2005-06-19 Andreas Krebbel <krebbel1@de.ibm.com>
[official-gcc.git] / gcc / local-alloc.c
blobada6e3d2b4a05484572ffbf11d833f4bffd47d06
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "coretypes.h"
65 #include "tm.h"
66 #include "hard-reg-set.h"
67 #include "rtl.h"
68 #include "tm_p.h"
69 #include "flags.h"
70 #include "regs.h"
71 #include "function.h"
72 #include "insn-config.h"
73 #include "insn-attr.h"
74 #include "recog.h"
75 #include "output.h"
76 #include "toplev.h"
77 #include "except.h"
78 #include "integrate.h"
79 #include "reload.h"
80 #include "ggc.h"
82 /* Next quantity number available for allocation. */
84 static int next_qty;
86 /* Information we maintain about each quantity. */
87 struct qty
89 /* The number of refs to quantity Q. */
91 int n_refs;
93 /* The frequency of uses of quantity Q. */
95 int freq;
97 /* Insn number (counting from head of basic block)
98 where quantity Q was born. -1 if birth has not been recorded. */
100 int birth;
102 /* Insn number (counting from head of basic block)
103 where given quantity died. Due to the way tying is done,
104 and the fact that we consider in this pass only regs that die but once,
105 a quantity can die only once. Each quantity's life span
106 is a set of consecutive insns. -1 if death has not been recorded. */
108 int death;
110 /* Number of words needed to hold the data in given quantity.
111 This depends on its machine mode. It is used for these purposes:
112 1. It is used in computing the relative importance of qtys,
113 which determines the order in which we look for regs for them.
114 2. It is used in rules that prevent tying several registers of
115 different sizes in a way that is geometrically impossible
116 (see combine_regs). */
118 int size;
120 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
122 int n_calls_crossed;
124 /* The register number of one pseudo register whose reg_qty value is Q.
125 This register should be the head of the chain
126 maintained in reg_next_in_qty. */
128 int first_reg;
130 /* Reg class contained in (smaller than) the preferred classes of all
131 the pseudo regs that are tied in given quantity.
132 This is the preferred class for allocating that quantity. */
134 enum reg_class min_class;
136 /* Register class within which we allocate given qty if we can't get
137 its preferred class. */
139 enum reg_class alternate_class;
141 /* This holds the mode of the registers that are tied to given qty,
142 or VOIDmode if registers with differing modes are tied together. */
144 enum machine_mode mode;
146 /* the hard reg number chosen for given quantity,
147 or -1 if none was found. */
149 short phys_reg;
152 static struct qty *qty;
154 /* These fields are kept separately to speedup their clearing. */
156 /* We maintain two hard register sets that indicate suggested hard registers
157 for each quantity. The first, phys_copy_sugg, contains hard registers
158 that are tied to the quantity by a simple copy. The second contains all
159 hard registers that are tied to the quantity via an arithmetic operation.
161 The former register set is given priority for allocation. This tends to
162 eliminate copy insns. */
164 /* Element Q is a set of hard registers that are suggested for quantity Q by
165 copy insns. */
167 static HARD_REG_SET *qty_phys_copy_sugg;
169 /* Element Q is a set of hard registers that are suggested for quantity Q by
170 arithmetic insns. */
172 static HARD_REG_SET *qty_phys_sugg;
174 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
176 static short *qty_phys_num_copy_sugg;
178 /* Element Q is the number of suggested registers in qty_phys_sugg. */
180 static short *qty_phys_num_sugg;
182 /* If (REG N) has been assigned a quantity number, is a register number
183 of another register assigned the same quantity number, or -1 for the
184 end of the chain. qty->first_reg point to the head of this chain. */
186 static int *reg_next_in_qty;
188 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
189 if it is >= 0,
190 of -1 if this register cannot be allocated by local-alloc,
191 or -2 if not known yet.
193 Note that if we see a use or death of pseudo register N with
194 reg_qty[N] == -2, register N must be local to the current block. If
195 it were used in more than one block, we would have reg_qty[N] == -1.
196 This relies on the fact that if reg_basic_block[N] is >= 0, register N
197 will not appear in any other block. We save a considerable number of
198 tests by exploiting this.
200 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
201 be referenced. */
203 static int *reg_qty;
205 /* The offset (in words) of register N within its quantity.
206 This can be nonzero if register N is SImode, and has been tied
207 to a subreg of a DImode register. */
209 static char *reg_offset;
211 /* Vector of substitutions of register numbers,
212 used to map pseudo regs into hardware regs.
213 This is set up as a result of register allocation.
214 Element N is the hard reg assigned to pseudo reg N,
215 or is -1 if no hard reg was assigned.
216 If N is a hard reg number, element N is N. */
218 short *reg_renumber;
220 /* Set of hard registers live at the current point in the scan
221 of the instructions in a basic block. */
223 static HARD_REG_SET regs_live;
225 /* Each set of hard registers indicates registers live at a particular
226 point in the basic block. For N even, regs_live_at[N] says which
227 hard registers are needed *after* insn N/2 (i.e., they may not
228 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
230 If an object is to conflict with the inputs of insn J but not the
231 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
232 if it is to conflict with the outputs of insn J but not the inputs of
233 insn J + 1, it is said to die at index J*2 + 1. */
235 static HARD_REG_SET *regs_live_at;
237 /* Communicate local vars `insn_number' and `insn'
238 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
239 static int this_insn_number;
240 static rtx this_insn;
242 struct equivalence
244 /* Set when an attempt should be made to replace a register
245 with the associated src_p entry. */
247 char replace;
249 /* Set when a REG_EQUIV note is found or created. Use to
250 keep track of what memory accesses might be created later,
251 e.g. by reload. */
253 rtx replacement;
255 rtx *src_p;
257 /* Loop depth is used to recognize equivalences which appear
258 to be present within the same loop (or in an inner loop). */
260 int loop_depth;
262 /* The list of each instruction which initializes this register. */
264 rtx init_insns;
266 /* Nonzero if this had a preexisting REG_EQUIV note. */
268 int is_arg_equivalence;
271 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
272 structure for that register. */
274 static struct equivalence *reg_equiv;
276 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
277 static int recorded_label_ref;
279 static void alloc_qty (int, enum machine_mode, int, int);
280 static void validate_equiv_mem_from_store (rtx, rtx, void *);
281 static int validate_equiv_mem (rtx, rtx, rtx);
282 static int equiv_init_varies_p (rtx);
283 static int equiv_init_movable_p (rtx, int);
284 static int contains_replace_regs (rtx);
285 static int memref_referenced_p (rtx, rtx);
286 static int memref_used_between_p (rtx, rtx, rtx);
287 static void update_equiv_regs (void);
288 static void no_equiv (rtx, rtx, void *);
289 static void block_alloc (int);
290 static int qty_sugg_compare (int, int);
291 static int qty_sugg_compare_1 (const void *, const void *);
292 static int qty_compare (int, int);
293 static int qty_compare_1 (const void *, const void *);
294 static int combine_regs (rtx, rtx, int, int, rtx, int);
295 static int reg_meets_class_p (int, enum reg_class);
296 static void update_qty_class (int, int);
297 static void reg_is_set (rtx, rtx, void *);
298 static void reg_is_born (rtx, int);
299 static void wipe_dead_reg (rtx, int);
300 static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
301 int, int);
302 static void mark_life (int, enum machine_mode, int);
303 static void post_mark_life (int, enum machine_mode, int, int, int);
304 static int no_conflict_p (rtx, rtx, rtx);
305 static int requires_inout (const char *);
307 /* Allocate a new quantity (new within current basic block)
308 for register number REGNO which is born at index BIRTH
309 within the block. MODE and SIZE are info on reg REGNO. */
311 static void
312 alloc_qty (int regno, enum machine_mode mode, int size, int birth)
314 int qtyno = next_qty++;
316 reg_qty[regno] = qtyno;
317 reg_offset[regno] = 0;
318 reg_next_in_qty[regno] = -1;
320 qty[qtyno].first_reg = regno;
321 qty[qtyno].size = size;
322 qty[qtyno].mode = mode;
323 qty[qtyno].birth = birth;
324 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
325 qty[qtyno].min_class = reg_preferred_class (regno);
326 qty[qtyno].alternate_class = reg_alternate_class (regno);
327 qty[qtyno].n_refs = REG_N_REFS (regno);
328 qty[qtyno].freq = REG_FREQ (regno);
331 /* Main entry point of this file. */
334 local_alloc (void)
336 int i;
337 int max_qty;
338 basic_block b;
340 /* We need to keep track of whether or not we recorded a LABEL_REF so
341 that we know if the jump optimizer needs to be rerun. */
342 recorded_label_ref = 0;
344 /* Leaf functions and non-leaf functions have different needs.
345 If defined, let the machine say what kind of ordering we
346 should use. */
347 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
348 ORDER_REGS_FOR_LOCAL_ALLOC;
349 #endif
351 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
352 registers. */
353 update_equiv_regs ();
355 /* This sets the maximum number of quantities we can have. Quantity
356 numbers start at zero and we can have one for each pseudo. */
357 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
359 /* Allocate vectors of temporary data.
360 See the declarations of these variables, above,
361 for what they mean. */
363 qty = xmalloc (max_qty * sizeof (struct qty));
364 qty_phys_copy_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
365 qty_phys_num_copy_sugg = xmalloc (max_qty * sizeof (short));
366 qty_phys_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
367 qty_phys_num_sugg = xmalloc (max_qty * sizeof (short));
369 reg_qty = xmalloc (max_regno * sizeof (int));
370 reg_offset = xmalloc (max_regno * sizeof (char));
371 reg_next_in_qty = xmalloc (max_regno * sizeof (int));
373 /* Determine which pseudo-registers can be allocated by local-alloc.
374 In general, these are the registers used only in a single block and
375 which only die once.
377 We need not be concerned with which block actually uses the register
378 since we will never see it outside that block. */
380 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
382 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
383 reg_qty[i] = -2;
384 else
385 reg_qty[i] = -1;
388 /* Force loop below to initialize entire quantity array. */
389 next_qty = max_qty;
391 /* Allocate each block's local registers, block by block. */
393 FOR_EACH_BB (b)
395 /* NEXT_QTY indicates which elements of the `qty_...'
396 vectors might need to be initialized because they were used
397 for the previous block; it is set to the entire array before
398 block 0. Initialize those, with explicit loop if there are few,
399 else with bzero and bcopy. Do not initialize vectors that are
400 explicit set by `alloc_qty'. */
402 if (next_qty < 6)
404 for (i = 0; i < next_qty; i++)
406 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
407 qty_phys_num_copy_sugg[i] = 0;
408 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
409 qty_phys_num_sugg[i] = 0;
412 else
414 #define CLEAR(vector) \
415 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
417 CLEAR (qty_phys_copy_sugg);
418 CLEAR (qty_phys_num_copy_sugg);
419 CLEAR (qty_phys_sugg);
420 CLEAR (qty_phys_num_sugg);
423 next_qty = 0;
425 block_alloc (b->index);
428 free (qty);
429 free (qty_phys_copy_sugg);
430 free (qty_phys_num_copy_sugg);
431 free (qty_phys_sugg);
432 free (qty_phys_num_sugg);
434 free (reg_qty);
435 free (reg_offset);
436 free (reg_next_in_qty);
438 return recorded_label_ref;
441 /* Used for communication between the following two functions: contains
442 a MEM that we wish to ensure remains unchanged. */
443 static rtx equiv_mem;
445 /* Set nonzero if EQUIV_MEM is modified. */
446 static int equiv_mem_modified;
448 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
449 Called via note_stores. */
451 static void
452 validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
453 void *data ATTRIBUTE_UNUSED)
455 if ((REG_P (dest)
456 && reg_overlap_mentioned_p (dest, equiv_mem))
457 || (MEM_P (dest)
458 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
459 equiv_mem_modified = 1;
462 /* Verify that no store between START and the death of REG invalidates
463 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
464 by storing into an overlapping memory location, or with a non-const
465 CALL_INSN.
467 Return 1 if MEMREF remains valid. */
469 static int
470 validate_equiv_mem (rtx start, rtx reg, rtx memref)
472 rtx insn;
473 rtx note;
475 equiv_mem = memref;
476 equiv_mem_modified = 0;
478 /* If the memory reference has side effects or is volatile, it isn't a
479 valid equivalence. */
480 if (side_effects_p (memref))
481 return 0;
483 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
485 if (! INSN_P (insn))
486 continue;
488 if (find_reg_note (insn, REG_DEAD, reg))
489 return 1;
491 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
492 && ! CONST_OR_PURE_CALL_P (insn))
493 return 0;
495 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
497 /* If a register mentioned in MEMREF is modified via an
498 auto-increment, we lose the equivalence. Do the same if one
499 dies; although we could extend the life, it doesn't seem worth
500 the trouble. */
502 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
503 if ((REG_NOTE_KIND (note) == REG_INC
504 || REG_NOTE_KIND (note) == REG_DEAD)
505 && REG_P (XEXP (note, 0))
506 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
507 return 0;
510 return 0;
513 /* Returns zero if X is known to be invariant. */
515 static int
516 equiv_init_varies_p (rtx x)
518 RTX_CODE code = GET_CODE (x);
519 int i;
520 const char *fmt;
522 switch (code)
524 case MEM:
525 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
527 case CONST:
528 case CONST_INT:
529 case CONST_DOUBLE:
530 case CONST_VECTOR:
531 case SYMBOL_REF:
532 case LABEL_REF:
533 return 0;
535 case REG:
536 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
538 case ASM_OPERANDS:
539 if (MEM_VOLATILE_P (x))
540 return 1;
542 /* Fall through. */
544 default:
545 break;
548 fmt = GET_RTX_FORMAT (code);
549 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
550 if (fmt[i] == 'e')
552 if (equiv_init_varies_p (XEXP (x, i)))
553 return 1;
555 else if (fmt[i] == 'E')
557 int j;
558 for (j = 0; j < XVECLEN (x, i); j++)
559 if (equiv_init_varies_p (XVECEXP (x, i, j)))
560 return 1;
563 return 0;
566 /* Returns nonzero if X (used to initialize register REGNO) is movable.
567 X is only movable if the registers it uses have equivalent initializations
568 which appear to be within the same loop (or in an inner loop) and movable
569 or if they are not candidates for local_alloc and don't vary. */
571 static int
572 equiv_init_movable_p (rtx x, int regno)
574 int i, j;
575 const char *fmt;
576 enum rtx_code code = GET_CODE (x);
578 switch (code)
580 case SET:
581 return equiv_init_movable_p (SET_SRC (x), regno);
583 case CC0:
584 case CLOBBER:
585 return 0;
587 case PRE_INC:
588 case PRE_DEC:
589 case POST_INC:
590 case POST_DEC:
591 case PRE_MODIFY:
592 case POST_MODIFY:
593 return 0;
595 case REG:
596 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
597 && reg_equiv[REGNO (x)].replace)
598 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
600 case UNSPEC_VOLATILE:
601 return 0;
603 case ASM_OPERANDS:
604 if (MEM_VOLATILE_P (x))
605 return 0;
607 /* Fall through. */
609 default:
610 break;
613 fmt = GET_RTX_FORMAT (code);
614 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
615 switch (fmt[i])
617 case 'e':
618 if (! equiv_init_movable_p (XEXP (x, i), regno))
619 return 0;
620 break;
621 case 'E':
622 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
623 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
624 return 0;
625 break;
628 return 1;
631 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
633 static int
634 contains_replace_regs (rtx x)
636 int i, j;
637 const char *fmt;
638 enum rtx_code code = GET_CODE (x);
640 switch (code)
642 case CONST_INT:
643 case CONST:
644 case LABEL_REF:
645 case SYMBOL_REF:
646 case CONST_DOUBLE:
647 case CONST_VECTOR:
648 case PC:
649 case CC0:
650 case HIGH:
651 return 0;
653 case REG:
654 return reg_equiv[REGNO (x)].replace;
656 default:
657 break;
660 fmt = GET_RTX_FORMAT (code);
661 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
662 switch (fmt[i])
664 case 'e':
665 if (contains_replace_regs (XEXP (x, i)))
666 return 1;
667 break;
668 case 'E':
669 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
670 if (contains_replace_regs (XVECEXP (x, i, j)))
671 return 1;
672 break;
675 return 0;
678 /* TRUE if X references a memory location that would be affected by a store
679 to MEMREF. */
681 static int
682 memref_referenced_p (rtx memref, rtx x)
684 int i, j;
685 const char *fmt;
686 enum rtx_code code = GET_CODE (x);
688 switch (code)
690 case CONST_INT:
691 case CONST:
692 case LABEL_REF:
693 case SYMBOL_REF:
694 case CONST_DOUBLE:
695 case CONST_VECTOR:
696 case PC:
697 case CC0:
698 case HIGH:
699 case LO_SUM:
700 return 0;
702 case REG:
703 return (reg_equiv[REGNO (x)].replacement
704 && memref_referenced_p (memref,
705 reg_equiv[REGNO (x)].replacement));
707 case MEM:
708 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
709 return 1;
710 break;
712 case SET:
713 /* If we are setting a MEM, it doesn't count (its address does), but any
714 other SET_DEST that has a MEM in it is referencing the MEM. */
715 if (MEM_P (SET_DEST (x)))
717 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
718 return 1;
720 else if (memref_referenced_p (memref, SET_DEST (x)))
721 return 1;
723 return memref_referenced_p (memref, SET_SRC (x));
725 default:
726 break;
729 fmt = GET_RTX_FORMAT (code);
730 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
731 switch (fmt[i])
733 case 'e':
734 if (memref_referenced_p (memref, XEXP (x, i)))
735 return 1;
736 break;
737 case 'E':
738 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
739 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
740 return 1;
741 break;
744 return 0;
747 /* TRUE if some insn in the range (START, END] references a memory location
748 that would be affected by a store to MEMREF. */
750 static int
751 memref_used_between_p (rtx memref, rtx start, rtx end)
753 rtx insn;
755 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
756 insn = NEXT_INSN (insn))
757 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
758 return 1;
760 return 0;
763 /* Find registers that are equivalent to a single value throughout the
764 compilation (either because they can be referenced in memory or are set once
765 from a single constant). Lower their priority for a register.
767 If such a register is only referenced once, try substituting its value
768 into the using insn. If it succeeds, we can eliminate the register
769 completely.
771 Initialize the REG_EQUIV_INIT array of initializing insns. */
773 static void
774 update_equiv_regs (void)
776 rtx insn;
777 basic_block bb;
778 int loop_depth;
779 regset_head cleared_regs;
780 int clear_regnos = 0;
782 reg_equiv = xcalloc (max_regno, sizeof *reg_equiv);
783 INIT_REG_SET (&cleared_regs);
784 reg_equiv_init = ggc_alloc_cleared (max_regno * sizeof (rtx));
785 reg_equiv_init_size = max_regno;
787 init_alias_analysis ();
789 /* Scan the insns and find which registers have equivalences. Do this
790 in a separate scan of the insns because (due to -fcse-follow-jumps)
791 a register can be set below its use. */
792 FOR_EACH_BB (bb)
794 loop_depth = bb->loop_depth;
796 for (insn = BB_HEAD (bb);
797 insn != NEXT_INSN (BB_END (bb));
798 insn = NEXT_INSN (insn))
800 rtx note;
801 rtx set;
802 rtx dest, src;
803 int regno;
805 if (! INSN_P (insn))
806 continue;
808 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
809 if (REG_NOTE_KIND (note) == REG_INC)
810 no_equiv (XEXP (note, 0), note, NULL);
812 set = single_set (insn);
814 /* If this insn contains more (or less) than a single SET,
815 only mark all destinations as having no known equivalence. */
816 if (set == 0)
818 note_stores (PATTERN (insn), no_equiv, NULL);
819 continue;
821 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
823 int i;
825 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
827 rtx part = XVECEXP (PATTERN (insn), 0, i);
828 if (part != set)
829 note_stores (part, no_equiv, NULL);
833 dest = SET_DEST (set);
834 src = SET_SRC (set);
836 /* See if this is setting up the equivalence between an argument
837 register and its stack slot. */
838 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
839 if (note)
841 gcc_assert (REG_P (dest));
842 regno = REGNO (dest);
844 /* Note that we don't want to clear reg_equiv_init even if there
845 are multiple sets of this register. */
846 reg_equiv[regno].is_arg_equivalence = 1;
848 /* Record for reload that this is an equivalencing insn. */
849 if (rtx_equal_p (src, XEXP (note, 0)))
850 reg_equiv_init[regno]
851 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
853 /* Continue normally in case this is a candidate for
854 replacements. */
857 if (!optimize)
858 continue;
860 /* We only handle the case of a pseudo register being set
861 once, or always to the same value. */
862 /* ??? The mn10200 port breaks if we add equivalences for
863 values that need an ADDRESS_REGS register and set them equivalent
864 to a MEM of a pseudo. The actual problem is in the over-conservative
865 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
866 calculate_needs, but we traditionally work around this problem
867 here by rejecting equivalences when the destination is in a register
868 that's likely spilled. This is fragile, of course, since the
869 preferred class of a pseudo depends on all instructions that set
870 or use it. */
872 if (!REG_P (dest)
873 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
874 || reg_equiv[regno].init_insns == const0_rtx
875 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
876 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
878 /* This might be setting a SUBREG of a pseudo, a pseudo that is
879 also set somewhere else to a constant. */
880 note_stores (set, no_equiv, NULL);
881 continue;
884 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
886 /* cse sometimes generates function invariants, but doesn't put a
887 REG_EQUAL note on the insn. Since this note would be redundant,
888 there's no point creating it earlier than here. */
889 if (! note && ! rtx_varies_p (src, 0))
890 note = set_unique_reg_note (insn, REG_EQUAL, src);
892 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
893 since it represents a function call */
894 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
895 note = NULL_RTX;
897 if (REG_N_SETS (regno) != 1
898 && (! note
899 || rtx_varies_p (XEXP (note, 0), 0)
900 || (reg_equiv[regno].replacement
901 && ! rtx_equal_p (XEXP (note, 0),
902 reg_equiv[regno].replacement))))
904 no_equiv (dest, set, NULL);
905 continue;
907 /* Record this insn as initializing this register. */
908 reg_equiv[regno].init_insns
909 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
911 /* If this register is known to be equal to a constant, record that
912 it is always equivalent to the constant. */
913 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
914 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
916 /* If this insn introduces a "constant" register, decrease the priority
917 of that register. Record this insn if the register is only used once
918 more and the equivalence value is the same as our source.
920 The latter condition is checked for two reasons: First, it is an
921 indication that it may be more efficient to actually emit the insn
922 as written (if no registers are available, reload will substitute
923 the equivalence). Secondly, it avoids problems with any registers
924 dying in this insn whose death notes would be missed.
926 If we don't have a REG_EQUIV note, see if this insn is loading
927 a register used only in one basic block from a MEM. If so, and the
928 MEM remains unchanged for the life of the register, add a REG_EQUIV
929 note. */
931 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
933 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
934 && MEM_P (SET_SRC (set))
935 && validate_equiv_mem (insn, dest, SET_SRC (set)))
936 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
937 REG_NOTES (insn));
939 if (note)
941 int regno = REGNO (dest);
942 rtx x = XEXP (note, 0);
944 /* If we haven't done so, record for reload that this is an
945 equivalencing insn. */
946 if (!reg_equiv[regno].is_arg_equivalence
947 && (!MEM_P (x) || rtx_equal_p (src, x)))
948 reg_equiv_init[regno]
949 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
951 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
952 We might end up substituting the LABEL_REF for uses of the
953 pseudo here or later. That kind of transformation may turn an
954 indirect jump into a direct jump, in which case we must rerun the
955 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
956 if (GET_CODE (x) == LABEL_REF
957 || (GET_CODE (x) == CONST
958 && GET_CODE (XEXP (x, 0)) == PLUS
959 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
960 recorded_label_ref = 1;
962 reg_equiv[regno].replacement = x;
963 reg_equiv[regno].src_p = &SET_SRC (set);
964 reg_equiv[regno].loop_depth = loop_depth;
966 /* Don't mess with things live during setjmp. */
967 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
969 /* Note that the statement below does not affect the priority
970 in local-alloc! */
971 REG_LIVE_LENGTH (regno) *= 2;
973 /* If the register is referenced exactly twice, meaning it is
974 set once and used once, indicate that the reference may be
975 replaced by the equivalence we computed above. Do this
976 even if the register is only used in one block so that
977 dependencies can be handled where the last register is
978 used in a different block (i.e. HIGH / LO_SUM sequences)
979 and to reduce the number of registers alive across
980 calls. */
982 if (REG_N_REFS (regno) == 2
983 && (rtx_equal_p (x, src)
984 || ! equiv_init_varies_p (src))
985 && NONJUMP_INSN_P (insn)
986 && equiv_init_movable_p (PATTERN (insn), regno))
987 reg_equiv[regno].replace = 1;
993 if (!optimize)
994 goto out;
996 /* A second pass, to gather additional equivalences with memory. This needs
997 to be done after we know which registers we are going to replace. */
999 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1001 rtx set, src, dest;
1002 unsigned regno;
1004 if (! INSN_P (insn))
1005 continue;
1007 set = single_set (insn);
1008 if (! set)
1009 continue;
1011 dest = SET_DEST (set);
1012 src = SET_SRC (set);
1014 /* If this sets a MEM to the contents of a REG that is only used
1015 in a single basic block, see if the register is always equivalent
1016 to that memory location and if moving the store from INSN to the
1017 insn that set REG is safe. If so, put a REG_EQUIV note on the
1018 initializing insn.
1020 Don't add a REG_EQUIV note if the insn already has one. The existing
1021 REG_EQUIV is likely more useful than the one we are adding.
1023 If one of the regs in the address has reg_equiv[REGNO].replace set,
1024 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
1025 optimization may move the set of this register immediately before
1026 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
1027 the mention in the REG_EQUIV note would be to an uninitialized
1028 pseudo. */
1030 if (MEM_P (dest) && REG_P (src)
1031 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1032 && REG_BASIC_BLOCK (regno) >= 0
1033 && REG_N_SETS (regno) == 1
1034 && reg_equiv[regno].init_insns != 0
1035 && reg_equiv[regno].init_insns != const0_rtx
1036 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
1037 REG_EQUIV, NULL_RTX)
1038 && ! contains_replace_regs (XEXP (dest, 0)))
1040 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
1041 if (validate_equiv_mem (init_insn, src, dest)
1042 && ! memref_used_between_p (dest, init_insn, insn))
1044 REG_NOTES (init_insn)
1045 = gen_rtx_EXPR_LIST (REG_EQUIV, dest,
1046 REG_NOTES (init_insn));
1047 /* This insn makes the equivalence, not the one initializing
1048 the register. */
1049 reg_equiv_init[regno]
1050 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
1055 /* Now scan all regs killed in an insn to see if any of them are
1056 registers only used that once. If so, see if we can replace the
1057 reference with the equivalent form. If we can, delete the
1058 initializing reference and this register will go away. If we
1059 can't replace the reference, and the initializing reference is
1060 within the same loop (or in an inner loop), then move the register
1061 initialization just before the use, so that they are in the same
1062 basic block. */
1063 FOR_EACH_BB_REVERSE (bb)
1065 loop_depth = bb->loop_depth;
1066 for (insn = BB_END (bb);
1067 insn != PREV_INSN (BB_HEAD (bb));
1068 insn = PREV_INSN (insn))
1070 rtx link;
1072 if (! INSN_P (insn))
1073 continue;
1075 /* Don't substitute into a non-local goto, this confuses CFG. */
1076 if (JUMP_P (insn)
1077 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1078 continue;
1080 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1082 if (REG_NOTE_KIND (link) == REG_DEAD
1083 /* Make sure this insn still refers to the register. */
1084 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1086 int regno = REGNO (XEXP (link, 0));
1087 rtx equiv_insn;
1089 if (! reg_equiv[regno].replace
1090 || reg_equiv[regno].loop_depth < loop_depth)
1091 continue;
1093 /* reg_equiv[REGNO].replace gets set only when
1094 REG_N_REFS[REGNO] is 2, i.e. the register is set
1095 once and used once. (If it were only set, but not used,
1096 flow would have deleted the setting insns.) Hence
1097 there can only be one insn in reg_equiv[REGNO].init_insns. */
1098 gcc_assert (reg_equiv[regno].init_insns
1099 && !XEXP (reg_equiv[regno].init_insns, 1));
1100 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1102 /* We may not move instructions that can throw, since
1103 that changes basic block boundaries and we are not
1104 prepared to adjust the CFG to match. */
1105 if (can_throw_internal (equiv_insn))
1106 continue;
1108 if (asm_noperands (PATTERN (equiv_insn)) < 0
1109 && validate_replace_rtx (regno_reg_rtx[regno],
1110 *(reg_equiv[regno].src_p), insn))
1112 rtx equiv_link;
1113 rtx last_link;
1114 rtx note;
1116 /* Find the last note. */
1117 for (last_link = link; XEXP (last_link, 1);
1118 last_link = XEXP (last_link, 1))
1121 /* Append the REG_DEAD notes from equiv_insn. */
1122 equiv_link = REG_NOTES (equiv_insn);
1123 while (equiv_link)
1125 note = equiv_link;
1126 equiv_link = XEXP (equiv_link, 1);
1127 if (REG_NOTE_KIND (note) == REG_DEAD)
1129 remove_note (equiv_insn, note);
1130 XEXP (last_link, 1) = note;
1131 XEXP (note, 1) = NULL_RTX;
1132 last_link = note;
1136 remove_death (regno, insn);
1137 REG_N_REFS (regno) = 0;
1138 REG_FREQ (regno) = 0;
1139 delete_insn (equiv_insn);
1141 reg_equiv[regno].init_insns
1142 = XEXP (reg_equiv[regno].init_insns, 1);
1144 /* Remember to clear REGNO from all basic block's live
1145 info. */
1146 SET_REGNO_REG_SET (&cleared_regs, regno);
1147 clear_regnos++;
1148 reg_equiv_init[regno] = NULL_RTX;
1150 /* Move the initialization of the register to just before
1151 INSN. Update the flow information. */
1152 else if (PREV_INSN (insn) != equiv_insn)
1154 rtx new_insn;
1156 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1157 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1158 REG_NOTES (equiv_insn) = 0;
1160 /* Make sure this insn is recognized before
1161 reload begins, otherwise
1162 eliminate_regs_in_insn will die. */
1163 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1165 delete_insn (equiv_insn);
1167 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1169 REG_BASIC_BLOCK (regno) = bb->index;
1170 REG_N_CALLS_CROSSED (regno) = 0;
1171 REG_LIVE_LENGTH (regno) = 2;
1173 if (insn == BB_HEAD (bb))
1174 BB_HEAD (bb) = PREV_INSN (insn);
1176 /* Remember to clear REGNO from all basic block's live
1177 info. */
1178 SET_REGNO_REG_SET (&cleared_regs, regno);
1179 clear_regnos++;
1180 reg_equiv_init[regno]
1181 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
1188 /* Clear all dead REGNOs from all basic block's live info. */
1189 if (clear_regnos)
1191 unsigned j;
1193 if (clear_regnos > 8)
1195 FOR_EACH_BB (bb)
1197 AND_COMPL_REG_SET (bb->il.rtl->global_live_at_start,
1198 &cleared_regs);
1199 AND_COMPL_REG_SET (bb->il.rtl->global_live_at_end,
1200 &cleared_regs);
1203 else
1205 reg_set_iterator rsi;
1206 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j, rsi)
1208 FOR_EACH_BB (bb)
1210 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start, j);
1211 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_end, j);
1217 out:
1218 /* Clean up. */
1219 end_alias_analysis ();
1220 CLEAR_REG_SET (&cleared_regs);
1221 free (reg_equiv);
1224 /* Mark REG as having no known equivalence.
1225 Some instructions might have been processed before and furnished
1226 with REG_EQUIV notes for this register; these notes will have to be
1227 removed.
1228 STORE is the piece of RTL that does the non-constant / conflicting
1229 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1230 but needs to be there because this function is called from note_stores. */
1231 static void
1232 no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1234 int regno;
1235 rtx list;
1237 if (!REG_P (reg))
1238 return;
1239 regno = REGNO (reg);
1240 list = reg_equiv[regno].init_insns;
1241 if (list == const0_rtx)
1242 return;
1243 reg_equiv[regno].init_insns = const0_rtx;
1244 reg_equiv[regno].replacement = NULL_RTX;
1245 /* This doesn't matter for equivalences made for argument registers, we
1246 should keep their initialization insns. */
1247 if (reg_equiv[regno].is_arg_equivalence)
1248 return;
1249 reg_equiv_init[regno] = NULL_RTX;
1250 for (; list; list = XEXP (list, 1))
1252 rtx insn = XEXP (list, 0);
1253 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1257 /* Allocate hard regs to the pseudo regs used only within block number B.
1258 Only the pseudos that die but once can be handled. */
1260 static void
1261 block_alloc (int b)
1263 int i, q;
1264 rtx insn;
1265 rtx note, hard_reg;
1266 int insn_number = 0;
1267 int insn_count = 0;
1268 int max_uid = get_max_uid ();
1269 int *qty_order;
1270 int no_conflict_combined_regno = -1;
1272 /* Count the instructions in the basic block. */
1274 insn = BB_END (BASIC_BLOCK (b));
1275 while (1)
1277 if (!NOTE_P (insn))
1279 ++insn_count;
1280 gcc_assert (insn_count <= max_uid);
1282 if (insn == BB_HEAD (BASIC_BLOCK (b)))
1283 break;
1284 insn = PREV_INSN (insn);
1287 /* +2 to leave room for a post_mark_life at the last insn and for
1288 the birth of a CLOBBER in the first insn. */
1289 regs_live_at = xcalloc ((2 * insn_count + 2), sizeof (HARD_REG_SET));
1291 /* Initialize table of hardware registers currently live. */
1293 REG_SET_TO_HARD_REG_SET (regs_live,
1294 BASIC_BLOCK (b)->il.rtl->global_live_at_start);
1296 /* This loop scans the instructions of the basic block
1297 and assigns quantities to registers.
1298 It computes which registers to tie. */
1300 insn = BB_HEAD (BASIC_BLOCK (b));
1301 while (1)
1303 if (!NOTE_P (insn))
1304 insn_number++;
1306 if (INSN_P (insn))
1308 rtx link, set;
1309 int win = 0;
1310 rtx r0, r1 = NULL_RTX;
1311 int combined_regno = -1;
1312 int i;
1314 this_insn_number = insn_number;
1315 this_insn = insn;
1317 extract_insn (insn);
1318 which_alternative = -1;
1320 /* Is this insn suitable for tying two registers?
1321 If so, try doing that.
1322 Suitable insns are those with at least two operands and where
1323 operand 0 is an output that is a register that is not
1324 earlyclobber.
1326 We can tie operand 0 with some operand that dies in this insn.
1327 First look for operands that are required to be in the same
1328 register as operand 0. If we find such, only try tying that
1329 operand or one that can be put into that operand if the
1330 operation is commutative. If we don't find an operand
1331 that is required to be in the same register as operand 0,
1332 we can tie with any operand.
1334 Subregs in place of regs are also ok.
1336 If tying is done, WIN is set nonzero. */
1338 if (optimize
1339 && recog_data.n_operands > 1
1340 && recog_data.constraints[0][0] == '='
1341 && recog_data.constraints[0][1] != '&')
1343 /* If non-negative, is an operand that must match operand 0. */
1344 int must_match_0 = -1;
1345 /* Counts number of alternatives that require a match with
1346 operand 0. */
1347 int n_matching_alts = 0;
1349 for (i = 1; i < recog_data.n_operands; i++)
1351 const char *p = recog_data.constraints[i];
1352 int this_match = requires_inout (p);
1354 n_matching_alts += this_match;
1355 if (this_match == recog_data.n_alternatives)
1356 must_match_0 = i;
1359 r0 = recog_data.operand[0];
1360 for (i = 1; i < recog_data.n_operands; i++)
1362 /* Skip this operand if we found an operand that
1363 must match operand 0 and this operand isn't it
1364 and can't be made to be it by commutativity. */
1366 if (must_match_0 >= 0 && i != must_match_0
1367 && ! (i == must_match_0 + 1
1368 && recog_data.constraints[i-1][0] == '%')
1369 && ! (i == must_match_0 - 1
1370 && recog_data.constraints[i][0] == '%'))
1371 continue;
1373 /* Likewise if each alternative has some operand that
1374 must match operand zero. In that case, skip any
1375 operand that doesn't list operand 0 since we know that
1376 the operand always conflicts with operand 0. We
1377 ignore commutativity in this case to keep things simple. */
1378 if (n_matching_alts == recog_data.n_alternatives
1379 && 0 == requires_inout (recog_data.constraints[i]))
1380 continue;
1382 r1 = recog_data.operand[i];
1384 /* If the operand is an address, find a register in it.
1385 There may be more than one register, but we only try one
1386 of them. */
1387 if (recog_data.constraints[i][0] == 'p'
1388 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1389 recog_data.constraints[i]))
1390 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1391 r1 = XEXP (r1, 0);
1393 /* Avoid making a call-saved register unnecessarily
1394 clobbered. */
1395 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1396 if (hard_reg != NULL_RTX)
1398 if (REG_P (hard_reg)
1399 && REGNO (hard_reg) < FIRST_PSEUDO_REGISTER
1400 && !call_used_regs[REGNO (hard_reg)])
1401 continue;
1404 if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1406 /* We have two priorities for hard register preferences.
1407 If we have a move insn or an insn whose first input
1408 can only be in the same register as the output, give
1409 priority to an equivalence found from that insn. */
1410 int may_save_copy
1411 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1413 if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1414 win = combine_regs (r1, r0, may_save_copy,
1415 insn_number, insn, 0);
1417 if (win)
1418 break;
1422 /* Recognize an insn sequence with an ultimate result
1423 which can safely overlap one of the inputs.
1424 The sequence begins with a CLOBBER of its result,
1425 and ends with an insn that copies the result to itself
1426 and has a REG_EQUAL note for an equivalent formula.
1427 That note indicates what the inputs are.
1428 The result and the input can overlap if each insn in
1429 the sequence either doesn't mention the input
1430 or has a REG_NO_CONFLICT note to inhibit the conflict.
1432 We do the combining test at the CLOBBER so that the
1433 destination register won't have had a quantity number
1434 assigned, since that would prevent combining. */
1436 if (optimize
1437 && GET_CODE (PATTERN (insn)) == CLOBBER
1438 && (r0 = XEXP (PATTERN (insn), 0),
1439 REG_P (r0))
1440 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1441 && XEXP (link, 0) != 0
1442 && NONJUMP_INSN_P (XEXP (link, 0))
1443 && (set = single_set (XEXP (link, 0))) != 0
1444 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1445 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1446 NULL_RTX)) != 0)
1448 if (r1 = XEXP (note, 0), REG_P (r1)
1449 /* Check that we have such a sequence. */
1450 && no_conflict_p (insn, r0, r1))
1451 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1452 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1453 && (r1 = XEXP (XEXP (note, 0), 0),
1454 REG_P (r1) || GET_CODE (r1) == SUBREG)
1455 && no_conflict_p (insn, r0, r1))
1456 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1458 /* Here we care if the operation to be computed is
1459 commutative. */
1460 else if (COMMUTATIVE_P (XEXP (note, 0))
1461 && (r1 = XEXP (XEXP (note, 0), 1),
1462 (REG_P (r1) || GET_CODE (r1) == SUBREG))
1463 && no_conflict_p (insn, r0, r1))
1464 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1466 /* If we did combine something, show the register number
1467 in question so that we know to ignore its death. */
1468 if (win)
1469 no_conflict_combined_regno = REGNO (r1);
1472 /* If registers were just tied, set COMBINED_REGNO
1473 to the number of the register used in this insn
1474 that was tied to the register set in this insn.
1475 This register's qty should not be "killed". */
1477 if (win)
1479 while (GET_CODE (r1) == SUBREG)
1480 r1 = SUBREG_REG (r1);
1481 combined_regno = REGNO (r1);
1484 /* Mark the death of everything that dies in this instruction,
1485 except for anything that was just combined. */
1487 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1488 if (REG_NOTE_KIND (link) == REG_DEAD
1489 && REG_P (XEXP (link, 0))
1490 && combined_regno != (int) REGNO (XEXP (link, 0))
1491 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1492 || ! find_reg_note (insn, REG_NO_CONFLICT,
1493 XEXP (link, 0))))
1494 wipe_dead_reg (XEXP (link, 0), 0);
1496 /* Allocate qty numbers for all registers local to this block
1497 that are born (set) in this instruction.
1498 A pseudo that already has a qty is not changed. */
1500 note_stores (PATTERN (insn), reg_is_set, NULL);
1502 /* If anything is set in this insn and then unused, mark it as dying
1503 after this insn, so it will conflict with our outputs. This
1504 can't match with something that combined, and it doesn't matter
1505 if it did. Do this after the calls to reg_is_set since these
1506 die after, not during, the current insn. */
1508 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1509 if (REG_NOTE_KIND (link) == REG_UNUSED
1510 && REG_P (XEXP (link, 0)))
1511 wipe_dead_reg (XEXP (link, 0), 1);
1513 /* If this is an insn that has a REG_RETVAL note pointing at a
1514 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1515 block, so clear any register number that combined within it. */
1516 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1517 && NONJUMP_INSN_P (XEXP (note, 0))
1518 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1519 no_conflict_combined_regno = -1;
1522 /* Set the registers live after INSN_NUMBER. Note that we never
1523 record the registers live before the block's first insn, since no
1524 pseudos we care about are live before that insn. */
1526 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1527 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1529 if (insn == BB_END (BASIC_BLOCK (b)))
1530 break;
1532 insn = NEXT_INSN (insn);
1535 /* Now every register that is local to this basic block
1536 should have been given a quantity, or else -1 meaning ignore it.
1537 Every quantity should have a known birth and death.
1539 Order the qtys so we assign them registers in order of the
1540 number of suggested registers they need so we allocate those with
1541 the most restrictive needs first. */
1543 qty_order = xmalloc (next_qty * sizeof (int));
1544 for (i = 0; i < next_qty; i++)
1545 qty_order[i] = i;
1547 #define EXCHANGE(I1, I2) \
1548 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1550 switch (next_qty)
1552 case 3:
1553 /* Make qty_order[2] be the one to allocate last. */
1554 if (qty_sugg_compare (0, 1) > 0)
1555 EXCHANGE (0, 1);
1556 if (qty_sugg_compare (1, 2) > 0)
1557 EXCHANGE (2, 1);
1559 /* ... Fall through ... */
1560 case 2:
1561 /* Put the best one to allocate in qty_order[0]. */
1562 if (qty_sugg_compare (0, 1) > 0)
1563 EXCHANGE (0, 1);
1565 /* ... Fall through ... */
1567 case 1:
1568 case 0:
1569 /* Nothing to do here. */
1570 break;
1572 default:
1573 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1576 /* Try to put each quantity in a suggested physical register, if it has one.
1577 This may cause registers to be allocated that otherwise wouldn't be, but
1578 this seems acceptable in local allocation (unlike global allocation). */
1579 for (i = 0; i < next_qty; i++)
1581 q = qty_order[i];
1582 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1583 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1584 0, 1, qty[q].birth, qty[q].death);
1585 else
1586 qty[q].phys_reg = -1;
1589 /* Order the qtys so we assign them registers in order of
1590 decreasing length of life. Normally call qsort, but if we
1591 have only a very small number of quantities, sort them ourselves. */
1593 for (i = 0; i < next_qty; i++)
1594 qty_order[i] = i;
1596 #define EXCHANGE(I1, I2) \
1597 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1599 switch (next_qty)
1601 case 3:
1602 /* Make qty_order[2] be the one to allocate last. */
1603 if (qty_compare (0, 1) > 0)
1604 EXCHANGE (0, 1);
1605 if (qty_compare (1, 2) > 0)
1606 EXCHANGE (2, 1);
1608 /* ... Fall through ... */
1609 case 2:
1610 /* Put the best one to allocate in qty_order[0]. */
1611 if (qty_compare (0, 1) > 0)
1612 EXCHANGE (0, 1);
1614 /* ... Fall through ... */
1616 case 1:
1617 case 0:
1618 /* Nothing to do here. */
1619 break;
1621 default:
1622 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1625 /* Now for each qty that is not a hardware register,
1626 look for a hardware register to put it in.
1627 First try the register class that is cheapest for this qty,
1628 if there is more than one class. */
1630 for (i = 0; i < next_qty; i++)
1632 q = qty_order[i];
1633 if (qty[q].phys_reg < 0)
1635 #ifdef INSN_SCHEDULING
1636 /* These values represent the adjusted lifetime of a qty so
1637 that it conflicts with qtys which appear near the start/end
1638 of this qty's lifetime.
1640 The purpose behind extending the lifetime of this qty is to
1641 discourage the register allocator from creating false
1642 dependencies.
1644 The adjustment value is chosen to indicate that this qty
1645 conflicts with all the qtys in the instructions immediately
1646 before and after the lifetime of this qty.
1648 Experiments have shown that higher values tend to hurt
1649 overall code performance.
1651 If allocation using the extended lifetime fails we will try
1652 again with the qty's unadjusted lifetime. */
1653 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1654 int fake_death = MIN (insn_number * 2 + 1,
1655 qty[q].death + 2 - qty[q].death % 2);
1656 #endif
1658 if (N_REG_CLASSES > 1)
1660 #ifdef INSN_SCHEDULING
1661 /* We try to avoid using hard registers allocated to qtys which
1662 are born immediately after this qty or die immediately before
1663 this qty.
1665 This optimization is only appropriate when we will run
1666 a scheduling pass after reload and we are not optimizing
1667 for code size. */
1668 if (flag_schedule_insns_after_reload
1669 && !optimize_size
1670 && !SMALL_REGISTER_CLASSES)
1672 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1673 qty[q].mode, q, 0, 0,
1674 fake_birth, fake_death);
1675 if (qty[q].phys_reg >= 0)
1676 continue;
1678 #endif
1679 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1680 qty[q].mode, q, 0, 0,
1681 qty[q].birth, qty[q].death);
1682 if (qty[q].phys_reg >= 0)
1683 continue;
1686 #ifdef INSN_SCHEDULING
1687 /* Similarly, avoid false dependencies. */
1688 if (flag_schedule_insns_after_reload
1689 && !optimize_size
1690 && !SMALL_REGISTER_CLASSES
1691 && qty[q].alternate_class != NO_REGS)
1692 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1693 qty[q].mode, q, 0, 0,
1694 fake_birth, fake_death);
1695 #endif
1696 if (qty[q].alternate_class != NO_REGS)
1697 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1698 qty[q].mode, q, 0, 0,
1699 qty[q].birth, qty[q].death);
1703 /* Now propagate the register assignments
1704 to the pseudo regs belonging to the qtys. */
1706 for (q = 0; q < next_qty; q++)
1707 if (qty[q].phys_reg >= 0)
1709 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1710 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1713 /* Clean up. */
1714 free (regs_live_at);
1715 free (qty_order);
1718 /* Compare two quantities' priority for getting real registers.
1719 We give shorter-lived quantities higher priority.
1720 Quantities with more references are also preferred, as are quantities that
1721 require multiple registers. This is the identical prioritization as
1722 done by global-alloc.
1724 We used to give preference to registers with *longer* lives, but using
1725 the same algorithm in both local- and global-alloc can speed up execution
1726 of some programs by as much as a factor of three! */
1728 /* Note that the quotient will never be bigger than
1729 the value of floor_log2 times the maximum number of
1730 times a register can occur in one insn (surely less than 100)
1731 weighted by frequency (max REG_FREQ_MAX).
1732 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1733 QTY_CMP_PRI is also used by qty_sugg_compare. */
1735 #define QTY_CMP_PRI(q) \
1736 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1737 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1739 static int
1740 qty_compare (int q1, int q2)
1742 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1745 static int
1746 qty_compare_1 (const void *q1p, const void *q2p)
1748 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1749 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1751 if (tem != 0)
1752 return tem;
1754 /* If qtys are equally good, sort by qty number,
1755 so that the results of qsort leave nothing to chance. */
1756 return q1 - q2;
1759 /* Compare two quantities' priority for getting real registers. This version
1760 is called for quantities that have suggested hard registers. First priority
1761 goes to quantities that have copy preferences, then to those that have
1762 normal preferences. Within those groups, quantities with the lower
1763 number of preferences have the highest priority. Of those, we use the same
1764 algorithm as above. */
1766 #define QTY_CMP_SUGG(q) \
1767 (qty_phys_num_copy_sugg[q] \
1768 ? qty_phys_num_copy_sugg[q] \
1769 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1771 static int
1772 qty_sugg_compare (int q1, int q2)
1774 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1776 if (tem != 0)
1777 return tem;
1779 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1782 static int
1783 qty_sugg_compare_1 (const void *q1p, const void *q2p)
1785 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1786 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1788 if (tem != 0)
1789 return tem;
1791 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1792 if (tem != 0)
1793 return tem;
1795 /* If qtys are equally good, sort by qty number,
1796 so that the results of qsort leave nothing to chance. */
1797 return q1 - q2;
1800 #undef QTY_CMP_SUGG
1801 #undef QTY_CMP_PRI
1803 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1804 Returns 1 if have done so, or 0 if cannot.
1806 Combining registers means marking them as having the same quantity
1807 and adjusting the offsets within the quantity if either of
1808 them is a SUBREG.
1810 We don't actually combine a hard reg with a pseudo; instead
1811 we just record the hard reg as the suggestion for the pseudo's quantity.
1812 If we really combined them, we could lose if the pseudo lives
1813 across an insn that clobbers the hard reg (eg, movmem).
1815 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1816 there is no REG_DEAD note on INSN. This occurs during the processing
1817 of REG_NO_CONFLICT blocks.
1819 MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1820 SETREG or if the input and output must share a register.
1821 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1823 There are elaborate checks for the validity of combining. */
1825 static int
1826 combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1827 rtx insn, int already_dead)
1829 int ureg, sreg;
1830 int offset = 0;
1831 int usize, ssize;
1832 int sqty;
1834 /* Determine the numbers and sizes of registers being used. If a subreg
1835 is present that does not change the entire register, don't consider
1836 this a copy insn. */
1838 while (GET_CODE (usedreg) == SUBREG)
1840 rtx subreg = SUBREG_REG (usedreg);
1842 if (REG_P (subreg))
1844 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1845 may_save_copy = 0;
1847 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1848 offset += subreg_regno_offset (REGNO (subreg),
1849 GET_MODE (subreg),
1850 SUBREG_BYTE (usedreg),
1851 GET_MODE (usedreg));
1852 else
1853 offset += (SUBREG_BYTE (usedreg)
1854 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1857 usedreg = subreg;
1860 if (!REG_P (usedreg))
1861 return 0;
1863 ureg = REGNO (usedreg);
1864 if (ureg < FIRST_PSEUDO_REGISTER)
1865 usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1866 else
1867 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1868 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1869 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1871 while (GET_CODE (setreg) == SUBREG)
1873 rtx subreg = SUBREG_REG (setreg);
1875 if (REG_P (subreg))
1877 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1878 may_save_copy = 0;
1880 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1881 offset -= subreg_regno_offset (REGNO (subreg),
1882 GET_MODE (subreg),
1883 SUBREG_BYTE (setreg),
1884 GET_MODE (setreg));
1885 else
1886 offset -= (SUBREG_BYTE (setreg)
1887 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1890 setreg = subreg;
1893 if (!REG_P (setreg))
1894 return 0;
1896 sreg = REGNO (setreg);
1897 if (sreg < FIRST_PSEUDO_REGISTER)
1898 ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1899 else
1900 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1901 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1902 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1904 /* If UREG is a pseudo-register that hasn't already been assigned a
1905 quantity number, it means that it is not local to this block or dies
1906 more than once. In either event, we can't do anything with it. */
1907 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1908 /* Do not combine registers unless one fits within the other. */
1909 || (offset > 0 && usize + offset > ssize)
1910 || (offset < 0 && usize + offset < ssize)
1911 /* Do not combine with a smaller already-assigned object
1912 if that smaller object is already combined with something bigger. */
1913 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1914 && usize < qty[reg_qty[ureg]].size)
1915 /* Can't combine if SREG is not a register we can allocate. */
1916 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1917 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1918 These have already been taken care of. This probably wouldn't
1919 combine anyway, but don't take any chances. */
1920 || (ureg >= FIRST_PSEUDO_REGISTER
1921 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1922 /* Don't tie something to itself. In most cases it would make no
1923 difference, but it would screw up if the reg being tied to itself
1924 also dies in this insn. */
1925 || ureg == sreg
1926 /* Don't try to connect two different hardware registers. */
1927 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1928 /* Don't connect two different machine modes if they have different
1929 implications as to which registers may be used. */
1930 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1931 return 0;
1933 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1934 qty_phys_sugg for the pseudo instead of tying them.
1936 Return "failure" so that the lifespan of UREG is terminated here;
1937 that way the two lifespans will be disjoint and nothing will prevent
1938 the pseudo reg from being given this hard reg. */
1940 if (ureg < FIRST_PSEUDO_REGISTER)
1942 /* Allocate a quantity number so we have a place to put our
1943 suggestions. */
1944 if (reg_qty[sreg] == -2)
1945 reg_is_born (setreg, 2 * insn_number);
1947 if (reg_qty[sreg] >= 0)
1949 if (may_save_copy
1950 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1952 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1953 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1955 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1957 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1958 qty_phys_num_sugg[reg_qty[sreg]]++;
1961 return 0;
1964 /* Similarly for SREG a hard register and UREG a pseudo register. */
1966 if (sreg < FIRST_PSEUDO_REGISTER)
1968 if (may_save_copy
1969 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1971 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1972 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1974 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1976 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1977 qty_phys_num_sugg[reg_qty[ureg]]++;
1979 return 0;
1982 /* At this point we know that SREG and UREG are both pseudos.
1983 Do nothing if SREG already has a quantity or is a register that we
1984 don't allocate. */
1985 if (reg_qty[sreg] >= -1
1986 /* If we are not going to let any regs live across calls,
1987 don't tie a call-crossing reg to a non-call-crossing reg. */
1988 || (current_function_has_nonlocal_label
1989 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1990 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1991 return 0;
1993 /* We don't already know about SREG, so tie it to UREG
1994 if this is the last use of UREG, provided the classes they want
1995 are compatible. */
1997 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1998 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
2000 /* Add SREG to UREG's quantity. */
2001 sqty = reg_qty[ureg];
2002 reg_qty[sreg] = sqty;
2003 reg_offset[sreg] = reg_offset[ureg] + offset;
2004 reg_next_in_qty[sreg] = qty[sqty].first_reg;
2005 qty[sqty].first_reg = sreg;
2007 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
2008 update_qty_class (sqty, sreg);
2010 /* Update info about quantity SQTY. */
2011 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
2012 qty[sqty].n_refs += REG_N_REFS (sreg);
2013 qty[sqty].freq += REG_FREQ (sreg);
2014 if (usize < ssize)
2016 int i;
2018 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
2019 reg_offset[i] -= offset;
2021 qty[sqty].size = ssize;
2022 qty[sqty].mode = GET_MODE (setreg);
2025 else
2026 return 0;
2028 return 1;
2031 /* Return 1 if the preferred class of REG allows it to be tied
2032 to a quantity or register whose class is CLASS.
2033 True if REG's reg class either contains or is contained in CLASS. */
2035 static int
2036 reg_meets_class_p (int reg, enum reg_class class)
2038 enum reg_class rclass = reg_preferred_class (reg);
2039 return (reg_class_subset_p (rclass, class)
2040 || reg_class_subset_p (class, rclass));
2043 /* Update the class of QTYNO assuming that REG is being tied to it. */
2045 static void
2046 update_qty_class (int qtyno, int reg)
2048 enum reg_class rclass = reg_preferred_class (reg);
2049 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
2050 qty[qtyno].min_class = rclass;
2052 rclass = reg_alternate_class (reg);
2053 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
2054 qty[qtyno].alternate_class = rclass;
2057 /* Handle something which alters the value of an rtx REG.
2059 REG is whatever is set or clobbered. SETTER is the rtx that
2060 is modifying the register.
2062 If it is not really a register, we do nothing.
2063 The file-global variables `this_insn' and `this_insn_number'
2064 carry info from `block_alloc'. */
2066 static void
2067 reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
2069 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2070 a hard register. These may actually not exist any more. */
2072 if (GET_CODE (reg) != SUBREG
2073 && !REG_P (reg))
2074 return;
2076 /* Mark this register as being born. If it is used in a CLOBBER, mark
2077 it as being born halfway between the previous insn and this insn so that
2078 it conflicts with our inputs but not the outputs of the previous insn. */
2080 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2083 /* Handle beginning of the life of register REG.
2084 BIRTH is the index at which this is happening. */
2086 static void
2087 reg_is_born (rtx reg, int birth)
2089 int regno;
2091 if (GET_CODE (reg) == SUBREG)
2093 regno = REGNO (SUBREG_REG (reg));
2094 if (regno < FIRST_PSEUDO_REGISTER)
2095 regno = subreg_regno (reg);
2097 else
2098 regno = REGNO (reg);
2100 if (regno < FIRST_PSEUDO_REGISTER)
2102 mark_life (regno, GET_MODE (reg), 1);
2104 /* If the register was to have been born earlier that the present
2105 insn, mark it as live where it is actually born. */
2106 if (birth < 2 * this_insn_number)
2107 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2109 else
2111 if (reg_qty[regno] == -2)
2112 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2114 /* If this register has a quantity number, show that it isn't dead. */
2115 if (reg_qty[regno] >= 0)
2116 qty[reg_qty[regno]].death = -1;
2120 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2121 REG is an output that is dying (i.e., it is never used), otherwise it
2122 is an input (the normal case).
2123 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2125 static void
2126 wipe_dead_reg (rtx reg, int output_p)
2128 int regno = REGNO (reg);
2130 /* If this insn has multiple results,
2131 and the dead reg is used in one of the results,
2132 extend its life to after this insn,
2133 so it won't get allocated together with any other result of this insn.
2135 It is unsafe to use !single_set here since it will ignore an unused
2136 output. Just because an output is unused does not mean the compiler
2137 can assume the side effect will not occur. Consider if REG appears
2138 in the address of an output and we reload the output. If we allocate
2139 REG to the same hard register as an unused output we could set the hard
2140 register before the output reload insn. */
2141 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2142 && multiple_sets (this_insn))
2144 int i;
2145 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2147 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2148 if (GET_CODE (set) == SET
2149 && !REG_P (SET_DEST (set))
2150 && !rtx_equal_p (reg, SET_DEST (set))
2151 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2152 output_p = 1;
2156 /* If this register is used in an auto-increment address, then extend its
2157 life to after this insn, so that it won't get allocated together with
2158 the result of this insn. */
2159 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2160 output_p = 1;
2162 if (regno < FIRST_PSEUDO_REGISTER)
2164 mark_life (regno, GET_MODE (reg), 0);
2166 /* If a hard register is dying as an output, mark it as in use at
2167 the beginning of this insn (the above statement would cause this
2168 not to happen). */
2169 if (output_p)
2170 post_mark_life (regno, GET_MODE (reg), 1,
2171 2 * this_insn_number, 2 * this_insn_number + 1);
2174 else if (reg_qty[regno] >= 0)
2175 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2178 /* Find a block of SIZE words of hard regs in reg_class CLASS
2179 that can hold something of machine-mode MODE
2180 (but actually we test only the first of the block for holding MODE)
2181 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2182 and return the number of the first of them.
2183 Return -1 if such a block cannot be found.
2184 If QTYNO crosses calls, insist on a register preserved by calls,
2185 unless ACCEPT_CALL_CLOBBERED is nonzero.
2187 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2188 register is available. If not, return -1. */
2190 static int
2191 find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2192 int accept_call_clobbered, int just_try_suggested,
2193 int born_index, int dead_index)
2195 int i, ins;
2196 HARD_REG_SET first_used, used;
2197 #ifdef ELIMINABLE_REGS
2198 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2199 #endif
2201 /* Validate our parameters. */
2202 gcc_assert (born_index >= 0 && born_index <= dead_index);
2204 /* Don't let a pseudo live in a reg across a function call
2205 if we might get a nonlocal goto. */
2206 if (current_function_has_nonlocal_label
2207 && qty[qtyno].n_calls_crossed > 0)
2208 return -1;
2210 if (accept_call_clobbered)
2211 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2212 else if (qty[qtyno].n_calls_crossed == 0)
2213 COPY_HARD_REG_SET (used, fixed_reg_set);
2214 else
2215 COPY_HARD_REG_SET (used, call_used_reg_set);
2217 if (accept_call_clobbered)
2218 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2220 for (ins = born_index; ins < dead_index; ins++)
2221 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2223 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2225 /* Don't use the frame pointer reg in local-alloc even if
2226 we may omit the frame pointer, because if we do that and then we
2227 need a frame pointer, reload won't know how to move the pseudo
2228 to another hard reg. It can move only regs made by global-alloc.
2230 This is true of any register that can be eliminated. */
2231 #ifdef ELIMINABLE_REGS
2232 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2233 SET_HARD_REG_BIT (used, eliminables[i].from);
2234 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2235 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2236 that it might be eliminated into. */
2237 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2238 #endif
2239 #else
2240 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2241 #endif
2243 #ifdef CANNOT_CHANGE_MODE_CLASS
2244 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2245 #endif
2247 /* Normally, the registers that can be used for the first register in
2248 a multi-register quantity are the same as those that can be used for
2249 subsequent registers. However, if just trying suggested registers,
2250 restrict our consideration to them. If there are copy-suggested
2251 register, try them. Otherwise, try the arithmetic-suggested
2252 registers. */
2253 COPY_HARD_REG_SET (first_used, used);
2255 if (just_try_suggested)
2257 if (qty_phys_num_copy_sugg[qtyno] != 0)
2258 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2259 else
2260 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2263 /* If all registers are excluded, we can't do anything. */
2264 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2266 /* If at least one would be suitable, test each hard reg. */
2268 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2270 #ifdef REG_ALLOC_ORDER
2271 int regno = reg_alloc_order[i];
2272 #else
2273 int regno = i;
2274 #endif
2275 if (! TEST_HARD_REG_BIT (first_used, regno)
2276 && HARD_REGNO_MODE_OK (regno, mode)
2277 && (qty[qtyno].n_calls_crossed == 0
2278 || accept_call_clobbered
2279 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2281 int j;
2282 int size1 = hard_regno_nregs[regno][mode];
2283 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2284 if (j == size1)
2286 /* Mark that this register is in use between its birth and death
2287 insns. */
2288 post_mark_life (regno, mode, 1, born_index, dead_index);
2289 return regno;
2291 #ifndef REG_ALLOC_ORDER
2292 /* Skip starting points we know will lose. */
2293 i += j;
2294 #endif
2298 fail:
2299 /* If we are just trying suggested register, we have just tried copy-
2300 suggested registers, and there are arithmetic-suggested registers,
2301 try them. */
2303 /* If it would be profitable to allocate a call-clobbered register
2304 and save and restore it around calls, do that. */
2305 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2306 && qty_phys_num_sugg[qtyno] != 0)
2308 /* Don't try the copy-suggested regs again. */
2309 qty_phys_num_copy_sugg[qtyno] = 0;
2310 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2311 born_index, dead_index);
2314 /* We need not check to see if the current function has nonlocal
2315 labels because we don't put any pseudos that are live over calls in
2316 registers in that case. */
2318 if (! accept_call_clobbered
2319 && flag_caller_saves
2320 && ! just_try_suggested
2321 && qty[qtyno].n_calls_crossed != 0
2322 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2323 qty[qtyno].n_calls_crossed))
2325 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2326 if (i >= 0)
2327 caller_save_needed = 1;
2328 return i;
2330 return -1;
2333 /* Mark that REGNO with machine-mode MODE is live starting from the current
2334 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2335 is zero). */
2337 static void
2338 mark_life (int regno, enum machine_mode mode, int life)
2340 int j = hard_regno_nregs[regno][mode];
2341 if (life)
2342 while (--j >= 0)
2343 SET_HARD_REG_BIT (regs_live, regno + j);
2344 else
2345 while (--j >= 0)
2346 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2349 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2350 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2351 to insn number DEATH (exclusive). */
2353 static void
2354 post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2355 int death)
2357 int j = hard_regno_nregs[regno][mode];
2358 HARD_REG_SET this_reg;
2360 CLEAR_HARD_REG_SET (this_reg);
2361 while (--j >= 0)
2362 SET_HARD_REG_BIT (this_reg, regno + j);
2364 if (life)
2365 while (birth < death)
2367 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2368 birth++;
2370 else
2371 while (birth < death)
2373 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2374 birth++;
2378 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2379 is the register being clobbered, and R1 is a register being used in
2380 the equivalent expression.
2382 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2383 in which it is used, return 1.
2385 Otherwise, return 0. */
2387 static int
2388 no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2390 int ok = 0;
2391 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2392 rtx p, last;
2394 /* If R1 is a hard register, return 0 since we handle this case
2395 when we scan the insns that actually use it. */
2397 if (note == 0
2398 || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2399 || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2400 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2401 return 0;
2403 last = XEXP (note, 0);
2405 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2406 if (INSN_P (p))
2408 if (find_reg_note (p, REG_DEAD, r1))
2409 ok = 1;
2411 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2412 some earlier optimization pass has inserted instructions into
2413 the sequence, and it is not safe to perform this optimization.
2414 Note that emit_no_conflict_block always ensures that this is
2415 true when these sequences are created. */
2416 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2417 return 0;
2420 return ok;
2423 /* Return the number of alternatives for which the constraint string P
2424 indicates that the operand must be equal to operand 0 and that no register
2425 is acceptable. */
2427 static int
2428 requires_inout (const char *p)
2430 char c;
2431 int found_zero = 0;
2432 int reg_allowed = 0;
2433 int num_matching_alts = 0;
2434 int len;
2436 for ( ; (c = *p); p += len)
2438 len = CONSTRAINT_LEN (c, p);
2439 switch (c)
2441 case '=': case '+': case '?':
2442 case '#': case '&': case '!':
2443 case '*': case '%':
2444 case 'm': case '<': case '>': case 'V': case 'o':
2445 case 'E': case 'F': case 'G': case 'H':
2446 case 's': case 'i': case 'n':
2447 case 'I': case 'J': case 'K': case 'L':
2448 case 'M': case 'N': case 'O': case 'P':
2449 case 'X':
2450 /* These don't say anything we care about. */
2451 break;
2453 case ',':
2454 if (found_zero && ! reg_allowed)
2455 num_matching_alts++;
2457 found_zero = reg_allowed = 0;
2458 break;
2460 case '0':
2461 found_zero = 1;
2462 break;
2464 case '1': case '2': case '3': case '4': case '5':
2465 case '6': case '7': case '8': case '9':
2466 /* Skip the balance of the matching constraint. */
2468 p++;
2469 while (ISDIGIT (*p));
2470 len = 0;
2471 break;
2473 default:
2474 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2475 && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2476 break;
2477 /* Fall through. */
2478 case 'p':
2479 case 'g': case 'r':
2480 reg_allowed = 1;
2481 break;
2485 if (found_zero && ! reg_allowed)
2486 num_matching_alts++;
2488 return num_matching_alts;
2491 void
2492 dump_local_alloc (FILE *file)
2494 int i;
2495 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2496 if (reg_renumber[i] != -1)
2497 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);