* libgcov-driver.c (get_gcov_dump_complete): Update comments.
[official-gcc.git] / gcc / tree-ssa-loop-manip.c
blobae51ee66f07b3864d5cc70ddb4c91ba7b13197a7
1 /* High-level loop manipulation functions.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple.h"
28 #include "gimplify.h"
29 #include "gimple-iterator.h"
30 #include "gimplify-me.h"
31 #include "gimple-ssa.h"
32 #include "tree-cfg.h"
33 #include "tree-phinodes.h"
34 #include "ssa-iterators.h"
35 #include "tree-ssanames.h"
36 #include "tree-ssa-loop-ivopts.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-ssa-loop-niter.h"
39 #include "tree-ssa-loop.h"
40 #include "tree-into-ssa.h"
41 #include "tree-ssa.h"
42 #include "dumpfile.h"
43 #include "gimple-pretty-print.h"
44 #include "cfgloop.h"
45 #include "tree-pass.h" /* ??? for TODO_update_ssa but this isn't a pass. */
46 #include "tree-scalar-evolution.h"
47 #include "params.h"
48 #include "tree-inline.h"
49 #include "langhooks.h"
51 /* All bitmaps for rewriting into loop-closed SSA go on this obstack,
52 so that we can free them all at once. */
53 static bitmap_obstack loop_renamer_obstack;
55 /* Creates an induction variable with value BASE + STEP * iteration in LOOP.
56 It is expected that neither BASE nor STEP are shared with other expressions
57 (unless the sharing rules allow this). Use VAR as a base var_decl for it
58 (if NULL, a new temporary will be created). The increment will occur at
59 INCR_POS (after it if AFTER is true, before it otherwise). INCR_POS and
60 AFTER can be computed using standard_iv_increment_position. The ssa versions
61 of the variable before and after increment will be stored in VAR_BEFORE and
62 VAR_AFTER (unless they are NULL). */
64 void
65 create_iv (tree base, tree step, tree var, struct loop *loop,
66 gimple_stmt_iterator *incr_pos, bool after,
67 tree *var_before, tree *var_after)
69 gimple stmt;
70 tree initial, step1;
71 gimple_seq stmts;
72 tree vb, va;
73 enum tree_code incr_op = PLUS_EXPR;
74 edge pe = loop_preheader_edge (loop);
76 if (var != NULL_TREE)
78 vb = make_ssa_name (var, NULL);
79 va = make_ssa_name (var, NULL);
81 else
83 vb = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp");
84 va = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp");
86 if (var_before)
87 *var_before = vb;
88 if (var_after)
89 *var_after = va;
91 /* For easier readability of the created code, produce MINUS_EXPRs
92 when suitable. */
93 if (TREE_CODE (step) == INTEGER_CST)
95 if (TYPE_UNSIGNED (TREE_TYPE (step)))
97 step1 = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
98 if (tree_int_cst_lt (step1, step))
100 incr_op = MINUS_EXPR;
101 step = step1;
104 else
106 bool ovf;
108 if (!tree_expr_nonnegative_warnv_p (step, &ovf)
109 && may_negate_without_overflow_p (step))
111 incr_op = MINUS_EXPR;
112 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
116 if (POINTER_TYPE_P (TREE_TYPE (base)))
118 if (TREE_CODE (base) == ADDR_EXPR)
119 mark_addressable (TREE_OPERAND (base, 0));
120 step = convert_to_ptrofftype (step);
121 if (incr_op == MINUS_EXPR)
122 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
123 incr_op = POINTER_PLUS_EXPR;
125 /* Gimplify the step if necessary. We put the computations in front of the
126 loop (i.e. the step should be loop invariant). */
127 step = force_gimple_operand (step, &stmts, true, NULL_TREE);
128 if (stmts)
129 gsi_insert_seq_on_edge_immediate (pe, stmts);
131 stmt = gimple_build_assign_with_ops (incr_op, va, vb, step);
132 if (after)
133 gsi_insert_after (incr_pos, stmt, GSI_NEW_STMT);
134 else
135 gsi_insert_before (incr_pos, stmt, GSI_NEW_STMT);
137 initial = force_gimple_operand (base, &stmts, true, var);
138 if (stmts)
139 gsi_insert_seq_on_edge_immediate (pe, stmts);
141 stmt = create_phi_node (vb, loop->header);
142 add_phi_arg (stmt, initial, loop_preheader_edge (loop), UNKNOWN_LOCATION);
143 add_phi_arg (stmt, va, loop_latch_edge (loop), UNKNOWN_LOCATION);
146 /* Return the innermost superloop LOOP of USE_LOOP that is a superloop of
147 both DEF_LOOP and USE_LOOP. */
149 static inline struct loop *
150 find_sibling_superloop (struct loop *use_loop, struct loop *def_loop)
152 unsigned ud = loop_depth (use_loop);
153 unsigned dd = loop_depth (def_loop);
154 gcc_assert (ud > 0 && dd > 0);
155 if (ud > dd)
156 use_loop = superloop_at_depth (use_loop, dd);
157 if (ud < dd)
158 def_loop = superloop_at_depth (def_loop, ud);
159 while (loop_outer (use_loop) != loop_outer (def_loop))
161 use_loop = loop_outer (use_loop);
162 def_loop = loop_outer (def_loop);
163 gcc_assert (use_loop && def_loop);
165 return use_loop;
168 /* DEF_BB is a basic block containing a DEF that needs rewriting into
169 loop-closed SSA form. USE_BLOCKS is the set of basic blocks containing
170 uses of DEF that "escape" from the loop containing DEF_BB (i.e. blocks in
171 USE_BLOCKS are dominated by DEF_BB but not in the loop father of DEF_B).
172 ALL_EXITS[I] is the set of all basic blocks that exit loop I.
174 Compute the subset of LOOP_EXITS that exit the loop containing DEF_BB
175 or one of its loop fathers, in which DEF is live. This set is returned
176 in the bitmap LIVE_EXITS.
178 Instead of computing the complete livein set of the def, we use the loop
179 nesting tree as a form of poor man's structure analysis. This greatly
180 speeds up the analysis, which is important because this function may be
181 called on all SSA names that need rewriting, one at a time. */
183 static void
184 compute_live_loop_exits (bitmap live_exits, bitmap use_blocks,
185 bitmap *loop_exits, basic_block def_bb)
187 unsigned i;
188 bitmap_iterator bi;
189 vec<basic_block> worklist;
190 struct loop *def_loop = def_bb->loop_father;
191 unsigned def_loop_depth = loop_depth (def_loop);
192 bitmap def_loop_exits;
194 /* Normally the work list size is bounded by the number of basic
195 blocks in the largest loop. We don't know this number, but we
196 can be fairly sure that it will be relatively small. */
197 worklist.create (MAX (8, n_basic_blocks / 128));
199 EXECUTE_IF_SET_IN_BITMAP (use_blocks, 0, i, bi)
201 basic_block use_bb = BASIC_BLOCK (i);
202 struct loop *use_loop = use_bb->loop_father;
203 gcc_checking_assert (def_loop != use_loop
204 && ! flow_loop_nested_p (def_loop, use_loop));
205 if (! flow_loop_nested_p (use_loop, def_loop))
206 use_bb = find_sibling_superloop (use_loop, def_loop)->header;
207 if (bitmap_set_bit (live_exits, use_bb->index))
208 worklist.safe_push (use_bb);
211 /* Iterate until the worklist is empty. */
212 while (! worklist.is_empty ())
214 edge e;
215 edge_iterator ei;
217 /* Pull a block off the worklist. */
218 basic_block bb = worklist.pop ();
220 /* Make sure we have at least enough room in the work list
221 for all predecessors of this block. */
222 worklist.reserve (EDGE_COUNT (bb->preds));
224 /* For each predecessor block. */
225 FOR_EACH_EDGE (e, ei, bb->preds)
227 basic_block pred = e->src;
228 struct loop *pred_loop = pred->loop_father;
229 unsigned pred_loop_depth = loop_depth (pred_loop);
230 bool pred_visited;
232 /* We should have met DEF_BB along the way. */
233 gcc_assert (pred != ENTRY_BLOCK_PTR);
235 if (pred_loop_depth >= def_loop_depth)
237 if (pred_loop_depth > def_loop_depth)
238 pred_loop = superloop_at_depth (pred_loop, def_loop_depth);
239 /* If we've reached DEF_LOOP, our train ends here. */
240 if (pred_loop == def_loop)
241 continue;
243 else if (! flow_loop_nested_p (pred_loop, def_loop))
244 pred = find_sibling_superloop (pred_loop, def_loop)->header;
246 /* Add PRED to the LIVEIN set. PRED_VISITED is true if
247 we had already added PRED to LIVEIN before. */
248 pred_visited = !bitmap_set_bit (live_exits, pred->index);
250 /* If we have visited PRED before, don't add it to the worklist.
251 If BB dominates PRED, then we're probably looking at a loop.
252 We're only interested in looking up in the dominance tree
253 because DEF_BB dominates all the uses. */
254 if (pred_visited || dominated_by_p (CDI_DOMINATORS, pred, bb))
255 continue;
257 worklist.quick_push (pred);
260 worklist.release ();
262 def_loop_exits = BITMAP_ALLOC (&loop_renamer_obstack);
263 for (struct loop *loop = def_loop;
264 loop != current_loops->tree_root;
265 loop = loop_outer (loop))
266 bitmap_ior_into (def_loop_exits, loop_exits[loop->num]);
267 bitmap_and_into (live_exits, def_loop_exits);
268 BITMAP_FREE (def_loop_exits);
271 /* Add a loop-closing PHI for VAR in basic block EXIT. */
273 static void
274 add_exit_phi (basic_block exit, tree var)
276 gimple phi;
277 edge e;
278 edge_iterator ei;
280 #ifdef ENABLE_CHECKING
281 /* Check that at least one of the edges entering the EXIT block exits
282 the loop, or a superloop of that loop, that VAR is defined in. */
283 gimple def_stmt = SSA_NAME_DEF_STMT (var);
284 basic_block def_bb = gimple_bb (def_stmt);
285 FOR_EACH_EDGE (e, ei, exit->preds)
287 struct loop *aloop = find_common_loop (def_bb->loop_father,
288 e->src->loop_father);
289 if (!flow_bb_inside_loop_p (aloop, e->dest))
290 break;
293 gcc_checking_assert (e);
294 #endif
296 phi = create_phi_node (NULL_TREE, exit);
297 create_new_def_for (var, phi, gimple_phi_result_ptr (phi));
298 FOR_EACH_EDGE (e, ei, exit->preds)
299 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
301 if (dump_file && (dump_flags & TDF_DETAILS))
303 fprintf (dump_file, ";; Created LCSSA PHI: ");
304 print_gimple_stmt (dump_file, phi, 0, dump_flags);
308 /* Add exit phis for VAR that is used in LIVEIN.
309 Exits of the loops are stored in LOOP_EXITS. */
311 static void
312 add_exit_phis_var (tree var, bitmap use_blocks, bitmap *loop_exits)
314 unsigned index;
315 bitmap_iterator bi;
316 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
317 bitmap live_exits = BITMAP_ALLOC (&loop_renamer_obstack);
319 gcc_checking_assert (! bitmap_bit_p (use_blocks, def_bb->index));
321 compute_live_loop_exits (live_exits, use_blocks, loop_exits, def_bb);
323 EXECUTE_IF_SET_IN_BITMAP (live_exits, 0, index, bi)
325 add_exit_phi (BASIC_BLOCK (index), var);
328 BITMAP_FREE (live_exits);
331 /* Add exit phis for the names marked in NAMES_TO_RENAME.
332 Exits of the loops are stored in EXITS. Sets of blocks where the ssa
333 names are used are stored in USE_BLOCKS. */
335 static void
336 add_exit_phis (bitmap names_to_rename, bitmap *use_blocks, bitmap *loop_exits)
338 unsigned i;
339 bitmap_iterator bi;
341 EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi)
343 add_exit_phis_var (ssa_name (i), use_blocks[i], loop_exits);
347 /* Fill the array of bitmaps LOOP_EXITS with all loop exit edge targets. */
349 static void
350 get_loops_exits (bitmap *loop_exits)
352 loop_iterator li;
353 struct loop *loop;
354 unsigned j;
355 edge e;
357 FOR_EACH_LOOP (li, loop, 0)
359 vec<edge> exit_edges = get_loop_exit_edges (loop);
360 loop_exits[loop->num] = BITMAP_ALLOC (&loop_renamer_obstack);
361 FOR_EACH_VEC_ELT (exit_edges, j, e)
362 bitmap_set_bit (loop_exits[loop->num], e->dest->index);
363 exit_edges.release ();
367 /* For USE in BB, if it is used outside of the loop it is defined in,
368 mark it for rewrite. Record basic block BB where it is used
369 to USE_BLOCKS. Record the ssa name index to NEED_PHIS bitmap. */
371 static void
372 find_uses_to_rename_use (basic_block bb, tree use, bitmap *use_blocks,
373 bitmap need_phis)
375 unsigned ver;
376 basic_block def_bb;
377 struct loop *def_loop;
379 if (TREE_CODE (use) != SSA_NAME)
380 return;
382 ver = SSA_NAME_VERSION (use);
383 def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
384 if (!def_bb)
385 return;
386 def_loop = def_bb->loop_father;
388 /* If the definition is not inside a loop, it is not interesting. */
389 if (!loop_outer (def_loop))
390 return;
392 /* If the use is not outside of the loop it is defined in, it is not
393 interesting. */
394 if (flow_bb_inside_loop_p (def_loop, bb))
395 return;
397 /* If we're seeing VER for the first time, we still have to allocate
398 a bitmap for its uses. */
399 if (bitmap_set_bit (need_phis, ver))
400 use_blocks[ver] = BITMAP_ALLOC (&loop_renamer_obstack);
401 bitmap_set_bit (use_blocks[ver], bb->index);
404 /* For uses in STMT, mark names that are used outside of the loop they are
405 defined to rewrite. Record the set of blocks in that the ssa
406 names are defined to USE_BLOCKS and the ssa names themselves to
407 NEED_PHIS. */
409 static void
410 find_uses_to_rename_stmt (gimple stmt, bitmap *use_blocks, bitmap need_phis)
412 ssa_op_iter iter;
413 tree var;
414 basic_block bb = gimple_bb (stmt);
416 if (is_gimple_debug (stmt))
417 return;
419 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
420 find_uses_to_rename_use (bb, var, use_blocks, need_phis);
423 /* Marks names that are used in BB and outside of the loop they are
424 defined in for rewrite. Records the set of blocks in that the ssa
425 names are defined to USE_BLOCKS. Record the SSA names that will
426 need exit PHIs in NEED_PHIS. */
428 static void
429 find_uses_to_rename_bb (basic_block bb, bitmap *use_blocks, bitmap need_phis)
431 gimple_stmt_iterator bsi;
432 edge e;
433 edge_iterator ei;
435 FOR_EACH_EDGE (e, ei, bb->succs)
436 for (bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi); gsi_next (&bsi))
438 gimple phi = gsi_stmt (bsi);
439 if (! virtual_operand_p (gimple_phi_result (phi)))
440 find_uses_to_rename_use (bb, PHI_ARG_DEF_FROM_EDGE (phi, e),
441 use_blocks, need_phis);
444 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
445 find_uses_to_rename_stmt (gsi_stmt (bsi), use_blocks, need_phis);
448 /* Marks names that are used outside of the loop they are defined in
449 for rewrite. Records the set of blocks in that the ssa
450 names are defined to USE_BLOCKS. If CHANGED_BBS is not NULL,
451 scan only blocks in this set. */
453 static void
454 find_uses_to_rename (bitmap changed_bbs, bitmap *use_blocks, bitmap need_phis)
456 basic_block bb;
457 unsigned index;
458 bitmap_iterator bi;
460 if (changed_bbs)
461 EXECUTE_IF_SET_IN_BITMAP (changed_bbs, 0, index, bi)
462 find_uses_to_rename_bb (BASIC_BLOCK (index), use_blocks, need_phis);
463 else
464 FOR_EACH_BB (bb)
465 find_uses_to_rename_bb (bb, use_blocks, need_phis);
468 /* Rewrites the program into a loop closed ssa form -- i.e. inserts extra
469 phi nodes to ensure that no variable is used outside the loop it is
470 defined in.
472 This strengthening of the basic ssa form has several advantages:
474 1) Updating it during unrolling/peeling/versioning is trivial, since
475 we do not need to care about the uses outside of the loop.
476 The same applies to virtual operands which are also rewritten into
477 loop closed SSA form. Note that virtual operands are always live
478 until function exit.
479 2) The behavior of all uses of an induction variable is the same.
480 Without this, you need to distinguish the case when the variable
481 is used outside of the loop it is defined in, for example
483 for (i = 0; i < 100; i++)
485 for (j = 0; j < 100; j++)
487 k = i + j;
488 use1 (k);
490 use2 (k);
493 Looking from the outer loop with the normal SSA form, the first use of k
494 is not well-behaved, while the second one is an induction variable with
495 base 99 and step 1.
497 If CHANGED_BBS is not NULL, we look for uses outside loops only in
498 the basic blocks in this set.
500 UPDATE_FLAG is used in the call to update_ssa. See
501 TODO_update_ssa* for documentation. */
503 void
504 rewrite_into_loop_closed_ssa (bitmap changed_bbs, unsigned update_flag)
506 bitmap *use_blocks;
507 bitmap names_to_rename;
509 loops_state_set (LOOP_CLOSED_SSA);
510 if (number_of_loops (cfun) <= 1)
511 return;
513 /* If the pass has caused the SSA form to be out-of-date, update it
514 now. */
515 update_ssa (update_flag);
517 bitmap_obstack_initialize (&loop_renamer_obstack);
519 names_to_rename = BITMAP_ALLOC (&loop_renamer_obstack);
521 /* Uses of names to rename. We don't have to initialize this array,
522 because we know that we will only have entries for the SSA names
523 in NAMES_TO_RENAME. */
524 use_blocks = XNEWVEC (bitmap, num_ssa_names);
526 /* Find the uses outside loops. */
527 find_uses_to_rename (changed_bbs, use_blocks, names_to_rename);
529 if (!bitmap_empty_p (names_to_rename))
531 /* An array of bitmaps where LOOP_EXITS[I] is the set of basic blocks
532 that are the destination of an edge exiting loop number I. */
533 bitmap *loop_exits = XNEWVEC (bitmap, number_of_loops (cfun));
534 get_loops_exits (loop_exits);
536 /* Add the PHI nodes on exits of the loops for the names we need to
537 rewrite. */
538 add_exit_phis (names_to_rename, use_blocks, loop_exits);
540 free (loop_exits);
542 /* Fix up all the names found to be used outside their original
543 loops. */
544 update_ssa (TODO_update_ssa);
547 bitmap_obstack_release (&loop_renamer_obstack);
548 free (use_blocks);
551 /* Check invariants of the loop closed ssa form for the USE in BB. */
553 static void
554 check_loop_closed_ssa_use (basic_block bb, tree use)
556 gimple def;
557 basic_block def_bb;
559 if (TREE_CODE (use) != SSA_NAME || virtual_operand_p (use))
560 return;
562 def = SSA_NAME_DEF_STMT (use);
563 def_bb = gimple_bb (def);
564 gcc_assert (!def_bb
565 || flow_bb_inside_loop_p (def_bb->loop_father, bb));
568 /* Checks invariants of loop closed ssa form in statement STMT in BB. */
570 static void
571 check_loop_closed_ssa_stmt (basic_block bb, gimple stmt)
573 ssa_op_iter iter;
574 tree var;
576 if (is_gimple_debug (stmt))
577 return;
579 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
580 check_loop_closed_ssa_use (bb, var);
583 /* Checks that invariants of the loop closed ssa form are preserved.
584 Call verify_ssa when VERIFY_SSA_P is true. */
586 DEBUG_FUNCTION void
587 verify_loop_closed_ssa (bool verify_ssa_p)
589 basic_block bb;
590 gimple_stmt_iterator bsi;
591 gimple phi;
592 edge e;
593 edge_iterator ei;
595 if (number_of_loops (cfun) <= 1)
596 return;
598 if (verify_ssa_p)
599 verify_ssa (false);
601 timevar_push (TV_VERIFY_LOOP_CLOSED);
603 FOR_EACH_BB (bb)
605 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
607 phi = gsi_stmt (bsi);
608 FOR_EACH_EDGE (e, ei, bb->preds)
609 check_loop_closed_ssa_use (e->src,
610 PHI_ARG_DEF_FROM_EDGE (phi, e));
613 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
614 check_loop_closed_ssa_stmt (bb, gsi_stmt (bsi));
617 timevar_pop (TV_VERIFY_LOOP_CLOSED);
620 /* Split loop exit edge EXIT. The things are a bit complicated by a need to
621 preserve the loop closed ssa form. The newly created block is returned. */
623 basic_block
624 split_loop_exit_edge (edge exit)
626 basic_block dest = exit->dest;
627 basic_block bb = split_edge (exit);
628 gimple phi, new_phi;
629 tree new_name, name;
630 use_operand_p op_p;
631 gimple_stmt_iterator psi;
632 source_location locus;
634 for (psi = gsi_start_phis (dest); !gsi_end_p (psi); gsi_next (&psi))
636 phi = gsi_stmt (psi);
637 op_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (bb));
638 locus = gimple_phi_arg_location_from_edge (phi, single_succ_edge (bb));
640 name = USE_FROM_PTR (op_p);
642 /* If the argument of the PHI node is a constant, we do not need
643 to keep it inside loop. */
644 if (TREE_CODE (name) != SSA_NAME)
645 continue;
647 /* Otherwise create an auxiliary phi node that will copy the value
648 of the SSA name out of the loop. */
649 new_name = duplicate_ssa_name (name, NULL);
650 new_phi = create_phi_node (new_name, bb);
651 add_phi_arg (new_phi, name, exit, locus);
652 SET_USE (op_p, new_name);
655 return bb;
658 /* Returns the basic block in that statements should be emitted for induction
659 variables incremented at the end of the LOOP. */
661 basic_block
662 ip_end_pos (struct loop *loop)
664 return loop->latch;
667 /* Returns the basic block in that statements should be emitted for induction
668 variables incremented just before exit condition of a LOOP. */
670 basic_block
671 ip_normal_pos (struct loop *loop)
673 gimple last;
674 basic_block bb;
675 edge exit;
677 if (!single_pred_p (loop->latch))
678 return NULL;
680 bb = single_pred (loop->latch);
681 last = last_stmt (bb);
682 if (!last
683 || gimple_code (last) != GIMPLE_COND)
684 return NULL;
686 exit = EDGE_SUCC (bb, 0);
687 if (exit->dest == loop->latch)
688 exit = EDGE_SUCC (bb, 1);
690 if (flow_bb_inside_loop_p (loop, exit->dest))
691 return NULL;
693 return bb;
696 /* Stores the standard position for induction variable increment in LOOP
697 (just before the exit condition if it is available and latch block is empty,
698 end of the latch block otherwise) to BSI. INSERT_AFTER is set to true if
699 the increment should be inserted after *BSI. */
701 void
702 standard_iv_increment_position (struct loop *loop, gimple_stmt_iterator *bsi,
703 bool *insert_after)
705 basic_block bb = ip_normal_pos (loop), latch = ip_end_pos (loop);
706 gimple last = last_stmt (latch);
708 if (!bb
709 || (last && gimple_code (last) != GIMPLE_LABEL))
711 *bsi = gsi_last_bb (latch);
712 *insert_after = true;
714 else
716 *bsi = gsi_last_bb (bb);
717 *insert_after = false;
721 /* Copies phi node arguments for duplicated blocks. The index of the first
722 duplicated block is FIRST_NEW_BLOCK. */
724 static void
725 copy_phi_node_args (unsigned first_new_block)
727 unsigned i;
729 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
730 BASIC_BLOCK (i)->flags |= BB_DUPLICATED;
732 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
733 add_phi_args_after_copy_bb (BASIC_BLOCK (i));
735 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
736 BASIC_BLOCK (i)->flags &= ~BB_DUPLICATED;
740 /* The same as cfgloopmanip.c:duplicate_loop_to_header_edge, but also
741 updates the PHI nodes at start of the copied region. In order to
742 achieve this, only loops whose exits all lead to the same location
743 are handled.
745 Notice that we do not completely update the SSA web after
746 duplication. The caller is responsible for calling update_ssa
747 after the loop has been duplicated. */
749 bool
750 gimple_duplicate_loop_to_header_edge (struct loop *loop, edge e,
751 unsigned int ndupl, sbitmap wont_exit,
752 edge orig, vec<edge> *to_remove,
753 int flags)
755 unsigned first_new_block;
757 if (!loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
758 return false;
759 if (!loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
760 return false;
762 #ifdef ENABLE_CHECKING
763 /* ??? This forces needless update_ssa calls after processing each
764 loop instead of just once after processing all loops. We should
765 instead verify that loop-closed SSA form is up-to-date for LOOP
766 only (and possibly SSA form). For now just skip verifying if
767 there are to-be renamed variables. */
768 if (!need_ssa_update_p (cfun)
769 && loops_state_satisfies_p (LOOP_CLOSED_SSA))
770 verify_loop_closed_ssa (true);
771 #endif
773 first_new_block = last_basic_block;
774 if (!duplicate_loop_to_header_edge (loop, e, ndupl, wont_exit,
775 orig, to_remove, flags))
776 return false;
778 /* Readd the removed phi args for e. */
779 flush_pending_stmts (e);
781 /* Copy the phi node arguments. */
782 copy_phi_node_args (first_new_block);
784 scev_reset ();
786 return true;
789 /* Returns true if we can unroll LOOP FACTOR times. Number
790 of iterations of the loop is returned in NITER. */
792 bool
793 can_unroll_loop_p (struct loop *loop, unsigned factor,
794 struct tree_niter_desc *niter)
796 edge exit;
798 /* Check whether unrolling is possible. We only want to unroll loops
799 for that we are able to determine number of iterations. We also
800 want to split the extra iterations of the loop from its end,
801 therefore we require that the loop has precisely one
802 exit. */
804 exit = single_dom_exit (loop);
805 if (!exit)
806 return false;
808 if (!number_of_iterations_exit (loop, exit, niter, false)
809 || niter->cmp == ERROR_MARK
810 /* Scalar evolutions analysis might have copy propagated
811 the abnormal ssa names into these expressions, hence
812 emitting the computations based on them during loop
813 unrolling might create overlapping life ranges for
814 them, and failures in out-of-ssa. */
815 || contains_abnormal_ssa_name_p (niter->may_be_zero)
816 || contains_abnormal_ssa_name_p (niter->control.base)
817 || contains_abnormal_ssa_name_p (niter->control.step)
818 || contains_abnormal_ssa_name_p (niter->bound))
819 return false;
821 /* And of course, we must be able to duplicate the loop. */
822 if (!can_duplicate_loop_p (loop))
823 return false;
825 /* The final loop should be small enough. */
826 if (tree_num_loop_insns (loop, &eni_size_weights) * factor
827 > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
828 return false;
830 return true;
833 /* Determines the conditions that control execution of LOOP unrolled FACTOR
834 times. DESC is number of iterations of LOOP. ENTER_COND is set to
835 condition that must be true if the main loop can be entered.
836 EXIT_BASE, EXIT_STEP, EXIT_CMP and EXIT_BOUND are set to values describing
837 how the exit from the unrolled loop should be controlled. */
839 static void
840 determine_exit_conditions (struct loop *loop, struct tree_niter_desc *desc,
841 unsigned factor, tree *enter_cond,
842 tree *exit_base, tree *exit_step,
843 enum tree_code *exit_cmp, tree *exit_bound)
845 gimple_seq stmts;
846 tree base = desc->control.base;
847 tree step = desc->control.step;
848 tree bound = desc->bound;
849 tree type = TREE_TYPE (step);
850 tree bigstep, delta;
851 tree min = lower_bound_in_type (type, type);
852 tree max = upper_bound_in_type (type, type);
853 enum tree_code cmp = desc->cmp;
854 tree cond = boolean_true_node, assum;
856 /* For pointers, do the arithmetics in the type of step. */
857 base = fold_convert (type, base);
858 bound = fold_convert (type, bound);
860 *enter_cond = boolean_false_node;
861 *exit_base = NULL_TREE;
862 *exit_step = NULL_TREE;
863 *exit_cmp = ERROR_MARK;
864 *exit_bound = NULL_TREE;
865 gcc_assert (cmp != ERROR_MARK);
867 /* We only need to be correct when we answer question
868 "Do at least FACTOR more iterations remain?" in the unrolled loop.
869 Thus, transforming BASE + STEP * i <> BOUND to
870 BASE + STEP * i < BOUND is ok. */
871 if (cmp == NE_EXPR)
873 if (tree_int_cst_sign_bit (step))
874 cmp = GT_EXPR;
875 else
876 cmp = LT_EXPR;
878 else if (cmp == LT_EXPR)
880 gcc_assert (!tree_int_cst_sign_bit (step));
882 else if (cmp == GT_EXPR)
884 gcc_assert (tree_int_cst_sign_bit (step));
886 else
887 gcc_unreachable ();
889 /* The main body of the loop may be entered iff:
891 1) desc->may_be_zero is false.
892 2) it is possible to check that there are at least FACTOR iterations
893 of the loop, i.e., BOUND - step * FACTOR does not overflow.
894 3) # of iterations is at least FACTOR */
896 if (!integer_zerop (desc->may_be_zero))
897 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
898 invert_truthvalue (desc->may_be_zero),
899 cond);
901 bigstep = fold_build2 (MULT_EXPR, type, step,
902 build_int_cst_type (type, factor));
903 delta = fold_build2 (MINUS_EXPR, type, bigstep, step);
904 if (cmp == LT_EXPR)
905 assum = fold_build2 (GE_EXPR, boolean_type_node,
906 bound,
907 fold_build2 (PLUS_EXPR, type, min, delta));
908 else
909 assum = fold_build2 (LE_EXPR, boolean_type_node,
910 bound,
911 fold_build2 (PLUS_EXPR, type, max, delta));
912 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
914 bound = fold_build2 (MINUS_EXPR, type, bound, delta);
915 assum = fold_build2 (cmp, boolean_type_node, base, bound);
916 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
918 cond = force_gimple_operand (unshare_expr (cond), &stmts, false, NULL_TREE);
919 if (stmts)
920 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
921 /* cond now may be a gimple comparison, which would be OK, but also any
922 other gimple rhs (say a && b). In this case we need to force it to
923 operand. */
924 if (!is_gimple_condexpr (cond))
926 cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
927 if (stmts)
928 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
930 *enter_cond = cond;
932 base = force_gimple_operand (unshare_expr (base), &stmts, true, NULL_TREE);
933 if (stmts)
934 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
935 bound = force_gimple_operand (unshare_expr (bound), &stmts, true, NULL_TREE);
936 if (stmts)
937 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
939 *exit_base = base;
940 *exit_step = bigstep;
941 *exit_cmp = cmp;
942 *exit_bound = bound;
945 /* Scales the frequencies of all basic blocks in LOOP that are strictly
946 dominated by BB by NUM/DEN. */
948 static void
949 scale_dominated_blocks_in_loop (struct loop *loop, basic_block bb,
950 int num, int den)
952 basic_block son;
954 if (den == 0)
955 return;
957 for (son = first_dom_son (CDI_DOMINATORS, bb);
958 son;
959 son = next_dom_son (CDI_DOMINATORS, son))
961 if (!flow_bb_inside_loop_p (loop, son))
962 continue;
963 scale_bbs_frequencies_int (&son, 1, num, den);
964 scale_dominated_blocks_in_loop (loop, son, num, den);
968 /* Unroll LOOP FACTOR times. DESC describes number of iterations of LOOP.
969 EXIT is the exit of the loop to that DESC corresponds.
971 If N is number of iterations of the loop and MAY_BE_ZERO is the condition
972 under that loop exits in the first iteration even if N != 0,
974 while (1)
976 x = phi (init, next);
978 pre;
979 if (st)
980 break;
981 post;
984 becomes (with possibly the exit conditions formulated a bit differently,
985 avoiding the need to create a new iv):
987 if (MAY_BE_ZERO || N < FACTOR)
988 goto rest;
992 x = phi (init, next);
994 pre;
995 post;
996 pre;
997 post;
999 pre;
1000 post;
1001 N -= FACTOR;
1003 } while (N >= FACTOR);
1005 rest:
1006 init' = phi (init, x);
1008 while (1)
1010 x = phi (init', next);
1012 pre;
1013 if (st)
1014 break;
1015 post;
1018 Before the loop is unrolled, TRANSFORM is called for it (only for the
1019 unrolled loop, but not for its versioned copy). DATA is passed to
1020 TRANSFORM. */
1022 /* Probability in % that the unrolled loop is entered. Just a guess. */
1023 #define PROB_UNROLLED_LOOP_ENTERED 90
1025 void
1026 tree_transform_and_unroll_loop (struct loop *loop, unsigned factor,
1027 edge exit, struct tree_niter_desc *desc,
1028 transform_callback transform,
1029 void *data)
1031 gimple exit_if;
1032 tree ctr_before, ctr_after;
1033 tree enter_main_cond, exit_base, exit_step, exit_bound;
1034 enum tree_code exit_cmp;
1035 gimple phi_old_loop, phi_new_loop, phi_rest;
1036 gimple_stmt_iterator psi_old_loop, psi_new_loop;
1037 tree init, next, new_init;
1038 struct loop *new_loop;
1039 basic_block rest, exit_bb;
1040 edge old_entry, new_entry, old_latch, precond_edge, new_exit;
1041 edge new_nonexit, e;
1042 gimple_stmt_iterator bsi;
1043 use_operand_p op;
1044 bool ok;
1045 unsigned est_niter, prob_entry, scale_unrolled, scale_rest, freq_e, freq_h;
1046 unsigned new_est_niter, i, prob;
1047 unsigned irr = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
1048 sbitmap wont_exit;
1049 vec<edge> to_remove = vNULL;
1051 est_niter = expected_loop_iterations (loop);
1052 determine_exit_conditions (loop, desc, factor,
1053 &enter_main_cond, &exit_base, &exit_step,
1054 &exit_cmp, &exit_bound);
1056 /* Let us assume that the unrolled loop is quite likely to be entered. */
1057 if (integer_nonzerop (enter_main_cond))
1058 prob_entry = REG_BR_PROB_BASE;
1059 else
1060 prob_entry = PROB_UNROLLED_LOOP_ENTERED * REG_BR_PROB_BASE / 100;
1062 /* The values for scales should keep profile consistent, and somewhat close
1063 to correct.
1065 TODO: The current value of SCALE_REST makes it appear that the loop that
1066 is created by splitting the remaining iterations of the unrolled loop is
1067 executed the same number of times as the original loop, and with the same
1068 frequencies, which is obviously wrong. This does not appear to cause
1069 problems, so we do not bother with fixing it for now. To make the profile
1070 correct, we would need to change the probability of the exit edge of the
1071 loop, and recompute the distribution of frequencies in its body because
1072 of this change (scale the frequencies of blocks before and after the exit
1073 by appropriate factors). */
1074 scale_unrolled = prob_entry;
1075 scale_rest = REG_BR_PROB_BASE;
1077 new_loop = loop_version (loop, enter_main_cond, NULL,
1078 prob_entry, scale_unrolled, scale_rest, true);
1079 gcc_assert (new_loop != NULL);
1080 update_ssa (TODO_update_ssa);
1082 /* Determine the probability of the exit edge of the unrolled loop. */
1083 new_est_niter = est_niter / factor;
1085 /* Without profile feedback, loops for that we do not know a better estimate
1086 are assumed to roll 10 times. When we unroll such loop, it appears to
1087 roll too little, and it may even seem to be cold. To avoid this, we
1088 ensure that the created loop appears to roll at least 5 times (but at
1089 most as many times as before unrolling). */
1090 if (new_est_niter < 5)
1092 if (est_niter < 5)
1093 new_est_niter = est_niter;
1094 else
1095 new_est_niter = 5;
1098 /* Prepare the cfg and update the phi nodes. Move the loop exit to the
1099 loop latch (and make its condition dummy, for the moment). */
1100 rest = loop_preheader_edge (new_loop)->src;
1101 precond_edge = single_pred_edge (rest);
1102 split_edge (loop_latch_edge (loop));
1103 exit_bb = single_pred (loop->latch);
1105 /* Since the exit edge will be removed, the frequency of all the blocks
1106 in the loop that are dominated by it must be scaled by
1107 1 / (1 - exit->probability). */
1108 scale_dominated_blocks_in_loop (loop, exit->src,
1109 REG_BR_PROB_BASE,
1110 REG_BR_PROB_BASE - exit->probability);
1112 bsi = gsi_last_bb (exit_bb);
1113 exit_if = gimple_build_cond (EQ_EXPR, integer_zero_node,
1114 integer_zero_node,
1115 NULL_TREE, NULL_TREE);
1117 gsi_insert_after (&bsi, exit_if, GSI_NEW_STMT);
1118 new_exit = make_edge (exit_bb, rest, EDGE_FALSE_VALUE | irr);
1119 rescan_loop_exit (new_exit, true, false);
1121 /* Set the probability of new exit to the same of the old one. Fix
1122 the frequency of the latch block, by scaling it back by
1123 1 - exit->probability. */
1124 new_exit->count = exit->count;
1125 new_exit->probability = exit->probability;
1126 new_nonexit = single_pred_edge (loop->latch);
1127 new_nonexit->probability = REG_BR_PROB_BASE - exit->probability;
1128 new_nonexit->flags = EDGE_TRUE_VALUE;
1129 new_nonexit->count -= exit->count;
1130 if (new_nonexit->count < 0)
1131 new_nonexit->count = 0;
1132 scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1133 REG_BR_PROB_BASE);
1135 old_entry = loop_preheader_edge (loop);
1136 new_entry = loop_preheader_edge (new_loop);
1137 old_latch = loop_latch_edge (loop);
1138 for (psi_old_loop = gsi_start_phis (loop->header),
1139 psi_new_loop = gsi_start_phis (new_loop->header);
1140 !gsi_end_p (psi_old_loop);
1141 gsi_next (&psi_old_loop), gsi_next (&psi_new_loop))
1143 phi_old_loop = gsi_stmt (psi_old_loop);
1144 phi_new_loop = gsi_stmt (psi_new_loop);
1146 init = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_entry);
1147 op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_new_loop, new_entry);
1148 gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
1149 next = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_latch);
1151 /* Prefer using original variable as a base for the new ssa name.
1152 This is necessary for virtual ops, and useful in order to avoid
1153 losing debug info for real ops. */
1154 if (TREE_CODE (next) == SSA_NAME
1155 && useless_type_conversion_p (TREE_TYPE (next),
1156 TREE_TYPE (init)))
1157 new_init = copy_ssa_name (next, NULL);
1158 else if (TREE_CODE (init) == SSA_NAME
1159 && useless_type_conversion_p (TREE_TYPE (init),
1160 TREE_TYPE (next)))
1161 new_init = copy_ssa_name (init, NULL);
1162 else if (useless_type_conversion_p (TREE_TYPE (next), TREE_TYPE (init)))
1163 new_init = make_temp_ssa_name (TREE_TYPE (next), NULL, "unrinittmp");
1164 else
1165 new_init = make_temp_ssa_name (TREE_TYPE (init), NULL, "unrinittmp");
1167 phi_rest = create_phi_node (new_init, rest);
1169 add_phi_arg (phi_rest, init, precond_edge, UNKNOWN_LOCATION);
1170 add_phi_arg (phi_rest, next, new_exit, UNKNOWN_LOCATION);
1171 SET_USE (op, new_init);
1174 remove_path (exit);
1176 /* Transform the loop. */
1177 if (transform)
1178 (*transform) (loop, data);
1180 /* Unroll the loop and remove the exits in all iterations except for the
1181 last one. */
1182 wont_exit = sbitmap_alloc (factor);
1183 bitmap_ones (wont_exit);
1184 bitmap_clear_bit (wont_exit, factor - 1);
1186 ok = gimple_duplicate_loop_to_header_edge
1187 (loop, loop_latch_edge (loop), factor - 1,
1188 wont_exit, new_exit, &to_remove, DLTHE_FLAG_UPDATE_FREQ);
1189 free (wont_exit);
1190 gcc_assert (ok);
1192 FOR_EACH_VEC_ELT (to_remove, i, e)
1194 ok = remove_path (e);
1195 gcc_assert (ok);
1197 to_remove.release ();
1198 update_ssa (TODO_update_ssa);
1200 /* Ensure that the frequencies in the loop match the new estimated
1201 number of iterations, and change the probability of the new
1202 exit edge. */
1203 freq_h = loop->header->frequency;
1204 freq_e = EDGE_FREQUENCY (loop_preheader_edge (loop));
1205 if (freq_h != 0)
1206 scale_loop_frequencies (loop, freq_e * (new_est_niter + 1), freq_h);
1208 exit_bb = single_pred (loop->latch);
1209 new_exit = find_edge (exit_bb, rest);
1210 new_exit->count = loop_preheader_edge (loop)->count;
1211 new_exit->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
1213 rest->count += new_exit->count;
1214 rest->frequency += EDGE_FREQUENCY (new_exit);
1216 new_nonexit = single_pred_edge (loop->latch);
1217 prob = new_nonexit->probability;
1218 new_nonexit->probability = REG_BR_PROB_BASE - new_exit->probability;
1219 new_nonexit->count = exit_bb->count - new_exit->count;
1220 if (new_nonexit->count < 0)
1221 new_nonexit->count = 0;
1222 if (prob > 0)
1223 scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1224 prob);
1226 /* Finally create the new counter for number of iterations and add the new
1227 exit instruction. */
1228 bsi = gsi_last_nondebug_bb (exit_bb);
1229 exit_if = gsi_stmt (bsi);
1230 create_iv (exit_base, exit_step, NULL_TREE, loop,
1231 &bsi, false, &ctr_before, &ctr_after);
1232 gimple_cond_set_code (exit_if, exit_cmp);
1233 gimple_cond_set_lhs (exit_if, ctr_after);
1234 gimple_cond_set_rhs (exit_if, exit_bound);
1235 update_stmt (exit_if);
1237 #ifdef ENABLE_CHECKING
1238 verify_flow_info ();
1239 verify_loop_structure ();
1240 verify_loop_closed_ssa (true);
1241 #endif
1244 /* Wrapper over tree_transform_and_unroll_loop for case we do not
1245 want to transform the loop before unrolling. The meaning
1246 of the arguments is the same as for tree_transform_and_unroll_loop. */
1248 void
1249 tree_unroll_loop (struct loop *loop, unsigned factor,
1250 edge exit, struct tree_niter_desc *desc)
1252 tree_transform_and_unroll_loop (loop, factor, exit, desc,
1253 NULL, NULL);
1256 /* Rewrite the phi node at position PSI in function of the main
1257 induction variable MAIN_IV and insert the generated code at GSI. */
1259 static void
1260 rewrite_phi_with_iv (loop_p loop,
1261 gimple_stmt_iterator *psi,
1262 gimple_stmt_iterator *gsi,
1263 tree main_iv)
1265 affine_iv iv;
1266 gimple stmt, phi = gsi_stmt (*psi);
1267 tree atype, mtype, val, res = PHI_RESULT (phi);
1269 if (virtual_operand_p (res) || res == main_iv)
1271 gsi_next (psi);
1272 return;
1275 if (!simple_iv (loop, loop, res, &iv, true))
1277 gsi_next (psi);
1278 return;
1281 remove_phi_node (psi, false);
1283 atype = TREE_TYPE (res);
1284 mtype = POINTER_TYPE_P (atype) ? sizetype : atype;
1285 val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step),
1286 fold_convert (mtype, main_iv));
1287 val = fold_build2 (POINTER_TYPE_P (atype)
1288 ? POINTER_PLUS_EXPR : PLUS_EXPR,
1289 atype, unshare_expr (iv.base), val);
1290 val = force_gimple_operand_gsi (gsi, val, false, NULL_TREE, true,
1291 GSI_SAME_STMT);
1292 stmt = gimple_build_assign (res, val);
1293 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1296 /* Rewrite all the phi nodes of LOOP in function of the main induction
1297 variable MAIN_IV. */
1299 static void
1300 rewrite_all_phi_nodes_with_iv (loop_p loop, tree main_iv)
1302 unsigned i;
1303 basic_block *bbs = get_loop_body_in_dom_order (loop);
1304 gimple_stmt_iterator psi;
1306 for (i = 0; i < loop->num_nodes; i++)
1308 basic_block bb = bbs[i];
1309 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1311 if (bb->loop_father != loop)
1312 continue;
1314 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); )
1315 rewrite_phi_with_iv (loop, &psi, &gsi, main_iv);
1318 free (bbs);
1321 /* Bases all the induction variables in LOOP on a single induction
1322 variable (unsigned with base 0 and step 1), whose final value is
1323 compared with *NIT. When the IV type precision has to be larger
1324 than *NIT type precision, *NIT is converted to the larger type, the
1325 conversion code is inserted before the loop, and *NIT is updated to
1326 the new definition. When BUMP_IN_LATCH is true, the induction
1327 variable is incremented in the loop latch, otherwise it is
1328 incremented in the loop header. Return the induction variable that
1329 was created. */
1331 tree
1332 canonicalize_loop_ivs (struct loop *loop, tree *nit, bool bump_in_latch)
1334 unsigned precision = TYPE_PRECISION (TREE_TYPE (*nit));
1335 unsigned original_precision = precision;
1336 tree type, var_before;
1337 gimple_stmt_iterator gsi, psi;
1338 gimple stmt;
1339 edge exit = single_dom_exit (loop);
1340 gimple_seq stmts;
1341 enum machine_mode mode;
1342 bool unsigned_p = false;
1344 for (psi = gsi_start_phis (loop->header);
1345 !gsi_end_p (psi); gsi_next (&psi))
1347 gimple phi = gsi_stmt (psi);
1348 tree res = PHI_RESULT (phi);
1349 bool uns;
1351 type = TREE_TYPE (res);
1352 if (virtual_operand_p (res)
1353 || (!INTEGRAL_TYPE_P (type)
1354 && !POINTER_TYPE_P (type))
1355 || TYPE_PRECISION (type) < precision)
1356 continue;
1358 uns = POINTER_TYPE_P (type) | TYPE_UNSIGNED (type);
1360 if (TYPE_PRECISION (type) > precision)
1361 unsigned_p = uns;
1362 else
1363 unsigned_p |= uns;
1365 precision = TYPE_PRECISION (type);
1368 mode = smallest_mode_for_size (precision, MODE_INT);
1369 precision = GET_MODE_PRECISION (mode);
1370 type = build_nonstandard_integer_type (precision, unsigned_p);
1372 if (original_precision != precision)
1374 *nit = fold_convert (type, *nit);
1375 *nit = force_gimple_operand (*nit, &stmts, true, NULL_TREE);
1376 if (stmts)
1377 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1380 if (bump_in_latch)
1381 gsi = gsi_last_bb (loop->latch);
1382 else
1383 gsi = gsi_last_nondebug_bb (loop->header);
1384 create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
1385 loop, &gsi, bump_in_latch, &var_before, NULL);
1387 rewrite_all_phi_nodes_with_iv (loop, var_before);
1389 stmt = last_stmt (exit->src);
1390 /* Make the loop exit if the control condition is not satisfied. */
1391 if (exit->flags & EDGE_TRUE_VALUE)
1393 edge te, fe;
1395 extract_true_false_edges_from_block (exit->src, &te, &fe);
1396 te->flags = EDGE_FALSE_VALUE;
1397 fe->flags = EDGE_TRUE_VALUE;
1399 gimple_cond_set_code (stmt, LT_EXPR);
1400 gimple_cond_set_lhs (stmt, var_before);
1401 gimple_cond_set_rhs (stmt, *nit);
1402 update_stmt (stmt);
1404 return var_before;