2005-06-19 Andreas Krebbel <krebbel1@de.ibm.com>
[official-gcc.git] / gcc / combine.c
blobc4e6f95fa48b505aa8ef7deb3e62243f1e033acd
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "optabs.h"
94 #include "insn-codes.h"
95 #include "rtlhooks-def.h"
96 /* Include output.h for dump_file. */
97 #include "output.h"
98 #include "params.h"
100 /* Number of attempts to combine instructions in this function. */
102 static int combine_attempts;
104 /* Number of attempts that got as far as substitution in this function. */
106 static int combine_merges;
108 /* Number of instructions combined with added SETs in this function. */
110 static int combine_extras;
112 /* Number of instructions combined in this function. */
114 static int combine_successes;
116 /* Totals over entire compilation. */
118 static int total_attempts, total_merges, total_extras, total_successes;
121 /* Vector mapping INSN_UIDs to cuids.
122 The cuids are like uids but increase monotonically always.
123 Combine always uses cuids so that it can compare them.
124 But actually renumbering the uids, which we used to do,
125 proves to be a bad idea because it makes it hard to compare
126 the dumps produced by earlier passes with those from later passes. */
128 static int *uid_cuid;
129 static int max_uid_cuid;
131 /* Get the cuid of an insn. */
133 #define INSN_CUID(INSN) \
134 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
136 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
137 BITS_PER_WORD would invoke undefined behavior. Work around it. */
139 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
140 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
142 /* Maximum register number, which is the size of the tables below. */
144 static unsigned int combine_max_regno;
146 struct reg_stat {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
242 static struct reg_stat *reg_stat;
244 /* Record the cuid of the last insn that invalidated memory
245 (anything that writes memory, and subroutine calls, but not pushes). */
247 static int mem_last_set;
249 /* Record the cuid of the last CALL_INSN
250 so we can tell whether a potential combination crosses any calls. */
252 static int last_call_cuid;
254 /* When `subst' is called, this is the insn that is being modified
255 (by combining in a previous insn). The PATTERN of this insn
256 is still the old pattern partially modified and it should not be
257 looked at, but this may be used to examine the successors of the insn
258 to judge whether a simplification is valid. */
260 static rtx subst_insn;
262 /* This is the lowest CUID that `subst' is currently dealing with.
263 get_last_value will not return a value if the register was set at or
264 after this CUID. If not for this mechanism, we could get confused if
265 I2 or I1 in try_combine were an insn that used the old value of a register
266 to obtain a new value. In that case, we might erroneously get the
267 new value of the register when we wanted the old one. */
269 static int subst_low_cuid;
271 /* This contains any hard registers that are used in newpat; reg_dead_at_p
272 must consider all these registers to be always live. */
274 static HARD_REG_SET newpat_used_regs;
276 /* This is an insn to which a LOG_LINKS entry has been added. If this
277 insn is the earlier than I2 or I3, combine should rescan starting at
278 that location. */
280 static rtx added_links_insn;
282 /* Basic block in which we are performing combines. */
283 static basic_block this_basic_block;
285 /* A bitmap indicating which blocks had registers go dead at entry.
286 After combine, we'll need to re-do global life analysis with
287 those blocks as starting points. */
288 static sbitmap refresh_blocks;
290 /* The following array records the insn_rtx_cost for every insn
291 in the instruction stream. */
293 static int *uid_insn_cost;
295 /* Length of the currently allocated uid_insn_cost array. */
297 static int last_insn_cost;
299 /* Incremented for each label. */
301 static int label_tick;
303 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
304 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
306 static enum machine_mode nonzero_bits_mode;
308 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
309 be safely used. It is zero while computing them and after combine has
310 completed. This former test prevents propagating values based on
311 previously set values, which can be incorrect if a variable is modified
312 in a loop. */
314 static int nonzero_sign_valid;
317 /* Record one modification to rtl structure
318 to be undone by storing old_contents into *where.
319 is_int is 1 if the contents are an int. */
321 struct undo
323 struct undo *next;
324 int is_int;
325 union {rtx r; int i;} old_contents;
326 union {rtx *r; int *i;} where;
329 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
330 num_undo says how many are currently recorded.
332 other_insn is nonzero if we have modified some other insn in the process
333 of working on subst_insn. It must be verified too. */
335 struct undobuf
337 struct undo *undos;
338 struct undo *frees;
339 rtx other_insn;
342 static struct undobuf undobuf;
344 /* Number of times the pseudo being substituted for
345 was found and replaced. */
347 static int n_occurrences;
349 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
350 enum machine_mode,
351 unsigned HOST_WIDE_INT,
352 unsigned HOST_WIDE_INT *);
353 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
354 enum machine_mode,
355 unsigned int, unsigned int *);
356 static void do_SUBST (rtx *, rtx);
357 static void do_SUBST_INT (int *, int);
358 static void init_reg_last (void);
359 static void setup_incoming_promotions (void);
360 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
361 static int cant_combine_insn_p (rtx);
362 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
363 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
364 static int contains_muldiv (rtx);
365 static rtx try_combine (rtx, rtx, rtx, int *);
366 static void undo_all (void);
367 static void undo_commit (void);
368 static rtx *find_split_point (rtx *, rtx);
369 static rtx subst (rtx, rtx, rtx, int, int);
370 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
371 static rtx simplify_if_then_else (rtx);
372 static rtx simplify_set (rtx);
373 static rtx simplify_logical (rtx);
374 static rtx expand_compound_operation (rtx);
375 static rtx expand_field_assignment (rtx);
376 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
377 rtx, unsigned HOST_WIDE_INT, int, int, int);
378 static rtx extract_left_shift (rtx, int);
379 static rtx make_compound_operation (rtx, enum rtx_code);
380 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
381 unsigned HOST_WIDE_INT *);
382 static rtx force_to_mode (rtx, enum machine_mode,
383 unsigned HOST_WIDE_INT, rtx, int);
384 static rtx if_then_else_cond (rtx, rtx *, rtx *);
385 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
386 static int rtx_equal_for_field_assignment_p (rtx, rtx);
387 static rtx make_field_assignment (rtx);
388 static rtx apply_distributive_law (rtx);
389 static rtx distribute_and_simplify_rtx (rtx, int);
390 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
391 unsigned HOST_WIDE_INT);
392 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
393 HOST_WIDE_INT, enum machine_mode, int *);
394 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
395 int);
396 static int recog_for_combine (rtx *, rtx, rtx *);
397 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
398 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
399 static void update_table_tick (rtx);
400 static void record_value_for_reg (rtx, rtx, rtx);
401 static void check_promoted_subreg (rtx, rtx);
402 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
403 static void record_dead_and_set_regs (rtx);
404 static int get_last_value_validate (rtx *, rtx, int, int);
405 static rtx get_last_value (rtx);
406 static int use_crosses_set_p (rtx, int);
407 static void reg_dead_at_p_1 (rtx, rtx, void *);
408 static int reg_dead_at_p (rtx, rtx);
409 static void move_deaths (rtx, rtx, int, rtx, rtx *);
410 static int reg_bitfield_target_p (rtx, rtx);
411 static void distribute_notes (rtx, rtx, rtx, rtx);
412 static void distribute_links (rtx);
413 static void mark_used_regs_combine (rtx);
414 static int insn_cuid (rtx);
415 static void record_promoted_value (rtx, rtx);
416 static int unmentioned_reg_p_1 (rtx *, void *);
417 static bool unmentioned_reg_p (rtx, rtx);
420 /* It is not safe to use ordinary gen_lowpart in combine.
421 See comments in gen_lowpart_for_combine. */
422 #undef RTL_HOOKS_GEN_LOWPART
423 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
425 /* Our implementation of gen_lowpart never emits a new pseudo. */
426 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
427 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
429 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
430 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
432 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
433 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
435 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
438 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
439 insn. The substitution can be undone by undo_all. If INTO is already
440 set to NEWVAL, do not record this change. Because computing NEWVAL might
441 also call SUBST, we have to compute it before we put anything into
442 the undo table. */
444 static void
445 do_SUBST (rtx *into, rtx newval)
447 struct undo *buf;
448 rtx oldval = *into;
450 if (oldval == newval)
451 return;
453 /* We'd like to catch as many invalid transformations here as
454 possible. Unfortunately, there are way too many mode changes
455 that are perfectly valid, so we'd waste too much effort for
456 little gain doing the checks here. Focus on catching invalid
457 transformations involving integer constants. */
458 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
459 && GET_CODE (newval) == CONST_INT)
461 /* Sanity check that we're replacing oldval with a CONST_INT
462 that is a valid sign-extension for the original mode. */
463 gcc_assert (INTVAL (newval)
464 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
466 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
467 CONST_INT is not valid, because after the replacement, the
468 original mode would be gone. Unfortunately, we can't tell
469 when do_SUBST is called to replace the operand thereof, so we
470 perform this test on oldval instead, checking whether an
471 invalid replacement took place before we got here. */
472 gcc_assert (!(GET_CODE (oldval) == SUBREG
473 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
474 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
475 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
478 if (undobuf.frees)
479 buf = undobuf.frees, undobuf.frees = buf->next;
480 else
481 buf = xmalloc (sizeof (struct undo));
483 buf->is_int = 0;
484 buf->where.r = into;
485 buf->old_contents.r = oldval;
486 *into = newval;
488 buf->next = undobuf.undos, undobuf.undos = buf;
491 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
493 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
494 for the value of a HOST_WIDE_INT value (including CONST_INT) is
495 not safe. */
497 static void
498 do_SUBST_INT (int *into, int newval)
500 struct undo *buf;
501 int oldval = *into;
503 if (oldval == newval)
504 return;
506 if (undobuf.frees)
507 buf = undobuf.frees, undobuf.frees = buf->next;
508 else
509 buf = xmalloc (sizeof (struct undo));
511 buf->is_int = 1;
512 buf->where.i = into;
513 buf->old_contents.i = oldval;
514 *into = newval;
516 buf->next = undobuf.undos, undobuf.undos = buf;
519 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
521 /* Subroutine of try_combine. Determine whether the combine replacement
522 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
523 that the original instruction sequence I1, I2 and I3. Note that I1
524 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
525 costs of all instructions can be estimated, and the replacements are
526 more expensive than the original sequence. */
528 static bool
529 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
531 int i1_cost, i2_cost, i3_cost;
532 int new_i2_cost, new_i3_cost;
533 int old_cost, new_cost;
535 /* Lookup the original insn_rtx_costs. */
536 i2_cost = INSN_UID (i2) <= last_insn_cost
537 ? uid_insn_cost[INSN_UID (i2)] : 0;
538 i3_cost = INSN_UID (i3) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i3)] : 0;
541 if (i1)
543 i1_cost = INSN_UID (i1) <= last_insn_cost
544 ? uid_insn_cost[INSN_UID (i1)] : 0;
545 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
546 ? i1_cost + i2_cost + i3_cost : 0;
548 else
550 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
551 i1_cost = 0;
554 /* Calculate the replacement insn_rtx_costs. */
555 new_i3_cost = insn_rtx_cost (newpat);
556 if (newi2pat)
558 new_i2_cost = insn_rtx_cost (newi2pat);
559 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
560 ? new_i2_cost + new_i3_cost : 0;
562 else
564 new_cost = new_i3_cost;
565 new_i2_cost = 0;
568 if (undobuf.other_insn)
570 int old_other_cost, new_other_cost;
572 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
573 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
574 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
575 if (old_other_cost > 0 && new_other_cost > 0)
577 old_cost += old_other_cost;
578 new_cost += new_other_cost;
580 else
581 old_cost = 0;
584 /* Disallow this recombination if both new_cost and old_cost are
585 greater than zero, and new_cost is greater than old cost. */
586 if (old_cost > 0
587 && new_cost > old_cost)
589 if (dump_file)
591 if (i1)
593 fprintf (dump_file,
594 "rejecting combination of insns %d, %d and %d\n",
595 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
596 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
597 i1_cost, i2_cost, i3_cost, old_cost);
599 else
601 fprintf (dump_file,
602 "rejecting combination of insns %d and %d\n",
603 INSN_UID (i2), INSN_UID (i3));
604 fprintf (dump_file, "original costs %d + %d = %d\n",
605 i2_cost, i3_cost, old_cost);
608 if (newi2pat)
610 fprintf (dump_file, "replacement costs %d + %d = %d\n",
611 new_i2_cost, new_i3_cost, new_cost);
613 else
614 fprintf (dump_file, "replacement cost %d\n", new_cost);
617 return false;
620 /* Update the uid_insn_cost array with the replacement costs. */
621 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
622 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
623 if (i1)
624 uid_insn_cost[INSN_UID (i1)] = 0;
626 return true;
629 /* Main entry point for combiner. F is the first insn of the function.
630 NREGS is the first unused pseudo-reg number.
632 Return nonzero if the combiner has turned an indirect jump
633 instruction into a direct jump. */
635 combine_instructions (rtx f, unsigned int nregs)
637 rtx insn, next;
638 #ifdef HAVE_cc0
639 rtx prev;
640 #endif
641 int i;
642 unsigned int j;
643 rtx links, nextlinks;
644 sbitmap_iterator sbi;
646 int new_direct_jump_p = 0;
648 combine_attempts = 0;
649 combine_merges = 0;
650 combine_extras = 0;
651 combine_successes = 0;
653 combine_max_regno = nregs;
655 rtl_hooks = combine_rtl_hooks;
657 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
659 init_recog_no_volatile ();
661 /* Compute maximum uid value so uid_cuid can be allocated. */
663 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
664 if (INSN_UID (insn) > i)
665 i = INSN_UID (insn);
667 uid_cuid = xmalloc ((i + 1) * sizeof (int));
668 max_uid_cuid = i;
670 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
672 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
673 problems when, for example, we have j <<= 1 in a loop. */
675 nonzero_sign_valid = 0;
677 /* Compute the mapping from uids to cuids.
678 Cuids are numbers assigned to insns, like uids,
679 except that cuids increase monotonically through the code.
681 Scan all SETs and see if we can deduce anything about what
682 bits are known to be zero for some registers and how many copies
683 of the sign bit are known to exist for those registers.
685 Also set any known values so that we can use it while searching
686 for what bits are known to be set. */
688 label_tick = 1;
690 setup_incoming_promotions ();
692 refresh_blocks = sbitmap_alloc (last_basic_block);
693 sbitmap_zero (refresh_blocks);
695 /* Allocate array of current insn_rtx_costs. */
696 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
697 last_insn_cost = max_uid_cuid;
699 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
701 uid_cuid[INSN_UID (insn)] = ++i;
702 subst_low_cuid = i;
703 subst_insn = insn;
705 if (INSN_P (insn))
707 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
708 NULL);
709 record_dead_and_set_regs (insn);
711 #ifdef AUTO_INC_DEC
712 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
713 if (REG_NOTE_KIND (links) == REG_INC)
714 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
715 NULL);
716 #endif
718 /* Record the current insn_rtx_cost of this instruction. */
719 if (NONJUMP_INSN_P (insn))
720 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
721 if (dump_file)
722 fprintf(dump_file, "insn_cost %d: %d\n",
723 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
726 if (LABEL_P (insn))
727 label_tick++;
730 nonzero_sign_valid = 1;
732 /* Now scan all the insns in forward order. */
734 label_tick = 1;
735 last_call_cuid = 0;
736 mem_last_set = 0;
737 init_reg_last ();
738 setup_incoming_promotions ();
740 FOR_EACH_BB (this_basic_block)
742 for (insn = BB_HEAD (this_basic_block);
743 insn != NEXT_INSN (BB_END (this_basic_block));
744 insn = next ? next : NEXT_INSN (insn))
746 next = 0;
748 if (LABEL_P (insn))
749 label_tick++;
751 else if (INSN_P (insn))
753 /* See if we know about function return values before this
754 insn based upon SUBREG flags. */
755 check_promoted_subreg (insn, PATTERN (insn));
757 /* Try this insn with each insn it links back to. */
759 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
760 if ((next = try_combine (insn, XEXP (links, 0),
761 NULL_RTX, &new_direct_jump_p)) != 0)
762 goto retry;
764 /* Try each sequence of three linked insns ending with this one. */
766 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
768 rtx link = XEXP (links, 0);
770 /* If the linked insn has been replaced by a note, then there
771 is no point in pursuing this chain any further. */
772 if (NOTE_P (link))
773 continue;
775 for (nextlinks = LOG_LINKS (link);
776 nextlinks;
777 nextlinks = XEXP (nextlinks, 1))
778 if ((next = try_combine (insn, link,
779 XEXP (nextlinks, 0),
780 &new_direct_jump_p)) != 0)
781 goto retry;
784 #ifdef HAVE_cc0
785 /* Try to combine a jump insn that uses CC0
786 with a preceding insn that sets CC0, and maybe with its
787 logical predecessor as well.
788 This is how we make decrement-and-branch insns.
789 We need this special code because data flow connections
790 via CC0 do not get entered in LOG_LINKS. */
792 if (JUMP_P (insn)
793 && (prev = prev_nonnote_insn (insn)) != 0
794 && NONJUMP_INSN_P (prev)
795 && sets_cc0_p (PATTERN (prev)))
797 if ((next = try_combine (insn, prev,
798 NULL_RTX, &new_direct_jump_p)) != 0)
799 goto retry;
801 for (nextlinks = LOG_LINKS (prev); nextlinks;
802 nextlinks = XEXP (nextlinks, 1))
803 if ((next = try_combine (insn, prev,
804 XEXP (nextlinks, 0),
805 &new_direct_jump_p)) != 0)
806 goto retry;
809 /* Do the same for an insn that explicitly references CC0. */
810 if (NONJUMP_INSN_P (insn)
811 && (prev = prev_nonnote_insn (insn)) != 0
812 && NONJUMP_INSN_P (prev)
813 && sets_cc0_p (PATTERN (prev))
814 && GET_CODE (PATTERN (insn)) == SET
815 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
817 if ((next = try_combine (insn, prev,
818 NULL_RTX, &new_direct_jump_p)) != 0)
819 goto retry;
821 for (nextlinks = LOG_LINKS (prev); nextlinks;
822 nextlinks = XEXP (nextlinks, 1))
823 if ((next = try_combine (insn, prev,
824 XEXP (nextlinks, 0),
825 &new_direct_jump_p)) != 0)
826 goto retry;
829 /* Finally, see if any of the insns that this insn links to
830 explicitly references CC0. If so, try this insn, that insn,
831 and its predecessor if it sets CC0. */
832 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
833 if (NONJUMP_INSN_P (XEXP (links, 0))
834 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
835 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
836 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
837 && NONJUMP_INSN_P (prev)
838 && sets_cc0_p (PATTERN (prev))
839 && (next = try_combine (insn, XEXP (links, 0),
840 prev, &new_direct_jump_p)) != 0)
841 goto retry;
842 #endif
844 /* Try combining an insn with two different insns whose results it
845 uses. */
846 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
847 for (nextlinks = XEXP (links, 1); nextlinks;
848 nextlinks = XEXP (nextlinks, 1))
849 if ((next = try_combine (insn, XEXP (links, 0),
850 XEXP (nextlinks, 0),
851 &new_direct_jump_p)) != 0)
852 goto retry;
854 /* Try this insn with each REG_EQUAL note it links back to. */
855 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
857 rtx set, note;
858 rtx temp = XEXP (links, 0);
859 if ((set = single_set (temp)) != 0
860 && (note = find_reg_equal_equiv_note (temp)) != 0
861 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
862 /* Avoid using a register that may already been marked
863 dead by an earlier instruction. */
864 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
866 /* Temporarily replace the set's source with the
867 contents of the REG_EQUAL note. The insn will
868 be deleted or recognized by try_combine. */
869 rtx orig = SET_SRC (set);
870 SET_SRC (set) = XEXP (note, 0);
871 next = try_combine (insn, temp, NULL_RTX,
872 &new_direct_jump_p);
873 if (next)
874 goto retry;
875 SET_SRC (set) = orig;
879 if (!NOTE_P (insn))
880 record_dead_and_set_regs (insn);
882 retry:
887 clear_bb_flags ();
889 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
890 BASIC_BLOCK (j)->flags |= BB_DIRTY;
891 new_direct_jump_p |= purge_all_dead_edges ();
892 delete_noop_moves ();
894 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
895 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
896 | PROP_KILL_DEAD_CODE);
898 /* Clean up. */
899 sbitmap_free (refresh_blocks);
900 free (uid_insn_cost);
901 free (reg_stat);
902 free (uid_cuid);
905 struct undo *undo, *next;
906 for (undo = undobuf.frees; undo; undo = next)
908 next = undo->next;
909 free (undo);
911 undobuf.frees = 0;
914 total_attempts += combine_attempts;
915 total_merges += combine_merges;
916 total_extras += combine_extras;
917 total_successes += combine_successes;
919 nonzero_sign_valid = 0;
920 rtl_hooks = general_rtl_hooks;
922 /* Make recognizer allow volatile MEMs again. */
923 init_recog ();
925 return new_direct_jump_p;
928 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
930 static void
931 init_reg_last (void)
933 unsigned int i;
934 for (i = 0; i < combine_max_regno; i++)
935 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
938 /* Set up any promoted values for incoming argument registers. */
940 static void
941 setup_incoming_promotions (void)
943 unsigned int regno;
944 rtx reg;
945 enum machine_mode mode;
946 int unsignedp;
947 rtx first = get_insns ();
949 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
951 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
952 /* Check whether this register can hold an incoming pointer
953 argument. FUNCTION_ARG_REGNO_P tests outgoing register
954 numbers, so translate if necessary due to register windows. */
955 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
956 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
958 record_value_for_reg
959 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
960 : SIGN_EXTEND),
961 GET_MODE (reg),
962 gen_rtx_CLOBBER (mode, const0_rtx)));
967 /* Called via note_stores. If X is a pseudo that is narrower than
968 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
970 If we are setting only a portion of X and we can't figure out what
971 portion, assume all bits will be used since we don't know what will
972 be happening.
974 Similarly, set how many bits of X are known to be copies of the sign bit
975 at all locations in the function. This is the smallest number implied
976 by any set of X. */
978 static void
979 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
980 void *data ATTRIBUTE_UNUSED)
982 unsigned int num;
984 if (REG_P (x)
985 && REGNO (x) >= FIRST_PSEUDO_REGISTER
986 /* If this register is undefined at the start of the file, we can't
987 say what its contents were. */
988 && ! REGNO_REG_SET_P
989 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
990 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
992 if (set == 0 || GET_CODE (set) == CLOBBER)
994 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
995 reg_stat[REGNO (x)].sign_bit_copies = 1;
996 return;
999 /* If this is a complex assignment, see if we can convert it into a
1000 simple assignment. */
1001 set = expand_field_assignment (set);
1003 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1004 set what we know about X. */
1006 if (SET_DEST (set) == x
1007 || (GET_CODE (SET_DEST (set)) == SUBREG
1008 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1009 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1010 && SUBREG_REG (SET_DEST (set)) == x))
1012 rtx src = SET_SRC (set);
1014 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1015 /* If X is narrower than a word and SRC is a non-negative
1016 constant that would appear negative in the mode of X,
1017 sign-extend it for use in reg_stat[].nonzero_bits because some
1018 machines (maybe most) will actually do the sign-extension
1019 and this is the conservative approach.
1021 ??? For 2.5, try to tighten up the MD files in this regard
1022 instead of this kludge. */
1024 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1025 && GET_CODE (src) == CONST_INT
1026 && INTVAL (src) > 0
1027 && 0 != (INTVAL (src)
1028 & ((HOST_WIDE_INT) 1
1029 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1030 src = GEN_INT (INTVAL (src)
1031 | ((HOST_WIDE_INT) (-1)
1032 << GET_MODE_BITSIZE (GET_MODE (x))));
1033 #endif
1035 /* Don't call nonzero_bits if it cannot change anything. */
1036 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1037 reg_stat[REGNO (x)].nonzero_bits
1038 |= nonzero_bits (src, nonzero_bits_mode);
1039 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1040 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1041 || reg_stat[REGNO (x)].sign_bit_copies > num)
1042 reg_stat[REGNO (x)].sign_bit_copies = num;
1044 else
1046 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1047 reg_stat[REGNO (x)].sign_bit_copies = 1;
1052 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1053 insns that were previously combined into I3 or that will be combined
1054 into the merger of INSN and I3.
1056 Return 0 if the combination is not allowed for any reason.
1058 If the combination is allowed, *PDEST will be set to the single
1059 destination of INSN and *PSRC to the single source, and this function
1060 will return 1. */
1062 static int
1063 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1064 rtx *pdest, rtx *psrc)
1066 int i;
1067 rtx set = 0, src, dest;
1068 rtx p;
1069 #ifdef AUTO_INC_DEC
1070 rtx link;
1071 #endif
1072 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1073 && next_active_insn (succ) == i3)
1074 : next_active_insn (insn) == i3);
1076 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1077 or a PARALLEL consisting of such a SET and CLOBBERs.
1079 If INSN has CLOBBER parallel parts, ignore them for our processing.
1080 By definition, these happen during the execution of the insn. When it
1081 is merged with another insn, all bets are off. If they are, in fact,
1082 needed and aren't also supplied in I3, they may be added by
1083 recog_for_combine. Otherwise, it won't match.
1085 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1086 note.
1088 Get the source and destination of INSN. If more than one, can't
1089 combine. */
1091 if (GET_CODE (PATTERN (insn)) == SET)
1092 set = PATTERN (insn);
1093 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1094 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1096 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1098 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1099 rtx note;
1101 switch (GET_CODE (elt))
1103 /* This is important to combine floating point insns
1104 for the SH4 port. */
1105 case USE:
1106 /* Combining an isolated USE doesn't make sense.
1107 We depend here on combinable_i3pat to reject them. */
1108 /* The code below this loop only verifies that the inputs of
1109 the SET in INSN do not change. We call reg_set_between_p
1110 to verify that the REG in the USE does not change between
1111 I3 and INSN.
1112 If the USE in INSN was for a pseudo register, the matching
1113 insn pattern will likely match any register; combining this
1114 with any other USE would only be safe if we knew that the
1115 used registers have identical values, or if there was
1116 something to tell them apart, e.g. different modes. For
1117 now, we forgo such complicated tests and simply disallow
1118 combining of USES of pseudo registers with any other USE. */
1119 if (REG_P (XEXP (elt, 0))
1120 && GET_CODE (PATTERN (i3)) == PARALLEL)
1122 rtx i3pat = PATTERN (i3);
1123 int i = XVECLEN (i3pat, 0) - 1;
1124 unsigned int regno = REGNO (XEXP (elt, 0));
1128 rtx i3elt = XVECEXP (i3pat, 0, i);
1130 if (GET_CODE (i3elt) == USE
1131 && REG_P (XEXP (i3elt, 0))
1132 && (REGNO (XEXP (i3elt, 0)) == regno
1133 ? reg_set_between_p (XEXP (elt, 0),
1134 PREV_INSN (insn), i3)
1135 : regno >= FIRST_PSEUDO_REGISTER))
1136 return 0;
1138 while (--i >= 0);
1140 break;
1142 /* We can ignore CLOBBERs. */
1143 case CLOBBER:
1144 break;
1146 case SET:
1147 /* Ignore SETs whose result isn't used but not those that
1148 have side-effects. */
1149 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1150 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1151 || INTVAL (XEXP (note, 0)) <= 0)
1152 && ! side_effects_p (elt))
1153 break;
1155 /* If we have already found a SET, this is a second one and
1156 so we cannot combine with this insn. */
1157 if (set)
1158 return 0;
1160 set = elt;
1161 break;
1163 default:
1164 /* Anything else means we can't combine. */
1165 return 0;
1169 if (set == 0
1170 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1171 so don't do anything with it. */
1172 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1173 return 0;
1175 else
1176 return 0;
1178 if (set == 0)
1179 return 0;
1181 set = expand_field_assignment (set);
1182 src = SET_SRC (set), dest = SET_DEST (set);
1184 /* Don't eliminate a store in the stack pointer. */
1185 if (dest == stack_pointer_rtx
1186 /* Don't combine with an insn that sets a register to itself if it has
1187 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1188 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1189 /* Can't merge an ASM_OPERANDS. */
1190 || GET_CODE (src) == ASM_OPERANDS
1191 /* Can't merge a function call. */
1192 || GET_CODE (src) == CALL
1193 /* Don't eliminate a function call argument. */
1194 || (CALL_P (i3)
1195 && (find_reg_fusage (i3, USE, dest)
1196 || (REG_P (dest)
1197 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1198 && global_regs[REGNO (dest)])))
1199 /* Don't substitute into an incremented register. */
1200 || FIND_REG_INC_NOTE (i3, dest)
1201 || (succ && FIND_REG_INC_NOTE (succ, dest))
1202 /* Don't substitute into a non-local goto, this confuses CFG. */
1203 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1204 #if 0
1205 /* Don't combine the end of a libcall into anything. */
1206 /* ??? This gives worse code, and appears to be unnecessary, since no
1207 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1208 use REG_RETVAL notes for noconflict blocks, but other code here
1209 makes sure that those insns don't disappear. */
1210 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1211 #endif
1212 /* Make sure that DEST is not used after SUCC but before I3. */
1213 || (succ && ! all_adjacent
1214 && reg_used_between_p (dest, succ, i3))
1215 /* Make sure that the value that is to be substituted for the register
1216 does not use any registers whose values alter in between. However,
1217 If the insns are adjacent, a use can't cross a set even though we
1218 think it might (this can happen for a sequence of insns each setting
1219 the same destination; last_set of that register might point to
1220 a NOTE). If INSN has a REG_EQUIV note, the register is always
1221 equivalent to the memory so the substitution is valid even if there
1222 are intervening stores. Also, don't move a volatile asm or
1223 UNSPEC_VOLATILE across any other insns. */
1224 || (! all_adjacent
1225 && (((!MEM_P (src)
1226 || ! find_reg_note (insn, REG_EQUIV, src))
1227 && use_crosses_set_p (src, INSN_CUID (insn)))
1228 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1229 || GET_CODE (src) == UNSPEC_VOLATILE))
1230 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1231 better register allocation by not doing the combine. */
1232 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1233 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1234 /* Don't combine across a CALL_INSN, because that would possibly
1235 change whether the life span of some REGs crosses calls or not,
1236 and it is a pain to update that information.
1237 Exception: if source is a constant, moving it later can't hurt.
1238 Accept that special case, because it helps -fforce-addr a lot. */
1239 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1240 return 0;
1242 /* DEST must either be a REG or CC0. */
1243 if (REG_P (dest))
1245 /* If register alignment is being enforced for multi-word items in all
1246 cases except for parameters, it is possible to have a register copy
1247 insn referencing a hard register that is not allowed to contain the
1248 mode being copied and which would not be valid as an operand of most
1249 insns. Eliminate this problem by not combining with such an insn.
1251 Also, on some machines we don't want to extend the life of a hard
1252 register. */
1254 if (REG_P (src)
1255 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1256 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1257 /* Don't extend the life of a hard register unless it is
1258 user variable (if we have few registers) or it can't
1259 fit into the desired register (meaning something special
1260 is going on).
1261 Also avoid substituting a return register into I3, because
1262 reload can't handle a conflict with constraints of other
1263 inputs. */
1264 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1265 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1266 return 0;
1268 else if (GET_CODE (dest) != CC0)
1269 return 0;
1272 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1273 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1274 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1276 /* Don't substitute for a register intended as a clobberable
1277 operand. */
1278 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1279 if (rtx_equal_p (reg, dest))
1280 return 0;
1282 /* If the clobber represents an earlyclobber operand, we must not
1283 substitute an expression containing the clobbered register.
1284 As we do not analyze the constraint strings here, we have to
1285 make the conservative assumption. However, if the register is
1286 a fixed hard reg, the clobber cannot represent any operand;
1287 we leave it up to the machine description to either accept or
1288 reject use-and-clobber patterns. */
1289 if (!REG_P (reg)
1290 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1291 || !fixed_regs[REGNO (reg)])
1292 if (reg_overlap_mentioned_p (reg, src))
1293 return 0;
1296 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1297 or not), reject, unless nothing volatile comes between it and I3 */
1299 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1301 /* Make sure succ doesn't contain a volatile reference. */
1302 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1303 return 0;
1305 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1306 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1307 return 0;
1310 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1311 to be an explicit register variable, and was chosen for a reason. */
1313 if (GET_CODE (src) == ASM_OPERANDS
1314 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1315 return 0;
1317 /* If there are any volatile insns between INSN and I3, reject, because
1318 they might affect machine state. */
1320 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1321 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1322 return 0;
1324 /* If INSN contains an autoincrement or autodecrement, make sure that
1325 register is not used between there and I3, and not already used in
1326 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1327 Also insist that I3 not be a jump; if it were one
1328 and the incremented register were spilled, we would lose. */
1330 #ifdef AUTO_INC_DEC
1331 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1332 if (REG_NOTE_KIND (link) == REG_INC
1333 && (JUMP_P (i3)
1334 || reg_used_between_p (XEXP (link, 0), insn, i3)
1335 || (pred != NULL_RTX
1336 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1337 || (succ != NULL_RTX
1338 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1339 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1340 return 0;
1341 #endif
1343 #ifdef HAVE_cc0
1344 /* Don't combine an insn that follows a CC0-setting insn.
1345 An insn that uses CC0 must not be separated from the one that sets it.
1346 We do, however, allow I2 to follow a CC0-setting insn if that insn
1347 is passed as I1; in that case it will be deleted also.
1348 We also allow combining in this case if all the insns are adjacent
1349 because that would leave the two CC0 insns adjacent as well.
1350 It would be more logical to test whether CC0 occurs inside I1 or I2,
1351 but that would be much slower, and this ought to be equivalent. */
1353 p = prev_nonnote_insn (insn);
1354 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1355 && ! all_adjacent)
1356 return 0;
1357 #endif
1359 /* If we get here, we have passed all the tests and the combination is
1360 to be allowed. */
1362 *pdest = dest;
1363 *psrc = src;
1365 return 1;
1368 /* LOC is the location within I3 that contains its pattern or the component
1369 of a PARALLEL of the pattern. We validate that it is valid for combining.
1371 One problem is if I3 modifies its output, as opposed to replacing it
1372 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1373 so would produce an insn that is not equivalent to the original insns.
1375 Consider:
1377 (set (reg:DI 101) (reg:DI 100))
1378 (set (subreg:SI (reg:DI 101) 0) <foo>)
1380 This is NOT equivalent to:
1382 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1383 (set (reg:DI 101) (reg:DI 100))])
1385 Not only does this modify 100 (in which case it might still be valid
1386 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1388 We can also run into a problem if I2 sets a register that I1
1389 uses and I1 gets directly substituted into I3 (not via I2). In that
1390 case, we would be getting the wrong value of I2DEST into I3, so we
1391 must reject the combination. This case occurs when I2 and I1 both
1392 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1393 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1394 of a SET must prevent combination from occurring.
1396 Before doing the above check, we first try to expand a field assignment
1397 into a set of logical operations.
1399 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1400 we place a register that is both set and used within I3. If more than one
1401 such register is detected, we fail.
1403 Return 1 if the combination is valid, zero otherwise. */
1405 static int
1406 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1407 int i1_not_in_src, rtx *pi3dest_killed)
1409 rtx x = *loc;
1411 if (GET_CODE (x) == SET)
1413 rtx set = x ;
1414 rtx dest = SET_DEST (set);
1415 rtx src = SET_SRC (set);
1416 rtx inner_dest = dest;
1418 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1419 || GET_CODE (inner_dest) == SUBREG
1420 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1421 inner_dest = XEXP (inner_dest, 0);
1423 /* Check for the case where I3 modifies its output, as discussed
1424 above. We don't want to prevent pseudos from being combined
1425 into the address of a MEM, so only prevent the combination if
1426 i1 or i2 set the same MEM. */
1427 if ((inner_dest != dest &&
1428 (!MEM_P (inner_dest)
1429 || rtx_equal_p (i2dest, inner_dest)
1430 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1431 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1432 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1434 /* This is the same test done in can_combine_p except we can't test
1435 all_adjacent; we don't have to, since this instruction will stay
1436 in place, thus we are not considering increasing the lifetime of
1437 INNER_DEST.
1439 Also, if this insn sets a function argument, combining it with
1440 something that might need a spill could clobber a previous
1441 function argument; the all_adjacent test in can_combine_p also
1442 checks this; here, we do a more specific test for this case. */
1444 || (REG_P (inner_dest)
1445 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1446 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1447 GET_MODE (inner_dest))))
1448 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1449 return 0;
1451 /* If DEST is used in I3, it is being killed in this insn,
1452 so record that for later.
1453 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1454 STACK_POINTER_REGNUM, since these are always considered to be
1455 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1456 if (pi3dest_killed && REG_P (dest)
1457 && reg_referenced_p (dest, PATTERN (i3))
1458 && REGNO (dest) != FRAME_POINTER_REGNUM
1459 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1460 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1461 #endif
1462 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1463 && (REGNO (dest) != ARG_POINTER_REGNUM
1464 || ! fixed_regs [REGNO (dest)])
1465 #endif
1466 && REGNO (dest) != STACK_POINTER_REGNUM)
1468 if (*pi3dest_killed)
1469 return 0;
1471 *pi3dest_killed = dest;
1475 else if (GET_CODE (x) == PARALLEL)
1477 int i;
1479 for (i = 0; i < XVECLEN (x, 0); i++)
1480 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1481 i1_not_in_src, pi3dest_killed))
1482 return 0;
1485 return 1;
1488 /* Return 1 if X is an arithmetic expression that contains a multiplication
1489 and division. We don't count multiplications by powers of two here. */
1491 static int
1492 contains_muldiv (rtx x)
1494 switch (GET_CODE (x))
1496 case MOD: case DIV: case UMOD: case UDIV:
1497 return 1;
1499 case MULT:
1500 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1501 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1502 default:
1503 if (BINARY_P (x))
1504 return contains_muldiv (XEXP (x, 0))
1505 || contains_muldiv (XEXP (x, 1));
1507 if (UNARY_P (x))
1508 return contains_muldiv (XEXP (x, 0));
1510 return 0;
1514 /* Determine whether INSN can be used in a combination. Return nonzero if
1515 not. This is used in try_combine to detect early some cases where we
1516 can't perform combinations. */
1518 static int
1519 cant_combine_insn_p (rtx insn)
1521 rtx set;
1522 rtx src, dest;
1524 /* If this isn't really an insn, we can't do anything.
1525 This can occur when flow deletes an insn that it has merged into an
1526 auto-increment address. */
1527 if (! INSN_P (insn))
1528 return 1;
1530 /* Never combine loads and stores involving hard regs that are likely
1531 to be spilled. The register allocator can usually handle such
1532 reg-reg moves by tying. If we allow the combiner to make
1533 substitutions of likely-spilled regs, reload might die.
1534 As an exception, we allow combinations involving fixed regs; these are
1535 not available to the register allocator so there's no risk involved. */
1537 set = single_set (insn);
1538 if (! set)
1539 return 0;
1540 src = SET_SRC (set);
1541 dest = SET_DEST (set);
1542 if (GET_CODE (src) == SUBREG)
1543 src = SUBREG_REG (src);
1544 if (GET_CODE (dest) == SUBREG)
1545 dest = SUBREG_REG (dest);
1546 if (REG_P (src) && REG_P (dest)
1547 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1548 && ! fixed_regs[REGNO (src)]
1549 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1550 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1551 && ! fixed_regs[REGNO (dest)]
1552 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1553 return 1;
1555 return 0;
1558 /* Adjust INSN after we made a change to its destination.
1560 Changing the destination can invalidate notes that say something about
1561 the results of the insn and a LOG_LINK pointing to the insn. */
1563 static void
1564 adjust_for_new_dest (rtx insn)
1566 rtx *loc;
1568 /* For notes, be conservative and simply remove them. */
1569 loc = &REG_NOTES (insn);
1570 while (*loc)
1572 enum reg_note kind = REG_NOTE_KIND (*loc);
1573 if (kind == REG_EQUAL || kind == REG_EQUIV)
1574 *loc = XEXP (*loc, 1);
1575 else
1576 loc = &XEXP (*loc, 1);
1579 /* The new insn will have a destination that was previously the destination
1580 of an insn just above it. Call distribute_links to make a LOG_LINK from
1581 the next use of that destination. */
1582 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1585 /* Try to combine the insns I1 and I2 into I3.
1586 Here I1 and I2 appear earlier than I3.
1587 I1 can be zero; then we combine just I2 into I3.
1589 If we are combining three insns and the resulting insn is not recognized,
1590 try splitting it into two insns. If that happens, I2 and I3 are retained
1591 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1592 are pseudo-deleted.
1594 Return 0 if the combination does not work. Then nothing is changed.
1595 If we did the combination, return the insn at which combine should
1596 resume scanning.
1598 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1599 new direct jump instruction. */
1601 static rtx
1602 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1604 /* New patterns for I3 and I2, respectively. */
1605 rtx newpat, newi2pat = 0;
1606 rtvec newpat_vec_with_clobbers = 0;
1607 int substed_i2 = 0, substed_i1 = 0;
1608 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1609 int added_sets_1, added_sets_2;
1610 /* Total number of SETs to put into I3. */
1611 int total_sets;
1612 /* Nonzero if I2's body now appears in I3. */
1613 int i2_is_used;
1614 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1615 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1616 /* Contains I3 if the destination of I3 is used in its source, which means
1617 that the old life of I3 is being killed. If that usage is placed into
1618 I2 and not in I3, a REG_DEAD note must be made. */
1619 rtx i3dest_killed = 0;
1620 /* SET_DEST and SET_SRC of I2 and I1. */
1621 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1622 /* PATTERN (I2), or a copy of it in certain cases. */
1623 rtx i2pat;
1624 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1625 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1626 int i1_feeds_i3 = 0;
1627 /* Notes that must be added to REG_NOTES in I3 and I2. */
1628 rtx new_i3_notes, new_i2_notes;
1629 /* Notes that we substituted I3 into I2 instead of the normal case. */
1630 int i3_subst_into_i2 = 0;
1631 /* Notes that I1, I2 or I3 is a MULT operation. */
1632 int have_mult = 0;
1633 int swap_i2i3 = 0;
1635 int maxreg;
1636 rtx temp;
1637 rtx link;
1638 int i;
1640 /* Exit early if one of the insns involved can't be used for
1641 combinations. */
1642 if (cant_combine_insn_p (i3)
1643 || cant_combine_insn_p (i2)
1644 || (i1 && cant_combine_insn_p (i1))
1645 /* We also can't do anything if I3 has a
1646 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1647 libcall. */
1648 #if 0
1649 /* ??? This gives worse code, and appears to be unnecessary, since no
1650 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1651 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1652 #endif
1654 return 0;
1656 combine_attempts++;
1657 undobuf.other_insn = 0;
1659 /* Reset the hard register usage information. */
1660 CLEAR_HARD_REG_SET (newpat_used_regs);
1662 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1663 code below, set I1 to be the earlier of the two insns. */
1664 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1665 temp = i1, i1 = i2, i2 = temp;
1667 added_links_insn = 0;
1669 /* First check for one important special-case that the code below will
1670 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1671 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1672 we may be able to replace that destination with the destination of I3.
1673 This occurs in the common code where we compute both a quotient and
1674 remainder into a structure, in which case we want to do the computation
1675 directly into the structure to avoid register-register copies.
1677 Note that this case handles both multiple sets in I2 and also
1678 cases where I2 has a number of CLOBBER or PARALLELs.
1680 We make very conservative checks below and only try to handle the
1681 most common cases of this. For example, we only handle the case
1682 where I2 and I3 are adjacent to avoid making difficult register
1683 usage tests. */
1685 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1686 && REG_P (SET_SRC (PATTERN (i3)))
1687 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1688 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1689 && GET_CODE (PATTERN (i2)) == PARALLEL
1690 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1691 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1692 below would need to check what is inside (and reg_overlap_mentioned_p
1693 doesn't support those codes anyway). Don't allow those destinations;
1694 the resulting insn isn't likely to be recognized anyway. */
1695 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1696 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1697 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1698 SET_DEST (PATTERN (i3)))
1699 && next_real_insn (i2) == i3)
1701 rtx p2 = PATTERN (i2);
1703 /* Make sure that the destination of I3,
1704 which we are going to substitute into one output of I2,
1705 is not used within another output of I2. We must avoid making this:
1706 (parallel [(set (mem (reg 69)) ...)
1707 (set (reg 69) ...)])
1708 which is not well-defined as to order of actions.
1709 (Besides, reload can't handle output reloads for this.)
1711 The problem can also happen if the dest of I3 is a memory ref,
1712 if another dest in I2 is an indirect memory ref. */
1713 for (i = 0; i < XVECLEN (p2, 0); i++)
1714 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1715 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1716 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1717 SET_DEST (XVECEXP (p2, 0, i))))
1718 break;
1720 if (i == XVECLEN (p2, 0))
1721 for (i = 0; i < XVECLEN (p2, 0); i++)
1722 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1723 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1724 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1726 combine_merges++;
1728 subst_insn = i3;
1729 subst_low_cuid = INSN_CUID (i2);
1731 added_sets_2 = added_sets_1 = 0;
1732 i2dest = SET_SRC (PATTERN (i3));
1734 /* Replace the dest in I2 with our dest and make the resulting
1735 insn the new pattern for I3. Then skip to where we
1736 validate the pattern. Everything was set up above. */
1737 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1738 SET_DEST (PATTERN (i3)));
1740 newpat = p2;
1741 i3_subst_into_i2 = 1;
1742 goto validate_replacement;
1746 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1747 one of those words to another constant, merge them by making a new
1748 constant. */
1749 if (i1 == 0
1750 && (temp = single_set (i2)) != 0
1751 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1752 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1753 && REG_P (SET_DEST (temp))
1754 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1755 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1756 && GET_CODE (PATTERN (i3)) == SET
1757 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1758 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1759 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1760 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1761 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1763 HOST_WIDE_INT lo, hi;
1765 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1766 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1767 else
1769 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1770 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1773 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1775 /* We don't handle the case of the target word being wider
1776 than a host wide int. */
1777 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1779 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1780 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1781 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1783 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1784 hi = INTVAL (SET_SRC (PATTERN (i3)));
1785 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1787 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1788 >> (HOST_BITS_PER_WIDE_INT - 1));
1790 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1791 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1792 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1793 (INTVAL (SET_SRC (PATTERN (i3)))));
1794 if (hi == sign)
1795 hi = lo < 0 ? -1 : 0;
1797 else
1798 /* We don't handle the case of the higher word not fitting
1799 entirely in either hi or lo. */
1800 gcc_unreachable ();
1802 combine_merges++;
1803 subst_insn = i3;
1804 subst_low_cuid = INSN_CUID (i2);
1805 added_sets_2 = added_sets_1 = 0;
1806 i2dest = SET_DEST (temp);
1808 SUBST (SET_SRC (temp),
1809 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1811 newpat = PATTERN (i2);
1812 goto validate_replacement;
1815 #ifndef HAVE_cc0
1816 /* If we have no I1 and I2 looks like:
1817 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1818 (set Y OP)])
1819 make up a dummy I1 that is
1820 (set Y OP)
1821 and change I2 to be
1822 (set (reg:CC X) (compare:CC Y (const_int 0)))
1824 (We can ignore any trailing CLOBBERs.)
1826 This undoes a previous combination and allows us to match a branch-and-
1827 decrement insn. */
1829 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1830 && XVECLEN (PATTERN (i2), 0) >= 2
1831 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1832 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1833 == MODE_CC)
1834 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1835 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1836 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1837 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1838 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1839 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1841 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1842 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1843 break;
1845 if (i == 1)
1847 /* We make I1 with the same INSN_UID as I2. This gives it
1848 the same INSN_CUID for value tracking. Our fake I1 will
1849 never appear in the insn stream so giving it the same INSN_UID
1850 as I2 will not cause a problem. */
1852 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1853 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1854 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1855 NULL_RTX);
1857 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1858 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1859 SET_DEST (PATTERN (i1)));
1862 #endif
1864 /* Verify that I2 and I1 are valid for combining. */
1865 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1866 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1868 undo_all ();
1869 return 0;
1872 /* Record whether I2DEST is used in I2SRC and similarly for the other
1873 cases. Knowing this will help in register status updating below. */
1874 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1875 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1876 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1878 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1879 in I2SRC. */
1880 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1882 /* Ensure that I3's pattern can be the destination of combines. */
1883 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1884 i1 && i2dest_in_i1src && i1_feeds_i3,
1885 &i3dest_killed))
1887 undo_all ();
1888 return 0;
1891 /* See if any of the insns is a MULT operation. Unless one is, we will
1892 reject a combination that is, since it must be slower. Be conservative
1893 here. */
1894 if (GET_CODE (i2src) == MULT
1895 || (i1 != 0 && GET_CODE (i1src) == MULT)
1896 || (GET_CODE (PATTERN (i3)) == SET
1897 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1898 have_mult = 1;
1900 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1901 We used to do this EXCEPT in one case: I3 has a post-inc in an
1902 output operand. However, that exception can give rise to insns like
1903 mov r3,(r3)+
1904 which is a famous insn on the PDP-11 where the value of r3 used as the
1905 source was model-dependent. Avoid this sort of thing. */
1907 #if 0
1908 if (!(GET_CODE (PATTERN (i3)) == SET
1909 && REG_P (SET_SRC (PATTERN (i3)))
1910 && MEM_P (SET_DEST (PATTERN (i3)))
1911 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1912 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1913 /* It's not the exception. */
1914 #endif
1915 #ifdef AUTO_INC_DEC
1916 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1917 if (REG_NOTE_KIND (link) == REG_INC
1918 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1919 || (i1 != 0
1920 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1922 undo_all ();
1923 return 0;
1925 #endif
1927 /* See if the SETs in I1 or I2 need to be kept around in the merged
1928 instruction: whenever the value set there is still needed past I3.
1929 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1931 For the SET in I1, we have two cases: If I1 and I2 independently
1932 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1933 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1934 in I1 needs to be kept around unless I1DEST dies or is set in either
1935 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1936 I1DEST. If so, we know I1 feeds into I2. */
1938 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1940 added_sets_1
1941 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1942 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1944 /* If the set in I2 needs to be kept around, we must make a copy of
1945 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1946 PATTERN (I2), we are only substituting for the original I1DEST, not into
1947 an already-substituted copy. This also prevents making self-referential
1948 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1949 I2DEST. */
1951 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1952 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1953 : PATTERN (i2));
1955 if (added_sets_2)
1956 i2pat = copy_rtx (i2pat);
1958 combine_merges++;
1960 /* Substitute in the latest insn for the regs set by the earlier ones. */
1962 maxreg = max_reg_num ();
1964 subst_insn = i3;
1966 /* It is possible that the source of I2 or I1 may be performing an
1967 unneeded operation, such as a ZERO_EXTEND of something that is known
1968 to have the high part zero. Handle that case by letting subst look at
1969 the innermost one of them.
1971 Another way to do this would be to have a function that tries to
1972 simplify a single insn instead of merging two or more insns. We don't
1973 do this because of the potential of infinite loops and because
1974 of the potential extra memory required. However, doing it the way
1975 we are is a bit of a kludge and doesn't catch all cases.
1977 But only do this if -fexpensive-optimizations since it slows things down
1978 and doesn't usually win. */
1980 if (flag_expensive_optimizations)
1982 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1983 if (i1)
1985 subst_low_cuid = INSN_CUID (i1);
1986 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1988 else
1990 subst_low_cuid = INSN_CUID (i2);
1991 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1995 #ifndef HAVE_cc0
1996 /* Many machines that don't use CC0 have insns that can both perform an
1997 arithmetic operation and set the condition code. These operations will
1998 be represented as a PARALLEL with the first element of the vector
1999 being a COMPARE of an arithmetic operation with the constant zero.
2000 The second element of the vector will set some pseudo to the result
2001 of the same arithmetic operation. If we simplify the COMPARE, we won't
2002 match such a pattern and so will generate an extra insn. Here we test
2003 for this case, where both the comparison and the operation result are
2004 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2005 I2SRC. Later we will make the PARALLEL that contains I2. */
2007 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2008 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2009 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2010 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2012 #ifdef SELECT_CC_MODE
2013 rtx *cc_use;
2014 enum machine_mode compare_mode;
2015 #endif
2017 newpat = PATTERN (i3);
2018 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2020 i2_is_used = 1;
2022 #ifdef SELECT_CC_MODE
2023 /* See if a COMPARE with the operand we substituted in should be done
2024 with the mode that is currently being used. If not, do the same
2025 processing we do in `subst' for a SET; namely, if the destination
2026 is used only once, try to replace it with a register of the proper
2027 mode and also replace the COMPARE. */
2028 if (undobuf.other_insn == 0
2029 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2030 &undobuf.other_insn))
2031 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2032 i2src, const0_rtx))
2033 != GET_MODE (SET_DEST (newpat))))
2035 unsigned int regno = REGNO (SET_DEST (newpat));
2036 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2038 if (regno < FIRST_PSEUDO_REGISTER
2039 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2040 && ! REG_USERVAR_P (SET_DEST (newpat))))
2042 if (regno >= FIRST_PSEUDO_REGISTER)
2043 SUBST (regno_reg_rtx[regno], new_dest);
2045 SUBST (SET_DEST (newpat), new_dest);
2046 SUBST (XEXP (*cc_use, 0), new_dest);
2047 SUBST (SET_SRC (newpat),
2048 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2050 else
2051 undobuf.other_insn = 0;
2053 #endif
2055 else
2056 #endif
2058 n_occurrences = 0; /* `subst' counts here */
2060 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2061 need to make a unique copy of I2SRC each time we substitute it
2062 to avoid self-referential rtl. */
2064 subst_low_cuid = INSN_CUID (i2);
2065 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2066 ! i1_feeds_i3 && i1dest_in_i1src);
2067 substed_i2 = 1;
2069 /* Record whether i2's body now appears within i3's body. */
2070 i2_is_used = n_occurrences;
2073 /* If we already got a failure, don't try to do more. Otherwise,
2074 try to substitute in I1 if we have it. */
2076 if (i1 && GET_CODE (newpat) != CLOBBER)
2078 /* Before we can do this substitution, we must redo the test done
2079 above (see detailed comments there) that ensures that I1DEST
2080 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2082 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2083 0, (rtx*) 0))
2085 undo_all ();
2086 return 0;
2089 n_occurrences = 0;
2090 subst_low_cuid = INSN_CUID (i1);
2091 newpat = subst (newpat, i1dest, i1src, 0, 0);
2092 substed_i1 = 1;
2095 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2096 to count all the ways that I2SRC and I1SRC can be used. */
2097 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2098 && i2_is_used + added_sets_2 > 1)
2099 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2100 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2101 > 1))
2102 /* Fail if we tried to make a new register. */
2103 || max_reg_num () != maxreg
2104 /* Fail if we couldn't do something and have a CLOBBER. */
2105 || GET_CODE (newpat) == CLOBBER
2106 /* Fail if this new pattern is a MULT and we didn't have one before
2107 at the outer level. */
2108 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2109 && ! have_mult))
2111 undo_all ();
2112 return 0;
2115 /* If the actions of the earlier insns must be kept
2116 in addition to substituting them into the latest one,
2117 we must make a new PARALLEL for the latest insn
2118 to hold additional the SETs. */
2120 if (added_sets_1 || added_sets_2)
2122 combine_extras++;
2124 if (GET_CODE (newpat) == PARALLEL)
2126 rtvec old = XVEC (newpat, 0);
2127 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2128 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2129 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2130 sizeof (old->elem[0]) * old->num_elem);
2132 else
2134 rtx old = newpat;
2135 total_sets = 1 + added_sets_1 + added_sets_2;
2136 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2137 XVECEXP (newpat, 0, 0) = old;
2140 if (added_sets_1)
2141 XVECEXP (newpat, 0, --total_sets)
2142 = (GET_CODE (PATTERN (i1)) == PARALLEL
2143 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2145 if (added_sets_2)
2147 /* If there is no I1, use I2's body as is. We used to also not do
2148 the subst call below if I2 was substituted into I3,
2149 but that could lose a simplification. */
2150 if (i1 == 0)
2151 XVECEXP (newpat, 0, --total_sets) = i2pat;
2152 else
2153 /* See comment where i2pat is assigned. */
2154 XVECEXP (newpat, 0, --total_sets)
2155 = subst (i2pat, i1dest, i1src, 0, 0);
2159 /* We come here when we are replacing a destination in I2 with the
2160 destination of I3. */
2161 validate_replacement:
2163 /* Note which hard regs this insn has as inputs. */
2164 mark_used_regs_combine (newpat);
2166 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2167 consider splitting this pattern, we might need these clobbers. */
2168 if (i1 && GET_CODE (newpat) == PARALLEL
2169 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2171 int len = XVECLEN (newpat, 0);
2173 newpat_vec_with_clobbers = rtvec_alloc (len);
2174 for (i = 0; i < len; i++)
2175 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2178 /* Is the result of combination a valid instruction? */
2179 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2181 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2182 the second SET's destination is a register that is unused and isn't
2183 marked as an instruction that might trap in an EH region. In that case,
2184 we just need the first SET. This can occur when simplifying a divmod
2185 insn. We *must* test for this case here because the code below that
2186 splits two independent SETs doesn't handle this case correctly when it
2187 updates the register status.
2189 It's pointless doing this if we originally had two sets, one from
2190 i3, and one from i2. Combining then splitting the parallel results
2191 in the original i2 again plus an invalid insn (which we delete).
2192 The net effect is only to move instructions around, which makes
2193 debug info less accurate.
2195 Also check the case where the first SET's destination is unused.
2196 That would not cause incorrect code, but does cause an unneeded
2197 insn to remain. */
2199 if (insn_code_number < 0
2200 && !(added_sets_2 && i1 == 0)
2201 && GET_CODE (newpat) == PARALLEL
2202 && XVECLEN (newpat, 0) == 2
2203 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2204 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2205 && asm_noperands (newpat) < 0)
2207 rtx set0 = XVECEXP (newpat, 0, 0);
2208 rtx set1 = XVECEXP (newpat, 0, 1);
2209 rtx note;
2211 if (((REG_P (SET_DEST (set1))
2212 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2213 || (GET_CODE (SET_DEST (set1)) == SUBREG
2214 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2215 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2216 || INTVAL (XEXP (note, 0)) <= 0)
2217 && ! side_effects_p (SET_SRC (set1)))
2219 newpat = set0;
2220 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2223 else if (((REG_P (SET_DEST (set0))
2224 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2225 || (GET_CODE (SET_DEST (set0)) == SUBREG
2226 && find_reg_note (i3, REG_UNUSED,
2227 SUBREG_REG (SET_DEST (set0)))))
2228 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2229 || INTVAL (XEXP (note, 0)) <= 0)
2230 && ! side_effects_p (SET_SRC (set0)))
2232 newpat = set1;
2233 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2235 if (insn_code_number >= 0)
2237 /* If we will be able to accept this, we have made a
2238 change to the destination of I3. This requires us to
2239 do a few adjustments. */
2241 PATTERN (i3) = newpat;
2242 adjust_for_new_dest (i3);
2247 /* If we were combining three insns and the result is a simple SET
2248 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2249 insns. There are two ways to do this. It can be split using a
2250 machine-specific method (like when you have an addition of a large
2251 constant) or by combine in the function find_split_point. */
2253 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2254 && asm_noperands (newpat) < 0)
2256 rtx m_split, *split;
2257 rtx ni2dest = i2dest;
2259 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2260 use I2DEST as a scratch register will help. In the latter case,
2261 convert I2DEST to the mode of the source of NEWPAT if we can. */
2263 m_split = split_insns (newpat, i3);
2265 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2266 inputs of NEWPAT. */
2268 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2269 possible to try that as a scratch reg. This would require adding
2270 more code to make it work though. */
2272 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2274 /* If I2DEST is a hard register or the only use of a pseudo,
2275 we can change its mode. */
2276 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2277 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2278 && REG_P (i2dest)
2279 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2280 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2281 && ! REG_USERVAR_P (i2dest))))
2282 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2283 REGNO (i2dest));
2285 m_split = split_insns (gen_rtx_PARALLEL
2286 (VOIDmode,
2287 gen_rtvec (2, newpat,
2288 gen_rtx_CLOBBER (VOIDmode,
2289 ni2dest))),
2290 i3);
2291 /* If the split with the mode-changed register didn't work, try
2292 the original register. */
2293 if (! m_split && ni2dest != i2dest)
2295 ni2dest = i2dest;
2296 m_split = split_insns (gen_rtx_PARALLEL
2297 (VOIDmode,
2298 gen_rtvec (2, newpat,
2299 gen_rtx_CLOBBER (VOIDmode,
2300 i2dest))),
2301 i3);
2305 /* If recog_for_combine has discarded clobbers, try to use them
2306 again for the split. */
2307 if (m_split == 0 && newpat_vec_with_clobbers)
2308 m_split
2309 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2310 newpat_vec_with_clobbers), i3);
2312 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2314 m_split = PATTERN (m_split);
2315 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2316 if (insn_code_number >= 0)
2317 newpat = m_split;
2319 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2320 && (next_real_insn (i2) == i3
2321 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2323 rtx i2set, i3set;
2324 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2325 newi2pat = PATTERN (m_split);
2327 i3set = single_set (NEXT_INSN (m_split));
2328 i2set = single_set (m_split);
2330 /* In case we changed the mode of I2DEST, replace it in the
2331 pseudo-register table here. We can't do it above in case this
2332 code doesn't get executed and we do a split the other way. */
2334 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2335 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2337 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2339 /* If I2 or I3 has multiple SETs, we won't know how to track
2340 register status, so don't use these insns. If I2's destination
2341 is used between I2 and I3, we also can't use these insns. */
2343 if (i2_code_number >= 0 && i2set && i3set
2344 && (next_real_insn (i2) == i3
2345 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2346 insn_code_number = recog_for_combine (&newi3pat, i3,
2347 &new_i3_notes);
2348 if (insn_code_number >= 0)
2349 newpat = newi3pat;
2351 /* It is possible that both insns now set the destination of I3.
2352 If so, we must show an extra use of it. */
2354 if (insn_code_number >= 0)
2356 rtx new_i3_dest = SET_DEST (i3set);
2357 rtx new_i2_dest = SET_DEST (i2set);
2359 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2360 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2361 || GET_CODE (new_i3_dest) == SUBREG)
2362 new_i3_dest = XEXP (new_i3_dest, 0);
2364 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2365 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2366 || GET_CODE (new_i2_dest) == SUBREG)
2367 new_i2_dest = XEXP (new_i2_dest, 0);
2369 if (REG_P (new_i3_dest)
2370 && REG_P (new_i2_dest)
2371 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2372 REG_N_SETS (REGNO (new_i2_dest))++;
2376 /* If we can split it and use I2DEST, go ahead and see if that
2377 helps things be recognized. Verify that none of the registers
2378 are set between I2 and I3. */
2379 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2380 #ifdef HAVE_cc0
2381 && REG_P (i2dest)
2382 #endif
2383 /* We need I2DEST in the proper mode. If it is a hard register
2384 or the only use of a pseudo, we can change its mode.
2385 Make sure we don't change a hard register to have a mode that
2386 isn't valid for it, or change the number of registers. */
2387 && (GET_MODE (*split) == GET_MODE (i2dest)
2388 || GET_MODE (*split) == VOIDmode
2389 || (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2390 && HARD_REGNO_MODE_OK (REGNO (i2dest), GET_MODE (*split))
2391 && (hard_regno_nregs[REGNO (i2dest)][GET_MODE (i2dest)]
2392 == hard_regno_nregs[REGNO (i2dest)][GET_MODE (*split)]))
2393 || (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER
2394 && REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2395 && ! REG_USERVAR_P (i2dest)))
2396 && (next_real_insn (i2) == i3
2397 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2398 /* We can't overwrite I2DEST if its value is still used by
2399 NEWPAT. */
2400 && ! reg_referenced_p (i2dest, newpat))
2402 rtx newdest = i2dest;
2403 enum rtx_code split_code = GET_CODE (*split);
2404 enum machine_mode split_mode = GET_MODE (*split);
2406 /* Get NEWDEST as a register in the proper mode. We have already
2407 validated that we can do this. */
2408 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2410 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2412 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2413 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2416 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2417 an ASHIFT. This can occur if it was inside a PLUS and hence
2418 appeared to be a memory address. This is a kludge. */
2419 if (split_code == MULT
2420 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2421 && INTVAL (XEXP (*split, 1)) > 0
2422 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2424 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2425 XEXP (*split, 0), GEN_INT (i)));
2426 /* Update split_code because we may not have a multiply
2427 anymore. */
2428 split_code = GET_CODE (*split);
2431 #ifdef INSN_SCHEDULING
2432 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2433 be written as a ZERO_EXTEND. */
2434 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2436 #ifdef LOAD_EXTEND_OP
2437 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2438 what it really is. */
2439 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2440 == SIGN_EXTEND)
2441 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2442 SUBREG_REG (*split)));
2443 else
2444 #endif
2445 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2446 SUBREG_REG (*split)));
2448 #endif
2450 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2451 SUBST (*split, newdest);
2452 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2454 /* recog_for_combine might have added CLOBBERs to newi2pat.
2455 Make sure NEWPAT does not depend on the clobbered regs. */
2456 if (GET_CODE (newi2pat) == PARALLEL)
2457 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2458 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2460 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2461 if (reg_overlap_mentioned_p (reg, newpat))
2463 undo_all ();
2464 return 0;
2468 /* If the split point was a MULT and we didn't have one before,
2469 don't use one now. */
2470 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2471 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2475 /* Check for a case where we loaded from memory in a narrow mode and
2476 then sign extended it, but we need both registers. In that case,
2477 we have a PARALLEL with both loads from the same memory location.
2478 We can split this into a load from memory followed by a register-register
2479 copy. This saves at least one insn, more if register allocation can
2480 eliminate the copy.
2482 We cannot do this if the destination of the first assignment is a
2483 condition code register or cc0. We eliminate this case by making sure
2484 the SET_DEST and SET_SRC have the same mode.
2486 We cannot do this if the destination of the second assignment is
2487 a register that we have already assumed is zero-extended. Similarly
2488 for a SUBREG of such a register. */
2490 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2491 && GET_CODE (newpat) == PARALLEL
2492 && XVECLEN (newpat, 0) == 2
2493 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2494 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2495 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2496 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2497 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2498 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2499 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2500 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2501 INSN_CUID (i2))
2502 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2503 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2504 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2505 (REG_P (temp)
2506 && reg_stat[REGNO (temp)].nonzero_bits != 0
2507 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2508 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2509 && (reg_stat[REGNO (temp)].nonzero_bits
2510 != GET_MODE_MASK (word_mode))))
2511 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2512 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2513 (REG_P (temp)
2514 && reg_stat[REGNO (temp)].nonzero_bits != 0
2515 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2516 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2517 && (reg_stat[REGNO (temp)].nonzero_bits
2518 != GET_MODE_MASK (word_mode)))))
2519 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2520 SET_SRC (XVECEXP (newpat, 0, 1)))
2521 && ! find_reg_note (i3, REG_UNUSED,
2522 SET_DEST (XVECEXP (newpat, 0, 0))))
2524 rtx ni2dest;
2526 newi2pat = XVECEXP (newpat, 0, 0);
2527 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2528 newpat = XVECEXP (newpat, 0, 1);
2529 SUBST (SET_SRC (newpat),
2530 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2531 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2533 if (i2_code_number >= 0)
2534 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2536 if (insn_code_number >= 0)
2537 swap_i2i3 = 1;
2540 /* Similarly, check for a case where we have a PARALLEL of two independent
2541 SETs but we started with three insns. In this case, we can do the sets
2542 as two separate insns. This case occurs when some SET allows two
2543 other insns to combine, but the destination of that SET is still live. */
2545 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2546 && GET_CODE (newpat) == PARALLEL
2547 && XVECLEN (newpat, 0) == 2
2548 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2549 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2550 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2551 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2552 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2553 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2554 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2555 INSN_CUID (i2))
2556 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2557 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2558 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2559 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2560 XVECEXP (newpat, 0, 0))
2561 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2562 XVECEXP (newpat, 0, 1))
2563 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2564 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2566 /* Normally, it doesn't matter which of the two is done first,
2567 but it does if one references cc0. In that case, it has to
2568 be first. */
2569 #ifdef HAVE_cc0
2570 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2572 newi2pat = XVECEXP (newpat, 0, 0);
2573 newpat = XVECEXP (newpat, 0, 1);
2575 else
2576 #endif
2578 newi2pat = XVECEXP (newpat, 0, 1);
2579 newpat = XVECEXP (newpat, 0, 0);
2582 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2584 if (i2_code_number >= 0)
2585 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2588 /* If it still isn't recognized, fail and change things back the way they
2589 were. */
2590 if ((insn_code_number < 0
2591 /* Is the result a reasonable ASM_OPERANDS? */
2592 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2594 undo_all ();
2595 return 0;
2598 /* If we had to change another insn, make sure it is valid also. */
2599 if (undobuf.other_insn)
2601 rtx other_pat = PATTERN (undobuf.other_insn);
2602 rtx new_other_notes;
2603 rtx note, next;
2605 CLEAR_HARD_REG_SET (newpat_used_regs);
2607 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2608 &new_other_notes);
2610 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2612 undo_all ();
2613 return 0;
2616 PATTERN (undobuf.other_insn) = other_pat;
2618 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2619 are still valid. Then add any non-duplicate notes added by
2620 recog_for_combine. */
2621 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2623 next = XEXP (note, 1);
2625 if (REG_NOTE_KIND (note) == REG_UNUSED
2626 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2628 if (REG_P (XEXP (note, 0)))
2629 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2631 remove_note (undobuf.other_insn, note);
2635 for (note = new_other_notes; note; note = XEXP (note, 1))
2636 if (REG_P (XEXP (note, 0)))
2637 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2639 distribute_notes (new_other_notes, undobuf.other_insn,
2640 undobuf.other_insn, NULL_RTX);
2642 #ifdef HAVE_cc0
2643 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2644 they are adjacent to each other or not. */
2646 rtx p = prev_nonnote_insn (i3);
2647 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2648 && sets_cc0_p (newi2pat))
2650 undo_all ();
2651 return 0;
2654 #endif
2656 /* Only allow this combination if insn_rtx_costs reports that the
2657 replacement instructions are cheaper than the originals. */
2658 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2660 undo_all ();
2661 return 0;
2664 /* We now know that we can do this combination. Merge the insns and
2665 update the status of registers and LOG_LINKS. */
2667 if (swap_i2i3)
2669 rtx insn;
2670 rtx link;
2671 rtx ni2dest;
2673 /* I3 now uses what used to be its destination and which is now
2674 I2's destination. This requires us to do a few adjustments. */
2675 PATTERN (i3) = newpat;
2676 adjust_for_new_dest (i3);
2678 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2679 so we still will.
2681 However, some later insn might be using I2's dest and have
2682 a LOG_LINK pointing at I3. We must remove this link.
2683 The simplest way to remove the link is to point it at I1,
2684 which we know will be a NOTE. */
2686 /* newi2pat is usually a SET here; however, recog_for_combine might
2687 have added some clobbers. */
2688 if (GET_CODE (newi2pat) == PARALLEL)
2689 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2690 else
2691 ni2dest = SET_DEST (newi2pat);
2693 for (insn = NEXT_INSN (i3);
2694 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2695 || insn != BB_HEAD (this_basic_block->next_bb));
2696 insn = NEXT_INSN (insn))
2698 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2700 for (link = LOG_LINKS (insn); link;
2701 link = XEXP (link, 1))
2702 if (XEXP (link, 0) == i3)
2703 XEXP (link, 0) = i1;
2705 break;
2711 rtx i3notes, i2notes, i1notes = 0;
2712 rtx i3links, i2links, i1links = 0;
2713 rtx midnotes = 0;
2714 unsigned int regno;
2716 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2717 clear them. */
2718 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2719 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2720 if (i1)
2721 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2723 /* Ensure that we do not have something that should not be shared but
2724 occurs multiple times in the new insns. Check this by first
2725 resetting all the `used' flags and then copying anything is shared. */
2727 reset_used_flags (i3notes);
2728 reset_used_flags (i2notes);
2729 reset_used_flags (i1notes);
2730 reset_used_flags (newpat);
2731 reset_used_flags (newi2pat);
2732 if (undobuf.other_insn)
2733 reset_used_flags (PATTERN (undobuf.other_insn));
2735 i3notes = copy_rtx_if_shared (i3notes);
2736 i2notes = copy_rtx_if_shared (i2notes);
2737 i1notes = copy_rtx_if_shared (i1notes);
2738 newpat = copy_rtx_if_shared (newpat);
2739 newi2pat = copy_rtx_if_shared (newi2pat);
2740 if (undobuf.other_insn)
2741 reset_used_flags (PATTERN (undobuf.other_insn));
2743 INSN_CODE (i3) = insn_code_number;
2744 PATTERN (i3) = newpat;
2746 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2748 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2750 reset_used_flags (call_usage);
2751 call_usage = copy_rtx (call_usage);
2753 if (substed_i2)
2754 replace_rtx (call_usage, i2dest, i2src);
2756 if (substed_i1)
2757 replace_rtx (call_usage, i1dest, i1src);
2759 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2762 if (undobuf.other_insn)
2763 INSN_CODE (undobuf.other_insn) = other_code_number;
2765 /* We had one special case above where I2 had more than one set and
2766 we replaced a destination of one of those sets with the destination
2767 of I3. In that case, we have to update LOG_LINKS of insns later
2768 in this basic block. Note that this (expensive) case is rare.
2770 Also, in this case, we must pretend that all REG_NOTEs for I2
2771 actually came from I3, so that REG_UNUSED notes from I2 will be
2772 properly handled. */
2774 if (i3_subst_into_i2)
2776 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2777 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2778 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2779 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2780 && ! find_reg_note (i2, REG_UNUSED,
2781 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2782 for (temp = NEXT_INSN (i2);
2783 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2784 || BB_HEAD (this_basic_block) != temp);
2785 temp = NEXT_INSN (temp))
2786 if (temp != i3 && INSN_P (temp))
2787 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2788 if (XEXP (link, 0) == i2)
2789 XEXP (link, 0) = i3;
2791 if (i3notes)
2793 rtx link = i3notes;
2794 while (XEXP (link, 1))
2795 link = XEXP (link, 1);
2796 XEXP (link, 1) = i2notes;
2798 else
2799 i3notes = i2notes;
2800 i2notes = 0;
2803 LOG_LINKS (i3) = 0;
2804 REG_NOTES (i3) = 0;
2805 LOG_LINKS (i2) = 0;
2806 REG_NOTES (i2) = 0;
2808 if (newi2pat)
2810 INSN_CODE (i2) = i2_code_number;
2811 PATTERN (i2) = newi2pat;
2813 else
2814 SET_INSN_DELETED (i2);
2816 if (i1)
2818 LOG_LINKS (i1) = 0;
2819 REG_NOTES (i1) = 0;
2820 SET_INSN_DELETED (i1);
2823 /* Get death notes for everything that is now used in either I3 or
2824 I2 and used to die in a previous insn. If we built two new
2825 patterns, move from I1 to I2 then I2 to I3 so that we get the
2826 proper movement on registers that I2 modifies. */
2828 if (newi2pat)
2830 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2831 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2833 else
2834 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2835 i3, &midnotes);
2837 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2838 if (i3notes)
2839 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2840 if (i2notes)
2841 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2842 if (i1notes)
2843 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2844 if (midnotes)
2845 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2847 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2848 know these are REG_UNUSED and want them to go to the desired insn,
2849 so we always pass it as i3. We have not counted the notes in
2850 reg_n_deaths yet, so we need to do so now. */
2852 if (newi2pat && new_i2_notes)
2854 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2855 if (REG_P (XEXP (temp, 0)))
2856 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2858 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2861 if (new_i3_notes)
2863 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2864 if (REG_P (XEXP (temp, 0)))
2865 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2867 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2870 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2871 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2872 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2873 in that case, it might delete I2. Similarly for I2 and I1.
2874 Show an additional death due to the REG_DEAD note we make here. If
2875 we discard it in distribute_notes, we will decrement it again. */
2877 if (i3dest_killed)
2879 if (REG_P (i3dest_killed))
2880 REG_N_DEATHS (REGNO (i3dest_killed))++;
2882 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2883 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2884 NULL_RTX),
2885 NULL_RTX, i2, NULL_RTX);
2886 else
2887 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2888 NULL_RTX),
2889 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2892 if (i2dest_in_i2src)
2894 if (REG_P (i2dest))
2895 REG_N_DEATHS (REGNO (i2dest))++;
2897 if (newi2pat && reg_set_p (i2dest, newi2pat))
2898 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2899 NULL_RTX, i2, NULL_RTX);
2900 else
2901 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2902 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2905 if (i1dest_in_i1src)
2907 if (REG_P (i1dest))
2908 REG_N_DEATHS (REGNO (i1dest))++;
2910 if (newi2pat && reg_set_p (i1dest, newi2pat))
2911 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2912 NULL_RTX, i2, NULL_RTX);
2913 else
2914 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2915 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2918 distribute_links (i3links);
2919 distribute_links (i2links);
2920 distribute_links (i1links);
2922 if (REG_P (i2dest))
2924 rtx link;
2925 rtx i2_insn = 0, i2_val = 0, set;
2927 /* The insn that used to set this register doesn't exist, and
2928 this life of the register may not exist either. See if one of
2929 I3's links points to an insn that sets I2DEST. If it does,
2930 that is now the last known value for I2DEST. If we don't update
2931 this and I2 set the register to a value that depended on its old
2932 contents, we will get confused. If this insn is used, thing
2933 will be set correctly in combine_instructions. */
2935 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2936 if ((set = single_set (XEXP (link, 0))) != 0
2937 && rtx_equal_p (i2dest, SET_DEST (set)))
2938 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2940 record_value_for_reg (i2dest, i2_insn, i2_val);
2942 /* If the reg formerly set in I2 died only once and that was in I3,
2943 zero its use count so it won't make `reload' do any work. */
2944 if (! added_sets_2
2945 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2946 && ! i2dest_in_i2src)
2948 regno = REGNO (i2dest);
2949 REG_N_SETS (regno)--;
2953 if (i1 && REG_P (i1dest))
2955 rtx link;
2956 rtx i1_insn = 0, i1_val = 0, set;
2958 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2959 if ((set = single_set (XEXP (link, 0))) != 0
2960 && rtx_equal_p (i1dest, SET_DEST (set)))
2961 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2963 record_value_for_reg (i1dest, i1_insn, i1_val);
2965 regno = REGNO (i1dest);
2966 if (! added_sets_1 && ! i1dest_in_i1src)
2967 REG_N_SETS (regno)--;
2970 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2971 been made to this insn. The order of
2972 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2973 can affect nonzero_bits of newpat */
2974 if (newi2pat)
2975 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2976 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2978 /* Set new_direct_jump_p if a new return or simple jump instruction
2979 has been created.
2981 If I3 is now an unconditional jump, ensure that it has a
2982 BARRIER following it since it may have initially been a
2983 conditional jump. It may also be the last nonnote insn. */
2985 if (returnjump_p (i3) || any_uncondjump_p (i3))
2987 *new_direct_jump_p = 1;
2988 mark_jump_label (PATTERN (i3), i3, 0);
2990 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2991 || !BARRIER_P (temp))
2992 emit_barrier_after (i3);
2995 if (undobuf.other_insn != NULL_RTX
2996 && (returnjump_p (undobuf.other_insn)
2997 || any_uncondjump_p (undobuf.other_insn)))
2999 *new_direct_jump_p = 1;
3001 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3002 || !BARRIER_P (temp))
3003 emit_barrier_after (undobuf.other_insn);
3006 /* An NOOP jump does not need barrier, but it does need cleaning up
3007 of CFG. */
3008 if (GET_CODE (newpat) == SET
3009 && SET_SRC (newpat) == pc_rtx
3010 && SET_DEST (newpat) == pc_rtx)
3011 *new_direct_jump_p = 1;
3014 combine_successes++;
3015 undo_commit ();
3017 if (added_links_insn
3018 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3019 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3020 return added_links_insn;
3021 else
3022 return newi2pat ? i2 : i3;
3025 /* Undo all the modifications recorded in undobuf. */
3027 static void
3028 undo_all (void)
3030 struct undo *undo, *next;
3032 for (undo = undobuf.undos; undo; undo = next)
3034 next = undo->next;
3035 if (undo->is_int)
3036 *undo->where.i = undo->old_contents.i;
3037 else
3038 *undo->where.r = undo->old_contents.r;
3040 undo->next = undobuf.frees;
3041 undobuf.frees = undo;
3044 undobuf.undos = 0;
3047 /* We've committed to accepting the changes we made. Move all
3048 of the undos to the free list. */
3050 static void
3051 undo_commit (void)
3053 struct undo *undo, *next;
3055 for (undo = undobuf.undos; undo; undo = next)
3057 next = undo->next;
3058 undo->next = undobuf.frees;
3059 undobuf.frees = undo;
3061 undobuf.undos = 0;
3065 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3066 where we have an arithmetic expression and return that point. LOC will
3067 be inside INSN.
3069 try_combine will call this function to see if an insn can be split into
3070 two insns. */
3072 static rtx *
3073 find_split_point (rtx *loc, rtx insn)
3075 rtx x = *loc;
3076 enum rtx_code code = GET_CODE (x);
3077 rtx *split;
3078 unsigned HOST_WIDE_INT len = 0;
3079 HOST_WIDE_INT pos = 0;
3080 int unsignedp = 0;
3081 rtx inner = NULL_RTX;
3083 /* First special-case some codes. */
3084 switch (code)
3086 case SUBREG:
3087 #ifdef INSN_SCHEDULING
3088 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3089 point. */
3090 if (MEM_P (SUBREG_REG (x)))
3091 return loc;
3092 #endif
3093 return find_split_point (&SUBREG_REG (x), insn);
3095 case MEM:
3096 #ifdef HAVE_lo_sum
3097 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3098 using LO_SUM and HIGH. */
3099 if (GET_CODE (XEXP (x, 0)) == CONST
3100 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3102 SUBST (XEXP (x, 0),
3103 gen_rtx_LO_SUM (Pmode,
3104 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3105 XEXP (x, 0)));
3106 return &XEXP (XEXP (x, 0), 0);
3108 #endif
3110 /* If we have a PLUS whose second operand is a constant and the
3111 address is not valid, perhaps will can split it up using
3112 the machine-specific way to split large constants. We use
3113 the first pseudo-reg (one of the virtual regs) as a placeholder;
3114 it will not remain in the result. */
3115 if (GET_CODE (XEXP (x, 0)) == PLUS
3116 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3117 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3119 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3120 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3121 subst_insn);
3123 /* This should have produced two insns, each of which sets our
3124 placeholder. If the source of the second is a valid address,
3125 we can make put both sources together and make a split point
3126 in the middle. */
3128 if (seq
3129 && NEXT_INSN (seq) != NULL_RTX
3130 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3131 && NONJUMP_INSN_P (seq)
3132 && GET_CODE (PATTERN (seq)) == SET
3133 && SET_DEST (PATTERN (seq)) == reg
3134 && ! reg_mentioned_p (reg,
3135 SET_SRC (PATTERN (seq)))
3136 && NONJUMP_INSN_P (NEXT_INSN (seq))
3137 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3138 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3139 && memory_address_p (GET_MODE (x),
3140 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3142 rtx src1 = SET_SRC (PATTERN (seq));
3143 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3145 /* Replace the placeholder in SRC2 with SRC1. If we can
3146 find where in SRC2 it was placed, that can become our
3147 split point and we can replace this address with SRC2.
3148 Just try two obvious places. */
3150 src2 = replace_rtx (src2, reg, src1);
3151 split = 0;
3152 if (XEXP (src2, 0) == src1)
3153 split = &XEXP (src2, 0);
3154 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3155 && XEXP (XEXP (src2, 0), 0) == src1)
3156 split = &XEXP (XEXP (src2, 0), 0);
3158 if (split)
3160 SUBST (XEXP (x, 0), src2);
3161 return split;
3165 /* If that didn't work, perhaps the first operand is complex and
3166 needs to be computed separately, so make a split point there.
3167 This will occur on machines that just support REG + CONST
3168 and have a constant moved through some previous computation. */
3170 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3171 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3172 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3173 return &XEXP (XEXP (x, 0), 0);
3175 break;
3177 case SET:
3178 #ifdef HAVE_cc0
3179 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3180 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3181 we need to put the operand into a register. So split at that
3182 point. */
3184 if (SET_DEST (x) == cc0_rtx
3185 && GET_CODE (SET_SRC (x)) != COMPARE
3186 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3187 && !OBJECT_P (SET_SRC (x))
3188 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3189 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3190 return &SET_SRC (x);
3191 #endif
3193 /* See if we can split SET_SRC as it stands. */
3194 split = find_split_point (&SET_SRC (x), insn);
3195 if (split && split != &SET_SRC (x))
3196 return split;
3198 /* See if we can split SET_DEST as it stands. */
3199 split = find_split_point (&SET_DEST (x), insn);
3200 if (split && split != &SET_DEST (x))
3201 return split;
3203 /* See if this is a bitfield assignment with everything constant. If
3204 so, this is an IOR of an AND, so split it into that. */
3205 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3206 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3207 <= HOST_BITS_PER_WIDE_INT)
3208 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3209 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3210 && GET_CODE (SET_SRC (x)) == CONST_INT
3211 && ((INTVAL (XEXP (SET_DEST (x), 1))
3212 + INTVAL (XEXP (SET_DEST (x), 2)))
3213 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3214 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3216 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3217 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3218 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3219 rtx dest = XEXP (SET_DEST (x), 0);
3220 enum machine_mode mode = GET_MODE (dest);
3221 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3223 if (BITS_BIG_ENDIAN)
3224 pos = GET_MODE_BITSIZE (mode) - len - pos;
3226 if (src == mask)
3227 SUBST (SET_SRC (x),
3228 simplify_gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3229 else
3231 rtx negmask = gen_int_mode (~(mask << pos), mode);
3232 SUBST (SET_SRC (x),
3233 simplify_gen_binary (IOR, mode,
3234 simplify_gen_binary (AND, mode,
3235 dest, negmask),
3236 GEN_INT (src << pos)));
3239 SUBST (SET_DEST (x), dest);
3241 split = find_split_point (&SET_SRC (x), insn);
3242 if (split && split != &SET_SRC (x))
3243 return split;
3246 /* Otherwise, see if this is an operation that we can split into two.
3247 If so, try to split that. */
3248 code = GET_CODE (SET_SRC (x));
3250 switch (code)
3252 case AND:
3253 /* If we are AND'ing with a large constant that is only a single
3254 bit and the result is only being used in a context where we
3255 need to know if it is zero or nonzero, replace it with a bit
3256 extraction. This will avoid the large constant, which might
3257 have taken more than one insn to make. If the constant were
3258 not a valid argument to the AND but took only one insn to make,
3259 this is no worse, but if it took more than one insn, it will
3260 be better. */
3262 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3263 && REG_P (XEXP (SET_SRC (x), 0))
3264 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3265 && REG_P (SET_DEST (x))
3266 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3267 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3268 && XEXP (*split, 0) == SET_DEST (x)
3269 && XEXP (*split, 1) == const0_rtx)
3271 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3272 XEXP (SET_SRC (x), 0),
3273 pos, NULL_RTX, 1, 1, 0, 0);
3274 if (extraction != 0)
3276 SUBST (SET_SRC (x), extraction);
3277 return find_split_point (loc, insn);
3280 break;
3282 case NE:
3283 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3284 is known to be on, this can be converted into a NEG of a shift. */
3285 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3286 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3287 && 1 <= (pos = exact_log2
3288 (nonzero_bits (XEXP (SET_SRC (x), 0),
3289 GET_MODE (XEXP (SET_SRC (x), 0))))))
3291 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3293 SUBST (SET_SRC (x),
3294 gen_rtx_NEG (mode,
3295 gen_rtx_LSHIFTRT (mode,
3296 XEXP (SET_SRC (x), 0),
3297 GEN_INT (pos))));
3299 split = find_split_point (&SET_SRC (x), insn);
3300 if (split && split != &SET_SRC (x))
3301 return split;
3303 break;
3305 case SIGN_EXTEND:
3306 inner = XEXP (SET_SRC (x), 0);
3308 /* We can't optimize if either mode is a partial integer
3309 mode as we don't know how many bits are significant
3310 in those modes. */
3311 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3312 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3313 break;
3315 pos = 0;
3316 len = GET_MODE_BITSIZE (GET_MODE (inner));
3317 unsignedp = 0;
3318 break;
3320 case SIGN_EXTRACT:
3321 case ZERO_EXTRACT:
3322 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3323 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3325 inner = XEXP (SET_SRC (x), 0);
3326 len = INTVAL (XEXP (SET_SRC (x), 1));
3327 pos = INTVAL (XEXP (SET_SRC (x), 2));
3329 if (BITS_BIG_ENDIAN)
3330 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3331 unsignedp = (code == ZERO_EXTRACT);
3333 break;
3335 default:
3336 break;
3339 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3341 enum machine_mode mode = GET_MODE (SET_SRC (x));
3343 /* For unsigned, we have a choice of a shift followed by an
3344 AND or two shifts. Use two shifts for field sizes where the
3345 constant might be too large. We assume here that we can
3346 always at least get 8-bit constants in an AND insn, which is
3347 true for every current RISC. */
3349 if (unsignedp && len <= 8)
3351 SUBST (SET_SRC (x),
3352 gen_rtx_AND (mode,
3353 gen_rtx_LSHIFTRT
3354 (mode, gen_lowpart (mode, inner),
3355 GEN_INT (pos)),
3356 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3358 split = find_split_point (&SET_SRC (x), insn);
3359 if (split && split != &SET_SRC (x))
3360 return split;
3362 else
3364 SUBST (SET_SRC (x),
3365 gen_rtx_fmt_ee
3366 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3367 gen_rtx_ASHIFT (mode,
3368 gen_lowpart (mode, inner),
3369 GEN_INT (GET_MODE_BITSIZE (mode)
3370 - len - pos)),
3371 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3373 split = find_split_point (&SET_SRC (x), insn);
3374 if (split && split != &SET_SRC (x))
3375 return split;
3379 /* See if this is a simple operation with a constant as the second
3380 operand. It might be that this constant is out of range and hence
3381 could be used as a split point. */
3382 if (BINARY_P (SET_SRC (x))
3383 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3384 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3385 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3386 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3387 return &XEXP (SET_SRC (x), 1);
3389 /* Finally, see if this is a simple operation with its first operand
3390 not in a register. The operation might require this operand in a
3391 register, so return it as a split point. We can always do this
3392 because if the first operand were another operation, we would have
3393 already found it as a split point. */
3394 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3395 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3396 return &XEXP (SET_SRC (x), 0);
3398 return 0;
3400 case AND:
3401 case IOR:
3402 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3403 it is better to write this as (not (ior A B)) so we can split it.
3404 Similarly for IOR. */
3405 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3407 SUBST (*loc,
3408 gen_rtx_NOT (GET_MODE (x),
3409 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3410 GET_MODE (x),
3411 XEXP (XEXP (x, 0), 0),
3412 XEXP (XEXP (x, 1), 0))));
3413 return find_split_point (loc, insn);
3416 /* Many RISC machines have a large set of logical insns. If the
3417 second operand is a NOT, put it first so we will try to split the
3418 other operand first. */
3419 if (GET_CODE (XEXP (x, 1)) == NOT)
3421 rtx tem = XEXP (x, 0);
3422 SUBST (XEXP (x, 0), XEXP (x, 1));
3423 SUBST (XEXP (x, 1), tem);
3425 break;
3427 default:
3428 break;
3431 /* Otherwise, select our actions depending on our rtx class. */
3432 switch (GET_RTX_CLASS (code))
3434 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3435 case RTX_TERNARY:
3436 split = find_split_point (&XEXP (x, 2), insn);
3437 if (split)
3438 return split;
3439 /* ... fall through ... */
3440 case RTX_BIN_ARITH:
3441 case RTX_COMM_ARITH:
3442 case RTX_COMPARE:
3443 case RTX_COMM_COMPARE:
3444 split = find_split_point (&XEXP (x, 1), insn);
3445 if (split)
3446 return split;
3447 /* ... fall through ... */
3448 case RTX_UNARY:
3449 /* Some machines have (and (shift ...) ...) insns. If X is not
3450 an AND, but XEXP (X, 0) is, use it as our split point. */
3451 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3452 return &XEXP (x, 0);
3454 split = find_split_point (&XEXP (x, 0), insn);
3455 if (split)
3456 return split;
3457 return loc;
3459 default:
3460 /* Otherwise, we don't have a split point. */
3461 return 0;
3465 /* Throughout X, replace FROM with TO, and return the result.
3466 The result is TO if X is FROM;
3467 otherwise the result is X, but its contents may have been modified.
3468 If they were modified, a record was made in undobuf so that
3469 undo_all will (among other things) return X to its original state.
3471 If the number of changes necessary is too much to record to undo,
3472 the excess changes are not made, so the result is invalid.
3473 The changes already made can still be undone.
3474 undobuf.num_undo is incremented for such changes, so by testing that
3475 the caller can tell whether the result is valid.
3477 `n_occurrences' is incremented each time FROM is replaced.
3479 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3481 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3482 by copying if `n_occurrences' is nonzero. */
3484 static rtx
3485 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3487 enum rtx_code code = GET_CODE (x);
3488 enum machine_mode op0_mode = VOIDmode;
3489 const char *fmt;
3490 int len, i;
3491 rtx new;
3493 /* Two expressions are equal if they are identical copies of a shared
3494 RTX or if they are both registers with the same register number
3495 and mode. */
3497 #define COMBINE_RTX_EQUAL_P(X,Y) \
3498 ((X) == (Y) \
3499 || (REG_P (X) && REG_P (Y) \
3500 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3502 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3504 n_occurrences++;
3505 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3508 /* If X and FROM are the same register but different modes, they will
3509 not have been seen as equal above. However, flow.c will make a
3510 LOG_LINKS entry for that case. If we do nothing, we will try to
3511 rerecognize our original insn and, when it succeeds, we will
3512 delete the feeding insn, which is incorrect.
3514 So force this insn not to match in this (rare) case. */
3515 if (! in_dest && code == REG && REG_P (from)
3516 && REGNO (x) == REGNO (from))
3517 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3519 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3520 of which may contain things that can be combined. */
3521 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3522 return x;
3524 /* It is possible to have a subexpression appear twice in the insn.
3525 Suppose that FROM is a register that appears within TO.
3526 Then, after that subexpression has been scanned once by `subst',
3527 the second time it is scanned, TO may be found. If we were
3528 to scan TO here, we would find FROM within it and create a
3529 self-referent rtl structure which is completely wrong. */
3530 if (COMBINE_RTX_EQUAL_P (x, to))
3531 return to;
3533 /* Parallel asm_operands need special attention because all of the
3534 inputs are shared across the arms. Furthermore, unsharing the
3535 rtl results in recognition failures. Failure to handle this case
3536 specially can result in circular rtl.
3538 Solve this by doing a normal pass across the first entry of the
3539 parallel, and only processing the SET_DESTs of the subsequent
3540 entries. Ug. */
3542 if (code == PARALLEL
3543 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3544 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3546 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3548 /* If this substitution failed, this whole thing fails. */
3549 if (GET_CODE (new) == CLOBBER
3550 && XEXP (new, 0) == const0_rtx)
3551 return new;
3553 SUBST (XVECEXP (x, 0, 0), new);
3555 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3557 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3559 if (!REG_P (dest)
3560 && GET_CODE (dest) != CC0
3561 && GET_CODE (dest) != PC)
3563 new = subst (dest, from, to, 0, unique_copy);
3565 /* If this substitution failed, this whole thing fails. */
3566 if (GET_CODE (new) == CLOBBER
3567 && XEXP (new, 0) == const0_rtx)
3568 return new;
3570 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3574 else
3576 len = GET_RTX_LENGTH (code);
3577 fmt = GET_RTX_FORMAT (code);
3579 /* We don't need to process a SET_DEST that is a register, CC0,
3580 or PC, so set up to skip this common case. All other cases
3581 where we want to suppress replacing something inside a
3582 SET_SRC are handled via the IN_DEST operand. */
3583 if (code == SET
3584 && (REG_P (SET_DEST (x))
3585 || GET_CODE (SET_DEST (x)) == CC0
3586 || GET_CODE (SET_DEST (x)) == PC))
3587 fmt = "ie";
3589 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3590 constant. */
3591 if (fmt[0] == 'e')
3592 op0_mode = GET_MODE (XEXP (x, 0));
3594 for (i = 0; i < len; i++)
3596 if (fmt[i] == 'E')
3598 int j;
3599 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3601 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3603 new = (unique_copy && n_occurrences
3604 ? copy_rtx (to) : to);
3605 n_occurrences++;
3607 else
3609 new = subst (XVECEXP (x, i, j), from, to, 0,
3610 unique_copy);
3612 /* If this substitution failed, this whole thing
3613 fails. */
3614 if (GET_CODE (new) == CLOBBER
3615 && XEXP (new, 0) == const0_rtx)
3616 return new;
3619 SUBST (XVECEXP (x, i, j), new);
3622 else if (fmt[i] == 'e')
3624 /* If this is a register being set, ignore it. */
3625 new = XEXP (x, i);
3626 if (in_dest
3627 && i == 0
3628 && (((code == SUBREG || code == ZERO_EXTRACT)
3629 && REG_P (new))
3630 || code == STRICT_LOW_PART))
3633 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3635 /* In general, don't install a subreg involving two
3636 modes not tieable. It can worsen register
3637 allocation, and can even make invalid reload
3638 insns, since the reg inside may need to be copied
3639 from in the outside mode, and that may be invalid
3640 if it is an fp reg copied in integer mode.
3642 We allow two exceptions to this: It is valid if
3643 it is inside another SUBREG and the mode of that
3644 SUBREG and the mode of the inside of TO is
3645 tieable and it is valid if X is a SET that copies
3646 FROM to CC0. */
3648 if (GET_CODE (to) == SUBREG
3649 && ! MODES_TIEABLE_P (GET_MODE (to),
3650 GET_MODE (SUBREG_REG (to)))
3651 && ! (code == SUBREG
3652 && MODES_TIEABLE_P (GET_MODE (x),
3653 GET_MODE (SUBREG_REG (to))))
3654 #ifdef HAVE_cc0
3655 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3656 #endif
3658 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3660 #ifdef CANNOT_CHANGE_MODE_CLASS
3661 if (code == SUBREG
3662 && REG_P (to)
3663 && REGNO (to) < FIRST_PSEUDO_REGISTER
3664 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3665 GET_MODE (to),
3666 GET_MODE (x)))
3667 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3668 #endif
3670 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3671 n_occurrences++;
3673 else
3674 /* If we are in a SET_DEST, suppress most cases unless we
3675 have gone inside a MEM, in which case we want to
3676 simplify the address. We assume here that things that
3677 are actually part of the destination have their inner
3678 parts in the first expression. This is true for SUBREG,
3679 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3680 things aside from REG and MEM that should appear in a
3681 SET_DEST. */
3682 new = subst (XEXP (x, i), from, to,
3683 (((in_dest
3684 && (code == SUBREG || code == STRICT_LOW_PART
3685 || code == ZERO_EXTRACT))
3686 || code == SET)
3687 && i == 0), unique_copy);
3689 /* If we found that we will have to reject this combination,
3690 indicate that by returning the CLOBBER ourselves, rather than
3691 an expression containing it. This will speed things up as
3692 well as prevent accidents where two CLOBBERs are considered
3693 to be equal, thus producing an incorrect simplification. */
3695 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3696 return new;
3698 if (GET_CODE (x) == SUBREG
3699 && (GET_CODE (new) == CONST_INT
3700 || GET_CODE (new) == CONST_DOUBLE))
3702 enum machine_mode mode = GET_MODE (x);
3704 x = simplify_subreg (GET_MODE (x), new,
3705 GET_MODE (SUBREG_REG (x)),
3706 SUBREG_BYTE (x));
3707 if (! x)
3708 x = gen_rtx_CLOBBER (mode, const0_rtx);
3710 else if (GET_CODE (new) == CONST_INT
3711 && GET_CODE (x) == ZERO_EXTEND)
3713 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3714 new, GET_MODE (XEXP (x, 0)));
3715 gcc_assert (x);
3717 else
3718 SUBST (XEXP (x, i), new);
3723 /* Try to simplify X. If the simplification changed the code, it is likely
3724 that further simplification will help, so loop, but limit the number
3725 of repetitions that will be performed. */
3727 for (i = 0; i < 4; i++)
3729 /* If X is sufficiently simple, don't bother trying to do anything
3730 with it. */
3731 if (code != CONST_INT && code != REG && code != CLOBBER)
3732 x = combine_simplify_rtx (x, op0_mode, in_dest);
3734 if (GET_CODE (x) == code)
3735 break;
3737 code = GET_CODE (x);
3739 /* We no longer know the original mode of operand 0 since we
3740 have changed the form of X) */
3741 op0_mode = VOIDmode;
3744 return x;
3747 /* Simplify X, a piece of RTL. We just operate on the expression at the
3748 outer level; call `subst' to simplify recursively. Return the new
3749 expression.
3751 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3752 if we are inside a SET_DEST. */
3754 static rtx
3755 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3757 enum rtx_code code = GET_CODE (x);
3758 enum machine_mode mode = GET_MODE (x);
3759 rtx temp;
3760 rtx reversed;
3761 int i;
3763 /* If this is a commutative operation, put a constant last and a complex
3764 expression first. We don't need to do this for comparisons here. */
3765 if (COMMUTATIVE_ARITH_P (x)
3766 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3768 temp = XEXP (x, 0);
3769 SUBST (XEXP (x, 0), XEXP (x, 1));
3770 SUBST (XEXP (x, 1), temp);
3773 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3774 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3775 things. Check for cases where both arms are testing the same
3776 condition.
3778 Don't do anything if all operands are very simple. */
3780 if ((BINARY_P (x)
3781 && ((!OBJECT_P (XEXP (x, 0))
3782 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3783 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3784 || (!OBJECT_P (XEXP (x, 1))
3785 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3786 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3787 || (UNARY_P (x)
3788 && (!OBJECT_P (XEXP (x, 0))
3789 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3790 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3792 rtx cond, true_rtx, false_rtx;
3794 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3795 if (cond != 0
3796 /* If everything is a comparison, what we have is highly unlikely
3797 to be simpler, so don't use it. */
3798 && ! (COMPARISON_P (x)
3799 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3801 rtx cop1 = const0_rtx;
3802 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3804 if (cond_code == NE && COMPARISON_P (cond))
3805 return x;
3807 /* Simplify the alternative arms; this may collapse the true and
3808 false arms to store-flag values. Be careful to use copy_rtx
3809 here since true_rtx or false_rtx might share RTL with x as a
3810 result of the if_then_else_cond call above. */
3811 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3812 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3814 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3815 is unlikely to be simpler. */
3816 if (general_operand (true_rtx, VOIDmode)
3817 && general_operand (false_rtx, VOIDmode))
3819 enum rtx_code reversed;
3821 /* Restarting if we generate a store-flag expression will cause
3822 us to loop. Just drop through in this case. */
3824 /* If the result values are STORE_FLAG_VALUE and zero, we can
3825 just make the comparison operation. */
3826 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3827 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3828 cond, cop1);
3829 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3830 && ((reversed = reversed_comparison_code_parts
3831 (cond_code, cond, cop1, NULL))
3832 != UNKNOWN))
3833 x = simplify_gen_relational (reversed, mode, VOIDmode,
3834 cond, cop1);
3836 /* Likewise, we can make the negate of a comparison operation
3837 if the result values are - STORE_FLAG_VALUE and zero. */
3838 else if (GET_CODE (true_rtx) == CONST_INT
3839 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3840 && false_rtx == const0_rtx)
3841 x = simplify_gen_unary (NEG, mode,
3842 simplify_gen_relational (cond_code,
3843 mode, VOIDmode,
3844 cond, cop1),
3845 mode);
3846 else if (GET_CODE (false_rtx) == CONST_INT
3847 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3848 && true_rtx == const0_rtx
3849 && ((reversed = reversed_comparison_code_parts
3850 (cond_code, cond, cop1, NULL))
3851 != UNKNOWN))
3852 x = simplify_gen_unary (NEG, mode,
3853 simplify_gen_relational (reversed,
3854 mode, VOIDmode,
3855 cond, cop1),
3856 mode);
3857 else
3858 return gen_rtx_IF_THEN_ELSE (mode,
3859 simplify_gen_relational (cond_code,
3860 mode,
3861 VOIDmode,
3862 cond,
3863 cop1),
3864 true_rtx, false_rtx);
3866 code = GET_CODE (x);
3867 op0_mode = VOIDmode;
3872 /* Try to fold this expression in case we have constants that weren't
3873 present before. */
3874 temp = 0;
3875 switch (GET_RTX_CLASS (code))
3877 case RTX_UNARY:
3878 if (op0_mode == VOIDmode)
3879 op0_mode = GET_MODE (XEXP (x, 0));
3880 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3881 break;
3882 case RTX_COMPARE:
3883 case RTX_COMM_COMPARE:
3885 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3886 if (cmp_mode == VOIDmode)
3888 cmp_mode = GET_MODE (XEXP (x, 1));
3889 if (cmp_mode == VOIDmode)
3890 cmp_mode = op0_mode;
3892 temp = simplify_relational_operation (code, mode, cmp_mode,
3893 XEXP (x, 0), XEXP (x, 1));
3895 break;
3896 case RTX_COMM_ARITH:
3897 case RTX_BIN_ARITH:
3898 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3899 break;
3900 case RTX_BITFIELD_OPS:
3901 case RTX_TERNARY:
3902 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3903 XEXP (x, 1), XEXP (x, 2));
3904 break;
3905 default:
3906 break;
3909 if (temp)
3911 x = temp;
3912 code = GET_CODE (temp);
3913 op0_mode = VOIDmode;
3914 mode = GET_MODE (temp);
3917 /* First see if we can apply the inverse distributive law. */
3918 if (code == PLUS || code == MINUS
3919 || code == AND || code == IOR || code == XOR)
3921 x = apply_distributive_law (x);
3922 code = GET_CODE (x);
3923 op0_mode = VOIDmode;
3926 /* If CODE is an associative operation not otherwise handled, see if we
3927 can associate some operands. This can win if they are constants or
3928 if they are logically related (i.e. (a & b) & a). */
3929 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3930 || code == AND || code == IOR || code == XOR
3931 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3932 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3933 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3935 if (GET_CODE (XEXP (x, 0)) == code)
3937 rtx other = XEXP (XEXP (x, 0), 0);
3938 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3939 rtx inner_op1 = XEXP (x, 1);
3940 rtx inner;
3942 /* Make sure we pass the constant operand if any as the second
3943 one if this is a commutative operation. */
3944 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3946 rtx tem = inner_op0;
3947 inner_op0 = inner_op1;
3948 inner_op1 = tem;
3950 inner = simplify_binary_operation (code == MINUS ? PLUS
3951 : code == DIV ? MULT
3952 : code,
3953 mode, inner_op0, inner_op1);
3955 /* For commutative operations, try the other pair if that one
3956 didn't simplify. */
3957 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3959 other = XEXP (XEXP (x, 0), 1);
3960 inner = simplify_binary_operation (code, mode,
3961 XEXP (XEXP (x, 0), 0),
3962 XEXP (x, 1));
3965 if (inner)
3966 return simplify_gen_binary (code, mode, other, inner);
3970 /* A little bit of algebraic simplification here. */
3971 switch (code)
3973 case MEM:
3974 /* Ensure that our address has any ASHIFTs converted to MULT in case
3975 address-recognizing predicates are called later. */
3976 temp = make_compound_operation (XEXP (x, 0), MEM);
3977 SUBST (XEXP (x, 0), temp);
3978 break;
3980 case SUBREG:
3981 if (op0_mode == VOIDmode)
3982 op0_mode = GET_MODE (SUBREG_REG (x));
3984 /* See if this can be moved to simplify_subreg. */
3985 if (CONSTANT_P (SUBREG_REG (x))
3986 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3987 /* Don't call gen_lowpart if the inner mode
3988 is VOIDmode and we cannot simplify it, as SUBREG without
3989 inner mode is invalid. */
3990 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3991 || gen_lowpart_common (mode, SUBREG_REG (x))))
3992 return gen_lowpart (mode, SUBREG_REG (x));
3994 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3995 break;
3997 rtx temp;
3998 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3999 SUBREG_BYTE (x));
4000 if (temp)
4001 return temp;
4004 /* Don't change the mode of the MEM if that would change the meaning
4005 of the address. */
4006 if (MEM_P (SUBREG_REG (x))
4007 && (MEM_VOLATILE_P (SUBREG_REG (x))
4008 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4009 return gen_rtx_CLOBBER (mode, const0_rtx);
4011 /* Note that we cannot do any narrowing for non-constants since
4012 we might have been counting on using the fact that some bits were
4013 zero. We now do this in the SET. */
4015 break;
4017 case NOT:
4018 if (GET_CODE (XEXP (x, 0)) == SUBREG
4019 && subreg_lowpart_p (XEXP (x, 0))
4020 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4021 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4022 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4023 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4025 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4027 x = gen_rtx_ROTATE (inner_mode,
4028 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4029 inner_mode),
4030 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4031 return gen_lowpart (mode, x);
4034 /* Apply De Morgan's laws to reduce number of patterns for machines
4035 with negating logical insns (and-not, nand, etc.). If result has
4036 only one NOT, put it first, since that is how the patterns are
4037 coded. */
4039 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4041 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4042 enum machine_mode op_mode;
4044 op_mode = GET_MODE (in1);
4045 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4047 op_mode = GET_MODE (in2);
4048 if (op_mode == VOIDmode)
4049 op_mode = mode;
4050 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4052 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4054 rtx tem = in2;
4055 in2 = in1; in1 = tem;
4058 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4059 mode, in1, in2);
4061 break;
4063 case NEG:
4064 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4065 if (GET_CODE (XEXP (x, 0)) == XOR
4066 && XEXP (XEXP (x, 0), 1) == const1_rtx
4067 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4068 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4069 constm1_rtx);
4071 temp = expand_compound_operation (XEXP (x, 0));
4073 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4074 replaced by (lshiftrt X C). This will convert
4075 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4077 if (GET_CODE (temp) == ASHIFTRT
4078 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4079 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4080 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4081 INTVAL (XEXP (temp, 1)));
4083 /* If X has only a single bit that might be nonzero, say, bit I, convert
4084 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4085 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4086 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4087 or a SUBREG of one since we'd be making the expression more
4088 complex if it was just a register. */
4090 if (!REG_P (temp)
4091 && ! (GET_CODE (temp) == SUBREG
4092 && REG_P (SUBREG_REG (temp)))
4093 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4095 rtx temp1 = simplify_shift_const
4096 (NULL_RTX, ASHIFTRT, mode,
4097 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4098 GET_MODE_BITSIZE (mode) - 1 - i),
4099 GET_MODE_BITSIZE (mode) - 1 - i);
4101 /* If all we did was surround TEMP with the two shifts, we
4102 haven't improved anything, so don't use it. Otherwise,
4103 we are better off with TEMP1. */
4104 if (GET_CODE (temp1) != ASHIFTRT
4105 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4106 || XEXP (XEXP (temp1, 0), 0) != temp)
4107 return temp1;
4109 break;
4111 case TRUNCATE:
4112 /* We can't handle truncation to a partial integer mode here
4113 because we don't know the real bitsize of the partial
4114 integer mode. */
4115 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4116 break;
4118 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4119 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4120 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4121 SUBST (XEXP (x, 0),
4122 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4123 GET_MODE_MASK (mode), NULL_RTX, 0));
4125 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4126 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4127 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4128 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4129 return XEXP (XEXP (x, 0), 0);
4131 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4132 (OP:SI foo:SI) if OP is NEG or ABS. */
4133 if ((GET_CODE (XEXP (x, 0)) == ABS
4134 || GET_CODE (XEXP (x, 0)) == NEG)
4135 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4136 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4137 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4138 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4139 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4141 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4142 (truncate:SI x). */
4143 if (GET_CODE (XEXP (x, 0)) == SUBREG
4144 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4145 && subreg_lowpart_p (XEXP (x, 0)))
4146 return SUBREG_REG (XEXP (x, 0));
4148 /* If we know that the value is already truncated, we can
4149 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4150 is nonzero for the corresponding modes. But don't do this
4151 for an (LSHIFTRT (MULT ...)) since this will cause problems
4152 with the umulXi3_highpart patterns. */
4153 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4154 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4155 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4156 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4157 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4158 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4159 return gen_lowpart (mode, XEXP (x, 0));
4161 /* A truncate of a comparison can be replaced with a subreg if
4162 STORE_FLAG_VALUE permits. This is like the previous test,
4163 but it works even if the comparison is done in a mode larger
4164 than HOST_BITS_PER_WIDE_INT. */
4165 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4166 && COMPARISON_P (XEXP (x, 0))
4167 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4168 return gen_lowpart (mode, XEXP (x, 0));
4170 /* Similarly, a truncate of a register whose value is a
4171 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4172 permits. */
4173 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4174 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4175 && (temp = get_last_value (XEXP (x, 0)))
4176 && COMPARISON_P (temp))
4177 return gen_lowpart (mode, XEXP (x, 0));
4179 break;
4181 case FLOAT_TRUNCATE:
4182 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4183 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4184 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4185 return XEXP (XEXP (x, 0), 0);
4187 /* (float_truncate:SF (float_truncate:DF foo:XF))
4188 = (float_truncate:SF foo:XF).
4189 This may eliminate double rounding, so it is unsafe.
4191 (float_truncate:SF (float_extend:XF foo:DF))
4192 = (float_truncate:SF foo:DF).
4194 (float_truncate:DF (float_extend:XF foo:SF))
4195 = (float_extend:SF foo:DF). */
4196 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4197 && flag_unsafe_math_optimizations)
4198 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4199 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4200 0)))
4201 > GET_MODE_SIZE (mode)
4202 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4203 mode,
4204 XEXP (XEXP (x, 0), 0), mode);
4206 /* (float_truncate (float x)) is (float x) */
4207 if (GET_CODE (XEXP (x, 0)) == FLOAT
4208 && (flag_unsafe_math_optimizations
4209 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4210 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4211 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4212 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4213 return simplify_gen_unary (FLOAT, mode,
4214 XEXP (XEXP (x, 0), 0),
4215 GET_MODE (XEXP (XEXP (x, 0), 0)));
4217 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4218 (OP:SF foo:SF) if OP is NEG or ABS. */
4219 if ((GET_CODE (XEXP (x, 0)) == ABS
4220 || GET_CODE (XEXP (x, 0)) == NEG)
4221 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4222 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4223 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4224 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4226 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4227 is (float_truncate:SF x). */
4228 if (GET_CODE (XEXP (x, 0)) == SUBREG
4229 && subreg_lowpart_p (XEXP (x, 0))
4230 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4231 return SUBREG_REG (XEXP (x, 0));
4232 break;
4233 case FLOAT_EXTEND:
4234 /* (float_extend (float_extend x)) is (float_extend x)
4236 (float_extend (float x)) is (float x) assuming that double
4237 rounding can't happen.
4239 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4240 || (GET_CODE (XEXP (x, 0)) == FLOAT
4241 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4242 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4243 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4244 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4245 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4246 XEXP (XEXP (x, 0), 0),
4247 GET_MODE (XEXP (XEXP (x, 0), 0)));
4249 break;
4250 #ifdef HAVE_cc0
4251 case COMPARE:
4252 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4253 using cc0, in which case we want to leave it as a COMPARE
4254 so we can distinguish it from a register-register-copy. */
4255 if (XEXP (x, 1) == const0_rtx)
4256 return XEXP (x, 0);
4258 /* x - 0 is the same as x unless x's mode has signed zeros and
4259 allows rounding towards -infinity. Under those conditions,
4260 0 - 0 is -0. */
4261 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4262 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4263 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4264 return XEXP (x, 0);
4265 break;
4266 #endif
4268 case CONST:
4269 /* (const (const X)) can become (const X). Do it this way rather than
4270 returning the inner CONST since CONST can be shared with a
4271 REG_EQUAL note. */
4272 if (GET_CODE (XEXP (x, 0)) == CONST)
4273 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4274 break;
4276 #ifdef HAVE_lo_sum
4277 case LO_SUM:
4278 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4279 can add in an offset. find_split_point will split this address up
4280 again if it doesn't match. */
4281 if (GET_CODE (XEXP (x, 0)) == HIGH
4282 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4283 return XEXP (x, 1);
4284 break;
4285 #endif
4287 case PLUS:
4288 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4290 if (GET_CODE (XEXP (x, 0)) == MULT
4291 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4293 rtx in1, in2;
4295 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4296 in2 = XEXP (XEXP (x, 0), 1);
4297 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4298 simplify_gen_binary (MULT, mode,
4299 in1, in2));
4302 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4303 outermost. That's because that's the way indexed addresses are
4304 supposed to appear. This code used to check many more cases, but
4305 they are now checked elsewhere. */
4306 if (GET_CODE (XEXP (x, 0)) == PLUS
4307 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4308 return simplify_gen_binary (PLUS, mode,
4309 simplify_gen_binary (PLUS, mode,
4310 XEXP (XEXP (x, 0), 0),
4311 XEXP (x, 1)),
4312 XEXP (XEXP (x, 0), 1));
4314 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4315 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4316 bit-field and can be replaced by either a sign_extend or a
4317 sign_extract. The `and' may be a zero_extend and the two
4318 <c>, -<c> constants may be reversed. */
4319 if (GET_CODE (XEXP (x, 0)) == XOR
4320 && GET_CODE (XEXP (x, 1)) == CONST_INT
4321 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4322 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4323 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4324 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4325 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4326 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4327 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4328 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4329 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4330 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4331 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4332 == (unsigned int) i + 1))))
4333 return simplify_shift_const
4334 (NULL_RTX, ASHIFTRT, mode,
4335 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4336 XEXP (XEXP (XEXP (x, 0), 0), 0),
4337 GET_MODE_BITSIZE (mode) - (i + 1)),
4338 GET_MODE_BITSIZE (mode) - (i + 1));
4340 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4341 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4342 is 1. This produces better code than the alternative immediately
4343 below. */
4344 if (COMPARISON_P (XEXP (x, 0))
4345 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4346 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4347 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4348 return
4349 simplify_gen_unary (NEG, mode, reversed, mode);
4351 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4352 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4353 the bitsize of the mode - 1. This allows simplification of
4354 "a = (b & 8) == 0;" */
4355 if (XEXP (x, 1) == constm1_rtx
4356 && !REG_P (XEXP (x, 0))
4357 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4358 && REG_P (SUBREG_REG (XEXP (x, 0))))
4359 && nonzero_bits (XEXP (x, 0), mode) == 1)
4360 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4361 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4362 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4363 GET_MODE_BITSIZE (mode) - 1),
4364 GET_MODE_BITSIZE (mode) - 1);
4366 /* If we are adding two things that have no bits in common, convert
4367 the addition into an IOR. This will often be further simplified,
4368 for example in cases like ((a & 1) + (a & 2)), which can
4369 become a & 3. */
4371 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4372 && (nonzero_bits (XEXP (x, 0), mode)
4373 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4375 /* Try to simplify the expression further. */
4376 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4377 temp = combine_simplify_rtx (tor, mode, in_dest);
4379 /* If we could, great. If not, do not go ahead with the IOR
4380 replacement, since PLUS appears in many special purpose
4381 address arithmetic instructions. */
4382 if (GET_CODE (temp) != CLOBBER && temp != tor)
4383 return temp;
4385 break;
4387 case MINUS:
4388 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4389 by reversing the comparison code if valid. */
4390 if (STORE_FLAG_VALUE == 1
4391 && XEXP (x, 0) == const1_rtx
4392 && COMPARISON_P (XEXP (x, 1))
4393 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4394 return reversed;
4396 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4397 (and <foo> (const_int pow2-1)) */
4398 if (GET_CODE (XEXP (x, 1)) == AND
4399 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4400 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4401 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4402 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4403 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4405 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4407 if (GET_CODE (XEXP (x, 1)) == MULT
4408 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4410 rtx in1, in2;
4412 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4413 in2 = XEXP (XEXP (x, 1), 1);
4414 return simplify_gen_binary (PLUS, mode,
4415 simplify_gen_binary (MULT, mode,
4416 in1, in2),
4417 XEXP (x, 0));
4420 /* Canonicalize (minus (neg A) (mult B C)) to
4421 (minus (mult (neg B) C) A). */
4422 if (GET_CODE (XEXP (x, 1)) == MULT
4423 && GET_CODE (XEXP (x, 0)) == NEG)
4425 rtx in1, in2;
4427 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4428 in2 = XEXP (XEXP (x, 1), 1);
4429 return simplify_gen_binary (MINUS, mode,
4430 simplify_gen_binary (MULT, mode,
4431 in1, in2),
4432 XEXP (XEXP (x, 0), 0));
4435 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4436 integers. */
4437 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4438 return simplify_gen_binary (MINUS, mode,
4439 simplify_gen_binary (MINUS, mode,
4440 XEXP (x, 0),
4441 XEXP (XEXP (x, 1), 0)),
4442 XEXP (XEXP (x, 1), 1));
4443 break;
4445 case MULT:
4446 /* If we have (mult (plus A B) C), apply the distributive law and then
4447 the inverse distributive law to see if things simplify. This
4448 occurs mostly in addresses, often when unrolling loops. */
4450 if (GET_CODE (XEXP (x, 0)) == PLUS)
4452 rtx result = distribute_and_simplify_rtx (x, 0);
4453 if (result)
4454 return result;
4457 /* Try simplify a*(b/c) as (a*b)/c. */
4458 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4459 && GET_CODE (XEXP (x, 0)) == DIV)
4461 rtx tem = simplify_binary_operation (MULT, mode,
4462 XEXP (XEXP (x, 0), 0),
4463 XEXP (x, 1));
4464 if (tem)
4465 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4467 break;
4469 case UDIV:
4470 /* If this is a divide by a power of two, treat it as a shift if
4471 its first operand is a shift. */
4472 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4473 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4474 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4475 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4476 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4477 || GET_CODE (XEXP (x, 0)) == ROTATE
4478 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4479 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4480 break;
4482 case EQ: case NE:
4483 case GT: case GTU: case GE: case GEU:
4484 case LT: case LTU: case LE: case LEU:
4485 case UNEQ: case LTGT:
4486 case UNGT: case UNGE:
4487 case UNLT: case UNLE:
4488 case UNORDERED: case ORDERED:
4489 /* If the first operand is a condition code, we can't do anything
4490 with it. */
4491 if (GET_CODE (XEXP (x, 0)) == COMPARE
4492 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4493 && ! CC0_P (XEXP (x, 0))))
4495 rtx op0 = XEXP (x, 0);
4496 rtx op1 = XEXP (x, 1);
4497 enum rtx_code new_code;
4499 if (GET_CODE (op0) == COMPARE)
4500 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4502 /* Simplify our comparison, if possible. */
4503 new_code = simplify_comparison (code, &op0, &op1);
4505 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4506 if only the low-order bit is possibly nonzero in X (such as when
4507 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4508 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4509 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4510 (plus X 1).
4512 Remove any ZERO_EXTRACT we made when thinking this was a
4513 comparison. It may now be simpler to use, e.g., an AND. If a
4514 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4515 the call to make_compound_operation in the SET case. */
4517 if (STORE_FLAG_VALUE == 1
4518 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4519 && op1 == const0_rtx
4520 && mode == GET_MODE (op0)
4521 && nonzero_bits (op0, mode) == 1)
4522 return gen_lowpart (mode,
4523 expand_compound_operation (op0));
4525 else if (STORE_FLAG_VALUE == 1
4526 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4527 && op1 == const0_rtx
4528 && mode == GET_MODE (op0)
4529 && (num_sign_bit_copies (op0, mode)
4530 == GET_MODE_BITSIZE (mode)))
4532 op0 = expand_compound_operation (op0);
4533 return simplify_gen_unary (NEG, mode,
4534 gen_lowpart (mode, op0),
4535 mode);
4538 else if (STORE_FLAG_VALUE == 1
4539 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4540 && op1 == const0_rtx
4541 && mode == GET_MODE (op0)
4542 && nonzero_bits (op0, mode) == 1)
4544 op0 = expand_compound_operation (op0);
4545 return simplify_gen_binary (XOR, mode,
4546 gen_lowpart (mode, op0),
4547 const1_rtx);
4550 else if (STORE_FLAG_VALUE == 1
4551 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4552 && op1 == const0_rtx
4553 && mode == GET_MODE (op0)
4554 && (num_sign_bit_copies (op0, mode)
4555 == GET_MODE_BITSIZE (mode)))
4557 op0 = expand_compound_operation (op0);
4558 return plus_constant (gen_lowpart (mode, op0), 1);
4561 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4562 those above. */
4563 if (STORE_FLAG_VALUE == -1
4564 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4565 && op1 == const0_rtx
4566 && (num_sign_bit_copies (op0, mode)
4567 == GET_MODE_BITSIZE (mode)))
4568 return gen_lowpart (mode,
4569 expand_compound_operation (op0));
4571 else if (STORE_FLAG_VALUE == -1
4572 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4573 && op1 == const0_rtx
4574 && mode == GET_MODE (op0)
4575 && nonzero_bits (op0, mode) == 1)
4577 op0 = expand_compound_operation (op0);
4578 return simplify_gen_unary (NEG, mode,
4579 gen_lowpart (mode, op0),
4580 mode);
4583 else if (STORE_FLAG_VALUE == -1
4584 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4585 && op1 == const0_rtx
4586 && mode == GET_MODE (op0)
4587 && (num_sign_bit_copies (op0, mode)
4588 == GET_MODE_BITSIZE (mode)))
4590 op0 = expand_compound_operation (op0);
4591 return simplify_gen_unary (NOT, mode,
4592 gen_lowpart (mode, op0),
4593 mode);
4596 /* If X is 0/1, (eq X 0) is X-1. */
4597 else if (STORE_FLAG_VALUE == -1
4598 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4599 && op1 == const0_rtx
4600 && mode == GET_MODE (op0)
4601 && nonzero_bits (op0, mode) == 1)
4603 op0 = expand_compound_operation (op0);
4604 return plus_constant (gen_lowpart (mode, op0), -1);
4607 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4608 one bit that might be nonzero, we can convert (ne x 0) to
4609 (ashift x c) where C puts the bit in the sign bit. Remove any
4610 AND with STORE_FLAG_VALUE when we are done, since we are only
4611 going to test the sign bit. */
4612 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4613 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4614 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4615 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4616 && op1 == const0_rtx
4617 && mode == GET_MODE (op0)
4618 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4620 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4621 expand_compound_operation (op0),
4622 GET_MODE_BITSIZE (mode) - 1 - i);
4623 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4624 return XEXP (x, 0);
4625 else
4626 return x;
4629 /* If the code changed, return a whole new comparison. */
4630 if (new_code != code)
4631 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4633 /* Otherwise, keep this operation, but maybe change its operands.
4634 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4635 SUBST (XEXP (x, 0), op0);
4636 SUBST (XEXP (x, 1), op1);
4638 break;
4640 case IF_THEN_ELSE:
4641 return simplify_if_then_else (x);
4643 case ZERO_EXTRACT:
4644 case SIGN_EXTRACT:
4645 case ZERO_EXTEND:
4646 case SIGN_EXTEND:
4647 /* If we are processing SET_DEST, we are done. */
4648 if (in_dest)
4649 return x;
4651 return expand_compound_operation (x);
4653 case SET:
4654 return simplify_set (x);
4656 case AND:
4657 case IOR:
4658 case XOR:
4659 return simplify_logical (x);
4661 case ABS:
4662 /* (abs (neg <foo>)) -> (abs <foo>) */
4663 if (GET_CODE (XEXP (x, 0)) == NEG)
4664 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4666 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4667 do nothing. */
4668 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4669 break;
4671 /* If operand is something known to be positive, ignore the ABS. */
4672 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4673 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4674 <= HOST_BITS_PER_WIDE_INT)
4675 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4676 & ((HOST_WIDE_INT) 1
4677 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4678 == 0)))
4679 return XEXP (x, 0);
4681 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4682 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4683 return gen_rtx_NEG (mode, XEXP (x, 0));
4685 break;
4687 case FFS:
4688 /* (ffs (*_extend <X>)) = (ffs <X>) */
4689 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4690 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4691 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4692 break;
4694 case POPCOUNT:
4695 case PARITY:
4696 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4697 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4698 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4699 break;
4701 case FLOAT:
4702 /* (float (sign_extend <X>)) = (float <X>). */
4703 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4704 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4705 break;
4707 case ASHIFT:
4708 case LSHIFTRT:
4709 case ASHIFTRT:
4710 case ROTATE:
4711 case ROTATERT:
4712 /* If this is a shift by a constant amount, simplify it. */
4713 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4714 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4715 INTVAL (XEXP (x, 1)));
4717 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4718 SUBST (XEXP (x, 1),
4719 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4720 ((HOST_WIDE_INT) 1
4721 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4722 - 1,
4723 NULL_RTX, 0));
4724 break;
4726 case VEC_SELECT:
4728 rtx op0 = XEXP (x, 0);
4729 rtx op1 = XEXP (x, 1);
4730 int len;
4732 gcc_assert (GET_CODE (op1) == PARALLEL);
4733 len = XVECLEN (op1, 0);
4734 if (len == 1
4735 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4736 && GET_CODE (op0) == VEC_CONCAT)
4738 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4740 /* Try to find the element in the VEC_CONCAT. */
4741 for (;;)
4743 if (GET_MODE (op0) == GET_MODE (x))
4744 return op0;
4745 if (GET_CODE (op0) == VEC_CONCAT)
4747 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4748 if (offset < op0_size)
4749 op0 = XEXP (op0, 0);
4750 else
4752 offset -= op0_size;
4753 op0 = XEXP (op0, 1);
4756 else
4757 break;
4762 break;
4764 default:
4765 break;
4768 return x;
4771 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4773 static rtx
4774 simplify_if_then_else (rtx x)
4776 enum machine_mode mode = GET_MODE (x);
4777 rtx cond = XEXP (x, 0);
4778 rtx true_rtx = XEXP (x, 1);
4779 rtx false_rtx = XEXP (x, 2);
4780 enum rtx_code true_code = GET_CODE (cond);
4781 int comparison_p = COMPARISON_P (cond);
4782 rtx temp;
4783 int i;
4784 enum rtx_code false_code;
4785 rtx reversed;
4787 /* Simplify storing of the truth value. */
4788 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4789 return simplify_gen_relational (true_code, mode, VOIDmode,
4790 XEXP (cond, 0), XEXP (cond, 1));
4792 /* Also when the truth value has to be reversed. */
4793 if (comparison_p
4794 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4795 && (reversed = reversed_comparison (cond, mode)))
4796 return reversed;
4798 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4799 in it is being compared against certain values. Get the true and false
4800 comparisons and see if that says anything about the value of each arm. */
4802 if (comparison_p
4803 && ((false_code = reversed_comparison_code (cond, NULL))
4804 != UNKNOWN)
4805 && REG_P (XEXP (cond, 0)))
4807 HOST_WIDE_INT nzb;
4808 rtx from = XEXP (cond, 0);
4809 rtx true_val = XEXP (cond, 1);
4810 rtx false_val = true_val;
4811 int swapped = 0;
4813 /* If FALSE_CODE is EQ, swap the codes and arms. */
4815 if (false_code == EQ)
4817 swapped = 1, true_code = EQ, false_code = NE;
4818 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4821 /* If we are comparing against zero and the expression being tested has
4822 only a single bit that might be nonzero, that is its value when it is
4823 not equal to zero. Similarly if it is known to be -1 or 0. */
4825 if (true_code == EQ && true_val == const0_rtx
4826 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4827 false_code = EQ, false_val = GEN_INT (nzb);
4828 else if (true_code == EQ && true_val == const0_rtx
4829 && (num_sign_bit_copies (from, GET_MODE (from))
4830 == GET_MODE_BITSIZE (GET_MODE (from))))
4831 false_code = EQ, false_val = constm1_rtx;
4833 /* Now simplify an arm if we know the value of the register in the
4834 branch and it is used in the arm. Be careful due to the potential
4835 of locally-shared RTL. */
4837 if (reg_mentioned_p (from, true_rtx))
4838 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4839 from, true_val),
4840 pc_rtx, pc_rtx, 0, 0);
4841 if (reg_mentioned_p (from, false_rtx))
4842 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4843 from, false_val),
4844 pc_rtx, pc_rtx, 0, 0);
4846 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4847 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4849 true_rtx = XEXP (x, 1);
4850 false_rtx = XEXP (x, 2);
4851 true_code = GET_CODE (cond);
4854 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4855 reversed, do so to avoid needing two sets of patterns for
4856 subtract-and-branch insns. Similarly if we have a constant in the true
4857 arm, the false arm is the same as the first operand of the comparison, or
4858 the false arm is more complicated than the true arm. */
4860 if (comparison_p
4861 && reversed_comparison_code (cond, NULL) != UNKNOWN
4862 && (true_rtx == pc_rtx
4863 || (CONSTANT_P (true_rtx)
4864 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4865 || true_rtx == const0_rtx
4866 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4867 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4868 && !OBJECT_P (false_rtx))
4869 || reg_mentioned_p (true_rtx, false_rtx)
4870 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4872 true_code = reversed_comparison_code (cond, NULL);
4873 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
4874 SUBST (XEXP (x, 1), false_rtx);
4875 SUBST (XEXP (x, 2), true_rtx);
4877 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4878 cond = XEXP (x, 0);
4880 /* It is possible that the conditional has been simplified out. */
4881 true_code = GET_CODE (cond);
4882 comparison_p = COMPARISON_P (cond);
4885 /* If the two arms are identical, we don't need the comparison. */
4887 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4888 return true_rtx;
4890 /* Convert a == b ? b : a to "a". */
4891 if (true_code == EQ && ! side_effects_p (cond)
4892 && !HONOR_NANS (mode)
4893 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4894 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4895 return false_rtx;
4896 else if (true_code == NE && ! side_effects_p (cond)
4897 && !HONOR_NANS (mode)
4898 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4899 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4900 return true_rtx;
4902 /* Look for cases where we have (abs x) or (neg (abs X)). */
4904 if (GET_MODE_CLASS (mode) == MODE_INT
4905 && GET_CODE (false_rtx) == NEG
4906 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4907 && comparison_p
4908 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4909 && ! side_effects_p (true_rtx))
4910 switch (true_code)
4912 case GT:
4913 case GE:
4914 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4915 case LT:
4916 case LE:
4917 return
4918 simplify_gen_unary (NEG, mode,
4919 simplify_gen_unary (ABS, mode, true_rtx, mode),
4920 mode);
4921 default:
4922 break;
4925 /* Look for MIN or MAX. */
4927 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4928 && comparison_p
4929 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4930 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4931 && ! side_effects_p (cond))
4932 switch (true_code)
4934 case GE:
4935 case GT:
4936 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
4937 case LE:
4938 case LT:
4939 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
4940 case GEU:
4941 case GTU:
4942 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
4943 case LEU:
4944 case LTU:
4945 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
4946 default:
4947 break;
4950 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4951 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4952 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4953 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4954 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4955 neither 1 or -1, but it isn't worth checking for. */
4957 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4958 && comparison_p
4959 && GET_MODE_CLASS (mode) == MODE_INT
4960 && ! side_effects_p (x))
4962 rtx t = make_compound_operation (true_rtx, SET);
4963 rtx f = make_compound_operation (false_rtx, SET);
4964 rtx cond_op0 = XEXP (cond, 0);
4965 rtx cond_op1 = XEXP (cond, 1);
4966 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4967 enum machine_mode m = mode;
4968 rtx z = 0, c1 = NULL_RTX;
4970 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4971 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4972 || GET_CODE (t) == ASHIFT
4973 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4974 && rtx_equal_p (XEXP (t, 0), f))
4975 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4977 /* If an identity-zero op is commutative, check whether there
4978 would be a match if we swapped the operands. */
4979 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4980 || GET_CODE (t) == XOR)
4981 && rtx_equal_p (XEXP (t, 1), f))
4982 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4983 else if (GET_CODE (t) == SIGN_EXTEND
4984 && (GET_CODE (XEXP (t, 0)) == PLUS
4985 || GET_CODE (XEXP (t, 0)) == MINUS
4986 || GET_CODE (XEXP (t, 0)) == IOR
4987 || GET_CODE (XEXP (t, 0)) == XOR
4988 || GET_CODE (XEXP (t, 0)) == ASHIFT
4989 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4990 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4991 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4992 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4993 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4994 && (num_sign_bit_copies (f, GET_MODE (f))
4995 > (unsigned int)
4996 (GET_MODE_BITSIZE (mode)
4997 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4999 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5000 extend_op = SIGN_EXTEND;
5001 m = GET_MODE (XEXP (t, 0));
5003 else if (GET_CODE (t) == SIGN_EXTEND
5004 && (GET_CODE (XEXP (t, 0)) == PLUS
5005 || GET_CODE (XEXP (t, 0)) == IOR
5006 || GET_CODE (XEXP (t, 0)) == XOR)
5007 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5008 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5009 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5010 && (num_sign_bit_copies (f, GET_MODE (f))
5011 > (unsigned int)
5012 (GET_MODE_BITSIZE (mode)
5013 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5015 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5016 extend_op = SIGN_EXTEND;
5017 m = GET_MODE (XEXP (t, 0));
5019 else if (GET_CODE (t) == ZERO_EXTEND
5020 && (GET_CODE (XEXP (t, 0)) == PLUS
5021 || GET_CODE (XEXP (t, 0)) == MINUS
5022 || GET_CODE (XEXP (t, 0)) == IOR
5023 || GET_CODE (XEXP (t, 0)) == XOR
5024 || GET_CODE (XEXP (t, 0)) == ASHIFT
5025 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5026 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5027 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5028 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5029 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5030 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5031 && ((nonzero_bits (f, GET_MODE (f))
5032 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5033 == 0))
5035 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5036 extend_op = ZERO_EXTEND;
5037 m = GET_MODE (XEXP (t, 0));
5039 else if (GET_CODE (t) == ZERO_EXTEND
5040 && (GET_CODE (XEXP (t, 0)) == PLUS
5041 || GET_CODE (XEXP (t, 0)) == IOR
5042 || GET_CODE (XEXP (t, 0)) == XOR)
5043 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5044 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5045 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5046 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5047 && ((nonzero_bits (f, GET_MODE (f))
5048 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5049 == 0))
5051 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5052 extend_op = ZERO_EXTEND;
5053 m = GET_MODE (XEXP (t, 0));
5056 if (z)
5058 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5059 cond_op0, cond_op1),
5060 pc_rtx, pc_rtx, 0, 0);
5061 temp = simplify_gen_binary (MULT, m, temp,
5062 simplify_gen_binary (MULT, m, c1,
5063 const_true_rtx));
5064 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5065 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5067 if (extend_op != UNKNOWN)
5068 temp = simplify_gen_unary (extend_op, mode, temp, m);
5070 return temp;
5074 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5075 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5076 negation of a single bit, we can convert this operation to a shift. We
5077 can actually do this more generally, but it doesn't seem worth it. */
5079 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5080 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5081 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5082 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5083 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5084 == GET_MODE_BITSIZE (mode))
5085 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5086 return
5087 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5088 gen_lowpart (mode, XEXP (cond, 0)), i);
5090 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5091 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5092 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5093 && GET_MODE (XEXP (cond, 0)) == mode
5094 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5095 == nonzero_bits (XEXP (cond, 0), mode)
5096 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5097 return XEXP (cond, 0);
5099 return x;
5102 /* Simplify X, a SET expression. Return the new expression. */
5104 static rtx
5105 simplify_set (rtx x)
5107 rtx src = SET_SRC (x);
5108 rtx dest = SET_DEST (x);
5109 enum machine_mode mode
5110 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5111 rtx other_insn;
5112 rtx *cc_use;
5114 /* (set (pc) (return)) gets written as (return). */
5115 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5116 return src;
5118 /* Now that we know for sure which bits of SRC we are using, see if we can
5119 simplify the expression for the object knowing that we only need the
5120 low-order bits. */
5122 if (GET_MODE_CLASS (mode) == MODE_INT
5123 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5125 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5126 SUBST (SET_SRC (x), src);
5129 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5130 the comparison result and try to simplify it unless we already have used
5131 undobuf.other_insn. */
5132 if ((GET_MODE_CLASS (mode) == MODE_CC
5133 || GET_CODE (src) == COMPARE
5134 || CC0_P (dest))
5135 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5136 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5137 && COMPARISON_P (*cc_use)
5138 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5140 enum rtx_code old_code = GET_CODE (*cc_use);
5141 enum rtx_code new_code;
5142 rtx op0, op1, tmp;
5143 int other_changed = 0;
5144 enum machine_mode compare_mode = GET_MODE (dest);
5146 if (GET_CODE (src) == COMPARE)
5147 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5148 else
5149 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5151 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5152 op0, op1);
5153 if (!tmp)
5154 new_code = old_code;
5155 else if (!CONSTANT_P (tmp))
5157 new_code = GET_CODE (tmp);
5158 op0 = XEXP (tmp, 0);
5159 op1 = XEXP (tmp, 1);
5161 else
5163 rtx pat = PATTERN (other_insn);
5164 undobuf.other_insn = other_insn;
5165 SUBST (*cc_use, tmp);
5167 /* Attempt to simplify CC user. */
5168 if (GET_CODE (pat) == SET)
5170 rtx new = simplify_rtx (SET_SRC (pat));
5171 if (new != NULL_RTX)
5172 SUBST (SET_SRC (pat), new);
5175 /* Convert X into a no-op move. */
5176 SUBST (SET_DEST (x), pc_rtx);
5177 SUBST (SET_SRC (x), pc_rtx);
5178 return x;
5181 /* Simplify our comparison, if possible. */
5182 new_code = simplify_comparison (new_code, &op0, &op1);
5184 #ifdef SELECT_CC_MODE
5185 /* If this machine has CC modes other than CCmode, check to see if we
5186 need to use a different CC mode here. */
5187 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5188 compare_mode = GET_MODE (op0);
5189 else
5190 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5192 #ifndef HAVE_cc0
5193 /* If the mode changed, we have to change SET_DEST, the mode in the
5194 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5195 a hard register, just build new versions with the proper mode. If it
5196 is a pseudo, we lose unless it is only time we set the pseudo, in
5197 which case we can safely change its mode. */
5198 if (compare_mode != GET_MODE (dest))
5200 unsigned int regno = REGNO (dest);
5201 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5203 if (regno < FIRST_PSEUDO_REGISTER
5204 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5206 if (regno >= FIRST_PSEUDO_REGISTER)
5207 SUBST (regno_reg_rtx[regno], new_dest);
5209 SUBST (SET_DEST (x), new_dest);
5210 SUBST (XEXP (*cc_use, 0), new_dest);
5211 other_changed = 1;
5213 dest = new_dest;
5216 #endif /* cc0 */
5217 #endif /* SELECT_CC_MODE */
5219 /* If the code changed, we have to build a new comparison in
5220 undobuf.other_insn. */
5221 if (new_code != old_code)
5223 int other_changed_previously = other_changed;
5224 unsigned HOST_WIDE_INT mask;
5226 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5227 dest, const0_rtx));
5228 other_changed = 1;
5230 /* If the only change we made was to change an EQ into an NE or
5231 vice versa, OP0 has only one bit that might be nonzero, and OP1
5232 is zero, check if changing the user of the condition code will
5233 produce a valid insn. If it won't, we can keep the original code
5234 in that insn by surrounding our operation with an XOR. */
5236 if (((old_code == NE && new_code == EQ)
5237 || (old_code == EQ && new_code == NE))
5238 && ! other_changed_previously && op1 == const0_rtx
5239 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5240 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5242 rtx pat = PATTERN (other_insn), note = 0;
5244 if ((recog_for_combine (&pat, other_insn, &note) < 0
5245 && ! check_asm_operands (pat)))
5247 PUT_CODE (*cc_use, old_code);
5248 other_changed = 0;
5250 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5251 op0, GEN_INT (mask));
5256 if (other_changed)
5257 undobuf.other_insn = other_insn;
5259 #ifdef HAVE_cc0
5260 /* If we are now comparing against zero, change our source if
5261 needed. If we do not use cc0, we always have a COMPARE. */
5262 if (op1 == const0_rtx && dest == cc0_rtx)
5264 SUBST (SET_SRC (x), op0);
5265 src = op0;
5267 else
5268 #endif
5270 /* Otherwise, if we didn't previously have a COMPARE in the
5271 correct mode, we need one. */
5272 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5274 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5275 src = SET_SRC (x);
5277 else
5279 /* Otherwise, update the COMPARE if needed. */
5280 SUBST (XEXP (src, 0), op0);
5281 SUBST (XEXP (src, 1), op1);
5284 else
5286 /* Get SET_SRC in a form where we have placed back any
5287 compound expressions. Then do the checks below. */
5288 src = make_compound_operation (src, SET);
5289 SUBST (SET_SRC (x), src);
5292 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5293 and X being a REG or (subreg (reg)), we may be able to convert this to
5294 (set (subreg:m2 x) (op)).
5296 We can always do this if M1 is narrower than M2 because that means that
5297 we only care about the low bits of the result.
5299 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5300 perform a narrower operation than requested since the high-order bits will
5301 be undefined. On machine where it is defined, this transformation is safe
5302 as long as M1 and M2 have the same number of words. */
5304 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5305 && !OBJECT_P (SUBREG_REG (src))
5306 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5307 / UNITS_PER_WORD)
5308 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5309 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5310 #ifndef WORD_REGISTER_OPERATIONS
5311 && (GET_MODE_SIZE (GET_MODE (src))
5312 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5313 #endif
5314 #ifdef CANNOT_CHANGE_MODE_CLASS
5315 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5316 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5317 GET_MODE (SUBREG_REG (src)),
5318 GET_MODE (src)))
5319 #endif
5320 && (REG_P (dest)
5321 || (GET_CODE (dest) == SUBREG
5322 && REG_P (SUBREG_REG (dest)))))
5324 SUBST (SET_DEST (x),
5325 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5326 dest));
5327 SUBST (SET_SRC (x), SUBREG_REG (src));
5329 src = SET_SRC (x), dest = SET_DEST (x);
5332 #ifdef HAVE_cc0
5333 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5334 in SRC. */
5335 if (dest == cc0_rtx
5336 && GET_CODE (src) == SUBREG
5337 && subreg_lowpart_p (src)
5338 && (GET_MODE_BITSIZE (GET_MODE (src))
5339 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5341 rtx inner = SUBREG_REG (src);
5342 enum machine_mode inner_mode = GET_MODE (inner);
5344 /* Here we make sure that we don't have a sign bit on. */
5345 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5346 && (nonzero_bits (inner, inner_mode)
5347 < ((unsigned HOST_WIDE_INT) 1
5348 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5350 SUBST (SET_SRC (x), inner);
5351 src = SET_SRC (x);
5354 #endif
5356 #ifdef LOAD_EXTEND_OP
5357 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5358 would require a paradoxical subreg. Replace the subreg with a
5359 zero_extend to avoid the reload that would otherwise be required. */
5361 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5362 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5363 && SUBREG_BYTE (src) == 0
5364 && (GET_MODE_SIZE (GET_MODE (src))
5365 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5366 && MEM_P (SUBREG_REG (src)))
5368 SUBST (SET_SRC (x),
5369 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5370 GET_MODE (src), SUBREG_REG (src)));
5372 src = SET_SRC (x);
5374 #endif
5376 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5377 are comparing an item known to be 0 or -1 against 0, use a logical
5378 operation instead. Check for one of the arms being an IOR of the other
5379 arm with some value. We compute three terms to be IOR'ed together. In
5380 practice, at most two will be nonzero. Then we do the IOR's. */
5382 if (GET_CODE (dest) != PC
5383 && GET_CODE (src) == IF_THEN_ELSE
5384 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5385 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5386 && XEXP (XEXP (src, 0), 1) == const0_rtx
5387 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5388 #ifdef HAVE_conditional_move
5389 && ! can_conditionally_move_p (GET_MODE (src))
5390 #endif
5391 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5392 GET_MODE (XEXP (XEXP (src, 0), 0)))
5393 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5394 && ! side_effects_p (src))
5396 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5397 ? XEXP (src, 1) : XEXP (src, 2));
5398 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5399 ? XEXP (src, 2) : XEXP (src, 1));
5400 rtx term1 = const0_rtx, term2, term3;
5402 if (GET_CODE (true_rtx) == IOR
5403 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5404 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5405 else if (GET_CODE (true_rtx) == IOR
5406 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5407 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5408 else if (GET_CODE (false_rtx) == IOR
5409 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5410 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5411 else if (GET_CODE (false_rtx) == IOR
5412 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5413 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5415 term2 = simplify_gen_binary (AND, GET_MODE (src),
5416 XEXP (XEXP (src, 0), 0), true_rtx);
5417 term3 = simplify_gen_binary (AND, GET_MODE (src),
5418 simplify_gen_unary (NOT, GET_MODE (src),
5419 XEXP (XEXP (src, 0), 0),
5420 GET_MODE (src)),
5421 false_rtx);
5423 SUBST (SET_SRC (x),
5424 simplify_gen_binary (IOR, GET_MODE (src),
5425 simplify_gen_binary (IOR, GET_MODE (src),
5426 term1, term2),
5427 term3));
5429 src = SET_SRC (x);
5432 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5433 whole thing fail. */
5434 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5435 return src;
5436 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5437 return dest;
5438 else
5439 /* Convert this into a field assignment operation, if possible. */
5440 return make_field_assignment (x);
5443 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5444 result. */
5446 static rtx
5447 simplify_logical (rtx x)
5449 enum machine_mode mode = GET_MODE (x);
5450 rtx op0 = XEXP (x, 0);
5451 rtx op1 = XEXP (x, 1);
5452 rtx reversed;
5454 switch (GET_CODE (x))
5456 case AND:
5457 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5458 insn (and may simplify more). */
5459 if (GET_CODE (op0) == XOR
5460 && rtx_equal_p (XEXP (op0, 0), op1)
5461 && ! side_effects_p (op1))
5462 x = simplify_gen_binary (AND, mode,
5463 simplify_gen_unary (NOT, mode,
5464 XEXP (op0, 1), mode),
5465 op1);
5467 if (GET_CODE (op0) == XOR
5468 && rtx_equal_p (XEXP (op0, 1), op1)
5469 && ! side_effects_p (op1))
5470 x = simplify_gen_binary (AND, mode,
5471 simplify_gen_unary (NOT, mode,
5472 XEXP (op0, 0), mode),
5473 op1);
5475 /* Similarly for (~(A ^ B)) & A. */
5476 if (GET_CODE (op0) == NOT
5477 && GET_CODE (XEXP (op0, 0)) == XOR
5478 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5479 && ! side_effects_p (op1))
5480 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5482 if (GET_CODE (op0) == NOT
5483 && GET_CODE (XEXP (op0, 0)) == XOR
5484 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5485 && ! side_effects_p (op1))
5486 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5488 /* We can call simplify_and_const_int only if we don't lose
5489 any (sign) bits when converting INTVAL (op1) to
5490 "unsigned HOST_WIDE_INT". */
5491 if (GET_CODE (op1) == CONST_INT
5492 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5493 || INTVAL (op1) > 0))
5495 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5497 /* If we have (ior (and (X C1) C2)) and the next restart would be
5498 the last, simplify this by making C1 as small as possible
5499 and then exit. Only do this if C1 actually changes: for now
5500 this only saves memory but, should this transformation be
5501 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5502 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5503 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5504 && GET_CODE (op1) == CONST_INT
5505 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5506 return simplify_gen_binary (IOR, mode,
5507 simplify_gen_binary
5508 (AND, mode, XEXP (op0, 0),
5509 GEN_INT (INTVAL (XEXP (op0, 1))
5510 & ~INTVAL (op1))), op1);
5512 if (GET_CODE (x) != AND)
5513 return x;
5515 op0 = XEXP (x, 0);
5516 op1 = XEXP (x, 1);
5519 /* Convert (A | B) & A to A. */
5520 if (GET_CODE (op0) == IOR
5521 && (rtx_equal_p (XEXP (op0, 0), op1)
5522 || rtx_equal_p (XEXP (op0, 1), op1))
5523 && ! side_effects_p (XEXP (op0, 0))
5524 && ! side_effects_p (XEXP (op0, 1)))
5525 return op1;
5527 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5528 apply the distributive law and then the inverse distributive
5529 law to see if things simplify. */
5530 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5532 rtx result = distribute_and_simplify_rtx (x, 0);
5533 if (result)
5534 return result;
5536 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5538 rtx result = distribute_and_simplify_rtx (x, 1);
5539 if (result)
5540 return result;
5542 break;
5544 case IOR:
5545 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5546 if (GET_CODE (op1) == CONST_INT
5547 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5548 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5549 return op1;
5551 /* Convert (A & B) | A to A. */
5552 if (GET_CODE (op0) == AND
5553 && (rtx_equal_p (XEXP (op0, 0), op1)
5554 || rtx_equal_p (XEXP (op0, 1), op1))
5555 && ! side_effects_p (XEXP (op0, 0))
5556 && ! side_effects_p (XEXP (op0, 1)))
5557 return op1;
5559 /* If we have (ior (and A B) C), apply the distributive law and then
5560 the inverse distributive law to see if things simplify. */
5562 if (GET_CODE (op0) == AND)
5564 rtx result = distribute_and_simplify_rtx (x, 0);
5565 if (result)
5566 return result;
5569 if (GET_CODE (op1) == AND)
5571 rtx result = distribute_and_simplify_rtx (x, 1);
5572 if (result)
5573 return result;
5576 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5577 mode size to (rotate A CX). */
5579 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5580 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5581 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5582 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5583 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5584 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5585 == GET_MODE_BITSIZE (mode)))
5586 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5587 (GET_CODE (op0) == ASHIFT
5588 ? XEXP (op0, 1) : XEXP (op1, 1)));
5590 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5591 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5592 does not affect any of the bits in OP1, it can really be done
5593 as a PLUS and we can associate. We do this by seeing if OP1
5594 can be safely shifted left C bits. */
5595 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5596 && GET_CODE (XEXP (op0, 0)) == PLUS
5597 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5598 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5599 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5601 int count = INTVAL (XEXP (op0, 1));
5602 HOST_WIDE_INT mask = INTVAL (op1) << count;
5604 if (mask >> count == INTVAL (op1)
5605 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5607 SUBST (XEXP (XEXP (op0, 0), 1),
5608 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5609 return op0;
5612 break;
5614 case XOR:
5615 /* If we are XORing two things that have no bits in common,
5616 convert them into an IOR. This helps to detect rotation encoded
5617 using those methods and possibly other simplifications. */
5619 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5620 && (nonzero_bits (op0, mode)
5621 & nonzero_bits (op1, mode)) == 0)
5622 return (simplify_gen_binary (IOR, mode, op0, op1));
5624 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5625 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5626 (NOT y). */
5628 int num_negated = 0;
5630 if (GET_CODE (op0) == NOT)
5631 num_negated++, op0 = XEXP (op0, 0);
5632 if (GET_CODE (op1) == NOT)
5633 num_negated++, op1 = XEXP (op1, 0);
5635 if (num_negated == 2)
5637 SUBST (XEXP (x, 0), op0);
5638 SUBST (XEXP (x, 1), op1);
5640 else if (num_negated == 1)
5641 return
5642 simplify_gen_unary (NOT, mode,
5643 simplify_gen_binary (XOR, mode, op0, op1),
5644 mode);
5647 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5648 correspond to a machine insn or result in further simplifications
5649 if B is a constant. */
5651 if (GET_CODE (op0) == AND
5652 && rtx_equal_p (XEXP (op0, 1), op1)
5653 && ! side_effects_p (op1))
5654 return simplify_gen_binary (AND, mode,
5655 simplify_gen_unary (NOT, mode,
5656 XEXP (op0, 0), mode),
5657 op1);
5659 else if (GET_CODE (op0) == AND
5660 && rtx_equal_p (XEXP (op0, 0), op1)
5661 && ! side_effects_p (op1))
5662 return simplify_gen_binary (AND, mode,
5663 simplify_gen_unary (NOT, mode,
5664 XEXP (op0, 1), mode),
5665 op1);
5667 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5668 comparison if STORE_FLAG_VALUE is 1. */
5669 if (STORE_FLAG_VALUE == 1
5670 && op1 == const1_rtx
5671 && COMPARISON_P (op0)
5672 && (reversed = reversed_comparison (op0, mode)))
5673 return reversed;
5675 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5676 is (lt foo (const_int 0)), so we can perform the above
5677 simplification if STORE_FLAG_VALUE is 1. */
5679 if (STORE_FLAG_VALUE == 1
5680 && op1 == const1_rtx
5681 && GET_CODE (op0) == LSHIFTRT
5682 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5683 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5684 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5686 /* (xor (comparison foo bar) (const_int sign-bit))
5687 when STORE_FLAG_VALUE is the sign bit. */
5688 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5689 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5690 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5691 && op1 == const_true_rtx
5692 && COMPARISON_P (op0)
5693 && (reversed = reversed_comparison (op0, mode)))
5694 return reversed;
5696 break;
5698 default:
5699 gcc_unreachable ();
5702 return x;
5705 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5706 operations" because they can be replaced with two more basic operations.
5707 ZERO_EXTEND is also considered "compound" because it can be replaced with
5708 an AND operation, which is simpler, though only one operation.
5710 The function expand_compound_operation is called with an rtx expression
5711 and will convert it to the appropriate shifts and AND operations,
5712 simplifying at each stage.
5714 The function make_compound_operation is called to convert an expression
5715 consisting of shifts and ANDs into the equivalent compound expression.
5716 It is the inverse of this function, loosely speaking. */
5718 static rtx
5719 expand_compound_operation (rtx x)
5721 unsigned HOST_WIDE_INT pos = 0, len;
5722 int unsignedp = 0;
5723 unsigned int modewidth;
5724 rtx tem;
5726 switch (GET_CODE (x))
5728 case ZERO_EXTEND:
5729 unsignedp = 1;
5730 case SIGN_EXTEND:
5731 /* We can't necessarily use a const_int for a multiword mode;
5732 it depends on implicitly extending the value.
5733 Since we don't know the right way to extend it,
5734 we can't tell whether the implicit way is right.
5736 Even for a mode that is no wider than a const_int,
5737 we can't win, because we need to sign extend one of its bits through
5738 the rest of it, and we don't know which bit. */
5739 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5740 return x;
5742 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5743 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5744 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5745 reloaded. If not for that, MEM's would very rarely be safe.
5747 Reject MODEs bigger than a word, because we might not be able
5748 to reference a two-register group starting with an arbitrary register
5749 (and currently gen_lowpart might crash for a SUBREG). */
5751 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5752 return x;
5754 /* Reject MODEs that aren't scalar integers because turning vector
5755 or complex modes into shifts causes problems. */
5757 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5758 return x;
5760 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5761 /* If the inner object has VOIDmode (the only way this can happen
5762 is if it is an ASM_OPERANDS), we can't do anything since we don't
5763 know how much masking to do. */
5764 if (len == 0)
5765 return x;
5767 break;
5769 case ZERO_EXTRACT:
5770 unsignedp = 1;
5772 /* ... fall through ... */
5774 case SIGN_EXTRACT:
5775 /* If the operand is a CLOBBER, just return it. */
5776 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5777 return XEXP (x, 0);
5779 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5780 || GET_CODE (XEXP (x, 2)) != CONST_INT
5781 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5782 return x;
5784 /* Reject MODEs that aren't scalar integers because turning vector
5785 or complex modes into shifts causes problems. */
5787 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5788 return x;
5790 len = INTVAL (XEXP (x, 1));
5791 pos = INTVAL (XEXP (x, 2));
5793 /* If this goes outside the object being extracted, replace the object
5794 with a (use (mem ...)) construct that only combine understands
5795 and is used only for this purpose. */
5796 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5797 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5799 if (BITS_BIG_ENDIAN)
5800 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5802 break;
5804 default:
5805 return x;
5807 /* Convert sign extension to zero extension, if we know that the high
5808 bit is not set, as this is easier to optimize. It will be converted
5809 back to cheaper alternative in make_extraction. */
5810 if (GET_CODE (x) == SIGN_EXTEND
5811 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5812 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5813 & ~(((unsigned HOST_WIDE_INT)
5814 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5815 >> 1))
5816 == 0)))
5818 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5819 rtx temp2 = expand_compound_operation (temp);
5821 /* Make sure this is a profitable operation. */
5822 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5823 return temp2;
5824 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5825 return temp;
5826 else
5827 return x;
5830 /* We can optimize some special cases of ZERO_EXTEND. */
5831 if (GET_CODE (x) == ZERO_EXTEND)
5833 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5834 know that the last value didn't have any inappropriate bits
5835 set. */
5836 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5837 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5838 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5839 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5840 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5841 return XEXP (XEXP (x, 0), 0);
5843 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5844 if (GET_CODE (XEXP (x, 0)) == SUBREG
5845 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5846 && subreg_lowpart_p (XEXP (x, 0))
5847 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5848 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5849 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5850 return SUBREG_REG (XEXP (x, 0));
5852 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5853 is a comparison and STORE_FLAG_VALUE permits. This is like
5854 the first case, but it works even when GET_MODE (x) is larger
5855 than HOST_WIDE_INT. */
5856 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5857 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5858 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5859 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5860 <= HOST_BITS_PER_WIDE_INT)
5861 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5862 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5863 return XEXP (XEXP (x, 0), 0);
5865 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5866 if (GET_CODE (XEXP (x, 0)) == SUBREG
5867 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5868 && subreg_lowpart_p (XEXP (x, 0))
5869 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5870 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5871 <= HOST_BITS_PER_WIDE_INT)
5872 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5873 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5874 return SUBREG_REG (XEXP (x, 0));
5878 /* If we reach here, we want to return a pair of shifts. The inner
5879 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5880 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5881 logical depending on the value of UNSIGNEDP.
5883 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5884 converted into an AND of a shift.
5886 We must check for the case where the left shift would have a negative
5887 count. This can happen in a case like (x >> 31) & 255 on machines
5888 that can't shift by a constant. On those machines, we would first
5889 combine the shift with the AND to produce a variable-position
5890 extraction. Then the constant of 31 would be substituted in to produce
5891 a such a position. */
5893 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5894 if (modewidth + len >= pos)
5895 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5896 GET_MODE (x),
5897 simplify_shift_const (NULL_RTX, ASHIFT,
5898 GET_MODE (x),
5899 XEXP (x, 0),
5900 modewidth - pos - len),
5901 modewidth - len);
5903 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5904 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5905 simplify_shift_const (NULL_RTX, LSHIFTRT,
5906 GET_MODE (x),
5907 XEXP (x, 0), pos),
5908 ((HOST_WIDE_INT) 1 << len) - 1);
5909 else
5910 /* Any other cases we can't handle. */
5911 return x;
5913 /* If we couldn't do this for some reason, return the original
5914 expression. */
5915 if (GET_CODE (tem) == CLOBBER)
5916 return x;
5918 return tem;
5921 /* X is a SET which contains an assignment of one object into
5922 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5923 or certain SUBREGS). If possible, convert it into a series of
5924 logical operations.
5926 We half-heartedly support variable positions, but do not at all
5927 support variable lengths. */
5929 static rtx
5930 expand_field_assignment (rtx x)
5932 rtx inner;
5933 rtx pos; /* Always counts from low bit. */
5934 int len;
5935 rtx mask, cleared, masked;
5936 enum machine_mode compute_mode;
5938 /* Loop until we find something we can't simplify. */
5939 while (1)
5941 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5942 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5944 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5945 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5946 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5948 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5949 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5951 inner = XEXP (SET_DEST (x), 0);
5952 len = INTVAL (XEXP (SET_DEST (x), 1));
5953 pos = XEXP (SET_DEST (x), 2);
5955 /* If the position is constant and spans the width of INNER,
5956 surround INNER with a USE to indicate this. */
5957 if (GET_CODE (pos) == CONST_INT
5958 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5959 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5961 if (BITS_BIG_ENDIAN)
5963 if (GET_CODE (pos) == CONST_INT)
5964 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5965 - INTVAL (pos));
5966 else if (GET_CODE (pos) == MINUS
5967 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5968 && (INTVAL (XEXP (pos, 1))
5969 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5970 /* If position is ADJUST - X, new position is X. */
5971 pos = XEXP (pos, 0);
5972 else
5973 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
5974 GEN_INT (GET_MODE_BITSIZE (
5975 GET_MODE (inner))
5976 - len),
5977 pos);
5981 /* A SUBREG between two modes that occupy the same numbers of words
5982 can be done by moving the SUBREG to the source. */
5983 else if (GET_CODE (SET_DEST (x)) == SUBREG
5984 /* We need SUBREGs to compute nonzero_bits properly. */
5985 && nonzero_sign_valid
5986 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5987 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5988 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5989 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5991 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5992 gen_lowpart
5993 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5994 SET_SRC (x)));
5995 continue;
5997 else
5998 break;
6000 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6001 inner = SUBREG_REG (inner);
6003 compute_mode = GET_MODE (inner);
6005 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6006 if (! SCALAR_INT_MODE_P (compute_mode))
6008 enum machine_mode imode;
6010 /* Don't do anything for vector or complex integral types. */
6011 if (! FLOAT_MODE_P (compute_mode))
6012 break;
6014 /* Try to find an integral mode to pun with. */
6015 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6016 if (imode == BLKmode)
6017 break;
6019 compute_mode = imode;
6020 inner = gen_lowpart (imode, inner);
6023 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6024 if (len >= HOST_BITS_PER_WIDE_INT)
6025 break;
6027 /* Now compute the equivalent expression. Make a copy of INNER
6028 for the SET_DEST in case it is a MEM into which we will substitute;
6029 we don't want shared RTL in that case. */
6030 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6031 cleared = simplify_gen_binary (AND, compute_mode,
6032 simplify_gen_unary (NOT, compute_mode,
6033 simplify_gen_binary (ASHIFT,
6034 compute_mode,
6035 mask, pos),
6036 compute_mode),
6037 inner);
6038 masked = simplify_gen_binary (ASHIFT, compute_mode,
6039 simplify_gen_binary (
6040 AND, compute_mode,
6041 gen_lowpart (compute_mode, SET_SRC (x)),
6042 mask),
6043 pos);
6045 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6046 simplify_gen_binary (IOR, compute_mode,
6047 cleared, masked));
6050 return x;
6053 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6054 it is an RTX that represents a variable starting position; otherwise,
6055 POS is the (constant) starting bit position (counted from the LSB).
6057 INNER may be a USE. This will occur when we started with a bitfield
6058 that went outside the boundary of the object in memory, which is
6059 allowed on most machines. To isolate this case, we produce a USE
6060 whose mode is wide enough and surround the MEM with it. The only
6061 code that understands the USE is this routine. If it is not removed,
6062 it will cause the resulting insn not to match.
6064 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6065 signed reference.
6067 IN_DEST is nonzero if this is a reference in the destination of a
6068 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6069 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6070 be used.
6072 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6073 ZERO_EXTRACT should be built even for bits starting at bit 0.
6075 MODE is the desired mode of the result (if IN_DEST == 0).
6077 The result is an RTX for the extraction or NULL_RTX if the target
6078 can't handle it. */
6080 static rtx
6081 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6082 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6083 int in_dest, int in_compare)
6085 /* This mode describes the size of the storage area
6086 to fetch the overall value from. Within that, we
6087 ignore the POS lowest bits, etc. */
6088 enum machine_mode is_mode = GET_MODE (inner);
6089 enum machine_mode inner_mode;
6090 enum machine_mode wanted_inner_mode = byte_mode;
6091 enum machine_mode wanted_inner_reg_mode = word_mode;
6092 enum machine_mode pos_mode = word_mode;
6093 enum machine_mode extraction_mode = word_mode;
6094 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6095 int spans_byte = 0;
6096 rtx new = 0;
6097 rtx orig_pos_rtx = pos_rtx;
6098 HOST_WIDE_INT orig_pos;
6100 /* Get some information about INNER and get the innermost object. */
6101 if (GET_CODE (inner) == USE)
6102 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6103 /* We don't need to adjust the position because we set up the USE
6104 to pretend that it was a full-word object. */
6105 spans_byte = 1, inner = XEXP (inner, 0);
6106 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6108 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6109 consider just the QI as the memory to extract from.
6110 The subreg adds or removes high bits; its mode is
6111 irrelevant to the meaning of this extraction,
6112 since POS and LEN count from the lsb. */
6113 if (MEM_P (SUBREG_REG (inner)))
6114 is_mode = GET_MODE (SUBREG_REG (inner));
6115 inner = SUBREG_REG (inner);
6117 else if (GET_CODE (inner) == ASHIFT
6118 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6119 && pos_rtx == 0 && pos == 0
6120 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6122 /* We're extracting the least significant bits of an rtx
6123 (ashift X (const_int C)), where LEN > C. Extract the
6124 least significant (LEN - C) bits of X, giving an rtx
6125 whose mode is MODE, then shift it left C times. */
6126 new = make_extraction (mode, XEXP (inner, 0),
6127 0, 0, len - INTVAL (XEXP (inner, 1)),
6128 unsignedp, in_dest, in_compare);
6129 if (new != 0)
6130 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6133 inner_mode = GET_MODE (inner);
6135 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6136 pos = INTVAL (pos_rtx), pos_rtx = 0;
6138 /* See if this can be done without an extraction. We never can if the
6139 width of the field is not the same as that of some integer mode. For
6140 registers, we can only avoid the extraction if the position is at the
6141 low-order bit and this is either not in the destination or we have the
6142 appropriate STRICT_LOW_PART operation available.
6144 For MEM, we can avoid an extract if the field starts on an appropriate
6145 boundary and we can change the mode of the memory reference. However,
6146 we cannot directly access the MEM if we have a USE and the underlying
6147 MEM is not TMODE. This combination means that MEM was being used in a
6148 context where bits outside its mode were being referenced; that is only
6149 valid in bit-field insns. */
6151 if (tmode != BLKmode
6152 && ! (spans_byte && inner_mode != tmode)
6153 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6154 && !MEM_P (inner)
6155 && (! in_dest
6156 || (REG_P (inner)
6157 && have_insn_for (STRICT_LOW_PART, tmode))))
6158 || (MEM_P (inner) && pos_rtx == 0
6159 && (pos
6160 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6161 : BITS_PER_UNIT)) == 0
6162 /* We can't do this if we are widening INNER_MODE (it
6163 may not be aligned, for one thing). */
6164 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6165 && (inner_mode == tmode
6166 || (! mode_dependent_address_p (XEXP (inner, 0))
6167 && ! MEM_VOLATILE_P (inner))))))
6169 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6170 field. If the original and current mode are the same, we need not
6171 adjust the offset. Otherwise, we do if bytes big endian.
6173 If INNER is not a MEM, get a piece consisting of just the field
6174 of interest (in this case POS % BITS_PER_WORD must be 0). */
6176 if (MEM_P (inner))
6178 HOST_WIDE_INT offset;
6180 /* POS counts from lsb, but make OFFSET count in memory order. */
6181 if (BYTES_BIG_ENDIAN)
6182 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6183 else
6184 offset = pos / BITS_PER_UNIT;
6186 new = adjust_address_nv (inner, tmode, offset);
6188 else if (REG_P (inner))
6190 if (tmode != inner_mode)
6192 /* We can't call gen_lowpart in a DEST since we
6193 always want a SUBREG (see below) and it would sometimes
6194 return a new hard register. */
6195 if (pos || in_dest)
6197 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6199 if (WORDS_BIG_ENDIAN
6200 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6201 final_word = ((GET_MODE_SIZE (inner_mode)
6202 - GET_MODE_SIZE (tmode))
6203 / UNITS_PER_WORD) - final_word;
6205 final_word *= UNITS_PER_WORD;
6206 if (BYTES_BIG_ENDIAN &&
6207 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6208 final_word += (GET_MODE_SIZE (inner_mode)
6209 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6211 /* Avoid creating invalid subregs, for example when
6212 simplifying (x>>32)&255. */
6213 if (final_word >= GET_MODE_SIZE (inner_mode))
6214 return NULL_RTX;
6216 new = gen_rtx_SUBREG (tmode, inner, final_word);
6218 else
6219 new = gen_lowpart (tmode, inner);
6221 else
6222 new = inner;
6224 else
6225 new = force_to_mode (inner, tmode,
6226 len >= HOST_BITS_PER_WIDE_INT
6227 ? ~(unsigned HOST_WIDE_INT) 0
6228 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6229 NULL_RTX, 0);
6231 /* If this extraction is going into the destination of a SET,
6232 make a STRICT_LOW_PART unless we made a MEM. */
6234 if (in_dest)
6235 return (MEM_P (new) ? new
6236 : (GET_CODE (new) != SUBREG
6237 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6238 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6240 if (mode == tmode)
6241 return new;
6243 if (GET_CODE (new) == CONST_INT)
6244 return gen_int_mode (INTVAL (new), mode);
6246 /* If we know that no extraneous bits are set, and that the high
6247 bit is not set, convert the extraction to the cheaper of
6248 sign and zero extension, that are equivalent in these cases. */
6249 if (flag_expensive_optimizations
6250 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6251 && ((nonzero_bits (new, tmode)
6252 & ~(((unsigned HOST_WIDE_INT)
6253 GET_MODE_MASK (tmode))
6254 >> 1))
6255 == 0)))
6257 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6258 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6260 /* Prefer ZERO_EXTENSION, since it gives more information to
6261 backends. */
6262 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6263 return temp;
6264 return temp1;
6267 /* Otherwise, sign- or zero-extend unless we already are in the
6268 proper mode. */
6270 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6271 mode, new));
6274 /* Unless this is a COMPARE or we have a funny memory reference,
6275 don't do anything with zero-extending field extracts starting at
6276 the low-order bit since they are simple AND operations. */
6277 if (pos_rtx == 0 && pos == 0 && ! in_dest
6278 && ! in_compare && ! spans_byte && unsignedp)
6279 return 0;
6281 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6282 we would be spanning bytes or if the position is not a constant and the
6283 length is not 1. In all other cases, we would only be going outside
6284 our object in cases when an original shift would have been
6285 undefined. */
6286 if (! spans_byte && MEM_P (inner)
6287 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6288 || (pos_rtx != 0 && len != 1)))
6289 return 0;
6291 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6292 and the mode for the result. */
6293 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6295 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6296 pos_mode = mode_for_extraction (EP_insv, 2);
6297 extraction_mode = mode_for_extraction (EP_insv, 3);
6300 if (! in_dest && unsignedp
6301 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6303 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6304 pos_mode = mode_for_extraction (EP_extzv, 3);
6305 extraction_mode = mode_for_extraction (EP_extzv, 0);
6308 if (! in_dest && ! unsignedp
6309 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6311 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6312 pos_mode = mode_for_extraction (EP_extv, 3);
6313 extraction_mode = mode_for_extraction (EP_extv, 0);
6316 /* Never narrow an object, since that might not be safe. */
6318 if (mode != VOIDmode
6319 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6320 extraction_mode = mode;
6322 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6323 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6324 pos_mode = GET_MODE (pos_rtx);
6326 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6327 if we have to change the mode of memory and cannot, the desired mode is
6328 EXTRACTION_MODE. */
6329 if (!MEM_P (inner))
6330 wanted_inner_mode = wanted_inner_reg_mode;
6331 else if (inner_mode != wanted_inner_mode
6332 && (mode_dependent_address_p (XEXP (inner, 0))
6333 || MEM_VOLATILE_P (inner)))
6334 wanted_inner_mode = extraction_mode;
6336 orig_pos = pos;
6338 if (BITS_BIG_ENDIAN)
6340 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6341 BITS_BIG_ENDIAN style. If position is constant, compute new
6342 position. Otherwise, build subtraction.
6343 Note that POS is relative to the mode of the original argument.
6344 If it's a MEM we need to recompute POS relative to that.
6345 However, if we're extracting from (or inserting into) a register,
6346 we want to recompute POS relative to wanted_inner_mode. */
6347 int width = (MEM_P (inner)
6348 ? GET_MODE_BITSIZE (is_mode)
6349 : GET_MODE_BITSIZE (wanted_inner_mode));
6351 if (pos_rtx == 0)
6352 pos = width - len - pos;
6353 else
6354 pos_rtx
6355 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6356 /* POS may be less than 0 now, but we check for that below.
6357 Note that it can only be less than 0 if !MEM_P (inner). */
6360 /* If INNER has a wider mode, make it smaller. If this is a constant
6361 extract, try to adjust the byte to point to the byte containing
6362 the value. */
6363 if (wanted_inner_mode != VOIDmode
6364 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6365 && ((MEM_P (inner)
6366 && (inner_mode == wanted_inner_mode
6367 || (! mode_dependent_address_p (XEXP (inner, 0))
6368 && ! MEM_VOLATILE_P (inner))))))
6370 int offset = 0;
6372 /* The computations below will be correct if the machine is big
6373 endian in both bits and bytes or little endian in bits and bytes.
6374 If it is mixed, we must adjust. */
6376 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6377 adjust OFFSET to compensate. */
6378 if (BYTES_BIG_ENDIAN
6379 && ! spans_byte
6380 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6381 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6383 /* If this is a constant position, we can move to the desired byte. */
6384 if (pos_rtx == 0)
6386 offset += pos / BITS_PER_UNIT;
6387 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6390 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6391 && ! spans_byte
6392 && is_mode != wanted_inner_mode)
6393 offset = (GET_MODE_SIZE (is_mode)
6394 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6396 if (offset != 0 || inner_mode != wanted_inner_mode)
6397 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6400 /* If INNER is not memory, we can always get it into the proper mode. If we
6401 are changing its mode, POS must be a constant and smaller than the size
6402 of the new mode. */
6403 else if (!MEM_P (inner))
6405 if (GET_MODE (inner) != wanted_inner_mode
6406 && (pos_rtx != 0
6407 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6408 return 0;
6410 inner = force_to_mode (inner, wanted_inner_mode,
6411 pos_rtx
6412 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6413 ? ~(unsigned HOST_WIDE_INT) 0
6414 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6415 << orig_pos),
6416 NULL_RTX, 0);
6419 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6420 have to zero extend. Otherwise, we can just use a SUBREG. */
6421 if (pos_rtx != 0
6422 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6424 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6426 /* If we know that no extraneous bits are set, and that the high
6427 bit is not set, convert extraction to cheaper one - either
6428 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6429 cases. */
6430 if (flag_expensive_optimizations
6431 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6432 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6433 & ~(((unsigned HOST_WIDE_INT)
6434 GET_MODE_MASK (GET_MODE (pos_rtx)))
6435 >> 1))
6436 == 0)))
6438 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6440 /* Prefer ZERO_EXTENSION, since it gives more information to
6441 backends. */
6442 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6443 temp = temp1;
6445 pos_rtx = temp;
6447 else if (pos_rtx != 0
6448 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6449 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6451 /* Make POS_RTX unless we already have it and it is correct. If we don't
6452 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6453 be a CONST_INT. */
6454 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6455 pos_rtx = orig_pos_rtx;
6457 else if (pos_rtx == 0)
6458 pos_rtx = GEN_INT (pos);
6460 /* Make the required operation. See if we can use existing rtx. */
6461 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6462 extraction_mode, inner, GEN_INT (len), pos_rtx);
6463 if (! in_dest)
6464 new = gen_lowpart (mode, new);
6466 return new;
6469 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6470 with any other operations in X. Return X without that shift if so. */
6472 static rtx
6473 extract_left_shift (rtx x, int count)
6475 enum rtx_code code = GET_CODE (x);
6476 enum machine_mode mode = GET_MODE (x);
6477 rtx tem;
6479 switch (code)
6481 case ASHIFT:
6482 /* This is the shift itself. If it is wide enough, we will return
6483 either the value being shifted if the shift count is equal to
6484 COUNT or a shift for the difference. */
6485 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6486 && INTVAL (XEXP (x, 1)) >= count)
6487 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6488 INTVAL (XEXP (x, 1)) - count);
6489 break;
6491 case NEG: case NOT:
6492 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6493 return simplify_gen_unary (code, mode, tem, mode);
6495 break;
6497 case PLUS: case IOR: case XOR: case AND:
6498 /* If we can safely shift this constant and we find the inner shift,
6499 make a new operation. */
6500 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6501 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6502 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6503 return simplify_gen_binary (code, mode, tem,
6504 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6506 break;
6508 default:
6509 break;
6512 return 0;
6515 /* Look at the expression rooted at X. Look for expressions
6516 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6517 Form these expressions.
6519 Return the new rtx, usually just X.
6521 Also, for machines like the VAX that don't have logical shift insns,
6522 try to convert logical to arithmetic shift operations in cases where
6523 they are equivalent. This undoes the canonicalizations to logical
6524 shifts done elsewhere.
6526 We try, as much as possible, to re-use rtl expressions to save memory.
6528 IN_CODE says what kind of expression we are processing. Normally, it is
6529 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6530 being kludges), it is MEM. When processing the arguments of a comparison
6531 or a COMPARE against zero, it is COMPARE. */
6533 static rtx
6534 make_compound_operation (rtx x, enum rtx_code in_code)
6536 enum rtx_code code = GET_CODE (x);
6537 enum machine_mode mode = GET_MODE (x);
6538 int mode_width = GET_MODE_BITSIZE (mode);
6539 rtx rhs, lhs;
6540 enum rtx_code next_code;
6541 int i;
6542 rtx new = 0;
6543 rtx tem;
6544 const char *fmt;
6546 /* Select the code to be used in recursive calls. Once we are inside an
6547 address, we stay there. If we have a comparison, set to COMPARE,
6548 but once inside, go back to our default of SET. */
6550 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6551 : ((code == COMPARE || COMPARISON_P (x))
6552 && XEXP (x, 1) == const0_rtx) ? COMPARE
6553 : in_code == COMPARE ? SET : in_code);
6555 /* Process depending on the code of this operation. If NEW is set
6556 nonzero, it will be returned. */
6558 switch (code)
6560 case ASHIFT:
6561 /* Convert shifts by constants into multiplications if inside
6562 an address. */
6563 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6564 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6565 && INTVAL (XEXP (x, 1)) >= 0)
6567 new = make_compound_operation (XEXP (x, 0), next_code);
6568 new = gen_rtx_MULT (mode, new,
6569 GEN_INT ((HOST_WIDE_INT) 1
6570 << INTVAL (XEXP (x, 1))));
6572 break;
6574 case AND:
6575 /* If the second operand is not a constant, we can't do anything
6576 with it. */
6577 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6578 break;
6580 /* If the constant is a power of two minus one and the first operand
6581 is a logical right shift, make an extraction. */
6582 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6583 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6585 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6586 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6587 0, in_code == COMPARE);
6590 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6591 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6592 && subreg_lowpart_p (XEXP (x, 0))
6593 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6594 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6596 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6597 next_code);
6598 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6599 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6600 0, in_code == COMPARE);
6602 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6603 else if ((GET_CODE (XEXP (x, 0)) == XOR
6604 || GET_CODE (XEXP (x, 0)) == IOR)
6605 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6606 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6607 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6609 /* Apply the distributive law, and then try to make extractions. */
6610 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6611 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6612 XEXP (x, 1)),
6613 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6614 XEXP (x, 1)));
6615 new = make_compound_operation (new, in_code);
6618 /* If we are have (and (rotate X C) M) and C is larger than the number
6619 of bits in M, this is an extraction. */
6621 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6622 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6623 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6624 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6626 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6627 new = make_extraction (mode, new,
6628 (GET_MODE_BITSIZE (mode)
6629 - INTVAL (XEXP (XEXP (x, 0), 1))),
6630 NULL_RTX, i, 1, 0, in_code == COMPARE);
6633 /* On machines without logical shifts, if the operand of the AND is
6634 a logical shift and our mask turns off all the propagated sign
6635 bits, we can replace the logical shift with an arithmetic shift. */
6636 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6637 && !have_insn_for (LSHIFTRT, mode)
6638 && have_insn_for (ASHIFTRT, mode)
6639 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6640 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6641 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6642 && mode_width <= HOST_BITS_PER_WIDE_INT)
6644 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6646 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6647 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6648 SUBST (XEXP (x, 0),
6649 gen_rtx_ASHIFTRT (mode,
6650 make_compound_operation
6651 (XEXP (XEXP (x, 0), 0), next_code),
6652 XEXP (XEXP (x, 0), 1)));
6655 /* If the constant is one less than a power of two, this might be
6656 representable by an extraction even if no shift is present.
6657 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6658 we are in a COMPARE. */
6659 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6660 new = make_extraction (mode,
6661 make_compound_operation (XEXP (x, 0),
6662 next_code),
6663 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6665 /* If we are in a comparison and this is an AND with a power of two,
6666 convert this into the appropriate bit extract. */
6667 else if (in_code == COMPARE
6668 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6669 new = make_extraction (mode,
6670 make_compound_operation (XEXP (x, 0),
6671 next_code),
6672 i, NULL_RTX, 1, 1, 0, 1);
6674 break;
6676 case LSHIFTRT:
6677 /* If the sign bit is known to be zero, replace this with an
6678 arithmetic shift. */
6679 if (have_insn_for (ASHIFTRT, mode)
6680 && ! have_insn_for (LSHIFTRT, mode)
6681 && mode_width <= HOST_BITS_PER_WIDE_INT
6682 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6684 new = gen_rtx_ASHIFTRT (mode,
6685 make_compound_operation (XEXP (x, 0),
6686 next_code),
6687 XEXP (x, 1));
6688 break;
6691 /* ... fall through ... */
6693 case ASHIFTRT:
6694 lhs = XEXP (x, 0);
6695 rhs = XEXP (x, 1);
6697 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6698 this is a SIGN_EXTRACT. */
6699 if (GET_CODE (rhs) == CONST_INT
6700 && GET_CODE (lhs) == ASHIFT
6701 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6702 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6704 new = make_compound_operation (XEXP (lhs, 0), next_code);
6705 new = make_extraction (mode, new,
6706 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6707 NULL_RTX, mode_width - INTVAL (rhs),
6708 code == LSHIFTRT, 0, in_code == COMPARE);
6709 break;
6712 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6713 If so, try to merge the shifts into a SIGN_EXTEND. We could
6714 also do this for some cases of SIGN_EXTRACT, but it doesn't
6715 seem worth the effort; the case checked for occurs on Alpha. */
6717 if (!OBJECT_P (lhs)
6718 && ! (GET_CODE (lhs) == SUBREG
6719 && (OBJECT_P (SUBREG_REG (lhs))))
6720 && GET_CODE (rhs) == CONST_INT
6721 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6722 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6723 new = make_extraction (mode, make_compound_operation (new, next_code),
6724 0, NULL_RTX, mode_width - INTVAL (rhs),
6725 code == LSHIFTRT, 0, in_code == COMPARE);
6727 break;
6729 case SUBREG:
6730 /* Call ourselves recursively on the inner expression. If we are
6731 narrowing the object and it has a different RTL code from
6732 what it originally did, do this SUBREG as a force_to_mode. */
6734 tem = make_compound_operation (SUBREG_REG (x), in_code);
6737 rtx simplified;
6738 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6739 SUBREG_BYTE (x));
6741 if (simplified)
6742 tem = simplified;
6744 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6745 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6746 && subreg_lowpart_p (x))
6748 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6749 NULL_RTX, 0);
6751 /* If we have something other than a SUBREG, we might have
6752 done an expansion, so rerun ourselves. */
6753 if (GET_CODE (newer) != SUBREG)
6754 newer = make_compound_operation (newer, in_code);
6756 return newer;
6759 if (simplified)
6760 return tem;
6762 break;
6764 default:
6765 break;
6768 if (new)
6770 x = gen_lowpart (mode, new);
6771 code = GET_CODE (x);
6774 /* Now recursively process each operand of this operation. */
6775 fmt = GET_RTX_FORMAT (code);
6776 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6777 if (fmt[i] == 'e')
6779 new = make_compound_operation (XEXP (x, i), next_code);
6780 SUBST (XEXP (x, i), new);
6783 return x;
6786 /* Given M see if it is a value that would select a field of bits
6787 within an item, but not the entire word. Return -1 if not.
6788 Otherwise, return the starting position of the field, where 0 is the
6789 low-order bit.
6791 *PLEN is set to the length of the field. */
6793 static int
6794 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6796 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6797 int pos = exact_log2 (m & -m);
6798 int len = 0;
6800 if (pos >= 0)
6801 /* Now shift off the low-order zero bits and see if we have a
6802 power of two minus 1. */
6803 len = exact_log2 ((m >> pos) + 1);
6805 if (len <= 0)
6806 pos = -1;
6808 *plen = len;
6809 return pos;
6812 /* See if X can be simplified knowing that we will only refer to it in
6813 MODE and will only refer to those bits that are nonzero in MASK.
6814 If other bits are being computed or if masking operations are done
6815 that select a superset of the bits in MASK, they can sometimes be
6816 ignored.
6818 Return a possibly simplified expression, but always convert X to
6819 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6821 Also, if REG is nonzero and X is a register equal in value to REG,
6822 replace X with REG.
6824 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6825 are all off in X. This is used when X will be complemented, by either
6826 NOT, NEG, or XOR. */
6828 static rtx
6829 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6830 rtx reg, int just_select)
6832 enum rtx_code code = GET_CODE (x);
6833 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6834 enum machine_mode op_mode;
6835 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6836 rtx op0, op1, temp;
6838 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6839 code below will do the wrong thing since the mode of such an
6840 expression is VOIDmode.
6842 Also do nothing if X is a CLOBBER; this can happen if X was
6843 the return value from a call to gen_lowpart. */
6844 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6845 return x;
6847 /* We want to perform the operation is its present mode unless we know
6848 that the operation is valid in MODE, in which case we do the operation
6849 in MODE. */
6850 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6851 && have_insn_for (code, mode))
6852 ? mode : GET_MODE (x));
6854 /* It is not valid to do a right-shift in a narrower mode
6855 than the one it came in with. */
6856 if ((code == LSHIFTRT || code == ASHIFTRT)
6857 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6858 op_mode = GET_MODE (x);
6860 /* Truncate MASK to fit OP_MODE. */
6861 if (op_mode)
6862 mask &= GET_MODE_MASK (op_mode);
6864 /* When we have an arithmetic operation, or a shift whose count we
6865 do not know, we need to assume that all bits up to the highest-order
6866 bit in MASK will be needed. This is how we form such a mask. */
6867 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6868 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6869 else
6870 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6871 - 1);
6873 /* Determine what bits of X are guaranteed to be (non)zero. */
6874 nonzero = nonzero_bits (x, mode);
6876 /* If none of the bits in X are needed, return a zero. */
6877 if (! just_select && (nonzero & mask) == 0)
6878 x = const0_rtx;
6880 /* If X is a CONST_INT, return a new one. Do this here since the
6881 test below will fail. */
6882 if (GET_CODE (x) == CONST_INT)
6884 if (SCALAR_INT_MODE_P (mode))
6885 return gen_int_mode (INTVAL (x) & mask, mode);
6886 else
6888 x = GEN_INT (INTVAL (x) & mask);
6889 return gen_lowpart_common (mode, x);
6893 /* If X is narrower than MODE and we want all the bits in X's mode, just
6894 get X in the proper mode. */
6895 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6896 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6897 return gen_lowpart (mode, x);
6899 switch (code)
6901 case CLOBBER:
6902 /* If X is a (clobber (const_int)), return it since we know we are
6903 generating something that won't match. */
6904 return x;
6906 case USE:
6907 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6908 spanned the boundary of the MEM. If we are now masking so it is
6909 within that boundary, we don't need the USE any more. */
6910 if (! BITS_BIG_ENDIAN
6911 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6912 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6913 break;
6915 case SIGN_EXTEND:
6916 case ZERO_EXTEND:
6917 case ZERO_EXTRACT:
6918 case SIGN_EXTRACT:
6919 x = expand_compound_operation (x);
6920 if (GET_CODE (x) != code)
6921 return force_to_mode (x, mode, mask, reg, next_select);
6922 break;
6924 case REG:
6925 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6926 || rtx_equal_p (reg, get_last_value (x))))
6927 x = reg;
6928 break;
6930 case SUBREG:
6931 if (subreg_lowpart_p (x)
6932 /* We can ignore the effect of this SUBREG if it narrows the mode or
6933 if the constant masks to zero all the bits the mode doesn't
6934 have. */
6935 && ((GET_MODE_SIZE (GET_MODE (x))
6936 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6937 || (0 == (mask
6938 & GET_MODE_MASK (GET_MODE (x))
6939 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6940 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6941 break;
6943 case AND:
6944 /* If this is an AND with a constant, convert it into an AND
6945 whose constant is the AND of that constant with MASK. If it
6946 remains an AND of MASK, delete it since it is redundant. */
6948 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6950 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6951 mask & INTVAL (XEXP (x, 1)));
6953 /* If X is still an AND, see if it is an AND with a mask that
6954 is just some low-order bits. If so, and it is MASK, we don't
6955 need it. */
6957 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6958 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6959 == mask))
6960 x = XEXP (x, 0);
6962 /* If it remains an AND, try making another AND with the bits
6963 in the mode mask that aren't in MASK turned on. If the
6964 constant in the AND is wide enough, this might make a
6965 cheaper constant. */
6967 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6968 && GET_MODE_MASK (GET_MODE (x)) != mask
6969 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6971 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6972 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6973 int width = GET_MODE_BITSIZE (GET_MODE (x));
6974 rtx y;
6976 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6977 number, sign extend it. */
6978 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6979 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6980 cval |= (HOST_WIDE_INT) -1 << width;
6982 y = simplify_gen_binary (AND, GET_MODE (x),
6983 XEXP (x, 0), GEN_INT (cval));
6984 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6985 x = y;
6988 break;
6991 goto binop;
6993 case PLUS:
6994 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6995 low-order bits (as in an alignment operation) and FOO is already
6996 aligned to that boundary, mask C1 to that boundary as well.
6997 This may eliminate that PLUS and, later, the AND. */
7000 unsigned int width = GET_MODE_BITSIZE (mode);
7001 unsigned HOST_WIDE_INT smask = mask;
7003 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7004 number, sign extend it. */
7006 if (width < HOST_BITS_PER_WIDE_INT
7007 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7008 smask |= (HOST_WIDE_INT) -1 << width;
7010 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7011 && exact_log2 (- smask) >= 0
7012 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7013 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7014 return force_to_mode (plus_constant (XEXP (x, 0),
7015 (INTVAL (XEXP (x, 1)) & smask)),
7016 mode, smask, reg, next_select);
7019 /* ... fall through ... */
7021 case MULT:
7022 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7023 most significant bit in MASK since carries from those bits will
7024 affect the bits we are interested in. */
7025 mask = fuller_mask;
7026 goto binop;
7028 case MINUS:
7029 /* If X is (minus C Y) where C's least set bit is larger than any bit
7030 in the mask, then we may replace with (neg Y). */
7031 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7032 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7033 & -INTVAL (XEXP (x, 0))))
7034 > mask))
7036 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7037 GET_MODE (x));
7038 return force_to_mode (x, mode, mask, reg, next_select);
7041 /* Similarly, if C contains every bit in the fuller_mask, then we may
7042 replace with (not Y). */
7043 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7044 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7045 == INTVAL (XEXP (x, 0))))
7047 x = simplify_gen_unary (NOT, GET_MODE (x),
7048 XEXP (x, 1), GET_MODE (x));
7049 return force_to_mode (x, mode, mask, reg, next_select);
7052 mask = fuller_mask;
7053 goto binop;
7055 case IOR:
7056 case XOR:
7057 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7058 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7059 operation which may be a bitfield extraction. Ensure that the
7060 constant we form is not wider than the mode of X. */
7062 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7063 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7064 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7065 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7066 && GET_CODE (XEXP (x, 1)) == CONST_INT
7067 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7068 + floor_log2 (INTVAL (XEXP (x, 1))))
7069 < GET_MODE_BITSIZE (GET_MODE (x)))
7070 && (INTVAL (XEXP (x, 1))
7071 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7073 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7074 << INTVAL (XEXP (XEXP (x, 0), 1)));
7075 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7076 XEXP (XEXP (x, 0), 0), temp);
7077 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7078 XEXP (XEXP (x, 0), 1));
7079 return force_to_mode (x, mode, mask, reg, next_select);
7082 binop:
7083 /* For most binary operations, just propagate into the operation and
7084 change the mode if we have an operation of that mode. */
7086 op0 = gen_lowpart (op_mode,
7087 force_to_mode (XEXP (x, 0), mode, mask,
7088 reg, next_select));
7089 op1 = gen_lowpart (op_mode,
7090 force_to_mode (XEXP (x, 1), mode, mask,
7091 reg, next_select));
7093 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7094 x = simplify_gen_binary (code, op_mode, op0, op1);
7095 break;
7097 case ASHIFT:
7098 /* For left shifts, do the same, but just for the first operand.
7099 However, we cannot do anything with shifts where we cannot
7100 guarantee that the counts are smaller than the size of the mode
7101 because such a count will have a different meaning in a
7102 wider mode. */
7104 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7105 && INTVAL (XEXP (x, 1)) >= 0
7106 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7107 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7108 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7109 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7110 break;
7112 /* If the shift count is a constant and we can do arithmetic in
7113 the mode of the shift, refine which bits we need. Otherwise, use the
7114 conservative form of the mask. */
7115 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7116 && INTVAL (XEXP (x, 1)) >= 0
7117 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7118 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7119 mask >>= INTVAL (XEXP (x, 1));
7120 else
7121 mask = fuller_mask;
7123 op0 = gen_lowpart (op_mode,
7124 force_to_mode (XEXP (x, 0), op_mode,
7125 mask, reg, next_select));
7127 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7128 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7129 break;
7131 case LSHIFTRT:
7132 /* Here we can only do something if the shift count is a constant,
7133 this shift constant is valid for the host, and we can do arithmetic
7134 in OP_MODE. */
7136 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7137 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7138 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7140 rtx inner = XEXP (x, 0);
7141 unsigned HOST_WIDE_INT inner_mask;
7143 /* Select the mask of the bits we need for the shift operand. */
7144 inner_mask = mask << INTVAL (XEXP (x, 1));
7146 /* We can only change the mode of the shift if we can do arithmetic
7147 in the mode of the shift and INNER_MASK is no wider than the
7148 width of X's mode. */
7149 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7150 op_mode = GET_MODE (x);
7152 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7154 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7155 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7158 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7159 shift and AND produces only copies of the sign bit (C2 is one less
7160 than a power of two), we can do this with just a shift. */
7162 if (GET_CODE (x) == LSHIFTRT
7163 && GET_CODE (XEXP (x, 1)) == CONST_INT
7164 /* The shift puts one of the sign bit copies in the least significant
7165 bit. */
7166 && ((INTVAL (XEXP (x, 1))
7167 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7168 >= GET_MODE_BITSIZE (GET_MODE (x)))
7169 && exact_log2 (mask + 1) >= 0
7170 /* Number of bits left after the shift must be more than the mask
7171 needs. */
7172 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7173 <= GET_MODE_BITSIZE (GET_MODE (x)))
7174 /* Must be more sign bit copies than the mask needs. */
7175 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7176 >= exact_log2 (mask + 1)))
7177 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7178 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7179 - exact_log2 (mask + 1)));
7181 goto shiftrt;
7183 case ASHIFTRT:
7184 /* If we are just looking for the sign bit, we don't need this shift at
7185 all, even if it has a variable count. */
7186 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7187 && (mask == ((unsigned HOST_WIDE_INT) 1
7188 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7189 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7191 /* If this is a shift by a constant, get a mask that contains those bits
7192 that are not copies of the sign bit. We then have two cases: If
7193 MASK only includes those bits, this can be a logical shift, which may
7194 allow simplifications. If MASK is a single-bit field not within
7195 those bits, we are requesting a copy of the sign bit and hence can
7196 shift the sign bit to the appropriate location. */
7198 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7199 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7201 int i = -1;
7203 /* If the considered data is wider than HOST_WIDE_INT, we can't
7204 represent a mask for all its bits in a single scalar.
7205 But we only care about the lower bits, so calculate these. */
7207 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7209 nonzero = ~(HOST_WIDE_INT) 0;
7211 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7212 is the number of bits a full-width mask would have set.
7213 We need only shift if these are fewer than nonzero can
7214 hold. If not, we must keep all bits set in nonzero. */
7216 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7217 < HOST_BITS_PER_WIDE_INT)
7218 nonzero >>= INTVAL (XEXP (x, 1))
7219 + HOST_BITS_PER_WIDE_INT
7220 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7222 else
7224 nonzero = GET_MODE_MASK (GET_MODE (x));
7225 nonzero >>= INTVAL (XEXP (x, 1));
7228 if ((mask & ~nonzero) == 0
7229 || (i = exact_log2 (mask)) >= 0)
7231 x = simplify_shift_const
7232 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7233 i < 0 ? INTVAL (XEXP (x, 1))
7234 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7236 if (GET_CODE (x) != ASHIFTRT)
7237 return force_to_mode (x, mode, mask, reg, next_select);
7241 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7242 even if the shift count isn't a constant. */
7243 if (mask == 1)
7244 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7245 XEXP (x, 0), XEXP (x, 1));
7247 shiftrt:
7249 /* If this is a zero- or sign-extension operation that just affects bits
7250 we don't care about, remove it. Be sure the call above returned
7251 something that is still a shift. */
7253 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7254 && GET_CODE (XEXP (x, 1)) == CONST_INT
7255 && INTVAL (XEXP (x, 1)) >= 0
7256 && (INTVAL (XEXP (x, 1))
7257 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7258 && GET_CODE (XEXP (x, 0)) == ASHIFT
7259 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7260 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7261 reg, next_select);
7263 break;
7265 case ROTATE:
7266 case ROTATERT:
7267 /* If the shift count is constant and we can do computations
7268 in the mode of X, compute where the bits we care about are.
7269 Otherwise, we can't do anything. Don't change the mode of
7270 the shift or propagate MODE into the shift, though. */
7271 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7272 && INTVAL (XEXP (x, 1)) >= 0)
7274 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7275 GET_MODE (x), GEN_INT (mask),
7276 XEXP (x, 1));
7277 if (temp && GET_CODE (temp) == CONST_INT)
7278 SUBST (XEXP (x, 0),
7279 force_to_mode (XEXP (x, 0), GET_MODE (x),
7280 INTVAL (temp), reg, next_select));
7282 break;
7284 case NEG:
7285 /* If we just want the low-order bit, the NEG isn't needed since it
7286 won't change the low-order bit. */
7287 if (mask == 1)
7288 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7290 /* We need any bits less significant than the most significant bit in
7291 MASK since carries from those bits will affect the bits we are
7292 interested in. */
7293 mask = fuller_mask;
7294 goto unop;
7296 case NOT:
7297 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7298 same as the XOR case above. Ensure that the constant we form is not
7299 wider than the mode of X. */
7301 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7302 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7303 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7304 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7305 < GET_MODE_BITSIZE (GET_MODE (x)))
7306 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7308 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7309 GET_MODE (x));
7310 temp = simplify_gen_binary (XOR, GET_MODE (x),
7311 XEXP (XEXP (x, 0), 0), temp);
7312 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7313 temp, XEXP (XEXP (x, 0), 1));
7315 return force_to_mode (x, mode, mask, reg, next_select);
7318 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7319 use the full mask inside the NOT. */
7320 mask = fuller_mask;
7322 unop:
7323 op0 = gen_lowpart (op_mode,
7324 force_to_mode (XEXP (x, 0), mode, mask,
7325 reg, next_select));
7326 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7327 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7328 break;
7330 case NE:
7331 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7332 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7333 which is equal to STORE_FLAG_VALUE. */
7334 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7335 && GET_MODE (XEXP (x, 0)) == mode
7336 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7337 && (nonzero_bits (XEXP (x, 0), mode)
7338 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7339 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7341 break;
7343 case IF_THEN_ELSE:
7344 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7345 written in a narrower mode. We play it safe and do not do so. */
7347 SUBST (XEXP (x, 1),
7348 gen_lowpart (GET_MODE (x),
7349 force_to_mode (XEXP (x, 1), mode,
7350 mask, reg, next_select)));
7351 SUBST (XEXP (x, 2),
7352 gen_lowpart (GET_MODE (x),
7353 force_to_mode (XEXP (x, 2), mode,
7354 mask, reg, next_select)));
7355 break;
7357 default:
7358 break;
7361 /* Ensure we return a value of the proper mode. */
7362 return gen_lowpart (mode, x);
7365 /* Return nonzero if X is an expression that has one of two values depending on
7366 whether some other value is zero or nonzero. In that case, we return the
7367 value that is being tested, *PTRUE is set to the value if the rtx being
7368 returned has a nonzero value, and *PFALSE is set to the other alternative.
7370 If we return zero, we set *PTRUE and *PFALSE to X. */
7372 static rtx
7373 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7375 enum machine_mode mode = GET_MODE (x);
7376 enum rtx_code code = GET_CODE (x);
7377 rtx cond0, cond1, true0, true1, false0, false1;
7378 unsigned HOST_WIDE_INT nz;
7380 /* If we are comparing a value against zero, we are done. */
7381 if ((code == NE || code == EQ)
7382 && XEXP (x, 1) == const0_rtx)
7384 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7385 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7386 return XEXP (x, 0);
7389 /* If this is a unary operation whose operand has one of two values, apply
7390 our opcode to compute those values. */
7391 else if (UNARY_P (x)
7392 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7394 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7395 *pfalse = simplify_gen_unary (code, mode, false0,
7396 GET_MODE (XEXP (x, 0)));
7397 return cond0;
7400 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7401 make can't possibly match and would suppress other optimizations. */
7402 else if (code == COMPARE)
7405 /* If this is a binary operation, see if either side has only one of two
7406 values. If either one does or if both do and they are conditional on
7407 the same value, compute the new true and false values. */
7408 else if (BINARY_P (x))
7410 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7411 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7413 if ((cond0 != 0 || cond1 != 0)
7414 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7416 /* If if_then_else_cond returned zero, then true/false are the
7417 same rtl. We must copy one of them to prevent invalid rtl
7418 sharing. */
7419 if (cond0 == 0)
7420 true0 = copy_rtx (true0);
7421 else if (cond1 == 0)
7422 true1 = copy_rtx (true1);
7424 if (COMPARISON_P (x))
7426 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7427 true0, true1);
7428 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7429 false0, false1);
7431 else
7433 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7434 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7437 return cond0 ? cond0 : cond1;
7440 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7441 operands is zero when the other is nonzero, and vice-versa,
7442 and STORE_FLAG_VALUE is 1 or -1. */
7444 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7445 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7446 || code == UMAX)
7447 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7449 rtx op0 = XEXP (XEXP (x, 0), 1);
7450 rtx op1 = XEXP (XEXP (x, 1), 1);
7452 cond0 = XEXP (XEXP (x, 0), 0);
7453 cond1 = XEXP (XEXP (x, 1), 0);
7455 if (COMPARISON_P (cond0)
7456 && COMPARISON_P (cond1)
7457 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7458 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7459 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7460 || ((swap_condition (GET_CODE (cond0))
7461 == reversed_comparison_code (cond1, NULL))
7462 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7463 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7464 && ! side_effects_p (x))
7466 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7467 *pfalse = simplify_gen_binary (MULT, mode,
7468 (code == MINUS
7469 ? simplify_gen_unary (NEG, mode,
7470 op1, mode)
7471 : op1),
7472 const_true_rtx);
7473 return cond0;
7477 /* Similarly for MULT, AND and UMIN, except that for these the result
7478 is always zero. */
7479 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7480 && (code == MULT || code == AND || code == UMIN)
7481 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7483 cond0 = XEXP (XEXP (x, 0), 0);
7484 cond1 = XEXP (XEXP (x, 1), 0);
7486 if (COMPARISON_P (cond0)
7487 && COMPARISON_P (cond1)
7488 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7489 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7490 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7491 || ((swap_condition (GET_CODE (cond0))
7492 == reversed_comparison_code (cond1, NULL))
7493 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7494 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7495 && ! side_effects_p (x))
7497 *ptrue = *pfalse = const0_rtx;
7498 return cond0;
7503 else if (code == IF_THEN_ELSE)
7505 /* If we have IF_THEN_ELSE already, extract the condition and
7506 canonicalize it if it is NE or EQ. */
7507 cond0 = XEXP (x, 0);
7508 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7509 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7510 return XEXP (cond0, 0);
7511 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7513 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7514 return XEXP (cond0, 0);
7516 else
7517 return cond0;
7520 /* If X is a SUBREG, we can narrow both the true and false values
7521 if the inner expression, if there is a condition. */
7522 else if (code == SUBREG
7523 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7524 &true0, &false0)))
7526 true0 = simplify_gen_subreg (mode, true0,
7527 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7528 false0 = simplify_gen_subreg (mode, false0,
7529 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7530 if (true0 && false0)
7532 *ptrue = true0;
7533 *pfalse = false0;
7534 return cond0;
7538 /* If X is a constant, this isn't special and will cause confusions
7539 if we treat it as such. Likewise if it is equivalent to a constant. */
7540 else if (CONSTANT_P (x)
7541 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7544 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7545 will be least confusing to the rest of the compiler. */
7546 else if (mode == BImode)
7548 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7549 return x;
7552 /* If X is known to be either 0 or -1, those are the true and
7553 false values when testing X. */
7554 else if (x == constm1_rtx || x == const0_rtx
7555 || (mode != VOIDmode
7556 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7558 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7559 return x;
7562 /* Likewise for 0 or a single bit. */
7563 else if (SCALAR_INT_MODE_P (mode)
7564 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7565 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7567 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7568 return x;
7571 /* Otherwise fail; show no condition with true and false values the same. */
7572 *ptrue = *pfalse = x;
7573 return 0;
7576 /* Return the value of expression X given the fact that condition COND
7577 is known to be true when applied to REG as its first operand and VAL
7578 as its second. X is known to not be shared and so can be modified in
7579 place.
7581 We only handle the simplest cases, and specifically those cases that
7582 arise with IF_THEN_ELSE expressions. */
7584 static rtx
7585 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7587 enum rtx_code code = GET_CODE (x);
7588 rtx temp;
7589 const char *fmt;
7590 int i, j;
7592 if (side_effects_p (x))
7593 return x;
7595 /* If either operand of the condition is a floating point value,
7596 then we have to avoid collapsing an EQ comparison. */
7597 if (cond == EQ
7598 && rtx_equal_p (x, reg)
7599 && ! FLOAT_MODE_P (GET_MODE (x))
7600 && ! FLOAT_MODE_P (GET_MODE (val)))
7601 return val;
7603 if (cond == UNEQ && rtx_equal_p (x, reg))
7604 return val;
7606 /* If X is (abs REG) and we know something about REG's relationship
7607 with zero, we may be able to simplify this. */
7609 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7610 switch (cond)
7612 case GE: case GT: case EQ:
7613 return XEXP (x, 0);
7614 case LT: case LE:
7615 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7616 XEXP (x, 0),
7617 GET_MODE (XEXP (x, 0)));
7618 default:
7619 break;
7622 /* The only other cases we handle are MIN, MAX, and comparisons if the
7623 operands are the same as REG and VAL. */
7625 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7627 if (rtx_equal_p (XEXP (x, 0), val))
7628 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7630 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7632 if (COMPARISON_P (x))
7634 if (comparison_dominates_p (cond, code))
7635 return const_true_rtx;
7637 code = reversed_comparison_code (x, NULL);
7638 if (code != UNKNOWN
7639 && comparison_dominates_p (cond, code))
7640 return const0_rtx;
7641 else
7642 return x;
7644 else if (code == SMAX || code == SMIN
7645 || code == UMIN || code == UMAX)
7647 int unsignedp = (code == UMIN || code == UMAX);
7649 /* Do not reverse the condition when it is NE or EQ.
7650 This is because we cannot conclude anything about
7651 the value of 'SMAX (x, y)' when x is not equal to y,
7652 but we can when x equals y. */
7653 if ((code == SMAX || code == UMAX)
7654 && ! (cond == EQ || cond == NE))
7655 cond = reverse_condition (cond);
7657 switch (cond)
7659 case GE: case GT:
7660 return unsignedp ? x : XEXP (x, 1);
7661 case LE: case LT:
7662 return unsignedp ? x : XEXP (x, 0);
7663 case GEU: case GTU:
7664 return unsignedp ? XEXP (x, 1) : x;
7665 case LEU: case LTU:
7666 return unsignedp ? XEXP (x, 0) : x;
7667 default:
7668 break;
7673 else if (code == SUBREG)
7675 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7676 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7678 if (SUBREG_REG (x) != r)
7680 /* We must simplify subreg here, before we lose track of the
7681 original inner_mode. */
7682 new = simplify_subreg (GET_MODE (x), r,
7683 inner_mode, SUBREG_BYTE (x));
7684 if (new)
7685 return new;
7686 else
7687 SUBST (SUBREG_REG (x), r);
7690 return x;
7692 /* We don't have to handle SIGN_EXTEND here, because even in the
7693 case of replacing something with a modeless CONST_INT, a
7694 CONST_INT is already (supposed to be) a valid sign extension for
7695 its narrower mode, which implies it's already properly
7696 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7697 story is different. */
7698 else if (code == ZERO_EXTEND)
7700 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7701 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7703 if (XEXP (x, 0) != r)
7705 /* We must simplify the zero_extend here, before we lose
7706 track of the original inner_mode. */
7707 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7708 r, inner_mode);
7709 if (new)
7710 return new;
7711 else
7712 SUBST (XEXP (x, 0), r);
7715 return x;
7718 fmt = GET_RTX_FORMAT (code);
7719 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7721 if (fmt[i] == 'e')
7722 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7723 else if (fmt[i] == 'E')
7724 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7725 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7726 cond, reg, val));
7729 return x;
7732 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7733 assignment as a field assignment. */
7735 static int
7736 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7738 if (x == y || rtx_equal_p (x, y))
7739 return 1;
7741 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7742 return 0;
7744 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7745 Note that all SUBREGs of MEM are paradoxical; otherwise they
7746 would have been rewritten. */
7747 if (MEM_P (x) && GET_CODE (y) == SUBREG
7748 && MEM_P (SUBREG_REG (y))
7749 && rtx_equal_p (SUBREG_REG (y),
7750 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7751 return 1;
7753 if (MEM_P (y) && GET_CODE (x) == SUBREG
7754 && MEM_P (SUBREG_REG (x))
7755 && rtx_equal_p (SUBREG_REG (x),
7756 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7757 return 1;
7759 /* We used to see if get_last_value of X and Y were the same but that's
7760 not correct. In one direction, we'll cause the assignment to have
7761 the wrong destination and in the case, we'll import a register into this
7762 insn that might have already have been dead. So fail if none of the
7763 above cases are true. */
7764 return 0;
7767 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7768 Return that assignment if so.
7770 We only handle the most common cases. */
7772 static rtx
7773 make_field_assignment (rtx x)
7775 rtx dest = SET_DEST (x);
7776 rtx src = SET_SRC (x);
7777 rtx assign;
7778 rtx rhs, lhs;
7779 HOST_WIDE_INT c1;
7780 HOST_WIDE_INT pos;
7781 unsigned HOST_WIDE_INT len;
7782 rtx other;
7783 enum machine_mode mode;
7785 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7786 a clear of a one-bit field. We will have changed it to
7787 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7788 for a SUBREG. */
7790 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7791 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7792 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7793 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7795 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7796 1, 1, 1, 0);
7797 if (assign != 0)
7798 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7799 return x;
7802 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7803 && subreg_lowpart_p (XEXP (src, 0))
7804 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7805 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7806 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7807 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7808 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7809 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7811 assign = make_extraction (VOIDmode, dest, 0,
7812 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7813 1, 1, 1, 0);
7814 if (assign != 0)
7815 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7816 return x;
7819 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7820 one-bit field. */
7821 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7822 && XEXP (XEXP (src, 0), 0) == const1_rtx
7823 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7825 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7826 1, 1, 1, 0);
7827 if (assign != 0)
7828 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7829 return x;
7832 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
7833 SRC is an AND with all bits of that field set, then we can discard
7834 the AND. */
7835 if (GET_CODE (dest) == ZERO_EXTRACT
7836 && GET_CODE (XEXP (dest, 1)) == CONST_INT
7837 && GET_CODE (src) == AND
7838 && GET_CODE (XEXP (src, 1)) == CONST_INT)
7840 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
7841 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
7842 unsigned HOST_WIDE_INT ze_mask;
7844 if (width >= HOST_BITS_PER_WIDE_INT)
7845 ze_mask = -1;
7846 else
7847 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
7849 /* Complete overlap. We can remove the source AND. */
7850 if ((and_mask & ze_mask) == ze_mask)
7851 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
7853 /* Partial overlap. We can reduce the source AND. */
7854 if ((and_mask & ze_mask) != and_mask)
7856 mode = GET_MODE (src);
7857 src = gen_rtx_AND (mode, XEXP (src, 0),
7858 gen_int_mode (and_mask & ze_mask, mode));
7859 return gen_rtx_SET (VOIDmode, dest, src);
7863 /* The other case we handle is assignments into a constant-position
7864 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7865 a mask that has all one bits except for a group of zero bits and
7866 OTHER is known to have zeros where C1 has ones, this is such an
7867 assignment. Compute the position and length from C1. Shift OTHER
7868 to the appropriate position, force it to the required mode, and
7869 make the extraction. Check for the AND in both operands. */
7871 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7872 return x;
7874 rhs = expand_compound_operation (XEXP (src, 0));
7875 lhs = expand_compound_operation (XEXP (src, 1));
7877 if (GET_CODE (rhs) == AND
7878 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7879 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7880 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7881 else if (GET_CODE (lhs) == AND
7882 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7883 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7884 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7885 else
7886 return x;
7888 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7889 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7890 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7891 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7892 return x;
7894 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7895 if (assign == 0)
7896 return x;
7898 /* The mode to use for the source is the mode of the assignment, or of
7899 what is inside a possible STRICT_LOW_PART. */
7900 mode = (GET_CODE (assign) == STRICT_LOW_PART
7901 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7903 /* Shift OTHER right POS places and make it the source, restricting it
7904 to the proper length and mode. */
7906 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7907 GET_MODE (src), other, pos),
7908 mode,
7909 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7910 ? ~(unsigned HOST_WIDE_INT) 0
7911 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7912 dest, 0);
7914 /* If SRC is masked by an AND that does not make a difference in
7915 the value being stored, strip it. */
7916 if (GET_CODE (assign) == ZERO_EXTRACT
7917 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7918 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7919 && GET_CODE (src) == AND
7920 && GET_CODE (XEXP (src, 1)) == CONST_INT
7921 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7922 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7923 src = XEXP (src, 0);
7925 return gen_rtx_SET (VOIDmode, assign, src);
7928 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7929 if so. */
7931 static rtx
7932 apply_distributive_law (rtx x)
7934 enum rtx_code code = GET_CODE (x);
7935 enum rtx_code inner_code;
7936 rtx lhs, rhs, other;
7937 rtx tem;
7939 /* Distributivity is not true for floating point as it can change the
7940 value. So we don't do it unless -funsafe-math-optimizations. */
7941 if (FLOAT_MODE_P (GET_MODE (x))
7942 && ! flag_unsafe_math_optimizations)
7943 return x;
7945 /* The outer operation can only be one of the following: */
7946 if (code != IOR && code != AND && code != XOR
7947 && code != PLUS && code != MINUS)
7948 return x;
7950 lhs = XEXP (x, 0);
7951 rhs = XEXP (x, 1);
7953 /* If either operand is a primitive we can't do anything, so get out
7954 fast. */
7955 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7956 return x;
7958 lhs = expand_compound_operation (lhs);
7959 rhs = expand_compound_operation (rhs);
7960 inner_code = GET_CODE (lhs);
7961 if (inner_code != GET_CODE (rhs))
7962 return x;
7964 /* See if the inner and outer operations distribute. */
7965 switch (inner_code)
7967 case LSHIFTRT:
7968 case ASHIFTRT:
7969 case AND:
7970 case IOR:
7971 /* These all distribute except over PLUS. */
7972 if (code == PLUS || code == MINUS)
7973 return x;
7974 break;
7976 case MULT:
7977 if (code != PLUS && code != MINUS)
7978 return x;
7979 break;
7981 case ASHIFT:
7982 /* This is also a multiply, so it distributes over everything. */
7983 break;
7985 case SUBREG:
7986 /* Non-paradoxical SUBREGs distributes over all operations, provided
7987 the inner modes and byte offsets are the same, this is an extraction
7988 of a low-order part, we don't convert an fp operation to int or
7989 vice versa, and we would not be converting a single-word
7990 operation into a multi-word operation. The latter test is not
7991 required, but it prevents generating unneeded multi-word operations.
7992 Some of the previous tests are redundant given the latter test, but
7993 are retained because they are required for correctness.
7995 We produce the result slightly differently in this case. */
7997 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7998 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7999 || ! subreg_lowpart_p (lhs)
8000 || (GET_MODE_CLASS (GET_MODE (lhs))
8001 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8002 || (GET_MODE_SIZE (GET_MODE (lhs))
8003 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8004 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8005 return x;
8007 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8008 SUBREG_REG (lhs), SUBREG_REG (rhs));
8009 return gen_lowpart (GET_MODE (x), tem);
8011 default:
8012 return x;
8015 /* Set LHS and RHS to the inner operands (A and B in the example
8016 above) and set OTHER to the common operand (C in the example).
8017 There is only one way to do this unless the inner operation is
8018 commutative. */
8019 if (COMMUTATIVE_ARITH_P (lhs)
8020 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8021 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8022 else if (COMMUTATIVE_ARITH_P (lhs)
8023 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8024 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8025 else if (COMMUTATIVE_ARITH_P (lhs)
8026 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8027 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8028 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8029 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8030 else
8031 return x;
8033 /* Form the new inner operation, seeing if it simplifies first. */
8034 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8036 /* There is one exception to the general way of distributing:
8037 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8038 if (code == XOR && inner_code == IOR)
8040 inner_code = AND;
8041 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8044 /* We may be able to continuing distributing the result, so call
8045 ourselves recursively on the inner operation before forming the
8046 outer operation, which we return. */
8047 return simplify_gen_binary (inner_code, GET_MODE (x),
8048 apply_distributive_law (tem), other);
8051 /* See if X is of the form (* (+ A B) C), and if so convert to
8052 (+ (* A C) (* B C)) and try to simplify.
8054 Most of the time, this results in no change. However, if some of
8055 the operands are the same or inverses of each other, simplifications
8056 will result.
8058 For example, (and (ior A B) (not B)) can occur as the result of
8059 expanding a bit field assignment. When we apply the distributive
8060 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8061 which then simplifies to (and (A (not B))).
8063 Note that no checks happen on the validity of applying the inverse
8064 distributive law. This is pointless since we can do it in the
8065 few places where this routine is called.
8067 N is the index of the term that is decomposed (the arithmetic operation,
8068 i.e. (+ A B) in the first example above). !N is the index of the term that
8069 is distributed, i.e. of C in the first example above. */
8070 static rtx
8071 distribute_and_simplify_rtx (rtx x, int n)
8073 enum machine_mode mode;
8074 enum rtx_code outer_code, inner_code;
8075 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8077 decomposed = XEXP (x, n);
8078 if (!ARITHMETIC_P (decomposed))
8079 return NULL_RTX;
8081 mode = GET_MODE (x);
8082 outer_code = GET_CODE (x);
8083 distributed = XEXP (x, !n);
8085 inner_code = GET_CODE (decomposed);
8086 inner_op0 = XEXP (decomposed, 0);
8087 inner_op1 = XEXP (decomposed, 1);
8089 /* Special case (and (xor B C) (not A)), which is equivalent to
8090 (xor (ior A B) (ior A C)) */
8091 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8093 distributed = XEXP (distributed, 0);
8094 outer_code = IOR;
8097 if (n == 0)
8099 /* Distribute the second term. */
8100 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8101 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8103 else
8105 /* Distribute the first term. */
8106 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8107 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8110 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8111 new_op0, new_op1));
8112 if (GET_CODE (tmp) != outer_code
8113 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8114 return tmp;
8116 return NULL_RTX;
8119 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8120 in MODE.
8122 Return an equivalent form, if different from X. Otherwise, return X. If
8123 X is zero, we are to always construct the equivalent form. */
8125 static rtx
8126 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8127 unsigned HOST_WIDE_INT constop)
8129 unsigned HOST_WIDE_INT nonzero;
8130 int i;
8132 /* Simplify VAROP knowing that we will be only looking at some of the
8133 bits in it.
8135 Note by passing in CONSTOP, we guarantee that the bits not set in
8136 CONSTOP are not significant and will never be examined. We must
8137 ensure that is the case by explicitly masking out those bits
8138 before returning. */
8139 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8141 /* If VAROP is a CLOBBER, we will fail so return it. */
8142 if (GET_CODE (varop) == CLOBBER)
8143 return varop;
8145 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8146 to VAROP and return the new constant. */
8147 if (GET_CODE (varop) == CONST_INT)
8148 return gen_int_mode (INTVAL (varop) & constop, mode);
8150 /* See what bits may be nonzero in VAROP. Unlike the general case of
8151 a call to nonzero_bits, here we don't care about bits outside
8152 MODE. */
8154 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8156 /* Turn off all bits in the constant that are known to already be zero.
8157 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8158 which is tested below. */
8160 constop &= nonzero;
8162 /* If we don't have any bits left, return zero. */
8163 if (constop == 0)
8164 return const0_rtx;
8166 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8167 a power of two, we can replace this with an ASHIFT. */
8168 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8169 && (i = exact_log2 (constop)) >= 0)
8170 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8172 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8173 or XOR, then try to apply the distributive law. This may eliminate
8174 operations if either branch can be simplified because of the AND.
8175 It may also make some cases more complex, but those cases probably
8176 won't match a pattern either with or without this. */
8178 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8179 return
8180 gen_lowpart
8181 (mode,
8182 apply_distributive_law
8183 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8184 simplify_and_const_int (NULL_RTX,
8185 GET_MODE (varop),
8186 XEXP (varop, 0),
8187 constop),
8188 simplify_and_const_int (NULL_RTX,
8189 GET_MODE (varop),
8190 XEXP (varop, 1),
8191 constop))));
8193 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8194 the AND and see if one of the operands simplifies to zero. If so, we
8195 may eliminate it. */
8197 if (GET_CODE (varop) == PLUS
8198 && exact_log2 (constop + 1) >= 0)
8200 rtx o0, o1;
8202 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8203 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8204 if (o0 == const0_rtx)
8205 return o1;
8206 if (o1 == const0_rtx)
8207 return o0;
8210 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8211 if we already had one (just check for the simplest cases). */
8212 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8213 && GET_MODE (XEXP (x, 0)) == mode
8214 && SUBREG_REG (XEXP (x, 0)) == varop)
8215 varop = XEXP (x, 0);
8216 else
8217 varop = gen_lowpart (mode, varop);
8219 /* If we can't make the SUBREG, try to return what we were given. */
8220 if (GET_CODE (varop) == CLOBBER)
8221 return x ? x : varop;
8223 /* If we are only masking insignificant bits, return VAROP. */
8224 if (constop == nonzero)
8225 x = varop;
8226 else
8228 /* Otherwise, return an AND. */
8229 constop = trunc_int_for_mode (constop, mode);
8230 /* See how much, if any, of X we can use. */
8231 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8232 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8234 else
8236 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8237 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8238 SUBST (XEXP (x, 1), GEN_INT (constop));
8240 SUBST (XEXP (x, 0), varop);
8244 return x;
8247 /* Given a REG, X, compute which bits in X can be nonzero.
8248 We don't care about bits outside of those defined in MODE.
8250 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8251 a shift, AND, or zero_extract, we can do better. */
8253 static rtx
8254 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8255 rtx known_x ATTRIBUTE_UNUSED,
8256 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8257 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8258 unsigned HOST_WIDE_INT *nonzero)
8260 rtx tem;
8262 /* If X is a register whose nonzero bits value is current, use it.
8263 Otherwise, if X is a register whose value we can find, use that
8264 value. Otherwise, use the previously-computed global nonzero bits
8265 for this register. */
8267 if (reg_stat[REGNO (x)].last_set_value != 0
8268 && (reg_stat[REGNO (x)].last_set_mode == mode
8269 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8270 && GET_MODE_CLASS (mode) == MODE_INT))
8271 && (reg_stat[REGNO (x)].last_set_label == label_tick
8272 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8273 && REG_N_SETS (REGNO (x)) == 1
8274 && ! REGNO_REG_SET_P
8275 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8276 REGNO (x))))
8277 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8279 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8280 return NULL;
8283 tem = get_last_value (x);
8285 if (tem)
8287 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8288 /* If X is narrower than MODE and TEM is a non-negative
8289 constant that would appear negative in the mode of X,
8290 sign-extend it for use in reg_nonzero_bits because some
8291 machines (maybe most) will actually do the sign-extension
8292 and this is the conservative approach.
8294 ??? For 2.5, try to tighten up the MD files in this regard
8295 instead of this kludge. */
8297 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8298 && GET_CODE (tem) == CONST_INT
8299 && INTVAL (tem) > 0
8300 && 0 != (INTVAL (tem)
8301 & ((HOST_WIDE_INT) 1
8302 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8303 tem = GEN_INT (INTVAL (tem)
8304 | ((HOST_WIDE_INT) (-1)
8305 << GET_MODE_BITSIZE (GET_MODE (x))));
8306 #endif
8307 return tem;
8309 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8311 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8313 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8314 /* We don't know anything about the upper bits. */
8315 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8316 *nonzero &= mask;
8319 return NULL;
8322 /* Return the number of bits at the high-order end of X that are known to
8323 be equal to the sign bit. X will be used in mode MODE; if MODE is
8324 VOIDmode, X will be used in its own mode. The returned value will always
8325 be between 1 and the number of bits in MODE. */
8327 static rtx
8328 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8329 rtx known_x ATTRIBUTE_UNUSED,
8330 enum machine_mode known_mode
8331 ATTRIBUTE_UNUSED,
8332 unsigned int known_ret ATTRIBUTE_UNUSED,
8333 unsigned int *result)
8335 rtx tem;
8337 if (reg_stat[REGNO (x)].last_set_value != 0
8338 && reg_stat[REGNO (x)].last_set_mode == mode
8339 && (reg_stat[REGNO (x)].last_set_label == label_tick
8340 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8341 && REG_N_SETS (REGNO (x)) == 1
8342 && ! REGNO_REG_SET_P
8343 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8344 REGNO (x))))
8345 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8347 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8348 return NULL;
8351 tem = get_last_value (x);
8352 if (tem != 0)
8353 return tem;
8355 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8356 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8357 *result = reg_stat[REGNO (x)].sign_bit_copies;
8359 return NULL;
8362 /* Return the number of "extended" bits there are in X, when interpreted
8363 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8364 unsigned quantities, this is the number of high-order zero bits.
8365 For signed quantities, this is the number of copies of the sign bit
8366 minus 1. In both case, this function returns the number of "spare"
8367 bits. For example, if two quantities for which this function returns
8368 at least 1 are added, the addition is known not to overflow.
8370 This function will always return 0 unless called during combine, which
8371 implies that it must be called from a define_split. */
8373 unsigned int
8374 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8376 if (nonzero_sign_valid == 0)
8377 return 0;
8379 return (unsignedp
8380 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8381 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8382 - floor_log2 (nonzero_bits (x, mode)))
8383 : 0)
8384 : num_sign_bit_copies (x, mode) - 1);
8387 /* This function is called from `simplify_shift_const' to merge two
8388 outer operations. Specifically, we have already found that we need
8389 to perform operation *POP0 with constant *PCONST0 at the outermost
8390 position. We would now like to also perform OP1 with constant CONST1
8391 (with *POP0 being done last).
8393 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8394 the resulting operation. *PCOMP_P is set to 1 if we would need to
8395 complement the innermost operand, otherwise it is unchanged.
8397 MODE is the mode in which the operation will be done. No bits outside
8398 the width of this mode matter. It is assumed that the width of this mode
8399 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8401 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8402 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8403 result is simply *PCONST0.
8405 If the resulting operation cannot be expressed as one operation, we
8406 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8408 static int
8409 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8411 enum rtx_code op0 = *pop0;
8412 HOST_WIDE_INT const0 = *pconst0;
8414 const0 &= GET_MODE_MASK (mode);
8415 const1 &= GET_MODE_MASK (mode);
8417 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8418 if (op0 == AND)
8419 const1 &= const0;
8421 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8422 if OP0 is SET. */
8424 if (op1 == UNKNOWN || op0 == SET)
8425 return 1;
8427 else if (op0 == UNKNOWN)
8428 op0 = op1, const0 = const1;
8430 else if (op0 == op1)
8432 switch (op0)
8434 case AND:
8435 const0 &= const1;
8436 break;
8437 case IOR:
8438 const0 |= const1;
8439 break;
8440 case XOR:
8441 const0 ^= const1;
8442 break;
8443 case PLUS:
8444 const0 += const1;
8445 break;
8446 case NEG:
8447 op0 = UNKNOWN;
8448 break;
8449 default:
8450 break;
8454 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8455 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8456 return 0;
8458 /* If the two constants aren't the same, we can't do anything. The
8459 remaining six cases can all be done. */
8460 else if (const0 != const1)
8461 return 0;
8463 else
8464 switch (op0)
8466 case IOR:
8467 if (op1 == AND)
8468 /* (a & b) | b == b */
8469 op0 = SET;
8470 else /* op1 == XOR */
8471 /* (a ^ b) | b == a | b */
8473 break;
8475 case XOR:
8476 if (op1 == AND)
8477 /* (a & b) ^ b == (~a) & b */
8478 op0 = AND, *pcomp_p = 1;
8479 else /* op1 == IOR */
8480 /* (a | b) ^ b == a & ~b */
8481 op0 = AND, const0 = ~const0;
8482 break;
8484 case AND:
8485 if (op1 == IOR)
8486 /* (a | b) & b == b */
8487 op0 = SET;
8488 else /* op1 == XOR */
8489 /* (a ^ b) & b) == (~a) & b */
8490 *pcomp_p = 1;
8491 break;
8492 default:
8493 break;
8496 /* Check for NO-OP cases. */
8497 const0 &= GET_MODE_MASK (mode);
8498 if (const0 == 0
8499 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8500 op0 = UNKNOWN;
8501 else if (const0 == 0 && op0 == AND)
8502 op0 = SET;
8503 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8504 && op0 == AND)
8505 op0 = UNKNOWN;
8507 /* ??? Slightly redundant with the above mask, but not entirely.
8508 Moving this above means we'd have to sign-extend the mode mask
8509 for the final test. */
8510 const0 = trunc_int_for_mode (const0, mode);
8512 *pop0 = op0;
8513 *pconst0 = const0;
8515 return 1;
8518 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8519 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8520 that we started with.
8522 The shift is normally computed in the widest mode we find in VAROP, as
8523 long as it isn't a different number of words than RESULT_MODE. Exceptions
8524 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8526 static rtx
8527 simplify_shift_const (rtx x, enum rtx_code code,
8528 enum machine_mode result_mode, rtx varop,
8529 int orig_count)
8531 enum rtx_code orig_code = code;
8532 unsigned int count;
8533 int signed_count;
8534 enum machine_mode mode = result_mode;
8535 enum machine_mode shift_mode, tmode;
8536 unsigned int mode_words
8537 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8538 /* We form (outer_op (code varop count) (outer_const)). */
8539 enum rtx_code outer_op = UNKNOWN;
8540 HOST_WIDE_INT outer_const = 0;
8541 rtx const_rtx;
8542 int complement_p = 0;
8543 rtx new;
8545 /* Make sure and truncate the "natural" shift on the way in. We don't
8546 want to do this inside the loop as it makes it more difficult to
8547 combine shifts. */
8548 if (SHIFT_COUNT_TRUNCATED)
8549 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8551 /* If we were given an invalid count, don't do anything except exactly
8552 what was requested. */
8554 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8556 if (x)
8557 return x;
8559 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8562 count = orig_count;
8564 /* Unless one of the branches of the `if' in this loop does a `continue',
8565 we will `break' the loop after the `if'. */
8567 while (count != 0)
8569 /* If we have an operand of (clobber (const_int 0)), just return that
8570 value. */
8571 if (GET_CODE (varop) == CLOBBER)
8572 return varop;
8574 /* If we discovered we had to complement VAROP, leave. Making a NOT
8575 here would cause an infinite loop. */
8576 if (complement_p)
8577 break;
8579 /* Convert ROTATERT to ROTATE. */
8580 if (code == ROTATERT)
8582 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8583 code = ROTATE;
8584 if (VECTOR_MODE_P (result_mode))
8585 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8586 else
8587 count = bitsize - count;
8590 /* We need to determine what mode we will do the shift in. If the
8591 shift is a right shift or a ROTATE, we must always do it in the mode
8592 it was originally done in. Otherwise, we can do it in MODE, the
8593 widest mode encountered. */
8594 shift_mode
8595 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8596 ? result_mode : mode);
8598 /* Handle cases where the count is greater than the size of the mode
8599 minus 1. For ASHIFT, use the size minus one as the count (this can
8600 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8601 take the count modulo the size. For other shifts, the result is
8602 zero.
8604 Since these shifts are being produced by the compiler by combining
8605 multiple operations, each of which are defined, we know what the
8606 result is supposed to be. */
8608 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8610 if (code == ASHIFTRT)
8611 count = GET_MODE_BITSIZE (shift_mode) - 1;
8612 else if (code == ROTATE || code == ROTATERT)
8613 count %= GET_MODE_BITSIZE (shift_mode);
8614 else
8616 /* We can't simply return zero because there may be an
8617 outer op. */
8618 varop = const0_rtx;
8619 count = 0;
8620 break;
8624 /* An arithmetic right shift of a quantity known to be -1 or 0
8625 is a no-op. */
8626 if (code == ASHIFTRT
8627 && (num_sign_bit_copies (varop, shift_mode)
8628 == GET_MODE_BITSIZE (shift_mode)))
8630 count = 0;
8631 break;
8634 /* If we are doing an arithmetic right shift and discarding all but
8635 the sign bit copies, this is equivalent to doing a shift by the
8636 bitsize minus one. Convert it into that shift because it will often
8637 allow other simplifications. */
8639 if (code == ASHIFTRT
8640 && (count + num_sign_bit_copies (varop, shift_mode)
8641 >= GET_MODE_BITSIZE (shift_mode)))
8642 count = GET_MODE_BITSIZE (shift_mode) - 1;
8644 /* We simplify the tests below and elsewhere by converting
8645 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8646 `make_compound_operation' will convert it to an ASHIFTRT for
8647 those machines (such as VAX) that don't have an LSHIFTRT. */
8648 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8649 && code == ASHIFTRT
8650 && ((nonzero_bits (varop, shift_mode)
8651 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8652 == 0))
8653 code = LSHIFTRT;
8655 if (code == LSHIFTRT
8656 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8657 && !(nonzero_bits (varop, shift_mode) >> count))
8658 varop = const0_rtx;
8659 if (code == ASHIFT
8660 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8661 && !((nonzero_bits (varop, shift_mode) << count)
8662 & GET_MODE_MASK (shift_mode)))
8663 varop = const0_rtx;
8665 switch (GET_CODE (varop))
8667 case SIGN_EXTEND:
8668 case ZERO_EXTEND:
8669 case SIGN_EXTRACT:
8670 case ZERO_EXTRACT:
8671 new = expand_compound_operation (varop);
8672 if (new != varop)
8674 varop = new;
8675 continue;
8677 break;
8679 case MEM:
8680 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8681 minus the width of a smaller mode, we can do this with a
8682 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8683 if ((code == ASHIFTRT || code == LSHIFTRT)
8684 && ! mode_dependent_address_p (XEXP (varop, 0))
8685 && ! MEM_VOLATILE_P (varop)
8686 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8687 MODE_INT, 1)) != BLKmode)
8689 new = adjust_address_nv (varop, tmode,
8690 BYTES_BIG_ENDIAN ? 0
8691 : count / BITS_PER_UNIT);
8693 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8694 : ZERO_EXTEND, mode, new);
8695 count = 0;
8696 continue;
8698 break;
8700 case USE:
8701 /* Similar to the case above, except that we can only do this if
8702 the resulting mode is the same as that of the underlying
8703 MEM and adjust the address depending on the *bits* endianness
8704 because of the way that bit-field extract insns are defined. */
8705 if ((code == ASHIFTRT || code == LSHIFTRT)
8706 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8707 MODE_INT, 1)) != BLKmode
8708 && tmode == GET_MODE (XEXP (varop, 0)))
8710 if (BITS_BIG_ENDIAN)
8711 new = XEXP (varop, 0);
8712 else
8714 new = copy_rtx (XEXP (varop, 0));
8715 SUBST (XEXP (new, 0),
8716 plus_constant (XEXP (new, 0),
8717 count / BITS_PER_UNIT));
8720 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8721 : ZERO_EXTEND, mode, new);
8722 count = 0;
8723 continue;
8725 break;
8727 case SUBREG:
8728 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8729 the same number of words as what we've seen so far. Then store
8730 the widest mode in MODE. */
8731 if (subreg_lowpart_p (varop)
8732 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8733 > GET_MODE_SIZE (GET_MODE (varop)))
8734 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8735 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8736 == mode_words)
8738 varop = SUBREG_REG (varop);
8739 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8740 mode = GET_MODE (varop);
8741 continue;
8743 break;
8745 case MULT:
8746 /* Some machines use MULT instead of ASHIFT because MULT
8747 is cheaper. But it is still better on those machines to
8748 merge two shifts into one. */
8749 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8750 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8752 varop
8753 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
8754 XEXP (varop, 0),
8755 GEN_INT (exact_log2 (
8756 INTVAL (XEXP (varop, 1)))));
8757 continue;
8759 break;
8761 case UDIV:
8762 /* Similar, for when divides are cheaper. */
8763 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8764 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8766 varop
8767 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
8768 XEXP (varop, 0),
8769 GEN_INT (exact_log2 (
8770 INTVAL (XEXP (varop, 1)))));
8771 continue;
8773 break;
8775 case ASHIFTRT:
8776 /* If we are extracting just the sign bit of an arithmetic
8777 right shift, that shift is not needed. However, the sign
8778 bit of a wider mode may be different from what would be
8779 interpreted as the sign bit in a narrower mode, so, if
8780 the result is narrower, don't discard the shift. */
8781 if (code == LSHIFTRT
8782 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8783 && (GET_MODE_BITSIZE (result_mode)
8784 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8786 varop = XEXP (varop, 0);
8787 continue;
8790 /* ... fall through ... */
8792 case LSHIFTRT:
8793 case ASHIFT:
8794 case ROTATE:
8795 /* Here we have two nested shifts. The result is usually the
8796 AND of a new shift with a mask. We compute the result below. */
8797 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8798 && INTVAL (XEXP (varop, 1)) >= 0
8799 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8800 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8801 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8803 enum rtx_code first_code = GET_CODE (varop);
8804 unsigned int first_count = INTVAL (XEXP (varop, 1));
8805 unsigned HOST_WIDE_INT mask;
8806 rtx mask_rtx;
8808 /* We have one common special case. We can't do any merging if
8809 the inner code is an ASHIFTRT of a smaller mode. However, if
8810 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8811 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8812 we can convert it to
8813 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8814 This simplifies certain SIGN_EXTEND operations. */
8815 if (code == ASHIFT && first_code == ASHIFTRT
8816 && count == (unsigned int)
8817 (GET_MODE_BITSIZE (result_mode)
8818 - GET_MODE_BITSIZE (GET_MODE (varop))))
8820 /* C3 has the low-order C1 bits zero. */
8822 mask = (GET_MODE_MASK (mode)
8823 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8825 varop = simplify_and_const_int (NULL_RTX, result_mode,
8826 XEXP (varop, 0), mask);
8827 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8828 varop, count);
8829 count = first_count;
8830 code = ASHIFTRT;
8831 continue;
8834 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8835 than C1 high-order bits equal to the sign bit, we can convert
8836 this to either an ASHIFT or an ASHIFTRT depending on the
8837 two counts.
8839 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8841 if (code == ASHIFTRT && first_code == ASHIFT
8842 && GET_MODE (varop) == shift_mode
8843 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8844 > first_count))
8846 varop = XEXP (varop, 0);
8848 signed_count = count - first_count;
8849 if (signed_count < 0)
8850 count = -signed_count, code = ASHIFT;
8851 else
8852 count = signed_count;
8854 continue;
8857 /* There are some cases we can't do. If CODE is ASHIFTRT,
8858 we can only do this if FIRST_CODE is also ASHIFTRT.
8860 We can't do the case when CODE is ROTATE and FIRST_CODE is
8861 ASHIFTRT.
8863 If the mode of this shift is not the mode of the outer shift,
8864 we can't do this if either shift is a right shift or ROTATE.
8866 Finally, we can't do any of these if the mode is too wide
8867 unless the codes are the same.
8869 Handle the case where the shift codes are the same
8870 first. */
8872 if (code == first_code)
8874 if (GET_MODE (varop) != result_mode
8875 && (code == ASHIFTRT || code == LSHIFTRT
8876 || code == ROTATE))
8877 break;
8879 count += first_count;
8880 varop = XEXP (varop, 0);
8881 continue;
8884 if (code == ASHIFTRT
8885 || (code == ROTATE && first_code == ASHIFTRT)
8886 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8887 || (GET_MODE (varop) != result_mode
8888 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8889 || first_code == ROTATE
8890 || code == ROTATE)))
8891 break;
8893 /* To compute the mask to apply after the shift, shift the
8894 nonzero bits of the inner shift the same way the
8895 outer shift will. */
8897 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8899 mask_rtx
8900 = simplify_binary_operation (code, result_mode, mask_rtx,
8901 GEN_INT (count));
8903 /* Give up if we can't compute an outer operation to use. */
8904 if (mask_rtx == 0
8905 || GET_CODE (mask_rtx) != CONST_INT
8906 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8907 INTVAL (mask_rtx),
8908 result_mode, &complement_p))
8909 break;
8911 /* If the shifts are in the same direction, we add the
8912 counts. Otherwise, we subtract them. */
8913 signed_count = count;
8914 if ((code == ASHIFTRT || code == LSHIFTRT)
8915 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8916 signed_count += first_count;
8917 else
8918 signed_count -= first_count;
8920 /* If COUNT is positive, the new shift is usually CODE,
8921 except for the two exceptions below, in which case it is
8922 FIRST_CODE. If the count is negative, FIRST_CODE should
8923 always be used */
8924 if (signed_count > 0
8925 && ((first_code == ROTATE && code == ASHIFT)
8926 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8927 code = first_code, count = signed_count;
8928 else if (signed_count < 0)
8929 code = first_code, count = -signed_count;
8930 else
8931 count = signed_count;
8933 varop = XEXP (varop, 0);
8934 continue;
8937 /* If we have (A << B << C) for any shift, we can convert this to
8938 (A << C << B). This wins if A is a constant. Only try this if
8939 B is not a constant. */
8941 else if (GET_CODE (varop) == code
8942 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8943 && 0 != (new
8944 = simplify_binary_operation (code, mode,
8945 XEXP (varop, 0),
8946 GEN_INT (count))))
8948 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8949 count = 0;
8950 continue;
8952 break;
8954 case NOT:
8955 /* Make this fit the case below. */
8956 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8957 GEN_INT (GET_MODE_MASK (mode)));
8958 continue;
8960 case IOR:
8961 case AND:
8962 case XOR:
8963 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8964 with C the size of VAROP - 1 and the shift is logical if
8965 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8966 we have an (le X 0) operation. If we have an arithmetic shift
8967 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8968 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8970 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8971 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8972 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8973 && (code == LSHIFTRT || code == ASHIFTRT)
8974 && count == (unsigned int)
8975 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8976 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8978 count = 0;
8979 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8980 const0_rtx);
8982 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8983 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8985 continue;
8988 /* If we have (shift (logical)), move the logical to the outside
8989 to allow it to possibly combine with another logical and the
8990 shift to combine with another shift. This also canonicalizes to
8991 what a ZERO_EXTRACT looks like. Also, some machines have
8992 (and (shift)) insns. */
8994 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8995 /* We can't do this if we have (ashiftrt (xor)) and the
8996 constant has its sign bit set in shift_mode. */
8997 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8998 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8999 shift_mode))
9000 && (new = simplify_binary_operation (code, result_mode,
9001 XEXP (varop, 1),
9002 GEN_INT (count))) != 0
9003 && GET_CODE (new) == CONST_INT
9004 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9005 INTVAL (new), result_mode, &complement_p))
9007 varop = XEXP (varop, 0);
9008 continue;
9011 /* If we can't do that, try to simplify the shift in each arm of the
9012 logical expression, make a new logical expression, and apply
9013 the inverse distributive law. This also can't be done
9014 for some (ashiftrt (xor)). */
9015 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9016 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9017 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9018 shift_mode)))
9020 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9021 XEXP (varop, 0), count);
9022 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9023 XEXP (varop, 1), count);
9025 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9026 lhs, rhs);
9027 varop = apply_distributive_law (varop);
9029 count = 0;
9030 continue;
9032 break;
9034 case EQ:
9035 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9036 says that the sign bit can be tested, FOO has mode MODE, C is
9037 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9038 that may be nonzero. */
9039 if (code == LSHIFTRT
9040 && XEXP (varop, 1) == const0_rtx
9041 && GET_MODE (XEXP (varop, 0)) == result_mode
9042 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9043 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9044 && ((STORE_FLAG_VALUE
9045 & ((HOST_WIDE_INT) 1
9046 < (GET_MODE_BITSIZE (result_mode) - 1))))
9047 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9048 && merge_outer_ops (&outer_op, &outer_const, XOR,
9049 (HOST_WIDE_INT) 1, result_mode,
9050 &complement_p))
9052 varop = XEXP (varop, 0);
9053 count = 0;
9054 continue;
9056 break;
9058 case NEG:
9059 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9060 than the number of bits in the mode is equivalent to A. */
9061 if (code == LSHIFTRT
9062 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9063 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9065 varop = XEXP (varop, 0);
9066 count = 0;
9067 continue;
9070 /* NEG commutes with ASHIFT since it is multiplication. Move the
9071 NEG outside to allow shifts to combine. */
9072 if (code == ASHIFT
9073 && merge_outer_ops (&outer_op, &outer_const, NEG,
9074 (HOST_WIDE_INT) 0, result_mode,
9075 &complement_p))
9077 varop = XEXP (varop, 0);
9078 continue;
9080 break;
9082 case PLUS:
9083 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9084 is one less than the number of bits in the mode is
9085 equivalent to (xor A 1). */
9086 if (code == LSHIFTRT
9087 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9088 && XEXP (varop, 1) == constm1_rtx
9089 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9090 && merge_outer_ops (&outer_op, &outer_const, XOR,
9091 (HOST_WIDE_INT) 1, result_mode,
9092 &complement_p))
9094 count = 0;
9095 varop = XEXP (varop, 0);
9096 continue;
9099 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9100 that might be nonzero in BAR are those being shifted out and those
9101 bits are known zero in FOO, we can replace the PLUS with FOO.
9102 Similarly in the other operand order. This code occurs when
9103 we are computing the size of a variable-size array. */
9105 if ((code == ASHIFTRT || code == LSHIFTRT)
9106 && count < HOST_BITS_PER_WIDE_INT
9107 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9108 && (nonzero_bits (XEXP (varop, 1), result_mode)
9109 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9111 varop = XEXP (varop, 0);
9112 continue;
9114 else if ((code == ASHIFTRT || code == LSHIFTRT)
9115 && count < HOST_BITS_PER_WIDE_INT
9116 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9117 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9118 >> count)
9119 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9120 & nonzero_bits (XEXP (varop, 1),
9121 result_mode)))
9123 varop = XEXP (varop, 1);
9124 continue;
9127 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9128 if (code == ASHIFT
9129 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9130 && (new = simplify_binary_operation (ASHIFT, result_mode,
9131 XEXP (varop, 1),
9132 GEN_INT (count))) != 0
9133 && GET_CODE (new) == CONST_INT
9134 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9135 INTVAL (new), result_mode, &complement_p))
9137 varop = XEXP (varop, 0);
9138 continue;
9141 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9142 signbit', and attempt to change the PLUS to an XOR and move it to
9143 the outer operation as is done above in the AND/IOR/XOR case
9144 leg for shift(logical). See details in logical handling above
9145 for reasoning in doing so. */
9146 if (code == LSHIFTRT
9147 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9148 && mode_signbit_p (result_mode, XEXP (varop, 1))
9149 && (new = simplify_binary_operation (code, result_mode,
9150 XEXP (varop, 1),
9151 GEN_INT (count))) != 0
9152 && GET_CODE (new) == CONST_INT
9153 && merge_outer_ops (&outer_op, &outer_const, XOR,
9154 INTVAL (new), result_mode, &complement_p))
9156 varop = XEXP (varop, 0);
9157 continue;
9160 break;
9162 case MINUS:
9163 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9164 with C the size of VAROP - 1 and the shift is logical if
9165 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9166 we have a (gt X 0) operation. If the shift is arithmetic with
9167 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9168 we have a (neg (gt X 0)) operation. */
9170 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9171 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9172 && count == (unsigned int)
9173 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9174 && (code == LSHIFTRT || code == ASHIFTRT)
9175 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9176 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9177 == count
9178 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9180 count = 0;
9181 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9182 const0_rtx);
9184 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9185 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9187 continue;
9189 break;
9191 case TRUNCATE:
9192 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9193 if the truncate does not affect the value. */
9194 if (code == LSHIFTRT
9195 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9196 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9197 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9198 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9199 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9201 rtx varop_inner = XEXP (varop, 0);
9203 varop_inner
9204 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9205 XEXP (varop_inner, 0),
9206 GEN_INT
9207 (count + INTVAL (XEXP (varop_inner, 1))));
9208 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9209 count = 0;
9210 continue;
9212 break;
9214 default:
9215 break;
9218 break;
9221 /* We need to determine what mode to do the shift in. If the shift is
9222 a right shift or ROTATE, we must always do it in the mode it was
9223 originally done in. Otherwise, we can do it in MODE, the widest mode
9224 encountered. The code we care about is that of the shift that will
9225 actually be done, not the shift that was originally requested. */
9226 shift_mode
9227 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9228 ? result_mode : mode);
9230 /* We have now finished analyzing the shift. The result should be
9231 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9232 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9233 to the result of the shift. OUTER_CONST is the relevant constant,
9234 but we must turn off all bits turned off in the shift.
9236 If we were passed a value for X, see if we can use any pieces of
9237 it. If not, make new rtx. */
9239 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9240 && GET_CODE (XEXP (x, 1)) == CONST_INT
9241 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9242 const_rtx = XEXP (x, 1);
9243 else
9244 const_rtx = GEN_INT (count);
9246 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9247 && GET_MODE (XEXP (x, 0)) == shift_mode
9248 && SUBREG_REG (XEXP (x, 0)) == varop)
9249 varop = XEXP (x, 0);
9250 else if (GET_MODE (varop) != shift_mode)
9251 varop = gen_lowpart (shift_mode, varop);
9253 /* If we can't make the SUBREG, try to return what we were given. */
9254 if (GET_CODE (varop) == CLOBBER)
9255 return x ? x : varop;
9257 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9258 if (new != 0)
9259 x = new;
9260 else
9261 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9263 /* If we have an outer operation and we just made a shift, it is
9264 possible that we could have simplified the shift were it not
9265 for the outer operation. So try to do the simplification
9266 recursively. */
9268 if (outer_op != UNKNOWN && GET_CODE (x) == code
9269 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9270 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9271 INTVAL (XEXP (x, 1)));
9273 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9274 turn off all the bits that the shift would have turned off. */
9275 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9276 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9277 GET_MODE_MASK (result_mode) >> orig_count);
9279 /* Do the remainder of the processing in RESULT_MODE. */
9280 x = gen_lowpart (result_mode, x);
9282 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9283 operation. */
9284 if (complement_p)
9285 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9287 if (outer_op != UNKNOWN)
9289 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9290 outer_const = trunc_int_for_mode (outer_const, result_mode);
9292 if (outer_op == AND)
9293 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9294 else if (outer_op == SET)
9295 /* This means that we have determined that the result is
9296 equivalent to a constant. This should be rare. */
9297 x = GEN_INT (outer_const);
9298 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9299 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9300 else
9301 x = simplify_gen_binary (outer_op, result_mode, x,
9302 GEN_INT (outer_const));
9305 return x;
9308 /* Like recog, but we receive the address of a pointer to a new pattern.
9309 We try to match the rtx that the pointer points to.
9310 If that fails, we may try to modify or replace the pattern,
9311 storing the replacement into the same pointer object.
9313 Modifications include deletion or addition of CLOBBERs.
9315 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9316 the CLOBBERs are placed.
9318 The value is the final insn code from the pattern ultimately matched,
9319 or -1. */
9321 static int
9322 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9324 rtx pat = *pnewpat;
9325 int insn_code_number;
9326 int num_clobbers_to_add = 0;
9327 int i;
9328 rtx notes = 0;
9329 rtx old_notes, old_pat;
9331 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9332 we use to indicate that something didn't match. If we find such a
9333 thing, force rejection. */
9334 if (GET_CODE (pat) == PARALLEL)
9335 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9336 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9337 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9338 return -1;
9340 old_pat = PATTERN (insn);
9341 old_notes = REG_NOTES (insn);
9342 PATTERN (insn) = pat;
9343 REG_NOTES (insn) = 0;
9345 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9347 /* If it isn't, there is the possibility that we previously had an insn
9348 that clobbered some register as a side effect, but the combined
9349 insn doesn't need to do that. So try once more without the clobbers
9350 unless this represents an ASM insn. */
9352 if (insn_code_number < 0 && ! check_asm_operands (pat)
9353 && GET_CODE (pat) == PARALLEL)
9355 int pos;
9357 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9358 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9360 if (i != pos)
9361 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9362 pos++;
9365 SUBST_INT (XVECLEN (pat, 0), pos);
9367 if (pos == 1)
9368 pat = XVECEXP (pat, 0, 0);
9370 PATTERN (insn) = pat;
9371 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9373 PATTERN (insn) = old_pat;
9374 REG_NOTES (insn) = old_notes;
9376 /* Recognize all noop sets, these will be killed by followup pass. */
9377 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9378 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9380 /* If we had any clobbers to add, make a new pattern than contains
9381 them. Then check to make sure that all of them are dead. */
9382 if (num_clobbers_to_add)
9384 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9385 rtvec_alloc (GET_CODE (pat) == PARALLEL
9386 ? (XVECLEN (pat, 0)
9387 + num_clobbers_to_add)
9388 : num_clobbers_to_add + 1));
9390 if (GET_CODE (pat) == PARALLEL)
9391 for (i = 0; i < XVECLEN (pat, 0); i++)
9392 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9393 else
9394 XVECEXP (newpat, 0, 0) = pat;
9396 add_clobbers (newpat, insn_code_number);
9398 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9399 i < XVECLEN (newpat, 0); i++)
9401 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9402 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9403 return -1;
9404 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9405 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9407 pat = newpat;
9410 *pnewpat = pat;
9411 *pnotes = notes;
9413 return insn_code_number;
9416 /* Like gen_lowpart_general but for use by combine. In combine it
9417 is not possible to create any new pseudoregs. However, it is
9418 safe to create invalid memory addresses, because combine will
9419 try to recognize them and all they will do is make the combine
9420 attempt fail.
9422 If for some reason this cannot do its job, an rtx
9423 (clobber (const_int 0)) is returned.
9424 An insn containing that will not be recognized. */
9426 static rtx
9427 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9429 enum machine_mode imode = GET_MODE (x);
9430 unsigned int osize = GET_MODE_SIZE (omode);
9431 unsigned int isize = GET_MODE_SIZE (imode);
9432 rtx result;
9434 if (omode == imode)
9435 return x;
9437 /* Return identity if this is a CONST or symbolic reference. */
9438 if (omode == Pmode
9439 && (GET_CODE (x) == CONST
9440 || GET_CODE (x) == SYMBOL_REF
9441 || GET_CODE (x) == LABEL_REF))
9442 return x;
9444 /* We can only support MODE being wider than a word if X is a
9445 constant integer or has a mode the same size. */
9446 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9447 && ! ((imode == VOIDmode
9448 && (GET_CODE (x) == CONST_INT
9449 || GET_CODE (x) == CONST_DOUBLE))
9450 || isize == osize))
9451 goto fail;
9453 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9454 won't know what to do. So we will strip off the SUBREG here and
9455 process normally. */
9456 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9458 x = SUBREG_REG (x);
9460 /* For use in case we fall down into the address adjustments
9461 further below, we need to adjust the known mode and size of
9462 x; imode and isize, since we just adjusted x. */
9463 imode = GET_MODE (x);
9465 if (imode == omode)
9466 return x;
9468 isize = GET_MODE_SIZE (imode);
9471 result = gen_lowpart_common (omode, x);
9473 #ifdef CANNOT_CHANGE_MODE_CLASS
9474 if (result != 0 && GET_CODE (result) == SUBREG)
9475 record_subregs_of_mode (result);
9476 #endif
9478 if (result)
9479 return result;
9481 if (MEM_P (x))
9483 int offset = 0;
9485 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9486 address. */
9487 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9488 goto fail;
9490 /* If we want to refer to something bigger than the original memref,
9491 generate a paradoxical subreg instead. That will force a reload
9492 of the original memref X. */
9493 if (isize < osize)
9494 return gen_rtx_SUBREG (omode, x, 0);
9496 if (WORDS_BIG_ENDIAN)
9497 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9499 /* Adjust the address so that the address-after-the-data is
9500 unchanged. */
9501 if (BYTES_BIG_ENDIAN)
9502 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9504 return adjust_address_nv (x, omode, offset);
9507 /* If X is a comparison operator, rewrite it in a new mode. This
9508 probably won't match, but may allow further simplifications. */
9509 else if (COMPARISON_P (x))
9510 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9512 /* If we couldn't simplify X any other way, just enclose it in a
9513 SUBREG. Normally, this SUBREG won't match, but some patterns may
9514 include an explicit SUBREG or we may simplify it further in combine. */
9515 else
9517 int offset = 0;
9518 rtx res;
9520 offset = subreg_lowpart_offset (omode, imode);
9521 if (imode == VOIDmode)
9523 imode = int_mode_for_mode (omode);
9524 x = gen_lowpart_common (imode, x);
9525 if (x == NULL)
9526 goto fail;
9528 res = simplify_gen_subreg (omode, x, imode, offset);
9529 if (res)
9530 return res;
9533 fail:
9534 return gen_rtx_CLOBBER (imode, const0_rtx);
9537 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9538 comparison code that will be tested.
9540 The result is a possibly different comparison code to use. *POP0 and
9541 *POP1 may be updated.
9543 It is possible that we might detect that a comparison is either always
9544 true or always false. However, we do not perform general constant
9545 folding in combine, so this knowledge isn't useful. Such tautologies
9546 should have been detected earlier. Hence we ignore all such cases. */
9548 static enum rtx_code
9549 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9551 rtx op0 = *pop0;
9552 rtx op1 = *pop1;
9553 rtx tem, tem1;
9554 int i;
9555 enum machine_mode mode, tmode;
9557 /* Try a few ways of applying the same transformation to both operands. */
9558 while (1)
9560 #ifndef WORD_REGISTER_OPERATIONS
9561 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9562 so check specially. */
9563 if (code != GTU && code != GEU && code != LTU && code != LEU
9564 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9565 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9566 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9567 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9568 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9569 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9570 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9571 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9572 && XEXP (op0, 1) == XEXP (op1, 1)
9573 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9574 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9575 && (INTVAL (XEXP (op0, 1))
9576 == (GET_MODE_BITSIZE (GET_MODE (op0))
9577 - (GET_MODE_BITSIZE
9578 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9580 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9581 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9583 #endif
9585 /* If both operands are the same constant shift, see if we can ignore the
9586 shift. We can if the shift is a rotate or if the bits shifted out of
9587 this shift are known to be zero for both inputs and if the type of
9588 comparison is compatible with the shift. */
9589 if (GET_CODE (op0) == GET_CODE (op1)
9590 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9591 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9592 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9593 && (code != GT && code != LT && code != GE && code != LE))
9594 || (GET_CODE (op0) == ASHIFTRT
9595 && (code != GTU && code != LTU
9596 && code != GEU && code != LEU)))
9597 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9598 && INTVAL (XEXP (op0, 1)) >= 0
9599 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9600 && XEXP (op0, 1) == XEXP (op1, 1))
9602 enum machine_mode mode = GET_MODE (op0);
9603 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9604 int shift_count = INTVAL (XEXP (op0, 1));
9606 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9607 mask &= (mask >> shift_count) << shift_count;
9608 else if (GET_CODE (op0) == ASHIFT)
9609 mask = (mask & (mask << shift_count)) >> shift_count;
9611 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9612 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9613 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9614 else
9615 break;
9618 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9619 SUBREGs are of the same mode, and, in both cases, the AND would
9620 be redundant if the comparison was done in the narrower mode,
9621 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9622 and the operand's possibly nonzero bits are 0xffffff01; in that case
9623 if we only care about QImode, we don't need the AND). This case
9624 occurs if the output mode of an scc insn is not SImode and
9625 STORE_FLAG_VALUE == 1 (e.g., the 386).
9627 Similarly, check for a case where the AND's are ZERO_EXTEND
9628 operations from some narrower mode even though a SUBREG is not
9629 present. */
9631 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9632 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9633 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9635 rtx inner_op0 = XEXP (op0, 0);
9636 rtx inner_op1 = XEXP (op1, 0);
9637 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9638 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9639 int changed = 0;
9641 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9642 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9643 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9644 && (GET_MODE (SUBREG_REG (inner_op0))
9645 == GET_MODE (SUBREG_REG (inner_op1)))
9646 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9647 <= HOST_BITS_PER_WIDE_INT)
9648 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9649 GET_MODE (SUBREG_REG (inner_op0)))))
9650 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9651 GET_MODE (SUBREG_REG (inner_op1))))))
9653 op0 = SUBREG_REG (inner_op0);
9654 op1 = SUBREG_REG (inner_op1);
9656 /* The resulting comparison is always unsigned since we masked
9657 off the original sign bit. */
9658 code = unsigned_condition (code);
9660 changed = 1;
9663 else if (c0 == c1)
9664 for (tmode = GET_CLASS_NARROWEST_MODE
9665 (GET_MODE_CLASS (GET_MODE (op0)));
9666 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9667 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9669 op0 = gen_lowpart (tmode, inner_op0);
9670 op1 = gen_lowpart (tmode, inner_op1);
9671 code = unsigned_condition (code);
9672 changed = 1;
9673 break;
9676 if (! changed)
9677 break;
9680 /* If both operands are NOT, we can strip off the outer operation
9681 and adjust the comparison code for swapped operands; similarly for
9682 NEG, except that this must be an equality comparison. */
9683 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9684 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9685 && (code == EQ || code == NE)))
9686 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9688 else
9689 break;
9692 /* If the first operand is a constant, swap the operands and adjust the
9693 comparison code appropriately, but don't do this if the second operand
9694 is already a constant integer. */
9695 if (swap_commutative_operands_p (op0, op1))
9697 tem = op0, op0 = op1, op1 = tem;
9698 code = swap_condition (code);
9701 /* We now enter a loop during which we will try to simplify the comparison.
9702 For the most part, we only are concerned with comparisons with zero,
9703 but some things may really be comparisons with zero but not start
9704 out looking that way. */
9706 while (GET_CODE (op1) == CONST_INT)
9708 enum machine_mode mode = GET_MODE (op0);
9709 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9710 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9711 int equality_comparison_p;
9712 int sign_bit_comparison_p;
9713 int unsigned_comparison_p;
9714 HOST_WIDE_INT const_op;
9716 /* We only want to handle integral modes. This catches VOIDmode,
9717 CCmode, and the floating-point modes. An exception is that we
9718 can handle VOIDmode if OP0 is a COMPARE or a comparison
9719 operation. */
9721 if (GET_MODE_CLASS (mode) != MODE_INT
9722 && ! (mode == VOIDmode
9723 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9724 break;
9726 /* Get the constant we are comparing against and turn off all bits
9727 not on in our mode. */
9728 const_op = INTVAL (op1);
9729 if (mode != VOIDmode)
9730 const_op = trunc_int_for_mode (const_op, mode);
9731 op1 = GEN_INT (const_op);
9733 /* If we are comparing against a constant power of two and the value
9734 being compared can only have that single bit nonzero (e.g., it was
9735 `and'ed with that bit), we can replace this with a comparison
9736 with zero. */
9737 if (const_op
9738 && (code == EQ || code == NE || code == GE || code == GEU
9739 || code == LT || code == LTU)
9740 && mode_width <= HOST_BITS_PER_WIDE_INT
9741 && exact_log2 (const_op) >= 0
9742 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9744 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9745 op1 = const0_rtx, const_op = 0;
9748 /* Similarly, if we are comparing a value known to be either -1 or
9749 0 with -1, change it to the opposite comparison against zero. */
9751 if (const_op == -1
9752 && (code == EQ || code == NE || code == GT || code == LE
9753 || code == GEU || code == LTU)
9754 && num_sign_bit_copies (op0, mode) == mode_width)
9756 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9757 op1 = const0_rtx, const_op = 0;
9760 /* Do some canonicalizations based on the comparison code. We prefer
9761 comparisons against zero and then prefer equality comparisons.
9762 If we can reduce the size of a constant, we will do that too. */
9764 switch (code)
9766 case LT:
9767 /* < C is equivalent to <= (C - 1) */
9768 if (const_op > 0)
9770 const_op -= 1;
9771 op1 = GEN_INT (const_op);
9772 code = LE;
9773 /* ... fall through to LE case below. */
9775 else
9776 break;
9778 case LE:
9779 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9780 if (const_op < 0)
9782 const_op += 1;
9783 op1 = GEN_INT (const_op);
9784 code = LT;
9787 /* If we are doing a <= 0 comparison on a value known to have
9788 a zero sign bit, we can replace this with == 0. */
9789 else if (const_op == 0
9790 && mode_width <= HOST_BITS_PER_WIDE_INT
9791 && (nonzero_bits (op0, mode)
9792 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9793 code = EQ;
9794 break;
9796 case GE:
9797 /* >= C is equivalent to > (C - 1). */
9798 if (const_op > 0)
9800 const_op -= 1;
9801 op1 = GEN_INT (const_op);
9802 code = GT;
9803 /* ... fall through to GT below. */
9805 else
9806 break;
9808 case GT:
9809 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9810 if (const_op < 0)
9812 const_op += 1;
9813 op1 = GEN_INT (const_op);
9814 code = GE;
9817 /* If we are doing a > 0 comparison on a value known to have
9818 a zero sign bit, we can replace this with != 0. */
9819 else if (const_op == 0
9820 && mode_width <= HOST_BITS_PER_WIDE_INT
9821 && (nonzero_bits (op0, mode)
9822 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9823 code = NE;
9824 break;
9826 case LTU:
9827 /* < C is equivalent to <= (C - 1). */
9828 if (const_op > 0)
9830 const_op -= 1;
9831 op1 = GEN_INT (const_op);
9832 code = LEU;
9833 /* ... fall through ... */
9836 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9837 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9838 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9840 const_op = 0, op1 = const0_rtx;
9841 code = GE;
9842 break;
9844 else
9845 break;
9847 case LEU:
9848 /* unsigned <= 0 is equivalent to == 0 */
9849 if (const_op == 0)
9850 code = EQ;
9852 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9853 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9854 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9856 const_op = 0, op1 = const0_rtx;
9857 code = GE;
9859 break;
9861 case GEU:
9862 /* >= C is equivalent to > (C - 1). */
9863 if (const_op > 1)
9865 const_op -= 1;
9866 op1 = GEN_INT (const_op);
9867 code = GTU;
9868 /* ... fall through ... */
9871 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9872 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9873 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9875 const_op = 0, op1 = const0_rtx;
9876 code = LT;
9877 break;
9879 else
9880 break;
9882 case GTU:
9883 /* unsigned > 0 is equivalent to != 0 */
9884 if (const_op == 0)
9885 code = NE;
9887 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9888 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9889 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9891 const_op = 0, op1 = const0_rtx;
9892 code = LT;
9894 break;
9896 default:
9897 break;
9900 /* Compute some predicates to simplify code below. */
9902 equality_comparison_p = (code == EQ || code == NE);
9903 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9904 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9905 || code == GEU);
9907 /* If this is a sign bit comparison and we can do arithmetic in
9908 MODE, say that we will only be needing the sign bit of OP0. */
9909 if (sign_bit_comparison_p
9910 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9911 op0 = force_to_mode (op0, mode,
9912 ((HOST_WIDE_INT) 1
9913 << (GET_MODE_BITSIZE (mode) - 1)),
9914 NULL_RTX, 0);
9916 /* Now try cases based on the opcode of OP0. If none of the cases
9917 does a "continue", we exit this loop immediately after the
9918 switch. */
9920 switch (GET_CODE (op0))
9922 case ZERO_EXTRACT:
9923 /* If we are extracting a single bit from a variable position in
9924 a constant that has only a single bit set and are comparing it
9925 with zero, we can convert this into an equality comparison
9926 between the position and the location of the single bit. */
9927 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9928 have already reduced the shift count modulo the word size. */
9929 if (!SHIFT_COUNT_TRUNCATED
9930 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9931 && XEXP (op0, 1) == const1_rtx
9932 && equality_comparison_p && const_op == 0
9933 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9935 if (BITS_BIG_ENDIAN)
9937 enum machine_mode new_mode
9938 = mode_for_extraction (EP_extzv, 1);
9939 if (new_mode == MAX_MACHINE_MODE)
9940 i = BITS_PER_WORD - 1 - i;
9941 else
9943 mode = new_mode;
9944 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9948 op0 = XEXP (op0, 2);
9949 op1 = GEN_INT (i);
9950 const_op = i;
9952 /* Result is nonzero iff shift count is equal to I. */
9953 code = reverse_condition (code);
9954 continue;
9957 /* ... fall through ... */
9959 case SIGN_EXTRACT:
9960 tem = expand_compound_operation (op0);
9961 if (tem != op0)
9963 op0 = tem;
9964 continue;
9966 break;
9968 case NOT:
9969 /* If testing for equality, we can take the NOT of the constant. */
9970 if (equality_comparison_p
9971 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9973 op0 = XEXP (op0, 0);
9974 op1 = tem;
9975 continue;
9978 /* If just looking at the sign bit, reverse the sense of the
9979 comparison. */
9980 if (sign_bit_comparison_p)
9982 op0 = XEXP (op0, 0);
9983 code = (code == GE ? LT : GE);
9984 continue;
9986 break;
9988 case NEG:
9989 /* If testing for equality, we can take the NEG of the constant. */
9990 if (equality_comparison_p
9991 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9993 op0 = XEXP (op0, 0);
9994 op1 = tem;
9995 continue;
9998 /* The remaining cases only apply to comparisons with zero. */
9999 if (const_op != 0)
10000 break;
10002 /* When X is ABS or is known positive,
10003 (neg X) is < 0 if and only if X != 0. */
10005 if (sign_bit_comparison_p
10006 && (GET_CODE (XEXP (op0, 0)) == ABS
10007 || (mode_width <= HOST_BITS_PER_WIDE_INT
10008 && (nonzero_bits (XEXP (op0, 0), mode)
10009 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10011 op0 = XEXP (op0, 0);
10012 code = (code == LT ? NE : EQ);
10013 continue;
10016 /* If we have NEG of something whose two high-order bits are the
10017 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10018 if (num_sign_bit_copies (op0, mode) >= 2)
10020 op0 = XEXP (op0, 0);
10021 code = swap_condition (code);
10022 continue;
10024 break;
10026 case ROTATE:
10027 /* If we are testing equality and our count is a constant, we
10028 can perform the inverse operation on our RHS. */
10029 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10030 && (tem = simplify_binary_operation (ROTATERT, mode,
10031 op1, XEXP (op0, 1))) != 0)
10033 op0 = XEXP (op0, 0);
10034 op1 = tem;
10035 continue;
10038 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10039 a particular bit. Convert it to an AND of a constant of that
10040 bit. This will be converted into a ZERO_EXTRACT. */
10041 if (const_op == 0 && sign_bit_comparison_p
10042 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10043 && mode_width <= HOST_BITS_PER_WIDE_INT)
10045 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10046 ((HOST_WIDE_INT) 1
10047 << (mode_width - 1
10048 - INTVAL (XEXP (op0, 1)))));
10049 code = (code == LT ? NE : EQ);
10050 continue;
10053 /* Fall through. */
10055 case ABS:
10056 /* ABS is ignorable inside an equality comparison with zero. */
10057 if (const_op == 0 && equality_comparison_p)
10059 op0 = XEXP (op0, 0);
10060 continue;
10062 break;
10064 case SIGN_EXTEND:
10065 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10066 (compare FOO CONST) if CONST fits in FOO's mode and we
10067 are either testing inequality or have an unsigned
10068 comparison with ZERO_EXTEND or a signed comparison with
10069 SIGN_EXTEND. But don't do it if we don't have a compare
10070 insn of the given mode, since we'd have to revert it
10071 later on, and then we wouldn't know whether to sign- or
10072 zero-extend. */
10073 mode = GET_MODE (XEXP (op0, 0));
10074 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10075 && ! unsigned_comparison_p
10076 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10077 && ((unsigned HOST_WIDE_INT) const_op
10078 < (((unsigned HOST_WIDE_INT) 1
10079 << (GET_MODE_BITSIZE (mode) - 1))))
10080 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10082 op0 = XEXP (op0, 0);
10083 continue;
10085 break;
10087 case SUBREG:
10088 /* Check for the case where we are comparing A - C1 with C2, that is
10090 (subreg:MODE (plus (A) (-C1))) op (C2)
10092 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10093 comparison in the wider mode. One of the following two conditions
10094 must be true in order for this to be valid:
10096 1. The mode extension results in the same bit pattern being added
10097 on both sides and the comparison is equality or unsigned. As
10098 C2 has been truncated to fit in MODE, the pattern can only be
10099 all 0s or all 1s.
10101 2. The mode extension results in the sign bit being copied on
10102 each side.
10104 The difficulty here is that we have predicates for A but not for
10105 (A - C1) so we need to check that C1 is within proper bounds so
10106 as to perturbate A as little as possible. */
10108 if (mode_width <= HOST_BITS_PER_WIDE_INT
10109 && subreg_lowpart_p (op0)
10110 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10111 && GET_CODE (SUBREG_REG (op0)) == PLUS
10112 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10114 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10115 rtx a = XEXP (SUBREG_REG (op0), 0);
10116 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10118 if ((c1 > 0
10119 && (unsigned HOST_WIDE_INT) c1
10120 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10121 && (equality_comparison_p || unsigned_comparison_p)
10122 /* (A - C1) zero-extends if it is positive and sign-extends
10123 if it is negative, C2 both zero- and sign-extends. */
10124 && ((0 == (nonzero_bits (a, inner_mode)
10125 & ~GET_MODE_MASK (mode))
10126 && const_op >= 0)
10127 /* (A - C1) sign-extends if it is positive and 1-extends
10128 if it is negative, C2 both sign- and 1-extends. */
10129 || (num_sign_bit_copies (a, inner_mode)
10130 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10131 - mode_width)
10132 && const_op < 0)))
10133 || ((unsigned HOST_WIDE_INT) c1
10134 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10135 /* (A - C1) always sign-extends, like C2. */
10136 && num_sign_bit_copies (a, inner_mode)
10137 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10138 - mode_width - 1)))
10140 op0 = SUBREG_REG (op0);
10141 continue;
10145 /* If the inner mode is narrower and we are extracting the low part,
10146 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10147 if (subreg_lowpart_p (op0)
10148 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10149 /* Fall through */ ;
10150 else
10151 break;
10153 /* ... fall through ... */
10155 case ZERO_EXTEND:
10156 mode = GET_MODE (XEXP (op0, 0));
10157 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10158 && (unsigned_comparison_p || equality_comparison_p)
10159 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10160 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10161 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10163 op0 = XEXP (op0, 0);
10164 continue;
10166 break;
10168 case PLUS:
10169 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10170 this for equality comparisons due to pathological cases involving
10171 overflows. */
10172 if (equality_comparison_p
10173 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10174 op1, XEXP (op0, 1))))
10176 op0 = XEXP (op0, 0);
10177 op1 = tem;
10178 continue;
10181 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10182 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10183 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10185 op0 = XEXP (XEXP (op0, 0), 0);
10186 code = (code == LT ? EQ : NE);
10187 continue;
10189 break;
10191 case MINUS:
10192 /* We used to optimize signed comparisons against zero, but that
10193 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10194 arrive here as equality comparisons, or (GEU, LTU) are
10195 optimized away. No need to special-case them. */
10197 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10198 (eq B (minus A C)), whichever simplifies. We can only do
10199 this for equality comparisons due to pathological cases involving
10200 overflows. */
10201 if (equality_comparison_p
10202 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10203 XEXP (op0, 1), op1)))
10205 op0 = XEXP (op0, 0);
10206 op1 = tem;
10207 continue;
10210 if (equality_comparison_p
10211 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10212 XEXP (op0, 0), op1)))
10214 op0 = XEXP (op0, 1);
10215 op1 = tem;
10216 continue;
10219 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10220 of bits in X minus 1, is one iff X > 0. */
10221 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10222 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10223 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10224 == mode_width - 1
10225 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10227 op0 = XEXP (op0, 1);
10228 code = (code == GE ? LE : GT);
10229 continue;
10231 break;
10233 case XOR:
10234 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10235 if C is zero or B is a constant. */
10236 if (equality_comparison_p
10237 && 0 != (tem = simplify_binary_operation (XOR, mode,
10238 XEXP (op0, 1), op1)))
10240 op0 = XEXP (op0, 0);
10241 op1 = tem;
10242 continue;
10244 break;
10246 case EQ: case NE:
10247 case UNEQ: case LTGT:
10248 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10249 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10250 case UNORDERED: case ORDERED:
10251 /* We can't do anything if OP0 is a condition code value, rather
10252 than an actual data value. */
10253 if (const_op != 0
10254 || CC0_P (XEXP (op0, 0))
10255 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10256 break;
10258 /* Get the two operands being compared. */
10259 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10260 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10261 else
10262 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10264 /* Check for the cases where we simply want the result of the
10265 earlier test or the opposite of that result. */
10266 if (code == NE || code == EQ
10267 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10268 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10269 && (STORE_FLAG_VALUE
10270 & (((HOST_WIDE_INT) 1
10271 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10272 && (code == LT || code == GE)))
10274 enum rtx_code new_code;
10275 if (code == LT || code == NE)
10276 new_code = GET_CODE (op0);
10277 else
10278 new_code = reversed_comparison_code (op0, NULL);
10280 if (new_code != UNKNOWN)
10282 code = new_code;
10283 op0 = tem;
10284 op1 = tem1;
10285 continue;
10288 break;
10290 case IOR:
10291 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10292 iff X <= 0. */
10293 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10294 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10295 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10297 op0 = XEXP (op0, 1);
10298 code = (code == GE ? GT : LE);
10299 continue;
10301 break;
10303 case AND:
10304 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10305 will be converted to a ZERO_EXTRACT later. */
10306 if (const_op == 0 && equality_comparison_p
10307 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10308 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10310 op0 = simplify_and_const_int
10311 (op0, mode, gen_rtx_LSHIFTRT (mode,
10312 XEXP (op0, 1),
10313 XEXP (XEXP (op0, 0), 1)),
10314 (HOST_WIDE_INT) 1);
10315 continue;
10318 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10319 zero and X is a comparison and C1 and C2 describe only bits set
10320 in STORE_FLAG_VALUE, we can compare with X. */
10321 if (const_op == 0 && equality_comparison_p
10322 && mode_width <= HOST_BITS_PER_WIDE_INT
10323 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10324 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10325 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10326 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10327 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10329 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10330 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10331 if ((~STORE_FLAG_VALUE & mask) == 0
10332 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10333 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10334 && COMPARISON_P (tem))))
10336 op0 = XEXP (XEXP (op0, 0), 0);
10337 continue;
10341 /* If we are doing an equality comparison of an AND of a bit equal
10342 to the sign bit, replace this with a LT or GE comparison of
10343 the underlying value. */
10344 if (equality_comparison_p
10345 && const_op == 0
10346 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10347 && mode_width <= HOST_BITS_PER_WIDE_INT
10348 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10349 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10351 op0 = XEXP (op0, 0);
10352 code = (code == EQ ? GE : LT);
10353 continue;
10356 /* If this AND operation is really a ZERO_EXTEND from a narrower
10357 mode, the constant fits within that mode, and this is either an
10358 equality or unsigned comparison, try to do this comparison in
10359 the narrower mode. */
10360 if ((equality_comparison_p || unsigned_comparison_p)
10361 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10362 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10363 & GET_MODE_MASK (mode))
10364 + 1)) >= 0
10365 && const_op >> i == 0
10366 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10368 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10369 continue;
10372 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10373 fits in both M1 and M2 and the SUBREG is either paradoxical
10374 or represents the low part, permute the SUBREG and the AND
10375 and try again. */
10376 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10378 unsigned HOST_WIDE_INT c1;
10379 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10380 /* Require an integral mode, to avoid creating something like
10381 (AND:SF ...). */
10382 if (SCALAR_INT_MODE_P (tmode)
10383 /* It is unsafe to commute the AND into the SUBREG if the
10384 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10385 not defined. As originally written the upper bits
10386 have a defined value due to the AND operation.
10387 However, if we commute the AND inside the SUBREG then
10388 they no longer have defined values and the meaning of
10389 the code has been changed. */
10390 && (0
10391 #ifdef WORD_REGISTER_OPERATIONS
10392 || (mode_width > GET_MODE_BITSIZE (tmode)
10393 && mode_width <= BITS_PER_WORD)
10394 #endif
10395 || (mode_width <= GET_MODE_BITSIZE (tmode)
10396 && subreg_lowpart_p (XEXP (op0, 0))))
10397 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10398 && mode_width <= HOST_BITS_PER_WIDE_INT
10399 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10400 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10401 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10402 && c1 != mask
10403 && c1 != GET_MODE_MASK (tmode))
10405 op0 = simplify_gen_binary (AND, tmode,
10406 SUBREG_REG (XEXP (op0, 0)),
10407 gen_int_mode (c1, tmode));
10408 op0 = gen_lowpart (mode, op0);
10409 continue;
10413 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10414 if (const_op == 0 && equality_comparison_p
10415 && XEXP (op0, 1) == const1_rtx
10416 && GET_CODE (XEXP (op0, 0)) == NOT)
10418 op0 = simplify_and_const_int
10419 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10420 code = (code == NE ? EQ : NE);
10421 continue;
10424 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10425 (eq (and (lshiftrt X) 1) 0).
10426 Also handle the case where (not X) is expressed using xor. */
10427 if (const_op == 0 && equality_comparison_p
10428 && XEXP (op0, 1) == const1_rtx
10429 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10431 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10432 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10434 if (GET_CODE (shift_op) == NOT
10435 || (GET_CODE (shift_op) == XOR
10436 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10437 && GET_CODE (shift_count) == CONST_INT
10438 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10439 && (INTVAL (XEXP (shift_op, 1))
10440 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10442 op0 = simplify_and_const_int
10443 (NULL_RTX, mode,
10444 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10445 (HOST_WIDE_INT) 1);
10446 code = (code == NE ? EQ : NE);
10447 continue;
10450 break;
10452 case ASHIFT:
10453 /* If we have (compare (ashift FOO N) (const_int C)) and
10454 the high order N bits of FOO (N+1 if an inequality comparison)
10455 are known to be zero, we can do this by comparing FOO with C
10456 shifted right N bits so long as the low-order N bits of C are
10457 zero. */
10458 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10459 && INTVAL (XEXP (op0, 1)) >= 0
10460 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10461 < HOST_BITS_PER_WIDE_INT)
10462 && ((const_op
10463 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10464 && mode_width <= HOST_BITS_PER_WIDE_INT
10465 && (nonzero_bits (XEXP (op0, 0), mode)
10466 & ~(mask >> (INTVAL (XEXP (op0, 1))
10467 + ! equality_comparison_p))) == 0)
10469 /* We must perform a logical shift, not an arithmetic one,
10470 as we want the top N bits of C to be zero. */
10471 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10473 temp >>= INTVAL (XEXP (op0, 1));
10474 op1 = gen_int_mode (temp, mode);
10475 op0 = XEXP (op0, 0);
10476 continue;
10479 /* If we are doing a sign bit comparison, it means we are testing
10480 a particular bit. Convert it to the appropriate AND. */
10481 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10482 && mode_width <= HOST_BITS_PER_WIDE_INT)
10484 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10485 ((HOST_WIDE_INT) 1
10486 << (mode_width - 1
10487 - INTVAL (XEXP (op0, 1)))));
10488 code = (code == LT ? NE : EQ);
10489 continue;
10492 /* If this an equality comparison with zero and we are shifting
10493 the low bit to the sign bit, we can convert this to an AND of the
10494 low-order bit. */
10495 if (const_op == 0 && equality_comparison_p
10496 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10497 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10498 == mode_width - 1)
10500 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10501 (HOST_WIDE_INT) 1);
10502 continue;
10504 break;
10506 case ASHIFTRT:
10507 /* If this is an equality comparison with zero, we can do this
10508 as a logical shift, which might be much simpler. */
10509 if (equality_comparison_p && const_op == 0
10510 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10512 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10513 XEXP (op0, 0),
10514 INTVAL (XEXP (op0, 1)));
10515 continue;
10518 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10519 do the comparison in a narrower mode. */
10520 if (! unsigned_comparison_p
10521 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10522 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10523 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10524 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10525 MODE_INT, 1)) != BLKmode
10526 && (((unsigned HOST_WIDE_INT) const_op
10527 + (GET_MODE_MASK (tmode) >> 1) + 1)
10528 <= GET_MODE_MASK (tmode)))
10530 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10531 continue;
10534 /* Likewise if OP0 is a PLUS of a sign extension with a
10535 constant, which is usually represented with the PLUS
10536 between the shifts. */
10537 if (! unsigned_comparison_p
10538 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10539 && GET_CODE (XEXP (op0, 0)) == PLUS
10540 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10541 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10542 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10543 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10544 MODE_INT, 1)) != BLKmode
10545 && (((unsigned HOST_WIDE_INT) const_op
10546 + (GET_MODE_MASK (tmode) >> 1) + 1)
10547 <= GET_MODE_MASK (tmode)))
10549 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10550 rtx add_const = XEXP (XEXP (op0, 0), 1);
10551 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10552 add_const, XEXP (op0, 1));
10554 op0 = simplify_gen_binary (PLUS, tmode,
10555 gen_lowpart (tmode, inner),
10556 new_const);
10557 continue;
10560 /* ... fall through ... */
10561 case LSHIFTRT:
10562 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10563 the low order N bits of FOO are known to be zero, we can do this
10564 by comparing FOO with C shifted left N bits so long as no
10565 overflow occurs. */
10566 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10567 && INTVAL (XEXP (op0, 1)) >= 0
10568 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10569 && mode_width <= HOST_BITS_PER_WIDE_INT
10570 && (nonzero_bits (XEXP (op0, 0), mode)
10571 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10572 && (((unsigned HOST_WIDE_INT) const_op
10573 + (GET_CODE (op0) != LSHIFTRT
10574 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10575 + 1)
10576 : 0))
10577 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10579 /* If the shift was logical, then we must make the condition
10580 unsigned. */
10581 if (GET_CODE (op0) == LSHIFTRT)
10582 code = unsigned_condition (code);
10584 const_op <<= INTVAL (XEXP (op0, 1));
10585 op1 = GEN_INT (const_op);
10586 op0 = XEXP (op0, 0);
10587 continue;
10590 /* If we are using this shift to extract just the sign bit, we
10591 can replace this with an LT or GE comparison. */
10592 if (const_op == 0
10593 && (equality_comparison_p || sign_bit_comparison_p)
10594 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10595 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10596 == mode_width - 1)
10598 op0 = XEXP (op0, 0);
10599 code = (code == NE || code == GT ? LT : GE);
10600 continue;
10602 break;
10604 default:
10605 break;
10608 break;
10611 /* Now make any compound operations involved in this comparison. Then,
10612 check for an outmost SUBREG on OP0 that is not doing anything or is
10613 paradoxical. The latter transformation must only be performed when
10614 it is known that the "extra" bits will be the same in op0 and op1 or
10615 that they don't matter. There are three cases to consider:
10617 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10618 care bits and we can assume they have any convenient value. So
10619 making the transformation is safe.
10621 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10622 In this case the upper bits of op0 are undefined. We should not make
10623 the simplification in that case as we do not know the contents of
10624 those bits.
10626 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10627 UNKNOWN. In that case we know those bits are zeros or ones. We must
10628 also be sure that they are the same as the upper bits of op1.
10630 We can never remove a SUBREG for a non-equality comparison because
10631 the sign bit is in a different place in the underlying object. */
10633 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10634 op1 = make_compound_operation (op1, SET);
10636 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10637 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10638 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10639 && (code == NE || code == EQ))
10641 if (GET_MODE_SIZE (GET_MODE (op0))
10642 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10644 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10645 implemented. */
10646 if (REG_P (SUBREG_REG (op0)))
10648 op0 = SUBREG_REG (op0);
10649 op1 = gen_lowpart (GET_MODE (op0), op1);
10652 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10653 <= HOST_BITS_PER_WIDE_INT)
10654 && (nonzero_bits (SUBREG_REG (op0),
10655 GET_MODE (SUBREG_REG (op0)))
10656 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10658 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10660 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10661 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10662 op0 = SUBREG_REG (op0), op1 = tem;
10666 /* We now do the opposite procedure: Some machines don't have compare
10667 insns in all modes. If OP0's mode is an integer mode smaller than a
10668 word and we can't do a compare in that mode, see if there is a larger
10669 mode for which we can do the compare. There are a number of cases in
10670 which we can use the wider mode. */
10672 mode = GET_MODE (op0);
10673 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10674 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10675 && ! have_insn_for (COMPARE, mode))
10676 for (tmode = GET_MODE_WIDER_MODE (mode);
10677 (tmode != VOIDmode
10678 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10679 tmode = GET_MODE_WIDER_MODE (tmode))
10680 if (have_insn_for (COMPARE, tmode))
10682 int zero_extended;
10684 /* If the only nonzero bits in OP0 and OP1 are those in the
10685 narrower mode and this is an equality or unsigned comparison,
10686 we can use the wider mode. Similarly for sign-extended
10687 values, in which case it is true for all comparisons. */
10688 zero_extended = ((code == EQ || code == NE
10689 || code == GEU || code == GTU
10690 || code == LEU || code == LTU)
10691 && (nonzero_bits (op0, tmode)
10692 & ~GET_MODE_MASK (mode)) == 0
10693 && ((GET_CODE (op1) == CONST_INT
10694 || (nonzero_bits (op1, tmode)
10695 & ~GET_MODE_MASK (mode)) == 0)));
10697 if (zero_extended
10698 || ((num_sign_bit_copies (op0, tmode)
10699 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10700 - GET_MODE_BITSIZE (mode)))
10701 && (num_sign_bit_copies (op1, tmode)
10702 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10703 - GET_MODE_BITSIZE (mode)))))
10705 /* If OP0 is an AND and we don't have an AND in MODE either,
10706 make a new AND in the proper mode. */
10707 if (GET_CODE (op0) == AND
10708 && !have_insn_for (AND, mode))
10709 op0 = simplify_gen_binary (AND, tmode,
10710 gen_lowpart (tmode,
10711 XEXP (op0, 0)),
10712 gen_lowpart (tmode,
10713 XEXP (op0, 1)));
10715 op0 = gen_lowpart (tmode, op0);
10716 if (zero_extended && GET_CODE (op1) == CONST_INT)
10717 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10718 op1 = gen_lowpart (tmode, op1);
10719 break;
10722 /* If this is a test for negative, we can make an explicit
10723 test of the sign bit. */
10725 if (op1 == const0_rtx && (code == LT || code == GE)
10726 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10728 op0 = simplify_gen_binary (AND, tmode,
10729 gen_lowpart (tmode, op0),
10730 GEN_INT ((HOST_WIDE_INT) 1
10731 << (GET_MODE_BITSIZE (mode)
10732 - 1)));
10733 code = (code == LT) ? NE : EQ;
10734 break;
10738 #ifdef CANONICALIZE_COMPARISON
10739 /* If this machine only supports a subset of valid comparisons, see if we
10740 can convert an unsupported one into a supported one. */
10741 CANONICALIZE_COMPARISON (code, op0, op1);
10742 #endif
10744 *pop0 = op0;
10745 *pop1 = op1;
10747 return code;
10750 /* Utility function for record_value_for_reg. Count number of
10751 rtxs in X. */
10752 static int
10753 count_rtxs (rtx x)
10755 enum rtx_code code = GET_CODE (x);
10756 const char *fmt;
10757 int i, ret = 1;
10759 if (GET_RTX_CLASS (code) == '2'
10760 || GET_RTX_CLASS (code) == 'c')
10762 rtx x0 = XEXP (x, 0);
10763 rtx x1 = XEXP (x, 1);
10765 if (x0 == x1)
10766 return 1 + 2 * count_rtxs (x0);
10768 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10769 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10770 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10771 return 2 + 2 * count_rtxs (x0)
10772 + count_rtxs (x == XEXP (x1, 0)
10773 ? XEXP (x1, 1) : XEXP (x1, 0));
10775 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10776 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10777 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10778 return 2 + 2 * count_rtxs (x1)
10779 + count_rtxs (x == XEXP (x0, 0)
10780 ? XEXP (x0, 1) : XEXP (x0, 0));
10783 fmt = GET_RTX_FORMAT (code);
10784 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10785 if (fmt[i] == 'e')
10786 ret += count_rtxs (XEXP (x, i));
10788 return ret;
10791 /* Utility function for following routine. Called when X is part of a value
10792 being stored into last_set_value. Sets last_set_table_tick
10793 for each register mentioned. Similar to mention_regs in cse.c */
10795 static void
10796 update_table_tick (rtx x)
10798 enum rtx_code code = GET_CODE (x);
10799 const char *fmt = GET_RTX_FORMAT (code);
10800 int i;
10802 if (code == REG)
10804 unsigned int regno = REGNO (x);
10805 unsigned int endregno
10806 = regno + (regno < FIRST_PSEUDO_REGISTER
10807 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10808 unsigned int r;
10810 for (r = regno; r < endregno; r++)
10811 reg_stat[r].last_set_table_tick = label_tick;
10813 return;
10816 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10817 /* Note that we can't have an "E" in values stored; see
10818 get_last_value_validate. */
10819 if (fmt[i] == 'e')
10821 /* Check for identical subexpressions. If x contains
10822 identical subexpression we only have to traverse one of
10823 them. */
10824 if (i == 0 && ARITHMETIC_P (x))
10826 /* Note that at this point x1 has already been
10827 processed. */
10828 rtx x0 = XEXP (x, 0);
10829 rtx x1 = XEXP (x, 1);
10831 /* If x0 and x1 are identical then there is no need to
10832 process x0. */
10833 if (x0 == x1)
10834 break;
10836 /* If x0 is identical to a subexpression of x1 then while
10837 processing x1, x0 has already been processed. Thus we
10838 are done with x. */
10839 if (ARITHMETIC_P (x1)
10840 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10841 break;
10843 /* If x1 is identical to a subexpression of x0 then we
10844 still have to process the rest of x0. */
10845 if (ARITHMETIC_P (x0)
10846 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10848 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10849 break;
10853 update_table_tick (XEXP (x, i));
10857 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10858 are saying that the register is clobbered and we no longer know its
10859 value. If INSN is zero, don't update reg_stat[].last_set; this is
10860 only permitted with VALUE also zero and is used to invalidate the
10861 register. */
10863 static void
10864 record_value_for_reg (rtx reg, rtx insn, rtx value)
10866 unsigned int regno = REGNO (reg);
10867 unsigned int endregno
10868 = regno + (regno < FIRST_PSEUDO_REGISTER
10869 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10870 unsigned int i;
10872 /* If VALUE contains REG and we have a previous value for REG, substitute
10873 the previous value. */
10874 if (value && insn && reg_overlap_mentioned_p (reg, value))
10876 rtx tem;
10878 /* Set things up so get_last_value is allowed to see anything set up to
10879 our insn. */
10880 subst_low_cuid = INSN_CUID (insn);
10881 tem = get_last_value (reg);
10883 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10884 it isn't going to be useful and will take a lot of time to process,
10885 so just use the CLOBBER. */
10887 if (tem)
10889 if (ARITHMETIC_P (tem)
10890 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10891 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10892 tem = XEXP (tem, 0);
10893 else if (count_occurrences (value, reg, 1) >= 2)
10895 /* If there are two or more occurrences of REG in VALUE,
10896 prevent the value from growing too much. */
10897 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10898 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10901 value = replace_rtx (copy_rtx (value), reg, tem);
10905 /* For each register modified, show we don't know its value, that
10906 we don't know about its bitwise content, that its value has been
10907 updated, and that we don't know the location of the death of the
10908 register. */
10909 for (i = regno; i < endregno; i++)
10911 if (insn)
10912 reg_stat[i].last_set = insn;
10914 reg_stat[i].last_set_value = 0;
10915 reg_stat[i].last_set_mode = 0;
10916 reg_stat[i].last_set_nonzero_bits = 0;
10917 reg_stat[i].last_set_sign_bit_copies = 0;
10918 reg_stat[i].last_death = 0;
10921 /* Mark registers that are being referenced in this value. */
10922 if (value)
10923 update_table_tick (value);
10925 /* Now update the status of each register being set.
10926 If someone is using this register in this block, set this register
10927 to invalid since we will get confused between the two lives in this
10928 basic block. This makes using this register always invalid. In cse, we
10929 scan the table to invalidate all entries using this register, but this
10930 is too much work for us. */
10932 for (i = regno; i < endregno; i++)
10934 reg_stat[i].last_set_label = label_tick;
10935 if (value && reg_stat[i].last_set_table_tick == label_tick)
10936 reg_stat[i].last_set_invalid = 1;
10937 else
10938 reg_stat[i].last_set_invalid = 0;
10941 /* The value being assigned might refer to X (like in "x++;"). In that
10942 case, we must replace it with (clobber (const_int 0)) to prevent
10943 infinite loops. */
10944 if (value && ! get_last_value_validate (&value, insn,
10945 reg_stat[regno].last_set_label, 0))
10947 value = copy_rtx (value);
10948 if (! get_last_value_validate (&value, insn,
10949 reg_stat[regno].last_set_label, 1))
10950 value = 0;
10953 /* For the main register being modified, update the value, the mode, the
10954 nonzero bits, and the number of sign bit copies. */
10956 reg_stat[regno].last_set_value = value;
10958 if (value)
10960 enum machine_mode mode = GET_MODE (reg);
10961 subst_low_cuid = INSN_CUID (insn);
10962 reg_stat[regno].last_set_mode = mode;
10963 if (GET_MODE_CLASS (mode) == MODE_INT
10964 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10965 mode = nonzero_bits_mode;
10966 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10967 reg_stat[regno].last_set_sign_bit_copies
10968 = num_sign_bit_copies (value, GET_MODE (reg));
10972 /* Called via note_stores from record_dead_and_set_regs to handle one
10973 SET or CLOBBER in an insn. DATA is the instruction in which the
10974 set is occurring. */
10976 static void
10977 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10979 rtx record_dead_insn = (rtx) data;
10981 if (GET_CODE (dest) == SUBREG)
10982 dest = SUBREG_REG (dest);
10984 if (REG_P (dest))
10986 /* If we are setting the whole register, we know its value. Otherwise
10987 show that we don't know the value. We can handle SUBREG in
10988 some cases. */
10989 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10990 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10991 else if (GET_CODE (setter) == SET
10992 && GET_CODE (SET_DEST (setter)) == SUBREG
10993 && SUBREG_REG (SET_DEST (setter)) == dest
10994 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10995 && subreg_lowpart_p (SET_DEST (setter)))
10996 record_value_for_reg (dest, record_dead_insn,
10997 gen_lowpart (GET_MODE (dest),
10998 SET_SRC (setter)));
10999 else
11000 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11002 else if (MEM_P (dest)
11003 /* Ignore pushes, they clobber nothing. */
11004 && ! push_operand (dest, GET_MODE (dest)))
11005 mem_last_set = INSN_CUID (record_dead_insn);
11008 /* Update the records of when each REG was most recently set or killed
11009 for the things done by INSN. This is the last thing done in processing
11010 INSN in the combiner loop.
11012 We update reg_stat[], in particular fields last_set, last_set_value,
11013 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11014 last_death, and also the similar information mem_last_set (which insn
11015 most recently modified memory) and last_call_cuid (which insn was the
11016 most recent subroutine call). */
11018 static void
11019 record_dead_and_set_regs (rtx insn)
11021 rtx link;
11022 unsigned int i;
11024 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11026 if (REG_NOTE_KIND (link) == REG_DEAD
11027 && REG_P (XEXP (link, 0)))
11029 unsigned int regno = REGNO (XEXP (link, 0));
11030 unsigned int endregno
11031 = regno + (regno < FIRST_PSEUDO_REGISTER
11032 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11033 : 1);
11035 for (i = regno; i < endregno; i++)
11036 reg_stat[i].last_death = insn;
11038 else if (REG_NOTE_KIND (link) == REG_INC)
11039 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11042 if (CALL_P (insn))
11044 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11045 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11047 reg_stat[i].last_set_value = 0;
11048 reg_stat[i].last_set_mode = 0;
11049 reg_stat[i].last_set_nonzero_bits = 0;
11050 reg_stat[i].last_set_sign_bit_copies = 0;
11051 reg_stat[i].last_death = 0;
11054 last_call_cuid = mem_last_set = INSN_CUID (insn);
11056 /* Don't bother recording what this insn does. It might set the
11057 return value register, but we can't combine into a call
11058 pattern anyway, so there's no point trying (and it may cause
11059 a crash, if e.g. we wind up asking for last_set_value of a
11060 SUBREG of the return value register). */
11061 return;
11064 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11067 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11068 register present in the SUBREG, so for each such SUBREG go back and
11069 adjust nonzero and sign bit information of the registers that are
11070 known to have some zero/sign bits set.
11072 This is needed because when combine blows the SUBREGs away, the
11073 information on zero/sign bits is lost and further combines can be
11074 missed because of that. */
11076 static void
11077 record_promoted_value (rtx insn, rtx subreg)
11079 rtx links, set;
11080 unsigned int regno = REGNO (SUBREG_REG (subreg));
11081 enum machine_mode mode = GET_MODE (subreg);
11083 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11084 return;
11086 for (links = LOG_LINKS (insn); links;)
11088 insn = XEXP (links, 0);
11089 set = single_set (insn);
11091 if (! set || !REG_P (SET_DEST (set))
11092 || REGNO (SET_DEST (set)) != regno
11093 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11095 links = XEXP (links, 1);
11096 continue;
11099 if (reg_stat[regno].last_set == insn)
11101 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11102 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11105 if (REG_P (SET_SRC (set)))
11107 regno = REGNO (SET_SRC (set));
11108 links = LOG_LINKS (insn);
11110 else
11111 break;
11115 /* Scan X for promoted SUBREGs. For each one found,
11116 note what it implies to the registers used in it. */
11118 static void
11119 check_promoted_subreg (rtx insn, rtx x)
11121 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11122 && REG_P (SUBREG_REG (x)))
11123 record_promoted_value (insn, x);
11124 else
11126 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11127 int i, j;
11129 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11130 switch (format[i])
11132 case 'e':
11133 check_promoted_subreg (insn, XEXP (x, i));
11134 break;
11135 case 'V':
11136 case 'E':
11137 if (XVEC (x, i) != 0)
11138 for (j = 0; j < XVECLEN (x, i); j++)
11139 check_promoted_subreg (insn, XVECEXP (x, i, j));
11140 break;
11145 /* Utility routine for the following function. Verify that all the registers
11146 mentioned in *LOC are valid when *LOC was part of a value set when
11147 label_tick == TICK. Return 0 if some are not.
11149 If REPLACE is nonzero, replace the invalid reference with
11150 (clobber (const_int 0)) and return 1. This replacement is useful because
11151 we often can get useful information about the form of a value (e.g., if
11152 it was produced by a shift that always produces -1 or 0) even though
11153 we don't know exactly what registers it was produced from. */
11155 static int
11156 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11158 rtx x = *loc;
11159 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11160 int len = GET_RTX_LENGTH (GET_CODE (x));
11161 int i;
11163 if (REG_P (x))
11165 unsigned int regno = REGNO (x);
11166 unsigned int endregno
11167 = regno + (regno < FIRST_PSEUDO_REGISTER
11168 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11169 unsigned int j;
11171 for (j = regno; j < endregno; j++)
11172 if (reg_stat[j].last_set_invalid
11173 /* If this is a pseudo-register that was only set once and not
11174 live at the beginning of the function, it is always valid. */
11175 || (! (regno >= FIRST_PSEUDO_REGISTER
11176 && REG_N_SETS (regno) == 1
11177 && (! REGNO_REG_SET_P
11178 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11179 regno)))
11180 && reg_stat[j].last_set_label > tick))
11182 if (replace)
11183 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11184 return replace;
11187 return 1;
11189 /* If this is a memory reference, make sure that there were
11190 no stores after it that might have clobbered the value. We don't
11191 have alias info, so we assume any store invalidates it. */
11192 else if (MEM_P (x) && !MEM_READONLY_P (x)
11193 && INSN_CUID (insn) <= mem_last_set)
11195 if (replace)
11196 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11197 return replace;
11200 for (i = 0; i < len; i++)
11202 if (fmt[i] == 'e')
11204 /* Check for identical subexpressions. If x contains
11205 identical subexpression we only have to traverse one of
11206 them. */
11207 if (i == 1 && ARITHMETIC_P (x))
11209 /* Note that at this point x0 has already been checked
11210 and found valid. */
11211 rtx x0 = XEXP (x, 0);
11212 rtx x1 = XEXP (x, 1);
11214 /* If x0 and x1 are identical then x is also valid. */
11215 if (x0 == x1)
11216 return 1;
11218 /* If x1 is identical to a subexpression of x0 then
11219 while checking x0, x1 has already been checked. Thus
11220 it is valid and so as x. */
11221 if (ARITHMETIC_P (x0)
11222 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11223 return 1;
11225 /* If x0 is identical to a subexpression of x1 then x is
11226 valid iff the rest of x1 is valid. */
11227 if (ARITHMETIC_P (x1)
11228 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11229 return
11230 get_last_value_validate (&XEXP (x1,
11231 x0 == XEXP (x1, 0) ? 1 : 0),
11232 insn, tick, replace);
11235 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11236 replace) == 0)
11237 return 0;
11239 /* Don't bother with these. They shouldn't occur anyway. */
11240 else if (fmt[i] == 'E')
11241 return 0;
11244 /* If we haven't found a reason for it to be invalid, it is valid. */
11245 return 1;
11248 /* Get the last value assigned to X, if known. Some registers
11249 in the value may be replaced with (clobber (const_int 0)) if their value
11250 is known longer known reliably. */
11252 static rtx
11253 get_last_value (rtx x)
11255 unsigned int regno;
11256 rtx value;
11258 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11259 then convert it to the desired mode. If this is a paradoxical SUBREG,
11260 we cannot predict what values the "extra" bits might have. */
11261 if (GET_CODE (x) == SUBREG
11262 && subreg_lowpart_p (x)
11263 && (GET_MODE_SIZE (GET_MODE (x))
11264 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11265 && (value = get_last_value (SUBREG_REG (x))) != 0)
11266 return gen_lowpart (GET_MODE (x), value);
11268 if (!REG_P (x))
11269 return 0;
11271 regno = REGNO (x);
11272 value = reg_stat[regno].last_set_value;
11274 /* If we don't have a value, or if it isn't for this basic block and
11275 it's either a hard register, set more than once, or it's a live
11276 at the beginning of the function, return 0.
11278 Because if it's not live at the beginning of the function then the reg
11279 is always set before being used (is never used without being set).
11280 And, if it's set only once, and it's always set before use, then all
11281 uses must have the same last value, even if it's not from this basic
11282 block. */
11284 if (value == 0
11285 || (reg_stat[regno].last_set_label != label_tick
11286 && (regno < FIRST_PSEUDO_REGISTER
11287 || REG_N_SETS (regno) != 1
11288 || (REGNO_REG_SET_P
11289 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11290 regno)))))
11291 return 0;
11293 /* If the value was set in a later insn than the ones we are processing,
11294 we can't use it even if the register was only set once. */
11295 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11296 return 0;
11298 /* If the value has all its registers valid, return it. */
11299 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11300 reg_stat[regno].last_set_label, 0))
11301 return value;
11303 /* Otherwise, make a copy and replace any invalid register with
11304 (clobber (const_int 0)). If that fails for some reason, return 0. */
11306 value = copy_rtx (value);
11307 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11308 reg_stat[regno].last_set_label, 1))
11309 return value;
11311 return 0;
11314 /* Return nonzero if expression X refers to a REG or to memory
11315 that is set in an instruction more recent than FROM_CUID. */
11317 static int
11318 use_crosses_set_p (rtx x, int from_cuid)
11320 const char *fmt;
11321 int i;
11322 enum rtx_code code = GET_CODE (x);
11324 if (code == REG)
11326 unsigned int regno = REGNO (x);
11327 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11328 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11330 #ifdef PUSH_ROUNDING
11331 /* Don't allow uses of the stack pointer to be moved,
11332 because we don't know whether the move crosses a push insn. */
11333 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11334 return 1;
11335 #endif
11336 for (; regno < endreg; regno++)
11337 if (reg_stat[regno].last_set
11338 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11339 return 1;
11340 return 0;
11343 if (code == MEM && mem_last_set > from_cuid)
11344 return 1;
11346 fmt = GET_RTX_FORMAT (code);
11348 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11350 if (fmt[i] == 'E')
11352 int j;
11353 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11354 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11355 return 1;
11357 else if (fmt[i] == 'e'
11358 && use_crosses_set_p (XEXP (x, i), from_cuid))
11359 return 1;
11361 return 0;
11364 /* Define three variables used for communication between the following
11365 routines. */
11367 static unsigned int reg_dead_regno, reg_dead_endregno;
11368 static int reg_dead_flag;
11370 /* Function called via note_stores from reg_dead_at_p.
11372 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11373 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11375 static void
11376 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11378 unsigned int regno, endregno;
11380 if (!REG_P (dest))
11381 return;
11383 regno = REGNO (dest);
11384 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11385 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11387 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11388 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11391 /* Return nonzero if REG is known to be dead at INSN.
11393 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11394 referencing REG, it is dead. If we hit a SET referencing REG, it is
11395 live. Otherwise, see if it is live or dead at the start of the basic
11396 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11397 must be assumed to be always live. */
11399 static int
11400 reg_dead_at_p (rtx reg, rtx insn)
11402 basic_block block;
11403 unsigned int i;
11405 /* Set variables for reg_dead_at_p_1. */
11406 reg_dead_regno = REGNO (reg);
11407 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11408 ? hard_regno_nregs[reg_dead_regno]
11409 [GET_MODE (reg)]
11410 : 1);
11412 reg_dead_flag = 0;
11414 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11415 we allow the machine description to decide whether use-and-clobber
11416 patterns are OK. */
11417 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11419 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11420 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11421 return 0;
11424 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11425 beginning of function. */
11426 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11427 insn = prev_nonnote_insn (insn))
11429 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11430 if (reg_dead_flag)
11431 return reg_dead_flag == 1 ? 1 : 0;
11433 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11434 return 1;
11437 /* Get the basic block that we were in. */
11438 if (insn == 0)
11439 block = ENTRY_BLOCK_PTR->next_bb;
11440 else
11442 FOR_EACH_BB (block)
11443 if (insn == BB_HEAD (block))
11444 break;
11446 if (block == EXIT_BLOCK_PTR)
11447 return 0;
11450 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11451 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11452 return 0;
11454 return 1;
11457 /* Note hard registers in X that are used. This code is similar to
11458 that in flow.c, but much simpler since we don't care about pseudos. */
11460 static void
11461 mark_used_regs_combine (rtx x)
11463 RTX_CODE code = GET_CODE (x);
11464 unsigned int regno;
11465 int i;
11467 switch (code)
11469 case LABEL_REF:
11470 case SYMBOL_REF:
11471 case CONST_INT:
11472 case CONST:
11473 case CONST_DOUBLE:
11474 case CONST_VECTOR:
11475 case PC:
11476 case ADDR_VEC:
11477 case ADDR_DIFF_VEC:
11478 case ASM_INPUT:
11479 #ifdef HAVE_cc0
11480 /* CC0 must die in the insn after it is set, so we don't need to take
11481 special note of it here. */
11482 case CC0:
11483 #endif
11484 return;
11486 case CLOBBER:
11487 /* If we are clobbering a MEM, mark any hard registers inside the
11488 address as used. */
11489 if (MEM_P (XEXP (x, 0)))
11490 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11491 return;
11493 case REG:
11494 regno = REGNO (x);
11495 /* A hard reg in a wide mode may really be multiple registers.
11496 If so, mark all of them just like the first. */
11497 if (regno < FIRST_PSEUDO_REGISTER)
11499 unsigned int endregno, r;
11501 /* None of this applies to the stack, frame or arg pointers. */
11502 if (regno == STACK_POINTER_REGNUM
11503 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11504 || regno == HARD_FRAME_POINTER_REGNUM
11505 #endif
11506 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11507 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11508 #endif
11509 || regno == FRAME_POINTER_REGNUM)
11510 return;
11512 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11513 for (r = regno; r < endregno; r++)
11514 SET_HARD_REG_BIT (newpat_used_regs, r);
11516 return;
11518 case SET:
11520 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11521 the address. */
11522 rtx testreg = SET_DEST (x);
11524 while (GET_CODE (testreg) == SUBREG
11525 || GET_CODE (testreg) == ZERO_EXTRACT
11526 || GET_CODE (testreg) == STRICT_LOW_PART)
11527 testreg = XEXP (testreg, 0);
11529 if (MEM_P (testreg))
11530 mark_used_regs_combine (XEXP (testreg, 0));
11532 mark_used_regs_combine (SET_SRC (x));
11534 return;
11536 default:
11537 break;
11540 /* Recursively scan the operands of this expression. */
11543 const char *fmt = GET_RTX_FORMAT (code);
11545 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11547 if (fmt[i] == 'e')
11548 mark_used_regs_combine (XEXP (x, i));
11549 else if (fmt[i] == 'E')
11551 int j;
11553 for (j = 0; j < XVECLEN (x, i); j++)
11554 mark_used_regs_combine (XVECEXP (x, i, j));
11560 /* Remove register number REGNO from the dead registers list of INSN.
11562 Return the note used to record the death, if there was one. */
11565 remove_death (unsigned int regno, rtx insn)
11567 rtx note = find_regno_note (insn, REG_DEAD, regno);
11569 if (note)
11571 REG_N_DEATHS (regno)--;
11572 remove_note (insn, note);
11575 return note;
11578 /* For each register (hardware or pseudo) used within expression X, if its
11579 death is in an instruction with cuid between FROM_CUID (inclusive) and
11580 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11581 list headed by PNOTES.
11583 That said, don't move registers killed by maybe_kill_insn.
11585 This is done when X is being merged by combination into TO_INSN. These
11586 notes will then be distributed as needed. */
11588 static void
11589 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11590 rtx *pnotes)
11592 const char *fmt;
11593 int len, i;
11594 enum rtx_code code = GET_CODE (x);
11596 if (code == REG)
11598 unsigned int regno = REGNO (x);
11599 rtx where_dead = reg_stat[regno].last_death;
11600 rtx before_dead, after_dead;
11602 /* Don't move the register if it gets killed in between from and to. */
11603 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11604 && ! reg_referenced_p (x, maybe_kill_insn))
11605 return;
11607 /* WHERE_DEAD could be a USE insn made by combine, so first we
11608 make sure that we have insns with valid INSN_CUID values. */
11609 before_dead = where_dead;
11610 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11611 before_dead = PREV_INSN (before_dead);
11613 after_dead = where_dead;
11614 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11615 after_dead = NEXT_INSN (after_dead);
11617 if (before_dead && after_dead
11618 && INSN_CUID (before_dead) >= from_cuid
11619 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11620 || (where_dead != after_dead
11621 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11623 rtx note = remove_death (regno, where_dead);
11625 /* It is possible for the call above to return 0. This can occur
11626 when last_death points to I2 or I1 that we combined with.
11627 In that case make a new note.
11629 We must also check for the case where X is a hard register
11630 and NOTE is a death note for a range of hard registers
11631 including X. In that case, we must put REG_DEAD notes for
11632 the remaining registers in place of NOTE. */
11634 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11635 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11636 > GET_MODE_SIZE (GET_MODE (x))))
11638 unsigned int deadregno = REGNO (XEXP (note, 0));
11639 unsigned int deadend
11640 = (deadregno + hard_regno_nregs[deadregno]
11641 [GET_MODE (XEXP (note, 0))]);
11642 unsigned int ourend
11643 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11644 unsigned int i;
11646 for (i = deadregno; i < deadend; i++)
11647 if (i < regno || i >= ourend)
11648 REG_NOTES (where_dead)
11649 = gen_rtx_EXPR_LIST (REG_DEAD,
11650 regno_reg_rtx[i],
11651 REG_NOTES (where_dead));
11654 /* If we didn't find any note, or if we found a REG_DEAD note that
11655 covers only part of the given reg, and we have a multi-reg hard
11656 register, then to be safe we must check for REG_DEAD notes
11657 for each register other than the first. They could have
11658 their own REG_DEAD notes lying around. */
11659 else if ((note == 0
11660 || (note != 0
11661 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11662 < GET_MODE_SIZE (GET_MODE (x)))))
11663 && regno < FIRST_PSEUDO_REGISTER
11664 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11666 unsigned int ourend
11667 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11668 unsigned int i, offset;
11669 rtx oldnotes = 0;
11671 if (note)
11672 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11673 else
11674 offset = 1;
11676 for (i = regno + offset; i < ourend; i++)
11677 move_deaths (regno_reg_rtx[i],
11678 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11681 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11683 XEXP (note, 1) = *pnotes;
11684 *pnotes = note;
11686 else
11687 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11689 REG_N_DEATHS (regno)++;
11692 return;
11695 else if (GET_CODE (x) == SET)
11697 rtx dest = SET_DEST (x);
11699 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11701 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11702 that accesses one word of a multi-word item, some
11703 piece of everything register in the expression is used by
11704 this insn, so remove any old death. */
11705 /* ??? So why do we test for equality of the sizes? */
11707 if (GET_CODE (dest) == ZERO_EXTRACT
11708 || GET_CODE (dest) == STRICT_LOW_PART
11709 || (GET_CODE (dest) == SUBREG
11710 && (((GET_MODE_SIZE (GET_MODE (dest))
11711 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11712 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11713 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11715 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11716 return;
11719 /* If this is some other SUBREG, we know it replaces the entire
11720 value, so use that as the destination. */
11721 if (GET_CODE (dest) == SUBREG)
11722 dest = SUBREG_REG (dest);
11724 /* If this is a MEM, adjust deaths of anything used in the address.
11725 For a REG (the only other possibility), the entire value is
11726 being replaced so the old value is not used in this insn. */
11728 if (MEM_P (dest))
11729 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11730 to_insn, pnotes);
11731 return;
11734 else if (GET_CODE (x) == CLOBBER)
11735 return;
11737 len = GET_RTX_LENGTH (code);
11738 fmt = GET_RTX_FORMAT (code);
11740 for (i = 0; i < len; i++)
11742 if (fmt[i] == 'E')
11744 int j;
11745 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11746 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11747 to_insn, pnotes);
11749 else if (fmt[i] == 'e')
11750 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11754 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11755 pattern of an insn. X must be a REG. */
11757 static int
11758 reg_bitfield_target_p (rtx x, rtx body)
11760 int i;
11762 if (GET_CODE (body) == SET)
11764 rtx dest = SET_DEST (body);
11765 rtx target;
11766 unsigned int regno, tregno, endregno, endtregno;
11768 if (GET_CODE (dest) == ZERO_EXTRACT)
11769 target = XEXP (dest, 0);
11770 else if (GET_CODE (dest) == STRICT_LOW_PART)
11771 target = SUBREG_REG (XEXP (dest, 0));
11772 else
11773 return 0;
11775 if (GET_CODE (target) == SUBREG)
11776 target = SUBREG_REG (target);
11778 if (!REG_P (target))
11779 return 0;
11781 tregno = REGNO (target), regno = REGNO (x);
11782 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11783 return target == x;
11785 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11786 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11788 return endregno > tregno && regno < endtregno;
11791 else if (GET_CODE (body) == PARALLEL)
11792 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11793 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11794 return 1;
11796 return 0;
11799 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11800 as appropriate. I3 and I2 are the insns resulting from the combination
11801 insns including FROM (I2 may be zero).
11803 Each note in the list is either ignored or placed on some insns, depending
11804 on the type of note. */
11806 static void
11807 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11809 rtx note, next_note;
11810 rtx tem;
11812 for (note = notes; note; note = next_note)
11814 rtx place = 0, place2 = 0;
11816 /* If this NOTE references a pseudo register, ensure it references
11817 the latest copy of that register. */
11818 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11819 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11820 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11822 next_note = XEXP (note, 1);
11823 switch (REG_NOTE_KIND (note))
11825 case REG_BR_PROB:
11826 case REG_BR_PRED:
11827 /* Doesn't matter much where we put this, as long as it's somewhere.
11828 It is preferable to keep these notes on branches, which is most
11829 likely to be i3. */
11830 place = i3;
11831 break;
11833 case REG_VALUE_PROFILE:
11834 /* Just get rid of this note, as it is unused later anyway. */
11835 break;
11837 case REG_NON_LOCAL_GOTO:
11838 if (JUMP_P (i3))
11839 place = i3;
11840 else
11842 gcc_assert (i2 && JUMP_P (i2));
11843 place = i2;
11845 break;
11847 case REG_EH_REGION:
11848 /* These notes must remain with the call or trapping instruction. */
11849 if (CALL_P (i3))
11850 place = i3;
11851 else if (i2 && CALL_P (i2))
11852 place = i2;
11853 else
11855 gcc_assert (flag_non_call_exceptions);
11856 if (may_trap_p (i3))
11857 place = i3;
11858 else if (i2 && may_trap_p (i2))
11859 place = i2;
11860 /* ??? Otherwise assume we've combined things such that we
11861 can now prove that the instructions can't trap. Drop the
11862 note in this case. */
11864 break;
11866 case REG_NORETURN:
11867 case REG_SETJMP:
11868 /* These notes must remain with the call. It should not be
11869 possible for both I2 and I3 to be a call. */
11870 if (CALL_P (i3))
11871 place = i3;
11872 else
11874 gcc_assert (i2 && CALL_P (i2));
11875 place = i2;
11877 break;
11879 case REG_UNUSED:
11880 /* Any clobbers for i3 may still exist, and so we must process
11881 REG_UNUSED notes from that insn.
11883 Any clobbers from i2 or i1 can only exist if they were added by
11884 recog_for_combine. In that case, recog_for_combine created the
11885 necessary REG_UNUSED notes. Trying to keep any original
11886 REG_UNUSED notes from these insns can cause incorrect output
11887 if it is for the same register as the original i3 dest.
11888 In that case, we will notice that the register is set in i3,
11889 and then add a REG_UNUSED note for the destination of i3, which
11890 is wrong. However, it is possible to have REG_UNUSED notes from
11891 i2 or i1 for register which were both used and clobbered, so
11892 we keep notes from i2 or i1 if they will turn into REG_DEAD
11893 notes. */
11895 /* If this register is set or clobbered in I3, put the note there
11896 unless there is one already. */
11897 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11899 if (from_insn != i3)
11900 break;
11902 if (! (REG_P (XEXP (note, 0))
11903 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11904 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11905 place = i3;
11907 /* Otherwise, if this register is used by I3, then this register
11908 now dies here, so we must put a REG_DEAD note here unless there
11909 is one already. */
11910 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11911 && ! (REG_P (XEXP (note, 0))
11912 ? find_regno_note (i3, REG_DEAD,
11913 REGNO (XEXP (note, 0)))
11914 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11916 PUT_REG_NOTE_KIND (note, REG_DEAD);
11917 place = i3;
11919 break;
11921 case REG_EQUAL:
11922 case REG_EQUIV:
11923 case REG_NOALIAS:
11924 /* These notes say something about results of an insn. We can
11925 only support them if they used to be on I3 in which case they
11926 remain on I3. Otherwise they are ignored.
11928 If the note refers to an expression that is not a constant, we
11929 must also ignore the note since we cannot tell whether the
11930 equivalence is still true. It might be possible to do
11931 slightly better than this (we only have a problem if I2DEST
11932 or I1DEST is present in the expression), but it doesn't
11933 seem worth the trouble. */
11935 if (from_insn == i3
11936 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11937 place = i3;
11938 break;
11940 case REG_INC:
11941 case REG_NO_CONFLICT:
11942 /* These notes say something about how a register is used. They must
11943 be present on any use of the register in I2 or I3. */
11944 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11945 place = i3;
11947 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11949 if (place)
11950 place2 = i2;
11951 else
11952 place = i2;
11954 break;
11956 case REG_LABEL:
11957 /* This can show up in several ways -- either directly in the
11958 pattern, or hidden off in the constant pool with (or without?)
11959 a REG_EQUAL note. */
11960 /* ??? Ignore the without-reg_equal-note problem for now. */
11961 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11962 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11963 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11964 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11965 place = i3;
11967 if (i2
11968 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11969 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11970 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11971 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11973 if (place)
11974 place2 = i2;
11975 else
11976 place = i2;
11979 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11980 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11981 if (place && JUMP_P (place))
11983 rtx label = JUMP_LABEL (place);
11985 if (!label)
11986 JUMP_LABEL (place) = XEXP (note, 0);
11987 else
11989 gcc_assert (label == XEXP (note, 0));
11990 if (LABEL_P (label))
11991 LABEL_NUSES (label)--;
11993 place = 0;
11995 if (place2 && JUMP_P (place2))
11997 rtx label = JUMP_LABEL (place2);
11999 if (!label)
12000 JUMP_LABEL (place2) = XEXP (note, 0);
12001 else
12003 gcc_assert (label == XEXP (note, 0));
12004 if (LABEL_P (label))
12005 LABEL_NUSES (label)--;
12007 place2 = 0;
12009 break;
12011 case REG_NONNEG:
12012 /* This note says something about the value of a register prior
12013 to the execution of an insn. It is too much trouble to see
12014 if the note is still correct in all situations. It is better
12015 to simply delete it. */
12016 break;
12018 case REG_RETVAL:
12019 /* If the insn previously containing this note still exists,
12020 put it back where it was. Otherwise move it to the previous
12021 insn. Adjust the corresponding REG_LIBCALL note. */
12022 if (!NOTE_P (from_insn))
12023 place = from_insn;
12024 else
12026 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12027 place = prev_real_insn (from_insn);
12028 if (tem && place)
12029 XEXP (tem, 0) = place;
12030 /* If we're deleting the last remaining instruction of a
12031 libcall sequence, don't add the notes. */
12032 else if (XEXP (note, 0) == from_insn)
12033 tem = place = 0;
12034 /* Don't add the dangling REG_RETVAL note. */
12035 else if (! tem)
12036 place = 0;
12038 break;
12040 case REG_LIBCALL:
12041 /* This is handled similarly to REG_RETVAL. */
12042 if (!NOTE_P (from_insn))
12043 place = from_insn;
12044 else
12046 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12047 place = next_real_insn (from_insn);
12048 if (tem && place)
12049 XEXP (tem, 0) = place;
12050 /* If we're deleting the last remaining instruction of a
12051 libcall sequence, don't add the notes. */
12052 else if (XEXP (note, 0) == from_insn)
12053 tem = place = 0;
12054 /* Don't add the dangling REG_LIBCALL note. */
12055 else if (! tem)
12056 place = 0;
12058 break;
12060 case REG_DEAD:
12061 /* If the register is used as an input in I3, it dies there.
12062 Similarly for I2, if it is nonzero and adjacent to I3.
12064 If the register is not used as an input in either I3 or I2
12065 and it is not one of the registers we were supposed to eliminate,
12066 there are two possibilities. We might have a non-adjacent I2
12067 or we might have somehow eliminated an additional register
12068 from a computation. For example, we might have had A & B where
12069 we discover that B will always be zero. In this case we will
12070 eliminate the reference to A.
12072 In both cases, we must search to see if we can find a previous
12073 use of A and put the death note there. */
12075 if (from_insn
12076 && CALL_P (from_insn)
12077 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12078 place = from_insn;
12079 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12080 place = i3;
12081 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12082 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12083 place = i2;
12085 if (place == 0)
12087 basic_block bb = this_basic_block;
12089 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12091 if (! INSN_P (tem))
12093 if (tem == BB_HEAD (bb))
12094 break;
12095 continue;
12098 /* If the register is being set at TEM, see if that is all
12099 TEM is doing. If so, delete TEM. Otherwise, make this
12100 into a REG_UNUSED note instead. Don't delete sets to
12101 global register vars. */
12102 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12103 || !global_regs[REGNO (XEXP (note, 0))])
12104 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12106 rtx set = single_set (tem);
12107 rtx inner_dest = 0;
12108 #ifdef HAVE_cc0
12109 rtx cc0_setter = NULL_RTX;
12110 #endif
12112 if (set != 0)
12113 for (inner_dest = SET_DEST (set);
12114 (GET_CODE (inner_dest) == STRICT_LOW_PART
12115 || GET_CODE (inner_dest) == SUBREG
12116 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12117 inner_dest = XEXP (inner_dest, 0))
12120 /* Verify that it was the set, and not a clobber that
12121 modified the register.
12123 CC0 targets must be careful to maintain setter/user
12124 pairs. If we cannot delete the setter due to side
12125 effects, mark the user with an UNUSED note instead
12126 of deleting it. */
12128 if (set != 0 && ! side_effects_p (SET_SRC (set))
12129 && rtx_equal_p (XEXP (note, 0), inner_dest)
12130 #ifdef HAVE_cc0
12131 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12132 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12133 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12134 #endif
12137 /* Move the notes and links of TEM elsewhere.
12138 This might delete other dead insns recursively.
12139 First set the pattern to something that won't use
12140 any register. */
12141 rtx old_notes = REG_NOTES (tem);
12143 PATTERN (tem) = pc_rtx;
12144 REG_NOTES (tem) = NULL;
12146 distribute_notes (old_notes, tem, tem, NULL_RTX);
12147 distribute_links (LOG_LINKS (tem));
12149 SET_INSN_DELETED (tem);
12151 #ifdef HAVE_cc0
12152 /* Delete the setter too. */
12153 if (cc0_setter)
12155 PATTERN (cc0_setter) = pc_rtx;
12156 old_notes = REG_NOTES (cc0_setter);
12157 REG_NOTES (cc0_setter) = NULL;
12159 distribute_notes (old_notes, cc0_setter,
12160 cc0_setter, NULL_RTX);
12161 distribute_links (LOG_LINKS (cc0_setter));
12163 SET_INSN_DELETED (cc0_setter);
12165 #endif
12167 else
12169 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12171 /* If there isn't already a REG_UNUSED note, put one
12172 here. Do not place a REG_DEAD note, even if
12173 the register is also used here; that would not
12174 match the algorithm used in lifetime analysis
12175 and can cause the consistency check in the
12176 scheduler to fail. */
12177 if (! find_regno_note (tem, REG_UNUSED,
12178 REGNO (XEXP (note, 0))))
12179 place = tem;
12180 break;
12183 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12184 || (CALL_P (tem)
12185 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12187 place = tem;
12189 /* If we are doing a 3->2 combination, and we have a
12190 register which formerly died in i3 and was not used
12191 by i2, which now no longer dies in i3 and is used in
12192 i2 but does not die in i2, and place is between i2
12193 and i3, then we may need to move a link from place to
12194 i2. */
12195 if (i2 && INSN_UID (place) <= max_uid_cuid
12196 && INSN_CUID (place) > INSN_CUID (i2)
12197 && from_insn
12198 && INSN_CUID (from_insn) > INSN_CUID (i2)
12199 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12201 rtx links = LOG_LINKS (place);
12202 LOG_LINKS (place) = 0;
12203 distribute_links (links);
12205 break;
12208 if (tem == BB_HEAD (bb))
12209 break;
12212 /* We haven't found an insn for the death note and it
12213 is still a REG_DEAD note, but we have hit the beginning
12214 of the block. If the existing life info says the reg
12215 was dead, there's nothing left to do. Otherwise, we'll
12216 need to do a global life update after combine. */
12217 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12218 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12219 REGNO (XEXP (note, 0))))
12220 SET_BIT (refresh_blocks, this_basic_block->index);
12223 /* If the register is set or already dead at PLACE, we needn't do
12224 anything with this note if it is still a REG_DEAD note.
12225 We check here if it is set at all, not if is it totally replaced,
12226 which is what `dead_or_set_p' checks, so also check for it being
12227 set partially. */
12229 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12231 unsigned int regno = REGNO (XEXP (note, 0));
12233 /* Similarly, if the instruction on which we want to place
12234 the note is a noop, we'll need do a global live update
12235 after we remove them in delete_noop_moves. */
12236 if (noop_move_p (place))
12237 SET_BIT (refresh_blocks, this_basic_block->index);
12239 if (dead_or_set_p (place, XEXP (note, 0))
12240 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12242 /* Unless the register previously died in PLACE, clear
12243 last_death. [I no longer understand why this is
12244 being done.] */
12245 if (reg_stat[regno].last_death != place)
12246 reg_stat[regno].last_death = 0;
12247 place = 0;
12249 else
12250 reg_stat[regno].last_death = place;
12252 /* If this is a death note for a hard reg that is occupying
12253 multiple registers, ensure that we are still using all
12254 parts of the object. If we find a piece of the object
12255 that is unused, we must arrange for an appropriate REG_DEAD
12256 note to be added for it. However, we can't just emit a USE
12257 and tag the note to it, since the register might actually
12258 be dead; so we recourse, and the recursive call then finds
12259 the previous insn that used this register. */
12261 if (place && regno < FIRST_PSEUDO_REGISTER
12262 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12264 unsigned int endregno
12265 = regno + hard_regno_nregs[regno]
12266 [GET_MODE (XEXP (note, 0))];
12267 int all_used = 1;
12268 unsigned int i;
12270 for (i = regno; i < endregno; i++)
12271 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12272 && ! find_regno_fusage (place, USE, i))
12273 || dead_or_set_regno_p (place, i))
12274 all_used = 0;
12276 if (! all_used)
12278 /* Put only REG_DEAD notes for pieces that are
12279 not already dead or set. */
12281 for (i = regno; i < endregno;
12282 i += hard_regno_nregs[i][reg_raw_mode[i]])
12284 rtx piece = regno_reg_rtx[i];
12285 basic_block bb = this_basic_block;
12287 if (! dead_or_set_p (place, piece)
12288 && ! reg_bitfield_target_p (piece,
12289 PATTERN (place)))
12291 rtx new_note
12292 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12294 distribute_notes (new_note, place, place,
12295 NULL_RTX);
12297 else if (! refers_to_regno_p (i, i + 1,
12298 PATTERN (place), 0)
12299 && ! find_regno_fusage (place, USE, i))
12300 for (tem = PREV_INSN (place); ;
12301 tem = PREV_INSN (tem))
12303 if (! INSN_P (tem))
12305 if (tem == BB_HEAD (bb))
12307 SET_BIT (refresh_blocks,
12308 this_basic_block->index);
12309 break;
12311 continue;
12313 if (dead_or_set_p (tem, piece)
12314 || reg_bitfield_target_p (piece,
12315 PATTERN (tem)))
12317 REG_NOTES (tem)
12318 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12319 REG_NOTES (tem));
12320 break;
12326 place = 0;
12330 break;
12332 default:
12333 /* Any other notes should not be present at this point in the
12334 compilation. */
12335 gcc_unreachable ();
12338 if (place)
12340 XEXP (note, 1) = REG_NOTES (place);
12341 REG_NOTES (place) = note;
12343 else if ((REG_NOTE_KIND (note) == REG_DEAD
12344 || REG_NOTE_KIND (note) == REG_UNUSED)
12345 && REG_P (XEXP (note, 0)))
12346 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12348 if (place2)
12350 if ((REG_NOTE_KIND (note) == REG_DEAD
12351 || REG_NOTE_KIND (note) == REG_UNUSED)
12352 && REG_P (XEXP (note, 0)))
12353 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12355 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12356 REG_NOTE_KIND (note),
12357 XEXP (note, 0),
12358 REG_NOTES (place2));
12363 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12364 I3, I2, and I1 to new locations. This is also called to add a link
12365 pointing at I3 when I3's destination is changed. */
12367 static void
12368 distribute_links (rtx links)
12370 rtx link, next_link;
12372 for (link = links; link; link = next_link)
12374 rtx place = 0;
12375 rtx insn;
12376 rtx set, reg;
12378 next_link = XEXP (link, 1);
12380 /* If the insn that this link points to is a NOTE or isn't a single
12381 set, ignore it. In the latter case, it isn't clear what we
12382 can do other than ignore the link, since we can't tell which
12383 register it was for. Such links wouldn't be used by combine
12384 anyway.
12386 It is not possible for the destination of the target of the link to
12387 have been changed by combine. The only potential of this is if we
12388 replace I3, I2, and I1 by I3 and I2. But in that case the
12389 destination of I2 also remains unchanged. */
12391 if (NOTE_P (XEXP (link, 0))
12392 || (set = single_set (XEXP (link, 0))) == 0)
12393 continue;
12395 reg = SET_DEST (set);
12396 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12397 || GET_CODE (reg) == STRICT_LOW_PART)
12398 reg = XEXP (reg, 0);
12400 /* A LOG_LINK is defined as being placed on the first insn that uses
12401 a register and points to the insn that sets the register. Start
12402 searching at the next insn after the target of the link and stop
12403 when we reach a set of the register or the end of the basic block.
12405 Note that this correctly handles the link that used to point from
12406 I3 to I2. Also note that not much searching is typically done here
12407 since most links don't point very far away. */
12409 for (insn = NEXT_INSN (XEXP (link, 0));
12410 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12411 || BB_HEAD (this_basic_block->next_bb) != insn));
12412 insn = NEXT_INSN (insn))
12413 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12415 if (reg_referenced_p (reg, PATTERN (insn)))
12416 place = insn;
12417 break;
12419 else if (CALL_P (insn)
12420 && find_reg_fusage (insn, USE, reg))
12422 place = insn;
12423 break;
12425 else if (INSN_P (insn) && reg_set_p (reg, insn))
12426 break;
12428 /* If we found a place to put the link, place it there unless there
12429 is already a link to the same insn as LINK at that point. */
12431 if (place)
12433 rtx link2;
12435 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12436 if (XEXP (link2, 0) == XEXP (link, 0))
12437 break;
12439 if (link2 == 0)
12441 XEXP (link, 1) = LOG_LINKS (place);
12442 LOG_LINKS (place) = link;
12444 /* Set added_links_insn to the earliest insn we added a
12445 link to. */
12446 if (added_links_insn == 0
12447 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12448 added_links_insn = place;
12454 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12455 Check whether the expression pointer to by LOC is a register or
12456 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12457 Otherwise return zero. */
12459 static int
12460 unmentioned_reg_p_1 (rtx *loc, void *expr)
12462 rtx x = *loc;
12464 if (x != NULL_RTX
12465 && (REG_P (x) || MEM_P (x))
12466 && ! reg_mentioned_p (x, (rtx) expr))
12467 return 1;
12468 return 0;
12471 /* Check for any register or memory mentioned in EQUIV that is not
12472 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12473 of EXPR where some registers may have been replaced by constants. */
12475 static bool
12476 unmentioned_reg_p (rtx equiv, rtx expr)
12478 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12481 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12483 static int
12484 insn_cuid (rtx insn)
12486 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12487 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12488 insn = NEXT_INSN (insn);
12490 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12492 return INSN_CUID (insn);
12495 void
12496 dump_combine_stats (FILE *file)
12498 fnotice
12499 (file,
12500 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12501 combine_attempts, combine_merges, combine_extras, combine_successes);
12504 void
12505 dump_combine_total_stats (FILE *file)
12507 fnotice
12508 (file,
12509 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12510 total_attempts, total_merges, total_extras, total_successes);