PR libstdc++/57350
[official-gcc.git] / gcc / asan.c
blob2a61a8243d31c86545c560d7ecd9ef3255fd1fe8
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "hash-table.h"
27 #include "basic-block.h"
28 #include "tree-ssa-alias.h"
29 #include "internal-fn.h"
30 #include "gimple-expr.h"
31 #include "is-a.h"
32 #include "inchash.h"
33 #include "gimple.h"
34 #include "gimplify.h"
35 #include "gimple-iterator.h"
36 #include "calls.h"
37 #include "varasm.h"
38 #include "stor-layout.h"
39 #include "tree-iterator.h"
40 #include "cgraph.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-pass.h"
44 #include "asan.h"
45 #include "gimple-pretty-print.h"
46 #include "target.h"
47 #include "expr.h"
48 #include "optabs.h"
49 #include "output.h"
50 #include "tm_p.h"
51 #include "langhooks.h"
52 #include "alloc-pool.h"
53 #include "cfgloop.h"
54 #include "gimple-builder.h"
55 #include "ubsan.h"
56 #include "predict.h"
57 #include "params.h"
58 #include "builtins.h"
60 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
61 with <2x slowdown on average.
63 The tool consists of two parts:
64 instrumentation module (this file) and a run-time library.
65 The instrumentation module adds a run-time check before every memory insn.
66 For a 8- or 16- byte load accessing address X:
67 ShadowAddr = (X >> 3) + Offset
68 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
69 if (ShadowValue)
70 __asan_report_load8(X);
71 For a load of N bytes (N=1, 2 or 4) from address X:
72 ShadowAddr = (X >> 3) + Offset
73 ShadowValue = *(char*)ShadowAddr;
74 if (ShadowValue)
75 if ((X & 7) + N - 1 > ShadowValue)
76 __asan_report_loadN(X);
77 Stores are instrumented similarly, but using __asan_report_storeN functions.
78 A call too __asan_init_vN() is inserted to the list of module CTORs.
79 N is the version number of the AddressSanitizer API. The changes between the
80 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
82 The run-time library redefines malloc (so that redzone are inserted around
83 the allocated memory) and free (so that reuse of free-ed memory is delayed),
84 provides __asan_report* and __asan_init_vN functions.
86 Read more:
87 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
89 The current implementation supports detection of out-of-bounds and
90 use-after-free in the heap, on the stack and for global variables.
92 [Protection of stack variables]
94 To understand how detection of out-of-bounds and use-after-free works
95 for stack variables, lets look at this example on x86_64 where the
96 stack grows downward:
98 int
99 foo ()
101 char a[23] = {0};
102 int b[2] = {0};
104 a[5] = 1;
105 b[1] = 2;
107 return a[5] + b[1];
110 For this function, the stack protected by asan will be organized as
111 follows, from the top of the stack to the bottom:
113 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
115 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
116 the next slot be 32 bytes aligned; this one is called Partial
117 Redzone; this 32 bytes alignment is an asan constraint]
119 Slot 3/ [24 bytes for variable 'a']
121 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
123 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
125 Slot 6/ [8 bytes for variable 'b']
127 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
128 'LEFT RedZone']
130 The 32 bytes of LEFT red zone at the bottom of the stack can be
131 decomposed as such:
133 1/ The first 8 bytes contain a magical asan number that is always
134 0x41B58AB3.
136 2/ The following 8 bytes contains a pointer to a string (to be
137 parsed at runtime by the runtime asan library), which format is
138 the following:
140 "<function-name> <space> <num-of-variables-on-the-stack>
141 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
142 <length-of-var-in-bytes> ){n} "
144 where '(...){n}' means the content inside the parenthesis occurs 'n'
145 times, with 'n' being the number of variables on the stack.
147 3/ The following 8 bytes contain the PC of the current function which
148 will be used by the run-time library to print an error message.
150 4/ The following 8 bytes are reserved for internal use by the run-time.
152 The shadow memory for that stack layout is going to look like this:
154 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
155 The F1 byte pattern is a magic number called
156 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
157 the memory for that shadow byte is part of a the LEFT red zone
158 intended to seat at the bottom of the variables on the stack.
160 - content of shadow memory 8 bytes for slots 6 and 5:
161 0xF4F4F400. The F4 byte pattern is a magic number
162 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
163 memory region for this shadow byte is a PARTIAL red zone
164 intended to pad a variable A, so that the slot following
165 {A,padding} is 32 bytes aligned.
167 Note that the fact that the least significant byte of this
168 shadow memory content is 00 means that 8 bytes of its
169 corresponding memory (which corresponds to the memory of
170 variable 'b') is addressable.
172 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
173 The F2 byte pattern is a magic number called
174 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
175 region for this shadow byte is a MIDDLE red zone intended to
176 seat between two 32 aligned slots of {variable,padding}.
178 - content of shadow memory 8 bytes for slot 3 and 2:
179 0xF4000000. This represents is the concatenation of
180 variable 'a' and the partial red zone following it, like what we
181 had for variable 'b'. The least significant 3 bytes being 00
182 means that the 3 bytes of variable 'a' are addressable.
184 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
185 The F3 byte pattern is a magic number called
186 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
187 region for this shadow byte is a RIGHT red zone intended to seat
188 at the top of the variables of the stack.
190 Note that the real variable layout is done in expand_used_vars in
191 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
192 stack variables as well as the different red zones, emits some
193 prologue code to populate the shadow memory as to poison (mark as
194 non-accessible) the regions of the red zones and mark the regions of
195 stack variables as accessible, and emit some epilogue code to
196 un-poison (mark as accessible) the regions of red zones right before
197 the function exits.
199 [Protection of global variables]
201 The basic idea is to insert a red zone between two global variables
202 and install a constructor function that calls the asan runtime to do
203 the populating of the relevant shadow memory regions at load time.
205 So the global variables are laid out as to insert a red zone between
206 them. The size of the red zones is so that each variable starts on a
207 32 bytes boundary.
209 Then a constructor function is installed so that, for each global
210 variable, it calls the runtime asan library function
211 __asan_register_globals_with an instance of this type:
213 struct __asan_global
215 // Address of the beginning of the global variable.
216 const void *__beg;
218 // Initial size of the global variable.
219 uptr __size;
221 // Size of the global variable + size of the red zone. This
222 // size is 32 bytes aligned.
223 uptr __size_with_redzone;
225 // Name of the global variable.
226 const void *__name;
228 // Name of the module where the global variable is declared.
229 const void *__module_name;
231 // 1 if it has dynamic initialization, 0 otherwise.
232 uptr __has_dynamic_init;
234 // A pointer to struct that contains source location, could be NULL.
235 __asan_global_source_location *__location;
238 A destructor function that calls the runtime asan library function
239 _asan_unregister_globals is also installed. */
241 alias_set_type asan_shadow_set = -1;
243 /* Pointer types to 1 resp. 2 byte integers in shadow memory. A separate
244 alias set is used for all shadow memory accesses. */
245 static GTY(()) tree shadow_ptr_types[2];
247 /* Decl for __asan_option_detect_stack_use_after_return. */
248 static GTY(()) tree asan_detect_stack_use_after_return;
250 /* Various flags for Asan builtins. */
251 enum asan_check_flags
253 ASAN_CHECK_STORE = 1 << 0,
254 ASAN_CHECK_SCALAR_ACCESS = 1 << 1,
255 ASAN_CHECK_NON_ZERO_LEN = 1 << 2,
256 ASAN_CHECK_START_INSTRUMENTED = 1 << 3,
257 ASAN_CHECK_END_INSTRUMENTED = 1 << 4,
258 ASAN_CHECK_LAST
261 /* Hashtable support for memory references used by gimple
262 statements. */
264 /* This type represents a reference to a memory region. */
265 struct asan_mem_ref
267 /* The expression of the beginning of the memory region. */
268 tree start;
270 /* The size of the access. */
271 HOST_WIDE_INT access_size;
274 static alloc_pool asan_mem_ref_alloc_pool;
276 /* This creates the alloc pool used to store the instances of
277 asan_mem_ref that are stored in the hash table asan_mem_ref_ht. */
279 static alloc_pool
280 asan_mem_ref_get_alloc_pool ()
282 if (asan_mem_ref_alloc_pool == NULL)
283 asan_mem_ref_alloc_pool = create_alloc_pool ("asan_mem_ref",
284 sizeof (asan_mem_ref),
285 10);
286 return asan_mem_ref_alloc_pool;
290 /* Initializes an instance of asan_mem_ref. */
292 static void
293 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
295 ref->start = start;
296 ref->access_size = access_size;
299 /* Allocates memory for an instance of asan_mem_ref into the memory
300 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
301 START is the address of (or the expression pointing to) the
302 beginning of memory reference. ACCESS_SIZE is the size of the
303 access to the referenced memory. */
305 static asan_mem_ref*
306 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
308 asan_mem_ref *ref =
309 (asan_mem_ref *) pool_alloc (asan_mem_ref_get_alloc_pool ());
311 asan_mem_ref_init (ref, start, access_size);
312 return ref;
315 /* This builds and returns a pointer to the end of the memory region
316 that starts at START and of length LEN. */
318 tree
319 asan_mem_ref_get_end (tree start, tree len)
321 if (len == NULL_TREE || integer_zerop (len))
322 return start;
324 if (!ptrofftype_p (len))
325 len = convert_to_ptrofftype (len);
327 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
330 /* Return a tree expression that represents the end of the referenced
331 memory region. Beware that this function can actually build a new
332 tree expression. */
334 tree
335 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
337 return asan_mem_ref_get_end (ref->start, len);
340 struct asan_mem_ref_hasher
341 : typed_noop_remove <asan_mem_ref>
343 typedef asan_mem_ref value_type;
344 typedef asan_mem_ref compare_type;
346 static inline hashval_t hash (const value_type *);
347 static inline bool equal (const value_type *, const compare_type *);
350 /* Hash a memory reference. */
352 inline hashval_t
353 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
355 inchash::hash hstate;
356 inchash::add_expr (mem_ref->start, hstate);
357 hstate.add_wide_int (mem_ref->access_size);
358 return hstate.end ();
361 /* Compare two memory references. We accept the length of either
362 memory references to be NULL_TREE. */
364 inline bool
365 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
366 const asan_mem_ref *m2)
368 return (m1->access_size == m2->access_size
369 && operand_equal_p (m1->start, m2->start, 0));
372 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
374 /* Returns a reference to the hash table containing memory references.
375 This function ensures that the hash table is created. Note that
376 this hash table is updated by the function
377 update_mem_ref_hash_table. */
379 static hash_table<asan_mem_ref_hasher> *
380 get_mem_ref_hash_table ()
382 if (!asan_mem_ref_ht)
383 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
385 return asan_mem_ref_ht;
388 /* Clear all entries from the memory references hash table. */
390 static void
391 empty_mem_ref_hash_table ()
393 if (asan_mem_ref_ht)
394 asan_mem_ref_ht->empty ();
397 /* Free the memory references hash table. */
399 static void
400 free_mem_ref_resources ()
402 delete asan_mem_ref_ht;
403 asan_mem_ref_ht = NULL;
405 if (asan_mem_ref_alloc_pool)
407 free_alloc_pool (asan_mem_ref_alloc_pool);
408 asan_mem_ref_alloc_pool = NULL;
412 /* Return true iff the memory reference REF has been instrumented. */
414 static bool
415 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
417 asan_mem_ref r;
418 asan_mem_ref_init (&r, ref, access_size);
420 return (get_mem_ref_hash_table ()->find (&r) != NULL);
423 /* Return true iff the memory reference REF has been instrumented. */
425 static bool
426 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
428 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
431 /* Return true iff access to memory region starting at REF and of
432 length LEN has been instrumented. */
434 static bool
435 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
437 /* First let's see if the address of the beginning of REF has been
438 instrumented. */
439 if (!has_mem_ref_been_instrumented (ref))
440 return false;
442 if (len != 0)
444 /* Let's see if the end of the region has been instrumented. */
445 if (!has_mem_ref_been_instrumented (asan_mem_ref_get_end (ref, len),
446 ref->access_size))
447 return false;
449 return true;
452 /* Set REF to the memory reference present in a gimple assignment
453 ASSIGNMENT. Return true upon successful completion, false
454 otherwise. */
456 static bool
457 get_mem_ref_of_assignment (const gimple assignment,
458 asan_mem_ref *ref,
459 bool *ref_is_store)
461 gcc_assert (gimple_assign_single_p (assignment));
463 if (gimple_store_p (assignment)
464 && !gimple_clobber_p (assignment))
466 ref->start = gimple_assign_lhs (assignment);
467 *ref_is_store = true;
469 else if (gimple_assign_load_p (assignment))
471 ref->start = gimple_assign_rhs1 (assignment);
472 *ref_is_store = false;
474 else
475 return false;
477 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
478 return true;
481 /* Return the memory references contained in a gimple statement
482 representing a builtin call that has to do with memory access. */
484 static bool
485 get_mem_refs_of_builtin_call (const gimple call,
486 asan_mem_ref *src0,
487 tree *src0_len,
488 bool *src0_is_store,
489 asan_mem_ref *src1,
490 tree *src1_len,
491 bool *src1_is_store,
492 asan_mem_ref *dst,
493 tree *dst_len,
494 bool *dst_is_store,
495 bool *dest_is_deref)
497 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
499 tree callee = gimple_call_fndecl (call);
500 tree source0 = NULL_TREE, source1 = NULL_TREE,
501 dest = NULL_TREE, len = NULL_TREE;
502 bool is_store = true, got_reference_p = false;
503 HOST_WIDE_INT access_size = 1;
505 switch (DECL_FUNCTION_CODE (callee))
507 /* (s, s, n) style memops. */
508 case BUILT_IN_BCMP:
509 case BUILT_IN_MEMCMP:
510 source0 = gimple_call_arg (call, 0);
511 source1 = gimple_call_arg (call, 1);
512 len = gimple_call_arg (call, 2);
513 break;
515 /* (src, dest, n) style memops. */
516 case BUILT_IN_BCOPY:
517 source0 = gimple_call_arg (call, 0);
518 dest = gimple_call_arg (call, 1);
519 len = gimple_call_arg (call, 2);
520 break;
522 /* (dest, src, n) style memops. */
523 case BUILT_IN_MEMCPY:
524 case BUILT_IN_MEMCPY_CHK:
525 case BUILT_IN_MEMMOVE:
526 case BUILT_IN_MEMMOVE_CHK:
527 case BUILT_IN_MEMPCPY:
528 case BUILT_IN_MEMPCPY_CHK:
529 dest = gimple_call_arg (call, 0);
530 source0 = gimple_call_arg (call, 1);
531 len = gimple_call_arg (call, 2);
532 break;
534 /* (dest, n) style memops. */
535 case BUILT_IN_BZERO:
536 dest = gimple_call_arg (call, 0);
537 len = gimple_call_arg (call, 1);
538 break;
540 /* (dest, x, n) style memops*/
541 case BUILT_IN_MEMSET:
542 case BUILT_IN_MEMSET_CHK:
543 dest = gimple_call_arg (call, 0);
544 len = gimple_call_arg (call, 2);
545 break;
547 case BUILT_IN_STRLEN:
548 source0 = gimple_call_arg (call, 0);
549 len = gimple_call_lhs (call);
550 break ;
552 /* And now the __atomic* and __sync builtins.
553 These are handled differently from the classical memory memory
554 access builtins above. */
556 case BUILT_IN_ATOMIC_LOAD_1:
557 case BUILT_IN_ATOMIC_LOAD_2:
558 case BUILT_IN_ATOMIC_LOAD_4:
559 case BUILT_IN_ATOMIC_LOAD_8:
560 case BUILT_IN_ATOMIC_LOAD_16:
561 is_store = false;
562 /* fall through. */
564 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
565 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
566 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
567 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
568 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
570 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
571 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
572 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
573 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
574 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
576 case BUILT_IN_SYNC_FETCH_AND_OR_1:
577 case BUILT_IN_SYNC_FETCH_AND_OR_2:
578 case BUILT_IN_SYNC_FETCH_AND_OR_4:
579 case BUILT_IN_SYNC_FETCH_AND_OR_8:
580 case BUILT_IN_SYNC_FETCH_AND_OR_16:
582 case BUILT_IN_SYNC_FETCH_AND_AND_1:
583 case BUILT_IN_SYNC_FETCH_AND_AND_2:
584 case BUILT_IN_SYNC_FETCH_AND_AND_4:
585 case BUILT_IN_SYNC_FETCH_AND_AND_8:
586 case BUILT_IN_SYNC_FETCH_AND_AND_16:
588 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
589 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
590 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
591 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
592 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
594 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
595 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
596 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
597 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
599 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
600 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
601 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
602 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
603 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
605 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
606 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
607 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
608 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
609 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
611 case BUILT_IN_SYNC_OR_AND_FETCH_1:
612 case BUILT_IN_SYNC_OR_AND_FETCH_2:
613 case BUILT_IN_SYNC_OR_AND_FETCH_4:
614 case BUILT_IN_SYNC_OR_AND_FETCH_8:
615 case BUILT_IN_SYNC_OR_AND_FETCH_16:
617 case BUILT_IN_SYNC_AND_AND_FETCH_1:
618 case BUILT_IN_SYNC_AND_AND_FETCH_2:
619 case BUILT_IN_SYNC_AND_AND_FETCH_4:
620 case BUILT_IN_SYNC_AND_AND_FETCH_8:
621 case BUILT_IN_SYNC_AND_AND_FETCH_16:
623 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
624 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
625 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
626 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
627 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
629 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
630 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
631 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
632 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
634 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
635 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
636 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
637 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
638 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
640 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
641 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
642 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
643 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
644 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
646 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
647 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
648 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
649 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
650 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
652 case BUILT_IN_SYNC_LOCK_RELEASE_1:
653 case BUILT_IN_SYNC_LOCK_RELEASE_2:
654 case BUILT_IN_SYNC_LOCK_RELEASE_4:
655 case BUILT_IN_SYNC_LOCK_RELEASE_8:
656 case BUILT_IN_SYNC_LOCK_RELEASE_16:
658 case BUILT_IN_ATOMIC_EXCHANGE_1:
659 case BUILT_IN_ATOMIC_EXCHANGE_2:
660 case BUILT_IN_ATOMIC_EXCHANGE_4:
661 case BUILT_IN_ATOMIC_EXCHANGE_8:
662 case BUILT_IN_ATOMIC_EXCHANGE_16:
664 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
665 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
666 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
667 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
668 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
670 case BUILT_IN_ATOMIC_STORE_1:
671 case BUILT_IN_ATOMIC_STORE_2:
672 case BUILT_IN_ATOMIC_STORE_4:
673 case BUILT_IN_ATOMIC_STORE_8:
674 case BUILT_IN_ATOMIC_STORE_16:
676 case BUILT_IN_ATOMIC_ADD_FETCH_1:
677 case BUILT_IN_ATOMIC_ADD_FETCH_2:
678 case BUILT_IN_ATOMIC_ADD_FETCH_4:
679 case BUILT_IN_ATOMIC_ADD_FETCH_8:
680 case BUILT_IN_ATOMIC_ADD_FETCH_16:
682 case BUILT_IN_ATOMIC_SUB_FETCH_1:
683 case BUILT_IN_ATOMIC_SUB_FETCH_2:
684 case BUILT_IN_ATOMIC_SUB_FETCH_4:
685 case BUILT_IN_ATOMIC_SUB_FETCH_8:
686 case BUILT_IN_ATOMIC_SUB_FETCH_16:
688 case BUILT_IN_ATOMIC_AND_FETCH_1:
689 case BUILT_IN_ATOMIC_AND_FETCH_2:
690 case BUILT_IN_ATOMIC_AND_FETCH_4:
691 case BUILT_IN_ATOMIC_AND_FETCH_8:
692 case BUILT_IN_ATOMIC_AND_FETCH_16:
694 case BUILT_IN_ATOMIC_NAND_FETCH_1:
695 case BUILT_IN_ATOMIC_NAND_FETCH_2:
696 case BUILT_IN_ATOMIC_NAND_FETCH_4:
697 case BUILT_IN_ATOMIC_NAND_FETCH_8:
698 case BUILT_IN_ATOMIC_NAND_FETCH_16:
700 case BUILT_IN_ATOMIC_XOR_FETCH_1:
701 case BUILT_IN_ATOMIC_XOR_FETCH_2:
702 case BUILT_IN_ATOMIC_XOR_FETCH_4:
703 case BUILT_IN_ATOMIC_XOR_FETCH_8:
704 case BUILT_IN_ATOMIC_XOR_FETCH_16:
706 case BUILT_IN_ATOMIC_OR_FETCH_1:
707 case BUILT_IN_ATOMIC_OR_FETCH_2:
708 case BUILT_IN_ATOMIC_OR_FETCH_4:
709 case BUILT_IN_ATOMIC_OR_FETCH_8:
710 case BUILT_IN_ATOMIC_OR_FETCH_16:
712 case BUILT_IN_ATOMIC_FETCH_ADD_1:
713 case BUILT_IN_ATOMIC_FETCH_ADD_2:
714 case BUILT_IN_ATOMIC_FETCH_ADD_4:
715 case BUILT_IN_ATOMIC_FETCH_ADD_8:
716 case BUILT_IN_ATOMIC_FETCH_ADD_16:
718 case BUILT_IN_ATOMIC_FETCH_SUB_1:
719 case BUILT_IN_ATOMIC_FETCH_SUB_2:
720 case BUILT_IN_ATOMIC_FETCH_SUB_4:
721 case BUILT_IN_ATOMIC_FETCH_SUB_8:
722 case BUILT_IN_ATOMIC_FETCH_SUB_16:
724 case BUILT_IN_ATOMIC_FETCH_AND_1:
725 case BUILT_IN_ATOMIC_FETCH_AND_2:
726 case BUILT_IN_ATOMIC_FETCH_AND_4:
727 case BUILT_IN_ATOMIC_FETCH_AND_8:
728 case BUILT_IN_ATOMIC_FETCH_AND_16:
730 case BUILT_IN_ATOMIC_FETCH_NAND_1:
731 case BUILT_IN_ATOMIC_FETCH_NAND_2:
732 case BUILT_IN_ATOMIC_FETCH_NAND_4:
733 case BUILT_IN_ATOMIC_FETCH_NAND_8:
734 case BUILT_IN_ATOMIC_FETCH_NAND_16:
736 case BUILT_IN_ATOMIC_FETCH_XOR_1:
737 case BUILT_IN_ATOMIC_FETCH_XOR_2:
738 case BUILT_IN_ATOMIC_FETCH_XOR_4:
739 case BUILT_IN_ATOMIC_FETCH_XOR_8:
740 case BUILT_IN_ATOMIC_FETCH_XOR_16:
742 case BUILT_IN_ATOMIC_FETCH_OR_1:
743 case BUILT_IN_ATOMIC_FETCH_OR_2:
744 case BUILT_IN_ATOMIC_FETCH_OR_4:
745 case BUILT_IN_ATOMIC_FETCH_OR_8:
746 case BUILT_IN_ATOMIC_FETCH_OR_16:
748 dest = gimple_call_arg (call, 0);
749 /* DEST represents the address of a memory location.
750 instrument_derefs wants the memory location, so lets
751 dereference the address DEST before handing it to
752 instrument_derefs. */
753 if (TREE_CODE (dest) == ADDR_EXPR)
754 dest = TREE_OPERAND (dest, 0);
755 else if (TREE_CODE (dest) == SSA_NAME || TREE_CODE (dest) == INTEGER_CST)
756 dest = build2 (MEM_REF, TREE_TYPE (TREE_TYPE (dest)),
757 dest, build_int_cst (TREE_TYPE (dest), 0));
758 else
759 gcc_unreachable ();
761 access_size = int_size_in_bytes (TREE_TYPE (dest));
764 default:
765 /* The other builtins memory access are not instrumented in this
766 function because they either don't have any length parameter,
767 or their length parameter is just a limit. */
768 break;
771 if (len != NULL_TREE)
773 if (source0 != NULL_TREE)
775 src0->start = source0;
776 src0->access_size = access_size;
777 *src0_len = len;
778 *src0_is_store = false;
781 if (source1 != NULL_TREE)
783 src1->start = source1;
784 src1->access_size = access_size;
785 *src1_len = len;
786 *src1_is_store = false;
789 if (dest != NULL_TREE)
791 dst->start = dest;
792 dst->access_size = access_size;
793 *dst_len = len;
794 *dst_is_store = true;
797 got_reference_p = true;
799 else if (dest)
801 dst->start = dest;
802 dst->access_size = access_size;
803 *dst_len = NULL_TREE;
804 *dst_is_store = is_store;
805 *dest_is_deref = true;
806 got_reference_p = true;
809 return got_reference_p;
812 /* Return true iff a given gimple statement has been instrumented.
813 Note that the statement is "defined" by the memory references it
814 contains. */
816 static bool
817 has_stmt_been_instrumented_p (gimple stmt)
819 if (gimple_assign_single_p (stmt))
821 bool r_is_store;
822 asan_mem_ref r;
823 asan_mem_ref_init (&r, NULL, 1);
825 if (get_mem_ref_of_assignment (stmt, &r, &r_is_store))
826 return has_mem_ref_been_instrumented (&r);
828 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
830 asan_mem_ref src0, src1, dest;
831 asan_mem_ref_init (&src0, NULL, 1);
832 asan_mem_ref_init (&src1, NULL, 1);
833 asan_mem_ref_init (&dest, NULL, 1);
835 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
836 bool src0_is_store = false, src1_is_store = false,
837 dest_is_store = false, dest_is_deref = false;
838 if (get_mem_refs_of_builtin_call (stmt,
839 &src0, &src0_len, &src0_is_store,
840 &src1, &src1_len, &src1_is_store,
841 &dest, &dest_len, &dest_is_store,
842 &dest_is_deref))
844 if (src0.start != NULL_TREE
845 && !has_mem_ref_been_instrumented (&src0, src0_len))
846 return false;
848 if (src1.start != NULL_TREE
849 && !has_mem_ref_been_instrumented (&src1, src1_len))
850 return false;
852 if (dest.start != NULL_TREE
853 && !has_mem_ref_been_instrumented (&dest, dest_len))
854 return false;
856 return true;
859 return false;
862 /* Insert a memory reference into the hash table. */
864 static void
865 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
867 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
869 asan_mem_ref r;
870 asan_mem_ref_init (&r, ref, access_size);
872 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
873 if (*slot == NULL)
874 *slot = asan_mem_ref_new (ref, access_size);
877 /* Initialize shadow_ptr_types array. */
879 static void
880 asan_init_shadow_ptr_types (void)
882 asan_shadow_set = new_alias_set ();
883 shadow_ptr_types[0] = build_distinct_type_copy (signed_char_type_node);
884 TYPE_ALIAS_SET (shadow_ptr_types[0]) = asan_shadow_set;
885 shadow_ptr_types[0] = build_pointer_type (shadow_ptr_types[0]);
886 shadow_ptr_types[1] = build_distinct_type_copy (short_integer_type_node);
887 TYPE_ALIAS_SET (shadow_ptr_types[1]) = asan_shadow_set;
888 shadow_ptr_types[1] = build_pointer_type (shadow_ptr_types[1]);
889 initialize_sanitizer_builtins ();
892 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
894 static tree
895 asan_pp_string (pretty_printer *pp)
897 const char *buf = pp_formatted_text (pp);
898 size_t len = strlen (buf);
899 tree ret = build_string (len + 1, buf);
900 TREE_TYPE (ret)
901 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
902 build_index_type (size_int (len)));
903 TREE_READONLY (ret) = 1;
904 TREE_STATIC (ret) = 1;
905 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
908 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
910 static rtx
911 asan_shadow_cst (unsigned char shadow_bytes[4])
913 int i;
914 unsigned HOST_WIDE_INT val = 0;
915 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
916 for (i = 0; i < 4; i++)
917 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
918 << (BITS_PER_UNIT * i);
919 return gen_int_mode (val, SImode);
922 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
923 though. */
925 static void
926 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
928 rtx_insn *insn, *insns, *jump;
929 rtx_code_label *top_label;
930 rtx end, addr, tmp;
932 start_sequence ();
933 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
934 insns = get_insns ();
935 end_sequence ();
936 for (insn = insns; insn; insn = NEXT_INSN (insn))
937 if (CALL_P (insn))
938 break;
939 if (insn == NULL_RTX)
941 emit_insn (insns);
942 return;
945 gcc_assert ((len & 3) == 0);
946 top_label = gen_label_rtx ();
947 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
948 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
949 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
950 emit_label (top_label);
952 emit_move_insn (shadow_mem, const0_rtx);
953 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
954 true, OPTAB_LIB_WIDEN);
955 if (tmp != addr)
956 emit_move_insn (addr, tmp);
957 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
958 jump = get_last_insn ();
959 gcc_assert (JUMP_P (jump));
960 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
963 void
964 asan_function_start (void)
966 section *fnsec = function_section (current_function_decl);
967 switch_to_section (fnsec);
968 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
969 current_function_funcdef_no);
972 /* Insert code to protect stack vars. The prologue sequence should be emitted
973 directly, epilogue sequence returned. BASE is the register holding the
974 stack base, against which OFFSETS array offsets are relative to, OFFSETS
975 array contains pairs of offsets in reverse order, always the end offset
976 of some gap that needs protection followed by starting offset,
977 and DECLS is an array of representative decls for each var partition.
978 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
979 elements long (OFFSETS include gap before the first variable as well
980 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
981 register which stack vars DECL_RTLs are based on. Either BASE should be
982 assigned to PBASE, when not doing use after return protection, or
983 corresponding address based on __asan_stack_malloc* return value. */
985 rtx_insn *
986 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
987 HOST_WIDE_INT *offsets, tree *decls, int length)
989 rtx shadow_base, shadow_mem, ret, mem, orig_base;
990 rtx_code_label *lab;
991 rtx_insn *insns;
992 char buf[30];
993 unsigned char shadow_bytes[4];
994 HOST_WIDE_INT base_offset = offsets[length - 1];
995 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
996 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
997 HOST_WIDE_INT last_offset, last_size;
998 int l;
999 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1000 tree str_cst, decl, id;
1001 int use_after_return_class = -1;
1003 if (shadow_ptr_types[0] == NULL_TREE)
1004 asan_init_shadow_ptr_types ();
1006 /* First of all, prepare the description string. */
1007 pretty_printer asan_pp;
1009 pp_decimal_int (&asan_pp, length / 2 - 1);
1010 pp_space (&asan_pp);
1011 for (l = length - 2; l; l -= 2)
1013 tree decl = decls[l / 2 - 1];
1014 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1015 pp_space (&asan_pp);
1016 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1017 pp_space (&asan_pp);
1018 if (DECL_P (decl) && DECL_NAME (decl))
1020 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1021 pp_space (&asan_pp);
1022 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1024 else
1025 pp_string (&asan_pp, "9 <unknown>");
1026 pp_space (&asan_pp);
1028 str_cst = asan_pp_string (&asan_pp);
1030 /* Emit the prologue sequence. */
1031 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1032 && ASAN_USE_AFTER_RETURN)
1034 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1035 /* __asan_stack_malloc_N guarantees alignment
1036 N < 6 ? (64 << N) : 4096 bytes. */
1037 if (alignb > (use_after_return_class < 6
1038 ? (64U << use_after_return_class) : 4096U))
1039 use_after_return_class = -1;
1040 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1041 base_align_bias = ((asan_frame_size + alignb - 1)
1042 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1044 /* Align base if target is STRICT_ALIGNMENT. */
1045 if (STRICT_ALIGNMENT)
1046 base = expand_binop (Pmode, and_optab, base,
1047 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1048 << ASAN_SHADOW_SHIFT)
1049 / BITS_PER_UNIT), Pmode), NULL_RTX,
1050 1, OPTAB_DIRECT);
1052 if (use_after_return_class == -1 && pbase)
1053 emit_move_insn (pbase, base);
1055 base = expand_binop (Pmode, add_optab, base,
1056 gen_int_mode (base_offset - base_align_bias, Pmode),
1057 NULL_RTX, 1, OPTAB_DIRECT);
1058 orig_base = NULL_RTX;
1059 if (use_after_return_class != -1)
1061 if (asan_detect_stack_use_after_return == NULL_TREE)
1063 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1064 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1065 integer_type_node);
1066 SET_DECL_ASSEMBLER_NAME (decl, id);
1067 TREE_ADDRESSABLE (decl) = 1;
1068 DECL_ARTIFICIAL (decl) = 1;
1069 DECL_IGNORED_P (decl) = 1;
1070 DECL_EXTERNAL (decl) = 1;
1071 TREE_STATIC (decl) = 1;
1072 TREE_PUBLIC (decl) = 1;
1073 TREE_USED (decl) = 1;
1074 asan_detect_stack_use_after_return = decl;
1076 orig_base = gen_reg_rtx (Pmode);
1077 emit_move_insn (orig_base, base);
1078 ret = expand_normal (asan_detect_stack_use_after_return);
1079 lab = gen_label_rtx ();
1080 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1081 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1082 VOIDmode, 0, lab, very_likely);
1083 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1084 use_after_return_class);
1085 ret = init_one_libfunc (buf);
1086 rtx addr = convert_memory_address (ptr_mode, base);
1087 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 2,
1088 GEN_INT (asan_frame_size
1089 + base_align_bias),
1090 TYPE_MODE (pointer_sized_int_node),
1091 addr, ptr_mode);
1092 ret = convert_memory_address (Pmode, ret);
1093 emit_move_insn (base, ret);
1094 emit_label (lab);
1095 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1096 gen_int_mode (base_align_bias
1097 - base_offset, Pmode),
1098 NULL_RTX, 1, OPTAB_DIRECT));
1100 mem = gen_rtx_MEM (ptr_mode, base);
1101 mem = adjust_address (mem, VOIDmode, base_align_bias);
1102 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1103 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1104 emit_move_insn (mem, expand_normal (str_cst));
1105 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1106 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1107 id = get_identifier (buf);
1108 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1109 VAR_DECL, id, char_type_node);
1110 SET_DECL_ASSEMBLER_NAME (decl, id);
1111 TREE_ADDRESSABLE (decl) = 1;
1112 TREE_READONLY (decl) = 1;
1113 DECL_ARTIFICIAL (decl) = 1;
1114 DECL_IGNORED_P (decl) = 1;
1115 TREE_STATIC (decl) = 1;
1116 TREE_PUBLIC (decl) = 0;
1117 TREE_USED (decl) = 1;
1118 DECL_INITIAL (decl) = decl;
1119 TREE_ASM_WRITTEN (decl) = 1;
1120 TREE_ASM_WRITTEN (id) = 1;
1121 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1122 shadow_base = expand_binop (Pmode, lshr_optab, base,
1123 GEN_INT (ASAN_SHADOW_SHIFT),
1124 NULL_RTX, 1, OPTAB_DIRECT);
1125 shadow_base
1126 = plus_constant (Pmode, shadow_base,
1127 targetm.asan_shadow_offset ()
1128 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1129 gcc_assert (asan_shadow_set != -1
1130 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1131 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1132 set_mem_alias_set (shadow_mem, asan_shadow_set);
1133 if (STRICT_ALIGNMENT)
1134 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1135 prev_offset = base_offset;
1136 for (l = length; l; l -= 2)
1138 if (l == 2)
1139 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1140 offset = offsets[l - 1];
1141 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1143 int i;
1144 HOST_WIDE_INT aoff
1145 = base_offset + ((offset - base_offset)
1146 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1147 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1148 (aoff - prev_offset)
1149 >> ASAN_SHADOW_SHIFT);
1150 prev_offset = aoff;
1151 for (i = 0; i < 4; i++, aoff += (1 << ASAN_SHADOW_SHIFT))
1152 if (aoff < offset)
1154 if (aoff < offset - (1 << ASAN_SHADOW_SHIFT) + 1)
1155 shadow_bytes[i] = 0;
1156 else
1157 shadow_bytes[i] = offset - aoff;
1159 else
1160 shadow_bytes[i] = ASAN_STACK_MAGIC_PARTIAL;
1161 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1162 offset = aoff;
1164 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1166 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1167 (offset - prev_offset)
1168 >> ASAN_SHADOW_SHIFT);
1169 prev_offset = offset;
1170 memset (shadow_bytes, cur_shadow_byte, 4);
1171 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1172 offset += ASAN_RED_ZONE_SIZE;
1174 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1176 do_pending_stack_adjust ();
1178 /* Construct epilogue sequence. */
1179 start_sequence ();
1181 lab = NULL;
1182 if (use_after_return_class != -1)
1184 rtx_code_label *lab2 = gen_label_rtx ();
1185 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1186 int very_likely = REG_BR_PROB_BASE - (REG_BR_PROB_BASE / 2000 - 1);
1187 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1188 VOIDmode, 0, lab2, very_likely);
1189 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1190 set_mem_alias_set (shadow_mem, asan_shadow_set);
1191 mem = gen_rtx_MEM (ptr_mode, base);
1192 mem = adjust_address (mem, VOIDmode, base_align_bias);
1193 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1194 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1195 if (use_after_return_class < 5
1196 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1197 BITS_PER_UNIT, true))
1198 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1199 BITS_PER_UNIT, true, 0);
1200 else if (use_after_return_class >= 5
1201 || !set_storage_via_setmem (shadow_mem,
1202 GEN_INT (sz),
1203 gen_int_mode (c, QImode),
1204 BITS_PER_UNIT, BITS_PER_UNIT,
1205 -1, sz, sz, sz))
1207 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1208 use_after_return_class);
1209 ret = init_one_libfunc (buf);
1210 rtx addr = convert_memory_address (ptr_mode, base);
1211 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1212 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1213 GEN_INT (asan_frame_size + base_align_bias),
1214 TYPE_MODE (pointer_sized_int_node),
1215 orig_addr, ptr_mode);
1217 lab = gen_label_rtx ();
1218 emit_jump (lab);
1219 emit_label (lab2);
1222 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1223 set_mem_alias_set (shadow_mem, asan_shadow_set);
1225 if (STRICT_ALIGNMENT)
1226 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1228 prev_offset = base_offset;
1229 last_offset = base_offset;
1230 last_size = 0;
1231 for (l = length; l; l -= 2)
1233 offset = base_offset + ((offsets[l - 1] - base_offset)
1234 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1235 if (last_offset + last_size != offset)
1237 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1238 (last_offset - prev_offset)
1239 >> ASAN_SHADOW_SHIFT);
1240 prev_offset = last_offset;
1241 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1242 last_offset = offset;
1243 last_size = 0;
1245 last_size += base_offset + ((offsets[l - 2] - base_offset)
1246 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1247 - offset;
1249 if (last_size)
1251 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1252 (last_offset - prev_offset)
1253 >> ASAN_SHADOW_SHIFT);
1254 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1257 do_pending_stack_adjust ();
1258 if (lab)
1259 emit_label (lab);
1261 insns = get_insns ();
1262 end_sequence ();
1263 return insns;
1266 /* Return true if DECL, a global var, might be overridden and needs
1267 therefore a local alias. */
1269 static bool
1270 asan_needs_local_alias (tree decl)
1272 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1275 /* Return true if DECL is a VAR_DECL that should be protected
1276 by Address Sanitizer, by appending a red zone with protected
1277 shadow memory after it and aligning it to at least
1278 ASAN_RED_ZONE_SIZE bytes. */
1280 bool
1281 asan_protect_global (tree decl)
1283 if (!ASAN_GLOBALS)
1284 return false;
1286 rtx rtl, symbol;
1288 if (TREE_CODE (decl) == STRING_CST)
1290 /* Instrument all STRING_CSTs except those created
1291 by asan_pp_string here. */
1292 if (shadow_ptr_types[0] != NULL_TREE
1293 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1294 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1295 return false;
1296 return true;
1298 if (TREE_CODE (decl) != VAR_DECL
1299 /* TLS vars aren't statically protectable. */
1300 || DECL_THREAD_LOCAL_P (decl)
1301 /* Externs will be protected elsewhere. */
1302 || DECL_EXTERNAL (decl)
1303 || !DECL_RTL_SET_P (decl)
1304 /* Comdat vars pose an ABI problem, we can't know if
1305 the var that is selected by the linker will have
1306 padding or not. */
1307 || DECL_ONE_ONLY (decl)
1308 /* Similarly for common vars. People can use -fno-common. */
1309 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1310 /* Don't protect if using user section, often vars placed
1311 into user section from multiple TUs are then assumed
1312 to be an array of such vars, putting padding in there
1313 breaks this assumption. */
1314 || (DECL_SECTION_NAME (decl) != NULL
1315 && !symtab_node::get (decl)->implicit_section)
1316 || DECL_SIZE (decl) == 0
1317 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1318 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1319 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1320 || TREE_TYPE (decl) == ubsan_get_source_location_type ())
1321 return false;
1323 rtl = DECL_RTL (decl);
1324 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1325 return false;
1326 symbol = XEXP (rtl, 0);
1328 if (CONSTANT_POOL_ADDRESS_P (symbol)
1329 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1330 return false;
1332 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1333 return false;
1335 #ifndef ASM_OUTPUT_DEF
1336 if (asan_needs_local_alias (decl))
1337 return false;
1338 #endif
1340 return true;
1343 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1344 IS_STORE is either 1 (for a store) or 0 (for a load). */
1346 static tree
1347 report_error_func (bool is_store, HOST_WIDE_INT size_in_bytes, int *nargs)
1349 static enum built_in_function report[2][6]
1350 = { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1351 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1352 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1353 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1354 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1355 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } };
1356 if (size_in_bytes == -1)
1358 *nargs = 2;
1359 return builtin_decl_implicit (report[is_store][5]);
1361 *nargs = 1;
1362 return builtin_decl_implicit (report[is_store][exact_log2 (size_in_bytes)]);
1365 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1366 IS_STORE is either 1 (for a store) or 0 (for a load). */
1368 static tree
1369 check_func (bool is_store, int size_in_bytes, int *nargs)
1371 static enum built_in_function check[2][6]
1372 = { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1373 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1374 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1375 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1376 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1377 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } };
1378 if (size_in_bytes == -1)
1380 *nargs = 2;
1381 return builtin_decl_implicit (check[is_store][5]);
1383 *nargs = 1;
1384 return builtin_decl_implicit (check[is_store][exact_log2 (size_in_bytes)]);
1387 /* Split the current basic block and create a condition statement
1388 insertion point right before or after the statement pointed to by
1389 ITER. Return an iterator to the point at which the caller might
1390 safely insert the condition statement.
1392 THEN_BLOCK must be set to the address of an uninitialized instance
1393 of basic_block. The function will then set *THEN_BLOCK to the
1394 'then block' of the condition statement to be inserted by the
1395 caller.
1397 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1398 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1400 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1401 block' of the condition statement to be inserted by the caller.
1403 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1404 statements starting from *ITER, and *THEN_BLOCK is a new empty
1405 block.
1407 *ITER is adjusted to point to always point to the first statement
1408 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1409 same as what ITER was pointing to prior to calling this function,
1410 if BEFORE_P is true; otherwise, it is its following statement. */
1412 gimple_stmt_iterator
1413 create_cond_insert_point (gimple_stmt_iterator *iter,
1414 bool before_p,
1415 bool then_more_likely_p,
1416 bool create_then_fallthru_edge,
1417 basic_block *then_block,
1418 basic_block *fallthrough_block)
1420 gimple_stmt_iterator gsi = *iter;
1422 if (!gsi_end_p (gsi) && before_p)
1423 gsi_prev (&gsi);
1425 basic_block cur_bb = gsi_bb (*iter);
1427 edge e = split_block (cur_bb, gsi_stmt (gsi));
1429 /* Get a hold on the 'condition block', the 'then block' and the
1430 'else block'. */
1431 basic_block cond_bb = e->src;
1432 basic_block fallthru_bb = e->dest;
1433 basic_block then_bb = create_empty_bb (cond_bb);
1434 if (current_loops)
1436 add_bb_to_loop (then_bb, cond_bb->loop_father);
1437 loops_state_set (LOOPS_NEED_FIXUP);
1440 /* Set up the newly created 'then block'. */
1441 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1442 int fallthrough_probability
1443 = then_more_likely_p
1444 ? PROB_VERY_UNLIKELY
1445 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1446 e->probability = PROB_ALWAYS - fallthrough_probability;
1447 if (create_then_fallthru_edge)
1448 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1450 /* Set up the fallthrough basic block. */
1451 e = find_edge (cond_bb, fallthru_bb);
1452 e->flags = EDGE_FALSE_VALUE;
1453 e->count = cond_bb->count;
1454 e->probability = fallthrough_probability;
1456 /* Update dominance info for the newly created then_bb; note that
1457 fallthru_bb's dominance info has already been updated by
1458 split_bock. */
1459 if (dom_info_available_p (CDI_DOMINATORS))
1460 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1462 *then_block = then_bb;
1463 *fallthrough_block = fallthru_bb;
1464 *iter = gsi_start_bb (fallthru_bb);
1466 return gsi_last_bb (cond_bb);
1469 /* Insert an if condition followed by a 'then block' right before the
1470 statement pointed to by ITER. The fallthrough block -- which is the
1471 else block of the condition as well as the destination of the
1472 outcoming edge of the 'then block' -- starts with the statement
1473 pointed to by ITER.
1475 COND is the condition of the if.
1477 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1478 'then block' is higher than the probability of the edge to the
1479 fallthrough block.
1481 Upon completion of the function, *THEN_BB is set to the newly
1482 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1483 fallthrough block.
1485 *ITER is adjusted to still point to the same statement it was
1486 pointing to initially. */
1488 static void
1489 insert_if_then_before_iter (gimple cond,
1490 gimple_stmt_iterator *iter,
1491 bool then_more_likely_p,
1492 basic_block *then_bb,
1493 basic_block *fallthrough_bb)
1495 gimple_stmt_iterator cond_insert_point =
1496 create_cond_insert_point (iter,
1497 /*before_p=*/true,
1498 then_more_likely_p,
1499 /*create_then_fallthru_edge=*/true,
1500 then_bb,
1501 fallthrough_bb);
1502 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1505 /* Build
1506 (base_addr >> ASAN_SHADOW_SHIFT) + targetm.asan_shadow_offset (). */
1508 static tree
1509 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1510 tree base_addr, tree shadow_ptr_type)
1512 tree t, uintptr_type = TREE_TYPE (base_addr);
1513 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1514 gimple g;
1516 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1517 g = gimple_build_assign_with_ops (RSHIFT_EXPR,
1518 make_ssa_name (uintptr_type, NULL),
1519 base_addr, t);
1520 gimple_set_location (g, location);
1521 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1523 t = build_int_cst (uintptr_type, targetm.asan_shadow_offset ());
1524 g = gimple_build_assign_with_ops (PLUS_EXPR,
1525 make_ssa_name (uintptr_type, NULL),
1526 gimple_assign_lhs (g), t);
1527 gimple_set_location (g, location);
1528 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1530 g = gimple_build_assign_with_ops (NOP_EXPR,
1531 make_ssa_name (shadow_ptr_type, NULL),
1532 gimple_assign_lhs (g), NULL_TREE);
1533 gimple_set_location (g, location);
1534 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1536 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1537 build_int_cst (shadow_ptr_type, 0));
1538 g = gimple_build_assign_with_ops (MEM_REF,
1539 make_ssa_name (shadow_type, NULL),
1540 t, NULL_TREE);
1541 gimple_set_location (g, location);
1542 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1543 return gimple_assign_lhs (g);
1546 /* BASE can already be an SSA_NAME; in that case, do not create a
1547 new SSA_NAME for it. */
1549 static tree
1550 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1551 bool before_p)
1553 if (TREE_CODE (base) == SSA_NAME)
1554 return base;
1555 gimple g
1556 = gimple_build_assign_with_ops (TREE_CODE (base),
1557 make_ssa_name (TREE_TYPE (base), NULL),
1558 base, NULL_TREE);
1559 gimple_set_location (g, loc);
1560 if (before_p)
1561 gsi_insert_before (iter, g, GSI_SAME_STMT);
1562 else
1563 gsi_insert_after (iter, g, GSI_NEW_STMT);
1564 return gimple_assign_lhs (g);
1567 /* LEN can already have necessary size and precision;
1568 in that case, do not create a new variable. */
1570 tree
1571 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1572 bool before_p)
1574 if (ptrofftype_p (len))
1575 return len;
1576 gimple g
1577 = gimple_build_assign_with_ops (NOP_EXPR,
1578 make_ssa_name (pointer_sized_int_node, NULL),
1579 len, NULL);
1580 gimple_set_location (g, loc);
1581 if (before_p)
1582 gsi_insert_before (iter, g, GSI_SAME_STMT);
1583 else
1584 gsi_insert_after (iter, g, GSI_NEW_STMT);
1585 return gimple_assign_lhs (g);
1588 /* Instrument the memory access instruction BASE. Insert new
1589 statements before or after ITER.
1591 Note that the memory access represented by BASE can be either an
1592 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1593 location. IS_STORE is TRUE for a store, FALSE for a load.
1594 BEFORE_P is TRUE for inserting the instrumentation code before
1595 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1596 for a scalar memory access and FALSE for memory region access.
1597 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1598 length. ALIGN tells alignment of accessed memory object.
1600 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1601 memory region have already been instrumented.
1603 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1604 statement it was pointing to prior to calling this function,
1605 otherwise, it points to the statement logically following it. */
1607 static void
1608 build_check_stmt (location_t loc, tree base, tree len,
1609 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1610 bool is_non_zero_len, bool before_p, bool is_store,
1611 bool is_scalar_access, unsigned int align = 0,
1612 bool start_instrumented = false,
1613 bool end_instrumented = false)
1615 gimple_stmt_iterator gsi = *iter;
1616 gimple g;
1618 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1620 if (start_instrumented && end_instrumented)
1622 if (!before_p)
1623 gsi_next (iter);
1624 return;
1627 gsi = *iter;
1629 base = unshare_expr (base);
1630 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1632 if (len)
1634 len = unshare_expr (len);
1635 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1637 else
1639 gcc_assert (size_in_bytes != -1);
1640 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1643 if (size_in_bytes > 1)
1645 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1646 || size_in_bytes > 16)
1647 is_scalar_access = false;
1648 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1650 /* On non-strict alignment targets, if
1651 16-byte access is just 8-byte aligned,
1652 this will result in misaligned shadow
1653 memory 2 byte load, but otherwise can
1654 be handled using one read. */
1655 if (size_in_bytes != 16
1656 || STRICT_ALIGNMENT
1657 || align < 8 * BITS_PER_UNIT)
1658 is_scalar_access = false;
1662 HOST_WIDE_INT flags = 0;
1663 if (is_store)
1664 flags |= ASAN_CHECK_STORE;
1665 if (is_non_zero_len)
1666 flags |= ASAN_CHECK_NON_ZERO_LEN;
1667 if (is_scalar_access)
1668 flags |= ASAN_CHECK_SCALAR_ACCESS;
1669 if (start_instrumented)
1670 flags |= ASAN_CHECK_START_INSTRUMENTED;
1671 if (end_instrumented)
1672 flags |= ASAN_CHECK_END_INSTRUMENTED;
1674 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1675 build_int_cst (integer_type_node, flags),
1676 base, len,
1677 build_int_cst (integer_type_node,
1678 align / BITS_PER_UNIT));
1679 gimple_set_location (g, loc);
1680 if (before_p)
1681 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1682 else
1684 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1685 gsi_next (&gsi);
1686 *iter = gsi;
1690 /* If T represents a memory access, add instrumentation code before ITER.
1691 LOCATION is source code location.
1692 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1694 static void
1695 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1696 location_t location, bool is_store)
1698 if (is_store && !ASAN_INSTRUMENT_WRITES)
1699 return;
1700 if (!is_store && !ASAN_INSTRUMENT_READS)
1701 return;
1703 tree type, base;
1704 HOST_WIDE_INT size_in_bytes;
1706 type = TREE_TYPE (t);
1707 switch (TREE_CODE (t))
1709 case ARRAY_REF:
1710 case COMPONENT_REF:
1711 case INDIRECT_REF:
1712 case MEM_REF:
1713 case VAR_DECL:
1714 case BIT_FIELD_REF:
1715 break;
1716 /* FALLTHRU */
1717 default:
1718 return;
1721 size_in_bytes = int_size_in_bytes (type);
1722 if (size_in_bytes <= 0)
1723 return;
1725 HOST_WIDE_INT bitsize, bitpos;
1726 tree offset;
1727 enum machine_mode mode;
1728 int volatilep = 0, unsignedp = 0;
1729 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset,
1730 &mode, &unsignedp, &volatilep, false);
1732 if (TREE_CODE (t) == COMPONENT_REF
1733 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1735 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1736 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1737 TREE_OPERAND (t, 0), repr,
1738 NULL_TREE), location, is_store);
1739 return;
1742 if (bitpos % BITS_PER_UNIT
1743 || bitsize != size_in_bytes * BITS_PER_UNIT)
1744 return;
1746 if (TREE_CODE (inner) == VAR_DECL
1747 && offset == NULL_TREE
1748 && bitpos >= 0
1749 && DECL_SIZE (inner)
1750 && tree_fits_shwi_p (DECL_SIZE (inner))
1751 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1753 if (DECL_THREAD_LOCAL_P (inner))
1754 return;
1755 if (!TREE_STATIC (inner))
1757 /* Automatic vars in the current function will be always
1758 accessible. */
1759 if (decl_function_context (inner) == current_function_decl)
1760 return;
1762 /* Always instrument external vars, they might be dynamically
1763 initialized. */
1764 else if (!DECL_EXTERNAL (inner))
1766 /* For static vars if they are known not to be dynamically
1767 initialized, they will be always accessible. */
1768 varpool_node *vnode = varpool_node::get (inner);
1769 if (vnode && !vnode->dynamically_initialized)
1770 return;
1774 base = build_fold_addr_expr (t);
1775 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1777 unsigned int align = get_object_alignment (t);
1778 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1779 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1780 is_store, /*is_scalar_access*/true, align);
1781 update_mem_ref_hash_table (base, size_in_bytes);
1782 update_mem_ref_hash_table (t, size_in_bytes);
1787 /* Instrument an access to a contiguous memory region that starts at
1788 the address pointed to by BASE, over a length of LEN (expressed in
1789 the sizeof (*BASE) bytes). ITER points to the instruction before
1790 which the instrumentation instructions must be inserted. LOCATION
1791 is the source location that the instrumentation instructions must
1792 have. If IS_STORE is true, then the memory access is a store;
1793 otherwise, it's a load. */
1795 static void
1796 instrument_mem_region_access (tree base, tree len,
1797 gimple_stmt_iterator *iter,
1798 location_t location, bool is_store)
1800 if (!POINTER_TYPE_P (TREE_TYPE (base))
1801 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1802 || integer_zerop (len))
1803 return;
1805 /* If the beginning of the memory region has already been
1806 instrumented, do not instrument it. */
1807 bool start_instrumented = has_mem_ref_been_instrumented (base, 1);
1809 /* If the end of the memory region has already been instrumented, do
1810 not instrument it. */
1811 tree end = asan_mem_ref_get_end (base, len);
1812 bool end_instrumented = has_mem_ref_been_instrumented (end, 1);
1814 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1816 build_check_stmt (location, base, len, size_in_bytes, iter,
1817 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1818 is_store, /*is_scalar_access*/false, /*align*/0,
1819 start_instrumented, end_instrumented);
1821 update_mem_ref_hash_table (base, 1);
1822 if (size_in_bytes != -1)
1823 update_mem_ref_hash_table (end, 1);
1825 *iter = gsi_for_stmt (gsi_stmt (*iter));
1828 /* Instrument the call (to the builtin strlen function) pointed to by
1829 ITER.
1831 This function instruments the access to the first byte of the
1832 argument, right before the call. After the call it instruments the
1833 access to the last byte of the argument; it uses the result of the
1834 call to deduce the offset of that last byte.
1836 Upon completion, iff the call has actually been instrumented, this
1837 function returns TRUE and *ITER points to the statement logically
1838 following the built-in strlen function call *ITER was initially
1839 pointing to. Otherwise, the function returns FALSE and *ITER
1840 remains unchanged. */
1842 static bool
1843 instrument_strlen_call (gimple_stmt_iterator *iter)
1845 gimple g;
1846 gimple call = gsi_stmt (*iter);
1847 gcc_assert (is_gimple_call (call));
1849 tree callee = gimple_call_fndecl (call);
1850 gcc_assert (is_builtin_fn (callee)
1851 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
1852 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN);
1854 location_t loc = gimple_location (call);
1856 tree len = gimple_call_lhs (call);
1857 if (len == NULL)
1858 /* Some passes might clear the return value of the strlen call;
1859 bail out in that case. Return FALSE as we are not advancing
1860 *ITER. */
1861 return false;
1862 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (len)));
1864 len = maybe_cast_to_ptrmode (loc, len, iter, /*before_p*/false);
1866 tree str_arg = gimple_call_arg (call, 0);
1867 bool start_instrumented = has_mem_ref_been_instrumented (str_arg, 1);
1869 tree cptr_type = build_pointer_type (char_type_node);
1870 g = gimple_build_assign_with_ops (NOP_EXPR,
1871 make_ssa_name (cptr_type, NULL),
1872 str_arg, NULL);
1873 gimple_set_location (g, loc);
1874 gsi_insert_before (iter, g, GSI_SAME_STMT);
1875 str_arg = gimple_assign_lhs (g);
1877 build_check_stmt (loc, str_arg, NULL_TREE, 1, iter,
1878 /*is_non_zero_len*/true, /*before_p=*/true,
1879 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0,
1880 start_instrumented, start_instrumented);
1882 g = gimple_build_assign_with_ops (POINTER_PLUS_EXPR,
1883 make_ssa_name (cptr_type, NULL),
1884 str_arg,
1885 len);
1886 gimple_set_location (g, loc);
1887 gsi_insert_after (iter, g, GSI_NEW_STMT);
1889 build_check_stmt (loc, gimple_assign_lhs (g), NULL_TREE, 1, iter,
1890 /*is_non_zero_len*/true, /*before_p=*/false,
1891 /*is_store=*/false, /*is_scalar_access*/true, /*align*/0);
1893 return true;
1896 /* Instrument the call to a built-in memory access function that is
1897 pointed to by the iterator ITER.
1899 Upon completion, return TRUE iff *ITER has been advanced to the
1900 statement following the one it was originally pointing to. */
1902 static bool
1903 instrument_builtin_call (gimple_stmt_iterator *iter)
1905 if (!ASAN_MEMINTRIN)
1906 return false;
1908 bool iter_advanced_p = false;
1909 gimple call = gsi_stmt (*iter);
1911 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1913 tree callee = gimple_call_fndecl (call);
1914 location_t loc = gimple_location (call);
1916 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STRLEN)
1917 iter_advanced_p = instrument_strlen_call (iter);
1918 else
1920 asan_mem_ref src0, src1, dest;
1921 asan_mem_ref_init (&src0, NULL, 1);
1922 asan_mem_ref_init (&src1, NULL, 1);
1923 asan_mem_ref_init (&dest, NULL, 1);
1925 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1926 bool src0_is_store = false, src1_is_store = false,
1927 dest_is_store = false, dest_is_deref = false;
1929 if (get_mem_refs_of_builtin_call (call,
1930 &src0, &src0_len, &src0_is_store,
1931 &src1, &src1_len, &src1_is_store,
1932 &dest, &dest_len, &dest_is_store,
1933 &dest_is_deref))
1935 if (dest_is_deref)
1937 instrument_derefs (iter, dest.start, loc, dest_is_store);
1938 gsi_next (iter);
1939 iter_advanced_p = true;
1941 else if (src0_len || src1_len || dest_len)
1943 if (src0.start != NULL_TREE)
1944 instrument_mem_region_access (src0.start, src0_len,
1945 iter, loc, /*is_store=*/false);
1946 if (src1.start != NULL_TREE)
1947 instrument_mem_region_access (src1.start, src1_len,
1948 iter, loc, /*is_store=*/false);
1949 if (dest.start != NULL_TREE)
1950 instrument_mem_region_access (dest.start, dest_len,
1951 iter, loc, /*is_store=*/true);
1952 *iter = gsi_for_stmt (call);
1953 gsi_next (iter);
1954 iter_advanced_p = true;
1958 return iter_advanced_p;
1961 /* Instrument the assignment statement ITER if it is subject to
1962 instrumentation. Return TRUE iff instrumentation actually
1963 happened. In that case, the iterator ITER is advanced to the next
1964 logical expression following the one initially pointed to by ITER,
1965 and the relevant memory reference that which access has been
1966 instrumented is added to the memory references hash table. */
1968 static bool
1969 maybe_instrument_assignment (gimple_stmt_iterator *iter)
1971 gimple s = gsi_stmt (*iter);
1973 gcc_assert (gimple_assign_single_p (s));
1975 tree ref_expr = NULL_TREE;
1976 bool is_store, is_instrumented = false;
1978 if (gimple_store_p (s))
1980 ref_expr = gimple_assign_lhs (s);
1981 is_store = true;
1982 instrument_derefs (iter, ref_expr,
1983 gimple_location (s),
1984 is_store);
1985 is_instrumented = true;
1988 if (gimple_assign_load_p (s))
1990 ref_expr = gimple_assign_rhs1 (s);
1991 is_store = false;
1992 instrument_derefs (iter, ref_expr,
1993 gimple_location (s),
1994 is_store);
1995 is_instrumented = true;
1998 if (is_instrumented)
1999 gsi_next (iter);
2001 return is_instrumented;
2004 /* Instrument the function call pointed to by the iterator ITER, if it
2005 is subject to instrumentation. At the moment, the only function
2006 calls that are instrumented are some built-in functions that access
2007 memory. Look at instrument_builtin_call to learn more.
2009 Upon completion return TRUE iff *ITER was advanced to the statement
2010 following the one it was originally pointing to. */
2012 static bool
2013 maybe_instrument_call (gimple_stmt_iterator *iter)
2015 gimple stmt = gsi_stmt (*iter);
2016 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2018 if (is_builtin && instrument_builtin_call (iter))
2019 return true;
2021 if (gimple_call_noreturn_p (stmt))
2023 if (is_builtin)
2025 tree callee = gimple_call_fndecl (stmt);
2026 switch (DECL_FUNCTION_CODE (callee))
2028 case BUILT_IN_UNREACHABLE:
2029 case BUILT_IN_TRAP:
2030 /* Don't instrument these. */
2031 return false;
2032 default:
2033 break;
2036 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2037 gimple g = gimple_build_call (decl, 0);
2038 gimple_set_location (g, gimple_location (stmt));
2039 gsi_insert_before (iter, g, GSI_SAME_STMT);
2041 return false;
2044 /* Walk each instruction of all basic block and instrument those that
2045 represent memory references: loads, stores, or function calls.
2046 In a given basic block, this function avoids instrumenting memory
2047 references that have already been instrumented. */
2049 static void
2050 transform_statements (void)
2052 basic_block bb, last_bb = NULL;
2053 gimple_stmt_iterator i;
2054 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2056 FOR_EACH_BB_FN (bb, cfun)
2058 basic_block prev_bb = bb;
2060 if (bb->index >= saved_last_basic_block) continue;
2062 /* Flush the mem ref hash table, if current bb doesn't have
2063 exactly one predecessor, or if that predecessor (skipping
2064 over asan created basic blocks) isn't the last processed
2065 basic block. Thus we effectively flush on extended basic
2066 block boundaries. */
2067 while (single_pred_p (prev_bb))
2069 prev_bb = single_pred (prev_bb);
2070 if (prev_bb->index < saved_last_basic_block)
2071 break;
2073 if (prev_bb != last_bb)
2074 empty_mem_ref_hash_table ();
2075 last_bb = bb;
2077 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2079 gimple s = gsi_stmt (i);
2081 if (has_stmt_been_instrumented_p (s))
2082 gsi_next (&i);
2083 else if (gimple_assign_single_p (s)
2084 && !gimple_clobber_p (s)
2085 && maybe_instrument_assignment (&i))
2086 /* Nothing to do as maybe_instrument_assignment advanced
2087 the iterator I. */;
2088 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2089 /* Nothing to do as maybe_instrument_call
2090 advanced the iterator I. */;
2091 else
2093 /* No instrumentation happened.
2095 If the current instruction is a function call that
2096 might free something, let's forget about the memory
2097 references that got instrumented. Otherwise we might
2098 miss some instrumentation opportunities. */
2099 if (is_gimple_call (s) && !nonfreeing_call_p (s))
2100 empty_mem_ref_hash_table ();
2102 gsi_next (&i);
2106 free_mem_ref_resources ();
2109 /* Build
2110 __asan_before_dynamic_init (module_name)
2112 __asan_after_dynamic_init ()
2113 call. */
2115 tree
2116 asan_dynamic_init_call (bool after_p)
2118 tree fn = builtin_decl_implicit (after_p
2119 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2120 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2121 tree module_name_cst = NULL_TREE;
2122 if (!after_p)
2124 pretty_printer module_name_pp;
2125 pp_string (&module_name_pp, main_input_filename);
2127 if (shadow_ptr_types[0] == NULL_TREE)
2128 asan_init_shadow_ptr_types ();
2129 module_name_cst = asan_pp_string (&module_name_pp);
2130 module_name_cst = fold_convert (const_ptr_type_node,
2131 module_name_cst);
2134 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2137 /* Build
2138 struct __asan_global
2140 const void *__beg;
2141 uptr __size;
2142 uptr __size_with_redzone;
2143 const void *__name;
2144 const void *__module_name;
2145 uptr __has_dynamic_init;
2146 __asan_global_source_location *__location;
2147 } type. */
2149 static tree
2150 asan_global_struct (void)
2152 static const char *field_names[7]
2153 = { "__beg", "__size", "__size_with_redzone",
2154 "__name", "__module_name", "__has_dynamic_init", "__location"};
2155 tree fields[7], ret;
2156 int i;
2158 ret = make_node (RECORD_TYPE);
2159 for (i = 0; i < 7; i++)
2161 fields[i]
2162 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2163 get_identifier (field_names[i]),
2164 (i == 0 || i == 3) ? const_ptr_type_node
2165 : pointer_sized_int_node);
2166 DECL_CONTEXT (fields[i]) = ret;
2167 if (i)
2168 DECL_CHAIN (fields[i - 1]) = fields[i];
2170 TYPE_FIELDS (ret) = fields[0];
2171 TYPE_NAME (ret) = get_identifier ("__asan_global");
2172 layout_type (ret);
2173 return ret;
2176 /* Append description of a single global DECL into vector V.
2177 TYPE is __asan_global struct type as returned by asan_global_struct. */
2179 static void
2180 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2182 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2183 unsigned HOST_WIDE_INT size;
2184 tree str_cst, module_name_cst, refdecl = decl;
2185 vec<constructor_elt, va_gc> *vinner = NULL;
2187 pretty_printer asan_pp, module_name_pp;
2189 if (DECL_NAME (decl))
2190 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2191 else
2192 pp_string (&asan_pp, "<unknown>");
2193 str_cst = asan_pp_string (&asan_pp);
2195 pp_string (&module_name_pp, main_input_filename);
2196 module_name_cst = asan_pp_string (&module_name_pp);
2198 if (asan_needs_local_alias (decl))
2200 char buf[20];
2201 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2202 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2203 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2204 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2205 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2206 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2207 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2208 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2209 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2210 TREE_STATIC (refdecl) = 1;
2211 TREE_PUBLIC (refdecl) = 0;
2212 TREE_USED (refdecl) = 1;
2213 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2216 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2217 fold_convert (const_ptr_type_node,
2218 build_fold_addr_expr (refdecl)));
2219 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2220 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2221 size += asan_red_zone_size (size);
2222 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2223 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2224 fold_convert (const_ptr_type_node, str_cst));
2225 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2226 fold_convert (const_ptr_type_node, module_name_cst));
2227 varpool_node *vnode = varpool_node::get (decl);
2228 int has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2229 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2230 build_int_cst (uptr, has_dynamic_init));
2231 tree locptr = NULL_TREE;
2232 location_t loc = DECL_SOURCE_LOCATION (decl);
2233 expanded_location xloc = expand_location (loc);
2234 if (xloc.file != NULL)
2236 static int lasanloccnt = 0;
2237 char buf[25];
2238 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2239 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2240 ubsan_get_source_location_type ());
2241 TREE_STATIC (var) = 1;
2242 TREE_PUBLIC (var) = 0;
2243 DECL_ARTIFICIAL (var) = 1;
2244 DECL_IGNORED_P (var) = 1;
2245 pretty_printer filename_pp;
2246 pp_string (&filename_pp, xloc.file);
2247 tree str = asan_pp_string (&filename_pp);
2248 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2249 NULL_TREE, str, NULL_TREE,
2250 build_int_cst (unsigned_type_node,
2251 xloc.line), NULL_TREE,
2252 build_int_cst (unsigned_type_node,
2253 xloc.column));
2254 TREE_CONSTANT (ctor) = 1;
2255 TREE_STATIC (ctor) = 1;
2256 DECL_INITIAL (var) = ctor;
2257 varpool_node::finalize_decl (var);
2258 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2260 else
2261 locptr = build_int_cst (uptr, 0);
2262 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2263 init = build_constructor (type, vinner);
2264 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2267 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2268 void
2269 initialize_sanitizer_builtins (void)
2271 tree decl;
2273 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2274 return;
2276 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2277 tree BT_FN_VOID_PTR
2278 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2279 tree BT_FN_VOID_CONST_PTR
2280 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2281 tree BT_FN_VOID_PTR_PTR
2282 = build_function_type_list (void_type_node, ptr_type_node,
2283 ptr_type_node, NULL_TREE);
2284 tree BT_FN_VOID_PTR_PTR_PTR
2285 = build_function_type_list (void_type_node, ptr_type_node,
2286 ptr_type_node, ptr_type_node, NULL_TREE);
2287 tree BT_FN_VOID_PTR_PTRMODE
2288 = build_function_type_list (void_type_node, ptr_type_node,
2289 pointer_sized_int_node, NULL_TREE);
2290 tree BT_FN_VOID_INT
2291 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2292 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2293 tree BT_FN_IX_CONST_VPTR_INT[5];
2294 tree BT_FN_IX_VPTR_IX_INT[5];
2295 tree BT_FN_VOID_VPTR_IX_INT[5];
2296 tree vptr
2297 = build_pointer_type (build_qualified_type (void_type_node,
2298 TYPE_QUAL_VOLATILE));
2299 tree cvptr
2300 = build_pointer_type (build_qualified_type (void_type_node,
2301 TYPE_QUAL_VOLATILE
2302 |TYPE_QUAL_CONST));
2303 tree boolt
2304 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2305 int i;
2306 for (i = 0; i < 5; i++)
2308 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2309 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2310 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2311 integer_type_node, integer_type_node,
2312 NULL_TREE);
2313 BT_FN_IX_CONST_VPTR_INT[i]
2314 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2315 BT_FN_IX_VPTR_IX_INT[i]
2316 = build_function_type_list (ix, vptr, ix, integer_type_node,
2317 NULL_TREE);
2318 BT_FN_VOID_VPTR_IX_INT[i]
2319 = build_function_type_list (void_type_node, vptr, ix,
2320 integer_type_node, NULL_TREE);
2322 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2323 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2324 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2325 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2326 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2327 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2328 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2329 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2330 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2331 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2332 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2333 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2334 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2335 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2336 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2337 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2338 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2339 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2340 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2341 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2342 #undef ATTR_NOTHROW_LEAF_LIST
2343 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2344 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2345 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2346 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2347 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2348 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2349 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2350 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2351 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2352 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2353 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2354 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2355 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2356 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2357 #undef DEF_SANITIZER_BUILTIN
2358 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2359 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2360 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2361 set_call_expr_flags (decl, ATTRS); \
2362 set_builtin_decl (ENUM, decl, true);
2364 #include "sanitizer.def"
2366 #undef DEF_SANITIZER_BUILTIN
2369 /* Called via htab_traverse. Count number of emitted
2370 STRING_CSTs in the constant hash table. */
2373 count_string_csts (constant_descriptor_tree **slot,
2374 unsigned HOST_WIDE_INT *data)
2376 struct constant_descriptor_tree *desc = *slot;
2377 if (TREE_CODE (desc->value) == STRING_CST
2378 && TREE_ASM_WRITTEN (desc->value)
2379 && asan_protect_global (desc->value))
2380 ++*data;
2381 return 1;
2384 /* Helper structure to pass two parameters to
2385 add_string_csts. */
2387 struct asan_add_string_csts_data
2389 tree type;
2390 vec<constructor_elt, va_gc> *v;
2393 /* Called via hash_table::traverse. Call asan_add_global
2394 on emitted STRING_CSTs from the constant hash table. */
2397 add_string_csts (constant_descriptor_tree **slot,
2398 asan_add_string_csts_data *aascd)
2400 struct constant_descriptor_tree *desc = *slot;
2401 if (TREE_CODE (desc->value) == STRING_CST
2402 && TREE_ASM_WRITTEN (desc->value)
2403 && asan_protect_global (desc->value))
2405 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2406 aascd->type, aascd->v);
2408 return 1;
2411 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2412 invoke ggc_collect. */
2413 static GTY(()) tree asan_ctor_statements;
2415 /* Module-level instrumentation.
2416 - Insert __asan_init_vN() into the list of CTORs.
2417 - TODO: insert redzones around globals.
2420 void
2421 asan_finish_file (void)
2423 varpool_node *vnode;
2424 unsigned HOST_WIDE_INT gcount = 0;
2426 if (shadow_ptr_types[0] == NULL_TREE)
2427 asan_init_shadow_ptr_types ();
2428 /* Avoid instrumenting code in the asan ctors/dtors.
2429 We don't need to insert padding after the description strings,
2430 nor after .LASAN* array. */
2431 flag_sanitize &= ~SANITIZE_ADDRESS;
2433 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2435 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2436 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2438 FOR_EACH_DEFINED_VARIABLE (vnode)
2439 if (TREE_ASM_WRITTEN (vnode->decl)
2440 && asan_protect_global (vnode->decl))
2441 ++gcount;
2442 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2443 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2444 (&gcount);
2445 if (gcount)
2447 tree type = asan_global_struct (), var, ctor;
2448 tree dtor_statements = NULL_TREE;
2449 vec<constructor_elt, va_gc> *v;
2450 char buf[20];
2452 type = build_array_type_nelts (type, gcount);
2453 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2454 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2455 type);
2456 TREE_STATIC (var) = 1;
2457 TREE_PUBLIC (var) = 0;
2458 DECL_ARTIFICIAL (var) = 1;
2459 DECL_IGNORED_P (var) = 1;
2460 vec_alloc (v, gcount);
2461 FOR_EACH_DEFINED_VARIABLE (vnode)
2462 if (TREE_ASM_WRITTEN (vnode->decl)
2463 && asan_protect_global (vnode->decl))
2464 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2465 struct asan_add_string_csts_data aascd;
2466 aascd.type = TREE_TYPE (type);
2467 aascd.v = v;
2468 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2469 (&aascd);
2470 ctor = build_constructor (type, v);
2471 TREE_CONSTANT (ctor) = 1;
2472 TREE_STATIC (ctor) = 1;
2473 DECL_INITIAL (var) = ctor;
2474 varpool_node::finalize_decl (var);
2476 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2477 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2478 append_to_statement_list (build_call_expr (fn, 2,
2479 build_fold_addr_expr (var),
2480 gcount_tree),
2481 &asan_ctor_statements);
2483 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2484 append_to_statement_list (build_call_expr (fn, 2,
2485 build_fold_addr_expr (var),
2486 gcount_tree),
2487 &dtor_statements);
2488 cgraph_build_static_cdtor ('D', dtor_statements,
2489 MAX_RESERVED_INIT_PRIORITY - 1);
2491 if (asan_ctor_statements)
2492 cgraph_build_static_cdtor ('I', asan_ctor_statements,
2493 MAX_RESERVED_INIT_PRIORITY - 1);
2494 flag_sanitize |= SANITIZE_ADDRESS;
2497 /* Expand the ASAN_{LOAD,STORE} builtins. */
2499 static bool
2500 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2502 gimple g = gsi_stmt (*iter);
2503 location_t loc = gimple_location (g);
2505 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2506 gcc_assert (flags < ASAN_CHECK_LAST);
2507 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2508 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2509 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2510 bool start_instrumented = (flags & ASAN_CHECK_START_INSTRUMENTED) != 0;
2511 bool end_instrumented = (flags & ASAN_CHECK_END_INSTRUMENTED) != 0;
2513 tree base = gimple_call_arg (g, 1);
2514 tree len = gimple_call_arg (g, 2);
2515 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2517 HOST_WIDE_INT size_in_bytes
2518 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2520 if (use_calls)
2522 /* Instrument using callbacks. */
2523 gimple g
2524 = gimple_build_assign_with_ops (NOP_EXPR,
2525 make_ssa_name (pointer_sized_int_node,
2526 NULL),
2527 base, NULL_TREE);
2528 gimple_set_location (g, loc);
2529 gsi_insert_before (iter, g, GSI_SAME_STMT);
2530 tree base_addr = gimple_assign_lhs (g);
2532 int nargs;
2533 tree fun = check_func (is_store, size_in_bytes, &nargs);
2534 if (nargs == 1)
2535 g = gimple_build_call (fun, 1, base_addr);
2536 else
2538 gcc_assert (nargs == 2);
2539 g = gimple_build_assign_with_ops (NOP_EXPR,
2540 make_ssa_name (pointer_sized_int_node,
2541 NULL),
2542 len, NULL_TREE);
2543 gimple_set_location (g, loc);
2544 gsi_insert_before (iter, g, GSI_SAME_STMT);
2545 tree sz_arg = gimple_assign_lhs (g);
2546 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2548 gimple_set_location (g, loc);
2549 gsi_replace (iter, g, false);
2550 return false;
2553 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2555 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2556 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2558 gimple_stmt_iterator gsi = *iter;
2560 if (!is_non_zero_len)
2562 /* So, the length of the memory area to asan-protect is
2563 non-constant. Let's guard the generated instrumentation code
2564 like:
2566 if (len != 0)
2568 //asan instrumentation code goes here.
2570 // falltrough instructions, starting with *ITER. */
2572 g = gimple_build_cond (NE_EXPR,
2573 len,
2574 build_int_cst (TREE_TYPE (len), 0),
2575 NULL_TREE, NULL_TREE);
2576 gimple_set_location (g, loc);
2578 basic_block then_bb, fallthrough_bb;
2579 insert_if_then_before_iter (g, iter, /*then_more_likely_p=*/true,
2580 &then_bb, &fallthrough_bb);
2581 /* Note that fallthrough_bb starts with the statement that was
2582 pointed to by ITER. */
2584 /* The 'then block' of the 'if (len != 0) condition is where
2585 we'll generate the asan instrumentation code now. */
2586 gsi = gsi_last_bb (then_bb);
2589 /* Get an iterator on the point where we can add the condition
2590 statement for the instrumentation. */
2591 basic_block then_bb, else_bb;
2592 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2593 /*then_more_likely_p=*/false,
2594 /*create_then_fallthru_edge=*/false,
2595 &then_bb,
2596 &else_bb);
2598 g = gimple_build_assign_with_ops (NOP_EXPR,
2599 make_ssa_name (pointer_sized_int_node,
2600 NULL),
2601 base, NULL_TREE);
2602 gimple_set_location (g, loc);
2603 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2604 tree base_addr = gimple_assign_lhs (g);
2606 tree t = NULL_TREE;
2607 if (real_size_in_bytes >= 8)
2609 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2610 shadow_ptr_type);
2611 t = shadow;
2613 else
2615 /* Slow path for 1, 2 and 4 byte accesses. */
2617 if (!start_instrumented)
2619 /* Test (shadow != 0)
2620 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2621 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2622 shadow_ptr_type);
2623 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2624 gimple_seq seq = NULL;
2625 gimple_seq_add_stmt (&seq, shadow_test);
2626 /* Aligned (>= 8 bytes) can test just
2627 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2628 to be 0. */
2629 if (align < 8)
2631 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2632 base_addr, 7));
2633 gimple_seq_add_stmt (&seq,
2634 build_type_cast (shadow_type,
2635 gimple_seq_last (seq)));
2636 if (real_size_in_bytes > 1)
2637 gimple_seq_add_stmt (&seq,
2638 build_assign (PLUS_EXPR,
2639 gimple_seq_last (seq),
2640 real_size_in_bytes - 1));
2641 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
2643 else
2644 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
2645 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
2646 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2647 gimple_seq_last (seq)));
2648 t = gimple_assign_lhs (gimple_seq_last (seq));
2649 gimple_seq_set_location (seq, loc);
2650 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2653 /* For non-constant, misaligned or otherwise weird access sizes,
2654 check first and last byte. */
2655 if (size_in_bytes == -1 && !end_instrumented)
2657 g = gimple_build_assign_with_ops (MINUS_EXPR,
2658 make_ssa_name (pointer_sized_int_node, NULL),
2659 len,
2660 build_int_cst (pointer_sized_int_node, 1));
2661 gimple_set_location (g, loc);
2662 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2663 tree last = gimple_assign_lhs (g);
2664 g = gimple_build_assign_with_ops (PLUS_EXPR,
2665 make_ssa_name (pointer_sized_int_node, NULL),
2666 base_addr,
2667 last);
2668 gimple_set_location (g, loc);
2669 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2670 tree base_end_addr = gimple_assign_lhs (g);
2672 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
2673 shadow_ptr_type);
2674 gimple shadow_test = build_assign (NE_EXPR, shadow, 0);
2675 gimple_seq seq = NULL;
2676 gimple_seq_add_stmt (&seq, shadow_test);
2677 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2678 base_end_addr, 7));
2679 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
2680 gimple_seq_last (seq)));
2681 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
2682 gimple_seq_last (seq),
2683 shadow));
2684 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
2685 gimple_seq_last (seq)));
2686 if (!start_instrumented)
2687 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
2688 gimple_seq_last (seq)));
2689 t = gimple_assign_lhs (gimple_seq_last (seq));
2690 gimple_seq_set_location (seq, loc);
2691 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
2695 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
2696 NULL_TREE, NULL_TREE);
2697 gimple_set_location (g, loc);
2698 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2700 /* Generate call to the run-time library (e.g. __asan_report_load8). */
2701 gsi = gsi_start_bb (then_bb);
2702 int nargs;
2703 tree fun = report_error_func (is_store, size_in_bytes, &nargs);
2704 g = gimple_build_call (fun, nargs, base_addr, len);
2705 gimple_set_location (g, loc);
2706 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2708 gsi_remove (iter, true);
2709 *iter = gsi_start_bb (else_bb);
2711 return true;
2714 /* Instrument the current function. */
2716 static unsigned int
2717 asan_instrument (void)
2719 if (shadow_ptr_types[0] == NULL_TREE)
2720 asan_init_shadow_ptr_types ();
2721 transform_statements ();
2722 return 0;
2725 static bool
2726 gate_asan (void)
2728 return (flag_sanitize & SANITIZE_ADDRESS) != 0
2729 && !lookup_attribute ("no_sanitize_address",
2730 DECL_ATTRIBUTES (current_function_decl));
2733 namespace {
2735 const pass_data pass_data_asan =
2737 GIMPLE_PASS, /* type */
2738 "asan", /* name */
2739 OPTGROUP_NONE, /* optinfo_flags */
2740 TV_NONE, /* tv_id */
2741 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2742 0, /* properties_provided */
2743 0, /* properties_destroyed */
2744 0, /* todo_flags_start */
2745 TODO_update_ssa, /* todo_flags_finish */
2748 class pass_asan : public gimple_opt_pass
2750 public:
2751 pass_asan (gcc::context *ctxt)
2752 : gimple_opt_pass (pass_data_asan, ctxt)
2755 /* opt_pass methods: */
2756 opt_pass * clone () { return new pass_asan (m_ctxt); }
2757 virtual bool gate (function *) { return gate_asan (); }
2758 virtual unsigned int execute (function *) { return asan_instrument (); }
2760 }; // class pass_asan
2762 } // anon namespace
2764 gimple_opt_pass *
2765 make_pass_asan (gcc::context *ctxt)
2767 return new pass_asan (ctxt);
2770 namespace {
2772 const pass_data pass_data_asan_O0 =
2774 GIMPLE_PASS, /* type */
2775 "asan0", /* name */
2776 OPTGROUP_NONE, /* optinfo_flags */
2777 TV_NONE, /* tv_id */
2778 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2779 0, /* properties_provided */
2780 0, /* properties_destroyed */
2781 0, /* todo_flags_start */
2782 TODO_update_ssa, /* todo_flags_finish */
2785 class pass_asan_O0 : public gimple_opt_pass
2787 public:
2788 pass_asan_O0 (gcc::context *ctxt)
2789 : gimple_opt_pass (pass_data_asan_O0, ctxt)
2792 /* opt_pass methods: */
2793 virtual bool gate (function *) { return !optimize && gate_asan (); }
2794 virtual unsigned int execute (function *) { return asan_instrument (); }
2796 }; // class pass_asan_O0
2798 } // anon namespace
2800 gimple_opt_pass *
2801 make_pass_asan_O0 (gcc::context *ctxt)
2803 return new pass_asan_O0 (ctxt);
2806 /* Perform optimization of sanitize functions. */
2808 namespace {
2810 const pass_data pass_data_sanopt =
2812 GIMPLE_PASS, /* type */
2813 "sanopt", /* name */
2814 OPTGROUP_NONE, /* optinfo_flags */
2815 TV_NONE, /* tv_id */
2816 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
2817 0, /* properties_provided */
2818 0, /* properties_destroyed */
2819 0, /* todo_flags_start */
2820 TODO_update_ssa, /* todo_flags_finish */
2823 class pass_sanopt : public gimple_opt_pass
2825 public:
2826 pass_sanopt (gcc::context *ctxt)
2827 : gimple_opt_pass (pass_data_sanopt, ctxt)
2830 /* opt_pass methods: */
2831 virtual bool gate (function *) { return flag_sanitize; }
2832 virtual unsigned int execute (function *);
2834 }; // class pass_sanopt
2836 unsigned int
2837 pass_sanopt::execute (function *fun)
2839 basic_block bb;
2841 int asan_num_accesses = 0;
2842 if (flag_sanitize & SANITIZE_ADDRESS)
2844 gimple_stmt_iterator gsi;
2845 FOR_EACH_BB_FN (bb, fun)
2846 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2848 gimple stmt = gsi_stmt (gsi);
2849 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt)
2850 && gimple_call_internal_fn (stmt) == IFN_ASAN_CHECK)
2851 ++asan_num_accesses;
2855 bool use_calls = ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD < INT_MAX
2856 && asan_num_accesses >= ASAN_INSTRUMENTATION_WITH_CALL_THRESHOLD;
2858 FOR_EACH_BB_FN (bb, fun)
2860 gimple_stmt_iterator gsi;
2861 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2863 gimple stmt = gsi_stmt (gsi);
2864 bool no_next = false;
2866 if (!is_gimple_call (stmt))
2868 gsi_next (&gsi);
2869 continue;
2872 if (gimple_call_internal_p (stmt))
2874 enum internal_fn ifn = gimple_call_internal_fn (stmt);
2875 switch (ifn)
2877 case IFN_UBSAN_NULL:
2878 no_next = ubsan_expand_null_ifn (&gsi);
2879 break;
2880 case IFN_UBSAN_BOUNDS:
2881 no_next = ubsan_expand_bounds_ifn (&gsi);
2882 break;
2883 case IFN_UBSAN_OBJECT_SIZE:
2884 no_next = ubsan_expand_objsize_ifn (&gsi);
2885 break;
2886 case IFN_ASAN_CHECK:
2888 no_next = asan_expand_check_ifn (&gsi, use_calls);
2889 break;
2891 default:
2892 break;
2896 if (dump_file && (dump_flags & TDF_DETAILS))
2898 fprintf (dump_file, "Optimized\n ");
2899 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2900 fprintf (dump_file, "\n");
2903 if (!no_next)
2904 gsi_next (&gsi);
2907 return 0;
2910 } // anon namespace
2912 gimple_opt_pass *
2913 make_pass_sanopt (gcc::context *ctxt)
2915 return new pass_sanopt (ctxt);
2918 #include "gt-asan.h"