2016-08-24 Michael Collison <michael.collison@linaro.org>
[official-gcc.git] / gcc / emit-rtl.c
blob99f052d22d7f0100dbd7fef605776b28d1ef9f2c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "df.h"
42 #include "tm_p.h"
43 #include "stringpool.h"
44 #include "insn-config.h"
45 #include "regs.h"
46 #include "emit-rtl.h"
47 #include "recog.h"
48 #include "diagnostic-core.h"
49 #include "alias.h"
50 #include "fold-const.h"
51 #include "varasm.h"
52 #include "cfgrtl.h"
53 #include "tree-eh.h"
54 #include "explow.h"
55 #include "expr.h"
56 #include "params.h"
57 #include "builtins.h"
58 #include "rtl-iter.h"
59 #include "stor-layout.h"
60 #include "opts.h"
62 struct target_rtl default_target_rtl;
63 #if SWITCHABLE_TARGET
64 struct target_rtl *this_target_rtl = &default_target_rtl;
65 #endif
67 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
69 /* Commonly used modes. */
71 machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
72 machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
73 machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
74 machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76 /* Datastructures maintained for currently processed function in RTL form. */
78 struct rtl_data x_rtl;
80 /* Indexed by pseudo register number, gives the rtx for that pseudo.
81 Allocated in parallel with regno_pointer_align.
82 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
83 with length attribute nested in top level structures. */
85 rtx * regno_reg_rtx;
87 /* This is *not* reset after each function. It gives each CODE_LABEL
88 in the entire compilation a unique label number. */
90 static GTY(()) int label_num = 1;
92 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
95 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99 rtx const_true_rtx;
101 REAL_VALUE_TYPE dconst0;
102 REAL_VALUE_TYPE dconst1;
103 REAL_VALUE_TYPE dconst2;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconsthalf;
107 /* Record fixed-point constant 0 and 1. */
108 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
109 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111 /* We make one copy of (const_int C) where C is in
112 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
113 to save space during the compilation and simplify comparisons of
114 integers. */
116 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118 /* Standard pieces of rtx, to be substituted directly into things. */
119 rtx pc_rtx;
120 rtx ret_rtx;
121 rtx simple_return_rtx;
122 rtx cc0_rtx;
124 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
125 this pointer should normally never be dereferenced), but is required to be
126 distinct from NULL_RTX. Currently used by peephole2 pass. */
127 rtx_insn *invalid_insn_rtx;
129 /* A hash table storing CONST_INTs whose absolute value is greater
130 than MAX_SAVED_CONST_INT. */
132 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
134 typedef HOST_WIDE_INT compare_type;
136 static hashval_t hash (rtx i);
137 static bool equal (rtx i, HOST_WIDE_INT h);
140 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
144 static hashval_t hash (rtx x);
145 static bool equal (rtx x, rtx y);
148 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
150 /* A hash table storing register attribute structures. */
151 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
153 static hashval_t hash (reg_attrs *x);
154 static bool equal (reg_attrs *a, reg_attrs *b);
157 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
159 /* A hash table storing all CONST_DOUBLEs. */
160 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
162 static hashval_t hash (rtx x);
163 static bool equal (rtx x, rtx y);
166 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
168 /* A hash table storing all CONST_FIXEDs. */
169 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
171 static hashval_t hash (rtx x);
172 static bool equal (rtx x, rtx y);
175 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
179 #define first_label_num (crtl->emit.x_first_label_num)
181 static void set_used_decls (tree);
182 static void mark_label_nuses (rtx);
183 #if TARGET_SUPPORTS_WIDE_INT
184 static rtx lookup_const_wide_int (rtx);
185 #endif
186 static rtx lookup_const_double (rtx);
187 static rtx lookup_const_fixed (rtx);
188 static reg_attrs *get_reg_attrs (tree, int);
189 static rtx gen_const_vector (machine_mode, int);
190 static void copy_rtx_if_shared_1 (rtx *orig);
192 /* Probability of the conditional branch currently proceeded by try_split.
193 Set to -1 otherwise. */
194 int split_branch_probability = -1;
196 /* Returns a hash code for X (which is a really a CONST_INT). */
198 hashval_t
199 const_int_hasher::hash (rtx x)
201 return (hashval_t) INTVAL (x);
204 /* Returns nonzero if the value represented by X (which is really a
205 CONST_INT) is the same as that given by Y (which is really a
206 HOST_WIDE_INT *). */
208 bool
209 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
211 return (INTVAL (x) == y);
214 #if TARGET_SUPPORTS_WIDE_INT
215 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
217 hashval_t
218 const_wide_int_hasher::hash (rtx x)
220 int i;
221 unsigned HOST_WIDE_INT hash = 0;
222 const_rtx xr = x;
224 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
225 hash += CONST_WIDE_INT_ELT (xr, i);
227 return (hashval_t) hash;
230 /* Returns nonzero if the value represented by X (which is really a
231 CONST_WIDE_INT) is the same as that given by Y (which is really a
232 CONST_WIDE_INT). */
234 bool
235 const_wide_int_hasher::equal (rtx x, rtx y)
237 int i;
238 const_rtx xr = x;
239 const_rtx yr = y;
240 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
241 return false;
243 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
244 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
245 return false;
247 return true;
249 #endif
251 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
252 hashval_t
253 const_double_hasher::hash (rtx x)
255 const_rtx const value = x;
256 hashval_t h;
258 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
259 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
260 else
262 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
263 /* MODE is used in the comparison, so it should be in the hash. */
264 h ^= GET_MODE (value);
266 return h;
269 /* Returns nonzero if the value represented by X (really a ...)
270 is the same as that represented by Y (really a ...) */
271 bool
272 const_double_hasher::equal (rtx x, rtx y)
274 const_rtx const a = x, b = y;
276 if (GET_MODE (a) != GET_MODE (b))
277 return 0;
278 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
279 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
280 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
281 else
282 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
283 CONST_DOUBLE_REAL_VALUE (b));
286 /* Returns a hash code for X (which is really a CONST_FIXED). */
288 hashval_t
289 const_fixed_hasher::hash (rtx x)
291 const_rtx const value = x;
292 hashval_t h;
294 h = fixed_hash (CONST_FIXED_VALUE (value));
295 /* MODE is used in the comparison, so it should be in the hash. */
296 h ^= GET_MODE (value);
297 return h;
300 /* Returns nonzero if the value represented by X is the same as that
301 represented by Y. */
303 bool
304 const_fixed_hasher::equal (rtx x, rtx y)
306 const_rtx const a = x, b = y;
308 if (GET_MODE (a) != GET_MODE (b))
309 return 0;
310 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
313 /* Return true if the given memory attributes are equal. */
315 bool
316 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
318 if (p == q)
319 return true;
320 if (!p || !q)
321 return false;
322 return (p->alias == q->alias
323 && p->offset_known_p == q->offset_known_p
324 && (!p->offset_known_p || p->offset == q->offset)
325 && p->size_known_p == q->size_known_p
326 && (!p->size_known_p || p->size == q->size)
327 && p->align == q->align
328 && p->addrspace == q->addrspace
329 && (p->expr == q->expr
330 || (p->expr != NULL_TREE && q->expr != NULL_TREE
331 && operand_equal_p (p->expr, q->expr, 0))));
334 /* Set MEM's memory attributes so that they are the same as ATTRS. */
336 static void
337 set_mem_attrs (rtx mem, mem_attrs *attrs)
339 /* If everything is the default, we can just clear the attributes. */
340 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
342 MEM_ATTRS (mem) = 0;
343 return;
346 if (!MEM_ATTRS (mem)
347 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
349 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
350 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
354 /* Returns a hash code for X (which is a really a reg_attrs *). */
356 hashval_t
357 reg_attr_hasher::hash (reg_attrs *x)
359 const reg_attrs *const p = x;
361 return ((p->offset * 1000) ^ (intptr_t) p->decl);
364 /* Returns nonzero if the value represented by X is the same as that given by
365 Y. */
367 bool
368 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
370 const reg_attrs *const p = x;
371 const reg_attrs *const q = y;
373 return (p->decl == q->decl && p->offset == q->offset);
375 /* Allocate a new reg_attrs structure and insert it into the hash table if
376 one identical to it is not already in the table. We are doing this for
377 MEM of mode MODE. */
379 static reg_attrs *
380 get_reg_attrs (tree decl, int offset)
382 reg_attrs attrs;
384 /* If everything is the default, we can just return zero. */
385 if (decl == 0 && offset == 0)
386 return 0;
388 attrs.decl = decl;
389 attrs.offset = offset;
391 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
392 if (*slot == 0)
394 *slot = ggc_alloc<reg_attrs> ();
395 memcpy (*slot, &attrs, sizeof (reg_attrs));
398 return *slot;
402 #if !HAVE_blockage
403 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
404 and to block register equivalences to be seen across this insn. */
407 gen_blockage (void)
409 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
410 MEM_VOLATILE_P (x) = true;
411 return x;
413 #endif
416 /* Set the mode and register number of X to MODE and REGNO. */
418 void
419 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
421 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
422 ? hard_regno_nregs[regno][mode]
423 : 1);
424 PUT_MODE_RAW (x, mode);
425 set_regno_raw (x, regno, nregs);
428 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
429 don't attempt to share with the various global pieces of rtl (such as
430 frame_pointer_rtx). */
433 gen_raw_REG (machine_mode mode, unsigned int regno)
435 rtx x = rtx_alloc_stat (REG MEM_STAT_INFO);
436 set_mode_and_regno (x, mode, regno);
437 REG_ATTRS (x) = NULL;
438 ORIGINAL_REGNO (x) = regno;
439 return x;
442 /* There are some RTL codes that require special attention; the generation
443 functions do the raw handling. If you add to this list, modify
444 special_rtx in gengenrtl.c as well. */
446 rtx_expr_list *
447 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
449 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
450 expr_list));
453 rtx_insn_list *
454 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
456 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
457 insn_list));
460 rtx_insn *
461 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
462 basic_block bb, rtx pattern, int location, int code,
463 rtx reg_notes)
465 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
466 prev_insn, next_insn,
467 bb, pattern, location, code,
468 reg_notes));
472 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
474 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
475 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
477 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
478 if (const_true_rtx && arg == STORE_FLAG_VALUE)
479 return const_true_rtx;
480 #endif
482 /* Look up the CONST_INT in the hash table. */
483 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
484 INSERT);
485 if (*slot == 0)
486 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
488 return *slot;
492 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
494 return GEN_INT (trunc_int_for_mode (c, mode));
497 /* CONST_DOUBLEs might be created from pairs of integers, or from
498 REAL_VALUE_TYPEs. Also, their length is known only at run time,
499 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
501 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
502 hash table. If so, return its counterpart; otherwise add it
503 to the hash table and return it. */
504 static rtx
505 lookup_const_double (rtx real)
507 rtx *slot = const_double_htab->find_slot (real, INSERT);
508 if (*slot == 0)
509 *slot = real;
511 return *slot;
514 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
515 VALUE in mode MODE. */
517 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
519 rtx real = rtx_alloc (CONST_DOUBLE);
520 PUT_MODE (real, mode);
522 real->u.rv = value;
524 return lookup_const_double (real);
527 /* Determine whether FIXED, a CONST_FIXED, already exists in the
528 hash table. If so, return its counterpart; otherwise add it
529 to the hash table and return it. */
531 static rtx
532 lookup_const_fixed (rtx fixed)
534 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
535 if (*slot == 0)
536 *slot = fixed;
538 return *slot;
541 /* Return a CONST_FIXED rtx for a fixed-point value specified by
542 VALUE in mode MODE. */
545 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
547 rtx fixed = rtx_alloc (CONST_FIXED);
548 PUT_MODE (fixed, mode);
550 fixed->u.fv = value;
552 return lookup_const_fixed (fixed);
555 #if TARGET_SUPPORTS_WIDE_INT == 0
556 /* Constructs double_int from rtx CST. */
558 double_int
559 rtx_to_double_int (const_rtx cst)
561 double_int r;
563 if (CONST_INT_P (cst))
564 r = double_int::from_shwi (INTVAL (cst));
565 else if (CONST_DOUBLE_AS_INT_P (cst))
567 r.low = CONST_DOUBLE_LOW (cst);
568 r.high = CONST_DOUBLE_HIGH (cst);
570 else
571 gcc_unreachable ();
573 return r;
575 #endif
577 #if TARGET_SUPPORTS_WIDE_INT
578 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
579 If so, return its counterpart; otherwise add it to the hash table and
580 return it. */
582 static rtx
583 lookup_const_wide_int (rtx wint)
585 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
586 if (*slot == 0)
587 *slot = wint;
589 return *slot;
591 #endif
593 /* Return an rtx constant for V, given that the constant has mode MODE.
594 The returned rtx will be a CONST_INT if V fits, otherwise it will be
595 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
596 (if TARGET_SUPPORTS_WIDE_INT). */
599 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
601 unsigned int len = v.get_len ();
602 unsigned int prec = GET_MODE_PRECISION (mode);
604 /* Allow truncation but not extension since we do not know if the
605 number is signed or unsigned. */
606 gcc_assert (prec <= v.get_precision ());
608 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
609 return gen_int_mode (v.elt (0), mode);
611 #if TARGET_SUPPORTS_WIDE_INT
613 unsigned int i;
614 rtx value;
615 unsigned int blocks_needed
616 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
618 if (len > blocks_needed)
619 len = blocks_needed;
621 value = const_wide_int_alloc (len);
623 /* It is so tempting to just put the mode in here. Must control
624 myself ... */
625 PUT_MODE (value, VOIDmode);
626 CWI_PUT_NUM_ELEM (value, len);
628 for (i = 0; i < len; i++)
629 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
631 return lookup_const_wide_int (value);
633 #else
634 return immed_double_const (v.elt (0), v.elt (1), mode);
635 #endif
638 #if TARGET_SUPPORTS_WIDE_INT == 0
639 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
640 of ints: I0 is the low-order word and I1 is the high-order word.
641 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
642 implied upper bits are copies of the high bit of i1. The value
643 itself is neither signed nor unsigned. Do not use this routine for
644 non-integer modes; convert to REAL_VALUE_TYPE and use
645 const_double_from_real_value. */
648 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
650 rtx value;
651 unsigned int i;
653 /* There are the following cases (note that there are no modes with
654 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
656 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
657 gen_int_mode.
658 2) If the value of the integer fits into HOST_WIDE_INT anyway
659 (i.e., i1 consists only from copies of the sign bit, and sign
660 of i0 and i1 are the same), then we return a CONST_INT for i0.
661 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
662 if (mode != VOIDmode)
664 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
665 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
666 /* We can get a 0 for an error mark. */
667 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
668 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
669 || GET_MODE_CLASS (mode) == MODE_POINTER_BOUNDS);
671 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
672 return gen_int_mode (i0, mode);
675 /* If this integer fits in one word, return a CONST_INT. */
676 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
677 return GEN_INT (i0);
679 /* We use VOIDmode for integers. */
680 value = rtx_alloc (CONST_DOUBLE);
681 PUT_MODE (value, VOIDmode);
683 CONST_DOUBLE_LOW (value) = i0;
684 CONST_DOUBLE_HIGH (value) = i1;
686 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
687 XWINT (value, i) = 0;
689 return lookup_const_double (value);
691 #endif
694 gen_rtx_REG (machine_mode mode, unsigned int regno)
696 /* In case the MD file explicitly references the frame pointer, have
697 all such references point to the same frame pointer. This is
698 used during frame pointer elimination to distinguish the explicit
699 references to these registers from pseudos that happened to be
700 assigned to them.
702 If we have eliminated the frame pointer or arg pointer, we will
703 be using it as a normal register, for example as a spill
704 register. In such cases, we might be accessing it in a mode that
705 is not Pmode and therefore cannot use the pre-allocated rtx.
707 Also don't do this when we are making new REGs in reload, since
708 we don't want to get confused with the real pointers. */
710 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
712 if (regno == FRAME_POINTER_REGNUM
713 && (!reload_completed || frame_pointer_needed))
714 return frame_pointer_rtx;
716 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
717 && regno == HARD_FRAME_POINTER_REGNUM
718 && (!reload_completed || frame_pointer_needed))
719 return hard_frame_pointer_rtx;
720 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
721 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
722 && regno == ARG_POINTER_REGNUM)
723 return arg_pointer_rtx;
724 #endif
725 #ifdef RETURN_ADDRESS_POINTER_REGNUM
726 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
727 return return_address_pointer_rtx;
728 #endif
729 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
730 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
731 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
732 return pic_offset_table_rtx;
733 if (regno == STACK_POINTER_REGNUM)
734 return stack_pointer_rtx;
737 #if 0
738 /* If the per-function register table has been set up, try to re-use
739 an existing entry in that table to avoid useless generation of RTL.
741 This code is disabled for now until we can fix the various backends
742 which depend on having non-shared hard registers in some cases. Long
743 term we want to re-enable this code as it can significantly cut down
744 on the amount of useless RTL that gets generated.
746 We'll also need to fix some code that runs after reload that wants to
747 set ORIGINAL_REGNO. */
749 if (cfun
750 && cfun->emit
751 && regno_reg_rtx
752 && regno < FIRST_PSEUDO_REGISTER
753 && reg_raw_mode[regno] == mode)
754 return regno_reg_rtx[regno];
755 #endif
757 return gen_raw_REG (mode, regno);
761 gen_rtx_MEM (machine_mode mode, rtx addr)
763 rtx rt = gen_rtx_raw_MEM (mode, addr);
765 /* This field is not cleared by the mere allocation of the rtx, so
766 we clear it here. */
767 MEM_ATTRS (rt) = 0;
769 return rt;
772 /* Generate a memory referring to non-trapping constant memory. */
775 gen_const_mem (machine_mode mode, rtx addr)
777 rtx mem = gen_rtx_MEM (mode, addr);
778 MEM_READONLY_P (mem) = 1;
779 MEM_NOTRAP_P (mem) = 1;
780 return mem;
783 /* Generate a MEM referring to fixed portions of the frame, e.g., register
784 save areas. */
787 gen_frame_mem (machine_mode mode, rtx addr)
789 rtx mem = gen_rtx_MEM (mode, addr);
790 MEM_NOTRAP_P (mem) = 1;
791 set_mem_alias_set (mem, get_frame_alias_set ());
792 return mem;
795 /* Generate a MEM referring to a temporary use of the stack, not part
796 of the fixed stack frame. For example, something which is pushed
797 by a target splitter. */
799 gen_tmp_stack_mem (machine_mode mode, rtx addr)
801 rtx mem = gen_rtx_MEM (mode, addr);
802 MEM_NOTRAP_P (mem) = 1;
803 if (!cfun->calls_alloca)
804 set_mem_alias_set (mem, get_frame_alias_set ());
805 return mem;
808 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
809 this construct would be valid, and false otherwise. */
811 bool
812 validate_subreg (machine_mode omode, machine_mode imode,
813 const_rtx reg, unsigned int offset)
815 unsigned int isize = GET_MODE_SIZE (imode);
816 unsigned int osize = GET_MODE_SIZE (omode);
818 /* All subregs must be aligned. */
819 if (offset % osize != 0)
820 return false;
822 /* The subreg offset cannot be outside the inner object. */
823 if (offset >= isize)
824 return false;
826 /* ??? This should not be here. Temporarily continue to allow word_mode
827 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
828 Generally, backends are doing something sketchy but it'll take time to
829 fix them all. */
830 if (omode == word_mode)
832 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
833 is the culprit here, and not the backends. */
834 else if (osize >= UNITS_PER_WORD && isize >= osize)
836 /* Allow component subregs of complex and vector. Though given the below
837 extraction rules, it's not always clear what that means. */
838 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
839 && GET_MODE_INNER (imode) == omode)
841 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
842 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
843 represent this. It's questionable if this ought to be represented at
844 all -- why can't this all be hidden in post-reload splitters that make
845 arbitrarily mode changes to the registers themselves. */
846 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
848 /* Subregs involving floating point modes are not allowed to
849 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
850 (subreg:SI (reg:DF) 0) isn't. */
851 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
853 if (! (isize == osize
854 /* LRA can use subreg to store a floating point value in
855 an integer mode. Although the floating point and the
856 integer modes need the same number of hard registers,
857 the size of floating point mode can be less than the
858 integer mode. LRA also uses subregs for a register
859 should be used in different mode in on insn. */
860 || lra_in_progress))
861 return false;
864 /* Paradoxical subregs must have offset zero. */
865 if (osize > isize)
866 return offset == 0;
868 /* This is a normal subreg. Verify that the offset is representable. */
870 /* For hard registers, we already have most of these rules collected in
871 subreg_offset_representable_p. */
872 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
874 unsigned int regno = REGNO (reg);
876 #ifdef CANNOT_CHANGE_MODE_CLASS
877 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
878 && GET_MODE_INNER (imode) == omode)
880 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
881 return false;
882 #endif
884 return subreg_offset_representable_p (regno, imode, offset, omode);
887 /* For pseudo registers, we want most of the same checks. Namely:
888 If the register no larger than a word, the subreg must be lowpart.
889 If the register is larger than a word, the subreg must be the lowpart
890 of a subword. A subreg does *not* perform arbitrary bit extraction.
891 Given that we've already checked mode/offset alignment, we only have
892 to check subword subregs here. */
893 if (osize < UNITS_PER_WORD
894 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
896 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
897 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
898 if (offset % UNITS_PER_WORD != low_off)
899 return false;
901 return true;
905 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
907 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
908 return gen_rtx_raw_SUBREG (mode, reg, offset);
911 /* Generate a SUBREG representing the least-significant part of REG if MODE
912 is smaller than mode of REG, otherwise paradoxical SUBREG. */
915 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
917 machine_mode inmode;
919 inmode = GET_MODE (reg);
920 if (inmode == VOIDmode)
921 inmode = mode;
922 return gen_rtx_SUBREG (mode, reg,
923 subreg_lowpart_offset (mode, inmode));
927 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
928 enum var_init_status status)
930 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
931 PAT_VAR_LOCATION_STATUS (x) = status;
932 return x;
936 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
938 rtvec
939 gen_rtvec (int n, ...)
941 int i;
942 rtvec rt_val;
943 va_list p;
945 va_start (p, n);
947 /* Don't allocate an empty rtvec... */
948 if (n == 0)
950 va_end (p);
951 return NULL_RTVEC;
954 rt_val = rtvec_alloc (n);
956 for (i = 0; i < n; i++)
957 rt_val->elem[i] = va_arg (p, rtx);
959 va_end (p);
960 return rt_val;
963 rtvec
964 gen_rtvec_v (int n, rtx *argp)
966 int i;
967 rtvec rt_val;
969 /* Don't allocate an empty rtvec... */
970 if (n == 0)
971 return NULL_RTVEC;
973 rt_val = rtvec_alloc (n);
975 for (i = 0; i < n; i++)
976 rt_val->elem[i] = *argp++;
978 return rt_val;
981 rtvec
982 gen_rtvec_v (int n, rtx_insn **argp)
984 int i;
985 rtvec rt_val;
987 /* Don't allocate an empty rtvec... */
988 if (n == 0)
989 return NULL_RTVEC;
991 rt_val = rtvec_alloc (n);
993 for (i = 0; i < n; i++)
994 rt_val->elem[i] = *argp++;
996 return rt_val;
1000 /* Return the number of bytes between the start of an OUTER_MODE
1001 in-memory value and the start of an INNER_MODE in-memory value,
1002 given that the former is a lowpart of the latter. It may be a
1003 paradoxical lowpart, in which case the offset will be negative
1004 on big-endian targets. */
1007 byte_lowpart_offset (machine_mode outer_mode,
1008 machine_mode inner_mode)
1010 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
1011 return subreg_lowpart_offset (outer_mode, inner_mode);
1012 else
1013 return -subreg_lowpart_offset (inner_mode, outer_mode);
1016 /* Generate a REG rtx for a new pseudo register of mode MODE.
1017 This pseudo is assigned the next sequential register number. */
1020 gen_reg_rtx (machine_mode mode)
1022 rtx val;
1023 unsigned int align = GET_MODE_ALIGNMENT (mode);
1025 gcc_assert (can_create_pseudo_p ());
1027 /* If a virtual register with bigger mode alignment is generated,
1028 increase stack alignment estimation because it might be spilled
1029 to stack later. */
1030 if (SUPPORTS_STACK_ALIGNMENT
1031 && crtl->stack_alignment_estimated < align
1032 && !crtl->stack_realign_processed)
1034 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1035 if (crtl->stack_alignment_estimated < min_align)
1036 crtl->stack_alignment_estimated = min_align;
1039 if (generating_concat_p
1040 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1041 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1043 /* For complex modes, don't make a single pseudo.
1044 Instead, make a CONCAT of two pseudos.
1045 This allows noncontiguous allocation of the real and imaginary parts,
1046 which makes much better code. Besides, allocating DCmode
1047 pseudos overstrains reload on some machines like the 386. */
1048 rtx realpart, imagpart;
1049 machine_mode partmode = GET_MODE_INNER (mode);
1051 realpart = gen_reg_rtx (partmode);
1052 imagpart = gen_reg_rtx (partmode);
1053 return gen_rtx_CONCAT (mode, realpart, imagpart);
1056 /* Do not call gen_reg_rtx with uninitialized crtl. */
1057 gcc_assert (crtl->emit.regno_pointer_align_length);
1059 /* Make sure regno_pointer_align, and regno_reg_rtx are large
1060 enough to have an element for this pseudo reg number. */
1062 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
1064 int old_size = crtl->emit.regno_pointer_align_length;
1065 char *tmp;
1066 rtx *new1;
1068 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
1069 memset (tmp + old_size, 0, old_size);
1070 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
1072 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
1073 memset (new1 + old_size, 0, old_size * sizeof (rtx));
1074 regno_reg_rtx = new1;
1076 crtl->emit.regno_pointer_align_length = old_size * 2;
1079 val = gen_raw_REG (mode, reg_rtx_no);
1080 regno_reg_rtx[reg_rtx_no++] = val;
1081 return val;
1084 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1086 bool
1087 reg_is_parm_p (rtx reg)
1089 tree decl;
1091 gcc_assert (REG_P (reg));
1092 decl = REG_EXPR (reg);
1093 return (decl && TREE_CODE (decl) == PARM_DECL);
1096 /* Update NEW with the same attributes as REG, but with OFFSET added
1097 to the REG_OFFSET. */
1099 static void
1100 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1102 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1103 REG_OFFSET (reg) + offset);
1106 /* Generate a register with same attributes as REG, but with OFFSET
1107 added to the REG_OFFSET. */
1110 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1111 int offset)
1113 rtx new_rtx = gen_rtx_REG (mode, regno);
1115 update_reg_offset (new_rtx, reg, offset);
1116 return new_rtx;
1119 /* Generate a new pseudo-register with the same attributes as REG, but
1120 with OFFSET added to the REG_OFFSET. */
1123 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1125 rtx new_rtx = gen_reg_rtx (mode);
1127 update_reg_offset (new_rtx, reg, offset);
1128 return new_rtx;
1131 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1132 new register is a (possibly paradoxical) lowpart of the old one. */
1134 void
1135 adjust_reg_mode (rtx reg, machine_mode mode)
1137 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1138 PUT_MODE (reg, mode);
1141 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1142 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1144 void
1145 set_reg_attrs_from_value (rtx reg, rtx x)
1147 int offset;
1148 bool can_be_reg_pointer = true;
1150 /* Don't call mark_reg_pointer for incompatible pointer sign
1151 extension. */
1152 while (GET_CODE (x) == SIGN_EXTEND
1153 || GET_CODE (x) == ZERO_EXTEND
1154 || GET_CODE (x) == TRUNCATE
1155 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1157 #if defined(POINTERS_EXTEND_UNSIGNED)
1158 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1159 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1160 || (paradoxical_subreg_p (x)
1161 && ! (SUBREG_PROMOTED_VAR_P (x)
1162 && SUBREG_CHECK_PROMOTED_SIGN (x,
1163 POINTERS_EXTEND_UNSIGNED))))
1164 && !targetm.have_ptr_extend ())
1165 can_be_reg_pointer = false;
1166 #endif
1167 x = XEXP (x, 0);
1170 /* Hard registers can be reused for multiple purposes within the same
1171 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1172 on them is wrong. */
1173 if (HARD_REGISTER_P (reg))
1174 return;
1176 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1177 if (MEM_P (x))
1179 if (MEM_OFFSET_KNOWN_P (x))
1180 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1181 MEM_OFFSET (x) + offset);
1182 if (can_be_reg_pointer && MEM_POINTER (x))
1183 mark_reg_pointer (reg, 0);
1185 else if (REG_P (x))
1187 if (REG_ATTRS (x))
1188 update_reg_offset (reg, x, offset);
1189 if (can_be_reg_pointer && REG_POINTER (x))
1190 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1194 /* Generate a REG rtx for a new pseudo register, copying the mode
1195 and attributes from X. */
1198 gen_reg_rtx_and_attrs (rtx x)
1200 rtx reg = gen_reg_rtx (GET_MODE (x));
1201 set_reg_attrs_from_value (reg, x);
1202 return reg;
1205 /* Set the register attributes for registers contained in PARM_RTX.
1206 Use needed values from memory attributes of MEM. */
1208 void
1209 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1211 if (REG_P (parm_rtx))
1212 set_reg_attrs_from_value (parm_rtx, mem);
1213 else if (GET_CODE (parm_rtx) == PARALLEL)
1215 /* Check for a NULL entry in the first slot, used to indicate that the
1216 parameter goes both on the stack and in registers. */
1217 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1218 for (; i < XVECLEN (parm_rtx, 0); i++)
1220 rtx x = XVECEXP (parm_rtx, 0, i);
1221 if (REG_P (XEXP (x, 0)))
1222 REG_ATTRS (XEXP (x, 0))
1223 = get_reg_attrs (MEM_EXPR (mem),
1224 INTVAL (XEXP (x, 1)));
1229 /* Set the REG_ATTRS for registers in value X, given that X represents
1230 decl T. */
1232 void
1233 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1235 if (!t)
1236 return;
1237 tree tdecl = t;
1238 if (GET_CODE (x) == SUBREG)
1240 gcc_assert (subreg_lowpart_p (x));
1241 x = SUBREG_REG (x);
1243 if (REG_P (x))
1244 REG_ATTRS (x)
1245 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1246 DECL_P (tdecl)
1247 ? DECL_MODE (tdecl)
1248 : TYPE_MODE (TREE_TYPE (tdecl))));
1249 if (GET_CODE (x) == CONCAT)
1251 if (REG_P (XEXP (x, 0)))
1252 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1253 if (REG_P (XEXP (x, 1)))
1254 REG_ATTRS (XEXP (x, 1))
1255 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1257 if (GET_CODE (x) == PARALLEL)
1259 int i, start;
1261 /* Check for a NULL entry, used to indicate that the parameter goes
1262 both on the stack and in registers. */
1263 if (XEXP (XVECEXP (x, 0, 0), 0))
1264 start = 0;
1265 else
1266 start = 1;
1268 for (i = start; i < XVECLEN (x, 0); i++)
1270 rtx y = XVECEXP (x, 0, i);
1271 if (REG_P (XEXP (y, 0)))
1272 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1277 /* Assign the RTX X to declaration T. */
1279 void
1280 set_decl_rtl (tree t, rtx x)
1282 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1283 if (x)
1284 set_reg_attrs_for_decl_rtl (t, x);
1287 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1288 if the ABI requires the parameter to be passed by reference. */
1290 void
1291 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1293 DECL_INCOMING_RTL (t) = x;
1294 if (x && !by_reference_p)
1295 set_reg_attrs_for_decl_rtl (t, x);
1298 /* Identify REG (which may be a CONCAT) as a user register. */
1300 void
1301 mark_user_reg (rtx reg)
1303 if (GET_CODE (reg) == CONCAT)
1305 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1306 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1308 else
1310 gcc_assert (REG_P (reg));
1311 REG_USERVAR_P (reg) = 1;
1315 /* Identify REG as a probable pointer register and show its alignment
1316 as ALIGN, if nonzero. */
1318 void
1319 mark_reg_pointer (rtx reg, int align)
1321 if (! REG_POINTER (reg))
1323 REG_POINTER (reg) = 1;
1325 if (align)
1326 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1328 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1329 /* We can no-longer be sure just how aligned this pointer is. */
1330 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1333 /* Return 1 plus largest pseudo reg number used in the current function. */
1336 max_reg_num (void)
1338 return reg_rtx_no;
1341 /* Return 1 + the largest label number used so far in the current function. */
1344 max_label_num (void)
1346 return label_num;
1349 /* Return first label number used in this function (if any were used). */
1352 get_first_label_num (void)
1354 return first_label_num;
1357 /* If the rtx for label was created during the expansion of a nested
1358 function, then first_label_num won't include this label number.
1359 Fix this now so that array indices work later. */
1361 void
1362 maybe_set_first_label_num (rtx_code_label *x)
1364 if (CODE_LABEL_NUMBER (x) < first_label_num)
1365 first_label_num = CODE_LABEL_NUMBER (x);
1368 /* Return a value representing some low-order bits of X, where the number
1369 of low-order bits is given by MODE. Note that no conversion is done
1370 between floating-point and fixed-point values, rather, the bit
1371 representation is returned.
1373 This function handles the cases in common between gen_lowpart, below,
1374 and two variants in cse.c and combine.c. These are the cases that can
1375 be safely handled at all points in the compilation.
1377 If this is not a case we can handle, return 0. */
1380 gen_lowpart_common (machine_mode mode, rtx x)
1382 int msize = GET_MODE_SIZE (mode);
1383 int xsize;
1384 machine_mode innermode;
1386 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1387 so we have to make one up. Yuk. */
1388 innermode = GET_MODE (x);
1389 if (CONST_INT_P (x)
1390 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1391 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1392 else if (innermode == VOIDmode)
1393 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1395 xsize = GET_MODE_SIZE (innermode);
1397 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1399 if (innermode == mode)
1400 return x;
1402 /* MODE must occupy no more words than the mode of X. */
1403 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1404 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1405 return 0;
1407 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1408 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1409 return 0;
1411 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1412 && (GET_MODE_CLASS (mode) == MODE_INT
1413 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1415 /* If we are getting the low-order part of something that has been
1416 sign- or zero-extended, we can either just use the object being
1417 extended or make a narrower extension. If we want an even smaller
1418 piece than the size of the object being extended, call ourselves
1419 recursively.
1421 This case is used mostly by combine and cse. */
1423 if (GET_MODE (XEXP (x, 0)) == mode)
1424 return XEXP (x, 0);
1425 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1426 return gen_lowpart_common (mode, XEXP (x, 0));
1427 else if (msize < xsize)
1428 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1430 else if (GET_CODE (x) == SUBREG || REG_P (x)
1431 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1432 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1433 return lowpart_subreg (mode, x, innermode);
1435 /* Otherwise, we can't do this. */
1436 return 0;
1440 gen_highpart (machine_mode mode, rtx x)
1442 unsigned int msize = GET_MODE_SIZE (mode);
1443 rtx result;
1445 /* This case loses if X is a subreg. To catch bugs early,
1446 complain if an invalid MODE is used even in other cases. */
1447 gcc_assert (msize <= UNITS_PER_WORD
1448 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1450 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1451 subreg_highpart_offset (mode, GET_MODE (x)));
1452 gcc_assert (result);
1454 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1455 the target if we have a MEM. gen_highpart must return a valid operand,
1456 emitting code if necessary to do so. */
1457 if (MEM_P (result))
1459 result = validize_mem (result);
1460 gcc_assert (result);
1463 return result;
1466 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1467 be VOIDmode constant. */
1469 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1471 if (GET_MODE (exp) != VOIDmode)
1473 gcc_assert (GET_MODE (exp) == innermode);
1474 return gen_highpart (outermode, exp);
1476 return simplify_gen_subreg (outermode, exp, innermode,
1477 subreg_highpart_offset (outermode, innermode));
1480 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1482 unsigned int
1483 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
1485 unsigned int offset = 0;
1486 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1488 if (difference > 0)
1490 if (WORDS_BIG_ENDIAN)
1491 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1492 if (BYTES_BIG_ENDIAN)
1493 offset += difference % UNITS_PER_WORD;
1496 return offset;
1499 /* Return offset in bytes to get OUTERMODE high part
1500 of the value in mode INNERMODE stored in memory in target format. */
1501 unsigned int
1502 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
1504 unsigned int offset = 0;
1505 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1507 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1509 if (difference > 0)
1511 if (! WORDS_BIG_ENDIAN)
1512 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1513 if (! BYTES_BIG_ENDIAN)
1514 offset += difference % UNITS_PER_WORD;
1517 return offset;
1520 /* Return 1 iff X, assumed to be a SUBREG,
1521 refers to the least significant part of its containing reg.
1522 If X is not a SUBREG, always return 1 (it is its own low part!). */
1525 subreg_lowpart_p (const_rtx x)
1527 if (GET_CODE (x) != SUBREG)
1528 return 1;
1529 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1530 return 0;
1532 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1533 == SUBREG_BYTE (x));
1536 /* Return true if X is a paradoxical subreg, false otherwise. */
1537 bool
1538 paradoxical_subreg_p (const_rtx x)
1540 if (GET_CODE (x) != SUBREG)
1541 return false;
1542 return (GET_MODE_PRECISION (GET_MODE (x))
1543 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1546 /* Return subword OFFSET of operand OP.
1547 The word number, OFFSET, is interpreted as the word number starting
1548 at the low-order address. OFFSET 0 is the low-order word if not
1549 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1551 If we cannot extract the required word, we return zero. Otherwise,
1552 an rtx corresponding to the requested word will be returned.
1554 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1555 reload has completed, a valid address will always be returned. After
1556 reload, if a valid address cannot be returned, we return zero.
1558 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1559 it is the responsibility of the caller.
1561 MODE is the mode of OP in case it is a CONST_INT.
1563 ??? This is still rather broken for some cases. The problem for the
1564 moment is that all callers of this thing provide no 'goal mode' to
1565 tell us to work with. This exists because all callers were written
1566 in a word based SUBREG world.
1567 Now use of this function can be deprecated by simplify_subreg in most
1568 cases.
1572 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1574 if (mode == VOIDmode)
1575 mode = GET_MODE (op);
1577 gcc_assert (mode != VOIDmode);
1579 /* If OP is narrower than a word, fail. */
1580 if (mode != BLKmode
1581 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1582 return 0;
1584 /* If we want a word outside OP, return zero. */
1585 if (mode != BLKmode
1586 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1587 return const0_rtx;
1589 /* Form a new MEM at the requested address. */
1590 if (MEM_P (op))
1592 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1594 if (! validate_address)
1595 return new_rtx;
1597 else if (reload_completed)
1599 if (! strict_memory_address_addr_space_p (word_mode,
1600 XEXP (new_rtx, 0),
1601 MEM_ADDR_SPACE (op)))
1602 return 0;
1604 else
1605 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1608 /* Rest can be handled by simplify_subreg. */
1609 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1612 /* Similar to `operand_subword', but never return 0. If we can't
1613 extract the required subword, put OP into a register and try again.
1614 The second attempt must succeed. We always validate the address in
1615 this case.
1617 MODE is the mode of OP, in case it is CONST_INT. */
1620 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1622 rtx result = operand_subword (op, offset, 1, mode);
1624 if (result)
1625 return result;
1627 if (mode != BLKmode && mode != VOIDmode)
1629 /* If this is a register which can not be accessed by words, copy it
1630 to a pseudo register. */
1631 if (REG_P (op))
1632 op = copy_to_reg (op);
1633 else
1634 op = force_reg (mode, op);
1637 result = operand_subword (op, offset, 1, mode);
1638 gcc_assert (result);
1640 return result;
1643 /* Returns 1 if both MEM_EXPR can be considered equal
1644 and 0 otherwise. */
1647 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1649 if (expr1 == expr2)
1650 return 1;
1652 if (! expr1 || ! expr2)
1653 return 0;
1655 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1656 return 0;
1658 return operand_equal_p (expr1, expr2, 0);
1661 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1662 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1663 -1 if not known. */
1666 get_mem_align_offset (rtx mem, unsigned int align)
1668 tree expr;
1669 unsigned HOST_WIDE_INT offset;
1671 /* This function can't use
1672 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1673 || (MAX (MEM_ALIGN (mem),
1674 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1675 < align))
1676 return -1;
1677 else
1678 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1679 for two reasons:
1680 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1681 for <variable>. get_inner_reference doesn't handle it and
1682 even if it did, the alignment in that case needs to be determined
1683 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1684 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1685 isn't sufficiently aligned, the object it is in might be. */
1686 gcc_assert (MEM_P (mem));
1687 expr = MEM_EXPR (mem);
1688 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1689 return -1;
1691 offset = MEM_OFFSET (mem);
1692 if (DECL_P (expr))
1694 if (DECL_ALIGN (expr) < align)
1695 return -1;
1697 else if (INDIRECT_REF_P (expr))
1699 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1700 return -1;
1702 else if (TREE_CODE (expr) == COMPONENT_REF)
1704 while (1)
1706 tree inner = TREE_OPERAND (expr, 0);
1707 tree field = TREE_OPERAND (expr, 1);
1708 tree byte_offset = component_ref_field_offset (expr);
1709 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1711 if (!byte_offset
1712 || !tree_fits_uhwi_p (byte_offset)
1713 || !tree_fits_uhwi_p (bit_offset))
1714 return -1;
1716 offset += tree_to_uhwi (byte_offset);
1717 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1719 if (inner == NULL_TREE)
1721 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1722 < (unsigned int) align)
1723 return -1;
1724 break;
1726 else if (DECL_P (inner))
1728 if (DECL_ALIGN (inner) < align)
1729 return -1;
1730 break;
1732 else if (TREE_CODE (inner) != COMPONENT_REF)
1733 return -1;
1734 expr = inner;
1737 else
1738 return -1;
1740 return offset & ((align / BITS_PER_UNIT) - 1);
1743 /* Given REF (a MEM) and T, either the type of X or the expression
1744 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1745 if we are making a new object of this type. BITPOS is nonzero if
1746 there is an offset outstanding on T that will be applied later. */
1748 void
1749 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1750 HOST_WIDE_INT bitpos)
1752 HOST_WIDE_INT apply_bitpos = 0;
1753 tree type;
1754 struct mem_attrs attrs, *defattrs, *refattrs;
1755 addr_space_t as;
1757 /* It can happen that type_for_mode was given a mode for which there
1758 is no language-level type. In which case it returns NULL, which
1759 we can see here. */
1760 if (t == NULL_TREE)
1761 return;
1763 type = TYPE_P (t) ? t : TREE_TYPE (t);
1764 if (type == error_mark_node)
1765 return;
1767 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1768 wrong answer, as it assumes that DECL_RTL already has the right alias
1769 info. Callers should not set DECL_RTL until after the call to
1770 set_mem_attributes. */
1771 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1773 memset (&attrs, 0, sizeof (attrs));
1775 /* Get the alias set from the expression or type (perhaps using a
1776 front-end routine) and use it. */
1777 attrs.alias = get_alias_set (t);
1779 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1780 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1782 /* Default values from pre-existing memory attributes if present. */
1783 refattrs = MEM_ATTRS (ref);
1784 if (refattrs)
1786 /* ??? Can this ever happen? Calling this routine on a MEM that
1787 already carries memory attributes should probably be invalid. */
1788 attrs.expr = refattrs->expr;
1789 attrs.offset_known_p = refattrs->offset_known_p;
1790 attrs.offset = refattrs->offset;
1791 attrs.size_known_p = refattrs->size_known_p;
1792 attrs.size = refattrs->size;
1793 attrs.align = refattrs->align;
1796 /* Otherwise, default values from the mode of the MEM reference. */
1797 else
1799 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1800 gcc_assert (!defattrs->expr);
1801 gcc_assert (!defattrs->offset_known_p);
1803 /* Respect mode size. */
1804 attrs.size_known_p = defattrs->size_known_p;
1805 attrs.size = defattrs->size;
1806 /* ??? Is this really necessary? We probably should always get
1807 the size from the type below. */
1809 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1810 if T is an object, always compute the object alignment below. */
1811 if (TYPE_P (t))
1812 attrs.align = defattrs->align;
1813 else
1814 attrs.align = BITS_PER_UNIT;
1815 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1816 e.g. if the type carries an alignment attribute. Should we be
1817 able to simply always use TYPE_ALIGN? */
1820 /* We can set the alignment from the type if we are making an object or if
1821 this is an INDIRECT_REF. */
1822 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1823 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1825 /* If the size is known, we can set that. */
1826 tree new_size = TYPE_SIZE_UNIT (type);
1828 /* The address-space is that of the type. */
1829 as = TYPE_ADDR_SPACE (type);
1831 /* If T is not a type, we may be able to deduce some more information about
1832 the expression. */
1833 if (! TYPE_P (t))
1835 tree base;
1837 if (TREE_THIS_VOLATILE (t))
1838 MEM_VOLATILE_P (ref) = 1;
1840 /* Now remove any conversions: they don't change what the underlying
1841 object is. Likewise for SAVE_EXPR. */
1842 while (CONVERT_EXPR_P (t)
1843 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1844 || TREE_CODE (t) == SAVE_EXPR)
1845 t = TREE_OPERAND (t, 0);
1847 /* Note whether this expression can trap. */
1848 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1850 base = get_base_address (t);
1851 if (base)
1853 if (DECL_P (base)
1854 && TREE_READONLY (base)
1855 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1856 && !TREE_THIS_VOLATILE (base))
1857 MEM_READONLY_P (ref) = 1;
1859 /* Mark static const strings readonly as well. */
1860 if (TREE_CODE (base) == STRING_CST
1861 && TREE_READONLY (base)
1862 && TREE_STATIC (base))
1863 MEM_READONLY_P (ref) = 1;
1865 /* Address-space information is on the base object. */
1866 if (TREE_CODE (base) == MEM_REF
1867 || TREE_CODE (base) == TARGET_MEM_REF)
1868 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1869 0))));
1870 else
1871 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1874 /* If this expression uses it's parent's alias set, mark it such
1875 that we won't change it. */
1876 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1877 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1879 /* If this is a decl, set the attributes of the MEM from it. */
1880 if (DECL_P (t))
1882 attrs.expr = t;
1883 attrs.offset_known_p = true;
1884 attrs.offset = 0;
1885 apply_bitpos = bitpos;
1886 new_size = DECL_SIZE_UNIT (t);
1889 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1890 else if (CONSTANT_CLASS_P (t))
1893 /* If this is a field reference, record it. */
1894 else if (TREE_CODE (t) == COMPONENT_REF)
1896 attrs.expr = t;
1897 attrs.offset_known_p = true;
1898 attrs.offset = 0;
1899 apply_bitpos = bitpos;
1900 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1901 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1904 /* If this is an array reference, look for an outer field reference. */
1905 else if (TREE_CODE (t) == ARRAY_REF)
1907 tree off_tree = size_zero_node;
1908 /* We can't modify t, because we use it at the end of the
1909 function. */
1910 tree t2 = t;
1914 tree index = TREE_OPERAND (t2, 1);
1915 tree low_bound = array_ref_low_bound (t2);
1916 tree unit_size = array_ref_element_size (t2);
1918 /* We assume all arrays have sizes that are a multiple of a byte.
1919 First subtract the lower bound, if any, in the type of the
1920 index, then convert to sizetype and multiply by the size of
1921 the array element. */
1922 if (! integer_zerop (low_bound))
1923 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1924 index, low_bound);
1926 off_tree = size_binop (PLUS_EXPR,
1927 size_binop (MULT_EXPR,
1928 fold_convert (sizetype,
1929 index),
1930 unit_size),
1931 off_tree);
1932 t2 = TREE_OPERAND (t2, 0);
1934 while (TREE_CODE (t2) == ARRAY_REF);
1936 if (DECL_P (t2)
1937 || TREE_CODE (t2) == COMPONENT_REF)
1939 attrs.expr = t2;
1940 attrs.offset_known_p = false;
1941 if (tree_fits_uhwi_p (off_tree))
1943 attrs.offset_known_p = true;
1944 attrs.offset = tree_to_uhwi (off_tree);
1945 apply_bitpos = bitpos;
1948 /* Else do not record a MEM_EXPR. */
1951 /* If this is an indirect reference, record it. */
1952 else if (TREE_CODE (t) == MEM_REF
1953 || TREE_CODE (t) == TARGET_MEM_REF)
1955 attrs.expr = t;
1956 attrs.offset_known_p = true;
1957 attrs.offset = 0;
1958 apply_bitpos = bitpos;
1961 /* Compute the alignment. */
1962 unsigned int obj_align;
1963 unsigned HOST_WIDE_INT obj_bitpos;
1964 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1965 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1966 if (obj_bitpos != 0)
1967 obj_align = (obj_bitpos & -obj_bitpos);
1968 attrs.align = MAX (attrs.align, obj_align);
1971 if (tree_fits_uhwi_p (new_size))
1973 attrs.size_known_p = true;
1974 attrs.size = tree_to_uhwi (new_size);
1977 /* If we modified OFFSET based on T, then subtract the outstanding
1978 bit position offset. Similarly, increase the size of the accessed
1979 object to contain the negative offset. */
1980 if (apply_bitpos)
1982 gcc_assert (attrs.offset_known_p);
1983 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1984 if (attrs.size_known_p)
1985 attrs.size += apply_bitpos / BITS_PER_UNIT;
1988 /* Now set the attributes we computed above. */
1989 attrs.addrspace = as;
1990 set_mem_attrs (ref, &attrs);
1993 void
1994 set_mem_attributes (rtx ref, tree t, int objectp)
1996 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1999 /* Set the alias set of MEM to SET. */
2001 void
2002 set_mem_alias_set (rtx mem, alias_set_type set)
2004 struct mem_attrs attrs;
2006 /* If the new and old alias sets don't conflict, something is wrong. */
2007 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2008 attrs = *get_mem_attrs (mem);
2009 attrs.alias = set;
2010 set_mem_attrs (mem, &attrs);
2013 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2015 void
2016 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2018 struct mem_attrs attrs;
2020 attrs = *get_mem_attrs (mem);
2021 attrs.addrspace = addrspace;
2022 set_mem_attrs (mem, &attrs);
2025 /* Set the alignment of MEM to ALIGN bits. */
2027 void
2028 set_mem_align (rtx mem, unsigned int align)
2030 struct mem_attrs attrs;
2032 attrs = *get_mem_attrs (mem);
2033 attrs.align = align;
2034 set_mem_attrs (mem, &attrs);
2037 /* Set the expr for MEM to EXPR. */
2039 void
2040 set_mem_expr (rtx mem, tree expr)
2042 struct mem_attrs attrs;
2044 attrs = *get_mem_attrs (mem);
2045 attrs.expr = expr;
2046 set_mem_attrs (mem, &attrs);
2049 /* Set the offset of MEM to OFFSET. */
2051 void
2052 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2054 struct mem_attrs attrs;
2056 attrs = *get_mem_attrs (mem);
2057 attrs.offset_known_p = true;
2058 attrs.offset = offset;
2059 set_mem_attrs (mem, &attrs);
2062 /* Clear the offset of MEM. */
2064 void
2065 clear_mem_offset (rtx mem)
2067 struct mem_attrs attrs;
2069 attrs = *get_mem_attrs (mem);
2070 attrs.offset_known_p = false;
2071 set_mem_attrs (mem, &attrs);
2074 /* Set the size of MEM to SIZE. */
2076 void
2077 set_mem_size (rtx mem, HOST_WIDE_INT size)
2079 struct mem_attrs attrs;
2081 attrs = *get_mem_attrs (mem);
2082 attrs.size_known_p = true;
2083 attrs.size = size;
2084 set_mem_attrs (mem, &attrs);
2087 /* Clear the size of MEM. */
2089 void
2090 clear_mem_size (rtx mem)
2092 struct mem_attrs attrs;
2094 attrs = *get_mem_attrs (mem);
2095 attrs.size_known_p = false;
2096 set_mem_attrs (mem, &attrs);
2099 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2100 and its address changed to ADDR. (VOIDmode means don't change the mode.
2101 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2102 returned memory location is required to be valid. INPLACE is true if any
2103 changes can be made directly to MEMREF or false if MEMREF must be treated
2104 as immutable.
2106 The memory attributes are not changed. */
2108 static rtx
2109 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2110 bool inplace)
2112 addr_space_t as;
2113 rtx new_rtx;
2115 gcc_assert (MEM_P (memref));
2116 as = MEM_ADDR_SPACE (memref);
2117 if (mode == VOIDmode)
2118 mode = GET_MODE (memref);
2119 if (addr == 0)
2120 addr = XEXP (memref, 0);
2121 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2122 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2123 return memref;
2125 /* Don't validate address for LRA. LRA can make the address valid
2126 by itself in most efficient way. */
2127 if (validate && !lra_in_progress)
2129 if (reload_in_progress || reload_completed)
2130 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2131 else
2132 addr = memory_address_addr_space (mode, addr, as);
2135 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2136 return memref;
2138 if (inplace)
2140 XEXP (memref, 0) = addr;
2141 return memref;
2144 new_rtx = gen_rtx_MEM (mode, addr);
2145 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2146 return new_rtx;
2149 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2150 way we are changing MEMREF, so we only preserve the alias set. */
2153 change_address (rtx memref, machine_mode mode, rtx addr)
2155 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2156 machine_mode mmode = GET_MODE (new_rtx);
2157 struct mem_attrs attrs, *defattrs;
2159 attrs = *get_mem_attrs (memref);
2160 defattrs = mode_mem_attrs[(int) mmode];
2161 attrs.expr = NULL_TREE;
2162 attrs.offset_known_p = false;
2163 attrs.size_known_p = defattrs->size_known_p;
2164 attrs.size = defattrs->size;
2165 attrs.align = defattrs->align;
2167 /* If there are no changes, just return the original memory reference. */
2168 if (new_rtx == memref)
2170 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2171 return new_rtx;
2173 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2174 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2177 set_mem_attrs (new_rtx, &attrs);
2178 return new_rtx;
2181 /* Return a memory reference like MEMREF, but with its mode changed
2182 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2183 nonzero, the memory address is forced to be valid.
2184 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2185 and the caller is responsible for adjusting MEMREF base register.
2186 If ADJUST_OBJECT is zero, the underlying object associated with the
2187 memory reference is left unchanged and the caller is responsible for
2188 dealing with it. Otherwise, if the new memory reference is outside
2189 the underlying object, even partially, then the object is dropped.
2190 SIZE, if nonzero, is the size of an access in cases where MODE
2191 has no inherent size. */
2194 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2195 int validate, int adjust_address, int adjust_object,
2196 HOST_WIDE_INT size)
2198 rtx addr = XEXP (memref, 0);
2199 rtx new_rtx;
2200 machine_mode address_mode;
2201 int pbits;
2202 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2203 unsigned HOST_WIDE_INT max_align;
2204 #ifdef POINTERS_EXTEND_UNSIGNED
2205 machine_mode pointer_mode
2206 = targetm.addr_space.pointer_mode (attrs.addrspace);
2207 #endif
2209 /* VOIDmode means no mode change for change_address_1. */
2210 if (mode == VOIDmode)
2211 mode = GET_MODE (memref);
2213 /* Take the size of non-BLKmode accesses from the mode. */
2214 defattrs = mode_mem_attrs[(int) mode];
2215 if (defattrs->size_known_p)
2216 size = defattrs->size;
2218 /* If there are no changes, just return the original memory reference. */
2219 if (mode == GET_MODE (memref) && !offset
2220 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2221 && (!validate || memory_address_addr_space_p (mode, addr,
2222 attrs.addrspace)))
2223 return memref;
2225 /* ??? Prefer to create garbage instead of creating shared rtl.
2226 This may happen even if offset is nonzero -- consider
2227 (plus (plus reg reg) const_int) -- so do this always. */
2228 addr = copy_rtx (addr);
2230 /* Convert a possibly large offset to a signed value within the
2231 range of the target address space. */
2232 address_mode = get_address_mode (memref);
2233 pbits = GET_MODE_BITSIZE (address_mode);
2234 if (HOST_BITS_PER_WIDE_INT > pbits)
2236 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2237 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2238 >> shift);
2241 if (adjust_address)
2243 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2244 object, we can merge it into the LO_SUM. */
2245 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2246 && offset >= 0
2247 && (unsigned HOST_WIDE_INT) offset
2248 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2249 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2250 plus_constant (address_mode,
2251 XEXP (addr, 1), offset));
2252 #ifdef POINTERS_EXTEND_UNSIGNED
2253 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2254 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2255 the fact that pointers are not allowed to overflow. */
2256 else if (POINTERS_EXTEND_UNSIGNED > 0
2257 && GET_CODE (addr) == ZERO_EXTEND
2258 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2259 && trunc_int_for_mode (offset, pointer_mode) == offset)
2260 addr = gen_rtx_ZERO_EXTEND (address_mode,
2261 plus_constant (pointer_mode,
2262 XEXP (addr, 0), offset));
2263 #endif
2264 else
2265 addr = plus_constant (address_mode, addr, offset);
2268 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2270 /* If the address is a REG, change_address_1 rightfully returns memref,
2271 but this would destroy memref's MEM_ATTRS. */
2272 if (new_rtx == memref && offset != 0)
2273 new_rtx = copy_rtx (new_rtx);
2275 /* Conservatively drop the object if we don't know where we start from. */
2276 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2278 attrs.expr = NULL_TREE;
2279 attrs.alias = 0;
2282 /* Compute the new values of the memory attributes due to this adjustment.
2283 We add the offsets and update the alignment. */
2284 if (attrs.offset_known_p)
2286 attrs.offset += offset;
2288 /* Drop the object if the new left end is not within its bounds. */
2289 if (adjust_object && attrs.offset < 0)
2291 attrs.expr = NULL_TREE;
2292 attrs.alias = 0;
2296 /* Compute the new alignment by taking the MIN of the alignment and the
2297 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2298 if zero. */
2299 if (offset != 0)
2301 max_align = (offset & -offset) * BITS_PER_UNIT;
2302 attrs.align = MIN (attrs.align, max_align);
2305 if (size)
2307 /* Drop the object if the new right end is not within its bounds. */
2308 if (adjust_object && (offset + size) > attrs.size)
2310 attrs.expr = NULL_TREE;
2311 attrs.alias = 0;
2313 attrs.size_known_p = true;
2314 attrs.size = size;
2316 else if (attrs.size_known_p)
2318 gcc_assert (!adjust_object);
2319 attrs.size -= offset;
2320 /* ??? The store_by_pieces machinery generates negative sizes,
2321 so don't assert for that here. */
2324 set_mem_attrs (new_rtx, &attrs);
2326 return new_rtx;
2329 /* Return a memory reference like MEMREF, but with its mode changed
2330 to MODE and its address changed to ADDR, which is assumed to be
2331 MEMREF offset by OFFSET bytes. If VALIDATE is
2332 nonzero, the memory address is forced to be valid. */
2335 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2336 HOST_WIDE_INT offset, int validate)
2338 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2339 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2342 /* Return a memory reference like MEMREF, but whose address is changed by
2343 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2344 known to be in OFFSET (possibly 1). */
2347 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2349 rtx new_rtx, addr = XEXP (memref, 0);
2350 machine_mode address_mode;
2351 struct mem_attrs attrs, *defattrs;
2353 attrs = *get_mem_attrs (memref);
2354 address_mode = get_address_mode (memref);
2355 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2357 /* At this point we don't know _why_ the address is invalid. It
2358 could have secondary memory references, multiplies or anything.
2360 However, if we did go and rearrange things, we can wind up not
2361 being able to recognize the magic around pic_offset_table_rtx.
2362 This stuff is fragile, and is yet another example of why it is
2363 bad to expose PIC machinery too early. */
2364 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2365 attrs.addrspace)
2366 && GET_CODE (addr) == PLUS
2367 && XEXP (addr, 0) == pic_offset_table_rtx)
2369 addr = force_reg (GET_MODE (addr), addr);
2370 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2373 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2374 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2376 /* If there are no changes, just return the original memory reference. */
2377 if (new_rtx == memref)
2378 return new_rtx;
2380 /* Update the alignment to reflect the offset. Reset the offset, which
2381 we don't know. */
2382 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2383 attrs.offset_known_p = false;
2384 attrs.size_known_p = defattrs->size_known_p;
2385 attrs.size = defattrs->size;
2386 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2387 set_mem_attrs (new_rtx, &attrs);
2388 return new_rtx;
2391 /* Return a memory reference like MEMREF, but with its address changed to
2392 ADDR. The caller is asserting that the actual piece of memory pointed
2393 to is the same, just the form of the address is being changed, such as
2394 by putting something into a register. INPLACE is true if any changes
2395 can be made directly to MEMREF or false if MEMREF must be treated as
2396 immutable. */
2399 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2401 /* change_address_1 copies the memory attribute structure without change
2402 and that's exactly what we want here. */
2403 update_temp_slot_address (XEXP (memref, 0), addr);
2404 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2407 /* Likewise, but the reference is not required to be valid. */
2410 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2412 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2415 /* Return a memory reference like MEMREF, but with its mode widened to
2416 MODE and offset by OFFSET. This would be used by targets that e.g.
2417 cannot issue QImode memory operations and have to use SImode memory
2418 operations plus masking logic. */
2421 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2423 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2424 struct mem_attrs attrs;
2425 unsigned int size = GET_MODE_SIZE (mode);
2427 /* If there are no changes, just return the original memory reference. */
2428 if (new_rtx == memref)
2429 return new_rtx;
2431 attrs = *get_mem_attrs (new_rtx);
2433 /* If we don't know what offset we were at within the expression, then
2434 we can't know if we've overstepped the bounds. */
2435 if (! attrs.offset_known_p)
2436 attrs.expr = NULL_TREE;
2438 while (attrs.expr)
2440 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2442 tree field = TREE_OPERAND (attrs.expr, 1);
2443 tree offset = component_ref_field_offset (attrs.expr);
2445 if (! DECL_SIZE_UNIT (field))
2447 attrs.expr = NULL_TREE;
2448 break;
2451 /* Is the field at least as large as the access? If so, ok,
2452 otherwise strip back to the containing structure. */
2453 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2454 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2455 && attrs.offset >= 0)
2456 break;
2458 if (! tree_fits_uhwi_p (offset))
2460 attrs.expr = NULL_TREE;
2461 break;
2464 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2465 attrs.offset += tree_to_uhwi (offset);
2466 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2467 / BITS_PER_UNIT);
2469 /* Similarly for the decl. */
2470 else if (DECL_P (attrs.expr)
2471 && DECL_SIZE_UNIT (attrs.expr)
2472 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2473 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2474 && (! attrs.offset_known_p || attrs.offset >= 0))
2475 break;
2476 else
2478 /* The widened memory access overflows the expression, which means
2479 that it could alias another expression. Zap it. */
2480 attrs.expr = NULL_TREE;
2481 break;
2485 if (! attrs.expr)
2486 attrs.offset_known_p = false;
2488 /* The widened memory may alias other stuff, so zap the alias set. */
2489 /* ??? Maybe use get_alias_set on any remaining expression. */
2490 attrs.alias = 0;
2491 attrs.size_known_p = true;
2492 attrs.size = size;
2493 set_mem_attrs (new_rtx, &attrs);
2494 return new_rtx;
2497 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2498 static GTY(()) tree spill_slot_decl;
2500 tree
2501 get_spill_slot_decl (bool force_build_p)
2503 tree d = spill_slot_decl;
2504 rtx rd;
2505 struct mem_attrs attrs;
2507 if (d || !force_build_p)
2508 return d;
2510 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2511 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2512 DECL_ARTIFICIAL (d) = 1;
2513 DECL_IGNORED_P (d) = 1;
2514 TREE_USED (d) = 1;
2515 spill_slot_decl = d;
2517 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2518 MEM_NOTRAP_P (rd) = 1;
2519 attrs = *mode_mem_attrs[(int) BLKmode];
2520 attrs.alias = new_alias_set ();
2521 attrs.expr = d;
2522 set_mem_attrs (rd, &attrs);
2523 SET_DECL_RTL (d, rd);
2525 return d;
2528 /* Given MEM, a result from assign_stack_local, fill in the memory
2529 attributes as appropriate for a register allocator spill slot.
2530 These slots are not aliasable by other memory. We arrange for
2531 them all to use a single MEM_EXPR, so that the aliasing code can
2532 work properly in the case of shared spill slots. */
2534 void
2535 set_mem_attrs_for_spill (rtx mem)
2537 struct mem_attrs attrs;
2538 rtx addr;
2540 attrs = *get_mem_attrs (mem);
2541 attrs.expr = get_spill_slot_decl (true);
2542 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2543 attrs.addrspace = ADDR_SPACE_GENERIC;
2545 /* We expect the incoming memory to be of the form:
2546 (mem:MODE (plus (reg sfp) (const_int offset)))
2547 with perhaps the plus missing for offset = 0. */
2548 addr = XEXP (mem, 0);
2549 attrs.offset_known_p = true;
2550 attrs.offset = 0;
2551 if (GET_CODE (addr) == PLUS
2552 && CONST_INT_P (XEXP (addr, 1)))
2553 attrs.offset = INTVAL (XEXP (addr, 1));
2555 set_mem_attrs (mem, &attrs);
2556 MEM_NOTRAP_P (mem) = 1;
2559 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2561 rtx_code_label *
2562 gen_label_rtx (void)
2564 return as_a <rtx_code_label *> (
2565 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2566 NULL, label_num++, NULL));
2569 /* For procedure integration. */
2571 /* Install new pointers to the first and last insns in the chain.
2572 Also, set cur_insn_uid to one higher than the last in use.
2573 Used for an inline-procedure after copying the insn chain. */
2575 void
2576 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2578 rtx_insn *insn;
2580 set_first_insn (first);
2581 set_last_insn (last);
2582 cur_insn_uid = 0;
2584 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2586 int debug_count = 0;
2588 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2589 cur_debug_insn_uid = 0;
2591 for (insn = first; insn; insn = NEXT_INSN (insn))
2592 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2593 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2594 else
2596 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2597 if (DEBUG_INSN_P (insn))
2598 debug_count++;
2601 if (debug_count)
2602 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2603 else
2604 cur_debug_insn_uid++;
2606 else
2607 for (insn = first; insn; insn = NEXT_INSN (insn))
2608 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2610 cur_insn_uid++;
2613 /* Go through all the RTL insn bodies and copy any invalid shared
2614 structure. This routine should only be called once. */
2616 static void
2617 unshare_all_rtl_1 (rtx_insn *insn)
2619 /* Unshare just about everything else. */
2620 unshare_all_rtl_in_chain (insn);
2622 /* Make sure the addresses of stack slots found outside the insn chain
2623 (such as, in DECL_RTL of a variable) are not shared
2624 with the insn chain.
2626 This special care is necessary when the stack slot MEM does not
2627 actually appear in the insn chain. If it does appear, its address
2628 is unshared from all else at that point. */
2629 stack_slot_list = safe_as_a <rtx_expr_list *> (
2630 copy_rtx_if_shared (stack_slot_list));
2633 /* Go through all the RTL insn bodies and copy any invalid shared
2634 structure, again. This is a fairly expensive thing to do so it
2635 should be done sparingly. */
2637 void
2638 unshare_all_rtl_again (rtx_insn *insn)
2640 rtx_insn *p;
2641 tree decl;
2643 for (p = insn; p; p = NEXT_INSN (p))
2644 if (INSN_P (p))
2646 reset_used_flags (PATTERN (p));
2647 reset_used_flags (REG_NOTES (p));
2648 if (CALL_P (p))
2649 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2652 /* Make sure that virtual stack slots are not shared. */
2653 set_used_decls (DECL_INITIAL (cfun->decl));
2655 /* Make sure that virtual parameters are not shared. */
2656 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2657 set_used_flags (DECL_RTL (decl));
2659 reset_used_flags (stack_slot_list);
2661 unshare_all_rtl_1 (insn);
2664 unsigned int
2665 unshare_all_rtl (void)
2667 unshare_all_rtl_1 (get_insns ());
2668 return 0;
2672 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2673 Recursively does the same for subexpressions. */
2675 static void
2676 verify_rtx_sharing (rtx orig, rtx insn)
2678 rtx x = orig;
2679 int i;
2680 enum rtx_code code;
2681 const char *format_ptr;
2683 if (x == 0)
2684 return;
2686 code = GET_CODE (x);
2688 /* These types may be freely shared. */
2690 switch (code)
2692 case REG:
2693 case DEBUG_EXPR:
2694 case VALUE:
2695 CASE_CONST_ANY:
2696 case SYMBOL_REF:
2697 case LABEL_REF:
2698 case CODE_LABEL:
2699 case PC:
2700 case CC0:
2701 case RETURN:
2702 case SIMPLE_RETURN:
2703 case SCRATCH:
2704 /* SCRATCH must be shared because they represent distinct values. */
2705 return;
2706 case CLOBBER:
2707 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2708 clobbers or clobbers of hard registers that originated as pseudos.
2709 This is needed to allow safe register renaming. */
2710 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2711 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2712 return;
2713 break;
2715 case CONST:
2716 if (shared_const_p (orig))
2717 return;
2718 break;
2720 case MEM:
2721 /* A MEM is allowed to be shared if its address is constant. */
2722 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2723 || reload_completed || reload_in_progress)
2724 return;
2726 break;
2728 default:
2729 break;
2732 /* This rtx may not be shared. If it has already been seen,
2733 replace it with a copy of itself. */
2734 if (flag_checking && RTX_FLAG (x, used))
2736 error ("invalid rtl sharing found in the insn");
2737 debug_rtx (insn);
2738 error ("shared rtx");
2739 debug_rtx (x);
2740 internal_error ("internal consistency failure");
2742 gcc_assert (!RTX_FLAG (x, used));
2744 RTX_FLAG (x, used) = 1;
2746 /* Now scan the subexpressions recursively. */
2748 format_ptr = GET_RTX_FORMAT (code);
2750 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2752 switch (*format_ptr++)
2754 case 'e':
2755 verify_rtx_sharing (XEXP (x, i), insn);
2756 break;
2758 case 'E':
2759 if (XVEC (x, i) != NULL)
2761 int j;
2762 int len = XVECLEN (x, i);
2764 for (j = 0; j < len; j++)
2766 /* We allow sharing of ASM_OPERANDS inside single
2767 instruction. */
2768 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2769 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2770 == ASM_OPERANDS))
2771 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2772 else
2773 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2776 break;
2779 return;
2782 /* Reset used-flags for INSN. */
2784 static void
2785 reset_insn_used_flags (rtx insn)
2787 gcc_assert (INSN_P (insn));
2788 reset_used_flags (PATTERN (insn));
2789 reset_used_flags (REG_NOTES (insn));
2790 if (CALL_P (insn))
2791 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2794 /* Go through all the RTL insn bodies and clear all the USED bits. */
2796 static void
2797 reset_all_used_flags (void)
2799 rtx_insn *p;
2801 for (p = get_insns (); p; p = NEXT_INSN (p))
2802 if (INSN_P (p))
2804 rtx pat = PATTERN (p);
2805 if (GET_CODE (pat) != SEQUENCE)
2806 reset_insn_used_flags (p);
2807 else
2809 gcc_assert (REG_NOTES (p) == NULL);
2810 for (int i = 0; i < XVECLEN (pat, 0); i++)
2812 rtx insn = XVECEXP (pat, 0, i);
2813 if (INSN_P (insn))
2814 reset_insn_used_flags (insn);
2820 /* Verify sharing in INSN. */
2822 static void
2823 verify_insn_sharing (rtx insn)
2825 gcc_assert (INSN_P (insn));
2826 reset_used_flags (PATTERN (insn));
2827 reset_used_flags (REG_NOTES (insn));
2828 if (CALL_P (insn))
2829 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2832 /* Go through all the RTL insn bodies and check that there is no unexpected
2833 sharing in between the subexpressions. */
2835 DEBUG_FUNCTION void
2836 verify_rtl_sharing (void)
2838 rtx_insn *p;
2840 timevar_push (TV_VERIFY_RTL_SHARING);
2842 reset_all_used_flags ();
2844 for (p = get_insns (); p; p = NEXT_INSN (p))
2845 if (INSN_P (p))
2847 rtx pat = PATTERN (p);
2848 if (GET_CODE (pat) != SEQUENCE)
2849 verify_insn_sharing (p);
2850 else
2851 for (int i = 0; i < XVECLEN (pat, 0); i++)
2853 rtx insn = XVECEXP (pat, 0, i);
2854 if (INSN_P (insn))
2855 verify_insn_sharing (insn);
2859 reset_all_used_flags ();
2861 timevar_pop (TV_VERIFY_RTL_SHARING);
2864 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2865 Assumes the mark bits are cleared at entry. */
2867 void
2868 unshare_all_rtl_in_chain (rtx_insn *insn)
2870 for (; insn; insn = NEXT_INSN (insn))
2871 if (INSN_P (insn))
2873 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2874 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2875 if (CALL_P (insn))
2876 CALL_INSN_FUNCTION_USAGE (insn)
2877 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2881 /* Go through all virtual stack slots of a function and mark them as
2882 shared. We never replace the DECL_RTLs themselves with a copy,
2883 but expressions mentioned into a DECL_RTL cannot be shared with
2884 expressions in the instruction stream.
2886 Note that reload may convert pseudo registers into memories in-place.
2887 Pseudo registers are always shared, but MEMs never are. Thus if we
2888 reset the used flags on MEMs in the instruction stream, we must set
2889 them again on MEMs that appear in DECL_RTLs. */
2891 static void
2892 set_used_decls (tree blk)
2894 tree t;
2896 /* Mark decls. */
2897 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2898 if (DECL_RTL_SET_P (t))
2899 set_used_flags (DECL_RTL (t));
2901 /* Now process sub-blocks. */
2902 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2903 set_used_decls (t);
2906 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2907 Recursively does the same for subexpressions. Uses
2908 copy_rtx_if_shared_1 to reduce stack space. */
2911 copy_rtx_if_shared (rtx orig)
2913 copy_rtx_if_shared_1 (&orig);
2914 return orig;
2917 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2918 use. Recursively does the same for subexpressions. */
2920 static void
2921 copy_rtx_if_shared_1 (rtx *orig1)
2923 rtx x;
2924 int i;
2925 enum rtx_code code;
2926 rtx *last_ptr;
2927 const char *format_ptr;
2928 int copied = 0;
2929 int length;
2931 /* Repeat is used to turn tail-recursion into iteration. */
2932 repeat:
2933 x = *orig1;
2935 if (x == 0)
2936 return;
2938 code = GET_CODE (x);
2940 /* These types may be freely shared. */
2942 switch (code)
2944 case REG:
2945 case DEBUG_EXPR:
2946 case VALUE:
2947 CASE_CONST_ANY:
2948 case SYMBOL_REF:
2949 case LABEL_REF:
2950 case CODE_LABEL:
2951 case PC:
2952 case CC0:
2953 case RETURN:
2954 case SIMPLE_RETURN:
2955 case SCRATCH:
2956 /* SCRATCH must be shared because they represent distinct values. */
2957 return;
2958 case CLOBBER:
2959 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2960 clobbers or clobbers of hard registers that originated as pseudos.
2961 This is needed to allow safe register renaming. */
2962 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2963 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
2964 return;
2965 break;
2967 case CONST:
2968 if (shared_const_p (x))
2969 return;
2970 break;
2972 case DEBUG_INSN:
2973 case INSN:
2974 case JUMP_INSN:
2975 case CALL_INSN:
2976 case NOTE:
2977 case BARRIER:
2978 /* The chain of insns is not being copied. */
2979 return;
2981 default:
2982 break;
2985 /* This rtx may not be shared. If it has already been seen,
2986 replace it with a copy of itself. */
2988 if (RTX_FLAG (x, used))
2990 x = shallow_copy_rtx (x);
2991 copied = 1;
2993 RTX_FLAG (x, used) = 1;
2995 /* Now scan the subexpressions recursively.
2996 We can store any replaced subexpressions directly into X
2997 since we know X is not shared! Any vectors in X
2998 must be copied if X was copied. */
3000 format_ptr = GET_RTX_FORMAT (code);
3001 length = GET_RTX_LENGTH (code);
3002 last_ptr = NULL;
3004 for (i = 0; i < length; i++)
3006 switch (*format_ptr++)
3008 case 'e':
3009 if (last_ptr)
3010 copy_rtx_if_shared_1 (last_ptr);
3011 last_ptr = &XEXP (x, i);
3012 break;
3014 case 'E':
3015 if (XVEC (x, i) != NULL)
3017 int j;
3018 int len = XVECLEN (x, i);
3020 /* Copy the vector iff I copied the rtx and the length
3021 is nonzero. */
3022 if (copied && len > 0)
3023 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3025 /* Call recursively on all inside the vector. */
3026 for (j = 0; j < len; j++)
3028 if (last_ptr)
3029 copy_rtx_if_shared_1 (last_ptr);
3030 last_ptr = &XVECEXP (x, i, j);
3033 break;
3036 *orig1 = x;
3037 if (last_ptr)
3039 orig1 = last_ptr;
3040 goto repeat;
3042 return;
3045 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3047 static void
3048 mark_used_flags (rtx x, int flag)
3050 int i, j;
3051 enum rtx_code code;
3052 const char *format_ptr;
3053 int length;
3055 /* Repeat is used to turn tail-recursion into iteration. */
3056 repeat:
3057 if (x == 0)
3058 return;
3060 code = GET_CODE (x);
3062 /* These types may be freely shared so we needn't do any resetting
3063 for them. */
3065 switch (code)
3067 case REG:
3068 case DEBUG_EXPR:
3069 case VALUE:
3070 CASE_CONST_ANY:
3071 case SYMBOL_REF:
3072 case CODE_LABEL:
3073 case PC:
3074 case CC0:
3075 case RETURN:
3076 case SIMPLE_RETURN:
3077 return;
3079 case DEBUG_INSN:
3080 case INSN:
3081 case JUMP_INSN:
3082 case CALL_INSN:
3083 case NOTE:
3084 case LABEL_REF:
3085 case BARRIER:
3086 /* The chain of insns is not being copied. */
3087 return;
3089 default:
3090 break;
3093 RTX_FLAG (x, used) = flag;
3095 format_ptr = GET_RTX_FORMAT (code);
3096 length = GET_RTX_LENGTH (code);
3098 for (i = 0; i < length; i++)
3100 switch (*format_ptr++)
3102 case 'e':
3103 if (i == length-1)
3105 x = XEXP (x, i);
3106 goto repeat;
3108 mark_used_flags (XEXP (x, i), flag);
3109 break;
3111 case 'E':
3112 for (j = 0; j < XVECLEN (x, i); j++)
3113 mark_used_flags (XVECEXP (x, i, j), flag);
3114 break;
3119 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3120 to look for shared sub-parts. */
3122 void
3123 reset_used_flags (rtx x)
3125 mark_used_flags (x, 0);
3128 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3129 to look for shared sub-parts. */
3131 void
3132 set_used_flags (rtx x)
3134 mark_used_flags (x, 1);
3137 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3138 Return X or the rtx for the pseudo reg the value of X was copied into.
3139 OTHER must be valid as a SET_DEST. */
3142 make_safe_from (rtx x, rtx other)
3144 while (1)
3145 switch (GET_CODE (other))
3147 case SUBREG:
3148 other = SUBREG_REG (other);
3149 break;
3150 case STRICT_LOW_PART:
3151 case SIGN_EXTEND:
3152 case ZERO_EXTEND:
3153 other = XEXP (other, 0);
3154 break;
3155 default:
3156 goto done;
3158 done:
3159 if ((MEM_P (other)
3160 && ! CONSTANT_P (x)
3161 && !REG_P (x)
3162 && GET_CODE (x) != SUBREG)
3163 || (REG_P (other)
3164 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3165 || reg_mentioned_p (other, x))))
3167 rtx temp = gen_reg_rtx (GET_MODE (x));
3168 emit_move_insn (temp, x);
3169 return temp;
3171 return x;
3174 /* Emission of insns (adding them to the doubly-linked list). */
3176 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3178 rtx_insn *
3179 get_last_insn_anywhere (void)
3181 struct sequence_stack *seq;
3182 for (seq = get_current_sequence (); seq; seq = seq->next)
3183 if (seq->last != 0)
3184 return seq->last;
3185 return 0;
3188 /* Return the first nonnote insn emitted in current sequence or current
3189 function. This routine looks inside SEQUENCEs. */
3191 rtx_insn *
3192 get_first_nonnote_insn (void)
3194 rtx_insn *insn = get_insns ();
3196 if (insn)
3198 if (NOTE_P (insn))
3199 for (insn = next_insn (insn);
3200 insn && NOTE_P (insn);
3201 insn = next_insn (insn))
3202 continue;
3203 else
3205 if (NONJUMP_INSN_P (insn)
3206 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3207 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3211 return insn;
3214 /* Return the last nonnote insn emitted in current sequence or current
3215 function. This routine looks inside SEQUENCEs. */
3217 rtx_insn *
3218 get_last_nonnote_insn (void)
3220 rtx_insn *insn = get_last_insn ();
3222 if (insn)
3224 if (NOTE_P (insn))
3225 for (insn = previous_insn (insn);
3226 insn && NOTE_P (insn);
3227 insn = previous_insn (insn))
3228 continue;
3229 else
3231 if (NONJUMP_INSN_P (insn))
3232 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3233 insn = seq->insn (seq->len () - 1);
3237 return insn;
3240 /* Return the number of actual (non-debug) insns emitted in this
3241 function. */
3244 get_max_insn_count (void)
3246 int n = cur_insn_uid;
3248 /* The table size must be stable across -g, to avoid codegen
3249 differences due to debug insns, and not be affected by
3250 -fmin-insn-uid, to avoid excessive table size and to simplify
3251 debugging of -fcompare-debug failures. */
3252 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3253 n -= cur_debug_insn_uid;
3254 else
3255 n -= MIN_NONDEBUG_INSN_UID;
3257 return n;
3261 /* Return the next insn. If it is a SEQUENCE, return the first insn
3262 of the sequence. */
3264 rtx_insn *
3265 next_insn (rtx_insn *insn)
3267 if (insn)
3269 insn = NEXT_INSN (insn);
3270 if (insn && NONJUMP_INSN_P (insn)
3271 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3272 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3275 return insn;
3278 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3279 of the sequence. */
3281 rtx_insn *
3282 previous_insn (rtx_insn *insn)
3284 if (insn)
3286 insn = PREV_INSN (insn);
3287 if (insn && NONJUMP_INSN_P (insn))
3288 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3289 insn = seq->insn (seq->len () - 1);
3292 return insn;
3295 /* Return the next insn after INSN that is not a NOTE. This routine does not
3296 look inside SEQUENCEs. */
3298 rtx_insn *
3299 next_nonnote_insn (rtx uncast_insn)
3301 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3302 while (insn)
3304 insn = NEXT_INSN (insn);
3305 if (insn == 0 || !NOTE_P (insn))
3306 break;
3309 return insn;
3312 /* Return the next insn after INSN that is not a NOTE, but stop the
3313 search before we enter another basic block. This routine does not
3314 look inside SEQUENCEs. */
3316 rtx_insn *
3317 next_nonnote_insn_bb (rtx_insn *insn)
3319 while (insn)
3321 insn = NEXT_INSN (insn);
3322 if (insn == 0 || !NOTE_P (insn))
3323 break;
3324 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3325 return NULL;
3328 return insn;
3331 /* Return the previous insn before INSN that is not a NOTE. This routine does
3332 not look inside SEQUENCEs. */
3334 rtx_insn *
3335 prev_nonnote_insn (rtx uncast_insn)
3337 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3339 while (insn)
3341 insn = PREV_INSN (insn);
3342 if (insn == 0 || !NOTE_P (insn))
3343 break;
3346 return insn;
3349 /* Return the previous insn before INSN that is not a NOTE, but stop
3350 the search before we enter another basic block. This routine does
3351 not look inside SEQUENCEs. */
3353 rtx_insn *
3354 prev_nonnote_insn_bb (rtx uncast_insn)
3356 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3358 while (insn)
3360 insn = PREV_INSN (insn);
3361 if (insn == 0 || !NOTE_P (insn))
3362 break;
3363 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3364 return NULL;
3367 return insn;
3370 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3371 routine does not look inside SEQUENCEs. */
3373 rtx_insn *
3374 next_nondebug_insn (rtx uncast_insn)
3376 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3378 while (insn)
3380 insn = NEXT_INSN (insn);
3381 if (insn == 0 || !DEBUG_INSN_P (insn))
3382 break;
3385 return insn;
3388 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3389 This routine does not look inside SEQUENCEs. */
3391 rtx_insn *
3392 prev_nondebug_insn (rtx uncast_insn)
3394 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3396 while (insn)
3398 insn = PREV_INSN (insn);
3399 if (insn == 0 || !DEBUG_INSN_P (insn))
3400 break;
3403 return insn;
3406 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3407 This routine does not look inside SEQUENCEs. */
3409 rtx_insn *
3410 next_nonnote_nondebug_insn (rtx uncast_insn)
3412 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3414 while (insn)
3416 insn = NEXT_INSN (insn);
3417 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3418 break;
3421 return insn;
3424 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3425 This routine does not look inside SEQUENCEs. */
3427 rtx_insn *
3428 prev_nonnote_nondebug_insn (rtx uncast_insn)
3430 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3432 while (insn)
3434 insn = PREV_INSN (insn);
3435 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3436 break;
3439 return insn;
3442 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3443 or 0, if there is none. This routine does not look inside
3444 SEQUENCEs. */
3446 rtx_insn *
3447 next_real_insn (rtx uncast_insn)
3449 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3451 while (insn)
3453 insn = NEXT_INSN (insn);
3454 if (insn == 0 || INSN_P (insn))
3455 break;
3458 return insn;
3461 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3462 or 0, if there is none. This routine does not look inside
3463 SEQUENCEs. */
3465 rtx_insn *
3466 prev_real_insn (rtx uncast_insn)
3468 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3470 while (insn)
3472 insn = PREV_INSN (insn);
3473 if (insn == 0 || INSN_P (insn))
3474 break;
3477 return insn;
3480 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3481 This routine does not look inside SEQUENCEs. */
3483 rtx_call_insn *
3484 last_call_insn (void)
3486 rtx_insn *insn;
3488 for (insn = get_last_insn ();
3489 insn && !CALL_P (insn);
3490 insn = PREV_INSN (insn))
3493 return safe_as_a <rtx_call_insn *> (insn);
3496 /* Find the next insn after INSN that really does something. This routine
3497 does not look inside SEQUENCEs. After reload this also skips over
3498 standalone USE and CLOBBER insn. */
3501 active_insn_p (const_rtx insn)
3503 return (CALL_P (insn) || JUMP_P (insn)
3504 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3505 || (NONJUMP_INSN_P (insn)
3506 && (! reload_completed
3507 || (GET_CODE (PATTERN (insn)) != USE
3508 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3511 rtx_insn *
3512 next_active_insn (rtx uncast_insn)
3514 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3516 while (insn)
3518 insn = NEXT_INSN (insn);
3519 if (insn == 0 || active_insn_p (insn))
3520 break;
3523 return insn;
3526 /* Find the last insn before INSN that really does something. This routine
3527 does not look inside SEQUENCEs. After reload this also skips over
3528 standalone USE and CLOBBER insn. */
3530 rtx_insn *
3531 prev_active_insn (rtx uncast_insn)
3533 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3535 while (insn)
3537 insn = PREV_INSN (insn);
3538 if (insn == 0 || active_insn_p (insn))
3539 break;
3542 return insn;
3545 /* Return the next insn that uses CC0 after INSN, which is assumed to
3546 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3547 applied to the result of this function should yield INSN).
3549 Normally, this is simply the next insn. However, if a REG_CC_USER note
3550 is present, it contains the insn that uses CC0.
3552 Return 0 if we can't find the insn. */
3554 rtx_insn *
3555 next_cc0_user (rtx uncast_insn)
3557 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3559 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3561 if (note)
3562 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3564 insn = next_nonnote_insn (insn);
3565 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3566 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3568 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3569 return insn;
3571 return 0;
3574 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3575 note, it is the previous insn. */
3577 rtx_insn *
3578 prev_cc0_setter (rtx_insn *insn)
3580 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3582 if (note)
3583 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3585 insn = prev_nonnote_insn (insn);
3586 gcc_assert (sets_cc0_p (PATTERN (insn)));
3588 return insn;
3591 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3593 static int
3594 find_auto_inc (const_rtx x, const_rtx reg)
3596 subrtx_iterator::array_type array;
3597 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3599 const_rtx x = *iter;
3600 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3601 && rtx_equal_p (reg, XEXP (x, 0)))
3602 return true;
3604 return false;
3607 /* Increment the label uses for all labels present in rtx. */
3609 static void
3610 mark_label_nuses (rtx x)
3612 enum rtx_code code;
3613 int i, j;
3614 const char *fmt;
3616 code = GET_CODE (x);
3617 if (code == LABEL_REF && LABEL_P (LABEL_REF_LABEL (x)))
3618 LABEL_NUSES (LABEL_REF_LABEL (x))++;
3620 fmt = GET_RTX_FORMAT (code);
3621 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3623 if (fmt[i] == 'e')
3624 mark_label_nuses (XEXP (x, i));
3625 else if (fmt[i] == 'E')
3626 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3627 mark_label_nuses (XVECEXP (x, i, j));
3632 /* Try splitting insns that can be split for better scheduling.
3633 PAT is the pattern which might split.
3634 TRIAL is the insn providing PAT.
3635 LAST is nonzero if we should return the last insn of the sequence produced.
3637 If this routine succeeds in splitting, it returns the first or last
3638 replacement insn depending on the value of LAST. Otherwise, it
3639 returns TRIAL. If the insn to be returned can be split, it will be. */
3641 rtx_insn *
3642 try_split (rtx pat, rtx_insn *trial, int last)
3644 rtx_insn *before = PREV_INSN (trial);
3645 rtx_insn *after = NEXT_INSN (trial);
3646 rtx note;
3647 rtx_insn *seq, *tem;
3648 int probability;
3649 rtx_insn *insn_last, *insn;
3650 int njumps = 0;
3651 rtx_insn *call_insn = NULL;
3653 /* We're not good at redistributing frame information. */
3654 if (RTX_FRAME_RELATED_P (trial))
3655 return trial;
3657 if (any_condjump_p (trial)
3658 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3659 split_branch_probability = XINT (note, 0);
3660 probability = split_branch_probability;
3662 seq = split_insns (pat, trial);
3664 split_branch_probability = -1;
3666 if (!seq)
3667 return trial;
3669 /* Avoid infinite loop if any insn of the result matches
3670 the original pattern. */
3671 insn_last = seq;
3672 while (1)
3674 if (INSN_P (insn_last)
3675 && rtx_equal_p (PATTERN (insn_last), pat))
3676 return trial;
3677 if (!NEXT_INSN (insn_last))
3678 break;
3679 insn_last = NEXT_INSN (insn_last);
3682 /* We will be adding the new sequence to the function. The splitters
3683 may have introduced invalid RTL sharing, so unshare the sequence now. */
3684 unshare_all_rtl_in_chain (seq);
3686 /* Mark labels and copy flags. */
3687 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3689 if (JUMP_P (insn))
3691 if (JUMP_P (trial))
3692 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3693 mark_jump_label (PATTERN (insn), insn, 0);
3694 njumps++;
3695 if (probability != -1
3696 && any_condjump_p (insn)
3697 && !find_reg_note (insn, REG_BR_PROB, 0))
3699 /* We can preserve the REG_BR_PROB notes only if exactly
3700 one jump is created, otherwise the machine description
3701 is responsible for this step using
3702 split_branch_probability variable. */
3703 gcc_assert (njumps == 1);
3704 add_int_reg_note (insn, REG_BR_PROB, probability);
3709 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3710 in SEQ and copy any additional information across. */
3711 if (CALL_P (trial))
3713 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3714 if (CALL_P (insn))
3716 rtx_insn *next;
3717 rtx *p;
3719 gcc_assert (call_insn == NULL_RTX);
3720 call_insn = insn;
3722 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3723 target may have explicitly specified. */
3724 p = &CALL_INSN_FUNCTION_USAGE (insn);
3725 while (*p)
3726 p = &XEXP (*p, 1);
3727 *p = CALL_INSN_FUNCTION_USAGE (trial);
3729 /* If the old call was a sibling call, the new one must
3730 be too. */
3731 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3733 /* If the new call is the last instruction in the sequence,
3734 it will effectively replace the old call in-situ. Otherwise
3735 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3736 so that it comes immediately after the new call. */
3737 if (NEXT_INSN (insn))
3738 for (next = NEXT_INSN (trial);
3739 next && NOTE_P (next);
3740 next = NEXT_INSN (next))
3741 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3743 remove_insn (next);
3744 add_insn_after (next, insn, NULL);
3745 break;
3750 /* Copy notes, particularly those related to the CFG. */
3751 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3753 switch (REG_NOTE_KIND (note))
3755 case REG_EH_REGION:
3756 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3757 break;
3759 case REG_NORETURN:
3760 case REG_SETJMP:
3761 case REG_TM:
3762 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3764 if (CALL_P (insn))
3765 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3767 break;
3769 case REG_NON_LOCAL_GOTO:
3770 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3772 if (JUMP_P (insn))
3773 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3775 break;
3777 case REG_INC:
3778 if (!AUTO_INC_DEC)
3779 break;
3781 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3783 rtx reg = XEXP (note, 0);
3784 if (!FIND_REG_INC_NOTE (insn, reg)
3785 && find_auto_inc (PATTERN (insn), reg))
3786 add_reg_note (insn, REG_INC, reg);
3788 break;
3790 case REG_ARGS_SIZE:
3791 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3792 break;
3794 case REG_CALL_DECL:
3795 gcc_assert (call_insn != NULL_RTX);
3796 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3797 break;
3799 default:
3800 break;
3804 /* If there are LABELS inside the split insns increment the
3805 usage count so we don't delete the label. */
3806 if (INSN_P (trial))
3808 insn = insn_last;
3809 while (insn != NULL_RTX)
3811 /* JUMP_P insns have already been "marked" above. */
3812 if (NONJUMP_INSN_P (insn))
3813 mark_label_nuses (PATTERN (insn));
3815 insn = PREV_INSN (insn);
3819 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3821 delete_insn (trial);
3823 /* Recursively call try_split for each new insn created; by the
3824 time control returns here that insn will be fully split, so
3825 set LAST and continue from the insn after the one returned.
3826 We can't use next_active_insn here since AFTER may be a note.
3827 Ignore deleted insns, which can be occur if not optimizing. */
3828 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3829 if (! tem->deleted () && INSN_P (tem))
3830 tem = try_split (PATTERN (tem), tem, 1);
3832 /* Return either the first or the last insn, depending on which was
3833 requested. */
3834 return last
3835 ? (after ? PREV_INSN (after) : get_last_insn ())
3836 : NEXT_INSN (before);
3839 /* Make and return an INSN rtx, initializing all its slots.
3840 Store PATTERN in the pattern slots. */
3842 rtx_insn *
3843 make_insn_raw (rtx pattern)
3845 rtx_insn *insn;
3847 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3849 INSN_UID (insn) = cur_insn_uid++;
3850 PATTERN (insn) = pattern;
3851 INSN_CODE (insn) = -1;
3852 REG_NOTES (insn) = NULL;
3853 INSN_LOCATION (insn) = curr_insn_location ();
3854 BLOCK_FOR_INSN (insn) = NULL;
3856 #ifdef ENABLE_RTL_CHECKING
3857 if (insn
3858 && INSN_P (insn)
3859 && (returnjump_p (insn)
3860 || (GET_CODE (insn) == SET
3861 && SET_DEST (insn) == pc_rtx)))
3863 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3864 debug_rtx (insn);
3866 #endif
3868 return insn;
3871 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3873 static rtx_insn *
3874 make_debug_insn_raw (rtx pattern)
3876 rtx_debug_insn *insn;
3878 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3879 INSN_UID (insn) = cur_debug_insn_uid++;
3880 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3881 INSN_UID (insn) = cur_insn_uid++;
3883 PATTERN (insn) = pattern;
3884 INSN_CODE (insn) = -1;
3885 REG_NOTES (insn) = NULL;
3886 INSN_LOCATION (insn) = curr_insn_location ();
3887 BLOCK_FOR_INSN (insn) = NULL;
3889 return insn;
3892 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3894 static rtx_insn *
3895 make_jump_insn_raw (rtx pattern)
3897 rtx_jump_insn *insn;
3899 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3900 INSN_UID (insn) = cur_insn_uid++;
3902 PATTERN (insn) = pattern;
3903 INSN_CODE (insn) = -1;
3904 REG_NOTES (insn) = NULL;
3905 JUMP_LABEL (insn) = NULL;
3906 INSN_LOCATION (insn) = curr_insn_location ();
3907 BLOCK_FOR_INSN (insn) = NULL;
3909 return insn;
3912 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3914 static rtx_insn *
3915 make_call_insn_raw (rtx pattern)
3917 rtx_call_insn *insn;
3919 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3920 INSN_UID (insn) = cur_insn_uid++;
3922 PATTERN (insn) = pattern;
3923 INSN_CODE (insn) = -1;
3924 REG_NOTES (insn) = NULL;
3925 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3926 INSN_LOCATION (insn) = curr_insn_location ();
3927 BLOCK_FOR_INSN (insn) = NULL;
3929 return insn;
3932 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3934 static rtx_note *
3935 make_note_raw (enum insn_note subtype)
3937 /* Some notes are never created this way at all. These notes are
3938 only created by patching out insns. */
3939 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3940 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3942 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3943 INSN_UID (note) = cur_insn_uid++;
3944 NOTE_KIND (note) = subtype;
3945 BLOCK_FOR_INSN (note) = NULL;
3946 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3947 return note;
3950 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3951 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3952 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3954 static inline void
3955 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3957 SET_PREV_INSN (insn) = prev;
3958 SET_NEXT_INSN (insn) = next;
3959 if (prev != NULL)
3961 SET_NEXT_INSN (prev) = insn;
3962 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3964 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
3965 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
3968 if (next != NULL)
3970 SET_PREV_INSN (next) = insn;
3971 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3973 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
3974 SET_PREV_INSN (sequence->insn (0)) = insn;
3978 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3980 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
3981 SET_PREV_INSN (sequence->insn (0)) = prev;
3982 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3986 /* Add INSN to the end of the doubly-linked list.
3987 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3989 void
3990 add_insn (rtx_insn *insn)
3992 rtx_insn *prev = get_last_insn ();
3993 link_insn_into_chain (insn, prev, NULL);
3994 if (NULL == get_insns ())
3995 set_first_insn (insn);
3996 set_last_insn (insn);
3999 /* Add INSN into the doubly-linked list after insn AFTER. */
4001 static void
4002 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4004 rtx_insn *next = NEXT_INSN (after);
4006 gcc_assert (!optimize || !after->deleted ());
4008 link_insn_into_chain (insn, after, next);
4010 if (next == NULL)
4012 struct sequence_stack *seq;
4014 for (seq = get_current_sequence (); seq; seq = seq->next)
4015 if (after == seq->last)
4017 seq->last = insn;
4018 break;
4023 /* Add INSN into the doubly-linked list before insn BEFORE. */
4025 static void
4026 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4028 rtx_insn *prev = PREV_INSN (before);
4030 gcc_assert (!optimize || !before->deleted ());
4032 link_insn_into_chain (insn, prev, before);
4034 if (prev == NULL)
4036 struct sequence_stack *seq;
4038 for (seq = get_current_sequence (); seq; seq = seq->next)
4039 if (before == seq->first)
4041 seq->first = insn;
4042 break;
4045 gcc_assert (seq);
4049 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4050 If BB is NULL, an attempt is made to infer the bb from before.
4052 This and the next function should be the only functions called
4053 to insert an insn once delay slots have been filled since only
4054 they know how to update a SEQUENCE. */
4056 void
4057 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4059 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4060 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4061 add_insn_after_nobb (insn, after);
4062 if (!BARRIER_P (after)
4063 && !BARRIER_P (insn)
4064 && (bb = BLOCK_FOR_INSN (after)))
4066 set_block_for_insn (insn, bb);
4067 if (INSN_P (insn))
4068 df_insn_rescan (insn);
4069 /* Should not happen as first in the BB is always
4070 either NOTE or LABEL. */
4071 if (BB_END (bb) == after
4072 /* Avoid clobbering of structure when creating new BB. */
4073 && !BARRIER_P (insn)
4074 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4075 BB_END (bb) = insn;
4079 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4080 If BB is NULL, an attempt is made to infer the bb from before.
4082 This and the previous function should be the only functions called
4083 to insert an insn once delay slots have been filled since only
4084 they know how to update a SEQUENCE. */
4086 void
4087 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4089 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4090 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4091 add_insn_before_nobb (insn, before);
4093 if (!bb
4094 && !BARRIER_P (before)
4095 && !BARRIER_P (insn))
4096 bb = BLOCK_FOR_INSN (before);
4098 if (bb)
4100 set_block_for_insn (insn, bb);
4101 if (INSN_P (insn))
4102 df_insn_rescan (insn);
4103 /* Should not happen as first in the BB is always either NOTE or
4104 LABEL. */
4105 gcc_assert (BB_HEAD (bb) != insn
4106 /* Avoid clobbering of structure when creating new BB. */
4107 || BARRIER_P (insn)
4108 || NOTE_INSN_BASIC_BLOCK_P (insn));
4112 /* Replace insn with an deleted instruction note. */
4114 void
4115 set_insn_deleted (rtx insn)
4117 if (INSN_P (insn))
4118 df_insn_delete (as_a <rtx_insn *> (insn));
4119 PUT_CODE (insn, NOTE);
4120 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4124 /* Unlink INSN from the insn chain.
4126 This function knows how to handle sequences.
4128 This function does not invalidate data flow information associated with
4129 INSN (i.e. does not call df_insn_delete). That makes this function
4130 usable for only disconnecting an insn from the chain, and re-emit it
4131 elsewhere later.
4133 To later insert INSN elsewhere in the insn chain via add_insn and
4134 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4135 the caller. Nullifying them here breaks many insn chain walks.
4137 To really delete an insn and related DF information, use delete_insn. */
4139 void
4140 remove_insn (rtx uncast_insn)
4142 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4143 rtx_insn *next = NEXT_INSN (insn);
4144 rtx_insn *prev = PREV_INSN (insn);
4145 basic_block bb;
4147 if (prev)
4149 SET_NEXT_INSN (prev) = next;
4150 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4152 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4153 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4156 else
4158 struct sequence_stack *seq;
4160 for (seq = get_current_sequence (); seq; seq = seq->next)
4161 if (insn == seq->first)
4163 seq->first = next;
4164 break;
4167 gcc_assert (seq);
4170 if (next)
4172 SET_PREV_INSN (next) = prev;
4173 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4175 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4176 SET_PREV_INSN (sequence->insn (0)) = prev;
4179 else
4181 struct sequence_stack *seq;
4183 for (seq = get_current_sequence (); seq; seq = seq->next)
4184 if (insn == seq->last)
4186 seq->last = prev;
4187 break;
4190 gcc_assert (seq);
4193 /* Fix up basic block boundaries, if necessary. */
4194 if (!BARRIER_P (insn)
4195 && (bb = BLOCK_FOR_INSN (insn)))
4197 if (BB_HEAD (bb) == insn)
4199 /* Never ever delete the basic block note without deleting whole
4200 basic block. */
4201 gcc_assert (!NOTE_P (insn));
4202 BB_HEAD (bb) = next;
4204 if (BB_END (bb) == insn)
4205 BB_END (bb) = prev;
4209 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4211 void
4212 add_function_usage_to (rtx call_insn, rtx call_fusage)
4214 gcc_assert (call_insn && CALL_P (call_insn));
4216 /* Put the register usage information on the CALL. If there is already
4217 some usage information, put ours at the end. */
4218 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4220 rtx link;
4222 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4223 link = XEXP (link, 1))
4226 XEXP (link, 1) = call_fusage;
4228 else
4229 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4232 /* Delete all insns made since FROM.
4233 FROM becomes the new last instruction. */
4235 void
4236 delete_insns_since (rtx_insn *from)
4238 if (from == 0)
4239 set_first_insn (0);
4240 else
4241 SET_NEXT_INSN (from) = 0;
4242 set_last_insn (from);
4245 /* This function is deprecated, please use sequences instead.
4247 Move a consecutive bunch of insns to a different place in the chain.
4248 The insns to be moved are those between FROM and TO.
4249 They are moved to a new position after the insn AFTER.
4250 AFTER must not be FROM or TO or any insn in between.
4252 This function does not know about SEQUENCEs and hence should not be
4253 called after delay-slot filling has been done. */
4255 void
4256 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4258 if (flag_checking)
4260 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4261 gcc_assert (after != x);
4262 gcc_assert (after != to);
4265 /* Splice this bunch out of where it is now. */
4266 if (PREV_INSN (from))
4267 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4268 if (NEXT_INSN (to))
4269 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4270 if (get_last_insn () == to)
4271 set_last_insn (PREV_INSN (from));
4272 if (get_insns () == from)
4273 set_first_insn (NEXT_INSN (to));
4275 /* Make the new neighbors point to it and it to them. */
4276 if (NEXT_INSN (after))
4277 SET_PREV_INSN (NEXT_INSN (after)) = to;
4279 SET_NEXT_INSN (to) = NEXT_INSN (after);
4280 SET_PREV_INSN (from) = after;
4281 SET_NEXT_INSN (after) = from;
4282 if (after == get_last_insn ())
4283 set_last_insn (to);
4286 /* Same as function above, but take care to update BB boundaries. */
4287 void
4288 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4290 rtx_insn *prev = PREV_INSN (from);
4291 basic_block bb, bb2;
4293 reorder_insns_nobb (from, to, after);
4295 if (!BARRIER_P (after)
4296 && (bb = BLOCK_FOR_INSN (after)))
4298 rtx_insn *x;
4299 df_set_bb_dirty (bb);
4301 if (!BARRIER_P (from)
4302 && (bb2 = BLOCK_FOR_INSN (from)))
4304 if (BB_END (bb2) == to)
4305 BB_END (bb2) = prev;
4306 df_set_bb_dirty (bb2);
4309 if (BB_END (bb) == after)
4310 BB_END (bb) = to;
4312 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4313 if (!BARRIER_P (x))
4314 df_insn_change_bb (x, bb);
4319 /* Emit insn(s) of given code and pattern
4320 at a specified place within the doubly-linked list.
4322 All of the emit_foo global entry points accept an object
4323 X which is either an insn list or a PATTERN of a single
4324 instruction.
4326 There are thus a few canonical ways to generate code and
4327 emit it at a specific place in the instruction stream. For
4328 example, consider the instruction named SPOT and the fact that
4329 we would like to emit some instructions before SPOT. We might
4330 do it like this:
4332 start_sequence ();
4333 ... emit the new instructions ...
4334 insns_head = get_insns ();
4335 end_sequence ();
4337 emit_insn_before (insns_head, SPOT);
4339 It used to be common to generate SEQUENCE rtl instead, but that
4340 is a relic of the past which no longer occurs. The reason is that
4341 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4342 generated would almost certainly die right after it was created. */
4344 static rtx_insn *
4345 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4346 rtx_insn *(*make_raw) (rtx))
4348 rtx_insn *insn;
4350 gcc_assert (before);
4352 if (x == NULL_RTX)
4353 return safe_as_a <rtx_insn *> (last);
4355 switch (GET_CODE (x))
4357 case DEBUG_INSN:
4358 case INSN:
4359 case JUMP_INSN:
4360 case CALL_INSN:
4361 case CODE_LABEL:
4362 case BARRIER:
4363 case NOTE:
4364 insn = as_a <rtx_insn *> (x);
4365 while (insn)
4367 rtx_insn *next = NEXT_INSN (insn);
4368 add_insn_before (insn, before, bb);
4369 last = insn;
4370 insn = next;
4372 break;
4374 #ifdef ENABLE_RTL_CHECKING
4375 case SEQUENCE:
4376 gcc_unreachable ();
4377 break;
4378 #endif
4380 default:
4381 last = (*make_raw) (x);
4382 add_insn_before (last, before, bb);
4383 break;
4386 return safe_as_a <rtx_insn *> (last);
4389 /* Make X be output before the instruction BEFORE. */
4391 rtx_insn *
4392 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4394 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4397 /* Make an instruction with body X and code JUMP_INSN
4398 and output it before the instruction BEFORE. */
4400 rtx_jump_insn *
4401 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4403 return as_a <rtx_jump_insn *> (
4404 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4405 make_jump_insn_raw));
4408 /* Make an instruction with body X and code CALL_INSN
4409 and output it before the instruction BEFORE. */
4411 rtx_insn *
4412 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4414 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4415 make_call_insn_raw);
4418 /* Make an instruction with body X and code DEBUG_INSN
4419 and output it before the instruction BEFORE. */
4421 rtx_insn *
4422 emit_debug_insn_before_noloc (rtx x, rtx before)
4424 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4425 make_debug_insn_raw);
4428 /* Make an insn of code BARRIER
4429 and output it before the insn BEFORE. */
4431 rtx_barrier *
4432 emit_barrier_before (rtx before)
4434 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4436 INSN_UID (insn) = cur_insn_uid++;
4438 add_insn_before (insn, before, NULL);
4439 return insn;
4442 /* Emit the label LABEL before the insn BEFORE. */
4444 rtx_code_label *
4445 emit_label_before (rtx label, rtx_insn *before)
4447 gcc_checking_assert (INSN_UID (label) == 0);
4448 INSN_UID (label) = cur_insn_uid++;
4449 add_insn_before (label, before, NULL);
4450 return as_a <rtx_code_label *> (label);
4453 /* Helper for emit_insn_after, handles lists of instructions
4454 efficiently. */
4456 static rtx_insn *
4457 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4459 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4460 rtx_insn *last;
4461 rtx_insn *after_after;
4462 if (!bb && !BARRIER_P (after))
4463 bb = BLOCK_FOR_INSN (after);
4465 if (bb)
4467 df_set_bb_dirty (bb);
4468 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4469 if (!BARRIER_P (last))
4471 set_block_for_insn (last, bb);
4472 df_insn_rescan (last);
4474 if (!BARRIER_P (last))
4476 set_block_for_insn (last, bb);
4477 df_insn_rescan (last);
4479 if (BB_END (bb) == after)
4480 BB_END (bb) = last;
4482 else
4483 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4484 continue;
4486 after_after = NEXT_INSN (after);
4488 SET_NEXT_INSN (after) = first;
4489 SET_PREV_INSN (first) = after;
4490 SET_NEXT_INSN (last) = after_after;
4491 if (after_after)
4492 SET_PREV_INSN (after_after) = last;
4494 if (after == get_last_insn ())
4495 set_last_insn (last);
4497 return last;
4500 static rtx_insn *
4501 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4502 rtx_insn *(*make_raw)(rtx))
4504 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4505 rtx_insn *last = after;
4507 gcc_assert (after);
4509 if (x == NULL_RTX)
4510 return last;
4512 switch (GET_CODE (x))
4514 case DEBUG_INSN:
4515 case INSN:
4516 case JUMP_INSN:
4517 case CALL_INSN:
4518 case CODE_LABEL:
4519 case BARRIER:
4520 case NOTE:
4521 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4522 break;
4524 #ifdef ENABLE_RTL_CHECKING
4525 case SEQUENCE:
4526 gcc_unreachable ();
4527 break;
4528 #endif
4530 default:
4531 last = (*make_raw) (x);
4532 add_insn_after (last, after, bb);
4533 break;
4536 return last;
4539 /* Make X be output after the insn AFTER and set the BB of insn. If
4540 BB is NULL, an attempt is made to infer the BB from AFTER. */
4542 rtx_insn *
4543 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4545 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4549 /* Make an insn of code JUMP_INSN with body X
4550 and output it after the insn AFTER. */
4552 rtx_jump_insn *
4553 emit_jump_insn_after_noloc (rtx x, rtx after)
4555 return as_a <rtx_jump_insn *> (
4556 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4559 /* Make an instruction with body X and code CALL_INSN
4560 and output it after the instruction AFTER. */
4562 rtx_insn *
4563 emit_call_insn_after_noloc (rtx x, rtx after)
4565 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4568 /* Make an instruction with body X and code CALL_INSN
4569 and output it after the instruction AFTER. */
4571 rtx_insn *
4572 emit_debug_insn_after_noloc (rtx x, rtx after)
4574 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4577 /* Make an insn of code BARRIER
4578 and output it after the insn AFTER. */
4580 rtx_barrier *
4581 emit_barrier_after (rtx after)
4583 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4585 INSN_UID (insn) = cur_insn_uid++;
4587 add_insn_after (insn, after, NULL);
4588 return insn;
4591 /* Emit the label LABEL after the insn AFTER. */
4593 rtx_insn *
4594 emit_label_after (rtx label, rtx_insn *after)
4596 gcc_checking_assert (INSN_UID (label) == 0);
4597 INSN_UID (label) = cur_insn_uid++;
4598 add_insn_after (label, after, NULL);
4599 return as_a <rtx_insn *> (label);
4602 /* Notes require a bit of special handling: Some notes need to have their
4603 BLOCK_FOR_INSN set, others should never have it set, and some should
4604 have it set or clear depending on the context. */
4606 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4607 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4608 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4610 static bool
4611 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4613 switch (subtype)
4615 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4616 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4617 return true;
4619 /* Notes for var tracking and EH region markers can appear between or
4620 inside basic blocks. If the caller is emitting on the basic block
4621 boundary, do not set BLOCK_FOR_INSN on the new note. */
4622 case NOTE_INSN_VAR_LOCATION:
4623 case NOTE_INSN_CALL_ARG_LOCATION:
4624 case NOTE_INSN_EH_REGION_BEG:
4625 case NOTE_INSN_EH_REGION_END:
4626 return on_bb_boundary_p;
4628 /* Otherwise, BLOCK_FOR_INSN must be set. */
4629 default:
4630 return false;
4634 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4636 rtx_note *
4637 emit_note_after (enum insn_note subtype, rtx_insn *after)
4639 rtx_note *note = make_note_raw (subtype);
4640 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4641 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4643 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4644 add_insn_after_nobb (note, after);
4645 else
4646 add_insn_after (note, after, bb);
4647 return note;
4650 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4652 rtx_note *
4653 emit_note_before (enum insn_note subtype, rtx_insn *before)
4655 rtx_note *note = make_note_raw (subtype);
4656 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4657 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4659 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4660 add_insn_before_nobb (note, before);
4661 else
4662 add_insn_before (note, before, bb);
4663 return note;
4666 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4667 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4669 static rtx_insn *
4670 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4671 rtx_insn *(*make_raw) (rtx))
4673 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4674 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4676 if (pattern == NULL_RTX || !loc)
4677 return last;
4679 after = NEXT_INSN (after);
4680 while (1)
4682 if (active_insn_p (after)
4683 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4684 && !INSN_LOCATION (after))
4685 INSN_LOCATION (after) = loc;
4686 if (after == last)
4687 break;
4688 after = NEXT_INSN (after);
4690 return last;
4693 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4694 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4695 any DEBUG_INSNs. */
4697 static rtx_insn *
4698 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4699 rtx_insn *(*make_raw) (rtx))
4701 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4702 rtx_insn *prev = after;
4704 if (skip_debug_insns)
4705 while (DEBUG_INSN_P (prev))
4706 prev = PREV_INSN (prev);
4708 if (INSN_P (prev))
4709 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4710 make_raw);
4711 else
4712 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4715 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4716 rtx_insn *
4717 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4719 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4722 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4723 rtx_insn *
4724 emit_insn_after (rtx pattern, rtx after)
4726 return emit_pattern_after (pattern, after, true, make_insn_raw);
4729 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4730 rtx_jump_insn *
4731 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4733 return as_a <rtx_jump_insn *> (
4734 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4737 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4738 rtx_jump_insn *
4739 emit_jump_insn_after (rtx pattern, rtx after)
4741 return as_a <rtx_jump_insn *> (
4742 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4745 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4746 rtx_insn *
4747 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4749 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4752 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4753 rtx_insn *
4754 emit_call_insn_after (rtx pattern, rtx after)
4756 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4759 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4760 rtx_insn *
4761 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4763 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4766 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4767 rtx_insn *
4768 emit_debug_insn_after (rtx pattern, rtx after)
4770 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4773 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4774 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4775 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4776 CALL_INSN, etc. */
4778 static rtx_insn *
4779 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4780 rtx_insn *(*make_raw) (rtx))
4782 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4783 rtx_insn *first = PREV_INSN (before);
4784 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4785 insnp ? before : NULL_RTX,
4786 NULL, make_raw);
4788 if (pattern == NULL_RTX || !loc)
4789 return last;
4791 if (!first)
4792 first = get_insns ();
4793 else
4794 first = NEXT_INSN (first);
4795 while (1)
4797 if (active_insn_p (first)
4798 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4799 && !INSN_LOCATION (first))
4800 INSN_LOCATION (first) = loc;
4801 if (first == last)
4802 break;
4803 first = NEXT_INSN (first);
4805 return last;
4808 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4809 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4810 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4811 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4813 static rtx_insn *
4814 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4815 bool insnp, rtx_insn *(*make_raw) (rtx))
4817 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4818 rtx_insn *next = before;
4820 if (skip_debug_insns)
4821 while (DEBUG_INSN_P (next))
4822 next = PREV_INSN (next);
4824 if (INSN_P (next))
4825 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4826 insnp, make_raw);
4827 else
4828 return emit_pattern_before_noloc (pattern, before,
4829 insnp ? before : NULL_RTX,
4830 NULL, make_raw);
4833 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4834 rtx_insn *
4835 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4837 return emit_pattern_before_setloc (pattern, before, loc, true,
4838 make_insn_raw);
4841 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4842 rtx_insn *
4843 emit_insn_before (rtx pattern, rtx before)
4845 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4848 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4849 rtx_jump_insn *
4850 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4852 return as_a <rtx_jump_insn *> (
4853 emit_pattern_before_setloc (pattern, before, loc, false,
4854 make_jump_insn_raw));
4857 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4858 rtx_jump_insn *
4859 emit_jump_insn_before (rtx pattern, rtx before)
4861 return as_a <rtx_jump_insn *> (
4862 emit_pattern_before (pattern, before, true, false,
4863 make_jump_insn_raw));
4866 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4867 rtx_insn *
4868 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4870 return emit_pattern_before_setloc (pattern, before, loc, false,
4871 make_call_insn_raw);
4874 /* Like emit_call_insn_before_noloc,
4875 but set insn_location according to BEFORE. */
4876 rtx_insn *
4877 emit_call_insn_before (rtx pattern, rtx_insn *before)
4879 return emit_pattern_before (pattern, before, true, false,
4880 make_call_insn_raw);
4883 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4884 rtx_insn *
4885 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4887 return emit_pattern_before_setloc (pattern, before, loc, false,
4888 make_debug_insn_raw);
4891 /* Like emit_debug_insn_before_noloc,
4892 but set insn_location according to BEFORE. */
4893 rtx_insn *
4894 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4896 return emit_pattern_before (pattern, before, false, false,
4897 make_debug_insn_raw);
4900 /* Take X and emit it at the end of the doubly-linked
4901 INSN list.
4903 Returns the last insn emitted. */
4905 rtx_insn *
4906 emit_insn (rtx x)
4908 rtx_insn *last = get_last_insn ();
4909 rtx_insn *insn;
4911 if (x == NULL_RTX)
4912 return last;
4914 switch (GET_CODE (x))
4916 case DEBUG_INSN:
4917 case INSN:
4918 case JUMP_INSN:
4919 case CALL_INSN:
4920 case CODE_LABEL:
4921 case BARRIER:
4922 case NOTE:
4923 insn = as_a <rtx_insn *> (x);
4924 while (insn)
4926 rtx_insn *next = NEXT_INSN (insn);
4927 add_insn (insn);
4928 last = insn;
4929 insn = next;
4931 break;
4933 #ifdef ENABLE_RTL_CHECKING
4934 case JUMP_TABLE_DATA:
4935 case SEQUENCE:
4936 gcc_unreachable ();
4937 break;
4938 #endif
4940 default:
4941 last = make_insn_raw (x);
4942 add_insn (last);
4943 break;
4946 return last;
4949 /* Make an insn of code DEBUG_INSN with pattern X
4950 and add it to the end of the doubly-linked list. */
4952 rtx_insn *
4953 emit_debug_insn (rtx x)
4955 rtx_insn *last = get_last_insn ();
4956 rtx_insn *insn;
4958 if (x == NULL_RTX)
4959 return last;
4961 switch (GET_CODE (x))
4963 case DEBUG_INSN:
4964 case INSN:
4965 case JUMP_INSN:
4966 case CALL_INSN:
4967 case CODE_LABEL:
4968 case BARRIER:
4969 case NOTE:
4970 insn = as_a <rtx_insn *> (x);
4971 while (insn)
4973 rtx_insn *next = NEXT_INSN (insn);
4974 add_insn (insn);
4975 last = insn;
4976 insn = next;
4978 break;
4980 #ifdef ENABLE_RTL_CHECKING
4981 case JUMP_TABLE_DATA:
4982 case SEQUENCE:
4983 gcc_unreachable ();
4984 break;
4985 #endif
4987 default:
4988 last = make_debug_insn_raw (x);
4989 add_insn (last);
4990 break;
4993 return last;
4996 /* Make an insn of code JUMP_INSN with pattern X
4997 and add it to the end of the doubly-linked list. */
4999 rtx_insn *
5000 emit_jump_insn (rtx x)
5002 rtx_insn *last = NULL;
5003 rtx_insn *insn;
5005 switch (GET_CODE (x))
5007 case DEBUG_INSN:
5008 case INSN:
5009 case JUMP_INSN:
5010 case CALL_INSN:
5011 case CODE_LABEL:
5012 case BARRIER:
5013 case NOTE:
5014 insn = as_a <rtx_insn *> (x);
5015 while (insn)
5017 rtx_insn *next = NEXT_INSN (insn);
5018 add_insn (insn);
5019 last = insn;
5020 insn = next;
5022 break;
5024 #ifdef ENABLE_RTL_CHECKING
5025 case JUMP_TABLE_DATA:
5026 case SEQUENCE:
5027 gcc_unreachable ();
5028 break;
5029 #endif
5031 default:
5032 last = make_jump_insn_raw (x);
5033 add_insn (last);
5034 break;
5037 return last;
5040 /* Make an insn of code CALL_INSN with pattern X
5041 and add it to the end of the doubly-linked list. */
5043 rtx_insn *
5044 emit_call_insn (rtx x)
5046 rtx_insn *insn;
5048 switch (GET_CODE (x))
5050 case DEBUG_INSN:
5051 case INSN:
5052 case JUMP_INSN:
5053 case CALL_INSN:
5054 case CODE_LABEL:
5055 case BARRIER:
5056 case NOTE:
5057 insn = emit_insn (x);
5058 break;
5060 #ifdef ENABLE_RTL_CHECKING
5061 case SEQUENCE:
5062 case JUMP_TABLE_DATA:
5063 gcc_unreachable ();
5064 break;
5065 #endif
5067 default:
5068 insn = make_call_insn_raw (x);
5069 add_insn (insn);
5070 break;
5073 return insn;
5076 /* Add the label LABEL to the end of the doubly-linked list. */
5078 rtx_code_label *
5079 emit_label (rtx uncast_label)
5081 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5083 gcc_checking_assert (INSN_UID (label) == 0);
5084 INSN_UID (label) = cur_insn_uid++;
5085 add_insn (label);
5086 return label;
5089 /* Make an insn of code JUMP_TABLE_DATA
5090 and add it to the end of the doubly-linked list. */
5092 rtx_jump_table_data *
5093 emit_jump_table_data (rtx table)
5095 rtx_jump_table_data *jump_table_data =
5096 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5097 INSN_UID (jump_table_data) = cur_insn_uid++;
5098 PATTERN (jump_table_data) = table;
5099 BLOCK_FOR_INSN (jump_table_data) = NULL;
5100 add_insn (jump_table_data);
5101 return jump_table_data;
5104 /* Make an insn of code BARRIER
5105 and add it to the end of the doubly-linked list. */
5107 rtx_barrier *
5108 emit_barrier (void)
5110 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5111 INSN_UID (barrier) = cur_insn_uid++;
5112 add_insn (barrier);
5113 return barrier;
5116 /* Emit a copy of note ORIG. */
5118 rtx_note *
5119 emit_note_copy (rtx_note *orig)
5121 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5122 rtx_note *note = make_note_raw (kind);
5123 NOTE_DATA (note) = NOTE_DATA (orig);
5124 add_insn (note);
5125 return note;
5128 /* Make an insn of code NOTE or type NOTE_NO
5129 and add it to the end of the doubly-linked list. */
5131 rtx_note *
5132 emit_note (enum insn_note kind)
5134 rtx_note *note = make_note_raw (kind);
5135 add_insn (note);
5136 return note;
5139 /* Emit a clobber of lvalue X. */
5141 rtx_insn *
5142 emit_clobber (rtx x)
5144 /* CONCATs should not appear in the insn stream. */
5145 if (GET_CODE (x) == CONCAT)
5147 emit_clobber (XEXP (x, 0));
5148 return emit_clobber (XEXP (x, 1));
5150 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5153 /* Return a sequence of insns to clobber lvalue X. */
5155 rtx_insn *
5156 gen_clobber (rtx x)
5158 rtx_insn *seq;
5160 start_sequence ();
5161 emit_clobber (x);
5162 seq = get_insns ();
5163 end_sequence ();
5164 return seq;
5167 /* Emit a use of rvalue X. */
5169 rtx_insn *
5170 emit_use (rtx x)
5172 /* CONCATs should not appear in the insn stream. */
5173 if (GET_CODE (x) == CONCAT)
5175 emit_use (XEXP (x, 0));
5176 return emit_use (XEXP (x, 1));
5178 return emit_insn (gen_rtx_USE (VOIDmode, x));
5181 /* Return a sequence of insns to use rvalue X. */
5183 rtx_insn *
5184 gen_use (rtx x)
5186 rtx_insn *seq;
5188 start_sequence ();
5189 emit_use (x);
5190 seq = get_insns ();
5191 end_sequence ();
5192 return seq;
5195 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5196 Return the set in INSN that such notes describe, or NULL if the notes
5197 have no meaning for INSN. */
5200 set_for_reg_notes (rtx insn)
5202 rtx pat, reg;
5204 if (!INSN_P (insn))
5205 return NULL_RTX;
5207 pat = PATTERN (insn);
5208 if (GET_CODE (pat) == PARALLEL)
5210 /* We do not use single_set because that ignores SETs of unused
5211 registers. REG_EQUAL and REG_EQUIV notes really do require the
5212 PARALLEL to have a single SET. */
5213 if (multiple_sets (insn))
5214 return NULL_RTX;
5215 pat = XVECEXP (pat, 0, 0);
5218 if (GET_CODE (pat) != SET)
5219 return NULL_RTX;
5221 reg = SET_DEST (pat);
5223 /* Notes apply to the contents of a STRICT_LOW_PART. */
5224 if (GET_CODE (reg) == STRICT_LOW_PART
5225 || GET_CODE (reg) == ZERO_EXTRACT)
5226 reg = XEXP (reg, 0);
5228 /* Check that we have a register. */
5229 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5230 return NULL_RTX;
5232 return pat;
5235 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5236 note of this type already exists, remove it first. */
5239 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5241 rtx note = find_reg_note (insn, kind, NULL_RTX);
5243 switch (kind)
5245 case REG_EQUAL:
5246 case REG_EQUIV:
5247 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5248 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5249 return NULL_RTX;
5251 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5252 It serves no useful purpose and breaks eliminate_regs. */
5253 if (GET_CODE (datum) == ASM_OPERANDS)
5254 return NULL_RTX;
5256 /* Notes with side effects are dangerous. Even if the side-effect
5257 initially mirrors one in PATTERN (INSN), later optimizations
5258 might alter the way that the final register value is calculated
5259 and so move or alter the side-effect in some way. The note would
5260 then no longer be a valid substitution for SET_SRC. */
5261 if (side_effects_p (datum))
5262 return NULL_RTX;
5263 break;
5265 default:
5266 break;
5269 if (note)
5270 XEXP (note, 0) = datum;
5271 else
5273 add_reg_note (insn, kind, datum);
5274 note = REG_NOTES (insn);
5277 switch (kind)
5279 case REG_EQUAL:
5280 case REG_EQUIV:
5281 df_notes_rescan (as_a <rtx_insn *> (insn));
5282 break;
5283 default:
5284 break;
5287 return note;
5290 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5292 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5294 rtx set = set_for_reg_notes (insn);
5296 if (set && SET_DEST (set) == dst)
5297 return set_unique_reg_note (insn, kind, datum);
5298 return NULL_RTX;
5301 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5302 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5303 is true.
5305 If X is a label, it is simply added into the insn chain. */
5307 rtx_insn *
5308 emit (rtx x, bool allow_barrier_p)
5310 enum rtx_code code = classify_insn (x);
5312 switch (code)
5314 case CODE_LABEL:
5315 return emit_label (x);
5316 case INSN:
5317 return emit_insn (x);
5318 case JUMP_INSN:
5320 rtx_insn *insn = emit_jump_insn (x);
5321 if (allow_barrier_p
5322 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5323 return emit_barrier ();
5324 return insn;
5326 case CALL_INSN:
5327 return emit_call_insn (x);
5328 case DEBUG_INSN:
5329 return emit_debug_insn (x);
5330 default:
5331 gcc_unreachable ();
5335 /* Space for free sequence stack entries. */
5336 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5338 /* Begin emitting insns to a sequence. If this sequence will contain
5339 something that might cause the compiler to pop arguments to function
5340 calls (because those pops have previously been deferred; see
5341 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5342 before calling this function. That will ensure that the deferred
5343 pops are not accidentally emitted in the middle of this sequence. */
5345 void
5346 start_sequence (void)
5348 struct sequence_stack *tem;
5350 if (free_sequence_stack != NULL)
5352 tem = free_sequence_stack;
5353 free_sequence_stack = tem->next;
5355 else
5356 tem = ggc_alloc<sequence_stack> ();
5358 tem->next = get_current_sequence ()->next;
5359 tem->first = get_insns ();
5360 tem->last = get_last_insn ();
5361 get_current_sequence ()->next = tem;
5363 set_first_insn (0);
5364 set_last_insn (0);
5367 /* Set up the insn chain starting with FIRST as the current sequence,
5368 saving the previously current one. See the documentation for
5369 start_sequence for more information about how to use this function. */
5371 void
5372 push_to_sequence (rtx_insn *first)
5374 rtx_insn *last;
5376 start_sequence ();
5378 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5381 set_first_insn (first);
5382 set_last_insn (last);
5385 /* Like push_to_sequence, but take the last insn as an argument to avoid
5386 looping through the list. */
5388 void
5389 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5391 start_sequence ();
5393 set_first_insn (first);
5394 set_last_insn (last);
5397 /* Set up the outer-level insn chain
5398 as the current sequence, saving the previously current one. */
5400 void
5401 push_topmost_sequence (void)
5403 struct sequence_stack *top;
5405 start_sequence ();
5407 top = get_topmost_sequence ();
5408 set_first_insn (top->first);
5409 set_last_insn (top->last);
5412 /* After emitting to the outer-level insn chain, update the outer-level
5413 insn chain, and restore the previous saved state. */
5415 void
5416 pop_topmost_sequence (void)
5418 struct sequence_stack *top;
5420 top = get_topmost_sequence ();
5421 top->first = get_insns ();
5422 top->last = get_last_insn ();
5424 end_sequence ();
5427 /* After emitting to a sequence, restore previous saved state.
5429 To get the contents of the sequence just made, you must call
5430 `get_insns' *before* calling here.
5432 If the compiler might have deferred popping arguments while
5433 generating this sequence, and this sequence will not be immediately
5434 inserted into the instruction stream, use do_pending_stack_adjust
5435 before calling get_insns. That will ensure that the deferred
5436 pops are inserted into this sequence, and not into some random
5437 location in the instruction stream. See INHIBIT_DEFER_POP for more
5438 information about deferred popping of arguments. */
5440 void
5441 end_sequence (void)
5443 struct sequence_stack *tem = get_current_sequence ()->next;
5445 set_first_insn (tem->first);
5446 set_last_insn (tem->last);
5447 get_current_sequence ()->next = tem->next;
5449 memset (tem, 0, sizeof (*tem));
5450 tem->next = free_sequence_stack;
5451 free_sequence_stack = tem;
5454 /* Return 1 if currently emitting into a sequence. */
5457 in_sequence_p (void)
5459 return get_current_sequence ()->next != 0;
5462 /* Put the various virtual registers into REGNO_REG_RTX. */
5464 static void
5465 init_virtual_regs (void)
5467 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5468 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5469 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5470 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5471 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5472 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5473 = virtual_preferred_stack_boundary_rtx;
5477 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5478 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5479 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5480 static int copy_insn_n_scratches;
5482 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5483 copied an ASM_OPERANDS.
5484 In that case, it is the original input-operand vector. */
5485 static rtvec orig_asm_operands_vector;
5487 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5488 copied an ASM_OPERANDS.
5489 In that case, it is the copied input-operand vector. */
5490 static rtvec copy_asm_operands_vector;
5492 /* Likewise for the constraints vector. */
5493 static rtvec orig_asm_constraints_vector;
5494 static rtvec copy_asm_constraints_vector;
5496 /* Recursively create a new copy of an rtx for copy_insn.
5497 This function differs from copy_rtx in that it handles SCRATCHes and
5498 ASM_OPERANDs properly.
5499 Normally, this function is not used directly; use copy_insn as front end.
5500 However, you could first copy an insn pattern with copy_insn and then use
5501 this function afterwards to properly copy any REG_NOTEs containing
5502 SCRATCHes. */
5505 copy_insn_1 (rtx orig)
5507 rtx copy;
5508 int i, j;
5509 RTX_CODE code;
5510 const char *format_ptr;
5512 if (orig == NULL)
5513 return NULL;
5515 code = GET_CODE (orig);
5517 switch (code)
5519 case REG:
5520 case DEBUG_EXPR:
5521 CASE_CONST_ANY:
5522 case SYMBOL_REF:
5523 case CODE_LABEL:
5524 case PC:
5525 case CC0:
5526 case RETURN:
5527 case SIMPLE_RETURN:
5528 return orig;
5529 case CLOBBER:
5530 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5531 clobbers or clobbers of hard registers that originated as pseudos.
5532 This is needed to allow safe register renaming. */
5533 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5534 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
5535 return orig;
5536 break;
5538 case SCRATCH:
5539 for (i = 0; i < copy_insn_n_scratches; i++)
5540 if (copy_insn_scratch_in[i] == orig)
5541 return copy_insn_scratch_out[i];
5542 break;
5544 case CONST:
5545 if (shared_const_p (orig))
5546 return orig;
5547 break;
5549 /* A MEM with a constant address is not sharable. The problem is that
5550 the constant address may need to be reloaded. If the mem is shared,
5551 then reloading one copy of this mem will cause all copies to appear
5552 to have been reloaded. */
5554 default:
5555 break;
5558 /* Copy the various flags, fields, and other information. We assume
5559 that all fields need copying, and then clear the fields that should
5560 not be copied. That is the sensible default behavior, and forces
5561 us to explicitly document why we are *not* copying a flag. */
5562 copy = shallow_copy_rtx (orig);
5564 /* We do not copy the USED flag, which is used as a mark bit during
5565 walks over the RTL. */
5566 RTX_FLAG (copy, used) = 0;
5568 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5569 if (INSN_P (orig))
5571 RTX_FLAG (copy, jump) = 0;
5572 RTX_FLAG (copy, call) = 0;
5573 RTX_FLAG (copy, frame_related) = 0;
5576 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5578 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5579 switch (*format_ptr++)
5581 case 'e':
5582 if (XEXP (orig, i) != NULL)
5583 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5584 break;
5586 case 'E':
5587 case 'V':
5588 if (XVEC (orig, i) == orig_asm_constraints_vector)
5589 XVEC (copy, i) = copy_asm_constraints_vector;
5590 else if (XVEC (orig, i) == orig_asm_operands_vector)
5591 XVEC (copy, i) = copy_asm_operands_vector;
5592 else if (XVEC (orig, i) != NULL)
5594 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5595 for (j = 0; j < XVECLEN (copy, i); j++)
5596 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5598 break;
5600 case 't':
5601 case 'w':
5602 case 'i':
5603 case 's':
5604 case 'S':
5605 case 'u':
5606 case '0':
5607 /* These are left unchanged. */
5608 break;
5610 default:
5611 gcc_unreachable ();
5614 if (code == SCRATCH)
5616 i = copy_insn_n_scratches++;
5617 gcc_assert (i < MAX_RECOG_OPERANDS);
5618 copy_insn_scratch_in[i] = orig;
5619 copy_insn_scratch_out[i] = copy;
5621 else if (code == ASM_OPERANDS)
5623 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5624 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5625 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5626 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5629 return copy;
5632 /* Create a new copy of an rtx.
5633 This function differs from copy_rtx in that it handles SCRATCHes and
5634 ASM_OPERANDs properly.
5635 INSN doesn't really have to be a full INSN; it could be just the
5636 pattern. */
5638 copy_insn (rtx insn)
5640 copy_insn_n_scratches = 0;
5641 orig_asm_operands_vector = 0;
5642 orig_asm_constraints_vector = 0;
5643 copy_asm_operands_vector = 0;
5644 copy_asm_constraints_vector = 0;
5645 return copy_insn_1 (insn);
5648 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5649 on that assumption that INSN itself remains in its original place. */
5651 rtx_insn *
5652 copy_delay_slot_insn (rtx_insn *insn)
5654 /* Copy INSN with its rtx_code, all its notes, location etc. */
5655 insn = as_a <rtx_insn *> (copy_rtx (insn));
5656 INSN_UID (insn) = cur_insn_uid++;
5657 return insn;
5660 /* Initialize data structures and variables in this file
5661 before generating rtl for each function. */
5663 void
5664 init_emit (void)
5666 set_first_insn (NULL);
5667 set_last_insn (NULL);
5668 if (MIN_NONDEBUG_INSN_UID)
5669 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5670 else
5671 cur_insn_uid = 1;
5672 cur_debug_insn_uid = 1;
5673 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5674 first_label_num = label_num;
5675 get_current_sequence ()->next = NULL;
5677 /* Init the tables that describe all the pseudo regs. */
5679 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5681 crtl->emit.regno_pointer_align
5682 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5684 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5686 /* Put copies of all the hard registers into regno_reg_rtx. */
5687 memcpy (regno_reg_rtx,
5688 initial_regno_reg_rtx,
5689 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5691 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5692 init_virtual_regs ();
5694 /* Indicate that the virtual registers and stack locations are
5695 all pointers. */
5696 REG_POINTER (stack_pointer_rtx) = 1;
5697 REG_POINTER (frame_pointer_rtx) = 1;
5698 REG_POINTER (hard_frame_pointer_rtx) = 1;
5699 REG_POINTER (arg_pointer_rtx) = 1;
5701 REG_POINTER (virtual_incoming_args_rtx) = 1;
5702 REG_POINTER (virtual_stack_vars_rtx) = 1;
5703 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5704 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5705 REG_POINTER (virtual_cfa_rtx) = 1;
5707 #ifdef STACK_BOUNDARY
5708 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5709 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5710 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5711 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5713 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5714 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5715 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5716 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5717 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5718 #endif
5720 #ifdef INIT_EXPANDERS
5721 INIT_EXPANDERS;
5722 #endif
5725 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5727 static rtx
5728 gen_const_vector (machine_mode mode, int constant)
5730 rtx tem;
5731 rtvec v;
5732 int units, i;
5733 machine_mode inner;
5735 units = GET_MODE_NUNITS (mode);
5736 inner = GET_MODE_INNER (mode);
5738 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5740 v = rtvec_alloc (units);
5742 /* We need to call this function after we set the scalar const_tiny_rtx
5743 entries. */
5744 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5746 for (i = 0; i < units; ++i)
5747 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5749 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5750 return tem;
5753 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5754 all elements are zero, and the one vector when all elements are one. */
5756 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5758 machine_mode inner = GET_MODE_INNER (mode);
5759 int nunits = GET_MODE_NUNITS (mode);
5760 rtx x;
5761 int i;
5763 /* Check to see if all of the elements have the same value. */
5764 x = RTVEC_ELT (v, nunits - 1);
5765 for (i = nunits - 2; i >= 0; i--)
5766 if (RTVEC_ELT (v, i) != x)
5767 break;
5769 /* If the values are all the same, check to see if we can use one of the
5770 standard constant vectors. */
5771 if (i == -1)
5773 if (x == CONST0_RTX (inner))
5774 return CONST0_RTX (mode);
5775 else if (x == CONST1_RTX (inner))
5776 return CONST1_RTX (mode);
5777 else if (x == CONSTM1_RTX (inner))
5778 return CONSTM1_RTX (mode);
5781 return gen_rtx_raw_CONST_VECTOR (mode, v);
5784 /* Initialise global register information required by all functions. */
5786 void
5787 init_emit_regs (void)
5789 int i;
5790 machine_mode mode;
5791 mem_attrs *attrs;
5793 /* Reset register attributes */
5794 reg_attrs_htab->empty ();
5796 /* We need reg_raw_mode, so initialize the modes now. */
5797 init_reg_modes_target ();
5799 /* Assign register numbers to the globally defined register rtx. */
5800 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5801 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5802 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5803 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5804 virtual_incoming_args_rtx =
5805 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5806 virtual_stack_vars_rtx =
5807 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5808 virtual_stack_dynamic_rtx =
5809 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5810 virtual_outgoing_args_rtx =
5811 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5812 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5813 virtual_preferred_stack_boundary_rtx =
5814 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5816 /* Initialize RTL for commonly used hard registers. These are
5817 copied into regno_reg_rtx as we begin to compile each function. */
5818 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5819 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5821 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5822 return_address_pointer_rtx
5823 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5824 #endif
5826 pic_offset_table_rtx = NULL_RTX;
5827 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5828 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5830 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5832 mode = (machine_mode) i;
5833 attrs = ggc_cleared_alloc<mem_attrs> ();
5834 attrs->align = BITS_PER_UNIT;
5835 attrs->addrspace = ADDR_SPACE_GENERIC;
5836 if (mode != BLKmode)
5838 attrs->size_known_p = true;
5839 attrs->size = GET_MODE_SIZE (mode);
5840 if (STRICT_ALIGNMENT)
5841 attrs->align = GET_MODE_ALIGNMENT (mode);
5843 mode_mem_attrs[i] = attrs;
5847 /* Initialize global machine_mode variables. */
5849 void
5850 init_derived_machine_modes (void)
5852 byte_mode = VOIDmode;
5853 word_mode = VOIDmode;
5855 for (machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5856 mode != VOIDmode;
5857 mode = GET_MODE_WIDER_MODE (mode))
5859 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5860 && byte_mode == VOIDmode)
5861 byte_mode = mode;
5863 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5864 && word_mode == VOIDmode)
5865 word_mode = mode;
5868 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5871 /* Create some permanent unique rtl objects shared between all functions. */
5873 void
5874 init_emit_once (void)
5876 int i;
5877 machine_mode mode;
5878 machine_mode double_mode;
5880 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5881 CONST_FIXED, and memory attribute hash tables. */
5882 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5884 #if TARGET_SUPPORTS_WIDE_INT
5885 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5886 #endif
5887 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5889 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5891 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5893 #ifdef INIT_EXPANDERS
5894 /* This is to initialize {init|mark|free}_machine_status before the first
5895 call to push_function_context_to. This is needed by the Chill front
5896 end which calls push_function_context_to before the first call to
5897 init_function_start. */
5898 INIT_EXPANDERS;
5899 #endif
5901 /* Create the unique rtx's for certain rtx codes and operand values. */
5903 /* Process stack-limiting command-line options. */
5904 if (opt_fstack_limit_symbol_arg != NULL)
5905 stack_limit_rtx
5906 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
5907 if (opt_fstack_limit_register_no >= 0)
5908 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
5910 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5911 tries to use these variables. */
5912 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5913 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5914 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5916 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5917 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5918 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5919 else
5920 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5922 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5924 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5925 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5926 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5928 dconstm1 = dconst1;
5929 dconstm1.sign = 1;
5931 dconsthalf = dconst1;
5932 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5934 for (i = 0; i < 3; i++)
5936 const REAL_VALUE_TYPE *const r =
5937 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5939 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5940 mode != VOIDmode;
5941 mode = GET_MODE_WIDER_MODE (mode))
5942 const_tiny_rtx[i][(int) mode] =
5943 const_double_from_real_value (*r, mode);
5945 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5946 mode != VOIDmode;
5947 mode = GET_MODE_WIDER_MODE (mode))
5948 const_tiny_rtx[i][(int) mode] =
5949 const_double_from_real_value (*r, mode);
5951 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5953 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5954 mode != VOIDmode;
5955 mode = GET_MODE_WIDER_MODE (mode))
5956 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5958 for (mode = MIN_MODE_PARTIAL_INT;
5959 mode <= MAX_MODE_PARTIAL_INT;
5960 mode = (machine_mode)((int)(mode) + 1))
5961 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5964 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5966 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5967 mode != VOIDmode;
5968 mode = GET_MODE_WIDER_MODE (mode))
5969 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5971 for (mode = MIN_MODE_PARTIAL_INT;
5972 mode <= MAX_MODE_PARTIAL_INT;
5973 mode = (machine_mode)((int)(mode) + 1))
5974 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5976 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5977 mode != VOIDmode;
5978 mode = GET_MODE_WIDER_MODE (mode))
5980 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5981 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5984 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5985 mode != VOIDmode;
5986 mode = GET_MODE_WIDER_MODE (mode))
5988 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5989 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5992 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5993 mode != VOIDmode;
5994 mode = GET_MODE_WIDER_MODE (mode))
5996 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5997 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5998 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6001 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
6002 mode != VOIDmode;
6003 mode = GET_MODE_WIDER_MODE (mode))
6005 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6006 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6009 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
6010 mode != VOIDmode;
6011 mode = GET_MODE_WIDER_MODE (mode))
6013 FCONST0 (mode).data.high = 0;
6014 FCONST0 (mode).data.low = 0;
6015 FCONST0 (mode).mode = mode;
6016 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6017 FCONST0 (mode), mode);
6020 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
6021 mode != VOIDmode;
6022 mode = GET_MODE_WIDER_MODE (mode))
6024 FCONST0 (mode).data.high = 0;
6025 FCONST0 (mode).data.low = 0;
6026 FCONST0 (mode).mode = mode;
6027 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6028 FCONST0 (mode), mode);
6031 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
6032 mode != VOIDmode;
6033 mode = GET_MODE_WIDER_MODE (mode))
6035 FCONST0 (mode).data.high = 0;
6036 FCONST0 (mode).data.low = 0;
6037 FCONST0 (mode).mode = mode;
6038 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6039 FCONST0 (mode), mode);
6041 /* We store the value 1. */
6042 FCONST1 (mode).data.high = 0;
6043 FCONST1 (mode).data.low = 0;
6044 FCONST1 (mode).mode = mode;
6045 FCONST1 (mode).data
6046 = double_int_one.lshift (GET_MODE_FBIT (mode),
6047 HOST_BITS_PER_DOUBLE_INT,
6048 SIGNED_FIXED_POINT_MODE_P (mode));
6049 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6050 FCONST1 (mode), mode);
6053 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
6054 mode != VOIDmode;
6055 mode = GET_MODE_WIDER_MODE (mode))
6057 FCONST0 (mode).data.high = 0;
6058 FCONST0 (mode).data.low = 0;
6059 FCONST0 (mode).mode = mode;
6060 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6061 FCONST0 (mode), mode);
6063 /* We store the value 1. */
6064 FCONST1 (mode).data.high = 0;
6065 FCONST1 (mode).data.low = 0;
6066 FCONST1 (mode).mode = mode;
6067 FCONST1 (mode).data
6068 = double_int_one.lshift (GET_MODE_FBIT (mode),
6069 HOST_BITS_PER_DOUBLE_INT,
6070 SIGNED_FIXED_POINT_MODE_P (mode));
6071 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6072 FCONST1 (mode), mode);
6075 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6076 mode != VOIDmode;
6077 mode = GET_MODE_WIDER_MODE (mode))
6079 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6082 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6083 mode != VOIDmode;
6084 mode = GET_MODE_WIDER_MODE (mode))
6086 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6089 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6090 mode != VOIDmode;
6091 mode = GET_MODE_WIDER_MODE (mode))
6093 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6094 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6097 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6098 mode != VOIDmode;
6099 mode = GET_MODE_WIDER_MODE (mode))
6101 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6102 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6105 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6106 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6107 const_tiny_rtx[0][i] = const0_rtx;
6109 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6110 if (STORE_FLAG_VALUE == 1)
6111 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6113 for (mode = GET_CLASS_NARROWEST_MODE (MODE_POINTER_BOUNDS);
6114 mode != VOIDmode;
6115 mode = GET_MODE_WIDER_MODE (mode))
6117 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (mode));
6118 const_tiny_rtx[0][mode] = immed_wide_int_const (wi_zero, mode);
6121 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6122 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6123 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6124 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6125 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6126 /*prev_insn=*/NULL,
6127 /*next_insn=*/NULL,
6128 /*bb=*/NULL,
6129 /*pattern=*/NULL_RTX,
6130 /*location=*/-1,
6131 CODE_FOR_nothing,
6132 /*reg_notes=*/NULL_RTX);
6135 /* Produce exact duplicate of insn INSN after AFTER.
6136 Care updating of libcall regions if present. */
6138 rtx_insn *
6139 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6141 rtx_insn *new_rtx;
6142 rtx link;
6144 switch (GET_CODE (insn))
6146 case INSN:
6147 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6148 break;
6150 case JUMP_INSN:
6151 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6152 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6153 break;
6155 case DEBUG_INSN:
6156 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6157 break;
6159 case CALL_INSN:
6160 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6161 if (CALL_INSN_FUNCTION_USAGE (insn))
6162 CALL_INSN_FUNCTION_USAGE (new_rtx)
6163 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6164 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6165 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6166 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6167 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6168 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6169 break;
6171 default:
6172 gcc_unreachable ();
6175 /* Update LABEL_NUSES. */
6176 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6178 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6180 /* If the old insn is frame related, then so is the new one. This is
6181 primarily needed for IA-64 unwind info which marks epilogue insns,
6182 which may be duplicated by the basic block reordering code. */
6183 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6185 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6186 will make them. REG_LABEL_TARGETs are created there too, but are
6187 supposed to be sticky, so we copy them. */
6188 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6189 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6191 if (GET_CODE (link) == EXPR_LIST)
6192 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6193 copy_insn_1 (XEXP (link, 0)));
6194 else
6195 add_shallow_copy_of_reg_note (new_rtx, link);
6198 INSN_CODE (new_rtx) = INSN_CODE (insn);
6199 return new_rtx;
6202 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6204 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6206 if (hard_reg_clobbers[mode][regno])
6207 return hard_reg_clobbers[mode][regno];
6208 else
6209 return (hard_reg_clobbers[mode][regno] =
6210 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6213 location_t prologue_location;
6214 location_t epilogue_location;
6216 /* Hold current location information and last location information, so the
6217 datastructures are built lazily only when some instructions in given
6218 place are needed. */
6219 static location_t curr_location;
6221 /* Allocate insn location datastructure. */
6222 void
6223 insn_locations_init (void)
6225 prologue_location = epilogue_location = 0;
6226 curr_location = UNKNOWN_LOCATION;
6229 /* At the end of emit stage, clear current location. */
6230 void
6231 insn_locations_finalize (void)
6233 epilogue_location = curr_location;
6234 curr_location = UNKNOWN_LOCATION;
6237 /* Set current location. */
6238 void
6239 set_curr_insn_location (location_t location)
6241 curr_location = location;
6244 /* Get current location. */
6245 location_t
6246 curr_insn_location (void)
6248 return curr_location;
6251 /* Return lexical scope block insn belongs to. */
6252 tree
6253 insn_scope (const rtx_insn *insn)
6255 return LOCATION_BLOCK (INSN_LOCATION (insn));
6258 /* Return line number of the statement that produced this insn. */
6260 insn_line (const rtx_insn *insn)
6262 return LOCATION_LINE (INSN_LOCATION (insn));
6265 /* Return source file of the statement that produced this insn. */
6266 const char *
6267 insn_file (const rtx_insn *insn)
6269 return LOCATION_FILE (INSN_LOCATION (insn));
6272 /* Return expanded location of the statement that produced this insn. */
6273 expanded_location
6274 insn_location (const rtx_insn *insn)
6276 return expand_location (INSN_LOCATION (insn));
6279 /* Return true if memory model MODEL requires a pre-operation (release-style)
6280 barrier or a post-operation (acquire-style) barrier. While not universal,
6281 this function matches behavior of several targets. */
6283 bool
6284 need_atomic_barrier_p (enum memmodel model, bool pre)
6286 switch (model & MEMMODEL_BASE_MASK)
6288 case MEMMODEL_RELAXED:
6289 case MEMMODEL_CONSUME:
6290 return false;
6291 case MEMMODEL_RELEASE:
6292 return pre;
6293 case MEMMODEL_ACQUIRE:
6294 return !pre;
6295 case MEMMODEL_ACQ_REL:
6296 case MEMMODEL_SEQ_CST:
6297 return true;
6298 default:
6299 gcc_unreachable ();
6303 #include "gt-emit-rtl.h"