if (mode == V2DFmode)
6540 emit_insn (gen_vsx_splat_v2df (target, op[0]));
6541 else
6542 emit_insn (gen_vsx_splat_v2di (target, op[0]));
6544 else
6546 if (mode == V2DFmode)
6547 emit_insn (gen_vsx_concat_v2df (target, op[0], op[1]));
6548 else
6549 emit_insn (gen_vsx_concat_v2di (target, op[0], op[1]));
6551 return;
6554 /* Special case initializing vector int if we are on 64-bit systems with
6555 direct move or we have the ISA 3.0 instructions. */
6556 if (mode == V4SImode && VECTOR_MEM_VSX_P (V4SImode)
6557 && TARGET_DIRECT_MOVE_64BIT)
6559 if (all_same)
6561 rtx element0 = XVECEXP (vals, 0, 0);
6562 if (MEM_P (element0))
6563 element0 = rs6000_address_for_fpconvert (element0);
6564 else
6565 element0 = force_reg (SImode, element0);
6567 if (TARGET_P9_VECTOR)
6568 emit_insn (gen_vsx_splat_v4si (target, element0));
6569 else
6571 rtx tmp = gen_reg_rtx (DImode);
6572 emit_insn (gen_zero_extendsidi2 (tmp, element0));
6573 emit_insn (gen_vsx_splat_v4si_di (target, tmp));
6575 return;
6577 else
6579 rtx elements[4];
6580 size_t i;
6582 for (i = 0; i < 4; i++)
6583 elements[i] = force_reg (SImode, XVECEXP (vals, 0, i));
6585 emit_insn (gen_vsx_init_v4si (target, elements[0], elements[1],
6586 elements[2], elements[3]));
6587 return;
6591 /* With single precision floating point on VSX, know that internally single
6592 precision is actually represented as a double, and either make 2 V2DF
6593 vectors, and convert these vectors to single precision, or do one
6594 conversion, and splat the result to the other elements. */
6595 if (mode == V4SFmode && VECTOR_MEM_VSX_P (V4SFmode))
6597 if (all_same)
6599 rtx element0 = XVECEXP (vals, 0, 0);
6601 if (TARGET_P9_VECTOR)
6603 if (MEM_P (element0))
6604 element0 = rs6000_address_for_fpconvert (element0);
6606 emit_insn (gen_vsx_splat_v4sf (target, element0));
6609 else
6611 rtx freg = gen_reg_rtx (V4SFmode);
6612 rtx sreg = force_reg (SFmode, element0);
6613 rtx cvt = (TARGET_XSCVDPSPN
6614 ? gen_vsx_xscvdpspn_scalar (freg, sreg)
6615 : gen_vsx_xscvdpsp_scalar (freg, sreg));
6617 emit_insn (cvt);
6618 emit_insn (gen_vsx_xxspltw_v4sf_direct (target, freg,
6619 const0_rtx));
6622 else
6624 rtx dbl_even = gen_reg_rtx (V2DFmode);
6625 rtx dbl_odd = gen_reg_rtx (V2DFmode);
6626 rtx flt_even = gen_reg_rtx (V4SFmode);
6627 rtx flt_odd = gen_reg_rtx (V4SFmode);
6628 rtx op0 = force_reg (SFmode, XVECEXP (vals, 0, 0));
6629 rtx op1 = force_reg (SFmode, XVECEXP (vals, 0, 1));
6630 rtx op2 = force_reg (SFmode, XVECEXP (vals, 0, 2));
6631 rtx op3 = force_reg (SFmode, XVECEXP (vals, 0, 3));
6633 /* Use VMRGEW if we can instead of doing a permute. */
6634 if (TARGET_P8_VECTOR)
6636 emit_insn (gen_vsx_concat_v2sf (dbl_even, op0, op2));
6637 emit_insn (gen_vsx_concat_v2sf (dbl_odd, op1, op3));
6638 emit_insn (gen_vsx_xvcvdpsp (flt_even, dbl_even));
6639 emit_insn (gen_vsx_xvcvdpsp (flt_odd, dbl_odd));
6640 if (BYTES_BIG_ENDIAN)
6641 emit_insn (gen_p8_vmrgew_v4sf_direct (target, flt_even, flt_odd));
6642 else
6643 emit_insn (gen_p8_vmrgew_v4sf_direct (target, flt_odd, flt_even));
6645 else
6647 emit_insn (gen_vsx_concat_v2sf (dbl_even, op0, op1));
6648 emit_insn (gen_vsx_concat_v2sf (dbl_odd, op2, op3));
6649 emit_insn (gen_vsx_xvcvdpsp (flt_even, dbl_even));
6650 emit_insn (gen_vsx_xvcvdpsp (flt_odd, dbl_odd));
6651 rs6000_expand_extract_even (target, flt_even, flt_odd);
6654 return;
6657 /* Special case initializing vector short/char that are splats if we are on
6658 64-bit systems with direct move. */
6659 if (all_same && TARGET_DIRECT_MOVE_64BIT
6660 && (mode == V16QImode || mode == V8HImode))
6662 rtx op0 = XVECEXP (vals, 0, 0);
6663 rtx di_tmp = gen_reg_rtx (DImode);
6665 if (!REG_P (op0))
6666 op0 = force_reg (GET_MODE_INNER (mode), op0);
6668 if (mode == V16QImode)
6670 emit_insn (gen_zero_extendqidi2 (di_tmp, op0));
6671 emit_insn (gen_vsx_vspltb_di (target, di_tmp));
6672 return;
6675 if (mode == V8HImode)
6677 emit_insn (gen_zero_extendhidi2 (di_tmp, op0));
6678 emit_insn (gen_vsx_vsplth_di (target, di_tmp));
6679 return;
6683 /* Store value to stack temp. Load vector element. Splat. However, splat
6684 of 64-bit items is not supported on Altivec. */
6685 if (all_same && GET_MODE_SIZE (inner_mode) <= 4)
6687 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode));
6688 emit_move_insn (adjust_address_nv (mem, inner_mode, 0),
6689 XVECEXP (vals, 0, 0));
6690 x = gen_rtx_UNSPEC (VOIDmode,
6691 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
6692 emit_insn (gen_rtx_PARALLEL (VOIDmode,
6693 gen_rtvec (2,
6694 gen_rtx_SET (target, mem),
6695 x)));
6696 x = gen_rtx_VEC_SELECT (inner_mode, target,
6697 gen_rtx_PARALLEL (VOIDmode,
6698 gen_rtvec (1, const0_rtx)));
6699 emit_insn (gen_rtx_SET (target, gen_rtx_VEC_DUPLICATE (mode, x)));
6700 return;
6703 /* One field is non-constant. Load constant then overwrite
6704 varying field. */
6705 if (n_var == 1)
6707 rtx copy = copy_rtx (vals);
6709 /* Load constant part of vector, substitute neighboring value for
6710 varying element. */
6711 XVECEXP (copy, 0, one_var) = XVECEXP (vals, 0, (one_var + 1) % n_elts);
6712 rs6000_expand_vector_init (target, copy);
6714 /* Insert variable. */
6715 rs6000_expand_vector_set (target, XVECEXP (vals, 0, one_var), one_var);
6716 return;
6719 /* Construct the vector in memory one field at a time
6720 and load the whole vector. */
6721 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
6722 for (i = 0; i < n_elts; i++)
6723 emit_move_insn (adjust_address_nv (mem, inner_mode,
6724 i * GET_MODE_SIZE (inner_mode)),
6725 XVECEXP (vals, 0, i));
6726 emit_move_insn (target, mem);
6729 /* Set field ELT of TARGET to VAL. */
6731 void
6732 rs6000_expand_vector_set (rtx target, rtx val, int elt)
6734 machine_mode mode = GET_MODE (target);
6735 machine_mode inner_mode = GET_MODE_INNER (mode);
6736 rtx reg = gen_reg_rtx (mode);
6737 rtx mask, mem, x;
6738 int width = GET_MODE_SIZE (inner_mode);
6739 int i;
6741 val = force_reg (GET_MODE (val), val);
6743 if (VECTOR_MEM_VSX_P (mode))
6745 rtx insn = NULL_RTX;
6746 rtx elt_rtx = GEN_INT (elt);
6748 if (mode == V2DFmode)
6749 insn = gen_vsx_set_v2df (target, target, val, elt_rtx);
6751 else if (mode == V2DImode)
6752 insn = gen_vsx_set_v2di (target, target, val, elt_rtx);
6754 else if (TARGET_P9_VECTOR && TARGET_POWERPC64)
6756 if (mode == V4SImode)
6757 insn = gen_vsx_set_v4si_p9 (target, target, val, elt_rtx);
6758 else if (mode == V8HImode)
6759 insn = gen_vsx_set_v8hi_p9 (target, target, val, elt_rtx);
6760 else if (mode == V16QImode)
6761 insn = gen_vsx_set_v16qi_p9 (target, target, val, elt_rtx);
6762 else if (mode == V4SFmode)
6763 insn = gen_vsx_set_v4sf_p9 (target, target, val, elt_rtx);
6766 if (insn)
6768 emit_insn (insn);
6769 return;
6773 /* Simplify setting single element vectors like V1TImode. */
6774 if (GET_MODE_SIZE (mode) == GET_MODE_SIZE (inner_mode) && elt == 0)
6776 emit_move_insn (target, gen_lowpart (mode, val));
6777 return;
6780 /* Load single variable value. */
6781 mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode));
6782 emit_move_insn (adjust_address_nv (mem, inner_mode, 0), val);
6783 x = gen_rtx_UNSPEC (VOIDmode,
6784 gen_rtvec (1, const0_rtx), UNSPEC_LVE);
6785 emit_insn (gen_rtx_PARALLEL (VOIDmode,
6786 gen_rtvec (2,
6787 gen_rtx_SET (reg, mem),
6788 x)));
6790 /* Linear sequence. */
6791 mask = gen_rtx_PARALLEL (V16QImode, rtvec_alloc (16));
6792 for (i = 0; i < 16; ++i)
6793 XVECEXP (mask, 0, i) = GEN_INT (i);
6795 /* Set permute mask to insert element into target. */
6796 for (i = 0; i < width; ++i)
6797 XVECEXP (mask, 0, elt*width + i)
6798 = GEN_INT (i + 0x10);
6799 x = gen_rtx_CONST_VECTOR (V16QImode, XVEC (mask, 0));
6801 if (BYTES_BIG_ENDIAN)
6802 x = gen_rtx_UNSPEC (mode,
6803 gen_rtvec (3, target, reg,
6804 force_reg (V16QImode, x)),
6805 UNSPEC_VPERM);
6806 else
6808 if (TARGET_P9_VECTOR)
6809 x = gen_rtx_UNSPEC (mode,
6810 gen_rtvec (3, reg, target,
6811 force_reg (V16QImode, x)),
6812 UNSPEC_VPERMR);
6813 else
6815 /* Invert selector. We prefer to generate VNAND on P8 so
6816 that future fusion opportunities can kick in, but must
6817 generate VNOR elsewhere. */
6818 rtx notx = gen_rtx_NOT (V16QImode, force_reg (V16QImode, x));
6819 rtx iorx = (TARGET_P8_VECTOR
6820 ? gen_rtx_IOR (V16QImode, notx, notx)
6821 : gen_rtx_AND (V16QImode, notx, notx));
6822 rtx tmp = gen_reg_rtx (V16QImode);
6823 emit_insn (gen_rtx_SET (tmp, iorx));
6825 /* Permute with operands reversed and adjusted selector. */
6826 x = gen_rtx_UNSPEC (mode, gen_rtvec (3, reg, target, tmp),
6827 UNSPEC_VPERM);
6831 emit_insn (gen_rtx_SET (target, x));
6834 /* Extract field ELT from VEC into TARGET. */
6836 void
6837 rs6000_expand_vector_extract (rtx target, rtx vec, rtx elt)
6839 machine_mode mode = GET_MODE (vec);
6840 machine_mode inner_mode = GET_MODE_INNER (mode);
6841 rtx mem;
6843 if (VECTOR_MEM_VSX_P (mode) && CONST_INT_P (elt))
6845 switch (mode)
6847 default:
6848 break;
6849 case E_V1TImode:
6850 gcc_assert (INTVAL (elt) == 0 && inner_mode == TImode);
6851 emit_move_insn (target, gen_lowpart (TImode, vec));
6852 break;
6853 case E_V2DFmode:
6854 emit_insn (gen_vsx_extract_v2df (target, vec, elt));
6855 return;
6856 case E_V2DImode:
6857 emit_insn (gen_vsx_extract_v2di (target, vec, elt));
6858 return;
6859 case E_V4SFmode:
6860 emit_insn (gen_vsx_extract_v4sf (target, vec, elt));
6861 return;
6862 case E_V16QImode:
6863 if (TARGET_DIRECT_MOVE_64BIT)
6865 emit_insn (gen_vsx_extract_v16qi (target, vec, elt));
6866 return;
6868 else
6869 break;
6870 case E_V8HImode:
6871 if (TARGET_DIRECT_MOVE_64BIT)
6873 emit_insn (gen_vsx_extract_v8hi (target, vec, elt));
6874 return;
6876 else
6877 break;
6878 case E_V4SImode:
6879 if (TARGET_DIRECT_MOVE_64BIT)
6881 emit_insn (gen_vsx_extract_v4si (target, vec, elt));
6882 return;
6884 break;
6887 else if (VECTOR_MEM_VSX_P (mode) && !CONST_INT_P (elt)
6888 && TARGET_DIRECT_MOVE_64BIT)
6890 if (GET_MODE (elt) != DImode)
6892 rtx tmp = gen_reg_rtx (DImode);
6893 convert_move (tmp, elt, 0);
6894 elt = tmp;
6896 else if (!REG_P (elt))
6897 elt = force_reg (DImode, elt);
6899 switch (mode)
6901 case E_V2DFmode:
6902 emit_insn (gen_vsx_extract_v2df_var (target, vec, elt));
6903 return;
6905 case E_V2DImode:
6906 emit_insn (gen_vsx_extract_v2di_var (target, vec, elt));
6907 return;
6909 case E_V4SFmode:
6910 emit_insn (gen_vsx_extract_v4sf_var (target, vec, elt));
6911 return;
6913 case E_V4SImode:
6914 emit_insn (gen_vsx_extract_v4si_var (target, vec, elt));
6915 return;
6917 case E_V8HImode:
6918 emit_insn (gen_vsx_extract_v8hi_var (target, vec, elt));
6919 return;
6921 case E_V16QImode:
6922 emit_insn (gen_vsx_extract_v16qi_var (target, vec, elt));
6923 return;
6925 default:
6926 gcc_unreachable ();
6930 gcc_assert (CONST_INT_P (elt));
6932 /* Allocate mode-sized buffer. */
6933 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode));
6935 emit_move_insn (mem, vec);
6937 /* Add offset to field within buffer matching vector element. */
6938 mem = adjust_address_nv (mem, inner_mode,
6939 INTVAL (elt) * GET_MODE_SIZE (inner_mode));
6941 emit_move_insn (target, adjust_address_nv (mem, inner_mode, 0));
6944 /* Helper function to return the register number of a RTX. */
6945 static inline int
6946 regno_or_subregno (rtx op)
6948 if (REG_P (op))
6949 return REGNO (op);
6950 else if (SUBREG_P (op))
6951 return subreg_regno (op);
6952 else
6953 gcc_unreachable ();
6956 /* Adjust a memory address (MEM) of a vector type to point to a scalar field
6957 within the vector (ELEMENT) with a mode (SCALAR_MODE). Use a base register
6958 temporary (BASE_TMP) to fixup the address. Return the new memory address
6959 that is valid for reads or writes to a given register (SCALAR_REG). */
6962 rs6000_adjust_vec_address (rtx scalar_reg,
6963 rtx mem,
6964 rtx element,
6965 rtx base_tmp,
6966 machine_mode scalar_mode)
6968 unsigned scalar_size = GET_MODE_SIZE (scalar_mode);
6969 rtx addr = XEXP (mem, 0);
6970 rtx element_offset;
6971 rtx new_addr;
6972 bool valid_addr_p;
6974 /* Vector addresses should not have PRE_INC, PRE_DEC, or PRE_MODIFY. */
6975 gcc_assert (GET_RTX_CLASS (GET_CODE (addr)) != RTX_AUTOINC);
6977 /* Calculate what we need to add to the address to get the element
6978 address. */
6979 if (CONST_INT_P (element))
6980 element_offset = GEN_INT (INTVAL (element) * scalar_size);
6981 else
6983 int byte_shift = exact_log2 (scalar_size);
6984 gcc_assert (byte_shift >= 0);
6986 if (byte_shift == 0)
6987 element_offset = element;
6989 else
6991 if (TARGET_POWERPC64)
6992 emit_insn (gen_ashldi3 (base_tmp, element, GEN_INT (byte_shift)));
6993 else
6994 emit_insn (gen_ashlsi3 (base_tmp, element, GEN_INT (byte_shift)));
6996 element_offset = base_tmp;
7000 /* Create the new address pointing to the element within the vector. If we
7001 are adding 0, we don't have to change the address. */
7002 if (element_offset == const0_rtx)
7003 new_addr = addr;
7005 /* A simple indirect address can be converted into a reg + offset
7006 address. */
7007 else if (REG_P (addr) || SUBREG_P (addr))
7008 new_addr = gen_rtx_PLUS (Pmode, addr, element_offset);
7010 /* Optimize D-FORM addresses with constant offset with a constant element, to
7011 include the element offset in the address directly. */
7012 else if (GET_CODE (addr) == PLUS)
7014 rtx op0 = XEXP (addr, 0);
7015 rtx op1 = XEXP (addr, 1);
7016 rtx insn;
7018 gcc_assert (REG_P (op0) || SUBREG_P (op0));
7019 if (CONST_INT_P (op1) && CONST_INT_P (element_offset))
7021 HOST_WIDE_INT offset = INTVAL (op1) + INTVAL (element_offset);
7022 rtx offset_rtx = GEN_INT (offset);
7024 if (IN_RANGE (offset, -32768, 32767)
7025 && (scalar_size < 8 || (offset & 0x3) == 0))
7026 new_addr = gen_rtx_PLUS (Pmode, op0, offset_rtx);
7027 else
7029 emit_move_insn (base_tmp, offset_rtx);
7030 new_addr = gen_rtx_PLUS (Pmode, op0, base_tmp);
7033 else
7035 bool op1_reg_p = (REG_P (op1) || SUBREG_P (op1));
7036 bool ele_reg_p = (REG_P (element_offset) || SUBREG_P (element_offset));
7038 /* Note, ADDI requires the register being added to be a base
7039 register. If the register was R0, load it up into the temporary
7040 and do the add. */
7041 if (op1_reg_p
7042 && (ele_reg_p || reg_or_subregno (op1) != FIRST_GPR_REGNO))
7044 insn = gen_add3_insn (base_tmp, op1, element_offset);
7045 gcc_assert (insn != NULL_RTX);
7046 emit_insn (insn);
7049 else if (ele_reg_p
7050 && reg_or_subregno (element_offset) != FIRST_GPR_REGNO)
7052 insn = gen_add3_insn (base_tmp, element_offset, op1);
7053 gcc_assert (insn != NULL_RTX);
7054 emit_insn (insn);
7057 else
7059 emit_move_insn (base_tmp, op1);
7060 emit_insn (gen_add2_insn (base_tmp, element_offset));
7063 new_addr = gen_rtx_PLUS (Pmode, op0, base_tmp);
7067 else
7069 emit_move_insn (base_tmp, addr);
7070 new_addr = gen_rtx_PLUS (Pmode, base_tmp, element_offset);
7073 /* If we have a PLUS, we need to see whether the particular register class
7074 allows for D-FORM or X-FORM addressing. */
7075 if (GET_CODE (new_addr) == PLUS)
7077 rtx op1 = XEXP (new_addr, 1);
7078 addr_mask_type addr_mask;
7079 int scalar_regno = regno_or_subregno (scalar_reg);
7081 gcc_assert (scalar_regno < FIRST_PSEUDO_REGISTER);
7082 if (INT_REGNO_P (scalar_regno))
7083 addr_mask = reg_addr[scalar_mode].addr_mask[RELOAD_REG_GPR];
7085 else if (FP_REGNO_P (scalar_regno))
7086 addr_mask = reg_addr[scalar_mode].addr_mask[RELOAD_REG_FPR];
7088 else if (ALTIVEC_REGNO_P (scalar_regno))
7089 addr_mask = reg_addr[scalar_mode].addr_mask[RELOAD_REG_VMX];
7091 else
7092 gcc_unreachable ();
7094 if (REG_P (op1) || SUBREG_P (op1))
7095 valid_addr_p = (addr_mask & RELOAD_REG_INDEXED) != 0;
7096 else
7097 valid_addr_p = (addr_mask & RELOAD_REG_OFFSET) != 0;
7100 else if (REG_P (new_addr) || SUBREG_P (new_addr))
7101 valid_addr_p = true;
7103 else
7104 valid_addr_p = false;
7106 if (!valid_addr_p)
7108 emit_move_insn (base_tmp, new_addr);
7109 new_addr = base_tmp;
7112 return change_address (mem, scalar_mode, new_addr);
7115 /* Split a variable vec_extract operation into the component instructions. */
7117 void
7118 rs6000_split_vec_extract_var (rtx dest, rtx src, rtx element, rtx tmp_gpr,
7119 rtx tmp_altivec)
7121 machine_mode mode = GET_MODE (src);
7122 machine_mode scalar_mode = GET_MODE (dest);
7123 unsigned scalar_size = GET_MODE_SIZE (scalar_mode);
7124 int byte_shift = exact_log2 (scalar_size);
7126 gcc_assert (byte_shift >= 0);
7128 /* If we are given a memory address, optimize to load just the element. We
7129 don't have to adjust the vector element number on little endian
7130 systems. */
7131 if (MEM_P (src))
7133 gcc_assert (REG_P (tmp_gpr));
7134 emit_move_insn (dest, rs6000_adjust_vec_address (dest, src, element,
7135 tmp_gpr, scalar_mode));
7136 return;
7139 else if (REG_P (src) || SUBREG_P (src))
7141 int bit_shift = byte_shift + 3;
7142 rtx element2;
7143 int dest_regno = regno_or_subregno (dest);
7144 int src_regno = regno_or_subregno (src);
7145 int element_regno = regno_or_subregno (element);
7147 gcc_assert (REG_P (tmp_gpr));
7149 /* See if we want to generate VEXTU{B,H,W}{L,R}X if the destination is in
7150 a general purpose register. */
7151 if (TARGET_P9_VECTOR
7152 && (mode == V16QImode || mode == V8HImode || mode == V4SImode)
7153 && INT_REGNO_P (dest_regno)
7154 && ALTIVEC_REGNO_P (src_regno)
7155 && INT_REGNO_P (element_regno))
7157 rtx dest_si = gen_rtx_REG (SImode, dest_regno);
7158 rtx element_si = gen_rtx_REG (SImode, element_regno);
7160 if (mode == V16QImode)
7161 emit_insn (BYTES_BIG_ENDIAN
7162 ? gen_vextublx (dest_si, element_si, src)
7163 : gen_vextubrx (dest_si, element_si, src));
7165 else if (mode == V8HImode)
7167 rtx tmp_gpr_si = gen_rtx_REG (SImode, REGNO (tmp_gpr));
7168 emit_insn (gen_ashlsi3 (tmp_gpr_si, element_si, const1_rtx));
7169 emit_insn (BYTES_BIG_ENDIAN
7170 ? gen_vextuhlx (dest_si, tmp_gpr_si, src)
7171 : gen_vextuhrx (dest_si, tmp_gpr_si, src));
7175 else
7177 rtx tmp_gpr_si = gen_rtx_REG (SImode, REGNO (tmp_gpr));
7178 emit_insn (gen_ashlsi3 (tmp_gpr_si, element_si, const2_rtx));
7179 emit_insn (BYTES_BIG_ENDIAN
7180 ? gen_vextuwlx (dest_si, tmp_gpr_si, src)
7181 : gen_vextuwrx (dest_si, tmp_gpr_si, src));
7184 return;
7188 gcc_assert (REG_P (tmp_altivec));
7190 /* For little endian, adjust element ordering. For V2DI/V2DF, we can use
7191 an XOR, otherwise we need to subtract. The shift amount is so VSLO
7192 will shift the element into the upper position (adding 3 to convert a
7193 byte shift into a bit shift). */
7194 if (scalar_size == 8)
7196 if (!BYTES_BIG_ENDIAN)
7198 emit_insn (gen_xordi3 (tmp_gpr, element, const1_rtx));
7199 element2 = tmp_gpr;
7201 else
7202 element2 = element;
7204 /* Generate RLDIC directly to shift left 6 bits and retrieve 1
7205 bit. */
7206 emit_insn (gen_rtx_SET (tmp_gpr,
7207 gen_rtx_AND (DImode,
7208 gen_rtx_ASHIFT (DImode,
7209 element2,
7210 GEN_INT (6)),
7211 GEN_INT (64))));
7213 else
7215 if (!BYTES_BIG_ENDIAN)
7217 rtx num_ele_m1 = GEN_INT (GET_MODE_NUNITS (mode) - 1);
7219 emit_insn (gen_anddi3 (tmp_gpr, element, num_ele_m1));
7220 emit_insn (gen_subdi3 (tmp_gpr, num_ele_m1, tmp_gpr));
7221 element2 = tmp_gpr;
7223 else
7224 element2 = element;
7226 emit_insn (gen_ashldi3 (tmp_gpr, element2, GEN_INT (bit_shift)));
7229 /* Get the value into the lower byte of the Altivec register where VSLO
7230 expects it. */
7231 if (TARGET_P9_VECTOR)
7232 emit_insn (gen_vsx_splat_v2di (tmp_altivec, tmp_gpr));
7233 else if (can_create_pseudo_p ())
7234 emit_insn (gen_vsx_concat_v2di (tmp_altivec, tmp_gpr, tmp_gpr));
7235 else
7237 rtx tmp_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
7238 emit_move_insn (tmp_di, tmp_gpr);
7239 emit_insn (gen_vsx_concat_v2di (tmp_altivec, tmp_di, tmp_di));
7242 /* Do the VSLO to get the value into the final location. */
7243 switch (mode)
7245 case E_V2DFmode:
7246 emit_insn (gen_vsx_vslo_v2df (dest, src, tmp_altivec));
7247 return;
7249 case E_V2DImode:
7250 emit_insn (gen_vsx_vslo_v2di (dest, src, tmp_altivec));
7251 return;
7253 case E_V4SFmode:
7255 rtx tmp_altivec_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
7256 rtx tmp_altivec_v4sf = gen_rtx_REG (V4SFmode, REGNO (tmp_altivec));
7257 rtx src_v2di = gen_rtx_REG (V2DImode, REGNO (src));
7258 emit_insn (gen_vsx_vslo_v2di (tmp_altivec_di, src_v2di,
7259 tmp_altivec));
7261 emit_insn (gen_vsx_xscvspdp_scalar2 (dest, tmp_altivec_v4sf));
7262 return;
7265 case E_V4SImode:
7266 case E_V8HImode:
7267 case E_V16QImode:
7269 rtx tmp_altivec_di = gen_rtx_REG (DImode, REGNO (tmp_altivec));
7270 rtx src_v2di = gen_rtx_REG (V2DImode, REGNO (src));
7271 rtx tmp_gpr_di = gen_rtx_REG (DImode, REGNO (dest));
7272 emit_insn (gen_vsx_vslo_v2di (tmp_altivec_di, src_v2di,
7273 tmp_altivec));
7274 emit_move_insn (tmp_gpr_di, tmp_altivec_di);
7275 emit_insn (gen_ashrdi3 (tmp_gpr_di, tmp_gpr_di,
7276 GEN_INT (64 - (8 * scalar_size))));
7277 return;
7280 default:
7281 gcc_unreachable ();
7284 return;
7286 else
7287 gcc_unreachable ();
7290 /* Return alignment of TYPE. Existing alignment is ALIGN. HOW
7291 selects whether the alignment is abi mandated, optional, or
7292 both abi and optional alignment. */
7294 unsigned int
7295 rs6000_data_alignment (tree type, unsigned int align, enum data_align how)
7297 if (how != align_opt)
7299 if (TREE_CODE (type) == VECTOR_TYPE && align < 128)
7300 align = 128;
7303 if (how != align_abi)
7305 if (TREE_CODE (type) == ARRAY_TYPE
7306 && TYPE_MODE (TREE_TYPE (type)) == QImode)
7308 if (align < BITS_PER_WORD)
7309 align = BITS_PER_WORD;
7313 return align;
7316 /* Implement TARGET_SLOW_UNALIGNED_ACCESS. Altivec vector memory
7317 instructions simply ignore the low bits; VSX memory instructions
7318 are aligned to 4 or 8 bytes. */
7320 static bool
7321 rs6000_slow_unaligned_access (machine_mode mode, unsigned int align)
7323 return (STRICT_ALIGNMENT
7324 || (!TARGET_EFFICIENT_UNALIGNED_VSX
7325 && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (mode) && align < 32)
7326 || ((VECTOR_MODE_P (mode) || FLOAT128_VECTOR_P (mode))
7327 && (int) align < VECTOR_ALIGN (mode)))));
7330 /* Previous GCC releases forced all vector types to have 16-byte alignment. */
7332 bool
7333 rs6000_special_adjust_field_align_p (tree type, unsigned int computed)
7335 if (TARGET_ALTIVEC && TREE_CODE (type) == VECTOR_TYPE)
7337 if (computed != 128)
7339 static bool warned;
7340 if (!warned && warn_psabi)
7342 warned = true;
7343 inform (input_location,
7344 "the layout of aggregates containing vectors with"
7345 " %d-byte alignment has changed in GCC 5",
7346 computed / BITS_PER_UNIT);
7349 /* In current GCC there is no special case. */
7350 return false;
7353 return false;
7356 /* AIX increases natural record alignment to doubleword if the first
7357 field is an FP double while the FP fields remain word aligned. */
7359 unsigned int
7360 rs6000_special_round_type_align (tree type, unsigned int computed,
7361 unsigned int specified)
7363 unsigned int align = MAX (computed, specified);
7364 tree field = TYPE_FIELDS (type);
7366 /* Skip all non field decls */
7367 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
7368 field = DECL_CHAIN (field);
7370 if (field != NULL && field != type)
7372 type = TREE_TYPE (field);
7373 while (TREE_CODE (type) == ARRAY_TYPE)
7374 type = TREE_TYPE (type);
7376 if (type != error_mark_node && TYPE_MODE (type) == DFmode)
7377 align = MAX (align, 64);
7380 return align;
7383 /* Darwin increases record alignment to the natural alignment of
7384 the first field. */
7386 unsigned int
7387 darwin_rs6000_special_round_type_align (tree type, unsigned int computed,
7388 unsigned int specified)
7390 unsigned int align = MAX (computed, specified);
7392 if (TYPE_PACKED (type))
7393 return align;
7395 /* Find the first field, looking down into aggregates. */
7396 do {
7397 tree field = TYPE_FIELDS (type);
7398 /* Skip all non field decls */
7399 while (field != NULL && TREE_CODE (field) != FIELD_DECL)
7400 field = DECL_CHAIN (field);
7401 if (! field)
7402 break;
7403 /* A packed field does not contribute any extra alignment. */
7404 if (DECL_PACKED (field))
7405 return align;
7406 type = TREE_TYPE (field);
7407 while (TREE_CODE (type) == ARRAY_TYPE)
7408 type = TREE_TYPE (type);
7409 } while (AGGREGATE_TYPE_P (type));
7411 if (! AGGREGATE_TYPE_P (type) && type != error_mark_node)
7412 align = MAX (align, TYPE_ALIGN (type));
7414 return align;
7417 /* Return 1 for an operand in small memory on V.4/eabi. */
7420 small_data_operand (rtx op ATTRIBUTE_UNUSED,
7421 machine_mode mode ATTRIBUTE_UNUSED)
7423 #if TARGET_ELF
7424 rtx sym_ref;
7426 if (rs6000_sdata == SDATA_NONE || rs6000_sdata == SDATA_DATA)
7427 return 0;
7429 if (DEFAULT_ABI != ABI_V4)
7430 return 0;
7432 if (GET_CODE (op) == SYMBOL_REF)
7433 sym_ref = op;
7435 else if (GET_CODE (op) != CONST
7436 || GET_CODE (XEXP (op, 0)) != PLUS
7437 || GET_CODE (XEXP (XEXP (op, 0), 0)) != SYMBOL_REF
7438 || GET_CODE (XEXP (XEXP (op, 0), 1)) != CONST_INT)
7439 return 0;
7441 else
7443 rtx sum = XEXP (op, 0);
7444 HOST_WIDE_INT summand;
7446 /* We have to be careful here, because it is the referenced address
7447 that must be 32k from _SDA_BASE_, not just the symbol. */
7448 summand = INTVAL (XEXP (sum, 1));
7449 if (summand < 0 || summand > g_switch_value)
7450 return 0;
7452 sym_ref = XEXP (sum, 0);
7455 return SYMBOL_REF_SMALL_P (sym_ref);
7456 #else
7457 return 0;
7458 #endif
7461 /* Return true if either operand is a general purpose register. */
7463 bool
7464 gpr_or_gpr_p (rtx op0, rtx op1)
7466 return ((REG_P (op0) && INT_REGNO_P (REGNO (op0)))
7467 || (REG_P (op1) && INT_REGNO_P (REGNO (op1))));
7470 /* Return true if this is a move direct operation between GPR registers and
7471 floating point/VSX registers. */
7473 bool
7474 direct_move_p (rtx op0, rtx op1)
7476 int regno0, regno1;
7478 if (!REG_P (op0) || !REG_P (op1))
7479 return false;
7481 if (!TARGET_DIRECT_MOVE && !TARGET_MFPGPR)
7482 return false;
7484 regno0 = REGNO (op0);
7485 regno1 = REGNO (op1);
7486 if (regno0 >= FIRST_PSEUDO_REGISTER || regno1 >= FIRST_PSEUDO_REGISTER)
7487 return false;
7489 if (INT_REGNO_P (regno0))
7490 return (TARGET_DIRECT_MOVE) ? VSX_REGNO_P (regno1) : FP_REGNO_P (regno1);
7492 else if (INT_REGNO_P (regno1))
7494 if (TARGET_MFPGPR && FP_REGNO_P (regno0))
7495 return true;
7497 else if (TARGET_DIRECT_MOVE && VSX_REGNO_P (regno0))
7498 return true;
7501 return false;
7504 /* Return true if the OFFSET is valid for the quad address instructions that
7505 use d-form (register + offset) addressing. */
7507 static inline bool
7508 quad_address_offset_p (HOST_WIDE_INT offset)
7510 return (IN_RANGE (offset, -32768, 32767) && ((offset) & 0xf) == 0);
7513 /* Return true if the ADDR is an acceptable address for a quad memory
7514 operation of mode MODE (either LQ/STQ for general purpose registers, or
7515 LXV/STXV for vector registers under ISA 3.0. GPR_P is true if this address
7516 is intended for LQ/STQ. If it is false, the address is intended for the ISA
7517 3.0 LXV/STXV instruction. */
7519 bool
7520 quad_address_p (rtx addr, machine_mode mode, bool strict)
7522 rtx op0, op1;
7524 if (GET_MODE_SIZE (mode) != 16)
7525 return false;
7527 if (legitimate_indirect_address_p (addr, strict))
7528 return true;
7530 if (VECTOR_MODE_P (mode) && !mode_supports_dq_form (mode))
7531 return false;
7533 if (GET_CODE (addr) != PLUS)
7534 return false;
7536 op0 = XEXP (addr, 0);
7537 if (!REG_P (op0) || !INT_REG_OK_FOR_BASE_P (op0, strict))
7538 return false;
7540 op1 = XEXP (addr, 1);
7541 if (!CONST_INT_P (op1))
7542 return false;
7544 return quad_address_offset_p (INTVAL (op1));
7547 /* Return true if this is a load or store quad operation. This function does
7548 not handle the atomic quad memory instructions. */
7550 bool
7551 quad_load_store_p (rtx op0, rtx op1)
7553 bool ret;
7555 if (!TARGET_QUAD_MEMORY)
7556 ret = false;
7558 else if (REG_P (op0) && MEM_P (op1))
7559 ret = (quad_int_reg_operand (op0, GET_MODE (op0))
7560 && quad_memory_operand (op1, GET_MODE (op1))
7561 && !reg_overlap_mentioned_p (op0, op1));
7563 else if (MEM_P (op0) && REG_P (op1))
7564 ret = (quad_memory_operand (op0, GET_MODE (op0))
7565 && quad_int_reg_operand (op1, GET_MODE (op1)));
7567 else
7568 ret = false;
7570 if (TARGET_DEBUG_ADDR)
7572 fprintf (stderr, "\n========== quad_load_store, return %s\n",
7573 ret ? "true" : "false");
7574 debug_rtx (gen_rtx_SET (op0, op1));
7577 return ret;
7580 /* Given an address, return a constant offset term if one exists. */
7582 static rtx
7583 address_offset (rtx op)
7585 if (GET_CODE (op) == PRE_INC
7586 || GET_CODE (op) == PRE_DEC)
7587 op = XEXP (op, 0);
7588 else if (GET_CODE (op) == PRE_MODIFY
7589 || GET_CODE (op) == LO_SUM)
7590 op = XEXP (op, 1);
7592 if (GET_CODE (op) == CONST)
7593 op = XEXP (op, 0);
7595 if (GET_CODE (op) == PLUS)
7596 op = XEXP (op, 1);
7598 if (CONST_INT_P (op))
7599 return op;
7601 return NULL_RTX;
7604 /* Return true if the MEM operand is a memory operand suitable for use
7605 with a (full width, possibly multiple) gpr load/store. On
7606 powerpc64 this means the offset must be divisible by 4.
7607 Implements 'Y' constraint.
7609 Accept direct, indexed, offset, lo_sum and tocref. Since this is
7610 a constraint function we know the operand has satisfied a suitable
7611 memory predicate. Also accept some odd rtl generated by reload
7612 (see rs6000_legitimize_reload_address for various forms). It is
7613 important that reload rtl be accepted by appropriate constraints
7614 but not by the operand predicate.
7616 Offsetting a lo_sum should not be allowed, except where we know by
7617 alignment that a 32k boundary is not crossed, but see the ???
7618 comment in rs6000_legitimize_reload_address. Note that by
7619 "offsetting" here we mean a further offset to access parts of the
7620 MEM. It's fine to have a lo_sum where the inner address is offset
7621 from a sym, since the same sym+offset will appear in the high part
7622 of the address calculation. */
7624 bool
7625 mem_operand_gpr (rtx op, machine_mode mode)
7627 unsigned HOST_WIDE_INT offset;
7628 int extra;
7629 rtx addr = XEXP (op, 0);
7631 /* PR85755: Allow PRE_INC and PRE_DEC addresses. */
7632 if (TARGET_UPDATE
7633 && (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
7634 && mode_supports_pre_incdec_p (mode)
7635 && legitimate_indirect_address_p (XEXP (addr, 0), false))
7636 return true;
7638 /* Don't allow non-offsettable addresses. See PRs 83969 and 84279. */
7639 if (!rs6000_offsettable_memref_p (op, mode, false))
7640 return false;
7642 op = address_offset (addr);
7643 if (op == NULL_RTX)
7644 return true;
7646 offset = INTVAL (op);
7647 if (TARGET_POWERPC64 && (offset & 3) != 0)
7648 return false;
7650 extra = GET_MODE_SIZE (mode) - UNITS_PER_WORD;
7651 if (extra < 0)
7652 extra = 0;
7654 if (GET_CODE (addr) == LO_SUM)
7655 /* For lo_sum addresses, we must allow any offset except one that
7656 causes a wrap, so test only the low 16 bits. */
7657 offset = ((offset & 0xffff) ^ 0x8000) - 0x8000;
7659 return offset + 0x8000 < 0x10000u - extra;
7662 /* As above, but for DS-FORM VSX insns. Unlike mem_operand_gpr,
7663 enforce an offset divisible by 4 even for 32-bit. */
7665 bool
7666 mem_operand_ds_form (rtx op, machine_mode mode)
7668 unsigned HOST_WIDE_INT offset;
7669 int extra;
7670 rtx addr = XEXP (op, 0);
7672 if (!offsettable_address_p (false, mode, addr))
7673 return false;
7675 op = address_offset (addr);
7676 if (op == NULL_RTX)
7677 return true;
7679 offset = INTVAL (op);
7680 if ((offset & 3) != 0)
7681 return false;
7683 extra = GET_MODE_SIZE (mode) - UNITS_PER_WORD;
7684 if (extra < 0)
7685 extra = 0;
7687 if (GET_CODE (addr) == LO_SUM)
7688 /* For lo_sum addresses, we must allow any offset except one that
7689 causes a wrap, so test only the low 16 bits. */
7690 offset = ((offset & 0xffff) ^ 0x8000) - 0x8000;
7692 return offset + 0x8000 < 0x10000u - extra;
7695 /* Subroutines of rs6000_legitimize_address and rs6000_legitimate_address_p. */
7697 static bool
7698 reg_offset_addressing_ok_p (machine_mode mode)
7700 switch (mode)
7702 case E_V16QImode:
7703 case E_V8HImode:
7704 case E_V4SFmode:
7705 case E_V4SImode:
7706 case E_V2DFmode:
7707 case E_V2DImode:
7708 case E_V1TImode:
7709 case E_TImode:
7710 case E_TFmode:
7711 case E_KFmode:
7712 /* AltiVec/VSX vector modes. Only reg+reg addressing was valid until the
7713 ISA 3.0 vector d-form addressing mode was added. While TImode is not
7714 a vector mode, if we want to use the VSX registers to move it around,
7715 we need to restrict ourselves to reg+reg addressing. Similarly for
7716 IEEE 128-bit floating point that is passed in a single vector
7717 register. */
7718 if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode))
7719 return mode_supports_dq_form (mode);
7720 break;
7722 case E_SDmode:
7723 /* If we can do direct load/stores of SDmode, restrict it to reg+reg
7724 addressing for the LFIWZX and STFIWX instructions. */
7725 if (TARGET_NO_SDMODE_STACK)
7726 return false;
7727 break;
7729 default:
7730 break;
7733 return true;
7736 static bool
7737 virtual_stack_registers_memory_p (rtx op)
7739 int regnum;
7741 if (GET_CODE (op) == REG)
7742 regnum = REGNO (op);
7744 else if (GET_CODE (op) == PLUS
7745 && GET_CODE (XEXP (op, 0)) == REG
7746 && GET_CODE (XEXP (op, 1)) == CONST_INT)
7747 regnum = REGNO (XEXP (op, 0));
7749 else
7750 return false;
7752 return (regnum >= FIRST_VIRTUAL_REGISTER
7753 && regnum <= LAST_VIRTUAL_POINTER_REGISTER);
7756 /* Return true if a MODE sized memory accesses to OP plus OFFSET
7757 is known to not straddle a 32k boundary. This function is used
7758 to determine whether -mcmodel=medium code can use TOC pointer
7759 relative addressing for OP. This means the alignment of the TOC
7760 pointer must also be taken into account, and unfortunately that is
7761 only 8 bytes. */
7763 #ifndef POWERPC64_TOC_POINTER_ALIGNMENT
7764 #define POWERPC64_TOC_POINTER_ALIGNMENT 8
7765 #endif
7767 static bool
7768 offsettable_ok_by_alignment (rtx op, HOST_WIDE_INT offset,
7769 machine_mode mode)
7771 tree decl;
7772 unsigned HOST_WIDE_INT dsize, dalign, lsb, mask;
7774 if (GET_CODE (op) != SYMBOL_REF)
7775 return false;
7777 /* ISA 3.0 vector d-form addressing is restricted, don't allow
7778 SYMBOL_REF. */
7779 if (mode_supports_dq_form (mode))
7780 return false;
7782 dsize = GET_MODE_SIZE (mode);
7783 decl = SYMBOL_REF_DECL (op);
7784 if (!decl)
7786 if (dsize == 0)
7787 return false;
7789 /* -fsection-anchors loses the original SYMBOL_REF_DECL when
7790 replacing memory addresses with an anchor plus offset. We
7791 could find the decl by rummaging around in the block->objects
7792 VEC for the given offset but that seems like too much work. */
7793 dalign = BITS_PER_UNIT;
7794 if (SYMBOL_REF_HAS_BLOCK_INFO_P (op)
7795 && SYMBOL_REF_ANCHOR_P (op)
7796 && SYMBOL_REF_BLOCK (op) != NULL)
7798 struct object_block *block = SYMBOL_REF_BLOCK (op);
7800 dalign = block->alignment;
7801 offset += SYMBOL_REF_BLOCK_OFFSET (op);
7803 else if (CONSTANT_POOL_ADDRESS_P (op))
7805 /* It would be nice to have get_pool_align().. */
7806 machine_mode cmode = get_pool_mode (op);
7808 dalign = GET_MODE_ALIGNMENT (cmode);
7811 else if (DECL_P (decl))
7813 dalign = DECL_ALIGN (decl);
7815 if (dsize == 0)
7817 /* Allow BLKmode when the entire object is known to not
7818 cross a 32k boundary. */
7819 if (!DECL_SIZE_UNIT (decl))
7820 return false;
7822 if (!tree_fits_uhwi_p (DECL_SIZE_UNIT (decl)))
7823 return false;
7825 dsize = tree_to_uhwi (DECL_SIZE_UNIT (decl));
7826 if (dsize > 32768)
7827 return false;
7829 dalign /= BITS_PER_UNIT;
7830 if (dalign > POWERPC64_TOC_POINTER_ALIGNMENT)
7831 dalign = POWERPC64_TOC_POINTER_ALIGNMENT;
7832 return dalign >= dsize;
7835 else
7836 gcc_unreachable ();
7838 /* Find how many bits of the alignment we know for this access. */
7839 dalign /= BITS_PER_UNIT;
7840 if (dalign > POWERPC64_TOC_POINTER_ALIGNMENT)
7841 dalign = POWERPC64_TOC_POINTER_ALIGNMENT;
7842 mask = dalign - 1;
7843 lsb = offset & -offset;
7844 mask &= lsb - 1;
7845 dalign = mask + 1;
7847 return dalign >= dsize;
7850 static bool
7851 constant_pool_expr_p (rtx op)
7853 rtx base, offset;
7855 split_const (op, &base, &offset);
7856 return (GET_CODE (base) == SYMBOL_REF
7857 && CONSTANT_POOL_ADDRESS_P (base)
7858 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (base), Pmode));
7861 /* These are only used to pass through from print_operand/print_operand_address
7862 to rs6000_output_addr_const_extra over the intervening function
7863 output_addr_const which is not target code. */
7864 static const_rtx tocrel_base_oac, tocrel_offset_oac;
7866 /* Return true if OP is a toc pointer relative address (the output
7867 of create_TOC_reference). If STRICT, do not match non-split
7868 -mcmodel=large/medium toc pointer relative addresses. If the pointers
7869 are non-NULL, place base and offset pieces in TOCREL_BASE_RET and
7870 TOCREL_OFFSET_RET respectively. */
7872 bool
7873 toc_relative_expr_p (const_rtx op, bool strict, const_rtx *tocrel_base_ret,
7874 const_rtx *tocrel_offset_ret)
7876 if (!TARGET_TOC)
7877 return false;
7879 if (TARGET_CMODEL != CMODEL_SMALL)
7881 /* When strict ensure we have everything tidy. */
7882 if (strict
7883 && !(GET_CODE (op) == LO_SUM
7884 && REG_P (XEXP (op, 0))
7885 && INT_REG_OK_FOR_BASE_P (XEXP (op, 0), strict)))
7886 return false;
7888 /* When not strict, allow non-split TOC addresses and also allow
7889 (lo_sum (high ..)) TOC addresses created during reload. */
7890 if (GET_CODE (op) == LO_SUM)
7891 op = XEXP (op, 1);
7894 const_rtx tocrel_base = op;
7895 const_rtx tocrel_offset = const0_rtx;
7897 if (GET_CODE (op) == PLUS && add_cint_operand (XEXP (op, 1), GET_MODE (op)))
7899 tocrel_base = XEXP (op, 0);
7900 tocrel_offset = XEXP (op, 1);
7903 if (tocrel_base_ret)
7904 *tocrel_base_ret = tocrel_base;
7905 if (tocrel_offset_ret)
7906 *tocrel_offset_ret = tocrel_offset;
7908 return (GET_CODE (tocrel_base) == UNSPEC
7909 && XINT (tocrel_base, 1) == UNSPEC_TOCREL
7910 && REG_P (XVECEXP (tocrel_base, 0, 1))
7911 && REGNO (XVECEXP (tocrel_base, 0, 1)) == TOC_REGISTER);
7914 /* Return true if X is a constant pool address, and also for cmodel=medium
7915 if X is a toc-relative address known to be offsettable within MODE. */
7917 bool
7918 legitimate_constant_pool_address_p (const_rtx x, machine_mode mode,
7919 bool strict)
7921 const_rtx tocrel_base, tocrel_offset;
7922 return (toc_relative_expr_p (x, strict, &tocrel_base, &tocrel_offset)
7923 && (TARGET_CMODEL != CMODEL_MEDIUM
7924 || constant_pool_expr_p (XVECEXP (tocrel_base, 0, 0))
7925 || mode == QImode
7926 || offsettable_ok_by_alignment (XVECEXP (tocrel_base, 0, 0),
7927 INTVAL (tocrel_offset), mode)));
7930 static bool
7931 legitimate_small_data_p (machine_mode mode, rtx x)
7933 return (DEFAULT_ABI == ABI_V4
7934 && !flag_pic && !TARGET_TOC
7935 && (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST)
7936 && small_data_operand (x, mode));
7939 bool
7940 rs6000_legitimate_offset_address_p (machine_mode mode, rtx x,
7941 bool strict, bool worst_case)
7943 unsigned HOST_WIDE_INT offset;
7944 unsigned int extra;
7946 if (GET_CODE (x) != PLUS)
7947 return false;
7948 if (!REG_P (XEXP (x, 0)))
7949 return false;
7950 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
7951 return false;
7952 if (mode_supports_dq_form (mode))
7953 return quad_address_p (x, mode, strict);
7954 if (!reg_offset_addressing_ok_p (mode))
7955 return virtual_stack_registers_memory_p (x);
7956 if (legitimate_constant_pool_address_p (x, mode, strict || lra_in_progress))
7957 return true;
7958 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
7959 return false;
7961 offset = INTVAL (XEXP (x, 1));
7962 extra = 0;
7963 switch (mode)
7965 case E_DFmode:
7966 case E_DDmode:
7967 case E_DImode:
7968 /* If we are using VSX scalar loads, restrict ourselves to reg+reg
7969 addressing. */
7970 if (VECTOR_MEM_VSX_P (mode))
7971 return false;
7973 if (!worst_case)
7974 break;
7975 if (!TARGET_POWERPC64)
7976 extra = 4;
7977 else if (offset & 3)
7978 return false;
7979 break;
7981 case E_TFmode:
7982 case E_IFmode:
7983 case E_KFmode:
7984 case E_TDmode:
7985 case E_TImode:
7986 case E_PTImode:
7987 extra = 8;
7988 if (!worst_case)
7989 break;
7990 if (!TARGET_POWERPC64)
7991 extra = 12;
7992 else if (offset & 3)
7993 return false;
7994 break;
7996 default:
7997 break;
8000 offset += 0x8000;
8001 return offset < 0x10000 - extra;
8004 bool
8005 legitimate_indexed_address_p (rtx x, int strict)
8007 rtx op0, op1;
8009 if (GET_CODE (x) != PLUS)
8010 return false;
8012 op0 = XEXP (x, 0);
8013 op1 = XEXP (x, 1);
8015 return (REG_P (op0) && REG_P (op1)
8016 && ((INT_REG_OK_FOR_BASE_P (op0, strict)
8017 && INT_REG_OK_FOR_INDEX_P (op1, strict))
8018 || (INT_REG_OK_FOR_BASE_P (op1, strict)
8019 && INT_REG_OK_FOR_INDEX_P (op0, strict))));
8022 bool
8023 avoiding_indexed_address_p (machine_mode mode)
8025 /* Avoid indexed addressing for modes that have non-indexed
8026 load/store instruction forms. */
8027 return (TARGET_AVOID_XFORM && VECTOR_MEM_NONE_P (mode));
8030 bool
8031 legitimate_indirect_address_p (rtx x, int strict)
8033 return GET_CODE (x) == REG && INT_REG_OK_FOR_BASE_P (x, strict);
8036 bool
8037 macho_lo_sum_memory_operand (rtx x, machine_mode mode)
8039 if (!TARGET_MACHO || !flag_pic
8040 || mode != SImode || GET_CODE (x) != MEM)
8041 return false;
8042 x = XEXP (x, 0);
8044 if (GET_CODE (x) != LO_SUM)
8045 return false;
8046 if (GET_CODE (XEXP (x, 0)) != REG)
8047 return false;
8048 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 0))
8049 return false;
8050 x = XEXP (x, 1);
8052 return CONSTANT_P (x);
8055 static bool
8056 legitimate_lo_sum_address_p (machine_mode mode, rtx x, int strict)
8058 if (GET_CODE (x) != LO_SUM)
8059 return false;
8060 if (GET_CODE (XEXP (x, 0)) != REG)
8061 return false;
8062 if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
8063 return false;
8064 /* quad word addresses are restricted, and we can't use LO_SUM. */
8065 if (mode_supports_dq_form (mode))
8066 return false;
8067 x = XEXP (x, 1);
8069 if (TARGET_ELF || TARGET_MACHO)
8071 bool large_toc_ok;
8073 if (DEFAULT_ABI == ABI_V4 && flag_pic)
8074 return false;
8075 /* LRA doesn't use LEGITIMIZE_RELOAD_ADDRESS as it usually calls
8076 push_reload from reload pass code. LEGITIMIZE_RELOAD_ADDRESS
8077 recognizes some LO_SUM addresses as valid although this
8078 function says opposite. In most cases, LRA through different
8079 transformations can generate correct code for address reloads.
8080 It can not manage only some LO_SUM cases. So we need to add
8081 code analogous to one in rs6000_legitimize_reload_address for
8082 LOW_SUM here saying that some addresses are still valid. */
8083 large_toc_ok = (lra_in_progress && TARGET_CMODEL != CMODEL_SMALL
8084 && small_toc_ref (x, VOIDmode));
8085 if (TARGET_TOC && ! large_toc_ok)
8086 return false;
8087 if (GET_MODE_NUNITS (mode) != 1)
8088 return false;
8089 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
8090 && !(/* ??? Assume floating point reg based on mode? */
8091 TARGET_HARD_FLOAT && (mode == DFmode || mode == DDmode)))
8092 return false;
8094 return CONSTANT_P (x) || large_toc_ok;
8097 return false;
8101 /* Try machine-dependent ways of modifying an illegitimate address
8102 to be legitimate. If we find one, return the new, valid address.
8103 This is used from only one place: `memory_address' in explow.c.
8105 OLDX is the address as it was before break_out_memory_refs was
8106 called. In some cases it is useful to look at this to decide what
8107 needs to be done.
8109 It is always safe for this function to do nothing. It exists to
8110 recognize opportunities to optimize the output.
8112 On RS/6000, first check for the sum of a register with a constant
8113 integer that is out of range. If so, generate code to add the
8114 constant with the low-order 16 bits masked to the register and force
8115 this result into another register (this can be done with `cau').
8116 Then generate an address of REG+(CONST&0xffff), allowing for the
8117 possibility of bit 16 being a one.
8119 Then check for the sum of a register and something not constant, try to
8120 load the other things into a register and return the sum. */
8122 static rtx
8123 rs6000_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
8124 machine_mode mode)
8126 unsigned int extra;
8128 if (!reg_offset_addressing_ok_p (mode)
8129 || mode_supports_dq_form (mode))
8131 if (virtual_stack_registers_memory_p (x))
8132 return x;
8134 /* In theory we should not be seeing addresses of the form reg+0,
8135 but just in case it is generated, optimize it away. */
8136 if (GET_CODE (x) == PLUS && XEXP (x, 1) == const0_rtx)
8137 return force_reg (Pmode, XEXP (x, 0));
8139 /* For TImode with load/store quad, restrict addresses to just a single
8140 pointer, so it works with both GPRs and VSX registers. */
8141 /* Make sure both operands are registers. */
8142 else if (GET_CODE (x) == PLUS
8143 && (mode != TImode || !TARGET_VSX))
8144 return gen_rtx_PLUS (Pmode,
8145 force_reg (Pmode, XEXP (x, 0)),
8146 force_reg (Pmode, XEXP (x, 1)));
8147 else
8148 return force_reg (Pmode, x);
8150 if (GET_CODE (x) == SYMBOL_REF)
8152 enum tls_model model = SYMBOL_REF_TLS_MODEL (x);
8153 if (model != 0)
8154 return rs6000_legitimize_tls_address (x, model);
8157 extra = 0;
8158 switch (mode)
8160 case E_TFmode:
8161 case E_TDmode:
8162 case E_TImode:
8163 case E_PTImode:
8164 case E_IFmode:
8165 case E_KFmode:
8166 /* As in legitimate_offset_address_p we do not assume
8167 worst-case. The mode here is just a hint as to the registers
8168 used. A TImode is usually in gprs, but may actually be in
8169 fprs. Leave worst-case scenario for reload to handle via
8170 insn constraints. PTImode is only GPRs. */
8171 extra = 8;
8172 break;
8173 default:
8174 break;
8177 if (GET_CODE (x) == PLUS
8178 && GET_CODE (XEXP (x, 0)) == REG
8179 && GET_CODE (XEXP (x, 1)) == CONST_INT
8180 && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 1)) + 0x8000)
8181 >= 0x10000 - extra))
8183 HOST_WIDE_INT high_int, low_int;
8184 rtx sum;
8185 low_int = ((INTVAL (XEXP (x, 1)) & 0xffff) ^ 0x8000) - 0x8000;
8186 if (low_int >= 0x8000 - extra)
8187 low_int = 0;
8188 high_int = INTVAL (XEXP (x, 1)) - low_int;
8189 sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (x, 0),
8190 GEN_INT (high_int)), 0);
8191 return plus_constant (Pmode, sum, low_int);
8193 else if (GET_CODE (x) == PLUS
8194 && GET_CODE (XEXP (x, 0)) == REG
8195 && GET_CODE (XEXP (x, 1)) != CONST_INT
8196 && GET_MODE_NUNITS (mode) == 1
8197 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
8198 || (/* ??? Assume floating point reg based on mode? */
8199 TARGET_HARD_FLOAT && (mode == DFmode || mode == DDmode)))
8200 && !avoiding_indexed_address_p (mode))
8202 return gen_rtx_PLUS (Pmode, XEXP (x, 0),
8203 force_reg (Pmode, force_operand (XEXP (x, 1), 0)));
8205 else if ((TARGET_ELF
8206 #if TARGET_MACHO
8207 || !MACHO_DYNAMIC_NO_PIC_P
8208 #endif
8210 && TARGET_32BIT
8211 && TARGET_NO_TOC
8212 && ! flag_pic
8213 && GET_CODE (x) != CONST_INT
8214 && GET_CODE (x) != CONST_WIDE_INT
8215 && GET_CODE (x) != CONST_DOUBLE
8216 && CONSTANT_P (x)
8217 && GET_MODE_NUNITS (mode) == 1
8218 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
8219 || (/* ??? Assume floating point reg based on mode? */
8220 TARGET_HARD_FLOAT && (mode == DFmode || mode == DDmode))))
8222 rtx reg = gen_reg_rtx (Pmode);
8223 if (TARGET_ELF)
8224 emit_insn (gen_elf_high (reg, x));
8225 else
8226 emit_insn (gen_macho_high (reg, x));
8227 return gen_rtx_LO_SUM (Pmode, reg, x);
8229 else if (TARGET_TOC
8230 && GET_CODE (x) == SYMBOL_REF
8231 && constant_pool_expr_p (x)
8232 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), Pmode))
8233 return create_TOC_reference (x, NULL_RTX);
8234 else
8235 return x;
8238 /* Debug version of rs6000_legitimize_address. */
8239 static rtx
8240 rs6000_debug_legitimize_address (rtx x, rtx oldx, machine_mode mode)
8242 rtx ret;
8243 rtx_insn *insns;
8245 start_sequence ();
8246 ret = rs6000_legitimize_address (x, oldx, mode);
8247 insns = get_insns ();
8248 end_sequence ();
8250 if (ret != x)
8252 fprintf (stderr,
8253 "\nrs6000_legitimize_address: mode %s, old code %s, "
8254 "new code %s, modified\n",
8255 GET_MODE_NAME (mode), GET_RTX_NAME (GET_CODE (x)),
8256 GET_RTX_NAME (GET_CODE (ret)));
8258 fprintf (stderr, "Original address:\n");
8259 debug_rtx (x);
8261 fprintf (stderr, "oldx:\n");
8262 debug_rtx (oldx);
8264 fprintf (stderr, "New address:\n");
8265 debug_rtx (ret);
8267 if (insns)
8269 fprintf (stderr, "Insns added:\n");
8270 debug_rtx_list (insns, 20);
8273 else
8275 fprintf (stderr,
8276 "\nrs6000_legitimize_address: mode %s, code %s, no change:\n",
8277 GET_MODE_NAME (mode), GET_RTX_NAME (GET_CODE (x)));
8279 debug_rtx (x);
8282 if (insns)
8283 emit_insn (insns);
8285 return ret;
8288 /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
8289 We need to emit DTP-relative relocations. */
8291 static void rs6000_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
8292 static void
8293 rs6000_output_dwarf_dtprel (FILE *file, int size, rtx x)
8295 switch (size)
8297 case 4:
8298 fputs ("\t.long\t", file);
8299 break;
8300 case 8:
8301 fputs (DOUBLE_INT_ASM_OP, file);
8302 break;
8303 default:
8304 gcc_unreachable ();
8306 output_addr_const (file, x);
8307 if (TARGET_ELF)
8308 fputs ("@dtprel+0x8000", file);
8309 else if (TARGET_XCOFF && GET_CODE (x) == SYMBOL_REF)
8311 switch (SYMBOL_REF_TLS_MODEL (x))
8313 case 0:
8314 break;
8315 case TLS_MODEL_LOCAL_EXEC:
8316 fputs ("@le", file);
8317 break;
8318 case TLS_MODEL_INITIAL_EXEC:
8319 fputs ("@ie", file);
8320 break;
8321 case TLS_MODEL_GLOBAL_DYNAMIC:
8322 case TLS_MODEL_LOCAL_DYNAMIC:
8323 fputs ("@m", file);
8324 break;
8325 default:
8326 gcc_unreachable ();
8331 /* Return true if X is a symbol that refers to real (rather than emulated)
8332 TLS. */
8334 static bool
8335 rs6000_real_tls_symbol_ref_p (rtx x)
8337 return (GET_CODE (x) == SYMBOL_REF
8338 && SYMBOL_REF_TLS_MODEL (x) >= TLS_MODEL_REAL);
8341 /* In the name of slightly smaller debug output, and to cater to
8342 general assembler lossage, recognize various UNSPEC sequences
8343 and turn them back into a direct symbol reference. */
8345 static rtx
8346 rs6000_delegitimize_address (rtx orig_x)
8348 rtx x, y, offset;
8350 orig_x = delegitimize_mem_from_attrs (orig_x);
8351 x = orig_x;
8352 if (MEM_P (x))
8353 x = XEXP (x, 0);
8355 y = x;
8356 if (TARGET_CMODEL != CMODEL_SMALL
8357 && GET_CODE (y) == LO_SUM)
8358 y = XEXP (y, 1);
8360 offset = NULL_RTX;
8361 if (GET_CODE (y) == PLUS
8362 && GET_MODE (y) == Pmode
8363 && CONST_INT_P (XEXP (y, 1)))
8365 offset = XEXP (y, 1);
8366 y = XEXP (y, 0);
8369 if (GET_CODE (y) == UNSPEC
8370 && XINT (y, 1) == UNSPEC_TOCREL)
8372 y = XVECEXP (y, 0, 0);
8374 #ifdef HAVE_AS_TLS
8375 /* Do not associate thread-local symbols with the original
8376 constant pool symbol. */
8377 if (TARGET_XCOFF
8378 && GET_CODE (y) == SYMBOL_REF
8379 && CONSTANT_POOL_ADDRESS_P (y)
8380 && rs6000_real_tls_symbol_ref_p (get_pool_constant (y)))
8381 return orig_x;
8382 #endif
8384 if (offset != NULL_RTX)
8385 y = gen_rtx_PLUS (Pmode, y, offset);
8386 if (!MEM_P (orig_x))
8387 return y;
8388 else
8389 return replace_equiv_address_nv (orig_x, y);
8392 if (TARGET_MACHO
8393 && GET_CODE (orig_x) == LO_SUM
8394 && GET_CODE (XEXP (orig_x, 1)) == CONST)
8396 y = XEXP (XEXP (orig_x, 1), 0);
8397 if (GET_CODE (y) == UNSPEC
8398 && XINT (y, 1) == UNSPEC_MACHOPIC_OFFSET)
8399 return XVECEXP (y, 0, 0);
8402 return orig_x;
8405 /* Return true if X shouldn't be emitted into the debug info.
8406 The linker doesn't like .toc section references from
8407 .debug_* sections, so reject .toc section symbols. */
8409 static bool
8410 rs6000_const_not_ok_for_debug_p (rtx x)
8412 if (GET_CODE (x) == UNSPEC)
8413 return true;
8414 if (GET_CODE (x) == SYMBOL_REF
8415 && CONSTANT_POOL_ADDRESS_P (x))
8417 rtx c = get_pool_constant (x);
8418 machine_mode cmode = get_pool_mode (x);
8419 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (c, cmode))
8420 return true;
8423 return false;
8427 /* Implement the TARGET_LEGITIMATE_COMBINED_INSN hook. */
8429 static bool
8430 rs6000_legitimate_combined_insn (rtx_insn *insn)
8432 int icode = INSN_CODE (insn);
8434 /* Reject creating doloop insns. Combine should not be allowed
8435 to create these for a number of reasons:
8436 1) In a nested loop, if combine creates one of these in an
8437 outer loop and the register allocator happens to allocate ctr
8438 to the outer loop insn, then the inner loop can't use ctr.
8439 Inner loops ought to be more highly optimized.
8440 2) Combine often wants to create one of these from what was
8441 originally a three insn sequence, first combining the three
8442 insns to two, then to ctrsi/ctrdi. When ctrsi/ctrdi is not
8443 allocated ctr, the splitter takes use back to the three insn
8444 sequence. It's better to stop combine at the two insn
8445 sequence.
8446 3) Faced with not being able to allocate ctr for ctrsi/crtdi
8447 insns, the register allocator sometimes uses floating point
8448 or vector registers for the pseudo. Since ctrsi/ctrdi is a
8449 jump insn and output reloads are not implemented for jumps,
8450 the ctrsi/ctrdi splitters need to handle all possible cases.
8451 That's a pain, and it gets to be seriously difficult when a
8452 splitter that runs after reload needs memory to transfer from
8453 a gpr to fpr. See PR70098 and PR71763 which are not fixed
8454 for the difficult case. It's better to not create problems
8455 in the first place. */
8456 if (icode != CODE_FOR_nothing
8457 && (icode == CODE_FOR_bdz_si
8458 || icode == CODE_FOR_bdz_di
8459 || icode == CODE_FOR_bdnz_si
8460 || icode == CODE_FOR_bdnz_di
8461 || icode == CODE_FOR_bdztf_si
8462 || icode == CODE_FOR_bdztf_di
8463 || icode == CODE_FOR_bdnztf_si
8464 || icode == CODE_FOR_bdnztf_di))
8465 return false;
8467 return true;
8470 /* Construct the SYMBOL_REF for the tls_get_addr function. */
8472 static GTY(()) rtx rs6000_tls_symbol;
8473 static rtx
8474 rs6000_tls_get_addr (void)
8476 if (!rs6000_tls_symbol)
8477 rs6000_tls_symbol = init_one_libfunc ("__tls_get_addr");
8479 return rs6000_tls_symbol;
8482 /* Construct the SYMBOL_REF for TLS GOT references. */
8484 static GTY(()) rtx rs6000_got_symbol;
8485 static rtx
8486 rs6000_got_sym (void)
8488 if (!rs6000_got_symbol)
8490 rs6000_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
8491 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_LOCAL;
8492 SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_EXTERNAL;
8495 return rs6000_got_symbol;
8498 /* AIX Thread-Local Address support. */
8500 static rtx
8501 rs6000_legitimize_tls_address_aix (rtx addr, enum tls_model model)
8503 rtx sym, mem, tocref, tlsreg, tmpreg, dest, tlsaddr;
8504 const char *name;
8505 char *tlsname;
8507 name = XSTR (addr, 0);
8508 /* Append TLS CSECT qualifier, unless the symbol already is qualified
8509 or the symbol will be in TLS private data section. */
8510 if (name[strlen (name) - 1] != ']'
8511 && (TREE_PUBLIC (SYMBOL_REF_DECL (addr))
8512 || bss_initializer_p (SYMBOL_REF_DECL (addr))))
8514 tlsname = XALLOCAVEC (char, strlen (name) + 4);
8515 strcpy (tlsname, name);
8516 strcat (tlsname,
8517 bss_initializer_p (SYMBOL_REF_DECL (addr)) ? "[UL]" : "[TL]");
8518 tlsaddr = copy_rtx (addr);
8519 XSTR (tlsaddr, 0) = ggc_strdup (tlsname);
8521 else
8522 tlsaddr = addr;
8524 /* Place addr into TOC constant pool. */
8525 sym = force_const_mem (GET_MODE (tlsaddr), tlsaddr);
8527 /* Output the TOC entry and create the MEM referencing the value. */
8528 if (constant_pool_expr_p (XEXP (sym, 0))
8529 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (XEXP (sym, 0)), Pmode))
8531 tocref = create_TOC_reference (XEXP (sym, 0), NULL_RTX);
8532 mem = gen_const_mem (Pmode, tocref);
8533 set_mem_alias_set (mem, get_TOC_alias_set ());
8535 else
8536 return sym;
8538 /* Use global-dynamic for local-dynamic. */
8539 if (model == TLS_MODEL_GLOBAL_DYNAMIC
8540 || model == TLS_MODEL_LOCAL_DYNAMIC)
8542 /* Create new TOC reference for @m symbol. */
8543 name = XSTR (XVECEXP (XEXP (mem, 0), 0, 0), 0);
8544 tlsname = XALLOCAVEC (char, strlen (name) + 1);
8545 strcpy (tlsname, "*LCM");
8546 strcat (tlsname, name + 3);
8547 rtx modaddr = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (tlsname));
8548 SYMBOL_REF_FLAGS (modaddr) |= SYMBOL_FLAG_LOCAL;
8549 tocref = create_TOC_reference (modaddr, NULL_RTX);
8550 rtx modmem = gen_const_mem (Pmode, tocref);
8551 set_mem_alias_set (modmem, get_TOC_alias_set ());
8553 rtx modreg = gen_reg_rtx (Pmode);
8554 emit_insn (gen_rtx_SET (modreg, modmem));
8556 tmpreg = gen_reg_rtx (Pmode);
8557 emit_insn (gen_rtx_SET (tmpreg, mem));
8559 dest = gen_reg_rtx (Pmode);
8560 if (TARGET_32BIT)
8561 emit_insn (gen_tls_get_addrsi (dest, modreg, tmpreg));
8562 else
8563 emit_insn (gen_tls_get_addrdi (dest, modreg, tmpreg));
8564 return dest;
8566 /* Obtain TLS pointer: 32 bit call or 64 bit GPR 13. */
8567 else if (TARGET_32BIT)
8569 tlsreg = gen_reg_rtx (SImode);
8570 emit_insn (gen_tls_get_tpointer (tlsreg));
8572 else
8573 tlsreg = gen_rtx_REG (DImode, 13);
8575 /* Load the TOC value into temporary register. */
8576 tmpreg = gen_reg_rtx (Pmode);
8577 emit_insn (gen_rtx_SET (tmpreg, mem));
8578 set_unique_reg_note (get_last_insn (), REG_EQUAL,
8579 gen_rtx_MINUS (Pmode, addr, tlsreg));
8581 /* Add TOC symbol value to TLS pointer. */
8582 dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, tmpreg, tlsreg));
8584 return dest;
8587 /* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
8588 this (thread-local) address. */
8590 static rtx
8591 rs6000_legitimize_tls_address (rtx addr, enum tls_model model)
8593 rtx dest, insn;
8595 if (TARGET_XCOFF)
8596 return rs6000_legitimize_tls_address_aix (addr, model);
8598 dest = gen_reg_rtx (Pmode);
8599 if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 16)
8601 rtx tlsreg;
8603 if (TARGET_64BIT)
8605 tlsreg = gen_rtx_REG (Pmode, 13);
8606 insn = gen_tls_tprel_64 (dest, tlsreg, addr);
8608 else
8610 tlsreg = gen_rtx_REG (Pmode, 2);
8611 insn = gen_tls_tprel_32 (dest, tlsreg, addr);
8613 emit_insn (insn);
8615 else if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 32)
8617 rtx tlsreg, tmp;
8619 tmp = gen_reg_rtx (Pmode);
8620 if (TARGET_64BIT)
8622 tlsreg = gen_rtx_REG (Pmode, 13);
8623 insn = gen_tls_tprel_ha_64 (tmp, tlsreg, addr);
8625 else
8627 tlsreg = gen_rtx_REG (Pmode, 2);
8628 insn = gen_tls_tprel_ha_32 (tmp, tlsreg, addr);
8630 emit_insn (insn);
8631 if (TARGET_64BIT)
8632 insn = gen_tls_tprel_lo_64 (dest, tmp, addr);
8633 else
8634 insn = gen_tls_tprel_lo_32 (dest, tmp, addr);
8635 emit_insn (insn);
8637 else
8639 rtx r3, got, tga, tmp1, tmp2, call_insn;
8641 /* We currently use relocations like @got@tlsgd for tls, which
8642 means the linker will handle allocation of tls entries, placing
8643 them in the .got section. So use a pointer to the .got section,
8644 not one to secondary TOC sections used by 64-bit -mminimal-toc,
8645 or to secondary GOT sections used by 32-bit -fPIC. */
8646 if (TARGET_64BIT)
8647 got = gen_rtx_REG (Pmode, 2);
8648 else
8650 if (flag_pic == 1)
8651 got = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
8652 else
8654 rtx gsym = rs6000_got_sym ();
8655 got = gen_reg_rtx (Pmode);
8656 if (flag_pic == 0)
8657 rs6000_emit_move (got, gsym, Pmode);
8658 else
8660 rtx mem, lab;
8662 tmp1 = gen_reg_rtx (Pmode);
8663 tmp2 = gen_reg_rtx (Pmode);
8664 mem = gen_const_mem (Pmode, tmp1);
8665 lab = gen_label_rtx ();
8666 emit_insn (gen_load_toc_v4_PIC_1b (gsym, lab));
8667 emit_move_insn (tmp1, gen_rtx_REG (Pmode, LR_REGNO));
8668 if (TARGET_LINK_STACK)
8669 emit_insn (gen_addsi3 (tmp1, tmp1, GEN_INT (4)));
8670 emit_move_insn (tmp2, mem);
8671 rtx_insn *last = emit_insn (gen_addsi3 (got, tmp1, tmp2));
8672 set_unique_reg_note (last, REG_EQUAL, gsym);
8677 if (model == TLS_MODEL_GLOBAL_DYNAMIC)
8679 tga = rs6000_tls_get_addr ();
8680 emit_library_call_value (tga, dest, LCT_CONST, Pmode,
8681 const0_rtx, Pmode);
8683 r3 = gen_rtx_REG (Pmode, 3);
8684 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
8686 if (TARGET_64BIT)
8687 insn = gen_tls_gd_aix64 (r3, got, addr, tga, const0_rtx);
8688 else
8689 insn = gen_tls_gd_aix32 (r3, got, addr, tga, const0_rtx);
8691 else if (DEFAULT_ABI == ABI_V4)
8692 insn = gen_tls_gd_sysvsi (r3, got, addr, tga, const0_rtx);
8693 else
8694 gcc_unreachable ();
8695 call_insn = last_call_insn ();
8696 PATTERN (call_insn) = insn;
8697 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
8698 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn),
8699 pic_offset_table_rtx);
8701 else if (model == TLS_MODEL_LOCAL_DYNAMIC)
8703 tga = rs6000_tls_get_addr ();
8704 tmp1 = gen_reg_rtx (Pmode);
8705 emit_library_call_value (tga, tmp1, LCT_CONST, Pmode,
8706 const0_rtx, Pmode);
8708 r3 = gen_rtx_REG (Pmode, 3);
8709 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
8711 if (TARGET_64BIT)
8712 insn = gen_tls_ld_aix64 (r3, got, tga, const0_rtx);
8713 else
8714 insn = gen_tls_ld_aix32 (r3, got, tga, const0_rtx);
8716 else if (DEFAULT_ABI == ABI_V4)
8717 insn = gen_tls_ld_sysvsi (r3, got, tga, const0_rtx);
8718 else
8719 gcc_unreachable ();
8720 call_insn = last_call_insn ();
8721 PATTERN (call_insn) = insn;
8722 if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
8723 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn),
8724 pic_offset_table_rtx);
8726 if (rs6000_tls_size == 16)
8728 if (TARGET_64BIT)
8729 insn = gen_tls_dtprel_64 (dest, tmp1, addr);
8730 else
8731 insn = gen_tls_dtprel_32 (dest, tmp1, addr);
8733 else if (rs6000_tls_size == 32)
8735 tmp2 = gen_reg_rtx (Pmode);
8736 if (TARGET_64BIT)
8737 insn = gen_tls_dtprel_ha_64 (tmp2, tmp1, addr);
8738 else
8739 insn = gen_tls_dtprel_ha_32 (tmp2, tmp1, addr);
8740 emit_insn (insn);
8741 if (TARGET_64BIT)
8742 insn = gen_tls_dtprel_lo_64 (dest, tmp2, addr);
8743 else
8744 insn = gen_tls_dtprel_lo_32 (dest, tmp2, addr);
8746 else
8748 tmp2 = gen_reg_rtx (Pmode);
8749 if (TARGET_64BIT)
8750 insn = gen_tls_got_dtprel_64 (tmp2, got, addr);
8751 else
8752 insn = gen_tls_got_dtprel_32 (tmp2, got, addr);
8753 emit_insn (insn);
8754 insn = gen_rtx_SET (dest, gen_rtx_PLUS (Pmode, tmp2, tmp1));
8756 emit_insn (insn);
8758 else
8760 /* IE, or 64-bit offset LE. */
8761 tmp2 = gen_reg_rtx (Pmode);
8762 if (TARGET_64BIT)
8763 insn = gen_tls_got_tprel_64 (tmp2, got, addr);
8764 else
8765 insn = gen_tls_got_tprel_32 (tmp2, got, addr);
8766 emit_insn (insn);
8767 if (TARGET_64BIT)
8768 insn = gen_tls_tls_64 (dest, tmp2, addr);
8769 else
8770 insn = gen_tls_tls_32 (dest, tmp2, addr);
8771 emit_insn (insn);
8775 return dest;
8778 /* Only create the global variable for the stack protect guard if we are using
8779 the global flavor of that guard. */
8780 static tree
8781 rs6000_init_stack_protect_guard (void)
8783 if (rs6000_stack_protector_guard == SSP_GLOBAL)
8784 return default_stack_protect_guard ();
8786 return NULL_TREE;
8789 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
8791 static bool
8792 rs6000_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
8794 if (GET_CODE (x) == HIGH
8795 && GET_CODE (XEXP (x, 0)) == UNSPEC)
8796 return true;
8798 /* A TLS symbol in the TOC cannot contain a sum. */
8799 if (GET_CODE (x) == CONST
8800 && GET_CODE (XEXP (x, 0)) == PLUS
8801 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
8802 && SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0)) != 0)
8803 return true;
8805 /* Do not place an ELF TLS symbol in the constant pool. */
8806 return TARGET_ELF && tls_referenced_p (x);
8809 /* Return true iff the given SYMBOL_REF refers to a constant pool entry
8810 that we have put in the TOC, or for cmodel=medium, if the SYMBOL_REF
8811 can be addressed relative to the toc pointer. */
8813 static bool
8814 use_toc_relative_ref (rtx sym, machine_mode mode)
8816 return ((constant_pool_expr_p (sym)
8817 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (sym),
8818 get_pool_mode (sym)))
8819 || (TARGET_CMODEL == CMODEL_MEDIUM
8820 && SYMBOL_REF_LOCAL_P (sym)
8821 && GET_MODE_SIZE (mode) <= POWERPC64_TOC_POINTER_ALIGNMENT));
8824 /* Our implementation of LEGITIMIZE_RELOAD_ADDRESS. Returns a value to
8825 replace the input X, or the original X if no replacement is called for.
8826 The output parameter *WIN is 1 if the calling macro should goto WIN,
8827 0 if it should not.
8829 For RS/6000, we wish to handle large displacements off a base
8830 register by splitting the addend across an addiu/addis and the mem insn.
8831 This cuts number of extra insns needed from 3 to 1.
8833 On Darwin, we use this to generate code for floating point constants.
8834 A movsf_low is generated so we wind up with 2 instructions rather than 3.
8835 The Darwin code is inside #if TARGET_MACHO because only then are the
8836 machopic_* functions defined. */
8837 static rtx
8838 rs6000_legitimize_reload_address (rtx x, machine_mode mode,
8839 int opnum, int type,
8840 int ind_levels ATTRIBUTE_UNUSED, int *win)
8842 bool reg_offset_p = reg_offset_addressing_ok_p (mode);
8843 bool quad_offset_p = mode_supports_dq_form (mode);
8845 /* Nasty hack for vsx_splat_v2df/v2di load from mem, which takes a
8846 DFmode/DImode MEM. Ditto for ISA 3.0 vsx_splat_v4sf/v4si. */
8847 if (reg_offset_p
8848 && opnum == 1
8849 && ((mode == DFmode && recog_data.operand_mode[0] == V2DFmode)
8850 || (mode == DImode && recog_data.operand_mode[0] == V2DImode)
8851 || (mode == SFmode && recog_data.operand_mode[0] == V4SFmode
8852 && TARGET_P9_VECTOR)
8853 || (mode == SImode && recog_data.operand_mode[0] == V4SImode
8854 && TARGET_P9_VECTOR)))
8855 reg_offset_p = false;
8857 /* We must recognize output that we have already generated ourselves. */
8858 if (GET_CODE (x) == PLUS
8859 && GET_CODE (XEXP (x, 0)) == PLUS
8860 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
8861 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
8862 && GET_CODE (XEXP (x, 1)) == CONST_INT)
8864 if (TARGET_DEBUG_ADDR)
8866 fprintf (stderr, "\nlegitimize_reload_address push_reload #1:\n");
8867 debug_rtx (x);
8869 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
8870 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
8871 opnum, (enum reload_type) type);
8872 *win = 1;
8873 return x;
8876 /* Likewise for (lo_sum (high ...) ...) output we have generated. */
8877 if (GET_CODE (x) == LO_SUM
8878 && GET_CODE (XEXP (x, 0)) == HIGH)
8880 if (TARGET_DEBUG_ADDR)
8882 fprintf (stderr, "\nlegitimize_reload_address push_reload #2:\n");
8883 debug_rtx (x);
8885 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
8886 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
8887 opnum, (enum reload_type) type);
8888 *win = 1;
8889 return x;
8892 #if TARGET_MACHO
8893 if (DEFAULT_ABI == ABI_DARWIN && flag_pic
8894 && GET_CODE (x) == LO_SUM
8895 && GET_CODE (XEXP (x, 0)) == PLUS
8896 && XEXP (XEXP (x, 0), 0) == pic_offset_table_rtx
8897 && GET_CODE (XEXP (XEXP (x, 0), 1)) == HIGH
8898 && XEXP (XEXP (XEXP (x, 0), 1), 0) == XEXP (x, 1)
8899 && machopic_operand_p (XEXP (x, 1)))
8901 /* Result of previous invocation of this function on Darwin
8902 floating point constant. */
8903 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
8904 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
8905 opnum, (enum reload_type) type);
8906 *win = 1;
8907 return x;
8909 #endif
8911 if (TARGET_CMODEL != CMODEL_SMALL
8912 && reg_offset_p
8913 && !quad_offset_p
8914 && small_toc_ref (x, VOIDmode))
8916 rtx hi = gen_rtx_HIGH (Pmode, copy_rtx (x));
8917 x = gen_rtx_LO_SUM (Pmode, hi, x);
8918 if (TARGET_DEBUG_ADDR)
8920 fprintf (stderr, "\nlegitimize_reload_address push_reload #3:\n");
8921 debug_rtx (x);
8923 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
8924 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
8925 opnum, (enum reload_type) type);
8926 *win = 1;
8927 return x;
8930 if (GET_CODE (x) == PLUS
8931 && REG_P (XEXP (x, 0))
8932 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
8933 && INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 1)
8934 && CONST_INT_P (XEXP (x, 1))
8935 && reg_offset_p
8936 && (quad_offset_p || !VECTOR_MODE_P (mode) || VECTOR_MEM_NONE_P (mode)))
8938 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
8939 HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
8940 HOST_WIDE_INT high
8941 = (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;
8943 /* Check for 32-bit overflow or quad addresses with one of the
8944 four least significant bits set. */
8945 if (high + low != val
8946 || (quad_offset_p && (low & 0xf)))
8948 *win = 0;
8949 return x;
8952 /* Reload the high part into a base reg; leave the low part
8953 in the mem directly. */
8955 x = gen_rtx_PLUS (GET_MODE (x),
8956 gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
8957 GEN_INT (high)),
8958 GEN_INT (low));
8960 if (TARGET_DEBUG_ADDR)
8962 fprintf (stderr, "\nlegitimize_reload_address push_reload #4:\n");
8963 debug_rtx (x);
8965 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
8966 BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
8967 opnum, (enum reload_type) type);
8968 *win = 1;
8969 return x;
8972 if (GET_CODE (x) == SYMBOL_REF
8973 && reg_offset_p
8974 && !quad_offset_p
8975 && (!VECTOR_MODE_P (mode) || VECTOR_MEM_NONE_P (mode))
8976 #if TARGET_MACHO
8977 && DEFAULT_ABI == ABI_DARWIN
8978 && (flag_pic || MACHO_DYNAMIC_NO_PIC_P)
8979 && machopic_symbol_defined_p (x)
8980 #else
8981 && DEFAULT_ABI == ABI_V4
8982 && !flag_pic
8983 #endif
8984 /* Don't do this for TFmode or TDmode, since the result isn't offsettable.
8985 The same goes for DImode without 64-bit gprs and DFmode and DDmode
8986 without fprs.
8987 ??? Assume floating point reg based on mode? This assumption is
8988 violated by eg. powerpc-linux -m32 compile of gcc.dg/pr28796-2.c
8989 where reload ends up doing a DFmode load of a constant from
8990 mem using two gprs. Unfortunately, at this point reload
8991 hasn't yet selected regs so poking around in reload data
8992 won't help and even if we could figure out the regs reliably,
8993 we'd still want to allow this transformation when the mem is
8994 naturally aligned. Since we say the address is good here, we
8995 can't disable offsets from LO_SUMs in mem_operand_gpr.
8996 FIXME: Allow offset from lo_sum for other modes too, when
8997 mem is sufficiently aligned.
8999 Also disallow this if the type can go in VMX/Altivec registers, since
9000 those registers do not have d-form (reg+offset) address modes. */
9001 && !reg_addr[mode].scalar_in_vmx_p
9002 && mode != TFmode
9003 && mode != TDmode
9004 && mode != IFmode
9005 && mode != KFmode
9006 && (mode != TImode || !TARGET_VSX)
9007 && mode != PTImode
9008 && (mode != DImode || TARGET_POWERPC64)
9009 && ((mode != DFmode && mode != DDmode) || TARGET_POWERPC64
9010 || TARGET_HARD_FLOAT))
9012 #if TARGET_MACHO
9013 if (flag_pic)
9015 rtx offset = machopic_gen_offset (x);
9016 x = gen_rtx_LO_SUM (GET_MODE (x),
9017 gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
9018 gen_rtx_HIGH (Pmode, offset)), offset);
9020 else
9021 #endif
9022 x = gen_rtx_LO_SUM (GET_MODE (x),
9023 gen_rtx_HIGH (Pmode, x), x);
9025 if (TARGET_DEBUG_ADDR)
9027 fprintf (stderr, "\nlegitimize_reload_address push_reload #5:\n");
9028 debug_rtx (x);
9030 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9031 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
9032 opnum, (enum reload_type) type);
9033 *win = 1;
9034 return x;
9037 /* Reload an offset address wrapped by an AND that represents the
9038 masking of the lower bits. Strip the outer AND and let reload
9039 convert the offset address into an indirect address. For VSX,
9040 force reload to create the address with an AND in a separate
9041 register, because we can't guarantee an altivec register will
9042 be used. */
9043 if (VECTOR_MEM_ALTIVEC_P (mode)
9044 && GET_CODE (x) == AND
9045 && GET_CODE (XEXP (x, 0)) == PLUS
9046 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
9047 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
9048 && GET_CODE (XEXP (x, 1)) == CONST_INT
9049 && INTVAL (XEXP (x, 1)) == -16)
9051 x = XEXP (x, 0);
9052 *win = 1;
9053 return x;
9056 if (TARGET_TOC
9057 && reg_offset_p
9058 && !quad_offset_p
9059 && GET_CODE (x) == SYMBOL_REF
9060 && use_toc_relative_ref (x, mode))
9062 x = create_TOC_reference (x, NULL_RTX);
9063 if (TARGET_CMODEL != CMODEL_SMALL)
9065 if (TARGET_DEBUG_ADDR)
9067 fprintf (stderr, "\nlegitimize_reload_address push_reload #6:\n");
9068 debug_rtx (x);
9070 push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
9071 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
9072 opnum, (enum reload_type) type);
9074 *win = 1;
9075 return x;
9077 *win = 0;
9078 return x;
9081 /* Debug version of rs6000_legitimize_reload_address. */
9082 static rtx
9083 rs6000_debug_legitimize_reload_address (rtx x, machine_mode mode,
9084 int opnum, int type,
9085 int ind_levels, int *win)
9087 rtx ret = rs6000_legitimize_reload_address (x, mode, opnum, type,
9088 ind_levels, win);
9089 fprintf (stderr,
9090 "\nrs6000_legitimize_reload_address: mode = %s, opnum = %d, "
9091 "type = %d, ind_levels = %d, win = %d, original addr:\n",
9092 GET_MODE_NAME (mode), opnum, type, ind_levels, *win);
9093 debug_rtx (x);
9095 if (x == ret)
9096 fprintf (stderr, "Same address returned\n");
9097 else if (!ret)
9098 fprintf (stderr, "NULL returned\n");
9099 else
9101 fprintf (stderr, "New address:\n");
9102 debug_rtx (ret);
9105 return ret;
9108 /* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
9109 that is a valid memory address for an instruction.
9110 The MODE argument is the machine mode for the MEM expression
9111 that wants to use this address.
9113 On the RS/6000, there are four valid address: a SYMBOL_REF that
9114 refers to a constant pool entry of an address (or the sum of it
9115 plus a constant), a short (16-bit signed) constant plus a register,
9116 the sum of two registers, or a register indirect, possibly with an
9117 auto-increment. For DFmode, DDmode and DImode with a constant plus
9118 register, we must ensure that both words are addressable or PowerPC64
9119 with offset word aligned.
9121 For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
9122 32-bit DImode, TImode, TFmode, TDmode), indexed addressing cannot be used
9123 because adjacent memory cells are accessed by adding word-sized offsets
9124 during assembly output. */
9125 static bool
9126 rs6000_legitimate_address_p (machine_mode mode, rtx x, bool reg_ok_strict)
9128 bool reg_offset_p = reg_offset_addressing_ok_p (mode);
9129 bool quad_offset_p = mode_supports_dq_form (mode);
9131 /* If this is an unaligned stvx/ldvx type address, discard the outer AND. */
9132 if (VECTOR_MEM_ALTIVEC_P (mode)
9133 && GET_CODE (x) == AND
9134 && GET_CODE (XEXP (x, 1)) == CONST_INT
9135 && INTVAL (XEXP (x, 1)) == -16)
9136 x = XEXP (x, 0);
9138 if (TARGET_ELF && RS6000_SYMBOL_REF_TLS_P (x))
9139 return 0;
9140 if (legitimate_indirect_address_p (x, reg_ok_strict))
9141 return 1;
9142 if (TARGET_UPDATE
9143 && (GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC)
9144 && mode_supports_pre_incdec_p (mode)
9145 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict))
9146 return 1;
9147 /* Handle restricted vector d-form offsets in ISA 3.0. */
9148 if (quad_offset_p)
9150 if (quad_address_p (x, mode, reg_ok_strict))
9151 return 1;
9153 else if (virtual_stack_registers_memory_p (x))
9154 return 1;
9156 else if (reg_offset_p)
9158 if (legitimate_small_data_p (mode, x))
9159 return 1;
9160 if (legitimate_constant_pool_address_p (x, mode,
9161 reg_ok_strict || lra_in_progress))
9162 return 1;
9165 /* For TImode, if we have TImode in VSX registers, only allow register
9166 indirect addresses. This will allow the values to go in either GPRs
9167 or VSX registers without reloading. The vector types would tend to
9168 go into VSX registers, so we allow REG+REG, while TImode seems
9169 somewhat split, in that some uses are GPR based, and some VSX based. */
9170 /* FIXME: We could loosen this by changing the following to
9171 if (mode == TImode && TARGET_QUAD_MEMORY && TARGET_VSX)
9172 but currently we cannot allow REG+REG addressing for TImode. See
9173 PR72827 for complete details on how this ends up hoodwinking DSE. */
9174 if (mode == TImode && TARGET_VSX)
9175 return 0;
9176 /* If not REG_OK_STRICT (before reload) let pass any stack offset. */
9177 if (! reg_ok_strict
9178 && reg_offset_p
9179 && GET_CODE (x) == PLUS
9180 && GET_CODE (XEXP (x, 0)) == REG
9181 && (XEXP (x, 0) == virtual_stack_vars_rtx
9182 || XEXP (x, 0) == arg_pointer_rtx)
9183 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9184 return 1;
9185 if (rs6000_legitimate_offset_address_p (mode, x, reg_ok_strict, false))
9186 return 1;
9187 if (!FLOAT128_2REG_P (mode)
9188 && (TARGET_HARD_FLOAT
9189 || TARGET_POWERPC64
9190 || (mode != DFmode && mode != DDmode))
9191 && (TARGET_POWERPC64 || mode != DImode)
9192 && (mode != TImode || VECTOR_MEM_VSX_P (TImode))
9193 && mode != PTImode
9194 && !avoiding_indexed_address_p (mode)
9195 && legitimate_indexed_address_p (x, reg_ok_strict))
9196 return 1;
9197 if (TARGET_UPDATE && GET_CODE (x) == PRE_MODIFY
9198 && mode_supports_pre_modify_p (mode)
9199 && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict)
9200 && (rs6000_legitimate_offset_address_p (mode, XEXP (x, 1),
9201 reg_ok_strict, false)
9202 || (!avoiding_indexed_address_p (mode)
9203 && legitimate_indexed_address_p (XEXP (x, 1), reg_ok_strict)))
9204 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
9205 return 1;
9206 if (reg_offset_p && !quad_offset_p
9207 && legitimate_lo_sum_address_p (mode, x, reg_ok_strict))
9208 return 1;
9209 return 0;
9212 /* Debug version of rs6000_legitimate_address_p. */
9213 static bool
9214 rs6000_debug_legitimate_address_p (machine_mode mode, rtx x,
9215 bool reg_ok_strict)
9217 bool ret = rs6000_legitimate_address_p (mode, x, reg_ok_strict);
9218 fprintf (stderr,
9219 "\nrs6000_legitimate_address_p: return = %s, mode = %s, "
9220 "strict = %d, reload = %s, code = %s\n",
9221 ret ? "true" : "false",
9222 GET_MODE_NAME (mode),
9223 reg_ok_strict,
9224 (reload_completed ? "after" : "before"),
9225 GET_RTX_NAME (GET_CODE (x)));
9226 debug_rtx (x);
9228 return ret;
9231 /* Implement TARGET_MODE_DEPENDENT_ADDRESS_P. */
9233 static bool
9234 rs6000_mode_dependent_address_p (const_rtx addr,
9235 addr_space_t as ATTRIBUTE_UNUSED)
9237 return rs6000_mode_dependent_address_ptr (addr);
9240 /* Go to LABEL if ADDR (a legitimate address expression)
9241 has an effect that depends on the machine mode it is used for.
9243 On the RS/6000 this is true of all integral offsets (since AltiVec
9244 and VSX modes don't allow them) or is a pre-increment or decrement.
9246 ??? Except that due to conceptual problems in offsettable_address_p
9247 we can't really report the problems of integral offsets. So leave
9248 this assuming that the adjustable offset must be valid for the
9249 sub-words of a TFmode operand, which is what we had before. */
9251 static bool
9252 rs6000_mode_dependent_address (const_rtx addr)
9254 switch (GET_CODE (addr))
9256 case PLUS:
9257 /* Any offset from virtual_stack_vars_rtx and arg_pointer_rtx
9258 is considered a legitimate address before reload, so there
9259 are no offset restrictions in that case. Note that this
9260 condition is safe in strict mode because any address involving
9261 virtual_stack_vars_rtx or arg_pointer_rtx would already have
9262 been rejected as illegitimate. */
9263 if (XEXP (addr, 0) != virtual_stack_vars_rtx
9264 && XEXP (addr, 0) != arg_pointer_rtx
9265 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
9267 unsigned HOST_WIDE_INT val = INTVAL (XEXP (addr, 1));
9268 return val + 0x8000 >= 0x10000 - (TARGET_POWERPC64 ? 8 : 12);
9270 break;
9272 case LO_SUM:
9273 /* Anything in the constant pool is sufficiently aligned that
9274 all bytes have the same high part address. */
9275 return !legitimate_constant_pool_address_p (addr, QImode, false);
9277 /* Auto-increment cases are now treated generically in recog.c. */
9278 case PRE_MODIFY:
9279 return TARGET_UPDATE;
9281 /* AND is only allowed in Altivec loads. */
9282 case AND:
9283 return true;
9285 default:
9286 break;
9289 return false;
9292 /* Debug version of rs6000_mode_dependent_address. */
9293 static bool
9294 rs6000_debug_mode_dependent_address (const_rtx addr)
9296 bool ret = rs6000_mode_dependent_address (addr);
9298 fprintf (stderr, "\nrs6000_mode_dependent_address: ret = %s\n",
9299 ret ? "true" : "false");
9300 debug_rtx (addr);
9302 return ret;
9305 /* Implement FIND_BASE_TERM. */
9308 rs6000_find_base_term (rtx op)
9310 rtx base;
9312 base = op;
9313 if (GET_CODE (base) == CONST)
9314 base = XEXP (base, 0);
9315 if (GET_CODE (base) == PLUS)
9316 base = XEXP (base, 0);
9317 if (GET_CODE (base) == UNSPEC)
9318 switch (XINT (base, 1))
9320 case UNSPEC_TOCREL:
9321 case UNSPEC_MACHOPIC_OFFSET:
9322 /* OP represents SYM [+ OFFSET] - ANCHOR. SYM is the base term
9323 for aliasing purposes. */
9324 return XVECEXP (base, 0, 0);
9327 return op;
9330 /* More elaborate version of recog's offsettable_memref_p predicate
9331 that works around the ??? note of rs6000_mode_dependent_address.
9332 In particular it accepts
9334 (mem:DI (plus:SI (reg/f:SI 31 31) (const_int 32760 [0x7ff8])))
9336 in 32-bit mode, that the recog predicate rejects. */
9338 static bool
9339 rs6000_offsettable_memref_p (rtx op, machine_mode reg_mode, bool strict)
9341 bool worst_case;
9343 if (!MEM_P (op))
9344 return false;
9346 /* First mimic offsettable_memref_p. */
9347 if (offsettable_address_p (strict, GET_MODE (op), XEXP (op, 0)))
9348 return true;
9350 /* offsettable_address_p invokes rs6000_mode_dependent_address, but
9351 the latter predicate knows nothing about the mode of the memory
9352 reference and, therefore, assumes that it is the largest supported
9353 mode (TFmode). As a consequence, legitimate offsettable memory
9354 references are rejected. rs6000_legitimate_offset_address_p contains
9355 the correct logic for the PLUS case of rs6000_mode_dependent_address,
9356 at least with a little bit of help here given that we know the
9357 actual registers used. */
9358 worst_case = ((TARGET_POWERPC64 && GET_MODE_CLASS (reg_mode) == MODE_INT)
9359 || GET_MODE_SIZE (reg_mode) == 4);
9360 return rs6000_legitimate_offset_address_p (GET_MODE (op), XEXP (op, 0),
9361 strict, worst_case);
9364 /* Determine the reassociation width to be used in reassociate_bb.
9365 This takes into account how many parallel operations we
9366 can actually do of a given type, and also the latency.
9368 int add/sub 6/cycle
9369 mul 2/cycle
9370 vect add/sub/mul 2/cycle
9371 fp add/sub/mul 2/cycle
9372 dfp 1/cycle
9375 static int
9376 rs6000_reassociation_width (unsigned int opc ATTRIBUTE_UNUSED,
9377 machine_mode mode)
9379 switch (rs6000_tune)
9381 case PROCESSOR_POWER8:
9382 case PROCESSOR_POWER9:
9383 if (DECIMAL_FLOAT_MODE_P (mode))
9384 return 1;
9385 if (VECTOR_MODE_P (mode))
9386 return 4;
9387 if (INTEGRAL_MODE_P (mode))
9388 return 1;
9389 if (FLOAT_MODE_P (mode))
9390 return 4;
9391 break;
9392 default:
9393 break;
9395 return 1;
9398 /* Change register usage conditional on target flags. */
9399 static void
9400 rs6000_conditional_register_usage (void)
9402 int i;
9404 if (TARGET_DEBUG_TARGET)
9405 fprintf (stderr, "rs6000_conditional_register_usage called\n");
9407 /* Set MQ register fixed (already call_used) so that it will not be
9408 allocated. */
9409 fixed_regs[64] = 1;
9411 /* 64-bit AIX and Linux reserve GPR13 for thread-private data. */
9412 if (TARGET_64BIT)
9413 fixed_regs[13] = call_used_regs[13]
9414 = call_really_used_regs[13] = 1;
9416 /* Conditionally disable FPRs. */
9417 if (TARGET_SOFT_FLOAT)
9418 for (i = 32; i < 64; i++)
9419 fixed_regs[i] = call_used_regs[i]
9420 = call_really_used_regs[i] = 1;
9422 /* The TOC register is not killed across calls in a way that is
9423 visible to the compiler. */
9424 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
9425 call_really_used_regs[2] = 0;
9427 if (DEFAULT_ABI == ABI_V4 && flag_pic == 2)
9428 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
9430 if (DEFAULT_ABI == ABI_V4 && flag_pic == 1)
9431 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
9432 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
9433 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
9435 if (DEFAULT_ABI == ABI_DARWIN && flag_pic)
9436 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
9437 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
9438 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
9440 if (TARGET_TOC && TARGET_MINIMAL_TOC)
9441 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
9442 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;
9444 if (!TARGET_ALTIVEC && !TARGET_VSX)
9446 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
9447 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
9448 call_really_used_regs[VRSAVE_REGNO] = 1;
9451 if (TARGET_ALTIVEC || TARGET_VSX)
9452 global_regs[VSCR_REGNO] = 1;
9454 if (TARGET_ALTIVEC_ABI)
9456 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)
9457 call_used_regs[i] = call_really_used_regs[i] = 1;
9459 /* AIX reserves VR20:31 in non-extended ABI mode. */
9460 if (TARGET_XCOFF)
9461 for (i = FIRST_ALTIVEC_REGNO + 20; i < FIRST_ALTIVEC_REGNO + 32; ++i)
9462 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
9467 /* Output insns to set DEST equal to the constant SOURCE as a series of
9468 lis, ori and shl instructions and return TRUE. */
9470 bool
9471 rs6000_emit_set_const (rtx dest, rtx source)
9473 machine_mode mode = GET_MODE (dest);
9474 rtx temp, set;
9475 rtx_insn *insn;
9476 HOST_WIDE_INT c;
9478 gcc_checking_assert (CONST_INT_P (source));
9479 c = INTVAL (source);
9480 switch (mode)
9482 case E_QImode:
9483 case E_HImode:
9484 emit_insn (gen_rtx_SET (dest, source));
9485 return true;
9487 case E_SImode:
9488 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (SImode);
9490 emit_insn (gen_rtx_SET (copy_rtx (temp),
9491 GEN_INT (c & ~(HOST_WIDE_INT) 0xffff)));
9492 emit_insn (gen_rtx_SET (dest,
9493 gen_rtx_IOR (SImode, copy_rtx (temp),
9494 GEN_INT (c & 0xffff))));
9495 break;
9497 case E_DImode:
9498 if (!TARGET_POWERPC64)
9500 rtx hi, lo;
9502 hi = operand_subword_force (copy_rtx (dest), WORDS_BIG_ENDIAN == 0,
9503 DImode);
9504 lo = operand_subword_force (dest, WORDS_BIG_ENDIAN != 0,
9505 DImode);
9506 emit_move_insn (hi, GEN_INT (c >> 32));
9507 c = ((c & 0xffffffff) ^ 0x80000000) - 0x80000000;
9508 emit_move_insn (lo, GEN_INT (c));
9510 else
9511 rs6000_emit_set_long_const (dest, c);
9512 break;
9514 default:
9515 gcc_unreachable ();
9518 insn = get_last_insn ();
9519 set = single_set (insn);
9520 if (! CONSTANT_P (SET_SRC (set)))
9521 set_unique_reg_note (insn, REG_EQUAL, GEN_INT (c));
9523 return true;
9526 /* Subroutine of rs6000_emit_set_const, handling PowerPC64 DImode.
9527 Output insns to set DEST equal to the constant C as a series of
9528 lis, ori and shl instructions. */
9530 static void
9531 rs6000_emit_set_long_const (rtx dest, HOST_WIDE_INT c)
9533 rtx temp;
9534 HOST_WIDE_INT ud1, ud2, ud3, ud4;
9536 ud1 = c & 0xffff;
9537 c = c >> 16;
9538 ud2 = c & 0xffff;
9539 c = c >> 16;
9540 ud3 = c & 0xffff;
9541 c = c >> 16;
9542 ud4 = c & 0xffff;
9544 if ((ud4 == 0xffff && ud3 == 0xffff && ud2 == 0xffff && (ud1 & 0x8000))
9545 || (ud4 == 0 && ud3 == 0 && ud2 == 0 && ! (ud1 & 0x8000)))
9546 emit_move_insn (dest, GEN_INT ((ud1 ^ 0x8000) - 0x8000));
9548 else if ((ud4 == 0xffff && ud3 == 0xffff && (ud2 & 0x8000))
9549 || (ud4 == 0 && ud3 == 0 && ! (ud2 & 0x8000)))
9551 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
9553 emit_move_insn (ud1 != 0 ? copy_rtx (temp) : dest,
9554 GEN_INT (((ud2 << 16) ^ 0x80000000) - 0x80000000));
9555 if (ud1 != 0)
9556 emit_move_insn (dest,
9557 gen_rtx_IOR (DImode, copy_rtx (temp),
9558 GEN_INT (ud1)));
9560 else if (ud3 == 0 && ud4 == 0)
9562 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
9564 gcc_assert (ud2 & 0x8000);
9565 emit_move_insn (copy_rtx (temp),
9566 GEN_INT (((ud2 << 16) ^ 0x80000000) - 0x80000000));
9567 if (ud1 != 0)
9568 emit_move_insn (copy_rtx (temp),
9569 gen_rtx_IOR (DImode, copy_rtx (temp),
9570 GEN_INT (ud1)));
9571 emit_move_insn (dest,
9572 gen_rtx_ZERO_EXTEND (DImode,
9573 gen_lowpart (SImode,
9574 copy_rtx (temp))));
9576 else if ((ud4 == 0xffff && (ud3 & 0x8000))
9577 || (ud4 == 0 && ! (ud3 & 0x8000)))
9579 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
9581 emit_move_insn (copy_rtx (temp),
9582 GEN_INT (((ud3 << 16) ^ 0x80000000) - 0x80000000));
9583 if (ud2 != 0)
9584 emit_move_insn (copy_rtx (temp),
9585 gen_rtx_IOR (DImode, copy_rtx (temp),
9586 GEN_INT (ud2)));
9587 emit_move_insn (ud1 != 0 ? copy_rtx (temp) : dest,
9588 gen_rtx_ASHIFT (DImode, copy_rtx (temp),
9589 GEN_INT (16)));
9590 if (ud1 != 0)
9591 emit_move_insn (dest,
9592 gen_rtx_IOR (DImode, copy_rtx (temp),
9593 GEN_INT (ud1)));
9595 else
9597 temp = !can_create_pseudo_p () ? dest : gen_reg_rtx (DImode);
9599 emit_move_insn (copy_rtx (temp),
9600 GEN_INT (((ud4 << 16) ^ 0x80000000) - 0x80000000));
9601 if (ud3 != 0)
9602 emit_move_insn (copy_rtx (temp),
9603 gen_rtx_IOR (DImode, copy_rtx (temp),
9604 GEN_INT (ud3)));
9606 emit_move_insn (ud2 != 0 || ud1 != 0 ? copy_rtx (temp) : dest,
9607 gen_rtx_ASHIFT (DImode, copy_rtx (temp),
9608 GEN_INT (32)));
9609 if (ud2 != 0)
9610 emit_move_insn (ud1 != 0 ? copy_rtx (temp) : dest,
9611 gen_rtx_IOR (DImode, copy_rtx (temp),
9612 GEN_INT (ud2 << 16)));
9613 if (ud1 != 0)
9614 emit_move_insn (dest,
9615 gen_rtx_IOR (DImode, copy_rtx (temp),
9616 GEN_INT (ud1)));
9620 /* Helper for the following. Get rid of [r+r] memory refs
9621 in cases where it won't work (TImode, TFmode, TDmode, PTImode). */
9623 static void
9624 rs6000_eliminate_indexed_memrefs (rtx operands[2])
9626 if (GET_CODE (operands[0]) == MEM
9627 && GET_CODE (XEXP (operands[0], 0)) != REG
9628 && ! legitimate_constant_pool_address_p (XEXP (operands[0], 0),
9629 GET_MODE (operands[0]), false))
9630 operands[0]
9631 = replace_equiv_address (operands[0],
9632 copy_addr_to_reg (XEXP (operands[0], 0)));
9634 if (GET_CODE (operands[1]) == MEM
9635 && GET_CODE (XEXP (operands[1], 0)) != REG
9636 && ! legitimate_constant_pool_address_p (XEXP (operands[1], 0),
9637 GET_MODE (operands[1]), false))
9638 operands[1]
9639 = replace_equiv_address (operands[1],
9640 copy_addr_to_reg (XEXP (operands[1], 0)));
9643 /* Generate a vector of constants to permute MODE for a little-endian
9644 storage operation by swapping the two halves of a vector. */
9645 static rtvec
9646 rs6000_const_vec (machine_mode mode)
9648 int i, subparts;
9649 rtvec v;
9651 switch (mode)
9653 case E_V1TImode:
9654 subparts = 1;
9655 break;
9656 case E_V2DFmode:
9657 case E_V2DImode:
9658 subparts = 2;
9659 break;
9660 case E_V4SFmode:
9661 case E_V4SImode:
9662 subparts = 4;
9663 break;
9664 case E_V8HImode:
9665 subparts = 8;
9666 break;
9667 case E_V16QImode:
9668 subparts = 16;
9669 break;
9670 default:
9671 gcc_unreachable();
9674 v = rtvec_alloc (subparts);
9676 for (i = 0; i < subparts / 2; ++i)
9677 RTVEC_ELT (v, i) = gen_rtx_CONST_INT (DImode, i + subparts / 2);
9678 for (i = subparts / 2; i < subparts; ++i)
9679 RTVEC_ELT (v, i) = gen_rtx_CONST_INT (DImode, i - subparts / 2);
9681 return v;
9684 /* Emit an lxvd2x, stxvd2x, or xxpermdi instruction for a VSX load or
9685 store operation. */
9686 void
9687 rs6000_emit_le_vsx_permute (rtx dest, rtx source, machine_mode mode)
9689 /* Scalar permutations are easier to express in integer modes rather than
9690 floating-point modes, so cast them here. We use V1TImode instead
9691 of TImode to ensure that the values don't go through GPRs. */
9692 if (FLOAT128_VECTOR_P (mode))
9694 dest = gen_lowpart (V1TImode, dest);
9695 source = gen_lowpart (V1TImode, source);
9696 mode = V1TImode;
9699 /* Use ROTATE instead of VEC_SELECT if the mode contains only a single
9700 scalar. */
9701 if (mode == TImode || mode == V1TImode)
9702 emit_insn (gen_rtx_SET (dest, gen_rtx_ROTATE (mode, source,
9703 GEN_INT (64))));
9704 else
9706 rtx par = gen_rtx_PARALLEL (VOIDmode, rs6000_const_vec (mode));
9707 emit_insn (gen_rtx_SET (dest, gen_rtx_VEC_SELECT (mode, source, par)));
9711 /* Emit a little-endian load from vector memory location SOURCE to VSX
9712 register DEST in mode MODE. The load is done with two permuting
9713 insn's that represent an lxvd2x and xxpermdi. */
9714 void
9715 rs6000_emit_le_vsx_load (rtx dest, rtx source, machine_mode mode)
9717 /* Use V2DImode to do swaps of types with 128-bit scalare parts (TImode,
9718 V1TImode). */
9719 if (mode == TImode || mode == V1TImode)
9721 mode = V2DImode;
9722 dest = gen_lowpart (V2DImode, dest);
9723 source = adjust_address (source, V2DImode, 0);
9726 rtx tmp = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (dest) : dest;
9727 rs6000_emit_le_vsx_permute (tmp, source, mode);
9728 rs6000_emit_le_vsx_permute (dest, tmp, mode);
9731 /* Emit a little-endian store to vector memory location DEST from VSX
9732 register SOURCE in mode MODE. The store is done with two permuting
9733 insn's that represent an xxpermdi and an stxvd2x. */
9734 void
9735 rs6000_emit_le_vsx_store (rtx dest, rtx source, machine_mode mode)
9737 /* This should never be called during or after LRA, because it does
9738 not re-permute the source register. It is intended only for use
9739 during expand. */
9740 gcc_assert (!lra_in_progress && !reload_completed);
9742 /* Use V2DImode to do swaps of types with 128-bit scalar parts (TImode,
9743 V1TImode). */
9744 if (mode == TImode || mode == V1TImode)
9746 mode = V2DImode;
9747 dest = adjust_address (dest, V2DImode, 0);
9748 source = gen_lowpart (V2DImode, source);
9751 rtx tmp = can_create_pseudo_p () ? gen_reg_rtx_and_attrs (source) : source;
9752 rs6000_emit_le_vsx_permute (tmp, source, mode);
9753 rs6000_emit_le_vsx_permute (dest, tmp, mode);
9756 /* Emit a sequence representing a little-endian VSX load or store,
9757 moving data from SOURCE to DEST in mode MODE. This is done
9758 separately from rs6000_emit_move to ensure it is called only
9759 during expand. LE VSX loads and stores introduced later are
9760 handled with a split. The expand-time RTL generation allows
9761 us to optimize away redundant pairs of register-permutes. */
9762 void
9763 rs6000_emit_le_vsx_move (rtx dest, rtx source, machine_mode mode)
9765 gcc_assert (!BYTES_BIG_ENDIAN
9766 && VECTOR_MEM_VSX_P (mode)
9767 && !TARGET_P9_VECTOR
9768 && !gpr_or_gpr_p (dest, source)
9769 && (MEM_P (source) ^ MEM_P (dest)));
9771 if (MEM_P (source))
9773 gcc_assert (REG_P (dest) || GET_CODE (dest) == SUBREG);
9774 rs6000_emit_le_vsx_load (dest, source, mode);
9776 else
9778 if (!REG_P (source))
9779 source = force_reg (mode, source);
9780 rs6000_emit_le_vsx_store (dest, source, mode);
9784 /* Return whether a SFmode or SImode move can be done without converting one
9785 mode to another. This arrises when we have:
9787 (SUBREG:SF (REG:SI ...))
9788 (SUBREG:SI (REG:SF ...))
9790 and one of the values is in a floating point/vector register, where SFmode
9791 scalars are stored in DFmode format. */
9793 bool
9794 valid_sf_si_move (rtx dest, rtx src, machine_mode mode)
9796 if (TARGET_ALLOW_SF_SUBREG)
9797 return true;
9799 if (mode != SFmode && GET_MODE_CLASS (mode) != MODE_INT)
9800 return true;
9802 if (!SUBREG_P (src) || !sf_subreg_operand (src, mode))
9803 return true;
9805 /*. Allow (set (SUBREG:SI (REG:SF)) (SUBREG:SI (REG:SF))). */
9806 if (SUBREG_P (dest))
9808 rtx dest_subreg = SUBREG_REG (dest);
9809 rtx src_subreg = SUBREG_REG (src);
9810 return GET_MODE (dest_subreg) == GET_MODE (src_subreg);
9813 return false;
9817 /* Helper function to change moves with:
9819 (SUBREG:SF (REG:SI)) and
9820 (SUBREG:SI (REG:SF))
9822 into separate UNSPEC insns. In the PowerPC architecture, scalar SFmode
9823 values are stored as DFmode values in the VSX registers. We need to convert
9824 the bits before we can use a direct move or operate on the bits in the
9825 vector register as an integer type.
9827 Skip things like (set (SUBREG:SI (...) (SUBREG:SI (...)). */
9829 static bool
9830 rs6000_emit_move_si_sf_subreg (rtx dest, rtx source, machine_mode mode)
9832 if (TARGET_DIRECT_MOVE_64BIT && !lra_in_progress && !reload_completed
9833 && (!SUBREG_P (dest) || !sf_subreg_operand (dest, mode))
9834 && SUBREG_P (source) && sf_subreg_operand (source, mode))
9836 rtx inner_source = SUBREG_REG (source);
9837 machine_mode inner_mode = GET_MODE (inner_source);
9839 if (mode == SImode && inner_mode == SFmode)
9841 emit_insn (gen_movsi_from_sf (dest, inner_source));
9842 return true;
9845 if (mode == SFmode && inner_mode == SImode)
9847 emit_insn (gen_movsf_from_si (dest, inner_source));
9848 return true;
9852 return false;
9855 /* Emit a move from SOURCE to DEST in mode MODE. */
9856 void
9857 rs6000_emit_move (rtx dest, rtx source, machine_mode mode)
9859 rtx operands[2];
9860 operands[0] = dest;
9861 operands[1] = source;
9863 if (TARGET_DEBUG_ADDR)
9865 fprintf (stderr,
9866 "\nrs6000_emit_move: mode = %s, lra_in_progress = %d, "
9867 "reload_completed = %d, can_create_pseudos = %d.\ndest:\n",
9868 GET_MODE_NAME (mode),
9869 lra_in_progress,
9870 reload_completed,
9871 can_create_pseudo_p ());
9872 debug_rtx (dest);
9873 fprintf (stderr, "source:\n");
9874 debug_rtx (source);
9877 /* Sanity checks. Check that we get CONST_DOUBLE only when we should. */
9878 if (CONST_WIDE_INT_P (operands[1])
9879 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9881 /* This should be fixed with the introduction of CONST_WIDE_INT. */
9882 gcc_unreachable ();
9885 #ifdef HAVE_AS_GNU_ATTRIBUTE
9886 /* If we use a long double type, set the flags in .gnu_attribute that say
9887 what the long double type is. This is to allow the linker's warning
9888 message for the wrong long double to be useful, even if the function does
9889 not do a call (for example, doing a 128-bit add on power9 if the long
9890 double type is IEEE 128-bit. Do not set this if __ibm128 or __floa128 are
9891 used if they aren't the default long dobule type. */
9892 if (rs6000_gnu_attr && (HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE || TARGET_64BIT))
9894 if (TARGET_LONG_DOUBLE_128 && (mode == TFmode || mode == TCmode))
9895 rs6000_passes_float = rs6000_passes_long_double = true;
9897 else if (!TARGET_LONG_DOUBLE_128 && (mode == DFmode || mode == DCmode))
9898 rs6000_passes_float = rs6000_passes_long_double = true;
9900 #endif
9902 /* See if we need to special case SImode/SFmode SUBREG moves. */
9903 if ((mode == SImode || mode == SFmode) && SUBREG_P (source)
9904 && rs6000_emit_move_si_sf_subreg (dest, source, mode))
9905 return;
9907 /* Check if GCC is setting up a block move that will end up using FP
9908 registers as temporaries. We must make sure this is acceptable. */
9909 if (GET_CODE (operands[0]) == MEM
9910 && GET_CODE (operands[1]) == MEM
9911 && mode == DImode
9912 && (rs6000_slow_unaligned_access (DImode, MEM_ALIGN (operands[0]))
9913 || rs6000_slow_unaligned_access (DImode, MEM_ALIGN (operands[1])))
9914 && ! (rs6000_slow_unaligned_access (SImode,
9915 (MEM_ALIGN (operands[0]) > 32
9916 ? 32 : MEM_ALIGN (operands[0])))
9917 || rs6000_slow_unaligned_access (SImode,
9918 (MEM_ALIGN (operands[1]) > 32
9919 ? 32 : MEM_ALIGN (operands[1]))))
9920 && ! MEM_VOLATILE_P (operands [0])
9921 && ! MEM_VOLATILE_P (operands [1]))
9923 emit_move_insn (adjust_address (operands[0], SImode, 0),
9924 adjust_address (operands[1], SImode, 0));
9925 emit_move_insn (adjust_address (copy_rtx (operands[0]), SImode, 4),
9926 adjust_address (copy_rtx (operands[1]), SImode, 4));
9927 return;
9930 if (can_create_pseudo_p () && GET_CODE (operands[0]) == MEM
9931 && !gpc_reg_operand (operands[1], mode))
9932 operands[1] = force_reg (mode, operands[1]);
9934 /* Recognize the case where operand[1] is a reference to thread-local
9935 data and load its address to a register. */
9936 if (tls_referenced_p (operands[1]))
9938 enum tls_model model;
9939 rtx tmp = operands[1];
9940 rtx addend = NULL;
9942 if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
9944 addend = XEXP (XEXP (tmp, 0), 1);
9945 tmp = XEXP (XEXP (tmp, 0), 0);
9948 gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
9949 model = SYMBOL_REF_TLS_MODEL (tmp);
9950 gcc_assert (model != 0);
9952 tmp = rs6000_legitimize_tls_address (tmp, model);
9953 if (addend)
9955 tmp = gen_rtx_PLUS (mode, tmp, addend);
9956 tmp = force_operand (tmp, operands[0]);
9958 operands[1] = tmp;
9961 /* 128-bit constant floating-point values on Darwin should really be loaded
9962 as two parts. However, this premature splitting is a problem when DFmode
9963 values can go into Altivec registers. */
9964 if (FLOAT128_IBM_P (mode) && !reg_addr[DFmode].scalar_in_vmx_p
9965 && GET_CODE (operands[1]) == CONST_DOUBLE)
9967 rs6000_emit_move (simplify_gen_subreg (DFmode, operands[0], mode, 0),
9968 simplify_gen_subreg (DFmode, operands[1], mode, 0),
9969 DFmode);
9970 rs6000_emit_move (simplify_gen_subreg (DFmode, operands[0], mode,
9971 GET_MODE_SIZE (DFmode)),
9972 simplify_gen_subreg (DFmode, operands[1], mode,
9973 GET_MODE_SIZE (DFmode)),
9974 DFmode);
9975 return;
9978 /* Transform (p0:DD, (SUBREG:DD p1:SD)) to ((SUBREG:SD p0:DD),
9979 p1:SD) if p1 is not of floating point class and p0 is spilled as
9980 we can have no analogous movsd_store for this. */
9981 if (lra_in_progress && mode == DDmode
9982 && REG_P (operands[0]) && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER
9983 && reg_preferred_class (REGNO (operands[0])) == NO_REGS
9984 && GET_CODE (operands[1]) == SUBREG && REG_P (SUBREG_REG (operands[1]))
9985 && GET_MODE (SUBREG_REG (operands[1])) == SDmode)
9987 enum reg_class cl;
9988 int regno = REGNO (SUBREG_REG (operands[1]));
9990 if (regno >= FIRST_PSEUDO_REGISTER)
9992 cl = reg_preferred_class (regno);
9993 regno = reg_renumber[regno];
9994 if (regno < 0)
9995 regno = cl == NO_REGS ? -1 : ira_class_hard_regs[cl][1];
9997 if (regno >= 0 && ! FP_REGNO_P (regno))
9999 mode = SDmode;
10000 operands[0] = gen_lowpart_SUBREG (SDmode, operands[0]);
10001 operands[1] = SUBREG_REG (operands[1]);
10004 if (lra_in_progress
10005 && mode == SDmode
10006 && REG_P (operands[0]) && REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER
10007 && reg_preferred_class (REGNO (operands[0])) == NO_REGS
10008 && (REG_P (operands[1])
10009 || (GET_CODE (operands[1]) == SUBREG
10010 && REG_P (SUBREG_REG (operands[1])))))
10012 int regno = REGNO (GET_CODE (operands[1]) == SUBREG
10013 ? SUBREG_REG (operands[1]) : operands[1]);
10014 enum reg_class cl;
10016 if (regno >= FIRST_PSEUDO_REGISTER)
10018 cl = reg_preferred_class (regno);
10019 gcc_assert (cl != NO_REGS);
10020 regno = reg_renumber[regno];
10021 if (regno < 0)
10022 regno = ira_class_hard_regs[cl][0];
10024 if (FP_REGNO_P (regno))
10026 if (GET_MODE (operands[0]) != DDmode)
10027 operands[0] = gen_rtx_SUBREG (DDmode, operands[0], 0);
10028 emit_insn (gen_movsd_store (operands[0], operands[1]));
10030 else if (INT_REGNO_P (regno))
10031 emit_insn (gen_movsd_hardfloat (operands[0], operands[1]));
10032 else
10033 gcc_unreachable();
10034 return;
10036 /* Transform ((SUBREG:DD p0:SD), p1:DD) to (p0:SD, (SUBREG:SD
10037 p:DD)) if p0 is not of floating point class and p1 is spilled as
10038 we can have no analogous movsd_load for this. */
10039 if (lra_in_progress && mode == DDmode
10040 && GET_CODE (operands[0]) == SUBREG && REG_P (SUBREG_REG (operands[0]))
10041 && GET_MODE (SUBREG_REG (operands[0])) == SDmode
10042 && REG_P (operands[1]) && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER
10043 && reg_preferred_class (REGNO (operands[1])) == NO_REGS)
10045 enum reg_class cl;
10046 int regno = REGNO (SUBREG_REG (operands[0]));
10048 if (regno >= FIRST_PSEUDO_REGISTER)
10050 cl = reg_preferred_class (regno);
10051 regno = reg_renumber[regno];
10052 if (regno < 0)
10053 regno = cl == NO_REGS ? -1 : ira_class_hard_regs[cl][0];
10055 if (regno >= 0 && ! FP_REGNO_P (regno))
10057 mode = SDmode;
10058 operands[0] = SUBREG_REG (operands[0]);
10059 operands[1] = gen_lowpart_SUBREG (SDmode, operands[1]);
10062 if (lra_in_progress
10063 && mode == SDmode
10064 && (REG_P (operands[0])
10065 || (GET_CODE (operands[0]) == SUBREG
10066 && REG_P (SUBREG_REG (operands[0]))))
10067 && REG_P (operands[1]) && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER
10068 && reg_preferred_class (REGNO (operands[1])) == NO_REGS)
10070 int regno = REGNO (GET_CODE (operands[0]) == SUBREG
10071 ? SUBREG_REG (operands[0]) : operands[0]);
10072 enum reg_class cl;
10074 if (regno >= FIRST_PSEUDO_REGISTER)
10076 cl = reg_preferred_class (regno);
10077 gcc_assert (cl != NO_REGS);
10078 regno = reg_renumber[regno];
10079 if (regno < 0)
10080 regno = ira_class_hard_regs[cl][0];
10082 if (FP_REGNO_P (regno))
10084 if (GET_MODE (operands[1]) != DDmode)
10085 operands[1] = gen_rtx_SUBREG (DDmode, operands[1], 0);
10086 emit_insn (gen_movsd_load (operands[0], operands[1]));
10088 else if (INT_REGNO_P (regno))
10089 emit_insn (gen_movsd_hardfloat (operands[0], operands[1]));
10090 else
10091 gcc_unreachable();
10092 return;
10095 /* FIXME: In the long term, this switch statement should go away
10096 and be replaced by a sequence of tests based on things like
10097 mode == Pmode. */
10098 switch (mode)
10100 case E_HImode:
10101 case E_QImode:
10102 if (CONSTANT_P (operands[1])
10103 && GET_CODE (operands[1]) != CONST_INT)
10104 operands[1] = force_const_mem (mode, operands[1]);
10105 break;
10107 case E_TFmode:
10108 case E_TDmode:
10109 case E_IFmode:
10110 case E_KFmode:
10111 if (FLOAT128_2REG_P (mode))
10112 rs6000_eliminate_indexed_memrefs (operands);
10113 /* fall through */
10115 case E_DFmode:
10116 case E_DDmode:
10117 case E_SFmode:
10118 case E_SDmode:
10119 if (CONSTANT_P (operands[1])
10120 && ! easy_fp_constant (operands[1], mode))
10121 operands[1] = force_const_mem (mode, operands[1]);
10122 break;
10124 case E_V16QImode:
10125 case E_V8HImode:
10126 case E_V4SFmode:
10127 case E_V4SImode:
10128 case E_V2DFmode:
10129 case E_V2DImode:
10130 case E_V1TImode:
10131 if (CONSTANT_P (operands[1])
10132 && !easy_vector_constant (operands[1], mode))
10133 operands[1] = force_const_mem (mode, operands[1]);
10134 break;
10136 case E_SImode:
10137 case E_DImode:
10138 /* Use default pattern for address of ELF small data */
10139 if (TARGET_ELF
10140 && mode == Pmode
10141 && DEFAULT_ABI == ABI_V4
10142 && (GET_CODE (operands[1]) == SYMBOL_REF
10143 || GET_CODE (operands[1]) == CONST)
10144 && small_data_operand (operands[1], mode))
10146 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10147 return;
10150 if (DEFAULT_ABI == ABI_V4
10151 && mode == Pmode && mode == SImode
10152 && flag_pic == 1 && got_operand (operands[1], mode))
10154 emit_insn (gen_movsi_got (operands[0], operands[1]));
10155 return;
10158 if ((TARGET_ELF || DEFAULT_ABI == ABI_DARWIN)
10159 && TARGET_NO_TOC
10160 && ! flag_pic
10161 && mode == Pmode
10162 && CONSTANT_P (operands[1])
10163 && GET_CODE (operands[1]) != HIGH
10164 && GET_CODE (operands[1]) != CONST_INT)
10166 rtx target = (!can_create_pseudo_p ()
10167 ? operands[0]
10168 : gen_reg_rtx (mode));
10170 /* If this is a function address on -mcall-aixdesc,
10171 convert it to the address of the descriptor. */
10172 if (DEFAULT_ABI == ABI_AIX
10173 && GET_CODE (operands[1]) == SYMBOL_REF
10174 && XSTR (operands[1], 0)[0] == '.')
10176 const char *name = XSTR (operands[1], 0);
10177 rtx new_ref;
10178 while (*name == '.')
10179 name++;
10180 new_ref = gen_rtx_SYMBOL_REF (Pmode, name);
10181 CONSTANT_POOL_ADDRESS_P (new_ref)
10182 = CONSTANT_POOL_ADDRESS_P (operands[1]);
10183 SYMBOL_REF_FLAGS (new_ref) = SYMBOL_REF_FLAGS (operands[1]);
10184 SYMBOL_REF_USED (new_ref) = SYMBOL_REF_USED (operands[1]);
10185 SYMBOL_REF_DATA (new_ref) = SYMBOL_REF_DATA (operands[1]);
10186 operands[1] = new_ref;
10189 if (DEFAULT_ABI == ABI_DARWIN)
10191 #if TARGET_MACHO
10192 if (MACHO_DYNAMIC_NO_PIC_P)
10194 /* Take care of any required data indirection. */
10195 operands[1] = rs6000_machopic_legitimize_pic_address (
10196 operands[1], mode, operands[0]);
10197 if (operands[0] != operands[1])
10198 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10199 return;
10201 #endif
10202 emit_insn (gen_macho_high (target, operands[1]));
10203 emit_insn (gen_macho_low (operands[0], target, operands[1]));
10204 return;
10207 emit_insn (gen_elf_high (target, operands[1]));
10208 emit_insn (gen_elf_low (operands[0], target, operands[1]));
10209 return;
10212 /* If this is a SYMBOL_REF that refers to a constant pool entry,
10213 and we have put it in the TOC, we just need to make a TOC-relative
10214 reference to it. */
10215 if (TARGET_TOC
10216 && GET_CODE (operands[1]) == SYMBOL_REF
10217 && use_toc_relative_ref (operands[1], mode))
10218 operands[1] = create_TOC_reference (operands[1], operands[0]);
10219 else if (mode == Pmode
10220 && CONSTANT_P (operands[1])
10221 && GET_CODE (operands[1]) != HIGH
10222 && ((GET_CODE (operands[1]) != CONST_INT
10223 && ! easy_fp_constant (operands[1], mode))
10224 || (GET_CODE (operands[1]) == CONST_INT
10225 && (num_insns_constant (operands[1], mode)
10226 > (TARGET_CMODEL != CMODEL_SMALL ? 3 : 2)))
10227 || (GET_CODE (operands[0]) == REG
10228 && FP_REGNO_P (REGNO (operands[0]))))
10229 && !toc_relative_expr_p (operands[1], false, NULL, NULL)
10230 && (TARGET_CMODEL == CMODEL_SMALL
10231 || can_create_pseudo_p ()
10232 || (REG_P (operands[0])
10233 && INT_REG_OK_FOR_BASE_P (operands[0], true))))
10236 #if TARGET_MACHO
10237 /* Darwin uses a special PIC legitimizer. */
10238 if (DEFAULT_ABI == ABI_DARWIN && MACHOPIC_INDIRECT)
10240 operands[1] =
10241 rs6000_machopic_legitimize_pic_address (operands[1], mode,
10242 operands[0]);
10243 if (operands[0] != operands[1])
10244 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10245 return;
10247 #endif
10249 /* If we are to limit the number of things we put in the TOC and
10250 this is a symbol plus a constant we can add in one insn,
10251 just put the symbol in the TOC and add the constant. */
10252 if (GET_CODE (operands[1]) == CONST
10253 && TARGET_NO_SUM_IN_TOC
10254 && GET_CODE (XEXP (operands[1], 0)) == PLUS
10255 && add_operand (XEXP (XEXP (operands[1], 0), 1), mode)
10256 && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
10257 || GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
10258 && ! side_effects_p (operands[0]))
10260 rtx sym =
10261 force_const_mem (mode, XEXP (XEXP (operands[1], 0), 0));
10262 rtx other = XEXP (XEXP (operands[1], 0), 1);
10264 sym = force_reg (mode, sym);
10265 emit_insn (gen_add3_insn (operands[0], sym, other));
10266 return;
10269 operands[1] = force_const_mem (mode, operands[1]);
10271 if (TARGET_TOC
10272 && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
10273 && use_toc_relative_ref (XEXP (operands[1], 0), mode))
10275 rtx tocref = create_TOC_reference (XEXP (operands[1], 0),
10276 operands[0]);
10277 operands[1] = gen_const_mem (mode, tocref);
10278 set_mem_alias_set (operands[1], get_TOC_alias_set ());
10281 break;
10283 case E_TImode:
10284 if (!VECTOR_MEM_VSX_P (TImode))
10285 rs6000_eliminate_indexed_memrefs (operands);
10286 break;
10288 case E_PTImode:
10289 rs6000_eliminate_indexed_memrefs (operands);
10290 break;
10292 default:
10293 fatal_insn ("bad move", gen_rtx_SET (dest, source));
10296 /* Above, we may have called force_const_mem which may have returned
10297 an invalid address. If we can, fix this up; otherwise, reload will
10298 have to deal with it. */
10299 if (GET_CODE (operands[1]) == MEM)
10300 operands[1] = validize_mem (operands[1]);
10302 emit_insn (gen_rtx_SET (operands[0], operands[1]));
10305 /* Nonzero if we can use a floating-point register to pass this arg. */
10306 #define USE_FP_FOR_ARG_P(CUM,MODE) \
10307 (SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) \
10308 && (CUM)->fregno <= FP_ARG_MAX_REG \
10309 && TARGET_HARD_FLOAT)
10311 /* Nonzero if we can use an AltiVec register to pass this arg. */
10312 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,NAMED) \
10313 (ALTIVEC_OR_VSX_VECTOR_MODE (MODE) \
10314 && (CUM)->vregno <= ALTIVEC_ARG_MAX_REG \
10315 && TARGET_ALTIVEC_ABI \
10316 && (NAMED))
10318 /* Walk down the type tree of TYPE counting consecutive base elements.
10319 If *MODEP is VOIDmode, then set it to the first valid floating point
10320 or vector type. If a non-floating point or vector type is found, or
10321 if a floating point or vector type that doesn't match a non-VOIDmode
10322 *MODEP is found, then return -1, otherwise return the count in the
10323 sub-tree. */
10325 static int
10326 rs6000_aggregate_candidate (const_tree type, machine_mode *modep)
10328 machine_mode mode;
10329 HOST_WIDE_INT size;
10331 switch (TREE_CODE (type))
10333 case REAL_TYPE:
10334 mode = TYPE_MODE (type);
10335 if (!SCALAR_FLOAT_MODE_P (mode))
10336 return -1;
10338 if (*modep == VOIDmode)
10339 *modep = mode;
10341 if (*modep == mode)
10342 return 1;
10344 break;
10346 case COMPLEX_TYPE:
10347 mode = TYPE_MODE (TREE_TYPE (type));
10348 if (!SCALAR_FLOAT_MODE_P (mode))
10349 return -1;
10351 if (*modep == VOIDmode)
10352 *modep = mode;
10354 if (*modep == mode)
10355 return 2;
10357 break;
10359 case VECTOR_TYPE:
10360 if (!TARGET_ALTIVEC_ABI || !TARGET_ALTIVEC)
10361 return -1;
10363 /* Use V4SImode as representative of all 128-bit vector types. */
10364 size = int_size_in_bytes (type);
10365 switch (size)
10367 case 16:
10368 mode = V4SImode;
10369 break;
10370 default:
10371 return -1;
10374 if (*modep == VOIDmode)
10375 *modep = mode;
10377 /* Vector modes are considered to be opaque: two vectors are
10378 equivalent for the purposes of being homogeneous aggregates
10379 if they are the same size. */
10380 if (*modep == mode)
10381 return 1;
10383 break;
10385 case ARRAY_TYPE:
10387 int count;
10388 tree index = TYPE_DOMAIN (type);
10390 /* Can't handle incomplete types nor sizes that are not
10391 fixed. */
10392 if (!COMPLETE_TYPE_P (type)
10393 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
10394 return -1;
10396 count = rs6000_aggregate_candidate (TREE_TYPE (type), modep);
10397 if (count == -1
10398 || !index
10399 || !TYPE_MAX_VALUE (index)
10400 || !tree_fits_uhwi_p (TYPE_MAX_VALUE (index))
10401 || !TYPE_MIN_VALUE (index)
10402 || !tree_fits_uhwi_p (TYPE_MIN_VALUE (index))
10403 || count < 0)
10404 return -1;
10406 count *= (1 + tree_to_uhwi (TYPE_MAX_VALUE (index))
10407 - tree_to_uhwi (TYPE_MIN_VALUE (index)));
10409 /* There must be no padding. */
10410 if (wi::to_wide (TYPE_SIZE (type))
10411 != count * GET_MODE_BITSIZE (*modep))
10412 return -1;
10414 return count;
10417 case RECORD_TYPE:
10419 int count = 0;
10420 int sub_count;
10421 tree field;
10423 /* Can't handle incomplete types nor sizes that are not
10424 fixed. */
10425 if (!COMPLETE_TYPE_P (type)
10426 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
10427 return -1;
10429 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
10431 if (TREE_CODE (field) != FIELD_DECL)
10432 continue;
10434 sub_count = rs6000_aggregate_candidate (TREE_TYPE (field), modep);
10435 if (sub_count < 0)
10436 return -1;
10437 count += sub_count;
10440 /* There must be no padding. */
10441 if (wi::to_wide (TYPE_SIZE (type))
10442 != count * GET_MODE_BITSIZE (*modep))
10443 return -1;
10445 return count;
10448 case UNION_TYPE:
10449 case QUAL_UNION_TYPE:
10451 /* These aren't very interesting except in a degenerate case. */
10452 int count = 0;
10453 int sub_count;
10454 tree field;
10456 /* Can't handle incomplete types nor sizes that are not
10457 fixed. */
10458 if (!COMPLETE_TYPE_P (type)
10459 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
10460 return -1;
10462 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
10464 if (TREE_CODE (field) != FIELD_DECL)
10465 continue;
10467 sub_count = rs6000_aggregate_candidate (TREE_TYPE (field), modep);
10468 if (sub_count < 0)
10469 return -1;
10470 count = count > sub_count ? count : sub_count;
10473 /* There must be no padding. */
10474 if (wi::to_wide (TYPE_SIZE (type))
10475 != count * GET_MODE_BITSIZE (*modep))
10476 return -1;
10478 return count;
10481 default:
10482 break;
10485 return -1;
10488 /* If an argument, whose type is described by TYPE and MODE, is a homogeneous
10489 float or vector aggregate that shall be passed in FP/vector registers
10490 according to the ELFv2 ABI, return the homogeneous element mode in
10491 *ELT_MODE and the number of elements in *N_ELTS, and return TRUE.
10493 Otherwise, set *ELT_MODE to MODE and *N_ELTS to 1, and return FALSE. */
10495 static bool
10496 rs6000_discover_homogeneous_aggregate (machine_mode mode, const_tree type,
10497 machine_mode *elt_mode,
10498 int *n_elts)
10500 /* Note that we do not accept complex types at the top level as
10501 homogeneous aggregates; these types are handled via the
10502 targetm.calls.split_complex_arg mechanism. Complex types
10503 can be elements of homogeneous aggregates, however. */
10504 if (TARGET_HARD_FLOAT && DEFAULT_ABI == ABI_ELFv2 && type
10505 && AGGREGATE_TYPE_P (type))
10507 machine_mode field_mode = VOIDmode;
10508 int field_count = rs6000_aggregate_candidate (type, &field_mode);
10510 if (field_count > 0)
10512 int reg_size = ALTIVEC_OR_VSX_VECTOR_MODE (field_mode) ? 16 : 8;
10513 int field_size = ROUND_UP (GET_MODE_SIZE (field_mode), reg_size);
10515 /* The ELFv2 ABI allows homogeneous aggregates to occupy
10516 up to AGGR_ARG_NUM_REG registers. */
10517 if (field_count * field_size <= AGGR_ARG_NUM_REG * reg_size)
10519 if (elt_mode)
10520 *elt_mode = field_mode;
10521 if (n_elts)
10522 *n_elts = field_count;
10523 return true;
10528 if (elt_mode)
10529 *elt_mode = mode;
10530 if (n_elts)
10531 *n_elts = 1;
10532 return false;
10535 /* Return a nonzero value to say to return the function value in
10536 memory, just as large structures are always returned. TYPE will be
10537 the data type of the value, and FNTYPE will be the type of the
10538 function doing the returning, or @code{NULL} for libcalls.
10540 The AIX ABI for the RS/6000 specifies that all structures are
10541 returned in memory. The Darwin ABI does the same.
10543 For the Darwin 64 Bit ABI, a function result can be returned in
10544 registers or in memory, depending on the size of the return data
10545 type. If it is returned in registers, the value occupies the same
10546 registers as it would if it were the first and only function
10547 argument. Otherwise, the function places its result in memory at
10548 the location pointed to by GPR3.
10550 The SVR4 ABI specifies that structures <= 8 bytes are returned in r3/r4,
10551 but a draft put them in memory, and GCC used to implement the draft
10552 instead of the final standard. Therefore, aix_struct_return
10553 controls this instead of DEFAULT_ABI; V.4 targets needing backward
10554 compatibility can change DRAFT_V4_STRUCT_RET to override the
10555 default, and -m switches get the final word. See
10556 rs6000_option_override_internal for more details.
10558 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
10559 long double support is enabled. These values are returned in memory.
10561 int_size_in_bytes returns -1 for variable size objects, which go in
10562 memory always. The cast to unsigned makes -1 > 8. */
10564 static bool
10565 rs6000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
10567 /* For the Darwin64 ABI, test if we can fit the return value in regs. */
10568 if (TARGET_MACHO
10569 && rs6000_darwin64_abi
10570 && TREE_CODE (type) == RECORD_TYPE
10571 && int_size_in_bytes (type) > 0)
10573 CUMULATIVE_ARGS valcum;
10574 rtx valret;
10576 valcum.words = 0;
10577 valcum.fregno = FP_ARG_MIN_REG;
10578 valcum.vregno = ALTIVEC_ARG_MIN_REG;
10579 /* Do a trial code generation as if this were going to be passed
10580 as an argument; if any part goes in memory, we return NULL. */
10581 valret = rs6000_darwin64_record_arg (&valcum, type, true, true);
10582 if (valret)
10583 return false;
10584 /* Otherwise fall through to more conventional ABI rules. */
10587 /* The ELFv2 ABI returns homogeneous VFP aggregates in registers */
10588 if (rs6000_discover_homogeneous_aggregate (TYPE_MODE (type), type,
10589 NULL, NULL))
10590 return false;
10592 /* The ELFv2 ABI returns aggregates up to 16B in registers */
10593 if (DEFAULT_ABI == ABI_ELFv2 && AGGREGATE_TYPE_P (type)
10594 && (unsigned HOST_WIDE_INT) int_size_in_bytes (type) <= 16)
10595 return false;
10597 if (AGGREGATE_TYPE_P (type)
10598 && (aix_struct_return
10599 || (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8))
10600 return true;
10602 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
10603 modes only exist for GCC vector types if -maltivec. */
10604 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI
10605 && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
10606 return false;
10608 /* Return synthetic vectors in memory. */
10609 if (TREE_CODE (type) == VECTOR_TYPE
10610 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
10612 static bool warned_for_return_big_vectors = false;
10613 if (!warned_for_return_big_vectors)
10615 warning (OPT_Wpsabi, "GCC vector returned by reference: "
10616 "non-standard ABI extension with no compatibility "
10617 "guarantee");
10618 warned_for_return_big_vectors = true;
10620 return true;
10623 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD
10624 && FLOAT128_IEEE_P (TYPE_MODE (type)))
10625 return true;
10627 return false;
10630 /* Specify whether values returned in registers should be at the most
10631 significant end of a register. We want aggregates returned by
10632 value to match the way aggregates are passed to functions. */
10634 static bool
10635 rs6000_return_in_msb (const_tree valtype)
10637 return (DEFAULT_ABI == ABI_ELFv2
10638 && BYTES_BIG_ENDIAN
10639 && AGGREGATE_TYPE_P (valtype)
10640 && (rs6000_function_arg_padding (TYPE_MODE (valtype), valtype)
10641 == PAD_UPWARD));
10644 #ifdef HAVE_AS_GNU_ATTRIBUTE
10645 /* Return TRUE if a call to function FNDECL may be one that
10646 potentially affects the function calling ABI of the object file. */
10648 static bool
10649 call_ABI_of_interest (tree fndecl)
10651 if (rs6000_gnu_attr && symtab->state == EXPANSION)
10653 struct cgraph_node *c_node;
10655 /* Libcalls are always interesting. */
10656 if (fndecl == NULL_TREE)
10657 return true;
10659 /* Any call to an external function is interesting. */
10660 if (DECL_EXTERNAL (fndecl))
10661 return true;
10663 /* Interesting functions that we are emitting in this object file. */
10664 c_node = cgraph_node::get (fndecl);
10665 c_node = c_node->ultimate_alias_target ();
10666 return !c_node->only_called_directly_p ();
10668 return false;
10670 #endif
10672 /* Initialize a variable CUM of type CUMULATIVE_ARGS
10673 for a call to a function whose data type is FNTYPE.
10674 For a library call, FNTYPE is 0 and RETURN_MODE the return value mode.
10676 For incoming args we set the number of arguments in the prototype large
10677 so we never return a PARALLEL. */
10679 void
10680 init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
10681 rtx libname ATTRIBUTE_UNUSED, int incoming,
10682 int libcall, int n_named_args,
10683 tree fndecl ATTRIBUTE_UNUSED,
10684 machine_mode return_mode ATTRIBUTE_UNUSED)
10686 static CUMULATIVE_ARGS zero_cumulative;
10688 *cum = zero_cumulative;
10689 cum->words = 0;
10690 cum->fregno = FP_ARG_MIN_REG;
10691 cum->vregno = ALTIVEC_ARG_MIN_REG;
10692 cum->prototype = (fntype && prototype_p (fntype));
10693 cum->call_cookie = ((DEFAULT_ABI == ABI_V4 && libcall)
10694 ? CALL_LIBCALL : CALL_NORMAL);
10695 cum->sysv_gregno = GP_ARG_MIN_REG;
10696 cum->stdarg = stdarg_p (fntype);
10697 cum->libcall = libcall;
10699 cum->nargs_prototype = 0;
10700 if (incoming || cum->prototype)
10701 cum->nargs_prototype = n_named_args;
10703 /* Check for a longcall attribute. */
10704 if ((!fntype && rs6000_default_long_calls)
10705 || (fntype
10706 && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype))
10707 && !lookup_attribute ("shortcall", TYPE_ATTRIBUTES (fntype))))
10708 cum->call_cookie |= CALL_LONG;
10710 if (TARGET_DEBUG_ARG)
10712 fprintf (stderr, "\ninit_cumulative_args:");
10713 if (fntype)
10715 tree ret_type = TREE_TYPE (fntype);
10716 fprintf (stderr, " ret code = %s,",
10717 get_tree_code_name (TREE_CODE (ret_type)));
10720 if (cum->call_cookie & CALL_LONG)
10721 fprintf (stderr, " longcall,");
10723 fprintf (stderr, " proto = %d, nargs = %d\n",
10724 cum->prototype, cum->nargs_prototype);
10727 #ifdef HAVE_AS_GNU_ATTRIBUTE
10728 if (TARGET_ELF && (TARGET_64BIT || DEFAULT_ABI == ABI_V4))
10730 cum->escapes = call_ABI_of_interest (fndecl);
10731 if (cum->escapes)
10733 tree return_type;
10735 if (fntype)
10737 return_type = TREE_TYPE (fntype);
10738 return_mode = TYPE_MODE (return_type);
10740 else
10741 return_type = lang_hooks.types.type_for_mode (return_mode, 0);
10743 if (return_type != NULL)
10745 if (TREE_CODE (return_type) == RECORD_TYPE
10746 && TYPE_TRANSPARENT_AGGR (return_type))
10748 return_type = TREE_TYPE (first_field (return_type));
10749 return_mode = TYPE_MODE (return_type);
10751 if (AGGREGATE_TYPE_P (return_type)
10752 && ((unsigned HOST_WIDE_INT) int_size_in_bytes (return_type)
10753 <= 8))
10754 rs6000_returns_struct = true;
10756 if (SCALAR_FLOAT_MODE_P (return_mode))
10758 rs6000_passes_float = true;
10759 if ((HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE || TARGET_64BIT)
10760 && (FLOAT128_IBM_P (return_mode)
10761 || FLOAT128_IEEE_P (return_mode)
10762 || (return_type != NULL
10763 && (TYPE_MAIN_VARIANT (return_type)
10764 == long_double_type_node))))
10765 rs6000_passes_long_double = true;
10767 /* Note if we passed or return a IEEE 128-bit type. We changed
10768 the mangling for these types, and we may need to make an alias
10769 with the old mangling. */
10770 if (FLOAT128_IEEE_P (return_mode))
10771 rs6000_passes_ieee128 = true;
10773 if (ALTIVEC_OR_VSX_VECTOR_MODE (return_mode))
10774 rs6000_passes_vector = true;
10777 #endif
10779 if (fntype
10780 && !TARGET_ALTIVEC
10781 && TARGET_ALTIVEC_ABI
10782 && ALTIVEC_VECTOR_MODE (TYPE_MODE (TREE_TYPE (fntype))))
10784 error ("cannot return value in vector register because"
10785 " altivec instructions are disabled, use %qs"
10786 " to enable them", "-maltivec");
10790 /* The mode the ABI uses for a word. This is not the same as word_mode
10791 for -m32 -mpowerpc64. This is used to implement various target hooks. */
10793 static scalar_int_mode
10794 rs6000_abi_word_mode (void)
10796 return TARGET_32BIT ? SImode : DImode;
10799 /* Implement the TARGET_OFFLOAD_OPTIONS hook. */
10800 static char *
10801 rs6000_offload_options (void)
10803 if (TARGET_64BIT)
10804 return xstrdup ("-foffload-abi=lp64");
10805 else
10806 return xstrdup ("-foffload-abi=ilp32");
10809 /* On rs6000, function arguments are promoted, as are function return
10810 values. */
10812 static machine_mode
10813 rs6000_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
10814 machine_mode mode,
10815 int *punsignedp ATTRIBUTE_UNUSED,
10816 const_tree, int)
10818 PROMOTE_MODE (mode, *punsignedp, type);
10820 return mode;
10823 /* Return true if TYPE must be passed on the stack and not in registers. */
10825 static bool
10826 rs6000_must_pass_in_stack (machine_mode mode, const_tree type)
10828 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2 || TARGET_64BIT)
10829 return must_pass_in_stack_var_size (mode, type);
10830 else
10831 return must_pass_in_stack_var_size_or_pad (mode, type);
10834 static inline bool
10835 is_complex_IBM_long_double (machine_mode mode)
10837 return mode == ICmode || (mode == TCmode && FLOAT128_IBM_P (TCmode));
10840 /* Whether ABI_V4 passes MODE args to a function in floating point
10841 registers. */
10843 static bool
10844 abi_v4_pass_in_fpr (machine_mode mode, bool named)
10846 if (!TARGET_HARD_FLOAT)
10847 return false;
10848 if (mode == DFmode)
10849 return true;
10850 if (mode == SFmode && named)
10851 return true;
10852 /* ABI_V4 passes complex IBM long double in 8 gprs.
10853 Stupid, but we can't change the ABI now. */
10854 if (is_complex_IBM_long_double (mode))
10855 return false;
10856 if (FLOAT128_2REG_P (mode))
10857 return true;
10858 if (DECIMAL_FLOAT_MODE_P (mode))
10859 return true;
10860 return false;
10863 /* Implement TARGET_FUNCTION_ARG_PADDING.
10865 For the AIX ABI structs are always stored left shifted in their
10866 argument slot. */
10868 static pad_direction
10869 rs6000_function_arg_padding (machine_mode mode, const_tree type)
10871 #ifndef AGGREGATE_PADDING_FIXED
10872 #define AGGREGATE_PADDING_FIXED 0
10873 #endif
10874 #ifndef AGGREGATES_PAD_UPWARD_ALWAYS
10875 #define AGGREGATES_PAD_UPWARD_ALWAYS 0
10876 #endif
10878 if (!AGGREGATE_PADDING_FIXED)
10880 /* GCC used to pass structures of the same size as integer types as
10881 if they were in fact integers, ignoring TARGET_FUNCTION_ARG_PADDING.
10882 i.e. Structures of size 1 or 2 (or 4 when TARGET_64BIT) were
10883 passed padded downward, except that -mstrict-align further
10884 muddied the water in that multi-component structures of 2 and 4
10885 bytes in size were passed padded upward.
10887 The following arranges for best compatibility with previous
10888 versions of gcc, but removes the -mstrict-align dependency. */
10889 if (BYTES_BIG_ENDIAN)
10891 HOST_WIDE_INT size = 0;
10893 if (mode == BLKmode)
10895 if (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
10896 size = int_size_in_bytes (type);
10898 else
10899 size = GET_MODE_SIZE (mode);
10901 if (size == 1 || size == 2 || size == 4)
10902 return PAD_DOWNWARD;
10904 return PAD_UPWARD;
10907 if (AGGREGATES_PAD_UPWARD_ALWAYS)
10909 if (type != 0 && AGGREGATE_TYPE_P (type))
10910 return PAD_UPWARD;
10913 /* Fall back to the default. */
10914 return default_function_arg_padding (mode, type);
10917 /* If defined, a C expression that gives the alignment boundary, in bits,
10918 of an argument with the specified mode and type. If it is not defined,
10919 PARM_BOUNDARY is used for all arguments.
10921 V.4 wants long longs and doubles to be double word aligned. Just
10922 testing the mode size is a boneheaded way to do this as it means
10923 that other types such as complex int are also double word aligned.
10924 However, we're stuck with this because changing the ABI might break
10925 existing library interfaces.
10927 Quadword align Altivec/VSX vectors.
10928 Quadword align large synthetic vector types. */
10930 static unsigned int
10931 rs6000_function_arg_boundary (machine_mode mode, const_tree type)
10933 machine_mode elt_mode;
10934 int n_elts;
10936 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
10938 if (DEFAULT_ABI == ABI_V4
10939 && (GET_MODE_SIZE (mode) == 8
10940 || (TARGET_HARD_FLOAT
10941 && !is_complex_IBM_long_double (mode)
10942 && FLOAT128_2REG_P (mode))))
10943 return 64;
10944 else if (FLOAT128_VECTOR_P (mode))
10945 return 128;
10946 else if (type && TREE_CODE (type) == VECTOR_TYPE
10947 && int_size_in_bytes (type) >= 8
10948 && int_size_in_bytes (type) < 16)
10949 return 64;
10950 else if (ALTIVEC_OR_VSX_VECTOR_MODE (elt_mode)
10951 || (type && TREE_CODE (type) == VECTOR_TYPE
10952 && int_size_in_bytes (type) >= 16))
10953 return 128;
10955 /* Aggregate types that need > 8 byte alignment are quadword-aligned
10956 in the parameter area in the ELFv2 ABI, and in the AIX ABI unless
10957 -mcompat-align-parm is used. */
10958 if (((DEFAULT_ABI == ABI_AIX && !rs6000_compat_align_parm)
10959 || DEFAULT_ABI == ABI_ELFv2)
10960 && type && TYPE_ALIGN (type) > 64)
10962 /* "Aggregate" means any AGGREGATE_TYPE except for single-element
10963 or homogeneous float/vector aggregates here. We already handled
10964 vector aggregates above, but still need to check for float here. */
10965 bool aggregate_p = (AGGREGATE_TYPE_P (type)
10966 && !SCALAR_FLOAT_MODE_P (elt_mode));
10968 /* We used to check for BLKmode instead of the above aggregate type
10969 check. Warn when this results in any difference to the ABI. */
10970 if (aggregate_p != (mode == BLKmode))
10972 static bool warned;
10973 if (!warned && warn_psabi)
10975 warned = true;
10976 inform (input_location,
10977 "the ABI of passing aggregates with %d-byte alignment"
10978 " has changed in GCC 5",
10979 (int) TYPE_ALIGN (type) / BITS_PER_UNIT);
10983 if (aggregate_p)
10984 return 128;
10987 /* Similar for the Darwin64 ABI. Note that for historical reasons we
10988 implement the "aggregate type" check as a BLKmode check here; this
10989 means certain aggregate types are in fact not aligned. */
10990 if (TARGET_MACHO && rs6000_darwin64_abi
10991 && mode == BLKmode
10992 && type && TYPE_ALIGN (type) > 64)
10993 return 128;
10995 return PARM_BOUNDARY;
10998 /* The offset in words to the start of the parameter save area. */
11000 static unsigned int
11001 rs6000_parm_offset (void)
11003 return (DEFAULT_ABI == ABI_V4 ? 2
11004 : DEFAULT_ABI == ABI_ELFv2 ? 4
11005 : 6);
11008 /* For a function parm of MODE and TYPE, return the starting word in
11009 the parameter area. NWORDS of the parameter area are already used. */
11011 static unsigned int
11012 rs6000_parm_start (machine_mode mode, const_tree type,
11013 unsigned int nwords)
11015 unsigned int align;
11017 align = rs6000_function_arg_boundary (mode, type) / PARM_BOUNDARY - 1;
11018 return nwords + (-(rs6000_parm_offset () + nwords) & align);
11021 /* Compute the size (in words) of a function argument. */
11023 static unsigned long
11024 rs6000_arg_size (machine_mode mode, const_tree type)
11026 unsigned long size;
11028 if (mode != BLKmode)
11029 size = GET_MODE_SIZE (mode);
11030 else
11031 size = int_size_in_bytes (type);
11033 if (TARGET_32BIT)
11034 return (size + 3) >> 2;
11035 else
11036 return (size + 7) >> 3;
11039 /* Use this to flush pending int fields. */
11041 static void
11042 rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *cum,
11043 HOST_WIDE_INT bitpos, int final)
11045 unsigned int startbit, endbit;
11046 int intregs, intoffset;
11048 /* Handle the situations where a float is taking up the first half
11049 of the GPR, and the other half is empty (typically due to
11050 alignment restrictions). We can detect this by a 8-byte-aligned
11051 int field, or by seeing that this is the final flush for this
11052 argument. Count the word and continue on. */
11053 if (cum->floats_in_gpr == 1
11054 && (cum->intoffset % 64 == 0
11055 || (cum->intoffset == -1 && final)))
11057 cum->words++;
11058 cum->floats_in_gpr = 0;
11061 if (cum->intoffset == -1)
11062 return;
11064 intoffset = cum->intoffset;
11065 cum->intoffset = -1;
11066 cum->floats_in_gpr = 0;
11068 if (intoffset % BITS_PER_WORD != 0)
11070 unsigned int bits = BITS_PER_WORD - intoffset % BITS_PER_WORD;
11071 if (!int_mode_for_size (bits, 0).exists ())
11073 /* We couldn't find an appropriate mode, which happens,
11074 e.g., in packed structs when there are 3 bytes to load.
11075 Back intoffset back to the beginning of the word in this
11076 case. */
11077 intoffset = ROUND_DOWN (intoffset, BITS_PER_WORD);
11081 startbit = ROUND_DOWN (intoffset, BITS_PER_WORD);
11082 endbit = ROUND_UP (bitpos, BITS_PER_WORD);
11083 intregs = (endbit - startbit) / BITS_PER_WORD;
11084 cum->words += intregs;
11085 /* words should be unsigned. */
11086 if ((unsigned)cum->words < (endbit/BITS_PER_WORD))
11088 int pad = (endbit/BITS_PER_WORD) - cum->words;
11089 cum->words += pad;
11093 /* The darwin64 ABI calls for us to recurse down through structs,
11094 looking for elements passed in registers. Unfortunately, we have
11095 to track int register count here also because of misalignments
11096 in powerpc alignment mode. */
11098 static void
11099 rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *cum,
11100 const_tree type,
11101 HOST_WIDE_INT startbitpos)
11103 tree f;
11105 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
11106 if (TREE_CODE (f) == FIELD_DECL)
11108 HOST_WIDE_INT bitpos = startbitpos;
11109 tree ftype = TREE_TYPE (f);
11110 machine_mode mode;
11111 if (ftype == error_mark_node)
11112 continue;
11113 mode = TYPE_MODE (ftype);
11115 if (DECL_SIZE (f) != 0
11116 && tree_fits_uhwi_p (bit_position (f)))
11117 bitpos += int_bit_position (f);
11119 /* ??? FIXME: else assume zero offset. */
11121 if (TREE_CODE (ftype) == RECORD_TYPE)
11122 rs6000_darwin64_record_arg_advance_recurse (cum, ftype, bitpos);
11123 else if (USE_FP_FOR_ARG_P (cum, mode))
11125 unsigned n_fpregs = (GET_MODE_SIZE (mode) + 7) >> 3;
11126 rs6000_darwin64_record_arg_advance_flush (cum, bitpos, 0);
11127 cum->fregno += n_fpregs;
11128 /* Single-precision floats present a special problem for
11129 us, because they are smaller than an 8-byte GPR, and so
11130 the structure-packing rules combined with the standard
11131 varargs behavior mean that we want to pack float/float
11132 and float/int combinations into a single register's
11133 space. This is complicated by the arg advance flushing,
11134 which works on arbitrarily large groups of int-type
11135 fields. */
11136 if (mode == SFmode)
11138 if (cum->floats_in_gpr == 1)
11140 /* Two floats in a word; count the word and reset
11141 the float count. */
11142 cum->words++;
11143 cum->floats_in_gpr = 0;
11145 else if (bitpos % 64 == 0)
11147 /* A float at the beginning of an 8-byte word;
11148 count it and put off adjusting cum->words until
11149 we see if a arg advance flush is going to do it
11150 for us. */
11151 cum->floats_in_gpr++;
11153 else
11155 /* The float is at the end of a word, preceded
11156 by integer fields, so the arg advance flush
11157 just above has already set cum->words and
11158 everything is taken care of. */
11161 else
11162 cum->words += n_fpregs;
11164 else if (USE_ALTIVEC_FOR_ARG_P (cum, mode, 1))
11166 rs6000_darwin64_record_arg_advance_flush (cum, bitpos, 0);
11167 cum->vregno++;
11168 cum->words += 2;
11170 else if (cum->intoffset == -1)
11171 cum->intoffset = bitpos;
11175 /* Check for an item that needs to be considered specially under the darwin 64
11176 bit ABI. These are record types where the mode is BLK or the structure is
11177 8 bytes in size. */
11178 static int
11179 rs6000_darwin64_struct_check_p (machine_mode mode, const_tree type)
11181 return rs6000_darwin64_abi
11182 && ((mode == BLKmode
11183 && TREE_CODE (type) == RECORD_TYPE
11184 && int_size_in_bytes (type) > 0)
11185 || (type && TREE_CODE (type) == RECORD_TYPE
11186 && int_size_in_bytes (type) == 8)) ? 1 : 0;
11189 /* Update the data in CUM to advance over an argument
11190 of mode MODE and data type TYPE.
11191 (TYPE is null for libcalls where that information may not be available.)
11193 Note that for args passed by reference, function_arg will be called
11194 with MODE and TYPE set to that of the pointer to the arg, not the arg
11195 itself. */
11197 static void
11198 rs6000_function_arg_advance_1 (CUMULATIVE_ARGS *cum, machine_mode mode,
11199 const_tree type, bool named, int depth)
11201 machine_mode elt_mode;
11202 int n_elts;
11204 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
11206 /* Only tick off an argument if we're not recursing. */
11207 if (depth == 0)
11208 cum->nargs_prototype--;
11210 #ifdef HAVE_AS_GNU_ATTRIBUTE
11211 if (TARGET_ELF && (TARGET_64BIT || DEFAULT_ABI == ABI_V4)
11212 && cum->escapes)
11214 if (SCALAR_FLOAT_MODE_P (mode))
11216 rs6000_passes_float = true;
11217 if ((HAVE_LD_PPC_GNU_ATTR_LONG_DOUBLE || TARGET_64BIT)
11218 && (FLOAT128_IBM_P (mode)
11219 || FLOAT128_IEEE_P (mode)
11220 || (type != NULL
11221 && TYPE_MAIN_VARIANT (type) == long_double_type_node)))
11222 rs6000_passes_long_double = true;
11224 /* Note if we passed or return a IEEE 128-bit type. We changed the
11225 mangling for these types, and we may need to make an alias with
11226 the old mangling. */
11227 if (FLOAT128_IEEE_P (mode))
11228 rs6000_passes_ieee128 = true;
11230 if (named && ALTIVEC_OR_VSX_VECTOR_MODE (mode))
11231 rs6000_passes_vector = true;
11233 #endif
11235 if (TARGET_ALTIVEC_ABI
11236 && (ALTIVEC_OR_VSX_VECTOR_MODE (elt_mode)
11237 || (type && TREE_CODE (type) == VECTOR_TYPE
11238 && int_size_in_bytes (type) == 16)))
11240 bool stack = false;
11242 if (USE_ALTIVEC_FOR_ARG_P (cum, elt_mode, named))
11244 cum->vregno += n_elts;
11246 if (!TARGET_ALTIVEC)
11247 error ("cannot pass argument in vector register because"
11248 " altivec instructions are disabled, use %qs"
11249 " to enable them", "-maltivec");
11251 /* PowerPC64 Linux and AIX allocate GPRs for a vector argument
11252 even if it is going to be passed in a vector register.
11253 Darwin does the same for variable-argument functions. */
11254 if (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
11255 && TARGET_64BIT)
11256 || (cum->stdarg && DEFAULT_ABI != ABI_V4))
11257 stack = true;
11259 else
11260 stack = true;
11262 if (stack)
11264 int align;
11266 /* Vector parameters must be 16-byte aligned. In 32-bit
11267 mode this means we need to take into account the offset
11268 to the parameter save area. In 64-bit mode, they just
11269 have to start on an even word, since the parameter save
11270 area is 16-byte aligned. */
11271 if (TARGET_32BIT)
11272 align = -(rs6000_parm_offset () + cum->words) & 3;
11273 else
11274 align = cum->words & 1;
11275 cum->words += align + rs6000_arg_size (mode, type);
11277 if (TARGET_DEBUG_ARG)
11279 fprintf (stderr, "function_adv: words = %2d, align=%d, ",
11280 cum->words, align);
11281 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s\n",
11282 cum->nargs_prototype, cum->prototype,
11283 GET_MODE_NAME (mode));
11287 else if (TARGET_MACHO && rs6000_darwin64_struct_check_p (mode, type))
11289 int size = int_size_in_bytes (type);
11290 /* Variable sized types have size == -1 and are
11291 treated as if consisting entirely of ints.
11292 Pad to 16 byte boundary if needed. */
11293 if (TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
11294 && (cum->words % 2) != 0)
11295 cum->words++;
11296 /* For varargs, we can just go up by the size of the struct. */
11297 if (!named)
11298 cum->words += (size + 7) / 8;
11299 else
11301 /* It is tempting to say int register count just goes up by
11302 sizeof(type)/8, but this is wrong in a case such as
11303 { int; double; int; } [powerpc alignment]. We have to
11304 grovel through the fields for these too. */
11305 cum->intoffset = 0;
11306 cum->floats_in_gpr = 0;
11307 rs6000_darwin64_record_arg_advance_recurse (cum, type, 0);
11308 rs6000_darwin64_record_arg_advance_flush (cum,
11309 size * BITS_PER_UNIT, 1);
11311 if (TARGET_DEBUG_ARG)
11313 fprintf (stderr, "function_adv: words = %2d, align=%d, size=%d",
11314 cum->words, TYPE_ALIGN (type), size);
11315 fprintf (stderr,
11316 "nargs = %4d, proto = %d, mode = %4s (darwin64 abi)\n",
11317 cum->nargs_prototype, cum->prototype,
11318 GET_MODE_NAME (mode));
11321 else if (DEFAULT_ABI == ABI_V4)
11323 if (abi_v4_pass_in_fpr (mode, named))
11325 /* _Decimal128 must use an even/odd register pair. This assumes
11326 that the register number is odd when fregno is odd. */
11327 if (mode == TDmode && (cum->fregno % 2) == 1)
11328 cum->fregno++;
11330 if (cum->fregno + (FLOAT128_2REG_P (mode) ? 1 : 0)
11331 <= FP_ARG_V4_MAX_REG)
11332 cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
11333 else
11335 cum->fregno = FP_ARG_V4_MAX_REG + 1;
11336 if (mode == DFmode || FLOAT128_IBM_P (mode)
11337 || mode == DDmode || mode == TDmode)
11338 cum->words += cum->words & 1;
11339 cum->words += rs6000_arg_size (mode, type);
11342 else
11344 int n_words = rs6000_arg_size (mode, type);
11345 int gregno = cum->sysv_gregno;
11347 /* Long long is put in (r3,r4), (r5,r6), (r7,r8) or (r9,r10).
11348 As does any other 2 word item such as complex int due to a
11349 historical mistake. */
11350 if (n_words == 2)
11351 gregno += (1 - gregno) & 1;
11353 /* Multi-reg args are not split between registers and stack. */
11354 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
11356 /* Long long is aligned on the stack. So are other 2 word
11357 items such as complex int due to a historical mistake. */
11358 if (n_words == 2)
11359 cum->words += cum->words & 1;
11360 cum->words += n_words;
11363 /* Note: continuing to accumulate gregno past when we've started
11364 spilling to the stack indicates the fact that we've started
11365 spilling to the stack to expand_builtin_saveregs. */
11366 cum->sysv_gregno = gregno + n_words;
11369 if (TARGET_DEBUG_ARG)
11371 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
11372 cum->words, cum->fregno);
11373 fprintf (stderr, "gregno = %2d, nargs = %4d, proto = %d, ",
11374 cum->sysv_gregno, cum->nargs_prototype, cum->prototype);
11375 fprintf (stderr, "mode = %4s, named = %d\n",
11376 GET_MODE_NAME (mode), named);
11379 else
11381 int n_words = rs6000_arg_size (mode, type);
11382 int start_words = cum->words;
11383 int align_words = rs6000_parm_start (mode, type, start_words);
11385 cum->words = align_words + n_words;
11387 if (SCALAR_FLOAT_MODE_P (elt_mode) && TARGET_HARD_FLOAT)
11389 /* _Decimal128 must be passed in an even/odd float register pair.
11390 This assumes that the register number is odd when fregno is
11391 odd. */
11392 if (elt_mode == TDmode && (cum->fregno % 2) == 1)
11393 cum->fregno++;
11394 cum->fregno += n_elts * ((GET_MODE_SIZE (elt_mode) + 7) >> 3);
11397 if (TARGET_DEBUG_ARG)
11399 fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
11400 cum->words, cum->fregno);
11401 fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s, ",
11402 cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode));
11403 fprintf (stderr, "named = %d, align = %d, depth = %d\n",
11404 named, align_words - start_words, depth);
11409 static void
11410 rs6000_function_arg_advance (cumulative_args_t cum, machine_mode mode,
11411 const_tree type, bool named)
11413 rs6000_function_arg_advance_1 (get_cumulative_args (cum), mode, type, named,
11417 /* A subroutine of rs6000_darwin64_record_arg. Assign the bits of the
11418 structure between cum->intoffset and bitpos to integer registers. */
11420 static void
11421 rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *cum,
11422 HOST_WIDE_INT bitpos, rtx rvec[], int *k)
11424 machine_mode mode;
11425 unsigned int regno;
11426 unsigned int startbit, endbit;
11427 int this_regno, intregs, intoffset;
11428 rtx reg;
11430 if (cum->intoffset == -1)
11431 return;
11433 intoffset = cum->intoffset;
11434 cum->intoffset = -1;
11436 /* If this is the trailing part of a word, try to only load that
11437 much into the register. Otherwise load the whole register. Note
11438 that in the latter case we may pick up unwanted bits. It's not a
11439 problem at the moment but may wish to revisit. */
11441 if (intoffset % BITS_PER_WORD != 0)
11443 unsigned int bits = BITS_PER_WORD - intoffset % BITS_PER_WORD;
11444 if (!int_mode_for_size (bits, 0).exists (&mode))
11446 /* We couldn't find an appropriate mode, which happens,
11447 e.g., in packed structs when there are 3 bytes to load.
11448 Back intoffset back to the beginning of the word in this
11449 case. */
11450 intoffset = ROUND_DOWN (intoffset, BITS_PER_WORD);
11451 mode = word_mode;
11454 else
11455 mode = word_mode;
11457 startbit = ROUND_DOWN (intoffset, BITS_PER_WORD);
11458 endbit = ROUND_UP (bitpos, BITS_PER_WORD);
11459 intregs = (endbit - startbit) / BITS_PER_WORD;
11460 this_regno = cum->words + intoffset / BITS_PER_WORD;
11462 if (intregs > 0 && intregs > GP_ARG_NUM_REG - this_regno)
11463 cum->use_stack = 1;
11465 intregs = MIN (intregs, GP_ARG_NUM_REG - this_regno);
11466 if (intregs <= 0)
11467 return;
11469 intoffset /= BITS_PER_UNIT;
11472 regno = GP_ARG_MIN_REG + this_regno;
11473 reg = gen_rtx_REG (mode, regno);
11474 rvec[(*k)++] =
11475 gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));
11477 this_regno += 1;
11478 intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1;
11479 mode = word_mode;
11480 intregs -= 1;
11482 while (intregs > 0);
11485 /* Recursive workhorse for the following. */
11487 static void
11488 rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *cum, const_tree type,
11489 HOST_WIDE_INT startbitpos, rtx rvec[],
11490 int *k)
11492 tree f;
11494 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
11495 if (TREE_CODE (f) == FIELD_DECL)
11497 HOST_WIDE_INT bitpos = startbitpos;
11498 tree ftype = TREE_TYPE (f);
11499 machine_mode mode;
11500 if (ftype == error_mark_node)
11501 continue;
11502 mode = TYPE_MODE (ftype);
11504 if (DECL_SIZE (f) != 0
11505 && tree_fits_uhwi_p (bit_position (f)))
11506 bitpos += int_bit_position (f);
11508 /* ??? FIXME: else assume zero offset. */
11510 if (TREE_CODE (ftype) == RECORD_TYPE)
11511 rs6000_darwin64_record_arg_recurse (cum, ftype, bitpos, rvec, k);
11512 else if (cum->named && USE_FP_FOR_ARG_P (cum, mode))
11514 unsigned n_fpreg = (GET_MODE_SIZE (mode) + 7) >> 3;
11515 #if 0
11516 switch (mode)
11518 case E_SCmode: mode = SFmode; break;
11519 case E_DCmode: mode = DFmode; break;
11520 case E_TCmode: mode = TFmode; break;
11521 default: break;
11523 #endif
11524 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
11525 if (cum->fregno + n_fpreg > FP_ARG_MAX_REG + 1)
11527 gcc_assert (cum->fregno == FP_ARG_MAX_REG
11528 && (mode == TFmode || mode == TDmode));
11529 /* Long double or _Decimal128 split over regs and memory. */
11530 mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode : DFmode;
11531 cum->use_stack=1;
11533 rvec[(*k)++]
11534 = gen_rtx_EXPR_LIST (VOIDmode,
11535 gen_rtx_REG (mode, cum->fregno++),
11536 GEN_INT (bitpos / BITS_PER_UNIT));
11537 if (FLOAT128_2REG_P (mode))
11538 cum->fregno++;
11540 else if (cum->named && USE_ALTIVEC_FOR_ARG_P (cum, mode, 1))
11542 rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
11543 rvec[(*k)++]
11544 = gen_rtx_EXPR_LIST (VOIDmode,
11545 gen_rtx_REG (mode, cum->vregno++),
11546 GEN_INT (bitpos / BITS_PER_UNIT));
11548 else if (cum->intoffset == -1)
11549 cum->intoffset = bitpos;
11553 /* For the darwin64 ABI, we want to construct a PARALLEL consisting of
11554 the register(s) to be used for each field and subfield of a struct
11555 being passed by value, along with the offset of where the
11556 register's value may be found in the block. FP fields go in FP
11557 register, vector fields go in vector registers, and everything
11558 else goes in int registers, packed as in memory.
11560 This code is also used for function return values. RETVAL indicates
11561 whether this is the case.
11563 Much of this is taken from the SPARC V9 port, which has a similar
11564 calling convention. */
11566 static rtx
11567 rs6000_darwin64_record_arg (CUMULATIVE_ARGS *orig_cum, const_tree type,
11568 bool named, bool retval)
11570 rtx rvec[FIRST_PSEUDO_REGISTER];
11571 int k = 1, kbase = 1;
11572 HOST_WIDE_INT typesize = int_size_in_bytes (type);
11573 /* This is a copy; modifications are not visible to our caller. */
11574 CUMULATIVE_ARGS copy_cum = *orig_cum;
11575 CUMULATIVE_ARGS *cum = &copy_cum;
11577 /* Pad to 16 byte boundary if needed. */
11578 if (!retval && TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
11579 && (cum->words % 2) != 0)
11580 cum->words++;
11582 cum->intoffset = 0;
11583 cum->use_stack = 0;
11584 cum->named = named;
11586 /* Put entries into rvec[] for individual FP and vector fields, and
11587 for the chunks of memory that go in int regs. Note we start at
11588 element 1; 0 is reserved for an indication of using memory, and
11589 may or may not be filled in below. */
11590 rs6000_darwin64_record_arg_recurse (cum, type, /* startbit pos= */ 0, rvec, &k);
11591 rs6000_darwin64_record_arg_flush (cum, typesize * BITS_PER_UNIT, rvec, &k);
11593 /* If any part of the struct went on the stack put all of it there.
11594 This hack is because the generic code for
11595 FUNCTION_ARG_PARTIAL_NREGS cannot handle cases where the register
11596 parts of the struct are not at the beginning. */
11597 if (cum->use_stack)
11599 if (retval)
11600 return NULL_RTX; /* doesn't go in registers at all */
11601 kbase = 0;
11602 rvec[0] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
11604 if (k > 1 || cum->use_stack)
11605 return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (k - kbase, &rvec[kbase]));
11606 else
11607 return NULL_RTX;
11610 /* Determine where to place an argument in 64-bit mode with 32-bit ABI. */
11612 static rtx
11613 rs6000_mixed_function_arg (machine_mode mode, const_tree type,
11614 int align_words)
11616 int n_units;
11617 int i, k;
11618 rtx rvec[GP_ARG_NUM_REG + 1];
11620 if (align_words >= GP_ARG_NUM_REG)
11621 return NULL_RTX;
11623 n_units = rs6000_arg_size (mode, type);
11625 /* Optimize the simple case where the arg fits in one gpr, except in
11626 the case of BLKmode due to assign_parms assuming that registers are
11627 BITS_PER_WORD wide. */
11628 if (n_units == 0
11629 || (n_units == 1 && mode != BLKmode))
11630 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
11632 k = 0;
11633 if (align_words + n_units > GP_ARG_NUM_REG)
11634 /* Not all of the arg fits in gprs. Say that it goes in memory too,
11635 using a magic NULL_RTX component.
11636 This is not strictly correct. Only some of the arg belongs in
11637 memory, not all of it. However, the normal scheme using
11638 function_arg_partial_nregs can result in unusual subregs, eg.
11639 (subreg:SI (reg:DF) 4), which are not handled well. The code to
11640 store the whole arg to memory is often more efficient than code
11641 to store pieces, and we know that space is available in the right
11642 place for the whole arg. */
11643 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
11645 i = 0;
11648 rtx r = gen_rtx_REG (SImode, GP_ARG_MIN_REG + align_words);
11649 rtx off = GEN_INT (i++ * 4);
11650 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
11652 while (++align_words < GP_ARG_NUM_REG && --n_units != 0);
11654 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
11657 /* We have an argument of MODE and TYPE that goes into FPRs or VRs,
11658 but must also be copied into the parameter save area starting at
11659 offset ALIGN_WORDS. Fill in RVEC with the elements corresponding
11660 to the GPRs and/or memory. Return the number of elements used. */
11662 static int
11663 rs6000_psave_function_arg (machine_mode mode, const_tree type,
11664 int align_words, rtx *rvec)
11666 int k = 0;
11668 if (align_words < GP_ARG_NUM_REG)
11670 int n_words = rs6000_arg_size (mode, type);
11672 if (align_words + n_words > GP_ARG_NUM_REG
11673 || mode == BLKmode
11674 || (TARGET_32BIT && TARGET_POWERPC64))
11676 /* If this is partially on the stack, then we only
11677 include the portion actually in registers here. */
11678 machine_mode rmode = TARGET_32BIT ? SImode : DImode;
11679 int i = 0;
11681 if (align_words + n_words > GP_ARG_NUM_REG)
11683 /* Not all of the arg fits in gprs. Say that it goes in memory
11684 too, using a magic NULL_RTX component. Also see comment in
11685 rs6000_mixed_function_arg for why the normal
11686 function_arg_partial_nregs scheme doesn't work in this case. */
11687 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
11692 rtx r = gen_rtx_REG (rmode, GP_ARG_MIN_REG + align_words);
11693 rtx off = GEN_INT (i++ * GET_MODE_SIZE (rmode));
11694 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
11696 while (++align_words < GP_ARG_NUM_REG && --n_words != 0);
11698 else
11700 /* The whole arg fits in gprs. */
11701 rtx r = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
11702 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);
11705 else
11707 /* It's entirely in memory. */
11708 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
11711 return k;
11714 /* RVEC is a vector of K components of an argument of mode MODE.
11715 Construct the final function_arg return value from it. */
11717 static rtx
11718 rs6000_finish_function_arg (machine_mode mode, rtx *rvec, int k)
11720 gcc_assert (k >= 1);
11722 /* Avoid returning a PARALLEL in the trivial cases. */
11723 if (k == 1)
11725 if (XEXP (rvec[0], 0) == NULL_RTX)
11726 return NULL_RTX;
11728 if (GET_MODE (XEXP (rvec[0], 0)) == mode)
11729 return XEXP (rvec[0], 0);
11732 return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
11735 /* Determine where to put an argument to a function.
11736 Value is zero to push the argument on the stack,
11737 or a hard register in which to store the argument.
11739 MODE is the argument's machine mode.
11740 TYPE is the data type of the argument (as a tree).
11741 This is null for libcalls where that information may
11742 not be available.
11743 CUM is a variable of type CUMULATIVE_ARGS which gives info about
11744 the preceding args and about the function being called. It is
11745 not modified in this routine.
11746 NAMED is nonzero if this argument is a named parameter
11747 (otherwise it is an extra parameter matching an ellipsis).
11749 On RS/6000 the first eight words of non-FP are normally in registers
11750 and the rest are pushed. Under AIX, the first 13 FP args are in registers.
11751 Under V.4, the first 8 FP args are in registers.
11753 If this is floating-point and no prototype is specified, we use
11754 both an FP and integer register (or possibly FP reg and stack). Library
11755 functions (when CALL_LIBCALL is set) always have the proper types for args,
11756 so we can pass the FP value just in one register. emit_library_function
11757 doesn't support PARALLEL anyway.
11759 Note that for args passed by reference, function_arg will be called
11760 with MODE and TYPE set to that of the pointer to the arg, not the arg
11761 itself. */
11763 static rtx
11764 rs6000_function_arg (cumulative_args_t cum_v, machine_mode mode,
11765 const_tree type, bool named)
11767 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
11768 enum rs6000_abi abi = DEFAULT_ABI;
11769 machine_mode elt_mode;
11770 int n_elts;
11772 /* Return a marker to indicate whether CR1 needs to set or clear the
11773 bit that V.4 uses to say fp args were passed in registers.
11774 Assume that we don't need the marker for software floating point,
11775 or compiler generated library calls. */
11776 if (mode == VOIDmode)
11778 if (abi == ABI_V4
11779 && (cum->call_cookie & CALL_LIBCALL) == 0
11780 && (cum->stdarg
11781 || (cum->nargs_prototype < 0
11782 && (cum->prototype || TARGET_NO_PROTOTYPE)))
11783 && TARGET_HARD_FLOAT)
11784 return GEN_INT (cum->call_cookie
11785 | ((cum->fregno == FP_ARG_MIN_REG)
11786 ? CALL_V4_SET_FP_ARGS
11787 : CALL_V4_CLEAR_FP_ARGS));
11789 return GEN_INT (cum->call_cookie & ~CALL_LIBCALL);
11792 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
11794 if (TARGET_MACHO && rs6000_darwin64_struct_check_p (mode, type))
11796 rtx rslt = rs6000_darwin64_record_arg (cum, type, named, /*retval= */false);
11797 if (rslt != NULL_RTX)
11798 return rslt;
11799 /* Else fall through to usual handling. */
11802 if (USE_ALTIVEC_FOR_ARG_P (cum, elt_mode, named))
11804 rtx rvec[GP_ARG_NUM_REG + AGGR_ARG_NUM_REG + 1];
11805 rtx r, off;
11806 int i, k = 0;
11808 /* Do we also need to pass this argument in the parameter save area?
11809 Library support functions for IEEE 128-bit are assumed to not need the
11810 value passed both in GPRs and in vector registers. */
11811 if (TARGET_64BIT && !cum->prototype
11812 && (!cum->libcall || !FLOAT128_VECTOR_P (elt_mode)))
11814 int align_words = ROUND_UP (cum->words, 2);
11815 k = rs6000_psave_function_arg (mode, type, align_words, rvec);
11818 /* Describe where this argument goes in the vector registers. */
11819 for (i = 0; i < n_elts && cum->vregno + i <= ALTIVEC_ARG_MAX_REG; i++)
11821 r = gen_rtx_REG (elt_mode, cum->vregno + i);
11822 off = GEN_INT (i * GET_MODE_SIZE (elt_mode));
11823 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
11826 return rs6000_finish_function_arg (mode, rvec, k);
11828 else if (TARGET_ALTIVEC_ABI
11829 && (ALTIVEC_OR_VSX_VECTOR_MODE (mode)
11830 || (type && TREE_CODE (type) == VECTOR_TYPE
11831 && int_size_in_bytes (type) == 16)))
11833 if (named || abi == ABI_V4)
11834 return NULL_RTX;
11835 else
11837 /* Vector parameters to varargs functions under AIX or Darwin
11838 get passed in memory and possibly also in GPRs. */
11839 int align, align_words, n_words;
11840 machine_mode part_mode;
11842 /* Vector parameters must be 16-byte aligned. In 32-bit
11843 mode this means we need to take into account the offset
11844 to the parameter save area. In 64-bit mode, they just
11845 have to start on an even word, since the parameter save
11846 area is 16-byte aligned. */
11847 if (TARGET_32BIT)
11848 align = -(rs6000_parm_offset () + cum->words) & 3;
11849 else
11850 align = cum->words & 1;
11851 align_words = cum->words + align;
11853 /* Out of registers? Memory, then. */
11854 if (align_words >= GP_ARG_NUM_REG)
11855 return NULL_RTX;
11857 if (TARGET_32BIT && TARGET_POWERPC64)
11858 return rs6000_mixed_function_arg (mode, type, align_words);
11860 /* The vector value goes in GPRs. Only the part of the
11861 value in GPRs is reported here. */
11862 part_mode = mode;
11863 n_words = rs6000_arg_size (mode, type);
11864 if (align_words + n_words > GP_ARG_NUM_REG)
11865 /* Fortunately, there are only two possibilities, the value
11866 is either wholly in GPRs or half in GPRs and half not. */
11867 part_mode = DImode;
11869 return gen_rtx_REG (part_mode, GP_ARG_MIN_REG + align_words);
11873 else if (abi == ABI_V4)
11875 if (abi_v4_pass_in_fpr (mode, named))
11877 /* _Decimal128 must use an even/odd register pair. This assumes
11878 that the register number is odd when fregno is odd. */
11879 if (mode == TDmode && (cum->fregno % 2) == 1)
11880 cum->fregno++;
11882 if (cum->fregno + (FLOAT128_2REG_P (mode) ? 1 : 0)
11883 <= FP_ARG_V4_MAX_REG)
11884 return gen_rtx_REG (mode, cum->fregno);
11885 else
11886 return NULL_RTX;
11888 else
11890 int n_words = rs6000_arg_size (mode, type);
11891 int gregno = cum->sysv_gregno;
11893 /* Long long is put in (r3,r4), (r5,r6), (r7,r8) or (r9,r10).
11894 As does any other 2 word item such as complex int due to a
11895 historical mistake. */
11896 if (n_words == 2)
11897 gregno += (1 - gregno) & 1;
11899 /* Multi-reg args are not split between registers and stack. */
11900 if (gregno + n_words - 1 > GP_ARG_MAX_REG)
11901 return NULL_RTX;
11903 if (TARGET_32BIT && TARGET_POWERPC64)
11904 return rs6000_mixed_function_arg (mode, type,
11905 gregno - GP_ARG_MIN_REG);
11906 return gen_rtx_REG (mode, gregno);
11909 else
11911 int align_words = rs6000_parm_start (mode, type, cum->words);
11913 /* _Decimal128 must be passed in an even/odd float register pair.
11914 This assumes that the register number is odd when fregno is odd. */
11915 if (elt_mode == TDmode && (cum->fregno % 2) == 1)
11916 cum->fregno++;
11918 if (USE_FP_FOR_ARG_P (cum, elt_mode))
11920 rtx rvec[GP_ARG_NUM_REG + AGGR_ARG_NUM_REG + 1];
11921 rtx r, off;
11922 int i, k = 0;
11923 unsigned long n_fpreg = (GET_MODE_SIZE (elt_mode) + 7) >> 3;
11924 int fpr_words;
11926 /* Do we also need to pass this argument in the parameter
11927 save area? */
11928 if (type && (cum->nargs_prototype <= 0
11929 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
11930 && TARGET_XL_COMPAT
11931 && align_words >= GP_ARG_NUM_REG)))
11932 k = rs6000_psave_function_arg (mode, type, align_words, rvec);
11934 /* Describe where this argument goes in the fprs. */
11935 for (i = 0; i < n_elts
11936 && cum->fregno + i * n_fpreg <= FP_ARG_MAX_REG; i++)
11938 /* Check if the argument is split over registers and memory.
11939 This can only ever happen for long double or _Decimal128;
11940 complex types are handled via split_complex_arg. */
11941 machine_mode fmode = elt_mode;
11942 if (cum->fregno + (i + 1) * n_fpreg > FP_ARG_MAX_REG + 1)
11944 gcc_assert (FLOAT128_2REG_P (fmode));
11945 fmode = DECIMAL_FLOAT_MODE_P (fmode) ? DDmode : DFmode;
11948 r = gen_rtx_REG (fmode, cum->fregno + i * n_fpreg);
11949 off = GEN_INT (i * GET_MODE_SIZE (elt_mode));
11950 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
11953 /* If there were not enough FPRs to hold the argument, the rest
11954 usually goes into memory. However, if the current position
11955 is still within the register parameter area, a portion may
11956 actually have to go into GPRs.
11958 Note that it may happen that the portion of the argument
11959 passed in the first "half" of the first GPR was already
11960 passed in the last FPR as well.
11962 For unnamed arguments, we already set up GPRs to cover the
11963 whole argument in rs6000_psave_function_arg, so there is
11964 nothing further to do at this point. */
11965 fpr_words = (i * GET_MODE_SIZE (elt_mode)) / (TARGET_32BIT ? 4 : 8);
11966 if (i < n_elts && align_words + fpr_words < GP_ARG_NUM_REG
11967 && cum->nargs_prototype > 0)
11969 static bool warned;
11971 machine_mode rmode = TARGET_32BIT ? SImode : DImode;
11972 int n_words = rs6000_arg_size (mode, type);
11974 align_words += fpr_words;
11975 n_words -= fpr_words;
11979 r = gen_rtx_REG (rmode, GP_ARG_MIN_REG + align_words);
11980 off = GEN_INT (fpr_words++ * GET_MODE_SIZE (rmode));
11981 rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
11983 while (++align_words < GP_ARG_NUM_REG && --n_words != 0);
11985 if (!warned && warn_psabi)
11987 warned = true;
11988 inform (input_location,
11989 "the ABI of passing homogeneous float aggregates"
11990 " has changed in GCC 5");
11994 return rs6000_finish_function_arg (mode, rvec, k);
11996 else if (align_words < GP_ARG_NUM_REG)
11998 if (TARGET_32BIT && TARGET_POWERPC64)
11999 return rs6000_mixed_function_arg (mode, type, align_words);
12001 return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
12003 else
12004 return NULL_RTX;
12008 /* For an arg passed partly in registers and partly in memory, this is
12009 the number of bytes passed in registers. For args passed entirely in
12010 registers or entirely in memory, zero. When an arg is described by a
12011 PARALLEL, perhaps using more than one register type, this function
12012 returns the number of bytes used by the first element of the PARALLEL. */
12014 static int
12015 rs6000_arg_partial_bytes (cumulative_args_t cum_v, machine_mode mode,
12016 tree type, bool named)
12018 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
12019 bool passed_in_gprs = true;
12020 int ret = 0;
12021 int align_words;
12022 machine_mode elt_mode;
12023 int n_elts;
12025 rs6000_discover_homogeneous_aggregate (mode, type, &elt_mode, &n_elts);
12027 if (DEFAULT_ABI == ABI_V4)
12028 return 0;
12030 if (USE_ALTIVEC_FOR_ARG_P (cum, elt_mode, named))
12032 /* If we are passing this arg in the fixed parameter save area (gprs or
12033 memory) as well as VRs, we do not use the partial bytes mechanism;
12034 instead, rs6000_function_arg will return a PARALLEL including a memory
12035 element as necessary. Library support functions for IEEE 128-bit are
12036 assumed to not need the value passed both in GPRs and in vector
12037 registers. */
12038 if (TARGET_64BIT && !cum->prototype
12039 && (!cum->libcall || !FLOAT128_VECTOR_P (elt_mode)))
12040 return 0;
12042 /* Otherwise, we pass in VRs only. Check for partial copies. */
12043 passed_in_gprs = false;
12044 if (cum->vregno + n_elts > ALTIVEC_ARG_MAX_REG + 1)
12045 ret = (ALTIVEC_ARG_MAX_REG + 1 - cum->vregno) * 16;
12048 /* In this complicated case we just disable the partial_nregs code. */
12049 if (TARGET_MACHO && rs6000_darwin64_struct_check_p (mode, type))
12050 return 0;
12052 align_words = rs6000_parm_start (mode, type, cum->words);
12054 if (USE_FP_FOR_ARG_P (cum, elt_mode))
12056 unsigned long n_fpreg = (GET_MODE_SIZE (elt_mode) + 7) >> 3;
12058 /* If we are passing this arg in the fixed parameter save area
12059 (gprs or memory) as well as FPRs, we do not use the partial
12060 bytes mechanism; instead, rs6000_function_arg will return a
12061 PARALLEL including a memory element as necessary. */
12062 if (type
12063 && (cum->nargs_prototype <= 0
12064 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
12065 && TARGET_XL_COMPAT
12066 && align_words >= GP_ARG_NUM_REG)))
12067 return 0;
12069 /* Otherwise, we pass in FPRs only. Check for partial copies. */
12070 passed_in_gprs = false;
12071 if (cum->fregno + n_elts * n_fpreg > FP_ARG_MAX_REG + 1)
12073 /* Compute number of bytes / words passed in FPRs. If there
12074 is still space available in the register parameter area
12075 *after* that amount, a part of the argument will be passed
12076 in GPRs. In that case, the total amount passed in any
12077 registers is equal to the amount that would have been passed
12078 in GPRs if everything were passed there, so we fall back to
12079 the GPR code below to compute the appropriate value. */
12080 int fpr = ((FP_ARG_MAX_REG + 1 - cum->fregno)
12081 * MIN (8, GET_MODE_SIZE (elt_mode)));
12082 int fpr_words = fpr / (TARGET_32BIT ? 4 : 8);
12084 if (align_words + fpr_words < GP_ARG_NUM_REG)
12085 passed_in_gprs = true;
12086 else
12087 ret = fpr;
12091 if (passed_in_gprs
12092 && align_words < GP_ARG_NUM_REG
12093 && GP_ARG_NUM_REG < align_words + rs6000_arg_size (mode, type))
12094 ret = (GP_ARG_NUM_REG - align_words) * (TARGET_32BIT ? 4 : 8);
12096 if (ret != 0 && TARGET_DEBUG_ARG)
12097 fprintf (stderr, "rs6000_arg_partial_bytes: %d\n", ret);
12099 return ret;
12102 /* A C expression that indicates when an argument must be passed by
12103 reference. If nonzero for an argument, a copy of that argument is
12104 made in memory and a pointer to the argument is passed instead of
12105 the argument itself. The pointer is passed in whatever way is
12106 appropriate for passing a pointer to that type.
12108 Under V.4, aggregates and long double are passed by reference.
12110 As an extension to all 32-bit ABIs, AltiVec vectors are passed by
12111 reference unless the AltiVec vector extension ABI is in force.
12113 As an extension to all ABIs, variable sized types are passed by
12114 reference. */
12116 static bool
12117 rs6000_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
12118 machine_mode mode, const_tree type,
12119 bool named ATTRIBUTE_UNUSED)
12121 if (!type)
12122 return 0;
12124 if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD
12125 && FLOAT128_IEEE_P (TYPE_MODE (type)))
12127 if (TARGET_DEBUG_ARG)
12128 fprintf (stderr, "function_arg_pass_by_reference: V4 IEEE 128-bit\n");
12129 return 1;
12132 if (DEFAULT_ABI == ABI_V4 && AGGREGATE_TYPE_P (type))
12134 if (TARGET_DEBUG_ARG)
12135 fprintf (stderr, "function_arg_pass_by_reference: V4 aggregate\n");
12136 return 1;
12139 if (int_size_in_bytes (type) < 0)
12141 if (TARGET_DEBUG_ARG)
12142 fprintf (stderr, "function_arg_pass_by_reference: variable size\n");
12143 return 1;
12146 /* Allow -maltivec -mabi=no-altivec without warning. Altivec vector
12147 modes only exist for GCC vector types if -maltivec. */
12148 if (TARGET_32BIT && !TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
12150 if (TARGET_DEBUG_ARG)
12151 fprintf (stderr, "function_arg_pass_by_reference: AltiVec\n");
12152 return 1;
12155 /* Pass synthetic vectors in memory. */
12156 if (TREE_CODE (type) == VECTOR_TYPE
12157 && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
12159 static bool warned_for_pass_big_vectors = false;
12160 if (TARGET_DEBUG_ARG)
12161 fprintf (stderr, "function_arg_pass_by_reference: synthetic vector\n");
12162 if (!warned_for_pass_big_vectors)
12164 warning (OPT_Wpsabi, "GCC vector passed by reference: "
12165 "non-standard ABI extension with no compatibility "
12166 "guarantee");
12167 warned_for_pass_big_vectors = true;
12169 return 1;
12172 return 0;
12175 /* Process parameter of type TYPE after ARGS_SO_FAR parameters were
12176 already processes. Return true if the parameter must be passed
12177 (fully or partially) on the stack. */
12179 static bool
12180 rs6000_parm_needs_stack (cumulative_args_t args_so_far, tree type)
12182 machine_mode mode;
12183 int unsignedp;
12184 rtx entry_parm;
12186 /* Catch errors. */
12187 if (type == NULL || type == error_mark_node)
12188 return true;
12190 /* Handle types with no storage requirement. */
12191 if (TYPE_MODE (type) == VOIDmode)
12192 return false;
12194 /* Handle complex types. */
12195 if (TREE_CODE (type) == COMPLEX_TYPE)
12196 return (rs6000_parm_needs_stack (args_so_far, TREE_TYPE (type))
12197 || rs6000_parm_needs_stack (args_so_far, TREE_TYPE (type)));
12199 /* Handle transparent aggregates. */
12200 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
12201 && TYPE_TRANSPARENT_AGGR (type))
12202 type = TREE_TYPE (first_field (type));
12204 /* See if this arg was passed by invisible reference. */
12205 if (pass_by_reference (get_cumulative_args (args_so_far),
12206 TYPE_MODE (type), type, true))
12207 type = build_pointer_type (type);
12209 /* Find mode as it is passed by the ABI. */
12210 unsignedp = TYPE_UNSIGNED (type);
12211 mode = promote_mode (type, TYPE_MODE (type), &unsignedp);
12213 /* If we must pass in stack, we need a stack. */
12214 if (rs6000_must_pass_in_stack (mode, type))
12215 return true;
12217 /* If there is no incoming register, we need a stack. */
12218 entry_parm = rs6000_function_arg (args_so_far, mode, type, true);
12219 if (entry_parm == NULL)
12220 return true;
12222 /* Likewise if we need to pass both in registers and on the stack. */
12223 if (GET_CODE (entry_parm) == PARALLEL
12224 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
12225 return true;
12227 /* Also true if we're partially in registers and partially not. */
12228 if (rs6000_arg_partial_bytes (args_so_far, mode, type, true) != 0)
12229 return true;
12231 /* Update info on where next arg arrives in registers. */
12232 rs6000_function_arg_advance (args_so_far, mode, type, true);
12233 return false;
12236 /* Return true if FUN has no prototype, has a variable argument
12237 list, or passes any parameter in memory. */
12239 static bool
12240 rs6000_function_parms_need_stack (tree fun, bool incoming)
12242 tree fntype, result;
12243 CUMULATIVE_ARGS args_so_far_v;
12244 cumulative_args_t args_so_far;
12246 if (!fun)
12247 /* Must be a libcall, all of which only use reg parms. */
12248 return false;
12250 fntype = fun;
12251 if (!TYPE_P (fun))
12252 fntype = TREE_TYPE (fun);
12254 /* Varargs functions need the parameter save area. */
12255 if ((!incoming && !prototype_p (fntype)) || stdarg_p (fntype))
12256 return true;
12258 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far_v, fntype, NULL_RTX);
12259 args_so_far = pack_cumulative_args (&args_so_far_v);
12261 /* When incoming, we will have been passed the function decl.
12262 It is necessary to use the decl to handle K&R style functions,
12263 where TYPE_ARG_TYPES may not be available. */
12264 if (incoming)
12266 gcc_assert (DECL_P (fun));
12267 result = DECL_RESULT (fun);
12269 else
12270 result = TREE_TYPE (fntype);
12272 if (result && aggregate_value_p (result, fntype))
12274 if (!TYPE_P (result))
12275 result = TREE_TYPE (result);
12276 result = build_pointer_type (result);
12277 rs6000_parm_needs_stack (args_so_far, result);
12280 if (incoming)
12282 tree parm;
12284 for (parm = DECL_ARGUMENTS (fun);
12285 parm && parm != void_list_node;
12286 parm = TREE_CHAIN (parm))
12287 if (rs6000_parm_needs_stack (args_so_far, TREE_TYPE (parm)))
12288 return true;
12290 else
12292 function_args_iterator args_iter;
12293 tree arg_type;
12295 FOREACH_FUNCTION_ARGS (fntype, arg_type, args_iter)
12296 if (rs6000_parm_needs_stack (args_so_far, arg_type))
12297 return true;
12300 return false;
12303 /* Return the size of the REG_PARM_STACK_SPACE are for FUN. This is
12304 usually a constant depending on the ABI. However, in the ELFv2 ABI
12305 the register parameter area is optional when calling a function that
12306 has a prototype is scope, has no variable argument list, and passes
12307 all parameters in registers. */
12310 rs6000_reg_parm_stack_space (tree fun, bool incoming)
12312 int reg_parm_stack_space;
12314 switch (DEFAULT_ABI)
12316 default:
12317 reg_parm_stack_space = 0;
12318 break;
12320 case ABI_AIX:
12321 case ABI_DARWIN:
12322 reg_parm_stack_space = TARGET_64BIT ? 64 : 32;
12323 break;
12325 case ABI_ELFv2:
12326 /* ??? Recomputing this every time is a bit expensive. Is there
12327 a place to cache this information? */
12328 if (rs6000_function_parms_need_stack (fun, incoming))
12329 reg_parm_stack_space = TARGET_64BIT ? 64 : 32;
12330 else
12331 reg_parm_stack_space = 0;
12332 break;
12335 return reg_parm_stack_space;
12338 static void
12339 rs6000_move_block_from_reg (int regno, rtx x, int nregs)
12341 int i;
12342 machine_mode reg_mode = TARGET_32BIT ? SImode : DImode;
12344 if (nregs == 0)
12345 return;
12347 for (i = 0; i < nregs; i++)
12349 rtx tem = adjust_address_nv (x, reg_mode, i * GET_MODE_SIZE (reg_mode));
12350 if (reload_completed)
12352 if (! strict_memory_address_p (reg_mode, XEXP (tem, 0)))
12353 tem = NULL_RTX;
12354 else
12355 tem = simplify_gen_subreg (reg_mode, x, BLKmode,
12356 i * GET_MODE_SIZE (reg_mode));
12358 else
12359 tem = replace_equiv_address (tem, XEXP (tem, 0));
12361 gcc_assert (tem);
12363 emit_move_insn (tem, gen_rtx_REG (reg_mode, regno + i));
12367 /* Perform any needed actions needed for a function that is receiving a
12368 variable number of arguments.
12370 CUM is as above.
12372 MODE and TYPE are the mode and type of the current parameter.
12374 PRETEND_SIZE is a variable that should be set to the amount of stack
12375 that must be pushed by the prolog to pretend that our caller pushed
12378 Normally, this macro will push all remaining incoming registers on the
12379 stack and set PRETEND_SIZE to the length of the registers pushed. */
12381 static void
12382 setup_incoming_varargs (cumulative_args_t cum, machine_mode mode,
12383 tree type, int *pretend_size ATTRIBUTE_UNUSED,
12384 int no_rtl)
12386 CUMULATIVE_ARGS next_cum;
12387 int reg_size = TARGET_32BIT ? 4 : 8;
12388 rtx save_area = NULL_RTX, mem;
12389 int first_reg_offset;
12390 alias_set_type set;
12392 /* Skip the last named argument. */
12393 next_cum = *get_cumulative_args (cum);
12394 rs6000_function_arg_advance_1 (&next_cum, mode, type, true, 0);
12396 if (DEFAULT_ABI == ABI_V4)
12398 first_reg_offset = next_cum.sysv_gregno - GP_ARG_MIN_REG;
12400 if (! no_rtl)
12402 int gpr_reg_num = 0, gpr_size = 0, fpr_size = 0;
12403 HOST_WIDE_INT offset = 0;
12405 /* Try to optimize the size of the varargs save area.
12406 The ABI requires that ap.reg_save_area is doubleword
12407 aligned, but we don't need to allocate space for all
12408 the bytes, only those to which we actually will save
12409 anything. */
12410 if (cfun->va_list_gpr_size && first_reg_offset < GP_ARG_NUM_REG)
12411 gpr_reg_num = GP_ARG_NUM_REG - first_reg_offset;
12412 if (TARGET_HARD_FLOAT
12413 && next_cum.fregno <= FP_ARG_V4_MAX_REG
12414 && cfun->va_list_fpr_size)
12416 if (gpr_reg_num)
12417 fpr_size = (next_cum.fregno - FP_ARG_MIN_REG)
12418 * UNITS_PER_FP_WORD;
12419 if (cfun->va_list_fpr_size
12420 < FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
12421 fpr_size += cfun->va_list_fpr_size * UNITS_PER_FP_WORD;
12422 else
12423 fpr_size += (FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
12424 * UNITS_PER_FP_WORD;
12426 if (gpr_reg_num)
12428 offset = -((first_reg_offset * reg_size) & ~7);
12429 if (!fpr_size && gpr_reg_num > cfun->va_list_gpr_size)
12431 gpr_reg_num = cfun->va_list_gpr_size;
12432 if (reg_size == 4 && (first_reg_offset & 1))
12433 gpr_reg_num++;
12435 gpr_size = (gpr_reg_num * reg_size + 7) & ~7;
12437 else if (fpr_size)
12438 offset = - (int) (next_cum.fregno - FP_ARG_MIN_REG)
12439 * UNITS_PER_FP_WORD
12440 - (int) (GP_ARG_NUM_REG * reg_size);
12442 if (gpr_size + fpr_size)
12444 rtx reg_save_area
12445 = assign_stack_local (BLKmode, gpr_size + fpr_size, 64);
12446 gcc_assert (GET_CODE (reg_save_area) == MEM);
12447 reg_save_area = XEXP (reg_save_area, 0);
12448 if (GET_CODE (reg_save_area) == PLUS)
12450 gcc_assert (XEXP (reg_save_area, 0)
12451 == virtual_stack_vars_rtx);
12452 gcc_assert (GET_CODE (XEXP (reg_save_area, 1)) == CONST_INT);
12453 offset += INTVAL (XEXP (reg_save_area, 1));
12455 else
12456 gcc_assert (reg_save_area == virtual_stack_vars_rtx);
12459 cfun->machine->varargs_save_offset = offset;
12460 save_area = plus_constant (Pmode, virtual_stack_vars_rtx, offset);
12463 else
12465 first_reg_offset = next_cum.words;
12466 save_area = crtl->args.internal_arg_pointer;
12468 if (targetm.calls.must_pass_in_stack (mode, type))
12469 first_reg_offset += rs6000_arg_size (TYPE_MODE (type), type);
12472 set = get_varargs_alias_set ();
12473 if (! no_rtl && first_reg_offset < GP_ARG_NUM_REG
12474 && cfun->va_list_gpr_size)
12476 int n_gpr, nregs = GP_ARG_NUM_REG - first_reg_offset;
12478 if (va_list_gpr_counter_field)
12479 /* V4 va_list_gpr_size counts number of registers needed. */
12480 n_gpr = cfun->va_list_gpr_size;
12481 else
12482 /* char * va_list instead counts number of bytes needed. */
12483 n_gpr = (cfun->va_list_gpr_size + reg_size - 1) / reg_size;
12485 if (nregs > n_gpr)
12486 nregs = n_gpr;
12488 mem = gen_rtx_MEM (BLKmode,
12489 plus_constant (Pmode, save_area,
12490 first_reg_offset * reg_size));
12491 MEM_NOTRAP_P (mem) = 1;
12492 set_mem_alias_set (mem, set);
12493 set_mem_align (mem, BITS_PER_WORD);
12495 rs6000_move_block_from_reg (GP_ARG_MIN_REG + first_reg_offset, mem,
12496 nregs);
12499 /* Save FP registers if needed. */
12500 if (DEFAULT_ABI == ABI_V4
12501 && TARGET_HARD_FLOAT
12502 && ! no_rtl
12503 && next_cum.fregno <= FP_ARG_V4_MAX_REG
12504 && cfun->va_list_fpr_size)
12506 int fregno = next_cum.fregno, nregs;
12507 rtx cr1 = gen_rtx_REG (CCmode, CR1_REGNO);
12508 rtx lab = gen_label_rtx ();
12509 int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG)
12510 * UNITS_PER_FP_WORD);
12512 emit_jump_insn
12513 (gen_rtx_SET (pc_rtx,
12514 gen_rtx_IF_THEN_ELSE (VOIDmode,
12515 gen_rtx_NE (VOIDmode, cr1,
12516 const0_rtx),
12517 gen_rtx_LABEL_REF (VOIDmode, lab),
12518 pc_rtx)));
12520 for (nregs = 0;
12521 fregno <= FP_ARG_V4_MAX_REG && nregs < cfun->va_list_fpr_size;
12522 fregno++, off += UNITS_PER_FP_WORD, nregs++)
12524 mem = gen_rtx_MEM (TARGET_HARD_FLOAT ? DFmode : SFmode,
12525 plus_constant (Pmode, save_area, off));
12526 MEM_NOTRAP_P (mem) = 1;
12527 set_mem_alias_set (mem, set);
12528 set_mem_align (mem, GET_MODE_ALIGNMENT (
12529 TARGET_HARD_FLOAT ? DFmode : SFmode));
12530 emit_move_insn (mem, gen_rtx_REG (
12531 TARGET_HARD_FLOAT ? DFmode : SFmode, fregno));
12534 emit_label (lab);
12538 /* Create the va_list data type. */
12540 static tree
12541 rs6000_build_builtin_va_list (void)
12543 tree f_gpr, f_fpr, f_res, f_ovf, f_sav, record, type_decl;
12545 /* For AIX, prefer 'char *' because that's what the system
12546 header files like. */
12547 if (DEFAULT_ABI != ABI_V4)
12548 return build_pointer_type (char_type_node);
12550 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
12551 type_decl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
12552 get_identifier ("__va_list_tag"), record);
12554 f_gpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("gpr"),
12555 unsigned_char_type_node);
12556 f_fpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("fpr"),
12557 unsigned_char_type_node);
12558 /* Give the two bytes of padding a name, so that -Wpadded won't warn on
12559 every user file. */
12560 f_res = build_decl (BUILTINS_LOCATION, FIELD_DECL,
12561 get_identifier ("reserved"), short_unsigned_type_node);
12562 f_ovf = build_decl (BUILTINS_LOCATION, FIELD_DECL,
12563 get_identifier ("overflow_arg_area"),
12564 ptr_type_node);
12565 f_sav = build_decl (BUILTINS_LOCATION, FIELD_DECL,
12566 get_identifier ("reg_save_area"),
12567 ptr_type_node);
12569 va_list_gpr_counter_field = f_gpr;
12570 va_list_fpr_counter_field = f_fpr;
12572 DECL_FIELD_CONTEXT (f_gpr) = record;
12573 DECL_FIELD_CONTEXT (f_fpr) = record;
12574 DECL_FIELD_CONTEXT (f_res) = record;
12575 DECL_FIELD_CONTEXT (f_ovf) = record;
12576 DECL_FIELD_CONTEXT (f_sav) = record;
12578 TYPE_STUB_DECL (record) = type_decl;
12579 TYPE_NAME (record) = type_decl;
12580 TYPE_FIELDS (record) = f_gpr;
12581 DECL_CHAIN (f_gpr) = f_fpr;
12582 DECL_CHAIN (f_fpr) = f_res;
12583 DECL_CHAIN (f_res) = f_ovf;
12584 DECL_CHAIN (f_ovf) = f_sav;
12586 layout_type (record);
12588 /* The correct type is an array type of one element. */
12589 return build_array_type (record, build_index_type (size_zero_node));
12592 /* Implement va_start. */
12594 static void
12595 rs6000_va_start (tree valist, rtx nextarg)
12597 HOST_WIDE_INT words, n_gpr, n_fpr;
12598 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
12599 tree gpr, fpr, ovf, sav, t;
12601 /* Only SVR4 needs something special. */
12602 if (DEFAULT_ABI != ABI_V4)
12604 std_expand_builtin_va_start (valist, nextarg);
12605 return;
12608 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
12609 f_fpr = DECL_CHAIN (f_gpr);
12610 f_res = DECL_CHAIN (f_fpr);
12611 f_ovf = DECL_CHAIN (f_res);
12612 f_sav = DECL_CHAIN (f_ovf);
12614 valist = build_simple_mem_ref (valist);
12615 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
12616 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
12617 f_fpr, NULL_TREE);
12618 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
12619 f_ovf, NULL_TREE);
12620 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
12621 f_sav, NULL_TREE);
12623 /* Count number of gp and fp argument registers used. */
12624 words = crtl->args.info.words;
12625 n_gpr = MIN (crtl->args.info.sysv_gregno - GP_ARG_MIN_REG,
12626 GP_ARG_NUM_REG);
12627 n_fpr = MIN (crtl->args.info.fregno - FP_ARG_MIN_REG,
12628 FP_ARG_NUM_REG);
12630 if (TARGET_DEBUG_ARG)
12631 fprintf (stderr, "va_start: words = " HOST_WIDE_INT_PRINT_DEC", n_gpr = "
12632 HOST_WIDE_INT_PRINT_DEC", n_fpr = " HOST_WIDE_INT_PRINT_DEC"\n",
12633 words, n_gpr, n_fpr);
12635 if (cfun->va_list_gpr_size)
12637 t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr,
12638 build_int_cst (NULL_TREE, n_gpr));
12639 TREE_SIDE_EFFECTS (t) = 1;
12640 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
12643 if (cfun->va_list_fpr_size)
12645 t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr,
12646 build_int_cst (NULL_TREE, n_fpr));
12647 TREE_SIDE_EFFECTS (t) = 1;
12648 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
12650 #ifdef HAVE_AS_GNU_ATTRIBUTE
12651 if (call_ABI_of_interest (cfun->decl))
12652 rs6000_passes_float = true;
12653 #endif
12656 /* Find the overflow area. */
12657 t = make_tree (TREE_TYPE (ovf), crtl->args.internal_arg_pointer);
12658 if (words != 0)
12659 t = fold_build_pointer_plus_hwi (t, words * MIN_UNITS_PER_WORD);
12660 t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
12661 TREE_SIDE_EFFECTS (t) = 1;
12662 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
12664 /* If there were no va_arg invocations, don't set up the register
12665 save area. */
12666 if (!cfun->va_list_gpr_size
12667 && !cfun->va_list_fpr_size
12668 && n_gpr < GP_ARG_NUM_REG
12669 && n_fpr < FP_ARG_V4_MAX_REG)
12670 return;
12672 /* Find the register save area. */
12673 t = make_tree (TREE_TYPE (sav), virtual_stack_vars_rtx);
12674 if (cfun->machine->varargs_save_offset)
12675 t = fold_build_pointer_plus_hwi (t, cfun->machine->varargs_save_offset);
12676 t = build2 (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
12677 TREE_SIDE_EFFECTS (t) = 1;
12678 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
12681 /* Implement va_arg. */
12683 static tree
12684 rs6000_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
12685 gimple_seq *post_p)
12687 tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
12688 tree gpr, fpr, ovf, sav, reg, t, u;
12689 int size, rsize, n_reg, sav_ofs, sav_scale;
12690 tree lab_false, lab_over, addr;
12691 int align;
12692 tree ptrtype = build_pointer_type_for_mode (type, ptr_mode, true);
12693 int regalign = 0;
12694 gimple *stmt;
12696 if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
12698 t = rs6000_gimplify_va_arg (valist, ptrtype, pre_p, post_p);
12699 return build_va_arg_indirect_ref (t);
12702 /* We need to deal with the fact that the darwin ppc64 ABI is defined by an
12703 earlier version of gcc, with the property that it always applied alignment
12704 adjustments to the va-args (even for zero-sized types). The cheapest way
12705 to deal with this is to replicate the effect of the part of
12706 std_gimplify_va_arg_expr that carries out the align adjust, for the case
12707 of relevance.
12708 We don't need to check for pass-by-reference because of the test above.
12709 We can return a simplifed answer, since we know there's no offset to add. */
12711 if (((TARGET_MACHO
12712 && rs6000_darwin64_abi)
12713 || DEFAULT_ABI == ABI_ELFv2
12714 || (DEFAULT_ABI == ABI_AIX && !rs6000_compat_align_parm))
12715 && integer_zerop (TYPE_SIZE (type)))
12717 unsigned HOST_WIDE_INT align, boundary;
12718 tree valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
12719 align = PARM_BOUNDARY / BITS_PER_UNIT;
12720 boundary = rs6000_function_arg_boundary (TYPE_MODE (type), type);
12721 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
12722 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
12723 boundary /= BITS_PER_UNIT;
12724 if (boundary > align)
12726 tree t ;
12727 /* This updates arg ptr by the amount that would be necessary
12728 to align the zero-sized (but not zero-alignment) item. */
12729 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
12730 fold_build_pointer_plus_hwi (valist_tmp, boundary - 1));
12731 gimplify_and_add (t, pre_p);
12733 t = fold_convert (sizetype, valist_tmp);
12734 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
12735 fold_convert (TREE_TYPE (valist),
12736 fold_build2 (BIT_AND_EXPR, sizetype, t,
12737 size_int (-boundary))));
12738 t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
12739 gimplify_and_add (t, pre_p);
12741 /* Since it is zero-sized there's no increment for the item itself. */
12742 valist_tmp = fold_convert (build_pointer_type (type), valist_tmp);
12743 return build_va_arg_indirect_ref (valist_tmp);
12746 if (DEFAULT_ABI != ABI_V4)
12748 if (targetm.calls.split_complex_arg && TREE_CODE (type) == COMPLEX_TYPE)
12750 tree elem_type = TREE_TYPE (type);
12751 machine_mode elem_mode = TYPE_MODE (elem_type);
12752 int elem_size = GET_MODE_SIZE (elem_mode);
12754 if (elem_size < UNITS_PER_WORD)
12756 tree real_part, imag_part;
12757 gimple_seq post = NULL;
12759 real_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
12760 &post);
12761 /* Copy the value into a temporary, lest the formal temporary
12762 be reused out from under us. */
12763 real_part = get_initialized_tmp_var (real_part, pre_p, &post);
12764 gimple_seq_add_seq (pre_p, post);
12766 imag_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
12767 post_p);
12769 return build2 (COMPLEX_EXPR, type, real_part, imag_part);
12773 return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
12776 f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
12777 f_fpr = DECL_CHAIN (f_gpr);
12778 f_res = DECL_CHAIN (f_fpr);
12779 f_ovf = DECL_CHAIN (f_res);
12780 f_sav = DECL_CHAIN (f_ovf);
12782 gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
12783 fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
12784 f_fpr, NULL_TREE);
12785 ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
12786 f_ovf, NULL_TREE);
12787 sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
12788 f_sav, NULL_TREE);
12790 size = int_size_in_bytes (type);
12791 rsize = (size + 3) / 4;
12792 int pad = 4 * rsize - size;
12793 align = 1;
12795 machine_mode mode = TYPE_MODE (type);
12796 if (abi_v4_pass_in_fpr (mode, false))
12798 /* FP args go in FP registers, if present. */
12799 reg = fpr;
12800 n_reg = (size + 7) / 8;
12801 sav_ofs = (TARGET_HARD_FLOAT ? 8 : 4) * 4;
12802 sav_scale = (TARGET_HARD_FLOAT ? 8 : 4);
12803 if (mode != SFmode && mode != SDmode)
12804 align = 8;
12806 else
12808 /* Otherwise into GP registers. */
12809 reg = gpr;
12810 n_reg = rsize;
12811 sav_ofs = 0;
12812 sav_scale = 4;
12813 if (n_reg == 2)
12814 align = 8;
12817 /* Pull the value out of the saved registers.... */
12819 lab_over = NULL;
12820 addr = create_tmp_var (ptr_type_node, "addr");
12822 /* AltiVec vectors never go in registers when -mabi=altivec. */
12823 if (TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
12824 align = 16;
12825 else
12827 lab_false = create_artificial_label (input_location);
12828 lab_over = create_artificial_label (input_location);
12830 /* Long long is aligned in the registers. As are any other 2 gpr
12831 item such as complex int due to a historical mistake. */
12832 u = reg;
12833 if (n_reg == 2 && reg == gpr)
12835 regalign = 1;
12836 u = build2 (BIT_AND_EXPR, TREE_TYPE (reg), unshare_expr (reg),
12837 build_int_cst (TREE_TYPE (reg), n_reg - 1));
12838 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg),
12839 unshare_expr (reg), u);
12841 /* _Decimal128 is passed in even/odd fpr pairs; the stored
12842 reg number is 0 for f1, so we want to make it odd. */
12843 else if (reg == fpr && mode == TDmode)
12845 t = build2 (BIT_IOR_EXPR, TREE_TYPE (reg), unshare_expr (reg),
12846 build_int_cst (TREE_TYPE (reg), 1));
12847 u = build2 (MODIFY_EXPR, void_type_node, unshare_expr (reg), t);
12850 t = fold_convert (TREE_TYPE (reg), size_int (8 - n_reg + 1));
12851 t = build2 (GE_EXPR, boolean_type_node, u, t);
12852 u = build1 (GOTO_EXPR, void_type_node, lab_false);
12853 t = build3 (COND_EXPR, void_type_node, t, u, NULL_TREE);
12854 gimplify_and_add (t, pre_p);
12856 t = sav;
12857 if (sav_ofs)
12858 t = fold_build_pointer_plus_hwi (sav, sav_ofs);
12860 u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg), unshare_expr (reg),
12861 build_int_cst (TREE_TYPE (reg), n_reg));
12862 u = fold_convert (sizetype, u);
12863 u = build2 (MULT_EXPR, sizetype, u, size_int (sav_scale));
12864 t = fold_build_pointer_plus (t, u);
12866 /* _Decimal32 varargs are located in the second word of the 64-bit
12867 FP register for 32-bit binaries. */
12868 if (TARGET_32BIT && TARGET_HARD_FLOAT && mode == SDmode)
12869 t = fold_build_pointer_plus_hwi (t, size);
12871 /* Args are passed right-aligned. */
12872 if (BYTES_BIG_ENDIAN)
12873 t = fold_build_pointer_plus_hwi (t, pad);
12875 gimplify_assign (addr, t, pre_p);
12877 gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));
12879 stmt = gimple_build_label (lab_false);
12880 gimple_seq_add_stmt (pre_p, stmt);
12882 if ((n_reg == 2 && !regalign) || n_reg > 2)
12884 /* Ensure that we don't find any more args in regs.
12885 Alignment has taken care of for special cases. */
12886 gimplify_assign (reg, build_int_cst (TREE_TYPE (reg), 8), pre_p);
12890 /* ... otherwise out of the overflow area. */
12892 /* Care for on-stack alignment if needed. */
12893 t = ovf;
12894 if (align != 1)
12896 t = fold_build_pointer_plus_hwi (t, align - 1);
12897 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
12898 build_int_cst (TREE_TYPE (t), -align));
12901 /* Args are passed right-aligned. */
12902 if (BYTES_BIG_ENDIAN)
12903 t = fold_build_pointer_plus_hwi (t, pad);
12905 gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);
12907 gimplify_assign (unshare_expr (addr), t, pre_p);
12909 t = fold_build_pointer_plus_hwi (t, size);
12910 gimplify_assign (unshare_expr (ovf), t, pre_p);
12912 if (lab_over)
12914 stmt = gimple_build_label (lab_over);
12915 gimple_seq_add_stmt (pre_p, stmt);
12918 if (STRICT_ALIGNMENT
12919 && (TYPE_ALIGN (type)
12920 > (unsigned) BITS_PER_UNIT * (align < 4 ? 4 : align)))
12922 /* The value (of type complex double, for example) may not be
12923 aligned in memory in the saved registers, so copy via a
12924 temporary. (This is the same code as used for SPARC.) */
12925 tree tmp = create_tmp_var (type, "va_arg_tmp");
12926 tree dest_addr = build_fold_addr_expr (tmp);
12928 tree copy = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMCPY),
12929 3, dest_addr, addr, size_int (rsize * 4));
12930 TREE_ADDRESSABLE (tmp) = 1;
12932 gimplify_and_add (copy, pre_p);
12933 addr = dest_addr;
12936 addr = fold_convert (ptrtype, addr);
12937 return build_va_arg_indirect_ref (addr);
12940 /* Builtins. */
12942 static void
12943 def_builtin (const char *name, tree type, enum rs6000_builtins code)
12945 tree t;
12946 unsigned classify = rs6000_builtin_info[(int)code].attr;
12947 const char *attr_string = "";
12949 gcc_assert (name != NULL);
12950 gcc_assert (IN_RANGE ((int)code, 0, (int)RS6000_BUILTIN_COUNT));
12952 if (rs6000_builtin_decls[(int)code])
12953 fatal_error (input_location,
12954 "internal error: builtin function %qs already processed",
12955 name);
12957 rs6000_builtin_decls[(int)code] = t =
12958 add_builtin_function (name, type, (int)code, BUILT_IN_MD, NULL, NULL_TREE);
12960 /* Set any special attributes. */
12961 if ((classify & RS6000_BTC_CONST) != 0)
12963 /* const function, function only depends on the inputs. */
12964 TREE_READONLY (t) = 1;
12965 TREE_NOTHROW (t) = 1;
12966 attr_string = ", const";
12968 else if ((classify & RS6000_BTC_PURE) != 0)
12970 /* pure function, function can read global memory, but does not set any
12971 external state. */
12972 DECL_PURE_P (t) = 1;
12973 TREE_NOTHROW (t) = 1;
12974 attr_string = ", pure";
12976 else if ((classify & RS6000_BTC_FP) != 0)
12978 /* Function is a math function. If rounding mode is on, then treat the
12979 function as not reading global memory, but it can have arbitrary side
12980 effects. If it is off, then assume the function is a const function.
12981 This mimics the ATTR_MATHFN_FPROUNDING attribute in
12982 builtin-attribute.def that is used for the math functions. */
12983 TREE_NOTHROW (t) = 1;
12984 if (flag_rounding_math)
12986 DECL_PURE_P (t) = 1;
12987 DECL_IS_NOVOPS (t) = 1;
12988 attr_string = ", fp, pure";
12990 else
12992 TREE_READONLY (t) = 1;
12993 attr_string = ", fp, const";
12996 else if ((classify & RS6000_BTC_ATTR_MASK) != 0)
12997 gcc_unreachable ();
12999 if (TARGET_DEBUG_BUILTIN)
13000 fprintf (stderr, "rs6000_builtin, code = %4d, %s%s\n",
13001 (int)code, name, attr_string);
13004 /* Simple ternary operations: VECd = foo (VECa, VECb, VECc). */
13006 #undef RS6000_BUILTIN_0
13007 #undef RS6000_BUILTIN_1
13008 #undef RS6000_BUILTIN_2
13009 #undef RS6000_BUILTIN_3
13010 #undef RS6000_BUILTIN_A
13011 #undef RS6000_BUILTIN_D
13012 #undef RS6000_BUILTIN_H
13013 #undef RS6000_BUILTIN_P
13014 #undef RS6000_BUILTIN_X
13016 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13017 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13018 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13019 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) \
13020 { MASK, ICODE, NAME, ENUM },
13022 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13023 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13024 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13025 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13026 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13028 static const struct builtin_description bdesc_3arg[] =
13030 #include "rs6000-builtin.def"
13033 /* DST operations: void foo (void *, const int, const char). */
13035 #undef RS6000_BUILTIN_0
13036 #undef RS6000_BUILTIN_1
13037 #undef RS6000_BUILTIN_2
13038 #undef RS6000_BUILTIN_3
13039 #undef RS6000_BUILTIN_A
13040 #undef RS6000_BUILTIN_D
13041 #undef RS6000_BUILTIN_H
13042 #undef RS6000_BUILTIN_P
13043 #undef RS6000_BUILTIN_X
13045 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13046 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13047 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13048 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13049 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13050 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) \
13051 { MASK, ICODE, NAME, ENUM },
13053 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13054 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13055 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13057 static const struct builtin_description bdesc_dst[] =
13059 #include "rs6000-builtin.def"
13062 /* Simple binary operations: VECc = foo (VECa, VECb). */
13064 #undef RS6000_BUILTIN_0
13065 #undef RS6000_BUILTIN_1
13066 #undef RS6000_BUILTIN_2
13067 #undef RS6000_BUILTIN_3
13068 #undef RS6000_BUILTIN_A
13069 #undef RS6000_BUILTIN_D
13070 #undef RS6000_BUILTIN_H
13071 #undef RS6000_BUILTIN_P
13072 #undef RS6000_BUILTIN_X
13074 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13075 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13076 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) \
13077 { MASK, ICODE, NAME, ENUM },
13079 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13080 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13081 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13082 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13083 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13084 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13086 static const struct builtin_description bdesc_2arg[] =
13088 #include "rs6000-builtin.def"
13091 #undef RS6000_BUILTIN_0
13092 #undef RS6000_BUILTIN_1
13093 #undef RS6000_BUILTIN_2
13094 #undef RS6000_BUILTIN_3
13095 #undef RS6000_BUILTIN_A
13096 #undef RS6000_BUILTIN_D
13097 #undef RS6000_BUILTIN_H
13098 #undef RS6000_BUILTIN_P
13099 #undef RS6000_BUILTIN_X
13101 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13102 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13103 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13104 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13105 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13106 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13107 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13108 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) \
13109 { MASK, ICODE, NAME, ENUM },
13111 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13113 /* AltiVec predicates. */
13115 static const struct builtin_description bdesc_altivec_preds[] =
13117 #include "rs6000-builtin.def"
13120 /* ABS* operations. */
13122 #undef RS6000_BUILTIN_0
13123 #undef RS6000_BUILTIN_1
13124 #undef RS6000_BUILTIN_2
13125 #undef RS6000_BUILTIN_3
13126 #undef RS6000_BUILTIN_A
13127 #undef RS6000_BUILTIN_D
13128 #undef RS6000_BUILTIN_H
13129 #undef RS6000_BUILTIN_P
13130 #undef RS6000_BUILTIN_X
13132 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13133 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13134 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13135 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13136 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) \
13137 { MASK, ICODE, NAME, ENUM },
13139 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13140 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13141 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13142 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13144 static const struct builtin_description bdesc_abs[] =
13146 #include "rs6000-builtin.def"
13149 /* Simple unary operations: VECb = foo (unsigned literal) or VECb =
13150 foo (VECa). */
13152 #undef RS6000_BUILTIN_0
13153 #undef RS6000_BUILTIN_1
13154 #undef RS6000_BUILTIN_2
13155 #undef RS6000_BUILTIN_3
13156 #undef RS6000_BUILTIN_A
13157 #undef RS6000_BUILTIN_D
13158 #undef RS6000_BUILTIN_H
13159 #undef RS6000_BUILTIN_P
13160 #undef RS6000_BUILTIN_X
13162 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13163 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) \
13164 { MASK, ICODE, NAME, ENUM },
13166 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13167 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13168 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13169 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13170 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13171 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13172 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13174 static const struct builtin_description bdesc_1arg[] =
13176 #include "rs6000-builtin.def"
13179 /* Simple no-argument operations: result = __builtin_darn_32 () */
13181 #undef RS6000_BUILTIN_0
13182 #undef RS6000_BUILTIN_1
13183 #undef RS6000_BUILTIN_2
13184 #undef RS6000_BUILTIN_3
13185 #undef RS6000_BUILTIN_A
13186 #undef RS6000_BUILTIN_D
13187 #undef RS6000_BUILTIN_H
13188 #undef RS6000_BUILTIN_P
13189 #undef RS6000_BUILTIN_X
13191 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) \
13192 { MASK, ICODE, NAME, ENUM },
13194 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13195 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13196 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13197 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13198 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13199 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE)
13200 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13201 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13203 static const struct builtin_description bdesc_0arg[] =
13205 #include "rs6000-builtin.def"
13208 /* HTM builtins. */
13209 #undef RS6000_BUILTIN_0
13210 #undef RS6000_BUILTIN_1
13211 #undef RS6000_BUILTIN_2
13212 #undef RS6000_BUILTIN_3
13213 #undef RS6000_BUILTIN_A
13214 #undef RS6000_BUILTIN_D
13215 #undef RS6000_BUILTIN_H
13216 #undef RS6000_BUILTIN_P
13217 #undef RS6000_BUILTIN_X
13219 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE)
13220 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE)
13221 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE)
13222 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE)
13223 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE)
13224 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE)
13225 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) \
13226 { MASK, ICODE, NAME, ENUM },
13228 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE)
13229 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE)
13231 static const struct builtin_description bdesc_htm[] =
13233 #include "rs6000-builtin.def"
13236 #undef RS6000_BUILTIN_0
13237 #undef RS6000_BUILTIN_1
13238 #undef RS6000_BUILTIN_2
13239 #undef RS6000_BUILTIN_3
13240 #undef RS6000_BUILTIN_A
13241 #undef RS6000_BUILTIN_D
13242 #undef RS6000_BUILTIN_H
13243 #undef RS6000_BUILTIN_P
13245 /* Return true if a builtin function is overloaded. */
13246 bool
13247 rs6000_overloaded_builtin_p (enum rs6000_builtins fncode)
13249 return (rs6000_builtin_info[(int)fncode].attr & RS6000_BTC_OVERLOADED) != 0;
13252 const char *
13253 rs6000_overloaded_builtin_name (enum rs6000_builtins fncode)
13255 return rs6000_builtin_info[(int)fncode].name;
13258 /* Expand an expression EXP that calls a builtin without arguments. */
13259 static rtx
13260 rs6000_expand_zeroop_builtin (enum insn_code icode, rtx target)
13262 rtx pat;
13263 machine_mode tmode = insn_data[icode].operand[0].mode;
13265 if (icode == CODE_FOR_nothing)
13266 /* Builtin not supported on this processor. */
13267 return 0;
13269 if (icode == CODE_FOR_rs6000_mffsl
13270 && rs6000_isa_flags_explicit & OPTION_MASK_SOFT_FLOAT)
13272 error ("__builtin_mffsl() not supported with -msoft-float");
13273 return const0_rtx;
13276 if (target == 0
13277 || GET_MODE (target) != tmode
13278 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13279 target = gen_reg_rtx (tmode);
13281 pat = GEN_FCN (icode) (target);
13282 if (! pat)
13283 return 0;
13284 emit_insn (pat);
13286 return target;
13290 static rtx
13291 rs6000_expand_mtfsf_builtin (enum insn_code icode, tree exp)
13293 rtx pat;
13294 tree arg0 = CALL_EXPR_ARG (exp, 0);
13295 tree arg1 = CALL_EXPR_ARG (exp, 1);
13296 rtx op0 = expand_normal (arg0);
13297 rtx op1 = expand_normal (arg1);
13298 machine_mode mode0 = insn_data[icode].operand[0].mode;
13299 machine_mode mode1 = insn_data[icode].operand[1].mode;
13301 if (icode == CODE_FOR_nothing)
13302 /* Builtin not supported on this processor. */
13303 return 0;
13305 /* If we got invalid arguments bail out before generating bad rtl. */
13306 if (arg0 == error_mark_node || arg1 == error_mark_node)
13307 return const0_rtx;
13309 if (GET_CODE (op0) != CONST_INT
13310 || INTVAL (op0) > 255
13311 || INTVAL (op0) < 0)
13313 error ("argument 1 must be an 8-bit field value");
13314 return const0_rtx;
13317 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
13318 op0 = copy_to_mode_reg (mode0, op0);
13320 if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
13321 op1 = copy_to_mode_reg (mode1, op1);
13323 pat = GEN_FCN (icode) (op0, op1);
13324 if (!pat)
13325 return const0_rtx;
13326 emit_insn (pat);
13328 return NULL_RTX;
13331 static rtx
13332 rs6000_expand_mtfsb_builtin (enum insn_code icode, tree exp)
13334 rtx pat;
13335 tree arg0 = CALL_EXPR_ARG (exp, 0);
13336 rtx op0 = expand_normal (arg0);
13338 if (icode == CODE_FOR_nothing)
13339 /* Builtin not supported on this processor. */
13340 return 0;
13342 if (rs6000_isa_flags_explicit & OPTION_MASK_SOFT_FLOAT)
13344 error ("__builtin_mtfsb0 and __builtin_mtfsb1 not supported with -msoft-float");
13345 return const0_rtx;
13348 /* If we got invalid arguments bail out before generating bad rtl. */
13349 if (arg0 == error_mark_node)
13350 return const0_rtx;
13352 /* Only allow bit numbers 0 to 31. */
13353 if (!u5bit_cint_operand (op0, VOIDmode))
13355 error ("Argument must be a constant between 0 and 31.");
13356 return const0_rtx;
13359 pat = GEN_FCN (icode) (op0);
13360 if (!pat)
13361 return const0_rtx;
13362 emit_insn (pat);
13364 return NULL_RTX;
13367 static rtx
13368 rs6000_expand_set_fpscr_rn_builtin (enum insn_code icode, tree exp)
13370 rtx pat;
13371 tree arg0 = CALL_EXPR_ARG (exp, 0);
13372 rtx op0 = expand_normal (arg0);
13373 machine_mode mode0 = insn_data[icode].operand[0].mode;
13375 if (icode == CODE_FOR_nothing)
13376 /* Builtin not supported on this processor. */
13377 return 0;
13379 if (rs6000_isa_flags_explicit & OPTION_MASK_SOFT_FLOAT)
13381 error ("__builtin_set_fpscr_rn not supported with -msoft-float");
13382 return const0_rtx;
13385 /* If we got invalid arguments bail out before generating bad rtl. */
13386 if (arg0 == error_mark_node)
13387 return const0_rtx;
13389 /* If the argument is a constant, check the range. Argument can only be a
13390 2-bit value. Unfortunately, can't check the range of the value at
13391 compile time if the argument is a variable. The least significant two
13392 bits of the argument, regardless of type, are used to set the rounding
13393 mode. All other bits are ignored. */
13394 if (GET_CODE (op0) == CONST_INT && !const_0_to_3_operand(op0, VOIDmode))
13396 error ("Argument must be a value between 0 and 3.");
13397 return const0_rtx;
13400 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
13401 op0 = copy_to_mode_reg (mode0, op0);
13403 pat = GEN_FCN (icode) (op0);
13404 if (!pat)
13405 return const0_rtx;
13406 emit_insn (pat);
13408 return NULL_RTX;
13410 static rtx
13411 rs6000_expand_set_fpscr_drn_builtin (enum insn_code icode, tree exp)
13413 rtx pat;
13414 tree arg0 = CALL_EXPR_ARG (exp, 0);
13415 rtx op0 = expand_normal (arg0);
13416 machine_mode mode0 = insn_data[icode].operand[0].mode;
13418 if (TARGET_32BIT)
13419 /* Builtin not supported in 32-bit mode. */
13420 fatal_error (input_location,
13421 "__builtin_set_fpscr_drn is not supported in 32-bit mode.");
13423 if (rs6000_isa_flags_explicit & OPTION_MASK_SOFT_FLOAT)
13425 error ("__builtin_set_fpscr_drn not supported with -msoft-float");
13426 return const0_rtx;
13429 if (icode == CODE_FOR_nothing)
13430 /* Builtin not supported on this processor. */
13431 return 0;
13433 /* If we got invalid arguments bail out before generating bad rtl. */
13434 if (arg0 == error_mark_node)
13435 return const0_rtx;
13437 /* If the argument is a constant, check the range. Agrument can only be a
13438 3-bit value. Unfortunately, can't check the range of the value at
13439 compile time if the argument is a variable. The least significant two
13440 bits of the argument, regardless of type, are used to set the rounding
13441 mode. All other bits are ignored. */
13442 if (GET_CODE (op0) == CONST_INT && !const_0_to_7_operand(op0, VOIDmode))
13444 error ("Argument must be a value between 0 and 7.");
13445 return const0_rtx;
13448 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
13449 op0 = copy_to_mode_reg (mode0, op0);
13451 pat = GEN_FCN (icode) (op0);
13452 if (! pat)
13453 return const0_rtx;
13454 emit_insn (pat);
13456 return NULL_RTX;
13459 static rtx
13460 rs6000_expand_unop_builtin (enum insn_code icode, tree exp, rtx target)
13462 rtx pat;
13463 tree arg0 = CALL_EXPR_ARG (exp, 0);
13464 rtx op0 = expand_normal (arg0);
13465 machine_mode tmode = insn_data[icode].operand[0].mode;
13466 machine_mode mode0 = insn_data[icode].operand[1].mode;
13468 if (icode == CODE_FOR_nothing)
13469 /* Builtin not supported on this processor. */
13470 return 0;
13472 /* If we got invalid arguments bail out before generating bad rtl. */
13473 if (arg0 == error_mark_node)
13474 return const0_rtx;
13476 if (icode == CODE_FOR_altivec_vspltisb
13477 || icode == CODE_FOR_altivec_vspltish
13478 || icode == CODE_FOR_altivec_vspltisw)
13480 /* Only allow 5-bit *signed* literals. */
13481 if (GET_CODE (op0) != CONST_INT
13482 || INTVAL (op0) > 15
13483 || INTVAL (op0) < -16)
13485 error ("argument 1 must be a 5-bit signed literal");
13486 return CONST0_RTX (tmode);
13490 if (target == 0
13491 || GET_MODE (target) != tmode
13492 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13493 target = gen_reg_rtx (tmode);
13495 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13496 op0 = copy_to_mode_reg (mode0, op0);
13498 pat = GEN_FCN (icode) (target, op0);
13499 if (! pat)
13500 return 0;
13501 emit_insn (pat);
13503 return target;
13506 static rtx
13507 altivec_expand_abs_builtin (enum insn_code icode, tree exp, rtx target)
13509 rtx pat, scratch1, scratch2;
13510 tree arg0 = CALL_EXPR_ARG (exp, 0);
13511 rtx op0 = expand_normal (arg0);
13512 machine_mode tmode = insn_data[icode].operand[0].mode;
13513 machine_mode mode0 = insn_data[icode].operand[1].mode;
13515 /* If we have invalid arguments, bail out before generating bad rtl. */
13516 if (arg0 == error_mark_node)
13517 return const0_rtx;
13519 if (target == 0
13520 || GET_MODE (target) != tmode
13521 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13522 target = gen_reg_rtx (tmode);
13524 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13525 op0 = copy_to_mode_reg (mode0, op0);
13527 scratch1 = gen_reg_rtx (mode0);
13528 scratch2 = gen_reg_rtx (mode0);
13530 pat = GEN_FCN (icode) (target, op0, scratch1, scratch2);
13531 if (! pat)
13532 return 0;
13533 emit_insn (pat);
13535 return target;
13538 static rtx
13539 rs6000_expand_binop_builtin (enum insn_code icode, tree exp, rtx target)
13541 rtx pat;
13542 tree arg0 = CALL_EXPR_ARG (exp, 0);
13543 tree arg1 = CALL_EXPR_ARG (exp, 1);
13544 rtx op0 = expand_normal (arg0);
13545 rtx op1 = expand_normal (arg1);
13546 machine_mode tmode = insn_data[icode].operand[0].mode;
13547 machine_mode mode0 = insn_data[icode].operand[1].mode;
13548 machine_mode mode1 = insn_data[icode].operand[2].mode;
13550 if (icode == CODE_FOR_nothing)
13551 /* Builtin not supported on this processor. */
13552 return 0;
13554 /* If we got invalid arguments bail out before generating bad rtl. */
13555 if (arg0 == error_mark_node || arg1 == error_mark_node)
13556 return const0_rtx;
13558 if (icode == CODE_FOR_unpackv1ti
13559 || icode == CODE_FOR_unpackkf
13560 || icode == CODE_FOR_unpacktf
13561 || icode == CODE_FOR_unpackif
13562 || icode == CODE_FOR_unpacktd)
13564 /* Only allow 1-bit unsigned literals. */
13565 STRIP_NOPS (arg1);
13566 if (TREE_CODE (arg1) != INTEGER_CST
13567 || !IN_RANGE (TREE_INT_CST_LOW (arg1), 0, 1))
13569 error ("argument 2 must be a 1-bit unsigned literal");
13570 return CONST0_RTX (tmode);
13573 else if (icode == CODE_FOR_altivec_vspltw)
13575 /* Only allow 2-bit unsigned literals. */
13576 STRIP_NOPS (arg1);
13577 if (TREE_CODE (arg1) != INTEGER_CST
13578 || TREE_INT_CST_LOW (arg1) & ~3)
13580 error ("argument 2 must be a 2-bit unsigned literal");
13581 return CONST0_RTX (tmode);
13584 else if (icode == CODE_FOR_altivec_vsplth)
13586 /* Only allow 3-bit unsigned literals. */
13587 STRIP_NOPS (arg1);
13588 if (TREE_CODE (arg1) != INTEGER_CST
13589 || TREE_INT_CST_LOW (arg1) & ~7)
13591 error ("argument 2 must be a 3-bit unsigned literal");
13592 return CONST0_RTX (tmode);
13595 else if (icode == CODE_FOR_altivec_vspltb)
13597 /* Only allow 4-bit unsigned literals. */
13598 STRIP_NOPS (arg1);
13599 if (TREE_CODE (arg1) != INTEGER_CST
13600 || TREE_INT_CST_LOW (arg1) & ~15)
13602 error ("argument 2 must be a 4-bit unsigned literal");
13603 return CONST0_RTX (tmode);
13606 else if (icode == CODE_FOR_altivec_vcfux
13607 || icode == CODE_FOR_altivec_vcfsx
13608 || icode == CODE_FOR_altivec_vctsxs
13609 || icode == CODE_FOR_altivec_vctuxs)
13611 /* Only allow 5-bit unsigned literals. */
13612 STRIP_NOPS (arg1);
13613 if (TREE_CODE (arg1) != INTEGER_CST
13614 || TREE_INT_CST_LOW (arg1) & ~0x1f)
13616 error ("argument 2 must be a 5-bit unsigned literal");
13617 return CONST0_RTX (tmode);
13620 else if (icode == CODE_FOR_dfptstsfi_eq_dd
13621 || icode == CODE_FOR_dfptstsfi_lt_dd
13622 || icode == CODE_FOR_dfptstsfi_gt_dd
13623 || icode == CODE_FOR_dfptstsfi_unordered_dd
13624 || icode == CODE_FOR_dfptstsfi_eq_td
13625 || icode == CODE_FOR_dfptstsfi_lt_td
13626 || icode == CODE_FOR_dfptstsfi_gt_td
13627 || icode == CODE_FOR_dfptstsfi_unordered_td)
13629 /* Only allow 6-bit unsigned literals. */
13630 STRIP_NOPS (arg0);
13631 if (TREE_CODE (arg0) != INTEGER_CST
13632 || !IN_RANGE (TREE_INT_CST_LOW (arg0), 0, 63))
13634 error ("argument 1 must be a 6-bit unsigned literal");
13635 return CONST0_RTX (tmode);
13638 else if (icode == CODE_FOR_xststdcqp_kf
13639 || icode == CODE_FOR_xststdcqp_tf
13640 || icode == CODE_FOR_xststdcdp
13641 || icode == CODE_FOR_xststdcsp
13642 || icode == CODE_FOR_xvtstdcdp
13643 || icode == CODE_FOR_xvtstdcsp)
13645 /* Only allow 7-bit unsigned literals. */
13646 STRIP_NOPS (arg1);
13647 if (TREE_CODE (arg1) != INTEGER_CST
13648 || !IN_RANGE (TREE_INT_CST_LOW (arg1), 0, 127))
13650 error ("argument 2 must be a 7-bit unsigned literal");
13651 return CONST0_RTX (tmode);
13655 if (target == 0
13656 || GET_MODE (target) != tmode
13657 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13658 target = gen_reg_rtx (tmode);
13660 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13661 op0 = copy_to_mode_reg (mode0, op0);
13662 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
13663 op1 = copy_to_mode_reg (mode1, op1);
13665 pat = GEN_FCN (icode) (target, op0, op1);
13666 if (! pat)
13667 return 0;
13668 emit_insn (pat);
13670 return target;
13673 static rtx
13674 altivec_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
13676 rtx pat, scratch;
13677 tree cr6_form = CALL_EXPR_ARG (exp, 0);
13678 tree arg0 = CALL_EXPR_ARG (exp, 1);
13679 tree arg1 = CALL_EXPR_ARG (exp, 2);
13680 rtx op0 = expand_normal (arg0);
13681 rtx op1 = expand_normal (arg1);
13682 machine_mode tmode = SImode;
13683 machine_mode mode0 = insn_data[icode].operand[1].mode;
13684 machine_mode mode1 = insn_data[icode].operand[2].mode;
13685 int cr6_form_int;
13687 if (TREE_CODE (cr6_form) != INTEGER_CST)
13689 error ("argument 1 of %qs must be a constant",
13690 "__builtin_altivec_predicate");
13691 return const0_rtx;
13693 else
13694 cr6_form_int = TREE_INT_CST_LOW (cr6_form);
13696 gcc_assert (mode0 == mode1);
13698 /* If we have invalid arguments, bail out before generating bad rtl. */
13699 if (arg0 == error_mark_node || arg1 == error_mark_node)
13700 return const0_rtx;
13702 if (target == 0
13703 || GET_MODE (target) != tmode
13704 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13705 target = gen_reg_rtx (tmode);
13707 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13708 op0 = copy_to_mode_reg (mode0, op0);
13709 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
13710 op1 = copy_to_mode_reg (mode1, op1);
13712 /* Note that for many of the relevant operations (e.g. cmpne or
13713 cmpeq) with float or double operands, it makes more sense for the
13714 mode of the allocated scratch register to select a vector of
13715 integer. But the choice to copy the mode of operand 0 was made
13716 long ago and there are no plans to change it. */
13717 scratch = gen_reg_rtx (mode0);
13719 pat = GEN_FCN (icode) (scratch, op0, op1);
13720 if (! pat)
13721 return 0;
13722 emit_insn (pat);
13724 /* The vec_any* and vec_all* predicates use the same opcodes for two
13725 different operations, but the bits in CR6 will be different
13726 depending on what information we want. So we have to play tricks
13727 with CR6 to get the right bits out.
13729 If you think this is disgusting, look at the specs for the
13730 AltiVec predicates. */
13732 switch (cr6_form_int)
13734 case 0:
13735 emit_insn (gen_cr6_test_for_zero (target));
13736 break;
13737 case 1:
13738 emit_insn (gen_cr6_test_for_zero_reverse (target));
13739 break;
13740 case 2:
13741 emit_insn (gen_cr6_test_for_lt (target));
13742 break;
13743 case 3:
13744 emit_insn (gen_cr6_test_for_lt_reverse (target));
13745 break;
13746 default:
13747 error ("argument 1 of %qs is out of range",
13748 "__builtin_altivec_predicate");
13749 break;
13752 return target;
13756 swap_endian_selector_for_mode (machine_mode mode)
13758 unsigned int swap1[16] = {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0};
13759 unsigned int swap2[16] = {7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8};
13760 unsigned int swap4[16] = {3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12};
13761 unsigned int swap8[16] = {1,0,3,2,5,4,7,6,9,8,11,10,13,12,15,14};
13763 unsigned int *swaparray, i;
13764 rtx perm[16];
13766 switch (mode)
13768 case E_V1TImode:
13769 swaparray = swap1;
13770 break;
13771 case E_V2DFmode:
13772 case E_V2DImode:
13773 swaparray = swap2;
13774 break;
13775 case E_V4SFmode:
13776 case E_V4SImode:
13777 swaparray = swap4;
13778 break;
13779 case E_V8HImode:
13780 swaparray = swap8;
13781 break;
13782 default:
13783 gcc_unreachable ();
13786 for (i = 0; i < 16; ++i)
13787 perm[i] = GEN_INT (swaparray[i]);
13789 return force_reg (V16QImode, gen_rtx_CONST_VECTOR (V16QImode,
13790 gen_rtvec_v (16, perm)));
13793 static rtx
13794 altivec_expand_lv_builtin (enum insn_code icode, tree exp, rtx target, bool blk)
13796 rtx pat, addr;
13797 tree arg0 = CALL_EXPR_ARG (exp, 0);
13798 tree arg1 = CALL_EXPR_ARG (exp, 1);
13799 machine_mode tmode = insn_data[icode].operand[0].mode;
13800 machine_mode mode0 = Pmode;
13801 machine_mode mode1 = Pmode;
13802 rtx op0 = expand_normal (arg0);
13803 rtx op1 = expand_normal (arg1);
13805 if (icode == CODE_FOR_nothing)
13806 /* Builtin not supported on this processor. */
13807 return 0;
13809 /* If we got invalid arguments bail out before generating bad rtl. */
13810 if (arg0 == error_mark_node || arg1 == error_mark_node)
13811 return const0_rtx;
13813 if (target == 0
13814 || GET_MODE (target) != tmode
13815 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
13816 target = gen_reg_rtx (tmode);
13818 op1 = copy_to_mode_reg (mode1, op1);
13820 /* For LVX, express the RTL accurately by ANDing the address with -16.
13821 LVXL and LVE*X expand to use UNSPECs to hide their special behavior,
13822 so the raw address is fine. */
13823 if (icode == CODE_FOR_altivec_lvx_v1ti
13824 || icode == CODE_FOR_altivec_lvx_v2df
13825 || icode == CODE_FOR_altivec_lvx_v2di
13826 || icode == CODE_FOR_altivec_lvx_v4sf
13827 || icode == CODE_FOR_altivec_lvx_v4si
13828 || icode == CODE_FOR_altivec_lvx_v8hi
13829 || icode == CODE_FOR_altivec_lvx_v16qi)
13831 rtx rawaddr;
13832 if (op0 == const0_rtx)
13833 rawaddr = op1;
13834 else
13836 op0 = copy_to_mode_reg (mode0, op0);
13837 rawaddr = gen_rtx_PLUS (Pmode, op1, op0);
13839 addr = gen_rtx_AND (Pmode, rawaddr, gen_rtx_CONST_INT (Pmode, -16));
13840 addr = gen_rtx_MEM (blk ? BLKmode : tmode, addr);
13842 emit_insn (gen_rtx_SET (target, addr));
13844 else
13846 if (op0 == const0_rtx)
13847 addr = gen_rtx_MEM (blk ? BLKmode : tmode, op1);
13848 else
13850 op0 = copy_to_mode_reg (mode0, op0);
13851 addr = gen_rtx_MEM (blk ? BLKmode : tmode,
13852 gen_rtx_PLUS (Pmode, op1, op0));
13855 pat = GEN_FCN (icode) (target, addr);
13856 if (! pat)
13857 return 0;
13858 emit_insn (pat);
13861 return target;
13864 static rtx
13865 altivec_expand_stxvl_builtin (enum insn_code icode, tree exp)
13867 rtx pat;
13868 tree arg0 = CALL_EXPR_ARG (exp, 0);
13869 tree arg1 = CALL_EXPR_ARG (exp, 1);
13870 tree arg2 = CALL_EXPR_ARG (exp, 2);
13871 rtx op0 = expand_normal (arg0);
13872 rtx op1 = expand_normal (arg1);
13873 rtx op2 = expand_normal (arg2);
13874 machine_mode mode0 = insn_data[icode].operand[0].mode;
13875 machine_mode mode1 = insn_data[icode].operand[1].mode;
13876 machine_mode mode2 = insn_data[icode].operand[2].mode;
13878 if (icode == CODE_FOR_nothing)
13879 /* Builtin not supported on this processor. */
13880 return NULL_RTX;
13882 /* If we got invalid arguments bail out before generating bad rtl. */
13883 if (arg0 == error_mark_node
13884 || arg1 == error_mark_node
13885 || arg2 == error_mark_node)
13886 return NULL_RTX;
13888 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
13889 op0 = copy_to_mode_reg (mode0, op0);
13890 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
13891 op1 = copy_to_mode_reg (mode1, op1);
13892 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
13893 op2 = copy_to_mode_reg (mode2, op2);
13895 pat = GEN_FCN (icode) (op0, op1, op2);
13896 if (pat)
13897 emit_insn (pat);
13899 return NULL_RTX;
13902 static rtx
13903 altivec_expand_stv_builtin (enum insn_code icode, tree exp)
13905 tree arg0 = CALL_EXPR_ARG (exp, 0);
13906 tree arg1 = CALL_EXPR_ARG (exp, 1);
13907 tree arg2 = CALL_EXPR_ARG (exp, 2);
13908 rtx op0 = expand_normal (arg0);
13909 rtx op1 = expand_normal (arg1);
13910 rtx op2 = expand_normal (arg2);
13911 rtx pat, addr, rawaddr;
13912 machine_mode tmode = insn_data[icode].operand[0].mode;
13913 machine_mode smode = insn_data[icode].operand[1].mode;
13914 machine_mode mode1 = Pmode;
13915 machine_mode mode2 = Pmode;
13917 /* Invalid arguments. Bail before doing anything stoopid! */
13918 if (arg0 == error_mark_node
13919 || arg1 == error_mark_node
13920 || arg2 == error_mark_node)
13921 return const0_rtx;
13923 op2 = copy_to_mode_reg (mode2, op2);
13925 /* For STVX, express the RTL accurately by ANDing the address with -16.
13926 STVXL and STVE*X expand to use UNSPECs to hide their special behavior,
13927 so the raw address is fine. */
13928 if (icode == CODE_FOR_altivec_stvx_v2df
13929 || icode == CODE_FOR_altivec_stvx_v2di
13930 || icode == CODE_FOR_altivec_stvx_v4sf
13931 || icode == CODE_FOR_altivec_stvx_v4si
13932 || icode == CODE_FOR_altivec_stvx_v8hi
13933 || icode == CODE_FOR_altivec_stvx_v16qi)
13935 if (op1 == const0_rtx)
13936 rawaddr = op2;
13937 else
13939 op1 = copy_to_mode_reg (mode1, op1);
13940 rawaddr = gen_rtx_PLUS (Pmode, op2, op1);
13943 addr = gen_rtx_AND (Pmode, rawaddr, gen_rtx_CONST_INT (Pmode, -16));
13944 addr = gen_rtx_MEM (tmode, addr);
13946 op0 = copy_to_mode_reg (tmode, op0);
13948 emit_insn (gen_rtx_SET (addr, op0));
13950 else
13952 if (! (*insn_data[icode].operand[1].predicate) (op0, smode))
13953 op0 = copy_to_mode_reg (smode, op0);
13955 if (op1 == const0_rtx)
13956 addr = gen_rtx_MEM (tmode, op2);
13957 else
13959 op1 = copy_to_mode_reg (mode1, op1);
13960 addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op2, op1));
13963 pat = GEN_FCN (icode) (addr, op0);
13964 if (pat)
13965 emit_insn (pat);
13968 return NULL_RTX;
13971 /* Return the appropriate SPR number associated with the given builtin. */
13972 static inline HOST_WIDE_INT
13973 htm_spr_num (enum rs6000_builtins code)
13975 if (code == HTM_BUILTIN_GET_TFHAR
13976 || code == HTM_BUILTIN_SET_TFHAR)
13977 return TFHAR_SPR;
13978 else if (code == HTM_BUILTIN_GET_TFIAR
13979 || code == HTM_BUILTIN_SET_TFIAR)
13980 return TFIAR_SPR;
13981 else if (code == HTM_BUILTIN_GET_TEXASR
13982 || code == HTM_BUILTIN_SET_TEXASR)
13983 return TEXASR_SPR;
13984 gcc_assert (code == HTM_BUILTIN_GET_TEXASRU
13985 || code == HTM_BUILTIN_SET_TEXASRU);
13986 return TEXASRU_SPR;
13989 /* Return the appropriate SPR regno associated with the given builtin. */
13990 static inline HOST_WIDE_INT
13991 htm_spr_regno (enum rs6000_builtins code)
13993 if (code == HTM_BUILTIN_GET_TFHAR
13994 || code == HTM_BUILTIN_SET_TFHAR)
13995 return TFHAR_REGNO;
13996 else if (code == HTM_BUILTIN_GET_TFIAR
13997 || code == HTM_BUILTIN_SET_TFIAR)
13998 return TFIAR_REGNO;
13999 gcc_assert (code == HTM_BUILTIN_GET_TEXASR
14000 || code == HTM_BUILTIN_SET_TEXASR
14001 || code == HTM_BUILTIN_GET_TEXASRU
14002 || code == HTM_BUILTIN_SET_TEXASRU);
14003 return TEXASR_REGNO;
14006 /* Return the correct ICODE value depending on whether we are
14007 setting or reading the HTM SPRs. */
14008 static inline enum insn_code
14009 rs6000_htm_spr_icode (bool nonvoid)
14011 if (nonvoid)
14012 return (TARGET_POWERPC64) ? CODE_FOR_htm_mfspr_di : CODE_FOR_htm_mfspr_si;
14013 else
14014 return (TARGET_POWERPC64) ? CODE_FOR_htm_mtspr_di : CODE_FOR_htm_mtspr_si;
14017 /* Expand the HTM builtin in EXP and store the result in TARGET.
14018 Store true in *EXPANDEDP if we found a builtin to expand. */
14019 static rtx
14020 htm_expand_builtin (tree exp, rtx target, bool * expandedp)
14022 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
14023 bool nonvoid = TREE_TYPE (TREE_TYPE (fndecl)) != void_type_node;
14024 enum rs6000_builtins fcode = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
14025 const struct builtin_description *d;
14026 size_t i;
14028 *expandedp = true;
14030 if (!TARGET_POWERPC64
14031 && (fcode == HTM_BUILTIN_TABORTDC
14032 || fcode == HTM_BUILTIN_TABORTDCI))
14034 size_t uns_fcode = (size_t)fcode;
14035 const char *name = rs6000_builtin_info[uns_fcode].name;
14036 error ("builtin %qs is only valid in 64-bit mode", name);
14037 return const0_rtx;
14040 /* Expand the HTM builtins. */
14041 d = bdesc_htm;
14042 for (i = 0; i < ARRAY_SIZE (bdesc_htm); i++, d++)
14043 if (d->code == fcode)
14045 rtx op[MAX_HTM_OPERANDS], pat;
14046 int nopnds = 0;
14047 tree arg;
14048 call_expr_arg_iterator iter;
14049 unsigned attr = rs6000_builtin_info[fcode].attr;
14050 enum insn_code icode = d->icode;
14051 const struct insn_operand_data *insn_op;
14052 bool uses_spr = (attr & RS6000_BTC_SPR);
14053 rtx cr = NULL_RTX;
14055 if (uses_spr)
14056 icode = rs6000_htm_spr_icode (nonvoid);
14057 insn_op = &insn_data[icode].operand[0];
14059 if (nonvoid)
14061 machine_mode tmode = (uses_spr) ? insn_op->mode : E_SImode;
14062 if (!target
14063 || GET_MODE (target) != tmode
14064 || (uses_spr && !(*insn_op->predicate) (target, tmode)))
14065 target = gen_reg_rtx (tmode);
14066 if (uses_spr)
14067 op[nopnds++] = target;
14070 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
14072 if (arg == error_mark_node || nopnds >= MAX_HTM_OPERANDS)
14073 return const0_rtx;
14075 insn_op = &insn_data[icode].operand[nopnds];
14077 op[nopnds] = expand_normal (arg);
14079 if (!(*insn_op->predicate) (op[nopnds], insn_op->mode))
14081 if (!strcmp (insn_op->constraint, "n"))
14083 int arg_num = (nonvoid) ? nopnds : nopnds + 1;
14084 if (!CONST_INT_P (op[nopnds]))
14085 error ("argument %d must be an unsigned literal", arg_num);
14086 else
14087 error ("argument %d is an unsigned literal that is "
14088 "out of range", arg_num);
14089 return const0_rtx;
14091 op[nopnds] = copy_to_mode_reg (insn_op->mode, op[nopnds]);
14094 nopnds++;
14097 /* Handle the builtins for extended mnemonics. These accept
14098 no arguments, but map to builtins that take arguments. */
14099 switch (fcode)
14101 case HTM_BUILTIN_TENDALL: /* Alias for: tend. 1 */
14102 case HTM_BUILTIN_TRESUME: /* Alias for: tsr. 1 */
14103 op[nopnds++] = GEN_INT (1);
14104 if (flag_checking)
14105 attr |= RS6000_BTC_UNARY;
14106 break;
14107 case HTM_BUILTIN_TSUSPEND: /* Alias for: tsr. 0 */
14108 op[nopnds++] = GEN_INT (0);
14109 if (flag_checking)
14110 attr |= RS6000_BTC_UNARY;
14111 break;
14112 default:
14113 break;
14116 /* If this builtin accesses SPRs, then pass in the appropriate
14117 SPR number and SPR regno as the last two operands. */
14118 if (uses_spr)
14120 machine_mode mode = (TARGET_POWERPC64) ? DImode : SImode;
14121 op[nopnds++] = gen_rtx_CONST_INT (mode, htm_spr_num (fcode));
14122 op[nopnds++] = gen_rtx_REG (mode, htm_spr_regno (fcode));
14124 /* If this builtin accesses a CR, then pass in a scratch
14125 CR as the last operand. */
14126 else if (attr & RS6000_BTC_CR)
14127 { cr = gen_reg_rtx (CCmode);
14128 op[nopnds++] = cr;
14131 if (flag_checking)
14133 int expected_nopnds = 0;
14134 if ((attr & RS6000_BTC_TYPE_MASK) == RS6000_BTC_UNARY)
14135 expected_nopnds = 1;
14136 else if ((attr & RS6000_BTC_TYPE_MASK) == RS6000_BTC_BINARY)
14137 expected_nopnds = 2;
14138 else if ((attr & RS6000_BTC_TYPE_MASK) == RS6000_BTC_TERNARY)
14139 expected_nopnds = 3;
14140 if (!(attr & RS6000_BTC_VOID))
14141 expected_nopnds += 1;
14142 if (uses_spr)
14143 expected_nopnds += 2;
14145 gcc_assert (nopnds == expected_nopnds
14146 && nopnds <= MAX_HTM_OPERANDS);
14149 switch (nopnds)
14151 case 1:
14152 pat = GEN_FCN (icode) (op[0]);
14153 break;
14154 case 2:
14155 pat = GEN_FCN (icode) (op[0], op[1]);
14156 break;
14157 case 3:
14158 pat = GEN_FCN (icode) (op[0], op[1], op[2]);
14159 break;
14160 case 4:
14161 pat = GEN_FCN (icode) (op[0], op[1], op[2], op[3]);
14162 break;
14163 default:
14164 gcc_unreachable ();
14166 if (!pat)
14167 return NULL_RTX;
14168 emit_insn (pat);
14170 if (attr & RS6000_BTC_CR)
14172 if (fcode == HTM_BUILTIN_TBEGIN)
14174 /* Emit code to set TARGET to true or false depending on
14175 whether the tbegin. instruction successfully or failed
14176 to start a transaction. We do this by placing the 1's
14177 complement of CR's EQ bit into TARGET. */
14178 rtx scratch = gen_reg_rtx (SImode);
14179 emit_insn (gen_rtx_SET (scratch,
14180 gen_rtx_EQ (SImode, cr,
14181 const0_rtx)));
14182 emit_insn (gen_rtx_SET (target,
14183 gen_rtx_XOR (SImode, scratch,
14184 GEN_INT (1))));
14186 else
14188 /* Emit code to copy the 4-bit condition register field
14189 CR into the least significant end of register TARGET. */
14190 rtx scratch1 = gen_reg_rtx (SImode);
14191 rtx scratch2 = gen_reg_rtx (SImode);
14192 rtx subreg = simplify_gen_subreg (CCmode, scratch1, SImode, 0);
14193 emit_insn (gen_movcc (subreg, cr));
14194 emit_insn (gen_lshrsi3 (scratch2, scratch1, GEN_INT (28)));
14195 emit_insn (gen_andsi3 (target, scratch2, GEN_INT (0xf)));
14199 if (nonvoid)
14200 return target;
14201 return const0_rtx;
14204 *expandedp = false;
14205 return NULL_RTX;
14208 /* Expand the CPU builtin in FCODE and store the result in TARGET. */
14210 static rtx
14211 cpu_expand_builtin (enum rs6000_builtins fcode, tree exp ATTRIBUTE_UNUSED,
14212 rtx target)
14214 /* __builtin_cpu_init () is a nop, so expand to nothing. */
14215 if (fcode == RS6000_BUILTIN_CPU_INIT)
14216 return const0_rtx;
14218 if (target == 0 || GET_MODE (target) != SImode)
14219 target = gen_reg_rtx (SImode);
14221 #ifdef TARGET_LIBC_PROVIDES_HWCAP_IN_TCB
14222 tree arg = TREE_OPERAND (CALL_EXPR_ARG (exp, 0), 0);
14223 /* Target clones creates an ARRAY_REF instead of STRING_CST, convert it back
14224 to a STRING_CST. */
14225 if (TREE_CODE (arg) == ARRAY_REF
14226 && TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST
14227 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST
14228 && compare_tree_int (TREE_OPERAND (arg, 1), 0) == 0)
14229 arg = TREE_OPERAND (arg, 0);
14231 if (TREE_CODE (arg) != STRING_CST)
14233 error ("builtin %qs only accepts a string argument",
14234 rs6000_builtin_info[(size_t) fcode].name);
14235 return const0_rtx;
14238 if (fcode == RS6000_BUILTIN_CPU_IS)
14240 const char *cpu = TREE_STRING_POINTER (arg);
14241 rtx cpuid = NULL_RTX;
14242 for (size_t i = 0; i < ARRAY_SIZE (cpu_is_info); i++)
14243 if (strcmp (cpu, cpu_is_info[i].cpu) == 0)
14245 /* The CPUID value in the TCB is offset by _DL_FIRST_PLATFORM. */
14246 cpuid = GEN_INT (cpu_is_info[i].cpuid + _DL_FIRST_PLATFORM);
14247 break;
14249 if (cpuid == NULL_RTX)
14251 /* Invalid CPU argument. */
14252 error ("cpu %qs is an invalid argument to builtin %qs",
14253 cpu, rs6000_builtin_info[(size_t) fcode].name);
14254 return const0_rtx;
14257 rtx platform = gen_reg_rtx (SImode);
14258 rtx tcbmem = gen_const_mem (SImode,
14259 gen_rtx_PLUS (Pmode,
14260 gen_rtx_REG (Pmode, TLS_REGNUM),
14261 GEN_INT (TCB_PLATFORM_OFFSET)));
14262 emit_move_insn (platform, tcbmem);
14263 emit_insn (gen_eqsi3 (target, platform, cpuid));
14265 else if (fcode == RS6000_BUILTIN_CPU_SUPPORTS)
14267 const char *hwcap = TREE_STRING_POINTER (arg);
14268 rtx mask = NULL_RTX;
14269 int hwcap_offset;
14270 for (size_t i = 0; i < ARRAY_SIZE (cpu_supports_info); i++)
14271 if (strcmp (hwcap, cpu_supports_info[i].hwcap) == 0)
14273 mask = GEN_INT (cpu_supports_info[i].mask);
14274 hwcap_offset = TCB_HWCAP_OFFSET (cpu_supports_info[i].id);
14275 break;
14277 if (mask == NULL_RTX)
14279 /* Invalid HWCAP argument. */
14280 error ("%s %qs is an invalid argument to builtin %qs",
14281 "hwcap", hwcap, rs6000_builtin_info[(size_t) fcode].name);
14282 return const0_rtx;
14285 rtx tcb_hwcap = gen_reg_rtx (SImode);
14286 rtx tcbmem = gen_const_mem (SImode,
14287 gen_rtx_PLUS (Pmode,
14288 gen_rtx_REG (Pmode, TLS_REGNUM),
14289 GEN_INT (hwcap_offset)));
14290 emit_move_insn (tcb_hwcap, tcbmem);
14291 rtx scratch1 = gen_reg_rtx (SImode);
14292 emit_insn (gen_rtx_SET (scratch1, gen_rtx_AND (SImode, tcb_hwcap, mask)));
14293 rtx scratch2 = gen_reg_rtx (SImode);
14294 emit_insn (gen_eqsi3 (scratch2, scratch1, const0_rtx));
14295 emit_insn (gen_rtx_SET (target, gen_rtx_XOR (SImode, scratch2, const1_rtx)));
14297 else
14298 gcc_unreachable ();
14300 /* Record that we have expanded a CPU builtin, so that we can later
14301 emit a reference to the special symbol exported by LIBC to ensure we
14302 do not link against an old LIBC that doesn't support this feature. */
14303 cpu_builtin_p = true;
14305 #else
14306 warning (0, "builtin %qs needs GLIBC (2.23 and newer) that exports hardware "
14307 "capability bits", rs6000_builtin_info[(size_t) fcode].name);
14309 /* For old LIBCs, always return FALSE. */
14310 emit_move_insn (target, GEN_INT (0));
14311 #endif /* TARGET_LIBC_PROVIDES_HWCAP_IN_TCB */
14313 return target;
14316 static rtx
14317 rs6000_expand_ternop_builtin (enum insn_code icode, tree exp, rtx target)
14319 rtx pat;
14320 tree arg0 = CALL_EXPR_ARG (exp, 0);
14321 tree arg1 = CALL_EXPR_ARG (exp, 1);
14322 tree arg2 = CALL_EXPR_ARG (exp, 2);
14323 rtx op0 = expand_normal (arg0);
14324 rtx op1 = expand_normal (arg1);
14325 rtx op2 = expand_normal (arg2);
14326 machine_mode tmode = insn_data[icode].operand[0].mode;
14327 machine_mode mode0 = insn_data[icode].operand[1].mode;
14328 machine_mode mode1 = insn_data[icode].operand[2].mode;
14329 machine_mode mode2 = insn_data[icode].operand[3].mode;
14331 if (icode == CODE_FOR_nothing)
14332 /* Builtin not supported on this processor. */
14333 return 0;
14335 /* If we got invalid arguments bail out before generating bad rtl. */
14336 if (arg0 == error_mark_node
14337 || arg1 == error_mark_node
14338 || arg2 == error_mark_node)
14339 return const0_rtx;
14341 /* Check and prepare argument depending on the instruction code.
14343 Note that a switch statement instead of the sequence of tests
14344 would be incorrect as many of the CODE_FOR values could be
14345 CODE_FOR_nothing and that would yield multiple alternatives
14346 with identical values. We'd never reach here at runtime in
14347 this case. */
14348 if (icode == CODE_FOR_altivec_vsldoi_v4sf
14349 || icode == CODE_FOR_altivec_vsldoi_v2df
14350 || icode == CODE_FOR_altivec_vsldoi_v4si
14351 || icode == CODE_FOR_altivec_vsldoi_v8hi
14352 || icode == CODE_FOR_altivec_vsldoi_v16qi)
14354 /* Only allow 4-bit unsigned literals. */
14355 STRIP_NOPS (arg2);
14356 if (TREE_CODE (arg2) != INTEGER_CST
14357 || TREE_INT_CST_LOW (arg2) & ~0xf)
14359 error ("argument 3 must be a 4-bit unsigned literal");
14360 return CONST0_RTX (tmode);
14363 else if (icode == CODE_FOR_vsx_xxpermdi_v2df
14364 || icode == CODE_FOR_vsx_xxpermdi_v2di
14365 || icode == CODE_FOR_vsx_xxpermdi_v2df_be
14366 || icode == CODE_FOR_vsx_xxpermdi_v2di_be
14367 || icode == CODE_FOR_vsx_xxpermdi_v1ti
14368 || icode == CODE_FOR_vsx_xxpermdi_v4sf
14369 || icode == CODE_FOR_vsx_xxpermdi_v4si
14370 || icode == CODE_FOR_vsx_xxpermdi_v8hi
14371 || icode == CODE_FOR_vsx_xxpermdi_v16qi
14372 || icode == CODE_FOR_vsx_xxsldwi_v16qi
14373 || icode == CODE_FOR_vsx_xxsldwi_v8hi
14374 || icode == CODE_FOR_vsx_xxsldwi_v4si
14375 || icode == CODE_FOR_vsx_xxsldwi_v4sf
14376 || icode == CODE_FOR_vsx_xxsldwi_v2di
14377 || icode == CODE_FOR_vsx_xxsldwi_v2df)
14379 /* Only allow 2-bit unsigned literals. */
14380 STRIP_NOPS (arg2);
14381 if (TREE_CODE (arg2) != INTEGER_CST
14382 || TREE_INT_CST_LOW (arg2) & ~0x3)
14384 error ("argument 3 must be a 2-bit unsigned literal");
14385 return CONST0_RTX (tmode);
14388 else if (icode == CODE_FOR_vsx_set_v2df
14389 || icode == CODE_FOR_vsx_set_v2di
14390 || icode == CODE_FOR_bcdadd
14391 || icode == CODE_FOR_bcdadd_lt
14392 || icode == CODE_FOR_bcdadd_eq
14393 || icode == CODE_FOR_bcdadd_gt
14394 || icode == CODE_FOR_bcdsub
14395 || icode == CODE_FOR_bcdsub_lt
14396 || icode == CODE_FOR_bcdsub_eq
14397 || icode == CODE_FOR_bcdsub_gt)
14399 /* Only allow 1-bit unsigned literals. */
14400 STRIP_NOPS (arg2);
14401 if (TREE_CODE (arg2) != INTEGER_CST
14402 || TREE_INT_CST_LOW (arg2) & ~0x1)
14404 error ("argument 3 must be a 1-bit unsigned literal");
14405 return CONST0_RTX (tmode);
14408 else if (icode == CODE_FOR_dfp_ddedpd_dd
14409 || icode == CODE_FOR_dfp_ddedpd_td)
14411 /* Only allow 2-bit unsigned literals where the value is 0 or 2. */
14412 STRIP_NOPS (arg0);
14413 if (TREE_CODE (arg0) != INTEGER_CST
14414 || TREE_INT_CST_LOW (arg2) & ~0x3)
14416 error ("argument 1 must be 0 or 2");
14417 return CONST0_RTX (tmode);
14420 else if (icode == CODE_FOR_dfp_denbcd_dd
14421 || icode == CODE_FOR_dfp_denbcd_td)
14423 /* Only allow 1-bit unsigned literals. */
14424 STRIP_NOPS (arg0);
14425 if (TREE_CODE (arg0) != INTEGER_CST
14426 || TREE_INT_CST_LOW (arg0) & ~0x1)
14428 error ("argument 1 must be a 1-bit unsigned literal");
14429 return CONST0_RTX (tmode);
14432 else if (icode == CODE_FOR_dfp_dscli_dd
14433 || icode == CODE_FOR_dfp_dscli_td
14434 || icode == CODE_FOR_dfp_dscri_dd
14435 || icode == CODE_FOR_dfp_dscri_td)
14437 /* Only allow 6-bit unsigned literals. */
14438 STRIP_NOPS (arg1);
14439 if (TREE_CODE (arg1) != INTEGER_CST
14440 || TREE_INT_CST_LOW (arg1) & ~0x3f)
14442 error ("argument 2 must be a 6-bit unsigned literal");
14443 return CONST0_RTX (tmode);
14446 else if (icode == CODE_FOR_crypto_vshasigmaw
14447 || icode == CODE_FOR_crypto_vshasigmad)
14449 /* Check whether the 2nd and 3rd arguments are integer constants and in
14450 range and prepare arguments. */
14451 STRIP_NOPS (arg1);
14452 if (TREE_CODE (arg1) != INTEGER_CST || wi::geu_p (wi::to_wide (arg1), 2))
14454 error ("argument 2 must be 0 or 1");
14455 return CONST0_RTX (tmode);
14458 STRIP_NOPS (arg2);
14459 if (TREE_CODE (arg2) != INTEGER_CST
14460 || wi::geu_p (wi::to_wide (arg2), 16))
14462 error ("argument 3 must be in the range 0..15");
14463 return CONST0_RTX (tmode);
14467 if (target == 0
14468 || GET_MODE (target) != tmode
14469 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
14470 target = gen_reg_rtx (tmode);
14472 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
14473 op0 = copy_to_mode_reg (mode0, op0);
14474 if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
14475 op1 = copy_to_mode_reg (mode1, op1);
14476 if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
14477 op2 = copy_to_mode_reg (mode2, op2);
14479 pat = GEN_FCN (icode) (target, op0, op1, op2);
14480 if (! pat)
14481 return 0;
14482 emit_insn (pat);
14484 return target;
14488 /* Expand the dst builtins. */
14489 static rtx
14490 altivec_expand_dst_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
14491 bool *expandedp)
14493 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
14494 enum rs6000_builtins fcode = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
14495 tree arg0, arg1, arg2;
14496 machine_mode mode0, mode1;
14497 rtx pat, op0, op1, op2;
14498 const struct builtin_description *d;
14499 size_t i;
14501 *expandedp = false;
14503 /* Handle DST variants. */
14504 d = bdesc_dst;
14505 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
14506 if (d->code == fcode)
14508 arg0 = CALL_EXPR_ARG (exp, 0);
14509 arg1 = CALL_EXPR_ARG (exp, 1);
14510 arg2 = CALL_EXPR_ARG (exp, 2);
14511 op0 = expand_normal (arg0);
14512 op1 = expand_normal (arg1);
14513 op2 = expand_normal (arg2);
14514 mode0 = insn_data[d->icode].operand[0].mode;
14515 mode1 = insn_data[d->icode].operand[1].mode;
14517 /* Invalid arguments, bail out before generating bad rtl. */
14518 if (arg0 == error_mark_node
14519 || arg1 == error_mark_node
14520 || arg2 == error_mark_node)
14521 return const0_rtx;
14523 *expandedp = true;
14524 STRIP_NOPS (arg2);
14525 if (TREE_CODE (arg2) != INTEGER_CST
14526 || TREE_INT_CST_LOW (arg2) & ~0x3)
14528 error ("argument to %qs must be a 2-bit unsigned literal", d->name);
14529 return const0_rtx;
14532 if (! (*insn_data[d->icode].operand[0].predicate) (op0, mode0))
14533 op0 = copy_to_mode_reg (Pmode, op0);
14534 if (! (*insn_data[d->icode].operand[1].predicate) (op1, mode1))
14535 op1 = copy_to_mode_reg (mode1, op1);
14537 pat = GEN_FCN (d->icode) (op0, op1, op2);
14538 if (pat != 0)
14539 emit_insn (pat);
14541 return NULL_RTX;
14544 return NULL_RTX;
14547 /* Expand vec_init builtin. */
14548 static rtx
14549 altivec_expand_vec_init_builtin (tree type, tree exp, rtx target)
14551 machine_mode tmode = TYPE_MODE (type);
14552 machine_mode inner_mode = GET_MODE_INNER (tmode);
14553 int i, n_elt = GET_MODE_NUNITS (tmode);
14555 gcc_assert (VECTOR_MODE_P (tmode));
14556 gcc_assert (n_elt == call_expr_nargs (exp));
14558 if (!target || !register_operand (target, tmode))
14559 target = gen_reg_rtx (tmode);
14561 /* If we have a vector compromised of a single element, such as V1TImode, do
14562 the initialization directly. */
14563 if (n_elt == 1 && GET_MODE_SIZE (tmode) == GET_MODE_SIZE (inner_mode))
14565 rtx x = expand_normal (CALL_EXPR_ARG (exp, 0));
14566 emit_move_insn (target, gen_lowpart (tmode, x));
14568 else
14570 rtvec v = rtvec_alloc (n_elt);
14572 for (i = 0; i < n_elt; ++i)
14574 rtx x = expand_normal (CALL_EXPR_ARG (exp, i));
14575 RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x);
14578 rs6000_expand_vector_init (target, gen_rtx_PARALLEL (tmode, v));
14581 return target;
14584 /* Return the integer constant in ARG. Constrain it to be in the range
14585 of the subparts of VEC_TYPE; issue an error if not. */
14587 static int
14588 get_element_number (tree vec_type, tree arg)
14590 unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1;
14592 if (!tree_fits_uhwi_p (arg)
14593 || (elt = tree_to_uhwi (arg), elt > max))
14595 error ("selector must be an integer constant in the range 0..%wi", max);
14596 return 0;
14599 return elt;
14602 /* Expand vec_set builtin. */
14603 static rtx
14604 altivec_expand_vec_set_builtin (tree exp)
14606 machine_mode tmode, mode1;
14607 tree arg0, arg1, arg2;
14608 int elt;
14609 rtx op0, op1;
14611 arg0 = CALL_EXPR_ARG (exp, 0);
14612 arg1 = CALL_EXPR_ARG (exp, 1);
14613 arg2 = CALL_EXPR_ARG (exp, 2);
14615 tmode = TYPE_MODE (TREE_TYPE (arg0));
14616 mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
14617 gcc_assert (VECTOR_MODE_P (tmode));
14619 op0 = expand_expr (arg0, NULL_RTX, tmode, EXPAND_NORMAL);
14620 op1 = expand_expr (arg1, NULL_RTX, mode1, EXPAND_NORMAL);
14621 elt = get_element_number (TREE_TYPE (arg0), arg2);
14623 if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode)
14624 op1 = convert_modes (mode1, GET_MODE (op1), op1, true);
14626 op0 = force_reg (tmode, op0);
14627 op1 = force_reg (mode1, op1);
14629 rs6000_expand_vector_set (op0, op1, elt);
14631 return op0;
14634 /* Expand vec_ext builtin. */
14635 static rtx
14636 altivec_expand_vec_ext_builtin (tree exp, rtx target)
14638 machine_mode tmode, mode0;
14639 tree arg0, arg1;
14640 rtx op0;
14641 rtx op1;
14643 arg0 = CALL_EXPR_ARG (exp, 0);
14644 arg1 = CALL_EXPR_ARG (exp, 1);
14646 op0 = expand_normal (arg0);
14647 op1 = expand_normal (arg1);
14649 /* Call get_element_number to validate arg1 if it is a constant. */
14650 if (TREE_CODE (arg1) == INTEGER_CST)
14651 (void) get_element_number (TREE_TYPE (arg0), arg1);
14653 tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
14654 mode0 = TYPE_MODE (TREE_TYPE (arg0));
14655 gcc_assert (VECTOR_MODE_P (mode0));
14657 op0 = force_reg (mode0, op0);
14659 if (optimize || !target || !register_operand (target, tmode))
14660 target = gen_reg_rtx (tmode);
14662 rs6000_expand_vector_extract (target, op0, op1);
14664 return target;
14667 /* Expand the builtin in EXP and store the result in TARGET. Store
14668 true in *EXPANDEDP if we found a builtin to expand. */
14669 static rtx
14670 altivec_expand_builtin (tree exp, rtx target, bool *expandedp)
14672 const struct builtin_description *d;
14673 size_t i;
14674 enum insn_code icode;
14675 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
14676 tree arg0, arg1, arg2;
14677 rtx op0, pat;
14678 machine_mode tmode, mode0;
14679 enum rs6000_builtins fcode
14680 = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
14682 if (rs6000_overloaded_builtin_p (fcode))
14684 *expandedp = true;
14685 error ("unresolved overload for Altivec builtin %qF", fndecl);
14687 /* Given it is invalid, just generate a normal call. */
14688 return expand_call (exp, target, false);
14691 target = altivec_expand_dst_builtin (exp, target, expandedp);
14692 if (*expandedp)
14693 return target;
14695 *expandedp = true;
14697 switch (fcode)
14699 case ALTIVEC_BUILTIN_STVX_V2DF:
14700 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v2df, exp);
14701 case ALTIVEC_BUILTIN_STVX_V2DI:
14702 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v2di, exp);
14703 case ALTIVEC_BUILTIN_STVX_V4SF:
14704 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v4sf, exp);
14705 case ALTIVEC_BUILTIN_STVX:
14706 case ALTIVEC_BUILTIN_STVX_V4SI:
14707 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v4si, exp);
14708 case ALTIVEC_BUILTIN_STVX_V8HI:
14709 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v8hi, exp);
14710 case ALTIVEC_BUILTIN_STVX_V16QI:
14711 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx_v16qi, exp);
14712 case ALTIVEC_BUILTIN_STVEBX:
14713 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvebx, exp);
14714 case ALTIVEC_BUILTIN_STVEHX:
14715 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvehx, exp);
14716 case ALTIVEC_BUILTIN_STVEWX:
14717 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvewx, exp);
14718 case ALTIVEC_BUILTIN_STVXL_V2DF:
14719 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v2df, exp);
14720 case ALTIVEC_BUILTIN_STVXL_V2DI:
14721 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v2di, exp);
14722 case ALTIVEC_BUILTIN_STVXL_V4SF:
14723 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v4sf, exp);
14724 case ALTIVEC_BUILTIN_STVXL:
14725 case ALTIVEC_BUILTIN_STVXL_V4SI:
14726 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v4si, exp);
14727 case ALTIVEC_BUILTIN_STVXL_V8HI:
14728 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v8hi, exp);
14729 case ALTIVEC_BUILTIN_STVXL_V16QI:
14730 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl_v16qi, exp);
14732 case ALTIVEC_BUILTIN_STVLX:
14733 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlx, exp);
14734 case ALTIVEC_BUILTIN_STVLXL:
14735 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlxl, exp);
14736 case ALTIVEC_BUILTIN_STVRX:
14737 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrx, exp);
14738 case ALTIVEC_BUILTIN_STVRXL:
14739 return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrxl, exp);
14741 case P9V_BUILTIN_STXVL:
14742 return altivec_expand_stxvl_builtin (CODE_FOR_stxvl, exp);
14744 case P9V_BUILTIN_XST_LEN_R:
14745 return altivec_expand_stxvl_builtin (CODE_FOR_xst_len_r, exp);
14747 case VSX_BUILTIN_STXVD2X_V1TI:
14748 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v1ti, exp);
14749 case VSX_BUILTIN_STXVD2X_V2DF:
14750 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v2df, exp);
14751 case VSX_BUILTIN_STXVD2X_V2DI:
14752 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v2di, exp);
14753 case VSX_BUILTIN_STXVW4X_V4SF:
14754 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v4sf, exp);
14755 case VSX_BUILTIN_STXVW4X_V4SI:
14756 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v4si, exp);
14757 case VSX_BUILTIN_STXVW4X_V8HI:
14758 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v8hi, exp);
14759 case VSX_BUILTIN_STXVW4X_V16QI:
14760 return altivec_expand_stv_builtin (CODE_FOR_vsx_store_v16qi, exp);
14762 /* For the following on big endian, it's ok to use any appropriate
14763 unaligned-supporting store, so use a generic expander. For
14764 little-endian, the exact element-reversing instruction must
14765 be used. */
14766 case VSX_BUILTIN_ST_ELEMREV_V1TI:
14768 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v1ti
14769 : CODE_FOR_vsx_st_elemrev_v1ti);
14770 return altivec_expand_stv_builtin (code, exp);
14772 case VSX_BUILTIN_ST_ELEMREV_V2DF:
14774 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v2df
14775 : CODE_FOR_vsx_st_elemrev_v2df);
14776 return altivec_expand_stv_builtin (code, exp);
14778 case VSX_BUILTIN_ST_ELEMREV_V2DI:
14780 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v2di
14781 : CODE_FOR_vsx_st_elemrev_v2di);
14782 return altivec_expand_stv_builtin (code, exp);
14784 case VSX_BUILTIN_ST_ELEMREV_V4SF:
14786 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v4sf
14787 : CODE_FOR_vsx_st_elemrev_v4sf);
14788 return altivec_expand_stv_builtin (code, exp);
14790 case VSX_BUILTIN_ST_ELEMREV_V4SI:
14792 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v4si
14793 : CODE_FOR_vsx_st_elemrev_v4si);
14794 return altivec_expand_stv_builtin (code, exp);
14796 case VSX_BUILTIN_ST_ELEMREV_V8HI:
14798 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v8hi
14799 : CODE_FOR_vsx_st_elemrev_v8hi);
14800 return altivec_expand_stv_builtin (code, exp);
14802 case VSX_BUILTIN_ST_ELEMREV_V16QI:
14804 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_store_v16qi
14805 : CODE_FOR_vsx_st_elemrev_v16qi);
14806 return altivec_expand_stv_builtin (code, exp);
14809 case ALTIVEC_BUILTIN_MFVSCR:
14810 icode = CODE_FOR_altivec_mfvscr;
14811 tmode = insn_data[icode].operand[0].mode;
14813 if (target == 0
14814 || GET_MODE (target) != tmode
14815 || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
14816 target = gen_reg_rtx (tmode);
14818 pat = GEN_FCN (icode) (target);
14819 if (! pat)
14820 return 0;
14821 emit_insn (pat);
14822 return target;
14824 case ALTIVEC_BUILTIN_MTVSCR:
14825 icode = CODE_FOR_altivec_mtvscr;
14826 arg0 = CALL_EXPR_ARG (exp, 0);
14827 op0 = expand_normal (arg0);
14828 mode0 = insn_data[icode].operand[0].mode;
14830 /* If we got invalid arguments bail out before generating bad rtl. */
14831 if (arg0 == error_mark_node)
14832 return const0_rtx;
14834 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
14835 op0 = copy_to_mode_reg (mode0, op0);
14837 pat = GEN_FCN (icode) (op0);
14838 if (pat)
14839 emit_insn (pat);
14840 return NULL_RTX;
14842 case ALTIVEC_BUILTIN_DSSALL:
14843 emit_insn (gen_altivec_dssall ());
14844 return NULL_RTX;
14846 case ALTIVEC_BUILTIN_DSS:
14847 icode = CODE_FOR_altivec_dss;
14848 arg0 = CALL_EXPR_ARG (exp, 0);
14849 STRIP_NOPS (arg0);
14850 op0 = expand_normal (arg0);
14851 mode0 = insn_data[icode].operand[0].mode;
14853 /* If we got invalid arguments bail out before generating bad rtl. */
14854 if (arg0 == error_mark_node)
14855 return const0_rtx;
14857 if (TREE_CODE (arg0) != INTEGER_CST
14858 || TREE_INT_CST_LOW (arg0) & ~0x3)
14860 error ("argument to %qs must be a 2-bit unsigned literal", "dss");
14861 return const0_rtx;
14864 if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
14865 op0 = copy_to_mode_reg (mode0, op0);
14867 emit_insn (gen_altivec_dss (op0));
14868 return NULL_RTX;
14870 case ALTIVEC_BUILTIN_VEC_INIT_V4SI:
14871 case ALTIVEC_BUILTIN_VEC_INIT_V8HI:
14872 case ALTIVEC_BUILTIN_VEC_INIT_V16QI:
14873 case ALTIVEC_BUILTIN_VEC_INIT_V4SF:
14874 case VSX_BUILTIN_VEC_INIT_V2DF:
14875 case VSX_BUILTIN_VEC_INIT_V2DI:
14876 case VSX_BUILTIN_VEC_INIT_V1TI:
14877 return altivec_expand_vec_init_builtin (TREE_TYPE (exp), exp, target);
14879 case ALTIVEC_BUILTIN_VEC_SET_V4SI:
14880 case ALTIVEC_BUILTIN_VEC_SET_V8HI:
14881 case ALTIVEC_BUILTIN_VEC_SET_V16QI:
14882 case ALTIVEC_BUILTIN_VEC_SET_V4SF:
14883 case VSX_BUILTIN_VEC_SET_V2DF:
14884 case VSX_BUILTIN_VEC_SET_V2DI:
14885 case VSX_BUILTIN_VEC_SET_V1TI:
14886 return altivec_expand_vec_set_builtin (exp);
14888 case ALTIVEC_BUILTIN_VEC_EXT_V4SI:
14889 case ALTIVEC_BUILTIN_VEC_EXT_V8HI:
14890 case ALTIVEC_BUILTIN_VEC_EXT_V16QI:
14891 case ALTIVEC_BUILTIN_VEC_EXT_V4SF:
14892 case VSX_BUILTIN_VEC_EXT_V2DF:
14893 case VSX_BUILTIN_VEC_EXT_V2DI:
14894 case VSX_BUILTIN_VEC_EXT_V1TI:
14895 return altivec_expand_vec_ext_builtin (exp, target);
14897 case P9V_BUILTIN_VEC_EXTRACT4B:
14898 arg1 = CALL_EXPR_ARG (exp, 1);
14899 STRIP_NOPS (arg1);
14901 /* Generate a normal call if it is invalid. */
14902 if (arg1 == error_mark_node)
14903 return expand_call (exp, target, false);
14905 if (TREE_CODE (arg1) != INTEGER_CST || TREE_INT_CST_LOW (arg1) > 12)
14907 error ("second argument to %qs must be 0..12", "vec_vextract4b");
14908 return expand_call (exp, target, false);
14910 break;
14912 case P9V_BUILTIN_VEC_INSERT4B:
14913 arg2 = CALL_EXPR_ARG (exp, 2);
14914 STRIP_NOPS (arg2);
14916 /* Generate a normal call if it is invalid. */
14917 if (arg2 == error_mark_node)
14918 return expand_call (exp, target, false);
14920 if (TREE_CODE (arg2) != INTEGER_CST || TREE_INT_CST_LOW (arg2) > 12)
14922 error ("third argument to %qs must be 0..12", "vec_vinsert4b");
14923 return expand_call (exp, target, false);
14925 break;
14927 default:
14928 break;
14929 /* Fall through. */
14932 /* Expand abs* operations. */
14933 d = bdesc_abs;
14934 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
14935 if (d->code == fcode)
14936 return altivec_expand_abs_builtin (d->icode, exp, target);
14938 /* Expand the AltiVec predicates. */
14939 d = bdesc_altivec_preds;
14940 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, d++)
14941 if (d->code == fcode)
14942 return altivec_expand_predicate_builtin (d->icode, exp, target);
14944 /* LV* are funky. We initialized them differently. */
14945 switch (fcode)
14947 case ALTIVEC_BUILTIN_LVSL:
14948 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsl,
14949 exp, target, false);
14950 case ALTIVEC_BUILTIN_LVSR:
14951 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsr,
14952 exp, target, false);
14953 case ALTIVEC_BUILTIN_LVEBX:
14954 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvebx,
14955 exp, target, false);
14956 case ALTIVEC_BUILTIN_LVEHX:
14957 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvehx,
14958 exp, target, false);
14959 case ALTIVEC_BUILTIN_LVEWX:
14960 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvewx,
14961 exp, target, false);
14962 case ALTIVEC_BUILTIN_LVXL_V2DF:
14963 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v2df,
14964 exp, target, false);
14965 case ALTIVEC_BUILTIN_LVXL_V2DI:
14966 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v2di,
14967 exp, target, false);
14968 case ALTIVEC_BUILTIN_LVXL_V4SF:
14969 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v4sf,
14970 exp, target, false);
14971 case ALTIVEC_BUILTIN_LVXL:
14972 case ALTIVEC_BUILTIN_LVXL_V4SI:
14973 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v4si,
14974 exp, target, false);
14975 case ALTIVEC_BUILTIN_LVXL_V8HI:
14976 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v8hi,
14977 exp, target, false);
14978 case ALTIVEC_BUILTIN_LVXL_V16QI:
14979 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl_v16qi,
14980 exp, target, false);
14981 case ALTIVEC_BUILTIN_LVX_V1TI:
14982 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v1ti,
14983 exp, target, false);
14984 case ALTIVEC_BUILTIN_LVX_V2DF:
14985 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v2df,
14986 exp, target, false);
14987 case ALTIVEC_BUILTIN_LVX_V2DI:
14988 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v2di,
14989 exp, target, false);
14990 case ALTIVEC_BUILTIN_LVX_V4SF:
14991 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v4sf,
14992 exp, target, false);
14993 case ALTIVEC_BUILTIN_LVX:
14994 case ALTIVEC_BUILTIN_LVX_V4SI:
14995 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v4si,
14996 exp, target, false);
14997 case ALTIVEC_BUILTIN_LVX_V8HI:
14998 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v8hi,
14999 exp, target, false);
15000 case ALTIVEC_BUILTIN_LVX_V16QI:
15001 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx_v16qi,
15002 exp, target, false);
15003 case ALTIVEC_BUILTIN_LVLX:
15004 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlx,
15005 exp, target, true);
15006 case ALTIVEC_BUILTIN_LVLXL:
15007 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlxl,
15008 exp, target, true);
15009 case ALTIVEC_BUILTIN_LVRX:
15010 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrx,
15011 exp, target, true);
15012 case ALTIVEC_BUILTIN_LVRXL:
15013 return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrxl,
15014 exp, target, true);
15015 case VSX_BUILTIN_LXVD2X_V1TI:
15016 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v1ti,
15017 exp, target, false);
15018 case VSX_BUILTIN_LXVD2X_V2DF:
15019 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v2df,
15020 exp, target, false);
15021 case VSX_BUILTIN_LXVD2X_V2DI:
15022 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v2di,
15023 exp, target, false);
15024 case VSX_BUILTIN_LXVW4X_V4SF:
15025 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v4sf,
15026 exp, target, false);
15027 case VSX_BUILTIN_LXVW4X_V4SI:
15028 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v4si,
15029 exp, target, false);
15030 case VSX_BUILTIN_LXVW4X_V8HI:
15031 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v8hi,
15032 exp, target, false);
15033 case VSX_BUILTIN_LXVW4X_V16QI:
15034 return altivec_expand_lv_builtin (CODE_FOR_vsx_load_v16qi,
15035 exp, target, false);
15036 /* For the following on big endian, it's ok to use any appropriate
15037 unaligned-supporting load, so use a generic expander. For
15038 little-endian, the exact element-reversing instruction must
15039 be used. */
15040 case VSX_BUILTIN_LD_ELEMREV_V2DF:
15042 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v2df
15043 : CODE_FOR_vsx_ld_elemrev_v2df);
15044 return altivec_expand_lv_builtin (code, exp, target, false);
15046 case VSX_BUILTIN_LD_ELEMREV_V1TI:
15048 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v1ti
15049 : CODE_FOR_vsx_ld_elemrev_v1ti);
15050 return altivec_expand_lv_builtin (code, exp, target, false);
15052 case VSX_BUILTIN_LD_ELEMREV_V2DI:
15054 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v2di
15055 : CODE_FOR_vsx_ld_elemrev_v2di);
15056 return altivec_expand_lv_builtin (code, exp, target, false);
15058 case VSX_BUILTIN_LD_ELEMREV_V4SF:
15060 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v4sf
15061 : CODE_FOR_vsx_ld_elemrev_v4sf);
15062 return altivec_expand_lv_builtin (code, exp, target, false);
15064 case VSX_BUILTIN_LD_ELEMREV_V4SI:
15066 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v4si
15067 : CODE_FOR_vsx_ld_elemrev_v4si);
15068 return altivec_expand_lv_builtin (code, exp, target, false);
15070 case VSX_BUILTIN_LD_ELEMREV_V8HI:
15072 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v8hi
15073 : CODE_FOR_vsx_ld_elemrev_v8hi);
15074 return altivec_expand_lv_builtin (code, exp, target, false);
15076 case VSX_BUILTIN_LD_ELEMREV_V16QI:
15078 enum insn_code code = (BYTES_BIG_ENDIAN ? CODE_FOR_vsx_load_v16qi
15079 : CODE_FOR_vsx_ld_elemrev_v16qi);
15080 return altivec_expand_lv_builtin (code, exp, target, false);
15082 break;
15083 default:
15084 break;
15085 /* Fall through. */
15088 *expandedp = false;
15089 return NULL_RTX;
15092 /* Check whether a builtin function is supported in this target
15093 configuration. */
15094 bool
15095 rs6000_builtin_is_supported_p (enum rs6000_builtins fncode)
15097 HOST_WIDE_INT fnmask = rs6000_builtin_info[fncode].mask;
15098 if ((fnmask & rs6000_builtin_mask) != fnmask)
15099 return false;
15100 else
15101 return true;
15104 /* Raise an error message for a builtin function that is called without the
15105 appropriate target options being set. */
15107 static void
15108 rs6000_invalid_builtin (enum rs6000_builtins fncode)
15110 size_t uns_fncode = (size_t) fncode;
15111 const char *name = rs6000_builtin_info[uns_fncode].name;
15112 HOST_WIDE_INT fnmask = rs6000_builtin_info[uns_fncode].mask;
15114 gcc_assert (name != NULL);
15115 if ((fnmask & RS6000_BTM_CELL) != 0)
15116 error ("builtin function %qs is only valid for the cell processor", name);
15117 else if ((fnmask & RS6000_BTM_VSX) != 0)
15118 error ("builtin function %qs requires the %qs option", name, "-mvsx");
15119 else if ((fnmask & RS6000_BTM_HTM) != 0)
15120 error ("builtin function %qs requires the %qs option", name, "-mhtm");
15121 else if ((fnmask & RS6000_BTM_ALTIVEC) != 0)
15122 error ("builtin function %qs requires the %qs option", name, "-maltivec");
15123 else if ((fnmask & (RS6000_BTM_DFP | RS6000_BTM_P8_VECTOR))
15124 == (RS6000_BTM_DFP | RS6000_BTM_P8_VECTOR))
15125 error ("builtin function %qs requires the %qs and %qs options",
15126 name, "-mhard-dfp", "-mpower8-vector");
15127 else if ((fnmask & RS6000_BTM_DFP) != 0)
15128 error ("builtin function %qs requires the %qs option", name, "-mhard-dfp");
15129 else if ((fnmask & RS6000_BTM_P8_VECTOR) != 0)
15130 error ("builtin function %qs requires the %qs option", name,
15131 "-mpower8-vector");
15132 else if ((fnmask & (RS6000_BTM_P9_VECTOR | RS6000_BTM_64BIT))
15133 == (RS6000_BTM_P9_VECTOR | RS6000_BTM_64BIT))
15134 error ("builtin function %qs requires the %qs and %qs options",
15135 name, "-mcpu=power9", "-m64");
15136 else if ((fnmask & RS6000_BTM_P9_VECTOR) != 0)
15137 error ("builtin function %qs requires the %qs option", name,
15138 "-mcpu=power9");
15139 else if ((fnmask & (RS6000_BTM_P9_MISC | RS6000_BTM_64BIT))
15140 == (RS6000_BTM_P9_MISC | RS6000_BTM_64BIT))
15141 error ("builtin function %qs requires the %qs and %qs options",
15142 name, "-mcpu=power9", "-m64");
15143 else if ((fnmask & RS6000_BTM_P9_MISC) == RS6000_BTM_P9_MISC)
15144 error ("builtin function %qs requires the %qs option", name,
15145 "-mcpu=power9");
15146 else if ((fnmask & RS6000_BTM_LDBL128) == RS6000_BTM_LDBL128)
15148 if (!TARGET_HARD_FLOAT)
15149 error ("builtin function %qs requires the %qs option", name,
15150 "-mhard-float");
15151 else
15152 error ("builtin function %qs requires the %qs option", name,
15153 TARGET_IEEEQUAD ? "-mabi=ibmlongdouble" : "-mlong-double-128");
15155 else if ((fnmask & RS6000_BTM_HARD_FLOAT) != 0)
15156 error ("builtin function %qs requires the %qs option", name,
15157 "-mhard-float");
15158 else if ((fnmask & RS6000_BTM_FLOAT128_HW) != 0)
15159 error ("builtin function %qs requires ISA 3.0 IEEE 128-bit floating point",
15160 name);
15161 else if ((fnmask & RS6000_BTM_FLOAT128) != 0)
15162 error ("builtin function %qs requires the %qs option", name, "-mfloat128");
15163 else if ((fnmask & (RS6000_BTM_POPCNTD | RS6000_BTM_POWERPC64))
15164 == (RS6000_BTM_POPCNTD | RS6000_BTM_POWERPC64))
15165 error ("builtin function %qs requires the %qs (or newer), and "
15166 "%qs or %qs options",
15167 name, "-mcpu=power7", "-m64", "-mpowerpc64");
15168 else
15169 error ("builtin function %qs is not supported with the current options",
15170 name);
15173 /* Target hook for early folding of built-ins, shamelessly stolen
15174 from ia64.c. */
15176 static tree
15177 rs6000_fold_builtin (tree fndecl ATTRIBUTE_UNUSED,
15178 int n_args ATTRIBUTE_UNUSED,
15179 tree *args ATTRIBUTE_UNUSED,
15180 bool ignore ATTRIBUTE_UNUSED)
15182 #ifdef SUBTARGET_FOLD_BUILTIN
15183 return SUBTARGET_FOLD_BUILTIN (fndecl, n_args, args, ignore);
15184 #else
15185 return NULL_TREE;
15186 #endif
15189 /* Helper function to sort out which built-ins may be valid without having
15190 a LHS. */
15191 static bool
15192 rs6000_builtin_valid_without_lhs (enum rs6000_builtins fn_code)
15194 switch (fn_code)
15196 case ALTIVEC_BUILTIN_STVX_V16QI:
15197 case ALTIVEC_BUILTIN_STVX_V8HI:
15198 case ALTIVEC_BUILTIN_STVX_V4SI:
15199 case ALTIVEC_BUILTIN_STVX_V4SF:
15200 case ALTIVEC_BUILTIN_STVX_V2DI:
15201 case ALTIVEC_BUILTIN_STVX_V2DF:
15202 case VSX_BUILTIN_STXVW4X_V16QI:
15203 case VSX_BUILTIN_STXVW4X_V8HI:
15204 case VSX_BUILTIN_STXVW4X_V4SF:
15205 case VSX_BUILTIN_STXVW4X_V4SI:
15206 case VSX_BUILTIN_STXVD2X_V2DF:
15207 case VSX_BUILTIN_STXVD2X_V2DI:
15208 return true;
15209 default:
15210 return false;
15214 /* Helper function to handle the gimple folding of a vector compare
15215 operation. This sets up true/false vectors, and uses the
15216 VEC_COND_EXPR operation.
15217 CODE indicates which comparison is to be made. (EQ, GT, ...).
15218 TYPE indicates the type of the result. */
15219 static tree
15220 fold_build_vec_cmp (tree_code code, tree type,
15221 tree arg0, tree arg1)
15223 tree cmp_type = build_same_sized_truth_vector_type (type);
15224 tree zero_vec = build_zero_cst (type);
15225 tree minus_one_vec = build_minus_one_cst (type);
15226 tree cmp = fold_build2 (code, cmp_type, arg0, arg1);
15227 return fold_build3 (VEC_COND_EXPR, type, cmp, minus_one_vec, zero_vec);
15230 /* Helper function to handle the in-between steps for the
15231 vector compare built-ins. */
15232 static void
15233 fold_compare_helper (gimple_stmt_iterator *gsi, tree_code code, gimple *stmt)
15235 tree arg0 = gimple_call_arg (stmt, 0);
15236 tree arg1 = gimple_call_arg (stmt, 1);
15237 tree lhs = gimple_call_lhs (stmt);
15238 tree cmp = fold_build_vec_cmp (code, TREE_TYPE (lhs), arg0, arg1);
15239 gimple *g = gimple_build_assign (lhs, cmp);
15240 gimple_set_location (g, gimple_location (stmt));
15241 gsi_replace (gsi, g, true);
15244 /* Helper function to map V2DF and V4SF types to their
15245 integral equivalents (V2DI and V4SI). */
15246 tree map_to_integral_tree_type (tree input_tree_type)
15248 if (INTEGRAL_TYPE_P (TREE_TYPE (input_tree_type)))
15249 return input_tree_type;
15250 else
15252 if (types_compatible_p (TREE_TYPE (input_tree_type),
15253 TREE_TYPE (V2DF_type_node)))
15254 return V2DI_type_node;
15255 else if (types_compatible_p (TREE_TYPE (input_tree_type),
15256 TREE_TYPE (V4SF_type_node)))
15257 return V4SI_type_node;
15258 else
15259 gcc_unreachable ();
15263 /* Helper function to handle the vector merge[hl] built-ins. The
15264 implementation difference between h and l versions for this code are in
15265 the values used when building of the permute vector for high word versus
15266 low word merge. The variance is keyed off the use_high parameter. */
15267 static void
15268 fold_mergehl_helper (gimple_stmt_iterator *gsi, gimple *stmt, int use_high)
15270 tree arg0 = gimple_call_arg (stmt, 0);
15271 tree arg1 = gimple_call_arg (stmt, 1);
15272 tree lhs = gimple_call_lhs (stmt);
15273 tree lhs_type = TREE_TYPE (lhs);
15274 int n_elts = TYPE_VECTOR_SUBPARTS (lhs_type);
15275 int midpoint = n_elts / 2;
15276 int offset = 0;
15278 if (use_high == 1)
15279 offset = midpoint;
15281 /* The permute_type will match the lhs for integral types. For double and
15282 float types, the permute type needs to map to the V2 or V4 type that
15283 matches size. */
15284 tree permute_type;
15285 permute_type = map_to_integral_tree_type (lhs_type);
15286 tree_vector_builder elts (permute_type, VECTOR_CST_NELTS (arg0), 1);
15288 for (int i = 0; i < midpoint; i++)
15290 elts.safe_push (build_int_cst (TREE_TYPE (permute_type),
15291 offset + i));
15292 elts.safe_push (build_int_cst (TREE_TYPE (permute_type),
15293 offset + n_elts + i));
15296 tree permute = elts.build ();
15298 gimple *g = gimple_build_assign (lhs, VEC_PERM_EXPR, arg0, arg1, permute);
15299 gimple_set_location (g, gimple_location (stmt));
15300 gsi_replace (gsi, g, true);
15303 /* Helper function to handle the vector merge[eo] built-ins. */
15304 static void
15305 fold_mergeeo_helper (gimple_stmt_iterator *gsi, gimple *stmt, int use_odd)
15307 tree arg0 = gimple_call_arg (stmt, 0);
15308 tree arg1 = gimple_call_arg (stmt, 1);
15309 tree lhs = gimple_call_lhs (stmt);
15310 tree lhs_type = TREE_TYPE (lhs);
15311 int n_elts = TYPE_VECTOR_SUBPARTS (lhs_type);
15313 /* The permute_type will match the lhs for integral types. For double and
15314 float types, the permute type needs to map to the V2 or V4 type that
15315 matches size. */
15316 tree permute_type;
15317 permute_type = map_to_integral_tree_type (lhs_type);
15319 tree_vector_builder elts (permute_type, VECTOR_CST_NELTS (arg0), 1);
15321 /* Build the permute vector. */
15322 for (int i = 0; i < n_elts / 2; i++)
15324 elts.safe_push (build_int_cst (TREE_TYPE (permute_type),
15325 2*i + use_odd));
15326 elts.safe_push (build_int_cst (TREE_TYPE (permute_type),
15327 2*i + use_odd + n_elts));
15330 tree permute = elts.build ();
15332 gimple *g = gimple_build_assign (lhs, VEC_PERM_EXPR, arg0, arg1, permute);
15333 gimple_set_location (g, gimple_location (stmt));
15334 gsi_replace (gsi, g, true);
15337 /* Fold a machine-dependent built-in in GIMPLE. (For folding into
15338 a constant, use rs6000_fold_builtin.) */
15340 bool
15341 rs6000_gimple_fold_builtin (gimple_stmt_iterator *gsi)
15343 gimple *stmt = gsi_stmt (*gsi);
15344 tree fndecl = gimple_call_fndecl (stmt);
15345 gcc_checking_assert (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD);
15346 enum rs6000_builtins fn_code
15347 = (enum rs6000_builtins) DECL_FUNCTION_CODE (fndecl);
15348 tree arg0, arg1, lhs, temp;
15349 gimple *g;
15351 size_t uns_fncode = (size_t) fn_code;
15352 enum insn_code icode = rs6000_builtin_info[uns_fncode].icode;
15353 const char *fn_name1 = rs6000_builtin_info[uns_fncode].name;
15354 const char *fn_name2 = (icode != CODE_FOR_nothing)
15355 ? get_insn_name ((int) icode)
15356 : "nothing";
15358 if (TARGET_DEBUG_BUILTIN)
15359 fprintf (stderr, "rs6000_gimple_fold_builtin %d %s %s\n",
15360 fn_code, fn_name1, fn_name2);
15362 if (!rs6000_fold_gimple)
15363 return false;
15365 /* Prevent gimple folding for code that does not have a LHS, unless it is
15366 allowed per the rs6000_builtin_valid_without_lhs helper function. */
15367 if (!gimple_call_lhs (stmt) && !rs6000_builtin_valid_without_lhs (fn_code))
15368 return false;
15370 /* Don't fold invalid builtins, let rs6000_expand_builtin diagnose it. */
15371 HOST_WIDE_INT mask = rs6000_builtin_info[uns_fncode].mask;
15372 bool func_valid_p = (rs6000_builtin_mask & mask) == mask;
15373 if (!func_valid_p)
15374 return false;
15376 switch (fn_code)
15378 /* Flavors of vec_add. We deliberately don't expand
15379 P8V_BUILTIN_VADDUQM as it gets lowered from V1TImode to
15380 TImode, resulting in much poorer code generation. */
15381 case ALTIVEC_BUILTIN_VADDUBM:
15382 case ALTIVEC_BUILTIN_VADDUHM:
15383 case ALTIVEC_BUILTIN_VADDUWM:
15384 case P8V_BUILTIN_VADDUDM:
15385 case ALTIVEC_BUILTIN_VADDFP:
15386 case VSX_BUILTIN_XVADDDP:
15387 arg0 = gimple_call_arg (stmt, 0);
15388 arg1 = gimple_call_arg (stmt, 1);
15389 lhs = gimple_call_lhs (stmt);
15390 g = gimple_build_assign (lhs, PLUS_EXPR, arg0, arg1);
15391 gimple_set_location (g, gimple_location (stmt));
15392 gsi_replace (gsi, g, true);
15393 return true;
15394 /* Flavors of vec_sub. We deliberately don't expand
15395 P8V_BUILTIN_VSUBUQM. */
15396 case ALTIVEC_BUILTIN_VSUBUBM:
15397 case ALTIVEC_BUILTIN_VSUBUHM:
15398 case ALTIVEC_BUILTIN_VSUBUWM:
15399 case P8V_BUILTIN_VSUBUDM:
15400 case ALTIVEC_BUILTIN_VSUBFP:
15401 case VSX_BUILTIN_XVSUBDP:
15402 arg0 = gimple_call_arg (stmt, 0);
15403 arg1 = gimple_call_arg (stmt, 1);
15404 lhs = gimple_call_lhs (stmt);
15405 g = gimple_build_assign (lhs, MINUS_EXPR, arg0, arg1);
15406 gimple_set_location (g, gimple_location (stmt));
15407 gsi_replace (gsi, g, true);
15408 return true;
15409 case VSX_BUILTIN_XVMULSP:
15410 case VSX_BUILTIN_XVMULDP:
15411 arg0 = gimple_call_arg (stmt, 0);
15412 arg1 = gimple_call_arg (stmt, 1);
15413 lhs = gimple_call_lhs (stmt);
15414 g = gimple_build_assign (lhs, MULT_EXPR, arg0, arg1);
15415 gimple_set_location (g, gimple_location (stmt));
15416 gsi_replace (gsi, g, true);
15417 return true;
15418 /* Even element flavors of vec_mul (signed). */
15419 case ALTIVEC_BUILTIN_VMULESB:
15420 case ALTIVEC_BUILTIN_VMULESH:
15421 case P8V_BUILTIN_VMULESW:
15422 /* Even element flavors of vec_mul (unsigned). */
15423 case ALTIVEC_BUILTIN_VMULEUB:
15424 case ALTIVEC_BUILTIN_VMULEUH:
15425 case P8V_BUILTIN_VMULEUW:
15426 arg0 = gimple_call_arg (stmt, 0);
15427 arg1 = gimple_call_arg (stmt, 1);
15428 lhs = gimple_call_lhs (stmt);
15429 g = gimple_build_assign (lhs, VEC_WIDEN_MULT_EVEN_EXPR, arg0, arg1);
15430 gimple_set_location (g, gimple_location (stmt));
15431 gsi_replace (gsi, g, true);
15432 return true;
15433 /* Odd element flavors of vec_mul (signed). */
15434 case ALTIVEC_BUILTIN_VMULOSB:
15435 case ALTIVEC_BUILTIN_VMULOSH:
15436 case P8V_BUILTIN_VMULOSW:
15437 /* Odd element flavors of vec_mul (unsigned). */
15438 case ALTIVEC_BUILTIN_VMULOUB:
15439 case ALTIVEC_BUILTIN_VMULOUH:
15440 case P8V_BUILTIN_VMULOUW:
15441 arg0 = gimple_call_arg (stmt, 0);
15442 arg1 = gimple_call_arg (stmt, 1);
15443 lhs = gimple_call_lhs (stmt);
15444 g = gimple_build_assign (lhs, VEC_WIDEN_MULT_ODD_EXPR, arg0, arg1);
15445 gimple_set_location (g, gimple_location (stmt));
15446 gsi_replace (gsi, g, true);
15447 return true;
15448 /* Flavors of vec_div (Integer). */
15449 case VSX_BUILTIN_DIV_V2DI:
15450 case VSX_BUILTIN_UDIV_V2DI:
15451 arg0 = gimple_call_arg (stmt, 0);
15452 arg1 = gimple_call_arg (stmt, 1);
15453 lhs = gimple_call_lhs (stmt);
15454 g = gimple_build_assign (lhs, TRUNC_DIV_EXPR, arg0, arg1);
15455 gimple_set_location (g, gimple_location (stmt));
15456 gsi_replace (gsi, g, true);
15457 return true;
15458 /* Flavors of vec_div (Float). */
15459 case VSX_BUILTIN_XVDIVSP:
15460 case VSX_BUILTIN_XVDIVDP:
15461 arg0 = gimple_call_arg (stmt, 0);
15462 arg1 = gimple_call_arg (stmt, 1);
15463 lhs = gimple_call_lhs (stmt);
15464 g = gimple_build_assign (lhs, RDIV_EXPR, arg0, arg1);
15465 gimple_set_location (g, gimple_location (stmt));
15466 gsi_replace (gsi, g, true);
15467 return true;
15468 /* Flavors of vec_and. */
15469 case ALTIVEC_BUILTIN_VAND:
15470 arg0 = gimple_call_arg (stmt, 0);
15471 arg1 = gimple_call_arg (stmt, 1);
15472 lhs = gimple_call_lhs (stmt);
15473 g = gimple_build_assign (lhs, BIT_AND_EXPR, arg0, arg1);
15474 gimple_set_location (g, gimple_location (stmt));
15475 gsi_replace (gsi, g, true);
15476 return true;
15477 /* Flavors of vec_andc. */
15478 case ALTIVEC_BUILTIN_VANDC:
15479 arg0 = gimple_call_arg (stmt, 0);
15480 arg1 = gimple_call_arg (stmt, 1);
15481 lhs = gimple_call_lhs (stmt);
15482 temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
15483 g = gimple_build_assign (temp, BIT_NOT_EXPR, arg1);
15484 gimple_set_location (g, gimple_location (stmt));
15485 gsi_insert_before (gsi, g, GSI_SAME_STMT);
15486 g = gimple_build_assign (lhs, BIT_AND_EXPR, arg0, temp);
15487 gimple_set_location (g, gimple_location (stmt));
15488 gsi_replace (gsi, g, true);
15489 return true;
15490 /* Flavors of vec_nand. */
15491 case P8V_BUILTIN_VEC_NAND:
15492 case P8V_BUILTIN_NAND_V16QI:
15493 case P8V_BUILTIN_NAND_V8HI:
15494 case P8V_BUILTIN_NAND_V4SI:
15495 case P8V_BUILTIN_NAND_V4SF:
15496 case P8V_BUILTIN_NAND_V2DF:
15497 case P8V_BUILTIN_NAND_V2DI:
15498 arg0 = gimple_call_arg (stmt, 0);
15499 arg1 = gimple_call_arg (stmt, 1);
15500 lhs = gimple_call_lhs (stmt);
15501 temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
15502 g = gimple_build_assign (temp, BIT_AND_EXPR, arg0, arg1);
15503 gimple_set_location (g, gimple_location (stmt));
15504 gsi_insert_before (gsi, g, GSI_SAME_STMT);
15505 g = gimple_build_assign (lhs, BIT_NOT_EXPR, temp);
15506 gimple_set_location (g, gimple_location (stmt));
15507 gsi_replace (gsi, g, true);
15508 return true;
15509 /* Flavors of vec_or. */
15510 case ALTIVEC_BUILTIN_VOR:
15511 arg0 = gimple_call_arg (stmt, 0);
15512 arg1 = gimple_call_arg (stmt, 1);
15513 lhs = gimple_call_lhs (stmt);
15514 g = gimple_build_assign (lhs, BIT_IOR_EXPR, arg0, arg1);
15515 gimple_set_location (g, gimple_location (stmt));
15516 gsi_replace (gsi, g, true);
15517 return true;
15518 /* flavors of vec_orc. */
15519 case P8V_BUILTIN_ORC_V16QI:
15520 case P8V_BUILTIN_ORC_V8HI:
15521 case P8V_BUILTIN_ORC_V4SI:
15522 case P8V_BUILTIN_ORC_V4SF:
15523 case P8V_BUILTIN_ORC_V2DF:
15524 case P8V_BUILTIN_ORC_V2DI:
15525 arg0 = gimple_call_arg (stmt, 0);
15526 arg1 = gimple_call_arg (stmt, 1);
15527 lhs = gimple_call_lhs (stmt);
15528 temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
15529 g = gimple_build_assign (temp, BIT_NOT_EXPR, arg1);
15530 gimple_set_location (g, gimple_location (stmt));
15531 gsi_insert_before (gsi, g, GSI_SAME_STMT);
15532 g = gimple_build_assign (lhs, BIT_IOR_EXPR, arg0, temp);
15533 gimple_set_location (g, gimple_location (stmt));
15534 gsi_replace (gsi, g, true);
15535 return true;
15536 /* Flavors of vec_xor. */
15537 case ALTIVEC_BUILTIN_VXOR:
15538 arg0 = gimple_call_arg (stmt, 0);
15539 arg1 = gimple_call_arg (stmt, 1);
15540 lhs = gimple_call_lhs (stmt);
15541 g = gimple_build_assign (lhs, BIT_XOR_EXPR, arg0, arg1);
15542 gimple_set_location (g, gimple_location (stmt));
15543 gsi_replace (gsi, g, true);
15544 return true;
15545 /* Flavors of vec_nor. */
15546 case ALTIVEC_BUILTIN_VNOR:
15547 arg0 = gimple_call_arg (stmt, 0);
15548 arg1 = gimple_call_arg (stmt, 1);
15549 lhs = gimple_call_lhs (stmt);
15550 temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
15551 g = gimple_build_assign (temp, BIT_IOR_EXPR, arg0, arg1);
15552 gimple_set_location (g, gimple_location (stmt));
15553 gsi_insert_before (gsi, g, GSI_SAME_STMT);
15554 g = gimple_build_assign (lhs, BIT_NOT_EXPR, temp);
15555 gimple_set_location (g, gimple_location (stmt));
15556 gsi_replace (gsi, g, true);
15557 return true;
15558 /* flavors of vec_abs. */
15559 case ALTIVEC_BUILTIN_ABS_V16QI:
15560 case ALTIVEC_BUILTIN_ABS_V8HI:
15561 case ALTIVEC_BUILTIN_ABS_V4SI:
15562 case ALTIVEC_BUILTIN_ABS_V4SF:
15563 case P8V_BUILTIN_ABS_V2DI:
15564 case VSX_BUILTIN_XVABSDP:
15565 arg0 = gimple_call_arg (stmt, 0);
15566 if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (arg0)))
15567 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (TREE_TYPE (arg0))))
15568 return false;
15569 lhs = gimple_call_lhs (stmt);
15570 g = gimple_build_assign (lhs, ABS_EXPR, arg0);
15571 gimple_set_location (g, gimple_location (stmt));
15572 gsi_replace (gsi, g, true);
15573 return true;
15574 /* flavors of vec_min. */
15575 case VSX_BUILTIN_XVMINDP:
15576 case P8V_BUILTIN_VMINSD:
15577 case P8V_BUILTIN_VMINUD:
15578 case ALTIVEC_BUILTIN_VMINSB:
15579 case ALTIVEC_BUILTIN_VMINSH:
15580 case ALTIVEC_BUILTIN_VMINSW:
15581 case ALTIVEC_BUILTIN_VMINUB:
15582 case ALTIVEC_BUILTIN_VMINUH:
15583 case ALTIVEC_BUILTIN_VMINUW:
15584 case ALTIVEC_BUILTIN_VMINFP:
15585 arg0 = gimple_call_arg (stmt, 0);
15586 arg1 = gimple_call_arg (stmt, 1);
15587 lhs = gimple_call_lhs (stmt);
15588 g = gimple_build_assign (lhs, MIN_EXPR, arg0, arg1);
15589 gimple_set_location (g, gimple_location (stmt));
15590 gsi_replace (gsi, g, true);
15591 return true;
15592 /* flavors of vec_max. */
15593 case VSX_BUILTIN_XVMAXDP:
15594 case P8V_BUILTIN_VMAXSD:
15595 case P8V_BUILTIN_VMAXUD:
15596 case ALTIVEC_BUILTIN_VMAXSB:
15597 case ALTIVEC_BUILTIN_VMAXSH:
15598 case ALTIVEC_BUILTIN_VMAXSW:
15599 case ALTIVEC_BUILTIN_VMAXUB:
15600 case ALTIVEC_BUILTIN_VMAXUH:
15601 case ALTIVEC_BUILTIN_VMAXUW:
15602 case ALTIVEC_BUILTIN_VMAXFP:
15603 arg0 = gimple_call_arg (stmt, 0);
15604 arg1 = gimple_call_arg (stmt, 1);
15605 lhs = gimple_call_lhs (stmt);
15606 g = gimple_build_assign (lhs, MAX_EXPR, arg0, arg1);
15607 gimple_set_location (g, gimple_location (stmt));
15608 gsi_replace (gsi, g, true);
15609 return true;
15610 /* Flavors of vec_eqv. */
15611 case P8V_BUILTIN_EQV_V16QI:
15612 case P8V_BUILTIN_EQV_V8HI:
15613 case P8V_BUILTIN_EQV_V4SI:
15614 case P8V_BUILTIN_EQV_V4SF:
15615 case P8V_BUILTIN_EQV_V2DF:
15616 case P8V_BUILTIN_EQV_V2DI:
15617 arg0 = gimple_call_arg (stmt, 0);
15618 arg1 = gimple_call_arg (stmt, 1);
15619 lhs = gimple_call_lhs (stmt);
15620 temp = create_tmp_reg_or_ssa_name (TREE_TYPE (arg1));
15621 g = gimple_build_assign (temp, BIT_XOR_EXPR, arg0, arg1);
15622 gimple_set_location (g, gimple_location (stmt));
15623 gsi_insert_before (gsi, g, GSI_SAME_STMT);
15624 g = gimple_build_assign (lhs, BIT_NOT_EXPR, temp);
15625 gimple_set_location (g, gimple_location (stmt));
15626 gsi_replace (gsi, g, true);
15627 return true;
15628 /* Flavors of vec_rotate_left. */
15629 case ALTIVEC_BUILTIN_VRLB:
15630 case ALTIVEC_BUILTIN_VRLH:
15631 case ALTIVEC_BUILTIN_VRLW:
15632 case P8V_BUILTIN_VRLD:
15633 arg0 = gimple_call_arg (stmt, 0);
15634 arg1 = gimple_call_arg (stmt, 1);
15635 lhs = gimple_call_lhs (stmt);
15636 g = gimple_build_assign (lhs, LROTATE_EXPR, arg0, arg1);
15637 gimple_set_location (g, gimple_location (stmt));
15638 gsi_replace (gsi, g, true);
15639 return true;
15640 /* Flavors of vector shift right algebraic.
15641 vec_sra{b,h,w} -> vsra{b,h,w}. */
15642 case ALTIVEC_BUILTIN_VSRAB:
15643 case ALTIVEC_BUILTIN_VSRAH:
15644 case ALTIVEC_BUILTIN_VSRAW:
15645 case P8V_BUILTIN_VSRAD:
15646 arg0 = gimple_call_arg (stmt, 0);
15647 arg1 = gimple_call_arg (stmt, 1);
15648 lhs = gimple_call_lhs (stmt);
15649 g = gimple_build_assign (lhs, RSHIFT_EXPR, arg0, arg1);
15650 gimple_set_location (g, gimple_location (stmt));
15651 gsi_replace (gsi, g, true);
15652 return true;
15653 /* Flavors of vector shift left.
15654 builtin_altivec_vsl{b,h,w} -> vsl{b,h,w}. */
15655 case ALTIVEC_BUILTIN_VSLB:
15656 case ALTIVEC_BUILTIN_VSLH:
15657 case ALTIVEC_BUILTIN_VSLW:
15658 case P8V_BUILTIN_VSLD:
15660 location_t loc;
15661 gimple_seq stmts = NULL;
15662 arg0 = gimple_call_arg (stmt, 0);
15663 tree arg0_type = TREE_TYPE (arg0);
15664 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0_type))
15665 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0_type)))
15666 return false;
15667 arg1 = gimple_call_arg (stmt, 1);
15668 tree arg1_type = TREE_TYPE (arg1);
15669 tree unsigned_arg1_type = unsigned_type_for (TREE_TYPE (arg1));
15670 tree unsigned_element_type = unsigned_type_for (TREE_TYPE (arg1_type));
15671 loc = gimple_location (stmt);
15672 lhs = gimple_call_lhs (stmt);
15673 /* Force arg1 into the range valid matching the arg0 type. */
15674 /* Build a vector consisting of the max valid bit-size values. */
15675 int n_elts = VECTOR_CST_NELTS (arg1);
15676 int tree_size_in_bits = TREE_INT_CST_LOW (size_in_bytes (arg1_type))
15677 * BITS_PER_UNIT;
15678 tree element_size = build_int_cst (unsigned_element_type,
15679 tree_size_in_bits / n_elts);
15680 tree_vector_builder elts (unsigned_type_for (arg1_type), n_elts, 1);
15681 for (int i = 0; i < n_elts; i++)
15682 elts.safe_push (element_size);
15683 tree modulo_tree = elts.build ();
15684 /* Modulo the provided shift value against that vector. */
15685 tree unsigned_arg1 = gimple_build (&stmts, VIEW_CONVERT_EXPR,
15686 unsigned_arg1_type, arg1);
15687 tree new_arg1 = gimple_build (&stmts, loc, TRUNC_MOD_EXPR,
15688 unsigned_arg1_type, unsigned_arg1,
15689 modulo_tree);
15690 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15691 /* And finally, do the shift. */
15692 g = gimple_build_assign (lhs, LSHIFT_EXPR, arg0, new_arg1);
15693 gimple_set_location (g, gimple_location (stmt));
15694 gsi_replace (gsi, g, true);
15695 return true;
15697 /* Flavors of vector shift right. */
15698 case ALTIVEC_BUILTIN_VSRB:
15699 case ALTIVEC_BUILTIN_VSRH:
15700 case ALTIVEC_BUILTIN_VSRW:
15701 case P8V_BUILTIN_VSRD:
15703 arg0 = gimple_call_arg (stmt, 0);
15704 arg1 = gimple_call_arg (stmt, 1);
15705 lhs = gimple_call_lhs (stmt);
15706 gimple_seq stmts = NULL;
15707 /* Convert arg0 to unsigned. */
15708 tree arg0_unsigned
15709 = gimple_build (&stmts, VIEW_CONVERT_EXPR,
15710 unsigned_type_for (TREE_TYPE (arg0)), arg0);
15711 tree res
15712 = gimple_build (&stmts, RSHIFT_EXPR,
15713 TREE_TYPE (arg0_unsigned), arg0_unsigned, arg1);
15714 /* Convert result back to the lhs type. */
15715 res = gimple_build (&stmts, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), res);
15716 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15717 update_call_from_tree (gsi, res);
15718 return true;
15720 /* Vector loads. */
15721 case ALTIVEC_BUILTIN_LVX_V16QI:
15722 case ALTIVEC_BUILTIN_LVX_V8HI:
15723 case ALTIVEC_BUILTIN_LVX_V4SI:
15724 case ALTIVEC_BUILTIN_LVX_V4SF:
15725 case ALTIVEC_BUILTIN_LVX_V2DI:
15726 case ALTIVEC_BUILTIN_LVX_V2DF:
15727 case ALTIVEC_BUILTIN_LVX_V1TI:
15729 arg0 = gimple_call_arg (stmt, 0); // offset
15730 arg1 = gimple_call_arg (stmt, 1); // address
15731 lhs = gimple_call_lhs (stmt);
15732 location_t loc = gimple_location (stmt);
15733 /* Since arg1 may be cast to a different type, just use ptr_type_node
15734 here instead of trying to enforce TBAA on pointer types. */
15735 tree arg1_type = ptr_type_node;
15736 tree lhs_type = TREE_TYPE (lhs);
15737 /* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
15738 the tree using the value from arg0. The resulting type will match
15739 the type of arg1. */
15740 gimple_seq stmts = NULL;
15741 tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg0);
15742 tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
15743 arg1_type, arg1, temp_offset);
15744 /* Mask off any lower bits from the address. */
15745 tree aligned_addr = gimple_build (&stmts, loc, BIT_AND_EXPR,
15746 arg1_type, temp_addr,
15747 build_int_cst (arg1_type, -16));
15748 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15749 /* Use the build2 helper to set up the mem_ref. The MEM_REF could also
15750 take an offset, but since we've already incorporated the offset
15751 above, here we just pass in a zero. */
15752 gimple *g
15753 = gimple_build_assign (lhs, build2 (MEM_REF, lhs_type, aligned_addr,
15754 build_int_cst (arg1_type, 0)));
15755 gimple_set_location (g, loc);
15756 gsi_replace (gsi, g, true);
15757 return true;
15759 /* Vector stores. */
15760 case ALTIVEC_BUILTIN_STVX_V16QI:
15761 case ALTIVEC_BUILTIN_STVX_V8HI:
15762 case ALTIVEC_BUILTIN_STVX_V4SI:
15763 case ALTIVEC_BUILTIN_STVX_V4SF:
15764 case ALTIVEC_BUILTIN_STVX_V2DI:
15765 case ALTIVEC_BUILTIN_STVX_V2DF:
15767 arg0 = gimple_call_arg (stmt, 0); /* Value to be stored. */
15768 arg1 = gimple_call_arg (stmt, 1); /* Offset. */
15769 tree arg2 = gimple_call_arg (stmt, 2); /* Store-to address. */
15770 location_t loc = gimple_location (stmt);
15771 tree arg0_type = TREE_TYPE (arg0);
15772 /* Use ptr_type_node (no TBAA) for the arg2_type.
15773 FIXME: (Richard) "A proper fix would be to transition this type as
15774 seen from the frontend to GIMPLE, for example in a similar way we
15775 do for MEM_REFs by piggy-backing that on an extra argument, a
15776 constant zero pointer of the alias pointer type to use (which would
15777 also serve as a type indicator of the store itself). I'd use a
15778 target specific internal function for this (not sure if we can have
15779 those target specific, but I guess if it's folded away then that's
15780 fine) and get away with the overload set." */
15781 tree arg2_type = ptr_type_node;
15782 /* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
15783 the tree using the value from arg0. The resulting type will match
15784 the type of arg2. */
15785 gimple_seq stmts = NULL;
15786 tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg1);
15787 tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
15788 arg2_type, arg2, temp_offset);
15789 /* Mask off any lower bits from the address. */
15790 tree aligned_addr = gimple_build (&stmts, loc, BIT_AND_EXPR,
15791 arg2_type, temp_addr,
15792 build_int_cst (arg2_type, -16));
15793 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15794 /* The desired gimple result should be similar to:
15795 MEM[(__vector floatD.1407 *)_1] = vf1D.2697; */
15796 gimple *g
15797 = gimple_build_assign (build2 (MEM_REF, arg0_type, aligned_addr,
15798 build_int_cst (arg2_type, 0)), arg0);
15799 gimple_set_location (g, loc);
15800 gsi_replace (gsi, g, true);
15801 return true;
15804 /* unaligned Vector loads. */
15805 case VSX_BUILTIN_LXVW4X_V16QI:
15806 case VSX_BUILTIN_LXVW4X_V8HI:
15807 case VSX_BUILTIN_LXVW4X_V4SF:
15808 case VSX_BUILTIN_LXVW4X_V4SI:
15809 case VSX_BUILTIN_LXVD2X_V2DF:
15810 case VSX_BUILTIN_LXVD2X_V2DI:
15812 arg0 = gimple_call_arg (stmt, 0); // offset
15813 arg1 = gimple_call_arg (stmt, 1); // address
15814 lhs = gimple_call_lhs (stmt);
15815 location_t loc = gimple_location (stmt);
15816 /* Since arg1 may be cast to a different type, just use ptr_type_node
15817 here instead of trying to enforce TBAA on pointer types. */
15818 tree arg1_type = ptr_type_node;
15819 tree lhs_type = TREE_TYPE (lhs);
15820 /* In GIMPLE the type of the MEM_REF specifies the alignment. The
15821 required alignment (power) is 4 bytes regardless of data type. */
15822 tree align_ltype = build_aligned_type (lhs_type, 4);
15823 /* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
15824 the tree using the value from arg0. The resulting type will match
15825 the type of arg1. */
15826 gimple_seq stmts = NULL;
15827 tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg0);
15828 tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
15829 arg1_type, arg1, temp_offset);
15830 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15831 /* Use the build2 helper to set up the mem_ref. The MEM_REF could also
15832 take an offset, but since we've already incorporated the offset
15833 above, here we just pass in a zero. */
15834 gimple *g;
15835 g = gimple_build_assign (lhs, build2 (MEM_REF, align_ltype, temp_addr,
15836 build_int_cst (arg1_type, 0)));
15837 gimple_set_location (g, loc);
15838 gsi_replace (gsi, g, true);
15839 return true;
15842 /* unaligned Vector stores. */
15843 case VSX_BUILTIN_STXVW4X_V16QI:
15844 case VSX_BUILTIN_STXVW4X_V8HI:
15845 case VSX_BUILTIN_STXVW4X_V4SF:
15846 case VSX_BUILTIN_STXVW4X_V4SI:
15847 case VSX_BUILTIN_STXVD2X_V2DF:
15848 case VSX_BUILTIN_STXVD2X_V2DI:
15850 arg0 = gimple_call_arg (stmt, 0); /* Value to be stored. */
15851 arg1 = gimple_call_arg (stmt, 1); /* Offset. */
15852 tree arg2 = gimple_call_arg (stmt, 2); /* Store-to address. */
15853 location_t loc = gimple_location (stmt);
15854 tree arg0_type = TREE_TYPE (arg0);
15855 /* Use ptr_type_node (no TBAA) for the arg2_type. */
15856 tree arg2_type = ptr_type_node;
15857 /* In GIMPLE the type of the MEM_REF specifies the alignment. The
15858 required alignment (power) is 4 bytes regardless of data type. */
15859 tree align_stype = build_aligned_type (arg0_type, 4);
15860 /* POINTER_PLUS_EXPR wants the offset to be of type 'sizetype'. Create
15861 the tree using the value from arg1. */
15862 gimple_seq stmts = NULL;
15863 tree temp_offset = gimple_convert (&stmts, loc, sizetype, arg1);
15864 tree temp_addr = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
15865 arg2_type, arg2, temp_offset);
15866 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15867 gimple *g;
15868 g = gimple_build_assign (build2 (MEM_REF, align_stype, temp_addr,
15869 build_int_cst (arg2_type, 0)), arg0);
15870 gimple_set_location (g, loc);
15871 gsi_replace (gsi, g, true);
15872 return true;
15875 /* Vector Fused multiply-add (fma). */
15876 case ALTIVEC_BUILTIN_VMADDFP:
15877 case VSX_BUILTIN_XVMADDDP:
15878 case ALTIVEC_BUILTIN_VMLADDUHM:
15880 arg0 = gimple_call_arg (stmt, 0);
15881 arg1 = gimple_call_arg (stmt, 1);
15882 tree arg2 = gimple_call_arg (stmt, 2);
15883 lhs = gimple_call_lhs (stmt);
15884 gcall *g = gimple_build_call_internal (IFN_FMA, 3, arg0, arg1, arg2);
15885 gimple_call_set_lhs (g, lhs);
15886 gimple_call_set_nothrow (g, true);
15887 gimple_set_location (g, gimple_location (stmt));
15888 gsi_replace (gsi, g, true);
15889 return true;
15892 /* Vector compares; EQ, NE, GE, GT, LE. */
15893 case ALTIVEC_BUILTIN_VCMPEQUB:
15894 case ALTIVEC_BUILTIN_VCMPEQUH:
15895 case ALTIVEC_BUILTIN_VCMPEQUW:
15896 case P8V_BUILTIN_VCMPEQUD:
15897 fold_compare_helper (gsi, EQ_EXPR, stmt);
15898 return true;
15900 case P9V_BUILTIN_CMPNEB:
15901 case P9V_BUILTIN_CMPNEH:
15902 case P9V_BUILTIN_CMPNEW:
15903 fold_compare_helper (gsi, NE_EXPR, stmt);
15904 return true;
15906 case VSX_BUILTIN_CMPGE_16QI:
15907 case VSX_BUILTIN_CMPGE_U16QI:
15908 case VSX_BUILTIN_CMPGE_8HI:
15909 case VSX_BUILTIN_CMPGE_U8HI:
15910 case VSX_BUILTIN_CMPGE_4SI:
15911 case VSX_BUILTIN_CMPGE_U4SI:
15912 case VSX_BUILTIN_CMPGE_2DI:
15913 case VSX_BUILTIN_CMPGE_U2DI:
15914 fold_compare_helper (gsi, GE_EXPR, stmt);
15915 return true;
15917 case ALTIVEC_BUILTIN_VCMPGTSB:
15918 case ALTIVEC_BUILTIN_VCMPGTUB:
15919 case ALTIVEC_BUILTIN_VCMPGTSH:
15920 case ALTIVEC_BUILTIN_VCMPGTUH:
15921 case ALTIVEC_BUILTIN_VCMPGTSW:
15922 case ALTIVEC_BUILTIN_VCMPGTUW:
15923 case P8V_BUILTIN_VCMPGTUD:
15924 case P8V_BUILTIN_VCMPGTSD:
15925 fold_compare_helper (gsi, GT_EXPR, stmt);
15926 return true;
15928 case VSX_BUILTIN_CMPLE_16QI:
15929 case VSX_BUILTIN_CMPLE_U16QI:
15930 case VSX_BUILTIN_CMPLE_8HI:
15931 case VSX_BUILTIN_CMPLE_U8HI:
15932 case VSX_BUILTIN_CMPLE_4SI:
15933 case VSX_BUILTIN_CMPLE_U4SI:
15934 case VSX_BUILTIN_CMPLE_2DI:
15935 case VSX_BUILTIN_CMPLE_U2DI:
15936 fold_compare_helper (gsi, LE_EXPR, stmt);
15937 return true;
15939 /* flavors of vec_splat_[us]{8,16,32}. */
15940 case ALTIVEC_BUILTIN_VSPLTISB:
15941 case ALTIVEC_BUILTIN_VSPLTISH:
15942 case ALTIVEC_BUILTIN_VSPLTISW:
15944 int size;
15945 if (fn_code == ALTIVEC_BUILTIN_VSPLTISB)
15946 size = 8;
15947 else if (fn_code == ALTIVEC_BUILTIN_VSPLTISH)
15948 size = 16;
15949 else
15950 size = 32;
15952 arg0 = gimple_call_arg (stmt, 0);
15953 lhs = gimple_call_lhs (stmt);
15955 /* Only fold the vec_splat_*() if the lower bits of arg 0 is a
15956 5-bit signed constant in range -16 to +15. */
15957 if (TREE_CODE (arg0) != INTEGER_CST
15958 || !IN_RANGE (sext_hwi (TREE_INT_CST_LOW (arg0), size),
15959 -16, 15))
15960 return false;
15961 gimple_seq stmts = NULL;
15962 location_t loc = gimple_location (stmt);
15963 tree splat_value = gimple_convert (&stmts, loc,
15964 TREE_TYPE (TREE_TYPE (lhs)), arg0);
15965 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
15966 tree splat_tree = build_vector_from_val (TREE_TYPE (lhs), splat_value);
15967 g = gimple_build_assign (lhs, splat_tree);
15968 gimple_set_location (g, gimple_location (stmt));
15969 gsi_replace (gsi, g, true);
15970 return true;
15973 /* Flavors of vec_splat. */
15974 /* a = vec_splat (b, 0x3) becomes a = { b[3],b[3],b[3],...}; */
15975 case ALTIVEC_BUILTIN_VSPLTB:
15976 case ALTIVEC_BUILTIN_VSPLTH:
15977 case ALTIVEC_BUILTIN_VSPLTW:
15978 case VSX_BUILTIN_XXSPLTD_V2DI:
15979 case VSX_BUILTIN_XXSPLTD_V2DF:
15981 arg0 = gimple_call_arg (stmt, 0); /* input vector. */
15982 arg1 = gimple_call_arg (stmt, 1); /* index into arg0. */
15983 /* Only fold the vec_splat_*() if arg1 is both a constant value and
15984 is a valid index into the arg0 vector. */
15985 unsigned int n_elts = VECTOR_CST_NELTS (arg0);
15986 if (TREE_CODE (arg1) != INTEGER_CST
15987 || TREE_INT_CST_LOW (arg1) > (n_elts -1))
15988 return false;
15989 lhs = gimple_call_lhs (stmt);
15990 tree lhs_type = TREE_TYPE (lhs);
15991 tree arg0_type = TREE_TYPE (arg0);
15992 tree splat;
15993 if (TREE_CODE (arg0) == VECTOR_CST)
15994 splat = VECTOR_CST_ELT (arg0, TREE_INT_CST_LOW (arg1));
15995 else
15997 /* Determine (in bits) the length and start location of the
15998 splat value for a call to the tree_vec_extract helper. */
15999 int splat_elem_size = TREE_INT_CST_LOW (size_in_bytes (arg0_type))
16000 * BITS_PER_UNIT / n_elts;
16001 int splat_start_bit = TREE_INT_CST_LOW (arg1) * splat_elem_size;
16002 tree len = build_int_cst (bitsizetype, splat_elem_size);
16003 tree start = build_int_cst (bitsizetype, splat_start_bit);
16004 splat = tree_vec_extract (gsi, TREE_TYPE (lhs_type), arg0,
16005 len, start);
16007 /* And finally, build the new vector. */
16008 tree splat_tree = build_vector_from_val (lhs_type, splat);
16009 g = gimple_build_assign (lhs, splat_tree);
16010 gimple_set_location (g, gimple_location (stmt));
16011 gsi_replace (gsi, g, true);
16012 return true;
16015 /* vec_mergel (integrals). */
16016 case ALTIVEC_BUILTIN_VMRGLH:
16017 case ALTIVEC_BUILTIN_VMRGLW:
16018 case VSX_BUILTIN_XXMRGLW_4SI:
16019 case ALTIVEC_BUILTIN_VMRGLB:
16020 case VSX_BUILTIN_VEC_MERGEL_V2DI:
16021 case VSX_BUILTIN_XXMRGLW_4SF:
16022 case VSX_BUILTIN_VEC_MERGEL_V2DF:
16023 fold_mergehl_helper (gsi, stmt, 1);
16024 return true;
16025 /* vec_mergeh (integrals). */
16026 case ALTIVEC_BUILTIN_VMRGHH:
16027 case ALTIVEC_BUILTIN_VMRGHW:
16028 case VSX_BUILTIN_XXMRGHW_4SI:
16029 case ALTIVEC_BUILTIN_VMRGHB:
16030 case VSX_BUILTIN_VEC_MERGEH_V2DI:
16031 case VSX_BUILTIN_XXMRGHW_4SF:
16032 case VSX_BUILTIN_VEC_MERGEH_V2DF:
16033 fold_mergehl_helper (gsi, stmt, 0);
16034 return true;
16036 /* Flavors of vec_mergee. */
16037 case P8V_BUILTIN_VMRGEW_V4SI:
16038 case P8V_BUILTIN_VMRGEW_V2DI:
16039 case P8V_BUILTIN_VMRGEW_V4SF:
16040 case P8V_BUILTIN_VMRGEW_V2DF:
16041 fold_mergeeo_helper (gsi, stmt, 0);
16042 return true;
16043 /* Flavors of vec_mergeo. */
16044 case P8V_BUILTIN_VMRGOW_V4SI:
16045 case P8V_BUILTIN_VMRGOW_V2DI:
16046 case P8V_BUILTIN_VMRGOW_V4SF:
16047 case P8V_BUILTIN_VMRGOW_V2DF:
16048 fold_mergeeo_helper (gsi, stmt, 1);
16049 return true;
16051 /* d = vec_pack (a, b) */
16052 case P8V_BUILTIN_VPKUDUM:
16053 case ALTIVEC_BUILTIN_VPKUHUM:
16054 case ALTIVEC_BUILTIN_VPKUWUM:
16056 arg0 = gimple_call_arg (stmt, 0);
16057 arg1 = gimple_call_arg (stmt, 1);
16058 lhs = gimple_call_lhs (stmt);
16059 gimple *g = gimple_build_assign (lhs, VEC_PACK_TRUNC_EXPR, arg0, arg1);
16060 gimple_set_location (g, gimple_location (stmt));
16061 gsi_replace (gsi, g, true);
16062 return true;
16065 /* d = vec_unpackh (a) */
16066 /* Note that the UNPACK_{HI,LO}_EXPR used in the gimple_build_assign call
16067 in this code is sensitive to endian-ness, and needs to be inverted to
16068 handle both LE and BE targets. */
16069 case ALTIVEC_BUILTIN_VUPKHSB:
16070 case ALTIVEC_BUILTIN_VUPKHSH:
16071 case P8V_BUILTIN_VUPKHSW:
16073 arg0 = gimple_call_arg (stmt, 0);
16074 lhs = gimple_call_lhs (stmt);
16075 if (BYTES_BIG_ENDIAN)
16076 g = gimple_build_assign (lhs, VEC_UNPACK_HI_EXPR, arg0);
16077 else
16078 g = gimple_build_assign (lhs, VEC_UNPACK_LO_EXPR, arg0);
16079 gimple_set_location (g, gimple_location (stmt));
16080 gsi_replace (gsi, g, true);
16081 return true;
16083 /* d = vec_unpackl (a) */
16084 case ALTIVEC_BUILTIN_VUPKLSB:
16085 case ALTIVEC_BUILTIN_VUPKLSH:
16086 case P8V_BUILTIN_VUPKLSW:
16088 arg0 = gimple_call_arg (stmt, 0);
16089 lhs = gimple_call_lhs (stmt);
16090 if (BYTES_BIG_ENDIAN)
16091 g = gimple_build_assign (lhs, VEC_UNPACK_LO_EXPR, arg0);
16092 else
16093 g = gimple_build_assign (lhs, VEC_UNPACK_HI_EXPR, arg0);
16094 gimple_set_location (g, gimple_location (stmt));
16095 gsi_replace (gsi, g, true);
16096 return true;
16098 /* There is no gimple type corresponding with pixel, so just return. */
16099 case ALTIVEC_BUILTIN_VUPKHPX:
16100 case ALTIVEC_BUILTIN_VUPKLPX:
16101 return false;
16103 /* vec_perm. */
16104 case ALTIVEC_BUILTIN_VPERM_16QI:
16105 case ALTIVEC_BUILTIN_VPERM_8HI:
16106 case ALTIVEC_BUILTIN_VPERM_4SI:
16107 case ALTIVEC_BUILTIN_VPERM_2DI:
16108 case ALTIVEC_BUILTIN_VPERM_4SF:
16109 case ALTIVEC_BUILTIN_VPERM_2DF:
16111 arg0 = gimple_call_arg (stmt, 0);
16112 arg1 = gimple_call_arg (stmt, 1);
16113 tree permute = gimple_call_arg (stmt, 2);
16114 lhs = gimple_call_lhs (stmt);
16115 location_t loc = gimple_location (stmt);
16116 gimple_seq stmts = NULL;
16117 // convert arg0 and arg1 to match the type of the permute
16118 // for the VEC_PERM_EXPR operation.
16119 tree permute_type = (TREE_TYPE (permute));
16120 tree arg0_ptype = gimple_convert (&stmts, loc, permute_type, arg0);
16121 tree arg1_ptype = gimple_convert (&stmts, loc, permute_type, arg1);
16122 tree lhs_ptype = gimple_build (&stmts, loc, VEC_PERM_EXPR,
16123 permute_type, arg0_ptype, arg1_ptype,
16124 permute);
16125 // Convert the result back to the desired lhs type upon completion.
16126 tree temp = gimple_convert (&stmts, loc, TREE_TYPE (lhs), lhs_ptype);
16127 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
16128 g = gimple_build_assign (lhs, temp);
16129 gimple_set_location (g, loc);
16130 gsi_replace (gsi, g, true);
16131 return true;
16134 default:
16135 if (TARGET_DEBUG_BUILTIN)
16136 fprintf (stderr, "gimple builtin intrinsic not matched:%d %s %s\n",
16137 fn_code, fn_name1, fn_name2);
16138 break;
16141 return false;
16144 /* Expand an expression EXP that calls a built-in function,
16145 with result going to TARGET if that's convenient
16146 (and in mode MODE if that's convenient).
16147 SUBTARGET may be used as the target for computing one of EXP's operands.
16148 IGNORE is nonzero if the value is to be ignored. */
16150 static rtx
16151 rs6000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
16152 machine_mode mode ATTRIBUTE_UNUSED,
16153 int ignore ATTRIBUTE_UNUSED)
16155 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
16156 enum rs6000_builtins fcode
16157 = (enum rs6000_builtins)DECL_FUNCTION_CODE (fndecl);
16158 size_t uns_fcode = (size_t)fcode;
16159 const struct builtin_description *d;
16160 size_t i;
16161 rtx ret;
16162 bool success;
16163 HOST_WIDE_INT mask = rs6000_builtin_info[uns_fcode].mask;
16164 bool func_valid_p = ((rs6000_builtin_mask & mask) == mask);
16165 enum insn_code icode = rs6000_builtin_info[uns_fcode].icode;
16167 /* We have two different modes (KFmode, TFmode) that are the IEEE 128-bit
16168 floating point type, depending on whether long double is the IBM extended
16169 double (KFmode) or long double is IEEE 128-bit (TFmode). It is simpler if
16170 we only define one variant of the built-in function, and switch the code
16171 when defining it, rather than defining two built-ins and using the
16172 overload table in rs6000-c.c to switch between the two. If we don't have
16173 the proper assembler, don't do this switch because CODE_FOR_*kf* and
16174 CODE_FOR_*tf* will be CODE_FOR_nothing. */
16175 if (FLOAT128_IEEE_P (TFmode))
16176 switch (icode)
16178 default:
16179 break;
16181 case CODE_FOR_sqrtkf2_odd: icode = CODE_FOR_sqrttf2_odd; break;
16182 case CODE_FOR_trunckfdf2_odd: icode = CODE_FOR_trunctfdf2_odd; break;
16183 case CODE_FOR_addkf3_odd: icode = CODE_FOR_addtf3_odd; break;
16184 case CODE_FOR_subkf3_odd: icode = CODE_FOR_subtf3_odd; break;
16185 case CODE_FOR_mulkf3_odd: icode = CODE_FOR_multf3_odd; break;
16186 case CODE_FOR_divkf3_odd: icode = CODE_FOR_divtf3_odd; break;
16187 case CODE_FOR_fmakf4_odd: icode = CODE_FOR_fmatf4_odd; break;
16188 case CODE_FOR_xsxexpqp_kf: icode = CODE_FOR_xsxexpqp_tf; break;
16189 case CODE_FOR_xsxsigqp_kf: icode = CODE_FOR_xsxsigqp_tf; break;
16190 case CODE_FOR_xststdcnegqp_kf: icode = CODE_FOR_xststdcnegqp_tf; break;
16191 case CODE_FOR_xsiexpqp_kf: icode = CODE_FOR_xsiexpqp_tf; break;
16192 case CODE_FOR_xsiexpqpf_kf: icode = CODE_FOR_xsiexpqpf_tf; break;
16193 case CODE_FOR_xststdcqp_kf: icode = CODE_FOR_xststdcqp_tf; break;
16196 if (TARGET_DEBUG_BUILTIN)
16198 const char *name1 = rs6000_builtin_info[uns_fcode].name;
16199 const char *name2 = (icode != CODE_FOR_nothing)
16200 ? get_insn_name ((int) icode)
16201 : "nothing";
16202 const char *name3;
16204 switch (rs6000_builtin_info[uns_fcode].attr & RS6000_BTC_TYPE_MASK)
16206 default: name3 = "unknown"; break;
16207 case RS6000_BTC_SPECIAL: name3 = "special"; break;
16208 case RS6000_BTC_UNARY: name3 = "unary"; break;
16209 case RS6000_BTC_BINARY: name3 = "binary"; break;
16210 case RS6000_BTC_TERNARY: name3 = "ternary"; break;
16211 case RS6000_BTC_PREDICATE: name3 = "predicate"; break;
16212 case RS6000_BTC_ABS: name3 = "abs"; break;
16213 case RS6000_BTC_DST: name3 = "dst"; break;
16217 fprintf (stderr,
16218 "rs6000_expand_builtin, %s (%d), insn = %s (%d), type=%s%s\n",
16219 (name1) ? name1 : "---", fcode,
16220 (name2) ? name2 : "---", (int) icode,
16221 name3,
16222 func_valid_p ? "" : ", not valid");
16225 if (!func_valid_p)
16227 rs6000_invalid_builtin (fcode);
16229 /* Given it is invalid, just generate a normal call. */
16230 return expand_call (exp, target, ignore);
16233 switch (fcode)
16235 case RS6000_BUILTIN_RECIP:
16236 return rs6000_expand_binop_builtin (CODE_FOR_recipdf3, exp, target);
16238 case RS6000_BUILTIN_RECIPF:
16239 return rs6000_expand_binop_builtin (CODE_FOR_recipsf3, exp, target);
16241 case RS6000_BUILTIN_RSQRTF:
16242 return rs6000_expand_unop_builtin (CODE_FOR_rsqrtsf2, exp, target);
16244 case RS6000_BUILTIN_RSQRT:
16245 return rs6000_expand_unop_builtin (CODE_FOR_rsqrtdf2, exp, target);
16247 case POWER7_BUILTIN_BPERMD:
16248 return rs6000_expand_binop_builtin (((TARGET_64BIT)
16249 ? CODE_FOR_bpermd_di
16250 : CODE_FOR_bpermd_si), exp, target);
16252 case RS6000_BUILTIN_GET_TB:
16253 return rs6000_expand_zeroop_builtin (CODE_FOR_rs6000_get_timebase,
16254 target);
16256 case RS6000_BUILTIN_MFTB:
16257 return rs6000_expand_zeroop_builtin (((TARGET_64BIT)
16258 ? CODE_FOR_rs6000_mftb_di
16259 : CODE_FOR_rs6000_mftb_si),
16260 target);
16262 case RS6000_BUILTIN_MFFS:
16263 return rs6000_expand_zeroop_builtin (CODE_FOR_rs6000_mffs, target);
16265 case RS6000_BUILTIN_MTFSB0:
16266 return rs6000_expand_mtfsb_builtin (CODE_FOR_rs6000_mtfsb0, exp);
16268 case RS6000_BUILTIN_MTFSB1:
16269 return rs6000_expand_mtfsb_builtin (CODE_FOR_rs6000_mtfsb1, exp);
16271 case RS6000_BUILTIN_SET_FPSCR_RN:
16272 return rs6000_expand_set_fpscr_rn_builtin (CODE_FOR_rs6000_set_fpscr_rn,
16273 exp);
16275 case RS6000_BUILTIN_SET_FPSCR_DRN:
16276 return
16277 rs6000_expand_set_fpscr_drn_builtin (CODE_FOR_rs6000_set_fpscr_drn,
16278 exp);
16280 case RS6000_BUILTIN_MFFSL:
16281 return rs6000_expand_zeroop_builtin (CODE_FOR_rs6000_mffsl, target);
16283 case RS6000_BUILTIN_MTFSF:
16284 return rs6000_expand_mtfsf_builtin (CODE_FOR_rs6000_mtfsf, exp);
16286 case RS6000_BUILTIN_CPU_INIT:
16287 case RS6000_BUILTIN_CPU_IS:
16288 case RS6000_BUILTIN_CPU_SUPPORTS:
16289 return cpu_expand_builtin (fcode, exp, target);
16291 case MISC_BUILTIN_SPEC_BARRIER:
16293 emit_insn (gen_speculation_barrier ());
16294 return NULL_RTX;
16297 case ALTIVEC_BUILTIN_MASK_FOR_LOAD:
16298 case ALTIVEC_BUILTIN_MASK_FOR_STORE:
16300 int icode2 = (BYTES_BIG_ENDIAN ? (int) CODE_FOR_altivec_lvsr_direct
16301 : (int) CODE_FOR_altivec_lvsl_direct);
16302 machine_mode tmode = insn_data[icode2].operand[0].mode;
16303 machine_mode mode = insn_data[icode2].operand[1].mode;
16304 tree arg;
16305 rtx op, addr, pat;
16307 gcc_assert (TARGET_ALTIVEC);
16309 arg = CALL_EXPR_ARG (exp, 0);
16310 gcc_assert (POINTER_TYPE_P (TREE_TYPE (arg)));
16311 op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
16312 addr = memory_address (mode, op);
16313 if (fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
16314 op = addr;
16315 else
16317 /* For the load case need to negate the address. */
16318 op = gen_reg_rtx (GET_MODE (addr));
16319 emit_insn (gen_rtx_SET (op, gen_rtx_NEG (GET_MODE (addr), addr)));
16321 op = gen_rtx_MEM (mode, op);
16323 if (target == 0
16324 || GET_MODE (target) != tmode
16325 || ! (*insn_data[icode2].operand[0].predicate) (target, tmode))
16326 target = gen_reg_rtx (tmode);
16328 pat = GEN_FCN (icode2) (target, op);
16329 if (!pat)
16330 return 0;
16331 emit_insn (pat);
16333 return target;
16336 case ALTIVEC_BUILTIN_VCFUX:
16337 case ALTIVEC_BUILTIN_VCFSX:
16338 case ALTIVEC_BUILTIN_VCTUXS:
16339 case ALTIVEC_BUILTIN_VCTSXS:
16340 /* FIXME: There's got to be a nicer way to handle this case than
16341 constructing a new CALL_EXPR. */
16342 if (call_expr_nargs (exp) == 1)
16344 exp = build_call_nary (TREE_TYPE (exp), CALL_EXPR_FN (exp),
16345 2, CALL_EXPR_ARG (exp, 0), integer_zero_node);
16347 break;
16349 /* For the pack and unpack int128 routines, fix up the builtin so it
16350 uses the correct IBM128 type. */
16351 case MISC_BUILTIN_PACK_IF:
16352 if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
16354 icode = CODE_FOR_packtf;
16355 fcode = MISC_BUILTIN_PACK_TF;
16356 uns_fcode = (size_t)fcode;
16358 break;
16360 case MISC_BUILTIN_UNPACK_IF:
16361 if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
16363 icode = CODE_FOR_unpacktf;
16364 fcode = MISC_BUILTIN_UNPACK_TF;
16365 uns_fcode = (size_t)fcode;
16367 break;
16369 default:
16370 break;
16373 if (TARGET_ALTIVEC)
16375 ret = altivec_expand_builtin (exp, target, &success);
16377 if (success)
16378 return ret;
16380 if (TARGET_HTM)
16382 ret = htm_expand_builtin (exp, target, &success);
16384 if (success)
16385 return ret;
16388 unsigned attr = rs6000_builtin_info[uns_fcode].attr & RS6000_BTC_TYPE_MASK;
16389 /* RS6000_BTC_SPECIAL represents no-operand operators. */
16390 gcc_assert (attr == RS6000_BTC_UNARY
16391 || attr == RS6000_BTC_BINARY
16392 || attr == RS6000_BTC_TERNARY
16393 || attr == RS6000_BTC_SPECIAL);
16395 /* Handle simple unary operations. */
16396 d = bdesc_1arg;
16397 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
16398 if (d->code == fcode)
16399 return rs6000_expand_unop_builtin (icode, exp, target);
16401 /* Handle simple binary operations. */
16402 d = bdesc_2arg;
16403 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
16404 if (d->code == fcode)
16405 return rs6000_expand_binop_builtin (icode, exp, target);
16407 /* Handle simple ternary operations. */
16408 d = bdesc_3arg;
16409 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
16410 if (d->code == fcode)
16411 return rs6000_expand_ternop_builtin (icode, exp, target);
16413 /* Handle simple no-argument operations. */
16414 d = bdesc_0arg;
16415 for (i = 0; i < ARRAY_SIZE (bdesc_0arg); i++, d++)
16416 if (d->code == fcode)
16417 return rs6000_expand_zeroop_builtin (icode, target);
16419 gcc_unreachable ();
16422 /* Create a builtin vector type with a name. Taking care not to give
16423 the canonical type a name. */
16425 static tree
16426 rs6000_vector_type (const char *name, tree elt_type, unsigned num_elts)
16428 tree result = build_vector_type (elt_type, num_elts);
16430 /* Copy so we don't give the canonical type a name. */
16431 result = build_variant_type_copy (result);
16433 add_builtin_type (name, result);
16435 return result;
16438 static void
16439 rs6000_init_builtins (void)
16441 tree tdecl;
16442 tree ftype;
16443 machine_mode mode;
16445 if (TARGET_DEBUG_BUILTIN)
16446 fprintf (stderr, "rs6000_init_builtins%s%s\n",
16447 (TARGET_ALTIVEC) ? ", altivec" : "",
16448 (TARGET_VSX) ? ", vsx" : "");
16450 V2DI_type_node = rs6000_vector_type (TARGET_POWERPC64 ? "__vector long"
16451 : "__vector long long",
16452 intDI_type_node, 2);
16453 V2DF_type_node = rs6000_vector_type ("__vector double", double_type_node, 2);
16454 V4SI_type_node = rs6000_vector_type ("__vector signed int",
16455 intSI_type_node, 4);
16456 V4SF_type_node = rs6000_vector_type ("__vector float", float_type_node, 4);
16457 V8HI_type_node = rs6000_vector_type ("__vector signed short",
16458 intHI_type_node, 8);
16459 V16QI_type_node = rs6000_vector_type ("__vector signed char",
16460 intQI_type_node, 16);
16462 unsigned_V16QI_type_node = rs6000_vector_type ("__vector unsigned char",
16463 unsigned_intQI_type_node, 16);
16464 unsigned_V8HI_type_node = rs6000_vector_type ("__vector unsigned short",
16465 unsigned_intHI_type_node, 8);
16466 unsigned_V4SI_type_node = rs6000_vector_type ("__vector unsigned int",
16467 unsigned_intSI_type_node, 4);
16468 unsigned_V2DI_type_node = rs6000_vector_type (TARGET_POWERPC64
16469 ? "__vector unsigned long"
16470 : "__vector unsigned long long",
16471 unsigned_intDI_type_node, 2);
16473 opaque_V4SI_type_node = build_opaque_vector_type (intSI_type_node, 4);
16475 const_str_type_node
16476 = build_pointer_type (build_qualified_type (char_type_node,
16477 TYPE_QUAL_CONST));
16479 /* We use V1TI mode as a special container to hold __int128_t items that
16480 must live in VSX registers. */
16481 if (intTI_type_node)
16483 V1TI_type_node = rs6000_vector_type ("__vector __int128",
16484 intTI_type_node, 1);
16485 unsigned_V1TI_type_node
16486 = rs6000_vector_type ("__vector unsigned __int128",
16487 unsigned_intTI_type_node, 1);
16490 /* The 'vector bool ...' types must be kept distinct from 'vector unsigned ...'
16491 types, especially in C++ land. Similarly, 'vector pixel' is distinct from
16492 'vector unsigned short'. */
16494 bool_char_type_node = build_distinct_type_copy (unsigned_intQI_type_node);
16495 bool_short_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
16496 bool_int_type_node = build_distinct_type_copy (unsigned_intSI_type_node);
16497 bool_long_long_type_node = build_distinct_type_copy (unsigned_intDI_type_node);
16498 pixel_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
16500 long_integer_type_internal_node = long_integer_type_node;
16501 long_unsigned_type_internal_node = long_unsigned_type_node;
16502 long_long_integer_type_internal_node = long_long_integer_type_node;
16503 long_long_unsigned_type_internal_node = long_long_unsigned_type_node;
16504 intQI_type_internal_node = intQI_type_node;
16505 uintQI_type_internal_node = unsigned_intQI_type_node;
16506 intHI_type_internal_node = intHI_type_node;
16507 uintHI_type_internal_node = unsigned_intHI_type_node;
16508 intSI_type_internal_node = intSI_type_node;
16509 uintSI_type_internal_node = unsigned_intSI_type_node;
16510 intDI_type_internal_node = intDI_type_node;
16511 uintDI_type_internal_node = unsigned_intDI_type_node;
16512 intTI_type_internal_node = intTI_type_node;
16513 uintTI_type_internal_node = unsigned_intTI_type_node;
16514 float_type_internal_node = float_type_node;
16515 double_type_internal_node = double_type_node;
16516 long_double_type_internal_node = long_double_type_node;
16517 dfloat64_type_internal_node = dfloat64_type_node;
16518 dfloat128_type_internal_node = dfloat128_type_node;
16519 void_type_internal_node = void_type_node;
16521 /* 128-bit floating point support. KFmode is IEEE 128-bit floating point.
16522 IFmode is the IBM extended 128-bit format that is a pair of doubles.
16523 TFmode will be either IEEE 128-bit floating point or the IBM double-double
16524 format that uses a pair of doubles, depending on the switches and
16525 defaults.
16527 If we don't support for either 128-bit IBM double double or IEEE 128-bit
16528 floating point, we need make sure the type is non-zero or else self-test
16529 fails during bootstrap.
16531 Always create __ibm128 as a separate type, even if the current long double
16532 format is IBM extended double.
16534 For IEEE 128-bit floating point, always create the type __ieee128. If the
16535 user used -mfloat128, rs6000-c.c will create a define from __float128 to
16536 __ieee128. */
16537 if (TARGET_FLOAT128_TYPE)
16539 if (!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128)
16540 ibm128_float_type_node = long_double_type_node;
16541 else
16543 ibm128_float_type_node = make_node (REAL_TYPE);
16544 TYPE_PRECISION (ibm128_float_type_node) = 128;
16545 SET_TYPE_MODE (ibm128_float_type_node, IFmode);
16546 layout_type (ibm128_float_type_node);
16549 lang_hooks.types.register_builtin_type (ibm128_float_type_node,
16550 "__ibm128");
16552 if (TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128)
16553 ieee128_float_type_node = long_double_type_node;
16554 else
16555 ieee128_float_type_node = float128_type_node;
16557 lang_hooks.types.register_builtin_type (ieee128_float_type_node,
16558 "__ieee128");
16561 else
16562 ieee128_float_type_node = ibm128_float_type_node = long_double_type_node;
16564 /* Initialize the modes for builtin_function_type, mapping a machine mode to
16565 tree type node. */
16566 builtin_mode_to_type[QImode][0] = integer_type_node;
16567 builtin_mode_to_type[HImode][0] = integer_type_node;
16568 builtin_mode_to_type[SImode][0] = intSI_type_node;
16569 builtin_mode_to_type[SImode][1] = unsigned_intSI_type_node;
16570 builtin_mode_to_type[DImode][0] = intDI_type_node;
16571 builtin_mode_to_type[DImode][1] = unsigned_intDI_type_node;
16572 builtin_mode_to_type[TImode][0] = intTI_type_node;
16573 builtin_mode_to_type[TImode][1] = unsigned_intTI_type_node;
16574 builtin_mode_to_type[SFmode][0] = float_type_node;
16575 builtin_mode_to_type[DFmode][0] = double_type_node;
16576 builtin_mode_to_type[IFmode][0] = ibm128_float_type_node;
16577 builtin_mode_to_type[KFmode][0] = ieee128_float_type_node;
16578 builtin_mode_to_type[TFmode][0] = long_double_type_node;
16579 builtin_mode_to_type[DDmode][0] = dfloat64_type_node;
16580 builtin_mode_to_type[TDmode][0] = dfloat128_type_node;
16581 builtin_mode_to_type[V1TImode][0] = V1TI_type_node;
16582 builtin_mode_to_type[V1TImode][1] = unsigned_V1TI_type_node;
16583 builtin_mode_to_type[V2DImode][0] = V2DI_type_node;
16584 builtin_mode_to_type[V2DImode][1] = unsigned_V2DI_type_node;
16585 builtin_mode_to_type[V2DFmode][0] = V2DF_type_node;
16586 builtin_mode_to_type[V4SImode][0] = V4SI_type_node;
16587 builtin_mode_to_type[V4SImode][1] = unsigned_V4SI_type_node;
16588 builtin_mode_to_type[V4SFmode][0] = V4SF_type_node;
16589 builtin_mode_to_type[V8HImode][0] = V8HI_type_node;
16590 builtin_mode_to_type[V8HImode][1] = unsigned_V8HI_type_node;
16591 builtin_mode_to_type[V16QImode][0] = V16QI_type_node;
16592 builtin_mode_to_type[V16QImode][1] = unsigned_V16QI_type_node;
16594 tdecl = add_builtin_type ("__bool char", bool_char_type_node);
16595 TYPE_NAME (bool_char_type_node) = tdecl;
16597 tdecl = add_builtin_type ("__bool short", bool_short_type_node);
16598 TYPE_NAME (bool_short_type_node) = tdecl;
16600 tdecl = add_builtin_type ("__bool int", bool_int_type_node);
16601 TYPE_NAME (bool_int_type_node) = tdecl;
16603 tdecl = add_builtin_type ("__pixel", pixel_type_node);
16604 TYPE_NAME (pixel_type_node) = tdecl;
16606 bool_V16QI_type_node = rs6000_vector_type ("__vector __bool char",
16607 bool_char_type_node, 16);
16608 bool_V8HI_type_node = rs6000_vector_type ("__vector __bool short",
16609 bool_short_type_node, 8);
16610 bool_V4SI_type_node = rs6000_vector_type ("__vector __bool int",
16611 bool_int_type_node, 4);
16612 bool_V2DI_type_node = rs6000_vector_type (TARGET_POWERPC64
16613 ? "__vector __bool long"
16614 : "__vector __bool long long",
16615 bool_long_long_type_node, 2);
16616 pixel_V8HI_type_node = rs6000_vector_type ("__vector __pixel",
16617 pixel_type_node, 8);
16619 /* Create Altivec and VSX builtins on machines with at least the
16620 general purpose extensions (970 and newer) to allow the use of
16621 the target attribute. */
16622 if (TARGET_EXTRA_BUILTINS)
16623 altivec_init_builtins ();
16624 if (TARGET_HTM)
16625 htm_init_builtins ();
16627 if (TARGET_EXTRA_BUILTINS)
16628 rs6000_common_init_builtins ();
16630 ftype = builtin_function_type (DFmode, DFmode, DFmode, VOIDmode,
16631 RS6000_BUILTIN_RECIP, "__builtin_recipdiv");
16632 def_builtin ("__builtin_recipdiv", ftype, RS6000_BUILTIN_RECIP);
16634 ftype = builtin_function_type (SFmode, SFmode, SFmode, VOIDmode,
16635 RS6000_BUILTIN_RECIPF, "__builtin_recipdivf");
16636 def_builtin ("__builtin_recipdivf", ftype, RS6000_BUILTIN_RECIPF);
16638 ftype = builtin_function_type (DFmode, DFmode, VOIDmode, VOIDmode,
16639 RS6000_BUILTIN_RSQRT, "__builtin_rsqrt");
16640 def_builtin ("__builtin_rsqrt", ftype, RS6000_BUILTIN_RSQRT);
16642 ftype = builtin_function_type (SFmode, SFmode, VOIDmode, VOIDmode,
16643 RS6000_BUILTIN_RSQRTF, "__builtin_rsqrtf");
16644 def_builtin ("__builtin_rsqrtf", ftype, RS6000_BUILTIN_RSQRTF);
16646 mode = (TARGET_64BIT) ? DImode : SImode;
16647 ftype = builtin_function_type (mode, mode, mode, VOIDmode,
16648 POWER7_BUILTIN_BPERMD, "__builtin_bpermd");
16649 def_builtin ("__builtin_bpermd", ftype, POWER7_BUILTIN_BPERMD);
16651 ftype = build_function_type_list (unsigned_intDI_type_node,
16652 NULL_TREE);
16653 def_builtin ("__builtin_ppc_get_timebase", ftype, RS6000_BUILTIN_GET_TB);
16655 if (TARGET_64BIT)
16656 ftype = build_function_type_list (unsigned_intDI_type_node,
16657 NULL_TREE);
16658 else
16659 ftype = build_function_type_list (unsigned_intSI_type_node,
16660 NULL_TREE);
16661 def_builtin ("__builtin_ppc_mftb", ftype, RS6000_BUILTIN_MFTB);
16663 ftype = build_function_type_list (double_type_node, NULL_TREE);
16664 def_builtin ("__builtin_mffs", ftype, RS6000_BUILTIN_MFFS);
16666 ftype = build_function_type_list (double_type_node, NULL_TREE);
16667 def_builtin ("__builtin_mffsl", ftype, RS6000_BUILTIN_MFFSL);
16669 ftype = build_function_type_list (void_type_node,
16670 intSI_type_node,
16671 NULL_TREE);
16672 def_builtin ("__builtin_mtfsb0", ftype, RS6000_BUILTIN_MTFSB0);
16674 ftype = build_function_type_list (void_type_node,
16675 intSI_type_node,
16676 NULL_TREE);
16677 def_builtin ("__builtin_mtfsb1", ftype, RS6000_BUILTIN_MTFSB1);
16679 ftype = build_function_type_list (void_type_node,
16680 intDI_type_node,
16681 NULL_TREE);
16682 def_builtin ("__builtin_set_fpscr_rn", ftype, RS6000_BUILTIN_SET_FPSCR_RN);
16684 ftype = build_function_type_list (void_type_node,
16685 intDI_type_node,
16686 NULL_TREE);
16687 def_builtin ("__builtin_set_fpscr_drn", ftype, RS6000_BUILTIN_SET_FPSCR_DRN);
16689 ftype = build_function_type_list (void_type_node,
16690 intSI_type_node, double_type_node,
16691 NULL_TREE);
16692 def_builtin ("__builtin_mtfsf", ftype, RS6000_BUILTIN_MTFSF);
16694 ftype = build_function_type_list (void_type_node, NULL_TREE);
16695 def_builtin ("__builtin_cpu_init", ftype, RS6000_BUILTIN_CPU_INIT);
16696 def_builtin ("__builtin_ppc_speculation_barrier", ftype,
16697 MISC_BUILTIN_SPEC_BARRIER);
16699 ftype = build_function_type_list (bool_int_type_node, const_ptr_type_node,
16700 NULL_TREE);
16701 def_builtin ("__builtin_cpu_is", ftype, RS6000_BUILTIN_CPU_IS);
16702 def_builtin ("__builtin_cpu_supports", ftype, RS6000_BUILTIN_CPU_SUPPORTS);
16704 /* AIX libm provides clog as __clog. */
16705 if (TARGET_XCOFF &&
16706 (tdecl = builtin_decl_explicit (BUILT_IN_CLOG)) != NULL_TREE)
16707 set_user_assembler_name (tdecl, "__clog");
16709 #ifdef SUBTARGET_INIT_BUILTINS
16710 SUBTARGET_INIT_BUILTINS;
16711 #endif
16714 /* Returns the rs6000 builtin decl for CODE. */
16716 static tree
16717 rs6000_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
16719 HOST_WIDE_INT fnmask;
16721 if (code >= RS6000_BUILTIN_COUNT)
16722 return error_mark_node;
16724 fnmask = rs6000_builtin_info[code].mask;
16725 if ((fnmask & rs6000_builtin_mask) != fnmask)
16727 rs6000_invalid_builtin ((enum rs6000_builtins)code);
16728 return error_mark_node;
16731 return rs6000_builtin_decls[code];
16734 static void
16735 altivec_init_builtins (void)
16737 const struct builtin_description *d;
16738 size_t i;
16739 tree ftype;
16740 tree decl;
16741 HOST_WIDE_INT builtin_mask = rs6000_builtin_mask;
16743 tree pvoid_type_node = build_pointer_type (void_type_node);
16745 tree pcvoid_type_node
16746 = build_pointer_type (build_qualified_type (void_type_node,
16747 TYPE_QUAL_CONST));
16749 tree int_ftype_opaque
16750 = build_function_type_list (integer_type_node,
16751 opaque_V4SI_type_node, NULL_TREE);
16752 tree opaque_ftype_opaque
16753 = build_function_type_list (integer_type_node, NULL_TREE);
16754 tree opaque_ftype_opaque_int
16755 = build_function_type_list (opaque_V4SI_type_node,
16756 opaque_V4SI_type_node, integer_type_node, NULL_TREE);
16757 tree opaque_ftype_opaque_opaque_int
16758 = build_function_type_list (opaque_V4SI_type_node,
16759 opaque_V4SI_type_node, opaque_V4SI_type_node,
16760 integer_type_node, NULL_TREE);
16761 tree opaque_ftype_opaque_opaque_opaque
16762 = build_function_type_list (opaque_V4SI_type_node,
16763 opaque_V4SI_type_node, opaque_V4SI_type_node,
16764 opaque_V4SI_type_node, NULL_TREE);
16765 tree opaque_ftype_opaque_opaque
16766 = build_function_type_list (opaque_V4SI_type_node,
16767 opaque_V4SI_type_node, opaque_V4SI_type_node,
16768 NULL_TREE);
16769 tree int_ftype_int_opaque_opaque
16770 = build_function_type_list (integer_type_node,
16771 integer_type_node, opaque_V4SI_type_node,
16772 opaque_V4SI_type_node, NULL_TREE);
16773 tree int_ftype_int_v4si_v4si
16774 = build_function_type_list (integer_type_node,
16775 integer_type_node, V4SI_type_node,
16776 V4SI_type_node, NULL_TREE);
16777 tree int_ftype_int_v2di_v2di
16778 = build_function_type_list (integer_type_node,
16779 integer_type_node, V2DI_type_node,
16780 V2DI_type_node, NULL_TREE);
16781 tree void_ftype_v4si
16782 = build_function_type_list (void_type_node, V4SI_type_node, NULL_TREE);
16783 tree v8hi_ftype_void
16784 = build_function_type_list (V8HI_type_node, NULL_TREE);
16785 tree void_ftype_void
16786 = build_function_type_list (void_type_node, NULL_TREE);
16787 tree void_ftype_int
16788 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
16790 tree opaque_ftype_long_pcvoid
16791 = build_function_type_list (opaque_V4SI_type_node,
16792 long_integer_type_node, pcvoid_type_node,
16793 NULL_TREE);
16794 tree v16qi_ftype_long_pcvoid
16795 = build_function_type_list (V16QI_type_node,
16796 long_integer_type_node, pcvoid_type_node,
16797 NULL_TREE);
16798 tree v8hi_ftype_long_pcvoid
16799 = build_function_type_list (V8HI_type_node,
16800 long_integer_type_node, pcvoid_type_node,
16801 NULL_TREE);
16802 tree v4si_ftype_long_pcvoid
16803 = build_function_type_list (V4SI_type_node,
16804 long_integer_type_node, pcvoid_type_node,
16805 NULL_TREE);
16806 tree v4sf_ftype_long_pcvoid
16807 = build_function_type_list (V4SF_type_node,
16808 long_integer_type_node, pcvoid_type_node,
16809 NULL_TREE);
16810 tree v2df_ftype_long_pcvoid
16811 = build_function_type_list (V2DF_type_node,
16812 long_integer_type_node, pcvoid_type_node,
16813 NULL_TREE);
16814 tree v2di_ftype_long_pcvoid
16815 = build_function_type_list (V2DI_type_node,
16816 long_integer_type_node, pcvoid_type_node,
16817 NULL_TREE);
16818 tree v1ti_ftype_long_pcvoid
16819 = build_function_type_list (V1TI_type_node,
16820 long_integer_type_node, pcvoid_type_node,
16821 NULL_TREE);
16823 tree void_ftype_opaque_long_pvoid
16824 = build_function_type_list (void_type_node,
16825 opaque_V4SI_type_node, long_integer_type_node,
16826 pvoid_type_node, NULL_TREE);
16827 tree void_ftype_v4si_long_pvoid
16828 = build_function_type_list (void_type_node,
16829 V4SI_type_node, long_integer_type_node,
16830 pvoid_type_node, NULL_TREE);
16831 tree void_ftype_v16qi_long_pvoid
16832 = build_function_type_list (void_type_node,
16833 V16QI_type_node, long_integer_type_node,
16834 pvoid_type_node, NULL_TREE);
16836 tree void_ftype_v16qi_pvoid_long
16837 = build_function_type_list (void_type_node,
16838 V16QI_type_node, pvoid_type_node,
16839 long_integer_type_node, NULL_TREE);
16841 tree void_ftype_v8hi_long_pvoid
16842 = build_function_type_list (void_type_node,
16843 V8HI_type_node, long_integer_type_node,
16844 pvoid_type_node, NULL_TREE);
16845 tree void_ftype_v4sf_long_pvoid
16846 = build_function_type_list (void_type_node,
16847 V4SF_type_node, long_integer_type_node,
16848 pvoid_type_node, NULL_TREE);
16849 tree void_ftype_v2df_long_pvoid
16850 = build_function_type_list (void_type_node,
16851 V2DF_type_node, long_integer_type_node,
16852 pvoid_type_node, NULL_TREE);
16853 tree void_ftype_v1ti_long_pvoid
16854 = build_function_type_list (void_type_node,
16855 V1TI_type_node, long_integer_type_node,
16856 pvoid_type_node, NULL_TREE);
16857 tree void_ftype_v2di_long_pvoid
16858 = build_function_type_list (void_type_node,
16859 V2DI_type_node, long_integer_type_node,
16860 pvoid_type_node, NULL_TREE);
16861 tree int_ftype_int_v8hi_v8hi
16862 = build_function_type_list (integer_type_node,
16863 integer_type_node, V8HI_type_node,
16864 V8HI_type_node, NULL_TREE);
16865 tree int_ftype_int_v16qi_v16qi
16866 = build_function_type_list (integer_type_node,
16867 integer_type_node, V16QI_type_node,
16868 V16QI_type_node, NULL_TREE);
16869 tree int_ftype_int_v4sf_v4sf
16870 = build_function_type_list (integer_type_node,
16871 integer_type_node, V4SF_type_node,
16872 V4SF_type_node, NULL_TREE);
16873 tree int_ftype_int_v2df_v2df
16874 = build_function_type_list (integer_type_node,
16875 integer_type_node, V2DF_type_node,
16876 V2DF_type_node, NULL_TREE);
16877 tree v2di_ftype_v2di
16878 = build_function_type_list (V2DI_type_node, V2DI_type_node, NULL_TREE);
16879 tree v4si_ftype_v4si
16880 = build_function_type_list (V4SI_type_node, V4SI_type_node, NULL_TREE);
16881 tree v8hi_ftype_v8hi
16882 = build_function_type_list (V8HI_type_node, V8HI_type_node, NULL_TREE);
16883 tree v16qi_ftype_v16qi
16884 = build_function_type_list (V16QI_type_node, V16QI_type_node, NULL_TREE);
16885 tree v4sf_ftype_v4sf
16886 = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE);
16887 tree v2df_ftype_v2df
16888 = build_function_type_list (V2DF_type_node, V2DF_type_node, NULL_TREE);
16889 tree void_ftype_pcvoid_int_int
16890 = build_function_type_list (void_type_node,
16891 pcvoid_type_node, integer_type_node,
16892 integer_type_node, NULL_TREE);
16894 def_builtin ("__builtin_altivec_mtvscr", void_ftype_v4si, ALTIVEC_BUILTIN_MTVSCR);
16895 def_builtin ("__builtin_altivec_mfvscr", v8hi_ftype_void, ALTIVEC_BUILTIN_MFVSCR);
16896 def_builtin ("__builtin_altivec_dssall", void_ftype_void, ALTIVEC_BUILTIN_DSSALL);
16897 def_builtin ("__builtin_altivec_dss", void_ftype_int, ALTIVEC_BUILTIN_DSS);
16898 def_builtin ("__builtin_altivec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSL);
16899 def_builtin ("__builtin_altivec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSR);
16900 def_builtin ("__builtin_altivec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEBX);
16901 def_builtin ("__builtin_altivec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEHX);
16902 def_builtin ("__builtin_altivec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEWX);
16903 def_builtin ("__builtin_altivec_lvxl", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVXL);
16904 def_builtin ("__builtin_altivec_lvxl_v2df", v2df_ftype_long_pcvoid,
16905 ALTIVEC_BUILTIN_LVXL_V2DF);
16906 def_builtin ("__builtin_altivec_lvxl_v2di", v2di_ftype_long_pcvoid,
16907 ALTIVEC_BUILTIN_LVXL_V2DI);
16908 def_builtin ("__builtin_altivec_lvxl_v4sf", v4sf_ftype_long_pcvoid,
16909 ALTIVEC_BUILTIN_LVXL_V4SF);
16910 def_builtin ("__builtin_altivec_lvxl_v4si", v4si_ftype_long_pcvoid,
16911 ALTIVEC_BUILTIN_LVXL_V4SI);
16912 def_builtin ("__builtin_altivec_lvxl_v8hi", v8hi_ftype_long_pcvoid,
16913 ALTIVEC_BUILTIN_LVXL_V8HI);
16914 def_builtin ("__builtin_altivec_lvxl_v16qi", v16qi_ftype_long_pcvoid,
16915 ALTIVEC_BUILTIN_LVXL_V16QI);
16916 def_builtin ("__builtin_altivec_lvx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVX);
16917 def_builtin ("__builtin_altivec_lvx_v1ti", v1ti_ftype_long_pcvoid,
16918 ALTIVEC_BUILTIN_LVX_V1TI);
16919 def_builtin ("__builtin_altivec_lvx_v2df", v2df_ftype_long_pcvoid,
16920 ALTIVEC_BUILTIN_LVX_V2DF);
16921 def_builtin ("__builtin_altivec_lvx_v2di", v2di_ftype_long_pcvoid,
16922 ALTIVEC_BUILTIN_LVX_V2DI);
16923 def_builtin ("__builtin_altivec_lvx_v4sf", v4sf_ftype_long_pcvoid,
16924 ALTIVEC_BUILTIN_LVX_V4SF);
16925 def_builtin ("__builtin_altivec_lvx_v4si", v4si_ftype_long_pcvoid,
16926 ALTIVEC_BUILTIN_LVX_V4SI);
16927 def_builtin ("__builtin_altivec_lvx_v8hi", v8hi_ftype_long_pcvoid,
16928 ALTIVEC_BUILTIN_LVX_V8HI);
16929 def_builtin ("__builtin_altivec_lvx_v16qi", v16qi_ftype_long_pcvoid,
16930 ALTIVEC_BUILTIN_LVX_V16QI);
16931 def_builtin ("__builtin_altivec_stvx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVX);
16932 def_builtin ("__builtin_altivec_stvx_v2df", void_ftype_v2df_long_pvoid,
16933 ALTIVEC_BUILTIN_STVX_V2DF);
16934 def_builtin ("__builtin_altivec_stvx_v2di", void_ftype_v2di_long_pvoid,
16935 ALTIVEC_BUILTIN_STVX_V2DI);
16936 def_builtin ("__builtin_altivec_stvx_v4sf", void_ftype_v4sf_long_pvoid,
16937 ALTIVEC_BUILTIN_STVX_V4SF);
16938 def_builtin ("__builtin_altivec_stvx_v4si", void_ftype_v4si_long_pvoid,
16939 ALTIVEC_BUILTIN_STVX_V4SI);
16940 def_builtin ("__builtin_altivec_stvx_v8hi", void_ftype_v8hi_long_pvoid,
16941 ALTIVEC_BUILTIN_STVX_V8HI);
16942 def_builtin ("__builtin_altivec_stvx_v16qi", void_ftype_v16qi_long_pvoid,
16943 ALTIVEC_BUILTIN_STVX_V16QI);
16944 def_builtin ("__builtin_altivec_stvewx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVEWX);
16945 def_builtin ("__builtin_altivec_stvxl", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVXL);
16946 def_builtin ("__builtin_altivec_stvxl_v2df", void_ftype_v2df_long_pvoid,
16947 ALTIVEC_BUILTIN_STVXL_V2DF);
16948 def_builtin ("__builtin_altivec_stvxl_v2di", void_ftype_v2di_long_pvoid,
16949 ALTIVEC_BUILTIN_STVXL_V2DI);
16950 def_builtin ("__builtin_altivec_stvxl_v4sf", void_ftype_v4sf_long_pvoid,
16951 ALTIVEC_BUILTIN_STVXL_V4SF);
16952 def_builtin ("__builtin_altivec_stvxl_v4si", void_ftype_v4si_long_pvoid,
16953 ALTIVEC_BUILTIN_STVXL_V4SI);
16954 def_builtin ("__builtin_altivec_stvxl_v8hi", void_ftype_v8hi_long_pvoid,
16955 ALTIVEC_BUILTIN_STVXL_V8HI);
16956 def_builtin ("__builtin_altivec_stvxl_v16qi", void_ftype_v16qi_long_pvoid,
16957 ALTIVEC_BUILTIN_STVXL_V16QI);
16958 def_builtin ("__builtin_altivec_stvebx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVEBX);
16959 def_builtin ("__builtin_altivec_stvehx", void_ftype_v8hi_long_pvoid, ALTIVEC_BUILTIN_STVEHX);
16960 def_builtin ("__builtin_vec_ld", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LD);
16961 def_builtin ("__builtin_vec_lde", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDE);
16962 def_builtin ("__builtin_vec_ldl", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDL);
16963 def_builtin ("__builtin_vec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSL);
16964 def_builtin ("__builtin_vec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSR);
16965 def_builtin ("__builtin_vec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEBX);
16966 def_builtin ("__builtin_vec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEHX);
16967 def_builtin ("__builtin_vec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEWX);
16968 def_builtin ("__builtin_vec_st", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_ST);
16969 def_builtin ("__builtin_vec_ste", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STE);
16970 def_builtin ("__builtin_vec_stl", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STL);
16971 def_builtin ("__builtin_vec_stvewx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEWX);
16972 def_builtin ("__builtin_vec_stvebx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEBX);
16973 def_builtin ("__builtin_vec_stvehx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEHX);
16975 def_builtin ("__builtin_vsx_lxvd2x_v2df", v2df_ftype_long_pcvoid,
16976 VSX_BUILTIN_LXVD2X_V2DF);
16977 def_builtin ("__builtin_vsx_lxvd2x_v2di", v2di_ftype_long_pcvoid,
16978 VSX_BUILTIN_LXVD2X_V2DI);
16979 def_builtin ("__builtin_vsx_lxvw4x_v4sf", v4sf_ftype_long_pcvoid,
16980 VSX_BUILTIN_LXVW4X_V4SF);
16981 def_builtin ("__builtin_vsx_lxvw4x_v4si", v4si_ftype_long_pcvoid,
16982 VSX_BUILTIN_LXVW4X_V4SI);
16983 def_builtin ("__builtin_vsx_lxvw4x_v8hi", v8hi_ftype_long_pcvoid,
16984 VSX_BUILTIN_LXVW4X_V8HI);
16985 def_builtin ("__builtin_vsx_lxvw4x_v16qi", v16qi_ftype_long_pcvoid,
16986 VSX_BUILTIN_LXVW4X_V16QI);
16987 def_builtin ("__builtin_vsx_stxvd2x_v2df", void_ftype_v2df_long_pvoid,
16988 VSX_BUILTIN_STXVD2X_V2DF);
16989 def_builtin ("__builtin_vsx_stxvd2x_v2di", void_ftype_v2di_long_pvoid,
16990 VSX_BUILTIN_STXVD2X_V2DI);
16991 def_builtin ("__builtin_vsx_stxvw4x_v4sf", void_ftype_v4sf_long_pvoid,
16992 VSX_BUILTIN_STXVW4X_V4SF);
16993 def_builtin ("__builtin_vsx_stxvw4x_v4si", void_ftype_v4si_long_pvoid,
16994 VSX_BUILTIN_STXVW4X_V4SI);
16995 def_builtin ("__builtin_vsx_stxvw4x_v8hi", void_ftype_v8hi_long_pvoid,
16996 VSX_BUILTIN_STXVW4X_V8HI);
16997 def_builtin ("__builtin_vsx_stxvw4x_v16qi", void_ftype_v16qi_long_pvoid,
16998 VSX_BUILTIN_STXVW4X_V16QI);
17000 def_builtin ("__builtin_vsx_ld_elemrev_v2df", v2df_ftype_long_pcvoid,
17001 VSX_BUILTIN_LD_ELEMREV_V2DF);
17002 def_builtin ("__builtin_vsx_ld_elemrev_v2di", v2di_ftype_long_pcvoid,
17003 VSX_BUILTIN_LD_ELEMREV_V2DI);
17004 def_builtin ("__builtin_vsx_ld_elemrev_v4sf", v4sf_ftype_long_pcvoid,
17005 VSX_BUILTIN_LD_ELEMREV_V4SF);
17006 def_builtin ("__builtin_vsx_ld_elemrev_v4si", v4si_ftype_long_pcvoid,
17007 VSX_BUILTIN_LD_ELEMREV_V4SI);
17008 def_builtin ("__builtin_vsx_ld_elemrev_v8hi", v8hi_ftype_long_pcvoid,
17009 VSX_BUILTIN_LD_ELEMREV_V8HI);
17010 def_builtin ("__builtin_vsx_ld_elemrev_v16qi", v16qi_ftype_long_pcvoid,
17011 VSX_BUILTIN_LD_ELEMREV_V16QI);
17012 def_builtin ("__builtin_vsx_st_elemrev_v2df", void_ftype_v2df_long_pvoid,
17013 VSX_BUILTIN_ST_ELEMREV_V2DF);
17014 def_builtin ("__builtin_vsx_st_elemrev_v1ti", void_ftype_v1ti_long_pvoid,
17015 VSX_BUILTIN_ST_ELEMREV_V1TI);
17016 def_builtin ("__builtin_vsx_st_elemrev_v2di", void_ftype_v2di_long_pvoid,
17017 VSX_BUILTIN_ST_ELEMREV_V2DI);
17018 def_builtin ("__builtin_vsx_st_elemrev_v4sf", void_ftype_v4sf_long_pvoid,
17019 VSX_BUILTIN_ST_ELEMREV_V4SF);
17020 def_builtin ("__builtin_vsx_st_elemrev_v4si", void_ftype_v4si_long_pvoid,
17021 VSX_BUILTIN_ST_ELEMREV_V4SI);
17022 def_builtin ("__builtin_vsx_st_elemrev_v8hi", void_ftype_v8hi_long_pvoid,
17023 VSX_BUILTIN_ST_ELEMREV_V8HI);
17024 def_builtin ("__builtin_vsx_st_elemrev_v16qi", void_ftype_v16qi_long_pvoid,
17025 VSX_BUILTIN_ST_ELEMREV_V16QI);
17027 def_builtin ("__builtin_vec_vsx_ld", opaque_ftype_long_pcvoid,
17028 VSX_BUILTIN_VEC_LD);
17029 def_builtin ("__builtin_vec_vsx_st", void_ftype_opaque_long_pvoid,
17030 VSX_BUILTIN_VEC_ST);
17031 def_builtin ("__builtin_vec_xl", opaque_ftype_long_pcvoid,
17032 VSX_BUILTIN_VEC_XL);
17033 def_builtin ("__builtin_vec_xl_be", opaque_ftype_long_pcvoid,
17034 VSX_BUILTIN_VEC_XL_BE);
17035 def_builtin ("__builtin_vec_xst", void_ftype_opaque_long_pvoid,
17036 VSX_BUILTIN_VEC_XST);
17037 def_builtin ("__builtin_vec_xst_be", void_ftype_opaque_long_pvoid,
17038 VSX_BUILTIN_VEC_XST_BE);
17040 def_builtin ("__builtin_vec_step", int_ftype_opaque, ALTIVEC_BUILTIN_VEC_STEP);
17041 def_builtin ("__builtin_vec_splats", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_SPLATS);
17042 def_builtin ("__builtin_vec_promote", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_PROMOTE);
17044 def_builtin ("__builtin_vec_sld", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_SLD);
17045 def_builtin ("__builtin_vec_splat", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_SPLAT);
17046 def_builtin ("__builtin_vec_extract", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_EXTRACT);
17047 def_builtin ("__builtin_vec_insert", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_INSERT);
17048 def_builtin ("__builtin_vec_vspltw", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTW);
17049 def_builtin ("__builtin_vec_vsplth", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTH);
17050 def_builtin ("__builtin_vec_vspltb", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTB);
17051 def_builtin ("__builtin_vec_ctf", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTF);
17052 def_builtin ("__builtin_vec_vcfsx", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFSX);
17053 def_builtin ("__builtin_vec_vcfux", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFUX);
17054 def_builtin ("__builtin_vec_cts", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTS);
17055 def_builtin ("__builtin_vec_ctu", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTU);
17057 def_builtin ("__builtin_vec_adde", opaque_ftype_opaque_opaque_opaque,
17058 ALTIVEC_BUILTIN_VEC_ADDE);
17059 def_builtin ("__builtin_vec_addec", opaque_ftype_opaque_opaque_opaque,
17060 ALTIVEC_BUILTIN_VEC_ADDEC);
17061 def_builtin ("__builtin_vec_cmpne", opaque_ftype_opaque_opaque,
17062 ALTIVEC_BUILTIN_VEC_CMPNE);
17063 def_builtin ("__builtin_vec_mul", opaque_ftype_opaque_opaque,
17064 ALTIVEC_BUILTIN_VEC_MUL);
17065 def_builtin ("__builtin_vec_sube", opaque_ftype_opaque_opaque_opaque,
17066 ALTIVEC_BUILTIN_VEC_SUBE);
17067 def_builtin ("__builtin_vec_subec", opaque_ftype_opaque_opaque_opaque,
17068 ALTIVEC_BUILTIN_VEC_SUBEC);
17070 /* Cell builtins. */
17071 def_builtin ("__builtin_altivec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLX);
17072 def_builtin ("__builtin_altivec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLXL);
17073 def_builtin ("__builtin_altivec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRX);
17074 def_builtin ("__builtin_altivec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRXL);
17076 def_builtin ("__builtin_vec_lvlx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLX);
17077 def_builtin ("__builtin_vec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLXL);
17078 def_builtin ("__builtin_vec_lvrx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRX);
17079 def_builtin ("__builtin_vec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRXL);
17081 def_builtin ("__builtin_altivec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLX);
17082 def_builtin ("__builtin_altivec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLXL);
17083 def_builtin ("__builtin_altivec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRX);
17084 def_builtin ("__builtin_altivec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRXL);
17086 def_builtin ("__builtin_vec_stvlx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLX);
17087 def_builtin ("__builtin_vec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLXL);
17088 def_builtin ("__builtin_vec_stvrx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRX);
17089 def_builtin ("__builtin_vec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRXL);
17091 if (TARGET_P9_VECTOR)
17093 def_builtin ("__builtin_altivec_stxvl", void_ftype_v16qi_pvoid_long,
17094 P9V_BUILTIN_STXVL);
17095 def_builtin ("__builtin_xst_len_r", void_ftype_v16qi_pvoid_long,
17096 P9V_BUILTIN_XST_LEN_R);
17099 /* Add the DST variants. */
17100 d = bdesc_dst;
17101 for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
17103 HOST_WIDE_INT mask = d->mask;
17105 /* It is expected that these dst built-in functions may have
17106 d->icode equal to CODE_FOR_nothing. */
17107 if ((mask & builtin_mask) != mask)
17109 if (TARGET_DEBUG_BUILTIN)
17110 fprintf (stderr, "altivec_init_builtins, skip dst %s\n",
17111 d->name);
17112 continue;
17114 def_builtin (d->name, void_ftype_pcvoid_int_int, d->code);
17117 /* Initialize the predicates. */
17118 d = bdesc_altivec_preds;
17119 for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, d++)
17121 machine_mode mode1;
17122 tree type;
17123 HOST_WIDE_INT mask = d->mask;
17125 if ((mask & builtin_mask) != mask)
17127 if (TARGET_DEBUG_BUILTIN)
17128 fprintf (stderr, "altivec_init_builtins, skip predicate %s\n",
17129 d->name);
17130 continue;
17133 if (rs6000_overloaded_builtin_p (d->code))
17134 mode1 = VOIDmode;
17135 else
17137 /* Cannot define builtin if the instruction is disabled. */
17138 gcc_assert (d->icode != CODE_FOR_nothing);
17139 mode1 = insn_data[d->icode].operand[1].mode;
17142 switch (mode1)
17144 case E_VOIDmode:
17145 type = int_ftype_int_opaque_opaque;
17146 break;
17147 case E_V2DImode:
17148 type = int_ftype_int_v2di_v2di;
17149 break;
17150 case E_V4SImode:
17151 type = int_ftype_int_v4si_v4si;
17152 break;
17153 case E_V8HImode:
17154 type = int_ftype_int_v8hi_v8hi;
17155 break;
17156 case E_V16QImode:
17157 type = int_ftype_int_v16qi_v16qi;
17158 break;
17159 case E_V4SFmode:
17160 type = int_ftype_int_v4sf_v4sf;
17161 break;
17162 case E_V2DFmode:
17163 type = int_ftype_int_v2df_v2df;
17164 break;
17165 default:
17166 gcc_unreachable ();
17169 def_builtin (d->name, type, d->code);
17172 /* Initialize the abs* operators. */
17173 d = bdesc_abs;
17174 for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
17176 machine_mode mode0;
17177 tree type;
17178 HOST_WIDE_INT mask = d->mask;
17180 if ((mask & builtin_mask) != mask)
17182 if (TARGET_DEBUG_BUILTIN)
17183 fprintf (stderr, "altivec_init_builtins, skip abs %s\n",
17184 d->name);
17185 continue;
17188 /* Cannot define builtin if the instruction is disabled. */
17189 gcc_assert (d->icode != CODE_FOR_nothing);
17190 mode0 = insn_data[d->icode].operand[0].mode;
17192 switch (mode0)
17194 case E_V2DImode:
17195 type = v2di_ftype_v2di;
17196 break;
17197 case E_V4SImode:
17198 type = v4si_ftype_v4si;
17199 break;
17200 case E_V8HImode:
17201 type = v8hi_ftype_v8hi;
17202 break;
17203 case E_V16QImode:
17204 type = v16qi_ftype_v16qi;
17205 break;
17206 case E_V4SFmode:
17207 type = v4sf_ftype_v4sf;
17208 break;
17209 case E_V2DFmode:
17210 type = v2df_ftype_v2df;
17211 break;
17212 default:
17213 gcc_unreachable ();
17216 def_builtin (d->name, type, d->code);
17219 /* Initialize target builtin that implements
17220 targetm.vectorize.builtin_mask_for_load. */
17222 decl = add_builtin_function ("__builtin_altivec_mask_for_load",
17223 v16qi_ftype_long_pcvoid,
17224 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
17225 BUILT_IN_MD, NULL, NULL_TREE);
17226 TREE_READONLY (decl) = 1;
17227 /* Record the decl. Will be used by rs6000_builtin_mask_for_load. */
17228 altivec_builtin_mask_for_load = decl;
17230 /* Access to the vec_init patterns. */
17231 ftype = build_function_type_list (V4SI_type_node, integer_type_node,
17232 integer_type_node, integer_type_node,
17233 integer_type_node, NULL_TREE);
17234 def_builtin ("__builtin_vec_init_v4si", ftype, ALTIVEC_BUILTIN_VEC_INIT_V4SI);
17236 ftype = build_function_type_list (V8HI_type_node, short_integer_type_node,
17237 short_integer_type_node,
17238 short_integer_type_node,
17239 short_integer_type_node,
17240 short_integer_type_node,
17241 short_integer_type_node,
17242 short_integer_type_node,
17243 short_integer_type_node, NULL_TREE);
17244 def_builtin ("__builtin_vec_init_v8hi", ftype, ALTIVEC_BUILTIN_VEC_INIT_V8HI);
17246 ftype = build_function_type_list (V16QI_type_node, char_type_node,
17247 char_type_node, char_type_node,
17248 char_type_node, char_type_node,
17249 char_type_node, char_type_node,
17250 char_type_node, char_type_node,
17251 char_type_node, char_type_node,
17252 char_type_node, char_type_node,
17253 char_type_node, char_type_node,
17254 char_type_node, NULL_TREE);
17255 def_builtin ("__builtin_vec_init_v16qi", ftype,
17256 ALTIVEC_BUILTIN_VEC_INIT_V16QI);
17258 ftype = build_function_type_list (V4SF_type_node, float_type_node,
17259 float_type_node, float_type_node,
17260 float_type_node, NULL_TREE);
17261 def_builtin ("__builtin_vec_init_v4sf", ftype, ALTIVEC_BUILTIN_VEC_INIT_V4SF);
17263 /* VSX builtins. */
17264 ftype = build_function_type_list (V2DF_type_node, double_type_node,
17265 double_type_node, NULL_TREE);
17266 def_builtin ("__builtin_vec_init_v2df", ftype, VSX_BUILTIN_VEC_INIT_V2DF);
17268 ftype = build_function_type_list (V2DI_type_node, intDI_type_node,
17269 intDI_type_node, NULL_TREE);
17270 def_builtin ("__builtin_vec_init_v2di", ftype, VSX_BUILTIN_VEC_INIT_V2DI);
17272 /* Access to the vec_set patterns. */
17273 ftype = build_function_type_list (V4SI_type_node, V4SI_type_node,
17274 intSI_type_node,
17275 integer_type_node, NULL_TREE);
17276 def_builtin ("__builtin_vec_set_v4si", ftype, ALTIVEC_BUILTIN_VEC_SET_V4SI);
17278 ftype = build_function_type_list (V8HI_type_node, V8HI_type_node,
17279 intHI_type_node,
17280 integer_type_node, NULL_TREE);
17281 def_builtin ("__builtin_vec_set_v8hi", ftype, ALTIVEC_BUILTIN_VEC_SET_V8HI);
17283 ftype = build_function_type_list (V16QI_type_node, V16QI_type_node,
17284 intQI_type_node,
17285 integer_type_node, NULL_TREE);
17286 def_builtin ("__builtin_vec_set_v16qi", ftype, ALTIVEC_BUILTIN_VEC_SET_V16QI);
17288 ftype = build_function_type_list (V4SF_type_node, V4SF_type_node,
17289 float_type_node,
17290 integer_type_node, NULL_TREE);
17291 def_builtin ("__builtin_vec_set_v4sf", ftype, ALTIVEC_BUILTIN_VEC_SET_V4SF);
17293 ftype = build_function_type_list (V2DF_type_node, V2DF_type_node,
17294 double_type_node,
17295 integer_type_node, NULL_TREE);
17296 def_builtin ("__builtin_vec_set_v2df", ftype, VSX_BUILTIN_VEC_SET_V2DF);
17298 ftype = build_function_type_list (V2DI_type_node, V2DI_type_node,
17299 intDI_type_node,
17300 integer_type_node, NULL_TREE);
17301 def_builtin ("__builtin_vec_set_v2di", ftype, VSX_BUILTIN_VEC_SET_V2DI);
17303 /* Access to the vec_extract patterns. */
17304 ftype = build_function_type_list (intSI_type_node, V4SI_type_node,
17305 integer_type_node, NULL_TREE);
17306 def_builtin ("__builtin_vec_ext_v4si", ftype, ALTIVEC_BUILTIN_VEC_EXT_V4SI);
17308 ftype = build_function_type_list (intHI_type_node, V8HI_type_node,
17309 integer_type_node, NULL_TREE);
17310 def_builtin ("__builtin_vec_ext_v8hi", ftype, ALTIVEC_BUILTIN_VEC_EXT_V8HI);
17312 ftype = build_function_type_list (intQI_type_node, V16QI_type_node,
17313 integer_type_node, NULL_TREE);
17314 def_builtin ("__builtin_vec_ext_v16qi", ftype, ALTIVEC_BUILTIN_VEC_EXT_V16QI);
17316 ftype = build_function_type_list (float_type_node, V4SF_type_node,
17317 integer_type_node, NULL_TREE);
17318 def_builtin ("__builtin_vec_ext_v4sf", ftype, ALTIVEC_BUILTIN_VEC_EXT_V4SF);
17320 ftype = build_function_type_list (double_type_node, V2DF_type_node,
17321 integer_type_node, NULL_TREE);
17322 def_builtin ("__builtin_vec_ext_v2df", ftype, VSX_BUILTIN_VEC_EXT_V2DF);
17324 ftype = build_function_type_list (intDI_type_node, V2DI_type_node,
17325 integer_type_node, NULL_TREE);
17326 def_builtin ("__builtin_vec_ext_v2di", ftype, VSX_BUILTIN_VEC_EXT_V2DI);
17329 if (V1TI_type_node)
17331 tree v1ti_ftype_long_pcvoid
17332 = build_function_type_list (V1TI_type_node,
17333 long_integer_type_node, pcvoid_type_node,
17334 NULL_TREE);
17335 tree void_ftype_v1ti_long_pvoid
17336 = build_function_type_list (void_type_node,
17337 V1TI_type_node, long_integer_type_node,
17338 pvoid_type_node, NULL_TREE);
17339 def_builtin ("__builtin_vsx_ld_elemrev_v1ti", v1ti_ftype_long_pcvoid,
17340 VSX_BUILTIN_LD_ELEMREV_V1TI);
17341 def_builtin ("__builtin_vsx_lxvd2x_v1ti", v1ti_ftype_long_pcvoid,
17342 VSX_BUILTIN_LXVD2X_V1TI);
17343 def_builtin ("__builtin_vsx_stxvd2x_v1ti", void_ftype_v1ti_long_pvoid,
17344 VSX_BUILTIN_STXVD2X_V1TI);
17345 ftype = build_function_type_list (V1TI_type_node, intTI_type_node,
17346 NULL_TREE, NULL_TREE);
17347 def_builtin ("__builtin_vec_init_v1ti", ftype, VSX_BUILTIN_VEC_INIT_V1TI);
17348 ftype = build_function_type_list (V1TI_type_node, V1TI_type_node,
17349 intTI_type_node,
17350 integer_type_node, NULL_TREE);
17351 def_builtin ("__builtin_vec_set_v1ti", ftype, VSX_BUILTIN_VEC_SET_V1TI);
17352 ftype = build_function_type_list (intTI_type_node, V1TI_type_node,
17353 integer_type_node, NULL_TREE);
17354 def_builtin ("__builtin_vec_ext_v1ti", ftype, VSX_BUILTIN_VEC_EXT_V1TI);
17359 static void
17360 htm_init_builtins (void)
17362 HOST_WIDE_INT builtin_mask = rs6000_builtin_mask;
17363 const struct builtin_description *d;
17364 size_t i;
17366 d = bdesc_htm;
17367 for (i = 0; i < ARRAY_SIZE (bdesc_htm); i++, d++)
17369 tree op[MAX_HTM_OPERANDS], type;
17370 HOST_WIDE_INT mask = d->mask;
17371 unsigned attr = rs6000_builtin_info[d->code].attr;
17372 bool void_func = (attr & RS6000_BTC_VOID);
17373 int attr_args = (attr & RS6000_BTC_TYPE_MASK);
17374 int nopnds = 0;
17375 tree gpr_type_node;
17376 tree rettype;
17377 tree argtype;
17379 /* It is expected that these htm built-in functions may have
17380 d->icode equal to CODE_FOR_nothing. */
17382 if (TARGET_32BIT && TARGET_POWERPC64)
17383 gpr_type_node = long_long_unsigned_type_node;
17384 else
17385 gpr_type_node = long_unsigned_type_node;
17387 if (attr & RS6000_BTC_SPR)
17389 rettype = gpr_type_node;
17390 argtype = gpr_type_node;
17392 else if (d->code == HTM_BUILTIN_TABORTDC
17393 || d->code == HTM_BUILTIN_TABORTDCI)
17395 rettype = unsigned_type_node;
17396 argtype = gpr_type_node;
17398 else
17400 rettype = unsigned_type_node;
17401 argtype = unsigned_type_node;
17404 if ((mask & builtin_mask) != mask)
17406 if (TARGET_DEBUG_BUILTIN)
17407 fprintf (stderr, "htm_builtin, skip binary %s\n", d->name);
17408 continue;
17411 if (d->name == 0)
17413 if (TARGET_DEBUG_BUILTIN)
17414 fprintf (stderr, "htm_builtin, bdesc_htm[%ld] no name\n",
17415 (long unsigned) i);
17416 continue;
17419 op[nopnds++] = (void_func) ? void_type_node : rettype;
17421 if (attr_args == RS6000_BTC_UNARY)
17422 op[nopnds++] = argtype;
17423 else if (attr_args == RS6000_BTC_BINARY)
17425 op[nopnds++] = argtype;
17426 op[nopnds++] = argtype;
17428 else if (attr_args == RS6000_BTC_TERNARY)
17430 op[nopnds++] = argtype;
17431 op[nopnds++] = argtype;
17432 op[nopnds++] = argtype;
17435 switch (nopnds)
17437 case 1:
17438 type = build_function_type_list (op[0], NULL_TREE);
17439 break;
17440 case 2:
17441 type = build_function_type_list (op[0], op[1], NULL_TREE);
17442 break;
17443 case 3:
17444 type = build_function_type_list (op[0], op[1], op[2], NULL_TREE);
17445 break;
17446 case 4:
17447 type = build_function_type_list (op[0], op[1], op[2], op[3],
17448 NULL_TREE);
17449 break;
17450 default:
17451 gcc_unreachable ();
17454 def_builtin (d->name, type, d->code);
17458 /* Hash function for builtin functions with up to 3 arguments and a return
17459 type. */
17460 hashval_t
17461 builtin_hasher::hash (builtin_hash_struct *bh)
17463 unsigned ret = 0;
17464 int i;
17466 for (i = 0; i < 4; i++)
17468 ret = (ret * (unsigned)MAX_MACHINE_MODE) + ((unsigned)bh->mode[i]);
17469 ret = (ret * 2) + bh->uns_p[i];
17472 return ret;
17475 /* Compare builtin hash entries H1 and H2 for equivalence. */
17476 bool
17477 builtin_hasher::equal (builtin_hash_struct *p1, builtin_hash_struct *p2)
17479 return ((p1->mode[0] == p2->mode[0])
17480 && (p1->mode[1] == p2->mode[1])
17481 && (p1->mode[2] == p2->mode[2])
17482 && (p1->mode[3] == p2->mode[3])
17483 && (p1->uns_p[0] == p2->uns_p[0])
17484 && (p1->uns_p[1] == p2->uns_p[1])
17485 && (p1->uns_p[2] == p2->uns_p[2])
17486 && (p1->uns_p[3] == p2->uns_p[3]));
17489 /* Map types for builtin functions with an explicit return type and up to 3
17490 arguments. Functions with fewer than 3 arguments use VOIDmode as the type
17491 of the argument. */
17492 static tree
17493 builtin_function_type (machine_mode mode_ret, machine_mode mode_arg0,
17494 machine_mode mode_arg1, machine_mode mode_arg2,
17495 enum rs6000_builtins builtin, const char *name)
17497 struct builtin_hash_struct h;
17498 struct builtin_hash_struct *h2;
17499 int num_args = 3;
17500 int i;
17501 tree ret_type = NULL_TREE;
17502 tree arg_type[3] = { NULL_TREE, NULL_TREE, NULL_TREE };
17504 /* Create builtin_hash_table. */
17505 if (builtin_hash_table == NULL)
17506 builtin_hash_table = hash_table<builtin_hasher>::create_ggc (1500);
17508 h.type = NULL_TREE;
17509 h.mode[0] = mode_ret;
17510 h.mode[1] = mode_arg0;
17511 h.mode[2] = mode_arg1;
17512 h.mode[3] = mode_arg2;
17513 h.uns_p[0] = 0;
17514 h.uns_p[1] = 0;
17515 h.uns_p[2] = 0;
17516 h.uns_p[3] = 0;
17518 /* If the builtin is a type that produces unsigned results or takes unsigned
17519 arguments, and it is returned as a decl for the vectorizer (such as
17520 widening multiplies, permute), make sure the arguments and return value
17521 are type correct. */
17522 switch (builtin)
17524 /* unsigned 1 argument functions. */
17525 case CRYPTO_BUILTIN_VSBOX:
17526 case P8V_BUILTIN_VGBBD:
17527 case MISC_BUILTIN_CDTBCD:
17528 case MISC_BUILTIN_CBCDTD:
17529 h.uns_p[0] = 1;
17530 h.uns_p[1] = 1;
17531 break;
17533 /* unsigned 2 argument functions. */
17534 case ALTIVEC_BUILTIN_VMULEUB:
17535 case ALTIVEC_BUILTIN_VMULEUH:
17536 case P8V_BUILTIN_VMULEUW:
17537 case ALTIVEC_BUILTIN_VMULOUB:
17538 case ALTIVEC_BUILTIN_VMULOUH:
17539 case P8V_BUILTIN_VMULOUW:
17540 case CRYPTO_BUILTIN_VCIPHER:
17541 case CRYPTO_BUILTIN_VCIPHERLAST:
17542 case CRYPTO_BUILTIN_VNCIPHER:
17543 case CRYPTO_BUILTIN_VNCIPHERLAST:
17544 case CRYPTO_BUILTIN_VPMSUMB:
17545 case CRYPTO_BUILTIN_VPMSUMH:
17546 case CRYPTO_BUILTIN_VPMSUMW:
17547 case CRYPTO_BUILTIN_VPMSUMD:
17548 case CRYPTO_BUILTIN_VPMSUM:
17549 case MISC_BUILTIN_ADDG6S:
17550 case MISC_BUILTIN_DIVWEU:
17551 case MISC_BUILTIN_DIVDEU:
17552 case VSX_BUILTIN_UDIV_V2DI:
17553 case ALTIVEC_BUILTIN_VMAXUB:
17554 case ALTIVEC_BUILTIN_VMINUB:
17555 case ALTIVEC_BUILTIN_VMAXUH:
17556 case ALTIVEC_BUILTIN_VMINUH:
17557 case ALTIVEC_BUILTIN_VMAXUW:
17558 case ALTIVEC_BUILTIN_VMINUW:
17559 case P8V_BUILTIN_VMAXUD:
17560 case P8V_BUILTIN_VMINUD:
17561 h.uns_p[0] = 1;
17562 h.uns_p[1] = 1;
17563 h.uns_p[2] = 1;
17564 break;
17566 /* unsigned 3 argument functions. */
17567 case ALTIVEC_BUILTIN_VPERM_16QI_UNS:
17568 case ALTIVEC_BUILTIN_VPERM_8HI_UNS:
17569 case ALTIVEC_BUILTIN_VPERM_4SI_UNS:
17570 case ALTIVEC_BUILTIN_VPERM_2DI_UNS:
17571 case ALTIVEC_BUILTIN_VSEL_16QI_UNS:
17572 case ALTIVEC_BUILTIN_VSEL_8HI_UNS:
17573 case ALTIVEC_BUILTIN_VSEL_4SI_UNS:
17574 case ALTIVEC_BUILTIN_VSEL_2DI_UNS:
17575 case VSX_BUILTIN_VPERM_16QI_UNS:
17576 case VSX_BUILTIN_VPERM_8HI_UNS:
17577 case VSX_BUILTIN_VPERM_4SI_UNS:
17578 case VSX_BUILTIN_VPERM_2DI_UNS:
17579 case VSX_BUILTIN_XXSEL_16QI_UNS:
17580 case VSX_BUILTIN_XXSEL_8HI_UNS:
17581 case VSX_BUILTIN_XXSEL_4SI_UNS:
17582 case VSX_BUILTIN_XXSEL_2DI_UNS:
17583 case CRYPTO_BUILTIN_VPERMXOR:
17584 case CRYPTO_BUILTIN_VPERMXOR_V2DI:
17585 case CRYPTO_BUILTIN_VPERMXOR_V4SI:
17586 case CRYPTO_BUILTIN_VPERMXOR_V8HI:
17587 case CRYPTO_BUILTIN_VPERMXOR_V16QI:
17588 case CRYPTO_BUILTIN_VSHASIGMAW:
17589 case CRYPTO_BUILTIN_VSHASIGMAD:
17590 case CRYPTO_BUILTIN_VSHASIGMA:
17591 h.uns_p[0] = 1;
17592 h.uns_p[1] = 1;
17593 h.uns_p[2] = 1;
17594 h.uns_p[3] = 1;
17595 break;
17597 /* signed permute functions with unsigned char mask. */
17598 case ALTIVEC_BUILTIN_VPERM_16QI:
17599 case ALTIVEC_BUILTIN_VPERM_8HI:
17600 case ALTIVEC_BUILTIN_VPERM_4SI:
17601 case ALTIVEC_BUILTIN_VPERM_4SF:
17602 case ALTIVEC_BUILTIN_VPERM_2DI:
17603 case ALTIVEC_BUILTIN_VPERM_2DF:
17604 case VSX_BUILTIN_VPERM_16QI:
17605 case VSX_BUILTIN_VPERM_8HI:
17606 case VSX_BUILTIN_VPERM_4SI:
17607 case VSX_BUILTIN_VPERM_4SF:
17608 case VSX_BUILTIN_VPERM_2DI:
17609 case VSX_BUILTIN_VPERM_2DF:
17610 h.uns_p[3] = 1;
17611 break;
17613 /* unsigned args, signed return. */
17614 case VSX_BUILTIN_XVCVUXDSP:
17615 case VSX_BUILTIN_XVCVUXDDP_UNS:
17616 case ALTIVEC_BUILTIN_UNSFLOAT_V4SI_V4SF:
17617 h.uns_p[1] = 1;
17618 break;
17620 /* signed args, unsigned return. */
17621 case VSX_BUILTIN_XVCVDPUXDS_UNS:
17622 case ALTIVEC_BUILTIN_FIXUNS_V4SF_V4SI:
17623 case MISC_BUILTIN_UNPACK_TD:
17624 case MISC_BUILTIN_UNPACK_V1TI:
17625 h.uns_p[0] = 1;
17626 break;
17628 /* unsigned arguments, bool return (compares). */
17629 case ALTIVEC_BUILTIN_VCMPEQUB:
17630 case ALTIVEC_BUILTIN_VCMPEQUH:
17631 case ALTIVEC_BUILTIN_VCMPEQUW:
17632 case P8V_BUILTIN_VCMPEQUD:
17633 case VSX_BUILTIN_CMPGE_U16QI:
17634 case VSX_BUILTIN_CMPGE_U8HI:
17635 case VSX_BUILTIN_CMPGE_U4SI:
17636 case VSX_BUILTIN_CMPGE_U2DI:
17637 case ALTIVEC_BUILTIN_VCMPGTUB:
17638 case ALTIVEC_BUILTIN_VCMPGTUH:
17639 case ALTIVEC_BUILTIN_VCMPGTUW:
17640 case P8V_BUILTIN_VCMPGTUD:
17641 h.uns_p[1] = 1;
17642 h.uns_p[2] = 1;
17643 break;
17645 /* unsigned arguments for 128-bit pack instructions. */
17646 case MISC_BUILTIN_PACK_TD:
17647 case MISC_BUILTIN_PACK_V1TI:
17648 h.uns_p[1] = 1;
17649 h.uns_p[2] = 1;
17650 break;
17652 /* unsigned second arguments (vector shift right). */
17653 case ALTIVEC_BUILTIN_VSRB:
17654 case ALTIVEC_BUILTIN_VSRH:
17655 case ALTIVEC_BUILTIN_VSRW:
17656 case P8V_BUILTIN_VSRD:
17657 h.uns_p[2] = 1;
17658 break;
17660 default:
17661 break;
17664 /* Figure out how many args are present. */
17665 while (num_args > 0 && h.mode[num_args] == VOIDmode)
17666 num_args--;
17668 ret_type = builtin_mode_to_type[h.mode[0]][h.uns_p[0]];
17669 if (!ret_type && h.uns_p[0])
17670 ret_type = builtin_mode_to_type[h.mode[0]][0];
17672 if (!ret_type)
17673 fatal_error (input_location,
17674 "internal error: builtin function %qs had an unexpected "
17675 "return type %qs", name, GET_MODE_NAME (h.mode[0]));
17677 for (i = 0; i < (int) ARRAY_SIZE (arg_type); i++)
17678 arg_type[i] = NULL_TREE;
17680 for (i = 0; i < num_args; i++)
17682 int m = (int) h.mode[i+1];
17683 int uns_p = h.uns_p[i+1];
17685 arg_type[i] = builtin_mode_to_type[m][uns_p];
17686 if (!arg_type[i] && uns_p)
17687 arg_type[i] = builtin_mode_to_type[m][0];
17689 if (!arg_type[i])
17690 fatal_error (input_location,
17691 "internal error: builtin function %qs, argument %d "
17692 "had unexpected argument type %qs", name, i,
17693 GET_MODE_NAME (m));
17696 builtin_hash_struct **found = builtin_hash_table->find_slot (&h, INSERT);
17697 if (*found == NULL)
17699 h2 = ggc_alloc<builtin_hash_struct> ();
17700 *h2 = h;
17701 *found = h2;
17703 h2->type = build_function_type_list (ret_type, arg_type[0], arg_type[1],
17704 arg_type[2], NULL_TREE);
17707 return (*found)->type;
17710 static void
17711 rs6000_common_init_builtins (void)
17713 const struct builtin_description *d;
17714 size_t i;
17716 tree opaque_ftype_opaque = NULL_TREE;
17717 tree opaque_ftype_opaque_opaque = NULL_TREE;
17718 tree opaque_ftype_opaque_opaque_opaque = NULL_TREE;
17719 HOST_WIDE_INT builtin_mask = rs6000_builtin_mask;
17721 /* Create Altivec and VSX builtins on machines with at least the
17722 general purpose extensions (970 and newer) to allow the use of
17723 the target attribute. */
17725 if (TARGET_EXTRA_BUILTINS)
17726 builtin_mask |= RS6000_BTM_COMMON;
17728 /* Add the ternary operators. */
17729 d = bdesc_3arg;
17730 for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
17732 tree type;
17733 HOST_WIDE_INT mask = d->mask;
17735 if ((mask & builtin_mask) != mask)
17737 if (TARGET_DEBUG_BUILTIN)
17738 fprintf (stderr, "rs6000_builtin, skip ternary %s\n", d->name);
17739 continue;
17742 if (rs6000_overloaded_builtin_p (d->code))
17744 if (! (type = opaque_ftype_opaque_opaque_opaque))
17745 type = opaque_ftype_opaque_opaque_opaque
17746 = build_function_type_list (opaque_V4SI_type_node,
17747 opaque_V4SI_type_node,
17748 opaque_V4SI_type_node,
17749 opaque_V4SI_type_node,
17750 NULL_TREE);
17752 else
17754 enum insn_code icode = d->icode;
17755 if (d->name == 0)
17757 if (TARGET_DEBUG_BUILTIN)
17758 fprintf (stderr, "rs6000_builtin, bdesc_3arg[%ld] no name\n",
17759 (long unsigned)i);
17761 continue;
17764 if (icode == CODE_FOR_nothing)
17766 if (TARGET_DEBUG_BUILTIN)
17767 fprintf (stderr, "rs6000_builtin, skip ternary %s (no code)\n",
17768 d->name);
17770 continue;
17773 type = builtin_function_type (insn_data[icode].operand[0].mode,
17774 insn_data[icode].operand[1].mode,
17775 insn_data[icode].operand[2].mode,
17776 insn_data[icode].operand[3].mode,
17777 d->code, d->name);
17780 def_builtin (d->name, type, d->code);
17783 /* Add the binary operators. */
17784 d = bdesc_2arg;
17785 for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
17787 machine_mode mode0, mode1, mode2;
17788 tree type;
17789 HOST_WIDE_INT mask = d->mask;
17791 if ((mask & builtin_mask) != mask)
17793 if (TARGET_DEBUG_BUILTIN)
17794 fprintf (stderr, "rs6000_builtin, skip binary %s\n", d->name);
17795 continue;
17798 if (rs6000_overloaded_builtin_p (d->code))
17800 if (! (type = opaque_ftype_opaque_opaque))
17801 type = opaque_ftype_opaque_opaque
17802 = build_function_type_list (opaque_V4SI_type_node,
17803 opaque_V4SI_type_node,
17804 opaque_V4SI_type_node,
17805 NULL_TREE);
17807 else
17809 enum insn_code icode = d->icode;
17810 if (d->name == 0)
17812 if (TARGET_DEBUG_BUILTIN)
17813 fprintf (stderr, "rs6000_builtin, bdesc_2arg[%ld] no name\n",
17814 (long unsigned)i);
17816 continue;
17819 if (icode == CODE_FOR_nothing)
17821 if (TARGET_DEBUG_BUILTIN)
17822 fprintf (stderr, "rs6000_builtin, skip binary %s (no code)\n",
17823 d->name);
17825 continue;
17828 mode0 = insn_data[icode].operand[0].mode;
17829 mode1 = insn_data[icode].operand[1].mode;
17830 mode2 = insn_data[icode].operand[2].mode;
17832 type = builtin_function_type (mode0, mode1, mode2, VOIDmode,
17833 d->code, d->name);
17836 def_builtin (d->name, type, d->code);
17839 /* Add the simple unary operators. */
17840 d = bdesc_1arg;
17841 for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
17843 machine_mode mode0, mode1;
17844 tree type;
17845 HOST_WIDE_INT mask = d->mask;
17847 if ((mask & builtin_mask) != mask)
17849 if (TARGET_DEBUG_BUILTIN)
17850 fprintf (stderr, "rs6000_builtin, skip unary %s\n", d->name);
17851 continue;
17854 if (rs6000_overloaded_builtin_p (d->code))
17856 if (! (type = opaque_ftype_opaque))
17857 type = opaque_ftype_opaque
17858 = build_function_type_list (opaque_V4SI_type_node,
17859 opaque_V4SI_type_node,
17860 NULL_TREE);
17862 else
17864 enum insn_code icode = d->icode;
17865 if (d->name == 0)
17867 if (TARGET_DEBUG_BUILTIN)
17868 fprintf (stderr, "rs6000_builtin, bdesc_1arg[%ld] no name\n",
17869 (long unsigned)i);
17871 continue;
17874 if (icode == CODE_FOR_nothing)
17876 if (TARGET_DEBUG_BUILTIN)
17877 fprintf (stderr, "rs6000_builtin, skip unary %s (no code)\n",
17878 d->name);
17880 continue;
17883 mode0 = insn_data[icode].operand[0].mode;
17884 mode1 = insn_data[icode].operand[1].mode;
17886 type = builtin_function_type (mode0, mode1, VOIDmode, VOIDmode,
17887 d->code, d->name);
17890 def_builtin (d->name, type, d->code);
17893 /* Add the simple no-argument operators. */
17894 d = bdesc_0arg;
17895 for (i = 0; i < ARRAY_SIZE (bdesc_0arg); i++, d++)
17897 machine_mode mode0;
17898 tree type;
17899 HOST_WIDE_INT mask = d->mask;
17901 if ((mask & builtin_mask) != mask)
17903 if (TARGET_DEBUG_BUILTIN)
17904 fprintf (stderr, "rs6000_builtin, skip no-argument %s\n", d->name);
17905 continue;
17907 if (rs6000_overloaded_builtin_p (d->code))
17909 if (!opaque_ftype_opaque)
17910 opaque_ftype_opaque
17911 = build_function_type_list (opaque_V4SI_type_node, NULL_TREE);
17912 type = opaque_ftype_opaque;
17914 else
17916 enum insn_code icode = d->icode;
17917 if (d->name == 0)
17919 if (TARGET_DEBUG_BUILTIN)
17920 fprintf (stderr, "rs6000_builtin, bdesc_0arg[%lu] no name\n",
17921 (long unsigned) i);
17922 continue;
17924 if (icode == CODE_FOR_nothing)
17926 if (TARGET_DEBUG_BUILTIN)
17927 fprintf (stderr,
17928 "rs6000_builtin, skip no-argument %s (no code)\n",
17929 d->name);
17930 continue;
17932 mode0 = insn_data[icode].operand[0].mode;
17933 type = builtin_function_type (mode0, VOIDmode, VOIDmode, VOIDmode,
17934 d->code, d->name);
17936 def_builtin (d->name, type, d->code);
17940 /* Set up AIX/Darwin/64-bit Linux quad floating point routines. */
17941 static void
17942 init_float128_ibm (machine_mode mode)
17944 if (!TARGET_XL_COMPAT)
17946 set_optab_libfunc (add_optab, mode, "__gcc_qadd");
17947 set_optab_libfunc (sub_optab, mode, "__gcc_qsub");
17948 set_optab_libfunc (smul_optab, mode, "__gcc_qmul");
17949 set_optab_libfunc (sdiv_optab, mode, "__gcc_qdiv");
17951 if (!TARGET_HARD_FLOAT)
17953 set_optab_libfunc (neg_optab, mode, "__gcc_qneg");
17954 set_optab_libfunc (eq_optab, mode, "__gcc_qeq");
17955 set_optab_libfunc (ne_optab, mode, "__gcc_qne");
17956 set_optab_libfunc (gt_optab, mode, "__gcc_qgt");
17957 set_optab_libfunc (ge_optab, mode, "__gcc_qge");
17958 set_optab_libfunc (lt_optab, mode, "__gcc_qlt");
17959 set_optab_libfunc (le_optab, mode, "__gcc_qle");
17960 set_optab_libfunc (unord_optab, mode, "__gcc_qunord");
17962 set_conv_libfunc (sext_optab, mode, SFmode, "__gcc_stoq");
17963 set_conv_libfunc (sext_optab, mode, DFmode, "__gcc_dtoq");
17964 set_conv_libfunc (trunc_optab, SFmode, mode, "__gcc_qtos");
17965 set_conv_libfunc (trunc_optab, DFmode, mode, "__gcc_qtod");
17966 set_conv_libfunc (sfix_optab, SImode, mode, "__gcc_qtoi");
17967 set_conv_libfunc (ufix_optab, SImode, mode, "__gcc_qtou");
17968 set_conv_libfunc (sfloat_optab, mode, SImode, "__gcc_itoq");
17969 set_conv_libfunc (ufloat_optab, mode, SImode, "__gcc_utoq");
17972 else
17974 set_optab_libfunc (add_optab, mode, "_xlqadd");
17975 set_optab_libfunc (sub_optab, mode, "_xlqsub");
17976 set_optab_libfunc (smul_optab, mode, "_xlqmul");
17977 set_optab_libfunc (sdiv_optab, mode, "_xlqdiv");
17980 /* Add various conversions for IFmode to use the traditional TFmode
17981 names. */
17982 if (mode == IFmode)
17984 set_conv_libfunc (sext_optab, mode, SDmode, "__dpd_extendsdtf");
17985 set_conv_libfunc (sext_optab, mode, DDmode, "__dpd_extendddtf");
17986 set_conv_libfunc (trunc_optab, mode, TDmode, "__dpd_trunctdtf");
17987 set_conv_libfunc (trunc_optab, SDmode, mode, "__dpd_trunctfsd");
17988 set_conv_libfunc (trunc_optab, DDmode, mode, "__dpd_trunctfdd");
17989 set_conv_libfunc (sext_optab, TDmode, mode, "__dpd_extendtftd");
17991 if (TARGET_POWERPC64)
17993 set_conv_libfunc (sfix_optab, TImode, mode, "__fixtfti");
17994 set_conv_libfunc (ufix_optab, TImode, mode, "__fixunstfti");
17995 set_conv_libfunc (sfloat_optab, mode, TImode, "__floattitf");
17996 set_conv_libfunc (ufloat_optab, mode, TImode, "__floatuntitf");
18001 /* Create a decl for either complex long double multiply or complex long double
18002 divide when long double is IEEE 128-bit floating point. We can't use
18003 __multc3 and __divtc3 because the original long double using IBM extended
18004 double used those names. The complex multiply/divide functions are encoded
18005 as builtin functions with a complex result and 4 scalar inputs. */
18007 static void
18008 create_complex_muldiv (const char *name, built_in_function fncode, tree fntype)
18010 tree fndecl = add_builtin_function (name, fntype, fncode, BUILT_IN_NORMAL,
18011 name, NULL_TREE);
18013 set_builtin_decl (fncode, fndecl, true);
18015 if (TARGET_DEBUG_BUILTIN)
18016 fprintf (stderr, "create complex %s, fncode: %d\n", name, (int) fncode);
18018 return;
18021 /* Set up IEEE 128-bit floating point routines. Use different names if the
18022 arguments can be passed in a vector register. The historical PowerPC
18023 implementation of IEEE 128-bit floating point used _q_<op> for the names, so
18024 continue to use that if we aren't using vector registers to pass IEEE
18025 128-bit floating point. */
18027 static void
18028 init_float128_ieee (machine_mode mode)
18030 if (FLOAT128_VECTOR_P (mode))
18032 static bool complex_muldiv_init_p = false;
18034 /* Set up to call __mulkc3 and __divkc3 under -mabi=ieeelongdouble. If
18035 we have clone or target attributes, this will be called a second
18036 time. We want to create the built-in function only once. */
18037 if (mode == TFmode && TARGET_IEEEQUAD && !complex_muldiv_init_p)
18039 complex_muldiv_init_p = true;
18040 built_in_function fncode_mul =
18041 (built_in_function) (BUILT_IN_COMPLEX_MUL_MIN + TCmode
18042 - MIN_MODE_COMPLEX_FLOAT);
18043 built_in_function fncode_div =
18044 (built_in_function) (BUILT_IN_COMPLEX_DIV_MIN + TCmode
18045 - MIN_MODE_COMPLEX_FLOAT);
18047 tree fntype = build_function_type_list (complex_long_double_type_node,
18048 long_double_type_node,
18049 long_double_type_node,
18050 long_double_type_node,
18051 long_double_type_node,
18052 NULL_TREE);
18054 create_complex_muldiv ("__mulkc3", fncode_mul, fntype);
18055 create_complex_muldiv ("__divkc3", fncode_div, fntype);
18058 set_optab_libfunc (add_optab, mode, "__addkf3");
18059 set_optab_libfunc (sub_optab, mode, "__subkf3");
18060 set_optab_libfunc (neg_optab, mode, "__negkf2");
18061 set_optab_libfunc (smul_optab, mode, "__mulkf3");
18062 set_optab_libfunc (sdiv_optab, mode, "__divkf3");
18063 set_optab_libfunc (sqrt_optab, mode, "__sqrtkf2");
18064 set_optab_libfunc (abs_optab, mode, "__abskf2");
18065 set_optab_libfunc (powi_optab, mode, "__powikf2");
18067 set_optab_libfunc (eq_optab, mode, "__eqkf2");
18068 set_optab_libfunc (ne_optab, mode, "__nekf2");
18069 set_optab_libfunc (gt_optab, mode, "__gtkf2");
18070 set_optab_libfunc (ge_optab, mode, "__gekf2");
18071 set_optab_libfunc (lt_optab, mode, "__ltkf2");
18072 set_optab_libfunc (le_optab, mode, "__lekf2");
18073 set_optab_libfunc (unord_optab, mode, "__unordkf2");
18075 set_conv_libfunc (sext_optab, mode, SFmode, "__extendsfkf2");
18076 set_conv_libfunc (sext_optab, mode, DFmode, "__extenddfkf2");
18077 set_conv_libfunc (trunc_optab, SFmode, mode, "__trunckfsf2");
18078 set_conv_libfunc (trunc_optab, DFmode, mode, "__trunckfdf2");
18080 set_conv_libfunc (sext_optab, mode, IFmode, "__trunctfkf2");
18081 if (mode != TFmode && FLOAT128_IBM_P (TFmode))
18082 set_conv_libfunc (sext_optab, mode, TFmode, "__trunctfkf2");
18084 set_conv_libfunc (trunc_optab, IFmode, mode, "__extendkftf2");
18085 if (mode != TFmode && FLOAT128_IBM_P (TFmode))
18086 set_conv_libfunc (trunc_optab, TFmode, mode, "__extendkftf2");
18088 set_conv_libfunc (sext_optab, mode, SDmode, "__dpd_extendsdkf");
18089 set_conv_libfunc (sext_optab, mode, DDmode, "__dpd_extendddkf");
18090 set_conv_libfunc (trunc_optab, mode, TDmode, "__dpd_trunctdkf");
18091 set_conv_libfunc (trunc_optab, SDmode, mode, "__dpd_trunckfsd");
18092 set_conv_libfunc (trunc_optab, DDmode, mode, "__dpd_trunckfdd");
18093 set_conv_libfunc (sext_optab, TDmode, mode, "__dpd_extendkftd");
18095 set_conv_libfunc (sfix_optab, SImode, mode, "__fixkfsi");
18096 set_conv_libfunc (ufix_optab, SImode, mode, "__fixunskfsi");
18097 set_conv_libfunc (sfix_optab, DImode, mode, "__fixkfdi");
18098 set_conv_libfunc (ufix_optab, DImode, mode, "__fixunskfdi");
18100 set_conv_libfunc (sfloat_optab, mode, SImode, "__floatsikf");
18101 set_conv_libfunc (ufloat_optab, mode, SImode, "__floatunsikf");
18102 set_conv_libfunc (sfloat_optab, mode, DImode, "__floatdikf");
18103 set_conv_libfunc (ufloat_optab, mode, DImode, "__floatundikf");
18105 if (TARGET_POWERPC64)
18107 set_conv_libfunc (sfix_optab, TImode, mode, "__fixkfti");
18108 set_conv_libfunc (ufix_optab, TImode, mode, "__fixunskfti");
18109 set_conv_libfunc (sfloat_optab, mode, TImode, "__floattikf");
18110 set_conv_libfunc (ufloat_optab, mode, TImode, "__floatuntikf");
18114 else
18116 set_optab_libfunc (add_optab, mode, "_q_add");
18117 set_optab_libfunc (sub_optab, mode, "_q_sub");
18118 set_optab_libfunc (neg_optab, mode, "_q_neg");
18119 set_optab_libfunc (smul_optab, mode, "_q_mul");
18120 set_optab_libfunc (sdiv_optab, mode, "_q_div");
18121 if (TARGET_PPC_GPOPT)
18122 set_optab_libfunc (sqrt_optab, mode, "_q_sqrt");
18124 set_optab_libfunc (eq_optab, mode, "_q_feq");
18125 set_optab_libfunc (ne_optab, mode, "_q_fne");
18126 set_optab_libfunc (gt_optab, mode, "_q_fgt");
18127 set_optab_libfunc (ge_optab, mode, "_q_fge");
18128 set_optab_libfunc (lt_optab, mode, "_q_flt");
18129 set_optab_libfunc (le_optab, mode, "_q_fle");
18131 set_conv_libfunc (sext_optab, mode, SFmode, "_q_stoq");
18132 set_conv_libfunc (sext_optab, mode, DFmode, "_q_dtoq");
18133 set_conv_libfunc (trunc_optab, SFmode, mode, "_q_qtos");
18134 set_conv_libfunc (trunc_optab, DFmode, mode, "_q_qtod");
18135 set_conv_libfunc (sfix_optab, SImode, mode, "_q_qtoi");
18136 set_conv_libfunc (ufix_optab, SImode, mode, "_q_qtou");
18137 set_conv_libfunc (sfloat_optab, mode, SImode, "_q_itoq");
18138 set_conv_libfunc (ufloat_optab, mode, SImode, "_q_utoq");
18142 static void
18143 rs6000_init_libfuncs (void)
18145 /* __float128 support. */
18146 if (TARGET_FLOAT128_TYPE)
18148 init_float128_ibm (IFmode);
18149 init_float128_ieee (KFmode);
18152 /* AIX/Darwin/64-bit Linux quad floating point routines. */
18153 if (TARGET_LONG_DOUBLE_128)
18155 if (!TARGET_IEEEQUAD)
18156 init_float128_ibm (TFmode);
18158 /* IEEE 128-bit including 32-bit SVR4 quad floating point routines. */
18159 else
18160 init_float128_ieee (TFmode);
18164 /* Emit a potentially record-form instruction, setting DST from SRC.
18165 If DOT is 0, that is all; otherwise, set CCREG to the result of the
18166 signed comparison of DST with zero. If DOT is 1, the generated RTL
18167 doesn't care about the DST result; if DOT is 2, it does. If CCREG
18168 is CR0 do a single dot insn (as a PARALLEL); otherwise, do a SET and
18169 a separate COMPARE. */
18171 void
18172 rs6000_emit_dot_insn (rtx dst, rtx src, int dot, rtx ccreg)
18174 if (dot == 0)
18176 emit_move_insn (dst, src);
18177 return;
18180 if (cc_reg_not_cr0_operand (ccreg, CCmode))
18182 emit_move_insn (dst, src);
18183 emit_move_insn (ccreg, gen_rtx_COMPARE (CCmode, dst, const0_rtx));
18184 return;
18187 rtx ccset = gen_rtx_SET (ccreg, gen_rtx_COMPARE (CCmode, src, const0_rtx));
18188 if (dot == 1)
18190 rtx clobber = gen_rtx_CLOBBER (VOIDmode, dst);
18191 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, ccset, clobber)));
18193 else
18195 rtx set = gen_rtx_SET (dst, src);
18196 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, ccset, set)));
18201 /* A validation routine: say whether CODE, a condition code, and MODE
18202 match. The other alternatives either don't make sense or should
18203 never be generated. */
18205 void
18206 validate_condition_mode (enum rtx_code code, machine_mode mode)
18208 gcc_assert ((GET_RTX_CLASS (code) == RTX_COMPARE
18209 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
18210 && GET_MODE_CLASS (mode) == MODE_CC);
18212 /* These don't make sense. */
18213 gcc_assert ((code != GT && code != LT && code != GE && code != LE)
18214 || mode != CCUNSmode);
18216 gcc_assert ((code != GTU && code != LTU && code != GEU && code != LEU)
18217 || mode == CCUNSmode);
18219 gcc_assert (mode == CCFPmode
18220 || (code != ORDERED && code != UNORDERED
18221 && code != UNEQ && code != LTGT
18222 && code != UNGT && code != UNLT
18223 && code != UNGE && code != UNLE));
18225 /* These should never be generated except for
18226 flag_finite_math_only. */
18227 gcc_assert (mode != CCFPmode
18228 || flag_finite_math_only
18229 || (code != LE && code != GE
18230 && code != UNEQ && code != LTGT
18231 && code != UNGT && code != UNLT));
18233 /* These are invalid; the information is not there. */
18234 gcc_assert (mode != CCEQmode || code == EQ || code == NE);
18238 /* Return whether MASK (a CONST_INT) is a valid mask for any rlwinm,
18239 rldicl, rldicr, or rldic instruction in mode MODE. If so, if E is
18240 not zero, store there the bit offset (counted from the right) where
18241 the single stretch of 1 bits begins; and similarly for B, the bit
18242 offset where it ends. */
18244 bool
18245 rs6000_is_valid_mask (rtx mask, int *b, int *e, machine_mode mode)
18247 unsigned HOST_WIDE_INT val = INTVAL (mask);
18248 unsigned HOST_WIDE_INT bit;
18249 int nb, ne;
18250 int n = GET_MODE_PRECISION (mode);
18252 if (mode != DImode && mode != SImode)
18253 return false;
18255 if (INTVAL (mask) >= 0)
18257 bit = val & -val;
18258 ne = exact_log2 (bit);
18259 nb = exact_log2 (val + bit);
18261 else if (val + 1 == 0)
18263 nb = n;
18264 ne = 0;
18266 else if (val & 1)
18268 val = ~val;
18269 bit = val & -val;
18270 nb = exact_log2 (bit);
18271 ne = exact_log2 (val + bit);
18273 else
18275 bit = val & -val;
18276 ne = exact_log2 (bit);
18277 if (val + bit == 0)
18278 nb = n;
18279 else
18280 nb = 0;
18283 nb--;
18285 if (nb < 0 || ne < 0 || nb >= n || ne >= n)
18286 return false;
18288 if (b)
18289 *b = nb;
18290 if (e)
18291 *e = ne;
18293 return true;
18296 /* Return whether MASK (a CONST_INT) is a valid mask for any rlwinm, rldicl,
18297 or rldicr instruction, to implement an AND with it in mode MODE. */
18299 bool
18300 rs6000_is_valid_and_mask (rtx mask, machine_mode mode)
18302 int nb, ne;
18304 if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
18305 return false;
18307 /* For DImode, we need a rldicl, rldicr, or a rlwinm with mask that
18308 does not wrap. */
18309 if (mode == DImode)
18310 return (ne == 0 || nb == 63 || (nb < 32 && ne <= nb));
18312 /* For SImode, rlwinm can do everything. */
18313 if (mode == SImode)
18314 return (nb < 32 && ne < 32);
18316 return false;
18319 /* Return the instruction template for an AND with mask in mode MODE, with
18320 operands OPERANDS. If DOT is true, make it a record-form instruction. */
18322 const char *
18323 rs6000_insn_for_and_mask (machine_mode mode, rtx *operands, bool dot)
18325 int nb, ne;
18327 if (!rs6000_is_valid_mask (operands[2], &nb, &ne, mode))
18328 gcc_unreachable ();
18330 if (mode == DImode && ne == 0)
18332 operands[3] = GEN_INT (63 - nb);
18333 if (dot)
18334 return "rldicl. %0,%1,0,%3";
18335 return "rldicl %0,%1,0,%3";
18338 if (mode == DImode && nb == 63)
18340 operands[3] = GEN_INT (63 - ne);
18341 if (dot)
18342 return "rldicr. %0,%1,0,%3";
18343 return "rldicr %0,%1,0,%3";
18346 if (nb < 32 && ne < 32)
18348 operands[3] = GEN_INT (31 - nb);
18349 operands[4] = GEN_INT (31 - ne);
18350 if (dot)
18351 return "rlwinm. %0,%1,0,%3,%4";
18352 return "rlwinm %0,%1,0,%3,%4";
18355 gcc_unreachable ();
18358 /* Return whether MASK (a CONST_INT) is a valid mask for any rlw[i]nm,
18359 rld[i]cl, rld[i]cr, or rld[i]c instruction, to implement an AND with
18360 shift SHIFT (a ROTATE, ASHIFT, or LSHIFTRT) in mode MODE. */
18362 bool
18363 rs6000_is_valid_shift_mask (rtx mask, rtx shift, machine_mode mode)
18365 int nb, ne;
18367 if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
18368 return false;
18370 int n = GET_MODE_PRECISION (mode);
18371 int sh = -1;
18373 if (CONST_INT_P (XEXP (shift, 1)))
18375 sh = INTVAL (XEXP (shift, 1));
18376 if (sh < 0 || sh >= n)
18377 return false;
18380 rtx_code code = GET_CODE (shift);
18382 /* Convert any shift by 0 to a rotate, to simplify below code. */
18383 if (sh == 0)
18384 code = ROTATE;
18386 /* Convert rotate to simple shift if we can, to make analysis simpler. */
18387 if (code == ROTATE && sh >= 0 && nb >= ne && ne >= sh)
18388 code = ASHIFT;
18389 if (code == ROTATE && sh >= 0 && nb >= ne && nb < sh)
18391 code = LSHIFTRT;
18392 sh = n - sh;
18395 /* DImode rotates need rld*. */
18396 if (mode == DImode && code == ROTATE)
18397 return (nb == 63 || ne == 0 || ne == sh);
18399 /* SImode rotates need rlw*. */
18400 if (mode == SImode && code == ROTATE)
18401 return (nb < 32 && ne < 32 && sh < 32);
18403 /* Wrap-around masks are only okay for rotates. */
18404 if (ne > nb)
18405 return false;
18407 /* Variable shifts are only okay for rotates. */
18408 if (sh < 0)
18409 return false;
18411 /* Don't allow ASHIFT if the mask is wrong for that. */
18412 if (code == ASHIFT && ne < sh)
18413 return false;
18415 /* If we can do it with an rlw*, we can do it. Don't allow LSHIFTRT
18416 if the mask is wrong for that. */
18417 if (nb < 32 && ne < 32 && sh < 32
18418 && !(code == LSHIFTRT && nb >= 32 - sh))
18419 return true;
18421 /* If we can do it with an rld*, we can do it. Don't allow LSHIFTRT
18422 if the mask is wrong for that. */
18423 if (code == LSHIFTRT)
18424 sh = 64 - sh;
18425 if (nb == 63 || ne == 0 || ne == sh)
18426 return !(code == LSHIFTRT && nb >= sh);
18428 return false;
18431 /* Return the instruction template for a shift with mask in mode MODE, with
18432 operands OPERANDS. If DOT is true, make it a record-form instruction. */
18434 const char *
18435 rs6000_insn_for_shift_mask (machine_mode mode, rtx *operands, bool dot)
18437 int nb, ne;
18439 if (!rs6000_is_valid_mask (operands[3], &nb, &ne, mode))
18440 gcc_unreachable ();
18442 if (mode == DImode && ne == 0)
18444 if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
18445 operands[2] = GEN_INT (64 - INTVAL (operands[2]));
18446 operands[3] = GEN_INT (63 - nb);
18447 if (dot)
18448 return "rld%I2cl. %0,%1,%2,%3";
18449 return "rld%I2cl %0,%1,%2,%3";
18452 if (mode == DImode && nb == 63)
18454 operands[3] = GEN_INT (63 - ne);
18455 if (dot)
18456 return "rld%I2cr. %0,%1,%2,%3";
18457 return "rld%I2cr %0,%1,%2,%3";
18460 if (mode == DImode
18461 && GET_CODE (operands[4]) != LSHIFTRT
18462 && CONST_INT_P (operands[2])
18463 && ne == INTVAL (operands[2]))
18465 operands[3] = GEN_INT (63 - nb);
18466 if (dot)
18467 return "rld%I2c. %0,%1,%2,%3";
18468 return "rld%I2c %0,%1,%2,%3";
18471 if (nb < 32 && ne < 32)
18473 if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
18474 operands[2] = GEN_INT (32 - INTVAL (operands[2]));
18475 operands[3] = GEN_INT (31 - nb);
18476 operands[4] = GEN_INT (31 - ne);
18477 /* This insn can also be a 64-bit rotate with mask that really makes
18478 it just a shift right (with mask); the %h below are to adjust for
18479 that situation (shift count is >= 32 in that case). */
18480 if (dot)
18481 return "rlw%I2nm. %0,%1,%h2,%3,%4";
18482 return "rlw%I2nm %0,%1,%h2,%3,%4";
18485 gcc_unreachable ();
18488 /* Return whether MASK (a CONST_INT) is a valid mask for any rlwimi or
18489 rldimi instruction, to implement an insert with shift SHIFT (a ROTATE,
18490 ASHIFT, or LSHIFTRT) in mode MODE. */
18492 bool
18493 rs6000_is_valid_insert_mask (rtx mask, rtx shift, machine_mode mode)
18495 int nb, ne;
18497 if (!rs6000_is_valid_mask (mask, &nb, &ne, mode))
18498 return false;
18500 int n = GET_MODE_PRECISION (mode);
18502 int sh = INTVAL (XEXP (shift, 1));
18503 if (sh < 0 || sh >= n)
18504 return false;
18506 rtx_code code = GET_CODE (shift);
18508 /* Convert any shift by 0 to a rotate, to simplify below code. */
18509 if (sh == 0)
18510 code = ROTATE;
18512 /* Convert rotate to simple shift if we can, to make analysis simpler. */
18513 if (code == ROTATE && sh >= 0 && nb >= ne && ne >= sh)
18514 code = ASHIFT;
18515 if (code == ROTATE && sh >= 0 && nb >= ne && nb < sh)
18517 code = LSHIFTRT;
18518 sh = n - sh;
18521 /* DImode rotates need rldimi. */
18522 if (mode == DImode && code == ROTATE)
18523 return (ne == sh);
18525 /* SImode rotates need rlwimi. */
18526 if (mode == SImode && code == ROTATE)
18527 return (nb < 32 && ne < 32 && sh < 32);
18529 /* Wrap-around masks are only okay for rotates. */
18530 if (ne > nb)
18531 return false;
18533 /* Don't allow ASHIFT if the mask is wrong for that. */
18534 if (code == ASHIFT && ne < sh)
18535 return false;
18537 /* If we can do it with an rlwimi, we can do it. Don't allow LSHIFTRT
18538 if the mask is wrong for that. */
18539 if (nb < 32 && ne < 32 && sh < 32
18540 && !(code == LSHIFTRT && nb >= 32 - sh))
18541 return true;
18543 /* If we can do it with an rldimi, we can do it. Don't allow LSHIFTRT
18544 if the mask is wrong for that. */
18545 if (code == LSHIFTRT)
18546 sh = 64 - sh;
18547 if (ne == sh)
18548 return !(code == LSHIFTRT && nb >= sh);
18550 return false;
18553 /* Return the instruction template for an insert with mask in mode MODE, with
18554 operands OPERANDS. If DOT is true, make it a record-form instruction. */
18556 const char *
18557 rs6000_insn_for_insert_mask (machine_mode mode, rtx *operands, bool dot)
18559 int nb, ne;
18561 if (!rs6000_is_valid_mask (operands[3], &nb, &ne, mode))
18562 gcc_unreachable ();
18564 /* Prefer rldimi because rlwimi is cracked. */
18565 if (TARGET_POWERPC64
18566 && (!dot || mode == DImode)
18567 && GET_CODE (operands[4]) != LSHIFTRT
18568 && ne == INTVAL (operands[2]))
18570 operands[3] = GEN_INT (63 - nb);
18571 if (dot)
18572 return "rldimi. %0,%1,%2,%3";
18573 return "rldimi %0,%1,%2,%3";
18576 if (nb < 32 && ne < 32)
18578 if (GET_CODE (operands[4]) == LSHIFTRT && INTVAL (operands[2]))
18579 operands[2] = GEN_INT (32 - INTVAL (operands[2]));
18580 operands[3] = GEN_INT (31 - nb);
18581 operands[4] = GEN_INT (31 - ne);
18582 if (dot)
18583 return "rlwimi. %0,%1,%2,%3,%4";
18584 return "rlwimi %0,%1,%2,%3,%4";
18587 gcc_unreachable ();
18590 /* Return whether an AND with C (a CONST_INT) in mode MODE can be done
18591 using two machine instructions. */
18593 bool
18594 rs6000_is_valid_2insn_and (rtx c, machine_mode mode)
18596 /* There are two kinds of AND we can handle with two insns:
18597 1) those we can do with two rl* insn;
18598 2) ori[s];xori[s].
18600 We do not handle that last case yet. */
18602 /* If there is just one stretch of ones, we can do it. */
18603 if (rs6000_is_valid_mask (c, NULL, NULL, mode))
18604 return true;
18606 /* Otherwise, fill in the lowest "hole"; if we can do the result with
18607 one insn, we can do the whole thing with two. */
18608 unsigned HOST_WIDE_INT val = INTVAL (c);
18609 unsigned HOST_WIDE_INT bit1 = val & -val;
18610 unsigned HOST_WIDE_INT bit2 = (val + bit1) & ~val;
18611 unsigned HOST_WIDE_INT val1 = (val + bit1) & val;
18612 unsigned HOST_WIDE_INT bit3 = val1 & -val1;
18613 return rs6000_is_valid_and_mask (GEN_INT (val + bit3 - bit2), mode);
18616 /* Emit the two insns to do an AND in mode MODE, with operands OPERANDS.
18617 If EXPAND is true, split rotate-and-mask instructions we generate to
18618 their constituent parts as well (this is used during expand); if DOT
18619 is 1, make the last insn a record-form instruction clobbering the
18620 destination GPR and setting the CC reg (from operands[3]); if 2, set
18621 that GPR as well as the CC reg. */
18623 void
18624 rs6000_emit_2insn_and (machine_mode mode, rtx *operands, bool expand, int dot)
18626 gcc_assert (!(expand && dot));
18628 unsigned HOST_WIDE_INT val = INTVAL (operands[2]);
18630 /* If it is one stretch of ones, it is DImode; shift left, mask, then
18631 shift right. This generates better code than doing the masks without
18632 shifts, or shifting first right and then left. */
18633 int nb, ne;
18634 if (rs6000_is_valid_mask (operands[2], &nb, &ne, mode) && nb >= ne)
18636 gcc_assert (mode == DImode);
18638 int shift = 63 - nb;
18639 if (expand)
18641 rtx tmp1 = gen_reg_rtx (DImode);
18642 rtx tmp2 = gen_reg_rtx (DImode);
18643 emit_insn (gen_ashldi3 (tmp1, operands[1], GEN_INT (shift)));
18644 emit_insn (gen_anddi3 (tmp2, tmp1, GEN_INT (val << shift)));
18645 emit_insn (gen_lshrdi3 (operands[0], tmp2, GEN_INT (shift)));
18647 else
18649 rtx tmp = gen_rtx_ASHIFT (mode, operands[1], GEN_INT (shift));
18650 tmp = gen_rtx_AND (mode, tmp, GEN_INT (val << shift));
18651 emit_move_insn (operands[0], tmp);
18652 tmp = gen_rtx_LSHIFTRT (mode, operands[0], GEN_INT (shift));
18653 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
18655 return;
18658 /* Otherwise, make a mask2 that cuts out the lowest "hole", and a mask1
18659 that does the rest. */
18660 unsigned HOST_WIDE_INT bit1 = val & -val;
18661 unsigned HOST_WIDE_INT bit2 = (val + bit1) & ~val;
18662 unsigned HOST_WIDE_INT val1 = (val + bit1) & val;
18663 unsigned HOST_WIDE_INT bit3 = val1 & -val1;
18665 unsigned HOST_WIDE_INT mask1 = -bit3 + bit2 - 1;
18666 unsigned HOST_WIDE_INT mask2 = val + bit3 - bit2;
18668 gcc_assert (rs6000_is_valid_and_mask (GEN_INT (mask2), mode));
18670 /* Two "no-rotate"-and-mask instructions, for SImode. */
18671 if (rs6000_is_valid_and_mask (GEN_INT (mask1), mode))
18673 gcc_assert (mode == SImode);
18675 rtx reg = expand ? gen_reg_rtx (mode) : operands[0];
18676 rtx tmp = gen_rtx_AND (mode, operands[1], GEN_INT (mask1));
18677 emit_move_insn (reg, tmp);
18678 tmp = gen_rtx_AND (mode, reg, GEN_INT (mask2));
18679 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
18680 return;
18683 gcc_assert (mode == DImode);
18685 /* Two "no-rotate"-and-mask instructions, for DImode: both are rlwinm
18686 insns; we have to do the first in SImode, because it wraps. */
18687 if (mask2 <= 0xffffffff
18688 && rs6000_is_valid_and_mask (GEN_INT (mask1), SImode))
18690 rtx reg = expand ? gen_reg_rtx (mode) : operands[0];
18691 rtx tmp = gen_rtx_AND (SImode, gen_lowpart (SImode, operands[1]),
18692 GEN_INT (mask1));
18693 rtx reg_low = gen_lowpart (SImode, reg);
18694 emit_move_insn (reg_low, tmp);
18695 tmp = gen_rtx_AND (mode, reg, GEN_INT (mask2));
18696 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
18697 return;
18700 /* Two rld* insns: rotate, clear the hole in the middle (which now is
18701 at the top end), rotate back and clear the other hole. */
18702 int right = exact_log2 (bit3);
18703 int left = 64 - right;
18705 /* Rotate the mask too. */
18706 mask1 = (mask1 >> right) | ((bit2 - 1) << left);
18708 if (expand)
18710 rtx tmp1 = gen_reg_rtx (DImode);
18711 rtx tmp2 = gen_reg_rtx (DImode);
18712 rtx tmp3 = gen_reg_rtx (DImode);
18713 emit_insn (gen_rotldi3 (tmp1, operands[1], GEN_INT (left)));
18714 emit_insn (gen_anddi3 (tmp2, tmp1, GEN_INT (mask1)));
18715 emit_insn (gen_rotldi3 (tmp3, tmp2, GEN_INT (right)));
18716 emit_insn (gen_anddi3 (operands[0], tmp3, GEN_INT (mask2)));
18718 else
18720 rtx tmp = gen_rtx_ROTATE (mode, operands[1], GEN_INT (left));
18721 tmp = gen_rtx_AND (mode, tmp, GEN_INT (mask1));
18722 emit_move_insn (operands[0], tmp);
18723 tmp = gen_rtx_ROTATE (mode, operands[0], GEN_INT (right));
18724 tmp = gen_rtx_AND (mode, tmp, GEN_INT (mask2));
18725 rs6000_emit_dot_insn (operands[0], tmp, dot, dot ? operands[3] : 0);
18729 /* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
18730 for lfq and stfq insns iff the registers are hard registers. */
18733 registers_ok_for_quad_peep (rtx reg1, rtx reg2)
18735 /* We might have been passed a SUBREG. */
18736 if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
18737 return 0;
18739 /* We might have been passed non floating point registers. */
18740 if (!FP_REGNO_P (REGNO (reg1))
18741 || !FP_REGNO_P (REGNO (reg2)))
18742 return 0;
18744 return (REGNO (reg1) == REGNO (reg2) - 1);
18747 /* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.
18748 addr1 and addr2 must be in consecutive memory locations
18749 (addr2 == addr1 + 8). */
18752 mems_ok_for_quad_peep (rtx mem1, rtx mem2)
18754 rtx addr1, addr2;
18755 unsigned int reg1, reg2;
18756 int offset1, offset2;
18758 /* The mems cannot be volatile. */
18759 if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
18760 return 0;
18762 addr1 = XEXP (mem1, 0);
18763 addr2 = XEXP (mem2, 0);
18765 /* Extract an offset (if used) from the first addr. */
18766 if (GET_CODE (addr1) == PLUS)
18768 /* If not a REG, return zero. */
18769 if (GET_CODE (XEXP (addr1, 0)) != REG)
18770 return 0;
18771 else
18773 reg1 = REGNO (XEXP (addr1, 0));
18774 /* The offset must be constant! */
18775 if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
18776 return 0;
18777 offset1 = INTVAL (XEXP (addr1, 1));
18780 else if (GET_CODE (addr1) != REG)
18781 return 0;
18782 else
18784 reg1 = REGNO (addr1);
18785 /* This was a simple (mem (reg)) expression. Offset is 0. */
18786 offset1 = 0;
18789 /* And now for the second addr. */
18790 if (GET_CODE (addr2) == PLUS)
18792 /* If not a REG, return zero. */
18793 if (GET_CODE (XEXP (addr2, 0)) != REG)
18794 return 0;
18795 else
18797 reg2 = REGNO (XEXP (addr2, 0));
18798 /* The offset must be constant. */
18799 if (GET_CODE (XEXP (addr2, 1)) != CONST_INT)
18800 return 0;
18801 offset2 = INTVAL (XEXP (addr2, 1));
18804 else if (GET_CODE (addr2) != REG)
18805 return 0;
18806 else
18808 reg2 = REGNO (addr2);
18809 /* This was a simple (mem (reg)) expression. Offset is 0. */
18810 offset2 = 0;
18813 /* Both of these must have the same base register. */
18814 if (reg1 != reg2)
18815 return 0;
18817 /* The offset for the second addr must be 8 more than the first addr. */
18818 if (offset2 != offset1 + 8)
18819 return 0;
18821 /* All the tests passed. addr1 and addr2 are valid for lfq or stfq
18822 instructions. */
18823 return 1;
18826 /* Implement TARGET_SECONDARY_RELOAD_NEEDED_MODE. For SDmode values we
18827 need to use DDmode, in all other cases we can use the same mode. */
18828 static machine_mode
18829 rs6000_secondary_memory_needed_mode (machine_mode mode)
18831 if (lra_in_progress && mode == SDmode)
18832 return DDmode;
18833 return mode;
18836 /* Classify a register type. Because the FMRGOW/FMRGEW instructions only work
18837 on traditional floating point registers, and the VMRGOW/VMRGEW instructions
18838 only work on the traditional altivec registers, note if an altivec register
18839 was chosen. */
18841 static enum rs6000_reg_type
18842 register_to_reg_type (rtx reg, bool *is_altivec)
18844 HOST_WIDE_INT regno;
18845 enum reg_class rclass;
18847 if (GET_CODE (reg) == SUBREG)
18848 reg = SUBREG_REG (reg);
18850 if (!REG_P (reg))
18851 return NO_REG_TYPE;
18853 regno = REGNO (reg);
18854 if (regno >= FIRST_PSEUDO_REGISTER)
18856 if (!lra_in_progress && !reload_completed)
18857 return PSEUDO_REG_TYPE;
18859 regno = true_regnum (reg);
18860 if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
18861 return PSEUDO_REG_TYPE;
18864 gcc_assert (regno >= 0);
18866 if (is_altivec && ALTIVEC_REGNO_P (regno))
18867 *is_altivec = true;
18869 rclass = rs6000_regno_regclass[regno];
18870 return reg_class_to_reg_type[(int)rclass];
18873 /* Helper function to return the cost of adding a TOC entry address. */
18875 static inline int
18876 rs6000_secondary_reload_toc_costs (addr_mask_type addr_mask)
18878 int ret;
18880 if (TARGET_CMODEL != CMODEL_SMALL)
18881 ret = ((addr_mask & RELOAD_REG_OFFSET) == 0) ? 1 : 2;
18883 else
18884 ret = (TARGET_MINIMAL_TOC) ? 6 : 3;
18886 return ret;
18889 /* Helper function for rs6000_secondary_reload to determine whether the memory
18890 address (ADDR) with a given register class (RCLASS) and machine mode (MODE)
18891 needs reloading. Return negative if the memory is not handled by the memory
18892 helper functions and to try a different reload method, 0 if no additional
18893 instructions are need, and positive to give the extra cost for the
18894 memory. */
18896 static int
18897 rs6000_secondary_reload_memory (rtx addr,
18898 enum reg_class rclass,
18899 machine_mode mode)
18901 int extra_cost = 0;
18902 rtx reg, and_arg, plus_arg0, plus_arg1;
18903 addr_mask_type addr_mask;
18904 const char *type = NULL;
18905 const char *fail_msg = NULL;
18907 if (GPR_REG_CLASS_P (rclass))
18908 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_GPR];
18910 else if (rclass == FLOAT_REGS)
18911 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_FPR];
18913 else if (rclass == ALTIVEC_REGS)
18914 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_VMX];
18916 /* For the combined VSX_REGS, turn off Altivec AND -16. */
18917 else if (rclass == VSX_REGS)
18918 addr_mask = (reg_addr[mode].addr_mask[RELOAD_REG_VMX]
18919 & ~RELOAD_REG_AND_M16);
18921 /* If the register allocator hasn't made up its mind yet on the register
18922 class to use, settle on defaults to use. */
18923 else if (rclass == NO_REGS)
18925 addr_mask = (reg_addr[mode].addr_mask[RELOAD_REG_ANY]
18926 & ~RELOAD_REG_AND_M16);
18928 if ((addr_mask & RELOAD_REG_MULTIPLE) != 0)
18929 addr_mask &= ~(RELOAD_REG_INDEXED
18930 | RELOAD_REG_PRE_INCDEC
18931 | RELOAD_REG_PRE_MODIFY);
18934 else
18935 addr_mask = 0;
18937 /* If the register isn't valid in this register class, just return now. */
18938 if ((addr_mask & RELOAD_REG_VALID) == 0)
18940 if (TARGET_DEBUG_ADDR)
18942 fprintf (stderr,
18943 "rs6000_secondary_reload_memory: mode = %s, class = %s, "
18944 "not valid in class\n",
18945 GET_MODE_NAME (mode), reg_class_names[rclass]);
18946 debug_rtx (addr);
18949 return -1;
18952 switch (GET_CODE (addr))
18954 /* Does the register class supports auto update forms for this mode? We
18955 don't need a scratch register, since the powerpc only supports
18956 PRE_INC, PRE_DEC, and PRE_MODIFY. */
18957 case PRE_INC:
18958 case PRE_DEC:
18959 reg = XEXP (addr, 0);
18960 if (!base_reg_operand (addr, GET_MODE (reg)))
18962 fail_msg = "no base register #1";
18963 extra_cost = -1;
18966 else if ((addr_mask & RELOAD_REG_PRE_INCDEC) == 0)
18968 extra_cost = 1;
18969 type = "update";
18971 break;
18973 case PRE_MODIFY:
18974 reg = XEXP (addr, 0);
18975 plus_arg1 = XEXP (addr, 1);
18976 if (!base_reg_operand (reg, GET_MODE (reg))
18977 || GET_CODE (plus_arg1) != PLUS
18978 || !rtx_equal_p (reg, XEXP (plus_arg1, 0)))
18980 fail_msg = "bad PRE_MODIFY";
18981 extra_cost = -1;
18984 else if ((addr_mask & RELOAD_REG_PRE_MODIFY) == 0)
18986 extra_cost = 1;
18987 type = "update";
18989 break;
18991 /* Do we need to simulate AND -16 to clear the bottom address bits used
18992 in VMX load/stores? Only allow the AND for vector sizes. */
18993 case AND:
18994 and_arg = XEXP (addr, 0);
18995 if (GET_MODE_SIZE (mode) != 16
18996 || GET_CODE (XEXP (addr, 1)) != CONST_INT
18997 || INTVAL (XEXP (addr, 1)) != -16)
18999 fail_msg = "bad Altivec AND #1";
19000 extra_cost = -1;
19003 if (rclass != ALTIVEC_REGS)
19005 if (legitimate_indirect_address_p (and_arg, false))
19006 extra_cost = 1;
19008 else if (legitimate_indexed_address_p (and_arg, false))
19009 extra_cost = 2;
19011 else
19013 fail_msg = "bad Altivec AND #2";
19014 extra_cost = -1;
19017 type = "and";
19019 break;
19021 /* If this is an indirect address, make sure it is a base register. */
19022 case REG:
19023 case SUBREG:
19024 if (!legitimate_indirect_address_p (addr, false))
19026 extra_cost = 1;
19027 type = "move";
19029 break;
19031 /* If this is an indexed address, make sure the register class can handle
19032 indexed addresses for this mode. */
19033 case PLUS:
19034 plus_arg0 = XEXP (addr, 0);
19035 plus_arg1 = XEXP (addr, 1);
19037 /* (plus (plus (reg) (constant)) (constant)) is generated during
19038 push_reload processing, so handle it now. */
19039 if (GET_CODE (plus_arg0) == PLUS && CONST_INT_P (plus_arg1))
19041 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19043 extra_cost = 1;
19044 type = "offset";
19048 /* (plus (plus (reg) (constant)) (reg)) is also generated during
19049 push_reload processing, so handle it now. */
19050 else if (GET_CODE (plus_arg0) == PLUS && REG_P (plus_arg1))
19052 if ((addr_mask & RELOAD_REG_INDEXED) == 0)
19054 extra_cost = 1;
19055 type = "indexed #2";
19059 else if (!base_reg_operand (plus_arg0, GET_MODE (plus_arg0)))
19061 fail_msg = "no base register #2";
19062 extra_cost = -1;
19065 else if (int_reg_operand (plus_arg1, GET_MODE (plus_arg1)))
19067 if ((addr_mask & RELOAD_REG_INDEXED) == 0
19068 || !legitimate_indexed_address_p (addr, false))
19070 extra_cost = 1;
19071 type = "indexed";
19075 else if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0
19076 && CONST_INT_P (plus_arg1))
19078 if (!quad_address_offset_p (INTVAL (plus_arg1)))
19080 extra_cost = 1;
19081 type = "vector d-form offset";
19085 /* Make sure the register class can handle offset addresses. */
19086 else if (rs6000_legitimate_offset_address_p (mode, addr, false, true))
19088 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19090 extra_cost = 1;
19091 type = "offset #2";
19095 else
19097 fail_msg = "bad PLUS";
19098 extra_cost = -1;
19101 break;
19103 case LO_SUM:
19104 /* Quad offsets are restricted and can't handle normal addresses. */
19105 if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
19107 extra_cost = -1;
19108 type = "vector d-form lo_sum";
19111 else if (!legitimate_lo_sum_address_p (mode, addr, false))
19113 fail_msg = "bad LO_SUM";
19114 extra_cost = -1;
19117 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19119 extra_cost = 1;
19120 type = "lo_sum";
19122 break;
19124 /* Static addresses need to create a TOC entry. */
19125 case CONST:
19126 case SYMBOL_REF:
19127 case LABEL_REF:
19128 if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
19130 extra_cost = -1;
19131 type = "vector d-form lo_sum #2";
19134 else
19136 type = "address";
19137 extra_cost = rs6000_secondary_reload_toc_costs (addr_mask);
19139 break;
19141 /* TOC references look like offsetable memory. */
19142 case UNSPEC:
19143 if (TARGET_CMODEL == CMODEL_SMALL || XINT (addr, 1) != UNSPEC_TOCREL)
19145 fail_msg = "bad UNSPEC";
19146 extra_cost = -1;
19149 else if ((addr_mask & RELOAD_REG_QUAD_OFFSET) != 0)
19151 extra_cost = -1;
19152 type = "vector d-form lo_sum #3";
19155 else if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19157 extra_cost = 1;
19158 type = "toc reference";
19160 break;
19162 default:
19164 fail_msg = "bad address";
19165 extra_cost = -1;
19169 if (TARGET_DEBUG_ADDR /* && extra_cost != 0 */)
19171 if (extra_cost < 0)
19172 fprintf (stderr,
19173 "rs6000_secondary_reload_memory error: mode = %s, "
19174 "class = %s, addr_mask = '%s', %s\n",
19175 GET_MODE_NAME (mode),
19176 reg_class_names[rclass],
19177 rs6000_debug_addr_mask (addr_mask, false),
19178 (fail_msg != NULL) ? fail_msg : "<bad address>");
19180 else
19181 fprintf (stderr,
19182 "rs6000_secondary_reload_memory: mode = %s, class = %s, "
19183 "addr_mask = '%s', extra cost = %d, %s\n",
19184 GET_MODE_NAME (mode),
19185 reg_class_names[rclass],
19186 rs6000_debug_addr_mask (addr_mask, false),
19187 extra_cost,
19188 (type) ? type : "<none>");
19190 debug_rtx (addr);
19193 return extra_cost;
19196 /* Helper function for rs6000_secondary_reload to return true if a move to a
19197 different register classe is really a simple move. */
19199 static bool
19200 rs6000_secondary_reload_simple_move (enum rs6000_reg_type to_type,
19201 enum rs6000_reg_type from_type,
19202 machine_mode mode)
19204 int size = GET_MODE_SIZE (mode);
19206 /* Add support for various direct moves available. In this function, we only
19207 look at cases where we don't need any extra registers, and one or more
19208 simple move insns are issued. Originally small integers are not allowed
19209 in FPR/VSX registers. Single precision binary floating is not a simple
19210 move because we need to convert to the single precision memory layout.
19211 The 4-byte SDmode can be moved. TDmode values are disallowed since they
19212 need special direct move handling, which we do not support yet. */
19213 if (TARGET_DIRECT_MOVE
19214 && ((to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
19215 || (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)))
19217 if (TARGET_POWERPC64)
19219 /* ISA 2.07: MTVSRD or MVFVSRD. */
19220 if (size == 8)
19221 return true;
19223 /* ISA 3.0: MTVSRDD or MFVSRD + MFVSRLD. */
19224 if (size == 16 && TARGET_P9_VECTOR && mode != TDmode)
19225 return true;
19228 /* ISA 2.07: MTVSRWZ or MFVSRWZ. */
19229 if (TARGET_P8_VECTOR)
19231 if (mode == SImode)
19232 return true;
19234 if (TARGET_P9_VECTOR && (mode == HImode || mode == QImode))
19235 return true;
19238 /* ISA 2.07: MTVSRWZ or MFVSRWZ. */
19239 if (mode == SDmode)
19240 return true;
19243 /* Power6+: MFTGPR or MFFGPR. */
19244 else if (TARGET_MFPGPR && TARGET_POWERPC64 && size == 8
19245 && ((to_type == GPR_REG_TYPE && from_type == FPR_REG_TYPE)
19246 || (to_type == FPR_REG_TYPE && from_type == GPR_REG_TYPE)))
19247 return true;
19249 /* Move to/from SPR. */
19250 else if ((size == 4 || (TARGET_POWERPC64 && size == 8))
19251 && ((to_type == GPR_REG_TYPE && from_type == SPR_REG_TYPE)
19252 || (to_type == SPR_REG_TYPE && from_type == GPR_REG_TYPE)))
19253 return true;
19255 return false;
19258 /* Direct move helper function for rs6000_secondary_reload, handle all of the
19259 special direct moves that involve allocating an extra register, return the
19260 insn code of the helper function if there is such a function or
19261 CODE_FOR_nothing if not. */
19263 static bool
19264 rs6000_secondary_reload_direct_move (enum rs6000_reg_type to_type,
19265 enum rs6000_reg_type from_type,
19266 machine_mode mode,
19267 secondary_reload_info *sri,
19268 bool altivec_p)
19270 bool ret = false;
19271 enum insn_code icode = CODE_FOR_nothing;
19272 int cost = 0;
19273 int size = GET_MODE_SIZE (mode);
19275 if (TARGET_POWERPC64 && size == 16)
19277 /* Handle moving 128-bit values from GPRs to VSX point registers on
19278 ISA 2.07 (power8, power9) when running in 64-bit mode using
19279 XXPERMDI to glue the two 64-bit values back together. */
19280 if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)
19282 cost = 3; /* 2 mtvsrd's, 1 xxpermdi. */
19283 icode = reg_addr[mode].reload_vsx_gpr;
19286 /* Handle moving 128-bit values from VSX point registers to GPRs on
19287 ISA 2.07 when running in 64-bit mode using XXPERMDI to get access to the
19288 bottom 64-bit value. */
19289 else if (to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
19291 cost = 3; /* 2 mfvsrd's, 1 xxpermdi. */
19292 icode = reg_addr[mode].reload_gpr_vsx;
19296 else if (TARGET_POWERPC64 && mode == SFmode)
19298 if (to_type == GPR_REG_TYPE && from_type == VSX_REG_TYPE)
19300 cost = 3; /* xscvdpspn, mfvsrd, and. */
19301 icode = reg_addr[mode].reload_gpr_vsx;
19304 else if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE)
19306 cost = 2; /* mtvsrz, xscvspdpn. */
19307 icode = reg_addr[mode].reload_vsx_gpr;
19311 else if (!TARGET_POWERPC64 && size == 8)
19313 /* Handle moving 64-bit values from GPRs to floating point registers on
19314 ISA 2.07 when running in 32-bit mode using FMRGOW to glue the two
19315 32-bit values back together. Altivec register classes must be handled
19316 specially since a different instruction is used, and the secondary
19317 reload support requires a single instruction class in the scratch
19318 register constraint. However, right now TFmode is not allowed in
19319 Altivec registers, so the pattern will never match. */
19320 if (to_type == VSX_REG_TYPE && from_type == GPR_REG_TYPE && !altivec_p)
19322 cost = 3; /* 2 mtvsrwz's, 1 fmrgow. */
19323 icode = reg_addr[mode].reload_fpr_gpr;
19327 if (icode != CODE_FOR_nothing)
19329 ret = true;
19330 if (sri)
19332 sri->icode = icode;
19333 sri->extra_cost = cost;
19337 return ret;
19340 /* Return whether a move between two register classes can be done either
19341 directly (simple move) or via a pattern that uses a single extra temporary
19342 (using ISA 2.07's direct move in this case. */
19344 static bool
19345 rs6000_secondary_reload_move (enum rs6000_reg_type to_type,
19346 enum rs6000_reg_type from_type,
19347 machine_mode mode,
19348 secondary_reload_info *sri,
19349 bool altivec_p)
19351 /* Fall back to load/store reloads if either type is not a register. */
19352 if (to_type == NO_REG_TYPE || from_type == NO_REG_TYPE)
19353 return false;
19355 /* If we haven't allocated registers yet, assume the move can be done for the
19356 standard register types. */
19357 if ((to_type == PSEUDO_REG_TYPE && from_type == PSEUDO_REG_TYPE)
19358 || (to_type == PSEUDO_REG_TYPE && IS_STD_REG_TYPE (from_type))
19359 || (from_type == PSEUDO_REG_TYPE && IS_STD_REG_TYPE (to_type)))
19360 return true;
19362 /* Moves to the same set of registers is a simple move for non-specialized
19363 registers. */
19364 if (to_type == from_type && IS_STD_REG_TYPE (to_type))
19365 return true;
19367 /* Check whether a simple move can be done directly. */
19368 if (rs6000_secondary_reload_simple_move (to_type, from_type, mode))
19370 if (sri)
19372 sri->icode = CODE_FOR_nothing;
19373 sri->extra_cost = 0;
19375 return true;
19378 /* Now check if we can do it in a few steps. */
19379 return rs6000_secondary_reload_direct_move (to_type, from_type, mode, sri,
19380 altivec_p);
19383 /* Inform reload about cases where moving X with a mode MODE to a register in
19384 RCLASS requires an extra scratch or immediate register. Return the class
19385 needed for the immediate register.
19387 For VSX and Altivec, we may need a register to convert sp+offset into
19388 reg+sp.
19390 For misaligned 64-bit gpr loads and stores we need a register to
19391 convert an offset address to indirect. */
19393 static reg_class_t
19394 rs6000_secondary_reload (bool in_p,
19395 rtx x,
19396 reg_class_t rclass_i,
19397 machine_mode mode,
19398 secondary_reload_info *sri)
19400 enum reg_class rclass = (enum reg_class) rclass_i;
19401 reg_class_t ret = ALL_REGS;
19402 enum insn_code icode;
19403 bool default_p = false;
19404 bool done_p = false;
19406 /* Allow subreg of memory before/during reload. */
19407 bool memory_p = (MEM_P (x)
19408 || (!reload_completed && GET_CODE (x) == SUBREG
19409 && MEM_P (SUBREG_REG (x))));
19411 sri->icode = CODE_FOR_nothing;
19412 sri->t_icode = CODE_FOR_nothing;
19413 sri->extra_cost = 0;
19414 icode = ((in_p)
19415 ? reg_addr[mode].reload_load
19416 : reg_addr[mode].reload_store);
19418 if (REG_P (x) || register_operand (x, mode))
19420 enum rs6000_reg_type to_type = reg_class_to_reg_type[(int)rclass];
19421 bool altivec_p = (rclass == ALTIVEC_REGS);
19422 enum rs6000_reg_type from_type = register_to_reg_type (x, &altivec_p);
19424 if (!in_p)
19425 std::swap (to_type, from_type);
19427 /* Can we do a direct move of some sort? */
19428 if (rs6000_secondary_reload_move (to_type, from_type, mode, sri,
19429 altivec_p))
19431 icode = (enum insn_code)sri->icode;
19432 default_p = false;
19433 done_p = true;
19434 ret = NO_REGS;
19438 /* Make sure 0.0 is not reloaded or forced into memory. */
19439 if (x == CONST0_RTX (mode) && VSX_REG_CLASS_P (rclass))
19441 ret = NO_REGS;
19442 default_p = false;
19443 done_p = true;
19446 /* If this is a scalar floating point value and we want to load it into the
19447 traditional Altivec registers, do it via a move via a traditional floating
19448 point register, unless we have D-form addressing. Also make sure that
19449 non-zero constants use a FPR. */
19450 if (!done_p && reg_addr[mode].scalar_in_vmx_p
19451 && !mode_supports_vmx_dform (mode)
19452 && (rclass == VSX_REGS || rclass == ALTIVEC_REGS)
19453 && (memory_p || (GET_CODE (x) == CONST_DOUBLE)))
19455 ret = FLOAT_REGS;
19456 default_p = false;
19457 done_p = true;
19460 /* Handle reload of load/stores if we have reload helper functions. */
19461 if (!done_p && icode != CODE_FOR_nothing && memory_p)
19463 int extra_cost = rs6000_secondary_reload_memory (XEXP (x, 0), rclass,
19464 mode);
19466 if (extra_cost >= 0)
19468 done_p = true;
19469 ret = NO_REGS;
19470 if (extra_cost > 0)
19472 sri->extra_cost = extra_cost;
19473 sri->icode = icode;
19478 /* Handle unaligned loads and stores of integer registers. */
19479 if (!done_p && TARGET_POWERPC64
19480 && reg_class_to_reg_type[(int)rclass] == GPR_REG_TYPE
19481 && memory_p
19482 && GET_MODE_SIZE (GET_MODE (x)) >= UNITS_PER_WORD)
19484 rtx addr = XEXP (x, 0);
19485 rtx off = address_offset (addr);
19487 if (off != NULL_RTX)
19489 unsigned int extra = GET_MODE_SIZE (GET_MODE (x)) - UNITS_PER_WORD;
19490 unsigned HOST_WIDE_INT offset = INTVAL (off);
19492 /* We need a secondary reload when our legitimate_address_p
19493 says the address is good (as otherwise the entire address
19494 will be reloaded), and the offset is not a multiple of
19495 four or we have an address wrap. Address wrap will only
19496 occur for LO_SUMs since legitimate_offset_address_p
19497 rejects addresses for 16-byte mems that will wrap. */
19498 if (GET_CODE (addr) == LO_SUM
19499 ? (1 /* legitimate_address_p allows any offset for lo_sum */
19500 && ((offset & 3) != 0
19501 || ((offset & 0xffff) ^ 0x8000) >= 0x10000 - extra))
19502 : (offset + 0x8000 < 0x10000 - extra /* legitimate_address_p */
19503 && (offset & 3) != 0))
19505 /* -m32 -mpowerpc64 needs to use a 32-bit scratch register. */
19506 if (in_p)
19507 sri->icode = ((TARGET_32BIT) ? CODE_FOR_reload_si_load
19508 : CODE_FOR_reload_di_load);
19509 else
19510 sri->icode = ((TARGET_32BIT) ? CODE_FOR_reload_si_store
19511 : CODE_FOR_reload_di_store);
19512 sri->extra_cost = 2;
19513 ret = NO_REGS;
19514 done_p = true;
19516 else
19517 default_p = true;
19519 else
19520 default_p = true;
19523 if (!done_p && !TARGET_POWERPC64
19524 && reg_class_to_reg_type[(int)rclass] == GPR_REG_TYPE
19525 && memory_p
19526 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
19528 rtx addr = XEXP (x, 0);
19529 rtx off = address_offset (addr);
19531 if (off != NULL_RTX)
19533 unsigned int extra = GET_MODE_SIZE (GET_MODE (x)) - UNITS_PER_WORD;
19534 unsigned HOST_WIDE_INT offset = INTVAL (off);
19536 /* We need a secondary reload when our legitimate_address_p
19537 says the address is good (as otherwise the entire address
19538 will be reloaded), and we have a wrap.
19540 legitimate_lo_sum_address_p allows LO_SUM addresses to
19541 have any offset so test for wrap in the low 16 bits.
19543 legitimate_offset_address_p checks for the range
19544 [-0x8000,0x7fff] for mode size of 8 and [-0x8000,0x7ff7]
19545 for mode size of 16. We wrap at [0x7ffc,0x7fff] and
19546 [0x7ff4,0x7fff] respectively, so test for the
19547 intersection of these ranges, [0x7ffc,0x7fff] and
19548 [0x7ff4,0x7ff7] respectively.
19550 Note that the address we see here may have been
19551 manipulated by legitimize_reload_address. */
19552 if (GET_CODE (addr) == LO_SUM
19553 ? ((offset & 0xffff) ^ 0x8000) >= 0x10000 - extra
19554 : offset - (0x8000 - extra) < UNITS_PER_WORD)
19556 if (in_p)
19557 sri->icode = CODE_FOR_reload_si_load;
19558 else
19559 sri->icode = CODE_FOR_reload_si_store;
19560 sri->extra_cost = 2;
19561 ret = NO_REGS;
19562 done_p = true;
19564 else
19565 default_p = true;
19567 else
19568 default_p = true;
19571 if (!done_p)
19572 default_p = true;
19574 if (default_p)
19575 ret = default_secondary_reload (in_p, x, rclass, mode, sri);
19577 gcc_assert (ret != ALL_REGS);
19579 if (TARGET_DEBUG_ADDR)
19581 fprintf (stderr,
19582 "\nrs6000_secondary_reload, return %s, in_p = %s, rclass = %s, "
19583 "mode = %s",
19584 reg_class_names[ret],
19585 in_p ? "true" : "false",
19586 reg_class_names[rclass],
19587 GET_MODE_NAME (mode));
19589 if (reload_completed)
19590 fputs (", after reload", stderr);
19592 if (!done_p)
19593 fputs (", done_p not set", stderr);
19595 if (default_p)
19596 fputs (", default secondary reload", stderr);
19598 if (sri->icode != CODE_FOR_nothing)
19599 fprintf (stderr, ", reload func = %s, extra cost = %d",
19600 insn_data[sri->icode].name, sri->extra_cost);
19602 else if (sri->extra_cost > 0)
19603 fprintf (stderr, ", extra cost = %d", sri->extra_cost);
19605 fputs ("\n", stderr);
19606 debug_rtx (x);
19609 return ret;
19612 /* Better tracing for rs6000_secondary_reload_inner. */
19614 static void
19615 rs6000_secondary_reload_trace (int line, rtx reg, rtx mem, rtx scratch,
19616 bool store_p)
19618 rtx set, clobber;
19620 gcc_assert (reg != NULL_RTX && mem != NULL_RTX && scratch != NULL_RTX);
19622 fprintf (stderr, "rs6000_secondary_reload_inner:%d, type = %s\n", line,
19623 store_p ? "store" : "load");
19625 if (store_p)
19626 set = gen_rtx_SET (mem, reg);
19627 else
19628 set = gen_rtx_SET (reg, mem);
19630 clobber = gen_rtx_CLOBBER (VOIDmode, scratch);
19631 debug_rtx (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber)));
19634 static void rs6000_secondary_reload_fail (int, rtx, rtx, rtx, bool)
19635 ATTRIBUTE_NORETURN;
19637 static void
19638 rs6000_secondary_reload_fail (int line, rtx reg, rtx mem, rtx scratch,
19639 bool store_p)
19641 rs6000_secondary_reload_trace (line, reg, mem, scratch, store_p);
19642 gcc_unreachable ();
19645 /* Fixup reload addresses for values in GPR, FPR, and VMX registers that have
19646 reload helper functions. These were identified in
19647 rs6000_secondary_reload_memory, and if reload decided to use the secondary
19648 reload, it calls the insns:
19649 reload_<RELOAD:mode>_<P:mptrsize>_store
19650 reload_<RELOAD:mode>_<P:mptrsize>_load
19652 which in turn calls this function, to do whatever is necessary to create
19653 valid addresses. */
19655 void
19656 rs6000_secondary_reload_inner (rtx reg, rtx mem, rtx scratch, bool store_p)
19658 int regno = true_regnum (reg);
19659 machine_mode mode = GET_MODE (reg);
19660 addr_mask_type addr_mask;
19661 rtx addr;
19662 rtx new_addr;
19663 rtx op_reg, op0, op1;
19664 rtx and_op;
19665 rtx cc_clobber;
19666 rtvec rv;
19668 if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER || !MEM_P (mem)
19669 || !base_reg_operand (scratch, GET_MODE (scratch)))
19670 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19672 if (IN_RANGE (regno, FIRST_GPR_REGNO, LAST_GPR_REGNO))
19673 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_GPR];
19675 else if (IN_RANGE (regno, FIRST_FPR_REGNO, LAST_FPR_REGNO))
19676 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_FPR];
19678 else if (IN_RANGE (regno, FIRST_ALTIVEC_REGNO, LAST_ALTIVEC_REGNO))
19679 addr_mask = reg_addr[mode].addr_mask[RELOAD_REG_VMX];
19681 else
19682 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19684 /* Make sure the mode is valid in this register class. */
19685 if ((addr_mask & RELOAD_REG_VALID) == 0)
19686 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19688 if (TARGET_DEBUG_ADDR)
19689 rs6000_secondary_reload_trace (__LINE__, reg, mem, scratch, store_p);
19691 new_addr = addr = XEXP (mem, 0);
19692 switch (GET_CODE (addr))
19694 /* Does the register class support auto update forms for this mode? If
19695 not, do the update now. We don't need a scratch register, since the
19696 powerpc only supports PRE_INC, PRE_DEC, and PRE_MODIFY. */
19697 case PRE_INC:
19698 case PRE_DEC:
19699 op_reg = XEXP (addr, 0);
19700 if (!base_reg_operand (op_reg, Pmode))
19701 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19703 if ((addr_mask & RELOAD_REG_PRE_INCDEC) == 0)
19705 emit_insn (gen_add2_insn (op_reg, GEN_INT (GET_MODE_SIZE (mode))));
19706 new_addr = op_reg;
19708 break;
19710 case PRE_MODIFY:
19711 op0 = XEXP (addr, 0);
19712 op1 = XEXP (addr, 1);
19713 if (!base_reg_operand (op0, Pmode)
19714 || GET_CODE (op1) != PLUS
19715 || !rtx_equal_p (op0, XEXP (op1, 0)))
19716 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19718 if ((addr_mask & RELOAD_REG_PRE_MODIFY) == 0)
19720 emit_insn (gen_rtx_SET (op0, op1));
19721 new_addr = reg;
19723 break;
19725 /* Do we need to simulate AND -16 to clear the bottom address bits used
19726 in VMX load/stores? */
19727 case AND:
19728 op0 = XEXP (addr, 0);
19729 op1 = XEXP (addr, 1);
19730 if ((addr_mask & RELOAD_REG_AND_M16) == 0)
19732 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
19733 op_reg = op0;
19735 else if (GET_CODE (op1) == PLUS)
19737 emit_insn (gen_rtx_SET (scratch, op1));
19738 op_reg = scratch;
19741 else
19742 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19744 and_op = gen_rtx_AND (GET_MODE (scratch), op_reg, op1);
19745 cc_clobber = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (CCmode));
19746 rv = gen_rtvec (2, gen_rtx_SET (scratch, and_op), cc_clobber);
19747 emit_insn (gen_rtx_PARALLEL (VOIDmode, rv));
19748 new_addr = scratch;
19750 break;
19752 /* If this is an indirect address, make sure it is a base register. */
19753 case REG:
19754 case SUBREG:
19755 if (!base_reg_operand (addr, GET_MODE (addr)))
19757 emit_insn (gen_rtx_SET (scratch, addr));
19758 new_addr = scratch;
19760 break;
19762 /* If this is an indexed address, make sure the register class can handle
19763 indexed addresses for this mode. */
19764 case PLUS:
19765 op0 = XEXP (addr, 0);
19766 op1 = XEXP (addr, 1);
19767 if (!base_reg_operand (op0, Pmode))
19768 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19770 else if (int_reg_operand (op1, Pmode))
19772 if ((addr_mask & RELOAD_REG_INDEXED) == 0)
19774 emit_insn (gen_rtx_SET (scratch, addr));
19775 new_addr = scratch;
19779 else if (mode_supports_dq_form (mode) && CONST_INT_P (op1))
19781 if (((addr_mask & RELOAD_REG_QUAD_OFFSET) == 0)
19782 || !quad_address_p (addr, mode, false))
19784 emit_insn (gen_rtx_SET (scratch, addr));
19785 new_addr = scratch;
19789 /* Make sure the register class can handle offset addresses. */
19790 else if (rs6000_legitimate_offset_address_p (mode, addr, false, true))
19792 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19794 emit_insn (gen_rtx_SET (scratch, addr));
19795 new_addr = scratch;
19799 else
19800 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19802 break;
19804 case LO_SUM:
19805 op0 = XEXP (addr, 0);
19806 op1 = XEXP (addr, 1);
19807 if (!base_reg_operand (op0, Pmode))
19808 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19810 else if (int_reg_operand (op1, Pmode))
19812 if ((addr_mask & RELOAD_REG_INDEXED) == 0)
19814 emit_insn (gen_rtx_SET (scratch, addr));
19815 new_addr = scratch;
19819 /* Quad offsets are restricted and can't handle normal addresses. */
19820 else if (mode_supports_dq_form (mode))
19822 emit_insn (gen_rtx_SET (scratch, addr));
19823 new_addr = scratch;
19826 /* Make sure the register class can handle offset addresses. */
19827 else if (legitimate_lo_sum_address_p (mode, addr, false))
19829 if ((addr_mask & RELOAD_REG_OFFSET) == 0)
19831 emit_insn (gen_rtx_SET (scratch, addr));
19832 new_addr = scratch;
19836 else
19837 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19839 break;
19841 case SYMBOL_REF:
19842 case CONST:
19843 case LABEL_REF:
19844 rs6000_emit_move (scratch, addr, Pmode);
19845 new_addr = scratch;
19846 break;
19848 default:
19849 rs6000_secondary_reload_fail (__LINE__, reg, mem, scratch, store_p);
19852 /* Adjust the address if it changed. */
19853 if (addr != new_addr)
19855 mem = replace_equiv_address_nv (mem, new_addr);
19856 if (TARGET_DEBUG_ADDR)
19857 fprintf (stderr, "\nrs6000_secondary_reload_inner, mem adjusted.\n");
19860 /* Now create the move. */
19861 if (store_p)
19862 emit_insn (gen_rtx_SET (mem, reg));
19863 else
19864 emit_insn (gen_rtx_SET (reg, mem));
19866 return;
19869 /* Convert reloads involving 64-bit gprs and misaligned offset
19870 addressing, or multiple 32-bit gprs and offsets that are too large,
19871 to use indirect addressing. */
19873 void
19874 rs6000_secondary_reload_gpr (rtx reg, rtx mem, rtx scratch, bool store_p)
19876 int regno = true_regnum (reg);
19877 enum reg_class rclass;
19878 rtx addr;
19879 rtx scratch_or_premodify = scratch;
19881 if (TARGET_DEBUG_ADDR)
19883 fprintf (stderr, "\nrs6000_secondary_reload_gpr, type = %s\n",
19884 store_p ? "store" : "load");
19885 fprintf (stderr, "reg:\n");
19886 debug_rtx (reg);
19887 fprintf (stderr, "mem:\n");
19888 debug_rtx (mem);
19889 fprintf (stderr, "scratch:\n");
19890 debug_rtx (scratch);
19893 gcc_assert (regno >= 0 && regno < FIRST_PSEUDO_REGISTER);
19894 gcc_assert (GET_CODE (mem) == MEM);
19895 rclass = REGNO_REG_CLASS (regno);
19896 gcc_assert (rclass == GENERAL_REGS || rclass == BASE_REGS);
19897 addr = XEXP (mem, 0);
19899 if (GET_CODE (addr) == PRE_MODIFY)
19901 gcc_assert (REG_P (XEXP (addr, 0))
19902 && GET_CODE (XEXP (addr, 1)) == PLUS
19903 && XEXP (XEXP (addr, 1), 0) == XEXP (addr, 0));
19904 scratch_or_premodify = XEXP (addr, 0);
19905 if (!HARD_REGISTER_P (scratch_or_premodify))
19906 /* If we have a pseudo here then reload will have arranged
19907 to have it replaced, but only in the original insn.
19908 Use the replacement here too. */
19909 scratch_or_premodify = find_replacement (&XEXP (addr, 0));
19911 /* RTL emitted by rs6000_secondary_reload_gpr uses RTL
19912 expressions from the original insn, without unsharing them.
19913 Any RTL that points into the original insn will of course
19914 have register replacements applied. That is why we don't
19915 need to look for replacements under the PLUS. */
19916 addr = XEXP (addr, 1);
19918 gcc_assert (GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM);
19920 rs6000_emit_move (scratch_or_premodify, addr, Pmode);
19922 mem = replace_equiv_address_nv (mem, scratch_or_premodify);
19924 /* Now create the move. */
19925 if (store_p)
19926 emit_insn (gen_rtx_SET (mem, reg));
19927 else
19928 emit_insn (gen_rtx_SET (reg, mem));
19930 return;
19933 /* Given an rtx X being reloaded into a reg required to be
19934 in class CLASS, return the class of reg to actually use.
19935 In general this is just CLASS; but on some machines
19936 in some cases it is preferable to use a more restrictive class.
19938 On the RS/6000, we have to return NO_REGS when we want to reload a
19939 floating-point CONST_DOUBLE to force it to be copied to memory.
19941 We also don't want to reload integer values into floating-point
19942 registers if we can at all help it. In fact, this can
19943 cause reload to die, if it tries to generate a reload of CTR
19944 into a FP register and discovers it doesn't have the memory location
19945 required.
19947 ??? Would it be a good idea to have reload do the converse, that is
19948 try to reload floating modes into FP registers if possible?
19951 static enum reg_class
19952 rs6000_preferred_reload_class (rtx x, enum reg_class rclass)
19954 machine_mode mode = GET_MODE (x);
19955 bool is_constant = CONSTANT_P (x);
19957 /* If a mode can't go in FPR/ALTIVEC/VSX registers, don't return a preferred
19958 reload class for it. */
19959 if ((rclass == ALTIVEC_REGS || rclass == VSX_REGS)
19960 && (reg_addr[mode].addr_mask[RELOAD_REG_VMX] & RELOAD_REG_VALID) == 0)
19961 return NO_REGS;
19963 if ((rclass == FLOAT_REGS || rclass == VSX_REGS)
19964 && (reg_addr[mode].addr_mask[RELOAD_REG_FPR] & RELOAD_REG_VALID) == 0)
19965 return NO_REGS;
19967 /* For VSX, see if we should prefer FLOAT_REGS or ALTIVEC_REGS. Do not allow
19968 the reloading of address expressions using PLUS into floating point
19969 registers. */
19970 if (TARGET_VSX && VSX_REG_CLASS_P (rclass) && GET_CODE (x) != PLUS)
19972 if (is_constant)
19974 /* Zero is always allowed in all VSX registers. */
19975 if (x == CONST0_RTX (mode))
19976 return rclass;
19978 /* If this is a vector constant that can be formed with a few Altivec
19979 instructions, we want altivec registers. */
19980 if (GET_CODE (x) == CONST_VECTOR && easy_vector_constant (x, mode))
19981 return ALTIVEC_REGS;
19983 /* If this is an integer constant that can easily be loaded into
19984 vector registers, allow it. */
19985 if (CONST_INT_P (x))
19987 HOST_WIDE_INT value = INTVAL (x);
19989 /* ISA 2.07 can generate -1 in all registers with XXLORC. ISA
19990 2.06 can generate it in the Altivec registers with
19991 VSPLTI<x>. */
19992 if (value == -1)
19994 if (TARGET_P8_VECTOR)
19995 return rclass;
19996 else if (rclass == ALTIVEC_REGS || rclass == VSX_REGS)
19997 return ALTIVEC_REGS;
19998 else
19999 return NO_REGS;
20002 /* ISA 3.0 can load -128..127 using the XXSPLTIB instruction and
20003 a sign extend in the Altivec registers. */
20004 if (IN_RANGE (value, -128, 127) && TARGET_P9_VECTOR
20005 && (rclass == ALTIVEC_REGS || rclass == VSX_REGS))
20006 return ALTIVEC_REGS;
20009 /* Force constant to memory. */
20010 return NO_REGS;
20013 /* D-form addressing can easily reload the value. */
20014 if (mode_supports_vmx_dform (mode)
20015 || mode_supports_dq_form (mode))
20016 return rclass;
20018 /* If this is a scalar floating point value and we don't have D-form
20019 addressing, prefer the traditional floating point registers so that we
20020 can use D-form (register+offset) addressing. */
20021 if (rclass == VSX_REGS
20022 && (mode == SFmode || GET_MODE_SIZE (mode) == 8))
20023 return FLOAT_REGS;
20025 /* Prefer the Altivec registers if Altivec is handling the vector
20026 operations (i.e. V16QI, V8HI, and V4SI), or if we prefer Altivec
20027 loads. */
20028 if (VECTOR_UNIT_ALTIVEC_P (mode) || VECTOR_MEM_ALTIVEC_P (mode)
20029 || mode == V1TImode)
20030 return ALTIVEC_REGS;
20032 return rclass;
20035 if (is_constant || GET_CODE (x) == PLUS)
20037 if (reg_class_subset_p (GENERAL_REGS, rclass))
20038 return GENERAL_REGS;
20039 if (reg_class_subset_p (BASE_REGS, rclass))
20040 return BASE_REGS;
20041 return NO_REGS;
20044 if (GET_MODE_CLASS (mode) == MODE_INT && rclass == NON_SPECIAL_REGS)
20045 return GENERAL_REGS;
20047 return rclass;
20050 /* Debug version of rs6000_preferred_reload_class. */
20051 static enum reg_class
20052 rs6000_debug_preferred_reload_class (rtx x, enum reg_class rclass)
20054 enum reg_class ret = rs6000_preferred_reload_class (x, rclass);
20056 fprintf (stderr,
20057 "\nrs6000_preferred_reload_class, return %s, rclass = %s, "
20058 "mode = %s, x:\n",
20059 reg_class_names[ret], reg_class_names[rclass],
20060 GET_MODE_NAME (GET_MODE (x)));
20061 debug_rtx (x);
20063 return ret;
20066 /* If we are copying between FP or AltiVec registers and anything else, we need
20067 a memory location. The exception is when we are targeting ppc64 and the
20068 move to/from fpr to gpr instructions are available. Also, under VSX, you
20069 can copy vector registers from the FP register set to the Altivec register
20070 set and vice versa. */
20072 static bool
20073 rs6000_secondary_memory_needed (machine_mode mode,
20074 reg_class_t from_class,
20075 reg_class_t to_class)
20077 enum rs6000_reg_type from_type, to_type;
20078 bool altivec_p = ((from_class == ALTIVEC_REGS)
20079 || (to_class == ALTIVEC_REGS));
20081 /* If a simple/direct move is available, we don't need secondary memory */
20082 from_type = reg_class_to_reg_type[(int)from_class];
20083 to_type = reg_class_to_reg_type[(int)to_class];
20085 if (rs6000_secondary_reload_move (to_type, from_type, mode,
20086 (secondary_reload_info *)0, altivec_p))
20087 return false;
20089 /* If we have a floating point or vector register class, we need to use
20090 memory to transfer the data. */
20091 if (IS_FP_VECT_REG_TYPE (from_type) || IS_FP_VECT_REG_TYPE (to_type))
20092 return true;
20094 return false;
20097 /* Debug version of rs6000_secondary_memory_needed. */
20098 static bool
20099 rs6000_debug_secondary_memory_needed (machine_mode mode,
20100 reg_class_t from_class,
20101 reg_class_t to_class)
20103 bool ret = rs6000_secondary_memory_needed (mode, from_class, to_class);
20105 fprintf (stderr,
20106 "rs6000_secondary_memory_needed, return: %s, from_class = %s, "
20107 "to_class = %s, mode = %s\n",
20108 ret ? "true" : "false",
20109 reg_class_names[from_class],
20110 reg_class_names[to_class],
20111 GET_MODE_NAME (mode));
20113 return ret;
20116 /* Return the register class of a scratch register needed to copy IN into
20117 or out of a register in RCLASS in MODE. If it can be done directly,
20118 NO_REGS is returned. */
20120 static enum reg_class
20121 rs6000_secondary_reload_class (enum reg_class rclass, machine_mode mode,
20122 rtx in)
20124 int regno;
20126 if (TARGET_ELF || (DEFAULT_ABI == ABI_DARWIN
20127 #if TARGET_MACHO
20128 && MACHOPIC_INDIRECT
20129 #endif
20132 /* We cannot copy a symbolic operand directly into anything
20133 other than BASE_REGS for TARGET_ELF. So indicate that a
20134 register from BASE_REGS is needed as an intermediate
20135 register.
20137 On Darwin, pic addresses require a load from memory, which
20138 needs a base register. */
20139 if (rclass != BASE_REGS
20140 && (GET_CODE (in) == SYMBOL_REF
20141 || GET_CODE (in) == HIGH
20142 || GET_CODE (in) == LABEL_REF
20143 || GET_CODE (in) == CONST))
20144 return BASE_REGS;
20147 if (GET_CODE (in) == REG)
20149 regno = REGNO (in);
20150 if (regno >= FIRST_PSEUDO_REGISTER)
20152 regno = true_regnum (in);
20153 if (regno >= FIRST_PSEUDO_REGISTER)
20154 regno = -1;
20157 else if (GET_CODE (in) == SUBREG)
20159 regno = true_regnum (in);
20160 if (regno >= FIRST_PSEUDO_REGISTER)
20161 regno = -1;
20163 else
20164 regno = -1;
20166 /* If we have VSX register moves, prefer moving scalar values between
20167 Altivec registers and GPR by going via an FPR (and then via memory)
20168 instead of reloading the secondary memory address for Altivec moves. */
20169 if (TARGET_VSX
20170 && GET_MODE_SIZE (mode) < 16
20171 && !mode_supports_vmx_dform (mode)
20172 && (((rclass == GENERAL_REGS || rclass == BASE_REGS)
20173 && (regno >= 0 && ALTIVEC_REGNO_P (regno)))
20174 || ((rclass == VSX_REGS || rclass == ALTIVEC_REGS)
20175 && (regno >= 0 && INT_REGNO_P (regno)))))
20176 return FLOAT_REGS;
20178 /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
20179 into anything. */
20180 if (rclass == GENERAL_REGS || rclass == BASE_REGS
20181 || (regno >= 0 && INT_REGNO_P (regno)))
20182 return NO_REGS;
20184 /* Constants, memory, and VSX registers can go into VSX registers (both the
20185 traditional floating point and the altivec registers). */
20186 if (rclass == VSX_REGS
20187 && (regno == -1 || VSX_REGNO_P (regno)))
20188 return NO_REGS;
20190 /* Constants, memory, and FP registers can go into FP registers. */
20191 if ((regno == -1 || FP_REGNO_P (regno))
20192 && (rclass == FLOAT_REGS || rclass == NON_SPECIAL_REGS))
20193 return (mode != SDmode || lra_in_progress) ? NO_REGS : GENERAL_REGS;
20195 /* Memory, and AltiVec registers can go into AltiVec registers. */
20196 if ((regno == -1 || ALTIVEC_REGNO_P (regno))
20197 && rclass == ALTIVEC_REGS)
20198 return NO_REGS;
20200 /* We can copy among the CR registers. */
20201 if ((rclass == CR_REGS || rclass == CR0_REGS)
20202 && regno >= 0 && CR_REGNO_P (regno))
20203 return NO_REGS;
20205 /* Otherwise, we need GENERAL_REGS. */
20206 return GENERAL_REGS;
20209 /* Debug version of rs6000_secondary_reload_class. */
20210 static enum reg_class
20211 rs6000_debug_secondary_reload_class (enum reg_class rclass,
20212 machine_mode mode, rtx in)
20214 enum reg_class ret = rs6000_secondary_reload_class (rclass, mode, in);
20215 fprintf (stderr,
20216 "\nrs6000_secondary_reload_class, return %s, rclass = %s, "
20217 "mode = %s, input rtx:\n",
20218 reg_class_names[ret], reg_class_names[rclass],
20219 GET_MODE_NAME (mode));
20220 debug_rtx (in);
20222 return ret;
20225 /* Implement TARGET_CAN_CHANGE_MODE_CLASS. */
20227 static bool
20228 rs6000_can_change_mode_class (machine_mode from,
20229 machine_mode to,
20230 reg_class_t rclass)
20232 unsigned from_size = GET_MODE_SIZE (from);
20233 unsigned to_size = GET_MODE_SIZE (to);
20235 if (from_size != to_size)
20237 enum reg_class xclass = (TARGET_VSX) ? VSX_REGS : FLOAT_REGS;
20239 if (reg_classes_intersect_p (xclass, rclass))
20241 unsigned to_nregs = hard_regno_nregs (FIRST_FPR_REGNO, to);
20242 unsigned from_nregs = hard_regno_nregs (FIRST_FPR_REGNO, from);
20243 bool to_float128_vector_p = FLOAT128_VECTOR_P (to);
20244 bool from_float128_vector_p = FLOAT128_VECTOR_P (from);
20246 /* Don't allow 64-bit types to overlap with 128-bit types that take a
20247 single register under VSX because the scalar part of the register
20248 is in the upper 64-bits, and not the lower 64-bits. Types like
20249 TFmode/TDmode that take 2 scalar register can overlap. 128-bit
20250 IEEE floating point can't overlap, and neither can small
20251 values. */
20253 if (to_float128_vector_p && from_float128_vector_p)
20254 return true;
20256 else if (to_float128_vector_p || from_float128_vector_p)
20257 return false;
20259 /* TDmode in floating-mode registers must always go into a register
20260 pair with the most significant word in the even-numbered register
20261 to match ISA requirements. In little-endian mode, this does not
20262 match subreg numbering, so we cannot allow subregs. */
20263 if (!BYTES_BIG_ENDIAN && (to == TDmode || from == TDmode))
20264 return false;
20266 if (from_size < 8 || to_size < 8)
20267 return false;
20269 if (from_size == 8 && (8 * to_nregs) != to_size)
20270 return false;
20272 if (to_size == 8 && (8 * from_nregs) != from_size)
20273 return false;
20275 return true;
20277 else
20278 return true;
20281 /* Since the VSX register set includes traditional floating point registers
20282 and altivec registers, just check for the size being different instead of
20283 trying to check whether the modes are vector modes. Otherwise it won't
20284 allow say DF and DI to change classes. For types like TFmode and TDmode
20285 that take 2 64-bit registers, rather than a single 128-bit register, don't
20286 allow subregs of those types to other 128 bit types. */
20287 if (TARGET_VSX && VSX_REG_CLASS_P (rclass))
20289 unsigned num_regs = (from_size + 15) / 16;
20290 if (hard_regno_nregs (FIRST_FPR_REGNO, to) > num_regs
20291 || hard_regno_nregs (FIRST_FPR_REGNO, from) > num_regs)
20292 return false;
20294 return (from_size == 8 || from_size == 16);
20297 if (TARGET_ALTIVEC && rclass == ALTIVEC_REGS
20298 && (ALTIVEC_VECTOR_MODE (from) + ALTIVEC_VECTOR_MODE (to)) == 1)
20299 return false;
20301 return true;
20304 /* Debug version of rs6000_can_change_mode_class. */
20305 static bool
20306 rs6000_debug_can_change_mode_class (machine_mode from,
20307 machine_mode to,
20308 reg_class_t rclass)
20310 bool ret = rs6000_can_change_mode_class (from, to, rclass);
20312 fprintf (stderr,
20313 "rs6000_can_change_mode_class, return %s, from = %s, "
20314 "to = %s, rclass = %s\n",
20315 ret ? "true" : "false",
20316 GET_MODE_NAME (from), GET_MODE_NAME (to),
20317 reg_class_names[rclass]);
20319 return ret;
20322 /* Return a string to do a move operation of 128 bits of data. */
20324 const char *
20325 rs6000_output_move_128bit (rtx operands[])
20327 rtx dest = operands[0];
20328 rtx src = operands[1];
20329 machine_mode mode = GET_MODE (dest);
20330 int dest_regno;
20331 int src_regno;
20332 bool dest_gpr_p, dest_fp_p, dest_vmx_p, dest_vsx_p;
20333 bool src_gpr_p, src_fp_p, src_vmx_p, src_vsx_p;
20335 if (REG_P (dest))
20337 dest_regno = REGNO (dest);
20338 dest_gpr_p = INT_REGNO_P (dest_regno);
20339 dest_fp_p = FP_REGNO_P (dest_regno);
20340 dest_vmx_p = ALTIVEC_REGNO_P (dest_regno);
20341 dest_vsx_p = dest_fp_p | dest_vmx_p;
20343 else
20345 dest_regno = -1;
20346 dest_gpr_p = dest_fp_p = dest_vmx_p = dest_vsx_p = false;
20349 if (REG_P (src))
20351 src_regno = REGNO (src);
20352 src_gpr_p = INT_REGNO_P (src_regno);
20353 src_fp_p = FP_REGNO_P (src_regno);
20354 src_vmx_p = ALTIVEC_REGNO_P (src_regno);
20355 src_vsx_p = src_fp_p | src_vmx_p;
20357 else
20359 src_regno = -1;
20360 src_gpr_p = src_fp_p = src_vmx_p = src_vsx_p = false;
20363 /* Register moves. */
20364 if (dest_regno >= 0 && src_regno >= 0)
20366 if (dest_gpr_p)
20368 if (src_gpr_p)
20369 return "#";
20371 if (TARGET_DIRECT_MOVE_128 && src_vsx_p)
20372 return (WORDS_BIG_ENDIAN
20373 ? "mfvsrd %0,%x1\n\tmfvsrld %L0,%x1"
20374 : "mfvsrd %L0,%x1\n\tmfvsrld %0,%x1");
20376 else if (TARGET_VSX && TARGET_DIRECT_MOVE && src_vsx_p)
20377 return "#";
20380 else if (TARGET_VSX && dest_vsx_p)
20382 if (src_vsx_p)
20383 return "xxlor %x0,%x1,%x1";
20385 else if (TARGET_DIRECT_MOVE_128 && src_gpr_p)
20386 return (WORDS_BIG_ENDIAN
20387 ? "mtvsrdd %x0,%1,%L1"
20388 : "mtvsrdd %x0,%L1,%1");
20390 else if (TARGET_DIRECT_MOVE && src_gpr_p)
20391 return "#";
20394 else if (TARGET_ALTIVEC && dest_vmx_p && src_vmx_p)
20395 return "vor %0,%1,%1";
20397 else if (dest_fp_p && src_fp_p)
20398 return "#";
20401 /* Loads. */
20402 else if (dest_regno >= 0 && MEM_P (src))
20404 if (dest_gpr_p)
20406 if (TARGET_QUAD_MEMORY && quad_load_store_p (dest, src))
20407 return "lq %0,%1";
20408 else
20409 return "#";
20412 else if (TARGET_ALTIVEC && dest_vmx_p
20413 && altivec_indexed_or_indirect_operand (src, mode))
20414 return "lvx %0,%y1";
20416 else if (TARGET_VSX && dest_vsx_p)
20418 if (mode_supports_dq_form (mode)
20419 && quad_address_p (XEXP (src, 0), mode, true))
20420 return "lxv %x0,%1";
20422 else if (TARGET_P9_VECTOR)
20423 return "lxvx %x0,%y1";
20425 else if (mode == V16QImode || mode == V8HImode || mode == V4SImode)
20426 return "lxvw4x %x0,%y1";
20428 else
20429 return "lxvd2x %x0,%y1";
20432 else if (TARGET_ALTIVEC && dest_vmx_p)
20433 return "lvx %0,%y1";
20435 else if (dest_fp_p)
20436 return "#";
20439 /* Stores. */
20440 else if (src_regno >= 0 && MEM_P (dest))
20442 if (src_gpr_p)
20444 if (TARGET_QUAD_MEMORY && quad_load_store_p (dest, src))
20445 return "stq %1,%0";
20446 else
20447 return "#";
20450 else if (TARGET_ALTIVEC && src_vmx_p
20451 && altivec_indexed_or_indirect_operand (dest, mode))
20452 return "stvx %1,%y0";
20454 else if (TARGET_VSX && src_vsx_p)
20456 if (mode_supports_dq_form (mode)
20457 && quad_address_p (XEXP (dest, 0), mode, true))
20458 return "stxv %x1,%0";
20460 else if (TARGET_P9_VECTOR)
20461 return "stxvx %x1,%y0";
20463 else if (mode == V16QImode || mode == V8HImode || mode == V4SImode)
20464 return "stxvw4x %x1,%y0";
20466 else
20467 return "stxvd2x %x1,%y0";
20470 else if (TARGET_ALTIVEC && src_vmx_p)
20471 return "stvx %1,%y0";
20473 else if (src_fp_p)
20474 return "#";
20477 /* Constants. */
20478 else if (dest_regno >= 0
20479 && (GET_CODE (src) == CONST_INT
20480 || GET_CODE (src) == CONST_WIDE_INT
20481 || GET_CODE (src) == CONST_DOUBLE
20482 || GET_CODE (src) == CONST_VECTOR))
20484 if (dest_gpr_p)
20485 return "#";
20487 else if ((dest_vmx_p && TARGET_ALTIVEC)
20488 || (dest_vsx_p && TARGET_VSX))
20489 return output_vec_const_move (operands);
20492 fatal_insn ("Bad 128-bit move", gen_rtx_SET (dest, src));
20495 /* Validate a 128-bit move. */
20496 bool
20497 rs6000_move_128bit_ok_p (rtx operands[])
20499 machine_mode mode = GET_MODE (operands[0]);
20500 return (gpc_reg_operand (operands[0], mode)
20501 || gpc_reg_operand (operands[1], mode));
20504 /* Return true if a 128-bit move needs to be split. */
20505 bool
20506 rs6000_split_128bit_ok_p (rtx operands[])
20508 if (!reload_completed)
20509 return false;
20511 if (!gpr_or_gpr_p (operands[0], operands[1]))
20512 return false;
20514 if (quad_load_store_p (operands[0], operands[1]))
20515 return false;
20517 return true;
20521 /* Given a comparison operation, return the bit number in CCR to test. We
20522 know this is a valid comparison.
20524 SCC_P is 1 if this is for an scc. That means that %D will have been
20525 used instead of %C, so the bits will be in different places.
20527 Return -1 if OP isn't a valid comparison for some reason. */
20530 ccr_bit (rtx op, int scc_p)
20532 enum rtx_code code = GET_CODE (op);
20533 machine_mode cc_mode;
20534 int cc_regnum;
20535 int base_bit;
20536 rtx reg;
20538 if (!COMPARISON_P (op))
20539 return -1;
20541 reg = XEXP (op, 0);
20543 gcc_assert (GET_CODE (reg) == REG && CR_REGNO_P (REGNO (reg)));
20545 cc_mode = GET_MODE (reg);
20546 cc_regnum = REGNO (reg);
20547 base_bit = 4 * (cc_regnum - CR0_REGNO);
20549 validate_condition_mode (code, cc_mode);
20551 /* When generating a sCOND operation, only positive conditions are
20552 allowed. */
20553 gcc_assert (!scc_p
20554 || code == EQ || code == GT || code == LT || code == UNORDERED
20555 || code == GTU || code == LTU);
20557 switch (code)
20559 case NE:
20560 return scc_p ? base_bit + 3 : base_bit + 2;
20561 case EQ:
20562 return base_bit + 2;
20563 case GT: case GTU: case UNLE:
20564 return base_bit + 1;
20565 case LT: case LTU: case UNGE:
20566 return base_bit;
20567 case ORDERED: case UNORDERED:
20568 return base_bit + 3;
20570 case GE: case GEU:
20571 /* If scc, we will have done a cror to put the bit in the
20572 unordered position. So test that bit. For integer, this is ! LT
20573 unless this is an scc insn. */
20574 return scc_p ? base_bit + 3 : base_bit;
20576 case LE: case LEU:
20577 return scc_p ? base_bit + 3 : base_bit + 1;
20579 default:
20580 gcc_unreachable ();
20584 /* Return the GOT register. */
20587 rs6000_got_register (rtx value ATTRIBUTE_UNUSED)
20589 /* The second flow pass currently (June 1999) can't update
20590 regs_ever_live without disturbing other parts of the compiler, so
20591 update it here to make the prolog/epilogue code happy. */
20592 if (!can_create_pseudo_p ()
20593 && !df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))
20594 df_set_regs_ever_live (RS6000_PIC_OFFSET_TABLE_REGNUM, true);
20596 crtl->uses_pic_offset_table = 1;
20598 return pic_offset_table_rtx;
20601 static rs6000_stack_t stack_info;
20603 /* Function to init struct machine_function.
20604 This will be called, via a pointer variable,
20605 from push_function_context. */
20607 static struct machine_function *
20608 rs6000_init_machine_status (void)
20610 stack_info.reload_completed = 0;
20611 return ggc_cleared_alloc<machine_function> ();
20614 #define INT_P(X) (GET_CODE (X) == CONST_INT && GET_MODE (X) == VOIDmode)
20616 /* Write out a function code label. */
20618 void
20619 rs6000_output_function_entry (FILE *file, const char *fname)
20621 if (fname[0] != '.')
20623 switch (DEFAULT_ABI)
20625 default:
20626 gcc_unreachable ();
20628 case ABI_AIX:
20629 if (DOT_SYMBOLS)
20630 putc ('.', file);
20631 else
20632 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "L.");
20633 break;
20635 case ABI_ELFv2:
20636 case ABI_V4:
20637 case ABI_DARWIN:
20638 break;
20642 RS6000_OUTPUT_BASENAME (file, fname);
20645 /* Print an operand. Recognize special options, documented below. */
20647 #if TARGET_ELF
20648 /* Access to .sdata2 through r2 (see -msdata=eabi in invoke.texi) is
20649 only introduced by the linker, when applying the sda21
20650 relocation. */
20651 #define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel")
20652 #define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13)
20653 #else
20654 #define SMALL_DATA_RELOC "sda21"
20655 #define SMALL_DATA_REG 0
20656 #endif
20658 void
20659 print_operand (FILE *file, rtx x, int code)
20661 int i;
20662 unsigned HOST_WIDE_INT uval;
20664 switch (code)
20666 /* %a is output_address. */
20668 /* %c is output_addr_const if a CONSTANT_ADDRESS_P, otherwise
20669 output_operand. */
20671 case 'D':
20672 /* Like 'J' but get to the GT bit only. */
20673 gcc_assert (REG_P (x));
20675 /* Bit 1 is GT bit. */
20676 i = 4 * (REGNO (x) - CR0_REGNO) + 1;
20678 /* Add one for shift count in rlinm for scc. */
20679 fprintf (file, "%d", i + 1);
20680 return;
20682 case 'e':
20683 /* If the low 16 bits are 0, but some other bit is set, write 's'. */
20684 if (! INT_P (x))
20686 output_operand_lossage ("invalid %%e value");
20687 return;
20690 uval = INTVAL (x);
20691 if ((uval & 0xffff) == 0 && uval != 0)
20692 putc ('s', file);
20693 return;
20695 case 'E':
20696 /* X is a CR register. Print the number of the EQ bit of the CR */
20697 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
20698 output_operand_lossage ("invalid %%E value");
20699 else
20700 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 2);
20701 return;
20703 case 'f':
20704 /* X is a CR register. Print the shift count needed to move it
20705 to the high-order four bits. */
20706 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
20707 output_operand_lossage ("invalid %%f value");
20708 else
20709 fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO));
20710 return;
20712 case 'F':
20713 /* Similar, but print the count for the rotate in the opposite
20714 direction. */
20715 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
20716 output_operand_lossage ("invalid %%F value");
20717 else
20718 fprintf (file, "%d", 32 - 4 * (REGNO (x) - CR0_REGNO));
20719 return;
20721 case 'G':
20722 /* X is a constant integer. If it is negative, print "m",
20723 otherwise print "z". This is to make an aze or ame insn. */
20724 if (GET_CODE (x) != CONST_INT)
20725 output_operand_lossage ("invalid %%G value");
20726 else if (INTVAL (x) >= 0)
20727 putc ('z', file);
20728 else
20729 putc ('m', file);
20730 return;
20732 case 'h':
20733 /* If constant, output low-order five bits. Otherwise, write
20734 normally. */
20735 if (INT_P (x))
20736 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 31);
20737 else
20738 print_operand (file, x, 0);
20739 return;
20741 case 'H':
20742 /* If constant, output low-order six bits. Otherwise, write
20743 normally. */
20744 if (INT_P (x))
20745 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 63);
20746 else
20747 print_operand (file, x, 0);
20748 return;
20750 case 'I':
20751 /* Print `i' if this is a constant, else nothing. */
20752 if (INT_P (x))
20753 putc ('i', file);
20754 return;
20756 case 'j':
20757 /* Write the bit number in CCR for jump. */
20758 i = ccr_bit (x, 0);
20759 if (i == -1)
20760 output_operand_lossage ("invalid %%j code");
20761 else
20762 fprintf (file, "%d", i);
20763 return;
20765 case 'J':
20766 /* Similar, but add one for shift count in rlinm for scc and pass
20767 scc flag to `ccr_bit'. */
20768 i = ccr_bit (x, 1);
20769 if (i == -1)
20770 output_operand_lossage ("invalid %%J code");
20771 else
20772 /* If we want bit 31, write a shift count of zero, not 32. */
20773 fprintf (file, "%d", i == 31 ? 0 : i + 1);
20774 return;
20776 case 'k':
20777 /* X must be a constant. Write the 1's complement of the
20778 constant. */
20779 if (! INT_P (x))
20780 output_operand_lossage ("invalid %%k value");
20781 else
20782 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INTVAL (x));
20783 return;
20785 case 'K':
20786 /* X must be a symbolic constant on ELF. Write an
20787 expression suitable for an 'addi' that adds in the low 16
20788 bits of the MEM. */
20789 if (GET_CODE (x) == CONST)
20791 if (GET_CODE (XEXP (x, 0)) != PLUS
20792 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
20793 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
20794 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
20795 output_operand_lossage ("invalid %%K value");
20797 print_operand_address (file, x);
20798 fputs ("@l", file);
20799 return;
20801 /* %l is output_asm_label. */
20803 case 'L':
20804 /* Write second word of DImode or DFmode reference. Works on register
20805 or non-indexed memory only. */
20806 if (REG_P (x))
20807 fputs (reg_names[REGNO (x) + 1], file);
20808 else if (MEM_P (x))
20810 machine_mode mode = GET_MODE (x);
20811 /* Handle possible auto-increment. Since it is pre-increment and
20812 we have already done it, we can just use an offset of word. */
20813 if (GET_CODE (XEXP (x, 0)) == PRE_INC
20814 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
20815 output_address (mode, plus_constant (Pmode, XEXP (XEXP (x, 0), 0),
20816 UNITS_PER_WORD));
20817 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
20818 output_address (mode, plus_constant (Pmode, XEXP (XEXP (x, 0), 0),
20819 UNITS_PER_WORD));
20820 else
20821 output_address (mode, XEXP (adjust_address_nv (x, SImode,
20822 UNITS_PER_WORD),
20823 0));
20825 if (small_data_operand (x, GET_MODE (x)))
20826 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
20827 reg_names[SMALL_DATA_REG]);
20829 return;
20831 case 'N': /* Unused */
20832 /* Write the number of elements in the vector times 4. */
20833 if (GET_CODE (x) != PARALLEL)
20834 output_operand_lossage ("invalid %%N value");
20835 else
20836 fprintf (file, "%d", XVECLEN (x, 0) * 4);
20837 return;
20839 case 'O': /* Unused */
20840 /* Similar, but subtract 1 first. */
20841 if (GET_CODE (x) != PARALLEL)
20842 output_operand_lossage ("invalid %%O value");
20843 else
20844 fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4);
20845 return;
20847 case 'p':
20848 /* X is a CONST_INT that is a power of two. Output the logarithm. */
20849 if (! INT_P (x)
20850 || INTVAL (x) < 0
20851 || (i = exact_log2 (INTVAL (x))) < 0)
20852 output_operand_lossage ("invalid %%p value");
20853 else
20854 fprintf (file, "%d", i);
20855 return;
20857 case 'P':
20858 /* The operand must be an indirect memory reference. The result
20859 is the register name. */
20860 if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG
20861 || REGNO (XEXP (x, 0)) >= 32)
20862 output_operand_lossage ("invalid %%P value");
20863 else
20864 fputs (reg_names[REGNO (XEXP (x, 0))], file);
20865 return;
20867 case 'q':
20868 /* This outputs the logical code corresponding to a boolean
20869 expression. The expression may have one or both operands
20870 negated (if one, only the first one). For condition register
20871 logical operations, it will also treat the negated
20872 CR codes as NOTs, but not handle NOTs of them. */
20874 const char *const *t = 0;
20875 const char *s;
20876 enum rtx_code code = GET_CODE (x);
20877 static const char * const tbl[3][3] = {
20878 { "and", "andc", "nor" },
20879 { "or", "orc", "nand" },
20880 { "xor", "eqv", "xor" } };
20882 if (code == AND)
20883 t = tbl[0];
20884 else if (code == IOR)
20885 t = tbl[1];
20886 else if (code == XOR)
20887 t = tbl[2];
20888 else
20889 output_operand_lossage ("invalid %%q value");
20891 if (GET_CODE (XEXP (x, 0)) != NOT)
20892 s = t[0];
20893 else
20895 if (GET_CODE (XEXP (x, 1)) == NOT)
20896 s = t[2];
20897 else
20898 s = t[1];
20901 fputs (s, file);
20903 return;
20905 case 'Q':
20906 if (! TARGET_MFCRF)
20907 return;
20908 fputc (',', file);
20909 /* FALLTHRU */
20911 case 'R':
20912 /* X is a CR register. Print the mask for `mtcrf'. */
20913 if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
20914 output_operand_lossage ("invalid %%R value");
20915 else
20916 fprintf (file, "%d", 128 >> (REGNO (x) - CR0_REGNO));
20917 return;
20919 case 's':
20920 /* Low 5 bits of 32 - value */
20921 if (! INT_P (x))
20922 output_operand_lossage ("invalid %%s value");
20923 else
20924 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (32 - INTVAL (x)) & 31);
20925 return;
20927 case 't':
20928 /* Like 'J' but get to the OVERFLOW/UNORDERED bit. */
20929 gcc_assert (REG_P (x) && GET_MODE (x) == CCmode);
20931 /* Bit 3 is OV bit. */
20932 i = 4 * (REGNO (x) - CR0_REGNO) + 3;
20934 /* If we want bit 31, write a shift count of zero, not 32. */
20935 fprintf (file, "%d", i == 31 ? 0 : i + 1);
20936 return;
20938 case 'T':
20939 /* Print the symbolic name of a branch target register. */
20940 if (GET_CODE (x) != REG || (REGNO (x) != LR_REGNO
20941 && REGNO (x) != CTR_REGNO))
20942 output_operand_lossage ("invalid %%T value");
20943 else if (REGNO (x) == LR_REGNO)
20944 fputs ("lr", file);
20945 else
20946 fputs ("ctr", file);
20947 return;
20949 case 'u':
20950 /* High-order or low-order 16 bits of constant, whichever is non-zero,
20951 for use in unsigned operand. */
20952 if (! INT_P (x))
20954 output_operand_lossage ("invalid %%u value");
20955 return;
20958 uval = INTVAL (x);
20959 if ((uval & 0xffff) == 0)
20960 uval >>= 16;
20962 fprintf (file, HOST_WIDE_INT_PRINT_HEX, uval & 0xffff);
20963 return;
20965 case 'v':
20966 /* High-order 16 bits of constant for use in signed operand. */
20967 if (! INT_P (x))
20968 output_operand_lossage ("invalid %%v value");
20969 else
20970 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
20971 (INTVAL (x) >> 16) & 0xffff);
20972 return;
20974 case 'U':
20975 /* Print `u' if this has an auto-increment or auto-decrement. */
20976 if (MEM_P (x)
20977 && (GET_CODE (XEXP (x, 0)) == PRE_INC
20978 || GET_CODE (XEXP (x, 0)) == PRE_DEC
20979 || GET_CODE (XEXP (x, 0)) == PRE_MODIFY))
20980 putc ('u', file);
20981 return;
20983 case 'V':
20984 /* Print the trap code for this operand. */
20985 switch (GET_CODE (x))
20987 case EQ:
20988 fputs ("eq", file); /* 4 */
20989 break;
20990 case NE:
20991 fputs ("ne", file); /* 24 */
20992 break;
20993 case LT:
20994 fputs ("lt", file); /* 16 */
20995 break;
20996 case LE:
20997 fputs ("le", file); /* 20 */
20998 break;
20999 case GT:
21000 fputs ("gt", file); /* 8 */
21001 break;
21002 case GE:
21003 fputs ("ge", file); /* 12 */
21004 break;
21005 case LTU:
21006 fputs ("llt", file); /* 2 */
21007 break;
21008 case LEU:
21009 fputs ("lle", file); /* 6 */
21010 break;
21011 case GTU:
21012 fputs ("lgt", file); /* 1 */
21013 break;
21014 case GEU:
21015 fputs ("lge", file); /* 5 */
21016 break;
21017 default:
21018 gcc_unreachable ();
21020 break;
21022 case 'w':
21023 /* If constant, low-order 16 bits of constant, signed. Otherwise, write
21024 normally. */
21025 if (INT_P (x))
21026 fprintf (file, HOST_WIDE_INT_PRINT_DEC,
21027 ((INTVAL (x) & 0xffff) ^ 0x8000) - 0x8000);
21028 else
21029 print_operand (file, x, 0);
21030 return;
21032 case 'x':
21033 /* X is a FPR or Altivec register used in a VSX context. */
21034 if (GET_CODE (x) != REG || !VSX_REGNO_P (REGNO (x)))
21035 output_operand_lossage ("invalid %%x value");
21036 else
21038 int reg = REGNO (x);
21039 int vsx_reg = (FP_REGNO_P (reg)
21040 ? reg - 32
21041 : reg - FIRST_ALTIVEC_REGNO + 32);
21043 #ifdef TARGET_REGNAMES
21044 if (TARGET_REGNAMES)
21045 fprintf (file, "%%vs%d", vsx_reg);
21046 else
21047 #endif
21048 fprintf (file, "%d", vsx_reg);
21050 return;
21052 case 'X':
21053 if (MEM_P (x)
21054 && (legitimate_indexed_address_p (XEXP (x, 0), 0)
21055 || (GET_CODE (XEXP (x, 0)) == PRE_MODIFY
21056 && legitimate_indexed_address_p (XEXP (XEXP (x, 0), 1), 0))))
21057 putc ('x', file);
21058 return;
21060 case 'Y':
21061 /* Like 'L', for third word of TImode/PTImode */
21062 if (REG_P (x))
21063 fputs (reg_names[REGNO (x) + 2], file);
21064 else if (MEM_P (x))
21066 machine_mode mode = GET_MODE (x);
21067 if (GET_CODE (XEXP (x, 0)) == PRE_INC
21068 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
21069 output_address (mode, plus_constant (Pmode,
21070 XEXP (XEXP (x, 0), 0), 8));
21071 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
21072 output_address (mode, plus_constant (Pmode,
21073 XEXP (XEXP (x, 0), 0), 8));
21074 else
21075 output_address (mode, XEXP (adjust_address_nv (x, SImode, 8), 0));
21076 if (small_data_operand (x, GET_MODE (x)))
21077 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
21078 reg_names[SMALL_DATA_REG]);
21080 return;
21082 case 'z':
21083 /* X is a SYMBOL_REF. Write out the name preceded by a
21084 period and without any trailing data in brackets. Used for function
21085 names. If we are configured for System V (or the embedded ABI) on
21086 the PowerPC, do not emit the period, since those systems do not use
21087 TOCs and the like. */
21088 gcc_assert (GET_CODE (x) == SYMBOL_REF);
21090 /* For macho, check to see if we need a stub. */
21091 if (TARGET_MACHO)
21093 const char *name = XSTR (x, 0);
21094 #if TARGET_MACHO
21095 if (darwin_emit_branch_islands
21096 && MACHOPIC_INDIRECT
21097 && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION)
21098 name = machopic_indirection_name (x, /*stub_p=*/true);
21099 #endif
21100 assemble_name (file, name);
21102 else if (!DOT_SYMBOLS)
21103 assemble_name (file, XSTR (x, 0));
21104 else
21105 rs6000_output_function_entry (file, XSTR (x, 0));
21106 return;
21108 case 'Z':
21109 /* Like 'L', for last word of TImode/PTImode. */
21110 if (REG_P (x))
21111 fputs (reg_names[REGNO (x) + 3], file);
21112 else if (MEM_P (x))
21114 machine_mode mode = GET_MODE (x);
21115 if (GET_CODE (XEXP (x, 0)) == PRE_INC
21116 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
21117 output_address (mode, plus_constant (Pmode,
21118 XEXP (XEXP (x, 0), 0), 12));
21119 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
21120 output_address (mode, plus_constant (Pmode,
21121 XEXP (XEXP (x, 0), 0), 12));
21122 else
21123 output_address (mode, XEXP (adjust_address_nv (x, SImode, 12), 0));
21124 if (small_data_operand (x, GET_MODE (x)))
21125 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
21126 reg_names[SMALL_DATA_REG]);
21128 return;
21130 /* Print AltiVec memory operand. */
21131 case 'y':
21133 rtx tmp;
21135 gcc_assert (MEM_P (x));
21137 tmp = XEXP (x, 0);
21139 if (VECTOR_MEM_ALTIVEC_OR_VSX_P (GET_MODE (x))
21140 && GET_CODE (tmp) == AND
21141 && GET_CODE (XEXP (tmp, 1)) == CONST_INT
21142 && INTVAL (XEXP (tmp, 1)) == -16)
21143 tmp = XEXP (tmp, 0);
21144 else if (VECTOR_MEM_VSX_P (GET_MODE (x))
21145 && GET_CODE (tmp) == PRE_MODIFY)
21146 tmp = XEXP (tmp, 1);
21147 if (REG_P (tmp))
21148 fprintf (file, "0,%s", reg_names[REGNO (tmp)]);
21149 else
21151 if (GET_CODE (tmp) != PLUS
21152 || !REG_P (XEXP (tmp, 0))
21153 || !REG_P (XEXP (tmp, 1)))
21155 output_operand_lossage ("invalid %%y value, try using the 'Z' constraint");
21156 break;
21159 if (REGNO (XEXP (tmp, 0)) == 0)
21160 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 1)) ],
21161 reg_names[ REGNO (XEXP (tmp, 0)) ]);
21162 else
21163 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 0)) ],
21164 reg_names[ REGNO (XEXP (tmp, 1)) ]);
21166 break;
21169 case 0:
21170 if (REG_P (x))
21171 fprintf (file, "%s", reg_names[REGNO (x)]);
21172 else if (MEM_P (x))
21174 /* We need to handle PRE_INC and PRE_DEC here, since we need to
21175 know the width from the mode. */
21176 if (GET_CODE (XEXP (x, 0)) == PRE_INC)
21177 fprintf (file, "%d(%s)", GET_MODE_SIZE (GET_MODE (x)),
21178 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
21179 else if (GET_CODE (XEXP (x, 0)) == PRE_DEC)
21180 fprintf (file, "%d(%s)", - GET_MODE_SIZE (GET_MODE (x)),
21181 reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
21182 else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
21183 output_address (GET_MODE (x), XEXP (XEXP (x, 0), 1));
21184 else
21185 output_address (GET_MODE (x), XEXP (x, 0));
21187 else
21189 if (toc_relative_expr_p (x, false, &tocrel_base_oac, &tocrel_offset_oac))
21190 /* This hack along with a corresponding hack in
21191 rs6000_output_addr_const_extra arranges to output addends
21192 where the assembler expects to find them. eg.
21193 (plus (unspec [(symbol_ref ("x")) (reg 2)] tocrel) 4)
21194 without this hack would be output as "x@toc+4". We
21195 want "x+4@toc". */
21196 output_addr_const (file, CONST_CAST_RTX (tocrel_base_oac));
21197 else
21198 output_addr_const (file, x);
21200 return;
21202 case '&':
21203 if (const char *name = get_some_local_dynamic_name ())
21204 assemble_name (file, name);
21205 else
21206 output_operand_lossage ("'%%&' used without any "
21207 "local dynamic TLS references");
21208 return;
21210 default:
21211 output_operand_lossage ("invalid %%xn code");
21215 /* Print the address of an operand. */
21217 void
21218 print_operand_address (FILE *file, rtx x)
21220 if (REG_P (x))
21221 fprintf (file, "0(%s)", reg_names[ REGNO (x) ]);
21222 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST
21223 || GET_CODE (x) == LABEL_REF)
21225 output_addr_const (file, x);
21226 if (small_data_operand (x, GET_MODE (x)))
21227 fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
21228 reg_names[SMALL_DATA_REG]);
21229 else
21230 gcc_assert (!TARGET_TOC);
21232 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
21233 && REG_P (XEXP (x, 1)))
21235 if (REGNO (XEXP (x, 0)) == 0)
21236 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ],
21237 reg_names[ REGNO (XEXP (x, 0)) ]);
21238 else
21239 fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ],
21240 reg_names[ REGNO (XEXP (x, 1)) ]);
21242 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
21243 && GET_CODE (XEXP (x, 1)) == CONST_INT)
21244 fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
21245 INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]);
21246 #if TARGET_MACHO
21247 else if (GET_CODE (x) == LO_SUM && REG_P (XEXP (x, 0))
21248 && CONSTANT_P (XEXP (x, 1)))
21250 fprintf (file, "lo16(");
21251 output_addr_const (file, XEXP (x, 1));
21252 fprintf (file, ")(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
21254 #endif
21255 #if TARGET_ELF
21256 else if (GET_CODE (x) == LO_SUM && REG_P (XEXP (x, 0))
21257 && CONSTANT_P (XEXP (x, 1)))
21259 output_addr_const (file, XEXP (x, 1));
21260 fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
21262 #endif
21263 else if (toc_relative_expr_p (x, false, &tocrel_base_oac, &tocrel_offset_oac))
21265 /* This hack along with a corresponding hack in
21266 rs6000_output_addr_const_extra arranges to output addends
21267 where the assembler expects to find them. eg.
21268 (lo_sum (reg 9)
21269 . (plus (unspec [(symbol_ref ("x")) (reg 2)] tocrel) 8))
21270 without this hack would be output as "x@toc+8@l(9)". We
21271 want "x+8@toc@l(9)". */
21272 output_addr_const (file, CONST_CAST_RTX (tocrel_base_oac));
21273 if (GET_CODE (x) == LO_SUM)
21274 fprintf (file, "@l(%s)", reg_names[REGNO (XEXP (x, 0))]);
21275 else
21276 fprintf (file, "(%s)", reg_names[REGNO (XVECEXP (tocrel_base_oac, 0, 1))]);
21278 else
21279 output_addr_const (file, x);
21282 /* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
21284 static bool
21285 rs6000_output_addr_const_extra (FILE *file, rtx x)
21287 if (GET_CODE (x) == UNSPEC)
21288 switch (XINT (x, 1))
21290 case UNSPEC_TOCREL:
21291 gcc_checking_assert (GET_CODE (XVECEXP (x, 0, 0)) == SYMBOL_REF
21292 && REG_P (XVECEXP (x, 0, 1))
21293 && REGNO (XVECEXP (x, 0, 1)) == TOC_REGISTER);
21294 output_addr_const (file, XVECEXP (x, 0, 0));
21295 if (x == tocrel_base_oac && tocrel_offset_oac != const0_rtx)
21297 if (INTVAL (tocrel_offset_oac) >= 0)
21298 fprintf (file, "+");
21299 output_addr_const (file, CONST_CAST_RTX (tocrel_offset_oac));
21301 if (!TARGET_AIX || (TARGET_ELF && TARGET_MINIMAL_TOC))
21303 putc ('-', file);
21304 assemble_name (file, toc_label_name);
21305 need_toc_init = 1;
21307 else if (TARGET_ELF)
21308 fputs ("@toc", file);
21309 return true;
21311 #if TARGET_MACHO
21312 case UNSPEC_MACHOPIC_OFFSET:
21313 output_addr_const (file, XVECEXP (x, 0, 0));
21314 putc ('-', file);
21315 machopic_output_function_base_name (file);
21316 return true;
21317 #endif
21319 return false;
21322 /* Target hook for assembling integer objects. The PowerPC version has
21323 to handle fixup entries for relocatable code if RELOCATABLE_NEEDS_FIXUP
21324 is defined. It also needs to handle DI-mode objects on 64-bit
21325 targets. */
21327 static bool
21328 rs6000_assemble_integer (rtx x, unsigned int size, int aligned_p)
21330 #ifdef RELOCATABLE_NEEDS_FIXUP
21331 /* Special handling for SI values. */
21332 if (RELOCATABLE_NEEDS_FIXUP && size == 4 && aligned_p)
21334 static int recurse = 0;
21336 /* For -mrelocatable, we mark all addresses that need to be fixed up in
21337 the .fixup section. Since the TOC section is already relocated, we
21338 don't need to mark it here. We used to skip the text section, but it
21339 should never be valid for relocated addresses to be placed in the text
21340 section. */
21341 if (DEFAULT_ABI == ABI_V4
21342 && (TARGET_RELOCATABLE || flag_pic > 1)
21343 && in_section != toc_section
21344 && !recurse
21345 && !CONST_SCALAR_INT_P (x)
21346 && CONSTANT_P (x))
21348 char buf[256];
21350 recurse = 1;
21351 ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", fixuplabelno);
21352 fixuplabelno++;
21353 ASM_OUTPUT_LABEL (asm_out_file, buf);
21354 fprintf (asm_out_file, "\t.long\t(");
21355 output_addr_const (asm_out_file, x);
21356 fprintf (asm_out_file, ")@fixup\n");
21357 fprintf (asm_out_file, "\t.section\t\".fixup\",\"aw\"\n");
21358 ASM_OUTPUT_ALIGN (asm_out_file, 2);
21359 fprintf (asm_out_file, "\t.long\t");
21360 assemble_name (asm_out_file, buf);
21361 fprintf (asm_out_file, "\n\t.previous\n");
21362 recurse = 0;
21363 return true;
21365 /* Remove initial .'s to turn a -mcall-aixdesc function
21366 address into the address of the descriptor, not the function
21367 itself. */
21368 else if (GET_CODE (x) == SYMBOL_REF
21369 && XSTR (x, 0)[0] == '.'
21370 && DEFAULT_ABI == ABI_AIX)
21372 const char *name = XSTR (x, 0);
21373 while (*name == '.')
21374 name++;
21376 fprintf (asm_out_file, "\t.long\t%s\n", name);
21377 return true;
21380 #endif /* RELOCATABLE_NEEDS_FIXUP */
21381 return default_assemble_integer (x, size, aligned_p);
21384 #if defined (HAVE_GAS_HIDDEN) && !TARGET_MACHO
21385 /* Emit an assembler directive to set symbol visibility for DECL to
21386 VISIBILITY_TYPE. */
21388 static void
21389 rs6000_assemble_visibility (tree decl, int vis)
21391 if (TARGET_XCOFF)
21392 return;
21394 /* Functions need to have their entry point symbol visibility set as
21395 well as their descriptor symbol visibility. */
21396 if (DEFAULT_ABI == ABI_AIX
21397 && DOT_SYMBOLS
21398 && TREE_CODE (decl) == FUNCTION_DECL)
21400 static const char * const visibility_types[] = {
21401 NULL, "protected", "hidden", "internal"
21404 const char *name, *type;
21406 name = ((* targetm.strip_name_encoding)
21407 (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl))));
21408 type = visibility_types[vis];
21410 fprintf (asm_out_file, "\t.%s\t%s\n", type, name);
21411 fprintf (asm_out_file, "\t.%s\t.%s\n", type, name);
21413 else
21414 default_assemble_visibility (decl, vis);
21416 #endif
21418 enum rtx_code
21419 rs6000_reverse_condition (machine_mode mode, enum rtx_code code)
21421 /* Reversal of FP compares takes care -- an ordered compare
21422 becomes an unordered compare and vice versa. */
21423 if (mode == CCFPmode
21424 && (!flag_finite_math_only
21425 || code == UNLT || code == UNLE || code == UNGT || code == UNGE
21426 || code == UNEQ || code == LTGT))
21427 return reverse_condition_maybe_unordered (code);
21428 else
21429 return reverse_condition (code);
21432 /* Generate a compare for CODE. Return a brand-new rtx that
21433 represents the result of the compare. */
21435 static rtx
21436 rs6000_generate_compare (rtx cmp, machine_mode mode)
21438 machine_mode comp_mode;
21439 rtx compare_result;
21440 enum rtx_code code = GET_CODE (cmp);
21441 rtx op0 = XEXP (cmp, 0);
21442 rtx op1 = XEXP (cmp, 1);
21444 if (!TARGET_FLOAT128_HW && FLOAT128_VECTOR_P (mode))
21445 comp_mode = CCmode;
21446 else if (FLOAT_MODE_P (mode))
21447 comp_mode = CCFPmode;
21448 else if (code == GTU || code == LTU
21449 || code == GEU || code == LEU)
21450 comp_mode = CCUNSmode;
21451 else if ((code == EQ || code == NE)
21452 && unsigned_reg_p (op0)
21453 && (unsigned_reg_p (op1)
21454 || (CONST_INT_P (op1) && INTVAL (op1) != 0)))
21455 /* These are unsigned values, perhaps there will be a later
21456 ordering compare that can be shared with this one. */
21457 comp_mode = CCUNSmode;
21458 else
21459 comp_mode = CCmode;
21461 /* If we have an unsigned compare, make sure we don't have a signed value as
21462 an immediate. */
21463 if (comp_mode == CCUNSmode && GET_CODE (op1) == CONST_INT
21464 && INTVAL (op1) < 0)
21466 op0 = copy_rtx_if_shared (op0);
21467 op1 = force_reg (GET_MODE (op0), op1);
21468 cmp = gen_rtx_fmt_ee (code, GET_MODE (cmp), op0, op1);
21471 /* First, the compare. */
21472 compare_result = gen_reg_rtx (comp_mode);
21474 /* IEEE 128-bit support in VSX registers when we do not have hardware
21475 support. */
21476 if (!TARGET_FLOAT128_HW && FLOAT128_VECTOR_P (mode))
21478 rtx libfunc = NULL_RTX;
21479 bool check_nan = false;
21480 rtx dest;
21482 switch (code)
21484 case EQ:
21485 case NE:
21486 libfunc = optab_libfunc (eq_optab, mode);
21487 break;
21489 case GT:
21490 case GE:
21491 libfunc = optab_libfunc (ge_optab, mode);
21492 break;
21494 case LT:
21495 case LE:
21496 libfunc = optab_libfunc (le_optab, mode);
21497 break;
21499 case UNORDERED:
21500 case ORDERED:
21501 libfunc = optab_libfunc (unord_optab, mode);
21502 code = (code == UNORDERED) ? NE : EQ;
21503 break;
21505 case UNGE:
21506 case UNGT:
21507 check_nan = true;
21508 libfunc = optab_libfunc (ge_optab, mode);
21509 code = (code == UNGE) ? GE : GT;
21510 break;
21512 case UNLE:
21513 case UNLT:
21514 check_nan = true;
21515 libfunc = optab_libfunc (le_optab, mode);
21516 code = (code == UNLE) ? LE : LT;
21517 break;
21519 case UNEQ:
21520 case LTGT:
21521 check_nan = true;
21522 libfunc = optab_libfunc (eq_optab, mode);
21523 code = (code = UNEQ) ? EQ : NE;
21524 break;
21526 default:
21527 gcc_unreachable ();
21530 gcc_assert (libfunc);
21532 if (!check_nan)
21533 dest = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
21534 SImode, op0, mode, op1, mode);
21536 /* The library signals an exception for signalling NaNs, so we need to
21537 handle isgreater, etc. by first checking isordered. */
21538 else
21540 rtx ne_rtx, normal_dest, unord_dest;
21541 rtx unord_func = optab_libfunc (unord_optab, mode);
21542 rtx join_label = gen_label_rtx ();
21543 rtx join_ref = gen_rtx_LABEL_REF (VOIDmode, join_label);
21544 rtx unord_cmp = gen_reg_rtx (comp_mode);
21547 /* Test for either value being a NaN. */
21548 gcc_assert (unord_func);
21549 unord_dest = emit_library_call_value (unord_func, NULL_RTX, LCT_CONST,
21550 SImode, op0, mode, op1, mode);
21552 /* Set value (0) if either value is a NaN, and jump to the join
21553 label. */
21554 dest = gen_reg_rtx (SImode);
21555 emit_move_insn (dest, const1_rtx);
21556 emit_insn (gen_rtx_SET (unord_cmp,
21557 gen_rtx_COMPARE (comp_mode, unord_dest,
21558 const0_rtx)));
21560 ne_rtx = gen_rtx_NE (comp_mode, unord_cmp, const0_rtx);
21561 emit_jump_insn (gen_rtx_SET (pc_rtx,
21562 gen_rtx_IF_THEN_ELSE (VOIDmode, ne_rtx,
21563 join_ref,
21564 pc_rtx)));
21566 /* Do the normal comparison, knowing that the values are not
21567 NaNs. */
21568 normal_dest = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
21569 SImode, op0, mode, op1, mode);
21571 emit_insn (gen_cstoresi4 (dest,
21572 gen_rtx_fmt_ee (code, SImode, normal_dest,
21573 const0_rtx),
21574 normal_dest, const0_rtx));
21576 /* Join NaN and non-Nan paths. Compare dest against 0. */
21577 emit_label (join_label);
21578 code = NE;
21581 emit_insn (gen_rtx_SET (compare_result,
21582 gen_rtx_COMPARE (comp_mode, dest, const0_rtx)));
21585 else
21587 /* Generate XLC-compatible TFmode compare as PARALLEL with extra
21588 CLOBBERs to match cmptf_internal2 pattern. */
21589 if (comp_mode == CCFPmode && TARGET_XL_COMPAT
21590 && FLOAT128_IBM_P (GET_MODE (op0))
21591 && TARGET_HARD_FLOAT)
21592 emit_insn (gen_rtx_PARALLEL (VOIDmode,
21593 gen_rtvec (10,
21594 gen_rtx_SET (compare_result,
21595 gen_rtx_COMPARE (comp_mode, op0, op1)),
21596 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21597 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21598 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21599 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21600 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21601 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21602 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21603 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
21604 gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (Pmode)))));
21605 else if (GET_CODE (op1) == UNSPEC
21606 && XINT (op1, 1) == UNSPEC_SP_TEST)
21608 rtx op1b = XVECEXP (op1, 0, 0);
21609 comp_mode = CCEQmode;
21610 compare_result = gen_reg_rtx (CCEQmode);
21611 if (TARGET_64BIT)
21612 emit_insn (gen_stack_protect_testdi (compare_result, op0, op1b));
21613 else
21614 emit_insn (gen_stack_protect_testsi (compare_result, op0, op1b));
21616 else
21617 emit_insn (gen_rtx_SET (compare_result,
21618 gen_rtx_COMPARE (comp_mode, op0, op1)));
21621 /* Some kinds of FP comparisons need an OR operation;
21622 under flag_finite_math_only we don't bother. */
21623 if (FLOAT_MODE_P (mode)
21624 && (!FLOAT128_IEEE_P (mode) || TARGET_FLOAT128_HW)
21625 && !flag_finite_math_only
21626 && (code == LE || code == GE
21627 || code == UNEQ || code == LTGT
21628 || code == UNGT || code == UNLT))
21630 enum rtx_code or1, or2;
21631 rtx or1_rtx, or2_rtx, compare2_rtx;
21632 rtx or_result = gen_reg_rtx (CCEQmode);
21634 switch (code)
21636 case LE: or1 = LT; or2 = EQ; break;
21637 case GE: or1 = GT; or2 = EQ; break;
21638 case UNEQ: or1 = UNORDERED; or2 = EQ; break;
21639 case LTGT: or1 = LT; or2 = GT; break;
21640 case UNGT: or1 = UNORDERED; or2 = GT; break;
21641 case UNLT: or1 = UNORDERED; or2 = LT; break;
21642 default: gcc_unreachable ();
21644 validate_condition_mode (or1, comp_mode);
21645 validate_condition_mode (or2, comp_mode);
21646 or1_rtx = gen_rtx_fmt_ee (or1, SImode, compare_result, const0_rtx);
21647 or2_rtx = gen_rtx_fmt_ee (or2, SImode, compare_result, const0_rtx);
21648 compare2_rtx = gen_rtx_COMPARE (CCEQmode,
21649 gen_rtx_IOR (SImode, or1_rtx, or2_rtx),
21650 const_true_rtx);
21651 emit_insn (gen_rtx_SET (or_result, compare2_rtx));
21653 compare_result = or_result;
21654 code = EQ;
21657 validate_condition_mode (code, GET_MODE (compare_result));
21659 return gen_rtx_fmt_ee (code, VOIDmode, compare_result, const0_rtx);
21663 /* Return the diagnostic message string if the binary operation OP is
21664 not permitted on TYPE1 and TYPE2, NULL otherwise. */
21666 static const char*
21667 rs6000_invalid_binary_op (int op ATTRIBUTE_UNUSED,
21668 const_tree type1,
21669 const_tree type2)
21671 machine_mode mode1 = TYPE_MODE (type1);
21672 machine_mode mode2 = TYPE_MODE (type2);
21674 /* For complex modes, use the inner type. */
21675 if (COMPLEX_MODE_P (mode1))
21676 mode1 = GET_MODE_INNER (mode1);
21678 if (COMPLEX_MODE_P (mode2))
21679 mode2 = GET_MODE_INNER (mode2);
21681 /* Don't allow IEEE 754R 128-bit binary floating point and IBM extended
21682 double to intermix unless -mfloat128-convert. */
21683 if (mode1 == mode2)
21684 return NULL;
21686 if (!TARGET_FLOAT128_CVT)
21688 if ((mode1 == KFmode && mode2 == IFmode)
21689 || (mode1 == IFmode && mode2 == KFmode))
21690 return N_("__float128 and __ibm128 cannot be used in the same "
21691 "expression");
21693 if (TARGET_IEEEQUAD
21694 && ((mode1 == IFmode && mode2 == TFmode)
21695 || (mode1 == TFmode && mode2 == IFmode)))
21696 return N_("__ibm128 and long double cannot be used in the same "
21697 "expression");
21699 if (!TARGET_IEEEQUAD
21700 && ((mode1 == KFmode && mode2 == TFmode)
21701 || (mode1 == TFmode && mode2 == KFmode)))
21702 return N_("__float128 and long double cannot be used in the same "
21703 "expression");
21706 return NULL;
21710 /* Expand floating point conversion to/from __float128 and __ibm128. */
21712 void
21713 rs6000_expand_float128_convert (rtx dest, rtx src, bool unsigned_p)
21715 machine_mode dest_mode = GET_MODE (dest);
21716 machine_mode src_mode = GET_MODE (src);
21717 convert_optab cvt = unknown_optab;
21718 bool do_move = false;
21719 rtx libfunc = NULL_RTX;
21720 rtx dest2;
21721 typedef rtx (*rtx_2func_t) (rtx, rtx);
21722 rtx_2func_t hw_convert = (rtx_2func_t)0;
21723 size_t kf_or_tf;
21725 struct hw_conv_t {
21726 rtx_2func_t from_df;
21727 rtx_2func_t from_sf;
21728 rtx_2func_t from_si_sign;
21729 rtx_2func_t from_si_uns;
21730 rtx_2func_t from_di_sign;
21731 rtx_2func_t from_di_uns;
21732 rtx_2func_t to_df;
21733 rtx_2func_t to_sf;
21734 rtx_2func_t to_si_sign;
21735 rtx_2func_t to_si_uns;
21736 rtx_2func_t to_di_sign;
21737 rtx_2func_t to_di_uns;
21738 } hw_conversions[2] = {
21739 /* convertions to/from KFmode */
21741 gen_extenddfkf2_hw, /* KFmode <- DFmode. */
21742 gen_extendsfkf2_hw, /* KFmode <- SFmode. */
21743 gen_float_kfsi2_hw, /* KFmode <- SImode (signed). */
21744 gen_floatuns_kfsi2_hw, /* KFmode <- SImode (unsigned). */
21745 gen_float_kfdi2_hw, /* KFmode <- DImode (signed). */
21746 gen_floatuns_kfdi2_hw, /* KFmode <- DImode (unsigned). */
21747 gen_trunckfdf2_hw, /* DFmode <- KFmode. */
21748 gen_trunckfsf2_hw, /* SFmode <- KFmode. */
21749 gen_fix_kfsi2_hw, /* SImode <- KFmode (signed). */
21750 gen_fixuns_kfsi2_hw, /* SImode <- KFmode (unsigned). */
21751 gen_fix_kfdi2_hw, /* DImode <- KFmode (signed). */
21752 gen_fixuns_kfdi2_hw, /* DImode <- KFmode (unsigned). */
21755 /* convertions to/from TFmode */
21757 gen_extenddftf2_hw, /* TFmode <- DFmode. */
21758 gen_extendsftf2_hw, /* TFmode <- SFmode. */
21759 gen_float_tfsi2_hw, /* TFmode <- SImode (signed). */
21760 gen_floatuns_tfsi2_hw, /* TFmode <- SImode (unsigned). */
21761 gen_float_tfdi2_hw, /* TFmode <- DImode (signed). */
21762 gen_floatuns_tfdi2_hw, /* TFmode <- DImode (unsigned). */
21763 gen_trunctfdf2_hw, /* DFmode <- TFmode. */
21764 gen_trunctfsf2_hw, /* SFmode <- TFmode. */
21765 gen_fix_tfsi2_hw, /* SImode <- TFmode (signed). */
21766 gen_fixuns_tfsi2_hw, /* SImode <- TFmode (unsigned). */
21767 gen_fix_tfdi2_hw, /* DImode <- TFmode (signed). */
21768 gen_fixuns_tfdi2_hw, /* DImode <- TFmode (unsigned). */
21772 if (dest_mode == src_mode)
21773 gcc_unreachable ();
21775 /* Eliminate memory operations. */
21776 if (MEM_P (src))
21777 src = force_reg (src_mode, src);
21779 if (MEM_P (dest))
21781 rtx tmp = gen_reg_rtx (dest_mode);
21782 rs6000_expand_float128_convert (tmp, src, unsigned_p);
21783 rs6000_emit_move (dest, tmp, dest_mode);
21784 return;
21787 /* Convert to IEEE 128-bit floating point. */
21788 if (FLOAT128_IEEE_P (dest_mode))
21790 if (dest_mode == KFmode)
21791 kf_or_tf = 0;
21792 else if (dest_mode == TFmode)
21793 kf_or_tf = 1;
21794 else
21795 gcc_unreachable ();
21797 switch (src_mode)
21799 case E_DFmode:
21800 cvt = sext_optab;
21801 hw_convert = hw_conversions[kf_or_tf].from_df;
21802 break;
21804 case E_SFmode:
21805 cvt = sext_optab;
21806 hw_convert = hw_conversions[kf_or_tf].from_sf;
21807 break;
21809 case E_KFmode:
21810 case E_IFmode:
21811 case E_TFmode:
21812 if (FLOAT128_IBM_P (src_mode))
21813 cvt = sext_optab;
21814 else
21815 do_move = true;
21816 break;
21818 case E_SImode:
21819 if (unsigned_p)
21821 cvt = ufloat_optab;
21822 hw_convert = hw_conversions[kf_or_tf].from_si_uns;
21824 else
21826 cvt = sfloat_optab;
21827 hw_convert = hw_conversions[kf_or_tf].from_si_sign;
21829 break;
21831 case E_DImode:
21832 if (unsigned_p)
21834 cvt = ufloat_optab;
21835 hw_convert = hw_conversions[kf_or_tf].from_di_uns;
21837 else
21839 cvt = sfloat_optab;
21840 hw_convert = hw_conversions[kf_or_tf].from_di_sign;
21842 break;
21844 default:
21845 gcc_unreachable ();
21849 /* Convert from IEEE 128-bit floating point. */
21850 else if (FLOAT128_IEEE_P (src_mode))
21852 if (src_mode == KFmode)
21853 kf_or_tf = 0;
21854 else if (src_mode == TFmode)
21855 kf_or_tf = 1;
21856 else
21857 gcc_unreachable ();
21859 switch (dest_mode)
21861 case E_DFmode:
21862 cvt = trunc_optab;
21863 hw_convert = hw_conversions[kf_or_tf].to_df;
21864 break;
21866 case E_SFmode:
21867 cvt = trunc_optab;
21868 hw_convert = hw_conversions[kf_or_tf].to_sf;
21869 break;
21871 case E_KFmode:
21872 case E_IFmode:
21873 case E_TFmode:
21874 if (FLOAT128_IBM_P (dest_mode))
21875 cvt = trunc_optab;
21876 else
21877 do_move = true;
21878 break;
21880 case E_SImode:
21881 if (unsigned_p)
21883 cvt = ufix_optab;
21884 hw_convert = hw_conversions[kf_or_tf].to_si_uns;
21886 else
21888 cvt = sfix_optab;
21889 hw_convert = hw_conversions[kf_or_tf].to_si_sign;
21891 break;
21893 case E_DImode:
21894 if (unsigned_p)
21896 cvt = ufix_optab;
21897 hw_convert = hw_conversions[kf_or_tf].to_di_uns;
21899 else
21901 cvt = sfix_optab;
21902 hw_convert = hw_conversions[kf_or_tf].to_di_sign;
21904 break;
21906 default:
21907 gcc_unreachable ();
21911 /* Both IBM format. */
21912 else if (FLOAT128_IBM_P (dest_mode) && FLOAT128_IBM_P (src_mode))
21913 do_move = true;
21915 else
21916 gcc_unreachable ();
21918 /* Handle conversion between TFmode/KFmode/IFmode. */
21919 if (do_move)
21920 emit_insn (gen_rtx_SET (dest, gen_rtx_FLOAT_EXTEND (dest_mode, src)));
21922 /* Handle conversion if we have hardware support. */
21923 else if (TARGET_FLOAT128_HW && hw_convert)
21924 emit_insn ((hw_convert) (dest, src));
21926 /* Call an external function to do the conversion. */
21927 else if (cvt != unknown_optab)
21929 libfunc = convert_optab_libfunc (cvt, dest_mode, src_mode);
21930 gcc_assert (libfunc != NULL_RTX);
21932 dest2 = emit_library_call_value (libfunc, dest, LCT_CONST, dest_mode,
21933 src, src_mode);
21935 gcc_assert (dest2 != NULL_RTX);
21936 if (!rtx_equal_p (dest, dest2))
21937 emit_move_insn (dest, dest2);
21940 else
21941 gcc_unreachable ();
21943 return;
21947 /* Emit RTL that sets a register to zero if OP1 and OP2 are equal. SCRATCH
21948 can be used as that dest register. Return the dest register. */
21951 rs6000_emit_eqne (machine_mode mode, rtx op1, rtx op2, rtx scratch)
21953 if (op2 == const0_rtx)
21954 return op1;
21956 if (GET_CODE (scratch) == SCRATCH)
21957 scratch = gen_reg_rtx (mode);
21959 if (logical_operand (op2, mode))
21960 emit_insn (gen_rtx_SET (scratch, gen_rtx_XOR (mode, op1, op2)));
21961 else
21962 emit_insn (gen_rtx_SET (scratch,
21963 gen_rtx_PLUS (mode, op1, negate_rtx (mode, op2))));
21965 return scratch;
21968 void
21969 rs6000_emit_sCOND (machine_mode mode, rtx operands[])
21971 rtx condition_rtx;
21972 machine_mode op_mode;
21973 enum rtx_code cond_code;
21974 rtx result = operands[0];
21976 condition_rtx = rs6000_generate_compare (operands[1], mode);
21977 cond_code = GET_CODE (condition_rtx);
21979 if (cond_code == NE
21980 || cond_code == GE || cond_code == LE
21981 || cond_code == GEU || cond_code == LEU
21982 || cond_code == ORDERED || cond_code == UNGE || cond_code == UNLE)
21984 rtx not_result = gen_reg_rtx (CCEQmode);
21985 rtx not_op, rev_cond_rtx;
21986 machine_mode cc_mode;
21988 cc_mode = GET_MODE (XEXP (condition_rtx, 0));
21990 rev_cond_rtx = gen_rtx_fmt_ee (rs6000_reverse_condition (cc_mode, cond_code),
21991 SImode, XEXP (condition_rtx, 0), const0_rtx);
21992 not_op = gen_rtx_COMPARE (CCEQmode, rev_cond_rtx, const0_rtx);
21993 emit_insn (gen_rtx_SET (not_result, not_op));
21994 condition_rtx = gen_rtx_EQ (VOIDmode, not_result, const0_rtx);
21997 op_mode = GET_MODE (XEXP (operands[1], 0));
21998 if (op_mode == VOIDmode)
21999 op_mode = GET_MODE (XEXP (operands[1], 1));
22001 if (TARGET_POWERPC64 && (op_mode == DImode || FLOAT_MODE_P (mode)))
22003 PUT_MODE (condition_rtx, DImode);
22004 convert_move (result, condition_rtx, 0);
22006 else
22008 PUT_MODE (condition_rtx, SImode);
22009 emit_insn (gen_rtx_SET (result, condition_rtx));
22013 /* Emit a branch of kind CODE to location LOC. */
22015 void
22016 rs6000_emit_cbranch (machine_mode mode, rtx operands[])
22018 rtx condition_rtx, loc_ref;
22020 condition_rtx = rs6000_generate_compare (operands[0], mode);
22021 loc_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
22022 emit_jump_insn (gen_rtx_SET (pc_rtx,
22023 gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx,
22024 loc_ref, pc_rtx)));
22027 /* Return the string to output a conditional branch to LABEL, which is
22028 the operand template of the label, or NULL if the branch is really a
22029 conditional return.
22031 OP is the conditional expression. XEXP (OP, 0) is assumed to be a
22032 condition code register and its mode specifies what kind of
22033 comparison we made.
22035 REVERSED is nonzero if we should reverse the sense of the comparison.
22037 INSN is the insn. */
22039 char *
22040 output_cbranch (rtx op, const char *label, int reversed, rtx_insn *insn)
22042 static char string[64];
22043 enum rtx_code code = GET_CODE (op);
22044 rtx cc_reg = XEXP (op, 0);
22045 machine_mode mode = GET_MODE (cc_reg);
22046 int cc_regno = REGNO (cc_reg) - CR0_REGNO;
22047 int need_longbranch = label != NULL && get_attr_length (insn) == 8;
22048 int really_reversed = reversed ^ need_longbranch;
22049 char *s = string;
22050 const char *ccode;
22051 const char *pred;
22052 rtx note;
22054 validate_condition_mode (code, mode);
22056 /* Work out which way this really branches. We could use
22057 reverse_condition_maybe_unordered here always but this
22058 makes the resulting assembler clearer. */
22059 if (really_reversed)
22061 /* Reversal of FP compares takes care -- an ordered compare
22062 becomes an unordered compare and vice versa. */
22063 if (mode == CCFPmode)
22064 code = reverse_condition_maybe_unordered (code);
22065 else
22066 code = reverse_condition (code);
22069 switch (code)
22071 /* Not all of these are actually distinct opcodes, but
22072 we distinguish them for clarity of the resulting assembler. */
22073 case NE: case LTGT:
22074 ccode = "ne"; break;
22075 case EQ: case UNEQ:
22076 ccode = "eq"; break;
22077 case GE: case GEU:
22078 ccode = "ge"; break;
22079 case GT: case GTU: case UNGT:
22080 ccode = "gt"; break;
22081 case LE: case LEU:
22082 ccode = "le"; break;
22083 case LT: case LTU: case UNLT:
22084 ccode = "lt"; break;
22085 case UNORDERED: ccode = "un"; break;
22086 case ORDERED: ccode = "nu"; break;
22087 case UNGE: ccode = "nl"; break;
22088 case UNLE: ccode = "ng"; break;
22089 default:
22090 gcc_unreachable ();
22093 /* Maybe we have a guess as to how likely the branch is. */
22094 pred = "";
22095 note = find_reg_note (insn, REG_BR_PROB, NULL_RTX);
22096 if (note != NULL_RTX)
22098 /* PROB is the difference from 50%. */
22099 int prob = profile_probability::from_reg_br_prob_note (XINT (note, 0))
22100 .to_reg_br_prob_base () - REG_BR_PROB_BASE / 2;
22102 /* Only hint for highly probable/improbable branches on newer cpus when
22103 we have real profile data, as static prediction overrides processor
22104 dynamic prediction. For older cpus we may as well always hint, but
22105 assume not taken for branches that are very close to 50% as a
22106 mispredicted taken branch is more expensive than a
22107 mispredicted not-taken branch. */
22108 if (rs6000_always_hint
22109 || (abs (prob) > REG_BR_PROB_BASE / 100 * 48
22110 && (profile_status_for_fn (cfun) != PROFILE_GUESSED)
22111 && br_prob_note_reliable_p (note)))
22113 if (abs (prob) > REG_BR_PROB_BASE / 20
22114 && ((prob > 0) ^ need_longbranch))
22115 pred = "+";
22116 else
22117 pred = "-";
22121 if (label == NULL)
22122 s += sprintf (s, "b%slr%s ", ccode, pred);
22123 else
22124 s += sprintf (s, "b%s%s ", ccode, pred);
22126 /* We need to escape any '%' characters in the reg_names string.
22127 Assume they'd only be the first character.... */
22128 if (reg_names[cc_regno + CR0_REGNO][0] == '%')
22129 *s++ = '%';
22130 s += sprintf (s, "%s", reg_names[cc_regno + CR0_REGNO]);
22132 if (label != NULL)
22134 /* If the branch distance was too far, we may have to use an
22135 unconditional branch to go the distance. */
22136 if (need_longbranch)
22137 s += sprintf (s, ",$+8\n\tb %s", label);
22138 else
22139 s += sprintf (s, ",%s", label);
22142 return string;
22145 /* Return insn for VSX or Altivec comparisons. */
22147 static rtx
22148 rs6000_emit_vector_compare_inner (enum rtx_code code, rtx op0, rtx op1)
22150 rtx mask;
22151 machine_mode mode = GET_MODE (op0);
22153 switch (code)
22155 default:
22156 break;
22158 case GE:
22159 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
22160 return NULL_RTX;
22161 /* FALLTHRU */
22163 case EQ:
22164 case GT:
22165 case GTU:
22166 case ORDERED:
22167 case UNORDERED:
22168 case UNEQ:
22169 case LTGT:
22170 mask = gen_reg_rtx (mode);
22171 emit_insn (gen_rtx_SET (mask, gen_rtx_fmt_ee (code, mode, op0, op1)));
22172 return mask;
22175 return NULL_RTX;
22178 /* Emit vector compare for operands OP0 and OP1 using code RCODE.
22179 DMODE is expected destination mode. This is a recursive function. */
22181 static rtx
22182 rs6000_emit_vector_compare (enum rtx_code rcode,
22183 rtx op0, rtx op1,
22184 machine_mode dmode)
22186 rtx mask;
22187 bool swap_operands = false;
22188 bool try_again = false;
22190 gcc_assert (VECTOR_UNIT_ALTIVEC_OR_VSX_P (dmode));
22191 gcc_assert (GET_MODE (op0) == GET_MODE (op1));
22193 /* See if the comparison works as is. */
22194 mask = rs6000_emit_vector_compare_inner (rcode, op0, op1);
22195 if (mask)
22196 return mask;
22198 switch (rcode)
22200 case LT:
22201 rcode = GT;
22202 swap_operands = true;
22203 try_again = true;
22204 break;
22205 case LTU:
22206 rcode = GTU;
22207 swap_operands = true;
22208 try_again = true;
22209 break;
22210 case NE:
22211 case UNLE:
22212 case UNLT:
22213 case UNGE:
22214 case UNGT:
22215 /* Invert condition and try again.
22216 e.g., A != B becomes ~(A==B). */
22218 enum rtx_code rev_code;
22219 enum insn_code nor_code;
22220 rtx mask2;
22222 rev_code = reverse_condition_maybe_unordered (rcode);
22223 if (rev_code == UNKNOWN)
22224 return NULL_RTX;
22226 nor_code = optab_handler (one_cmpl_optab, dmode);
22227 if (nor_code == CODE_FOR_nothing)
22228 return NULL_RTX;
22230 mask2 = rs6000_emit_vector_compare (rev_code, op0, op1, dmode);
22231 if (!mask2)
22232 return NULL_RTX;
22234 mask = gen_reg_rtx (dmode);
22235 emit_insn (GEN_FCN (nor_code) (mask, mask2));
22236 return mask;
22238 break;
22239 case GE:
22240 case GEU:
22241 case LE:
22242 case LEU:
22243 /* Try GT/GTU/LT/LTU OR EQ */
22245 rtx c_rtx, eq_rtx;
22246 enum insn_code ior_code;
22247 enum rtx_code new_code;
22249 switch (rcode)
22251 case GE:
22252 new_code = GT;
22253 break;
22255 case GEU:
22256 new_code = GTU;
22257 break;
22259 case LE:
22260 new_code = LT;
22261 break;
22263 case LEU:
22264 new_code = LTU;
22265 break;
22267 default:
22268 gcc_unreachable ();
22271 ior_code = optab_handler (ior_optab, dmode);
22272 if (ior_code == CODE_FOR_nothing)
22273 return NULL_RTX;
22275 c_rtx = rs6000_emit_vector_compare (new_code, op0, op1, dmode);
22276 if (!c_rtx)
22277 return NULL_RTX;
22279 eq_rtx = rs6000_emit_vector_compare (EQ, op0, op1, dmode);
22280 if (!eq_rtx)
22281 return NULL_RTX;
22283 mask = gen_reg_rtx (dmode);
22284 emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
22285 return mask;
22287 break;
22288 default:
22289 return NULL_RTX;
22292 if (try_again)
22294 if (swap_operands)
22295 std::swap (op0, op1);
22297 mask = rs6000_emit_vector_compare_inner (rcode, op0, op1);
22298 if (mask)
22299 return mask;
22302 /* You only get two chances. */
22303 return NULL_RTX;
22306 /* Emit vector conditional expression. DEST is destination. OP_TRUE and
22307 OP_FALSE are two VEC_COND_EXPR operands. CC_OP0 and CC_OP1 are the two
22308 operands for the relation operation COND. */
22311 rs6000_emit_vector_cond_expr (rtx dest, rtx op_true, rtx op_false,
22312 rtx cond, rtx cc_op0, rtx cc_op1)
22314 machine_mode dest_mode = GET_MODE (dest);
22315 machine_mode mask_mode = GET_MODE (cc_op0);
22316 enum rtx_code rcode = GET_CODE (cond);
22317 machine_mode cc_mode = CCmode;
22318 rtx mask;
22319 rtx cond2;
22320 bool invert_move = false;
22322 if (VECTOR_UNIT_NONE_P (dest_mode))
22323 return 0;
22325 gcc_assert (GET_MODE_SIZE (dest_mode) == GET_MODE_SIZE (mask_mode)
22326 && GET_MODE_NUNITS (dest_mode) == GET_MODE_NUNITS (mask_mode));
22328 switch (rcode)
22330 /* Swap operands if we can, and fall back to doing the operation as
22331 specified, and doing a NOR to invert the test. */
22332 case NE:
22333 case UNLE:
22334 case UNLT:
22335 case UNGE:
22336 case UNGT:
22337 /* Invert condition and try again.
22338 e.g., A = (B != C) ? D : E becomes A = (B == C) ? E : D. */
22339 invert_move = true;
22340 rcode = reverse_condition_maybe_unordered (rcode);
22341 if (rcode == UNKNOWN)
22342 return 0;
22343 break;
22345 case GE:
22346 case LE:
22347 if (GET_MODE_CLASS (mask_mode) == MODE_VECTOR_INT)
22349 /* Invert condition to avoid compound test. */
22350 invert_move = true;
22351 rcode = reverse_condition (rcode);
22353 break;
22355 case GTU:
22356 case GEU:
22357 case LTU:
22358 case LEU:
22359 /* Mark unsigned tests with CCUNSmode. */
22360 cc_mode = CCUNSmode;
22362 /* Invert condition to avoid compound test if necessary. */
22363 if (rcode == GEU || rcode == LEU)
22365 invert_move = true;
22366 rcode = reverse_condition (rcode);
22368 break;
22370 default:
22371 break;
22374 /* Get the vector mask for the given relational operations. */
22375 mask = rs6000_emit_vector_compare (rcode, cc_op0, cc_op1, mask_mode);
22377 if (!mask)
22378 return 0;
22380 if (invert_move)
22381 std::swap (op_true, op_false);
22383 /* Optimize vec1 == vec2, to know the mask generates -1/0. */
22384 if (GET_MODE_CLASS (dest_mode) == MODE_VECTOR_INT
22385 && (GET_CODE (op_true) == CONST_VECTOR
22386 || GET_CODE (op_false) == CONST_VECTOR))
22388 rtx constant_0 = CONST0_RTX (dest_mode);
22389 rtx constant_m1 = CONSTM1_RTX (dest_mode);
22391 if (op_true == constant_m1 && op_false == constant_0)
22393 emit_move_insn (dest, mask);
22394 return 1;
22397 else if (op_true == constant_0 && op_false == constant_m1)
22399 emit_insn (gen_rtx_SET (dest, gen_rtx_NOT (dest_mode, mask)));
22400 return 1;
22403 /* If we can't use the vector comparison directly, perhaps we can use
22404 the mask for the true or false fields, instead of loading up a
22405 constant. */
22406 if (op_true == constant_m1)
22407 op_true = mask;
22409 if (op_false == constant_0)
22410 op_false = mask;
22413 if (!REG_P (op_true) && !SUBREG_P (op_true))
22414 op_true = force_reg (dest_mode, op_true);
22416 if (!REG_P (op_false) && !SUBREG_P (op_false))
22417 op_false = force_reg (dest_mode, op_false);
22419 cond2 = gen_rtx_fmt_ee (NE, cc_mode, gen_lowpart (dest_mode, mask),
22420 CONST0_RTX (dest_mode));
22421 emit_insn (gen_rtx_SET (dest,
22422 gen_rtx_IF_THEN_ELSE (dest_mode,
22423 cond2,
22424 op_true,
22425 op_false)));
22426 return 1;
22429 /* ISA 3.0 (power9) minmax subcase to emit a XSMAXCDP or XSMINCDP instruction
22430 for SF/DF scalars. Move TRUE_COND to DEST if OP of the operands of the last
22431 comparison is nonzero/true, FALSE_COND if it is zero/false. Return 0 if the
22432 hardware has no such operation. */
22434 static int
22435 rs6000_emit_p9_fp_minmax (rtx dest, rtx op, rtx true_cond, rtx false_cond)
22437 enum rtx_code code = GET_CODE (op);
22438 rtx op0 = XEXP (op, 0);
22439 rtx op1 = XEXP (op, 1);
22440 machine_mode compare_mode = GET_MODE (op0);
22441 machine_mode result_mode = GET_MODE (dest);
22442 bool max_p = false;
22444 if (result_mode != compare_mode)
22445 return 0;
22447 if (code == GE || code == GT)
22448 max_p = true;
22449 else if (code == LE || code == LT)
22450 max_p = false;
22451 else
22452 return 0;
22454 if (rtx_equal_p (op0, true_cond) && rtx_equal_p (op1, false_cond))
22457 else if (rtx_equal_p (op1, true_cond) && rtx_equal_p (op0, false_cond))
22458 max_p = !max_p;
22460 else
22461 return 0;
22463 rs6000_emit_minmax (dest, max_p ? SMAX : SMIN, op0, op1);
22464 return 1;
22467 /* ISA 3.0 (power9) conditional move subcase to emit XSCMP{EQ,GE,GT,NE}DP and
22468 XXSEL instructions for SF/DF scalars. Move TRUE_COND to DEST if OP of the
22469 operands of the last comparison is nonzero/true, FALSE_COND if it is
22470 zero/false. Return 0 if the hardware has no such operation. */
22472 static int
22473 rs6000_emit_p9_fp_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
22475 enum rtx_code code = GET_CODE (op);
22476 rtx op0 = XEXP (op, 0);
22477 rtx op1 = XEXP (op, 1);
22478 machine_mode result_mode = GET_MODE (dest);
22479 rtx compare_rtx;
22480 rtx cmove_rtx;
22481 rtx clobber_rtx;
22483 if (!can_create_pseudo_p ())
22484 return 0;
22486 switch (code)
22488 case EQ:
22489 case GE:
22490 case GT:
22491 break;
22493 case NE:
22494 case LT:
22495 case LE:
22496 code = swap_condition (code);
22497 std::swap (op0, op1);
22498 break;
22500 default:
22501 return 0;
22504 /* Generate: [(parallel [(set (dest)
22505 (if_then_else (op (cmp1) (cmp2))
22506 (true)
22507 (false)))
22508 (clobber (scratch))])]. */
22510 compare_rtx = gen_rtx_fmt_ee (code, CCFPmode, op0, op1);
22511 cmove_rtx = gen_rtx_SET (dest,
22512 gen_rtx_IF_THEN_ELSE (result_mode,
22513 compare_rtx,
22514 true_cond,
22515 false_cond));
22517 clobber_rtx = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (V2DImode));
22518 emit_insn (gen_rtx_PARALLEL (VOIDmode,
22519 gen_rtvec (2, cmove_rtx, clobber_rtx)));
22521 return 1;
22524 /* Emit a conditional move: move TRUE_COND to DEST if OP of the
22525 operands of the last comparison is nonzero/true, FALSE_COND if it
22526 is zero/false. Return 0 if the hardware has no such operation. */
22529 rs6000_emit_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
22531 enum rtx_code code = GET_CODE (op);
22532 rtx op0 = XEXP (op, 0);
22533 rtx op1 = XEXP (op, 1);
22534 machine_mode compare_mode = GET_MODE (op0);
22535 machine_mode result_mode = GET_MODE (dest);
22536 rtx temp;
22537 bool is_against_zero;
22539 /* These modes should always match. */
22540 if (GET_MODE (op1) != compare_mode
22541 /* In the isel case however, we can use a compare immediate, so
22542 op1 may be a small constant. */
22543 && (!TARGET_ISEL || !short_cint_operand (op1, VOIDmode)))
22544 return 0;
22545 if (GET_MODE (true_cond) != result_mode)
22546 return 0;
22547 if (GET_MODE (false_cond) != result_mode)
22548 return 0;
22550 /* See if we can use the ISA 3.0 (power9) min/max/compare functions. */
22551 if (TARGET_P9_MINMAX
22552 && (compare_mode == SFmode || compare_mode == DFmode)
22553 && (result_mode == SFmode || result_mode == DFmode))
22555 if (rs6000_emit_p9_fp_minmax (dest, op, true_cond, false_cond))
22556 return 1;
22558 if (rs6000_emit_p9_fp_cmove (dest, op, true_cond, false_cond))
22559 return 1;
22562 /* Don't allow using floating point comparisons for integer results for
22563 now. */
22564 if (FLOAT_MODE_P (compare_mode) && !FLOAT_MODE_P (result_mode))
22565 return 0;
22567 /* First, work out if the hardware can do this at all, or
22568 if it's too slow.... */
22569 if (!FLOAT_MODE_P (compare_mode))
22571 if (TARGET_ISEL)
22572 return rs6000_emit_int_cmove (dest, op, true_cond, false_cond);
22573 return 0;
22576 is_against_zero = op1 == CONST0_RTX (compare_mode);
22578 /* A floating-point subtract might overflow, underflow, or produce
22579 an inexact result, thus changing the floating-point flags, so it
22580 can't be generated if we care about that. It's safe if one side
22581 of the construct is zero, since then no subtract will be
22582 generated. */
22583 if (SCALAR_FLOAT_MODE_P (compare_mode)
22584 && flag_trapping_math && ! is_against_zero)
22585 return 0;
22587 /* Eliminate half of the comparisons by switching operands, this
22588 makes the remaining code simpler. */
22589 if (code == UNLT || code == UNGT || code == UNORDERED || code == NE
22590 || code == LTGT || code == LT || code == UNLE)
22592 code = reverse_condition_maybe_unordered (code);
22593 temp = true_cond;
22594 true_cond = false_cond;
22595 false_cond = temp;
22598 /* UNEQ and LTGT take four instructions for a comparison with zero,
22599 it'll probably be faster to use a branch here too. */
22600 if (code == UNEQ && HONOR_NANS (compare_mode))
22601 return 0;
22603 /* We're going to try to implement comparisons by performing
22604 a subtract, then comparing against zero. Unfortunately,
22605 Inf - Inf is NaN which is not zero, and so if we don't
22606 know that the operand is finite and the comparison
22607 would treat EQ different to UNORDERED, we can't do it. */
22608 if (HONOR_INFINITIES (compare_mode)
22609 && code != GT && code != UNGE
22610 && (GET_CODE (op1) != CONST_DOUBLE
22611 || real_isinf (CONST_DOUBLE_REAL_VALUE (op1)))
22612 /* Constructs of the form (a OP b ? a : b) are safe. */
22613 && ((! rtx_equal_p (op0, false_cond) && ! rtx_equal_p (op1, false_cond))
22614 || (! rtx_equal_p (op0, true_cond)
22615 && ! rtx_equal_p (op1, true_cond))))
22616 return 0;
22618 /* At this point we know we can use fsel. */
22620 /* Reduce the comparison to a comparison against zero. */
22621 if (! is_against_zero)
22623 temp = gen_reg_rtx (compare_mode);
22624 emit_insn (gen_rtx_SET (temp, gen_rtx_MINUS (compare_mode, op0, op1)));
22625 op0 = temp;
22626 op1 = CONST0_RTX (compare_mode);
22629 /* If we don't care about NaNs we can reduce some of the comparisons
22630 down to faster ones. */
22631 if (! HONOR_NANS (compare_mode))
22632 switch (code)
22634 case GT:
22635 code = LE;
22636 temp = true_cond;
22637 true_cond = false_cond;
22638 false_cond = temp;
22639 break;
22640 case UNGE:
22641 code = GE;
22642 break;
22643 case UNEQ:
22644 code = EQ;
22645 break;
22646 default:
22647 break;
22650 /* Now, reduce everything down to a GE. */
22651 switch (code)
22653 case GE:
22654 break;
22656 case LE:
22657 temp = gen_reg_rtx (compare_mode);
22658 emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
22659 op0 = temp;
22660 break;
22662 case ORDERED:
22663 temp = gen_reg_rtx (compare_mode);
22664 emit_insn (gen_rtx_SET (temp, gen_rtx_ABS (compare_mode, op0)));
22665 op0 = temp;
22666 break;
22668 case EQ:
22669 temp = gen_reg_rtx (compare_mode);
22670 emit_insn (gen_rtx_SET (temp,
22671 gen_rtx_NEG (compare_mode,
22672 gen_rtx_ABS (compare_mode, op0))));
22673 op0 = temp;
22674 break;
22676 case UNGE:
22677 /* a UNGE 0 <-> (a GE 0 || -a UNLT 0) */
22678 temp = gen_reg_rtx (result_mode);
22679 emit_insn (gen_rtx_SET (temp,
22680 gen_rtx_IF_THEN_ELSE (result_mode,
22681 gen_rtx_GE (VOIDmode,
22682 op0, op1),
22683 true_cond, false_cond)));
22684 false_cond = true_cond;
22685 true_cond = temp;
22687 temp = gen_reg_rtx (compare_mode);
22688 emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
22689 op0 = temp;
22690 break;
22692 case GT:
22693 /* a GT 0 <-> (a GE 0 && -a UNLT 0) */
22694 temp = gen_reg_rtx (result_mode);
22695 emit_insn (gen_rtx_SET (temp,
22696 gen_rtx_IF_THEN_ELSE (result_mode,
22697 gen_rtx_GE (VOIDmode,
22698 op0, op1),
22699 true_cond, false_cond)));
22700 true_cond = false_cond;
22701 false_cond = temp;
22703 temp = gen_reg_rtx (compare_mode);
22704 emit_insn (gen_rtx_SET (temp, gen_rtx_NEG (compare_mode, op0)));
22705 op0 = temp;
22706 break;
22708 default:
22709 gcc_unreachable ();
22712 emit_insn (gen_rtx_SET (dest,
22713 gen_rtx_IF_THEN_ELSE (result_mode,
22714 gen_rtx_GE (VOIDmode,
22715 op0, op1),
22716 true_cond, false_cond)));
22717 return 1;
22720 /* Same as above, but for ints (isel). */
22723 rs6000_emit_int_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
22725 rtx condition_rtx, cr;
22726 machine_mode mode = GET_MODE (dest);
22727 enum rtx_code cond_code;
22728 rtx (*isel_func) (rtx, rtx, rtx, rtx, rtx);
22729 bool signedp;
22731 if (mode != SImode && (!TARGET_POWERPC64 || mode != DImode))
22732 return 0;
22734 /* We still have to do the compare, because isel doesn't do a
22735 compare, it just looks at the CRx bits set by a previous compare
22736 instruction. */
22737 condition_rtx = rs6000_generate_compare (op, mode);
22738 cond_code = GET_CODE (condition_rtx);
22739 cr = XEXP (condition_rtx, 0);
22740 signedp = GET_MODE (cr) == CCmode;
22742 isel_func = (mode == SImode
22743 ? (signedp ? gen_isel_signed_si : gen_isel_unsigned_si)
22744 : (signedp ? gen_isel_signed_di : gen_isel_unsigned_di));
22746 switch (cond_code)
22748 case LT: case GT: case LTU: case GTU: case EQ:
22749 /* isel handles these directly. */
22750 break;
22752 default:
22753 /* We need to swap the sense of the comparison. */
22755 std::swap (false_cond, true_cond);
22756 PUT_CODE (condition_rtx, reverse_condition (cond_code));
22758 break;
22761 false_cond = force_reg (mode, false_cond);
22762 if (true_cond != const0_rtx)
22763 true_cond = force_reg (mode, true_cond);
22765 emit_insn (isel_func (dest, condition_rtx, true_cond, false_cond, cr));
22767 return 1;
22770 void
22771 rs6000_emit_minmax (rtx dest, enum rtx_code code, rtx op0, rtx op1)
22773 machine_mode mode = GET_MODE (op0);
22774 enum rtx_code c;
22775 rtx target;
22777 /* VSX/altivec have direct min/max insns. */
22778 if ((code == SMAX || code == SMIN)
22779 && (VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)
22780 || (mode == SFmode && VECTOR_UNIT_VSX_P (DFmode))))
22782 emit_insn (gen_rtx_SET (dest, gen_rtx_fmt_ee (code, mode, op0, op1)));
22783 return;
22786 if (code == SMAX || code == SMIN)
22787 c = GE;
22788 else
22789 c = GEU;
22791 if (code == SMAX || code == UMAX)
22792 target = emit_conditional_move (dest, c, op0, op1, mode,
22793 op0, op1, mode, 0);
22794 else
22795 target = emit_conditional_move (dest, c, op0, op1, mode,
22796 op1, op0, mode, 0);
22797 gcc_assert (target);
22798 if (target != dest)
22799 emit_move_insn (dest, target);
22802 /* A subroutine of the atomic operation splitters. Jump to LABEL if
22803 COND is true. Mark the jump as unlikely to be taken. */
22805 static void
22806 emit_unlikely_jump (rtx cond, rtx label)
22808 rtx x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
22809 rtx_insn *insn = emit_jump_insn (gen_rtx_SET (pc_rtx, x));
22810 add_reg_br_prob_note (insn, profile_probability::very_unlikely ());
22813 /* A subroutine of the atomic operation splitters. Emit a load-locked
22814 instruction in MODE. For QI/HImode, possibly use a pattern than includes
22815 the zero_extend operation. */
22817 static void
22818 emit_load_locked (machine_mode mode, rtx reg, rtx mem)
22820 rtx (*fn) (rtx, rtx) = NULL;
22822 switch (mode)
22824 case E_QImode:
22825 fn = gen_load_lockedqi;
22826 break;
22827 case E_HImode:
22828 fn = gen_load_lockedhi;
22829 break;
22830 case E_SImode:
22831 if (GET_MODE (mem) == QImode)
22832 fn = gen_load_lockedqi_si;
22833 else if (GET_MODE (mem) == HImode)
22834 fn = gen_load_lockedhi_si;
22835 else
22836 fn = gen_load_lockedsi;
22837 break;
22838 case E_DImode:
22839 fn = gen_load_lockeddi;
22840 break;
22841 case E_TImode:
22842 fn = gen_load_lockedti;
22843 break;
22844 default:
22845 gcc_unreachable ();
22847 emit_insn (fn (reg, mem));
22850 /* A subroutine of the atomic operation splitters. Emit a store-conditional
22851 instruction in MODE. */
22853 static void
22854 emit_store_conditional (machine_mode mode, rtx res, rtx mem, rtx val)
22856 rtx (*fn) (rtx, rtx, rtx) = NULL;
22858 switch (mode)
22860 case E_QImode:
22861 fn = gen_store_conditionalqi;
22862 break;
22863 case E_HImode:
22864 fn = gen_store_conditionalhi;
22865 break;
22866 case E_SImode:
22867 fn = gen_store_conditionalsi;
22868 break;
22869 case E_DImode:
22870 fn = gen_store_conditionaldi;
22871 break;
22872 case E_TImode:
22873 fn = gen_store_conditionalti;
22874 break;
22875 default:
22876 gcc_unreachable ();
22879 /* Emit sync before stwcx. to address PPC405 Erratum. */
22880 if (PPC405_ERRATUM77)
22881 emit_insn (gen_hwsync ());
22883 emit_insn (fn (res, mem, val));
22886 /* Expand barriers before and after a load_locked/store_cond sequence. */
22888 static rtx
22889 rs6000_pre_atomic_barrier (rtx mem, enum memmodel model)
22891 rtx addr = XEXP (mem, 0);
22893 if (!legitimate_indirect_address_p (addr, reload_completed)
22894 && !legitimate_indexed_address_p (addr, reload_completed))
22896 addr = force_reg (Pmode, addr);
22897 mem = replace_equiv_address_nv (mem, addr);
22900 switch (model)
22902 case MEMMODEL_RELAXED:
22903 case MEMMODEL_CONSUME:
22904 case MEMMODEL_ACQUIRE:
22905 break;
22906 case MEMMODEL_RELEASE:
22907 case MEMMODEL_ACQ_REL:
22908 emit_insn (gen_lwsync ());
22909 break;
22910 case MEMMODEL_SEQ_CST:
22911 emit_insn (gen_hwsync ());
22912 break;
22913 default:
22914 gcc_unreachable ();
22916 return mem;
22919 static void
22920 rs6000_post_atomic_barrier (enum memmodel model)
22922 switch (model)
22924 case MEMMODEL_RELAXED:
22925 case MEMMODEL_CONSUME:
22926 case MEMMODEL_RELEASE:
22927 break;
22928 case MEMMODEL_ACQUIRE:
22929 case MEMMODEL_ACQ_REL:
22930 case MEMMODEL_SEQ_CST:
22931 emit_insn (gen_isync ());
22932 break;
22933 default:
22934 gcc_unreachable ();
22938 /* A subroutine of the various atomic expanders. For sub-word operations,
22939 we must adjust things to operate on SImode. Given the original MEM,
22940 return a new aligned memory. Also build and return the quantities by
22941 which to shift and mask. */
22943 static rtx
22944 rs6000_adjust_atomic_subword (rtx orig_mem, rtx *pshift, rtx *pmask)
22946 rtx addr, align, shift, mask, mem;
22947 HOST_WIDE_INT shift_mask;
22948 machine_mode mode = GET_MODE (orig_mem);
22950 /* For smaller modes, we have to implement this via SImode. */
22951 shift_mask = (mode == QImode ? 0x18 : 0x10);
22953 addr = XEXP (orig_mem, 0);
22954 addr = force_reg (GET_MODE (addr), addr);
22956 /* Aligned memory containing subword. Generate a new memory. We
22957 do not want any of the existing MEM_ATTR data, as we're now
22958 accessing memory outside the original object. */
22959 align = expand_simple_binop (Pmode, AND, addr, GEN_INT (-4),
22960 NULL_RTX, 1, OPTAB_LIB_WIDEN);
22961 mem = gen_rtx_MEM (SImode, align);
22962 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem);
22963 if (MEM_ALIAS_SET (orig_mem) == ALIAS_SET_MEMORY_BARRIER)
22964 set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
22966 /* Shift amount for subword relative to aligned word. */
22967 shift = gen_reg_rtx (SImode);
22968 addr = gen_lowpart (SImode, addr);
22969 rtx tmp = gen_reg_rtx (SImode);
22970 emit_insn (gen_ashlsi3 (tmp, addr, GEN_INT (3)));
22971 emit_insn (gen_andsi3 (shift, tmp, GEN_INT (shift_mask)));
22972 if (BYTES_BIG_ENDIAN)
22973 shift = expand_simple_binop (SImode, XOR, shift, GEN_INT (shift_mask),
22974 shift, 1, OPTAB_LIB_WIDEN);
22975 *pshift = shift;
22977 /* Mask for insertion. */
22978 mask = expand_simple_binop (SImode, ASHIFT, GEN_INT (GET_MODE_MASK (mode)),
22979 shift, NULL_RTX, 1, OPTAB_LIB_WIDEN);
22980 *pmask = mask;
22982 return mem;
22985 /* A subroutine of the various atomic expanders. For sub-word operands,
22986 combine OLDVAL and NEWVAL via MASK. Returns a new pseduo. */
22988 static rtx
22989 rs6000_mask_atomic_subword (rtx oldval, rtx newval, rtx mask)
22991 rtx x;
22993 x = gen_reg_rtx (SImode);
22994 emit_insn (gen_rtx_SET (x, gen_rtx_AND (SImode,
22995 gen_rtx_NOT (SImode, mask),
22996 oldval)));
22998 x = expand_simple_binop (SImode, IOR, newval, x, x, 1, OPTAB_LIB_WIDEN);
23000 return x;
23003 /* A subroutine of the various atomic expanders. For sub-word operands,
23004 extract WIDE to NARROW via SHIFT. */
23006 static void
23007 rs6000_finish_atomic_subword (rtx narrow, rtx wide, rtx shift)
23009 wide = expand_simple_binop (SImode, LSHIFTRT, wide, shift,
23010 wide, 1, OPTAB_LIB_WIDEN);
23011 emit_move_insn (narrow, gen_lowpart (GET_MODE (narrow), wide));
23014 /* Expand an atomic compare and swap operation. */
23016 void
23017 rs6000_expand_atomic_compare_and_swap (rtx operands[])
23019 rtx boolval, retval, mem, oldval, newval, cond;
23020 rtx label1, label2, x, mask, shift;
23021 machine_mode mode, orig_mode;
23022 enum memmodel mod_s, mod_f;
23023 bool is_weak;
23025 boolval = operands[0];
23026 retval = operands[1];
23027 mem = operands[2];
23028 oldval = operands[3];
23029 newval = operands[4];
23030 is_weak = (INTVAL (operands[5]) != 0);
23031 mod_s = memmodel_base (INTVAL (operands[6]));
23032 mod_f = memmodel_base (INTVAL (operands[7]));
23033 orig_mode = mode = GET_MODE (mem);
23035 mask = shift = NULL_RTX;
23036 if (mode == QImode || mode == HImode)
23038 /* Before power8, we didn't have access to lbarx/lharx, so generate a
23039 lwarx and shift/mask operations. With power8, we need to do the
23040 comparison in SImode, but the store is still done in QI/HImode. */
23041 oldval = convert_modes (SImode, mode, oldval, 1);
23043 if (!TARGET_SYNC_HI_QI)
23045 mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);
23047 /* Shift and mask OLDVAL into position with the word. */
23048 oldval = expand_simple_binop (SImode, ASHIFT, oldval, shift,
23049 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23051 /* Shift and mask NEWVAL into position within the word. */
23052 newval = convert_modes (SImode, mode, newval, 1);
23053 newval = expand_simple_binop (SImode, ASHIFT, newval, shift,
23054 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23057 /* Prepare to adjust the return value. */
23058 retval = gen_reg_rtx (SImode);
23059 mode = SImode;
23061 else if (reg_overlap_mentioned_p (retval, oldval))
23062 oldval = copy_to_reg (oldval);
23064 if (mode != TImode && !reg_or_short_operand (oldval, mode))
23065 oldval = copy_to_mode_reg (mode, oldval);
23067 if (reg_overlap_mentioned_p (retval, newval))
23068 newval = copy_to_reg (newval);
23070 mem = rs6000_pre_atomic_barrier (mem, mod_s);
23072 label1 = NULL_RTX;
23073 if (!is_weak)
23075 label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
23076 emit_label (XEXP (label1, 0));
23078 label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
23080 emit_load_locked (mode, retval, mem);
23082 x = retval;
23083 if (mask)
23084 x = expand_simple_binop (SImode, AND, retval, mask,
23085 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23087 cond = gen_reg_rtx (CCmode);
23088 /* If we have TImode, synthesize a comparison. */
23089 if (mode != TImode)
23090 x = gen_rtx_COMPARE (CCmode, x, oldval);
23091 else
23093 rtx xor1_result = gen_reg_rtx (DImode);
23094 rtx xor2_result = gen_reg_rtx (DImode);
23095 rtx or_result = gen_reg_rtx (DImode);
23096 rtx new_word0 = simplify_gen_subreg (DImode, x, TImode, 0);
23097 rtx new_word1 = simplify_gen_subreg (DImode, x, TImode, 8);
23098 rtx old_word0 = simplify_gen_subreg (DImode, oldval, TImode, 0);
23099 rtx old_word1 = simplify_gen_subreg (DImode, oldval, TImode, 8);
23101 emit_insn (gen_xordi3 (xor1_result, new_word0, old_word0));
23102 emit_insn (gen_xordi3 (xor2_result, new_word1, old_word1));
23103 emit_insn (gen_iordi3 (or_result, xor1_result, xor2_result));
23104 x = gen_rtx_COMPARE (CCmode, or_result, const0_rtx);
23107 emit_insn (gen_rtx_SET (cond, x));
23109 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23110 emit_unlikely_jump (x, label2);
23112 x = newval;
23113 if (mask)
23114 x = rs6000_mask_atomic_subword (retval, newval, mask);
23116 emit_store_conditional (orig_mode, cond, mem, x);
23118 if (!is_weak)
23120 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23121 emit_unlikely_jump (x, label1);
23124 if (!is_mm_relaxed (mod_f))
23125 emit_label (XEXP (label2, 0));
23127 rs6000_post_atomic_barrier (mod_s);
23129 if (is_mm_relaxed (mod_f))
23130 emit_label (XEXP (label2, 0));
23132 if (shift)
23133 rs6000_finish_atomic_subword (operands[1], retval, shift);
23134 else if (mode != GET_MODE (operands[1]))
23135 convert_move (operands[1], retval, 1);
23137 /* In all cases, CR0 contains EQ on success, and NE on failure. */
23138 x = gen_rtx_EQ (SImode, cond, const0_rtx);
23139 emit_insn (gen_rtx_SET (boolval, x));
23142 /* Expand an atomic exchange operation. */
23144 void
23145 rs6000_expand_atomic_exchange (rtx operands[])
23147 rtx retval, mem, val, cond;
23148 machine_mode mode;
23149 enum memmodel model;
23150 rtx label, x, mask, shift;
23152 retval = operands[0];
23153 mem = operands[1];
23154 val = operands[2];
23155 model = memmodel_base (INTVAL (operands[3]));
23156 mode = GET_MODE (mem);
23158 mask = shift = NULL_RTX;
23159 if (!TARGET_SYNC_HI_QI && (mode == QImode || mode == HImode))
23161 mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);
23163 /* Shift and mask VAL into position with the word. */
23164 val = convert_modes (SImode, mode, val, 1);
23165 val = expand_simple_binop (SImode, ASHIFT, val, shift,
23166 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23168 /* Prepare to adjust the return value. */
23169 retval = gen_reg_rtx (SImode);
23170 mode = SImode;
23173 mem = rs6000_pre_atomic_barrier (mem, model);
23175 label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
23176 emit_label (XEXP (label, 0));
23178 emit_load_locked (mode, retval, mem);
23180 x = val;
23181 if (mask)
23182 x = rs6000_mask_atomic_subword (retval, val, mask);
23184 cond = gen_reg_rtx (CCmode);
23185 emit_store_conditional (mode, cond, mem, x);
23187 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23188 emit_unlikely_jump (x, label);
23190 rs6000_post_atomic_barrier (model);
23192 if (shift)
23193 rs6000_finish_atomic_subword (operands[0], retval, shift);
23196 /* Expand an atomic fetch-and-operate pattern. CODE is the binary operation
23197 to perform. MEM is the memory on which to operate. VAL is the second
23198 operand of the binary operator. BEFORE and AFTER are optional locations to
23199 return the value of MEM either before of after the operation. MODEL_RTX
23200 is a CONST_INT containing the memory model to use. */
23202 void
23203 rs6000_expand_atomic_op (enum rtx_code code, rtx mem, rtx val,
23204 rtx orig_before, rtx orig_after, rtx model_rtx)
23206 enum memmodel model = memmodel_base (INTVAL (model_rtx));
23207 machine_mode mode = GET_MODE (mem);
23208 machine_mode store_mode = mode;
23209 rtx label, x, cond, mask, shift;
23210 rtx before = orig_before, after = orig_after;
23212 mask = shift = NULL_RTX;
23213 /* On power8, we want to use SImode for the operation. On previous systems,
23214 use the operation in a subword and shift/mask to get the proper byte or
23215 halfword. */
23216 if (mode == QImode || mode == HImode)
23218 if (TARGET_SYNC_HI_QI)
23220 val = convert_modes (SImode, mode, val, 1);
23222 /* Prepare to adjust the return value. */
23223 before = gen_reg_rtx (SImode);
23224 if (after)
23225 after = gen_reg_rtx (SImode);
23226 mode = SImode;
23228 else
23230 mem = rs6000_adjust_atomic_subword (mem, &shift, &mask);
23232 /* Shift and mask VAL into position with the word. */
23233 val = convert_modes (SImode, mode, val, 1);
23234 val = expand_simple_binop (SImode, ASHIFT, val, shift,
23235 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23237 switch (code)
23239 case IOR:
23240 case XOR:
23241 /* We've already zero-extended VAL. That is sufficient to
23242 make certain that it does not affect other bits. */
23243 mask = NULL;
23244 break;
23246 case AND:
23247 /* If we make certain that all of the other bits in VAL are
23248 set, that will be sufficient to not affect other bits. */
23249 x = gen_rtx_NOT (SImode, mask);
23250 x = gen_rtx_IOR (SImode, x, val);
23251 emit_insn (gen_rtx_SET (val, x));
23252 mask = NULL;
23253 break;
23255 case NOT:
23256 case PLUS:
23257 case MINUS:
23258 /* These will all affect bits outside the field and need
23259 adjustment via MASK within the loop. */
23260 break;
23262 default:
23263 gcc_unreachable ();
23266 /* Prepare to adjust the return value. */
23267 before = gen_reg_rtx (SImode);
23268 if (after)
23269 after = gen_reg_rtx (SImode);
23270 store_mode = mode = SImode;
23274 mem = rs6000_pre_atomic_barrier (mem, model);
23276 label = gen_label_rtx ();
23277 emit_label (label);
23278 label = gen_rtx_LABEL_REF (VOIDmode, label);
23280 if (before == NULL_RTX)
23281 before = gen_reg_rtx (mode);
23283 emit_load_locked (mode, before, mem);
23285 if (code == NOT)
23287 x = expand_simple_binop (mode, AND, before, val,
23288 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23289 after = expand_simple_unop (mode, NOT, x, after, 1);
23291 else
23293 after = expand_simple_binop (mode, code, before, val,
23294 after, 1, OPTAB_LIB_WIDEN);
23297 x = after;
23298 if (mask)
23300 x = expand_simple_binop (SImode, AND, after, mask,
23301 NULL_RTX, 1, OPTAB_LIB_WIDEN);
23302 x = rs6000_mask_atomic_subword (before, x, mask);
23304 else if (store_mode != mode)
23305 x = convert_modes (store_mode, mode, x, 1);
23307 cond = gen_reg_rtx (CCmode);
23308 emit_store_conditional (store_mode, cond, mem, x);
23310 x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
23311 emit_unlikely_jump (x, label);
23313 rs6000_post_atomic_barrier (model);
23315 if (shift)
23317 /* QImode/HImode on machines without lbarx/lharx where we do a lwarx and
23318 then do the calcuations in a SImode register. */
23319 if (orig_before)
23320 rs6000_finish_atomic_subword (orig_before, before, shift);
23321 if (orig_after)
23322 rs6000_finish_atomic_subword (orig_after, after, shift);
23324 else if (store_mode != mode)
23326 /* QImode/HImode on machines with lbarx/lharx where we do the native
23327 operation and then do the calcuations in a SImode register. */
23328 if (orig_before)
23329 convert_move (orig_before, before, 1);
23330 if (orig_after)
23331 convert_move (orig_after, after, 1);
23333 else if (orig_after && after != orig_after)
23334 emit_move_insn (orig_after, after);
23337 /* Emit instructions to move SRC to DST. Called by splitters for
23338 multi-register moves. It will emit at most one instruction for
23339 each register that is accessed; that is, it won't emit li/lis pairs
23340 (or equivalent for 64-bit code). One of SRC or DST must be a hard
23341 register. */
23343 void
23344 rs6000_split_multireg_move (rtx dst, rtx src)
23346 /* The register number of the first register being moved. */
23347 int reg;
23348 /* The mode that is to be moved. */
23349 machine_mode mode;
23350 /* The mode that the move is being done in, and its size. */
23351 machine_mode reg_mode;
23352 int reg_mode_size;
23353 /* The number of registers that will be moved. */
23354 int nregs;
23356 reg = REG_P (dst) ? REGNO (dst) : REGNO (src);
23357 mode = GET_MODE (dst);
23358 nregs = hard_regno_nregs (reg, mode);
23359 if (FP_REGNO_P (reg))
23360 reg_mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode :
23361 (TARGET_HARD_FLOAT ? DFmode : SFmode);
23362 else if (ALTIVEC_REGNO_P (reg))
23363 reg_mode = V16QImode;
23364 else
23365 reg_mode = word_mode;
23366 reg_mode_size = GET_MODE_SIZE (reg_mode);
23368 gcc_assert (reg_mode_size * nregs == GET_MODE_SIZE (mode));
23370 /* TDmode residing in FP registers is special, since the ISA requires that
23371 the lower-numbered word of a register pair is always the most significant
23372 word, even in little-endian mode. This does not match the usual subreg
23373 semantics, so we cannnot use simplify_gen_subreg in those cases. Access
23374 the appropriate constituent registers "by hand" in little-endian mode.
23376 Note we do not need to check for destructive overlap here since TDmode
23377 can only reside in even/odd register pairs. */
23378 if (FP_REGNO_P (reg) && DECIMAL_FLOAT_MODE_P (mode) && !BYTES_BIG_ENDIAN)
23380 rtx p_src, p_dst;
23381 int i;
23383 for (i = 0; i < nregs; i++)
23385 if (REG_P (src) && FP_REGNO_P (REGNO (src)))
23386 p_src = gen_rtx_REG (reg_mode, REGNO (src) + nregs - 1 - i);
23387 else
23388 p_src = simplify_gen_subreg (reg_mode, src, mode,
23389 i * reg_mode_size);
23391 if (REG_P (dst) && FP_REGNO_P (REGNO (dst)))
23392 p_dst = gen_rtx_REG (reg_mode, REGNO (dst) + nregs - 1 - i);
23393 else
23394 p_dst = simplify_gen_subreg (reg_mode, dst, mode,
23395 i * reg_mode_size);
23397 emit_insn (gen_rtx_SET (p_dst, p_src));
23400 return;
23403 if (REG_P (src) && REG_P (dst) && (REGNO (src) < REGNO (dst)))
23405 /* Move register range backwards, if we might have destructive
23406 overlap. */
23407 int i;
23408 for (i = nregs - 1; i >= 0; i--)
23409 emit_insn (gen_rtx_SET (simplify_gen_subreg (reg_mode, dst, mode,
23410 i * reg_mode_size),
23411 simplify_gen_subreg (reg_mode, src, mode,
23412 i * reg_mode_size)));
23414 else
23416 int i;
23417 int j = -1;
23418 bool used_update = false;
23419 rtx restore_basereg = NULL_RTX;
23421 if (MEM_P (src) && INT_REGNO_P (reg))
23423 rtx breg;
23425 if (GET_CODE (XEXP (src, 0)) == PRE_INC
23426 || GET_CODE (XEXP (src, 0)) == PRE_DEC)
23428 rtx delta_rtx;
23429 breg = XEXP (XEXP (src, 0), 0);
23430 delta_rtx = (GET_CODE (XEXP (src, 0)) == PRE_INC
23431 ? GEN_INT (GET_MODE_SIZE (GET_MODE (src)))
23432 : GEN_INT (-GET_MODE_SIZE (GET_MODE (src))));
23433 emit_insn (gen_add3_insn (breg, breg, delta_rtx));
23434 src = replace_equiv_address (src, breg);
23436 else if (! rs6000_offsettable_memref_p (src, reg_mode, true))
23438 if (GET_CODE (XEXP (src, 0)) == PRE_MODIFY)
23440 rtx basereg = XEXP (XEXP (src, 0), 0);
23441 if (TARGET_UPDATE)
23443 rtx ndst = simplify_gen_subreg (reg_mode, dst, mode, 0);
23444 emit_insn (gen_rtx_SET (ndst,
23445 gen_rtx_MEM (reg_mode,
23446 XEXP (src, 0))));
23447 used_update = true;
23449 else
23450 emit_insn (gen_rtx_SET (basereg,
23451 XEXP (XEXP (src, 0), 1)));
23452 src = replace_equiv_address (src, basereg);
23454 else
23456 rtx basereg = gen_rtx_REG (Pmode, reg);
23457 emit_insn (gen_rtx_SET (basereg, XEXP (src, 0)));
23458 src = replace_equiv_address (src, basereg);
23462 breg = XEXP (src, 0);
23463 if (GET_CODE (breg) == PLUS || GET_CODE (breg) == LO_SUM)
23464 breg = XEXP (breg, 0);
23466 /* If the base register we are using to address memory is
23467 also a destination reg, then change that register last. */
23468 if (REG_P (breg)
23469 && REGNO (breg) >= REGNO (dst)
23470 && REGNO (breg) < REGNO (dst) + nregs)
23471 j = REGNO (breg) - REGNO (dst);
23473 else if (MEM_P (dst) && INT_REGNO_P (reg))
23475 rtx breg;
23477 if (GET_CODE (XEXP (dst, 0)) == PRE_INC
23478 || GET_CODE (XEXP (dst, 0)) == PRE_DEC)
23480 rtx delta_rtx;
23481 breg = XEXP (XEXP (dst, 0), 0);
23482 delta_rtx = (GET_CODE (XEXP (dst, 0)) == PRE_INC
23483 ? GEN_INT (GET_MODE_SIZE (GET_MODE (dst)))
23484 : GEN_INT (-GET_MODE_SIZE (GET_MODE (dst))));
23486 /* We have to update the breg before doing the store.
23487 Use store with update, if available. */
23489 if (TARGET_UPDATE)
23491 rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
23492 emit_insn (TARGET_32BIT
23493 ? (TARGET_POWERPC64
23494 ? gen_movdi_si_update (breg, breg, delta_rtx, nsrc)
23495 : gen_movsi_update (breg, breg, delta_rtx, nsrc))
23496 : gen_movdi_di_update (breg, breg, delta_rtx, nsrc));
23497 used_update = true;
23499 else
23500 emit_insn (gen_add3_insn (breg, breg, delta_rtx));
23501 dst = replace_equiv_address (dst, breg);
23503 else if (!rs6000_offsettable_memref_p (dst, reg_mode, true)
23504 && GET_CODE (XEXP (dst, 0)) != LO_SUM)
23506 if (GET_CODE (XEXP (dst, 0)) == PRE_MODIFY)
23508 rtx basereg = XEXP (XEXP (dst, 0), 0);
23509 if (TARGET_UPDATE)
23511 rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
23512 emit_insn (gen_rtx_SET (gen_rtx_MEM (reg_mode,
23513 XEXP (dst, 0)),
23514 nsrc));
23515 used_update = true;
23517 else
23518 emit_insn (gen_rtx_SET (basereg,
23519 XEXP (XEXP (dst, 0), 1)));
23520 dst = replace_equiv_address (dst, basereg);
23522 else
23524 rtx basereg = XEXP (XEXP (dst, 0), 0);
23525 rtx offsetreg = XEXP (XEXP (dst, 0), 1);
23526 gcc_assert (GET_CODE (XEXP (dst, 0)) == PLUS
23527 && REG_P (basereg)
23528 && REG_P (offsetreg)
23529 && REGNO (basereg) != REGNO (offsetreg));
23530 if (REGNO (basereg) == 0)
23532 rtx tmp = offsetreg;
23533 offsetreg = basereg;
23534 basereg = tmp;
23536 emit_insn (gen_add3_insn (basereg, basereg, offsetreg));
23537 restore_basereg = gen_sub3_insn (basereg, basereg, offsetreg);
23538 dst = replace_equiv_address (dst, basereg);
23541 else if (GET_CODE (XEXP (dst, 0)) != LO_SUM)
23542 gcc_assert (rs6000_offsettable_memref_p (dst, reg_mode, true));
23545 for (i = 0; i < nregs; i++)
23547 /* Calculate index to next subword. */
23548 ++j;
23549 if (j == nregs)
23550 j = 0;
23552 /* If compiler already emitted move of first word by
23553 store with update, no need to do anything. */
23554 if (j == 0 && used_update)
23555 continue;
23557 emit_insn (gen_rtx_SET (simplify_gen_subreg (reg_mode, dst, mode,
23558 j * reg_mode_size),
23559 simplify_gen_subreg (reg_mode, src, mode,
23560 j * reg_mode_size)));
23562 if (restore_basereg != NULL_RTX)
23563 emit_insn (restore_basereg);
23568 /* This page contains routines that are used to determine what the
23569 function prologue and epilogue code will do and write them out. */
23571 /* Determine whether the REG is really used. */
23573 static bool
23574 save_reg_p (int reg)
23576 /* We need to mark the PIC offset register live for the same conditions
23577 as it is set up, or otherwise it won't be saved before we clobber it. */
23579 if (reg == RS6000_PIC_OFFSET_TABLE_REGNUM && !TARGET_SINGLE_PIC_BASE)
23581 /* When calling eh_return, we must return true for all the cases
23582 where conditional_register_usage marks the PIC offset reg
23583 call used. */
23584 if (TARGET_TOC && TARGET_MINIMAL_TOC
23585 && (crtl->calls_eh_return
23586 || df_regs_ever_live_p (reg)
23587 || !constant_pool_empty_p ()))
23588 return true;
23590 if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN)
23591 && flag_pic)
23592 return true;
23595 return !call_used_regs[reg] && df_regs_ever_live_p (reg);
23598 /* Return the first fixed-point register that is required to be
23599 saved. 32 if none. */
23602 first_reg_to_save (void)
23604 int first_reg;
23606 /* Find lowest numbered live register. */
23607 for (first_reg = 13; first_reg <= 31; first_reg++)
23608 if (save_reg_p (first_reg))
23609 break;
23611 #if TARGET_MACHO
23612 if (flag_pic
23613 && crtl->uses_pic_offset_table
23614 && first_reg > RS6000_PIC_OFFSET_TABLE_REGNUM)
23615 return RS6000_PIC_OFFSET_TABLE_REGNUM;
23616 #endif
23618 return first_reg;
23621 /* Similar, for FP regs. */
23624 first_fp_reg_to_save (void)
23626 int first_reg;
23628 /* Find lowest numbered live register. */
23629 for (first_reg = 14 + 32; first_reg <= 63; first_reg++)
23630 if (save_reg_p (first_reg))
23631 break;
23633 return first_reg;
23636 /* Similar, for AltiVec regs. */
23638 static int
23639 first_altivec_reg_to_save (void)
23641 int i;
23643 /* Stack frame remains as is unless we are in AltiVec ABI. */
23644 if (! TARGET_ALTIVEC_ABI)
23645 return LAST_ALTIVEC_REGNO + 1;
23647 /* On Darwin, the unwind routines are compiled without
23648 TARGET_ALTIVEC, and use save_world to save/restore the
23649 altivec registers when necessary. */
23650 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
23651 && ! TARGET_ALTIVEC)
23652 return FIRST_ALTIVEC_REGNO + 20;
23654 /* Find lowest numbered live register. */
23655 for (i = FIRST_ALTIVEC_REGNO + 20; i <= LAST_ALTIVEC_REGNO; ++i)
23656 if (save_reg_p (i))
23657 break;
23659 return i;
23662 /* Return a 32-bit mask of the AltiVec registers we need to set in
23663 VRSAVE. Bit n of the return value is 1 if Vn is live. The MSB in
23664 the 32-bit word is 0. */
23666 static unsigned int
23667 compute_vrsave_mask (void)
23669 unsigned int i, mask = 0;
23671 /* On Darwin, the unwind routines are compiled without
23672 TARGET_ALTIVEC, and use save_world to save/restore the
23673 call-saved altivec registers when necessary. */
23674 if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
23675 && ! TARGET_ALTIVEC)
23676 mask |= 0xFFF;
23678 /* First, find out if we use _any_ altivec registers. */
23679 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
23680 if (df_regs_ever_live_p (i))
23681 mask |= ALTIVEC_REG_BIT (i);
23683 if (mask == 0)
23684 return mask;
23686 /* Next, remove the argument registers from the set. These must
23687 be in the VRSAVE mask set by the caller, so we don't need to add
23688 them in again. More importantly, the mask we compute here is
23689 used to generate CLOBBERs in the set_vrsave insn, and we do not
23690 wish the argument registers to die. */
23691 for (i = ALTIVEC_ARG_MIN_REG; i < (unsigned) crtl->args.info.vregno; i++)
23692 mask &= ~ALTIVEC_REG_BIT (i);
23694 /* Similarly, remove the return value from the set. */
23696 bool yes = false;
23697 diddle_return_value (is_altivec_return_reg, &yes);
23698 if (yes)
23699 mask &= ~ALTIVEC_REG_BIT (ALTIVEC_ARG_RETURN);
23702 return mask;
23705 /* For a very restricted set of circumstances, we can cut down the
23706 size of prologues/epilogues by calling our own save/restore-the-world
23707 routines. */
23709 static void
23710 compute_save_world_info (rs6000_stack_t *info)
23712 info->world_save_p = 1;
23713 info->world_save_p
23714 = (WORLD_SAVE_P (info)
23715 && DEFAULT_ABI == ABI_DARWIN
23716 && !cfun->has_nonlocal_label
23717 && info->first_fp_reg_save == FIRST_SAVED_FP_REGNO
23718 && info->first_gp_reg_save == FIRST_SAVED_GP_REGNO
23719 && info->first_altivec_reg_save == FIRST_SAVED_ALTIVEC_REGNO
23720 && info->cr_save_p);
23722 /* This will not work in conjunction with sibcalls. Make sure there
23723 are none. (This check is expensive, but seldom executed.) */
23724 if (WORLD_SAVE_P (info))
23726 rtx_insn *insn;
23727 for (insn = get_last_insn_anywhere (); insn; insn = PREV_INSN (insn))
23728 if (CALL_P (insn) && SIBLING_CALL_P (insn))
23730 info->world_save_p = 0;
23731 break;
23735 if (WORLD_SAVE_P (info))
23737 /* Even if we're not touching VRsave, make sure there's room on the
23738 stack for it, if it looks like we're calling SAVE_WORLD, which
23739 will attempt to save it. */
23740 info->vrsave_size = 4;
23742 /* If we are going to save the world, we need to save the link register too. */
23743 info->lr_save_p = 1;
23745 /* "Save" the VRsave register too if we're saving the world. */
23746 if (info->vrsave_mask == 0)
23747 info->vrsave_mask = compute_vrsave_mask ();
23749 /* Because the Darwin register save/restore routines only handle
23750 F14 .. F31 and V20 .. V31 as per the ABI, perform a consistency
23751 check. */
23752 gcc_assert (info->first_fp_reg_save >= FIRST_SAVED_FP_REGNO
23753 && (info->first_altivec_reg_save
23754 >= FIRST_SAVED_ALTIVEC_REGNO));
23757 return;
23761 static void
23762 is_altivec_return_reg (rtx reg, void *xyes)
23764 bool *yes = (bool *) xyes;
23765 if (REGNO (reg) == ALTIVEC_ARG_RETURN)
23766 *yes = true;
23770 /* Return whether REG is a global user reg or has been specifed by
23771 -ffixed-REG. We should not restore these, and so cannot use
23772 lmw or out-of-line restore functions if there are any. We also
23773 can't save them (well, emit frame notes for them), because frame
23774 unwinding during exception handling will restore saved registers. */
23776 static bool
23777 fixed_reg_p (int reg)
23779 /* Ignore fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] when the
23780 backend sets it, overriding anything the user might have given. */
23781 if (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
23782 && ((DEFAULT_ABI == ABI_V4 && flag_pic)
23783 || (DEFAULT_ABI == ABI_DARWIN && flag_pic)
23784 || (TARGET_TOC && TARGET_MINIMAL_TOC)))
23785 return false;
23787 return fixed_regs[reg];
23790 /* Determine the strategy for savings/restoring registers. */
23792 enum {
23793 SAVE_MULTIPLE = 0x1,
23794 SAVE_INLINE_GPRS = 0x2,
23795 SAVE_INLINE_FPRS = 0x4,
23796 SAVE_NOINLINE_GPRS_SAVES_LR = 0x8,
23797 SAVE_NOINLINE_FPRS_SAVES_LR = 0x10,
23798 SAVE_INLINE_VRS = 0x20,
23799 REST_MULTIPLE = 0x100,
23800 REST_INLINE_GPRS = 0x200,
23801 REST_INLINE_FPRS = 0x400,
23802 REST_NOINLINE_FPRS_DOESNT_RESTORE_LR = 0x800,
23803 REST_INLINE_VRS = 0x1000
23806 static int
23807 rs6000_savres_strategy (rs6000_stack_t *info,
23808 bool using_static_chain_p)
23810 int strategy = 0;
23812 /* Select between in-line and out-of-line save and restore of regs.
23813 First, all the obvious cases where we don't use out-of-line. */
23814 if (crtl->calls_eh_return
23815 || cfun->machine->ra_need_lr)
23816 strategy |= (SAVE_INLINE_FPRS | REST_INLINE_FPRS
23817 | SAVE_INLINE_GPRS | REST_INLINE_GPRS
23818 | SAVE_INLINE_VRS | REST_INLINE_VRS);
23820 if (info->first_gp_reg_save == 32)
23821 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23823 if (info->first_fp_reg_save == 64)
23824 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
23826 if (info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1)
23827 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
23829 /* Define cutoff for using out-of-line functions to save registers. */
23830 if (DEFAULT_ABI == ABI_V4 || TARGET_ELF)
23832 if (!optimize_size)
23834 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
23835 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23836 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
23838 else
23840 /* Prefer out-of-line restore if it will exit. */
23841 if (info->first_fp_reg_save > 61)
23842 strategy |= SAVE_INLINE_FPRS;
23843 if (info->first_gp_reg_save > 29)
23845 if (info->first_fp_reg_save == 64)
23846 strategy |= SAVE_INLINE_GPRS;
23847 else
23848 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23850 if (info->first_altivec_reg_save == LAST_ALTIVEC_REGNO)
23851 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
23854 else if (DEFAULT_ABI == ABI_DARWIN)
23856 if (info->first_fp_reg_save > 60)
23857 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
23858 if (info->first_gp_reg_save > 29)
23859 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23860 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
23862 else
23864 gcc_checking_assert (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2);
23865 if ((flag_shrink_wrap_separate && optimize_function_for_speed_p (cfun))
23866 || info->first_fp_reg_save > 61)
23867 strategy |= SAVE_INLINE_FPRS | REST_INLINE_FPRS;
23868 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23869 strategy |= SAVE_INLINE_VRS | REST_INLINE_VRS;
23872 /* Don't bother to try to save things out-of-line if r11 is occupied
23873 by the static chain. It would require too much fiddling and the
23874 static chain is rarely used anyway. FPRs are saved w.r.t the stack
23875 pointer on Darwin, and AIX uses r1 or r12. */
23876 if (using_static_chain_p
23877 && (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN))
23878 strategy |= ((DEFAULT_ABI == ABI_DARWIN ? 0 : SAVE_INLINE_FPRS)
23879 | SAVE_INLINE_GPRS
23880 | SAVE_INLINE_VRS);
23882 /* Don't ever restore fixed regs. That means we can't use the
23883 out-of-line register restore functions if a fixed reg is in the
23884 range of regs restored. */
23885 if (!(strategy & REST_INLINE_FPRS))
23886 for (int i = info->first_fp_reg_save; i < 64; i++)
23887 if (fixed_regs[i])
23889 strategy |= REST_INLINE_FPRS;
23890 break;
23893 /* We can only use the out-of-line routines to restore fprs if we've
23894 saved all the registers from first_fp_reg_save in the prologue.
23895 Otherwise, we risk loading garbage. Of course, if we have saved
23896 out-of-line then we know we haven't skipped any fprs. */
23897 if ((strategy & SAVE_INLINE_FPRS)
23898 && !(strategy & REST_INLINE_FPRS))
23899 for (int i = info->first_fp_reg_save; i < 64; i++)
23900 if (!save_reg_p (i))
23902 strategy |= REST_INLINE_FPRS;
23903 break;
23906 /* Similarly, for altivec regs. */
23907 if (!(strategy & REST_INLINE_VRS))
23908 for (int i = info->first_altivec_reg_save; i < LAST_ALTIVEC_REGNO + 1; i++)
23909 if (fixed_regs[i])
23911 strategy |= REST_INLINE_VRS;
23912 break;
23915 if ((strategy & SAVE_INLINE_VRS)
23916 && !(strategy & REST_INLINE_VRS))
23917 for (int i = info->first_altivec_reg_save; i < LAST_ALTIVEC_REGNO + 1; i++)
23918 if (!save_reg_p (i))
23920 strategy |= REST_INLINE_VRS;
23921 break;
23924 /* info->lr_save_p isn't yet set if the only reason lr needs to be
23925 saved is an out-of-line save or restore. Set up the value for
23926 the next test (excluding out-of-line gprs). */
23927 bool lr_save_p = (info->lr_save_p
23928 || !(strategy & SAVE_INLINE_FPRS)
23929 || !(strategy & SAVE_INLINE_VRS)
23930 || !(strategy & REST_INLINE_FPRS)
23931 || !(strategy & REST_INLINE_VRS));
23933 if (TARGET_MULTIPLE
23934 && !TARGET_POWERPC64
23935 && info->first_gp_reg_save < 31
23936 && !(flag_shrink_wrap
23937 && flag_shrink_wrap_separate
23938 && optimize_function_for_speed_p (cfun)))
23940 int count = 0;
23941 for (int i = info->first_gp_reg_save; i < 32; i++)
23942 if (save_reg_p (i))
23943 count++;
23945 if (count <= 1)
23946 /* Don't use store multiple if only one reg needs to be
23947 saved. This can occur for example when the ABI_V4 pic reg
23948 (r30) needs to be saved to make calls, but r31 is not
23949 used. */
23950 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23951 else
23953 /* Prefer store multiple for saves over out-of-line
23954 routines, since the store-multiple instruction will
23955 always be smaller. */
23956 strategy |= SAVE_INLINE_GPRS | SAVE_MULTIPLE;
23958 /* The situation is more complicated with load multiple.
23959 We'd prefer to use the out-of-line routines for restores,
23960 since the "exit" out-of-line routines can handle the
23961 restore of LR and the frame teardown. However if doesn't
23962 make sense to use the out-of-line routine if that is the
23963 only reason we'd need to save LR, and we can't use the
23964 "exit" out-of-line gpr restore if we have saved some
23965 fprs; In those cases it is advantageous to use load
23966 multiple when available. */
23967 if (info->first_fp_reg_save != 64 || !lr_save_p)
23968 strategy |= REST_INLINE_GPRS | REST_MULTIPLE;
23972 /* Using the "exit" out-of-line routine does not improve code size
23973 if using it would require lr to be saved and if only saving one
23974 or two gprs. */
23975 else if (!lr_save_p && info->first_gp_reg_save > 29)
23976 strategy |= SAVE_INLINE_GPRS | REST_INLINE_GPRS;
23978 /* Don't ever restore fixed regs. */
23979 if ((strategy & (REST_INLINE_GPRS | REST_MULTIPLE)) != REST_INLINE_GPRS)
23980 for (int i = info->first_gp_reg_save; i < 32; i++)
23981 if (fixed_reg_p (i))
23983 strategy |= REST_INLINE_GPRS;
23984 strategy &= ~REST_MULTIPLE;
23985 break;
23988 /* We can only use load multiple or the out-of-line routines to
23989 restore gprs if we've saved all the registers from
23990 first_gp_reg_save. Otherwise, we risk loading garbage.
23991 Of course, if we have saved out-of-line or used stmw then we know
23992 we haven't skipped any gprs. */
23993 if ((strategy & (SAVE_INLINE_GPRS | SAVE_MULTIPLE)) == SAVE_INLINE_GPRS
23994 && (strategy & (REST_INLINE_GPRS | REST_MULTIPLE)) != REST_INLINE_GPRS)
23995 for (int i = info->first_gp_reg_save; i < 32; i++)
23996 if (!save_reg_p (i))
23998 strategy |= REST_INLINE_GPRS;
23999 strategy &= ~REST_MULTIPLE;
24000 break;
24003 if (TARGET_ELF && TARGET_64BIT)
24005 if (!(strategy & SAVE_INLINE_FPRS))
24006 strategy |= SAVE_NOINLINE_FPRS_SAVES_LR;
24007 else if (!(strategy & SAVE_INLINE_GPRS)
24008 && info->first_fp_reg_save == 64)
24009 strategy |= SAVE_NOINLINE_GPRS_SAVES_LR;
24011 else if (TARGET_AIX && !(strategy & REST_INLINE_FPRS))
24012 strategy |= REST_NOINLINE_FPRS_DOESNT_RESTORE_LR;
24014 if (TARGET_MACHO && !(strategy & SAVE_INLINE_FPRS))
24015 strategy |= SAVE_NOINLINE_FPRS_SAVES_LR;
24017 return strategy;
24020 /* Calculate the stack information for the current function. This is
24021 complicated by having two separate calling sequences, the AIX calling
24022 sequence and the V.4 calling sequence.
24024 AIX (and Darwin/Mac OS X) stack frames look like:
24025 32-bit 64-bit
24026 SP----> +---------------------------------------+
24027 | back chain to caller | 0 0
24028 +---------------------------------------+
24029 | saved CR | 4 8 (8-11)
24030 +---------------------------------------+
24031 | saved LR | 8 16
24032 +---------------------------------------+
24033 | reserved for compilers | 12 24
24034 +---------------------------------------+
24035 | reserved for binders | 16 32
24036 +---------------------------------------+
24037 | saved TOC pointer | 20 40
24038 +---------------------------------------+
24039 | Parameter save area (+padding*) (P) | 24 48
24040 +---------------------------------------+
24041 | Alloca space (A) | 24+P etc.
24042 +---------------------------------------+
24043 | Local variable space (L) | 24+P+A
24044 +---------------------------------------+
24045 | Float/int conversion temporary (X) | 24+P+A+L
24046 +---------------------------------------+
24047 | Save area for AltiVec registers (W) | 24+P+A+L+X
24048 +---------------------------------------+
24049 | AltiVec alignment padding (Y) | 24+P+A+L+X+W
24050 +---------------------------------------+
24051 | Save area for VRSAVE register (Z) | 24+P+A+L+X+W+Y
24052 +---------------------------------------+
24053 | Save area for GP registers (G) | 24+P+A+X+L+X+W+Y+Z
24054 +---------------------------------------+
24055 | Save area for FP registers (F) | 24+P+A+X+L+X+W+Y+Z+G
24056 +---------------------------------------+
24057 old SP->| back chain to caller's caller |
24058 +---------------------------------------+
24060 * If the alloca area is present, the parameter save area is
24061 padded so that the former starts 16-byte aligned.
24063 The required alignment for AIX configurations is two words (i.e., 8
24064 or 16 bytes).
24066 The ELFv2 ABI is a variant of the AIX ABI. Stack frames look like:
24068 SP----> +---------------------------------------+
24069 | Back chain to caller | 0
24070 +---------------------------------------+
24071 | Save area for CR | 8
24072 +---------------------------------------+
24073 | Saved LR | 16
24074 +---------------------------------------+
24075 | Saved TOC pointer | 24
24076 +---------------------------------------+
24077 | Parameter save area (+padding*) (P) | 32
24078 +---------------------------------------+
24079 | Alloca space (A) | 32+P
24080 +---------------------------------------+
24081 | Local variable space (L) | 32+P+A
24082 +---------------------------------------+
24083 | Save area for AltiVec registers (W) | 32+P+A+L
24084 +---------------------------------------+
24085 | AltiVec alignment padding (Y) | 32+P+A+L+W
24086 +---------------------------------------+
24087 | Save area for GP registers (G) | 32+P+A+L+W+Y
24088 +---------------------------------------+
24089 | Save area for FP registers (F) | 32+P+A+L+W+Y+G
24090 +---------------------------------------+
24091 old SP->| back chain to caller's caller | 32+P+A+L+W+Y+G+F
24092 +---------------------------------------+
24094 * If the alloca area is present, the parameter save area is
24095 padded so that the former starts 16-byte aligned.
24097 V.4 stack frames look like:
24099 SP----> +---------------------------------------+
24100 | back chain to caller | 0
24101 +---------------------------------------+
24102 | caller's saved LR | 4
24103 +---------------------------------------+
24104 | Parameter save area (+padding*) (P) | 8
24105 +---------------------------------------+
24106 | Alloca space (A) | 8+P
24107 +---------------------------------------+
24108 | Varargs save area (V) | 8+P+A
24109 +---------------------------------------+
24110 | Local variable space (L) | 8+P+A+V
24111 +---------------------------------------+
24112 | Float/int conversion temporary (X) | 8+P+A+V+L
24113 +---------------------------------------+
24114 | Save area for AltiVec registers (W) | 8+P+A+V+L+X
24115 +---------------------------------------+
24116 | AltiVec alignment padding (Y) | 8+P+A+V+L+X+W
24117 +---------------------------------------+
24118 | Save area for VRSAVE register (Z) | 8+P+A+V+L+X+W+Y
24119 +---------------------------------------+
24120 | saved CR (C) | 8+P+A+V+L+X+W+Y+Z
24121 +---------------------------------------+
24122 | Save area for GP registers (G) | 8+P+A+V+L+X+W+Y+Z+C
24123 +---------------------------------------+
24124 | Save area for FP registers (F) | 8+P+A+V+L+X+W+Y+Z+C+G
24125 +---------------------------------------+
24126 old SP->| back chain to caller's caller |
24127 +---------------------------------------+
24129 * If the alloca area is present and the required alignment is
24130 16 bytes, the parameter save area is padded so that the
24131 alloca area starts 16-byte aligned.
24133 The required alignment for V.4 is 16 bytes, or 8 bytes if -meabi is
24134 given. (But note below and in sysv4.h that we require only 8 and
24135 may round up the size of our stack frame anyways. The historical
24136 reason is early versions of powerpc-linux which didn't properly
24137 align the stack at program startup. A happy side-effect is that
24138 -mno-eabi libraries can be used with -meabi programs.)
24140 The EABI configuration defaults to the V.4 layout. However,
24141 the stack alignment requirements may differ. If -mno-eabi is not
24142 given, the required stack alignment is 8 bytes; if -mno-eabi is
24143 given, the required alignment is 16 bytes. (But see V.4 comment
24144 above.) */
24146 #ifndef ABI_STACK_BOUNDARY
24147 #define ABI_STACK_BOUNDARY STACK_BOUNDARY
24148 #endif
24150 static rs6000_stack_t *
24151 rs6000_stack_info (void)
24153 /* We should never be called for thunks, we are not set up for that. */
24154 gcc_assert (!cfun->is_thunk);
24156 rs6000_stack_t *info = &stack_info;
24157 int reg_size = TARGET_32BIT ? 4 : 8;
24158 int ehrd_size;
24159 int ehcr_size;
24160 int save_align;
24161 int first_gp;
24162 HOST_WIDE_INT non_fixed_size;
24163 bool using_static_chain_p;
24165 if (reload_completed && info->reload_completed)
24166 return info;
24168 memset (info, 0, sizeof (*info));
24169 info->reload_completed = reload_completed;
24171 /* Select which calling sequence. */
24172 info->abi = DEFAULT_ABI;
24174 /* Calculate which registers need to be saved & save area size. */
24175 info->first_gp_reg_save = first_reg_to_save ();
24176 /* Assume that we will have to save RS6000_PIC_OFFSET_TABLE_REGNUM,
24177 even if it currently looks like we won't. Reload may need it to
24178 get at a constant; if so, it will have already created a constant
24179 pool entry for it. */
24180 if (((TARGET_TOC && TARGET_MINIMAL_TOC)
24181 || (flag_pic == 1 && DEFAULT_ABI == ABI_V4)
24182 || (flag_pic && DEFAULT_ABI == ABI_DARWIN))
24183 && crtl->uses_const_pool
24184 && info->first_gp_reg_save > RS6000_PIC_OFFSET_TABLE_REGNUM)
24185 first_gp = RS6000_PIC_OFFSET_TABLE_REGNUM;
24186 else
24187 first_gp = info->first_gp_reg_save;
24189 info->gp_size = reg_size * (32 - first_gp);
24191 info->first_fp_reg_save = first_fp_reg_to_save ();
24192 info->fp_size = 8 * (64 - info->first_fp_reg_save);
24194 info->first_altivec_reg_save = first_altivec_reg_to_save ();
24195 info->altivec_size = 16 * (LAST_ALTIVEC_REGNO + 1
24196 - info->first_altivec_reg_save);
24198 /* Does this function call anything? */
24199 info->calls_p = (!crtl->is_leaf || cfun->machine->ra_needs_full_frame);
24201 /* Determine if we need to save the condition code registers. */
24202 if (save_reg_p (CR2_REGNO)
24203 || save_reg_p (CR3_REGNO)
24204 || save_reg_p (CR4_REGNO))
24206 info->cr_save_p = 1;
24207 if (DEFAULT_ABI == ABI_V4)
24208 info->cr_size = reg_size;
24211 /* If the current function calls __builtin_eh_return, then we need
24212 to allocate stack space for registers that will hold data for
24213 the exception handler. */
24214 if (crtl->calls_eh_return)
24216 unsigned int i;
24217 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
24218 continue;
24220 ehrd_size = i * UNITS_PER_WORD;
24222 else
24223 ehrd_size = 0;
24225 /* In the ELFv2 ABI, we also need to allocate space for separate
24226 CR field save areas if the function calls __builtin_eh_return. */
24227 if (DEFAULT_ABI == ABI_ELFv2 && crtl->calls_eh_return)
24229 /* This hard-codes that we have three call-saved CR fields. */
24230 ehcr_size = 3 * reg_size;
24231 /* We do *not* use the regular CR save mechanism. */
24232 info->cr_save_p = 0;
24234 else
24235 ehcr_size = 0;
24237 /* Determine various sizes. */
24238 info->reg_size = reg_size;
24239 info->fixed_size = RS6000_SAVE_AREA;
24240 info->vars_size = RS6000_ALIGN (get_frame_size (), 8);
24241 if (cfun->calls_alloca)
24242 info->parm_size =
24243 RS6000_ALIGN (crtl->outgoing_args_size + info->fixed_size,
24244 STACK_BOUNDARY / BITS_PER_UNIT) - info->fixed_size;
24245 else
24246 info->parm_size = RS6000_ALIGN (crtl->outgoing_args_size,
24247 TARGET_ALTIVEC ? 16 : 8);
24248 if (FRAME_GROWS_DOWNWARD)
24249 info->vars_size
24250 += RS6000_ALIGN (info->fixed_size + info->vars_size + info->parm_size,
24251 ABI_STACK_BOUNDARY / BITS_PER_UNIT)
24252 - (info->fixed_size + info->vars_size + info->parm_size);
24254 if (TARGET_ALTIVEC_ABI)
24255 info->vrsave_mask = compute_vrsave_mask ();
24257 if (TARGET_ALTIVEC_VRSAVE && info->vrsave_mask)
24258 info->vrsave_size = 4;
24260 compute_save_world_info (info);
24262 /* Calculate the offsets. */
24263 switch (DEFAULT_ABI)
24265 case ABI_NONE:
24266 default:
24267 gcc_unreachable ();
24269 case ABI_AIX:
24270 case ABI_ELFv2:
24271 case ABI_DARWIN:
24272 info->fp_save_offset = -info->fp_size;
24273 info->gp_save_offset = info->fp_save_offset - info->gp_size;
24275 if (TARGET_ALTIVEC_ABI)
24277 info->vrsave_save_offset = info->gp_save_offset - info->vrsave_size;
24279 /* Align stack so vector save area is on a quadword boundary.
24280 The padding goes above the vectors. */
24281 if (info->altivec_size != 0)
24282 info->altivec_padding_size = info->vrsave_save_offset & 0xF;
24284 info->altivec_save_offset = info->vrsave_save_offset
24285 - info->altivec_padding_size
24286 - info->altivec_size;
24287 gcc_assert (info->altivec_size == 0
24288 || info->altivec_save_offset % 16 == 0);
24290 /* Adjust for AltiVec case. */
24291 info->ehrd_offset = info->altivec_save_offset - ehrd_size;
24293 else
24294 info->ehrd_offset = info->gp_save_offset - ehrd_size;
24296 info->ehcr_offset = info->ehrd_offset - ehcr_size;
24297 info->cr_save_offset = reg_size; /* first word when 64-bit. */
24298 info->lr_save_offset = 2*reg_size;
24299 break;
24301 case ABI_V4:
24302 info->fp_save_offset = -info->fp_size;
24303 info->gp_save_offset = info->fp_save_offset - info->gp_size;
24304 info->cr_save_offset = info->gp_save_offset - info->cr_size;
24306 if (TARGET_ALTIVEC_ABI)
24308 info->vrsave_save_offset = info->cr_save_offset - info->vrsave_size;
24310 /* Align stack so vector save area is on a quadword boundary. */
24311 if (info->altivec_size != 0)
24312 info->altivec_padding_size = 16 - (-info->vrsave_save_offset % 16);
24314 info->altivec_save_offset = info->vrsave_save_offset
24315 - info->altivec_padding_size
24316 - info->altivec_size;
24318 /* Adjust for AltiVec case. */
24319 info->ehrd_offset = info->altivec_save_offset;
24321 else
24322 info->ehrd_offset = info->cr_save_offset;
24324 info->ehrd_offset -= ehrd_size;
24325 info->lr_save_offset = reg_size;
24328 save_align = (TARGET_ALTIVEC_ABI || DEFAULT_ABI == ABI_DARWIN) ? 16 : 8;
24329 info->save_size = RS6000_ALIGN (info->fp_size
24330 + info->gp_size
24331 + info->altivec_size
24332 + info->altivec_padding_size
24333 + ehrd_size
24334 + ehcr_size
24335 + info->cr_size
24336 + info->vrsave_size,
24337 save_align);
24339 non_fixed_size = info->vars_size + info->parm_size + info->save_size;
24341 info->total_size = RS6000_ALIGN (non_fixed_size + info->fixed_size,
24342 ABI_STACK_BOUNDARY / BITS_PER_UNIT);
24344 /* Determine if we need to save the link register. */
24345 if (info->calls_p
24346 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
24347 && crtl->profile
24348 && !TARGET_PROFILE_KERNEL)
24349 || (DEFAULT_ABI == ABI_V4 && cfun->calls_alloca)
24350 #ifdef TARGET_RELOCATABLE
24351 || (DEFAULT_ABI == ABI_V4
24352 && (TARGET_RELOCATABLE || flag_pic > 1)
24353 && !constant_pool_empty_p ())
24354 #endif
24355 || rs6000_ra_ever_killed ())
24356 info->lr_save_p = 1;
24358 using_static_chain_p = (cfun->static_chain_decl != NULL_TREE
24359 && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
24360 && call_used_regs[STATIC_CHAIN_REGNUM]);
24361 info->savres_strategy = rs6000_savres_strategy (info, using_static_chain_p);
24363 if (!(info->savres_strategy & SAVE_INLINE_GPRS)
24364 || !(info->savres_strategy & SAVE_INLINE_FPRS)
24365 || !(info->savres_strategy & SAVE_INLINE_VRS)
24366 || !(info->savres_strategy & REST_INLINE_GPRS)
24367 || !(info->savres_strategy & REST_INLINE_FPRS)
24368 || !(info->savres_strategy & REST_INLINE_VRS))
24369 info->lr_save_p = 1;
24371 if (info->lr_save_p)
24372 df_set_regs_ever_live (LR_REGNO, true);
24374 /* Determine if we need to allocate any stack frame:
24376 For AIX we need to push the stack if a frame pointer is needed
24377 (because the stack might be dynamically adjusted), if we are
24378 debugging, if we make calls, or if the sum of fp_save, gp_save,
24379 and local variables are more than the space needed to save all
24380 non-volatile registers: 32-bit: 18*8 + 19*4 = 220 or 64-bit: 18*8
24381 + 18*8 = 288 (GPR13 reserved).
24383 For V.4 we don't have the stack cushion that AIX uses, but assume
24384 that the debugger can handle stackless frames. */
24386 if (info->calls_p)
24387 info->push_p = 1;
24389 else if (DEFAULT_ABI == ABI_V4)
24390 info->push_p = non_fixed_size != 0;
24392 else if (frame_pointer_needed)
24393 info->push_p = 1;
24395 else if (TARGET_XCOFF && write_symbols != NO_DEBUG)
24396 info->push_p = 1;
24398 else
24399 info->push_p = non_fixed_size > (TARGET_32BIT ? 220 : 288);
24401 return info;
24404 static void
24405 debug_stack_info (rs6000_stack_t *info)
24407 const char *abi_string;
24409 if (! info)
24410 info = rs6000_stack_info ();
24412 fprintf (stderr, "\nStack information for function %s:\n",
24413 ((current_function_decl && DECL_NAME (current_function_decl))
24414 ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
24415 : "<unknown>"));
24417 switch (info->abi)
24419 default: abi_string = "Unknown"; break;
24420 case ABI_NONE: abi_string = "NONE"; break;
24421 case ABI_AIX: abi_string = "AIX"; break;
24422 case ABI_ELFv2: abi_string = "ELFv2"; break;
24423 case ABI_DARWIN: abi_string = "Darwin"; break;
24424 case ABI_V4: abi_string = "V.4"; break;
24427 fprintf (stderr, "\tABI = %5s\n", abi_string);
24429 if (TARGET_ALTIVEC_ABI)
24430 fprintf (stderr, "\tALTIVEC ABI extensions enabled.\n");
24432 if (info->first_gp_reg_save != 32)
24433 fprintf (stderr, "\tfirst_gp_reg_save = %5d\n", info->first_gp_reg_save);
24435 if (info->first_fp_reg_save != 64)
24436 fprintf (stderr, "\tfirst_fp_reg_save = %5d\n", info->first_fp_reg_save);
24438 if (info->first_altivec_reg_save <= LAST_ALTIVEC_REGNO)
24439 fprintf (stderr, "\tfirst_altivec_reg_save = %5d\n",
24440 info->first_altivec_reg_save);
24442 if (info->lr_save_p)
24443 fprintf (stderr, "\tlr_save_p = %5d\n", info->lr_save_p);
24445 if (info->cr_save_p)
24446 fprintf (stderr, "\tcr_save_p = %5d\n", info->cr_save_p);
24448 if (info->vrsave_mask)
24449 fprintf (stderr, "\tvrsave_mask = 0x%x\n", info->vrsave_mask);
24451 if (info->push_p)
24452 fprintf (stderr, "\tpush_p = %5d\n", info->push_p);
24454 if (info->calls_p)
24455 fprintf (stderr, "\tcalls_p = %5d\n", info->calls_p);
24457 if (info->gp_size)
24458 fprintf (stderr, "\tgp_save_offset = %5d\n", info->gp_save_offset);
24460 if (info->fp_size)
24461 fprintf (stderr, "\tfp_save_offset = %5d\n", info->fp_save_offset);
24463 if (info->altivec_size)
24464 fprintf (stderr, "\taltivec_save_offset = %5d\n",
24465 info->altivec_save_offset);
24467 if (info->vrsave_size)
24468 fprintf (stderr, "\tvrsave_save_offset = %5d\n",
24469 info->vrsave_save_offset);
24471 if (info->lr_save_p)
24472 fprintf (stderr, "\tlr_save_offset = %5d\n", info->lr_save_offset);
24474 if (info->cr_save_p)
24475 fprintf (stderr, "\tcr_save_offset = %5d\n", info->cr_save_offset);
24477 if (info->varargs_save_offset)
24478 fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset);
24480 if (info->total_size)
24481 fprintf (stderr, "\ttotal_size = " HOST_WIDE_INT_PRINT_DEC"\n",
24482 info->total_size);
24484 if (info->vars_size)
24485 fprintf (stderr, "\tvars_size = " HOST_WIDE_INT_PRINT_DEC"\n",
24486 info->vars_size);
24488 if (info->parm_size)
24489 fprintf (stderr, "\tparm_size = %5d\n", info->parm_size);
24491 if (info->fixed_size)
24492 fprintf (stderr, "\tfixed_size = %5d\n", info->fixed_size);
24494 if (info->gp_size)
24495 fprintf (stderr, "\tgp_size = %5d\n", info->gp_size);
24497 if (info->fp_size)
24498 fprintf (stderr, "\tfp_size = %5d\n", info->fp_size);
24500 if (info->altivec_size)
24501 fprintf (stderr, "\taltivec_size = %5d\n", info->altivec_size);
24503 if (info->vrsave_size)
24504 fprintf (stderr, "\tvrsave_size = %5d\n", info->vrsave_size);
24506 if (info->altivec_padding_size)
24507 fprintf (stderr, "\taltivec_padding_size= %5d\n",
24508 info->altivec_padding_size);
24510 if (info->cr_size)
24511 fprintf (stderr, "\tcr_size = %5d\n", info->cr_size);
24513 if (info->save_size)
24514 fprintf (stderr, "\tsave_size = %5d\n", info->save_size);
24516 if (info->reg_size != 4)
24517 fprintf (stderr, "\treg_size = %5d\n", info->reg_size);
24519 fprintf (stderr, "\tsave-strategy = %04x\n", info->savres_strategy);
24521 fprintf (stderr, "\n");
24525 rs6000_return_addr (int count, rtx frame)
24527 /* We can't use get_hard_reg_initial_val for LR when count == 0 if LR
24528 is trashed by the prologue, as it is for PIC on ABI_V4 and Darwin. */
24529 if (count != 0
24530 || ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN) && flag_pic))
24532 cfun->machine->ra_needs_full_frame = 1;
24534 if (count == 0)
24535 /* FRAME is set to frame_pointer_rtx by the generic code, but that
24536 is good for loading 0(r1) only when !FRAME_GROWS_DOWNWARD. */
24537 frame = stack_pointer_rtx;
24538 rtx prev_frame_addr = memory_address (Pmode, frame);
24539 rtx prev_frame = copy_to_reg (gen_rtx_MEM (Pmode, prev_frame_addr));
24540 rtx lr_save_off = plus_constant (Pmode,
24541 prev_frame, RETURN_ADDRESS_OFFSET);
24542 rtx lr_save_addr = memory_address (Pmode, lr_save_off);
24543 return gen_rtx_MEM (Pmode, lr_save_addr);
24546 cfun->machine->ra_need_lr = 1;
24547 return get_hard_reg_initial_val (Pmode, LR_REGNO);
24550 /* Say whether a function is a candidate for sibcall handling or not. */
24552 static bool
24553 rs6000_function_ok_for_sibcall (tree decl, tree exp)
24555 tree fntype;
24557 /* The sibcall epilogue may clobber the static chain register.
24558 ??? We could work harder and avoid that, but it's probably
24559 not worth the hassle in practice. */
24560 if (CALL_EXPR_STATIC_CHAIN (exp))
24561 return false;
24563 if (decl)
24564 fntype = TREE_TYPE (decl);
24565 else
24566 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (exp)));
24568 /* We can't do it if the called function has more vector parameters
24569 than the current function; there's nowhere to put the VRsave code. */
24570 if (TARGET_ALTIVEC_ABI
24571 && TARGET_ALTIVEC_VRSAVE
24572 && !(decl && decl == current_function_decl))
24574 function_args_iterator args_iter;
24575 tree type;
24576 int nvreg = 0;
24578 /* Functions with vector parameters are required to have a
24579 prototype, so the argument type info must be available
24580 here. */
24581 FOREACH_FUNCTION_ARGS(fntype, type, args_iter)
24582 if (TREE_CODE (type) == VECTOR_TYPE
24583 && ALTIVEC_OR_VSX_VECTOR_MODE (TYPE_MODE (type)))
24584 nvreg++;
24586 FOREACH_FUNCTION_ARGS(TREE_TYPE (current_function_decl), type, args_iter)
24587 if (TREE_CODE (type) == VECTOR_TYPE
24588 && ALTIVEC_OR_VSX_VECTOR_MODE (TYPE_MODE (type)))
24589 nvreg--;
24591 if (nvreg > 0)
24592 return false;
24595 /* Under the AIX or ELFv2 ABIs we can't allow calls to non-local
24596 functions, because the callee may have a different TOC pointer to
24597 the caller and there's no way to ensure we restore the TOC when
24598 we return. With the secure-plt SYSV ABI we can't make non-local
24599 calls when -fpic/PIC because the plt call stubs use r30. */
24600 if (DEFAULT_ABI == ABI_DARWIN
24601 || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
24602 && decl
24603 && !DECL_EXTERNAL (decl)
24604 && !DECL_WEAK (decl)
24605 && (*targetm.binds_local_p) (decl))
24606 || (DEFAULT_ABI == ABI_V4
24607 && (!TARGET_SECURE_PLT
24608 || !flag_pic
24609 || (decl
24610 && (*targetm.binds_local_p) (decl)))))
24612 tree attr_list = TYPE_ATTRIBUTES (fntype);
24614 if (!lookup_attribute ("longcall", attr_list)
24615 || lookup_attribute ("shortcall", attr_list))
24616 return true;
24619 return false;
24622 static int
24623 rs6000_ra_ever_killed (void)
24625 rtx_insn *top;
24626 rtx reg;
24627 rtx_insn *insn;
24629 if (cfun->is_thunk)
24630 return 0;
24632 if (cfun->machine->lr_save_state)
24633 return cfun->machine->lr_save_state - 1;
24635 /* regs_ever_live has LR marked as used if any sibcalls are present,
24636 but this should not force saving and restoring in the
24637 pro/epilogue. Likewise, reg_set_between_p thinks a sibcall
24638 clobbers LR, so that is inappropriate. */
24640 /* Also, the prologue can generate a store into LR that
24641 doesn't really count, like this:
24643 move LR->R0
24644 bcl to set PIC register
24645 move LR->R31
24646 move R0->LR
24648 When we're called from the epilogue, we need to avoid counting
24649 this as a store. */
24651 push_topmost_sequence ();
24652 top = get_insns ();
24653 pop_topmost_sequence ();
24654 reg = gen_rtx_REG (Pmode, LR_REGNO);
24656 for (insn = NEXT_INSN (top); insn != NULL_RTX; insn = NEXT_INSN (insn))
24658 if (INSN_P (insn))
24660 if (CALL_P (insn))
24662 if (!SIBLING_CALL_P (insn))
24663 return 1;
24665 else if (find_regno_note (insn, REG_INC, LR_REGNO))
24666 return 1;
24667 else if (set_of (reg, insn) != NULL_RTX
24668 && !prologue_epilogue_contains (insn))
24669 return 1;
24672 return 0;
24675 /* Emit instructions needed to load the TOC register.
24676 This is only needed when TARGET_TOC, TARGET_MINIMAL_TOC, and there is
24677 a constant pool; or for SVR4 -fpic. */
24679 void
24680 rs6000_emit_load_toc_table (int fromprolog)
24682 rtx dest;
24683 dest = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
24685 if (TARGET_ELF && TARGET_SECURE_PLT && DEFAULT_ABI == ABI_V4 && flag_pic)
24687 char buf[30];
24688 rtx lab, tmp1, tmp2, got;
24690 lab = gen_label_rtx ();
24691 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (lab));
24692 lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
24693 if (flag_pic == 2)
24695 got = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (toc_label_name));
24696 need_toc_init = 1;
24698 else
24699 got = rs6000_got_sym ();
24700 tmp1 = tmp2 = dest;
24701 if (!fromprolog)
24703 tmp1 = gen_reg_rtx (Pmode);
24704 tmp2 = gen_reg_rtx (Pmode);
24706 emit_insn (gen_load_toc_v4_PIC_1 (lab));
24707 emit_move_insn (tmp1, gen_rtx_REG (Pmode, LR_REGNO));
24708 emit_insn (gen_load_toc_v4_PIC_3b (tmp2, tmp1, got, lab));
24709 emit_insn (gen_load_toc_v4_PIC_3c (dest, tmp2, got, lab));
24711 else if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 1)
24713 emit_insn (gen_load_toc_v4_pic_si ());
24714 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
24716 else if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 2)
24718 char buf[30];
24719 rtx temp0 = (fromprolog
24720 ? gen_rtx_REG (Pmode, 0)
24721 : gen_reg_rtx (Pmode));
24723 if (fromprolog)
24725 rtx symF, symL;
24727 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
24728 symF = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
24730 ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
24731 symL = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
24733 emit_insn (gen_load_toc_v4_PIC_1 (symF));
24734 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
24735 emit_insn (gen_load_toc_v4_PIC_2 (temp0, dest, symL, symF));
24737 else
24739 rtx tocsym, lab;
24741 tocsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (toc_label_name));
24742 need_toc_init = 1;
24743 lab = gen_label_rtx ();
24744 emit_insn (gen_load_toc_v4_PIC_1b (tocsym, lab));
24745 emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
24746 if (TARGET_LINK_STACK)
24747 emit_insn (gen_addsi3 (dest, dest, GEN_INT (4)));
24748 emit_move_insn (temp0, gen_rtx_MEM (Pmode, dest));
24750 emit_insn (gen_addsi3 (dest, temp0, dest));
24752 else if (TARGET_ELF && !TARGET_AIX && flag_pic == 0 && TARGET_MINIMAL_TOC)
24754 /* This is for AIX code running in non-PIC ELF32. */
24755 rtx realsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (toc_label_name));
24757 need_toc_init = 1;
24758 emit_insn (gen_elf_high (dest, realsym));
24759 emit_insn (gen_elf_low (dest, dest, realsym));
24761 else
24763 gcc_assert (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2);
24765 if (TARGET_32BIT)
24766 emit_insn (gen_load_toc_aix_si (dest));
24767 else
24768 emit_insn (gen_load_toc_aix_di (dest));
24772 /* Emit instructions to restore the link register after determining where
24773 its value has been stored. */
24775 void
24776 rs6000_emit_eh_reg_restore (rtx source, rtx scratch)
24778 rs6000_stack_t *info = rs6000_stack_info ();
24779 rtx operands[2];
24781 operands[0] = source;
24782 operands[1] = scratch;
24784 if (info->lr_save_p)
24786 rtx frame_rtx = stack_pointer_rtx;
24787 HOST_WIDE_INT sp_offset = 0;
24788 rtx tmp;
24790 if (frame_pointer_needed
24791 || cfun->calls_alloca
24792 || info->total_size > 32767)
24794 tmp = gen_frame_mem (Pmode, frame_rtx);
24795 emit_move_insn (operands[1], tmp);
24796 frame_rtx = operands[1];
24798 else if (info->push_p)
24799 sp_offset = info->total_size;
24801 tmp = plus_constant (Pmode, frame_rtx,
24802 info->lr_save_offset + sp_offset);
24803 tmp = gen_frame_mem (Pmode, tmp);
24804 emit_move_insn (tmp, operands[0]);
24806 else
24807 emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO), operands[0]);
24809 /* Freeze lr_save_p. We've just emitted rtl that depends on the
24810 state of lr_save_p so any change from here on would be a bug. In
24811 particular, stop rs6000_ra_ever_killed from considering the SET
24812 of lr we may have added just above. */
24813 cfun->machine->lr_save_state = info->lr_save_p + 1;
24816 static GTY(()) alias_set_type set = -1;
24818 alias_set_type
24819 get_TOC_alias_set (void)
24821 if (set == -1)
24822 set = new_alias_set ();
24823 return set;
24826 /* This returns nonzero if the current function uses the TOC. This is
24827 determined by the presence of (use (unspec ... UNSPEC_TOC)), which
24828 is generated by the ABI_V4 load_toc_* patterns.
24829 Return 2 instead of 1 if the load_toc_* pattern is in the function
24830 partition that doesn't start the function. */
24831 #if TARGET_ELF
24832 static int
24833 uses_TOC (void)
24835 rtx_insn *insn;
24836 int ret = 1;
24838 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
24840 if (INSN_P (insn))
24842 rtx pat = PATTERN (insn);
24843 int i;
24845 if (GET_CODE (pat) == PARALLEL)
24846 for (i = 0; i < XVECLEN (pat, 0); i++)
24848 rtx sub = XVECEXP (pat, 0, i);
24849 if (GET_CODE (sub) == USE)
24851 sub = XEXP (sub, 0);
24852 if (GET_CODE (sub) == UNSPEC
24853 && XINT (sub, 1) == UNSPEC_TOC)
24854 return ret;
24858 else if (crtl->has_bb_partition
24859 && NOTE_P (insn)
24860 && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
24861 ret = 2;
24863 return 0;
24865 #endif
24868 create_TOC_reference (rtx symbol, rtx largetoc_reg)
24870 rtx tocrel, tocreg, hi;
24872 if (TARGET_DEBUG_ADDR)
24874 if (GET_CODE (symbol) == SYMBOL_REF)
24875 fprintf (stderr, "\ncreate_TOC_reference, (symbol_ref %s)\n",
24876 XSTR (symbol, 0));
24877 else
24879 fprintf (stderr, "\ncreate_TOC_reference, code %s:\n",
24880 GET_RTX_NAME (GET_CODE (symbol)));
24881 debug_rtx (symbol);
24885 if (!can_create_pseudo_p ())
24886 df_set_regs_ever_live (TOC_REGISTER, true);
24888 tocreg = gen_rtx_REG (Pmode, TOC_REGISTER);
24889 tocrel = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, symbol, tocreg), UNSPEC_TOCREL);
24890 if (TARGET_CMODEL == CMODEL_SMALL || can_create_pseudo_p ())
24891 return tocrel;
24893 hi = gen_rtx_HIGH (Pmode, copy_rtx (tocrel));
24894 if (largetoc_reg != NULL)
24896 emit_move_insn (largetoc_reg, hi);
24897 hi = largetoc_reg;
24899 return gen_rtx_LO_SUM (Pmode, hi, tocrel);
24902 /* Issue assembly directives that create a reference to the given DWARF
24903 FRAME_TABLE_LABEL from the current function section. */
24904 void
24905 rs6000_aix_asm_output_dwarf_table_ref (char * frame_table_label)
24907 fprintf (asm_out_file, "\t.ref %s\n",
24908 (* targetm.strip_name_encoding) (frame_table_label));
24911 /* This ties together stack memory (MEM with an alias set of frame_alias_set)
24912 and the change to the stack pointer. */
24914 static void
24915 rs6000_emit_stack_tie (rtx fp, bool hard_frame_needed)
24917 rtvec p;
24918 int i;
24919 rtx regs[3];
24921 i = 0;
24922 regs[i++] = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
24923 if (hard_frame_needed)
24924 regs[i++] = gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
24925 if (!(REGNO (fp) == STACK_POINTER_REGNUM
24926 || (hard_frame_needed
24927 && REGNO (fp) == HARD_FRAME_POINTER_REGNUM)))
24928 regs[i++] = fp;
24930 p = rtvec_alloc (i);
24931 while (--i >= 0)
24933 rtx mem = gen_frame_mem (BLKmode, regs[i]);
24934 RTVEC_ELT (p, i) = gen_rtx_SET (mem, const0_rtx);
24937 emit_insn (gen_stack_tie (gen_rtx_PARALLEL (VOIDmode, p)));
24940 /* Allocate SIZE_INT bytes on the stack using a store with update style insn
24941 and set the appropriate attributes for the generated insn. Return the
24942 first insn which adjusts the stack pointer or the last insn before
24943 the stack adjustment loop.
24945 SIZE_INT is used to create the CFI note for the allocation.
24947 SIZE_RTX is an rtx containing the size of the adjustment. Note that
24948 since stacks grow to lower addresses its runtime value is -SIZE_INT.
24950 ORIG_SP contains the backchain value that must be stored at *sp. */
24952 static rtx_insn *
24953 rs6000_emit_allocate_stack_1 (HOST_WIDE_INT size_int, rtx orig_sp)
24955 rtx_insn *insn;
24957 rtx size_rtx = GEN_INT (-size_int);
24958 if (size_int > 32767)
24960 rtx tmp_reg = gen_rtx_REG (Pmode, 0);
24961 /* Need a note here so that try_split doesn't get confused. */
24962 if (get_last_insn () == NULL_RTX)
24963 emit_note (NOTE_INSN_DELETED);
24964 insn = emit_move_insn (tmp_reg, size_rtx);
24965 try_split (PATTERN (insn), insn, 0);
24966 size_rtx = tmp_reg;
24969 if (Pmode == SImode)
24970 insn = emit_insn (gen_movsi_update_stack (stack_pointer_rtx,
24971 stack_pointer_rtx,
24972 size_rtx,
24973 orig_sp));
24974 else
24975 insn = emit_insn (gen_movdi_di_update_stack (stack_pointer_rtx,
24976 stack_pointer_rtx,
24977 size_rtx,
24978 orig_sp));
24979 rtx par = PATTERN (insn);
24980 gcc_assert (GET_CODE (par) == PARALLEL);
24981 rtx set = XVECEXP (par, 0, 0);
24982 gcc_assert (GET_CODE (set) == SET);
24983 rtx mem = SET_DEST (set);
24984 gcc_assert (MEM_P (mem));
24985 MEM_NOTRAP_P (mem) = 1;
24986 set_mem_alias_set (mem, get_frame_alias_set ());
24988 RTX_FRAME_RELATED_P (insn) = 1;
24989 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
24990 gen_rtx_SET (stack_pointer_rtx,
24991 gen_rtx_PLUS (Pmode,
24992 stack_pointer_rtx,
24993 GEN_INT (-size_int))));
24995 /* Emit a blockage to ensure the allocation/probing insns are
24996 not optimized, combined, removed, etc. Add REG_STACK_CHECK
24997 note for similar reasons. */
24998 if (flag_stack_clash_protection)
25000 add_reg_note (insn, REG_STACK_CHECK, const0_rtx);
25001 emit_insn (gen_blockage ());
25004 return insn;
25007 static HOST_WIDE_INT
25008 get_stack_clash_protection_probe_interval (void)
25010 return (HOST_WIDE_INT_1U
25011 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_PROBE_INTERVAL));
25014 static HOST_WIDE_INT
25015 get_stack_clash_protection_guard_size (void)
25017 return (HOST_WIDE_INT_1U
25018 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_GUARD_SIZE));
25021 /* Allocate ORIG_SIZE bytes on the stack and probe the newly
25022 allocated space every STACK_CLASH_PROTECTION_PROBE_INTERVAL bytes.
25024 COPY_REG, if non-null, should contain a copy of the original
25025 stack pointer at exit from this function.
25027 This is subtly different than the Ada probing in that it tries hard to
25028 prevent attacks that jump the stack guard. Thus it is never allowed to
25029 allocate more than STACK_CLASH_PROTECTION_PROBE_INTERVAL bytes of stack
25030 space without a suitable probe. */
25031 static rtx_insn *
25032 rs6000_emit_probe_stack_range_stack_clash (HOST_WIDE_INT orig_size,
25033 rtx copy_reg)
25035 rtx orig_sp = copy_reg;
25037 HOST_WIDE_INT probe_interval = get_stack_clash_protection_probe_interval ();
25039 /* Round the size down to a multiple of PROBE_INTERVAL. */
25040 HOST_WIDE_INT rounded_size = ROUND_DOWN (orig_size, probe_interval);
25042 /* If explicitly requested,
25043 or the rounded size is not the same as the original size
25044 or the the rounded size is greater than a page,
25045 then we will need a copy of the original stack pointer. */
25046 if (rounded_size != orig_size
25047 || rounded_size > probe_interval
25048 || copy_reg)
25050 /* If the caller did not request a copy of the incoming stack
25051 pointer, then we use r0 to hold the copy. */
25052 if (!copy_reg)
25053 orig_sp = gen_rtx_REG (Pmode, 0);
25054 emit_move_insn (orig_sp, stack_pointer_rtx);
25057 /* There's three cases here.
25059 One is a single probe which is the most common and most efficiently
25060 implemented as it does not have to have a copy of the original
25061 stack pointer if there are no residuals.
25063 Second is unrolled allocation/probes which we use if there's just
25064 a few of them. It needs to save the original stack pointer into a
25065 temporary for use as a source register in the allocation/probe.
25067 Last is a loop. This is the most uncommon case and least efficient. */
25068 rtx_insn *retval = NULL;
25069 if (rounded_size == probe_interval)
25071 retval = rs6000_emit_allocate_stack_1 (probe_interval, stack_pointer_rtx);
25073 dump_stack_clash_frame_info (PROBE_INLINE, rounded_size != orig_size);
25075 else if (rounded_size <= 8 * probe_interval)
25077 /* The ABI requires using the store with update insns to allocate
25078 space and store the backchain into the stack
25080 So we save the current stack pointer into a temporary, then
25081 emit the store-with-update insns to store the saved stack pointer
25082 into the right location in each new page. */
25083 for (int i = 0; i < rounded_size; i += probe_interval)
25085 rtx_insn *insn
25086 = rs6000_emit_allocate_stack_1 (probe_interval, orig_sp);
25088 /* Save the first stack adjustment in RETVAL. */
25089 if (i == 0)
25090 retval = insn;
25093 dump_stack_clash_frame_info (PROBE_INLINE, rounded_size != orig_size);
25095 else
25097 /* Compute the ending address. */
25098 rtx end_addr
25099 = copy_reg ? gen_rtx_REG (Pmode, 0) : gen_rtx_REG (Pmode, 12);
25100 rtx rs = GEN_INT (-rounded_size);
25101 rtx_insn *insn;
25102 if (add_operand (rs, Pmode))
25103 insn = emit_insn (gen_add3_insn (end_addr, stack_pointer_rtx, rs));
25104 else
25106 emit_move_insn (end_addr, GEN_INT (-rounded_size));
25107 insn = emit_insn (gen_add3_insn (end_addr, end_addr,
25108 stack_pointer_rtx));
25109 /* Describe the effect of INSN to the CFI engine. */
25110 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
25111 gen_rtx_SET (end_addr,
25112 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
25113 rs)));
25115 RTX_FRAME_RELATED_P (insn) = 1;
25117 /* Emit the loop. */
25118 if (TARGET_64BIT)
25119 retval = emit_insn (gen_probe_stack_rangedi (stack_pointer_rtx,
25120 stack_pointer_rtx, orig_sp,
25121 end_addr));
25122 else
25123 retval = emit_insn (gen_probe_stack_rangesi (stack_pointer_rtx,
25124 stack_pointer_rtx, orig_sp,
25125 end_addr));
25126 RTX_FRAME_RELATED_P (retval) = 1;
25127 /* Describe the effect of INSN to the CFI engine. */
25128 add_reg_note (retval, REG_FRAME_RELATED_EXPR,
25129 gen_rtx_SET (stack_pointer_rtx, end_addr));
25131 /* Emit a blockage to ensure the allocation/probing insns are
25132 not optimized, combined, removed, etc. Other cases handle this
25133 within their call to rs6000_emit_allocate_stack_1. */
25134 emit_insn (gen_blockage ());
25136 dump_stack_clash_frame_info (PROBE_LOOP, rounded_size != orig_size);
25139 if (orig_size != rounded_size)
25141 /* Allocate (and implicitly probe) any residual space. */
25142 HOST_WIDE_INT residual = orig_size - rounded_size;
25144 rtx_insn *insn = rs6000_emit_allocate_stack_1 (residual, orig_sp);
25146 /* If the residual was the only allocation, then we can return the
25147 allocating insn. */
25148 if (!retval)
25149 retval = insn;
25152 return retval;
25155 /* Emit the correct code for allocating stack space, as insns.
25156 If COPY_REG, make sure a copy of the old frame is left there.
25157 The generated code may use hard register 0 as a temporary. */
25159 static rtx_insn *
25160 rs6000_emit_allocate_stack (HOST_WIDE_INT size, rtx copy_reg, int copy_off)
25162 rtx_insn *insn;
25163 rtx stack_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
25164 rtx tmp_reg = gen_rtx_REG (Pmode, 0);
25165 rtx todec = gen_int_mode (-size, Pmode);
25167 if (INTVAL (todec) != -size)
25169 warning (0, "stack frame too large");
25170 emit_insn (gen_trap ());
25171 return 0;
25174 if (crtl->limit_stack)
25176 if (REG_P (stack_limit_rtx)
25177 && REGNO (stack_limit_rtx) > 1
25178 && REGNO (stack_limit_rtx) <= 31)
25180 rtx_insn *insn
25181 = gen_add3_insn (tmp_reg, stack_limit_rtx, GEN_INT (size));
25182 gcc_assert (insn);
25183 emit_insn (insn);
25184 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg, const0_rtx));
25186 else if (GET_CODE (stack_limit_rtx) == SYMBOL_REF
25187 && TARGET_32BIT
25188 && DEFAULT_ABI == ABI_V4
25189 && !flag_pic)
25191 rtx toload = gen_rtx_CONST (VOIDmode,
25192 gen_rtx_PLUS (Pmode,
25193 stack_limit_rtx,
25194 GEN_INT (size)));
25196 emit_insn (gen_elf_high (tmp_reg, toload));
25197 emit_insn (gen_elf_low (tmp_reg, tmp_reg, toload));
25198 emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
25199 const0_rtx));
25201 else
25202 warning (0, "stack limit expression is not supported");
25205 if (flag_stack_clash_protection)
25207 if (size < get_stack_clash_protection_guard_size ())
25208 dump_stack_clash_frame_info (NO_PROBE_SMALL_FRAME, true);
25209 else
25211 rtx_insn *insn = rs6000_emit_probe_stack_range_stack_clash (size,
25212 copy_reg);
25214 /* If we asked for a copy with an offset, then we still need add in
25215 the offset. */
25216 if (copy_reg && copy_off)
25217 emit_insn (gen_add3_insn (copy_reg, copy_reg, GEN_INT (copy_off)));
25218 return insn;
25222 if (copy_reg)
25224 if (copy_off != 0)
25225 emit_insn (gen_add3_insn (copy_reg, stack_reg, GEN_INT (copy_off)));
25226 else
25227 emit_move_insn (copy_reg, stack_reg);
25230 /* Since we didn't use gen_frame_mem to generate the MEM, grab
25231 it now and set the alias set/attributes. The above gen_*_update
25232 calls will generate a PARALLEL with the MEM set being the first
25233 operation. */
25234 insn = rs6000_emit_allocate_stack_1 (size, stack_reg);
25235 return insn;
25238 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
25240 #if PROBE_INTERVAL > 32768
25241 #error Cannot use indexed addressing mode for stack probing
25242 #endif
25244 /* Emit code to probe a range of stack addresses from FIRST to FIRST+SIZE,
25245 inclusive. These are offsets from the current stack pointer. */
25247 static void
25248 rs6000_emit_probe_stack_range (HOST_WIDE_INT first, HOST_WIDE_INT size)
25250 /* See if we have a constant small number of probes to generate. If so,
25251 that's the easy case. */
25252 if (first + size <= 32768)
25254 HOST_WIDE_INT i;
25256 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
25257 it exceeds SIZE. If only one probe is needed, this will not
25258 generate any code. Then probe at FIRST + SIZE. */
25259 for (i = PROBE_INTERVAL; i < size; i += PROBE_INTERVAL)
25260 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
25261 -(first + i)));
25263 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
25264 -(first + size)));
25267 /* Otherwise, do the same as above, but in a loop. Note that we must be
25268 extra careful with variables wrapping around because we might be at
25269 the very top (or the very bottom) of the address space and we have
25270 to be able to handle this case properly; in particular, we use an
25271 equality test for the loop condition. */
25272 else
25274 HOST_WIDE_INT rounded_size;
25275 rtx r12 = gen_rtx_REG (Pmode, 12);
25276 rtx r0 = gen_rtx_REG (Pmode, 0);
25278 /* Sanity check for the addressing mode we're going to use. */
25279 gcc_assert (first <= 32768);
25281 /* Step 1: round SIZE to the previous multiple of the interval. */
25283 rounded_size = ROUND_DOWN (size, PROBE_INTERVAL);
25286 /* Step 2: compute initial and final value of the loop counter. */
25288 /* TEST_ADDR = SP + FIRST. */
25289 emit_insn (gen_rtx_SET (r12, plus_constant (Pmode, stack_pointer_rtx,
25290 -first)));
25292 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
25293 if (rounded_size > 32768)
25295 emit_move_insn (r0, GEN_INT (-rounded_size));
25296 emit_insn (gen_rtx_SET (r0, gen_rtx_PLUS (Pmode, r12, r0)));
25298 else
25299 emit_insn (gen_rtx_SET (r0, plus_constant (Pmode, r12,
25300 -rounded_size)));
25303 /* Step 3: the loop
25307 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
25308 probe at TEST_ADDR
25310 while (TEST_ADDR != LAST_ADDR)
25312 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
25313 until it is equal to ROUNDED_SIZE. */
25315 if (TARGET_64BIT)
25316 emit_insn (gen_probe_stack_rangedi (r12, r12, stack_pointer_rtx, r0));
25317 else
25318 emit_insn (gen_probe_stack_rangesi (r12, r12, stack_pointer_rtx, r0));
25321 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
25322 that SIZE is equal to ROUNDED_SIZE. */
25324 if (size != rounded_size)
25325 emit_stack_probe (plus_constant (Pmode, r12, rounded_size - size));
25329 /* Probe a range of stack addresses from REG1 to REG2 inclusive. These are
25330 addresses, not offsets. */
25332 static const char *
25333 output_probe_stack_range_1 (rtx reg1, rtx reg2)
25335 static int labelno = 0;
25336 char loop_lab[32];
25337 rtx xops[2];
25339 ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);
25341 /* Loop. */
25342 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
25344 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
25345 xops[0] = reg1;
25346 xops[1] = GEN_INT (-PROBE_INTERVAL);
25347 output_asm_insn ("addi %0,%0,%1", xops);
25349 /* Probe at TEST_ADDR. */
25350 xops[1] = gen_rtx_REG (Pmode, 0);
25351 output_asm_insn ("stw %1,0(%0)", xops);
25353 /* Test if TEST_ADDR == LAST_ADDR. */
25354 xops[1] = reg2;
25355 if (TARGET_64BIT)
25356 output_asm_insn ("cmpd 0,%0,%1", xops);
25357 else
25358 output_asm_insn ("cmpw 0,%0,%1", xops);
25360 /* Branch. */
25361 fputs ("\tbne 0,", asm_out_file);
25362 assemble_name_raw (asm_out_file, loop_lab);
25363 fputc ('\n', asm_out_file);
25365 return "";
25368 /* This function is called when rs6000_frame_related is processing
25369 SETs within a PARALLEL, and returns whether the REGNO save ought to
25370 be marked RTX_FRAME_RELATED_P. The PARALLELs involved are those
25371 for out-of-line register save functions, store multiple, and the
25372 Darwin world_save. They may contain registers that don't really
25373 need saving. */
25375 static bool
25376 interesting_frame_related_regno (unsigned int regno)
25378 /* Saves apparently of r0 are actually saving LR. It doesn't make
25379 sense to substitute the regno here to test save_reg_p (LR_REGNO).
25380 We *know* LR needs saving, and dwarf2cfi.c is able to deduce that
25381 (set (mem) (r0)) is saving LR from a prior (set (r0) (lr)) marked
25382 as frame related. */
25383 if (regno == 0)
25384 return true;
25385 /* If we see CR2 then we are here on a Darwin world save. Saves of
25386 CR2 signify the whole CR is being saved. This is a long-standing
25387 ABI wart fixed by ELFv2. As for r0/lr there is no need to check
25388 that CR needs to be saved. */
25389 if (regno == CR2_REGNO)
25390 return true;
25391 /* Omit frame info for any user-defined global regs. If frame info
25392 is supplied for them, frame unwinding will restore a user reg.
25393 Also omit frame info for any reg we don't need to save, as that
25394 bloats frame info and can cause problems with shrink wrapping.
25395 Since global regs won't be seen as needing to be saved, both of
25396 these conditions are covered by save_reg_p. */
25397 return save_reg_p (regno);
25400 /* Probe a range of stack addresses from REG1 to REG3 inclusive. These are
25401 addresses, not offsets.
25403 REG2 contains the backchain that must be stored into *sp at each allocation.
25405 This is subtly different than the Ada probing above in that it tries hard
25406 to prevent attacks that jump the stack guard. Thus, it is never allowed
25407 to allocate more than PROBE_INTERVAL bytes of stack space without a
25408 suitable probe. */
25410 static const char *
25411 output_probe_stack_range_stack_clash (rtx reg1, rtx reg2, rtx reg3)
25413 static int labelno = 0;
25414 char loop_lab[32];
25415 rtx xops[3];
25417 HOST_WIDE_INT probe_interval = get_stack_clash_protection_probe_interval ();
25419 ASM_GENERATE_INTERNAL_LABEL (loop_lab, "LPSRL", labelno++);
25421 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, loop_lab);
25423 /* This allocates and probes. */
25424 xops[0] = reg1;
25425 xops[1] = reg2;
25426 xops[2] = GEN_INT (-probe_interval);
25427 if (TARGET_64BIT)
25428 output_asm_insn ("stdu %1,%2(%0)", xops);
25429 else
25430 output_asm_insn ("stwu %1,%2(%0)", xops);
25432 /* Jump to LOOP_LAB if TEST_ADDR != LAST_ADDR. */
25433 xops[0] = reg1;
25434 xops[1] = reg3;
25435 if (TARGET_64BIT)
25436 output_asm_insn ("cmpd 0,%0,%1", xops);
25437 else
25438 output_asm_insn ("cmpw 0,%0,%1", xops);
25440 fputs ("\tbne 0,", asm_out_file);
25441 assemble_name_raw (asm_out_file, loop_lab);
25442 fputc ('\n', asm_out_file);
25444 return "";
25447 /* Wrapper around the output_probe_stack_range routines. */
25448 const char *
25449 output_probe_stack_range (rtx reg1, rtx reg2, rtx reg3)
25451 if (flag_stack_clash_protection)
25452 return output_probe_stack_range_stack_clash (reg1, reg2, reg3);
25453 else
25454 return output_probe_stack_range_1 (reg1, reg3);
25457 /* Add to 'insn' a note which is PATTERN (INSN) but with REG replaced
25458 with (plus:P (reg 1) VAL), and with REG2 replaced with REPL2 if REG2
25459 is not NULL. It would be nice if dwarf2out_frame_debug_expr could
25460 deduce these equivalences by itself so it wasn't necessary to hold
25461 its hand so much. Don't be tempted to always supply d2_f_d_e with
25462 the actual cfa register, ie. r31 when we are using a hard frame
25463 pointer. That fails when saving regs off r1, and sched moves the
25464 r31 setup past the reg saves. */
25466 static rtx_insn *
25467 rs6000_frame_related (rtx_insn *insn, rtx reg, HOST_WIDE_INT val,
25468 rtx reg2, rtx repl2)
25470 rtx repl;
25472 if (REGNO (reg) == STACK_POINTER_REGNUM)
25474 gcc_checking_assert (val == 0);
25475 repl = NULL_RTX;
25477 else
25478 repl = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM),
25479 GEN_INT (val));
25481 rtx pat = PATTERN (insn);
25482 if (!repl && !reg2)
25484 /* No need for any replacement. Just set RTX_FRAME_RELATED_P. */
25485 if (GET_CODE (pat) == PARALLEL)
25486 for (int i = 0; i < XVECLEN (pat, 0); i++)
25487 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
25489 rtx set = XVECEXP (pat, 0, i);
25491 if (!REG_P (SET_SRC (set))
25492 || interesting_frame_related_regno (REGNO (SET_SRC (set))))
25493 RTX_FRAME_RELATED_P (set) = 1;
25495 RTX_FRAME_RELATED_P (insn) = 1;
25496 return insn;
25499 /* We expect that 'pat' is either a SET or a PARALLEL containing
25500 SETs (and possibly other stuff). In a PARALLEL, all the SETs
25501 are important so they all have to be marked RTX_FRAME_RELATED_P.
25502 Call simplify_replace_rtx on the SETs rather than the whole insn
25503 so as to leave the other stuff alone (for example USE of r12). */
25505 set_used_flags (pat);
25506 if (GET_CODE (pat) == SET)
25508 if (repl)
25509 pat = simplify_replace_rtx (pat, reg, repl);
25510 if (reg2)
25511 pat = simplify_replace_rtx (pat, reg2, repl2);
25513 else if (GET_CODE (pat) == PARALLEL)
25515 pat = shallow_copy_rtx (pat);
25516 XVEC (pat, 0) = shallow_copy_rtvec (XVEC (pat, 0));
25518 for (int i = 0; i < XVECLEN (pat, 0); i++)
25519 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
25521 rtx set = XVECEXP (pat, 0, i);
25523 if (repl)
25524 set = simplify_replace_rtx (set, reg, repl);
25525 if (reg2)
25526 set = simplify_replace_rtx (set, reg2, repl2);
25527 XVECEXP (pat, 0, i) = set;
25529 if (!REG_P (SET_SRC (set))
25530 || interesting_frame_related_regno (REGNO (SET_SRC (set))))
25531 RTX_FRAME_RELATED_P (set) = 1;
25534 else
25535 gcc_unreachable ();
25537 RTX_FRAME_RELATED_P (insn) = 1;
25538 add_reg_note (insn, REG_FRAME_RELATED_EXPR, copy_rtx_if_shared (pat));
25540 return insn;
25543 /* Returns an insn that has a vrsave set operation with the
25544 appropriate CLOBBERs. */
25546 static rtx
25547 generate_set_vrsave (rtx reg, rs6000_stack_t *info, int epiloguep)
25549 int nclobs, i;
25550 rtx insn, clobs[TOTAL_ALTIVEC_REGS + 1];
25551 rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
25553 clobs[0]
25554 = gen_rtx_SET (vrsave,
25555 gen_rtx_UNSPEC_VOLATILE (SImode,
25556 gen_rtvec (2, reg, vrsave),
25557 UNSPECV_SET_VRSAVE));
25559 nclobs = 1;
25561 /* We need to clobber the registers in the mask so the scheduler
25562 does not move sets to VRSAVE before sets of AltiVec registers.
25564 However, if the function receives nonlocal gotos, reload will set
25565 all call saved registers live. We will end up with:
25567 (set (reg 999) (mem))
25568 (parallel [ (set (reg vrsave) (unspec blah))
25569 (clobber (reg 999))])
25571 The clobber will cause the store into reg 999 to be dead, and
25572 flow will attempt to delete an epilogue insn. In this case, we
25573 need an unspec use/set of the register. */
25575 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
25576 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
25578 if (!epiloguep || call_used_regs [i])
25579 clobs[nclobs++] = gen_rtx_CLOBBER (VOIDmode,
25580 gen_rtx_REG (V4SImode, i));
25581 else
25583 rtx reg = gen_rtx_REG (V4SImode, i);
25585 clobs[nclobs++]
25586 = gen_rtx_SET (reg,
25587 gen_rtx_UNSPEC (V4SImode,
25588 gen_rtvec (1, reg), 27));
25592 insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nclobs));
25594 for (i = 0; i < nclobs; ++i)
25595 XVECEXP (insn, 0, i) = clobs[i];
25597 return insn;
25600 static rtx
25601 gen_frame_set (rtx reg, rtx frame_reg, int offset, bool store)
25603 rtx addr, mem;
25605 addr = gen_rtx_PLUS (Pmode, frame_reg, GEN_INT (offset));
25606 mem = gen_frame_mem (GET_MODE (reg), addr);
25607 return gen_rtx_SET (store ? mem : reg, store ? reg : mem);
25610 static rtx
25611 gen_frame_load (rtx reg, rtx frame_reg, int offset)
25613 return gen_frame_set (reg, frame_reg, offset, false);
25616 static rtx
25617 gen_frame_store (rtx reg, rtx frame_reg, int offset)
25619 return gen_frame_set (reg, frame_reg, offset, true);
25622 /* Save a register into the frame, and emit RTX_FRAME_RELATED_P notes.
25623 Save REGNO into [FRAME_REG + OFFSET] in mode MODE. */
25625 static rtx_insn *
25626 emit_frame_save (rtx frame_reg, machine_mode mode,
25627 unsigned int regno, int offset, HOST_WIDE_INT frame_reg_to_sp)
25629 rtx reg;
25631 /* Some cases that need register indexed addressing. */
25632 gcc_checking_assert (!(TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
25633 || (TARGET_VSX && ALTIVEC_OR_VSX_VECTOR_MODE (mode)));
25635 reg = gen_rtx_REG (mode, regno);
25636 rtx_insn *insn = emit_insn (gen_frame_store (reg, frame_reg, offset));
25637 return rs6000_frame_related (insn, frame_reg, frame_reg_to_sp,
25638 NULL_RTX, NULL_RTX);
25641 /* Emit an offset memory reference suitable for a frame store, while
25642 converting to a valid addressing mode. */
25644 static rtx
25645 gen_frame_mem_offset (machine_mode mode, rtx reg, int offset)
25647 return gen_frame_mem (mode, gen_rtx_PLUS (Pmode, reg, GEN_INT (offset)));
25650 #ifndef TARGET_FIX_AND_CONTINUE
25651 #define TARGET_FIX_AND_CONTINUE 0
25652 #endif
25654 /* It's really GPR 13 or 14, FPR 14 and VR 20. We need the smallest. */
25655 #define FIRST_SAVRES_REGISTER FIRST_SAVED_GP_REGNO
25656 #define LAST_SAVRES_REGISTER 31
25657 #define N_SAVRES_REGISTERS (LAST_SAVRES_REGISTER - FIRST_SAVRES_REGISTER + 1)
25659 enum {
25660 SAVRES_LR = 0x1,
25661 SAVRES_SAVE = 0x2,
25662 SAVRES_REG = 0x0c,
25663 SAVRES_GPR = 0,
25664 SAVRES_FPR = 4,
25665 SAVRES_VR = 8
25668 static GTY(()) rtx savres_routine_syms[N_SAVRES_REGISTERS][12];
25670 /* Temporary holding space for an out-of-line register save/restore
25671 routine name. */
25672 static char savres_routine_name[30];
25674 /* Return the name for an out-of-line register save/restore routine.
25675 We are saving/restoring GPRs if GPR is true. */
25677 static char *
25678 rs6000_savres_routine_name (int regno, int sel)
25680 const char *prefix = "";
25681 const char *suffix = "";
25683 /* Different targets are supposed to define
25684 {SAVE,RESTORE}_FP_{PREFIX,SUFFIX} with the idea that the needed
25685 routine name could be defined with:
25687 sprintf (name, "%s%d%s", SAVE_FP_PREFIX, regno, SAVE_FP_SUFFIX)
25689 This is a nice idea in practice, but in reality, things are
25690 complicated in several ways:
25692 - ELF targets have save/restore routines for GPRs.
25694 - PPC64 ELF targets have routines for save/restore of GPRs that
25695 differ in what they do with the link register, so having a set
25696 prefix doesn't work. (We only use one of the save routines at
25697 the moment, though.)
25699 - PPC32 elf targets have "exit" versions of the restore routines
25700 that restore the link register and can save some extra space.
25701 These require an extra suffix. (There are also "tail" versions
25702 of the restore routines and "GOT" versions of the save routines,
25703 but we don't generate those at present. Same problems apply,
25704 though.)
25706 We deal with all this by synthesizing our own prefix/suffix and
25707 using that for the simple sprintf call shown above. */
25708 if (DEFAULT_ABI == ABI_V4)
25710 if (TARGET_64BIT)
25711 goto aix_names;
25713 if ((sel & SAVRES_REG) == SAVRES_GPR)
25714 prefix = (sel & SAVRES_SAVE) ? "_savegpr_" : "_restgpr_";
25715 else if ((sel & SAVRES_REG) == SAVRES_FPR)
25716 prefix = (sel & SAVRES_SAVE) ? "_savefpr_" : "_restfpr_";
25717 else if ((sel & SAVRES_REG) == SAVRES_VR)
25718 prefix = (sel & SAVRES_SAVE) ? "_savevr_" : "_restvr_";
25719 else
25720 abort ();
25722 if ((sel & SAVRES_LR))
25723 suffix = "_x";
25725 else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
25727 #if !defined (POWERPC_LINUX) && !defined (POWERPC_FREEBSD)
25728 /* No out-of-line save/restore routines for GPRs on AIX. */
25729 gcc_assert (!TARGET_AIX || (sel & SAVRES_REG) != SAVRES_GPR);
25730 #endif
25732 aix_names:
25733 if ((sel & SAVRES_REG) == SAVRES_GPR)
25734 prefix = ((sel & SAVRES_SAVE)
25735 ? ((sel & SAVRES_LR) ? "_savegpr0_" : "_savegpr1_")
25736 : ((sel & SAVRES_LR) ? "_restgpr0_" : "_restgpr1_"));
25737 else if ((sel & SAVRES_REG) == SAVRES_FPR)
25739 #if defined (POWERPC_LINUX) || defined (POWERPC_FREEBSD)
25740 if ((sel & SAVRES_LR))
25741 prefix = ((sel & SAVRES_SAVE) ? "_savefpr_" : "_restfpr_");
25742 else
25743 #endif
25745 prefix = (sel & SAVRES_SAVE) ? SAVE_FP_PREFIX : RESTORE_FP_PREFIX;
25746 suffix = (sel & SAVRES_SAVE) ? SAVE_FP_SUFFIX : RESTORE_FP_SUFFIX;
25749 else if ((sel & SAVRES_REG) == SAVRES_VR)
25750 prefix = (sel & SAVRES_SAVE) ? "_savevr_" : "_restvr_";
25751 else
25752 abort ();
25755 if (DEFAULT_ABI == ABI_DARWIN)
25757 /* The Darwin approach is (slightly) different, in order to be
25758 compatible with code generated by the system toolchain. There is a
25759 single symbol for the start of save sequence, and the code here
25760 embeds an offset into that code on the basis of the first register
25761 to be saved. */
25762 prefix = (sel & SAVRES_SAVE) ? "save" : "rest" ;
25763 if ((sel & SAVRES_REG) == SAVRES_GPR)
25764 sprintf (savres_routine_name, "*%sGPR%s%s%.0d ; %s r%d-r31", prefix,
25765 ((sel & SAVRES_LR) ? "x" : ""), (regno == 13 ? "" : "+"),
25766 (regno - 13) * 4, prefix, regno);
25767 else if ((sel & SAVRES_REG) == SAVRES_FPR)
25768 sprintf (savres_routine_name, "*%sFP%s%.0d ; %s f%d-f31", prefix,
25769 (regno == 14 ? "" : "+"), (regno - 14) * 4, prefix, regno);
25770 else if ((sel & SAVRES_REG) == SAVRES_VR)
25771 sprintf (savres_routine_name, "*%sVEC%s%.0d ; %s v%d-v31", prefix,
25772 (regno == 20 ? "" : "+"), (regno - 20) * 8, prefix, regno);
25773 else
25774 abort ();
25776 else
25777 sprintf (savres_routine_name, "%s%d%s", prefix, regno, suffix);
25779 return savres_routine_name;
25782 /* Return an RTL SYMBOL_REF for an out-of-line register save/restore routine.
25783 We are saving/restoring GPRs if GPR is true. */
25785 static rtx
25786 rs6000_savres_routine_sym (rs6000_stack_t *info, int sel)
25788 int regno = ((sel & SAVRES_REG) == SAVRES_GPR
25789 ? info->first_gp_reg_save
25790 : (sel & SAVRES_REG) == SAVRES_FPR
25791 ? info->first_fp_reg_save - 32
25792 : (sel & SAVRES_REG) == SAVRES_VR
25793 ? info->first_altivec_reg_save - FIRST_ALTIVEC_REGNO
25794 : -1);
25795 rtx sym;
25796 int select = sel;
25798 /* Don't generate bogus routine names. */
25799 gcc_assert (FIRST_SAVRES_REGISTER <= regno
25800 && regno <= LAST_SAVRES_REGISTER
25801 && select >= 0 && select <= 12);
25803 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select];
25805 if (sym == NULL)
25807 char *name;
25809 name = rs6000_savres_routine_name (regno, sel);
25811 sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select]
25812 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
25813 SYMBOL_REF_FLAGS (sym) |= SYMBOL_FLAG_FUNCTION;
25816 return sym;
25819 /* Emit a sequence of insns, including a stack tie if needed, for
25820 resetting the stack pointer. If UPDT_REGNO is not 1, then don't
25821 reset the stack pointer, but move the base of the frame into
25822 reg UPDT_REGNO for use by out-of-line register restore routines. */
25824 static rtx
25825 rs6000_emit_stack_reset (rtx frame_reg_rtx, HOST_WIDE_INT frame_off,
25826 unsigned updt_regno)
25828 /* If there is nothing to do, don't do anything. */
25829 if (frame_off == 0 && REGNO (frame_reg_rtx) == updt_regno)
25830 return NULL_RTX;
25832 rtx updt_reg_rtx = gen_rtx_REG (Pmode, updt_regno);
25834 /* This blockage is needed so that sched doesn't decide to move
25835 the sp change before the register restores. */
25836 if (DEFAULT_ABI == ABI_V4)
25837 return emit_insn (gen_stack_restore_tie (updt_reg_rtx, frame_reg_rtx,
25838 GEN_INT (frame_off)));
25840 /* If we are restoring registers out-of-line, we will be using the
25841 "exit" variants of the restore routines, which will reset the
25842 stack for us. But we do need to point updt_reg into the
25843 right place for those routines. */
25844 if (frame_off != 0)
25845 return emit_insn (gen_add3_insn (updt_reg_rtx,
25846 frame_reg_rtx, GEN_INT (frame_off)));
25847 else
25848 return emit_move_insn (updt_reg_rtx, frame_reg_rtx);
25850 return NULL_RTX;
25853 /* Return the register number used as a pointer by out-of-line
25854 save/restore functions. */
25856 static inline unsigned
25857 ptr_regno_for_savres (int sel)
25859 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
25860 return (sel & SAVRES_REG) == SAVRES_FPR || (sel & SAVRES_LR) ? 1 : 12;
25861 return DEFAULT_ABI == ABI_DARWIN && (sel & SAVRES_REG) == SAVRES_FPR ? 1 : 11;
25864 /* Construct a parallel rtx describing the effect of a call to an
25865 out-of-line register save/restore routine, and emit the insn
25866 or jump_insn as appropriate. */
25868 static rtx_insn *
25869 rs6000_emit_savres_rtx (rs6000_stack_t *info,
25870 rtx frame_reg_rtx, int save_area_offset, int lr_offset,
25871 machine_mode reg_mode, int sel)
25873 int i;
25874 int offset, start_reg, end_reg, n_regs, use_reg;
25875 int reg_size = GET_MODE_SIZE (reg_mode);
25876 rtx sym;
25877 rtvec p;
25878 rtx par;
25879 rtx_insn *insn;
25881 offset = 0;
25882 start_reg = ((sel & SAVRES_REG) == SAVRES_GPR
25883 ? info->first_gp_reg_save
25884 : (sel & SAVRES_REG) == SAVRES_FPR
25885 ? info->first_fp_reg_save
25886 : (sel & SAVRES_REG) == SAVRES_VR
25887 ? info->first_altivec_reg_save
25888 : -1);
25889 end_reg = ((sel & SAVRES_REG) == SAVRES_GPR
25890 ? 32
25891 : (sel & SAVRES_REG) == SAVRES_FPR
25892 ? 64
25893 : (sel & SAVRES_REG) == SAVRES_VR
25894 ? LAST_ALTIVEC_REGNO + 1
25895 : -1);
25896 n_regs = end_reg - start_reg;
25897 p = rtvec_alloc (3 + ((sel & SAVRES_LR) ? 1 : 0)
25898 + ((sel & SAVRES_REG) == SAVRES_VR ? 1 : 0)
25899 + n_regs);
25901 if (!(sel & SAVRES_SAVE) && (sel & SAVRES_LR))
25902 RTVEC_ELT (p, offset++) = ret_rtx;
25904 RTVEC_ELT (p, offset++)
25905 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNO));
25907 sym = rs6000_savres_routine_sym (info, sel);
25908 RTVEC_ELT (p, offset++) = gen_rtx_USE (VOIDmode, sym);
25910 use_reg = ptr_regno_for_savres (sel);
25911 if ((sel & SAVRES_REG) == SAVRES_VR)
25913 /* Vector regs are saved/restored using [reg+reg] addressing. */
25914 RTVEC_ELT (p, offset++)
25915 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, use_reg));
25916 RTVEC_ELT (p, offset++)
25917 = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 0));
25919 else
25920 RTVEC_ELT (p, offset++)
25921 = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, use_reg));
25923 for (i = 0; i < end_reg - start_reg; i++)
25924 RTVEC_ELT (p, i + offset)
25925 = gen_frame_set (gen_rtx_REG (reg_mode, start_reg + i),
25926 frame_reg_rtx, save_area_offset + reg_size * i,
25927 (sel & SAVRES_SAVE) != 0);
25929 if ((sel & SAVRES_SAVE) && (sel & SAVRES_LR))
25930 RTVEC_ELT (p, i + offset)
25931 = gen_frame_store (gen_rtx_REG (Pmode, 0), frame_reg_rtx, lr_offset);
25933 par = gen_rtx_PARALLEL (VOIDmode, p);
25935 if (!(sel & SAVRES_SAVE) && (sel & SAVRES_LR))
25937 insn = emit_jump_insn (par);
25938 JUMP_LABEL (insn) = ret_rtx;
25940 else
25941 insn = emit_insn (par);
25942 return insn;
25945 /* Emit prologue code to store CR fields that need to be saved into REG. This
25946 function should only be called when moving the non-volatile CRs to REG, it
25947 is not a general purpose routine to move the entire set of CRs to REG.
25948 Specifically, gen_prologue_movesi_from_cr() does not contain uses of the
25949 volatile CRs. */
25951 static void
25952 rs6000_emit_prologue_move_from_cr (rtx reg)
25954 /* Only the ELFv2 ABI allows storing only selected fields. */
25955 if (DEFAULT_ABI == ABI_ELFv2 && TARGET_MFCRF)
25957 int i, cr_reg[8], count = 0;
25959 /* Collect CR fields that must be saved. */
25960 for (i = 0; i < 8; i++)
25961 if (save_reg_p (CR0_REGNO + i))
25962 cr_reg[count++] = i;
25964 /* If it's just a single one, use mfcrf. */
25965 if (count == 1)
25967 rtvec p = rtvec_alloc (1);
25968 rtvec r = rtvec_alloc (2);
25969 RTVEC_ELT (r, 0) = gen_rtx_REG (CCmode, CR0_REGNO + cr_reg[0]);
25970 RTVEC_ELT (r, 1) = GEN_INT (1 << (7 - cr_reg[0]));
25971 RTVEC_ELT (p, 0)
25972 = gen_rtx_SET (reg,
25973 gen_rtx_UNSPEC (SImode, r, UNSPEC_MOVESI_FROM_CR));
25975 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
25976 return;
25979 /* ??? It might be better to handle count == 2 / 3 cases here
25980 as well, using logical operations to combine the values. */
25983 emit_insn (gen_prologue_movesi_from_cr (reg));
25986 /* Return whether the split-stack arg pointer (r12) is used. */
25988 static bool
25989 split_stack_arg_pointer_used_p (void)
25991 /* If the pseudo holding the arg pointer is no longer a pseudo,
25992 then the arg pointer is used. */
25993 if (cfun->machine->split_stack_arg_pointer != NULL_RTX
25994 && (!REG_P (cfun->machine->split_stack_arg_pointer)
25995 || (REGNO (cfun->machine->split_stack_arg_pointer)
25996 < FIRST_PSEUDO_REGISTER)))
25997 return true;
25999 /* Unfortunately we also need to do some code scanning, since
26000 r12 may have been substituted for the pseudo. */
26001 rtx_insn *insn;
26002 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb;
26003 FOR_BB_INSNS (bb, insn)
26004 if (NONDEBUG_INSN_P (insn))
26006 /* A call destroys r12. */
26007 if (CALL_P (insn))
26008 return false;
26010 df_ref use;
26011 FOR_EACH_INSN_USE (use, insn)
26013 rtx x = DF_REF_REG (use);
26014 if (REG_P (x) && REGNO (x) == 12)
26015 return true;
26017 df_ref def;
26018 FOR_EACH_INSN_DEF (def, insn)
26020 rtx x = DF_REF_REG (def);
26021 if (REG_P (x) && REGNO (x) == 12)
26022 return false;
26025 return bitmap_bit_p (DF_LR_OUT (bb), 12);
26028 /* Return whether we need to emit an ELFv2 global entry point prologue. */
26030 static bool
26031 rs6000_global_entry_point_needed_p (void)
26033 /* Only needed for the ELFv2 ABI. */
26034 if (DEFAULT_ABI != ABI_ELFv2)
26035 return false;
26037 /* With -msingle-pic-base, we assume the whole program shares the same
26038 TOC, so no global entry point prologues are needed anywhere. */
26039 if (TARGET_SINGLE_PIC_BASE)
26040 return false;
26042 /* Ensure we have a global entry point for thunks. ??? We could
26043 avoid that if the target routine doesn't need a global entry point,
26044 but we do not know whether this is the case at this point. */
26045 if (cfun->is_thunk)
26046 return true;
26048 /* For regular functions, rs6000_emit_prologue sets this flag if the
26049 routine ever uses the TOC pointer. */
26050 return cfun->machine->r2_setup_needed;
26053 /* Implement TARGET_SHRINK_WRAP_GET_SEPARATE_COMPONENTS. */
26054 static sbitmap
26055 rs6000_get_separate_components (void)
26057 rs6000_stack_t *info = rs6000_stack_info ();
26059 if (WORLD_SAVE_P (info))
26060 return NULL;
26062 gcc_assert (!(info->savres_strategy & SAVE_MULTIPLE)
26063 && !(info->savres_strategy & REST_MULTIPLE));
26065 /* Component 0 is the save/restore of LR (done via GPR0).
26066 Component 2 is the save of the TOC (GPR2).
26067 Components 13..31 are the save/restore of GPR13..GPR31.
26068 Components 46..63 are the save/restore of FPR14..FPR31. */
26070 cfun->machine->n_components = 64;
26072 sbitmap components = sbitmap_alloc (cfun->machine->n_components);
26073 bitmap_clear (components);
26075 int reg_size = TARGET_32BIT ? 4 : 8;
26076 int fp_reg_size = 8;
26078 /* The GPRs we need saved to the frame. */
26079 if ((info->savres_strategy & SAVE_INLINE_GPRS)
26080 && (info->savres_strategy & REST_INLINE_GPRS))
26082 int offset = info->gp_save_offset;
26083 if (info->push_p)
26084 offset += info->total_size;
26086 for (unsigned regno = info->first_gp_reg_save; regno < 32; regno++)
26088 if (IN_RANGE (offset, -0x8000, 0x7fff)
26089 && save_reg_p (regno))
26090 bitmap_set_bit (components, regno);
26092 offset += reg_size;
26096 /* Don't mess with the hard frame pointer. */
26097 if (frame_pointer_needed)
26098 bitmap_clear_bit (components, HARD_FRAME_POINTER_REGNUM);
26100 /* Don't mess with the fixed TOC register. */
26101 if ((TARGET_TOC && TARGET_MINIMAL_TOC)
26102 || (flag_pic == 1 && DEFAULT_ABI == ABI_V4)
26103 || (flag_pic && DEFAULT_ABI == ABI_DARWIN))
26104 bitmap_clear_bit (components, RS6000_PIC_OFFSET_TABLE_REGNUM);
26106 /* The FPRs we need saved to the frame. */
26107 if ((info->savres_strategy & SAVE_INLINE_FPRS)
26108 && (info->savres_strategy & REST_INLINE_FPRS))
26110 int offset = info->fp_save_offset;
26111 if (info->push_p)
26112 offset += info->total_size;
26114 for (unsigned regno = info->first_fp_reg_save; regno < 64; regno++)
26116 if (IN_RANGE (offset, -0x8000, 0x7fff) && save_reg_p (regno))
26117 bitmap_set_bit (components, regno);
26119 offset += fp_reg_size;
26123 /* Optimize LR save and restore if we can. This is component 0. Any
26124 out-of-line register save/restore routines need LR. */
26125 if (info->lr_save_p
26126 && !(flag_pic && (DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_DARWIN))
26127 && (info->savres_strategy & SAVE_INLINE_GPRS)
26128 && (info->savres_strategy & REST_INLINE_GPRS)
26129 && (info->savres_strategy & SAVE_INLINE_FPRS)
26130 && (info->savres_strategy & REST_INLINE_FPRS)
26131 && (info->savres_strategy & SAVE_INLINE_VRS)
26132 && (info->savres_strategy & REST_INLINE_VRS))
26134 int offset = info->lr_save_offset;
26135 if (info->push_p)
26136 offset += info->total_size;
26137 if (IN_RANGE (offset, -0x8000, 0x7fff))
26138 bitmap_set_bit (components, 0);
26141 /* Optimize saving the TOC. This is component 2. */
26142 if (cfun->machine->save_toc_in_prologue)
26143 bitmap_set_bit (components, 2);
26145 return components;
26148 /* Implement TARGET_SHRINK_WRAP_COMPONENTS_FOR_BB. */
26149 static sbitmap
26150 rs6000_components_for_bb (basic_block bb)
26152 rs6000_stack_t *info = rs6000_stack_info ();
26154 bitmap in = DF_LIVE_IN (bb);
26155 bitmap gen = &DF_LIVE_BB_INFO (bb)->gen;
26156 bitmap kill = &DF_LIVE_BB_INFO (bb)->kill;
26158 sbitmap components = sbitmap_alloc (cfun->machine->n_components);
26159 bitmap_clear (components);
26161 /* A register is used in a bb if it is in the IN, GEN, or KILL sets. */
26163 /* GPRs. */
26164 for (unsigned regno = info->first_gp_reg_save; regno < 32; regno++)
26165 if (bitmap_bit_p (in, regno)
26166 || bitmap_bit_p (gen, regno)
26167 || bitmap_bit_p (kill, regno))
26168 bitmap_set_bit (components, regno);
26170 /* FPRs. */
26171 for (unsigned regno = info->first_fp_reg_save; regno < 64; regno++)
26172 if (bitmap_bit_p (in, regno)
26173 || bitmap_bit_p (gen, regno)
26174 || bitmap_bit_p (kill, regno))
26175 bitmap_set_bit (components, regno);
26177 /* The link register. */
26178 if (bitmap_bit_p (in, LR_REGNO)
26179 || bitmap_bit_p (gen, LR_REGNO)
26180 || bitmap_bit_p (kill, LR_REGNO))
26181 bitmap_set_bit (components, 0);
26183 /* The TOC save. */
26184 if (bitmap_bit_p (in, TOC_REGNUM)
26185 || bitmap_bit_p (gen, TOC_REGNUM)
26186 || bitmap_bit_p (kill, TOC_REGNUM))
26187 bitmap_set_bit (components, 2);
26189 return components;
26192 /* Implement TARGET_SHRINK_WRAP_DISQUALIFY_COMPONENTS. */
26193 static void
26194 rs6000_disqualify_components (sbitmap components, edge e,
26195 sbitmap edge_components, bool /*is_prologue*/)
26197 /* Our LR pro/epilogue code moves LR via R0, so R0 had better not be
26198 live where we want to place that code. */
26199 if (bitmap_bit_p (edge_components, 0)
26200 && bitmap_bit_p (DF_LIVE_IN (e->dest), 0))
26202 if (dump_file)
26203 fprintf (dump_file, "Disqualifying LR because GPR0 is live "
26204 "on entry to bb %d\n", e->dest->index);
26205 bitmap_clear_bit (components, 0);
26209 /* Implement TARGET_SHRINK_WRAP_EMIT_PROLOGUE_COMPONENTS. */
26210 static void
26211 rs6000_emit_prologue_components (sbitmap components)
26213 rs6000_stack_t *info = rs6000_stack_info ();
26214 rtx ptr_reg = gen_rtx_REG (Pmode, frame_pointer_needed
26215 ? HARD_FRAME_POINTER_REGNUM
26216 : STACK_POINTER_REGNUM);
26218 machine_mode reg_mode = Pmode;
26219 int reg_size = TARGET_32BIT ? 4 : 8;
26220 machine_mode fp_reg_mode = TARGET_HARD_FLOAT ? DFmode : SFmode;
26221 int fp_reg_size = 8;
26223 /* Prologue for LR. */
26224 if (bitmap_bit_p (components, 0))
26226 rtx lr = gen_rtx_REG (reg_mode, LR_REGNO);
26227 rtx reg = gen_rtx_REG (reg_mode, 0);
26228 rtx_insn *insn = emit_move_insn (reg, lr);
26229 RTX_FRAME_RELATED_P (insn) = 1;
26230 add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (reg, lr));
26232 int offset = info->lr_save_offset;
26233 if (info->push_p)
26234 offset += info->total_size;
26236 insn = emit_insn (gen_frame_store (reg, ptr_reg, offset));
26237 RTX_FRAME_RELATED_P (insn) = 1;
26238 rtx mem = copy_rtx (SET_DEST (single_set (insn)));
26239 add_reg_note (insn, REG_CFA_OFFSET, gen_rtx_SET (mem, lr));
26242 /* Prologue for TOC. */
26243 if (bitmap_bit_p (components, 2))
26245 rtx reg = gen_rtx_REG (reg_mode, TOC_REGNUM);
26246 rtx sp_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
26247 emit_insn (gen_frame_store (reg, sp_reg, RS6000_TOC_SAVE_SLOT));
26250 /* Prologue for the GPRs. */
26251 int offset = info->gp_save_offset;
26252 if (info->push_p)
26253 offset += info->total_size;
26255 for (int i = info->first_gp_reg_save; i < 32; i++)
26257 if (bitmap_bit_p (components, i))
26259 rtx reg = gen_rtx_REG (reg_mode, i);
26260 rtx_insn *insn = emit_insn (gen_frame_store (reg, ptr_reg, offset));
26261 RTX_FRAME_RELATED_P (insn) = 1;
26262 rtx set = copy_rtx (single_set (insn));
26263 add_reg_note (insn, REG_CFA_OFFSET, set);
26266 offset += reg_size;
26269 /* Prologue for the FPRs. */
26270 offset = info->fp_save_offset;
26271 if (info->push_p)
26272 offset += info->total_size;
26274 for (int i = info->first_fp_reg_save; i < 64; i++)
26276 if (bitmap_bit_p (components, i))
26278 rtx reg = gen_rtx_REG (fp_reg_mode, i);
26279 rtx_insn *insn = emit_insn (gen_frame_store (reg, ptr_reg, offset));
26280 RTX_FRAME_RELATED_P (insn) = 1;
26281 rtx set = copy_rtx (single_set (insn));
26282 add_reg_note (insn, REG_CFA_OFFSET, set);
26285 offset += fp_reg_size;
26289 /* Implement TARGET_SHRINK_WRAP_EMIT_EPILOGUE_COMPONENTS. */
26290 static void
26291 rs6000_emit_epilogue_components (sbitmap components)
26293 rs6000_stack_t *info = rs6000_stack_info ();
26294 rtx ptr_reg = gen_rtx_REG (Pmode, frame_pointer_needed
26295 ? HARD_FRAME_POINTER_REGNUM
26296 : STACK_POINTER_REGNUM);
26298 machine_mode reg_mode = Pmode;
26299 int reg_size = TARGET_32BIT ? 4 : 8;
26301 machine_mode fp_reg_mode = TARGET_HARD_FLOAT ? DFmode : SFmode;
26302 int fp_reg_size = 8;
26304 /* Epilogue for the FPRs. */
26305 int offset = info->fp_save_offset;
26306 if (info->push_p)
26307 offset += info->total_size;
26309 for (int i = info->first_fp_reg_save; i < 64; i++)
26311 if (bitmap_bit_p (components, i))
26313 rtx reg = gen_rtx_REG (fp_reg_mode, i);
26314 rtx_insn *insn = emit_insn (gen_frame_load (reg, ptr_reg, offset));
26315 RTX_FRAME_RELATED_P (insn) = 1;
26316 add_reg_note (insn, REG_CFA_RESTORE, reg);
26319 offset += fp_reg_size;
26322 /* Epilogue for the GPRs. */
26323 offset = info->gp_save_offset;
26324 if (info->push_p)
26325 offset += info->total_size;
26327 for (int i = info->first_gp_reg_save; i < 32; i++)
26329 if (bitmap_bit_p (components, i))
26331 rtx reg = gen_rtx_REG (reg_mode, i);
26332 rtx_insn *insn = emit_insn (gen_frame_load (reg, ptr_reg, offset));
26333 RTX_FRAME_RELATED_P (insn) = 1;
26334 add_reg_note (insn, REG_CFA_RESTORE, reg);
26337 offset += reg_size;
26340 /* Epilogue for LR. */
26341 if (bitmap_bit_p (components, 0))
26343 int offset = info->lr_save_offset;
26344 if (info->push_p)
26345 offset += info->total_size;
26347 rtx reg = gen_rtx_REG (reg_mode, 0);
26348 rtx_insn *insn = emit_insn (gen_frame_load (reg, ptr_reg, offset));
26350 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
26351 insn = emit_move_insn (lr, reg);
26352 RTX_FRAME_RELATED_P (insn) = 1;
26353 add_reg_note (insn, REG_CFA_RESTORE, lr);
26357 /* Implement TARGET_SHRINK_WRAP_SET_HANDLED_COMPONENTS. */
26358 static void
26359 rs6000_set_handled_components (sbitmap components)
26361 rs6000_stack_t *info = rs6000_stack_info ();
26363 for (int i = info->first_gp_reg_save; i < 32; i++)
26364 if (bitmap_bit_p (components, i))
26365 cfun->machine->gpr_is_wrapped_separately[i] = true;
26367 for (int i = info->first_fp_reg_save; i < 64; i++)
26368 if (bitmap_bit_p (components, i))
26369 cfun->machine->fpr_is_wrapped_separately[i - 32] = true;
26371 if (bitmap_bit_p (components, 0))
26372 cfun->machine->lr_is_wrapped_separately = true;
26374 if (bitmap_bit_p (components, 2))
26375 cfun->machine->toc_is_wrapped_separately = true;
26378 /* VRSAVE is a bit vector representing which AltiVec registers
26379 are used. The OS uses this to determine which vector
26380 registers to save on a context switch. We need to save
26381 VRSAVE on the stack frame, add whatever AltiVec registers we
26382 used in this function, and do the corresponding magic in the
26383 epilogue. */
26384 static void
26385 emit_vrsave_prologue (rs6000_stack_t *info, int save_regno,
26386 HOST_WIDE_INT frame_off, rtx frame_reg_rtx)
26388 /* Get VRSAVE into a GPR. */
26389 rtx reg = gen_rtx_REG (SImode, save_regno);
26390 rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
26391 if (TARGET_MACHO)
26392 emit_insn (gen_get_vrsave_internal (reg));
26393 else
26394 emit_insn (gen_rtx_SET (reg, vrsave));
26396 /* Save VRSAVE. */
26397 int offset = info->vrsave_save_offset + frame_off;
26398 emit_insn (gen_frame_store (reg, frame_reg_rtx, offset));
26400 /* Include the registers in the mask. */
26401 emit_insn (gen_iorsi3 (reg, reg, GEN_INT (info->vrsave_mask)));
26403 emit_insn (generate_set_vrsave (reg, info, 0));
26406 /* Set up the arg pointer (r12) for -fsplit-stack code. If __morestack was
26407 called, it left the arg pointer to the old stack in r29. Otherwise, the
26408 arg pointer is the top of the current frame. */
26409 static void
26410 emit_split_stack_prologue (rs6000_stack_t *info, rtx_insn *sp_adjust,
26411 HOST_WIDE_INT frame_off, rtx frame_reg_rtx)
26413 cfun->machine->split_stack_argp_used = true;
26415 if (sp_adjust)
26417 rtx r12 = gen_rtx_REG (Pmode, 12);
26418 rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
26419 rtx set_r12 = gen_rtx_SET (r12, sp_reg_rtx);
26420 emit_insn_before (set_r12, sp_adjust);
26422 else if (frame_off != 0 || REGNO (frame_reg_rtx) != 12)
26424 rtx r12 = gen_rtx_REG (Pmode, 12);
26425 if (frame_off == 0)
26426 emit_move_insn (r12, frame_reg_rtx);
26427 else
26428 emit_insn (gen_add3_insn (r12, frame_reg_rtx, GEN_INT (frame_off)));
26431 if (info->push_p)
26433 rtx r12 = gen_rtx_REG (Pmode, 12);
26434 rtx r29 = gen_rtx_REG (Pmode, 29);
26435 rtx cr7 = gen_rtx_REG (CCUNSmode, CR7_REGNO);
26436 rtx not_more = gen_label_rtx ();
26437 rtx jump;
26439 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
26440 gen_rtx_GEU (VOIDmode, cr7, const0_rtx),
26441 gen_rtx_LABEL_REF (VOIDmode, not_more),
26442 pc_rtx);
26443 jump = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
26444 JUMP_LABEL (jump) = not_more;
26445 LABEL_NUSES (not_more) += 1;
26446 emit_move_insn (r12, r29);
26447 emit_label (not_more);
26451 /* Emit function prologue as insns. */
26453 void
26454 rs6000_emit_prologue (void)
26456 rs6000_stack_t *info = rs6000_stack_info ();
26457 machine_mode reg_mode = Pmode;
26458 int reg_size = TARGET_32BIT ? 4 : 8;
26459 machine_mode fp_reg_mode = TARGET_HARD_FLOAT ? DFmode : SFmode;
26460 int fp_reg_size = 8;
26461 rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
26462 rtx frame_reg_rtx = sp_reg_rtx;
26463 unsigned int cr_save_regno;
26464 rtx cr_save_rtx = NULL_RTX;
26465 rtx_insn *insn;
26466 int strategy;
26467 int using_static_chain_p = (cfun->static_chain_decl != NULL_TREE
26468 && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
26469 && call_used_regs[STATIC_CHAIN_REGNUM]);
26470 int using_split_stack = (flag_split_stack
26471 && (lookup_attribute ("no_split_stack",
26472 DECL_ATTRIBUTES (cfun->decl))
26473 == NULL));
26475 /* Offset to top of frame for frame_reg and sp respectively. */
26476 HOST_WIDE_INT frame_off = 0;
26477 HOST_WIDE_INT sp_off = 0;
26478 /* sp_adjust is the stack adjusting instruction, tracked so that the
26479 insn setting up the split-stack arg pointer can be emitted just
26480 prior to it, when r12 is not used here for other purposes. */
26481 rtx_insn *sp_adjust = 0;
26483 #if CHECKING_P
26484 /* Track and check usage of r0, r11, r12. */
26485 int reg_inuse = using_static_chain_p ? 1 << 11 : 0;
26486 #define START_USE(R) do \
26488 gcc_assert ((reg_inuse & (1 << (R))) == 0); \
26489 reg_inuse |= 1 << (R); \
26490 } while (0)
26491 #define END_USE(R) do \
26493 gcc_assert ((reg_inuse & (1 << (R))) != 0); \
26494 reg_inuse &= ~(1 << (R)); \
26495 } while (0)
26496 #define NOT_INUSE(R) do \
26498 gcc_assert ((reg_inuse & (1 << (R))) == 0); \
26499 } while (0)
26500 #else
26501 #define START_USE(R) do {} while (0)
26502 #define END_USE(R) do {} while (0)
26503 #define NOT_INUSE(R) do {} while (0)
26504 #endif
26506 if (DEFAULT_ABI == ABI_ELFv2
26507 && !TARGET_SINGLE_PIC_BASE)
26509 cfun->machine->r2_setup_needed = df_regs_ever_live_p (TOC_REGNUM);
26511 /* With -mminimal-toc we may generate an extra use of r2 below. */
26512 if (TARGET_TOC && TARGET_MINIMAL_TOC
26513 && !constant_pool_empty_p ())
26514 cfun->machine->r2_setup_needed = true;
26518 if (flag_stack_usage_info)
26519 current_function_static_stack_size = info->total_size;
26521 if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
26523 HOST_WIDE_INT size = info->total_size;
26525 if (crtl->is_leaf && !cfun->calls_alloca)
26527 if (size > PROBE_INTERVAL && size > get_stack_check_protect ())
26528 rs6000_emit_probe_stack_range (get_stack_check_protect (),
26529 size - get_stack_check_protect ());
26531 else if (size > 0)
26532 rs6000_emit_probe_stack_range (get_stack_check_protect (), size);
26535 if (TARGET_FIX_AND_CONTINUE)
26537 /* gdb on darwin arranges to forward a function from the old
26538 address by modifying the first 5 instructions of the function
26539 to branch to the overriding function. This is necessary to
26540 permit function pointers that point to the old function to
26541 actually forward to the new function. */
26542 emit_insn (gen_nop ());
26543 emit_insn (gen_nop ());
26544 emit_insn (gen_nop ());
26545 emit_insn (gen_nop ());
26546 emit_insn (gen_nop ());
26549 /* Handle world saves specially here. */
26550 if (WORLD_SAVE_P (info))
26552 int i, j, sz;
26553 rtx treg;
26554 rtvec p;
26555 rtx reg0;
26557 /* save_world expects lr in r0. */
26558 reg0 = gen_rtx_REG (Pmode, 0);
26559 if (info->lr_save_p)
26561 insn = emit_move_insn (reg0,
26562 gen_rtx_REG (Pmode, LR_REGNO));
26563 RTX_FRAME_RELATED_P (insn) = 1;
26566 /* The SAVE_WORLD and RESTORE_WORLD routines make a number of
26567 assumptions about the offsets of various bits of the stack
26568 frame. */
26569 gcc_assert (info->gp_save_offset == -220
26570 && info->fp_save_offset == -144
26571 && info->lr_save_offset == 8
26572 && info->cr_save_offset == 4
26573 && info->push_p
26574 && info->lr_save_p
26575 && (!crtl->calls_eh_return
26576 || info->ehrd_offset == -432)
26577 && info->vrsave_save_offset == -224
26578 && info->altivec_save_offset == -416);
26580 treg = gen_rtx_REG (SImode, 11);
26581 emit_move_insn (treg, GEN_INT (-info->total_size));
26583 /* SAVE_WORLD takes the caller's LR in R0 and the frame size
26584 in R11. It also clobbers R12, so beware! */
26586 /* Preserve CR2 for save_world prologues */
26587 sz = 5;
26588 sz += 32 - info->first_gp_reg_save;
26589 sz += 64 - info->first_fp_reg_save;
26590 sz += LAST_ALTIVEC_REGNO - info->first_altivec_reg_save + 1;
26591 p = rtvec_alloc (sz);
26592 j = 0;
26593 RTVEC_ELT (p, j++) = gen_rtx_CLOBBER (VOIDmode,
26594 gen_rtx_REG (SImode,
26595 LR_REGNO));
26596 RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
26597 gen_rtx_SYMBOL_REF (Pmode,
26598 "*save_world"));
26599 /* We do floats first so that the instruction pattern matches
26600 properly. */
26601 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
26602 RTVEC_ELT (p, j++)
26603 = gen_frame_store (gen_rtx_REG (TARGET_HARD_FLOAT ? DFmode : SFmode,
26604 info->first_fp_reg_save + i),
26605 frame_reg_rtx,
26606 info->fp_save_offset + frame_off + 8 * i);
26607 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
26608 RTVEC_ELT (p, j++)
26609 = gen_frame_store (gen_rtx_REG (V4SImode,
26610 info->first_altivec_reg_save + i),
26611 frame_reg_rtx,
26612 info->altivec_save_offset + frame_off + 16 * i);
26613 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
26614 RTVEC_ELT (p, j++)
26615 = gen_frame_store (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
26616 frame_reg_rtx,
26617 info->gp_save_offset + frame_off + reg_size * i);
26619 /* CR register traditionally saved as CR2. */
26620 RTVEC_ELT (p, j++)
26621 = gen_frame_store (gen_rtx_REG (SImode, CR2_REGNO),
26622 frame_reg_rtx, info->cr_save_offset + frame_off);
26623 /* Explain about use of R0. */
26624 if (info->lr_save_p)
26625 RTVEC_ELT (p, j++)
26626 = gen_frame_store (reg0,
26627 frame_reg_rtx, info->lr_save_offset + frame_off);
26628 /* Explain what happens to the stack pointer. */
26630 rtx newval = gen_rtx_PLUS (Pmode, sp_reg_rtx, treg);
26631 RTVEC_ELT (p, j++) = gen_rtx_SET (sp_reg_rtx, newval);
26634 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
26635 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
26636 treg, GEN_INT (-info->total_size));
26637 sp_off = frame_off = info->total_size;
26640 strategy = info->savres_strategy;
26642 /* For V.4, update stack before we do any saving and set back pointer. */
26643 if (! WORLD_SAVE_P (info)
26644 && info->push_p
26645 && (DEFAULT_ABI == ABI_V4
26646 || crtl->calls_eh_return))
26648 bool need_r11 = (!(strategy & SAVE_INLINE_FPRS)
26649 || !(strategy & SAVE_INLINE_GPRS)
26650 || !(strategy & SAVE_INLINE_VRS));
26651 int ptr_regno = -1;
26652 rtx ptr_reg = NULL_RTX;
26653 int ptr_off = 0;
26655 if (info->total_size < 32767)
26656 frame_off = info->total_size;
26657 else if (need_r11)
26658 ptr_regno = 11;
26659 else if (info->cr_save_p
26660 || info->lr_save_p
26661 || info->first_fp_reg_save < 64
26662 || info->first_gp_reg_save < 32
26663 || info->altivec_size != 0
26664 || info->vrsave_size != 0
26665 || crtl->calls_eh_return)
26666 ptr_regno = 12;
26667 else
26669 /* The prologue won't be saving any regs so there is no need
26670 to set up a frame register to access any frame save area.
26671 We also won't be using frame_off anywhere below, but set
26672 the correct value anyway to protect against future
26673 changes to this function. */
26674 frame_off = info->total_size;
26676 if (ptr_regno != -1)
26678 /* Set up the frame offset to that needed by the first
26679 out-of-line save function. */
26680 START_USE (ptr_regno);
26681 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
26682 frame_reg_rtx = ptr_reg;
26683 if (!(strategy & SAVE_INLINE_FPRS) && info->fp_size != 0)
26684 gcc_checking_assert (info->fp_save_offset + info->fp_size == 0);
26685 else if (!(strategy & SAVE_INLINE_GPRS) && info->first_gp_reg_save < 32)
26686 ptr_off = info->gp_save_offset + info->gp_size;
26687 else if (!(strategy & SAVE_INLINE_VRS) && info->altivec_size != 0)
26688 ptr_off = info->altivec_save_offset + info->altivec_size;
26689 frame_off = -ptr_off;
26691 sp_adjust = rs6000_emit_allocate_stack (info->total_size,
26692 ptr_reg, ptr_off);
26693 if (REGNO (frame_reg_rtx) == 12)
26694 sp_adjust = 0;
26695 sp_off = info->total_size;
26696 if (frame_reg_rtx != sp_reg_rtx)
26697 rs6000_emit_stack_tie (frame_reg_rtx, false);
26700 /* If we use the link register, get it into r0. */
26701 if (!WORLD_SAVE_P (info) && info->lr_save_p
26702 && !cfun->machine->lr_is_wrapped_separately)
26704 rtx addr, reg, mem;
26706 reg = gen_rtx_REG (Pmode, 0);
26707 START_USE (0);
26708 insn = emit_move_insn (reg, gen_rtx_REG (Pmode, LR_REGNO));
26709 RTX_FRAME_RELATED_P (insn) = 1;
26711 if (!(strategy & (SAVE_NOINLINE_GPRS_SAVES_LR
26712 | SAVE_NOINLINE_FPRS_SAVES_LR)))
26714 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
26715 GEN_INT (info->lr_save_offset + frame_off));
26716 mem = gen_rtx_MEM (Pmode, addr);
26717 /* This should not be of rs6000_sr_alias_set, because of
26718 __builtin_return_address. */
26720 insn = emit_move_insn (mem, reg);
26721 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
26722 NULL_RTX, NULL_RTX);
26723 END_USE (0);
26727 /* If we need to save CR, put it into r12 or r11. Choose r12 except when
26728 r12 will be needed by out-of-line gpr restore. */
26729 cr_save_regno = ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
26730 && !(strategy & (SAVE_INLINE_GPRS
26731 | SAVE_NOINLINE_GPRS_SAVES_LR))
26732 ? 11 : 12);
26733 if (!WORLD_SAVE_P (info)
26734 && info->cr_save_p
26735 && REGNO (frame_reg_rtx) != cr_save_regno
26736 && !(using_static_chain_p && cr_save_regno == 11)
26737 && !(using_split_stack && cr_save_regno == 12 && sp_adjust))
26739 cr_save_rtx = gen_rtx_REG (SImode, cr_save_regno);
26740 START_USE (cr_save_regno);
26741 rs6000_emit_prologue_move_from_cr (cr_save_rtx);
26744 /* Do any required saving of fpr's. If only one or two to save, do
26745 it ourselves. Otherwise, call function. */
26746 if (!WORLD_SAVE_P (info) && (strategy & SAVE_INLINE_FPRS))
26748 int offset = info->fp_save_offset + frame_off;
26749 for (int i = info->first_fp_reg_save; i < 64; i++)
26751 if (save_reg_p (i)
26752 && !cfun->machine->fpr_is_wrapped_separately[i - 32])
26753 emit_frame_save (frame_reg_rtx, fp_reg_mode, i, offset,
26754 sp_off - frame_off);
26756 offset += fp_reg_size;
26759 else if (!WORLD_SAVE_P (info) && info->first_fp_reg_save != 64)
26761 bool lr = (strategy & SAVE_NOINLINE_FPRS_SAVES_LR) != 0;
26762 int sel = SAVRES_SAVE | SAVRES_FPR | (lr ? SAVRES_LR : 0);
26763 unsigned ptr_regno = ptr_regno_for_savres (sel);
26764 rtx ptr_reg = frame_reg_rtx;
26766 if (REGNO (frame_reg_rtx) == ptr_regno)
26767 gcc_checking_assert (frame_off == 0);
26768 else
26770 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
26771 NOT_INUSE (ptr_regno);
26772 emit_insn (gen_add3_insn (ptr_reg,
26773 frame_reg_rtx, GEN_INT (frame_off)));
26775 insn = rs6000_emit_savres_rtx (info, ptr_reg,
26776 info->fp_save_offset,
26777 info->lr_save_offset,
26778 DFmode, sel);
26779 rs6000_frame_related (insn, ptr_reg, sp_off,
26780 NULL_RTX, NULL_RTX);
26781 if (lr)
26782 END_USE (0);
26785 /* Save GPRs. This is done as a PARALLEL if we are using
26786 the store-multiple instructions. */
26787 if (!WORLD_SAVE_P (info) && !(strategy & SAVE_INLINE_GPRS))
26789 bool lr = (strategy & SAVE_NOINLINE_GPRS_SAVES_LR) != 0;
26790 int sel = SAVRES_SAVE | SAVRES_GPR | (lr ? SAVRES_LR : 0);
26791 unsigned ptr_regno = ptr_regno_for_savres (sel);
26792 rtx ptr_reg = frame_reg_rtx;
26793 bool ptr_set_up = REGNO (ptr_reg) == ptr_regno;
26794 int end_save = info->gp_save_offset + info->gp_size;
26795 int ptr_off;
26797 if (ptr_regno == 12)
26798 sp_adjust = 0;
26799 if (!ptr_set_up)
26800 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
26802 /* Need to adjust r11 (r12) if we saved any FPRs. */
26803 if (end_save + frame_off != 0)
26805 rtx offset = GEN_INT (end_save + frame_off);
26807 if (ptr_set_up)
26808 frame_off = -end_save;
26809 else
26810 NOT_INUSE (ptr_regno);
26811 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
26813 else if (!ptr_set_up)
26815 NOT_INUSE (ptr_regno);
26816 emit_move_insn (ptr_reg, frame_reg_rtx);
26818 ptr_off = -end_save;
26819 insn = rs6000_emit_savres_rtx (info, ptr_reg,
26820 info->gp_save_offset + ptr_off,
26821 info->lr_save_offset + ptr_off,
26822 reg_mode, sel);
26823 rs6000_frame_related (insn, ptr_reg, sp_off - ptr_off,
26824 NULL_RTX, NULL_RTX);
26825 if (lr)
26826 END_USE (0);
26828 else if (!WORLD_SAVE_P (info) && (strategy & SAVE_MULTIPLE))
26830 rtvec p;
26831 int i;
26832 p = rtvec_alloc (32 - info->first_gp_reg_save);
26833 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
26834 RTVEC_ELT (p, i)
26835 = gen_frame_store (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
26836 frame_reg_rtx,
26837 info->gp_save_offset + frame_off + reg_size * i);
26838 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
26839 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
26840 NULL_RTX, NULL_RTX);
26842 else if (!WORLD_SAVE_P (info))
26844 int offset = info->gp_save_offset + frame_off;
26845 for (int i = info->first_gp_reg_save; i < 32; i++)
26847 if (save_reg_p (i)
26848 && !cfun->machine->gpr_is_wrapped_separately[i])
26849 emit_frame_save (frame_reg_rtx, reg_mode, i, offset,
26850 sp_off - frame_off);
26852 offset += reg_size;
26856 if (crtl->calls_eh_return)
26858 unsigned int i;
26859 rtvec p;
26861 for (i = 0; ; ++i)
26863 unsigned int regno = EH_RETURN_DATA_REGNO (i);
26864 if (regno == INVALID_REGNUM)
26865 break;
26868 p = rtvec_alloc (i);
26870 for (i = 0; ; ++i)
26872 unsigned int regno = EH_RETURN_DATA_REGNO (i);
26873 if (regno == INVALID_REGNUM)
26874 break;
26876 rtx set
26877 = gen_frame_store (gen_rtx_REG (reg_mode, regno),
26878 sp_reg_rtx,
26879 info->ehrd_offset + sp_off + reg_size * (int) i);
26880 RTVEC_ELT (p, i) = set;
26881 RTX_FRAME_RELATED_P (set) = 1;
26884 insn = emit_insn (gen_blockage ());
26885 RTX_FRAME_RELATED_P (insn) = 1;
26886 add_reg_note (insn, REG_FRAME_RELATED_EXPR, gen_rtx_PARALLEL (VOIDmode, p));
26889 /* In AIX ABI we need to make sure r2 is really saved. */
26890 if (TARGET_AIX && crtl->calls_eh_return)
26892 rtx tmp_reg, tmp_reg_si, hi, lo, compare_result, toc_save_done, jump;
26893 rtx join_insn, note;
26894 rtx_insn *save_insn;
26895 long toc_restore_insn;
26897 tmp_reg = gen_rtx_REG (Pmode, 11);
26898 tmp_reg_si = gen_rtx_REG (SImode, 11);
26899 if (using_static_chain_p)
26901 START_USE (0);
26902 emit_move_insn (gen_rtx_REG (Pmode, 0), tmp_reg);
26904 else
26905 START_USE (11);
26906 emit_move_insn (tmp_reg, gen_rtx_REG (Pmode, LR_REGNO));
26907 /* Peek at instruction to which this function returns. If it's
26908 restoring r2, then we know we've already saved r2. We can't
26909 unconditionally save r2 because the value we have will already
26910 be updated if we arrived at this function via a plt call or
26911 toc adjusting stub. */
26912 emit_move_insn (tmp_reg_si, gen_rtx_MEM (SImode, tmp_reg));
26913 toc_restore_insn = ((TARGET_32BIT ? 0x80410000 : 0xE8410000)
26914 + RS6000_TOC_SAVE_SLOT);
26915 hi = gen_int_mode (toc_restore_insn & ~0xffff, SImode);
26916 emit_insn (gen_xorsi3 (tmp_reg_si, tmp_reg_si, hi));
26917 compare_result = gen_rtx_REG (CCUNSmode, CR0_REGNO);
26918 validate_condition_mode (EQ, CCUNSmode);
26919 lo = gen_int_mode (toc_restore_insn & 0xffff, SImode);
26920 emit_insn (gen_rtx_SET (compare_result,
26921 gen_rtx_COMPARE (CCUNSmode, tmp_reg_si, lo)));
26922 toc_save_done = gen_label_rtx ();
26923 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
26924 gen_rtx_EQ (VOIDmode, compare_result,
26925 const0_rtx),
26926 gen_rtx_LABEL_REF (VOIDmode, toc_save_done),
26927 pc_rtx);
26928 jump = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
26929 JUMP_LABEL (jump) = toc_save_done;
26930 LABEL_NUSES (toc_save_done) += 1;
26932 save_insn = emit_frame_save (frame_reg_rtx, reg_mode,
26933 TOC_REGNUM, frame_off + RS6000_TOC_SAVE_SLOT,
26934 sp_off - frame_off);
26936 emit_label (toc_save_done);
26938 /* ??? If we leave SAVE_INSN as marked as saving R2, then we'll
26939 have a CFG that has different saves along different paths.
26940 Move the note to a dummy blockage insn, which describes that
26941 R2 is unconditionally saved after the label. */
26942 /* ??? An alternate representation might be a special insn pattern
26943 containing both the branch and the store. That might let the
26944 code that minimizes the number of DW_CFA_advance opcodes better
26945 freedom in placing the annotations. */
26946 note = find_reg_note (save_insn, REG_FRAME_RELATED_EXPR, NULL);
26947 if (note)
26948 remove_note (save_insn, note);
26949 else
26950 note = alloc_reg_note (REG_FRAME_RELATED_EXPR,
26951 copy_rtx (PATTERN (save_insn)), NULL_RTX);
26952 RTX_FRAME_RELATED_P (save_insn) = 0;
26954 join_insn = emit_insn (gen_blockage ());
26955 REG_NOTES (join_insn) = note;
26956 RTX_FRAME_RELATED_P (join_insn) = 1;
26958 if (using_static_chain_p)
26960 emit_move_insn (tmp_reg, gen_rtx_REG (Pmode, 0));
26961 END_USE (0);
26963 else
26964 END_USE (11);
26967 /* Save CR if we use any that must be preserved. */
26968 if (!WORLD_SAVE_P (info) && info->cr_save_p)
26970 rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
26971 GEN_INT (info->cr_save_offset + frame_off));
26972 rtx mem = gen_frame_mem (SImode, addr);
26974 /* If we didn't copy cr before, do so now using r0. */
26975 if (cr_save_rtx == NULL_RTX)
26977 START_USE (0);
26978 cr_save_rtx = gen_rtx_REG (SImode, 0);
26979 rs6000_emit_prologue_move_from_cr (cr_save_rtx);
26982 /* Saving CR requires a two-instruction sequence: one instruction
26983 to move the CR to a general-purpose register, and a second
26984 instruction that stores the GPR to memory.
26986 We do not emit any DWARF CFI records for the first of these,
26987 because we cannot properly represent the fact that CR is saved in
26988 a register. One reason is that we cannot express that multiple
26989 CR fields are saved; another reason is that on 64-bit, the size
26990 of the CR register in DWARF (4 bytes) differs from the size of
26991 a general-purpose register.
26993 This means if any intervening instruction were to clobber one of
26994 the call-saved CR fields, we'd have incorrect CFI. To prevent
26995 this from happening, we mark the store to memory as a use of
26996 those CR fields, which prevents any such instruction from being
26997 scheduled in between the two instructions. */
26998 rtx crsave_v[9];
26999 int n_crsave = 0;
27000 int i;
27002 crsave_v[n_crsave++] = gen_rtx_SET (mem, cr_save_rtx);
27003 for (i = 0; i < 8; i++)
27004 if (save_reg_p (CR0_REGNO + i))
27005 crsave_v[n_crsave++]
27006 = gen_rtx_USE (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO + i));
27008 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode,
27009 gen_rtvec_v (n_crsave, crsave_v)));
27010 END_USE (REGNO (cr_save_rtx));
27012 /* Now, there's no way that dwarf2out_frame_debug_expr is going to
27013 understand '(unspec:SI [(reg:CC 68) ...] UNSPEC_MOVESI_FROM_CR)',
27014 so we need to construct a frame expression manually. */
27015 RTX_FRAME_RELATED_P (insn) = 1;
27017 /* Update address to be stack-pointer relative, like
27018 rs6000_frame_related would do. */
27019 addr = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, STACK_POINTER_REGNUM),
27020 GEN_INT (info->cr_save_offset + sp_off));
27021 mem = gen_frame_mem (SImode, addr);
27023 if (DEFAULT_ABI == ABI_ELFv2)
27025 /* In the ELFv2 ABI we generate separate CFI records for each
27026 CR field that was actually saved. They all point to the
27027 same 32-bit stack slot. */
27028 rtx crframe[8];
27029 int n_crframe = 0;
27031 for (i = 0; i < 8; i++)
27032 if (save_reg_p (CR0_REGNO + i))
27034 crframe[n_crframe]
27035 = gen_rtx_SET (mem, gen_rtx_REG (SImode, CR0_REGNO + i));
27037 RTX_FRAME_RELATED_P (crframe[n_crframe]) = 1;
27038 n_crframe++;
27041 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
27042 gen_rtx_PARALLEL (VOIDmode,
27043 gen_rtvec_v (n_crframe, crframe)));
27045 else
27047 /* In other ABIs, by convention, we use a single CR regnum to
27048 represent the fact that all call-saved CR fields are saved.
27049 We use CR2_REGNO to be compatible with gcc-2.95 on Linux. */
27050 rtx set = gen_rtx_SET (mem, gen_rtx_REG (SImode, CR2_REGNO));
27051 add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
27055 /* In the ELFv2 ABI we need to save all call-saved CR fields into
27056 *separate* slots if the routine calls __builtin_eh_return, so
27057 that they can be independently restored by the unwinder. */
27058 if (DEFAULT_ABI == ABI_ELFv2 && crtl->calls_eh_return)
27060 int i, cr_off = info->ehcr_offset;
27061 rtx crsave;
27063 /* ??? We might get better performance by using multiple mfocrf
27064 instructions. */
27065 crsave = gen_rtx_REG (SImode, 0);
27066 emit_insn (gen_prologue_movesi_from_cr (crsave));
27068 for (i = 0; i < 8; i++)
27069 if (!call_used_regs[CR0_REGNO + i])
27071 rtvec p = rtvec_alloc (2);
27072 RTVEC_ELT (p, 0)
27073 = gen_frame_store (crsave, frame_reg_rtx, cr_off + frame_off);
27074 RTVEC_ELT (p, 1)
27075 = gen_rtx_USE (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO + i));
27077 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
27079 RTX_FRAME_RELATED_P (insn) = 1;
27080 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
27081 gen_frame_store (gen_rtx_REG (SImode, CR0_REGNO + i),
27082 sp_reg_rtx, cr_off + sp_off));
27084 cr_off += reg_size;
27088 /* If we are emitting stack probes, but allocate no stack, then
27089 just note that in the dump file. */
27090 if (flag_stack_clash_protection
27091 && dump_file
27092 && !info->push_p)
27093 dump_stack_clash_frame_info (NO_PROBE_NO_FRAME, false);
27095 /* Update stack and set back pointer unless this is V.4,
27096 for which it was done previously. */
27097 if (!WORLD_SAVE_P (info) && info->push_p
27098 && !(DEFAULT_ABI == ABI_V4 || crtl->calls_eh_return))
27100 rtx ptr_reg = NULL;
27101 int ptr_off = 0;
27103 /* If saving altivec regs we need to be able to address all save
27104 locations using a 16-bit offset. */
27105 if ((strategy & SAVE_INLINE_VRS) == 0
27106 || (info->altivec_size != 0
27107 && (info->altivec_save_offset + info->altivec_size - 16
27108 + info->total_size - frame_off) > 32767)
27109 || (info->vrsave_size != 0
27110 && (info->vrsave_save_offset
27111 + info->total_size - frame_off) > 32767))
27113 int sel = SAVRES_SAVE | SAVRES_VR;
27114 unsigned ptr_regno = ptr_regno_for_savres (sel);
27116 if (using_static_chain_p
27117 && ptr_regno == STATIC_CHAIN_REGNUM)
27118 ptr_regno = 12;
27119 if (REGNO (frame_reg_rtx) != ptr_regno)
27120 START_USE (ptr_regno);
27121 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
27122 frame_reg_rtx = ptr_reg;
27123 ptr_off = info->altivec_save_offset + info->altivec_size;
27124 frame_off = -ptr_off;
27126 else if (REGNO (frame_reg_rtx) == 1)
27127 frame_off = info->total_size;
27128 sp_adjust = rs6000_emit_allocate_stack (info->total_size,
27129 ptr_reg, ptr_off);
27130 if (REGNO (frame_reg_rtx) == 12)
27131 sp_adjust = 0;
27132 sp_off = info->total_size;
27133 if (frame_reg_rtx != sp_reg_rtx)
27134 rs6000_emit_stack_tie (frame_reg_rtx, false);
27137 /* Set frame pointer, if needed. */
27138 if (frame_pointer_needed)
27140 insn = emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
27141 sp_reg_rtx);
27142 RTX_FRAME_RELATED_P (insn) = 1;
27145 /* Save AltiVec registers if needed. Save here because the red zone does
27146 not always include AltiVec registers. */
27147 if (!WORLD_SAVE_P (info)
27148 && info->altivec_size != 0 && (strategy & SAVE_INLINE_VRS) == 0)
27150 int end_save = info->altivec_save_offset + info->altivec_size;
27151 int ptr_off;
27152 /* Oddly, the vector save/restore functions point r0 at the end
27153 of the save area, then use r11 or r12 to load offsets for
27154 [reg+reg] addressing. */
27155 rtx ptr_reg = gen_rtx_REG (Pmode, 0);
27156 int scratch_regno = ptr_regno_for_savres (SAVRES_SAVE | SAVRES_VR);
27157 rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
27159 gcc_checking_assert (scratch_regno == 11 || scratch_regno == 12);
27160 NOT_INUSE (0);
27161 if (scratch_regno == 12)
27162 sp_adjust = 0;
27163 if (end_save + frame_off != 0)
27165 rtx offset = GEN_INT (end_save + frame_off);
27167 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
27169 else
27170 emit_move_insn (ptr_reg, frame_reg_rtx);
27172 ptr_off = -end_save;
27173 insn = rs6000_emit_savres_rtx (info, scratch_reg,
27174 info->altivec_save_offset + ptr_off,
27175 0, V4SImode, SAVRES_SAVE | SAVRES_VR);
27176 rs6000_frame_related (insn, scratch_reg, sp_off - ptr_off,
27177 NULL_RTX, NULL_RTX);
27178 if (REGNO (frame_reg_rtx) == REGNO (scratch_reg))
27180 /* The oddity mentioned above clobbered our frame reg. */
27181 emit_move_insn (frame_reg_rtx, ptr_reg);
27182 frame_off = ptr_off;
27185 else if (!WORLD_SAVE_P (info)
27186 && info->altivec_size != 0)
27188 int i;
27190 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
27191 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
27193 rtx areg, savereg, mem;
27194 HOST_WIDE_INT offset;
27196 offset = (info->altivec_save_offset + frame_off
27197 + 16 * (i - info->first_altivec_reg_save));
27199 savereg = gen_rtx_REG (V4SImode, i);
27201 if (TARGET_P9_VECTOR && quad_address_offset_p (offset))
27203 mem = gen_frame_mem (V4SImode,
27204 gen_rtx_PLUS (Pmode, frame_reg_rtx,
27205 GEN_INT (offset)));
27206 insn = emit_insn (gen_rtx_SET (mem, savereg));
27207 areg = NULL_RTX;
27209 else
27211 NOT_INUSE (0);
27212 areg = gen_rtx_REG (Pmode, 0);
27213 emit_move_insn (areg, GEN_INT (offset));
27215 /* AltiVec addressing mode is [reg+reg]. */
27216 mem = gen_frame_mem (V4SImode,
27217 gen_rtx_PLUS (Pmode, frame_reg_rtx, areg));
27219 /* Rather than emitting a generic move, force use of the stvx
27220 instruction, which we always want on ISA 2.07 (power8) systems.
27221 In particular we don't want xxpermdi/stxvd2x for little
27222 endian. */
27223 insn = emit_insn (gen_altivec_stvx_v4si_internal (mem, savereg));
27226 rs6000_frame_related (insn, frame_reg_rtx, sp_off - frame_off,
27227 areg, GEN_INT (offset));
27231 /* VRSAVE is a bit vector representing which AltiVec registers
27232 are used. The OS uses this to determine which vector
27233 registers to save on a context switch. We need to save
27234 VRSAVE on the stack frame, add whatever AltiVec registers we
27235 used in this function, and do the corresponding magic in the
27236 epilogue. */
27238 if (!WORLD_SAVE_P (info) && info->vrsave_size != 0)
27240 /* Get VRSAVE into a GPR. Note that ABI_V4 and ABI_DARWIN might
27241 be using r12 as frame_reg_rtx and r11 as the static chain
27242 pointer for nested functions. */
27243 int save_regno = 12;
27244 if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
27245 && !using_static_chain_p)
27246 save_regno = 11;
27247 else if (using_split_stack || REGNO (frame_reg_rtx) == 12)
27249 save_regno = 11;
27250 if (using_static_chain_p)
27251 save_regno = 0;
27253 NOT_INUSE (save_regno);
27255 emit_vrsave_prologue (info, save_regno, frame_off, frame_reg_rtx);
27258 /* If we are using RS6000_PIC_OFFSET_TABLE_REGNUM, we need to set it up. */
27259 if (!TARGET_SINGLE_PIC_BASE
27260 && ((TARGET_TOC && TARGET_MINIMAL_TOC
27261 && !constant_pool_empty_p ())
27262 || (DEFAULT_ABI == ABI_V4
27263 && (flag_pic == 1 || (flag_pic && TARGET_SECURE_PLT))
27264 && df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))))
27266 /* If emit_load_toc_table will use the link register, we need to save
27267 it. We use R12 for this purpose because emit_load_toc_table
27268 can use register 0. This allows us to use a plain 'blr' to return
27269 from the procedure more often. */
27270 int save_LR_around_toc_setup = (TARGET_ELF
27271 && DEFAULT_ABI == ABI_V4
27272 && flag_pic
27273 && ! info->lr_save_p
27274 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0);
27275 if (save_LR_around_toc_setup)
27277 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
27278 rtx tmp = gen_rtx_REG (Pmode, 12);
27280 sp_adjust = 0;
27281 insn = emit_move_insn (tmp, lr);
27282 RTX_FRAME_RELATED_P (insn) = 1;
27284 rs6000_emit_load_toc_table (TRUE);
27286 insn = emit_move_insn (lr, tmp);
27287 add_reg_note (insn, REG_CFA_RESTORE, lr);
27288 RTX_FRAME_RELATED_P (insn) = 1;
27290 else
27291 rs6000_emit_load_toc_table (TRUE);
27294 #if TARGET_MACHO
27295 if (!TARGET_SINGLE_PIC_BASE
27296 && DEFAULT_ABI == ABI_DARWIN
27297 && flag_pic && crtl->uses_pic_offset_table)
27299 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
27300 rtx src = gen_rtx_SYMBOL_REF (Pmode, MACHOPIC_FUNCTION_BASE_NAME);
27302 /* Save and restore LR locally around this call (in R0). */
27303 if (!info->lr_save_p)
27304 emit_move_insn (gen_rtx_REG (Pmode, 0), lr);
27306 emit_insn (gen_load_macho_picbase (src));
27308 emit_move_insn (gen_rtx_REG (Pmode,
27309 RS6000_PIC_OFFSET_TABLE_REGNUM),
27310 lr);
27312 if (!info->lr_save_p)
27313 emit_move_insn (lr, gen_rtx_REG (Pmode, 0));
27315 #endif
27317 /* If we need to, save the TOC register after doing the stack setup.
27318 Do not emit eh frame info for this save. The unwinder wants info,
27319 conceptually attached to instructions in this function, about
27320 register values in the caller of this function. This R2 may have
27321 already been changed from the value in the caller.
27322 We don't attempt to write accurate DWARF EH frame info for R2
27323 because code emitted by gcc for a (non-pointer) function call
27324 doesn't save and restore R2. Instead, R2 is managed out-of-line
27325 by a linker generated plt call stub when the function resides in
27326 a shared library. This behavior is costly to describe in DWARF,
27327 both in terms of the size of DWARF info and the time taken in the
27328 unwinder to interpret it. R2 changes, apart from the
27329 calls_eh_return case earlier in this function, are handled by
27330 linux-unwind.h frob_update_context. */
27331 if (rs6000_save_toc_in_prologue_p ()
27332 && !cfun->machine->toc_is_wrapped_separately)
27334 rtx reg = gen_rtx_REG (reg_mode, TOC_REGNUM);
27335 emit_insn (gen_frame_store (reg, sp_reg_rtx, RS6000_TOC_SAVE_SLOT));
27338 /* Set up the arg pointer (r12) for -fsplit-stack code. */
27339 if (using_split_stack && split_stack_arg_pointer_used_p ())
27340 emit_split_stack_prologue (info, sp_adjust, frame_off, frame_reg_rtx);
27343 /* Output .extern statements for the save/restore routines we use. */
27345 static void
27346 rs6000_output_savres_externs (FILE *file)
27348 rs6000_stack_t *info = rs6000_stack_info ();
27350 if (TARGET_DEBUG_STACK)
27351 debug_stack_info (info);
27353 /* Write .extern for any function we will call to save and restore
27354 fp values. */
27355 if (info->first_fp_reg_save < 64
27356 && !TARGET_MACHO
27357 && !TARGET_ELF)
27359 char *name;
27360 int regno = info->first_fp_reg_save - 32;
27362 if ((info->savres_strategy & SAVE_INLINE_FPRS) == 0)
27364 bool lr = (info->savres_strategy & SAVE_NOINLINE_FPRS_SAVES_LR) != 0;
27365 int sel = SAVRES_SAVE | SAVRES_FPR | (lr ? SAVRES_LR : 0);
27366 name = rs6000_savres_routine_name (regno, sel);
27367 fprintf (file, "\t.extern %s\n", name);
27369 if ((info->savres_strategy & REST_INLINE_FPRS) == 0)
27371 bool lr = (info->savres_strategy
27372 & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR) == 0;
27373 int sel = SAVRES_FPR | (lr ? SAVRES_LR : 0);
27374 name = rs6000_savres_routine_name (regno, sel);
27375 fprintf (file, "\t.extern %s\n", name);
27380 /* Write function prologue. */
27382 static void
27383 rs6000_output_function_prologue (FILE *file)
27385 if (!cfun->is_thunk)
27386 rs6000_output_savres_externs (file);
27388 /* ELFv2 ABI r2 setup code and local entry point. This must follow
27389 immediately after the global entry point label. */
27390 if (rs6000_global_entry_point_needed_p ())
27392 const char *name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
27394 (*targetm.asm_out.internal_label) (file, "LCF", rs6000_pic_labelno);
27396 if (TARGET_CMODEL != CMODEL_LARGE)
27398 /* In the small and medium code models, we assume the TOC is less
27399 2 GB away from the text section, so it can be computed via the
27400 following two-instruction sequence. */
27401 char buf[256];
27403 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
27404 fprintf (file, "0:\taddis 2,12,.TOC.-");
27405 assemble_name (file, buf);
27406 fprintf (file, "@ha\n");
27407 fprintf (file, "\taddi 2,2,.TOC.-");
27408 assemble_name (file, buf);
27409 fprintf (file, "@l\n");
27411 else
27413 /* In the large code model, we allow arbitrary offsets between the
27414 TOC and the text section, so we have to load the offset from
27415 memory. The data field is emitted directly before the global
27416 entry point in rs6000_elf_declare_function_name. */
27417 char buf[256];
27419 #ifdef HAVE_AS_ENTRY_MARKERS
27420 /* If supported by the linker, emit a marker relocation. If the
27421 total code size of the final executable or shared library
27422 happens to fit into 2 GB after all, the linker will replace
27423 this code sequence with the sequence for the small or medium
27424 code model. */
27425 fprintf (file, "\t.reloc .,R_PPC64_ENTRY\n");
27426 #endif
27427 fprintf (file, "\tld 2,");
27428 ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
27429 assemble_name (file, buf);
27430 fprintf (file, "-");
27431 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
27432 assemble_name (file, buf);
27433 fprintf (file, "(12)\n");
27434 fprintf (file, "\tadd 2,2,12\n");
27437 fputs ("\t.localentry\t", file);
27438 assemble_name (file, name);
27439 fputs (",.-", file);
27440 assemble_name (file, name);
27441 fputs ("\n", file);
27444 /* Output -mprofile-kernel code. This needs to be done here instead of
27445 in output_function_profile since it must go after the ELFv2 ABI
27446 local entry point. */
27447 if (TARGET_PROFILE_KERNEL && crtl->profile)
27449 gcc_assert (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2);
27450 gcc_assert (!TARGET_32BIT);
27452 asm_fprintf (file, "\tmflr %s\n", reg_names[0]);
27454 /* In the ELFv2 ABI we have no compiler stack word. It must be
27455 the resposibility of _mcount to preserve the static chain
27456 register if required. */
27457 if (DEFAULT_ABI != ABI_ELFv2
27458 && cfun->static_chain_decl != NULL)
27460 asm_fprintf (file, "\tstd %s,24(%s)\n",
27461 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
27462 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
27463 asm_fprintf (file, "\tld %s,24(%s)\n",
27464 reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
27466 else
27467 fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
27470 rs6000_pic_labelno++;
27473 /* -mprofile-kernel code calls mcount before the function prolog,
27474 so a profiled leaf function should stay a leaf function. */
27475 static bool
27476 rs6000_keep_leaf_when_profiled ()
27478 return TARGET_PROFILE_KERNEL;
27481 /* Non-zero if vmx regs are restored before the frame pop, zero if
27482 we restore after the pop when possible. */
27483 #define ALWAYS_RESTORE_ALTIVEC_BEFORE_POP 0
27485 /* Restoring cr is a two step process: loading a reg from the frame
27486 save, then moving the reg to cr. For ABI_V4 we must let the
27487 unwinder know that the stack location is no longer valid at or
27488 before the stack deallocation, but we can't emit a cfa_restore for
27489 cr at the stack deallocation like we do for other registers.
27490 The trouble is that it is possible for the move to cr to be
27491 scheduled after the stack deallocation. So say exactly where cr
27492 is located on each of the two insns. */
27494 static rtx
27495 load_cr_save (int regno, rtx frame_reg_rtx, int offset, bool exit_func)
27497 rtx mem = gen_frame_mem_offset (SImode, frame_reg_rtx, offset);
27498 rtx reg = gen_rtx_REG (SImode, regno);
27499 rtx_insn *insn = emit_move_insn (reg, mem);
27501 if (!exit_func && DEFAULT_ABI == ABI_V4)
27503 rtx cr = gen_rtx_REG (SImode, CR2_REGNO);
27504 rtx set = gen_rtx_SET (reg, cr);
27506 add_reg_note (insn, REG_CFA_REGISTER, set);
27507 RTX_FRAME_RELATED_P (insn) = 1;
27509 return reg;
27512 /* Reload CR from REG. */
27514 static void
27515 restore_saved_cr (rtx reg, int using_mfcr_multiple, bool exit_func)
27517 int count = 0;
27518 int i;
27520 if (using_mfcr_multiple)
27522 for (i = 0; i < 8; i++)
27523 if (save_reg_p (CR0_REGNO + i))
27524 count++;
27525 gcc_assert (count);
27528 if (using_mfcr_multiple && count > 1)
27530 rtx_insn *insn;
27531 rtvec p;
27532 int ndx;
27534 p = rtvec_alloc (count);
27536 ndx = 0;
27537 for (i = 0; i < 8; i++)
27538 if (save_reg_p (CR0_REGNO + i))
27540 rtvec r = rtvec_alloc (2);
27541 RTVEC_ELT (r, 0) = reg;
27542 RTVEC_ELT (r, 1) = GEN_INT (1 << (7-i));
27543 RTVEC_ELT (p, ndx) =
27544 gen_rtx_SET (gen_rtx_REG (CCmode, CR0_REGNO + i),
27545 gen_rtx_UNSPEC (CCmode, r, UNSPEC_MOVESI_TO_CR));
27546 ndx++;
27548 insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
27549 gcc_assert (ndx == count);
27551 /* For the ELFv2 ABI we generate a CFA_RESTORE for each
27552 CR field separately. */
27553 if (!exit_func && DEFAULT_ABI == ABI_ELFv2 && flag_shrink_wrap)
27555 for (i = 0; i < 8; i++)
27556 if (save_reg_p (CR0_REGNO + i))
27557 add_reg_note (insn, REG_CFA_RESTORE,
27558 gen_rtx_REG (SImode, CR0_REGNO + i));
27560 RTX_FRAME_RELATED_P (insn) = 1;
27563 else
27564 for (i = 0; i < 8; i++)
27565 if (save_reg_p (CR0_REGNO + i))
27567 rtx insn = emit_insn (gen_movsi_to_cr_one
27568 (gen_rtx_REG (CCmode, CR0_REGNO + i), reg));
27570 /* For the ELFv2 ABI we generate a CFA_RESTORE for each
27571 CR field separately, attached to the insn that in fact
27572 restores this particular CR field. */
27573 if (!exit_func && DEFAULT_ABI == ABI_ELFv2 && flag_shrink_wrap)
27575 add_reg_note (insn, REG_CFA_RESTORE,
27576 gen_rtx_REG (SImode, CR0_REGNO + i));
27578 RTX_FRAME_RELATED_P (insn) = 1;
27582 /* For other ABIs, we just generate a single CFA_RESTORE for CR2. */
27583 if (!exit_func && DEFAULT_ABI != ABI_ELFv2
27584 && (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap))
27586 rtx_insn *insn = get_last_insn ();
27587 rtx cr = gen_rtx_REG (SImode, CR2_REGNO);
27589 add_reg_note (insn, REG_CFA_RESTORE, cr);
27590 RTX_FRAME_RELATED_P (insn) = 1;
27594 /* Like cr, the move to lr instruction can be scheduled after the
27595 stack deallocation, but unlike cr, its stack frame save is still
27596 valid. So we only need to emit the cfa_restore on the correct
27597 instruction. */
27599 static void
27600 load_lr_save (int regno, rtx frame_reg_rtx, int offset)
27602 rtx mem = gen_frame_mem_offset (Pmode, frame_reg_rtx, offset);
27603 rtx reg = gen_rtx_REG (Pmode, regno);
27605 emit_move_insn (reg, mem);
27608 static void
27609 restore_saved_lr (int regno, bool exit_func)
27611 rtx reg = gen_rtx_REG (Pmode, regno);
27612 rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
27613 rtx_insn *insn = emit_move_insn (lr, reg);
27615 if (!exit_func && flag_shrink_wrap)
27617 add_reg_note (insn, REG_CFA_RESTORE, lr);
27618 RTX_FRAME_RELATED_P (insn) = 1;
27622 static rtx
27623 add_crlr_cfa_restore (const rs6000_stack_t *info, rtx cfa_restores)
27625 if (DEFAULT_ABI == ABI_ELFv2)
27627 int i;
27628 for (i = 0; i < 8; i++)
27629 if (save_reg_p (CR0_REGNO + i))
27631 rtx cr = gen_rtx_REG (SImode, CR0_REGNO + i);
27632 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, cr,
27633 cfa_restores);
27636 else if (info->cr_save_p)
27637 cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
27638 gen_rtx_REG (SImode, CR2_REGNO),
27639 cfa_restores);
27641 if (info->lr_save_p)
27642 cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
27643 gen_rtx_REG (Pmode, LR_REGNO),
27644 cfa_restores);
27645 return cfa_restores;
27648 /* Return true if OFFSET from stack pointer can be clobbered by signals.
27649 V.4 doesn't have any stack cushion, AIX ABIs have 220 or 288 bytes
27650 below stack pointer not cloberred by signals. */
27652 static inline bool
27653 offset_below_red_zone_p (HOST_WIDE_INT offset)
27655 return offset < (DEFAULT_ABI == ABI_V4
27657 : TARGET_32BIT ? -220 : -288);
27660 /* Append CFA_RESTORES to any existing REG_NOTES on the last insn. */
27662 static void
27663 emit_cfa_restores (rtx cfa_restores)
27665 rtx_insn *insn = get_last_insn ();
27666 rtx *loc = &REG_NOTES (insn);
27668 while (*loc)
27669 loc = &XEXP (*loc, 1);
27670 *loc = cfa_restores;
27671 RTX_FRAME_RELATED_P (insn) = 1;
27674 /* Emit function epilogue as insns. */
27676 void
27677 rs6000_emit_epilogue (int sibcall)
27679 rs6000_stack_t *info;
27680 int restoring_GPRs_inline;
27681 int restoring_FPRs_inline;
27682 int using_load_multiple;
27683 int using_mtcr_multiple;
27684 int use_backchain_to_restore_sp;
27685 int restore_lr;
27686 int strategy;
27687 HOST_WIDE_INT frame_off = 0;
27688 rtx sp_reg_rtx = gen_rtx_REG (Pmode, 1);
27689 rtx frame_reg_rtx = sp_reg_rtx;
27690 rtx cfa_restores = NULL_RTX;
27691 rtx insn;
27692 rtx cr_save_reg = NULL_RTX;
27693 machine_mode reg_mode = Pmode;
27694 int reg_size = TARGET_32BIT ? 4 : 8;
27695 machine_mode fp_reg_mode = TARGET_HARD_FLOAT ? DFmode : SFmode;
27696 int fp_reg_size = 8;
27697 int i;
27698 bool exit_func;
27699 unsigned ptr_regno;
27701 info = rs6000_stack_info ();
27703 strategy = info->savres_strategy;
27704 using_load_multiple = strategy & REST_MULTIPLE;
27705 restoring_FPRs_inline = sibcall || (strategy & REST_INLINE_FPRS);
27706 restoring_GPRs_inline = sibcall || (strategy & REST_INLINE_GPRS);
27707 using_mtcr_multiple = (rs6000_tune == PROCESSOR_PPC601
27708 || rs6000_tune == PROCESSOR_PPC603
27709 || rs6000_tune == PROCESSOR_PPC750
27710 || optimize_size);
27711 /* Restore via the backchain when we have a large frame, since this
27712 is more efficient than an addis, addi pair. The second condition
27713 here will not trigger at the moment; We don't actually need a
27714 frame pointer for alloca, but the generic parts of the compiler
27715 give us one anyway. */
27716 use_backchain_to_restore_sp = (info->total_size + (info->lr_save_p
27717 ? info->lr_save_offset
27718 : 0) > 32767
27719 || (cfun->calls_alloca
27720 && !frame_pointer_needed));
27721 restore_lr = (info->lr_save_p
27722 && (restoring_FPRs_inline
27723 || (strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR))
27724 && (restoring_GPRs_inline
27725 || info->first_fp_reg_save < 64)
27726 && !cfun->machine->lr_is_wrapped_separately);
27729 if (WORLD_SAVE_P (info))
27731 int i, j;
27732 char rname[30];
27733 const char *alloc_rname;
27734 rtvec p;
27736 /* eh_rest_world_r10 will return to the location saved in the LR
27737 stack slot (which is not likely to be our caller.)
27738 Input: R10 -- stack adjustment. Clobbers R0, R11, R12, R7, R8.
27739 rest_world is similar, except any R10 parameter is ignored.
27740 The exception-handling stuff that was here in 2.95 is no
27741 longer necessary. */
27743 p = rtvec_alloc (9
27744 + 32 - info->first_gp_reg_save
27745 + LAST_ALTIVEC_REGNO + 1 - info->first_altivec_reg_save
27746 + 63 + 1 - info->first_fp_reg_save);
27748 strcpy (rname, ((crtl->calls_eh_return) ?
27749 "*eh_rest_world_r10" : "*rest_world"));
27750 alloc_rname = ggc_strdup (rname);
27752 j = 0;
27753 RTVEC_ELT (p, j++) = ret_rtx;
27754 RTVEC_ELT (p, j++)
27755 = gen_rtx_USE (VOIDmode, gen_rtx_SYMBOL_REF (Pmode, alloc_rname));
27756 /* The instruction pattern requires a clobber here;
27757 it is shared with the restVEC helper. */
27758 RTVEC_ELT (p, j++)
27759 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 11));
27762 /* CR register traditionally saved as CR2. */
27763 rtx reg = gen_rtx_REG (SImode, CR2_REGNO);
27764 RTVEC_ELT (p, j++)
27765 = gen_frame_load (reg, frame_reg_rtx, info->cr_save_offset);
27766 if (flag_shrink_wrap)
27768 cfa_restores = alloc_reg_note (REG_CFA_RESTORE,
27769 gen_rtx_REG (Pmode, LR_REGNO),
27770 cfa_restores);
27771 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
27775 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
27777 rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
27778 RTVEC_ELT (p, j++)
27779 = gen_frame_load (reg,
27780 frame_reg_rtx, info->gp_save_offset + reg_size * i);
27781 if (flag_shrink_wrap
27782 && save_reg_p (info->first_gp_reg_save + i))
27783 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
27785 for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
27787 rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
27788 RTVEC_ELT (p, j++)
27789 = gen_frame_load (reg,
27790 frame_reg_rtx, info->altivec_save_offset + 16 * i);
27791 if (flag_shrink_wrap
27792 && save_reg_p (info->first_altivec_reg_save + i))
27793 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
27795 for (i = 0; info->first_fp_reg_save + i <= 63; i++)
27797 rtx reg = gen_rtx_REG (TARGET_HARD_FLOAT ? DFmode : SFmode,
27798 info->first_fp_reg_save + i);
27799 RTVEC_ELT (p, j++)
27800 = gen_frame_load (reg, frame_reg_rtx, info->fp_save_offset + 8 * i);
27801 if (flag_shrink_wrap
27802 && save_reg_p (info->first_fp_reg_save + i))
27803 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
27805 RTVEC_ELT (p, j++)
27806 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 0));
27807 RTVEC_ELT (p, j++)
27808 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 12));
27809 RTVEC_ELT (p, j++)
27810 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 7));
27811 RTVEC_ELT (p, j++)
27812 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 8));
27813 RTVEC_ELT (p, j++)
27814 = gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, 10));
27815 insn = emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
27817 if (flag_shrink_wrap)
27819 REG_NOTES (insn) = cfa_restores;
27820 add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
27821 RTX_FRAME_RELATED_P (insn) = 1;
27823 return;
27826 /* frame_reg_rtx + frame_off points to the top of this stack frame. */
27827 if (info->push_p)
27828 frame_off = info->total_size;
27830 /* Restore AltiVec registers if we must do so before adjusting the
27831 stack. */
27832 if (info->altivec_size != 0
27833 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
27834 || (DEFAULT_ABI != ABI_V4
27835 && offset_below_red_zone_p (info->altivec_save_offset))))
27837 int i;
27838 int scratch_regno = ptr_regno_for_savres (SAVRES_VR);
27840 gcc_checking_assert (scratch_regno == 11 || scratch_regno == 12);
27841 if (use_backchain_to_restore_sp)
27843 int frame_regno = 11;
27845 if ((strategy & REST_INLINE_VRS) == 0)
27847 /* Of r11 and r12, select the one not clobbered by an
27848 out-of-line restore function for the frame register. */
27849 frame_regno = 11 + 12 - scratch_regno;
27851 frame_reg_rtx = gen_rtx_REG (Pmode, frame_regno);
27852 emit_move_insn (frame_reg_rtx,
27853 gen_rtx_MEM (Pmode, sp_reg_rtx));
27854 frame_off = 0;
27856 else if (frame_pointer_needed)
27857 frame_reg_rtx = hard_frame_pointer_rtx;
27859 if ((strategy & REST_INLINE_VRS) == 0)
27861 int end_save = info->altivec_save_offset + info->altivec_size;
27862 int ptr_off;
27863 rtx ptr_reg = gen_rtx_REG (Pmode, 0);
27864 rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
27866 if (end_save + frame_off != 0)
27868 rtx offset = GEN_INT (end_save + frame_off);
27870 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
27872 else
27873 emit_move_insn (ptr_reg, frame_reg_rtx);
27875 ptr_off = -end_save;
27876 insn = rs6000_emit_savres_rtx (info, scratch_reg,
27877 info->altivec_save_offset + ptr_off,
27878 0, V4SImode, SAVRES_VR);
27880 else
27882 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
27883 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
27885 rtx addr, areg, mem, insn;
27886 rtx reg = gen_rtx_REG (V4SImode, i);
27887 HOST_WIDE_INT offset
27888 = (info->altivec_save_offset + frame_off
27889 + 16 * (i - info->first_altivec_reg_save));
27891 if (TARGET_P9_VECTOR && quad_address_offset_p (offset))
27893 mem = gen_frame_mem (V4SImode,
27894 gen_rtx_PLUS (Pmode, frame_reg_rtx,
27895 GEN_INT (offset)));
27896 insn = gen_rtx_SET (reg, mem);
27898 else
27900 areg = gen_rtx_REG (Pmode, 0);
27901 emit_move_insn (areg, GEN_INT (offset));
27903 /* AltiVec addressing mode is [reg+reg]. */
27904 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
27905 mem = gen_frame_mem (V4SImode, addr);
27907 /* Rather than emitting a generic move, force use of the
27908 lvx instruction, which we always want. In particular we
27909 don't want lxvd2x/xxpermdi for little endian. */
27910 insn = gen_altivec_lvx_v4si_internal (reg, mem);
27913 (void) emit_insn (insn);
27917 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
27918 if (((strategy & REST_INLINE_VRS) == 0
27919 || (info->vrsave_mask & ALTIVEC_REG_BIT (i)) != 0)
27920 && (flag_shrink_wrap
27921 || (offset_below_red_zone_p
27922 (info->altivec_save_offset
27923 + 16 * (i - info->first_altivec_reg_save))))
27924 && save_reg_p (i))
27926 rtx reg = gen_rtx_REG (V4SImode, i);
27927 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
27931 /* Restore VRSAVE if we must do so before adjusting the stack. */
27932 if (info->vrsave_size != 0
27933 && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
27934 || (DEFAULT_ABI != ABI_V4
27935 && offset_below_red_zone_p (info->vrsave_save_offset))))
27937 rtx reg;
27939 if (frame_reg_rtx == sp_reg_rtx)
27941 if (use_backchain_to_restore_sp)
27943 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
27944 emit_move_insn (frame_reg_rtx,
27945 gen_rtx_MEM (Pmode, sp_reg_rtx));
27946 frame_off = 0;
27948 else if (frame_pointer_needed)
27949 frame_reg_rtx = hard_frame_pointer_rtx;
27952 reg = gen_rtx_REG (SImode, 12);
27953 emit_insn (gen_frame_load (reg, frame_reg_rtx,
27954 info->vrsave_save_offset + frame_off));
27956 emit_insn (generate_set_vrsave (reg, info, 1));
27959 insn = NULL_RTX;
27960 /* If we have a large stack frame, restore the old stack pointer
27961 using the backchain. */
27962 if (use_backchain_to_restore_sp)
27964 if (frame_reg_rtx == sp_reg_rtx)
27966 /* Under V.4, don't reset the stack pointer until after we're done
27967 loading the saved registers. */
27968 if (DEFAULT_ABI == ABI_V4)
27969 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
27971 insn = emit_move_insn (frame_reg_rtx,
27972 gen_rtx_MEM (Pmode, sp_reg_rtx));
27973 frame_off = 0;
27975 else if (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
27976 && DEFAULT_ABI == ABI_V4)
27977 /* frame_reg_rtx has been set up by the altivec restore. */
27979 else
27981 insn = emit_move_insn (sp_reg_rtx, frame_reg_rtx);
27982 frame_reg_rtx = sp_reg_rtx;
27985 /* If we have a frame pointer, we can restore the old stack pointer
27986 from it. */
27987 else if (frame_pointer_needed)
27989 frame_reg_rtx = sp_reg_rtx;
27990 if (DEFAULT_ABI == ABI_V4)
27991 frame_reg_rtx = gen_rtx_REG (Pmode, 11);
27992 /* Prevent reordering memory accesses against stack pointer restore. */
27993 else if (cfun->calls_alloca
27994 || offset_below_red_zone_p (-info->total_size))
27995 rs6000_emit_stack_tie (frame_reg_rtx, true);
27997 insn = emit_insn (gen_add3_insn (frame_reg_rtx, hard_frame_pointer_rtx,
27998 GEN_INT (info->total_size)));
27999 frame_off = 0;
28001 else if (info->push_p
28002 && DEFAULT_ABI != ABI_V4
28003 && !crtl->calls_eh_return)
28005 /* Prevent reordering memory accesses against stack pointer restore. */
28006 if (cfun->calls_alloca
28007 || offset_below_red_zone_p (-info->total_size))
28008 rs6000_emit_stack_tie (frame_reg_rtx, false);
28009 insn = emit_insn (gen_add3_insn (sp_reg_rtx, sp_reg_rtx,
28010 GEN_INT (info->total_size)));
28011 frame_off = 0;
28013 if (insn && frame_reg_rtx == sp_reg_rtx)
28015 if (cfa_restores)
28017 REG_NOTES (insn) = cfa_restores;
28018 cfa_restores = NULL_RTX;
28020 add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
28021 RTX_FRAME_RELATED_P (insn) = 1;
28024 /* Restore AltiVec registers if we have not done so already. */
28025 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
28026 && info->altivec_size != 0
28027 && (DEFAULT_ABI == ABI_V4
28028 || !offset_below_red_zone_p (info->altivec_save_offset)))
28030 int i;
28032 if ((strategy & REST_INLINE_VRS) == 0)
28034 int end_save = info->altivec_save_offset + info->altivec_size;
28035 int ptr_off;
28036 rtx ptr_reg = gen_rtx_REG (Pmode, 0);
28037 int scratch_regno = ptr_regno_for_savres (SAVRES_VR);
28038 rtx scratch_reg = gen_rtx_REG (Pmode, scratch_regno);
28040 if (end_save + frame_off != 0)
28042 rtx offset = GEN_INT (end_save + frame_off);
28044 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx, offset));
28046 else
28047 emit_move_insn (ptr_reg, frame_reg_rtx);
28049 ptr_off = -end_save;
28050 insn = rs6000_emit_savres_rtx (info, scratch_reg,
28051 info->altivec_save_offset + ptr_off,
28052 0, V4SImode, SAVRES_VR);
28053 if (REGNO (frame_reg_rtx) == REGNO (scratch_reg))
28055 /* Frame reg was clobbered by out-of-line save. Restore it
28056 from ptr_reg, and if we are calling out-of-line gpr or
28057 fpr restore set up the correct pointer and offset. */
28058 unsigned newptr_regno = 1;
28059 if (!restoring_GPRs_inline)
28061 bool lr = info->gp_save_offset + info->gp_size == 0;
28062 int sel = SAVRES_GPR | (lr ? SAVRES_LR : 0);
28063 newptr_regno = ptr_regno_for_savres (sel);
28064 end_save = info->gp_save_offset + info->gp_size;
28066 else if (!restoring_FPRs_inline)
28068 bool lr = !(strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR);
28069 int sel = SAVRES_FPR | (lr ? SAVRES_LR : 0);
28070 newptr_regno = ptr_regno_for_savres (sel);
28071 end_save = info->fp_save_offset + info->fp_size;
28074 if (newptr_regno != 1 && REGNO (frame_reg_rtx) != newptr_regno)
28075 frame_reg_rtx = gen_rtx_REG (Pmode, newptr_regno);
28077 if (end_save + ptr_off != 0)
28079 rtx offset = GEN_INT (end_save + ptr_off);
28081 frame_off = -end_save;
28082 if (TARGET_32BIT)
28083 emit_insn (gen_addsi3_carry (frame_reg_rtx,
28084 ptr_reg, offset));
28085 else
28086 emit_insn (gen_adddi3_carry (frame_reg_rtx,
28087 ptr_reg, offset));
28089 else
28091 frame_off = ptr_off;
28092 emit_move_insn (frame_reg_rtx, ptr_reg);
28096 else
28098 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
28099 if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
28101 rtx addr, areg, mem, insn;
28102 rtx reg = gen_rtx_REG (V4SImode, i);
28103 HOST_WIDE_INT offset
28104 = (info->altivec_save_offset + frame_off
28105 + 16 * (i - info->first_altivec_reg_save));
28107 if (TARGET_P9_VECTOR && quad_address_offset_p (offset))
28109 mem = gen_frame_mem (V4SImode,
28110 gen_rtx_PLUS (Pmode, frame_reg_rtx,
28111 GEN_INT (offset)));
28112 insn = gen_rtx_SET (reg, mem);
28114 else
28116 areg = gen_rtx_REG (Pmode, 0);
28117 emit_move_insn (areg, GEN_INT (offset));
28119 /* AltiVec addressing mode is [reg+reg]. */
28120 addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
28121 mem = gen_frame_mem (V4SImode, addr);
28123 /* Rather than emitting a generic move, force use of the
28124 lvx instruction, which we always want. In particular we
28125 don't want lxvd2x/xxpermdi for little endian. */
28126 insn = gen_altivec_lvx_v4si_internal (reg, mem);
28129 (void) emit_insn (insn);
28133 for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
28134 if (((strategy & REST_INLINE_VRS) == 0
28135 || (info->vrsave_mask & ALTIVEC_REG_BIT (i)) != 0)
28136 && (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap)
28137 && save_reg_p (i))
28139 rtx reg = gen_rtx_REG (V4SImode, i);
28140 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28144 /* Restore VRSAVE if we have not done so already. */
28145 if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
28146 && info->vrsave_size != 0
28147 && (DEFAULT_ABI == ABI_V4
28148 || !offset_below_red_zone_p (info->vrsave_save_offset)))
28150 rtx reg;
28152 reg = gen_rtx_REG (SImode, 12);
28153 emit_insn (gen_frame_load (reg, frame_reg_rtx,
28154 info->vrsave_save_offset + frame_off));
28156 emit_insn (generate_set_vrsave (reg, info, 1));
28159 /* If we exit by an out-of-line restore function on ABI_V4 then that
28160 function will deallocate the stack, so we don't need to worry
28161 about the unwinder restoring cr from an invalid stack frame
28162 location. */
28163 exit_func = (!restoring_FPRs_inline
28164 || (!restoring_GPRs_inline
28165 && info->first_fp_reg_save == 64));
28167 /* In the ELFv2 ABI we need to restore all call-saved CR fields from
28168 *separate* slots if the routine calls __builtin_eh_return, so
28169 that they can be independently restored by the unwinder. */
28170 if (DEFAULT_ABI == ABI_ELFv2 && crtl->calls_eh_return)
28172 int i, cr_off = info->ehcr_offset;
28174 for (i = 0; i < 8; i++)
28175 if (!call_used_regs[CR0_REGNO + i])
28177 rtx reg = gen_rtx_REG (SImode, 0);
28178 emit_insn (gen_frame_load (reg, frame_reg_rtx,
28179 cr_off + frame_off));
28181 insn = emit_insn (gen_movsi_to_cr_one
28182 (gen_rtx_REG (CCmode, CR0_REGNO + i), reg));
28184 if (!exit_func && flag_shrink_wrap)
28186 add_reg_note (insn, REG_CFA_RESTORE,
28187 gen_rtx_REG (SImode, CR0_REGNO + i));
28189 RTX_FRAME_RELATED_P (insn) = 1;
28192 cr_off += reg_size;
28196 /* Get the old lr if we saved it. If we are restoring registers
28197 out-of-line, then the out-of-line routines can do this for us. */
28198 if (restore_lr && restoring_GPRs_inline)
28199 load_lr_save (0, frame_reg_rtx, info->lr_save_offset + frame_off);
28201 /* Get the old cr if we saved it. */
28202 if (info->cr_save_p)
28204 unsigned cr_save_regno = 12;
28206 if (!restoring_GPRs_inline)
28208 /* Ensure we don't use the register used by the out-of-line
28209 gpr register restore below. */
28210 bool lr = info->gp_save_offset + info->gp_size == 0;
28211 int sel = SAVRES_GPR | (lr ? SAVRES_LR : 0);
28212 int gpr_ptr_regno = ptr_regno_for_savres (sel);
28214 if (gpr_ptr_regno == 12)
28215 cr_save_regno = 11;
28216 gcc_checking_assert (REGNO (frame_reg_rtx) != cr_save_regno);
28218 else if (REGNO (frame_reg_rtx) == 12)
28219 cr_save_regno = 11;
28221 cr_save_reg = load_cr_save (cr_save_regno, frame_reg_rtx,
28222 info->cr_save_offset + frame_off,
28223 exit_func);
28226 /* Set LR here to try to overlap restores below. */
28227 if (restore_lr && restoring_GPRs_inline)
28228 restore_saved_lr (0, exit_func);
28230 /* Load exception handler data registers, if needed. */
28231 if (crtl->calls_eh_return)
28233 unsigned int i, regno;
28235 if (TARGET_AIX)
28237 rtx reg = gen_rtx_REG (reg_mode, 2);
28238 emit_insn (gen_frame_load (reg, frame_reg_rtx,
28239 frame_off + RS6000_TOC_SAVE_SLOT));
28242 for (i = 0; ; ++i)
28244 rtx mem;
28246 regno = EH_RETURN_DATA_REGNO (i);
28247 if (regno == INVALID_REGNUM)
28248 break;
28250 mem = gen_frame_mem_offset (reg_mode, frame_reg_rtx,
28251 info->ehrd_offset + frame_off
28252 + reg_size * (int) i);
28254 emit_move_insn (gen_rtx_REG (reg_mode, regno), mem);
28258 /* Restore GPRs. This is done as a PARALLEL if we are using
28259 the load-multiple instructions. */
28260 if (!restoring_GPRs_inline)
28262 /* We are jumping to an out-of-line function. */
28263 rtx ptr_reg;
28264 int end_save = info->gp_save_offset + info->gp_size;
28265 bool can_use_exit = end_save == 0;
28266 int sel = SAVRES_GPR | (can_use_exit ? SAVRES_LR : 0);
28267 int ptr_off;
28269 /* Emit stack reset code if we need it. */
28270 ptr_regno = ptr_regno_for_savres (sel);
28271 ptr_reg = gen_rtx_REG (Pmode, ptr_regno);
28272 if (can_use_exit)
28273 rs6000_emit_stack_reset (frame_reg_rtx, frame_off, ptr_regno);
28274 else if (end_save + frame_off != 0)
28275 emit_insn (gen_add3_insn (ptr_reg, frame_reg_rtx,
28276 GEN_INT (end_save + frame_off)));
28277 else if (REGNO (frame_reg_rtx) != ptr_regno)
28278 emit_move_insn (ptr_reg, frame_reg_rtx);
28279 if (REGNO (frame_reg_rtx) == ptr_regno)
28280 frame_off = -end_save;
28282 if (can_use_exit && info->cr_save_p)
28283 restore_saved_cr (cr_save_reg, using_mtcr_multiple, true);
28285 ptr_off = -end_save;
28286 rs6000_emit_savres_rtx (info, ptr_reg,
28287 info->gp_save_offset + ptr_off,
28288 info->lr_save_offset + ptr_off,
28289 reg_mode, sel);
28291 else if (using_load_multiple)
28293 rtvec p;
28294 p = rtvec_alloc (32 - info->first_gp_reg_save);
28295 for (i = 0; i < 32 - info->first_gp_reg_save; i++)
28296 RTVEC_ELT (p, i)
28297 = gen_frame_load (gen_rtx_REG (reg_mode, info->first_gp_reg_save + i),
28298 frame_reg_rtx,
28299 info->gp_save_offset + frame_off + reg_size * i);
28300 emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
28302 else
28304 int offset = info->gp_save_offset + frame_off;
28305 for (i = info->first_gp_reg_save; i < 32; i++)
28307 if (save_reg_p (i)
28308 && !cfun->machine->gpr_is_wrapped_separately[i])
28310 rtx reg = gen_rtx_REG (reg_mode, i);
28311 emit_insn (gen_frame_load (reg, frame_reg_rtx, offset));
28314 offset += reg_size;
28318 if (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap)
28320 /* If the frame pointer was used then we can't delay emitting
28321 a REG_CFA_DEF_CFA note. This must happen on the insn that
28322 restores the frame pointer, r31. We may have already emitted
28323 a REG_CFA_DEF_CFA note, but that's OK; A duplicate is
28324 discarded by dwarf2cfi.c/dwarf2out.c, and in any case would
28325 be harmless if emitted. */
28326 if (frame_pointer_needed)
28328 insn = get_last_insn ();
28329 add_reg_note (insn, REG_CFA_DEF_CFA,
28330 plus_constant (Pmode, frame_reg_rtx, frame_off));
28331 RTX_FRAME_RELATED_P (insn) = 1;
28334 /* Set up cfa_restores. We always need these when
28335 shrink-wrapping. If not shrink-wrapping then we only need
28336 the cfa_restore when the stack location is no longer valid.
28337 The cfa_restores must be emitted on or before the insn that
28338 invalidates the stack, and of course must not be emitted
28339 before the insn that actually does the restore. The latter
28340 is why it is a bad idea to emit the cfa_restores as a group
28341 on the last instruction here that actually does a restore:
28342 That insn may be reordered with respect to others doing
28343 restores. */
28344 if (flag_shrink_wrap
28345 && !restoring_GPRs_inline
28346 && info->first_fp_reg_save == 64)
28347 cfa_restores = add_crlr_cfa_restore (info, cfa_restores);
28349 for (i = info->first_gp_reg_save; i < 32; i++)
28350 if (save_reg_p (i)
28351 && !cfun->machine->gpr_is_wrapped_separately[i])
28353 rtx reg = gen_rtx_REG (reg_mode, i);
28354 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28358 if (!restoring_GPRs_inline
28359 && info->first_fp_reg_save == 64)
28361 /* We are jumping to an out-of-line function. */
28362 if (cfa_restores)
28363 emit_cfa_restores (cfa_restores);
28364 return;
28367 if (restore_lr && !restoring_GPRs_inline)
28369 load_lr_save (0, frame_reg_rtx, info->lr_save_offset + frame_off);
28370 restore_saved_lr (0, exit_func);
28373 /* Restore fpr's if we need to do it without calling a function. */
28374 if (restoring_FPRs_inline)
28376 int offset = info->fp_save_offset + frame_off;
28377 for (i = info->first_fp_reg_save; i < 64; i++)
28379 if (save_reg_p (i)
28380 && !cfun->machine->fpr_is_wrapped_separately[i - 32])
28382 rtx reg = gen_rtx_REG (fp_reg_mode, i);
28383 emit_insn (gen_frame_load (reg, frame_reg_rtx, offset));
28384 if (DEFAULT_ABI == ABI_V4 || flag_shrink_wrap)
28385 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
28386 cfa_restores);
28389 offset += fp_reg_size;
28393 /* If we saved cr, restore it here. Just those that were used. */
28394 if (info->cr_save_p)
28395 restore_saved_cr (cr_save_reg, using_mtcr_multiple, exit_func);
28397 /* If this is V.4, unwind the stack pointer after all of the loads
28398 have been done, or set up r11 if we are restoring fp out of line. */
28399 ptr_regno = 1;
28400 if (!restoring_FPRs_inline)
28402 bool lr = (strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR) == 0;
28403 int sel = SAVRES_FPR | (lr ? SAVRES_LR : 0);
28404 ptr_regno = ptr_regno_for_savres (sel);
28407 insn = rs6000_emit_stack_reset (frame_reg_rtx, frame_off, ptr_regno);
28408 if (REGNO (frame_reg_rtx) == ptr_regno)
28409 frame_off = 0;
28411 if (insn && restoring_FPRs_inline)
28413 if (cfa_restores)
28415 REG_NOTES (insn) = cfa_restores;
28416 cfa_restores = NULL_RTX;
28418 add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
28419 RTX_FRAME_RELATED_P (insn) = 1;
28422 if (crtl->calls_eh_return)
28424 rtx sa = EH_RETURN_STACKADJ_RTX;
28425 emit_insn (gen_add3_insn (sp_reg_rtx, sp_reg_rtx, sa));
28428 if (!sibcall && restoring_FPRs_inline)
28430 if (cfa_restores)
28432 /* We can't hang the cfa_restores off a simple return,
28433 since the shrink-wrap code sometimes uses an existing
28434 return. This means there might be a path from
28435 pre-prologue code to this return, and dwarf2cfi code
28436 wants the eh_frame unwinder state to be the same on
28437 all paths to any point. So we need to emit the
28438 cfa_restores before the return. For -m64 we really
28439 don't need epilogue cfa_restores at all, except for
28440 this irritating dwarf2cfi with shrink-wrap
28441 requirement; The stack red-zone means eh_frame info
28442 from the prologue telling the unwinder to restore
28443 from the stack is perfectly good right to the end of
28444 the function. */
28445 emit_insn (gen_blockage ());
28446 emit_cfa_restores (cfa_restores);
28447 cfa_restores = NULL_RTX;
28450 emit_jump_insn (targetm.gen_simple_return ());
28453 if (!sibcall && !restoring_FPRs_inline)
28455 bool lr = (strategy & REST_NOINLINE_FPRS_DOESNT_RESTORE_LR) == 0;
28456 rtvec p = rtvec_alloc (3 + !!lr + 64 - info->first_fp_reg_save);
28457 int elt = 0;
28458 RTVEC_ELT (p, elt++) = ret_rtx;
28459 if (lr)
28460 RTVEC_ELT (p, elt++)
28461 = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNO));
28463 /* We have to restore more than two FP registers, so branch to the
28464 restore function. It will return to our caller. */
28465 int i;
28466 int reg;
28467 rtx sym;
28469 if (flag_shrink_wrap)
28470 cfa_restores = add_crlr_cfa_restore (info, cfa_restores);
28472 sym = rs6000_savres_routine_sym (info, SAVRES_FPR | (lr ? SAVRES_LR : 0));
28473 RTVEC_ELT (p, elt++) = gen_rtx_USE (VOIDmode, sym);
28474 reg = (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)? 1 : 11;
28475 RTVEC_ELT (p, elt++) = gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, reg));
28477 for (i = 0; i < 64 - info->first_fp_reg_save; i++)
28479 rtx reg = gen_rtx_REG (DFmode, info->first_fp_reg_save + i);
28481 RTVEC_ELT (p, elt++)
28482 = gen_frame_load (reg, sp_reg_rtx, info->fp_save_offset + 8 * i);
28483 if (flag_shrink_wrap
28484 && save_reg_p (info->first_fp_reg_save + i))
28485 cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, cfa_restores);
28488 emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
28491 if (cfa_restores)
28493 if (sibcall)
28494 /* Ensure the cfa_restores are hung off an insn that won't
28495 be reordered above other restores. */
28496 emit_insn (gen_blockage ());
28498 emit_cfa_restores (cfa_restores);
28502 /* Write function epilogue. */
28504 static void
28505 rs6000_output_function_epilogue (FILE *file)
28507 #if TARGET_MACHO
28508 macho_branch_islands ();
28511 rtx_insn *insn = get_last_insn ();
28512 rtx_insn *deleted_debug_label = NULL;
28514 /* Mach-O doesn't support labels at the end of objects, so if
28515 it looks like we might want one, take special action.
28517 First, collect any sequence of deleted debug labels. */
28518 while (insn
28519 && NOTE_P (insn)
28520 && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL)
28522 /* Don't insert a nop for NOTE_INSN_DELETED_DEBUG_LABEL
28523 notes only, instead set their CODE_LABEL_NUMBER to -1,
28524 otherwise there would be code generation differences
28525 in between -g and -g0. */
28526 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL)
28527 deleted_debug_label = insn;
28528 insn = PREV_INSN (insn);
28531 /* Second, if we have:
28532 label:
28533 barrier
28534 then this needs to be detected, so skip past the barrier. */
28536 if (insn && BARRIER_P (insn))
28537 insn = PREV_INSN (insn);
28539 /* Up to now we've only seen notes or barriers. */
28540 if (insn)
28542 if (LABEL_P (insn)
28543 || (NOTE_P (insn)
28544 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))
28545 /* Trailing label: <barrier>. */
28546 fputs ("\tnop\n", file);
28547 else
28549 /* Lastly, see if we have a completely empty function body. */
28550 while (insn && ! INSN_P (insn))
28551 insn = PREV_INSN (insn);
28552 /* If we don't find any insns, we've got an empty function body;
28553 I.e. completely empty - without a return or branch. This is
28554 taken as the case where a function body has been removed
28555 because it contains an inline __builtin_unreachable(). GCC
28556 states that reaching __builtin_unreachable() means UB so we're
28557 not obliged to do anything special; however, we want
28558 non-zero-sized function bodies. To meet this, and help the
28559 user out, let's trap the case. */
28560 if (insn == NULL)
28561 fputs ("\ttrap\n", file);
28564 else if (deleted_debug_label)
28565 for (insn = deleted_debug_label; insn; insn = NEXT_INSN (insn))
28566 if (NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL)
28567 CODE_LABEL_NUMBER (insn) = -1;
28569 #endif
28571 /* Output a traceback table here. See /usr/include/sys/debug.h for info
28572 on its format.
28574 We don't output a traceback table if -finhibit-size-directive was
28575 used. The documentation for -finhibit-size-directive reads
28576 ``don't output a @code{.size} assembler directive, or anything
28577 else that would cause trouble if the function is split in the
28578 middle, and the two halves are placed at locations far apart in
28579 memory.'' The traceback table has this property, since it
28580 includes the offset from the start of the function to the
28581 traceback table itself.
28583 System V.4 Powerpc's (and the embedded ABI derived from it) use a
28584 different traceback table. */
28585 if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
28586 && ! flag_inhibit_size_directive
28587 && rs6000_traceback != traceback_none && !cfun->is_thunk)
28589 const char *fname = NULL;
28590 const char *language_string = lang_hooks.name;
28591 int fixed_parms = 0, float_parms = 0, parm_info = 0;
28592 int i;
28593 int optional_tbtab;
28594 rs6000_stack_t *info = rs6000_stack_info ();
28596 if (rs6000_traceback == traceback_full)
28597 optional_tbtab = 1;
28598 else if (rs6000_traceback == traceback_part)
28599 optional_tbtab = 0;
28600 else
28601 optional_tbtab = !optimize_size && !TARGET_ELF;
28603 if (optional_tbtab)
28605 fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
28606 while (*fname == '.') /* V.4 encodes . in the name */
28607 fname++;
28609 /* Need label immediately before tbtab, so we can compute
28610 its offset from the function start. */
28611 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
28612 ASM_OUTPUT_LABEL (file, fname);
28615 /* The .tbtab pseudo-op can only be used for the first eight
28616 expressions, since it can't handle the possibly variable
28617 length fields that follow. However, if you omit the optional
28618 fields, the assembler outputs zeros for all optional fields
28619 anyways, giving each variable length field is minimum length
28620 (as defined in sys/debug.h). Thus we can not use the .tbtab
28621 pseudo-op at all. */
28623 /* An all-zero word flags the start of the tbtab, for debuggers
28624 that have to find it by searching forward from the entry
28625 point or from the current pc. */
28626 fputs ("\t.long 0\n", file);
28628 /* Tbtab format type. Use format type 0. */
28629 fputs ("\t.byte 0,", file);
28631 /* Language type. Unfortunately, there does not seem to be any
28632 official way to discover the language being compiled, so we
28633 use language_string.
28634 C is 0. Fortran is 1. Ada is 3. C++ is 9.
28635 Java is 13. Objective-C is 14. Objective-C++ isn't assigned
28636 a number, so for now use 9. LTO, Go and JIT aren't assigned numbers
28637 either, so for now use 0. */
28638 if (lang_GNU_C ()
28639 || ! strcmp (language_string, "GNU GIMPLE")
28640 || ! strcmp (language_string, "GNU Go")
28641 || ! strcmp (language_string, "libgccjit"))
28642 i = 0;
28643 else if (! strcmp (language_string, "GNU F77")
28644 || lang_GNU_Fortran ())
28645 i = 1;
28646 else if (! strcmp (language_string, "GNU Ada"))
28647 i = 3;
28648 else if (lang_GNU_CXX ()
28649 || ! strcmp (language_string, "GNU Objective-C++"))
28650 i = 9;
28651 else if (! strcmp (language_string, "GNU Java"))
28652 i = 13;
28653 else if (! strcmp (language_string, "GNU Objective-C"))
28654 i = 14;
28655 else
28656 gcc_unreachable ();
28657 fprintf (file, "%d,", i);
28659 /* 8 single bit fields: global linkage (not set for C extern linkage,
28660 apparently a PL/I convention?), out-of-line epilogue/prologue, offset
28661 from start of procedure stored in tbtab, internal function, function
28662 has controlled storage, function has no toc, function uses fp,
28663 function logs/aborts fp operations. */
28664 /* Assume that fp operations are used if any fp reg must be saved. */
28665 fprintf (file, "%d,",
28666 (optional_tbtab << 5) | ((info->first_fp_reg_save != 64) << 1));
28668 /* 6 bitfields: function is interrupt handler, name present in
28669 proc table, function calls alloca, on condition directives
28670 (controls stack walks, 3 bits), saves condition reg, saves
28671 link reg. */
28672 /* The `function calls alloca' bit seems to be set whenever reg 31 is
28673 set up as a frame pointer, even when there is no alloca call. */
28674 fprintf (file, "%d,",
28675 ((optional_tbtab << 6)
28676 | ((optional_tbtab & frame_pointer_needed) << 5)
28677 | (info->cr_save_p << 1)
28678 | (info->lr_save_p)));
28680 /* 3 bitfields: saves backchain, fixup code, number of fpr saved
28681 (6 bits). */
28682 fprintf (file, "%d,",
28683 (info->push_p << 7) | (64 - info->first_fp_reg_save));
28685 /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits). */
28686 fprintf (file, "%d,", (32 - first_reg_to_save ()));
28688 if (optional_tbtab)
28690 /* Compute the parameter info from the function decl argument
28691 list. */
28692 tree decl;
28693 int next_parm_info_bit = 31;
28695 for (decl = DECL_ARGUMENTS (current_function_decl);
28696 decl; decl = DECL_CHAIN (decl))
28698 rtx parameter = DECL_INCOMING_RTL (decl);
28699 machine_mode mode = GET_MODE (parameter);
28701 if (GET_CODE (parameter) == REG)
28703 if (SCALAR_FLOAT_MODE_P (mode))
28705 int bits;
28707 float_parms++;
28709 switch (mode)
28711 case E_SFmode:
28712 case E_SDmode:
28713 bits = 0x2;
28714 break;
28716 case E_DFmode:
28717 case E_DDmode:
28718 case E_TFmode:
28719 case E_TDmode:
28720 case E_IFmode:
28721 case E_KFmode:
28722 bits = 0x3;
28723 break;
28725 default:
28726 gcc_unreachable ();
28729 /* If only one bit will fit, don't or in this entry. */
28730 if (next_parm_info_bit > 0)
28731 parm_info |= (bits << (next_parm_info_bit - 1));
28732 next_parm_info_bit -= 2;
28734 else
28736 fixed_parms += ((GET_MODE_SIZE (mode)
28737 + (UNITS_PER_WORD - 1))
28738 / UNITS_PER_WORD);
28739 next_parm_info_bit -= 1;
28745 /* Number of fixed point parameters. */
28746 /* This is actually the number of words of fixed point parameters; thus
28747 an 8 byte struct counts as 2; and thus the maximum value is 8. */
28748 fprintf (file, "%d,", fixed_parms);
28750 /* 2 bitfields: number of floating point parameters (7 bits), parameters
28751 all on stack. */
28752 /* This is actually the number of fp registers that hold parameters;
28753 and thus the maximum value is 13. */
28754 /* Set parameters on stack bit if parameters are not in their original
28755 registers, regardless of whether they are on the stack? Xlc
28756 seems to set the bit when not optimizing. */
28757 fprintf (file, "%d\n", ((float_parms << 1) | (! optimize)));
28759 if (optional_tbtab)
28761 /* Optional fields follow. Some are variable length. */
28763 /* Parameter types, left adjusted bit fields: 0 fixed, 10 single
28764 float, 11 double float. */
28765 /* There is an entry for each parameter in a register, in the order
28766 that they occur in the parameter list. Any intervening arguments
28767 on the stack are ignored. If the list overflows a long (max
28768 possible length 34 bits) then completely leave off all elements
28769 that don't fit. */
28770 /* Only emit this long if there was at least one parameter. */
28771 if (fixed_parms || float_parms)
28772 fprintf (file, "\t.long %d\n", parm_info);
28774 /* Offset from start of code to tb table. */
28775 fputs ("\t.long ", file);
28776 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
28777 RS6000_OUTPUT_BASENAME (file, fname);
28778 putc ('-', file);
28779 rs6000_output_function_entry (file, fname);
28780 putc ('\n', file);
28782 /* Interrupt handler mask. */
28783 /* Omit this long, since we never set the interrupt handler bit
28784 above. */
28786 /* Number of CTL (controlled storage) anchors. */
28787 /* Omit this long, since the has_ctl bit is never set above. */
28789 /* Displacement into stack of each CTL anchor. */
28790 /* Omit this list of longs, because there are no CTL anchors. */
28792 /* Length of function name. */
28793 if (*fname == '*')
28794 ++fname;
28795 fprintf (file, "\t.short %d\n", (int) strlen (fname));
28797 /* Function name. */
28798 assemble_string (fname, strlen (fname));
28800 /* Register for alloca automatic storage; this is always reg 31.
28801 Only emit this if the alloca bit was set above. */
28802 if (frame_pointer_needed)
28803 fputs ("\t.byte 31\n", file);
28805 fputs ("\t.align 2\n", file);
28809 /* Arrange to define .LCTOC1 label, if not already done. */
28810 if (need_toc_init)
28812 need_toc_init = 0;
28813 if (!toc_initialized)
28815 switch_to_section (toc_section);
28816 switch_to_section (current_function_section ());
28821 /* -fsplit-stack support. */
28823 /* A SYMBOL_REF for __morestack. */
28824 static GTY(()) rtx morestack_ref;
28826 static rtx
28827 gen_add3_const (rtx rt, rtx ra, long c)
28829 if (TARGET_64BIT)
28830 return gen_adddi3 (rt, ra, GEN_INT (c));
28831 else
28832 return gen_addsi3 (rt, ra, GEN_INT (c));
28835 /* Emit -fsplit-stack prologue, which goes before the regular function
28836 prologue (at local entry point in the case of ELFv2). */
28838 void
28839 rs6000_expand_split_stack_prologue (void)
28841 rs6000_stack_t *info = rs6000_stack_info ();
28842 unsigned HOST_WIDE_INT allocate;
28843 long alloc_hi, alloc_lo;
28844 rtx r0, r1, r12, lr, ok_label, compare, jump, call_fusage;
28845 rtx_insn *insn;
28847 gcc_assert (flag_split_stack && reload_completed);
28849 if (!info->push_p)
28850 return;
28852 if (global_regs[29])
28854 error ("%qs uses register r29", "-fsplit-stack");
28855 inform (DECL_SOURCE_LOCATION (global_regs_decl[29]),
28856 "conflicts with %qD", global_regs_decl[29]);
28859 allocate = info->total_size;
28860 if (allocate > (unsigned HOST_WIDE_INT) 1 << 31)
28862 sorry ("Stack frame larger than 2G is not supported for -fsplit-stack");
28863 return;
28865 if (morestack_ref == NULL_RTX)
28867 morestack_ref = gen_rtx_SYMBOL_REF (Pmode, "__morestack");
28868 SYMBOL_REF_FLAGS (morestack_ref) |= (SYMBOL_FLAG_LOCAL
28869 | SYMBOL_FLAG_FUNCTION);
28872 r0 = gen_rtx_REG (Pmode, 0);
28873 r1 = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
28874 r12 = gen_rtx_REG (Pmode, 12);
28875 emit_insn (gen_load_split_stack_limit (r0));
28876 /* Always emit two insns here to calculate the requested stack,
28877 so that the linker can edit them when adjusting size for calling
28878 non-split-stack code. */
28879 alloc_hi = (-allocate + 0x8000) & ~0xffffL;
28880 alloc_lo = -allocate - alloc_hi;
28881 if (alloc_hi != 0)
28883 emit_insn (gen_add3_const (r12, r1, alloc_hi));
28884 if (alloc_lo != 0)
28885 emit_insn (gen_add3_const (r12, r12, alloc_lo));
28886 else
28887 emit_insn (gen_nop ());
28889 else
28891 emit_insn (gen_add3_const (r12, r1, alloc_lo));
28892 emit_insn (gen_nop ());
28895 compare = gen_rtx_REG (CCUNSmode, CR7_REGNO);
28896 emit_insn (gen_rtx_SET (compare, gen_rtx_COMPARE (CCUNSmode, r12, r0)));
28897 ok_label = gen_label_rtx ();
28898 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
28899 gen_rtx_GEU (VOIDmode, compare, const0_rtx),
28900 gen_rtx_LABEL_REF (VOIDmode, ok_label),
28901 pc_rtx);
28902 insn = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
28903 JUMP_LABEL (insn) = ok_label;
28904 /* Mark the jump as very likely to be taken. */
28905 add_reg_br_prob_note (insn, profile_probability::very_likely ());
28907 lr = gen_rtx_REG (Pmode, LR_REGNO);
28908 insn = emit_move_insn (r0, lr);
28909 RTX_FRAME_RELATED_P (insn) = 1;
28910 insn = emit_insn (gen_frame_store (r0, r1, info->lr_save_offset));
28911 RTX_FRAME_RELATED_P (insn) = 1;
28913 insn = emit_call_insn (gen_call (gen_rtx_MEM (SImode, morestack_ref),
28914 const0_rtx, const0_rtx));
28915 call_fusage = NULL_RTX;
28916 use_reg (&call_fusage, r12);
28917 /* Say the call uses r0, even though it doesn't, to stop regrename
28918 from twiddling with the insns saving lr, trashing args for cfun.
28919 The insns restoring lr are similarly protected by making
28920 split_stack_return use r0. */
28921 use_reg (&call_fusage, r0);
28922 add_function_usage_to (insn, call_fusage);
28923 /* Indicate that this function can't jump to non-local gotos. */
28924 make_reg_eh_region_note_nothrow_nononlocal (insn);
28925 emit_insn (gen_frame_load (r0, r1, info->lr_save_offset));
28926 insn = emit_move_insn (lr, r0);
28927 add_reg_note (insn, REG_CFA_RESTORE, lr);
28928 RTX_FRAME_RELATED_P (insn) = 1;
28929 emit_insn (gen_split_stack_return ());
28931 emit_label (ok_label);
28932 LABEL_NUSES (ok_label) = 1;
28935 /* Return the internal arg pointer used for function incoming
28936 arguments. When -fsplit-stack, the arg pointer is r12 so we need
28937 to copy it to a pseudo in order for it to be preserved over calls
28938 and suchlike. We'd really like to use a pseudo here for the
28939 internal arg pointer but data-flow analysis is not prepared to
28940 accept pseudos as live at the beginning of a function. */
28942 static rtx
28943 rs6000_internal_arg_pointer (void)
28945 if (flag_split_stack
28946 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
28947 == NULL))
28950 if (cfun->machine->split_stack_arg_pointer == NULL_RTX)
28952 rtx pat;
28954 cfun->machine->split_stack_arg_pointer = gen_reg_rtx (Pmode);
28955 REG_POINTER (cfun->machine->split_stack_arg_pointer) = 1;
28957 /* Put the pseudo initialization right after the note at the
28958 beginning of the function. */
28959 pat = gen_rtx_SET (cfun->machine->split_stack_arg_pointer,
28960 gen_rtx_REG (Pmode, 12));
28961 push_topmost_sequence ();
28962 emit_insn_after (pat, get_insns ());
28963 pop_topmost_sequence ();
28965 rtx ret = plus_constant (Pmode, cfun->machine->split_stack_arg_pointer,
28966 FIRST_PARM_OFFSET (current_function_decl));
28967 return copy_to_reg (ret);
28969 return virtual_incoming_args_rtx;
28972 /* We may have to tell the dataflow pass that the split stack prologue
28973 is initializing a register. */
28975 static void
28976 rs6000_live_on_entry (bitmap regs)
28978 if (flag_split_stack)
28979 bitmap_set_bit (regs, 12);
28982 /* Emit -fsplit-stack dynamic stack allocation space check. */
28984 void
28985 rs6000_split_stack_space_check (rtx size, rtx label)
28987 rtx sp = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
28988 rtx limit = gen_reg_rtx (Pmode);
28989 rtx requested = gen_reg_rtx (Pmode);
28990 rtx cmp = gen_reg_rtx (CCUNSmode);
28991 rtx jump;
28993 emit_insn (gen_load_split_stack_limit (limit));
28994 if (CONST_INT_P (size))
28995 emit_insn (gen_add3_insn (requested, sp, GEN_INT (-INTVAL (size))));
28996 else
28998 size = force_reg (Pmode, size);
28999 emit_move_insn (requested, gen_rtx_MINUS (Pmode, sp, size));
29001 emit_insn (gen_rtx_SET (cmp, gen_rtx_COMPARE (CCUNSmode, requested, limit)));
29002 jump = gen_rtx_IF_THEN_ELSE (VOIDmode,
29003 gen_rtx_GEU (VOIDmode, cmp, const0_rtx),
29004 gen_rtx_LABEL_REF (VOIDmode, label),
29005 pc_rtx);
29006 jump = emit_jump_insn (gen_rtx_SET (pc_rtx, jump));
29007 JUMP_LABEL (jump) = label;
29010 /* A C compound statement that outputs the assembler code for a thunk
29011 function, used to implement C++ virtual function calls with
29012 multiple inheritance. The thunk acts as a wrapper around a virtual
29013 function, adjusting the implicit object parameter before handing
29014 control off to the real function.
29016 First, emit code to add the integer DELTA to the location that
29017 contains the incoming first argument. Assume that this argument
29018 contains a pointer, and is the one used to pass the `this' pointer
29019 in C++. This is the incoming argument *before* the function
29020 prologue, e.g. `%o0' on a sparc. The addition must preserve the
29021 values of all other incoming arguments.
29023 After the addition, emit code to jump to FUNCTION, which is a
29024 `FUNCTION_DECL'. This is a direct pure jump, not a call, and does
29025 not touch the return address. Hence returning from FUNCTION will
29026 return to whoever called the current `thunk'.
29028 The effect must be as if FUNCTION had been called directly with the
29029 adjusted first argument. This macro is responsible for emitting
29030 all of the code for a thunk function; output_function_prologue()
29031 and output_function_epilogue() are not invoked.
29033 The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already
29034 been extracted from it.) It might possibly be useful on some
29035 targets, but probably not.
29037 If you do not define this macro, the target-independent code in the
29038 C++ frontend will generate a less efficient heavyweight thunk that
29039 calls FUNCTION instead of jumping to it. The generic approach does
29040 not support varargs. */
29042 static void
29043 rs6000_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
29044 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
29045 tree function)
29047 rtx this_rtx, funexp;
29048 rtx_insn *insn;
29050 reload_completed = 1;
29051 epilogue_completed = 1;
29053 /* Mark the end of the (empty) prologue. */
29054 emit_note (NOTE_INSN_PROLOGUE_END);
29056 /* Find the "this" pointer. If the function returns a structure,
29057 the structure return pointer is in r3. */
29058 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
29059 this_rtx = gen_rtx_REG (Pmode, 4);
29060 else
29061 this_rtx = gen_rtx_REG (Pmode, 3);
29063 /* Apply the constant offset, if required. */
29064 if (delta)
29065 emit_insn (gen_add3_insn (this_rtx, this_rtx, GEN_INT (delta)));
29067 /* Apply the offset from the vtable, if required. */
29068 if (vcall_offset)
29070 rtx vcall_offset_rtx = GEN_INT (vcall_offset);
29071 rtx tmp = gen_rtx_REG (Pmode, 12);
29073 emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));
29074 if (((unsigned HOST_WIDE_INT) vcall_offset) + 0x8000 >= 0x10000)
29076 emit_insn (gen_add3_insn (tmp, tmp, vcall_offset_rtx));
29077 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
29079 else
29081 rtx loc = gen_rtx_PLUS (Pmode, tmp, vcall_offset_rtx);
29083 emit_move_insn (tmp, gen_rtx_MEM (Pmode, loc));
29085 emit_insn (gen_add3_insn (this_rtx, this_rtx, tmp));
29088 /* Generate a tail call to the target function. */
29089 if (!TREE_USED (function))
29091 assemble_external (function);
29092 TREE_USED (function) = 1;
29094 funexp = XEXP (DECL_RTL (function), 0);
29095 funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
29097 #if TARGET_MACHO
29098 if (MACHOPIC_INDIRECT)
29099 funexp = machopic_indirect_call_target (funexp);
29100 #endif
29102 /* gen_sibcall expects reload to convert scratch pseudo to LR so we must
29103 generate sibcall RTL explicitly. */
29104 insn = emit_call_insn (
29105 gen_rtx_PARALLEL (VOIDmode,
29106 gen_rtvec (3,
29107 gen_rtx_CALL (VOIDmode,
29108 funexp, const0_rtx),
29109 gen_rtx_USE (VOIDmode, const0_rtx),
29110 simple_return_rtx)));
29111 SIBLING_CALL_P (insn) = 1;
29112 emit_barrier ();
29114 /* Run just enough of rest_of_compilation to get the insns emitted.
29115 There's not really enough bulk here to make other passes such as
29116 instruction scheduling worth while. Note that use_thunk calls
29117 assemble_start_function and assemble_end_function. */
29118 insn = get_insns ();
29119 shorten_branches (insn);
29120 final_start_function (insn, file, 1);
29121 final (insn, file, 1);
29122 final_end_function ();
29124 reload_completed = 0;
29125 epilogue_completed = 0;
29128 /* A quick summary of the various types of 'constant-pool tables'
29129 under PowerPC:
29131 Target Flags Name One table per
29132 AIX (none) AIX TOC object file
29133 AIX -mfull-toc AIX TOC object file
29134 AIX -mminimal-toc AIX minimal TOC translation unit
29135 SVR4/EABI (none) SVR4 SDATA object file
29136 SVR4/EABI -fpic SVR4 pic object file
29137 SVR4/EABI -fPIC SVR4 PIC translation unit
29138 SVR4/EABI -mrelocatable EABI TOC function
29139 SVR4/EABI -maix AIX TOC object file
29140 SVR4/EABI -maix -mminimal-toc
29141 AIX minimal TOC translation unit
29143 Name Reg. Set by entries contains:
29144 made by addrs? fp? sum?
29146 AIX TOC 2 crt0 as Y option option
29147 AIX minimal TOC 30 prolog gcc Y Y option
29148 SVR4 SDATA 13 crt0 gcc N Y N
29149 SVR4 pic 30 prolog ld Y not yet N
29150 SVR4 PIC 30 prolog gcc Y option option
29151 EABI TOC 30 prolog gcc Y option option
29155 /* Hash functions for the hash table. */
29157 static unsigned
29158 rs6000_hash_constant (rtx k)
29160 enum rtx_code code = GET_CODE (k);
29161 machine_mode mode = GET_MODE (k);
29162 unsigned result = (code << 3) ^ mode;
29163 const char *format;
29164 int flen, fidx;
29166 format = GET_RTX_FORMAT (code);
29167 flen = strlen (format);
29168 fidx = 0;
29170 switch (code)
29172 case LABEL_REF:
29173 return result * 1231 + (unsigned) INSN_UID (XEXP (k, 0));
29175 case CONST_WIDE_INT:
29177 int i;
29178 flen = CONST_WIDE_INT_NUNITS (k);
29179 for (i = 0; i < flen; i++)
29180 result = result * 613 + CONST_WIDE_INT_ELT (k, i);
29181 return result;
29184 case CONST_DOUBLE:
29185 if (mode != VOIDmode)
29186 return real_hash (CONST_DOUBLE_REAL_VALUE (k)) * result;
29187 flen = 2;
29188 break;
29190 case CODE_LABEL:
29191 fidx = 3;
29192 break;
29194 default:
29195 break;
29198 for (; fidx < flen; fidx++)
29199 switch (format[fidx])
29201 case 's':
29203 unsigned i, len;
29204 const char *str = XSTR (k, fidx);
29205 len = strlen (str);
29206 result = result * 613 + len;
29207 for (i = 0; i < len; i++)
29208 result = result * 613 + (unsigned) str[i];
29209 break;
29211 case 'u':
29212 case 'e':
29213 result = result * 1231 + rs6000_hash_constant (XEXP (k, fidx));
29214 break;
29215 case 'i':
29216 case 'n':
29217 result = result * 613 + (unsigned) XINT (k, fidx);
29218 break;
29219 case 'w':
29220 if (sizeof (unsigned) >= sizeof (HOST_WIDE_INT))
29221 result = result * 613 + (unsigned) XWINT (k, fidx);
29222 else
29224 size_t i;
29225 for (i = 0; i < sizeof (HOST_WIDE_INT) / sizeof (unsigned); i++)
29226 result = result * 613 + (unsigned) (XWINT (k, fidx)
29227 >> CHAR_BIT * i);
29229 break;
29230 case '0':
29231 break;
29232 default:
29233 gcc_unreachable ();
29236 return result;
29239 hashval_t
29240 toc_hasher::hash (toc_hash_struct *thc)
29242 return rs6000_hash_constant (thc->key) ^ thc->key_mode;
29245 /* Compare H1 and H2 for equivalence. */
29247 bool
29248 toc_hasher::equal (toc_hash_struct *h1, toc_hash_struct *h2)
29250 rtx r1 = h1->key;
29251 rtx r2 = h2->key;
29253 if (h1->key_mode != h2->key_mode)
29254 return 0;
29256 return rtx_equal_p (r1, r2);
29259 /* These are the names given by the C++ front-end to vtables, and
29260 vtable-like objects. Ideally, this logic should not be here;
29261 instead, there should be some programmatic way of inquiring as
29262 to whether or not an object is a vtable. */
29264 #define VTABLE_NAME_P(NAME) \
29265 (strncmp ("_vt.", name, strlen ("_vt.")) == 0 \
29266 || strncmp ("_ZTV", name, strlen ("_ZTV")) == 0 \
29267 || strncmp ("_ZTT", name, strlen ("_ZTT")) == 0 \
29268 || strncmp ("_ZTI", name, strlen ("_ZTI")) == 0 \
29269 || strncmp ("_ZTC", name, strlen ("_ZTC")) == 0)
29271 #ifdef NO_DOLLAR_IN_LABEL
29272 /* Return a GGC-allocated character string translating dollar signs in
29273 input NAME to underscores. Used by XCOFF ASM_OUTPUT_LABELREF. */
29275 const char *
29276 rs6000_xcoff_strip_dollar (const char *name)
29278 char *strip, *p;
29279 const char *q;
29280 size_t len;
29282 q = (const char *) strchr (name, '$');
29284 if (q == 0 || q == name)
29285 return name;
29287 len = strlen (name);
29288 strip = XALLOCAVEC (char, len + 1);
29289 strcpy (strip, name);
29290 p = strip + (q - name);
29291 while (p)
29293 *p = '_';
29294 p = strchr (p + 1, '$');
29297 return ggc_alloc_string (strip, len);
29299 #endif
29301 void
29302 rs6000_output_symbol_ref (FILE *file, rtx x)
29304 const char *name = XSTR (x, 0);
29306 /* Currently C++ toc references to vtables can be emitted before it
29307 is decided whether the vtable is public or private. If this is
29308 the case, then the linker will eventually complain that there is
29309 a reference to an unknown section. Thus, for vtables only,
29310 we emit the TOC reference to reference the identifier and not the
29311 symbol. */
29312 if (VTABLE_NAME_P (name))
29314 RS6000_OUTPUT_BASENAME (file, name);
29316 else
29317 assemble_name (file, name);
29320 /* Output a TOC entry. We derive the entry name from what is being
29321 written. */
29323 void
29324 output_toc (FILE *file, rtx x, int labelno, machine_mode mode)
29326 char buf[256];
29327 const char *name = buf;
29328 rtx base = x;
29329 HOST_WIDE_INT offset = 0;
29331 gcc_assert (!TARGET_NO_TOC);
29333 /* When the linker won't eliminate them, don't output duplicate
29334 TOC entries (this happens on AIX if there is any kind of TOC,
29335 and on SVR4 under -fPIC or -mrelocatable). Don't do this for
29336 CODE_LABELs. */
29337 if (TARGET_TOC && GET_CODE (x) != LABEL_REF)
29339 struct toc_hash_struct *h;
29341 /* Create toc_hash_table. This can't be done at TARGET_OPTION_OVERRIDE
29342 time because GGC is not initialized at that point. */
29343 if (toc_hash_table == NULL)
29344 toc_hash_table = hash_table<toc_hasher>::create_ggc (1021);
29346 h = ggc_alloc<toc_hash_struct> ();
29347 h->key = x;
29348 h->key_mode = mode;
29349 h->labelno = labelno;
29351 toc_hash_struct **found = toc_hash_table->find_slot (h, INSERT);
29352 if (*found == NULL)
29353 *found = h;
29354 else /* This is indeed a duplicate.
29355 Set this label equal to that label. */
29357 fputs ("\t.set ", file);
29358 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
29359 fprintf (file, "%d,", labelno);
29360 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
29361 fprintf (file, "%d\n", ((*found)->labelno));
29363 #ifdef HAVE_AS_TLS
29364 if (TARGET_XCOFF && GET_CODE (x) == SYMBOL_REF
29365 && (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_GLOBAL_DYNAMIC
29366 || SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC))
29368 fputs ("\t.set ", file);
29369 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCM");
29370 fprintf (file, "%d,", labelno);
29371 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCM");
29372 fprintf (file, "%d\n", ((*found)->labelno));
29374 #endif
29375 return;
29379 /* If we're going to put a double constant in the TOC, make sure it's
29380 aligned properly when strict alignment is on. */
29381 if ((CONST_DOUBLE_P (x) || CONST_WIDE_INT_P (x))
29382 && STRICT_ALIGNMENT
29383 && GET_MODE_BITSIZE (mode) >= 64
29384 && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) {
29385 ASM_OUTPUT_ALIGN (file, 3);
29388 (*targetm.asm_out.internal_label) (file, "LC", labelno);
29390 /* Handle FP constants specially. Note that if we have a minimal
29391 TOC, things we put here aren't actually in the TOC, so we can allow
29392 FP constants. */
29393 if (GET_CODE (x) == CONST_DOUBLE &&
29394 (GET_MODE (x) == TFmode || GET_MODE (x) == TDmode
29395 || GET_MODE (x) == IFmode || GET_MODE (x) == KFmode))
29397 long k[4];
29399 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
29400 REAL_VALUE_TO_TARGET_DECIMAL128 (*CONST_DOUBLE_REAL_VALUE (x), k);
29401 else
29402 REAL_VALUE_TO_TARGET_LONG_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), k);
29404 if (TARGET_64BIT)
29406 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29407 fputs (DOUBLE_INT_ASM_OP, file);
29408 else
29409 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
29410 k[0] & 0xffffffff, k[1] & 0xffffffff,
29411 k[2] & 0xffffffff, k[3] & 0xffffffff);
29412 fprintf (file, "0x%lx%08lx,0x%lx%08lx\n",
29413 k[WORDS_BIG_ENDIAN ? 0 : 1] & 0xffffffff,
29414 k[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffff,
29415 k[WORDS_BIG_ENDIAN ? 2 : 3] & 0xffffffff,
29416 k[WORDS_BIG_ENDIAN ? 3 : 2] & 0xffffffff);
29417 return;
29419 else
29421 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29422 fputs ("\t.long ", file);
29423 else
29424 fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
29425 k[0] & 0xffffffff, k[1] & 0xffffffff,
29426 k[2] & 0xffffffff, k[3] & 0xffffffff);
29427 fprintf (file, "0x%lx,0x%lx,0x%lx,0x%lx\n",
29428 k[0] & 0xffffffff, k[1] & 0xffffffff,
29429 k[2] & 0xffffffff, k[3] & 0xffffffff);
29430 return;
29433 else if (GET_CODE (x) == CONST_DOUBLE &&
29434 (GET_MODE (x) == DFmode || GET_MODE (x) == DDmode))
29436 long k[2];
29438 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
29439 REAL_VALUE_TO_TARGET_DECIMAL64 (*CONST_DOUBLE_REAL_VALUE (x), k);
29440 else
29441 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), k);
29443 if (TARGET_64BIT)
29445 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29446 fputs (DOUBLE_INT_ASM_OP, file);
29447 else
29448 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
29449 k[0] & 0xffffffff, k[1] & 0xffffffff);
29450 fprintf (file, "0x%lx%08lx\n",
29451 k[WORDS_BIG_ENDIAN ? 0 : 1] & 0xffffffff,
29452 k[WORDS_BIG_ENDIAN ? 1 : 0] & 0xffffffff);
29453 return;
29455 else
29457 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29458 fputs ("\t.long ", file);
29459 else
29460 fprintf (file, "\t.tc FD_%lx_%lx[TC],",
29461 k[0] & 0xffffffff, k[1] & 0xffffffff);
29462 fprintf (file, "0x%lx,0x%lx\n",
29463 k[0] & 0xffffffff, k[1] & 0xffffffff);
29464 return;
29467 else if (GET_CODE (x) == CONST_DOUBLE &&
29468 (GET_MODE (x) == SFmode || GET_MODE (x) == SDmode))
29470 long l;
29472 if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
29473 REAL_VALUE_TO_TARGET_DECIMAL32 (*CONST_DOUBLE_REAL_VALUE (x), l);
29474 else
29475 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);
29477 if (TARGET_64BIT)
29479 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29480 fputs (DOUBLE_INT_ASM_OP, file);
29481 else
29482 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
29483 if (WORDS_BIG_ENDIAN)
29484 fprintf (file, "0x%lx00000000\n", l & 0xffffffff);
29485 else
29486 fprintf (file, "0x%lx\n", l & 0xffffffff);
29487 return;
29489 else
29491 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29492 fputs ("\t.long ", file);
29493 else
29494 fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
29495 fprintf (file, "0x%lx\n", l & 0xffffffff);
29496 return;
29499 else if (GET_MODE (x) == VOIDmode && GET_CODE (x) == CONST_INT)
29501 unsigned HOST_WIDE_INT low;
29502 HOST_WIDE_INT high;
29504 low = INTVAL (x) & 0xffffffff;
29505 high = (HOST_WIDE_INT) INTVAL (x) >> 32;
29507 /* TOC entries are always Pmode-sized, so when big-endian
29508 smaller integer constants in the TOC need to be padded.
29509 (This is still a win over putting the constants in
29510 a separate constant pool, because then we'd have
29511 to have both a TOC entry _and_ the actual constant.)
29513 For a 32-bit target, CONST_INT values are loaded and shifted
29514 entirely within `low' and can be stored in one TOC entry. */
29516 /* It would be easy to make this work, but it doesn't now. */
29517 gcc_assert (!TARGET_64BIT || POINTER_SIZE >= GET_MODE_BITSIZE (mode));
29519 if (WORDS_BIG_ENDIAN && POINTER_SIZE > GET_MODE_BITSIZE (mode))
29521 low |= high << 32;
29522 low <<= POINTER_SIZE - GET_MODE_BITSIZE (mode);
29523 high = (HOST_WIDE_INT) low >> 32;
29524 low &= 0xffffffff;
29527 if (TARGET_64BIT)
29529 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29530 fputs (DOUBLE_INT_ASM_OP, file);
29531 else
29532 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
29533 (long) high & 0xffffffff, (long) low & 0xffffffff);
29534 fprintf (file, "0x%lx%08lx\n",
29535 (long) high & 0xffffffff, (long) low & 0xffffffff);
29536 return;
29538 else
29540 if (POINTER_SIZE < GET_MODE_BITSIZE (mode))
29542 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29543 fputs ("\t.long ", file);
29544 else
29545 fprintf (file, "\t.tc ID_%lx_%lx[TC],",
29546 (long) high & 0xffffffff, (long) low & 0xffffffff);
29547 fprintf (file, "0x%lx,0x%lx\n",
29548 (long) high & 0xffffffff, (long) low & 0xffffffff);
29550 else
29552 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29553 fputs ("\t.long ", file);
29554 else
29555 fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff);
29556 fprintf (file, "0x%lx\n", (long) low & 0xffffffff);
29558 return;
29562 if (GET_CODE (x) == CONST)
29564 gcc_assert (GET_CODE (XEXP (x, 0)) == PLUS
29565 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT);
29567 base = XEXP (XEXP (x, 0), 0);
29568 offset = INTVAL (XEXP (XEXP (x, 0), 1));
29571 switch (GET_CODE (base))
29573 case SYMBOL_REF:
29574 name = XSTR (base, 0);
29575 break;
29577 case LABEL_REF:
29578 ASM_GENERATE_INTERNAL_LABEL (buf, "L",
29579 CODE_LABEL_NUMBER (XEXP (base, 0)));
29580 break;
29582 case CODE_LABEL:
29583 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base));
29584 break;
29586 default:
29587 gcc_unreachable ();
29590 if (TARGET_ELF || TARGET_MINIMAL_TOC)
29591 fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file);
29592 else
29594 fputs ("\t.tc ", file);
29595 RS6000_OUTPUT_BASENAME (file, name);
29597 if (offset < 0)
29598 fprintf (file, ".N" HOST_WIDE_INT_PRINT_UNSIGNED, - offset);
29599 else if (offset)
29600 fprintf (file, ".P" HOST_WIDE_INT_PRINT_UNSIGNED, offset);
29602 /* Mark large TOC symbols on AIX with [TE] so they are mapped
29603 after other TOC symbols, reducing overflow of small TOC access
29604 to [TC] symbols. */
29605 fputs (TARGET_XCOFF && TARGET_CMODEL != CMODEL_SMALL
29606 ? "[TE]," : "[TC],", file);
29609 /* Currently C++ toc references to vtables can be emitted before it
29610 is decided whether the vtable is public or private. If this is
29611 the case, then the linker will eventually complain that there is
29612 a TOC reference to an unknown section. Thus, for vtables only,
29613 we emit the TOC reference to reference the symbol and not the
29614 section. */
29615 if (VTABLE_NAME_P (name))
29617 RS6000_OUTPUT_BASENAME (file, name);
29618 if (offset < 0)
29619 fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset);
29620 else if (offset > 0)
29621 fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
29623 else
29624 output_addr_const (file, x);
29626 #if HAVE_AS_TLS
29627 if (TARGET_XCOFF && GET_CODE (base) == SYMBOL_REF)
29629 switch (SYMBOL_REF_TLS_MODEL (base))
29631 case 0:
29632 break;
29633 case TLS_MODEL_LOCAL_EXEC:
29634 fputs ("@le", file);
29635 break;
29636 case TLS_MODEL_INITIAL_EXEC:
29637 fputs ("@ie", file);
29638 break;
29639 /* Use global-dynamic for local-dynamic. */
29640 case TLS_MODEL_GLOBAL_DYNAMIC:
29641 case TLS_MODEL_LOCAL_DYNAMIC:
29642 putc ('\n', file);
29643 (*targetm.asm_out.internal_label) (file, "LCM", labelno);
29644 fputs ("\t.tc .", file);
29645 RS6000_OUTPUT_BASENAME (file, name);
29646 fputs ("[TC],", file);
29647 output_addr_const (file, x);
29648 fputs ("@m", file);
29649 break;
29650 default:
29651 gcc_unreachable ();
29654 #endif
29656 putc ('\n', file);
29659 /* Output an assembler pseudo-op to write an ASCII string of N characters
29660 starting at P to FILE.
29662 On the RS/6000, we have to do this using the .byte operation and
29663 write out special characters outside the quoted string.
29664 Also, the assembler is broken; very long strings are truncated,
29665 so we must artificially break them up early. */
29667 void
29668 output_ascii (FILE *file, const char *p, int n)
29670 char c;
29671 int i, count_string;
29672 const char *for_string = "\t.byte \"";
29673 const char *for_decimal = "\t.byte ";
29674 const char *to_close = NULL;
29676 count_string = 0;
29677 for (i = 0; i < n; i++)
29679 c = *p++;
29680 if (c >= ' ' && c < 0177)
29682 if (for_string)
29683 fputs (for_string, file);
29684 putc (c, file);
29686 /* Write two quotes to get one. */
29687 if (c == '"')
29689 putc (c, file);
29690 ++count_string;
29693 for_string = NULL;
29694 for_decimal = "\"\n\t.byte ";
29695 to_close = "\"\n";
29696 ++count_string;
29698 if (count_string >= 512)
29700 fputs (to_close, file);
29702 for_string = "\t.byte \"";
29703 for_decimal = "\t.byte ";
29704 to_close = NULL;
29705 count_string = 0;
29708 else
29710 if (for_decimal)
29711 fputs (for_decimal, file);
29712 fprintf (file, "%d", c);
29714 for_string = "\n\t.byte \"";
29715 for_decimal = ", ";
29716 to_close = "\n";
29717 count_string = 0;
29721 /* Now close the string if we have written one. Then end the line. */
29722 if (to_close)
29723 fputs (to_close, file);
29726 /* Generate a unique section name for FILENAME for a section type
29727 represented by SECTION_DESC. Output goes into BUF.
29729 SECTION_DESC can be any string, as long as it is different for each
29730 possible section type.
29732 We name the section in the same manner as xlc. The name begins with an
29733 underscore followed by the filename (after stripping any leading directory
29734 names) with the last period replaced by the string SECTION_DESC. If
29735 FILENAME does not contain a period, SECTION_DESC is appended to the end of
29736 the name. */
29738 void
29739 rs6000_gen_section_name (char **buf, const char *filename,
29740 const char *section_desc)
29742 const char *q, *after_last_slash, *last_period = 0;
29743 char *p;
29744 int len;
29746 after_last_slash = filename;
29747 for (q = filename; *q; q++)
29749 if (*q == '/')
29750 after_last_slash = q + 1;
29751 else if (*q == '.')
29752 last_period = q;
29755 len = strlen (after_last_slash) + strlen (section_desc) + 2;
29756 *buf = (char *) xmalloc (len);
29758 p = *buf;
29759 *p++ = '_';
29761 for (q = after_last_slash; *q; q++)
29763 if (q == last_period)
29765 strcpy (p, section_desc);
29766 p += strlen (section_desc);
29767 break;
29770 else if (ISALNUM (*q))
29771 *p++ = *q;
29774 if (last_period == 0)
29775 strcpy (p, section_desc);
29776 else
29777 *p = '\0';
29780 /* Emit profile function. */
29782 void
29783 output_profile_hook (int labelno ATTRIBUTE_UNUSED)
29785 /* Non-standard profiling for kernels, which just saves LR then calls
29786 _mcount without worrying about arg saves. The idea is to change
29787 the function prologue as little as possible as it isn't easy to
29788 account for arg save/restore code added just for _mcount. */
29789 if (TARGET_PROFILE_KERNEL)
29790 return;
29792 if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
29794 #ifndef NO_PROFILE_COUNTERS
29795 # define NO_PROFILE_COUNTERS 0
29796 #endif
29797 if (NO_PROFILE_COUNTERS)
29798 emit_library_call (init_one_libfunc (RS6000_MCOUNT),
29799 LCT_NORMAL, VOIDmode);
29800 else
29802 char buf[30];
29803 const char *label_name;
29804 rtx fun;
29806 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
29807 label_name = ggc_strdup ((*targetm.strip_name_encoding) (buf));
29808 fun = gen_rtx_SYMBOL_REF (Pmode, label_name);
29810 emit_library_call (init_one_libfunc (RS6000_MCOUNT),
29811 LCT_NORMAL, VOIDmode, fun, Pmode);
29814 else if (DEFAULT_ABI == ABI_DARWIN)
29816 const char *mcount_name = RS6000_MCOUNT;
29817 int caller_addr_regno = LR_REGNO;
29819 /* Be conservative and always set this, at least for now. */
29820 crtl->uses_pic_offset_table = 1;
29822 #if TARGET_MACHO
29823 /* For PIC code, set up a stub and collect the caller's address
29824 from r0, which is where the prologue puts it. */
29825 if (MACHOPIC_INDIRECT
29826 && crtl->uses_pic_offset_table)
29827 caller_addr_regno = 0;
29828 #endif
29829 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mcount_name),
29830 LCT_NORMAL, VOIDmode,
29831 gen_rtx_REG (Pmode, caller_addr_regno), Pmode);
29835 /* Write function profiler code. */
29837 void
29838 output_function_profiler (FILE *file, int labelno)
29840 char buf[100];
29842 switch (DEFAULT_ABI)
29844 default:
29845 gcc_unreachable ();
29847 case ABI_V4:
29848 if (!TARGET_32BIT)
29850 warning (0, "no profiling of 64-bit code for this ABI");
29851 return;
29853 ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
29854 fprintf (file, "\tmflr %s\n", reg_names[0]);
29855 if (NO_PROFILE_COUNTERS)
29857 asm_fprintf (file, "\tstw %s,4(%s)\n",
29858 reg_names[0], reg_names[1]);
29860 else if (TARGET_SECURE_PLT && flag_pic)
29862 if (TARGET_LINK_STACK)
29864 char name[32];
29865 get_ppc476_thunk_name (name);
29866 asm_fprintf (file, "\tbl %s\n", name);
29868 else
29869 asm_fprintf (file, "\tbcl 20,31,1f\n1:\n");
29870 asm_fprintf (file, "\tstw %s,4(%s)\n",
29871 reg_names[0], reg_names[1]);
29872 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
29873 asm_fprintf (file, "\taddis %s,%s,",
29874 reg_names[12], reg_names[12]);
29875 assemble_name (file, buf);
29876 asm_fprintf (file, "-1b@ha\n\tla %s,", reg_names[0]);
29877 assemble_name (file, buf);
29878 asm_fprintf (file, "-1b@l(%s)\n", reg_names[12]);
29880 else if (flag_pic == 1)
29882 fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
29883 asm_fprintf (file, "\tstw %s,4(%s)\n",
29884 reg_names[0], reg_names[1]);
29885 asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
29886 asm_fprintf (file, "\tlwz %s,", reg_names[0]);
29887 assemble_name (file, buf);
29888 asm_fprintf (file, "@got(%s)\n", reg_names[12]);
29890 else if (flag_pic > 1)
29892 asm_fprintf (file, "\tstw %s,4(%s)\n",
29893 reg_names[0], reg_names[1]);
29894 /* Now, we need to get the address of the label. */
29895 if (TARGET_LINK_STACK)
29897 char name[32];
29898 get_ppc476_thunk_name (name);
29899 asm_fprintf (file, "\tbl %s\n\tb 1f\n\t.long ", name);
29900 assemble_name (file, buf);
29901 fputs ("-.\n1:", file);
29902 asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
29903 asm_fprintf (file, "\taddi %s,%s,4\n",
29904 reg_names[11], reg_names[11]);
29906 else
29908 fputs ("\tbcl 20,31,1f\n\t.long ", file);
29909 assemble_name (file, buf);
29910 fputs ("-.\n1:", file);
29911 asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
29913 asm_fprintf (file, "\tlwz %s,0(%s)\n",
29914 reg_names[0], reg_names[11]);
29915 asm_fprintf (file, "\tadd %s,%s,%s\n",
29916 reg_names[0], reg_names[0], reg_names[11]);
29918 else
29920 asm_fprintf (file, "\tlis %s,", reg_names[12]);
29921 assemble_name (file, buf);
29922 fputs ("@ha\n", file);
29923 asm_fprintf (file, "\tstw %s,4(%s)\n",
29924 reg_names[0], reg_names[1]);
29925 asm_fprintf (file, "\tla %s,", reg_names[0]);
29926 assemble_name (file, buf);
29927 asm_fprintf (file, "@l(%s)\n", reg_names[12]);
29930 /* ABI_V4 saves the static chain reg with ASM_OUTPUT_REG_PUSH. */
29931 fprintf (file, "\tbl %s%s\n",
29932 RS6000_MCOUNT, flag_pic ? "@plt" : "");
29933 break;
29935 case ABI_AIX:
29936 case ABI_ELFv2:
29937 case ABI_DARWIN:
29938 /* Don't do anything, done in output_profile_hook (). */
29939 break;
29945 /* The following variable value is the last issued insn. */
29947 static rtx_insn *last_scheduled_insn;
29949 /* The following variable helps to balance issuing of load and
29950 store instructions */
29952 static int load_store_pendulum;
29954 /* The following variable helps pair divide insns during scheduling. */
29955 static int divide_cnt;
29956 /* The following variable helps pair and alternate vector and vector load
29957 insns during scheduling. */
29958 static int vec_pairing;
29961 /* Power4 load update and store update instructions are cracked into a
29962 load or store and an integer insn which are executed in the same cycle.
29963 Branches have their own dispatch slot which does not count against the
29964 GCC issue rate, but it changes the program flow so there are no other
29965 instructions to issue in this cycle. */
29967 static int
29968 rs6000_variable_issue_1 (rtx_insn *insn, int more)
29970 last_scheduled_insn = insn;
29971 if (GET_CODE (PATTERN (insn)) == USE
29972 || GET_CODE (PATTERN (insn)) == CLOBBER)
29974 cached_can_issue_more = more;
29975 return cached_can_issue_more;
29978 if (insn_terminates_group_p (insn, current_group))
29980 cached_can_issue_more = 0;
29981 return cached_can_issue_more;
29984 /* If no reservation, but reach here */
29985 if (recog_memoized (insn) < 0)
29986 return more;
29988 if (rs6000_sched_groups)
29990 if (is_microcoded_insn (insn))
29991 cached_can_issue_more = 0;
29992 else if (is_cracked_insn (insn))
29993 cached_can_issue_more = more > 2 ? more - 2 : 0;
29994 else
29995 cached_can_issue_more = more - 1;
29997 return cached_can_issue_more;
30000 if (rs6000_tune == PROCESSOR_CELL && is_nonpipeline_insn (insn))
30001 return 0;
30003 cached_can_issue_more = more - 1;
30004 return cached_can_issue_more;
30007 static int
30008 rs6000_variable_issue (FILE *stream, int verbose, rtx_insn *insn, int more)
30010 int r = rs6000_variable_issue_1 (insn, more);
30011 if (verbose)
30012 fprintf (stream, "// rs6000_variable_issue (more = %d) = %d\n", more, r);
30013 return r;
30016 /* Adjust the cost of a scheduling dependency. Return the new cost of
30017 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
30019 static int
30020 rs6000_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn, int cost,
30021 unsigned int)
30023 enum attr_type attr_type;
30025 if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
30026 return cost;
30028 switch (dep_type)
30030 case REG_DEP_TRUE:
30032 /* Data dependency; DEP_INSN writes a register that INSN reads
30033 some cycles later. */
30035 /* Separate a load from a narrower, dependent store. */
30036 if ((rs6000_sched_groups || rs6000_tune == PROCESSOR_POWER9)
30037 && GET_CODE (PATTERN (insn)) == SET
30038 && GET_CODE (PATTERN (dep_insn)) == SET
30039 && GET_CODE (XEXP (PATTERN (insn), 1)) == MEM
30040 && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == MEM
30041 && (GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (insn), 1)))
30042 > GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (dep_insn), 0)))))
30043 return cost + 14;
30045 attr_type = get_attr_type (insn);
30047 switch (attr_type)
30049 case TYPE_JMPREG:
30050 /* Tell the first scheduling pass about the latency between
30051 a mtctr and bctr (and mtlr and br/blr). The first
30052 scheduling pass will not know about this latency since
30053 the mtctr instruction, which has the latency associated
30054 to it, will be generated by reload. */
30055 return 4;
30056 case TYPE_BRANCH:
30057 /* Leave some extra cycles between a compare and its
30058 dependent branch, to inhibit expensive mispredicts. */
30059 if ((rs6000_tune == PROCESSOR_PPC603
30060 || rs6000_tune == PROCESSOR_PPC604
30061 || rs6000_tune == PROCESSOR_PPC604e
30062 || rs6000_tune == PROCESSOR_PPC620
30063 || rs6000_tune == PROCESSOR_PPC630
30064 || rs6000_tune == PROCESSOR_PPC750
30065 || rs6000_tune == PROCESSOR_PPC7400
30066 || rs6000_tune == PROCESSOR_PPC7450
30067 || rs6000_tune == PROCESSOR_PPCE5500
30068 || rs6000_tune == PROCESSOR_PPCE6500
30069 || rs6000_tune == PROCESSOR_POWER4
30070 || rs6000_tune == PROCESSOR_POWER5
30071 || rs6000_tune == PROCESSOR_POWER7
30072 || rs6000_tune == PROCESSOR_POWER8
30073 || rs6000_tune == PROCESSOR_POWER9
30074 || rs6000_tune == PROCESSOR_CELL)
30075 && recog_memoized (dep_insn)
30076 && (INSN_CODE (dep_insn) >= 0))
30078 switch (get_attr_type (dep_insn))
30080 case TYPE_CMP:
30081 case TYPE_FPCOMPARE:
30082 case TYPE_CR_LOGICAL:
30083 return cost + 2;
30084 case TYPE_EXTS:
30085 case TYPE_MUL:
30086 if (get_attr_dot (dep_insn) == DOT_YES)
30087 return cost + 2;
30088 else
30089 break;
30090 case TYPE_SHIFT:
30091 if (get_attr_dot (dep_insn) == DOT_YES
30092 && get_attr_var_shift (dep_insn) == VAR_SHIFT_NO)
30093 return cost + 2;
30094 else
30095 break;
30096 default:
30097 break;
30099 break;
30101 case TYPE_STORE:
30102 case TYPE_FPSTORE:
30103 if ((rs6000_tune == PROCESSOR_POWER6)
30104 && recog_memoized (dep_insn)
30105 && (INSN_CODE (dep_insn) >= 0))
30108 if (GET_CODE (PATTERN (insn)) != SET)
30109 /* If this happens, we have to extend this to schedule
30110 optimally. Return default for now. */
30111 return cost;
30113 /* Adjust the cost for the case where the value written
30114 by a fixed point operation is used as the address
30115 gen value on a store. */
30116 switch (get_attr_type (dep_insn))
30118 case TYPE_LOAD:
30119 case TYPE_CNTLZ:
30121 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30122 return get_attr_sign_extend (dep_insn)
30123 == SIGN_EXTEND_YES ? 6 : 4;
30124 break;
30126 case TYPE_SHIFT:
30128 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30129 return get_attr_var_shift (dep_insn) == VAR_SHIFT_YES ?
30130 6 : 3;
30131 break;
30133 case TYPE_INTEGER:
30134 case TYPE_ADD:
30135 case TYPE_LOGICAL:
30136 case TYPE_EXTS:
30137 case TYPE_INSERT:
30139 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30140 return 3;
30141 break;
30143 case TYPE_STORE:
30144 case TYPE_FPLOAD:
30145 case TYPE_FPSTORE:
30147 if (get_attr_update (dep_insn) == UPDATE_YES
30148 && ! rs6000_store_data_bypass_p (dep_insn, insn))
30149 return 3;
30150 break;
30152 case TYPE_MUL:
30154 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30155 return 17;
30156 break;
30158 case TYPE_DIV:
30160 if (! rs6000_store_data_bypass_p (dep_insn, insn))
30161 return get_attr_size (dep_insn) == SIZE_32 ? 45 : 57;
30162 break;
30164 default:
30165 break;
30168 break;
30170 case TYPE_LOAD:
30171 if ((rs6000_tune == PROCESSOR_POWER6)
30172 && recog_memoized (dep_insn)
30173 && (INSN_CODE (dep_insn) >= 0))
30176 /* Adjust the cost for the case where the value written
30177 by a fixed point instruction is used within the address
30178 gen portion of a subsequent load(u)(x) */
30179 switch (get_attr_type (dep_insn))
30181 case TYPE_LOAD:
30182 case TYPE_CNTLZ:
30184 if (set_to_load_agen (dep_insn, insn))
30185 return get_attr_sign_extend (dep_insn)
30186 == SIGN_EXTEND_YES ? 6 : 4;
30187 break;
30189 case TYPE_SHIFT:
30191 if (set_to_load_agen (dep_insn, insn))
30192 return get_attr_var_shift (dep_insn) == VAR_SHIFT_YES ?
30193 6 : 3;
30194 break;
30196 case TYPE_INTEGER:
30197 case TYPE_ADD:
30198 case TYPE_LOGICAL:
30199 case TYPE_EXTS:
30200 case TYPE_INSERT:
30202 if (set_to_load_agen (dep_insn, insn))
30203 return 3;
30204 break;
30206 case TYPE_STORE:
30207 case TYPE_FPLOAD:
30208 case TYPE_FPSTORE:
30210 if (get_attr_update (dep_insn) == UPDATE_YES
30211 && set_to_load_agen (dep_insn, insn))
30212 return 3;
30213 break;
30215 case TYPE_MUL:
30217 if (set_to_load_agen (dep_insn, insn))
30218 return 17;
30219 break;
30221 case TYPE_DIV:
30223 if (set_to_load_agen (dep_insn, insn))
30224 return get_attr_size (dep_insn) == SIZE_32 ? 45 : 57;
30225 break;
30227 default:
30228 break;
30231 break;
30233 case TYPE_FPLOAD:
30234 if ((rs6000_tune == PROCESSOR_POWER6)
30235 && get_attr_update (insn) == UPDATE_NO
30236 && recog_memoized (dep_insn)
30237 && (INSN_CODE (dep_insn) >= 0)
30238 && (get_attr_type (dep_insn) == TYPE_MFFGPR))
30239 return 2;
30241 default:
30242 break;
30245 /* Fall out to return default cost. */
30247 break;
30249 case REG_DEP_OUTPUT:
30250 /* Output dependency; DEP_INSN writes a register that INSN writes some
30251 cycles later. */
30252 if ((rs6000_tune == PROCESSOR_POWER6)
30253 && recog_memoized (dep_insn)
30254 && (INSN_CODE (dep_insn) >= 0))
30256 attr_type = get_attr_type (insn);
30258 switch (attr_type)
30260 case TYPE_FP:
30261 case TYPE_FPSIMPLE:
30262 if (get_attr_type (dep_insn) == TYPE_FP
30263 || get_attr_type (dep_insn) == TYPE_FPSIMPLE)
30264 return 1;
30265 break;
30266 case TYPE_FPLOAD:
30267 if (get_attr_update (insn) == UPDATE_NO
30268 && get_attr_type (dep_insn) == TYPE_MFFGPR)
30269 return 2;
30270 break;
30271 default:
30272 break;
30275 /* Fall through, no cost for output dependency. */
30276 /* FALLTHRU */
30278 case REG_DEP_ANTI:
30279 /* Anti dependency; DEP_INSN reads a register that INSN writes some
30280 cycles later. */
30281 return 0;
30283 default:
30284 gcc_unreachable ();
30287 return cost;
30290 /* Debug version of rs6000_adjust_cost. */
30292 static int
30293 rs6000_debug_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn,
30294 int cost, unsigned int dw)
30296 int ret = rs6000_adjust_cost (insn, dep_type, dep_insn, cost, dw);
30298 if (ret != cost)
30300 const char *dep;
30302 switch (dep_type)
30304 default: dep = "unknown depencency"; break;
30305 case REG_DEP_TRUE: dep = "data dependency"; break;
30306 case REG_DEP_OUTPUT: dep = "output dependency"; break;
30307 case REG_DEP_ANTI: dep = "anti depencency"; break;
30310 fprintf (stderr,
30311 "\nrs6000_adjust_cost, final cost = %d, orig cost = %d, "
30312 "%s, insn:\n", ret, cost, dep);
30314 debug_rtx (insn);
30317 return ret;
30320 /* The function returns a true if INSN is microcoded.
30321 Return false otherwise. */
30323 static bool
30324 is_microcoded_insn (rtx_insn *insn)
30326 if (!insn || !NONDEBUG_INSN_P (insn)
30327 || GET_CODE (PATTERN (insn)) == USE
30328 || GET_CODE (PATTERN (insn)) == CLOBBER)
30329 return false;
30331 if (rs6000_tune == PROCESSOR_CELL)
30332 return get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS;
30334 if (rs6000_sched_groups
30335 && (rs6000_tune == PROCESSOR_POWER4 || rs6000_tune == PROCESSOR_POWER5))
30337 enum attr_type type = get_attr_type (insn);
30338 if ((type == TYPE_LOAD
30339 && get_attr_update (insn) == UPDATE_YES
30340 && get_attr_sign_extend (insn) == SIGN_EXTEND_YES)
30341 || ((type == TYPE_LOAD || type == TYPE_STORE)
30342 && get_attr_update (insn) == UPDATE_YES
30343 && get_attr_indexed (insn) == INDEXED_YES)
30344 || type == TYPE_MFCR)
30345 return true;
30348 return false;
30351 /* The function returns true if INSN is cracked into 2 instructions
30352 by the processor (and therefore occupies 2 issue slots). */
30354 static bool
30355 is_cracked_insn (rtx_insn *insn)
30357 if (!insn || !NONDEBUG_INSN_P (insn)
30358 || GET_CODE (PATTERN (insn)) == USE
30359 || GET_CODE (PATTERN (insn)) == CLOBBER)
30360 return false;
30362 if (rs6000_sched_groups
30363 && (rs6000_tune == PROCESSOR_POWER4 || rs6000_tune == PROCESSOR_POWER5))
30365 enum attr_type type = get_attr_type (insn);
30366 if ((type == TYPE_LOAD
30367 && get_attr_sign_extend (insn) == SIGN_EXTEND_YES
30368 && get_attr_update (insn) == UPDATE_NO)
30369 || (type == TYPE_LOAD
30370 && get_attr_sign_extend (insn) == SIGN_EXTEND_NO
30371 && get_attr_update (insn) == UPDATE_YES
30372 && get_attr_indexed (insn) == INDEXED_NO)
30373 || (type == TYPE_STORE
30374 && get_attr_update (insn) == UPDATE_YES
30375 && get_attr_indexed (insn) == INDEXED_NO)
30376 || ((type == TYPE_FPLOAD || type == TYPE_FPSTORE)
30377 && get_attr_update (insn) == UPDATE_YES)
30378 || (type == TYPE_CR_LOGICAL
30379 && get_attr_cr_logical_3op (insn) == CR_LOGICAL_3OP_YES)
30380 || (type == TYPE_EXTS
30381 && get_attr_dot (insn) == DOT_YES)
30382 || (type == TYPE_SHIFT
30383 && get_attr_dot (insn) == DOT_YES
30384 && get_attr_var_shift (insn) == VAR_SHIFT_NO)
30385 || (type == TYPE_MUL
30386 && get_attr_dot (insn) == DOT_YES)
30387 || type == TYPE_DIV
30388 || (type == TYPE_INSERT
30389 && get_attr_size (insn) == SIZE_32))
30390 return true;
30393 return false;
30396 /* The function returns true if INSN can be issued only from
30397 the branch slot. */
30399 static bool
30400 is_branch_slot_insn (rtx_insn *insn)
30402 if (!insn || !NONDEBUG_INSN_P (insn)
30403 || GET_CODE (PATTERN (insn)) == USE
30404 || GET_CODE (PATTERN (insn)) == CLOBBER)
30405 return false;
30407 if (rs6000_sched_groups)
30409 enum attr_type type = get_attr_type (insn);
30410 if (type == TYPE_BRANCH || type == TYPE_JMPREG)
30411 return true;
30412 return false;
30415 return false;
30418 /* The function returns true if out_inst sets a value that is
30419 used in the address generation computation of in_insn */
30420 static bool
30421 set_to_load_agen (rtx_insn *out_insn, rtx_insn *in_insn)
30423 rtx out_set, in_set;
30425 /* For performance reasons, only handle the simple case where
30426 both loads are a single_set. */
30427 out_set = single_set (out_insn);
30428 if (out_set)
30430 in_set = single_set (in_insn);
30431 if (in_set)
30432 return reg_mentioned_p (SET_DEST (out_set), SET_SRC (in_set));
30435 return false;
30438 /* Try to determine base/offset/size parts of the given MEM.
30439 Return true if successful, false if all the values couldn't
30440 be determined.
30442 This function only looks for REG or REG+CONST address forms.
30443 REG+REG address form will return false. */
30445 static bool
30446 get_memref_parts (rtx mem, rtx *base, HOST_WIDE_INT *offset,
30447 HOST_WIDE_INT *size)
30449 rtx addr_rtx;
30450 if MEM_SIZE_KNOWN_P (mem)
30451 *size = MEM_SIZE (mem);
30452 else
30453 return false;
30455 addr_rtx = (XEXP (mem, 0));
30456 if (GET_CODE (addr_rtx) == PRE_MODIFY)
30457 addr_rtx = XEXP (addr_rtx, 1);
30459 *offset = 0;
30460 while (GET_CODE (addr_rtx) == PLUS
30461 && CONST_INT_P (XEXP (addr_rtx, 1)))
30463 *offset += INTVAL (XEXP (addr_rtx, 1));
30464 addr_rtx = XEXP (addr_rtx, 0);
30466 if (!REG_P (addr_rtx))
30467 return false;
30469 *base = addr_rtx;
30470 return true;
30473 /* The function returns true if the target storage location of
30474 mem1 is adjacent to the target storage location of mem2 */
30475 /* Return 1 if memory locations are adjacent. */
30477 static bool
30478 adjacent_mem_locations (rtx mem1, rtx mem2)
30480 rtx reg1, reg2;
30481 HOST_WIDE_INT off1, size1, off2, size2;
30483 if (get_memref_parts (mem1, &reg1, &off1, &size1)
30484 && get_memref_parts (mem2, &reg2, &off2, &size2))
30485 return ((REGNO (reg1) == REGNO (reg2))
30486 && ((off1 + size1 == off2)
30487 || (off2 + size2 == off1)));
30489 return false;
30492 /* This function returns true if it can be determined that the two MEM
30493 locations overlap by at least 1 byte based on base reg/offset/size. */
30495 static bool
30496 mem_locations_overlap (rtx mem1, rtx mem2)
30498 rtx reg1, reg2;
30499 HOST_WIDE_INT off1, size1, off2, size2;
30501 if (get_memref_parts (mem1, &reg1, &off1, &size1)
30502 && get_memref_parts (mem2, &reg2, &off2, &size2))
30503 return ((REGNO (reg1) == REGNO (reg2))
30504 && (((off1 <= off2) && (off1 + size1 > off2))
30505 || ((off2 <= off1) && (off2 + size2 > off1))));
30507 return false;
30510 /* A C statement (sans semicolon) to update the integer scheduling
30511 priority INSN_PRIORITY (INSN). Increase the priority to execute the
30512 INSN earlier, reduce the priority to execute INSN later. Do not
30513 define this macro if you do not need to adjust the scheduling
30514 priorities of insns. */
30516 static int
30517 rs6000_adjust_priority (rtx_insn *insn ATTRIBUTE_UNUSED, int priority)
30519 rtx load_mem, str_mem;
30520 /* On machines (like the 750) which have asymmetric integer units,
30521 where one integer unit can do multiply and divides and the other
30522 can't, reduce the priority of multiply/divide so it is scheduled
30523 before other integer operations. */
30525 #if 0
30526 if (! INSN_P (insn))
30527 return priority;
30529 if (GET_CODE (PATTERN (insn)) == USE)
30530 return priority;
30532 switch (rs6000_tune) {
30533 case PROCESSOR_PPC750:
30534 switch (get_attr_type (insn))
30536 default:
30537 break;
30539 case TYPE_MUL:
30540 case TYPE_DIV:
30541 fprintf (stderr, "priority was %#x (%d) before adjustment\n",
30542 priority, priority);
30543 if (priority >= 0 && priority < 0x01000000)
30544 priority >>= 3;
30545 break;
30548 #endif
30550 if (insn_must_be_first_in_group (insn)
30551 && reload_completed
30552 && current_sched_info->sched_max_insns_priority
30553 && rs6000_sched_restricted_insns_priority)
30556 /* Prioritize insns that can be dispatched only in the first
30557 dispatch slot. */
30558 if (rs6000_sched_restricted_insns_priority == 1)
30559 /* Attach highest priority to insn. This means that in
30560 haifa-sched.c:ready_sort(), dispatch-slot restriction considerations
30561 precede 'priority' (critical path) considerations. */
30562 return current_sched_info->sched_max_insns_priority;
30563 else if (rs6000_sched_restricted_insns_priority == 2)
30564 /* Increase priority of insn by a minimal amount. This means that in
30565 haifa-sched.c:ready_sort(), only 'priority' (critical path)
30566 considerations precede dispatch-slot restriction considerations. */
30567 return (priority + 1);
30570 if (rs6000_tune == PROCESSOR_POWER6
30571 && ((load_store_pendulum == -2 && is_load_insn (insn, &load_mem))
30572 || (load_store_pendulum == 2 && is_store_insn (insn, &str_mem))))
30573 /* Attach highest priority to insn if the scheduler has just issued two
30574 stores and this instruction is a load, or two loads and this instruction
30575 is a store. Power6 wants loads and stores scheduled alternately
30576 when possible */
30577 return current_sched_info->sched_max_insns_priority;
30579 return priority;
30582 /* Return true if the instruction is nonpipelined on the Cell. */
30583 static bool
30584 is_nonpipeline_insn (rtx_insn *insn)
30586 enum attr_type type;
30587 if (!insn || !NONDEBUG_INSN_P (insn)
30588 || GET_CODE (PATTERN (insn)) == USE
30589 || GET_CODE (PATTERN (insn)) == CLOBBER)
30590 return false;
30592 type = get_attr_type (insn);
30593 if (type == TYPE_MUL
30594 || type == TYPE_DIV
30595 || type == TYPE_SDIV
30596 || type == TYPE_DDIV
30597 || type == TYPE_SSQRT
30598 || type == TYPE_DSQRT
30599 || type == TYPE_MFCR
30600 || type == TYPE_MFCRF
30601 || type == TYPE_MFJMPR)
30603 return true;
30605 return false;
30609 /* Return how many instructions the machine can issue per cycle. */
30611 static int
30612 rs6000_issue_rate (void)
30614 /* Unless scheduling for register pressure, use issue rate of 1 for
30615 first scheduling pass to decrease degradation. */
30616 if (!reload_completed && !flag_sched_pressure)
30617 return 1;
30619 switch (rs6000_tune) {
30620 case PROCESSOR_RS64A:
30621 case PROCESSOR_PPC601: /* ? */
30622 case PROCESSOR_PPC7450:
30623 return 3;
30624 case PROCESSOR_PPC440:
30625 case PROCESSOR_PPC603:
30626 case PROCESSOR_PPC750:
30627 case PROCESSOR_PPC7400:
30628 case PROCESSOR_PPC8540:
30629 case PROCESSOR_PPC8548:
30630 case PROCESSOR_CELL:
30631 case PROCESSOR_PPCE300C2:
30632 case PROCESSOR_PPCE300C3:
30633 case PROCESSOR_PPCE500MC:
30634 case PROCESSOR_PPCE500MC64:
30635 case PROCESSOR_PPCE5500:
30636 case PROCESSOR_PPCE6500:
30637 case PROCESSOR_TITAN:
30638 return 2;
30639 case PROCESSOR_PPC476:
30640 case PROCESSOR_PPC604:
30641 case PROCESSOR_PPC604e:
30642 case PROCESSOR_PPC620:
30643 case PROCESSOR_PPC630:
30644 return 4;
30645 case PROCESSOR_POWER4:
30646 case PROCESSOR_POWER5:
30647 case PROCESSOR_POWER6:
30648 case PROCESSOR_POWER7:
30649 return 5;
30650 case PROCESSOR_POWER8:
30651 return 7;
30652 case PROCESSOR_POWER9:
30653 return 6;
30654 default:
30655 return 1;
30659 /* Return how many instructions to look ahead for better insn
30660 scheduling. */
30662 static int
30663 rs6000_use_sched_lookahead (void)
30665 switch (rs6000_tune)
30667 case PROCESSOR_PPC8540:
30668 case PROCESSOR_PPC8548:
30669 return 4;
30671 case PROCESSOR_CELL:
30672 return (reload_completed ? 8 : 0);
30674 default:
30675 return 0;
30679 /* We are choosing insn from the ready queue. Return zero if INSN can be
30680 chosen. */
30681 static int
30682 rs6000_use_sched_lookahead_guard (rtx_insn *insn, int ready_index)
30684 if (ready_index == 0)
30685 return 0;
30687 if (rs6000_tune != PROCESSOR_CELL)
30688 return 0;
30690 gcc_assert (insn != NULL_RTX && INSN_P (insn));
30692 if (!reload_completed
30693 || is_nonpipeline_insn (insn)
30694 || is_microcoded_insn (insn))
30695 return 1;
30697 return 0;
30700 /* Determine if PAT refers to memory. If so, set MEM_REF to the MEM rtx
30701 and return true. */
30703 static bool
30704 find_mem_ref (rtx pat, rtx *mem_ref)
30706 const char * fmt;
30707 int i, j;
30709 /* stack_tie does not produce any real memory traffic. */
30710 if (tie_operand (pat, VOIDmode))
30711 return false;
30713 if (GET_CODE (pat) == MEM)
30715 *mem_ref = pat;
30716 return true;
30719 /* Recursively process the pattern. */
30720 fmt = GET_RTX_FORMAT (GET_CODE (pat));
30722 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
30724 if (fmt[i] == 'e')
30726 if (find_mem_ref (XEXP (pat, i), mem_ref))
30727 return true;
30729 else if (fmt[i] == 'E')
30730 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
30732 if (find_mem_ref (XVECEXP (pat, i, j), mem_ref))
30733 return true;
30737 return false;
30740 /* Determine if PAT is a PATTERN of a load insn. */
30742 static bool
30743 is_load_insn1 (rtx pat, rtx *load_mem)
30745 if (!pat || pat == NULL_RTX)
30746 return false;
30748 if (GET_CODE (pat) == SET)
30749 return find_mem_ref (SET_SRC (pat), load_mem);
30751 if (GET_CODE (pat) == PARALLEL)
30753 int i;
30755 for (i = 0; i < XVECLEN (pat, 0); i++)
30756 if (is_load_insn1 (XVECEXP (pat, 0, i), load_mem))
30757 return true;
30760 return false;
30763 /* Determine if INSN loads from memory. */
30765 static bool
30766 is_load_insn (rtx insn, rtx *load_mem)
30768 if (!insn || !INSN_P (insn))
30769 return false;
30771 if (CALL_P (insn))
30772 return false;
30774 return is_load_insn1 (PATTERN (insn), load_mem);
30777 /* Determine if PAT is a PATTERN of a store insn. */
30779 static bool
30780 is_store_insn1 (rtx pat, rtx *str_mem)
30782 if (!pat || pat == NULL_RTX)
30783 return false;
30785 if (GET_CODE (pat) == SET)
30786 return find_mem_ref (SET_DEST (pat), str_mem);
30788 if (GET_CODE (pat) == PARALLEL)
30790 int i;
30792 for (i = 0; i < XVECLEN (pat, 0); i++)
30793 if (is_store_insn1 (XVECEXP (pat, 0, i), str_mem))
30794 return true;
30797 return false;
30800 /* Determine if INSN stores to memory. */
30802 static bool
30803 is_store_insn (rtx insn, rtx *str_mem)
30805 if (!insn || !INSN_P (insn))
30806 return false;
30808 return is_store_insn1 (PATTERN (insn), str_mem);
30811 /* Return whether TYPE is a Power9 pairable vector instruction type. */
30813 static bool
30814 is_power9_pairable_vec_type (enum attr_type type)
30816 switch (type)
30818 case TYPE_VECSIMPLE:
30819 case TYPE_VECCOMPLEX:
30820 case TYPE_VECDIV:
30821 case TYPE_VECCMP:
30822 case TYPE_VECPERM:
30823 case TYPE_VECFLOAT:
30824 case TYPE_VECFDIV:
30825 case TYPE_VECDOUBLE:
30826 return true;
30827 default:
30828 break;
30830 return false;
30833 /* Returns whether the dependence between INSN and NEXT is considered
30834 costly by the given target. */
30836 static bool
30837 rs6000_is_costly_dependence (dep_t dep, int cost, int distance)
30839 rtx insn;
30840 rtx next;
30841 rtx load_mem, str_mem;
30843 /* If the flag is not enabled - no dependence is considered costly;
30844 allow all dependent insns in the same group.
30845 This is the most aggressive option. */
30846 if (rs6000_sched_costly_dep == no_dep_costly)
30847 return false;
30849 /* If the flag is set to 1 - a dependence is always considered costly;
30850 do not allow dependent instructions in the same group.
30851 This is the most conservative option. */
30852 if (rs6000_sched_costly_dep == all_deps_costly)
30853 return true;
30855 insn = DEP_PRO (dep);
30856 next = DEP_CON (dep);
30858 if (rs6000_sched_costly_dep == store_to_load_dep_costly
30859 && is_load_insn (next, &load_mem)
30860 && is_store_insn (insn, &str_mem))
30861 /* Prevent load after store in the same group. */
30862 return true;
30864 if (rs6000_sched_costly_dep == true_store_to_load_dep_costly
30865 && is_load_insn (next, &load_mem)
30866 && is_store_insn (insn, &str_mem)
30867 && DEP_TYPE (dep) == REG_DEP_TRUE
30868 && mem_locations_overlap(str_mem, load_mem))
30869 /* Prevent load after store in the same group if it is a true
30870 dependence. */
30871 return true;
30873 /* The flag is set to X; dependences with latency >= X are considered costly,
30874 and will not be scheduled in the same group. */
30875 if (rs6000_sched_costly_dep <= max_dep_latency
30876 && ((cost - distance) >= (int)rs6000_sched_costly_dep))
30877 return true;
30879 return false;
30882 /* Return the next insn after INSN that is found before TAIL is reached,
30883 skipping any "non-active" insns - insns that will not actually occupy
30884 an issue slot. Return NULL_RTX if such an insn is not found. */
30886 static rtx_insn *
30887 get_next_active_insn (rtx_insn *insn, rtx_insn *tail)
30889 if (insn == NULL_RTX || insn == tail)
30890 return NULL;
30892 while (1)
30894 insn = NEXT_INSN (insn);
30895 if (insn == NULL_RTX || insn == tail)
30896 return NULL;
30898 if (CALL_P (insn)
30899 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
30900 || (NONJUMP_INSN_P (insn)
30901 && GET_CODE (PATTERN (insn)) != USE
30902 && GET_CODE (PATTERN (insn)) != CLOBBER
30903 && INSN_CODE (insn) != CODE_FOR_stack_tie))
30904 break;
30906 return insn;
30909 /* Do Power9 specific sched_reorder2 reordering of ready list. */
30911 static int
30912 power9_sched_reorder2 (rtx_insn **ready, int lastpos)
30914 int pos;
30915 int i;
30916 rtx_insn *tmp;
30917 enum attr_type type, type2;
30919 type = get_attr_type (last_scheduled_insn);
30921 /* Try to issue fixed point divides back-to-back in pairs so they will be
30922 routed to separate execution units and execute in parallel. */
30923 if (type == TYPE_DIV && divide_cnt == 0)
30925 /* First divide has been scheduled. */
30926 divide_cnt = 1;
30928 /* Scan the ready list looking for another divide, if found move it
30929 to the end of the list so it is chosen next. */
30930 pos = lastpos;
30931 while (pos >= 0)
30933 if (recog_memoized (ready[pos]) >= 0
30934 && get_attr_type (ready[pos]) == TYPE_DIV)
30936 tmp = ready[pos];
30937 for (i = pos; i < lastpos; i++)
30938 ready[i] = ready[i + 1];
30939 ready[lastpos] = tmp;
30940 break;
30942 pos--;
30945 else
30947 /* Last insn was the 2nd divide or not a divide, reset the counter. */
30948 divide_cnt = 0;
30950 /* The best dispatch throughput for vector and vector load insns can be
30951 achieved by interleaving a vector and vector load such that they'll
30952 dispatch to the same superslice. If this pairing cannot be achieved
30953 then it is best to pair vector insns together and vector load insns
30954 together.
30956 To aid in this pairing, vec_pairing maintains the current state with
30957 the following values:
30959 0 : Initial state, no vecload/vector pairing has been started.
30961 1 : A vecload or vector insn has been issued and a candidate for
30962 pairing has been found and moved to the end of the ready
30963 list. */
30964 if (type == TYPE_VECLOAD)
30966 /* Issued a vecload. */
30967 if (vec_pairing == 0)
30969 int vecload_pos = -1;
30970 /* We issued a single vecload, look for a vector insn to pair it
30971 with. If one isn't found, try to pair another vecload. */
30972 pos = lastpos;
30973 while (pos >= 0)
30975 if (recog_memoized (ready[pos]) >= 0)
30977 type2 = get_attr_type (ready[pos]);
30978 if (is_power9_pairable_vec_type (type2))
30980 /* Found a vector insn to pair with, move it to the
30981 end of the ready list so it is scheduled next. */
30982 tmp = ready[pos];
30983 for (i = pos; i < lastpos; i++)
30984 ready[i] = ready[i + 1];
30985 ready[lastpos] = tmp;
30986 vec_pairing = 1;
30987 return cached_can_issue_more;
30989 else if (type2 == TYPE_VECLOAD && vecload_pos == -1)
30990 /* Remember position of first vecload seen. */
30991 vecload_pos = pos;
30993 pos--;
30995 if (vecload_pos >= 0)
30997 /* Didn't find a vector to pair with but did find a vecload,
30998 move it to the end of the ready list. */
30999 tmp = ready[vecload_pos];
31000 for (i = vecload_pos; i < lastpos; i++)
31001 ready[i] = ready[i + 1];
31002 ready[lastpos] = tmp;
31003 vec_pairing = 1;
31004 return cached_can_issue_more;
31008 else if (is_power9_pairable_vec_type (type))
31010 /* Issued a vector operation. */
31011 if (vec_pairing == 0)
31013 int vec_pos = -1;
31014 /* We issued a single vector insn, look for a vecload to pair it
31015 with. If one isn't found, try to pair another vector. */
31016 pos = lastpos;
31017 while (pos >= 0)
31019 if (recog_memoized (ready[pos]) >= 0)
31021 type2 = get_attr_type (ready[pos]);
31022 if (type2 == TYPE_VECLOAD)
31024 /* Found a vecload insn to pair with, move it to the
31025 end of the ready list so it is scheduled next. */
31026 tmp = ready[pos];
31027 for (i = pos; i < lastpos; i++)
31028 ready[i] = ready[i + 1];
31029 ready[lastpos] = tmp;
31030 vec_pairing = 1;
31031 return cached_can_issue_more;
31033 else if (is_power9_pairable_vec_type (type2)
31034 && vec_pos == -1)
31035 /* Remember position of first vector insn seen. */
31036 vec_pos = pos;
31038 pos--;
31040 if (vec_pos >= 0)
31042 /* Didn't find a vecload to pair with but did find a vector
31043 insn, move it to the end of the ready list. */
31044 tmp = ready[vec_pos];
31045 for (i = vec_pos; i < lastpos; i++)
31046 ready[i] = ready[i + 1];
31047 ready[lastpos] = tmp;
31048 vec_pairing = 1;
31049 return cached_can_issue_more;
31054 /* We've either finished a vec/vecload pair, couldn't find an insn to
31055 continue the current pair, or the last insn had nothing to do with
31056 with pairing. In any case, reset the state. */
31057 vec_pairing = 0;
31060 return cached_can_issue_more;
31063 /* We are about to begin issuing insns for this clock cycle. */
31065 static int
31066 rs6000_sched_reorder (FILE *dump ATTRIBUTE_UNUSED, int sched_verbose,
31067 rtx_insn **ready ATTRIBUTE_UNUSED,
31068 int *pn_ready ATTRIBUTE_UNUSED,
31069 int clock_var ATTRIBUTE_UNUSED)
31071 int n_ready = *pn_ready;
31073 if (sched_verbose)
31074 fprintf (dump, "// rs6000_sched_reorder :\n");
31076 /* Reorder the ready list, if the second to last ready insn
31077 is a nonepipeline insn. */
31078 if (rs6000_tune == PROCESSOR_CELL && n_ready > 1)
31080 if (is_nonpipeline_insn (ready[n_ready - 1])
31081 && (recog_memoized (ready[n_ready - 2]) > 0))
31082 /* Simply swap first two insns. */
31083 std::swap (ready[n_ready - 1], ready[n_ready - 2]);
31086 if (rs6000_tune == PROCESSOR_POWER6)
31087 load_store_pendulum = 0;
31089 return rs6000_issue_rate ();
31092 /* Like rs6000_sched_reorder, but called after issuing each insn. */
31094 static int
31095 rs6000_sched_reorder2 (FILE *dump, int sched_verbose, rtx_insn **ready,
31096 int *pn_ready, int clock_var ATTRIBUTE_UNUSED)
31098 if (sched_verbose)
31099 fprintf (dump, "// rs6000_sched_reorder2 :\n");
31101 /* For Power6, we need to handle some special cases to try and keep the
31102 store queue from overflowing and triggering expensive flushes.
31104 This code monitors how load and store instructions are being issued
31105 and skews the ready list one way or the other to increase the likelihood
31106 that a desired instruction is issued at the proper time.
31108 A couple of things are done. First, we maintain a "load_store_pendulum"
31109 to track the current state of load/store issue.
31111 - If the pendulum is at zero, then no loads or stores have been
31112 issued in the current cycle so we do nothing.
31114 - If the pendulum is 1, then a single load has been issued in this
31115 cycle and we attempt to locate another load in the ready list to
31116 issue with it.
31118 - If the pendulum is -2, then two stores have already been
31119 issued in this cycle, so we increase the priority of the first load
31120 in the ready list to increase it's likelihood of being chosen first
31121 in the next cycle.
31123 - If the pendulum is -1, then a single store has been issued in this
31124 cycle and we attempt to locate another store in the ready list to
31125 issue with it, preferring a store to an adjacent memory location to
31126 facilitate store pairing in the store queue.
31128 - If the pendulum is 2, then two loads have already been
31129 issued in this cycle, so we increase the priority of the first store
31130 in the ready list to increase it's likelihood of being chosen first
31131 in the next cycle.
31133 - If the pendulum < -2 or > 2, then do nothing.
31135 Note: This code covers the most common scenarios. There exist non
31136 load/store instructions which make use of the LSU and which
31137 would need to be accounted for to strictly model the behavior
31138 of the machine. Those instructions are currently unaccounted
31139 for to help minimize compile time overhead of this code.
31141 if (rs6000_tune == PROCESSOR_POWER6 && last_scheduled_insn)
31143 int pos;
31144 int i;
31145 rtx_insn *tmp;
31146 rtx load_mem, str_mem;
31148 if (is_store_insn (last_scheduled_insn, &str_mem))
31149 /* Issuing a store, swing the load_store_pendulum to the left */
31150 load_store_pendulum--;
31151 else if (is_load_insn (last_scheduled_insn, &load_mem))
31152 /* Issuing a load, swing the load_store_pendulum to the right */
31153 load_store_pendulum++;
31154 else
31155 return cached_can_issue_more;
31157 /* If the pendulum is balanced, or there is only one instruction on
31158 the ready list, then all is well, so return. */
31159 if ((load_store_pendulum == 0) || (*pn_ready <= 1))
31160 return cached_can_issue_more;
31162 if (load_store_pendulum == 1)
31164 /* A load has been issued in this cycle. Scan the ready list
31165 for another load to issue with it */
31166 pos = *pn_ready-1;
31168 while (pos >= 0)
31170 if (is_load_insn (ready[pos], &load_mem))
31172 /* Found a load. Move it to the head of the ready list,
31173 and adjust it's priority so that it is more likely to
31174 stay there */
31175 tmp = ready[pos];
31176 for (i=pos; i<*pn_ready-1; i++)
31177 ready[i] = ready[i + 1];
31178 ready[*pn_ready-1] = tmp;
31180 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
31181 INSN_PRIORITY (tmp)++;
31182 break;
31184 pos--;
31187 else if (load_store_pendulum == -2)
31189 /* Two stores have been issued in this cycle. Increase the
31190 priority of the first load in the ready list to favor it for
31191 issuing in the next cycle. */
31192 pos = *pn_ready-1;
31194 while (pos >= 0)
31196 if (is_load_insn (ready[pos], &load_mem)
31197 && !sel_sched_p ()
31198 && INSN_PRIORITY_KNOWN (ready[pos]))
31200 INSN_PRIORITY (ready[pos])++;
31202 /* Adjust the pendulum to account for the fact that a load
31203 was found and increased in priority. This is to prevent
31204 increasing the priority of multiple loads */
31205 load_store_pendulum--;
31207 break;
31209 pos--;
31212 else if (load_store_pendulum == -1)
31214 /* A store has been issued in this cycle. Scan the ready list for
31215 another store to issue with it, preferring a store to an adjacent
31216 memory location */
31217 int first_store_pos = -1;
31219 pos = *pn_ready-1;
31221 while (pos >= 0)
31223 if (is_store_insn (ready[pos], &str_mem))
31225 rtx str_mem2;
31226 /* Maintain the index of the first store found on the
31227 list */
31228 if (first_store_pos == -1)
31229 first_store_pos = pos;
31231 if (is_store_insn (last_scheduled_insn, &str_mem2)
31232 && adjacent_mem_locations (str_mem, str_mem2))
31234 /* Found an adjacent store. Move it to the head of the
31235 ready list, and adjust it's priority so that it is
31236 more likely to stay there */
31237 tmp = ready[pos];
31238 for (i=pos; i<*pn_ready-1; i++)
31239 ready[i] = ready[i + 1];
31240 ready[*pn_ready-1] = tmp;
31242 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
31243 INSN_PRIORITY (tmp)++;
31245 first_store_pos = -1;
31247 break;
31250 pos--;
31253 if (first_store_pos >= 0)
31255 /* An adjacent store wasn't found, but a non-adjacent store was,
31256 so move the non-adjacent store to the front of the ready
31257 list, and adjust its priority so that it is more likely to
31258 stay there. */
31259 tmp = ready[first_store_pos];
31260 for (i=first_store_pos; i<*pn_ready-1; i++)
31261 ready[i] = ready[i + 1];
31262 ready[*pn_ready-1] = tmp;
31263 if (!sel_sched_p () && INSN_PRIORITY_KNOWN (tmp))
31264 INSN_PRIORITY (tmp)++;
31267 else if (load_store_pendulum == 2)
31269 /* Two loads have been issued in this cycle. Increase the priority
31270 of the first store in the ready list to favor it for issuing in
31271 the next cycle. */
31272 pos = *pn_ready-1;
31274 while (pos >= 0)
31276 if (is_store_insn (ready[pos], &str_mem)
31277 && !sel_sched_p ()
31278 && INSN_PRIORITY_KNOWN (ready[pos]))
31280 INSN_PRIORITY (ready[pos])++;
31282 /* Adjust the pendulum to account for the fact that a store
31283 was found and increased in priority. This is to prevent
31284 increasing the priority of multiple stores */
31285 load_store_pendulum++;
31287 break;
31289 pos--;
31294 /* Do Power9 dependent reordering if necessary. */
31295 if (rs6000_tune == PROCESSOR_POWER9 && last_scheduled_insn
31296 && recog_memoized (last_scheduled_insn) >= 0)
31297 return power9_sched_reorder2 (ready, *pn_ready - 1);
31299 return cached_can_issue_more;
31302 /* Return whether the presence of INSN causes a dispatch group termination
31303 of group WHICH_GROUP.
31305 If WHICH_GROUP == current_group, this function will return true if INSN
31306 causes the termination of the current group (i.e, the dispatch group to
31307 which INSN belongs). This means that INSN will be the last insn in the
31308 group it belongs to.
31310 If WHICH_GROUP == previous_group, this function will return true if INSN
31311 causes the termination of the previous group (i.e, the dispatch group that
31312 precedes the group to which INSN belongs). This means that INSN will be
31313 the first insn in the group it belongs to). */
31315 static bool
31316 insn_terminates_group_p (rtx_insn *insn, enum group_termination which_group)
31318 bool first, last;
31320 if (! insn)
31321 return false;
31323 first = insn_must_be_first_in_group (insn);
31324 last = insn_must_be_last_in_group (insn);
31326 if (first && last)
31327 return true;
31329 if (which_group == current_group)
31330 return last;
31331 else if (which_group == previous_group)
31332 return first;
31334 return false;
31338 static bool
31339 insn_must_be_first_in_group (rtx_insn *insn)
31341 enum attr_type type;
31343 if (!insn
31344 || NOTE_P (insn)
31345 || DEBUG_INSN_P (insn)
31346 || GET_CODE (PATTERN (insn)) == USE
31347 || GET_CODE (PATTERN (insn)) == CLOBBER)
31348 return false;
31350 switch (rs6000_tune)
31352 case PROCESSOR_POWER5:
31353 if (is_cracked_insn (insn))
31354 return true;
31355 /* FALLTHRU */
31356 case PROCESSOR_POWER4:
31357 if (is_microcoded_insn (insn))
31358 return true;
31360 if (!rs6000_sched_groups)
31361 return false;
31363 type = get_attr_type (insn);
31365 switch (type)
31367 case TYPE_MFCR:
31368 case TYPE_MFCRF:
31369 case TYPE_MTCR:
31370 case TYPE_CR_LOGICAL:
31371 case TYPE_MTJMPR:
31372 case TYPE_MFJMPR:
31373 case TYPE_DIV:
31374 case TYPE_LOAD_L:
31375 case TYPE_STORE_C:
31376 case TYPE_ISYNC:
31377 case TYPE_SYNC:
31378 return true;
31379 default:
31380 break;
31382 break;
31383 case PROCESSOR_POWER6:
31384 type = get_attr_type (insn);
31386 switch (type)
31388 case TYPE_EXTS:
31389 case TYPE_CNTLZ:
31390 case TYPE_TRAP:
31391 case TYPE_MUL:
31392 case TYPE_INSERT:
31393 case TYPE_FPCOMPARE:
31394 case TYPE_MFCR:
31395 case TYPE_MTCR:
31396 case TYPE_MFJMPR:
31397 case TYPE_MTJMPR:
31398 case TYPE_ISYNC:
31399 case TYPE_SYNC:
31400 case TYPE_LOAD_L:
31401 case TYPE_STORE_C:
31402 return true;
31403 case TYPE_SHIFT:
31404 if (get_attr_dot (insn) == DOT_NO
31405 || get_attr_var_shift (insn) == VAR_SHIFT_NO)
31406 return true;
31407 else
31408 break;
31409 case TYPE_DIV:
31410 if (get_attr_size (insn) == SIZE_32)
31411 return true;
31412 else
31413 break;
31414 case TYPE_LOAD:
31415 case TYPE_STORE:
31416 case TYPE_FPLOAD:
31417 case TYPE_FPSTORE:
31418 if (get_attr_update (insn) == UPDATE_YES)
31419 return true;
31420 else
31421 break;
31422 default:
31423 break;
31425 break;
31426 case PROCESSOR_POWER7:
31427 type = get_attr_type (insn);
31429 switch (type)
31431 case TYPE_CR_LOGICAL:
31432 case TYPE_MFCR:
31433 case TYPE_MFCRF:
31434 case TYPE_MTCR:
31435 case TYPE_DIV:
31436 case TYPE_ISYNC:
31437 case TYPE_LOAD_L:
31438 case TYPE_STORE_C:
31439 case TYPE_MFJMPR:
31440 case TYPE_MTJMPR:
31441 return true;
31442 case TYPE_MUL:
31443 case TYPE_SHIFT:
31444 case TYPE_EXTS:
31445 if (get_attr_dot (insn) == DOT_YES)
31446 return true;
31447 else
31448 break;
31449 case TYPE_LOAD:
31450 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
31451 || get_attr_update (insn) == UPDATE_YES)
31452 return true;
31453 else
31454 break;
31455 case TYPE_STORE:
31456 case TYPE_FPLOAD:
31457 case TYPE_FPSTORE:
31458 if (get_attr_update (insn) == UPDATE_YES)
31459 return true;
31460 else
31461 break;
31462 default:
31463 break;
31465 break;
31466 case PROCESSOR_POWER8:
31467 type = get_attr_type (insn);
31469 switch (type)
31471 case TYPE_CR_LOGICAL:
31472 case TYPE_MFCR:
31473 case TYPE_MFCRF:
31474 case TYPE_MTCR:
31475 case TYPE_SYNC:
31476 case TYPE_ISYNC:
31477 case TYPE_LOAD_L:
31478 case TYPE_STORE_C:
31479 case TYPE_VECSTORE:
31480 case TYPE_MFJMPR:
31481 case TYPE_MTJMPR:
31482 return true;
31483 case TYPE_SHIFT:
31484 case TYPE_EXTS:
31485 case TYPE_MUL:
31486 if (get_attr_dot (insn) == DOT_YES)
31487 return true;
31488 else
31489 break;
31490 case TYPE_LOAD:
31491 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
31492 || get_attr_update (insn) == UPDATE_YES)
31493 return true;
31494 else
31495 break;
31496 case TYPE_STORE:
31497 if (get_attr_update (insn) == UPDATE_YES
31498 && get_attr_indexed (insn) == INDEXED_YES)
31499 return true;
31500 else
31501 break;
31502 default:
31503 break;
31505 break;
31506 default:
31507 break;
31510 return false;
31513 static bool
31514 insn_must_be_last_in_group (rtx_insn *insn)
31516 enum attr_type type;
31518 if (!insn
31519 || NOTE_P (insn)
31520 || DEBUG_INSN_P (insn)
31521 || GET_CODE (PATTERN (insn)) == USE
31522 || GET_CODE (PATTERN (insn)) == CLOBBER)
31523 return false;
31525 switch (rs6000_tune) {
31526 case PROCESSOR_POWER4:
31527 case PROCESSOR_POWER5:
31528 if (is_microcoded_insn (insn))
31529 return true;
31531 if (is_branch_slot_insn (insn))
31532 return true;
31534 break;
31535 case PROCESSOR_POWER6:
31536 type = get_attr_type (insn);
31538 switch (type)
31540 case TYPE_EXTS:
31541 case TYPE_CNTLZ:
31542 case TYPE_TRAP:
31543 case TYPE_MUL:
31544 case TYPE_FPCOMPARE:
31545 case TYPE_MFCR:
31546 case TYPE_MTCR:
31547 case TYPE_MFJMPR:
31548 case TYPE_MTJMPR:
31549 case TYPE_ISYNC:
31550 case TYPE_SYNC:
31551 case TYPE_LOAD_L:
31552 case TYPE_STORE_C:
31553 return true;
31554 case TYPE_SHIFT:
31555 if (get_attr_dot (insn) == DOT_NO
31556 || get_attr_var_shift (insn) == VAR_SHIFT_NO)
31557 return true;
31558 else
31559 break;
31560 case TYPE_DIV:
31561 if (get_attr_size (insn) == SIZE_32)
31562 return true;
31563 else
31564 break;
31565 default:
31566 break;
31568 break;
31569 case PROCESSOR_POWER7:
31570 type = get_attr_type (insn);
31572 switch (type)
31574 case TYPE_ISYNC:
31575 case TYPE_SYNC:
31576 case TYPE_LOAD_L:
31577 case TYPE_STORE_C:
31578 return true;
31579 case TYPE_LOAD:
31580 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
31581 && get_attr_update (insn) == UPDATE_YES)
31582 return true;
31583 else
31584 break;
31585 case TYPE_STORE:
31586 if (get_attr_update (insn) == UPDATE_YES
31587 && get_attr_indexed (insn) == INDEXED_YES)
31588 return true;
31589 else
31590 break;
31591 default:
31592 break;
31594 break;
31595 case PROCESSOR_POWER8:
31596 type = get_attr_type (insn);
31598 switch (type)
31600 case TYPE_MFCR:
31601 case TYPE_MTCR:
31602 case TYPE_ISYNC:
31603 case TYPE_SYNC:
31604 case TYPE_LOAD_L:
31605 case TYPE_STORE_C:
31606 return true;
31607 case TYPE_LOAD:
31608 if (get_attr_sign_extend (insn) == SIGN_EXTEND_YES
31609 && get_attr_update (insn) == UPDATE_YES)
31610 return true;
31611 else
31612 break;
31613 case TYPE_STORE:
31614 if (get_attr_update (insn) == UPDATE_YES
31615 && get_attr_indexed (insn) == INDEXED_YES)
31616 return true;
31617 else
31618 break;
31619 default:
31620 break;
31622 break;
31623 default:
31624 break;
31627 return false;
31630 /* Return true if it is recommended to keep NEXT_INSN "far" (in a separate
31631 dispatch group) from the insns in GROUP_INSNS. Return false otherwise. */
31633 static bool
31634 is_costly_group (rtx *group_insns, rtx next_insn)
31636 int i;
31637 int issue_rate = rs6000_issue_rate ();
31639 for (i = 0; i < issue_rate; i++)
31641 sd_iterator_def sd_it;
31642 dep_t dep;
31643 rtx insn = group_insns[i];
31645 if (!insn)
31646 continue;
31648 FOR_EACH_DEP (insn, SD_LIST_RES_FORW, sd_it, dep)
31650 rtx next = DEP_CON (dep);
31652 if (next == next_insn
31653 && rs6000_is_costly_dependence (dep, dep_cost (dep), 0))
31654 return true;
31658 return false;
31661 /* Utility of the function redefine_groups.
31662 Check if it is too costly to schedule NEXT_INSN together with GROUP_INSNS
31663 in the same dispatch group. If so, insert nops before NEXT_INSN, in order
31664 to keep it "far" (in a separate group) from GROUP_INSNS, following
31665 one of the following schemes, depending on the value of the flag
31666 -minsert_sched_nops = X:
31667 (1) X == sched_finish_regroup_exact: insert exactly as many nops as needed
31668 in order to force NEXT_INSN into a separate group.
31669 (2) X < sched_finish_regroup_exact: insert exactly X nops.
31670 GROUP_END, CAN_ISSUE_MORE and GROUP_COUNT record the state after nop
31671 insertion (has a group just ended, how many vacant issue slots remain in the
31672 last group, and how many dispatch groups were encountered so far). */
31674 static int
31675 force_new_group (int sched_verbose, FILE *dump, rtx *group_insns,
31676 rtx_insn *next_insn, bool *group_end, int can_issue_more,
31677 int *group_count)
31679 rtx nop;
31680 bool force;
31681 int issue_rate = rs6000_issue_rate ();
31682 bool end = *group_end;
31683 int i;
31685 if (next_insn == NULL_RTX || DEBUG_INSN_P (next_insn))
31686 return can_issue_more;
31688 if (rs6000_sched_insert_nops > sched_finish_regroup_exact)
31689 return can_issue_more;
31691 force = is_costly_group (group_insns, next_insn);
31692 if (!force)
31693 return can_issue_more;
31695 if (sched_verbose > 6)
31696 fprintf (dump,"force: group count = %d, can_issue_more = %d\n",
31697 *group_count ,can_issue_more);
31699 if (rs6000_sched_insert_nops == sched_finish_regroup_exact)
31701 if (*group_end)
31702 can_issue_more = 0;
31704 /* Since only a branch can be issued in the last issue_slot, it is
31705 sufficient to insert 'can_issue_more - 1' nops if next_insn is not
31706 a branch. If next_insn is a branch, we insert 'can_issue_more' nops;
31707 in this case the last nop will start a new group and the branch
31708 will be forced to the new group. */
31709 if (can_issue_more && !is_branch_slot_insn (next_insn))
31710 can_issue_more--;
31712 /* Do we have a special group ending nop? */
31713 if (rs6000_tune == PROCESSOR_POWER6 || rs6000_tune == PROCESSOR_POWER7
31714 || rs6000_tune == PROCESSOR_POWER8)
31716 nop = gen_group_ending_nop ();
31717 emit_insn_before (nop, next_insn);
31718 can_issue_more = 0;
31720 else
31721 while (can_issue_more > 0)
31723 nop = gen_nop ();
31724 emit_insn_before (nop, next_insn);
31725 can_issue_more--;
31728 *group_end = true;
31729 return 0;
31732 if (rs6000_sched_insert_nops < sched_finish_regroup_exact)
31734 int n_nops = rs6000_sched_insert_nops;
31736 /* Nops can't be issued from the branch slot, so the effective
31737 issue_rate for nops is 'issue_rate - 1'. */
31738 if (can_issue_more == 0)
31739 can_issue_more = issue_rate;
31740 can_issue_more--;
31741 if (can_issue_more == 0)
31743 can_issue_more = issue_rate - 1;
31744 (*group_count)++;
31745 end = true;
31746 for (i = 0; i < issue_rate; i++)
31748 group_insns[i] = 0;
31752 while (n_nops > 0)
31754 nop = gen_nop ();
31755 emit_insn_before (nop, next_insn);
31756 if (can_issue_more == issue_rate - 1) /* new group begins */
31757 end = false;
31758 can_issue_more--;
31759 if (can_issue_more == 0)
31761 can_issue_more = issue_rate - 1;
31762 (*group_count)++;
31763 end = true;
31764 for (i = 0; i < issue_rate; i++)
31766 group_insns[i] = 0;
31769 n_nops--;
31772 /* Scale back relative to 'issue_rate' (instead of 'issue_rate - 1'). */
31773 can_issue_more++;
31775 /* Is next_insn going to start a new group? */
31776 *group_end
31777 = (end
31778 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
31779 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
31780 || (can_issue_more < issue_rate &&
31781 insn_terminates_group_p (next_insn, previous_group)));
31782 if (*group_end && end)
31783 (*group_count)--;
31785 if (sched_verbose > 6)
31786 fprintf (dump, "done force: group count = %d, can_issue_more = %d\n",
31787 *group_count, can_issue_more);
31788 return can_issue_more;
31791 return can_issue_more;
31794 /* This function tries to synch the dispatch groups that the compiler "sees"
31795 with the dispatch groups that the processor dispatcher is expected to
31796 form in practice. It tries to achieve this synchronization by forcing the
31797 estimated processor grouping on the compiler (as opposed to the function
31798 'pad_goups' which tries to force the scheduler's grouping on the processor).
31800 The function scans the insn sequence between PREV_HEAD_INSN and TAIL and
31801 examines the (estimated) dispatch groups that will be formed by the processor
31802 dispatcher. It marks these group boundaries to reflect the estimated
31803 processor grouping, overriding the grouping that the scheduler had marked.
31804 Depending on the value of the flag '-minsert-sched-nops' this function can
31805 force certain insns into separate groups or force a certain distance between
31806 them by inserting nops, for example, if there exists a "costly dependence"
31807 between the insns.
31809 The function estimates the group boundaries that the processor will form as
31810 follows: It keeps track of how many vacant issue slots are available after
31811 each insn. A subsequent insn will start a new group if one of the following
31812 4 cases applies:
31813 - no more vacant issue slots remain in the current dispatch group.
31814 - only the last issue slot, which is the branch slot, is vacant, but the next
31815 insn is not a branch.
31816 - only the last 2 or less issue slots, including the branch slot, are vacant,
31817 which means that a cracked insn (which occupies two issue slots) can't be
31818 issued in this group.
31819 - less than 'issue_rate' slots are vacant, and the next insn always needs to
31820 start a new group. */
31822 static int
31823 redefine_groups (FILE *dump, int sched_verbose, rtx_insn *prev_head_insn,
31824 rtx_insn *tail)
31826 rtx_insn *insn, *next_insn;
31827 int issue_rate;
31828 int can_issue_more;
31829 int slot, i;
31830 bool group_end;
31831 int group_count = 0;
31832 rtx *group_insns;
31834 /* Initialize. */
31835 issue_rate = rs6000_issue_rate ();
31836 group_insns = XALLOCAVEC (rtx, issue_rate);
31837 for (i = 0; i < issue_rate; i++)
31839 group_insns[i] = 0;
31841 can_issue_more = issue_rate;
31842 slot = 0;
31843 insn = get_next_active_insn (prev_head_insn, tail);
31844 group_end = false;
31846 while (insn != NULL_RTX)
31848 slot = (issue_rate - can_issue_more);
31849 group_insns[slot] = insn;
31850 can_issue_more =
31851 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
31852 if (insn_terminates_group_p (insn, current_group))
31853 can_issue_more = 0;
31855 next_insn = get_next_active_insn (insn, tail);
31856 if (next_insn == NULL_RTX)
31857 return group_count + 1;
31859 /* Is next_insn going to start a new group? */
31860 group_end
31861 = (can_issue_more == 0
31862 || (can_issue_more == 1 && !is_branch_slot_insn (next_insn))
31863 || (can_issue_more <= 2 && is_cracked_insn (next_insn))
31864 || (can_issue_more < issue_rate &&
31865 insn_terminates_group_p (next_insn, previous_group)));
31867 can_issue_more = force_new_group (sched_verbose, dump, group_insns,
31868 next_insn, &group_end, can_issue_more,
31869 &group_count);
31871 if (group_end)
31873 group_count++;
31874 can_issue_more = 0;
31875 for (i = 0; i < issue_rate; i++)
31877 group_insns[i] = 0;
31881 if (GET_MODE (next_insn) == TImode && can_issue_more)
31882 PUT_MODE (next_insn, VOIDmode);
31883 else if (!can_issue_more && GET_MODE (next_insn) != TImode)
31884 PUT_MODE (next_insn, TImode);
31886 insn = next_insn;
31887 if (can_issue_more == 0)
31888 can_issue_more = issue_rate;
31889 } /* while */
31891 return group_count;
31894 /* Scan the insn sequence between PREV_HEAD_INSN and TAIL and examine the
31895 dispatch group boundaries that the scheduler had marked. Pad with nops
31896 any dispatch groups which have vacant issue slots, in order to force the
31897 scheduler's grouping on the processor dispatcher. The function
31898 returns the number of dispatch groups found. */
31900 static int
31901 pad_groups (FILE *dump, int sched_verbose, rtx_insn *prev_head_insn,
31902 rtx_insn *tail)
31904 rtx_insn *insn, *next_insn;
31905 rtx nop;
31906 int issue_rate;
31907 int can_issue_more;
31908 int group_end;
31909 int group_count = 0;
31911 /* Initialize issue_rate. */
31912 issue_rate = rs6000_issue_rate ();
31913 can_issue_more = issue_rate;
31915 insn = get_next_active_insn (prev_head_insn, tail);
31916 next_insn = get_next_active_insn (insn, tail);
31918 while (insn != NULL_RTX)
31920 can_issue_more =
31921 rs6000_variable_issue (dump, sched_verbose, insn, can_issue_more);
31923 group_end = (next_insn == NULL_RTX || GET_MODE (next_insn) == TImode);
31925 if (next_insn == NULL_RTX)
31926 break;
31928 if (group_end)
31930 /* If the scheduler had marked group termination at this location
31931 (between insn and next_insn), and neither insn nor next_insn will
31932 force group termination, pad the group with nops to force group
31933 termination. */
31934 if (can_issue_more
31935 && (rs6000_sched_insert_nops == sched_finish_pad_groups)
31936 && !insn_terminates_group_p (insn, current_group)
31937 && !insn_terminates_group_p (next_insn, previous_group))
31939 if (!is_branch_slot_insn (next_insn))
31940 can_issue_more--;
31942 while (can_issue_more)
31944 nop = gen_nop ();
31945 emit_insn_before (nop, next_insn);
31946 can_issue_more--;
31950 can_issue_more = issue_rate;
31951 group_count++;
31954 insn = next_insn;
31955 next_insn = get_next_active_insn (insn, tail);
31958 return group_count;
31961 /* We're beginning a new block. Initialize data structures as necessary. */
31963 static void
31964 rs6000_sched_init (FILE *dump ATTRIBUTE_UNUSED,
31965 int sched_verbose ATTRIBUTE_UNUSED,
31966 int max_ready ATTRIBUTE_UNUSED)
31968 last_scheduled_insn = NULL;
31969 load_store_pendulum = 0;
31970 divide_cnt = 0;
31971 vec_pairing = 0;
31974 /* The following function is called at the end of scheduling BB.
31975 After reload, it inserts nops at insn group bundling. */
31977 static void
31978 rs6000_sched_finish (FILE *dump, int sched_verbose)
31980 int n_groups;
31982 if (sched_verbose)
31983 fprintf (dump, "=== Finishing schedule.\n");
31985 if (reload_completed && rs6000_sched_groups)
31987 /* Do not run sched_finish hook when selective scheduling enabled. */
31988 if (sel_sched_p ())
31989 return;
31991 if (rs6000_sched_insert_nops == sched_finish_none)
31992 return;
31994 if (rs6000_sched_insert_nops == sched_finish_pad_groups)
31995 n_groups = pad_groups (dump, sched_verbose,
31996 current_sched_info->prev_head,
31997 current_sched_info->next_tail);
31998 else
31999 n_groups = redefine_groups (dump, sched_verbose,
32000 current_sched_info->prev_head,
32001 current_sched_info->next_tail);
32003 if (sched_verbose >= 6)
32005 fprintf (dump, "ngroups = %d\n", n_groups);
32006 print_rtl (dump, current_sched_info->prev_head);
32007 fprintf (dump, "Done finish_sched\n");
32012 struct rs6000_sched_context
32014 short cached_can_issue_more;
32015 rtx_insn *last_scheduled_insn;
32016 int load_store_pendulum;
32017 int divide_cnt;
32018 int vec_pairing;
32021 typedef struct rs6000_sched_context rs6000_sched_context_def;
32022 typedef rs6000_sched_context_def *rs6000_sched_context_t;
32024 /* Allocate store for new scheduling context. */
32025 static void *
32026 rs6000_alloc_sched_context (void)
32028 return xmalloc (sizeof (rs6000_sched_context_def));
32031 /* If CLEAN_P is true then initializes _SC with clean data,
32032 and from the global context otherwise. */
32033 static void
32034 rs6000_init_sched_context (void *_sc, bool clean_p)
32036 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
32038 if (clean_p)
32040 sc->cached_can_issue_more = 0;
32041 sc->last_scheduled_insn = NULL;
32042 sc->load_store_pendulum = 0;
32043 sc->divide_cnt = 0;
32044 sc->vec_pairing = 0;
32046 else
32048 sc->cached_can_issue_more = cached_can_issue_more;
32049 sc->last_scheduled_insn = last_scheduled_insn;
32050 sc->load_store_pendulum = load_store_pendulum;
32051 sc->divide_cnt = divide_cnt;
32052 sc->vec_pairing = vec_pairing;
32056 /* Sets the global scheduling context to the one pointed to by _SC. */
32057 static void
32058 rs6000_set_sched_context (void *_sc)
32060 rs6000_sched_context_t sc = (rs6000_sched_context_t) _sc;
32062 gcc_assert (sc != NULL);
32064 cached_can_issue_more = sc->cached_can_issue_more;
32065 last_scheduled_insn = sc->last_scheduled_insn;
32066 load_store_pendulum = sc->load_store_pendulum;
32067 divide_cnt = sc->divide_cnt;
32068 vec_pairing = sc->vec_pairing;
32071 /* Free _SC. */
32072 static void
32073 rs6000_free_sched_context (void *_sc)
32075 gcc_assert (_sc != NULL);
32077 free (_sc);
32080 static bool
32081 rs6000_sched_can_speculate_insn (rtx_insn *insn)
32083 switch (get_attr_type (insn))
32085 case TYPE_DIV:
32086 case TYPE_SDIV:
32087 case TYPE_DDIV:
32088 case TYPE_VECDIV:
32089 case TYPE_SSQRT:
32090 case TYPE_DSQRT:
32091 return false;
32093 default:
32094 return true;
32098 /* Length in units of the trampoline for entering a nested function. */
32101 rs6000_trampoline_size (void)
32103 int ret = 0;
32105 switch (DEFAULT_ABI)
32107 default:
32108 gcc_unreachable ();
32110 case ABI_AIX:
32111 ret = (TARGET_32BIT) ? 12 : 24;
32112 break;
32114 case ABI_ELFv2:
32115 gcc_assert (!TARGET_32BIT);
32116 ret = 32;
32117 break;
32119 case ABI_DARWIN:
32120 case ABI_V4:
32121 ret = (TARGET_32BIT) ? 40 : 48;
32122 break;
32125 return ret;
32128 /* Emit RTL insns to initialize the variable parts of a trampoline.
32129 FNADDR is an RTX for the address of the function's pure code.
32130 CXT is an RTX for the static chain value for the function. */
32132 static void
32133 rs6000_trampoline_init (rtx m_tramp, tree fndecl, rtx cxt)
32135 int regsize = (TARGET_32BIT) ? 4 : 8;
32136 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
32137 rtx ctx_reg = force_reg (Pmode, cxt);
32138 rtx addr = force_reg (Pmode, XEXP (m_tramp, 0));
32140 switch (DEFAULT_ABI)
32142 default:
32143 gcc_unreachable ();
32145 /* Under AIX, just build the 3 word function descriptor */
32146 case ABI_AIX:
32148 rtx fnmem, fn_reg, toc_reg;
32150 if (!TARGET_POINTERS_TO_NESTED_FUNCTIONS)
32151 error ("you cannot take the address of a nested function if you use "
32152 "the %qs option", "-mno-pointers-to-nested-functions");
32154 fnmem = gen_const_mem (Pmode, force_reg (Pmode, fnaddr));
32155 fn_reg = gen_reg_rtx (Pmode);
32156 toc_reg = gen_reg_rtx (Pmode);
32158 /* Macro to shorten the code expansions below. */
32159 # define MEM_PLUS(MEM, OFFSET) adjust_address (MEM, Pmode, OFFSET)
32161 m_tramp = replace_equiv_address (m_tramp, addr);
32163 emit_move_insn (fn_reg, MEM_PLUS (fnmem, 0));
32164 emit_move_insn (toc_reg, MEM_PLUS (fnmem, regsize));
32165 emit_move_insn (MEM_PLUS (m_tramp, 0), fn_reg);
32166 emit_move_insn (MEM_PLUS (m_tramp, regsize), toc_reg);
32167 emit_move_insn (MEM_PLUS (m_tramp, 2*regsize), ctx_reg);
32169 # undef MEM_PLUS
32171 break;
32173 /* Under V.4/eabi/darwin, __trampoline_setup does the real work. */
32174 case ABI_ELFv2:
32175 case ABI_DARWIN:
32176 case ABI_V4:
32177 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__trampoline_setup"),
32178 LCT_NORMAL, VOIDmode,
32179 addr, Pmode,
32180 GEN_INT (rs6000_trampoline_size ()), SImode,
32181 fnaddr, Pmode,
32182 ctx_reg, Pmode);
32183 break;
32188 /* Returns TRUE iff the target attribute indicated by ATTR_ID takes a plain
32189 identifier as an argument, so the front end shouldn't look it up. */
32191 static bool
32192 rs6000_attribute_takes_identifier_p (const_tree attr_id)
32194 return is_attribute_p ("altivec", attr_id);
32197 /* Handle the "altivec" attribute. The attribute may have
32198 arguments as follows:
32200 __attribute__((altivec(vector__)))
32201 __attribute__((altivec(pixel__))) (always followed by 'unsigned short')
32202 __attribute__((altivec(bool__))) (always followed by 'unsigned')
32204 and may appear more than once (e.g., 'vector bool char') in a
32205 given declaration. */
32207 static tree
32208 rs6000_handle_altivec_attribute (tree *node,
32209 tree name ATTRIBUTE_UNUSED,
32210 tree args,
32211 int flags ATTRIBUTE_UNUSED,
32212 bool *no_add_attrs)
32214 tree type = *node, result = NULL_TREE;
32215 machine_mode mode;
32216 int unsigned_p;
32217 char altivec_type
32218 = ((args && TREE_CODE (args) == TREE_LIST && TREE_VALUE (args)
32219 && TREE_CODE (TREE_VALUE (args)) == IDENTIFIER_NODE)
32220 ? *IDENTIFIER_POINTER (TREE_VALUE (args))
32221 : '?');
32223 while (POINTER_TYPE_P (type)
32224 || TREE_CODE (type) == FUNCTION_TYPE
32225 || TREE_CODE (type) == METHOD_TYPE
32226 || TREE_CODE (type) == ARRAY_TYPE)
32227 type = TREE_TYPE (type);
32229 mode = TYPE_MODE (type);
32231 /* Check for invalid AltiVec type qualifiers. */
32232 if (type == long_double_type_node)
32233 error ("use of %<long double%> in AltiVec types is invalid");
32234 else if (type == boolean_type_node)
32235 error ("use of boolean types in AltiVec types is invalid");
32236 else if (TREE_CODE (type) == COMPLEX_TYPE)
32237 error ("use of %<complex%> in AltiVec types is invalid");
32238 else if (DECIMAL_FLOAT_MODE_P (mode))
32239 error ("use of decimal floating point types in AltiVec types is invalid");
32240 else if (!TARGET_VSX)
32242 if (type == long_unsigned_type_node || type == long_integer_type_node)
32244 if (TARGET_64BIT)
32245 error ("use of %<long%> in AltiVec types is invalid for "
32246 "64-bit code without %qs", "-mvsx");
32247 else if (rs6000_warn_altivec_long)
32248 warning (0, "use of %<long%> in AltiVec types is deprecated; "
32249 "use %<int%>");
32251 else if (type == long_long_unsigned_type_node
32252 || type == long_long_integer_type_node)
32253 error ("use of %<long long%> in AltiVec types is invalid without %qs",
32254 "-mvsx");
32255 else if (type == double_type_node)
32256 error ("use of %<double%> in AltiVec types is invalid without %qs",
32257 "-mvsx");
32260 switch (altivec_type)
32262 case 'v':
32263 unsigned_p = TYPE_UNSIGNED (type);
32264 switch (mode)
32266 case E_TImode:
32267 result = (unsigned_p ? unsigned_V1TI_type_node : V1TI_type_node);
32268 break;
32269 case E_DImode:
32270 result = (unsigned_p ? unsigned_V2DI_type_node : V2DI_type_node);
32271 break;
32272 case E_SImode:
32273 result = (unsigned_p ? unsigned_V4SI_type_node : V4SI_type_node);
32274 break;
32275 case E_HImode:
32276 result = (unsigned_p ? unsigned_V8HI_type_node : V8HI_type_node);
32277 break;
32278 case E_QImode:
32279 result = (unsigned_p ? unsigned_V16QI_type_node : V16QI_type_node);
32280 break;
32281 case E_SFmode: result = V4SF_type_node; break;
32282 case E_DFmode: result = V2DF_type_node; break;
32283 /* If the user says 'vector int bool', we may be handed the 'bool'
32284 attribute _before_ the 'vector' attribute, and so select the
32285 proper type in the 'b' case below. */
32286 case E_V4SImode: case E_V8HImode: case E_V16QImode: case E_V4SFmode:
32287 case E_V2DImode: case E_V2DFmode:
32288 result = type;
32289 default: break;
32291 break;
32292 case 'b':
32293 switch (mode)
32295 case E_DImode: case E_V2DImode: result = bool_V2DI_type_node; break;
32296 case E_SImode: case E_V4SImode: result = bool_V4SI_type_node; break;
32297 case E_HImode: case E_V8HImode: result = bool_V8HI_type_node; break;
32298 case E_QImode: case E_V16QImode: result = bool_V16QI_type_node;
32299 default: break;
32301 break;
32302 case 'p':
32303 switch (mode)
32305 case E_V8HImode: result = pixel_V8HI_type_node;
32306 default: break;
32308 default: break;
32311 /* Propagate qualifiers attached to the element type
32312 onto the vector type. */
32313 if (result && result != type && TYPE_QUALS (type))
32314 result = build_qualified_type (result, TYPE_QUALS (type));
32316 *no_add_attrs = true; /* No need to hang on to the attribute. */
32318 if (result)
32319 *node = lang_hooks.types.reconstruct_complex_type (*node, result);
32321 return NULL_TREE;
32324 /* AltiVec defines five built-in scalar types that serve as vector
32325 elements; we must teach the compiler how to mangle them. The 128-bit
32326 floating point mangling is target-specific as well. */
32328 static const char *
32329 rs6000_mangle_type (const_tree type)
32331 type = TYPE_MAIN_VARIANT (type);
32333 if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE
32334 && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE)
32335 return NULL;
32337 if (type == bool_char_type_node) return "U6__boolc";
32338 if (type == bool_short_type_node) return "U6__bools";
32339 if (type == pixel_type_node) return "u7__pixel";
32340 if (type == bool_int_type_node) return "U6__booli";
32341 if (type == bool_long_long_type_node) return "U6__boolx";
32343 if (SCALAR_FLOAT_TYPE_P (type) && FLOAT128_IBM_P (TYPE_MODE (type)))
32344 return "g";
32345 if (SCALAR_FLOAT_TYPE_P (type) && FLOAT128_IEEE_P (TYPE_MODE (type)))
32346 return ieee128_mangling_gcc_8_1 ? "U10__float128" : "u9__ieee128";
32348 /* For all other types, use the default mangling. */
32349 return NULL;
32352 /* Handle a "longcall" or "shortcall" attribute; arguments as in
32353 struct attribute_spec.handler. */
32355 static tree
32356 rs6000_handle_longcall_attribute (tree *node, tree name,
32357 tree args ATTRIBUTE_UNUSED,
32358 int flags ATTRIBUTE_UNUSED,
32359 bool *no_add_attrs)
32361 if (TREE_CODE (*node) != FUNCTION_TYPE
32362 && TREE_CODE (*node) != FIELD_DECL
32363 && TREE_CODE (*node) != TYPE_DECL)
32365 warning (OPT_Wattributes, "%qE attribute only applies to functions",
32366 name);
32367 *no_add_attrs = true;
32370 return NULL_TREE;
32373 /* Set longcall attributes on all functions declared when
32374 rs6000_default_long_calls is true. */
32375 static void
32376 rs6000_set_default_type_attributes (tree type)
32378 if (rs6000_default_long_calls
32379 && (TREE_CODE (type) == FUNCTION_TYPE
32380 || TREE_CODE (type) == METHOD_TYPE))
32381 TYPE_ATTRIBUTES (type) = tree_cons (get_identifier ("longcall"),
32382 NULL_TREE,
32383 TYPE_ATTRIBUTES (type));
32385 #if TARGET_MACHO
32386 darwin_set_default_type_attributes (type);
32387 #endif
32390 /* Return a reference suitable for calling a function with the
32391 longcall attribute. */
32394 rs6000_longcall_ref (rtx call_ref)
32396 const char *call_name;
32397 tree node;
32399 if (GET_CODE (call_ref) != SYMBOL_REF)
32400 return call_ref;
32402 /* System V adds '.' to the internal name, so skip them. */
32403 call_name = XSTR (call_ref, 0);
32404 if (*call_name == '.')
32406 while (*call_name == '.')
32407 call_name++;
32409 node = get_identifier (call_name);
32410 call_ref = gen_rtx_SYMBOL_REF (VOIDmode, IDENTIFIER_POINTER (node));
32413 return force_reg (Pmode, call_ref);
32416 #ifndef TARGET_USE_MS_BITFIELD_LAYOUT
32417 #define TARGET_USE_MS_BITFIELD_LAYOUT 0
32418 #endif
32420 /* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in
32421 struct attribute_spec.handler. */
32422 static tree
32423 rs6000_handle_struct_attribute (tree *node, tree name,
32424 tree args ATTRIBUTE_UNUSED,
32425 int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
32427 tree *type = NULL;
32428 if (DECL_P (*node))
32430 if (TREE_CODE (*node) == TYPE_DECL)
32431 type = &TREE_TYPE (*node);
32433 else
32434 type = node;
32436 if (!(type && (TREE_CODE (*type) == RECORD_TYPE
32437 || TREE_CODE (*type) == UNION_TYPE)))
32439 warning (OPT_Wattributes, "%qE attribute ignored", name);
32440 *no_add_attrs = true;
32443 else if ((is_attribute_p ("ms_struct", name)
32444 && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type)))
32445 || ((is_attribute_p ("gcc_struct", name)
32446 && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type)))))
32448 warning (OPT_Wattributes, "%qE incompatible attribute ignored",
32449 name);
32450 *no_add_attrs = true;
32453 return NULL_TREE;
32456 static bool
32457 rs6000_ms_bitfield_layout_p (const_tree record_type)
32459 return (TARGET_USE_MS_BITFIELD_LAYOUT &&
32460 !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type)))
32461 || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type));
32464 #ifdef USING_ELFOS_H
32466 /* A get_unnamed_section callback, used for switching to toc_section. */
32468 static void
32469 rs6000_elf_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
32471 if ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
32472 && TARGET_MINIMAL_TOC)
32474 if (!toc_initialized)
32476 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
32477 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
32478 (*targetm.asm_out.internal_label) (asm_out_file, "LCTOC", 0);
32479 fprintf (asm_out_file, "\t.tc ");
32480 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1[TC],");
32481 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
32482 fprintf (asm_out_file, "\n");
32484 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
32485 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
32486 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
32487 fprintf (asm_out_file, " = .+32768\n");
32488 toc_initialized = 1;
32490 else
32491 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
32493 else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
32495 fprintf (asm_out_file, "%s\n", TOC_SECTION_ASM_OP);
32496 if (!toc_initialized)
32498 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
32499 toc_initialized = 1;
32502 else
32504 fprintf (asm_out_file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
32505 if (!toc_initialized)
32507 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
32508 ASM_OUTPUT_INTERNAL_LABEL_PREFIX (asm_out_file, "LCTOC1");
32509 fprintf (asm_out_file, " = .+32768\n");
32510 toc_initialized = 1;
32515 /* Implement TARGET_ASM_INIT_SECTIONS. */
32517 static void
32518 rs6000_elf_asm_init_sections (void)
32520 toc_section
32521 = get_unnamed_section (0, rs6000_elf_output_toc_section_asm_op, NULL);
32523 sdata2_section
32524 = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
32525 SDATA2_SECTION_ASM_OP);
32528 /* Implement TARGET_SELECT_RTX_SECTION. */
32530 static section *
32531 rs6000_elf_select_rtx_section (machine_mode mode, rtx x,
32532 unsigned HOST_WIDE_INT align)
32534 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
32535 return toc_section;
32536 else
32537 return default_elf_select_rtx_section (mode, x, align);
32540 /* For a SYMBOL_REF, set generic flags and then perform some
32541 target-specific processing.
32543 When the AIX ABI is requested on a non-AIX system, replace the
32544 function name with the real name (with a leading .) rather than the
32545 function descriptor name. This saves a lot of overriding code to
32546 read the prefixes. */
32548 static void rs6000_elf_encode_section_info (tree, rtx, int) ATTRIBUTE_UNUSED;
32549 static void
32550 rs6000_elf_encode_section_info (tree decl, rtx rtl, int first)
32552 default_encode_section_info (decl, rtl, first);
32554 if (first
32555 && TREE_CODE (decl) == FUNCTION_DECL
32556 && !TARGET_AIX
32557 && DEFAULT_ABI == ABI_AIX)
32559 rtx sym_ref = XEXP (rtl, 0);
32560 size_t len = strlen (XSTR (sym_ref, 0));
32561 char *str = XALLOCAVEC (char, len + 2);
32562 str[0] = '.';
32563 memcpy (str + 1, XSTR (sym_ref, 0), len + 1);
32564 XSTR (sym_ref, 0) = ggc_alloc_string (str, len + 1);
32568 static inline bool
32569 compare_section_name (const char *section, const char *templ)
32571 int len;
32573 len = strlen (templ);
32574 return (strncmp (section, templ, len) == 0
32575 && (section[len] == 0 || section[len] == '.'));
32578 bool
32579 rs6000_elf_in_small_data_p (const_tree decl)
32581 if (rs6000_sdata == SDATA_NONE)
32582 return false;
32584 /* We want to merge strings, so we never consider them small data. */
32585 if (TREE_CODE (decl) == STRING_CST)
32586 return false;
32588 /* Functions are never in the small data area. */
32589 if (TREE_CODE (decl) == FUNCTION_DECL)
32590 return false;
32592 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl))
32594 const char *section = DECL_SECTION_NAME (decl);
32595 if (compare_section_name (section, ".sdata")
32596 || compare_section_name (section, ".sdata2")
32597 || compare_section_name (section, ".gnu.linkonce.s")
32598 || compare_section_name (section, ".sbss")
32599 || compare_section_name (section, ".sbss2")
32600 || compare_section_name (section, ".gnu.linkonce.sb")
32601 || strcmp (section, ".PPC.EMB.sdata0") == 0
32602 || strcmp (section, ".PPC.EMB.sbss0") == 0)
32603 return true;
32605 else
32607 /* If we are told not to put readonly data in sdata, then don't. */
32608 if (TREE_READONLY (decl) && rs6000_sdata != SDATA_EABI
32609 && !rs6000_readonly_in_sdata)
32610 return false;
32612 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
32614 if (size > 0
32615 && size <= g_switch_value
32616 /* If it's not public, and we're not going to reference it there,
32617 there's no need to put it in the small data section. */
32618 && (rs6000_sdata != SDATA_DATA || TREE_PUBLIC (decl)))
32619 return true;
32622 return false;
32625 #endif /* USING_ELFOS_H */
32627 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. */
32629 static bool
32630 rs6000_use_blocks_for_constant_p (machine_mode mode, const_rtx x)
32632 return !ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode);
32635 /* Do not place thread-local symbols refs in the object blocks. */
32637 static bool
32638 rs6000_use_blocks_for_decl_p (const_tree decl)
32640 return !DECL_THREAD_LOCAL_P (decl);
32643 /* Return a REG that occurs in ADDR with coefficient 1.
32644 ADDR can be effectively incremented by incrementing REG.
32646 r0 is special and we must not select it as an address
32647 register by this routine since our caller will try to
32648 increment the returned register via an "la" instruction. */
32651 find_addr_reg (rtx addr)
32653 while (GET_CODE (addr) == PLUS)
32655 if (GET_CODE (XEXP (addr, 0)) == REG
32656 && REGNO (XEXP (addr, 0)) != 0)
32657 addr = XEXP (addr, 0);
32658 else if (GET_CODE (XEXP (addr, 1)) == REG
32659 && REGNO (XEXP (addr, 1)) != 0)
32660 addr = XEXP (addr, 1);
32661 else if (CONSTANT_P (XEXP (addr, 0)))
32662 addr = XEXP (addr, 1);
32663 else if (CONSTANT_P (XEXP (addr, 1)))
32664 addr = XEXP (addr, 0);
32665 else
32666 gcc_unreachable ();
32668 gcc_assert (GET_CODE (addr) == REG && REGNO (addr) != 0);
32669 return addr;
32672 void
32673 rs6000_fatal_bad_address (rtx op)
32675 fatal_insn ("bad address", op);
32678 #if TARGET_MACHO
32680 typedef struct branch_island_d {
32681 tree function_name;
32682 tree label_name;
32683 int line_number;
32684 } branch_island;
32687 static vec<branch_island, va_gc> *branch_islands;
32689 /* Remember to generate a branch island for far calls to the given
32690 function. */
32692 static void
32693 add_compiler_branch_island (tree label_name, tree function_name,
32694 int line_number)
32696 branch_island bi = {function_name, label_name, line_number};
32697 vec_safe_push (branch_islands, bi);
32700 /* Generate far-jump branch islands for everything recorded in
32701 branch_islands. Invoked immediately after the last instruction of
32702 the epilogue has been emitted; the branch islands must be appended
32703 to, and contiguous with, the function body. Mach-O stubs are
32704 generated in machopic_output_stub(). */
32706 static void
32707 macho_branch_islands (void)
32709 char tmp_buf[512];
32711 while (!vec_safe_is_empty (branch_islands))
32713 branch_island *bi = &branch_islands->last ();
32714 const char *label = IDENTIFIER_POINTER (bi->label_name);
32715 const char *name = IDENTIFIER_POINTER (bi->function_name);
32716 char name_buf[512];
32717 /* Cheap copy of the details from the Darwin ASM_OUTPUT_LABELREF(). */
32718 if (name[0] == '*' || name[0] == '&')
32719 strcpy (name_buf, name+1);
32720 else
32722 name_buf[0] = '_';
32723 strcpy (name_buf+1, name);
32725 strcpy (tmp_buf, "\n");
32726 strcat (tmp_buf, label);
32727 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
32728 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
32729 dbxout_stabd (N_SLINE, bi->line_number);
32730 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
32731 if (flag_pic)
32733 if (TARGET_LINK_STACK)
32735 char name[32];
32736 get_ppc476_thunk_name (name);
32737 strcat (tmp_buf, ":\n\tmflr r0\n\tbl ");
32738 strcat (tmp_buf, name);
32739 strcat (tmp_buf, "\n");
32740 strcat (tmp_buf, label);
32741 strcat (tmp_buf, "_pic:\n\tmflr r11\n");
32743 else
32745 strcat (tmp_buf, ":\n\tmflr r0\n\tbcl 20,31,");
32746 strcat (tmp_buf, label);
32747 strcat (tmp_buf, "_pic\n");
32748 strcat (tmp_buf, label);
32749 strcat (tmp_buf, "_pic:\n\tmflr r11\n");
32752 strcat (tmp_buf, "\taddis r11,r11,ha16(");
32753 strcat (tmp_buf, name_buf);
32754 strcat (tmp_buf, " - ");
32755 strcat (tmp_buf, label);
32756 strcat (tmp_buf, "_pic)\n");
32758 strcat (tmp_buf, "\tmtlr r0\n");
32760 strcat (tmp_buf, "\taddi r12,r11,lo16(");
32761 strcat (tmp_buf, name_buf);
32762 strcat (tmp_buf, " - ");
32763 strcat (tmp_buf, label);
32764 strcat (tmp_buf, "_pic)\n");
32766 strcat (tmp_buf, "\tmtctr r12\n\tbctr\n");
32768 else
32770 strcat (tmp_buf, ":\nlis r12,hi16(");
32771 strcat (tmp_buf, name_buf);
32772 strcat (tmp_buf, ")\n\tori r12,r12,lo16(");
32773 strcat (tmp_buf, name_buf);
32774 strcat (tmp_buf, ")\n\tmtctr r12\n\tbctr");
32776 output_asm_insn (tmp_buf, 0);
32777 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
32778 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
32779 dbxout_stabd (N_SLINE, bi->line_number);
32780 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
32781 branch_islands->pop ();
32785 /* NO_PREVIOUS_DEF checks in the link list whether the function name is
32786 already there or not. */
32788 static int
32789 no_previous_def (tree function_name)
32791 branch_island *bi;
32792 unsigned ix;
32794 FOR_EACH_VEC_SAFE_ELT (branch_islands, ix, bi)
32795 if (function_name == bi->function_name)
32796 return 0;
32797 return 1;
32800 /* GET_PREV_LABEL gets the label name from the previous definition of
32801 the function. */
32803 static tree
32804 get_prev_label (tree function_name)
32806 branch_island *bi;
32807 unsigned ix;
32809 FOR_EACH_VEC_SAFE_ELT (branch_islands, ix, bi)
32810 if (function_name == bi->function_name)
32811 return bi->label_name;
32812 return NULL_TREE;
32815 /* INSN is either a function call or a millicode call. It may have an
32816 unconditional jump in its delay slot.
32818 CALL_DEST is the routine we are calling. */
32820 char *
32821 output_call (rtx_insn *insn, rtx *operands, int dest_operand_number,
32822 int cookie_operand_number)
32824 static char buf[256];
32825 if (darwin_emit_branch_islands
32826 && GET_CODE (operands[dest_operand_number]) == SYMBOL_REF
32827 && (INTVAL (operands[cookie_operand_number]) & CALL_LONG))
32829 tree labelname;
32830 tree funname = get_identifier (XSTR (operands[dest_operand_number], 0));
32832 if (no_previous_def (funname))
32834 rtx label_rtx = gen_label_rtx ();
32835 char *label_buf, temp_buf[256];
32836 ASM_GENERATE_INTERNAL_LABEL (temp_buf, "L",
32837 CODE_LABEL_NUMBER (label_rtx));
32838 label_buf = temp_buf[0] == '*' ? temp_buf + 1 : temp_buf;
32839 labelname = get_identifier (label_buf);
32840 add_compiler_branch_island (labelname, funname, insn_line (insn));
32842 else
32843 labelname = get_prev_label (funname);
32845 /* "jbsr foo, L42" is Mach-O for "Link as 'bl foo' if a 'bl'
32846 instruction will reach 'foo', otherwise link as 'bl L42'".
32847 "L42" should be a 'branch island', that will do a far jump to
32848 'foo'. Branch islands are generated in
32849 macho_branch_islands(). */
32850 sprintf (buf, "jbsr %%z%d,%.246s",
32851 dest_operand_number, IDENTIFIER_POINTER (labelname));
32853 else
32854 sprintf (buf, "bl %%z%d", dest_operand_number);
32855 return buf;
32858 /* Generate PIC and indirect symbol stubs. */
32860 void
32861 machopic_output_stub (FILE *file, const char *symb, const char *stub)
32863 unsigned int length;
32864 char *symbol_name, *lazy_ptr_name;
32865 char *local_label_0;
32866 static int label = 0;
32868 /* Lose our funky encoding stuff so it doesn't contaminate the stub. */
32869 symb = (*targetm.strip_name_encoding) (symb);
32872 length = strlen (symb);
32873 symbol_name = XALLOCAVEC (char, length + 32);
32874 GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length);
32876 lazy_ptr_name = XALLOCAVEC (char, length + 32);
32877 GEN_LAZY_PTR_NAME_FOR_SYMBOL (lazy_ptr_name, symb, length);
32879 if (flag_pic == 2)
32880 switch_to_section (darwin_sections[machopic_picsymbol_stub1_section]);
32881 else
32882 switch_to_section (darwin_sections[machopic_symbol_stub1_section]);
32884 if (flag_pic == 2)
32886 fprintf (file, "\t.align 5\n");
32888 fprintf (file, "%s:\n", stub);
32889 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
32891 label++;
32892 local_label_0 = XALLOCAVEC (char, sizeof ("\"L00000000000$spb\""));
32893 sprintf (local_label_0, "\"L%011d$spb\"", label);
32895 fprintf (file, "\tmflr r0\n");
32896 if (TARGET_LINK_STACK)
32898 char name[32];
32899 get_ppc476_thunk_name (name);
32900 fprintf (file, "\tbl %s\n", name);
32901 fprintf (file, "%s:\n\tmflr r11\n", local_label_0);
32903 else
32905 fprintf (file, "\tbcl 20,31,%s\n", local_label_0);
32906 fprintf (file, "%s:\n\tmflr r11\n", local_label_0);
32908 fprintf (file, "\taddis r11,r11,ha16(%s-%s)\n",
32909 lazy_ptr_name, local_label_0);
32910 fprintf (file, "\tmtlr r0\n");
32911 fprintf (file, "\t%s r12,lo16(%s-%s)(r11)\n",
32912 (TARGET_64BIT ? "ldu" : "lwzu"),
32913 lazy_ptr_name, local_label_0);
32914 fprintf (file, "\tmtctr r12\n");
32915 fprintf (file, "\tbctr\n");
32917 else
32919 fprintf (file, "\t.align 4\n");
32921 fprintf (file, "%s:\n", stub);
32922 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
32924 fprintf (file, "\tlis r11,ha16(%s)\n", lazy_ptr_name);
32925 fprintf (file, "\t%s r12,lo16(%s)(r11)\n",
32926 (TARGET_64BIT ? "ldu" : "lwzu"),
32927 lazy_ptr_name);
32928 fprintf (file, "\tmtctr r12\n");
32929 fprintf (file, "\tbctr\n");
32932 switch_to_section (darwin_sections[machopic_lazy_symbol_ptr_section]);
32933 fprintf (file, "%s:\n", lazy_ptr_name);
32934 fprintf (file, "\t.indirect_symbol %s\n", symbol_name);
32935 fprintf (file, "%sdyld_stub_binding_helper\n",
32936 (TARGET_64BIT ? DOUBLE_INT_ASM_OP : "\t.long\t"));
32939 /* Legitimize PIC addresses. If the address is already
32940 position-independent, we return ORIG. Newly generated
32941 position-independent addresses go into a reg. This is REG if non
32942 zero, otherwise we allocate register(s) as necessary. */
32944 #define SMALL_INT(X) ((UINTVAL (X) + 0x8000) < 0x10000)
32947 rs6000_machopic_legitimize_pic_address (rtx orig, machine_mode mode,
32948 rtx reg)
32950 rtx base, offset;
32952 if (reg == NULL && !reload_completed)
32953 reg = gen_reg_rtx (Pmode);
32955 if (GET_CODE (orig) == CONST)
32957 rtx reg_temp;
32959 if (GET_CODE (XEXP (orig, 0)) == PLUS
32960 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
32961 return orig;
32963 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
32965 /* Use a different reg for the intermediate value, as
32966 it will be marked UNCHANGING. */
32967 reg_temp = !can_create_pseudo_p () ? reg : gen_reg_rtx (Pmode);
32968 base = rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 0),
32969 Pmode, reg_temp);
32970 offset =
32971 rs6000_machopic_legitimize_pic_address (XEXP (XEXP (orig, 0), 1),
32972 Pmode, reg);
32974 if (GET_CODE (offset) == CONST_INT)
32976 if (SMALL_INT (offset))
32977 return plus_constant (Pmode, base, INTVAL (offset));
32978 else if (!reload_completed)
32979 offset = force_reg (Pmode, offset);
32980 else
32982 rtx mem = force_const_mem (Pmode, orig);
32983 return machopic_legitimize_pic_address (mem, Pmode, reg);
32986 return gen_rtx_PLUS (Pmode, base, offset);
32989 /* Fall back on generic machopic code. */
32990 return machopic_legitimize_pic_address (orig, mode, reg);
32993 /* Output a .machine directive for the Darwin assembler, and call
32994 the generic start_file routine. */
32996 static void
32997 rs6000_darwin_file_start (void)
32999 static const struct
33001 const char *arg;
33002 const char *name;
33003 HOST_WIDE_INT if_set;
33004 } mapping[] = {
33005 { "ppc64", "ppc64", MASK_64BIT },
33006 { "970", "ppc970", MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64 },
33007 { "power4", "ppc970", 0 },
33008 { "G5", "ppc970", 0 },
33009 { "7450", "ppc7450", 0 },
33010 { "7400", "ppc7400", MASK_ALTIVEC },
33011 { "G4", "ppc7400", 0 },
33012 { "750", "ppc750", 0 },
33013 { "740", "ppc750", 0 },
33014 { "G3", "ppc750", 0 },
33015 { "604e", "ppc604e", 0 },
33016 { "604", "ppc604", 0 },
33017 { "603e", "ppc603", 0 },
33018 { "603", "ppc603", 0 },
33019 { "601", "ppc601", 0 },
33020 { NULL, "ppc", 0 } };
33021 const char *cpu_id = "";
33022 size_t i;
33024 rs6000_file_start ();
33025 darwin_file_start ();
33027 /* Determine the argument to -mcpu=. Default to G3 if not specified. */
33029 if (rs6000_default_cpu != 0 && rs6000_default_cpu[0] != '\0')
33030 cpu_id = rs6000_default_cpu;
33032 if (global_options_set.x_rs6000_cpu_index)
33033 cpu_id = processor_target_table[rs6000_cpu_index].name;
33035 /* Look through the mapping array. Pick the first name that either
33036 matches the argument, has a bit set in IF_SET that is also set
33037 in the target flags, or has a NULL name. */
33039 i = 0;
33040 while (mapping[i].arg != NULL
33041 && strcmp (mapping[i].arg, cpu_id) != 0
33042 && (mapping[i].if_set & rs6000_isa_flags) == 0)
33043 i++;
33045 fprintf (asm_out_file, "\t.machine %s\n", mapping[i].name);
33048 #endif /* TARGET_MACHO */
33050 #if TARGET_ELF
33051 static int
33052 rs6000_elf_reloc_rw_mask (void)
33054 if (flag_pic)
33055 return 3;
33056 else if (DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2)
33057 return 2;
33058 else
33059 return 0;
33062 /* Record an element in the table of global constructors. SYMBOL is
33063 a SYMBOL_REF of the function to be called; PRIORITY is a number
33064 between 0 and MAX_INIT_PRIORITY.
33066 This differs from default_named_section_asm_out_constructor in
33067 that we have special handling for -mrelocatable. */
33069 static void rs6000_elf_asm_out_constructor (rtx, int) ATTRIBUTE_UNUSED;
33070 static void
33071 rs6000_elf_asm_out_constructor (rtx symbol, int priority)
33073 const char *section = ".ctors";
33074 char buf[18];
33076 if (priority != DEFAULT_INIT_PRIORITY)
33078 sprintf (buf, ".ctors.%.5u",
33079 /* Invert the numbering so the linker puts us in the proper
33080 order; constructors are run from right to left, and the
33081 linker sorts in increasing order. */
33082 MAX_INIT_PRIORITY - priority);
33083 section = buf;
33086 switch_to_section (get_section (section, SECTION_WRITE, NULL));
33087 assemble_align (POINTER_SIZE);
33089 if (DEFAULT_ABI == ABI_V4
33090 && (TARGET_RELOCATABLE || flag_pic > 1))
33092 fputs ("\t.long (", asm_out_file);
33093 output_addr_const (asm_out_file, symbol);
33094 fputs (")@fixup\n", asm_out_file);
33096 else
33097 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
33100 static void rs6000_elf_asm_out_destructor (rtx, int) ATTRIBUTE_UNUSED;
33101 static void
33102 rs6000_elf_asm_out_destructor (rtx symbol, int priority)
33104 const char *section = ".dtors";
33105 char buf[18];
33107 if (priority != DEFAULT_INIT_PRIORITY)
33109 sprintf (buf, ".dtors.%.5u",
33110 /* Invert the numbering so the linker puts us in the proper
33111 order; constructors are run from right to left, and the
33112 linker sorts in increasing order. */
33113 MAX_INIT_PRIORITY - priority);
33114 section = buf;
33117 switch_to_section (get_section (section, SECTION_WRITE, NULL));
33118 assemble_align (POINTER_SIZE);
33120 if (DEFAULT_ABI == ABI_V4
33121 && (TARGET_RELOCATABLE || flag_pic > 1))
33123 fputs ("\t.long (", asm_out_file);
33124 output_addr_const (asm_out_file, symbol);
33125 fputs (")@fixup\n", asm_out_file);
33127 else
33128 assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
33131 void
33132 rs6000_elf_declare_function_name (FILE *file, const char *name, tree decl)
33134 if (TARGET_64BIT && DEFAULT_ABI != ABI_ELFv2)
33136 fputs ("\t.section\t\".opd\",\"aw\"\n\t.align 3\n", file);
33137 ASM_OUTPUT_LABEL (file, name);
33138 fputs (DOUBLE_INT_ASM_OP, file);
33139 rs6000_output_function_entry (file, name);
33140 fputs (",.TOC.@tocbase,0\n\t.previous\n", file);
33141 if (DOT_SYMBOLS)
33143 fputs ("\t.size\t", file);
33144 assemble_name (file, name);
33145 fputs (",24\n\t.type\t.", file);
33146 assemble_name (file, name);
33147 fputs (",@function\n", file);
33148 if (TREE_PUBLIC (decl) && ! DECL_WEAK (decl))
33150 fputs ("\t.globl\t.", file);
33151 assemble_name (file, name);
33152 putc ('\n', file);
33155 else
33156 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
33157 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
33158 rs6000_output_function_entry (file, name);
33159 fputs (":\n", file);
33160 return;
33163 int uses_toc;
33164 if (DEFAULT_ABI == ABI_V4
33165 && (TARGET_RELOCATABLE || flag_pic > 1)
33166 && !TARGET_SECURE_PLT
33167 && (!constant_pool_empty_p () || crtl->profile)
33168 && (uses_toc = uses_TOC ()))
33170 char buf[256];
33172 if (uses_toc == 2)
33173 switch_to_other_text_partition ();
33174 (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);
33176 fprintf (file, "\t.long ");
33177 assemble_name (file, toc_label_name);
33178 need_toc_init = 1;
33179 putc ('-', file);
33180 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
33181 assemble_name (file, buf);
33182 putc ('\n', file);
33183 if (uses_toc == 2)
33184 switch_to_other_text_partition ();
33187 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
33188 ASM_DECLARE_RESULT (file, DECL_RESULT (decl));
33190 if (TARGET_CMODEL == CMODEL_LARGE && rs6000_global_entry_point_needed_p ())
33192 char buf[256];
33194 (*targetm.asm_out.internal_label) (file, "LCL", rs6000_pic_labelno);
33196 fprintf (file, "\t.quad .TOC.-");
33197 ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
33198 assemble_name (file, buf);
33199 putc ('\n', file);
33202 if (DEFAULT_ABI == ABI_AIX)
33204 const char *desc_name, *orig_name;
33206 orig_name = (*targetm.strip_name_encoding) (name);
33207 desc_name = orig_name;
33208 while (*desc_name == '.')
33209 desc_name++;
33211 if (TREE_PUBLIC (decl))
33212 fprintf (file, "\t.globl %s\n", desc_name);
33214 fprintf (file, "%s\n", MINIMAL_TOC_SECTION_ASM_OP);
33215 fprintf (file, "%s:\n", desc_name);
33216 fprintf (file, "\t.long %s\n", orig_name);
33217 fputs ("\t.long _GLOBAL_OFFSET_TABLE_\n", file);
33218 fputs ("\t.long 0\n", file);
33219 fprintf (file, "\t.previous\n");
33221 ASM_OUTPUT_LABEL (file, name);
33224 static void rs6000_elf_file_end (void) ATTRIBUTE_UNUSED;
33225 static void
33226 rs6000_elf_file_end (void)
33228 #ifdef HAVE_AS_GNU_ATTRIBUTE
33229 /* ??? The value emitted depends on options active at file end.
33230 Assume anyone using #pragma or attributes that might change
33231 options knows what they are doing. */
33232 if ((TARGET_64BIT || DEFAULT_ABI == ABI_V4)
33233 && rs6000_passes_float)
33235 int fp;
33237 if (TARGET_HARD_FLOAT)
33238 fp = 1;
33239 else
33240 fp = 2;
33241 if (rs6000_passes_long_double)
33243 if (!TARGET_LONG_DOUBLE_128)
33244 fp |= 2 * 4;
33245 else if (TARGET_IEEEQUAD)
33246 fp |= 3 * 4;
33247 else
33248 fp |= 1 * 4;
33250 fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n", fp);
33252 if (TARGET_32BIT && DEFAULT_ABI == ABI_V4)
33254 if (rs6000_passes_vector)
33255 fprintf (asm_out_file, "\t.gnu_attribute 8, %d\n",
33256 (TARGET_ALTIVEC_ABI ? 2 : 1));
33257 if (rs6000_returns_struct)
33258 fprintf (asm_out_file, "\t.gnu_attribute 12, %d\n",
33259 aix_struct_return ? 2 : 1);
33261 #endif
33262 #if defined (POWERPC_LINUX) || defined (POWERPC_FREEBSD)
33263 if (TARGET_32BIT || DEFAULT_ABI == ABI_ELFv2)
33264 file_end_indicate_exec_stack ();
33265 #endif
33267 if (flag_split_stack)
33268 file_end_indicate_split_stack ();
33270 if (cpu_builtin_p)
33272 /* We have expanded a CPU builtin, so we need to emit a reference to
33273 the special symbol that LIBC uses to declare it supports the
33274 AT_PLATFORM and AT_HWCAP/AT_HWCAP2 in the TCB feature. */
33275 switch_to_section (data_section);
33276 fprintf (asm_out_file, "\t.align %u\n", TARGET_32BIT ? 2 : 3);
33277 fprintf (asm_out_file, "\t%s %s\n",
33278 TARGET_32BIT ? ".long" : ".quad", tcb_verification_symbol);
33281 #endif
33283 #if TARGET_XCOFF
33285 #ifndef HAVE_XCOFF_DWARF_EXTRAS
33286 #define HAVE_XCOFF_DWARF_EXTRAS 0
33287 #endif
33289 static enum unwind_info_type
33290 rs6000_xcoff_debug_unwind_info (void)
33292 return UI_NONE;
33295 static void
33296 rs6000_xcoff_asm_output_anchor (rtx symbol)
33298 char buffer[100];
33300 sprintf (buffer, "$ + " HOST_WIDE_INT_PRINT_DEC,
33301 SYMBOL_REF_BLOCK_OFFSET (symbol));
33302 fprintf (asm_out_file, "%s", SET_ASM_OP);
33303 RS6000_OUTPUT_BASENAME (asm_out_file, XSTR (symbol, 0));
33304 fprintf (asm_out_file, ",");
33305 RS6000_OUTPUT_BASENAME (asm_out_file, buffer);
33306 fprintf (asm_out_file, "\n");
33309 static void
33310 rs6000_xcoff_asm_globalize_label (FILE *stream, const char *name)
33312 fputs (GLOBAL_ASM_OP, stream);
33313 RS6000_OUTPUT_BASENAME (stream, name);
33314 putc ('\n', stream);
33317 /* A get_unnamed_decl callback, used for read-only sections. PTR
33318 points to the section string variable. */
33320 static void
33321 rs6000_xcoff_output_readonly_section_asm_op (const void *directive)
33323 fprintf (asm_out_file, "\t.csect %s[RO],%s\n",
33324 *(const char *const *) directive,
33325 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
33328 /* Likewise for read-write sections. */
33330 static void
33331 rs6000_xcoff_output_readwrite_section_asm_op (const void *directive)
33333 fprintf (asm_out_file, "\t.csect %s[RW],%s\n",
33334 *(const char *const *) directive,
33335 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
33338 static void
33339 rs6000_xcoff_output_tls_section_asm_op (const void *directive)
33341 fprintf (asm_out_file, "\t.csect %s[TL],%s\n",
33342 *(const char *const *) directive,
33343 XCOFF_CSECT_DEFAULT_ALIGNMENT_STR);
33346 /* A get_unnamed_section callback, used for switching to toc_section. */
33348 static void
33349 rs6000_xcoff_output_toc_section_asm_op (const void *data ATTRIBUTE_UNUSED)
33351 if (TARGET_MINIMAL_TOC)
33353 /* toc_section is always selected at least once from
33354 rs6000_xcoff_file_start, so this is guaranteed to
33355 always be defined once and only once in each file. */
33356 if (!toc_initialized)
33358 fputs ("\t.toc\nLCTOC..1:\n", asm_out_file);
33359 fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file);
33360 toc_initialized = 1;
33362 fprintf (asm_out_file, "\t.csect toc_table[RW]%s\n",
33363 (TARGET_32BIT ? "" : ",3"));
33365 else
33366 fputs ("\t.toc\n", asm_out_file);
33369 /* Implement TARGET_ASM_INIT_SECTIONS. */
33371 static void
33372 rs6000_xcoff_asm_init_sections (void)
33374 read_only_data_section
33375 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
33376 &xcoff_read_only_section_name);
33378 private_data_section
33379 = get_unnamed_section (SECTION_WRITE,
33380 rs6000_xcoff_output_readwrite_section_asm_op,
33381 &xcoff_private_data_section_name);
33383 tls_data_section
33384 = get_unnamed_section (SECTION_TLS,
33385 rs6000_xcoff_output_tls_section_asm_op,
33386 &xcoff_tls_data_section_name);
33388 tls_private_data_section
33389 = get_unnamed_section (SECTION_TLS,
33390 rs6000_xcoff_output_tls_section_asm_op,
33391 &xcoff_private_data_section_name);
33393 read_only_private_data_section
33394 = get_unnamed_section (0, rs6000_xcoff_output_readonly_section_asm_op,
33395 &xcoff_private_data_section_name);
33397 toc_section
33398 = get_unnamed_section (0, rs6000_xcoff_output_toc_section_asm_op, NULL);
33400 readonly_data_section = read_only_data_section;
33403 static int
33404 rs6000_xcoff_reloc_rw_mask (void)
33406 return 3;
33409 static void
33410 rs6000_xcoff_asm_named_section (const char *name, unsigned int flags,
33411 tree decl ATTRIBUTE_UNUSED)
33413 int smclass;
33414 static const char * const suffix[5] = { "PR", "RO", "RW", "TL", "XO" };
33416 if (flags & SECTION_EXCLUDE)
33417 smclass = 4;
33418 else if (flags & SECTION_DEBUG)
33420 fprintf (asm_out_file, "\t.dwsect %s\n", name);
33421 return;
33423 else if (flags & SECTION_CODE)
33424 smclass = 0;
33425 else if (flags & SECTION_TLS)
33426 smclass = 3;
33427 else if (flags & SECTION_WRITE)
33428 smclass = 2;
33429 else
33430 smclass = 1;
33432 fprintf (asm_out_file, "\t.csect %s%s[%s],%u\n",
33433 (flags & SECTION_CODE) ? "." : "",
33434 name, suffix[smclass], flags & SECTION_ENTSIZE);
33437 #define IN_NAMED_SECTION(DECL) \
33438 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
33439 && DECL_SECTION_NAME (DECL) != NULL)
33441 static section *
33442 rs6000_xcoff_select_section (tree decl, int reloc,
33443 unsigned HOST_WIDE_INT align)
33445 /* Place variables with alignment stricter than BIGGEST_ALIGNMENT into
33446 named section. */
33447 if (align > BIGGEST_ALIGNMENT)
33449 resolve_unique_section (decl, reloc, true);
33450 if (IN_NAMED_SECTION (decl))
33451 return get_named_section (decl, NULL, reloc);
33454 if (decl_readonly_section (decl, reloc))
33456 if (TREE_PUBLIC (decl))
33457 return read_only_data_section;
33458 else
33459 return read_only_private_data_section;
33461 else
33463 #if HAVE_AS_TLS
33464 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl))
33466 if (TREE_PUBLIC (decl))
33467 return tls_data_section;
33468 else if (bss_initializer_p (decl))
33470 /* Convert to COMMON to emit in BSS. */
33471 DECL_COMMON (decl) = 1;
33472 return tls_comm_section;
33474 else
33475 return tls_private_data_section;
33477 else
33478 #endif
33479 if (TREE_PUBLIC (decl))
33480 return data_section;
33481 else
33482 return private_data_section;
33486 static void
33487 rs6000_xcoff_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
33489 const char *name;
33491 /* Use select_section for private data and uninitialized data with
33492 alignment <= BIGGEST_ALIGNMENT. */
33493 if (!TREE_PUBLIC (decl)
33494 || DECL_COMMON (decl)
33495 || (DECL_INITIAL (decl) == NULL_TREE
33496 && DECL_ALIGN (decl) <= BIGGEST_ALIGNMENT)
33497 || DECL_INITIAL (decl) == error_mark_node
33498 || (flag_zero_initialized_in_bss
33499 && initializer_zerop (DECL_INITIAL (decl))))
33500 return;
33502 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
33503 name = (*targetm.strip_name_encoding) (name);
33504 set_decl_section_name (decl, name);
33507 /* Select section for constant in constant pool.
33509 On RS/6000, all constants are in the private read-only data area.
33510 However, if this is being placed in the TOC it must be output as a
33511 toc entry. */
33513 static section *
33514 rs6000_xcoff_select_rtx_section (machine_mode mode, rtx x,
33515 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
33517 if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (x, mode))
33518 return toc_section;
33519 else
33520 return read_only_private_data_section;
33523 /* Remove any trailing [DS] or the like from the symbol name. */
33525 static const char *
33526 rs6000_xcoff_strip_name_encoding (const char *name)
33528 size_t len;
33529 if (*name == '*')
33530 name++;
33531 len = strlen (name);
33532 if (name[len - 1] == ']')
33533 return ggc_alloc_string (name, len - 4);
33534 else
33535 return name;
33538 /* Section attributes. AIX is always PIC. */
33540 static unsigned int
33541 rs6000_xcoff_section_type_flags (tree decl, const char *name, int reloc)
33543 unsigned int align;
33544 unsigned int flags = default_section_type_flags (decl, name, reloc);
33546 /* Align to at least UNIT size. */
33547 if ((flags & SECTION_CODE) != 0 || !decl || !DECL_P (decl))
33548 align = MIN_UNITS_PER_WORD;
33549 else
33550 /* Increase alignment of large objects if not already stricter. */
33551 align = MAX ((DECL_ALIGN (decl) / BITS_PER_UNIT),
33552 int_size_in_bytes (TREE_TYPE (decl)) > MIN_UNITS_PER_WORD
33553 ? UNITS_PER_FP_WORD : MIN_UNITS_PER_WORD);
33555 return flags | (exact_log2 (align) & SECTION_ENTSIZE);
33558 /* Output at beginning of assembler file.
33560 Initialize the section names for the RS/6000 at this point.
33562 Specify filename, including full path, to assembler.
33564 We want to go into the TOC section so at least one .toc will be emitted.
33565 Also, in order to output proper .bs/.es pairs, we need at least one static
33566 [RW] section emitted.
33568 Finally, declare mcount when profiling to make the assembler happy. */
33570 static void
33571 rs6000_xcoff_file_start (void)
33573 rs6000_gen_section_name (&xcoff_bss_section_name,
33574 main_input_filename, ".bss_");
33575 rs6000_gen_section_name (&xcoff_private_data_section_name,
33576 main_input_filename, ".rw_");
33577 rs6000_gen_section_name (&xcoff_read_only_section_name,
33578 main_input_filename, ".ro_");
33579 rs6000_gen_section_name (&xcoff_tls_data_section_name,
33580 main_input_filename, ".tls_");
33581 rs6000_gen_section_name (&xcoff_tbss_section_name,
33582 main_input_filename, ".tbss_[UL]");
33584 fputs ("\t.file\t", asm_out_file);
33585 output_quoted_string (asm_out_file, main_input_filename);
33586 fputc ('\n', asm_out_file);
33587 if (write_symbols != NO_DEBUG)
33588 switch_to_section (private_data_section);
33589 switch_to_section (toc_section);
33590 switch_to_section (text_section);
33591 if (profile_flag)
33592 fprintf (asm_out_file, "\t.extern %s\n", RS6000_MCOUNT);
33593 rs6000_file_start ();
33596 /* Output at end of assembler file.
33597 On the RS/6000, referencing data should automatically pull in text. */
33599 static void
33600 rs6000_xcoff_file_end (void)
33602 switch_to_section (text_section);
33603 fputs ("_section_.text:\n", asm_out_file);
33604 switch_to_section (data_section);
33605 fputs (TARGET_32BIT
33606 ? "\t.long _section_.text\n" : "\t.llong _section_.text\n",
33607 asm_out_file);
33610 struct declare_alias_data
33612 FILE *file;
33613 bool function_descriptor;
33616 /* Declare alias N. A helper function for for_node_and_aliases. */
33618 static bool
33619 rs6000_declare_alias (struct symtab_node *n, void *d)
33621 struct declare_alias_data *data = (struct declare_alias_data *)d;
33622 /* Main symbol is output specially, because varasm machinery does part of
33623 the job for us - we do not need to declare .globl/lglobs and such. */
33624 if (!n->alias || n->weakref)
33625 return false;
33627 if (lookup_attribute ("ifunc", DECL_ATTRIBUTES (n->decl)))
33628 return false;
33630 /* Prevent assemble_alias from trying to use .set pseudo operation
33631 that does not behave as expected by the middle-end. */
33632 TREE_ASM_WRITTEN (n->decl) = true;
33634 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (n->decl));
33635 char *buffer = (char *) alloca (strlen (name) + 2);
33636 char *p;
33637 int dollar_inside = 0;
33639 strcpy (buffer, name);
33640 p = strchr (buffer, '$');
33641 while (p) {
33642 *p = '_';
33643 dollar_inside++;
33644 p = strchr (p + 1, '$');
33646 if (TREE_PUBLIC (n->decl))
33648 if (!RS6000_WEAK || !DECL_WEAK (n->decl))
33650 if (dollar_inside) {
33651 if (data->function_descriptor)
33652 fprintf(data->file, "\t.rename .%s,\".%s\"\n", buffer, name);
33653 fprintf(data->file, "\t.rename %s,\"%s\"\n", buffer, name);
33655 if (data->function_descriptor)
33657 fputs ("\t.globl .", data->file);
33658 RS6000_OUTPUT_BASENAME (data->file, buffer);
33659 putc ('\n', data->file);
33661 fputs ("\t.globl ", data->file);
33662 RS6000_OUTPUT_BASENAME (data->file, buffer);
33663 putc ('\n', data->file);
33665 #ifdef ASM_WEAKEN_DECL
33666 else if (DECL_WEAK (n->decl) && !data->function_descriptor)
33667 ASM_WEAKEN_DECL (data->file, n->decl, name, NULL);
33668 #endif
33670 else
33672 if (dollar_inside)
33674 if (data->function_descriptor)
33675 fprintf(data->file, "\t.rename .%s,\".%s\"\n", buffer, name);
33676 fprintf(data->file, "\t.rename %s,\"%s\"\n", buffer, name);
33678 if (data->function_descriptor)
33680 fputs ("\t.lglobl .", data->file);
33681 RS6000_OUTPUT_BASENAME (data->file, buffer);
33682 putc ('\n', data->file);
33684 fputs ("\t.lglobl ", data->file);
33685 RS6000_OUTPUT_BASENAME (data->file, buffer);
33686 putc ('\n', data->file);
33688 if (data->function_descriptor)
33689 fputs (".", data->file);
33690 RS6000_OUTPUT_BASENAME (data->file, buffer);
33691 fputs (":\n", data->file);
33692 return false;
33696 #ifdef HAVE_GAS_HIDDEN
33697 /* Helper function to calculate visibility of a DECL
33698 and return the value as a const string. */
33700 static const char *
33701 rs6000_xcoff_visibility (tree decl)
33703 static const char * const visibility_types[] = {
33704 "", ",protected", ",hidden", ",internal"
33707 enum symbol_visibility vis = DECL_VISIBILITY (decl);
33708 return visibility_types[vis];
33710 #endif
33713 /* This macro produces the initial definition of a function name.
33714 On the RS/6000, we need to place an extra '.' in the function name and
33715 output the function descriptor.
33716 Dollar signs are converted to underscores.
33718 The csect for the function will have already been created when
33719 text_section was selected. We do have to go back to that csect, however.
33721 The third and fourth parameters to the .function pseudo-op (16 and 044)
33722 are placeholders which no longer have any use.
33724 Because AIX assembler's .set command has unexpected semantics, we output
33725 all aliases as alternative labels in front of the definition. */
33727 void
33728 rs6000_xcoff_declare_function_name (FILE *file, const char *name, tree decl)
33730 char *buffer = (char *) alloca (strlen (name) + 1);
33731 char *p;
33732 int dollar_inside = 0;
33733 struct declare_alias_data data = {file, false};
33735 strcpy (buffer, name);
33736 p = strchr (buffer, '$');
33737 while (p) {
33738 *p = '_';
33739 dollar_inside++;
33740 p = strchr (p + 1, '$');
33742 if (TREE_PUBLIC (decl))
33744 if (!RS6000_WEAK || !DECL_WEAK (decl))
33746 if (dollar_inside) {
33747 fprintf(file, "\t.rename .%s,\".%s\"\n", buffer, name);
33748 fprintf(file, "\t.rename %s,\"%s\"\n", buffer, name);
33750 fputs ("\t.globl .", file);
33751 RS6000_OUTPUT_BASENAME (file, buffer);
33752 #ifdef HAVE_GAS_HIDDEN
33753 fputs (rs6000_xcoff_visibility (decl), file);
33754 #endif
33755 putc ('\n', file);
33758 else
33760 if (dollar_inside) {
33761 fprintf(file, "\t.rename .%s,\".%s\"\n", buffer, name);
33762 fprintf(file, "\t.rename %s,\"%s\"\n", buffer, name);
33764 fputs ("\t.lglobl .", file);
33765 RS6000_OUTPUT_BASENAME (file, buffer);
33766 putc ('\n', file);
33768 fputs ("\t.csect ", file);
33769 RS6000_OUTPUT_BASENAME (file, buffer);
33770 fputs (TARGET_32BIT ? "[DS]\n" : "[DS],3\n", file);
33771 RS6000_OUTPUT_BASENAME (file, buffer);
33772 fputs (":\n", file);
33773 symtab_node::get (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
33774 &data, true);
33775 fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", file);
33776 RS6000_OUTPUT_BASENAME (file, buffer);
33777 fputs (", TOC[tc0], 0\n", file);
33778 in_section = NULL;
33779 switch_to_section (function_section (decl));
33780 putc ('.', file);
33781 RS6000_OUTPUT_BASENAME (file, buffer);
33782 fputs (":\n", file);
33783 data.function_descriptor = true;
33784 symtab_node::get (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
33785 &data, true);
33786 if (!DECL_IGNORED_P (decl))
33788 if (write_symbols == DBX_DEBUG || write_symbols == XCOFF_DEBUG)
33789 xcoffout_declare_function (file, decl, buffer);
33790 else if (write_symbols == DWARF2_DEBUG)
33792 name = (*targetm.strip_name_encoding) (name);
33793 fprintf (file, "\t.function .%s,.%s,2,0\n", name, name);
33796 return;
33800 /* Output assembly language to globalize a symbol from a DECL,
33801 possibly with visibility. */
33803 void
33804 rs6000_xcoff_asm_globalize_decl_name (FILE *stream, tree decl)
33806 const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
33807 fputs (GLOBAL_ASM_OP, stream);
33808 RS6000_OUTPUT_BASENAME (stream, name);
33809 #ifdef HAVE_GAS_HIDDEN
33810 fputs (rs6000_xcoff_visibility (decl), stream);
33811 #endif
33812 putc ('\n', stream);
33815 /* Output assembly language to define a symbol as COMMON from a DECL,
33816 possibly with visibility. */
33818 void
33819 rs6000_xcoff_asm_output_aligned_decl_common (FILE *stream,
33820 tree decl ATTRIBUTE_UNUSED,
33821 const char *name,
33822 unsigned HOST_WIDE_INT size,
33823 unsigned HOST_WIDE_INT align)
33825 unsigned HOST_WIDE_INT align2 = 2;
33827 if (align > 32)
33828 align2 = floor_log2 (align / BITS_PER_UNIT);
33829 else if (size > 4)
33830 align2 = 3;
33832 fputs (COMMON_ASM_OP, stream);
33833 RS6000_OUTPUT_BASENAME (stream, name);
33835 fprintf (stream,
33836 "," HOST_WIDE_INT_PRINT_UNSIGNED "," HOST_WIDE_INT_PRINT_UNSIGNED,
33837 size, align2);
33839 #ifdef HAVE_GAS_HIDDEN
33840 if (decl != NULL)
33841 fputs (rs6000_xcoff_visibility (decl), stream);
33842 #endif
33843 putc ('\n', stream);
33846 /* This macro produces the initial definition of a object (variable) name.
33847 Because AIX assembler's .set command has unexpected semantics, we output
33848 all aliases as alternative labels in front of the definition. */
33850 void
33851 rs6000_xcoff_declare_object_name (FILE *file, const char *name, tree decl)
33853 struct declare_alias_data data = {file, false};
33854 RS6000_OUTPUT_BASENAME (file, name);
33855 fputs (":\n", file);
33856 symtab_node::get_create (decl)->call_for_symbol_and_aliases (rs6000_declare_alias,
33857 &data, true);
33860 /* Overide the default 'SYMBOL-.' syntax with AIX compatible 'SYMBOL-$'. */
33862 void
33863 rs6000_asm_output_dwarf_pcrel (FILE *file, int size, const char *label)
33865 fputs (integer_asm_op (size, FALSE), file);
33866 assemble_name (file, label);
33867 fputs ("-$", file);
33870 /* Output a symbol offset relative to the dbase for the current object.
33871 We use __gcc_unwind_dbase as an arbitrary base for dbase and assume
33872 signed offsets.
33874 __gcc_unwind_dbase is embedded in all executables/libraries through
33875 libgcc/config/rs6000/crtdbase.S. */
33877 void
33878 rs6000_asm_output_dwarf_datarel (FILE *file, int size, const char *label)
33880 fputs (integer_asm_op (size, FALSE), file);
33881 assemble_name (file, label);
33882 fputs("-__gcc_unwind_dbase", file);
33885 #ifdef HAVE_AS_TLS
33886 static void
33887 rs6000_xcoff_encode_section_info (tree decl, rtx rtl, int first)
33889 rtx symbol;
33890 int flags;
33891 const char *symname;
33893 default_encode_section_info (decl, rtl, first);
33895 /* Careful not to prod global register variables. */
33896 if (!MEM_P (rtl))
33897 return;
33898 symbol = XEXP (rtl, 0);
33899 if (GET_CODE (symbol) != SYMBOL_REF)
33900 return;
33902 flags = SYMBOL_REF_FLAGS (symbol);
33904 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL_P (decl))
33905 flags &= ~SYMBOL_FLAG_HAS_BLOCK_INFO;
33907 SYMBOL_REF_FLAGS (symbol) = flags;
33909 /* Append mapping class to extern decls. */
33910 symname = XSTR (symbol, 0);
33911 if (decl /* sync condition with assemble_external () */
33912 && DECL_P (decl) && DECL_EXTERNAL (decl) && TREE_PUBLIC (decl)
33913 && ((TREE_CODE (decl) == VAR_DECL && !DECL_THREAD_LOCAL_P (decl))
33914 || TREE_CODE (decl) == FUNCTION_DECL)
33915 && symname[strlen (symname) - 1] != ']')
33917 char *newname = (char *) alloca (strlen (symname) + 5);
33918 strcpy (newname, symname);
33919 strcat (newname, (TREE_CODE (decl) == FUNCTION_DECL
33920 ? "[DS]" : "[UA]"));
33921 XSTR (symbol, 0) = ggc_strdup (newname);
33924 #endif /* HAVE_AS_TLS */
33925 #endif /* TARGET_XCOFF */
33927 void
33928 rs6000_asm_weaken_decl (FILE *stream, tree decl,
33929 const char *name, const char *val)
33931 fputs ("\t.weak\t", stream);
33932 RS6000_OUTPUT_BASENAME (stream, name);
33933 if (decl && TREE_CODE (decl) == FUNCTION_DECL
33934 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)
33936 if (TARGET_XCOFF)
33937 fputs ("[DS]", stream);
33938 #if TARGET_XCOFF && HAVE_GAS_HIDDEN
33939 if (TARGET_XCOFF)
33940 fputs (rs6000_xcoff_visibility (decl), stream);
33941 #endif
33942 fputs ("\n\t.weak\t.", stream);
33943 RS6000_OUTPUT_BASENAME (stream, name);
33945 #if TARGET_XCOFF && HAVE_GAS_HIDDEN
33946 if (TARGET_XCOFF)
33947 fputs (rs6000_xcoff_visibility (decl), stream);
33948 #endif
33949 fputc ('\n', stream);
33950 if (val)
33952 #ifdef ASM_OUTPUT_DEF
33953 ASM_OUTPUT_DEF (stream, name, val);
33954 #endif
33955 if (decl && TREE_CODE (decl) == FUNCTION_DECL
33956 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS)
33958 fputs ("\t.set\t.", stream);
33959 RS6000_OUTPUT_BASENAME (stream, name);
33960 fputs (",.", stream);
33961 RS6000_OUTPUT_BASENAME (stream, val);
33962 fputc ('\n', stream);
33968 /* Return true if INSN should not be copied. */
33970 static bool
33971 rs6000_cannot_copy_insn_p (rtx_insn *insn)
33973 return recog_memoized (insn) >= 0
33974 && get_attr_cannot_copy (insn);
33977 /* Compute a (partial) cost for rtx X. Return true if the complete
33978 cost has been computed, and false if subexpressions should be
33979 scanned. In either case, *TOTAL contains the cost result. */
33981 static bool
33982 rs6000_rtx_costs (rtx x, machine_mode mode, int outer_code,
33983 int opno ATTRIBUTE_UNUSED, int *total, bool speed)
33985 int code = GET_CODE (x);
33987 switch (code)
33989 /* On the RS/6000, if it is valid in the insn, it is free. */
33990 case CONST_INT:
33991 if (((outer_code == SET
33992 || outer_code == PLUS
33993 || outer_code == MINUS)
33994 && (satisfies_constraint_I (x)
33995 || satisfies_constraint_L (x)))
33996 || (outer_code == AND
33997 && (satisfies_constraint_K (x)
33998 || (mode == SImode
33999 ? satisfies_constraint_L (x)
34000 : satisfies_constraint_J (x))))
34001 || ((outer_code == IOR || outer_code == XOR)
34002 && (satisfies_constraint_K (x)
34003 || (mode == SImode
34004 ? satisfies_constraint_L (x)
34005 : satisfies_constraint_J (x))))
34006 || outer_code == ASHIFT
34007 || outer_code == ASHIFTRT
34008 || outer_code == LSHIFTRT
34009 || outer_code == ROTATE
34010 || outer_code == ROTATERT
34011 || outer_code == ZERO_EXTRACT
34012 || (outer_code == MULT
34013 && satisfies_constraint_I (x))
34014 || ((outer_code == DIV || outer_code == UDIV
34015 || outer_code == MOD || outer_code == UMOD)
34016 && exact_log2 (INTVAL (x)) >= 0)
34017 || (outer_code == COMPARE
34018 && (satisfies_constraint_I (x)
34019 || satisfies_constraint_K (x)))
34020 || ((outer_code == EQ || outer_code == NE)
34021 && (satisfies_constraint_I (x)
34022 || satisfies_constraint_K (x)
34023 || (mode == SImode
34024 ? satisfies_constraint_L (x)
34025 : satisfies_constraint_J (x))))
34026 || (outer_code == GTU
34027 && satisfies_constraint_I (x))
34028 || (outer_code == LTU
34029 && satisfies_constraint_P (x)))
34031 *total = 0;
34032 return true;
34034 else if ((outer_code == PLUS
34035 && reg_or_add_cint_operand (x, VOIDmode))
34036 || (outer_code == MINUS
34037 && reg_or_sub_cint_operand (x, VOIDmode))
34038 || ((outer_code == SET
34039 || outer_code == IOR
34040 || outer_code == XOR)
34041 && (INTVAL (x)
34042 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) == 0))
34044 *total = COSTS_N_INSNS (1);
34045 return true;
34047 /* FALLTHRU */
34049 case CONST_DOUBLE:
34050 case CONST_WIDE_INT:
34051 case CONST:
34052 case HIGH:
34053 case SYMBOL_REF:
34054 *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
34055 return true;
34057 case MEM:
34058 /* When optimizing for size, MEM should be slightly more expensive
34059 than generating address, e.g., (plus (reg) (const)).
34060 L1 cache latency is about two instructions. */
34061 *total = !speed ? COSTS_N_INSNS (1) + 1 : COSTS_N_INSNS (2);
34062 if (rs6000_slow_unaligned_access (mode, MEM_ALIGN (x)))
34063 *total += COSTS_N_INSNS (100);
34064 return true;
34066 case LABEL_REF:
34067 *total = 0;
34068 return true;
34070 case PLUS:
34071 case MINUS:
34072 if (FLOAT_MODE_P (mode))
34073 *total = rs6000_cost->fp;
34074 else
34075 *total = COSTS_N_INSNS (1);
34076 return false;
34078 case MULT:
34079 if (GET_CODE (XEXP (x, 1)) == CONST_INT
34080 && satisfies_constraint_I (XEXP (x, 1)))
34082 if (INTVAL (XEXP (x, 1)) >= -256
34083 && INTVAL (XEXP (x, 1)) <= 255)
34084 *total = rs6000_cost->mulsi_const9;
34085 else
34086 *total = rs6000_cost->mulsi_const;
34088 else if (mode == SFmode)
34089 *total = rs6000_cost->fp;
34090 else if (FLOAT_MODE_P (mode))
34091 *total = rs6000_cost->dmul;
34092 else if (mode == DImode)
34093 *total = rs6000_cost->muldi;
34094 else
34095 *total = rs6000_cost->mulsi;
34096 return false;
34098 case FMA:
34099 if (mode == SFmode)
34100 *total = rs6000_cost->fp;
34101 else
34102 *total = rs6000_cost->dmul;
34103 break;
34105 case DIV:
34106 case MOD:
34107 if (FLOAT_MODE_P (mode))
34109 *total = mode == DFmode ? rs6000_cost->ddiv
34110 : rs6000_cost->sdiv;
34111 return false;
34113 /* FALLTHRU */
34115 case UDIV:
34116 case UMOD:
34117 if (GET_CODE (XEXP (x, 1)) == CONST_INT
34118 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
34120 if (code == DIV || code == MOD)
34121 /* Shift, addze */
34122 *total = COSTS_N_INSNS (2);
34123 else
34124 /* Shift */
34125 *total = COSTS_N_INSNS (1);
34127 else
34129 if (GET_MODE (XEXP (x, 1)) == DImode)
34130 *total = rs6000_cost->divdi;
34131 else
34132 *total = rs6000_cost->divsi;
34134 /* Add in shift and subtract for MOD unless we have a mod instruction. */
34135 if (!TARGET_MODULO && (code == MOD || code == UMOD))
34136 *total += COSTS_N_INSNS (2);
34137 return false;
34139 case CTZ:
34140 *total = COSTS_N_INSNS (TARGET_CTZ ? 1 : 4);
34141 return false;
34143 case FFS:
34144 *total = COSTS_N_INSNS (4);
34145 return false;
34147 case POPCOUNT:
34148 *total = COSTS_N_INSNS (TARGET_POPCNTD ? 1 : 6);
34149 return false;
34151 case PARITY:
34152 *total = COSTS_N_INSNS (TARGET_CMPB ? 2 : 6);
34153 return false;
34155 case NOT:
34156 if (outer_code == AND || outer_code == IOR || outer_code == XOR)
34157 *total = 0;
34158 else
34159 *total = COSTS_N_INSNS (1);
34160 return false;
34162 case AND:
34163 if (CONST_INT_P (XEXP (x, 1)))
34165 rtx left = XEXP (x, 0);
34166 rtx_code left_code = GET_CODE (left);
34168 /* rotate-and-mask: 1 insn. */
34169 if ((left_code == ROTATE
34170 || left_code == ASHIFT
34171 || left_code == LSHIFTRT)
34172 && rs6000_is_valid_shift_mask (XEXP (x, 1), left, mode))
34174 *total = rtx_cost (XEXP (left, 0), mode, left_code, 0, speed);
34175 if (!CONST_INT_P (XEXP (left, 1)))
34176 *total += rtx_cost (XEXP (left, 1), SImode, left_code, 1, speed);
34177 *total += COSTS_N_INSNS (1);
34178 return true;
34181 /* rotate-and-mask (no rotate), andi., andis.: 1 insn. */
34182 HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
34183 if (rs6000_is_valid_and_mask (XEXP (x, 1), mode)
34184 || (val & 0xffff) == val
34185 || (val & 0xffff0000) == val
34186 || ((val & 0xffff) == 0 && mode == SImode))
34188 *total = rtx_cost (left, mode, AND, 0, speed);
34189 *total += COSTS_N_INSNS (1);
34190 return true;
34193 /* 2 insns. */
34194 if (rs6000_is_valid_2insn_and (XEXP (x, 1), mode))
34196 *total = rtx_cost (left, mode, AND, 0, speed);
34197 *total += COSTS_N_INSNS (2);
34198 return true;
34202 *total = COSTS_N_INSNS (1);
34203 return false;
34205 case IOR:
34206 /* FIXME */
34207 *total = COSTS_N_INSNS (1);
34208 return true;
34210 case CLZ:
34211 case XOR:
34212 case ZERO_EXTRACT:
34213 *total = COSTS_N_INSNS (1);
34214 return false;
34216 case ASHIFT:
34217 /* The EXTSWSLI instruction is a combined instruction. Don't count both
34218 the sign extend and shift separately within the insn. */
34219 if (TARGET_EXTSWSLI && mode == DImode
34220 && GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
34221 && GET_MODE (XEXP (XEXP (x, 0), 0)) == SImode)
34223 *total = 0;
34224 return false;
34226 /* fall through */
34228 case ASHIFTRT:
34229 case LSHIFTRT:
34230 case ROTATE:
34231 case ROTATERT:
34232 /* Handle mul_highpart. */
34233 if (outer_code == TRUNCATE
34234 && GET_CODE (XEXP (x, 0)) == MULT)
34236 if (mode == DImode)
34237 *total = rs6000_cost->muldi;
34238 else
34239 *total = rs6000_cost->mulsi;
34240 return true;
34242 else if (outer_code == AND)
34243 *total = 0;
34244 else
34245 *total = COSTS_N_INSNS (1);
34246 return false;
34248 case SIGN_EXTEND:
34249 case ZERO_EXTEND:
34250 if (GET_CODE (XEXP (x, 0)) == MEM)
34251 *total = 0;
34252 else
34253 *total = COSTS_N_INSNS (1);
34254 return false;
34256 case COMPARE:
34257 case NEG:
34258 case ABS:
34259 if (!FLOAT_MODE_P (mode))
34261 *total = COSTS_N_INSNS (1);
34262 return false;
34264 /* FALLTHRU */
34266 case FLOAT:
34267 case UNSIGNED_FLOAT:
34268 case FIX:
34269 case UNSIGNED_FIX:
34270 case FLOAT_TRUNCATE:
34271 *total = rs6000_cost->fp;
34272 return false;
34274 case FLOAT_EXTEND:
34275 if (mode == DFmode)
34276 *total = rs6000_cost->sfdf_convert;
34277 else
34278 *total = rs6000_cost->fp;
34279 return false;
34281 case UNSPEC:
34282 switch (XINT (x, 1))
34284 case UNSPEC_FRSP:
34285 *total = rs6000_cost->fp;
34286 return true;
34288 default:
34289 break;
34291 break;
34293 case CALL:
34294 case IF_THEN_ELSE:
34295 if (!speed)
34297 *total = COSTS_N_INSNS (1);
34298 return true;
34300 else if (FLOAT_MODE_P (mode) && TARGET_PPC_GFXOPT && TARGET_HARD_FLOAT)
34302 *total = rs6000_cost->fp;
34303 return false;
34305 break;
34307 case NE:
34308 case EQ:
34309 case GTU:
34310 case LTU:
34311 /* Carry bit requires mode == Pmode.
34312 NEG or PLUS already counted so only add one. */
34313 if (mode == Pmode
34314 && (outer_code == NEG || outer_code == PLUS))
34316 *total = COSTS_N_INSNS (1);
34317 return true;
34319 /* FALLTHRU */
34321 case GT:
34322 case LT:
34323 case UNORDERED:
34324 if (outer_code == SET)
34326 if (XEXP (x, 1) == const0_rtx)
34328 *total = COSTS_N_INSNS (2);
34329 return true;
34331 else
34333 *total = COSTS_N_INSNS (3);
34334 return false;
34337 /* CC COMPARE. */
34338 if (outer_code == COMPARE)
34340 *total = 0;
34341 return true;
34343 break;
34345 default:
34346 break;
34349 return false;
34352 /* Debug form of r6000_rtx_costs that is selected if -mdebug=cost. */
34354 static bool
34355 rs6000_debug_rtx_costs (rtx x, machine_mode mode, int outer_code,
34356 int opno, int *total, bool speed)
34358 bool ret = rs6000_rtx_costs (x, mode, outer_code, opno, total, speed);
34360 fprintf (stderr,
34361 "\nrs6000_rtx_costs, return = %s, mode = %s, outer_code = %s, "
34362 "opno = %d, total = %d, speed = %s, x:\n",
34363 ret ? "complete" : "scan inner",
34364 GET_MODE_NAME (mode),
34365 GET_RTX_NAME (outer_code),
34366 opno,
34367 *total,
34368 speed ? "true" : "false");
34370 debug_rtx (x);
34372 return ret;
34375 static int
34376 rs6000_insn_cost (rtx_insn *insn, bool speed)
34378 if (recog_memoized (insn) < 0)
34379 return 0;
34381 if (!speed)
34382 return get_attr_length (insn);
34384 int cost = get_attr_cost (insn);
34385 if (cost > 0)
34386 return cost;
34388 int n = get_attr_length (insn) / 4;
34389 enum attr_type type = get_attr_type (insn);
34391 switch (type)
34393 case TYPE_LOAD:
34394 case TYPE_FPLOAD:
34395 case TYPE_VECLOAD:
34396 cost = COSTS_N_INSNS (n + 1);
34397 break;
34399 case TYPE_MUL:
34400 switch (get_attr_size (insn))
34402 case SIZE_8:
34403 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi_const9;
34404 break;
34405 case SIZE_16:
34406 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi_const;
34407 break;
34408 case SIZE_32:
34409 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->mulsi;
34410 break;
34411 case SIZE_64:
34412 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->muldi;
34413 break;
34414 default:
34415 gcc_unreachable ();
34417 break;
34418 case TYPE_DIV:
34419 switch (get_attr_size (insn))
34421 case SIZE_32:
34422 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->divsi;
34423 break;
34424 case SIZE_64:
34425 cost = COSTS_N_INSNS (n - 1) + rs6000_cost->divdi;
34426 break;
34427 default:
34428 gcc_unreachable ();
34430 break;
34432 case TYPE_FP:
34433 cost = n * rs6000_cost->fp;
34434 break;
34435 case TYPE_DMUL:
34436 cost = n * rs6000_cost->dmul;
34437 break;
34438 case TYPE_SDIV:
34439 cost = n * rs6000_cost->sdiv;
34440 break;
34441 case TYPE_DDIV:
34442 cost = n * rs6000_cost->ddiv;
34443 break;
34445 case TYPE_SYNC:
34446 case TYPE_LOAD_L:
34447 case TYPE_MFCR:
34448 case TYPE_MFCRF:
34449 cost = COSTS_N_INSNS (n + 2);
34450 break;
34452 default:
34453 cost = COSTS_N_INSNS (n);
34456 return cost;
34459 /* Debug form of ADDRESS_COST that is selected if -mdebug=cost. */
34461 static int
34462 rs6000_debug_address_cost (rtx x, machine_mode mode,
34463 addr_space_t as, bool speed)
34465 int ret = TARGET_ADDRESS_COST (x, mode, as, speed);
34467 fprintf (stderr, "\nrs6000_address_cost, return = %d, speed = %s, x:\n",
34468 ret, speed ? "true" : "false");
34469 debug_rtx (x);
34471 return ret;
34475 /* A C expression returning the cost of moving data from a register of class
34476 CLASS1 to one of CLASS2. */
34478 static int
34479 rs6000_register_move_cost (machine_mode mode,
34480 reg_class_t from, reg_class_t to)
34482 int ret;
34484 if (TARGET_DEBUG_COST)
34485 dbg_cost_ctrl++;
34487 /* Moves from/to GENERAL_REGS. */
34488 if (reg_classes_intersect_p (to, GENERAL_REGS)
34489 || reg_classes_intersect_p (from, GENERAL_REGS))
34491 reg_class_t rclass = from;
34493 if (! reg_classes_intersect_p (to, GENERAL_REGS))
34494 rclass = to;
34496 if (rclass == FLOAT_REGS || rclass == ALTIVEC_REGS || rclass == VSX_REGS)
34497 ret = (rs6000_memory_move_cost (mode, rclass, false)
34498 + rs6000_memory_move_cost (mode, GENERAL_REGS, false));
34500 /* It's more expensive to move CR_REGS than CR0_REGS because of the
34501 shift. */
34502 else if (rclass == CR_REGS)
34503 ret = 4;
34505 /* For those processors that have slow LR/CTR moves, make them more
34506 expensive than memory in order to bias spills to memory .*/
34507 else if ((rs6000_tune == PROCESSOR_POWER6
34508 || rs6000_tune == PROCESSOR_POWER7
34509 || rs6000_tune == PROCESSOR_POWER8
34510 || rs6000_tune == PROCESSOR_POWER9)
34511 && reg_classes_intersect_p (rclass, LINK_OR_CTR_REGS))
34512 ret = 6 * hard_regno_nregs (0, mode);
34514 else
34515 /* A move will cost one instruction per GPR moved. */
34516 ret = 2 * hard_regno_nregs (0, mode);
34519 /* If we have VSX, we can easily move between FPR or Altivec registers. */
34520 else if (VECTOR_MEM_VSX_P (mode)
34521 && reg_classes_intersect_p (to, VSX_REGS)
34522 && reg_classes_intersect_p (from, VSX_REGS))
34523 ret = 2 * hard_regno_nregs (FIRST_FPR_REGNO, mode);
34525 /* Moving between two similar registers is just one instruction. */
34526 else if (reg_classes_intersect_p (to, from))
34527 ret = (FLOAT128_2REG_P (mode)) ? 4 : 2;
34529 /* Everything else has to go through GENERAL_REGS. */
34530 else
34531 ret = (rs6000_register_move_cost (mode, GENERAL_REGS, to)
34532 + rs6000_register_move_cost (mode, from, GENERAL_REGS));
34534 if (TARGET_DEBUG_COST)
34536 if (dbg_cost_ctrl == 1)
34537 fprintf (stderr,
34538 "rs6000_register_move_cost:, ret=%d, mode=%s, from=%s, to=%s\n",
34539 ret, GET_MODE_NAME (mode), reg_class_names[from],
34540 reg_class_names[to]);
34541 dbg_cost_ctrl--;
34544 return ret;
34547 /* A C expressions returning the cost of moving data of MODE from a register to
34548 or from memory. */
34550 static int
34551 rs6000_memory_move_cost (machine_mode mode, reg_class_t rclass,
34552 bool in ATTRIBUTE_UNUSED)
34554 int ret;
34556 if (TARGET_DEBUG_COST)
34557 dbg_cost_ctrl++;
34559 if (reg_classes_intersect_p (rclass, GENERAL_REGS))
34560 ret = 4 * hard_regno_nregs (0, mode);
34561 else if ((reg_classes_intersect_p (rclass, FLOAT_REGS)
34562 || reg_classes_intersect_p (rclass, VSX_REGS)))
34563 ret = 4 * hard_regno_nregs (32, mode);
34564 else if (reg_classes_intersect_p (rclass, ALTIVEC_REGS))
34565 ret = 4 * hard_regno_nregs (FIRST_ALTIVEC_REGNO, mode);
34566 else
34567 ret = 4 + rs6000_register_move_cost (mode, rclass, GENERAL_REGS);
34569 if (TARGET_DEBUG_COST)
34571 if (dbg_cost_ctrl == 1)
34572 fprintf (stderr,
34573 "rs6000_memory_move_cost: ret=%d, mode=%s, rclass=%s, in=%d\n",
34574 ret, GET_MODE_NAME (mode), reg_class_names[rclass], in);
34575 dbg_cost_ctrl--;
34578 return ret;
34581 /* Returns a code for a target-specific builtin that implements
34582 reciprocal of the function, or NULL_TREE if not available. */
34584 static tree
34585 rs6000_builtin_reciprocal (tree fndecl)
34587 switch (DECL_FUNCTION_CODE (fndecl))
34589 case VSX_BUILTIN_XVSQRTDP:
34590 if (!RS6000_RECIP_AUTO_RSQRTE_P (V2DFmode))
34591 return NULL_TREE;
34593 return rs6000_builtin_decls[VSX_BUILTIN_RSQRT_2DF];
34595 case VSX_BUILTIN_XVSQRTSP:
34596 if (!RS6000_RECIP_AUTO_RSQRTE_P (V4SFmode))
34597 return NULL_TREE;
34599 return rs6000_builtin_decls[VSX_BUILTIN_RSQRT_4SF];
34601 default:
34602 return NULL_TREE;
34606 /* Load up a constant. If the mode is a vector mode, splat the value across
34607 all of the vector elements. */
34609 static rtx
34610 rs6000_load_constant_and_splat (machine_mode mode, REAL_VALUE_TYPE dconst)
34612 rtx reg;
34614 if (mode == SFmode || mode == DFmode)
34616 rtx d = const_double_from_real_value (dconst, mode);
34617 reg = force_reg (mode, d);
34619 else if (mode == V4SFmode)
34621 rtx d = const_double_from_real_value (dconst, SFmode);
34622 rtvec v = gen_rtvec (4, d, d, d, d);
34623 reg = gen_reg_rtx (mode);
34624 rs6000_expand_vector_init (reg, gen_rtx_PARALLEL (mode, v));
34626 else if (mode == V2DFmode)
34628 rtx d = const_double_from_real_value (dconst, DFmode);
34629 rtvec v = gen_rtvec (2, d, d);
34630 reg = gen_reg_rtx (mode);
34631 rs6000_expand_vector_init (reg, gen_rtx_PARALLEL (mode, v));
34633 else
34634 gcc_unreachable ();
34636 return reg;
34639 /* Generate an FMA instruction. */
34641 static void
34642 rs6000_emit_madd (rtx target, rtx m1, rtx m2, rtx a)
34644 machine_mode mode = GET_MODE (target);
34645 rtx dst;
34647 dst = expand_ternary_op (mode, fma_optab, m1, m2, a, target, 0);
34648 gcc_assert (dst != NULL);
34650 if (dst != target)
34651 emit_move_insn (target, dst);
34654 /* Generate a FNMSUB instruction: dst = -fma(m1, m2, -a). */
34656 static void
34657 rs6000_emit_nmsub (rtx dst, rtx m1, rtx m2, rtx a)
34659 machine_mode mode = GET_MODE (dst);
34660 rtx r;
34662 /* This is a tad more complicated, since the fnma_optab is for
34663 a different expression: fma(-m1, m2, a), which is the same
34664 thing except in the case of signed zeros.
34666 Fortunately we know that if FMA is supported that FNMSUB is
34667 also supported in the ISA. Just expand it directly. */
34669 gcc_assert (optab_handler (fma_optab, mode) != CODE_FOR_nothing);
34671 r = gen_rtx_NEG (mode, a);
34672 r = gen_rtx_FMA (mode, m1, m2, r);
34673 r = gen_rtx_NEG (mode, r);
34674 emit_insn (gen_rtx_SET (dst, r));
34677 /* Newton-Raphson approximation of floating point divide DST = N/D. If NOTE_P,
34678 add a reg_note saying that this was a division. Support both scalar and
34679 vector divide. Assumes no trapping math and finite arguments. */
34681 void
34682 rs6000_emit_swdiv (rtx dst, rtx n, rtx d, bool note_p)
34684 machine_mode mode = GET_MODE (dst);
34685 rtx one, x0, e0, x1, xprev, eprev, xnext, enext, u, v;
34686 int i;
34688 /* Low precision estimates guarantee 5 bits of accuracy. High
34689 precision estimates guarantee 14 bits of accuracy. SFmode
34690 requires 23 bits of accuracy. DFmode requires 52 bits of
34691 accuracy. Each pass at least doubles the accuracy, leading
34692 to the following. */
34693 int passes = (TARGET_RECIP_PRECISION) ? 1 : 3;
34694 if (mode == DFmode || mode == V2DFmode)
34695 passes++;
34697 enum insn_code code = optab_handler (smul_optab, mode);
34698 insn_gen_fn gen_mul = GEN_FCN (code);
34700 gcc_assert (code != CODE_FOR_nothing);
34702 one = rs6000_load_constant_and_splat (mode, dconst1);
34704 /* x0 = 1./d estimate */
34705 x0 = gen_reg_rtx (mode);
34706 emit_insn (gen_rtx_SET (x0, gen_rtx_UNSPEC (mode, gen_rtvec (1, d),
34707 UNSPEC_FRES)));
34709 /* Each iteration but the last calculates x_(i+1) = x_i * (2 - d * x_i). */
34710 if (passes > 1) {
34712 /* e0 = 1. - d * x0 */
34713 e0 = gen_reg_rtx (mode);
34714 rs6000_emit_nmsub (e0, d, x0, one);
34716 /* x1 = x0 + e0 * x0 */
34717 x1 = gen_reg_rtx (mode);
34718 rs6000_emit_madd (x1, e0, x0, x0);
34720 for (i = 0, xprev = x1, eprev = e0; i < passes - 2;
34721 ++i, xprev = xnext, eprev = enext) {
34723 /* enext = eprev * eprev */
34724 enext = gen_reg_rtx (mode);
34725 emit_insn (gen_mul (enext, eprev, eprev));
34727 /* xnext = xprev + enext * xprev */
34728 xnext = gen_reg_rtx (mode);
34729 rs6000_emit_madd (xnext, enext, xprev, xprev);
34732 } else
34733 xprev = x0;
34735 /* The last iteration calculates x_(i+1) = n * x_i * (2 - d * x_i). */
34737 /* u = n * xprev */
34738 u = gen_reg_rtx (mode);
34739 emit_insn (gen_mul (u, n, xprev));
34741 /* v = n - (d * u) */
34742 v = gen_reg_rtx (mode);
34743 rs6000_emit_nmsub (v, d, u, n);
34745 /* dst = (v * xprev) + u */
34746 rs6000_emit_madd (dst, v, xprev, u);
34748 if (note_p)
34749 add_reg_note (get_last_insn (), REG_EQUAL, gen_rtx_DIV (mode, n, d));
34752 /* Goldschmidt's Algorithm for single/double-precision floating point
34753 sqrt and rsqrt. Assumes no trapping math and finite arguments. */
34755 void
34756 rs6000_emit_swsqrt (rtx dst, rtx src, bool recip)
34758 machine_mode mode = GET_MODE (src);
34759 rtx e = gen_reg_rtx (mode);
34760 rtx g = gen_reg_rtx (mode);
34761 rtx h = gen_reg_rtx (mode);
34763 /* Low precision estimates guarantee 5 bits of accuracy. High
34764 precision estimates guarantee 14 bits of accuracy. SFmode
34765 requires 23 bits of accuracy. DFmode requires 52 bits of
34766 accuracy. Each pass at least doubles the accuracy, leading
34767 to the following. */
34768 int passes = (TARGET_RECIP_PRECISION) ? 1 : 3;
34769 if (mode == DFmode || mode == V2DFmode)
34770 passes++;
34772 int i;
34773 rtx mhalf;
34774 enum insn_code code = optab_handler (smul_optab, mode);
34775 insn_gen_fn gen_mul = GEN_FCN (code);
34777 gcc_assert (code != CODE_FOR_nothing);
34779 mhalf = rs6000_load_constant_and_splat (mode, dconsthalf);
34781 /* e = rsqrt estimate */
34782 emit_insn (gen_rtx_SET (e, gen_rtx_UNSPEC (mode, gen_rtvec (1, src),
34783 UNSPEC_RSQRT)));
34785 /* If (src == 0.0) filter infinity to prevent NaN for sqrt(0.0). */
34786 if (!recip)
34788 rtx zero = force_reg (mode, CONST0_RTX (mode));
34790 if (mode == SFmode)
34792 rtx target = emit_conditional_move (e, GT, src, zero, mode,
34793 e, zero, mode, 0);
34794 if (target != e)
34795 emit_move_insn (e, target);
34797 else
34799 rtx cond = gen_rtx_GT (VOIDmode, e, zero);
34800 rs6000_emit_vector_cond_expr (e, e, zero, cond, src, zero);
34804 /* g = sqrt estimate. */
34805 emit_insn (gen_mul (g, e, src));
34806 /* h = 1/(2*sqrt) estimate. */
34807 emit_insn (gen_mul (h, e, mhalf));
34809 if (recip)
34811 if (passes == 1)
34813 rtx t = gen_reg_rtx (mode);
34814 rs6000_emit_nmsub (t, g, h, mhalf);
34815 /* Apply correction directly to 1/rsqrt estimate. */
34816 rs6000_emit_madd (dst, e, t, e);
34818 else
34820 for (i = 0; i < passes; i++)
34822 rtx t1 = gen_reg_rtx (mode);
34823 rtx g1 = gen_reg_rtx (mode);
34824 rtx h1 = gen_reg_rtx (mode);
34826 rs6000_emit_nmsub (t1, g, h, mhalf);
34827 rs6000_emit_madd (g1, g, t1, g);
34828 rs6000_emit_madd (h1, h, t1, h);
34830 g = g1;
34831 h = h1;
34833 /* Multiply by 2 for 1/rsqrt. */
34834 emit_insn (gen_add3_insn (dst, h, h));
34837 else
34839 rtx t = gen_reg_rtx (mode);
34840 rs6000_emit_nmsub (t, g, h, mhalf);
34841 rs6000_emit_madd (dst, g, t, g);
34844 return;
34847 /* Emit popcount intrinsic on TARGET_POPCNTB (Power5) and TARGET_POPCNTD
34848 (Power7) targets. DST is the target, and SRC is the argument operand. */
34850 void
34851 rs6000_emit_popcount (rtx dst, rtx src)
34853 machine_mode mode = GET_MODE (dst);
34854 rtx tmp1, tmp2;
34856 /* Use the PPC ISA 2.06 popcnt{w,d} instruction if we can. */
34857 if (TARGET_POPCNTD)
34859 if (mode == SImode)
34860 emit_insn (gen_popcntdsi2 (dst, src));
34861 else
34862 emit_insn (gen_popcntddi2 (dst, src));
34863 return;
34866 tmp1 = gen_reg_rtx (mode);
34868 if (mode == SImode)
34870 emit_insn (gen_popcntbsi2 (tmp1, src));
34871 tmp2 = expand_mult (SImode, tmp1, GEN_INT (0x01010101),
34872 NULL_RTX, 0);
34873 tmp2 = force_reg (SImode, tmp2);
34874 emit_insn (gen_lshrsi3 (dst, tmp2, GEN_INT (24)));
34876 else
34878 emit_insn (gen_popcntbdi2 (tmp1, src));
34879 tmp2 = expand_mult (DImode, tmp1,
34880 GEN_INT ((HOST_WIDE_INT)
34881 0x01010101 << 32 | 0x01010101),
34882 NULL_RTX, 0);
34883 tmp2 = force_reg (DImode, tmp2);
34884 emit_insn (gen_lshrdi3 (dst, tmp2, GEN_INT (56)));
34889 /* Emit parity intrinsic on TARGET_POPCNTB targets. DST is the
34890 target, and SRC is the argument operand. */
34892 void
34893 rs6000_emit_parity (rtx dst, rtx src)
34895 machine_mode mode = GET_MODE (dst);
34896 rtx tmp;
34898 tmp = gen_reg_rtx (mode);
34900 /* Use the PPC ISA 2.05 prtyw/prtyd instruction if we can. */
34901 if (TARGET_CMPB)
34903 if (mode == SImode)
34905 emit_insn (gen_popcntbsi2 (tmp, src));
34906 emit_insn (gen_paritysi2_cmpb (dst, tmp));
34908 else
34910 emit_insn (gen_popcntbdi2 (tmp, src));
34911 emit_insn (gen_paritydi2_cmpb (dst, tmp));
34913 return;
34916 if (mode == SImode)
34918 /* Is mult+shift >= shift+xor+shift+xor? */
34919 if (rs6000_cost->mulsi_const >= COSTS_N_INSNS (3))
34921 rtx tmp1, tmp2, tmp3, tmp4;
34923 tmp1 = gen_reg_rtx (SImode);
34924 emit_insn (gen_popcntbsi2 (tmp1, src));
34926 tmp2 = gen_reg_rtx (SImode);
34927 emit_insn (gen_lshrsi3 (tmp2, tmp1, GEN_INT (16)));
34928 tmp3 = gen_reg_rtx (SImode);
34929 emit_insn (gen_xorsi3 (tmp3, tmp1, tmp2));
34931 tmp4 = gen_reg_rtx (SImode);
34932 emit_insn (gen_lshrsi3 (tmp4, tmp3, GEN_INT (8)));
34933 emit_insn (gen_xorsi3 (tmp, tmp3, tmp4));
34935 else
34936 rs6000_emit_popcount (tmp, src);
34937 emit_insn (gen_andsi3 (dst, tmp, const1_rtx));
34939 else
34941 /* Is mult+shift >= shift+xor+shift+xor+shift+xor? */
34942 if (rs6000_cost->muldi >= COSTS_N_INSNS (5))
34944 rtx tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
34946 tmp1 = gen_reg_rtx (DImode);
34947 emit_insn (gen_popcntbdi2 (tmp1, src));
34949 tmp2 = gen_reg_rtx (DImode);
34950 emit_insn (gen_lshrdi3 (tmp2, tmp1, GEN_INT (32)));
34951 tmp3 = gen_reg_rtx (DImode);
34952 emit_insn (gen_xordi3 (tmp3, tmp1, tmp2));
34954 tmp4 = gen_reg_rtx (DImode);
34955 emit_insn (gen_lshrdi3 (tmp4, tmp3, GEN_INT (16)));
34956 tmp5 = gen_reg_rtx (DImode);
34957 emit_insn (gen_xordi3 (tmp5, tmp3, tmp4));
34959 tmp6 = gen_reg_rtx (DImode);
34960 emit_insn (gen_lshrdi3 (tmp6, tmp5, GEN_INT (8)));
34961 emit_insn (gen_xordi3 (tmp, tmp5, tmp6));
34963 else
34964 rs6000_emit_popcount (tmp, src);
34965 emit_insn (gen_anddi3 (dst, tmp, const1_rtx));
34969 /* Expand an Altivec constant permutation for little endian mode.
34970 OP0 and OP1 are the input vectors and TARGET is the output vector.
34971 SEL specifies the constant permutation vector.
34973 There are two issues: First, the two input operands must be
34974 swapped so that together they form a double-wide array in LE
34975 order. Second, the vperm instruction has surprising behavior
34976 in LE mode: it interprets the elements of the source vectors
34977 in BE mode ("left to right") and interprets the elements of
34978 the destination vector in LE mode ("right to left"). To
34979 correct for this, we must subtract each element of the permute
34980 control vector from 31.
34982 For example, suppose we want to concatenate vr10 = {0, 1, 2, 3}
34983 with vr11 = {4, 5, 6, 7} and extract {0, 2, 4, 6} using a vperm.
34984 We place {0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27} in vr12 to
34985 serve as the permute control vector. Then, in BE mode,
34987 vperm 9,10,11,12
34989 places the desired result in vr9. However, in LE mode the
34990 vector contents will be
34992 vr10 = 00000003 00000002 00000001 00000000
34993 vr11 = 00000007 00000006 00000005 00000004
34995 The result of the vperm using the same permute control vector is
34997 vr9 = 05000000 07000000 01000000 03000000
34999 That is, the leftmost 4 bytes of vr10 are interpreted as the
35000 source for the rightmost 4 bytes of vr9, and so on.
35002 If we change the permute control vector to
35004 vr12 = {31,20,29,28,23,22,21,20,15,14,13,12,7,6,5,4}
35006 and issue
35008 vperm 9,11,10,12
35010 we get the desired
35012 vr9 = 00000006 00000004 00000002 00000000. */
35014 static void
35015 altivec_expand_vec_perm_const_le (rtx target, rtx op0, rtx op1,
35016 const vec_perm_indices &sel)
35018 unsigned int i;
35019 rtx perm[16];
35020 rtx constv, unspec;
35022 /* Unpack and adjust the constant selector. */
35023 for (i = 0; i < 16; ++i)
35025 unsigned int elt = 31 - (sel[i] & 31);
35026 perm[i] = GEN_INT (elt);
35029 /* Expand to a permute, swapping the inputs and using the
35030 adjusted selector. */
35031 if (!REG_P (op0))
35032 op0 = force_reg (V16QImode, op0);
35033 if (!REG_P (op1))
35034 op1 = force_reg (V16QImode, op1);
35036 constv = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, perm));
35037 constv = force_reg (V16QImode, constv);
35038 unspec = gen_rtx_UNSPEC (V16QImode, gen_rtvec (3, op1, op0, constv),
35039 UNSPEC_VPERM);
35040 if (!REG_P (target))
35042 rtx tmp = gen_reg_rtx (V16QImode);
35043 emit_move_insn (tmp, unspec);
35044 unspec = tmp;
35047 emit_move_insn (target, unspec);
35050 /* Similarly to altivec_expand_vec_perm_const_le, we must adjust the
35051 permute control vector. But here it's not a constant, so we must
35052 generate a vector NAND or NOR to do the adjustment. */
35054 void
35055 altivec_expand_vec_perm_le (rtx operands[4])
35057 rtx notx, iorx, unspec;
35058 rtx target = operands[0];
35059 rtx op0 = operands[1];
35060 rtx op1 = operands[2];
35061 rtx sel = operands[3];
35062 rtx tmp = target;
35063 rtx norreg = gen_reg_rtx (V16QImode);
35064 machine_mode mode = GET_MODE (target);
35066 /* Get everything in regs so the pattern matches. */
35067 if (!REG_P (op0))
35068 op0 = force_reg (mode, op0);
35069 if (!REG_P (op1))
35070 op1 = force_reg (mode, op1);
35071 if (!REG_P (sel))
35072 sel = force_reg (V16QImode, sel);
35073 if (!REG_P (target))
35074 tmp = gen_reg_rtx (mode);
35076 if (TARGET_P9_VECTOR)
35078 unspec = gen_rtx_UNSPEC (mode, gen_rtvec (3, op1, op0, sel),
35079 UNSPEC_VPERMR);
35081 else
35083 /* Invert the selector with a VNAND if available, else a VNOR.
35084 The VNAND is preferred for future fusion opportunities. */
35085 notx = gen_rtx_NOT (V16QImode, sel);
35086 iorx = (TARGET_P8_VECTOR
35087 ? gen_rtx_IOR (V16QImode, notx, notx)
35088 : gen_rtx_AND (V16QImode, notx, notx));
35089 emit_insn (gen_rtx_SET (norreg, iorx));
35091 /* Permute with operands reversed and adjusted selector. */
35092 unspec = gen_rtx_UNSPEC (mode, gen_rtvec (3, op1, op0, norreg),
35093 UNSPEC_VPERM);
35096 /* Copy into target, possibly by way of a register. */
35097 if (!REG_P (target))
35099 emit_move_insn (tmp, unspec);
35100 unspec = tmp;
35103 emit_move_insn (target, unspec);
35106 /* Expand an Altivec constant permutation. Return true if we match
35107 an efficient implementation; false to fall back to VPERM.
35109 OP0 and OP1 are the input vectors and TARGET is the output vector.
35110 SEL specifies the constant permutation vector. */
35112 static bool
35113 altivec_expand_vec_perm_const (rtx target, rtx op0, rtx op1,
35114 const vec_perm_indices &sel)
35116 struct altivec_perm_insn {
35117 HOST_WIDE_INT mask;
35118 enum insn_code impl;
35119 unsigned char perm[16];
35121 static const struct altivec_perm_insn patterns[] = {
35122 { OPTION_MASK_ALTIVEC, CODE_FOR_altivec_vpkuhum_direct,
35123 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
35124 { OPTION_MASK_ALTIVEC, CODE_FOR_altivec_vpkuwum_direct,
35125 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
35126 { OPTION_MASK_ALTIVEC,
35127 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghb_direct
35128 : CODE_FOR_altivec_vmrglb_direct),
35129 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
35130 { OPTION_MASK_ALTIVEC,
35131 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghh_direct
35132 : CODE_FOR_altivec_vmrglh_direct),
35133 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
35134 { OPTION_MASK_ALTIVEC,
35135 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrghw_direct
35136 : CODE_FOR_altivec_vmrglw_direct),
35137 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
35138 { OPTION_MASK_ALTIVEC,
35139 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglb_direct
35140 : CODE_FOR_altivec_vmrghb_direct),
35141 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
35142 { OPTION_MASK_ALTIVEC,
35143 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglh_direct
35144 : CODE_FOR_altivec_vmrghh_direct),
35145 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
35146 { OPTION_MASK_ALTIVEC,
35147 (BYTES_BIG_ENDIAN ? CODE_FOR_altivec_vmrglw_direct
35148 : CODE_FOR_altivec_vmrghw_direct),
35149 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
35150 { OPTION_MASK_P8_VECTOR,
35151 (BYTES_BIG_ENDIAN ? CODE_FOR_p8_vmrgew_v4sf_direct
35152 : CODE_FOR_p8_vmrgow_v4sf_direct),
35153 { 0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27 } },
35154 { OPTION_MASK_P8_VECTOR,
35155 (BYTES_BIG_ENDIAN ? CODE_FOR_p8_vmrgow_v4sf_direct
35156 : CODE_FOR_p8_vmrgew_v4sf_direct),
35157 { 4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31 } }
35160 unsigned int i, j, elt, which;
35161 unsigned char perm[16];
35162 rtx x;
35163 bool one_vec;
35165 /* Unpack the constant selector. */
35166 for (i = which = 0; i < 16; ++i)
35168 elt = sel[i] & 31;
35169 which |= (elt < 16 ? 1 : 2);
35170 perm[i] = elt;
35173 /* Simplify the constant selector based on operands. */
35174 switch (which)
35176 default:
35177 gcc_unreachable ();
35179 case 3:
35180 one_vec = false;
35181 if (!rtx_equal_p (op0, op1))
35182 break;
35183 /* FALLTHRU */
35185 case 2:
35186 for (i = 0; i < 16; ++i)
35187 perm[i] &= 15;
35188 op0 = op1;
35189 one_vec = true;
35190 break;
35192 case 1:
35193 op1 = op0;
35194 one_vec = true;
35195 break;
35198 /* Look for splat patterns. */
35199 if (one_vec)
35201 elt = perm[0];
35203 for (i = 0; i < 16; ++i)
35204 if (perm[i] != elt)
35205 break;
35206 if (i == 16)
35208 if (!BYTES_BIG_ENDIAN)
35209 elt = 15 - elt;
35210 emit_insn (gen_altivec_vspltb_direct (target, op0, GEN_INT (elt)));
35211 return true;
35214 if (elt % 2 == 0)
35216 for (i = 0; i < 16; i += 2)
35217 if (perm[i] != elt || perm[i + 1] != elt + 1)
35218 break;
35219 if (i == 16)
35221 int field = BYTES_BIG_ENDIAN ? elt / 2 : 7 - elt / 2;
35222 x = gen_reg_rtx (V8HImode);
35223 emit_insn (gen_altivec_vsplth_direct (x, gen_lowpart (V8HImode, op0),
35224 GEN_INT (field)));
35225 emit_move_insn (target, gen_lowpart (V16QImode, x));
35226 return true;
35230 if (elt % 4 == 0)
35232 for (i = 0; i < 16; i += 4)
35233 if (perm[i] != elt
35234 || perm[i + 1] != elt + 1
35235 || perm[i + 2] != elt + 2
35236 || perm[i + 3] != elt + 3)
35237 break;
35238 if (i == 16)
35240 int field = BYTES_BIG_ENDIAN ? elt / 4 : 3 - elt / 4;
35241 x = gen_reg_rtx (V4SImode);
35242 emit_insn (gen_altivec_vspltw_direct (x, gen_lowpart (V4SImode, op0),
35243 GEN_INT (field)));
35244 emit_move_insn (target, gen_lowpart (V16QImode, x));
35245 return true;
35250 /* Look for merge and pack patterns. */
35251 for (j = 0; j < ARRAY_SIZE (patterns); ++j)
35253 bool swapped;
35255 if ((patterns[j].mask & rs6000_isa_flags) == 0)
35256 continue;
35258 elt = patterns[j].perm[0];
35259 if (perm[0] == elt)
35260 swapped = false;
35261 else if (perm[0] == elt + 16)
35262 swapped = true;
35263 else
35264 continue;
35265 for (i = 1; i < 16; ++i)
35267 elt = patterns[j].perm[i];
35268 if (swapped)
35269 elt = (elt >= 16 ? elt - 16 : elt + 16);
35270 else if (one_vec && elt >= 16)
35271 elt -= 16;
35272 if (perm[i] != elt)
35273 break;
35275 if (i == 16)
35277 enum insn_code icode = patterns[j].impl;
35278 machine_mode omode = insn_data[icode].operand[0].mode;
35279 machine_mode imode = insn_data[icode].operand[1].mode;
35281 /* For little-endian, don't use vpkuwum and vpkuhum if the
35282 underlying vector type is not V4SI and V8HI, respectively.
35283 For example, using vpkuwum with a V8HI picks up the even
35284 halfwords (BE numbering) when the even halfwords (LE
35285 numbering) are what we need. */
35286 if (!BYTES_BIG_ENDIAN
35287 && icode == CODE_FOR_altivec_vpkuwum_direct
35288 && ((GET_CODE (op0) == REG
35289 && GET_MODE (op0) != V4SImode)
35290 || (GET_CODE (op0) == SUBREG
35291 && GET_MODE (XEXP (op0, 0)) != V4SImode)))
35292 continue;
35293 if (!BYTES_BIG_ENDIAN
35294 && icode == CODE_FOR_altivec_vpkuhum_direct
35295 && ((GET_CODE (op0) == REG
35296 && GET_MODE (op0) != V8HImode)
35297 || (GET_CODE (op0) == SUBREG
35298 && GET_MODE (XEXP (op0, 0)) != V8HImode)))
35299 continue;
35301 /* For little-endian, the two input operands must be swapped
35302 (or swapped back) to ensure proper right-to-left numbering
35303 from 0 to 2N-1. */
35304 if (swapped ^ !BYTES_BIG_ENDIAN)
35305 std::swap (op0, op1);
35306 if (imode != V16QImode)
35308 op0 = gen_lowpart (imode, op0);
35309 op1 = gen_lowpart (imode, op1);
35311 if (omode == V16QImode)
35312 x = target;
35313 else
35314 x = gen_reg_rtx (omode);
35315 emit_insn (GEN_FCN (icode) (x, op0, op1));
35316 if (omode != V16QImode)
35317 emit_move_insn (target, gen_lowpart (V16QImode, x));
35318 return true;
35322 if (!BYTES_BIG_ENDIAN)
35324 altivec_expand_vec_perm_const_le (target, op0, op1, sel);
35325 return true;
35328 return false;
35331 /* Expand a VSX Permute Doubleword constant permutation.
35332 Return true if we match an efficient implementation. */
35334 static bool
35335 rs6000_expand_vec_perm_const_1 (rtx target, rtx op0, rtx op1,
35336 unsigned char perm0, unsigned char perm1)
35338 rtx x;
35340 /* If both selectors come from the same operand, fold to single op. */
35341 if ((perm0 & 2) == (perm1 & 2))
35343 if (perm0 & 2)
35344 op0 = op1;
35345 else
35346 op1 = op0;
35348 /* If both operands are equal, fold to simpler permutation. */
35349 if (rtx_equal_p (op0, op1))
35351 perm0 = perm0 & 1;
35352 perm1 = (perm1 & 1) + 2;
35354 /* If the first selector comes from the second operand, swap. */
35355 else if (perm0 & 2)
35357 if (perm1 & 2)
35358 return false;
35359 perm0 -= 2;
35360 perm1 += 2;
35361 std::swap (op0, op1);
35363 /* If the second selector does not come from the second operand, fail. */
35364 else if ((perm1 & 2) == 0)
35365 return false;
35367 /* Success! */
35368 if (target != NULL)
35370 machine_mode vmode, dmode;
35371 rtvec v;
35373 vmode = GET_MODE (target);
35374 gcc_assert (GET_MODE_NUNITS (vmode) == 2);
35375 dmode = mode_for_vector (GET_MODE_INNER (vmode), 4).require ();
35376 x = gen_rtx_VEC_CONCAT (dmode, op0, op1);
35377 v = gen_rtvec (2, GEN_INT (perm0), GEN_INT (perm1));
35378 x = gen_rtx_VEC_SELECT (vmode, x, gen_rtx_PARALLEL (VOIDmode, v));
35379 emit_insn (gen_rtx_SET (target, x));
35381 return true;
35384 /* Implement TARGET_VECTORIZE_VEC_PERM_CONST. */
35386 static bool
35387 rs6000_vectorize_vec_perm_const (machine_mode vmode, rtx target, rtx op0,
35388 rtx op1, const vec_perm_indices &sel)
35390 bool testing_p = !target;
35392 /* AltiVec (and thus VSX) can handle arbitrary permutations. */
35393 if (TARGET_ALTIVEC && testing_p)
35394 return true;
35396 /* Check for ps_merge* or xxpermdi insns. */
35397 if ((vmode == V2DFmode || vmode == V2DImode) && VECTOR_MEM_VSX_P (vmode))
35399 if (testing_p)
35401 op0 = gen_raw_REG (vmode, LAST_VIRTUAL_REGISTER + 1);
35402 op1 = gen_raw_REG (vmode, LAST_VIRTUAL_REGISTER + 2);
35404 if (rs6000_expand_vec_perm_const_1 (target, op0, op1, sel[0], sel[1]))
35405 return true;
35408 if (TARGET_ALTIVEC)
35410 /* Force the target-independent code to lower to V16QImode. */
35411 if (vmode != V16QImode)
35412 return false;
35413 if (altivec_expand_vec_perm_const (target, op0, op1, sel))
35414 return true;
35417 return false;
35420 /* A subroutine for rs6000_expand_extract_even & rs6000_expand_interleave.
35421 OP0 and OP1 are the input vectors and TARGET is the output vector.
35422 PERM specifies the constant permutation vector. */
35424 static void
35425 rs6000_do_expand_vec_perm (rtx target, rtx op0, rtx op1,
35426 machine_mode vmode, const vec_perm_builder &perm)
35428 rtx x = expand_vec_perm_const (vmode, op0, op1, perm, BLKmode, target);
35429 if (x != target)
35430 emit_move_insn (target, x);
35433 /* Expand an extract even operation. */
35435 void
35436 rs6000_expand_extract_even (rtx target, rtx op0, rtx op1)
35438 machine_mode vmode = GET_MODE (target);
35439 unsigned i, nelt = GET_MODE_NUNITS (vmode);
35440 vec_perm_builder perm (nelt, nelt, 1);
35442 for (i = 0; i < nelt; i++)
35443 perm.quick_push (i * 2);
35445 rs6000_do_expand_vec_perm (target, op0, op1, vmode, perm);
35448 /* Expand a vector interleave operation. */
35450 void
35451 rs6000_expand_interleave (rtx target, rtx op0, rtx op1, bool highp)
35453 machine_mode vmode = GET_MODE (target);
35454 unsigned i, high, nelt = GET_MODE_NUNITS (vmode);
35455 vec_perm_builder perm (nelt, nelt, 1);
35457 high = (highp ? 0 : nelt / 2);
35458 for (i = 0; i < nelt / 2; i++)
35460 perm.quick_push (i + high);
35461 perm.quick_push (i + nelt + high);
35464 rs6000_do_expand_vec_perm (target, op0, op1, vmode, perm);
35467 /* Scale a V2DF vector SRC by two to the SCALE and place in TGT. */
35468 void
35469 rs6000_scale_v2df (rtx tgt, rtx src, int scale)
35471 HOST_WIDE_INT hwi_scale (scale);
35472 REAL_VALUE_TYPE r_pow;
35473 rtvec v = rtvec_alloc (2);
35474 rtx elt;
35475 rtx scale_vec = gen_reg_rtx (V2DFmode);
35476 (void)real_powi (&r_pow, DFmode, &dconst2, hwi_scale);
35477 elt = const_double_from_real_value (r_pow, DFmode);
35478 RTVEC_ELT (v, 0) = elt;
35479 RTVEC_ELT (v, 1) = elt;
35480 rs6000_expand_vector_init (scale_vec, gen_rtx_PARALLEL (V2DFmode, v));
35481 emit_insn (gen_mulv2df3 (tgt, src, scale_vec));
35484 /* Return an RTX representing where to find the function value of a
35485 function returning MODE. */
35486 static rtx
35487 rs6000_complex_function_value (machine_mode mode)
35489 unsigned int regno;
35490 rtx r1, r2;
35491 machine_mode inner = GET_MODE_INNER (mode);
35492 unsigned int inner_bytes = GET_MODE_UNIT_SIZE (mode);
35494 if (TARGET_FLOAT128_TYPE
35495 && (mode == KCmode
35496 || (mode == TCmode && TARGET_IEEEQUAD)))
35497 regno = ALTIVEC_ARG_RETURN;
35499 else if (FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
35500 regno = FP_ARG_RETURN;
35502 else
35504 regno = GP_ARG_RETURN;
35506 /* 32-bit is OK since it'll go in r3/r4. */
35507 if (TARGET_32BIT && inner_bytes >= 4)
35508 return gen_rtx_REG (mode, regno);
35511 if (inner_bytes >= 8)
35512 return gen_rtx_REG (mode, regno);
35514 r1 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno),
35515 const0_rtx);
35516 r2 = gen_rtx_EXPR_LIST (inner, gen_rtx_REG (inner, regno + 1),
35517 GEN_INT (inner_bytes));
35518 return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
35521 /* Return an rtx describing a return value of MODE as a PARALLEL
35522 in N_ELTS registers, each of mode ELT_MODE, starting at REGNO,
35523 stride REG_STRIDE. */
35525 static rtx
35526 rs6000_parallel_return (machine_mode mode,
35527 int n_elts, machine_mode elt_mode,
35528 unsigned int regno, unsigned int reg_stride)
35530 rtx par = gen_rtx_PARALLEL (mode, rtvec_alloc (n_elts));
35532 int i;
35533 for (i = 0; i < n_elts; i++)
35535 rtx r = gen_rtx_REG (elt_mode, regno);
35536 rtx off = GEN_INT (i * GET_MODE_SIZE (elt_mode));
35537 XVECEXP (par, 0, i) = gen_rtx_EXPR_LIST (VOIDmode, r, off);
35538 regno += reg_stride;
35541 return par;
35544 /* Target hook for TARGET_FUNCTION_VALUE.
35546 An integer value is in r3 and a floating-point value is in fp1,
35547 unless -msoft-float. */
35549 static rtx
35550 rs6000_function_value (const_tree valtype,
35551 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
35552 bool outgoing ATTRIBUTE_UNUSED)
35554 machine_mode mode;
35555 unsigned int regno;
35556 machine_mode elt_mode;
35557 int n_elts;
35559 /* Special handling for structs in darwin64. */
35560 if (TARGET_MACHO
35561 && rs6000_darwin64_struct_check_p (TYPE_MODE (valtype), valtype))
35563 CUMULATIVE_ARGS valcum;
35564 rtx valret;
35566 valcum.words = 0;
35567 valcum.fregno = FP_ARG_MIN_REG;
35568 valcum.vregno = ALTIVEC_ARG_MIN_REG;
35569 /* Do a trial code generation as if this were going to be passed as
35570 an argument; if any part goes in memory, we return NULL. */
35571 valret = rs6000_darwin64_record_arg (&valcum, valtype, true, /* retval= */ true);
35572 if (valret)
35573 return valret;
35574 /* Otherwise fall through to standard ABI rules. */
35577 mode = TYPE_MODE (valtype);
35579 /* The ELFv2 ABI returns homogeneous VFP aggregates in registers. */
35580 if (rs6000_discover_homogeneous_aggregate (mode, valtype, &elt_mode, &n_elts))
35582 int first_reg, n_regs;
35584 if (SCALAR_FLOAT_MODE_NOT_VECTOR_P (elt_mode))
35586 /* _Decimal128 must use even/odd register pairs. */
35587 first_reg = (elt_mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
35588 n_regs = (GET_MODE_SIZE (elt_mode) + 7) >> 3;
35590 else
35592 first_reg = ALTIVEC_ARG_RETURN;
35593 n_regs = 1;
35596 return rs6000_parallel_return (mode, n_elts, elt_mode, first_reg, n_regs);
35599 /* Some return value types need be split in -mpowerpc64, 32bit ABI. */
35600 if (TARGET_32BIT && TARGET_POWERPC64)
35601 switch (mode)
35603 default:
35604 break;
35605 case E_DImode:
35606 case E_SCmode:
35607 case E_DCmode:
35608 case E_TCmode:
35609 int count = GET_MODE_SIZE (mode) / 4;
35610 return rs6000_parallel_return (mode, count, SImode, GP_ARG_RETURN, 1);
35613 if ((INTEGRAL_TYPE_P (valtype)
35614 && GET_MODE_BITSIZE (mode) < (TARGET_32BIT ? 32 : 64))
35615 || POINTER_TYPE_P (valtype))
35616 mode = TARGET_32BIT ? SImode : DImode;
35618 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
35619 /* _Decimal128 must use an even/odd register pair. */
35620 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
35621 else if (SCALAR_FLOAT_TYPE_P (valtype) && TARGET_HARD_FLOAT
35622 && !FLOAT128_VECTOR_P (mode))
35623 regno = FP_ARG_RETURN;
35624 else if (TREE_CODE (valtype) == COMPLEX_TYPE
35625 && targetm.calls.split_complex_arg)
35626 return rs6000_complex_function_value (mode);
35627 /* VSX is a superset of Altivec and adds V2DImode/V2DFmode. Since the same
35628 return register is used in both cases, and we won't see V2DImode/V2DFmode
35629 for pure altivec, combine the two cases. */
35630 else if ((TREE_CODE (valtype) == VECTOR_TYPE || FLOAT128_VECTOR_P (mode))
35631 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI
35632 && ALTIVEC_OR_VSX_VECTOR_MODE (mode))
35633 regno = ALTIVEC_ARG_RETURN;
35634 else
35635 regno = GP_ARG_RETURN;
35637 return gen_rtx_REG (mode, regno);
35640 /* Define how to find the value returned by a library function
35641 assuming the value has mode MODE. */
35643 rs6000_libcall_value (machine_mode mode)
35645 unsigned int regno;
35647 /* Long long return value need be split in -mpowerpc64, 32bit ABI. */
35648 if (TARGET_32BIT && TARGET_POWERPC64 && mode == DImode)
35649 return rs6000_parallel_return (mode, 2, SImode, GP_ARG_RETURN, 1);
35651 if (DECIMAL_FLOAT_MODE_P (mode) && TARGET_HARD_FLOAT)
35652 /* _Decimal128 must use an even/odd register pair. */
35653 regno = (mode == TDmode) ? FP_ARG_RETURN + 1 : FP_ARG_RETURN;
35654 else if (SCALAR_FLOAT_MODE_NOT_VECTOR_P (mode) && TARGET_HARD_FLOAT)
35655 regno = FP_ARG_RETURN;
35656 /* VSX is a superset of Altivec and adds V2DImode/V2DFmode. Since the same
35657 return register is used in both cases, and we won't see V2DImode/V2DFmode
35658 for pure altivec, combine the two cases. */
35659 else if (ALTIVEC_OR_VSX_VECTOR_MODE (mode)
35660 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI)
35661 regno = ALTIVEC_ARG_RETURN;
35662 else if (COMPLEX_MODE_P (mode) && targetm.calls.split_complex_arg)
35663 return rs6000_complex_function_value (mode);
35664 else
35665 regno = GP_ARG_RETURN;
35667 return gen_rtx_REG (mode, regno);
35670 /* Compute register pressure classes. We implement the target hook to avoid
35671 IRA picking something like NON_SPECIAL_REGS as a pressure class, which can
35672 lead to incorrect estimates of number of available registers and therefor
35673 increased register pressure/spill. */
35674 static int
35675 rs6000_compute_pressure_classes (enum reg_class *pressure_classes)
35677 int n;
35679 n = 0;
35680 pressure_classes[n++] = GENERAL_REGS;
35681 if (TARGET_VSX)
35682 pressure_classes[n++] = VSX_REGS;
35683 else
35685 if (TARGET_ALTIVEC)
35686 pressure_classes[n++] = ALTIVEC_REGS;
35687 if (TARGET_HARD_FLOAT)
35688 pressure_classes[n++] = FLOAT_REGS;
35690 pressure_classes[n++] = CR_REGS;
35691 pressure_classes[n++] = SPECIAL_REGS;
35693 return n;
35696 /* Given FROM and TO register numbers, say whether this elimination is allowed.
35697 Frame pointer elimination is automatically handled.
35699 For the RS/6000, if frame pointer elimination is being done, we would like
35700 to convert ap into fp, not sp.
35702 We need r30 if -mminimal-toc was specified, and there are constant pool
35703 references. */
35705 static bool
35706 rs6000_can_eliminate (const int from, const int to)
35708 return (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM
35709 ? ! frame_pointer_needed
35710 : from == RS6000_PIC_OFFSET_TABLE_REGNUM
35711 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC
35712 || constant_pool_empty_p ()
35713 : true);
35716 /* Define the offset between two registers, FROM to be eliminated and its
35717 replacement TO, at the start of a routine. */
35718 HOST_WIDE_INT
35719 rs6000_initial_elimination_offset (int from, int to)
35721 rs6000_stack_t *info = rs6000_stack_info ();
35722 HOST_WIDE_INT offset;
35724 if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
35725 offset = info->push_p ? 0 : -info->total_size;
35726 else if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
35728 offset = info->push_p ? 0 : -info->total_size;
35729 if (FRAME_GROWS_DOWNWARD)
35730 offset += info->fixed_size + info->vars_size + info->parm_size;
35732 else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
35733 offset = FRAME_GROWS_DOWNWARD
35734 ? info->fixed_size + info->vars_size + info->parm_size
35735 : 0;
35736 else if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
35737 offset = info->total_size;
35738 else if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
35739 offset = info->push_p ? info->total_size : 0;
35740 else if (from == RS6000_PIC_OFFSET_TABLE_REGNUM)
35741 offset = 0;
35742 else
35743 gcc_unreachable ();
35745 return offset;
35748 /* Fill in sizes of registers used by unwinder. */
35750 static void
35751 rs6000_init_dwarf_reg_sizes_extra (tree address)
35753 if (TARGET_MACHO && ! TARGET_ALTIVEC)
35755 int i;
35756 machine_mode mode = TYPE_MODE (char_type_node);
35757 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, EXPAND_NORMAL);
35758 rtx mem = gen_rtx_MEM (BLKmode, addr);
35759 rtx value = gen_int_mode (16, mode);
35761 /* On Darwin, libgcc may be built to run on both G3 and G4/5.
35762 The unwinder still needs to know the size of Altivec registers. */
35764 for (i = FIRST_ALTIVEC_REGNO; i < LAST_ALTIVEC_REGNO+1; i++)
35766 int column = DWARF_REG_TO_UNWIND_COLUMN
35767 (DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), true));
35768 HOST_WIDE_INT offset = column * GET_MODE_SIZE (mode);
35770 emit_move_insn (adjust_address (mem, mode, offset), value);
35775 /* Map internal gcc register numbers to debug format register numbers.
35776 FORMAT specifies the type of debug register number to use:
35777 0 -- debug information, except for frame-related sections
35778 1 -- DWARF .debug_frame section
35779 2 -- DWARF .eh_frame section */
35781 unsigned int
35782 rs6000_dbx_register_number (unsigned int regno, unsigned int format)
35784 /* Except for the above, we use the internal number for non-DWARF
35785 debug information, and also for .eh_frame. */
35786 if ((format == 0 && write_symbols != DWARF2_DEBUG) || format == 2)
35787 return regno;
35789 /* On some platforms, we use the standard DWARF register
35790 numbering for .debug_info and .debug_frame. */
35791 #ifdef RS6000_USE_DWARF_NUMBERING
35792 if (regno <= 63)
35793 return regno;
35794 if (regno == LR_REGNO)
35795 return 108;
35796 if (regno == CTR_REGNO)
35797 return 109;
35798 /* Special handling for CR for .debug_frame: rs6000_emit_prologue has
35799 translated any combination of CR2, CR3, CR4 saves to a save of CR2.
35800 The actual code emitted saves the whole of CR, so we map CR2_REGNO
35801 to the DWARF reg for CR. */
35802 if (format == 1 && regno == CR2_REGNO)
35803 return 64;
35804 if (CR_REGNO_P (regno))
35805 return regno - CR0_REGNO + 86;
35806 if (regno == CA_REGNO)
35807 return 101; /* XER */
35808 if (ALTIVEC_REGNO_P (regno))
35809 return regno - FIRST_ALTIVEC_REGNO + 1124;
35810 if (regno == VRSAVE_REGNO)
35811 return 356;
35812 if (regno == VSCR_REGNO)
35813 return 67;
35814 #endif
35815 return regno;
35818 /* target hook eh_return_filter_mode */
35819 static scalar_int_mode
35820 rs6000_eh_return_filter_mode (void)
35822 return TARGET_32BIT ? SImode : word_mode;
35825 /* Target hook for translate_mode_attribute. */
35826 static machine_mode
35827 rs6000_translate_mode_attribute (machine_mode mode)
35829 if ((FLOAT128_IEEE_P (mode)
35830 && ieee128_float_type_node == long_double_type_node)
35831 || (FLOAT128_IBM_P (mode)
35832 && ibm128_float_type_node == long_double_type_node))
35833 return COMPLEX_MODE_P (mode) ? E_TCmode : E_TFmode;
35834 return mode;
35837 /* Target hook for scalar_mode_supported_p. */
35838 static bool
35839 rs6000_scalar_mode_supported_p (scalar_mode mode)
35841 /* -m32 does not support TImode. This is the default, from
35842 default_scalar_mode_supported_p. For -m32 -mpowerpc64 we want the
35843 same ABI as for -m32. But default_scalar_mode_supported_p allows
35844 integer modes of precision 2 * BITS_PER_WORD, which matches TImode
35845 for -mpowerpc64. */
35846 if (TARGET_32BIT && mode == TImode)
35847 return false;
35849 if (DECIMAL_FLOAT_MODE_P (mode))
35850 return default_decimal_float_supported_p ();
35851 else if (TARGET_FLOAT128_TYPE && (mode == KFmode || mode == IFmode))
35852 return true;
35853 else
35854 return default_scalar_mode_supported_p (mode);
35857 /* Target hook for vector_mode_supported_p. */
35858 static bool
35859 rs6000_vector_mode_supported_p (machine_mode mode)
35861 /* There is no vector form for IEEE 128-bit. If we return true for IEEE
35862 128-bit, the compiler might try to widen IEEE 128-bit to IBM
35863 double-double. */
35864 if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode) && !FLOAT128_IEEE_P (mode))
35865 return true;
35867 else
35868 return false;
35871 /* Target hook for floatn_mode. */
35872 static opt_scalar_float_mode
35873 rs6000_floatn_mode (int n, bool extended)
35875 if (extended)
35877 switch (n)
35879 case 32:
35880 return DFmode;
35882 case 64:
35883 if (TARGET_FLOAT128_TYPE)
35884 return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
35885 else
35886 return opt_scalar_float_mode ();
35888 case 128:
35889 return opt_scalar_float_mode ();
35891 default:
35892 /* Those are the only valid _FloatNx types. */
35893 gcc_unreachable ();
35896 else
35898 switch (n)
35900 case 32:
35901 return SFmode;
35903 case 64:
35904 return DFmode;
35906 case 128:
35907 if (TARGET_FLOAT128_TYPE)
35908 return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
35909 else
35910 return opt_scalar_float_mode ();
35912 default:
35913 return opt_scalar_float_mode ();
35919 /* Target hook for c_mode_for_suffix. */
35920 static machine_mode
35921 rs6000_c_mode_for_suffix (char suffix)
35923 if (TARGET_FLOAT128_TYPE)
35925 if (suffix == 'q' || suffix == 'Q')
35926 return (FLOAT128_IEEE_P (TFmode)) ? TFmode : KFmode;
35928 /* At the moment, we are not defining a suffix for IBM extended double.
35929 If/when the default for -mabi=ieeelongdouble is changed, and we want
35930 to support __ibm128 constants in legacy library code, we may need to
35931 re-evalaute this decision. Currently, c-lex.c only supports 'w' and
35932 'q' as machine dependent suffixes. The x86_64 port uses 'w' for
35933 __float80 constants. */
35936 return VOIDmode;
35939 /* Target hook for invalid_arg_for_unprototyped_fn. */
35940 static const char *
35941 invalid_arg_for_unprototyped_fn (const_tree typelist, const_tree funcdecl, const_tree val)
35943 return (!rs6000_darwin64_abi
35944 && typelist == 0
35945 && TREE_CODE (TREE_TYPE (val)) == VECTOR_TYPE
35946 && (funcdecl == NULL_TREE
35947 || (TREE_CODE (funcdecl) == FUNCTION_DECL
35948 && DECL_BUILT_IN_CLASS (funcdecl) != BUILT_IN_MD)))
35949 ? N_("AltiVec argument passed to unprototyped function")
35950 : NULL;
35953 /* For TARGET_SECURE_PLT 32-bit PIC code we can save PIC register
35954 setup by using __stack_chk_fail_local hidden function instead of
35955 calling __stack_chk_fail directly. Otherwise it is better to call
35956 __stack_chk_fail directly. */
35958 static tree ATTRIBUTE_UNUSED
35959 rs6000_stack_protect_fail (void)
35961 return (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
35962 ? default_hidden_stack_protect_fail ()
35963 : default_external_stack_protect_fail ();
35966 /* Implement the TARGET_ASAN_SHADOW_OFFSET hook. */
35968 #if TARGET_ELF
35969 static unsigned HOST_WIDE_INT
35970 rs6000_asan_shadow_offset (void)
35972 return (unsigned HOST_WIDE_INT) 1 << (TARGET_64BIT ? 41 : 29);
35974 #endif
35976 /* Mask options that we want to support inside of attribute((target)) and
35977 #pragma GCC target operations. Note, we do not include things like
35978 64/32-bit, endianness, hard/soft floating point, etc. that would have
35979 different calling sequences. */
35981 struct rs6000_opt_mask {
35982 const char *name; /* option name */
35983 HOST_WIDE_INT mask; /* mask to set */
35984 bool invert; /* invert sense of mask */
35985 bool valid_target; /* option is a target option */
35988 static struct rs6000_opt_mask const rs6000_opt_masks[] =
35990 { "altivec", OPTION_MASK_ALTIVEC, false, true },
35991 { "cmpb", OPTION_MASK_CMPB, false, true },
35992 { "crypto", OPTION_MASK_CRYPTO, false, true },
35993 { "direct-move", OPTION_MASK_DIRECT_MOVE, false, true },
35994 { "dlmzb", OPTION_MASK_DLMZB, false, true },
35995 { "efficient-unaligned-vsx", OPTION_MASK_EFFICIENT_UNALIGNED_VSX,
35996 false, true },
35997 { "float128", OPTION_MASK_FLOAT128_KEYWORD, false, true },
35998 { "float128-hardware", OPTION_MASK_FLOAT128_HW, false, true },
35999 { "fprnd", OPTION_MASK_FPRND, false, true },
36000 { "hard-dfp", OPTION_MASK_DFP, false, true },
36001 { "htm", OPTION_MASK_HTM, false, true },
36002 { "isel", OPTION_MASK_ISEL, false, true },
36003 { "mfcrf", OPTION_MASK_MFCRF, false, true },
36004 { "mfpgpr", OPTION_MASK_MFPGPR, false, true },
36005 { "modulo", OPTION_MASK_MODULO, false, true },
36006 { "mulhw", OPTION_MASK_MULHW, false, true },
36007 { "multiple", OPTION_MASK_MULTIPLE, false, true },
36008 { "popcntb", OPTION_MASK_POPCNTB, false, true },
36009 { "popcntd", OPTION_MASK_POPCNTD, false, true },
36010 { "power8-fusion", OPTION_MASK_P8_FUSION, false, true },
36011 { "power8-fusion-sign", OPTION_MASK_P8_FUSION_SIGN, false, true },
36012 { "power8-vector", OPTION_MASK_P8_VECTOR, false, true },
36013 { "power9-fusion", OPTION_MASK_P9_FUSION, false, true },
36014 { "power9-minmax", OPTION_MASK_P9_MINMAX, false, true },
36015 { "power9-misc", OPTION_MASK_P9_MISC, false, true },
36016 { "power9-vector", OPTION_MASK_P9_VECTOR, false, true },
36017 { "powerpc-gfxopt", OPTION_MASK_PPC_GFXOPT, false, true },
36018 { "powerpc-gpopt", OPTION_MASK_PPC_GPOPT, false, true },
36019 { "quad-memory", OPTION_MASK_QUAD_MEMORY, false, true },
36020 { "quad-memory-atomic", OPTION_MASK_QUAD_MEMORY_ATOMIC, false, true },
36021 { "recip-precision", OPTION_MASK_RECIP_PRECISION, false, true },
36022 { "save-toc-indirect", OPTION_MASK_SAVE_TOC_INDIRECT, false, true },
36023 { "string", 0, false, true },
36024 { "update", OPTION_MASK_NO_UPDATE, true , true },
36025 { "vsx", OPTION_MASK_VSX, false, true },
36026 #ifdef OPTION_MASK_64BIT
36027 #if TARGET_AIX_OS
36028 { "aix64", OPTION_MASK_64BIT, false, false },
36029 { "aix32", OPTION_MASK_64BIT, true, false },
36030 #else
36031 { "64", OPTION_MASK_64BIT, false, false },
36032 { "32", OPTION_MASK_64BIT, true, false },
36033 #endif
36034 #endif
36035 #ifdef OPTION_MASK_EABI
36036 { "eabi", OPTION_MASK_EABI, false, false },
36037 #endif
36038 #ifdef OPTION_MASK_LITTLE_ENDIAN
36039 { "little", OPTION_MASK_LITTLE_ENDIAN, false, false },
36040 { "big", OPTION_MASK_LITTLE_ENDIAN, true, false },
36041 #endif
36042 #ifdef OPTION_MASK_RELOCATABLE
36043 { "relocatable", OPTION_MASK_RELOCATABLE, false, false },
36044 #endif
36045 #ifdef OPTION_MASK_STRICT_ALIGN
36046 { "strict-align", OPTION_MASK_STRICT_ALIGN, false, false },
36047 #endif
36048 { "soft-float", OPTION_MASK_SOFT_FLOAT, false, false },
36049 { "string", 0, false, false },
36052 /* Builtin mask mapping for printing the flags. */
36053 static struct rs6000_opt_mask const rs6000_builtin_mask_names[] =
36055 { "altivec", RS6000_BTM_ALTIVEC, false, false },
36056 { "vsx", RS6000_BTM_VSX, false, false },
36057 { "fre", RS6000_BTM_FRE, false, false },
36058 { "fres", RS6000_BTM_FRES, false, false },
36059 { "frsqrte", RS6000_BTM_FRSQRTE, false, false },
36060 { "frsqrtes", RS6000_BTM_FRSQRTES, false, false },
36061 { "popcntd", RS6000_BTM_POPCNTD, false, false },
36062 { "cell", RS6000_BTM_CELL, false, false },
36063 { "power8-vector", RS6000_BTM_P8_VECTOR, false, false },
36064 { "power9-vector", RS6000_BTM_P9_VECTOR, false, false },
36065 { "power9-misc", RS6000_BTM_P9_MISC, false, false },
36066 { "crypto", RS6000_BTM_CRYPTO, false, false },
36067 { "htm", RS6000_BTM_HTM, false, false },
36068 { "hard-dfp", RS6000_BTM_DFP, false, false },
36069 { "hard-float", RS6000_BTM_HARD_FLOAT, false, false },
36070 { "long-double-128", RS6000_BTM_LDBL128, false, false },
36071 { "powerpc64", RS6000_BTM_POWERPC64, false, false },
36072 { "float128", RS6000_BTM_FLOAT128, false, false },
36073 { "float128-hw", RS6000_BTM_FLOAT128_HW,false, false },
36076 /* Option variables that we want to support inside attribute((target)) and
36077 #pragma GCC target operations. */
36079 struct rs6000_opt_var {
36080 const char *name; /* option name */
36081 size_t global_offset; /* offset of the option in global_options. */
36082 size_t target_offset; /* offset of the option in target options. */
36085 static struct rs6000_opt_var const rs6000_opt_vars[] =
36087 { "friz",
36088 offsetof (struct gcc_options, x_TARGET_FRIZ),
36089 offsetof (struct cl_target_option, x_TARGET_FRIZ), },
36090 { "avoid-indexed-addresses",
36091 offsetof (struct gcc_options, x_TARGET_AVOID_XFORM),
36092 offsetof (struct cl_target_option, x_TARGET_AVOID_XFORM) },
36093 { "longcall",
36094 offsetof (struct gcc_options, x_rs6000_default_long_calls),
36095 offsetof (struct cl_target_option, x_rs6000_default_long_calls), },
36096 { "optimize-swaps",
36097 offsetof (struct gcc_options, x_rs6000_optimize_swaps),
36098 offsetof (struct cl_target_option, x_rs6000_optimize_swaps), },
36099 { "allow-movmisalign",
36100 offsetof (struct gcc_options, x_TARGET_ALLOW_MOVMISALIGN),
36101 offsetof (struct cl_target_option, x_TARGET_ALLOW_MOVMISALIGN), },
36102 { "sched-groups",
36103 offsetof (struct gcc_options, x_TARGET_SCHED_GROUPS),
36104 offsetof (struct cl_target_option, x_TARGET_SCHED_GROUPS), },
36105 { "always-hint",
36106 offsetof (struct gcc_options, x_TARGET_ALWAYS_HINT),
36107 offsetof (struct cl_target_option, x_TARGET_ALWAYS_HINT), },
36108 { "align-branch-targets",
36109 offsetof (struct gcc_options, x_TARGET_ALIGN_BRANCH_TARGETS),
36110 offsetof (struct cl_target_option, x_TARGET_ALIGN_BRANCH_TARGETS), },
36111 { "tls-markers",
36112 offsetof (struct gcc_options, x_tls_markers),
36113 offsetof (struct cl_target_option, x_tls_markers), },
36114 { "sched-prolog",
36115 offsetof (struct gcc_options, x_TARGET_SCHED_PROLOG),
36116 offsetof (struct cl_target_option, x_TARGET_SCHED_PROLOG), },
36117 { "sched-epilog",
36118 offsetof (struct gcc_options, x_TARGET_SCHED_PROLOG),
36119 offsetof (struct cl_target_option, x_TARGET_SCHED_PROLOG), },
36120 { "speculate-indirect-jumps",
36121 offsetof (struct gcc_options, x_rs6000_speculate_indirect_jumps),
36122 offsetof (struct cl_target_option, x_rs6000_speculate_indirect_jumps), },
36125 /* Inner function to handle attribute((target("..."))) and #pragma GCC target
36126 parsing. Return true if there were no errors. */
36128 static bool
36129 rs6000_inner_target_options (tree args, bool attr_p)
36131 bool ret = true;
36133 if (args == NULL_TREE)
36136 else if (TREE_CODE (args) == STRING_CST)
36138 char *p = ASTRDUP (TREE_STRING_POINTER (args));
36139 char *q;
36141 while ((q = strtok (p, ",")) != NULL)
36143 bool error_p = false;
36144 bool not_valid_p = false;
36145 const char *cpu_opt = NULL;
36147 p = NULL;
36148 if (strncmp (q, "cpu=", 4) == 0)
36150 int cpu_index = rs6000_cpu_name_lookup (q+4);
36151 if (cpu_index >= 0)
36152 rs6000_cpu_index = cpu_index;
36153 else
36155 error_p = true;
36156 cpu_opt = q+4;
36159 else if (strncmp (q, "tune=", 5) == 0)
36161 int tune_index = rs6000_cpu_name_lookup (q+5);
36162 if (tune_index >= 0)
36163 rs6000_tune_index = tune_index;
36164 else
36166 error_p = true;
36167 cpu_opt = q+5;
36170 else
36172 size_t i;
36173 bool invert = false;
36174 char *r = q;
36176 error_p = true;
36177 if (strncmp (r, "no-", 3) == 0)
36179 invert = true;
36180 r += 3;
36183 for (i = 0; i < ARRAY_SIZE (rs6000_opt_masks); i++)
36184 if (strcmp (r, rs6000_opt_masks[i].name) == 0)
36186 HOST_WIDE_INT mask = rs6000_opt_masks[i].mask;
36188 if (!rs6000_opt_masks[i].valid_target)
36189 not_valid_p = true;
36190 else
36192 error_p = false;
36193 rs6000_isa_flags_explicit |= mask;
36195 /* VSX needs altivec, so -mvsx automagically sets
36196 altivec and disables -mavoid-indexed-addresses. */
36197 if (!invert)
36199 if (mask == OPTION_MASK_VSX)
36201 mask |= OPTION_MASK_ALTIVEC;
36202 TARGET_AVOID_XFORM = 0;
36206 if (rs6000_opt_masks[i].invert)
36207 invert = !invert;
36209 if (invert)
36210 rs6000_isa_flags &= ~mask;
36211 else
36212 rs6000_isa_flags |= mask;
36214 break;
36217 if (error_p && !not_valid_p)
36219 for (i = 0; i < ARRAY_SIZE (rs6000_opt_vars); i++)
36220 if (strcmp (r, rs6000_opt_vars[i].name) == 0)
36222 size_t j = rs6000_opt_vars[i].global_offset;
36223 *((int *) ((char *)&global_options + j)) = !invert;
36224 error_p = false;
36225 not_valid_p = false;
36226 break;
36231 if (error_p)
36233 const char *eprefix, *esuffix;
36235 ret = false;
36236 if (attr_p)
36238 eprefix = "__attribute__((__target__(";
36239 esuffix = ")))";
36241 else
36243 eprefix = "#pragma GCC target ";
36244 esuffix = "";
36247 if (cpu_opt)
36248 error ("invalid cpu %qs for %s%qs%s", cpu_opt, eprefix,
36249 q, esuffix);
36250 else if (not_valid_p)
36251 error ("%s%qs%s is not allowed", eprefix, q, esuffix);
36252 else
36253 error ("%s%qs%s is invalid", eprefix, q, esuffix);
36258 else if (TREE_CODE (args) == TREE_LIST)
36262 tree value = TREE_VALUE (args);
36263 if (value)
36265 bool ret2 = rs6000_inner_target_options (value, attr_p);
36266 if (!ret2)
36267 ret = false;
36269 args = TREE_CHAIN (args);
36271 while (args != NULL_TREE);
36274 else
36276 error ("attribute %<target%> argument not a string");
36277 return false;
36280 return ret;
36283 /* Print out the target options as a list for -mdebug=target. */
36285 static void
36286 rs6000_debug_target_options (tree args, const char *prefix)
36288 if (args == NULL_TREE)
36289 fprintf (stderr, "%s<NULL>", prefix);
36291 else if (TREE_CODE (args) == STRING_CST)
36293 char *p = ASTRDUP (TREE_STRING_POINTER (args));
36294 char *q;
36296 while ((q = strtok (p, ",")) != NULL)
36298 p = NULL;
36299 fprintf (stderr, "%s\"%s\"", prefix, q);
36300 prefix = ", ";
36304 else if (TREE_CODE (args) == TREE_LIST)
36308 tree value = TREE_VALUE (args);
36309 if (value)
36311 rs6000_debug_target_options (value, prefix);
36312 prefix = ", ";
36314 args = TREE_CHAIN (args);
36316 while (args != NULL_TREE);
36319 else
36320 gcc_unreachable ();
36322 return;
36326 /* Hook to validate attribute((target("..."))). */
36328 static bool
36329 rs6000_valid_attribute_p (tree fndecl,
36330 tree ARG_UNUSED (name),
36331 tree args,
36332 int flags)
36334 struct cl_target_option cur_target;
36335 bool ret;
36336 tree old_optimize;
36337 tree new_target, new_optimize;
36338 tree func_optimize;
36340 gcc_assert ((fndecl != NULL_TREE) && (args != NULL_TREE));
36342 if (TARGET_DEBUG_TARGET)
36344 tree tname = DECL_NAME (fndecl);
36345 fprintf (stderr, "\n==================== rs6000_valid_attribute_p:\n");
36346 if (tname)
36347 fprintf (stderr, "function: %.*s\n",
36348 (int) IDENTIFIER_LENGTH (tname),
36349 IDENTIFIER_POINTER (tname));
36350 else
36351 fprintf (stderr, "function: unknown\n");
36353 fprintf (stderr, "args:");
36354 rs6000_debug_target_options (args, " ");
36355 fprintf (stderr, "\n");
36357 if (flags)
36358 fprintf (stderr, "flags: 0x%x\n", flags);
36360 fprintf (stderr, "--------------------\n");
36363 /* attribute((target("default"))) does nothing, beyond
36364 affecting multi-versioning. */
36365 if (TREE_VALUE (args)
36366 && TREE_CODE (TREE_VALUE (args)) == STRING_CST
36367 && TREE_CHAIN (args) == NULL_TREE
36368 && strcmp (TREE_STRING_POINTER (TREE_VALUE (args)), "default") == 0)
36369 return true;
36371 old_optimize = build_optimization_node (&global_options);
36372 func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl);
36374 /* If the function changed the optimization levels as well as setting target
36375 options, start with the optimizations specified. */
36376 if (func_optimize && func_optimize != old_optimize)
36377 cl_optimization_restore (&global_options,
36378 TREE_OPTIMIZATION (func_optimize));
36380 /* The target attributes may also change some optimization flags, so update
36381 the optimization options if necessary. */
36382 cl_target_option_save (&cur_target, &global_options);
36383 rs6000_cpu_index = rs6000_tune_index = -1;
36384 ret = rs6000_inner_target_options (args, true);
36386 /* Set up any additional state. */
36387 if (ret)
36389 ret = rs6000_option_override_internal (false);
36390 new_target = build_target_option_node (&global_options);
36392 else
36393 new_target = NULL;
36395 new_optimize = build_optimization_node (&global_options);
36397 if (!new_target)
36398 ret = false;
36400 else if (fndecl)
36402 DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target;
36404 if (old_optimize != new_optimize)
36405 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize;
36408 cl_target_option_restore (&global_options, &cur_target);
36410 if (old_optimize != new_optimize)
36411 cl_optimization_restore (&global_options,
36412 TREE_OPTIMIZATION (old_optimize));
36414 return ret;
36418 /* Hook to validate the current #pragma GCC target and set the state, and
36419 update the macros based on what was changed. If ARGS is NULL, then
36420 POP_TARGET is used to reset the options. */
36422 bool
36423 rs6000_pragma_target_parse (tree args, tree pop_target)
36425 tree prev_tree = build_target_option_node (&global_options);
36426 tree cur_tree;
36427 struct cl_target_option *prev_opt, *cur_opt;
36428 HOST_WIDE_INT prev_flags, cur_flags, diff_flags;
36429 HOST_WIDE_INT prev_bumask, cur_bumask, diff_bumask;
36431 if (TARGET_DEBUG_TARGET)
36433 fprintf (stderr, "\n==================== rs6000_pragma_target_parse\n");
36434 fprintf (stderr, "args:");
36435 rs6000_debug_target_options (args, " ");
36436 fprintf (stderr, "\n");
36438 if (pop_target)
36440 fprintf (stderr, "pop_target:\n");
36441 debug_tree (pop_target);
36443 else
36444 fprintf (stderr, "pop_target: <NULL>\n");
36446 fprintf (stderr, "--------------------\n");
36449 if (! args)
36451 cur_tree = ((pop_target)
36452 ? pop_target
36453 : target_option_default_node);
36454 cl_target_option_restore (&global_options,
36455 TREE_TARGET_OPTION (cur_tree));
36457 else
36459 rs6000_cpu_index = rs6000_tune_index = -1;
36460 if (!rs6000_inner_target_options (args, false)
36461 || !rs6000_option_override_internal (false)
36462 || (cur_tree = build_target_option_node (&global_options))
36463 == NULL_TREE)
36465 if (TARGET_DEBUG_BUILTIN || TARGET_DEBUG_TARGET)
36466 fprintf (stderr, "invalid pragma\n");
36468 return false;
36472 target_option_current_node = cur_tree;
36473 rs6000_activate_target_options (target_option_current_node);
36475 /* If we have the preprocessor linked in (i.e. C or C++ languages), possibly
36476 change the macros that are defined. */
36477 if (rs6000_target_modify_macros_ptr)
36479 prev_opt = TREE_TARGET_OPTION (prev_tree);
36480 prev_bumask = prev_opt->x_rs6000_builtin_mask;
36481 prev_flags = prev_opt->x_rs6000_isa_flags;
36483 cur_opt = TREE_TARGET_OPTION (cur_tree);
36484 cur_flags = cur_opt->x_rs6000_isa_flags;
36485 cur_bumask = cur_opt->x_rs6000_builtin_mask;
36487 diff_bumask = (prev_bumask ^ cur_bumask);
36488 diff_flags = (prev_flags ^ cur_flags);
36490 if ((diff_flags != 0) || (diff_bumask != 0))
36492 /* Delete old macros. */
36493 rs6000_target_modify_macros_ptr (false,
36494 prev_flags & diff_flags,
36495 prev_bumask & diff_bumask);
36497 /* Define new macros. */
36498 rs6000_target_modify_macros_ptr (true,
36499 cur_flags & diff_flags,
36500 cur_bumask & diff_bumask);
36504 return true;
36508 /* Remember the last target of rs6000_set_current_function. */
36509 static GTY(()) tree rs6000_previous_fndecl;
36511 /* Restore target's globals from NEW_TREE and invalidate the
36512 rs6000_previous_fndecl cache. */
36514 void
36515 rs6000_activate_target_options (tree new_tree)
36517 cl_target_option_restore (&global_options, TREE_TARGET_OPTION (new_tree));
36518 if (TREE_TARGET_GLOBALS (new_tree))
36519 restore_target_globals (TREE_TARGET_GLOBALS (new_tree));
36520 else if (new_tree == target_option_default_node)
36521 restore_target_globals (&default_target_globals);
36522 else
36523 TREE_TARGET_GLOBALS (new_tree) = save_target_globals_default_opts ();
36524 rs6000_previous_fndecl = NULL_TREE;
36527 /* Establish appropriate back-end context for processing the function
36528 FNDECL. The argument might be NULL to indicate processing at top
36529 level, outside of any function scope. */
36530 static void
36531 rs6000_set_current_function (tree fndecl)
36533 if (TARGET_DEBUG_TARGET)
36535 fprintf (stderr, "\n==================== rs6000_set_current_function");
36537 if (fndecl)
36538 fprintf (stderr, ", fndecl %s (%p)",
36539 (DECL_NAME (fndecl)
36540 ? IDENTIFIER_POINTER (DECL_NAME (fndecl))
36541 : "<unknown>"), (void *)fndecl);
36543 if (rs6000_previous_fndecl)
36544 fprintf (stderr, ", prev_fndecl (%p)", (void *)rs6000_previous_fndecl);
36546 fprintf (stderr, "\n");
36549 /* Only change the context if the function changes. This hook is called
36550 several times in the course of compiling a function, and we don't want to
36551 slow things down too much or call target_reinit when it isn't safe. */
36552 if (fndecl == rs6000_previous_fndecl)
36553 return;
36555 tree old_tree;
36556 if (rs6000_previous_fndecl == NULL_TREE)
36557 old_tree = target_option_current_node;
36558 else if (DECL_FUNCTION_SPECIFIC_TARGET (rs6000_previous_fndecl))
36559 old_tree = DECL_FUNCTION_SPECIFIC_TARGET (rs6000_previous_fndecl);
36560 else
36561 old_tree = target_option_default_node;
36563 tree new_tree;
36564 if (fndecl == NULL_TREE)
36566 if (old_tree != target_option_current_node)
36567 new_tree = target_option_current_node;
36568 else
36569 new_tree = NULL_TREE;
36571 else
36573 new_tree = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);
36574 if (new_tree == NULL_TREE)
36575 new_tree = target_option_default_node;
36578 if (TARGET_DEBUG_TARGET)
36580 if (new_tree)
36582 fprintf (stderr, "\nnew fndecl target specific options:\n");
36583 debug_tree (new_tree);
36586 if (old_tree)
36588 fprintf (stderr, "\nold fndecl target specific options:\n");
36589 debug_tree (old_tree);
36592 if (old_tree != NULL_TREE || new_tree != NULL_TREE)
36593 fprintf (stderr, "--------------------\n");
36596 if (new_tree && old_tree != new_tree)
36597 rs6000_activate_target_options (new_tree);
36599 if (fndecl)
36600 rs6000_previous_fndecl = fndecl;
36604 /* Save the current options */
36606 static void
36607 rs6000_function_specific_save (struct cl_target_option *ptr,
36608 struct gcc_options *opts)
36610 ptr->x_rs6000_isa_flags = opts->x_rs6000_isa_flags;
36611 ptr->x_rs6000_isa_flags_explicit = opts->x_rs6000_isa_flags_explicit;
36614 /* Restore the current options */
36616 static void
36617 rs6000_function_specific_restore (struct gcc_options *opts,
36618 struct cl_target_option *ptr)
36621 opts->x_rs6000_isa_flags = ptr->x_rs6000_isa_flags;
36622 opts->x_rs6000_isa_flags_explicit = ptr->x_rs6000_isa_flags_explicit;
36623 (void) rs6000_option_override_internal (false);
36626 /* Print the current options */
36628 static void
36629 rs6000_function_specific_print (FILE *file, int indent,
36630 struct cl_target_option *ptr)
36632 rs6000_print_isa_options (file, indent, "Isa options set",
36633 ptr->x_rs6000_isa_flags);
36635 rs6000_print_isa_options (file, indent, "Isa options explicit",
36636 ptr->x_rs6000_isa_flags_explicit);
36639 /* Helper function to print the current isa or misc options on a line. */
36641 static void
36642 rs6000_print_options_internal (FILE *file,
36643 int indent,
36644 const char *string,
36645 HOST_WIDE_INT flags,
36646 const char *prefix,
36647 const struct rs6000_opt_mask *opts,
36648 size_t num_elements)
36650 size_t i;
36651 size_t start_column = 0;
36652 size_t cur_column;
36653 size_t max_column = 120;
36654 size_t prefix_len = strlen (prefix);
36655 size_t comma_len = 0;
36656 const char *comma = "";
36658 if (indent)
36659 start_column += fprintf (file, "%*s", indent, "");
36661 if (!flags)
36663 fprintf (stderr, DEBUG_FMT_S, string, "<none>");
36664 return;
36667 start_column += fprintf (stderr, DEBUG_FMT_WX, string, flags);
36669 /* Print the various mask options. */
36670 cur_column = start_column;
36671 for (i = 0; i < num_elements; i++)
36673 bool invert = opts[i].invert;
36674 const char *name = opts[i].name;
36675 const char *no_str = "";
36676 HOST_WIDE_INT mask = opts[i].mask;
36677 size_t len = comma_len + prefix_len + strlen (name);
36679 if (!invert)
36681 if ((flags & mask) == 0)
36683 no_str = "no-";
36684 len += sizeof ("no-") - 1;
36687 flags &= ~mask;
36690 else
36692 if ((flags & mask) != 0)
36694 no_str = "no-";
36695 len += sizeof ("no-") - 1;
36698 flags |= mask;
36701 cur_column += len;
36702 if (cur_column > max_column)
36704 fprintf (stderr, ", \\\n%*s", (int)start_column, "");
36705 cur_column = start_column + len;
36706 comma = "";
36709 fprintf (file, "%s%s%s%s", comma, prefix, no_str, name);
36710 comma = ", ";
36711 comma_len = sizeof (", ") - 1;
36714 fputs ("\n", file);
36717 /* Helper function to print the current isa options on a line. */
36719 static void
36720 rs6000_print_isa_options (FILE *file, int indent, const char *string,
36721 HOST_WIDE_INT flags)
36723 rs6000_print_options_internal (file, indent, string, flags, "-m",
36724 &rs6000_opt_masks[0],
36725 ARRAY_SIZE (rs6000_opt_masks));
36728 static void
36729 rs6000_print_builtin_options (FILE *file, int indent, const char *string,
36730 HOST_WIDE_INT flags)
36732 rs6000_print_options_internal (file, indent, string, flags, "",
36733 &rs6000_builtin_mask_names[0],
36734 ARRAY_SIZE (rs6000_builtin_mask_names));
36737 /* If the user used -mno-vsx, we need turn off all of the implicit ISA 2.06,
36738 2.07, and 3.0 options that relate to the vector unit (-mdirect-move,
36739 -mupper-regs-df, etc.).
36741 If the user used -mno-power8-vector, we need to turn off all of the implicit
36742 ISA 2.07 and 3.0 options that relate to the vector unit.
36744 If the user used -mno-power9-vector, we need to turn off all of the implicit
36745 ISA 3.0 options that relate to the vector unit.
36747 This function does not handle explicit options such as the user specifying
36748 -mdirect-move. These are handled in rs6000_option_override_internal, and
36749 the appropriate error is given if needed.
36751 We return a mask of all of the implicit options that should not be enabled
36752 by default. */
36754 static HOST_WIDE_INT
36755 rs6000_disable_incompatible_switches (void)
36757 HOST_WIDE_INT ignore_masks = rs6000_isa_flags_explicit;
36758 size_t i, j;
36760 static const struct {
36761 const HOST_WIDE_INT no_flag; /* flag explicitly turned off. */
36762 const HOST_WIDE_INT dep_flags; /* flags that depend on this option. */
36763 const char *const name; /* name of the switch. */
36764 } flags[] = {
36765 { OPTION_MASK_P9_VECTOR, OTHER_P9_VECTOR_MASKS, "power9-vector" },
36766 { OPTION_MASK_P8_VECTOR, OTHER_P8_VECTOR_MASKS, "power8-vector" },
36767 { OPTION_MASK_VSX, OTHER_VSX_VECTOR_MASKS, "vsx" },
36770 for (i = 0; i < ARRAY_SIZE (flags); i++)
36772 HOST_WIDE_INT no_flag = flags[i].no_flag;
36774 if ((rs6000_isa_flags & no_flag) == 0
36775 && (rs6000_isa_flags_explicit & no_flag) != 0)
36777 HOST_WIDE_INT dep_flags = flags[i].dep_flags;
36778 HOST_WIDE_INT set_flags = (rs6000_isa_flags_explicit
36779 & rs6000_isa_flags
36780 & dep_flags);
36782 if (set_flags)
36784 for (j = 0; j < ARRAY_SIZE (rs6000_opt_masks); j++)
36785 if ((set_flags & rs6000_opt_masks[j].mask) != 0)
36787 set_flags &= ~rs6000_opt_masks[j].mask;
36788 error ("%<-mno-%s%> turns off %<-m%s%>",
36789 flags[i].name,
36790 rs6000_opt_masks[j].name);
36793 gcc_assert (!set_flags);
36796 rs6000_isa_flags &= ~dep_flags;
36797 ignore_masks |= no_flag | dep_flags;
36801 return ignore_masks;
36805 /* Helper function for printing the function name when debugging. */
36807 static const char *
36808 get_decl_name (tree fn)
36810 tree name;
36812 if (!fn)
36813 return "<null>";
36815 name = DECL_NAME (fn);
36816 if (!name)
36817 return "<no-name>";
36819 return IDENTIFIER_POINTER (name);
36822 /* Return the clone id of the target we are compiling code for in a target
36823 clone. The clone id is ordered from 0 (default) to CLONE_MAX-1 and gives
36824 the priority list for the target clones (ordered from lowest to
36825 highest). */
36827 static int
36828 rs6000_clone_priority (tree fndecl)
36830 tree fn_opts = DECL_FUNCTION_SPECIFIC_TARGET (fndecl);
36831 HOST_WIDE_INT isa_masks;
36832 int ret = CLONE_DEFAULT;
36833 tree attrs = lookup_attribute ("target", DECL_ATTRIBUTES (fndecl));
36834 const char *attrs_str = NULL;
36836 attrs = TREE_VALUE (TREE_VALUE (attrs));
36837 attrs_str = TREE_STRING_POINTER (attrs);
36839 /* Return priority zero for default function. Return the ISA needed for the
36840 function if it is not the default. */
36841 if (strcmp (attrs_str, "default") != 0)
36843 if (fn_opts == NULL_TREE)
36844 fn_opts = target_option_default_node;
36846 if (!fn_opts || !TREE_TARGET_OPTION (fn_opts))
36847 isa_masks = rs6000_isa_flags;
36848 else
36849 isa_masks = TREE_TARGET_OPTION (fn_opts)->x_rs6000_isa_flags;
36851 for (ret = CLONE_MAX - 1; ret != 0; ret--)
36852 if ((rs6000_clone_map[ret].isa_mask & isa_masks) != 0)
36853 break;
36856 if (TARGET_DEBUG_TARGET)
36857 fprintf (stderr, "rs6000_get_function_version_priority (%s) => %d\n",
36858 get_decl_name (fndecl), ret);
36860 return ret;
36863 /* This compares the priority of target features in function DECL1 and DECL2.
36864 It returns positive value if DECL1 is higher priority, negative value if
36865 DECL2 is higher priority and 0 if they are the same. Note, priorities are
36866 ordered from lowest (CLONE_DEFAULT) to highest (currently CLONE_ISA_3_0). */
36868 static int
36869 rs6000_compare_version_priority (tree decl1, tree decl2)
36871 int priority1 = rs6000_clone_priority (decl1);
36872 int priority2 = rs6000_clone_priority (decl2);
36873 int ret = priority1 - priority2;
36875 if (TARGET_DEBUG_TARGET)
36876 fprintf (stderr, "rs6000_compare_version_priority (%s, %s) => %d\n",
36877 get_decl_name (decl1), get_decl_name (decl2), ret);
36879 return ret;
36882 /* Make a dispatcher declaration for the multi-versioned function DECL.
36883 Calls to DECL function will be replaced with calls to the dispatcher
36884 by the front-end. Returns the decl of the dispatcher function. */
36886 static tree
36887 rs6000_get_function_versions_dispatcher (void *decl)
36889 tree fn = (tree) decl;
36890 struct cgraph_node *node = NULL;
36891 struct cgraph_node *default_node = NULL;
36892 struct cgraph_function_version_info *node_v = NULL;
36893 struct cgraph_function_version_info *first_v = NULL;
36895 tree dispatch_decl = NULL;
36897 struct cgraph_function_version_info *default_version_info = NULL;
36898 gcc_assert (fn != NULL && DECL_FUNCTION_VERSIONED (fn));
36900 if (TARGET_DEBUG_TARGET)
36901 fprintf (stderr, "rs6000_get_function_versions_dispatcher (%s)\n",
36902 get_decl_name (fn));
36904 node = cgraph_node::get (fn);
36905 gcc_assert (node != NULL);
36907 node_v = node->function_version ();
36908 gcc_assert (node_v != NULL);
36910 if (node_v->dispatcher_resolver != NULL)
36911 return node_v->dispatcher_resolver;
36913 /* Find the default version and make it the first node. */
36914 first_v = node_v;
36915 /* Go to the beginning of the chain. */
36916 while (first_v->prev != NULL)
36917 first_v = first_v->prev;
36919 default_version_info = first_v;
36920 while (default_version_info != NULL)
36922 const tree decl2 = default_version_info->this_node->decl;
36923 if (is_function_default_version (decl2))
36924 break;
36925 default_version_info = default_version_info->next;
36928 /* If there is no default node, just return NULL. */
36929 if (default_version_info == NULL)
36930 return NULL;
36932 /* Make default info the first node. */
36933 if (first_v != default_version_info)
36935 default_version_info->prev->next = default_version_info->next;
36936 if (default_version_info->next)
36937 default_version_info->next->prev = default_version_info->prev;
36938 first_v->prev = default_version_info;
36939 default_version_info->next = first_v;
36940 default_version_info->prev = NULL;
36943 default_node = default_version_info->this_node;
36945 #ifndef TARGET_LIBC_PROVIDES_HWCAP_IN_TCB
36946 error_at (DECL_SOURCE_LOCATION (default_node->decl),
36947 "target_clones attribute needs GLIBC (2.23 and newer) that "
36948 "exports hardware capability bits");
36949 #else
36951 if (targetm.has_ifunc_p ())
36953 struct cgraph_function_version_info *it_v = NULL;
36954 struct cgraph_node *dispatcher_node = NULL;
36955 struct cgraph_function_version_info *dispatcher_version_info = NULL;
36957 /* Right now, the dispatching is done via ifunc. */
36958 dispatch_decl = make_dispatcher_decl (default_node->decl);
36960 dispatcher_node = cgraph_node::get_create (dispatch_decl);
36961 gcc_assert (dispatcher_node != NULL);
36962 dispatcher_node->dispatcher_function = 1;
36963 dispatcher_version_info
36964 = dispatcher_node->insert_new_function_version ();
36965 dispatcher_version_info->next = default_version_info;
36966 dispatcher_node->definition = 1;
36968 /* Set the dispatcher for all the versions. */
36969 it_v = default_version_info;
36970 while (it_v != NULL)
36972 it_v->dispatcher_resolver = dispatch_decl;
36973 it_v = it_v->next;
36976 else
36978 error_at (DECL_SOURCE_LOCATION (default_node->decl),
36979 "multiversioning needs ifunc which is not supported "
36980 "on this target");
36982 #endif
36984 return dispatch_decl;
36987 /* Make the resolver function decl to dispatch the versions of a multi-
36988 versioned function, DEFAULT_DECL. Create an empty basic block in the
36989 resolver and store the pointer in EMPTY_BB. Return the decl of the resolver
36990 function. */
36992 static tree
36993 make_resolver_func (const tree default_decl,
36994 const tree dispatch_decl,
36995 basic_block *empty_bb)
36997 /* Make the resolver function static. The resolver function returns
36998 void *. */
36999 tree decl_name = clone_function_name (default_decl, "resolver");
37000 const char *resolver_name = IDENTIFIER_POINTER (decl_name);
37001 tree type = build_function_type_list (ptr_type_node, NULL_TREE);
37002 tree decl = build_fn_decl (resolver_name, type);
37003 SET_DECL_ASSEMBLER_NAME (decl, decl_name);
37005 DECL_NAME (decl) = decl_name;
37006 TREE_USED (decl) = 1;
37007 DECL_ARTIFICIAL (decl) = 1;
37008 DECL_IGNORED_P (decl) = 0;
37009 TREE_PUBLIC (decl) = 0;
37010 DECL_UNINLINABLE (decl) = 1;
37012 /* Resolver is not external, body is generated. */
37013 DECL_EXTERNAL (decl) = 0;
37014 DECL_EXTERNAL (dispatch_decl) = 0;
37016 DECL_CONTEXT (decl) = NULL_TREE;
37017 DECL_INITIAL (decl) = make_node (BLOCK);
37018 DECL_STATIC_CONSTRUCTOR (decl) = 0;
37020 /* Build result decl and add to function_decl. */
37021 tree t = build_decl (UNKNOWN_LOCATION, RESULT_DECL, NULL_TREE, ptr_type_node);
37022 DECL_ARTIFICIAL (t) = 1;
37023 DECL_IGNORED_P (t) = 1;
37024 DECL_RESULT (decl) = t;
37026 gimplify_function_tree (decl);
37027 push_cfun (DECL_STRUCT_FUNCTION (decl));
37028 *empty_bb = init_lowered_empty_function (decl, false,
37029 profile_count::uninitialized ());
37031 cgraph_node::add_new_function (decl, true);
37032 symtab->call_cgraph_insertion_hooks (cgraph_node::get_create (decl));
37034 pop_cfun ();
37036 /* Mark dispatch_decl as "ifunc" with resolver as resolver_name. */
37037 DECL_ATTRIBUTES (dispatch_decl)
37038 = make_attribute ("ifunc", resolver_name, DECL_ATTRIBUTES (dispatch_decl));
37040 cgraph_node::create_same_body_alias (dispatch_decl, decl);
37042 return decl;
37045 /* This adds a condition to the basic_block NEW_BB in function FUNCTION_DECL to
37046 return a pointer to VERSION_DECL if we are running on a machine that
37047 supports the index CLONE_ISA hardware architecture bits. This function will
37048 be called during version dispatch to decide which function version to
37049 execute. It returns the basic block at the end, to which more conditions
37050 can be added. */
37052 static basic_block
37053 add_condition_to_bb (tree function_decl, tree version_decl,
37054 int clone_isa, basic_block new_bb)
37056 push_cfun (DECL_STRUCT_FUNCTION (function_decl));
37058 gcc_assert (new_bb != NULL);
37059 gimple_seq gseq = bb_seq (new_bb);
37062 tree convert_expr = build1 (CONVERT_EXPR, ptr_type_node,
37063 build_fold_addr_expr (version_decl));
37064 tree result_var = create_tmp_var (ptr_type_node);
37065 gimple *convert_stmt = gimple_build_assign (result_var, convert_expr);
37066 gimple *return_stmt = gimple_build_return (result_var);
37068 if (clone_isa == CLONE_DEFAULT)
37070 gimple_seq_add_stmt (&gseq, convert_stmt);
37071 gimple_seq_add_stmt (&gseq, return_stmt);
37072 set_bb_seq (new_bb, gseq);
37073 gimple_set_bb (convert_stmt, new_bb);
37074 gimple_set_bb (return_stmt, new_bb);
37075 pop_cfun ();
37076 return new_bb;
37079 tree bool_zero = build_int_cst (bool_int_type_node, 0);
37080 tree cond_var = create_tmp_var (bool_int_type_node);
37081 tree predicate_decl = rs6000_builtin_decls [(int) RS6000_BUILTIN_CPU_SUPPORTS];
37082 const char *arg_str = rs6000_clone_map[clone_isa].name;
37083 tree predicate_arg = build_string_literal (strlen (arg_str) + 1, arg_str);
37084 gimple *call_cond_stmt = gimple_build_call (predicate_decl, 1, predicate_arg);
37085 gimple_call_set_lhs (call_cond_stmt, cond_var);
37087 gimple_set_block (call_cond_stmt, DECL_INITIAL (function_decl));
37088 gimple_set_bb (call_cond_stmt, new_bb);
37089 gimple_seq_add_stmt (&gseq, call_cond_stmt);
37091 gimple *if_else_stmt = gimple_build_cond (NE_EXPR, cond_var, bool_zero,
37092 NULL_TREE, NULL_TREE);
37093 gimple_set_block (if_else_stmt, DECL_INITIAL (function_decl));
37094 gimple_set_bb (if_else_stmt, new_bb);
37095 gimple_seq_add_stmt (&gseq, if_else_stmt);
37097 gimple_seq_add_stmt (&gseq, convert_stmt);
37098 gimple_seq_add_stmt (&gseq, return_stmt);
37099 set_bb_seq (new_bb, gseq);
37101 basic_block bb1 = new_bb;
37102 edge e12 = split_block (bb1, if_else_stmt);
37103 basic_block bb2 = e12->dest;
37104 e12->flags &= ~EDGE_FALLTHRU;
37105 e12->flags |= EDGE_TRUE_VALUE;
37107 edge e23 = split_block (bb2, return_stmt);
37108 gimple_set_bb (convert_stmt, bb2);
37109 gimple_set_bb (return_stmt, bb2);
37111 basic_block bb3 = e23->dest;
37112 make_edge (bb1, bb3, EDGE_FALSE_VALUE);
37114 remove_edge (e23);
37115 make_edge (bb2, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
37117 pop_cfun ();
37118 return bb3;
37121 /* This function generates the dispatch function for multi-versioned functions.
37122 DISPATCH_DECL is the function which will contain the dispatch logic.
37123 FNDECLS are the function choices for dispatch, and is a tree chain.
37124 EMPTY_BB is the basic block pointer in DISPATCH_DECL in which the dispatch
37125 code is generated. */
37127 static int
37128 dispatch_function_versions (tree dispatch_decl,
37129 void *fndecls_p,
37130 basic_block *empty_bb)
37132 int ix;
37133 tree ele;
37134 vec<tree> *fndecls;
37135 tree clones[CLONE_MAX];
37137 if (TARGET_DEBUG_TARGET)
37138 fputs ("dispatch_function_versions, top\n", stderr);
37140 gcc_assert (dispatch_decl != NULL
37141 && fndecls_p != NULL
37142 && empty_bb != NULL);
37144 /* fndecls_p is actually a vector. */
37145 fndecls = static_cast<vec<tree> *> (fndecls_p);
37147 /* At least one more version other than the default. */
37148 gcc_assert (fndecls->length () >= 2);
37150 /* The first version in the vector is the default decl. */
37151 memset ((void *) clones, '\0', sizeof (clones));
37152 clones[CLONE_DEFAULT] = (*fndecls)[0];
37154 /* On the PowerPC, we do not need to call __builtin_cpu_init, which is a NOP
37155 on the PowerPC (on the x86_64, it is not a NOP). The builtin function
37156 __builtin_cpu_support ensures that the TOC fields are setup by requiring a
37157 recent glibc. If we ever need to call __builtin_cpu_init, we would need
37158 to insert the code here to do the call. */
37160 for (ix = 1; fndecls->iterate (ix, &ele); ++ix)
37162 int priority = rs6000_clone_priority (ele);
37163 if (!clones[priority])
37164 clones[priority] = ele;
37167 for (ix = CLONE_MAX - 1; ix >= 0; ix--)
37168 if (clones[ix])
37170 if (TARGET_DEBUG_TARGET)
37171 fprintf (stderr, "dispatch_function_versions, clone %d, %s\n",
37172 ix, get_decl_name (clones[ix]));
37174 *empty_bb = add_condition_to_bb (dispatch_decl, clones[ix], ix,
37175 *empty_bb);
37178 return 0;
37181 /* Generate the dispatching code body to dispatch multi-versioned function
37182 DECL. The target hook is called to process the "target" attributes and
37183 provide the code to dispatch the right function at run-time. NODE points
37184 to the dispatcher decl whose body will be created. */
37186 static tree
37187 rs6000_generate_version_dispatcher_body (void *node_p)
37189 tree resolver;
37190 basic_block empty_bb;
37191 struct cgraph_node *node = (cgraph_node *) node_p;
37192 struct cgraph_function_version_info *ninfo = node->function_version ();
37194 if (ninfo->dispatcher_resolver)
37195 return ninfo->dispatcher_resolver;
37197 /* node is going to be an alias, so remove the finalized bit. */
37198 node->definition = false;
37200 /* The first version in the chain corresponds to the default version. */
37201 ninfo->dispatcher_resolver = resolver
37202 = make_resolver_func (ninfo->next->this_node->decl, node->decl, &empty_bb);
37204 if (TARGET_DEBUG_TARGET)
37205 fprintf (stderr, "rs6000_get_function_versions_dispatcher, %s\n",
37206 get_decl_name (resolver));
37208 push_cfun (DECL_STRUCT_FUNCTION (resolver));
37209 auto_vec<tree, 2> fn_ver_vec;
37211 for (struct cgraph_function_version_info *vinfo = ninfo->next;
37212 vinfo;
37213 vinfo = vinfo->next)
37215 struct cgraph_node *version = vinfo->this_node;
37216 /* Check for virtual functions here again, as by this time it should
37217 have been determined if this function needs a vtable index or
37218 not. This happens for methods in derived classes that override
37219 virtual methods in base classes but are not explicitly marked as
37220 virtual. */
37221 if (DECL_VINDEX (version->decl))
37222 sorry ("Virtual function multiversioning not supported");
37224 fn_ver_vec.safe_push (version->decl);
37227 dispatch_function_versions (resolver, &fn_ver_vec, &empty_bb);
37228 cgraph_edge::rebuild_edges ();
37229 pop_cfun ();
37230 return resolver;
37234 /* Hook to determine if one function can safely inline another. */
37236 static bool
37237 rs6000_can_inline_p (tree caller, tree callee)
37239 bool ret = false;
37240 tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
37241 tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);
37243 /* If callee has no option attributes, then it is ok to inline. */
37244 if (!callee_tree)
37245 ret = true;
37247 /* If caller has no option attributes, but callee does then it is not ok to
37248 inline. */
37249 else if (!caller_tree)
37250 ret = false;
37252 else
37254 struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree);
37255 struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);
37257 /* Callee's options should a subset of the caller's, i.e. a vsx function
37258 can inline an altivec function but a non-vsx function can't inline a
37259 vsx function. */
37260 if ((caller_opts->x_rs6000_isa_flags & callee_opts->x_rs6000_isa_flags)
37261 == callee_opts->x_rs6000_isa_flags)
37262 ret = true;
37265 if (TARGET_DEBUG_TARGET)
37266 fprintf (stderr, "rs6000_can_inline_p:, caller %s, callee %s, %s inline\n",
37267 get_decl_name (caller), get_decl_name (callee),
37268 (ret ? "can" : "cannot"));
37270 return ret;
37273 /* Allocate a stack temp and fixup the address so it meets the particular
37274 memory requirements (either offetable or REG+REG addressing). */
37277 rs6000_allocate_stack_temp (machine_mode mode,
37278 bool offsettable_p,
37279 bool reg_reg_p)
37281 rtx stack = assign_stack_temp (mode, GET_MODE_SIZE (mode));
37282 rtx addr = XEXP (stack, 0);
37283 int strict_p = reload_completed;
37285 if (!legitimate_indirect_address_p (addr, strict_p))
37287 if (offsettable_p
37288 && !rs6000_legitimate_offset_address_p (mode, addr, strict_p, true))
37289 stack = replace_equiv_address (stack, copy_addr_to_reg (addr));
37291 else if (reg_reg_p && !legitimate_indexed_address_p (addr, strict_p))
37292 stack = replace_equiv_address (stack, copy_addr_to_reg (addr));
37295 return stack;
37298 /* Given a memory reference, if it is not a reg or reg+reg addressing, convert
37299 to such a form to deal with memory reference instructions like STFIWX that
37300 only take reg+reg addressing. */
37303 rs6000_address_for_fpconvert (rtx x)
37305 rtx addr;
37307 gcc_assert (MEM_P (x));
37308 addr = XEXP (x, 0);
37309 if (can_create_pseudo_p ()
37310 && ! legitimate_indirect_address_p (addr, reload_completed)
37311 && ! legitimate_indexed_address_p (addr, reload_completed))
37313 if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
37315 rtx reg = XEXP (addr, 0);
37316 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (x));
37317 rtx size_rtx = GEN_INT ((GET_CODE (addr) == PRE_DEC) ? -size : size);
37318 gcc_assert (REG_P (reg));
37319 emit_insn (gen_add3_insn (reg, reg, size_rtx));
37320 addr = reg;
37322 else if (GET_CODE (addr) == PRE_MODIFY)
37324 rtx reg = XEXP (addr, 0);
37325 rtx expr = XEXP (addr, 1);
37326 gcc_assert (REG_P (reg));
37327 gcc_assert (GET_CODE (expr) == PLUS);
37328 emit_insn (gen_add3_insn (reg, XEXP (expr, 0), XEXP (expr, 1)));
37329 addr = reg;
37332 x = replace_equiv_address (x, copy_addr_to_reg (addr));
37335 return x;
37338 /* Implement TARGET_LEGITIMATE_CONSTANT_P.
37340 On the RS/6000, all integer constants are acceptable, most won't be valid
37341 for particular insns, though. Only easy FP constants are acceptable. */
37343 static bool
37344 rs6000_legitimate_constant_p (machine_mode mode, rtx x)
37346 if (TARGET_ELF && tls_referenced_p (x))
37347 return false;
37349 return ((GET_CODE (x) != CONST_DOUBLE && GET_CODE (x) != CONST_VECTOR)
37350 || GET_MODE (x) == VOIDmode
37351 || (TARGET_POWERPC64 && mode == DImode)
37352 || easy_fp_constant (x, mode)
37353 || easy_vector_constant (x, mode));
37357 /* Return TRUE iff the sequence ending in LAST sets the static chain. */
37359 static bool
37360 chain_already_loaded (rtx_insn *last)
37362 for (; last != NULL; last = PREV_INSN (last))
37364 if (NONJUMP_INSN_P (last))
37366 rtx patt = PATTERN (last);
37368 if (GET_CODE (patt) == SET)
37370 rtx lhs = XEXP (patt, 0);
37372 if (REG_P (lhs) && REGNO (lhs) == STATIC_CHAIN_REGNUM)
37373 return true;
37377 return false;
37380 /* Expand code to perform a call under the AIX or ELFv2 ABI. */
37382 void
37383 rs6000_call_aix (rtx value, rtx func_desc, rtx flag, rtx cookie)
37385 const bool direct_call_p
37386 = GET_CODE (func_desc) == SYMBOL_REF && SYMBOL_REF_FUNCTION_P (func_desc);
37387 rtx toc_reg = gen_rtx_REG (Pmode, TOC_REGNUM);
37388 rtx toc_load = NULL_RTX;
37389 rtx toc_restore = NULL_RTX;
37390 rtx func_addr;
37391 rtx abi_reg = NULL_RTX;
37392 rtx call[4];
37393 int n_call;
37394 rtx insn;
37396 /* Handle longcall attributes. */
37397 if (INTVAL (cookie) & CALL_LONG)
37398 func_desc = rs6000_longcall_ref (func_desc);
37400 /* Handle indirect calls. */
37401 if (GET_CODE (func_desc) != SYMBOL_REF
37402 || (DEFAULT_ABI == ABI_AIX && !SYMBOL_REF_FUNCTION_P (func_desc)))
37404 /* Save the TOC into its reserved slot before the call,
37405 and prepare to restore it after the call. */
37406 rtx stack_ptr = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
37407 rtx stack_toc_offset = GEN_INT (RS6000_TOC_SAVE_SLOT);
37408 rtx stack_toc_mem = gen_frame_mem (Pmode,
37409 gen_rtx_PLUS (Pmode, stack_ptr,
37410 stack_toc_offset));
37411 rtx stack_toc_unspec = gen_rtx_UNSPEC (Pmode,
37412 gen_rtvec (1, stack_toc_offset),
37413 UNSPEC_TOCSLOT);
37414 toc_restore = gen_rtx_SET (toc_reg, stack_toc_unspec);
37416 /* Can we optimize saving the TOC in the prologue or
37417 do we need to do it at every call? */
37418 if (TARGET_SAVE_TOC_INDIRECT && !cfun->calls_alloca)
37419 cfun->machine->save_toc_in_prologue = true;
37420 else
37422 MEM_VOLATILE_P (stack_toc_mem) = 1;
37423 emit_move_insn (stack_toc_mem, toc_reg);
37426 if (DEFAULT_ABI == ABI_ELFv2)
37428 /* A function pointer in the ELFv2 ABI is just a plain address, but
37429 the ABI requires it to be loaded into r12 before the call. */
37430 func_addr = gen_rtx_REG (Pmode, 12);
37431 emit_move_insn (func_addr, func_desc);
37432 abi_reg = func_addr;
37434 else
37436 /* A function pointer under AIX is a pointer to a data area whose
37437 first word contains the actual address of the function, whose
37438 second word contains a pointer to its TOC, and whose third word
37439 contains a value to place in the static chain register (r11).
37440 Note that if we load the static chain, our "trampoline" need
37441 not have any executable code. */
37443 /* Load up address of the actual function. */
37444 func_desc = force_reg (Pmode, func_desc);
37445 func_addr = gen_reg_rtx (Pmode);
37446 emit_move_insn (func_addr, gen_rtx_MEM (Pmode, func_desc));
37448 /* Prepare to load the TOC of the called function. Note that the
37449 TOC load must happen immediately before the actual call so
37450 that unwinding the TOC registers works correctly. See the
37451 comment in frob_update_context. */
37452 rtx func_toc_offset = GEN_INT (GET_MODE_SIZE (Pmode));
37453 rtx func_toc_mem = gen_rtx_MEM (Pmode,
37454 gen_rtx_PLUS (Pmode, func_desc,
37455 func_toc_offset));
37456 toc_load = gen_rtx_USE (VOIDmode, func_toc_mem);
37458 /* If we have a static chain, load it up. But, if the call was
37459 originally direct, the 3rd word has not been written since no
37460 trampoline has been built, so we ought not to load it, lest we
37461 override a static chain value. */
37462 if (!direct_call_p
37463 && TARGET_POINTERS_TO_NESTED_FUNCTIONS
37464 && !chain_already_loaded (get_current_sequence ()->next->last))
37466 rtx sc_reg = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
37467 rtx func_sc_offset = GEN_INT (2 * GET_MODE_SIZE (Pmode));
37468 rtx func_sc_mem = gen_rtx_MEM (Pmode,
37469 gen_rtx_PLUS (Pmode, func_desc,
37470 func_sc_offset));
37471 emit_move_insn (sc_reg, func_sc_mem);
37472 abi_reg = sc_reg;
37476 else
37478 /* Direct calls use the TOC: for local calls, the callee will
37479 assume the TOC register is set; for non-local calls, the
37480 PLT stub needs the TOC register. */
37481 abi_reg = toc_reg;
37482 func_addr = func_desc;
37485 /* Create the call. */
37486 call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_addr), flag);
37487 if (value != NULL_RTX)
37488 call[0] = gen_rtx_SET (value, call[0]);
37489 n_call = 1;
37491 if (toc_load)
37492 call[n_call++] = toc_load;
37493 if (toc_restore)
37494 call[n_call++] = toc_restore;
37496 call[n_call++] = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, LR_REGNO));
37498 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (n_call, call));
37499 insn = emit_call_insn (insn);
37501 /* Mention all registers defined by the ABI to hold information
37502 as uses in CALL_INSN_FUNCTION_USAGE. */
37503 if (abi_reg)
37504 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), abi_reg);
37507 /* Expand code to perform a sibling call under the AIX or ELFv2 ABI. */
37509 void
37510 rs6000_sibcall_aix (rtx value, rtx func_desc, rtx flag, rtx cookie)
37512 rtx call[2];
37513 rtx insn;
37515 gcc_assert (INTVAL (cookie) == 0);
37517 /* Create the call. */
37518 call[0] = gen_rtx_CALL (VOIDmode, gen_rtx_MEM (SImode, func_desc), flag);
37519 if (value != NULL_RTX)
37520 call[0] = gen_rtx_SET (value, call[0]);
37522 call[1] = simple_return_rtx;
37524 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (2, call));
37525 insn = emit_call_insn (insn);
37527 /* Note use of the TOC register. */
37528 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), gen_rtx_REG (Pmode, TOC_REGNUM));
37531 /* Return whether we need to always update the saved TOC pointer when we update
37532 the stack pointer. */
37534 static bool
37535 rs6000_save_toc_in_prologue_p (void)
37537 return (cfun && cfun->machine && cfun->machine->save_toc_in_prologue);
37540 #ifdef HAVE_GAS_HIDDEN
37541 # define USE_HIDDEN_LINKONCE 1
37542 #else
37543 # define USE_HIDDEN_LINKONCE 0
37544 #endif
37546 /* Fills in the label name that should be used for a 476 link stack thunk. */
37548 void
37549 get_ppc476_thunk_name (char name[32])
37551 gcc_assert (TARGET_LINK_STACK);
37553 if (USE_HIDDEN_LINKONCE)
37554 sprintf (name, "__ppc476.get_thunk");
37555 else
37556 ASM_GENERATE_INTERNAL_LABEL (name, "LPPC476_", 0);
37559 /* This function emits the simple thunk routine that is used to preserve
37560 the link stack on the 476 cpu. */
37562 static void rs6000_code_end (void) ATTRIBUTE_UNUSED;
37563 static void
37564 rs6000_code_end (void)
37566 char name[32];
37567 tree decl;
37569 if (!TARGET_LINK_STACK)
37570 return;
37572 get_ppc476_thunk_name (name);
37574 decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name),
37575 build_function_type_list (void_type_node, NULL_TREE));
37576 DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL,
37577 NULL_TREE, void_type_node);
37578 TREE_PUBLIC (decl) = 1;
37579 TREE_STATIC (decl) = 1;
37581 #if RS6000_WEAK
37582 if (USE_HIDDEN_LINKONCE && !TARGET_XCOFF)
37584 cgraph_node::create (decl)->set_comdat_group (DECL_ASSEMBLER_NAME (decl));
37585 targetm.asm_out.unique_section (decl, 0);
37586 switch_to_section (get_named_section (decl, NULL, 0));
37587 DECL_WEAK (decl) = 1;
37588 ASM_WEAKEN_DECL (asm_out_file, decl, name, 0);
37589 targetm.asm_out.globalize_label (asm_out_file, name);
37590 targetm.asm_out.assemble_visibility (decl, VISIBILITY_HIDDEN);
37591 ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl);
37593 else
37594 #endif
37596 switch_to_section (text_section);
37597 ASM_OUTPUT_LABEL (asm_out_file, name);
37600 DECL_INITIAL (decl) = make_node (BLOCK);
37601 current_function_decl = decl;
37602 allocate_struct_function (decl, false);
37603 init_function_start (decl);
37604 first_function_block_is_cold = false;
37605 /* Make sure unwind info is emitted for the thunk if needed. */
37606 final_start_function (emit_barrier (), asm_out_file, 1);
37608 fputs ("\tblr\n", asm_out_file);
37610 final_end_function ();
37611 init_insn_lengths ();
37612 free_after_compilation (cfun);
37613 set_cfun (NULL);
37614 current_function_decl = NULL;
37617 /* Add r30 to hard reg set if the prologue sets it up and it is not
37618 pic_offset_table_rtx. */
37620 static void
37621 rs6000_set_up_by_prologue (struct hard_reg_set_container *set)
37623 if (!TARGET_SINGLE_PIC_BASE
37624 && TARGET_TOC
37625 && TARGET_MINIMAL_TOC
37626 && !constant_pool_empty_p ())
37627 add_to_hard_reg_set (&set->set, Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
37628 if (cfun->machine->split_stack_argp_used)
37629 add_to_hard_reg_set (&set->set, Pmode, 12);
37631 /* Make sure the hard reg set doesn't include r2, which was possibly added
37632 via PIC_OFFSET_TABLE_REGNUM. */
37633 if (TARGET_TOC)
37634 remove_from_hard_reg_set (&set->set, Pmode, TOC_REGNUM);
37638 /* Helper function for rs6000_split_logical to emit a logical instruction after
37639 spliting the operation to single GPR registers.
37641 DEST is the destination register.
37642 OP1 and OP2 are the input source registers.
37643 CODE is the base operation (AND, IOR, XOR, NOT).
37644 MODE is the machine mode.
37645 If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
37646 If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
37647 If COMPLEMENT_OP2_P is true, wrap operand2 with NOT. */
37649 static void
37650 rs6000_split_logical_inner (rtx dest,
37651 rtx op1,
37652 rtx op2,
37653 enum rtx_code code,
37654 machine_mode mode,
37655 bool complement_final_p,
37656 bool complement_op1_p,
37657 bool complement_op2_p)
37659 rtx bool_rtx;
37661 /* Optimize AND of 0/0xffffffff and IOR/XOR of 0. */
37662 if (op2 && GET_CODE (op2) == CONST_INT
37663 && (mode == SImode || (mode == DImode && TARGET_POWERPC64))
37664 && !complement_final_p && !complement_op1_p && !complement_op2_p)
37666 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
37667 HOST_WIDE_INT value = INTVAL (op2) & mask;
37669 /* Optimize AND of 0 to just set 0. Optimize AND of -1 to be a move. */
37670 if (code == AND)
37672 if (value == 0)
37674 emit_insn (gen_rtx_SET (dest, const0_rtx));
37675 return;
37678 else if (value == mask)
37680 if (!rtx_equal_p (dest, op1))
37681 emit_insn (gen_rtx_SET (dest, op1));
37682 return;
37686 /* Optimize IOR/XOR of 0 to be a simple move. Split large operations
37687 into separate ORI/ORIS or XORI/XORIS instrucitons. */
37688 else if (code == IOR || code == XOR)
37690 if (value == 0)
37692 if (!rtx_equal_p (dest, op1))
37693 emit_insn (gen_rtx_SET (dest, op1));
37694 return;
37699 if (code == AND && mode == SImode
37700 && !complement_final_p && !complement_op1_p && !complement_op2_p)
37702 emit_insn (gen_andsi3 (dest, op1, op2));
37703 return;
37706 if (complement_op1_p)
37707 op1 = gen_rtx_NOT (mode, op1);
37709 if (complement_op2_p)
37710 op2 = gen_rtx_NOT (mode, op2);
37712 /* For canonical RTL, if only one arm is inverted it is the first. */
37713 if (!complement_op1_p && complement_op2_p)
37714 std::swap (op1, op2);
37716 bool_rtx = ((code == NOT)
37717 ? gen_rtx_NOT (mode, op1)
37718 : gen_rtx_fmt_ee (code, mode, op1, op2));
37720 if (complement_final_p)
37721 bool_rtx = gen_rtx_NOT (mode, bool_rtx);
37723 emit_insn (gen_rtx_SET (dest, bool_rtx));
37726 /* Split a DImode AND/IOR/XOR with a constant on a 32-bit system. These
37727 operations are split immediately during RTL generation to allow for more
37728 optimizations of the AND/IOR/XOR.
37730 OPERANDS is an array containing the destination and two input operands.
37731 CODE is the base operation (AND, IOR, XOR, NOT).
37732 MODE is the machine mode.
37733 If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
37734 If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
37735 If COMPLEMENT_OP2_P is true, wrap operand2 with NOT.
37736 CLOBBER_REG is either NULL or a scratch register of type CC to allow
37737 formation of the AND instructions. */
37739 static void
37740 rs6000_split_logical_di (rtx operands[3],
37741 enum rtx_code code,
37742 bool complement_final_p,
37743 bool complement_op1_p,
37744 bool complement_op2_p)
37746 const HOST_WIDE_INT lower_32bits = HOST_WIDE_INT_C(0xffffffff);
37747 const HOST_WIDE_INT upper_32bits = ~ lower_32bits;
37748 const HOST_WIDE_INT sign_bit = HOST_WIDE_INT_C(0x80000000);
37749 enum hi_lo { hi = 0, lo = 1 };
37750 rtx op0_hi_lo[2], op1_hi_lo[2], op2_hi_lo[2];
37751 size_t i;
37753 op0_hi_lo[hi] = gen_highpart (SImode, operands[0]);
37754 op1_hi_lo[hi] = gen_highpart (SImode, operands[1]);
37755 op0_hi_lo[lo] = gen_lowpart (SImode, operands[0]);
37756 op1_hi_lo[lo] = gen_lowpart (SImode, operands[1]);
37758 if (code == NOT)
37759 op2_hi_lo[hi] = op2_hi_lo[lo] = NULL_RTX;
37760 else
37762 if (GET_CODE (operands[2]) != CONST_INT)
37764 op2_hi_lo[hi] = gen_highpart_mode (SImode, DImode, operands[2]);
37765 op2_hi_lo[lo] = gen_lowpart (SImode, operands[2]);
37767 else
37769 HOST_WIDE_INT value = INTVAL (operands[2]);
37770 HOST_WIDE_INT value_hi_lo[2];
37772 gcc_assert (!complement_final_p);
37773 gcc_assert (!complement_op1_p);
37774 gcc_assert (!complement_op2_p);
37776 value_hi_lo[hi] = value >> 32;
37777 value_hi_lo[lo] = value & lower_32bits;
37779 for (i = 0; i < 2; i++)
37781 HOST_WIDE_INT sub_value = value_hi_lo[i];
37783 if (sub_value & sign_bit)
37784 sub_value |= upper_32bits;
37786 op2_hi_lo[i] = GEN_INT (sub_value);
37788 /* If this is an AND instruction, check to see if we need to load
37789 the value in a register. */
37790 if (code == AND && sub_value != -1 && sub_value != 0
37791 && !and_operand (op2_hi_lo[i], SImode))
37792 op2_hi_lo[i] = force_reg (SImode, op2_hi_lo[i]);
37797 for (i = 0; i < 2; i++)
37799 /* Split large IOR/XOR operations. */
37800 if ((code == IOR || code == XOR)
37801 && GET_CODE (op2_hi_lo[i]) == CONST_INT
37802 && !complement_final_p
37803 && !complement_op1_p
37804 && !complement_op2_p
37805 && !logical_const_operand (op2_hi_lo[i], SImode))
37807 HOST_WIDE_INT value = INTVAL (op2_hi_lo[i]);
37808 HOST_WIDE_INT hi_16bits = value & HOST_WIDE_INT_C(0xffff0000);
37809 HOST_WIDE_INT lo_16bits = value & HOST_WIDE_INT_C(0x0000ffff);
37810 rtx tmp = gen_reg_rtx (SImode);
37812 /* Make sure the constant is sign extended. */
37813 if ((hi_16bits & sign_bit) != 0)
37814 hi_16bits |= upper_32bits;
37816 rs6000_split_logical_inner (tmp, op1_hi_lo[i], GEN_INT (hi_16bits),
37817 code, SImode, false, false, false);
37819 rs6000_split_logical_inner (op0_hi_lo[i], tmp, GEN_INT (lo_16bits),
37820 code, SImode, false, false, false);
37822 else
37823 rs6000_split_logical_inner (op0_hi_lo[i], op1_hi_lo[i], op2_hi_lo[i],
37824 code, SImode, complement_final_p,
37825 complement_op1_p, complement_op2_p);
37828 return;
37831 /* Split the insns that make up boolean operations operating on multiple GPR
37832 registers. The boolean MD patterns ensure that the inputs either are
37833 exactly the same as the output registers, or there is no overlap.
37835 OPERANDS is an array containing the destination and two input operands.
37836 CODE is the base operation (AND, IOR, XOR, NOT).
37837 If COMPLEMENT_FINAL_P is true, wrap the whole operation with NOT.
37838 If COMPLEMENT_OP1_P is true, wrap operand1 with NOT.
37839 If COMPLEMENT_OP2_P is true, wrap operand2 with NOT. */
37841 void
37842 rs6000_split_logical (rtx operands[3],
37843 enum rtx_code code,
37844 bool complement_final_p,
37845 bool complement_op1_p,
37846 bool complement_op2_p)
37848 machine_mode mode = GET_MODE (operands[0]);
37849 machine_mode sub_mode;
37850 rtx op0, op1, op2;
37851 int sub_size, regno0, regno1, nregs, i;
37853 /* If this is DImode, use the specialized version that can run before
37854 register allocation. */
37855 if (mode == DImode && !TARGET_POWERPC64)
37857 rs6000_split_logical_di (operands, code, complement_final_p,
37858 complement_op1_p, complement_op2_p);
37859 return;
37862 op0 = operands[0];
37863 op1 = operands[1];
37864 op2 = (code == NOT) ? NULL_RTX : operands[2];
37865 sub_mode = (TARGET_POWERPC64) ? DImode : SImode;
37866 sub_size = GET_MODE_SIZE (sub_mode);
37867 regno0 = REGNO (op0);
37868 regno1 = REGNO (op1);
37870 gcc_assert (reload_completed);
37871 gcc_assert (IN_RANGE (regno0, FIRST_GPR_REGNO, LAST_GPR_REGNO));
37872 gcc_assert (IN_RANGE (regno1, FIRST_GPR_REGNO, LAST_GPR_REGNO));
37874 nregs = rs6000_hard_regno_nregs[(int)mode][regno0];
37875 gcc_assert (nregs > 1);
37877 if (op2 && REG_P (op2))
37878 gcc_assert (IN_RANGE (REGNO (op2), FIRST_GPR_REGNO, LAST_GPR_REGNO));
37880 for (i = 0; i < nregs; i++)
37882 int offset = i * sub_size;
37883 rtx sub_op0 = simplify_subreg (sub_mode, op0, mode, offset);
37884 rtx sub_op1 = simplify_subreg (sub_mode, op1, mode, offset);
37885 rtx sub_op2 = ((code == NOT)
37886 ? NULL_RTX
37887 : simplify_subreg (sub_mode, op2, mode, offset));
37889 rs6000_split_logical_inner (sub_op0, sub_op1, sub_op2, code, sub_mode,
37890 complement_final_p, complement_op1_p,
37891 complement_op2_p);
37894 return;
37898 /* Return true if the peephole2 can combine a load involving a combination of
37899 an addis instruction and a load with an offset that can be fused together on
37900 a power8. */
37902 bool
37903 fusion_gpr_load_p (rtx addis_reg, /* register set via addis. */
37904 rtx addis_value, /* addis value. */
37905 rtx target, /* target register that is loaded. */
37906 rtx mem) /* bottom part of the memory addr. */
37908 rtx addr;
37909 rtx base_reg;
37911 /* Validate arguments. */
37912 if (!base_reg_operand (addis_reg, GET_MODE (addis_reg)))
37913 return false;
37915 if (!base_reg_operand (target, GET_MODE (target)))
37916 return false;
37918 if (!fusion_gpr_addis (addis_value, GET_MODE (addis_value)))
37919 return false;
37921 /* Allow sign/zero extension. */
37922 if (GET_CODE (mem) == ZERO_EXTEND
37923 || (GET_CODE (mem) == SIGN_EXTEND && TARGET_P8_FUSION_SIGN))
37924 mem = XEXP (mem, 0);
37926 if (!MEM_P (mem))
37927 return false;
37929 if (!fusion_gpr_mem_load (mem, GET_MODE (mem)))
37930 return false;
37932 addr = XEXP (mem, 0); /* either PLUS or LO_SUM. */
37933 if (GET_CODE (addr) != PLUS && GET_CODE (addr) != LO_SUM)
37934 return false;
37936 /* Validate that the register used to load the high value is either the
37937 register being loaded, or we can safely replace its use.
37939 This function is only called from the peephole2 pass and we assume that
37940 there are 2 instructions in the peephole (addis and load), so we want to
37941 check if the target register was not used in the memory address and the
37942 register to hold the addis result is dead after the peephole. */
37943 if (REGNO (addis_reg) != REGNO (target))
37945 if (reg_mentioned_p (target, mem))
37946 return false;
37948 if (!peep2_reg_dead_p (2, addis_reg))
37949 return false;
37951 /* If the target register being loaded is the stack pointer, we must
37952 avoid loading any other value into it, even temporarily. */
37953 if (REG_P (target) && REGNO (target) == STACK_POINTER_REGNUM)
37954 return false;
37957 base_reg = XEXP (addr, 0);
37958 return REGNO (addis_reg) == REGNO (base_reg);
37961 /* During the peephole2 pass, adjust and expand the insns for a load fusion
37962 sequence. We adjust the addis register to use the target register. If the
37963 load sign extends, we adjust the code to do the zero extending load, and an
37964 explicit sign extension later since the fusion only covers zero extending
37965 loads.
37967 The operands are:
37968 operands[0] register set with addis (to be replaced with target)
37969 operands[1] value set via addis
37970 operands[2] target register being loaded
37971 operands[3] D-form memory reference using operands[0]. */
37973 void
37974 expand_fusion_gpr_load (rtx *operands)
37976 rtx addis_value = operands[1];
37977 rtx target = operands[2];
37978 rtx orig_mem = operands[3];
37979 rtx new_addr, new_mem, orig_addr, offset;
37980 enum rtx_code plus_or_lo_sum;
37981 machine_mode target_mode = GET_MODE (target);
37982 machine_mode extend_mode = target_mode;
37983 machine_mode ptr_mode = Pmode;
37984 enum rtx_code extend = UNKNOWN;
37986 if (GET_CODE (orig_mem) == ZERO_EXTEND
37987 || (TARGET_P8_FUSION_SIGN && GET_CODE (orig_mem) == SIGN_EXTEND))
37989 extend = GET_CODE (orig_mem);
37990 orig_mem = XEXP (orig_mem, 0);
37991 target_mode = GET_MODE (orig_mem);
37994 gcc_assert (MEM_P (orig_mem));
37996 orig_addr = XEXP (orig_mem, 0);
37997 plus_or_lo_sum = GET_CODE (orig_addr);
37998 gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);
38000 offset = XEXP (orig_addr, 1);
38001 new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
38002 new_mem = replace_equiv_address_nv (orig_mem, new_addr, false);
38004 if (extend != UNKNOWN)
38005 new_mem = gen_rtx_fmt_e (ZERO_EXTEND, extend_mode, new_mem);
38007 new_mem = gen_rtx_UNSPEC (extend_mode, gen_rtvec (1, new_mem),
38008 UNSPEC_FUSION_GPR);
38009 emit_insn (gen_rtx_SET (target, new_mem));
38011 if (extend == SIGN_EXTEND)
38013 int sub_off = ((BYTES_BIG_ENDIAN)
38014 ? GET_MODE_SIZE (extend_mode) - GET_MODE_SIZE (target_mode)
38015 : 0);
38016 rtx sign_reg
38017 = simplify_subreg (target_mode, target, extend_mode, sub_off);
38019 emit_insn (gen_rtx_SET (target,
38020 gen_rtx_SIGN_EXTEND (extend_mode, sign_reg)));
38023 return;
38026 /* Emit the addis instruction that will be part of a fused instruction
38027 sequence. */
38029 void
38030 emit_fusion_addis (rtx target, rtx addis_value)
38032 rtx fuse_ops[10];
38033 const char *addis_str = NULL;
38035 /* Emit the addis instruction. */
38036 fuse_ops[0] = target;
38037 if (satisfies_constraint_L (addis_value))
38039 fuse_ops[1] = addis_value;
38040 addis_str = "lis %0,%v1";
38043 else if (GET_CODE (addis_value) == PLUS)
38045 rtx op0 = XEXP (addis_value, 0);
38046 rtx op1 = XEXP (addis_value, 1);
38048 if (REG_P (op0) && CONST_INT_P (op1)
38049 && satisfies_constraint_L (op1))
38051 fuse_ops[1] = op0;
38052 fuse_ops[2] = op1;
38053 addis_str = "addis %0,%1,%v2";
38057 else if (GET_CODE (addis_value) == HIGH)
38059 rtx value = XEXP (addis_value, 0);
38060 if (GET_CODE (value) == UNSPEC && XINT (value, 1) == UNSPEC_TOCREL)
38062 fuse_ops[1] = XVECEXP (value, 0, 0); /* symbol ref. */
38063 fuse_ops[2] = XVECEXP (value, 0, 1); /* TOC register. */
38064 if (TARGET_ELF)
38065 addis_str = "addis %0,%2,%1@toc@ha";
38067 else if (TARGET_XCOFF)
38068 addis_str = "addis %0,%1@u(%2)";
38070 else
38071 gcc_unreachable ();
38074 else if (GET_CODE (value) == PLUS)
38076 rtx op0 = XEXP (value, 0);
38077 rtx op1 = XEXP (value, 1);
38079 if (GET_CODE (op0) == UNSPEC
38080 && XINT (op0, 1) == UNSPEC_TOCREL
38081 && CONST_INT_P (op1))
38083 fuse_ops[1] = XVECEXP (op0, 0, 0); /* symbol ref. */
38084 fuse_ops[2] = XVECEXP (op0, 0, 1); /* TOC register. */
38085 fuse_ops[3] = op1;
38086 if (TARGET_ELF)
38087 addis_str = "addis %0,%2,%1+%3@toc@ha";
38089 else if (TARGET_XCOFF)
38090 addis_str = "addis %0,%1+%3@u(%2)";
38092 else
38093 gcc_unreachable ();
38097 else if (satisfies_constraint_L (value))
38099 fuse_ops[1] = value;
38100 addis_str = "lis %0,%v1";
38103 else if (TARGET_ELF && !TARGET_POWERPC64 && CONSTANT_P (value))
38105 fuse_ops[1] = value;
38106 addis_str = "lis %0,%1@ha";
38110 if (!addis_str)
38111 fatal_insn ("Could not generate addis value for fusion", addis_value);
38113 output_asm_insn (addis_str, fuse_ops);
38116 /* Emit a D-form load or store instruction that is the second instruction
38117 of a fusion sequence. */
38119 void
38120 emit_fusion_load_store (rtx load_store_reg, rtx addis_reg, rtx offset,
38121 const char *insn_str)
38123 rtx fuse_ops[10];
38124 char insn_template[80];
38126 fuse_ops[0] = load_store_reg;
38127 fuse_ops[1] = addis_reg;
38129 if (CONST_INT_P (offset) && satisfies_constraint_I (offset))
38131 sprintf (insn_template, "%s %%0,%%2(%%1)", insn_str);
38132 fuse_ops[2] = offset;
38133 output_asm_insn (insn_template, fuse_ops);
38136 else if (GET_CODE (offset) == UNSPEC
38137 && XINT (offset, 1) == UNSPEC_TOCREL)
38139 if (TARGET_ELF)
38140 sprintf (insn_template, "%s %%0,%%2@toc@l(%%1)", insn_str);
38142 else if (TARGET_XCOFF)
38143 sprintf (insn_template, "%s %%0,%%2@l(%%1)", insn_str);
38145 else
38146 gcc_unreachable ();
38148 fuse_ops[2] = XVECEXP (offset, 0, 0);
38149 output_asm_insn (insn_template, fuse_ops);
38152 else if (GET_CODE (offset) == PLUS
38153 && GET_CODE (XEXP (offset, 0)) == UNSPEC
38154 && XINT (XEXP (offset, 0), 1) == UNSPEC_TOCREL
38155 && CONST_INT_P (XEXP (offset, 1)))
38157 rtx tocrel_unspec = XEXP (offset, 0);
38158 if (TARGET_ELF)
38159 sprintf (insn_template, "%s %%0,%%2+%%3@toc@l(%%1)", insn_str);
38161 else if (TARGET_XCOFF)
38162 sprintf (insn_template, "%s %%0,%%2+%%3@l(%%1)", insn_str);
38164 else
38165 gcc_unreachable ();
38167 fuse_ops[2] = XVECEXP (tocrel_unspec, 0, 0);
38168 fuse_ops[3] = XEXP (offset, 1);
38169 output_asm_insn (insn_template, fuse_ops);
38172 else if (TARGET_ELF && !TARGET_POWERPC64 && CONSTANT_P (offset))
38174 sprintf (insn_template, "%s %%0,%%2@l(%%1)", insn_str);
38176 fuse_ops[2] = offset;
38177 output_asm_insn (insn_template, fuse_ops);
38180 else
38181 fatal_insn ("Unable to generate load/store offset for fusion", offset);
38183 return;
38186 /* Given an address, convert it into the addis and load offset parts. Addresses
38187 created during the peephole2 process look like:
38188 (lo_sum (high (unspec [(sym)] UNSPEC_TOCREL))
38189 (unspec [(...)] UNSPEC_TOCREL)) */
38191 static void
38192 fusion_split_address (rtx addr, rtx *p_hi, rtx *p_lo)
38194 rtx hi, lo;
38196 if (GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM)
38198 hi = XEXP (addr, 0);
38199 lo = XEXP (addr, 1);
38201 else
38202 gcc_unreachable ();
38204 *p_hi = hi;
38205 *p_lo = lo;
38208 /* Return a string to fuse an addis instruction with a gpr load to the same
38209 register that we loaded up the addis instruction. The address that is used
38210 is the logical address that was formed during peephole2:
38211 (lo_sum (high) (low-part))
38213 The code is complicated, so we call output_asm_insn directly, and just
38214 return "". */
38216 const char *
38217 emit_fusion_gpr_load (rtx target, rtx mem)
38219 rtx addis_value;
38220 rtx addr;
38221 rtx load_offset;
38222 const char *load_str = NULL;
38223 machine_mode mode;
38225 if (GET_CODE (mem) == ZERO_EXTEND)
38226 mem = XEXP (mem, 0);
38228 gcc_assert (REG_P (target) && MEM_P (mem));
38230 addr = XEXP (mem, 0);
38231 fusion_split_address (addr, &addis_value, &load_offset);
38233 /* Now emit the load instruction to the same register. */
38234 mode = GET_MODE (mem);
38235 switch (mode)
38237 case E_QImode:
38238 load_str = "lbz";
38239 break;
38241 case E_HImode:
38242 load_str = "lhz";
38243 break;
38245 case E_SImode:
38246 case E_SFmode:
38247 load_str = "lwz";
38248 break;
38250 case E_DImode:
38251 case E_DFmode:
38252 gcc_assert (TARGET_POWERPC64);
38253 load_str = "ld";
38254 break;
38256 default:
38257 fatal_insn ("Bad GPR fusion", gen_rtx_SET (target, mem));
38260 /* Emit the addis instruction. */
38261 emit_fusion_addis (target, addis_value);
38263 /* Emit the D-form load instruction. */
38264 emit_fusion_load_store (target, target, load_offset, load_str);
38266 return "";
38270 /* Return true if the peephole2 can combine a load/store involving a
38271 combination of an addis instruction and the memory operation. This was
38272 added to the ISA 3.0 (power9) hardware. */
38274 bool
38275 fusion_p9_p (rtx addis_reg, /* register set via addis. */
38276 rtx addis_value, /* addis value. */
38277 rtx dest, /* destination (memory or register). */
38278 rtx src) /* source (register or memory). */
38280 rtx addr, mem, offset;
38281 machine_mode mode = GET_MODE (src);
38283 /* Validate arguments. */
38284 if (!base_reg_operand (addis_reg, GET_MODE (addis_reg)))
38285 return false;
38287 if (!fusion_gpr_addis (addis_value, GET_MODE (addis_value)))
38288 return false;
38290 /* Ignore extend operations that are part of the load. */
38291 if (GET_CODE (src) == FLOAT_EXTEND || GET_CODE (src) == ZERO_EXTEND)
38292 src = XEXP (src, 0);
38294 /* Test for memory<-register or register<-memory. */
38295 if (fpr_reg_operand (src, mode) || int_reg_operand (src, mode))
38297 if (!MEM_P (dest))
38298 return false;
38300 mem = dest;
38303 else if (MEM_P (src))
38305 if (!fpr_reg_operand (dest, mode) && !int_reg_operand (dest, mode))
38306 return false;
38308 mem = src;
38311 else
38312 return false;
38314 addr = XEXP (mem, 0); /* either PLUS or LO_SUM. */
38315 if (GET_CODE (addr) == PLUS)
38317 if (!rtx_equal_p (addis_reg, XEXP (addr, 0)))
38318 return false;
38320 return satisfies_constraint_I (XEXP (addr, 1));
38323 else if (GET_CODE (addr) == LO_SUM)
38325 if (!rtx_equal_p (addis_reg, XEXP (addr, 0)))
38326 return false;
38328 offset = XEXP (addr, 1);
38329 if (TARGET_XCOFF || (TARGET_ELF && TARGET_POWERPC64))
38330 return small_toc_ref (offset, GET_MODE (offset));
38332 else if (TARGET_ELF && !TARGET_POWERPC64)
38333 return CONSTANT_P (offset);
38336 return false;
38339 /* During the peephole2 pass, adjust and expand the insns for an extended fusion
38340 load sequence.
38342 The operands are:
38343 operands[0] register set with addis
38344 operands[1] value set via addis
38345 operands[2] target register being loaded
38346 operands[3] D-form memory reference using operands[0].
38348 This is similar to the fusion introduced with power8, except it scales to
38349 both loads/stores and does not require the result register to be the same as
38350 the base register. At the moment, we only do this if register set with addis
38351 is dead. */
38353 void
38354 expand_fusion_p9_load (rtx *operands)
38356 rtx tmp_reg = operands[0];
38357 rtx addis_value = operands[1];
38358 rtx target = operands[2];
38359 rtx orig_mem = operands[3];
38360 rtx new_addr, new_mem, orig_addr, offset, set, clobber, insn;
38361 enum rtx_code plus_or_lo_sum;
38362 machine_mode target_mode = GET_MODE (target);
38363 machine_mode extend_mode = target_mode;
38364 machine_mode ptr_mode = Pmode;
38365 enum rtx_code extend = UNKNOWN;
38367 if (GET_CODE (orig_mem) == FLOAT_EXTEND || GET_CODE (orig_mem) == ZERO_EXTEND)
38369 extend = GET_CODE (orig_mem);
38370 orig_mem = XEXP (orig_mem, 0);
38371 target_mode = GET_MODE (orig_mem);
38374 gcc_assert (MEM_P (orig_mem));
38376 orig_addr = XEXP (orig_mem, 0);
38377 plus_or_lo_sum = GET_CODE (orig_addr);
38378 gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);
38380 offset = XEXP (orig_addr, 1);
38381 new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
38382 new_mem = replace_equiv_address_nv (orig_mem, new_addr, false);
38384 if (extend != UNKNOWN)
38385 new_mem = gen_rtx_fmt_e (extend, extend_mode, new_mem);
38387 new_mem = gen_rtx_UNSPEC (extend_mode, gen_rtvec (1, new_mem),
38388 UNSPEC_FUSION_P9);
38390 set = gen_rtx_SET (target, new_mem);
38391 clobber = gen_rtx_CLOBBER (VOIDmode, tmp_reg);
38392 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber));
38393 emit_insn (insn);
38395 return;
38398 /* During the peephole2 pass, adjust and expand the insns for an extended fusion
38399 store sequence.
38401 The operands are:
38402 operands[0] register set with addis
38403 operands[1] value set via addis
38404 operands[2] target D-form memory being stored to
38405 operands[3] register being stored
38407 This is similar to the fusion introduced with power8, except it scales to
38408 both loads/stores and does not require the result register to be the same as
38409 the base register. At the moment, we only do this if register set with addis
38410 is dead. */
38412 void
38413 expand_fusion_p9_store (rtx *operands)
38415 rtx tmp_reg = operands[0];
38416 rtx addis_value = operands[1];
38417 rtx orig_mem = operands[2];
38418 rtx src = operands[3];
38419 rtx new_addr, new_mem, orig_addr, offset, set, clobber, insn, new_src;
38420 enum rtx_code plus_or_lo_sum;
38421 machine_mode target_mode = GET_MODE (orig_mem);
38422 machine_mode ptr_mode = Pmode;
38424 gcc_assert (MEM_P (orig_mem));
38426 orig_addr = XEXP (orig_mem, 0);
38427 plus_or_lo_sum = GET_CODE (orig_addr);
38428 gcc_assert (plus_or_lo_sum == PLUS || plus_or_lo_sum == LO_SUM);
38430 offset = XEXP (orig_addr, 1);
38431 new_addr = gen_rtx_fmt_ee (plus_or_lo_sum, ptr_mode, addis_value, offset);
38432 new_mem = replace_equiv_address_nv (orig_mem, new_addr, false);
38434 new_src = gen_rtx_UNSPEC (target_mode, gen_rtvec (1, src),
38435 UNSPEC_FUSION_P9);
38437 set = gen_rtx_SET (new_mem, new_src);
38438 clobber = gen_rtx_CLOBBER (VOIDmode, tmp_reg);
38439 insn = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, set, clobber));
38440 emit_insn (insn);
38442 return;
38445 /* Return a string to fuse an addis instruction with a load using extended
38446 fusion. The address that is used is the logical address that was formed
38447 during peephole2: (lo_sum (high) (low-part))
38449 The code is complicated, so we call output_asm_insn directly, and just
38450 return "". */
38452 const char *
38453 emit_fusion_p9_load (rtx reg, rtx mem, rtx tmp_reg)
38455 machine_mode mode = GET_MODE (reg);
38456 rtx hi;
38457 rtx lo;
38458 rtx addr;
38459 const char *load_string;
38460 int r;
38462 if (GET_CODE (mem) == FLOAT_EXTEND || GET_CODE (mem) == ZERO_EXTEND)
38464 mem = XEXP (mem, 0);
38465 mode = GET_MODE (mem);
38468 if (GET_CODE (reg) == SUBREG)
38470 gcc_assert (SUBREG_BYTE (reg) == 0);
38471 reg = SUBREG_REG (reg);
38474 if (!REG_P (reg))
38475 fatal_insn ("emit_fusion_p9_load, bad reg #1", reg);
38477 r = REGNO (reg);
38478 if (FP_REGNO_P (r))
38480 if (mode == SFmode)
38481 load_string = "lfs";
38482 else if (mode == DFmode || mode == DImode)
38483 load_string = "lfd";
38484 else
38485 gcc_unreachable ();
38487 else if (ALTIVEC_REGNO_P (r) && TARGET_P9_VECTOR)
38489 if (mode == SFmode)
38490 load_string = "lxssp";
38491 else if (mode == DFmode || mode == DImode)
38492 load_string = "lxsd";
38493 else
38494 gcc_unreachable ();
38496 else if (INT_REGNO_P (r))
38498 switch (mode)
38500 case E_QImode:
38501 load_string = "lbz";
38502 break;
38503 case E_HImode:
38504 load_string = "lhz";
38505 break;
38506 case E_SImode:
38507 case E_SFmode:
38508 load_string = "lwz";
38509 break;
38510 case E_DImode:
38511 case E_DFmode:
38512 if (!TARGET_POWERPC64)
38513 gcc_unreachable ();
38514 load_string = "ld";
38515 break;
38516 default:
38517 gcc_unreachable ();
38520 else
38521 fatal_insn ("emit_fusion_p9_load, bad reg #2", reg);
38523 if (!MEM_P (mem))
38524 fatal_insn ("emit_fusion_p9_load not MEM", mem);
38526 addr = XEXP (mem, 0);
38527 fusion_split_address (addr, &hi, &lo);
38529 /* Emit the addis instruction. */
38530 emit_fusion_addis (tmp_reg, hi);
38532 /* Emit the D-form load instruction. */
38533 emit_fusion_load_store (reg, tmp_reg, lo, load_string);
38535 return "";
38538 /* Return a string to fuse an addis instruction with a store using extended
38539 fusion. The address that is used is the logical address that was formed
38540 during peephole2: (lo_sum (high) (low-part))
38542 The code is complicated, so we call output_asm_insn directly, and just
38543 return "". */
38545 const char *
38546 emit_fusion_p9_store (rtx mem, rtx reg, rtx tmp_reg)
38548 machine_mode mode = GET_MODE (reg);
38549 rtx hi;
38550 rtx lo;
38551 rtx addr;
38552 const char *store_string;
38553 int r;
38555 if (GET_CODE (reg) == SUBREG)
38557 gcc_assert (SUBREG_BYTE (reg) == 0);
38558 reg = SUBREG_REG (reg);
38561 if (!REG_P (reg))
38562 fatal_insn ("emit_fusion_p9_store, bad reg #1", reg);
38564 r = REGNO (reg);
38565 if (FP_REGNO_P (r))
38567 if (mode == SFmode)
38568 store_string = "stfs";
38569 else if (mode == DFmode)
38570 store_string = "stfd";
38571 else
38572 gcc_unreachable ();
38574 else if (ALTIVEC_REGNO_P (r) && TARGET_P9_VECTOR)
38576 if (mode == SFmode)
38577 store_string = "stxssp";
38578 else if (mode == DFmode || mode == DImode)
38579 store_string = "stxsd";
38580 else
38581 gcc_unreachable ();
38583 else if (INT_REGNO_P (r))
38585 switch (mode)
38587 case E_QImode:
38588 store_string = "stb";
38589 break;
38590 case E_HImode:
38591 store_string = "sth";
38592 break;
38593 case E_SImode:
38594 case E_SFmode:
38595 store_string = "stw";
38596 break;
38597 case E_DImode:
38598 case E_DFmode:
38599 if (!TARGET_POWERPC64)
38600 gcc_unreachable ();
38601 store_string = "std";
38602 break;
38603 default:
38604 gcc_unreachable ();
38607 else
38608 fatal_insn ("emit_fusion_p9_store, bad reg #2", reg);
38610 if (!MEM_P (mem))
38611 fatal_insn ("emit_fusion_p9_store not MEM", mem);
38613 addr = XEXP (mem, 0);
38614 fusion_split_address (addr, &hi, &lo);
38616 /* Emit the addis instruction. */
38617 emit_fusion_addis (tmp_reg, hi);
38619 /* Emit the D-form load instruction. */
38620 emit_fusion_load_store (reg, tmp_reg, lo, store_string);
38622 return "";
38625 #ifdef RS6000_GLIBC_ATOMIC_FENV
38626 /* Function declarations for rs6000_atomic_assign_expand_fenv. */
38627 static tree atomic_hold_decl, atomic_clear_decl, atomic_update_decl;
38628 #endif
38630 /* Implement TARGET_ATOMIC_ASSIGN_EXPAND_FENV hook. */
38632 static void
38633 rs6000_atomic_assign_expand_fenv (tree *hold, tree *clear, tree *update)
38635 if (!TARGET_HARD_FLOAT)
38637 #ifdef RS6000_GLIBC_ATOMIC_FENV
38638 if (atomic_hold_decl == NULL_TREE)
38640 atomic_hold_decl
38641 = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
38642 get_identifier ("__atomic_feholdexcept"),
38643 build_function_type_list (void_type_node,
38644 double_ptr_type_node,
38645 NULL_TREE));
38646 TREE_PUBLIC (atomic_hold_decl) = 1;
38647 DECL_EXTERNAL (atomic_hold_decl) = 1;
38650 if (atomic_clear_decl == NULL_TREE)
38652 atomic_clear_decl
38653 = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
38654 get_identifier ("__atomic_feclearexcept"),
38655 build_function_type_list (void_type_node,
38656 NULL_TREE));
38657 TREE_PUBLIC (atomic_clear_decl) = 1;
38658 DECL_EXTERNAL (atomic_clear_decl) = 1;
38661 tree const_double = build_qualified_type (double_type_node,
38662 TYPE_QUAL_CONST);
38663 tree const_double_ptr = build_pointer_type (const_double);
38664 if (atomic_update_decl == NULL_TREE)
38666 atomic_update_decl
38667 = build_decl (BUILTINS_LOCATION, FUNCTION_DECL,
38668 get_identifier ("__atomic_feupdateenv"),
38669 build_function_type_list (void_type_node,
38670 const_double_ptr,
38671 NULL_TREE));
38672 TREE_PUBLIC (atomic_update_decl) = 1;
38673 DECL_EXTERNAL (atomic_update_decl) = 1;
38676 tree fenv_var = create_tmp_var_raw (double_type_node);
38677 TREE_ADDRESSABLE (fenv_var) = 1;
38678 tree fenv_addr = build1 (ADDR_EXPR, double_ptr_type_node, fenv_var);
38680 *hold = build_call_expr (atomic_hold_decl, 1, fenv_addr);
38681 *clear = build_call_expr (atomic_clear_decl, 0);
38682 *update = build_call_expr (atomic_update_decl, 1,
38683 fold_convert (const_double_ptr, fenv_addr));
38684 #endif
38685 return;
38688 tree mffs = rs6000_builtin_decls[RS6000_BUILTIN_MFFS];
38689 tree mtfsf = rs6000_builtin_decls[RS6000_BUILTIN_MTFSF];
38690 tree call_mffs = build_call_expr (mffs, 0);
38692 /* Generates the equivalent of feholdexcept (&fenv_var)
38694 *fenv_var = __builtin_mffs ();
38695 double fenv_hold;
38696 *(uint64_t*)&fenv_hold = *(uint64_t*)fenv_var & 0xffffffff00000007LL;
38697 __builtin_mtfsf (0xff, fenv_hold); */
38699 /* Mask to clear everything except for the rounding modes and non-IEEE
38700 arithmetic flag. */
38701 const unsigned HOST_WIDE_INT hold_exception_mask =
38702 HOST_WIDE_INT_C (0xffffffff00000007);
38704 tree fenv_var = create_tmp_var_raw (double_type_node);
38706 tree hold_mffs = build2 (MODIFY_EXPR, void_type_node, fenv_var, call_mffs);
38708 tree fenv_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, fenv_var);
38709 tree fenv_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, fenv_llu,
38710 build_int_cst (uint64_type_node,
38711 hold_exception_mask));
38713 tree fenv_hold_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
38714 fenv_llu_and);
38716 tree hold_mtfsf = build_call_expr (mtfsf, 2,
38717 build_int_cst (unsigned_type_node, 0xff),
38718 fenv_hold_mtfsf);
38720 *hold = build2 (COMPOUND_EXPR, void_type_node, hold_mffs, hold_mtfsf);
38722 /* Generates the equivalent of feclearexcept (FE_ALL_EXCEPT):
38724 double fenv_clear = __builtin_mffs ();
38725 *(uint64_t)&fenv_clear &= 0xffffffff00000000LL;
38726 __builtin_mtfsf (0xff, fenv_clear); */
38728 /* Mask to clear everything except for the rounding modes and non-IEEE
38729 arithmetic flag. */
38730 const unsigned HOST_WIDE_INT clear_exception_mask =
38731 HOST_WIDE_INT_C (0xffffffff00000000);
38733 tree fenv_clear = create_tmp_var_raw (double_type_node);
38735 tree clear_mffs = build2 (MODIFY_EXPR, void_type_node, fenv_clear, call_mffs);
38737 tree fenv_clean_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, fenv_clear);
38738 tree fenv_clear_llu_and = build2 (BIT_AND_EXPR, uint64_type_node,
38739 fenv_clean_llu,
38740 build_int_cst (uint64_type_node,
38741 clear_exception_mask));
38743 tree fenv_clear_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
38744 fenv_clear_llu_and);
38746 tree clear_mtfsf = build_call_expr (mtfsf, 2,
38747 build_int_cst (unsigned_type_node, 0xff),
38748 fenv_clear_mtfsf);
38750 *clear = build2 (COMPOUND_EXPR, void_type_node, clear_mffs, clear_mtfsf);
38752 /* Generates the equivalent of feupdateenv (&fenv_var)
38754 double old_fenv = __builtin_mffs ();
38755 double fenv_update;
38756 *(uint64_t*)&fenv_update = (*(uint64_t*)&old & 0xffffffff1fffff00LL) |
38757 (*(uint64_t*)fenv_var 0x1ff80fff);
38758 __builtin_mtfsf (0xff, fenv_update); */
38760 const unsigned HOST_WIDE_INT update_exception_mask =
38761 HOST_WIDE_INT_C (0xffffffff1fffff00);
38762 const unsigned HOST_WIDE_INT new_exception_mask =
38763 HOST_WIDE_INT_C (0x1ff80fff);
38765 tree old_fenv = create_tmp_var_raw (double_type_node);
38766 tree update_mffs = build2 (MODIFY_EXPR, void_type_node, old_fenv, call_mffs);
38768 tree old_llu = build1 (VIEW_CONVERT_EXPR, uint64_type_node, old_fenv);
38769 tree old_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, old_llu,
38770 build_int_cst (uint64_type_node,
38771 update_exception_mask));
38773 tree new_llu_and = build2 (BIT_AND_EXPR, uint64_type_node, fenv_llu,
38774 build_int_cst (uint64_type_node,
38775 new_exception_mask));
38777 tree new_llu_mask = build2 (BIT_IOR_EXPR, uint64_type_node,
38778 old_llu_and, new_llu_and);
38780 tree fenv_update_mtfsf = build1 (VIEW_CONVERT_EXPR, double_type_node,
38781 new_llu_mask);
38783 tree update_mtfsf = build_call_expr (mtfsf, 2,
38784 build_int_cst (unsigned_type_node, 0xff),
38785 fenv_update_mtfsf);
38787 *update = build2 (COMPOUND_EXPR, void_type_node, update_mffs, update_mtfsf);
38790 void
38791 rs6000_generate_float2_double_code (rtx dst, rtx src1, rtx src2)
38793 rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;
38795 rtx_tmp0 = gen_reg_rtx (V2DFmode);
38796 rtx_tmp1 = gen_reg_rtx (V2DFmode);
38798 /* The destination of the vmrgew instruction layout is:
38799 rtx_tmp2[0] rtx_tmp3[0] rtx_tmp2[1] rtx_tmp3[0].
38800 Setup rtx_tmp0 and rtx_tmp1 to ensure the order of the elements after the
38801 vmrgew instruction will be correct. */
38802 if (BYTES_BIG_ENDIAN)
38804 emit_insn (gen_vsx_xxpermdi_v2df_be (rtx_tmp0, src1, src2,
38805 GEN_INT (0)));
38806 emit_insn (gen_vsx_xxpermdi_v2df_be (rtx_tmp1, src1, src2,
38807 GEN_INT (3)));
38809 else
38811 emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp0, src1, src2, GEN_INT (3)));
38812 emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp1, src1, src2, GEN_INT (0)));
38815 rtx_tmp2 = gen_reg_rtx (V4SFmode);
38816 rtx_tmp3 = gen_reg_rtx (V4SFmode);
38818 emit_insn (gen_vsx_xvcdpsp (rtx_tmp2, rtx_tmp0));
38819 emit_insn (gen_vsx_xvcdpsp (rtx_tmp3, rtx_tmp1));
38821 if (BYTES_BIG_ENDIAN)
38822 emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp2, rtx_tmp3));
38823 else
38824 emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp3, rtx_tmp2));
38827 void
38828 rs6000_generate_float2_code (bool signed_convert, rtx dst, rtx src1, rtx src2)
38830 rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;
38832 rtx_tmp0 = gen_reg_rtx (V2DImode);
38833 rtx_tmp1 = gen_reg_rtx (V2DImode);
38835 /* The destination of the vmrgew instruction layout is:
38836 rtx_tmp2[0] rtx_tmp3[0] rtx_tmp2[1] rtx_tmp3[0].
38837 Setup rtx_tmp0 and rtx_tmp1 to ensure the order of the elements after the
38838 vmrgew instruction will be correct. */
38839 if (BYTES_BIG_ENDIAN)
38841 emit_insn (gen_vsx_xxpermdi_v2di_be (rtx_tmp0, src1, src2, GEN_INT (0)));
38842 emit_insn (gen_vsx_xxpermdi_v2di_be (rtx_tmp1, src1, src2, GEN_INT (3)));
38844 else
38846 emit_insn (gen_vsx_xxpermdi_v2di (rtx_tmp0, src1, src2, GEN_INT (3)));
38847 emit_insn (gen_vsx_xxpermdi_v2di (rtx_tmp1, src1, src2, GEN_INT (0)));
38850 rtx_tmp2 = gen_reg_rtx (V4SFmode);
38851 rtx_tmp3 = gen_reg_rtx (V4SFmode);
38853 if (signed_convert)
38855 emit_insn (gen_vsx_xvcvsxdsp (rtx_tmp2, rtx_tmp0));
38856 emit_insn (gen_vsx_xvcvsxdsp (rtx_tmp3, rtx_tmp1));
38858 else
38860 emit_insn (gen_vsx_xvcvuxdsp (rtx_tmp2, rtx_tmp0));
38861 emit_insn (gen_vsx_xvcvuxdsp (rtx_tmp3, rtx_tmp1));
38864 if (BYTES_BIG_ENDIAN)
38865 emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp2, rtx_tmp3));
38866 else
38867 emit_insn (gen_p8_vmrgew_v4sf (dst, rtx_tmp3, rtx_tmp2));
38870 void
38871 rs6000_generate_vsigned2_code (bool signed_convert, rtx dst, rtx src1,
38872 rtx src2)
38874 rtx rtx_tmp0, rtx_tmp1, rtx_tmp2, rtx_tmp3;
38876 rtx_tmp0 = gen_reg_rtx (V2DFmode);
38877 rtx_tmp1 = gen_reg_rtx (V2DFmode);
38879 emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp0, src1, src2, GEN_INT (0)));
38880 emit_insn (gen_vsx_xxpermdi_v2df (rtx_tmp1, src1, src2, GEN_INT (3)));
38882 rtx_tmp2 = gen_reg_rtx (V4SImode);
38883 rtx_tmp3 = gen_reg_rtx (V4SImode);
38885 if (signed_convert)
38887 emit_insn (gen_vsx_xvcvdpsxws (rtx_tmp2, rtx_tmp0));
38888 emit_insn (gen_vsx_xvcvdpsxws (rtx_tmp3, rtx_tmp1));
38890 else
38892 emit_insn (gen_vsx_xvcvdpuxws (rtx_tmp2, rtx_tmp0));
38893 emit_insn (gen_vsx_xvcvdpuxws (rtx_tmp3, rtx_tmp1));
38896 emit_insn (gen_p8_vmrgew_v4si (dst, rtx_tmp2, rtx_tmp3));
38899 /* Implement the TARGET_OPTAB_SUPPORTED_P hook. */
38901 static bool
38902 rs6000_optab_supported_p (int op, machine_mode mode1, machine_mode,
38903 optimization_type opt_type)
38905 switch (op)
38907 case rsqrt_optab:
38908 return (opt_type == OPTIMIZE_FOR_SPEED
38909 && RS6000_RECIP_AUTO_RSQRTE_P (mode1));
38911 default:
38912 return true;
38916 /* Implement TARGET_CONSTANT_ALIGNMENT. */
38918 static HOST_WIDE_INT
38919 rs6000_constant_alignment (const_tree exp, HOST_WIDE_INT align)
38921 if (TREE_CODE (exp) == STRING_CST
38922 && (STRICT_ALIGNMENT || !optimize_size))
38923 return MAX (align, BITS_PER_WORD);
38924 return align;
38927 /* Implement TARGET_STARTING_FRAME_OFFSET. */
38929 static HOST_WIDE_INT
38930 rs6000_starting_frame_offset (void)
38932 if (FRAME_GROWS_DOWNWARD)
38933 return 0;
38934 return RS6000_STARTING_FRAME_OFFSET;
38938 /* Create an alias for a mangled name where we have changed the mangling (in
38939 GCC 8.1, we used U10__float128, and now we use u9__ieee128). This is called
38940 via the target hook TARGET_ASM_GLOBALIZE_DECL_NAME. */
38942 #if TARGET_ELF && RS6000_WEAK
38943 static void
38944 rs6000_globalize_decl_name (FILE * stream, tree decl)
38946 const char *name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
38948 targetm.asm_out.globalize_label (stream, name);
38950 if (rs6000_passes_ieee128 && name[0] == '_' && name[1] == 'Z')
38952 tree save_asm_name = DECL_ASSEMBLER_NAME (decl);
38953 const char *old_name;
38955 ieee128_mangling_gcc_8_1 = true;
38956 lang_hooks.set_decl_assembler_name (decl);
38957 old_name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
38958 SET_DECL_ASSEMBLER_NAME (decl, save_asm_name);
38959 ieee128_mangling_gcc_8_1 = false;
38961 if (strcmp (name, old_name) != 0)
38963 fprintf (stream, "\t.weak %s\n", old_name);
38964 fprintf (stream, "\t.set %s,%s\n", old_name, name);
38968 #endif
38971 /* On 64-bit Linux and Freebsd systems, possibly switch the long double library
38972 function names from <foo>l to <foo>f128 if the default long double type is
38973 IEEE 128-bit. Typically, with the C and C++ languages, the standard math.h
38974 include file switches the names on systems that support long double as IEEE
38975 128-bit, but that doesn't work if the user uses __builtin_<foo>l directly.
38976 In the future, glibc will export names like __ieee128_sinf128 and we can
38977 switch to using those instead of using sinf128, which pollutes the user's
38978 namespace.
38980 This will switch the names for Fortran math functions as well (which doesn't
38981 use math.h). However, Fortran needs other changes to the compiler and
38982 library before you can switch the real*16 type at compile time.
38984 We use the TARGET_MANGLE_DECL_ASSEMBLER_NAME hook to change this name. We
38985 only do this if the default is that long double is IBM extended double, and
38986 the user asked for IEEE 128-bit. */
38988 static tree
38989 rs6000_mangle_decl_assembler_name (tree decl, tree id)
38991 if (!TARGET_IEEEQUAD_DEFAULT && TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128
38992 && TREE_CODE (decl) == FUNCTION_DECL && DECL_IS_BUILTIN (decl) )
38994 size_t len = IDENTIFIER_LENGTH (id);
38995 const char *name = IDENTIFIER_POINTER (id);
38997 if (name[len - 1] == 'l')
38999 bool uses_ieee128_p = false;
39000 tree type = TREE_TYPE (decl);
39001 machine_mode ret_mode = TYPE_MODE (type);
39003 /* See if the function returns a IEEE 128-bit floating point type or
39004 complex type. */
39005 if (ret_mode == TFmode || ret_mode == TCmode)
39006 uses_ieee128_p = true;
39007 else
39009 function_args_iterator args_iter;
39010 tree arg;
39012 /* See if the function passes a IEEE 128-bit floating point type
39013 or complex type. */
39014 FOREACH_FUNCTION_ARGS (type, arg, args_iter)
39016 machine_mode arg_mode = TYPE_MODE (arg);
39017 if (arg_mode == TFmode || arg_mode == TCmode)
39019 uses_ieee128_p = true;
39020 break;
39025 /* If we passed or returned an IEEE 128-bit floating point type,
39026 change the name. */
39027 if (uses_ieee128_p)
39029 char *name2 = (char *) alloca (len + 4);
39030 memcpy (name2, name, len - 1);
39031 strcpy (name2 + len - 1, "f128");
39032 id = get_identifier (name2);
39037 return id;
39041 struct gcc_target targetm = TARGET_INITIALIZER;
39043 #include "gt-rs6000.h"