Make tree-ssa-strlen.c handle partial unterminated strings
[official-gcc.git] / gcc / asan.c
blob2de16402c5113365e1b4e16e06f2507a0b16c3bc
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "ssa.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "asan.h"
51 #include "dojump.h"
52 #include "explow.h"
53 #include "expr.h"
54 #include "output.h"
55 #include "langhooks.h"
56 #include "cfgloop.h"
57 #include "gimple-builder.h"
58 #include "ubsan.h"
59 #include "params.h"
60 #include "builtins.h"
61 #include "fnmatch.h"
62 #include "tree-inline.h"
64 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
65 with <2x slowdown on average.
67 The tool consists of two parts:
68 instrumentation module (this file) and a run-time library.
69 The instrumentation module adds a run-time check before every memory insn.
70 For a 8- or 16- byte load accessing address X:
71 ShadowAddr = (X >> 3) + Offset
72 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
73 if (ShadowValue)
74 __asan_report_load8(X);
75 For a load of N bytes (N=1, 2 or 4) from address X:
76 ShadowAddr = (X >> 3) + Offset
77 ShadowValue = *(char*)ShadowAddr;
78 if (ShadowValue)
79 if ((X & 7) + N - 1 > ShadowValue)
80 __asan_report_loadN(X);
81 Stores are instrumented similarly, but using __asan_report_storeN functions.
82 A call too __asan_init_vN() is inserted to the list of module CTORs.
83 N is the version number of the AddressSanitizer API. The changes between the
84 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
86 The run-time library redefines malloc (so that redzone are inserted around
87 the allocated memory) and free (so that reuse of free-ed memory is delayed),
88 provides __asan_report* and __asan_init_vN functions.
90 Read more:
91 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
93 The current implementation supports detection of out-of-bounds and
94 use-after-free in the heap, on the stack and for global variables.
96 [Protection of stack variables]
98 To understand how detection of out-of-bounds and use-after-free works
99 for stack variables, lets look at this example on x86_64 where the
100 stack grows downward:
103 foo ()
105 char a[23] = {0};
106 int b[2] = {0};
108 a[5] = 1;
109 b[1] = 2;
111 return a[5] + b[1];
114 For this function, the stack protected by asan will be organized as
115 follows, from the top of the stack to the bottom:
117 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
119 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
120 the next slot be 32 bytes aligned; this one is called Partial
121 Redzone; this 32 bytes alignment is an asan constraint]
123 Slot 3/ [24 bytes for variable 'a']
125 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
127 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
129 Slot 6/ [8 bytes for variable 'b']
131 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
132 'LEFT RedZone']
134 The 32 bytes of LEFT red zone at the bottom of the stack can be
135 decomposed as such:
137 1/ The first 8 bytes contain a magical asan number that is always
138 0x41B58AB3.
140 2/ The following 8 bytes contains a pointer to a string (to be
141 parsed at runtime by the runtime asan library), which format is
142 the following:
144 "<function-name> <space> <num-of-variables-on-the-stack>
145 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
146 <length-of-var-in-bytes> ){n} "
148 where '(...){n}' means the content inside the parenthesis occurs 'n'
149 times, with 'n' being the number of variables on the stack.
151 3/ The following 8 bytes contain the PC of the current function which
152 will be used by the run-time library to print an error message.
154 4/ The following 8 bytes are reserved for internal use by the run-time.
156 The shadow memory for that stack layout is going to look like this:
158 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
159 The F1 byte pattern is a magic number called
160 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
161 the memory for that shadow byte is part of a the LEFT red zone
162 intended to seat at the bottom of the variables on the stack.
164 - content of shadow memory 8 bytes for slots 6 and 5:
165 0xF4F4F400. The F4 byte pattern is a magic number
166 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
167 memory region for this shadow byte is a PARTIAL red zone
168 intended to pad a variable A, so that the slot following
169 {A,padding} is 32 bytes aligned.
171 Note that the fact that the least significant byte of this
172 shadow memory content is 00 means that 8 bytes of its
173 corresponding memory (which corresponds to the memory of
174 variable 'b') is addressable.
176 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
177 The F2 byte pattern is a magic number called
178 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
179 region for this shadow byte is a MIDDLE red zone intended to
180 seat between two 32 aligned slots of {variable,padding}.
182 - content of shadow memory 8 bytes for slot 3 and 2:
183 0xF4000000. This represents is the concatenation of
184 variable 'a' and the partial red zone following it, like what we
185 had for variable 'b'. The least significant 3 bytes being 00
186 means that the 3 bytes of variable 'a' are addressable.
188 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
189 The F3 byte pattern is a magic number called
190 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
191 region for this shadow byte is a RIGHT red zone intended to seat
192 at the top of the variables of the stack.
194 Note that the real variable layout is done in expand_used_vars in
195 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
196 stack variables as well as the different red zones, emits some
197 prologue code to populate the shadow memory as to poison (mark as
198 non-accessible) the regions of the red zones and mark the regions of
199 stack variables as accessible, and emit some epilogue code to
200 un-poison (mark as accessible) the regions of red zones right before
201 the function exits.
203 [Protection of global variables]
205 The basic idea is to insert a red zone between two global variables
206 and install a constructor function that calls the asan runtime to do
207 the populating of the relevant shadow memory regions at load time.
209 So the global variables are laid out as to insert a red zone between
210 them. The size of the red zones is so that each variable starts on a
211 32 bytes boundary.
213 Then a constructor function is installed so that, for each global
214 variable, it calls the runtime asan library function
215 __asan_register_globals_with an instance of this type:
217 struct __asan_global
219 // Address of the beginning of the global variable.
220 const void *__beg;
222 // Initial size of the global variable.
223 uptr __size;
225 // Size of the global variable + size of the red zone. This
226 // size is 32 bytes aligned.
227 uptr __size_with_redzone;
229 // Name of the global variable.
230 const void *__name;
232 // Name of the module where the global variable is declared.
233 const void *__module_name;
235 // 1 if it has dynamic initialization, 0 otherwise.
236 uptr __has_dynamic_init;
238 // A pointer to struct that contains source location, could be NULL.
239 __asan_global_source_location *__location;
242 A destructor function that calls the runtime asan library function
243 _asan_unregister_globals is also installed. */
245 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
246 static bool asan_shadow_offset_computed;
247 static vec<char *> sanitized_sections;
249 /* Set of variable declarations that are going to be guarded by
250 use-after-scope sanitizer. */
252 static hash_set<tree> *asan_handled_variables = NULL;
254 hash_set <tree> *asan_used_labels = NULL;
256 /* Sets shadow offset to value in string VAL. */
258 bool
259 set_asan_shadow_offset (const char *val)
261 char *endp;
263 errno = 0;
264 #ifdef HAVE_LONG_LONG
265 asan_shadow_offset_value = strtoull (val, &endp, 0);
266 #else
267 asan_shadow_offset_value = strtoul (val, &endp, 0);
268 #endif
269 if (!(*val != '\0' && *endp == '\0' && errno == 0))
270 return false;
272 asan_shadow_offset_computed = true;
274 return true;
277 /* Set list of user-defined sections that need to be sanitized. */
279 void
280 set_sanitized_sections (const char *sections)
282 char *pat;
283 unsigned i;
284 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
285 free (pat);
286 sanitized_sections.truncate (0);
288 for (const char *s = sections; *s; )
290 const char *end;
291 for (end = s; *end && *end != ','; ++end);
292 size_t len = end - s;
293 sanitized_sections.safe_push (xstrndup (s, len));
294 s = *end ? end + 1 : end;
298 bool
299 asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
301 return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
302 && tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
305 bool
306 asan_sanitize_stack_p (void)
308 return (sanitize_flags_p (SANITIZE_ADDRESS) && ASAN_STACK);
311 /* Checks whether section SEC should be sanitized. */
313 static bool
314 section_sanitized_p (const char *sec)
316 char *pat;
317 unsigned i;
318 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
319 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
320 return true;
321 return false;
324 /* Returns Asan shadow offset. */
326 static unsigned HOST_WIDE_INT
327 asan_shadow_offset ()
329 if (!asan_shadow_offset_computed)
331 asan_shadow_offset_computed = true;
332 asan_shadow_offset_value = targetm.asan_shadow_offset ();
334 return asan_shadow_offset_value;
337 alias_set_type asan_shadow_set = -1;
339 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
340 alias set is used for all shadow memory accesses. */
341 static GTY(()) tree shadow_ptr_types[3];
343 /* Decl for __asan_option_detect_stack_use_after_return. */
344 static GTY(()) tree asan_detect_stack_use_after_return;
346 /* Hashtable support for memory references used by gimple
347 statements. */
349 /* This type represents a reference to a memory region. */
350 struct asan_mem_ref
352 /* The expression of the beginning of the memory region. */
353 tree start;
355 /* The size of the access. */
356 HOST_WIDE_INT access_size;
359 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
361 /* Initializes an instance of asan_mem_ref. */
363 static void
364 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
366 ref->start = start;
367 ref->access_size = access_size;
370 /* Allocates memory for an instance of asan_mem_ref into the memory
371 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
372 START is the address of (or the expression pointing to) the
373 beginning of memory reference. ACCESS_SIZE is the size of the
374 access to the referenced memory. */
376 static asan_mem_ref*
377 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
379 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
381 asan_mem_ref_init (ref, start, access_size);
382 return ref;
385 /* This builds and returns a pointer to the end of the memory region
386 that starts at START and of length LEN. */
388 tree
389 asan_mem_ref_get_end (tree start, tree len)
391 if (len == NULL_TREE || integer_zerop (len))
392 return start;
394 if (!ptrofftype_p (len))
395 len = convert_to_ptrofftype (len);
397 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
400 /* Return a tree expression that represents the end of the referenced
401 memory region. Beware that this function can actually build a new
402 tree expression. */
404 tree
405 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
407 return asan_mem_ref_get_end (ref->start, len);
410 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
412 static inline hashval_t hash (const asan_mem_ref *);
413 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
416 /* Hash a memory reference. */
418 inline hashval_t
419 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
421 return iterative_hash_expr (mem_ref->start, 0);
424 /* Compare two memory references. We accept the length of either
425 memory references to be NULL_TREE. */
427 inline bool
428 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
429 const asan_mem_ref *m2)
431 return operand_equal_p (m1->start, m2->start, 0);
434 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
436 /* Returns a reference to the hash table containing memory references.
437 This function ensures that the hash table is created. Note that
438 this hash table is updated by the function
439 update_mem_ref_hash_table. */
441 static hash_table<asan_mem_ref_hasher> *
442 get_mem_ref_hash_table ()
444 if (!asan_mem_ref_ht)
445 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
447 return asan_mem_ref_ht;
450 /* Clear all entries from the memory references hash table. */
452 static void
453 empty_mem_ref_hash_table ()
455 if (asan_mem_ref_ht)
456 asan_mem_ref_ht->empty ();
459 /* Free the memory references hash table. */
461 static void
462 free_mem_ref_resources ()
464 delete asan_mem_ref_ht;
465 asan_mem_ref_ht = NULL;
467 asan_mem_ref_pool.release ();
470 /* Return true iff the memory reference REF has been instrumented. */
472 static bool
473 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
475 asan_mem_ref r;
476 asan_mem_ref_init (&r, ref, access_size);
478 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
479 return saved_ref && saved_ref->access_size >= access_size;
482 /* Return true iff the memory reference REF has been instrumented. */
484 static bool
485 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
487 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
490 /* Return true iff access to memory region starting at REF and of
491 length LEN has been instrumented. */
493 static bool
494 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
496 HOST_WIDE_INT size_in_bytes
497 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
499 return size_in_bytes != -1
500 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
503 /* Set REF to the memory reference present in a gimple assignment
504 ASSIGNMENT. Return true upon successful completion, false
505 otherwise. */
507 static bool
508 get_mem_ref_of_assignment (const gassign *assignment,
509 asan_mem_ref *ref,
510 bool *ref_is_store)
512 gcc_assert (gimple_assign_single_p (assignment));
514 if (gimple_store_p (assignment)
515 && !gimple_clobber_p (assignment))
517 ref->start = gimple_assign_lhs (assignment);
518 *ref_is_store = true;
520 else if (gimple_assign_load_p (assignment))
522 ref->start = gimple_assign_rhs1 (assignment);
523 *ref_is_store = false;
525 else
526 return false;
528 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
529 return true;
532 /* Return the memory references contained in a gimple statement
533 representing a builtin call that has to do with memory access. */
535 static bool
536 get_mem_refs_of_builtin_call (const gcall *call,
537 asan_mem_ref *src0,
538 tree *src0_len,
539 bool *src0_is_store,
540 asan_mem_ref *src1,
541 tree *src1_len,
542 bool *src1_is_store,
543 asan_mem_ref *dst,
544 tree *dst_len,
545 bool *dst_is_store,
546 bool *dest_is_deref,
547 bool *intercepted_p)
549 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
551 tree callee = gimple_call_fndecl (call);
552 tree source0 = NULL_TREE, source1 = NULL_TREE,
553 dest = NULL_TREE, len = NULL_TREE;
554 bool is_store = true, got_reference_p = false;
555 HOST_WIDE_INT access_size = 1;
557 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
559 switch (DECL_FUNCTION_CODE (callee))
561 /* (s, s, n) style memops. */
562 case BUILT_IN_BCMP:
563 case BUILT_IN_MEMCMP:
564 source0 = gimple_call_arg (call, 0);
565 source1 = gimple_call_arg (call, 1);
566 len = gimple_call_arg (call, 2);
567 break;
569 /* (src, dest, n) style memops. */
570 case BUILT_IN_BCOPY:
571 source0 = gimple_call_arg (call, 0);
572 dest = gimple_call_arg (call, 1);
573 len = gimple_call_arg (call, 2);
574 break;
576 /* (dest, src, n) style memops. */
577 case BUILT_IN_MEMCPY:
578 case BUILT_IN_MEMCPY_CHK:
579 case BUILT_IN_MEMMOVE:
580 case BUILT_IN_MEMMOVE_CHK:
581 case BUILT_IN_MEMPCPY:
582 case BUILT_IN_MEMPCPY_CHK:
583 dest = gimple_call_arg (call, 0);
584 source0 = gimple_call_arg (call, 1);
585 len = gimple_call_arg (call, 2);
586 break;
588 /* (dest, n) style memops. */
589 case BUILT_IN_BZERO:
590 dest = gimple_call_arg (call, 0);
591 len = gimple_call_arg (call, 1);
592 break;
594 /* (dest, x, n) style memops*/
595 case BUILT_IN_MEMSET:
596 case BUILT_IN_MEMSET_CHK:
597 dest = gimple_call_arg (call, 0);
598 len = gimple_call_arg (call, 2);
599 break;
601 case BUILT_IN_STRLEN:
602 source0 = gimple_call_arg (call, 0);
603 len = gimple_call_lhs (call);
604 break;
606 /* And now the __atomic* and __sync builtins.
607 These are handled differently from the classical memory memory
608 access builtins above. */
610 case BUILT_IN_ATOMIC_LOAD_1:
611 is_store = false;
612 /* FALLTHRU */
613 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
614 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
615 case BUILT_IN_SYNC_FETCH_AND_OR_1:
616 case BUILT_IN_SYNC_FETCH_AND_AND_1:
617 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
618 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
619 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
620 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
621 case BUILT_IN_SYNC_OR_AND_FETCH_1:
622 case BUILT_IN_SYNC_AND_AND_FETCH_1:
623 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
624 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
625 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
626 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
627 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
628 case BUILT_IN_SYNC_LOCK_RELEASE_1:
629 case BUILT_IN_ATOMIC_EXCHANGE_1:
630 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
631 case BUILT_IN_ATOMIC_STORE_1:
632 case BUILT_IN_ATOMIC_ADD_FETCH_1:
633 case BUILT_IN_ATOMIC_SUB_FETCH_1:
634 case BUILT_IN_ATOMIC_AND_FETCH_1:
635 case BUILT_IN_ATOMIC_NAND_FETCH_1:
636 case BUILT_IN_ATOMIC_XOR_FETCH_1:
637 case BUILT_IN_ATOMIC_OR_FETCH_1:
638 case BUILT_IN_ATOMIC_FETCH_ADD_1:
639 case BUILT_IN_ATOMIC_FETCH_SUB_1:
640 case BUILT_IN_ATOMIC_FETCH_AND_1:
641 case BUILT_IN_ATOMIC_FETCH_NAND_1:
642 case BUILT_IN_ATOMIC_FETCH_XOR_1:
643 case BUILT_IN_ATOMIC_FETCH_OR_1:
644 access_size = 1;
645 goto do_atomic;
647 case BUILT_IN_ATOMIC_LOAD_2:
648 is_store = false;
649 /* FALLTHRU */
650 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
651 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
652 case BUILT_IN_SYNC_FETCH_AND_OR_2:
653 case BUILT_IN_SYNC_FETCH_AND_AND_2:
654 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
655 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
656 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
657 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
658 case BUILT_IN_SYNC_OR_AND_FETCH_2:
659 case BUILT_IN_SYNC_AND_AND_FETCH_2:
660 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
661 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
662 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
663 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
664 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
665 case BUILT_IN_SYNC_LOCK_RELEASE_2:
666 case BUILT_IN_ATOMIC_EXCHANGE_2:
667 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
668 case BUILT_IN_ATOMIC_STORE_2:
669 case BUILT_IN_ATOMIC_ADD_FETCH_2:
670 case BUILT_IN_ATOMIC_SUB_FETCH_2:
671 case BUILT_IN_ATOMIC_AND_FETCH_2:
672 case BUILT_IN_ATOMIC_NAND_FETCH_2:
673 case BUILT_IN_ATOMIC_XOR_FETCH_2:
674 case BUILT_IN_ATOMIC_OR_FETCH_2:
675 case BUILT_IN_ATOMIC_FETCH_ADD_2:
676 case BUILT_IN_ATOMIC_FETCH_SUB_2:
677 case BUILT_IN_ATOMIC_FETCH_AND_2:
678 case BUILT_IN_ATOMIC_FETCH_NAND_2:
679 case BUILT_IN_ATOMIC_FETCH_XOR_2:
680 case BUILT_IN_ATOMIC_FETCH_OR_2:
681 access_size = 2;
682 goto do_atomic;
684 case BUILT_IN_ATOMIC_LOAD_4:
685 is_store = false;
686 /* FALLTHRU */
687 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
688 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
689 case BUILT_IN_SYNC_FETCH_AND_OR_4:
690 case BUILT_IN_SYNC_FETCH_AND_AND_4:
691 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
692 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
693 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
694 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
695 case BUILT_IN_SYNC_OR_AND_FETCH_4:
696 case BUILT_IN_SYNC_AND_AND_FETCH_4:
697 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
698 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
699 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
700 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
701 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
702 case BUILT_IN_SYNC_LOCK_RELEASE_4:
703 case BUILT_IN_ATOMIC_EXCHANGE_4:
704 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
705 case BUILT_IN_ATOMIC_STORE_4:
706 case BUILT_IN_ATOMIC_ADD_FETCH_4:
707 case BUILT_IN_ATOMIC_SUB_FETCH_4:
708 case BUILT_IN_ATOMIC_AND_FETCH_4:
709 case BUILT_IN_ATOMIC_NAND_FETCH_4:
710 case BUILT_IN_ATOMIC_XOR_FETCH_4:
711 case BUILT_IN_ATOMIC_OR_FETCH_4:
712 case BUILT_IN_ATOMIC_FETCH_ADD_4:
713 case BUILT_IN_ATOMIC_FETCH_SUB_4:
714 case BUILT_IN_ATOMIC_FETCH_AND_4:
715 case BUILT_IN_ATOMIC_FETCH_NAND_4:
716 case BUILT_IN_ATOMIC_FETCH_XOR_4:
717 case BUILT_IN_ATOMIC_FETCH_OR_4:
718 access_size = 4;
719 goto do_atomic;
721 case BUILT_IN_ATOMIC_LOAD_8:
722 is_store = false;
723 /* FALLTHRU */
724 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
725 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
726 case BUILT_IN_SYNC_FETCH_AND_OR_8:
727 case BUILT_IN_SYNC_FETCH_AND_AND_8:
728 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
729 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
730 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
731 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
732 case BUILT_IN_SYNC_OR_AND_FETCH_8:
733 case BUILT_IN_SYNC_AND_AND_FETCH_8:
734 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
735 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
736 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
737 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
738 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
739 case BUILT_IN_SYNC_LOCK_RELEASE_8:
740 case BUILT_IN_ATOMIC_EXCHANGE_8:
741 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
742 case BUILT_IN_ATOMIC_STORE_8:
743 case BUILT_IN_ATOMIC_ADD_FETCH_8:
744 case BUILT_IN_ATOMIC_SUB_FETCH_8:
745 case BUILT_IN_ATOMIC_AND_FETCH_8:
746 case BUILT_IN_ATOMIC_NAND_FETCH_8:
747 case BUILT_IN_ATOMIC_XOR_FETCH_8:
748 case BUILT_IN_ATOMIC_OR_FETCH_8:
749 case BUILT_IN_ATOMIC_FETCH_ADD_8:
750 case BUILT_IN_ATOMIC_FETCH_SUB_8:
751 case BUILT_IN_ATOMIC_FETCH_AND_8:
752 case BUILT_IN_ATOMIC_FETCH_NAND_8:
753 case BUILT_IN_ATOMIC_FETCH_XOR_8:
754 case BUILT_IN_ATOMIC_FETCH_OR_8:
755 access_size = 8;
756 goto do_atomic;
758 case BUILT_IN_ATOMIC_LOAD_16:
759 is_store = false;
760 /* FALLTHRU */
761 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
762 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
763 case BUILT_IN_SYNC_FETCH_AND_OR_16:
764 case BUILT_IN_SYNC_FETCH_AND_AND_16:
765 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
766 case BUILT_IN_SYNC_FETCH_AND_NAND_16:
767 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
768 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
769 case BUILT_IN_SYNC_OR_AND_FETCH_16:
770 case BUILT_IN_SYNC_AND_AND_FETCH_16:
771 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
772 case BUILT_IN_SYNC_NAND_AND_FETCH_16:
773 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
774 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
775 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
776 case BUILT_IN_SYNC_LOCK_RELEASE_16:
777 case BUILT_IN_ATOMIC_EXCHANGE_16:
778 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
779 case BUILT_IN_ATOMIC_STORE_16:
780 case BUILT_IN_ATOMIC_ADD_FETCH_16:
781 case BUILT_IN_ATOMIC_SUB_FETCH_16:
782 case BUILT_IN_ATOMIC_AND_FETCH_16:
783 case BUILT_IN_ATOMIC_NAND_FETCH_16:
784 case BUILT_IN_ATOMIC_XOR_FETCH_16:
785 case BUILT_IN_ATOMIC_OR_FETCH_16:
786 case BUILT_IN_ATOMIC_FETCH_ADD_16:
787 case BUILT_IN_ATOMIC_FETCH_SUB_16:
788 case BUILT_IN_ATOMIC_FETCH_AND_16:
789 case BUILT_IN_ATOMIC_FETCH_NAND_16:
790 case BUILT_IN_ATOMIC_FETCH_XOR_16:
791 case BUILT_IN_ATOMIC_FETCH_OR_16:
792 access_size = 16;
793 /* FALLTHRU */
794 do_atomic:
796 dest = gimple_call_arg (call, 0);
797 /* DEST represents the address of a memory location.
798 instrument_derefs wants the memory location, so lets
799 dereference the address DEST before handing it to
800 instrument_derefs. */
801 tree type = build_nonstandard_integer_type (access_size
802 * BITS_PER_UNIT, 1);
803 dest = build2 (MEM_REF, type, dest,
804 build_int_cst (build_pointer_type (char_type_node), 0));
805 break;
808 default:
809 /* The other builtins memory access are not instrumented in this
810 function because they either don't have any length parameter,
811 or their length parameter is just a limit. */
812 break;
815 if (len != NULL_TREE)
817 if (source0 != NULL_TREE)
819 src0->start = source0;
820 src0->access_size = access_size;
821 *src0_len = len;
822 *src0_is_store = false;
825 if (source1 != NULL_TREE)
827 src1->start = source1;
828 src1->access_size = access_size;
829 *src1_len = len;
830 *src1_is_store = false;
833 if (dest != NULL_TREE)
835 dst->start = dest;
836 dst->access_size = access_size;
837 *dst_len = len;
838 *dst_is_store = true;
841 got_reference_p = true;
843 else if (dest)
845 dst->start = dest;
846 dst->access_size = access_size;
847 *dst_len = NULL_TREE;
848 *dst_is_store = is_store;
849 *dest_is_deref = true;
850 got_reference_p = true;
853 return got_reference_p;
856 /* Return true iff a given gimple statement has been instrumented.
857 Note that the statement is "defined" by the memory references it
858 contains. */
860 static bool
861 has_stmt_been_instrumented_p (gimple *stmt)
863 if (gimple_assign_single_p (stmt))
865 bool r_is_store;
866 asan_mem_ref r;
867 asan_mem_ref_init (&r, NULL, 1);
869 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
870 &r_is_store))
871 return has_mem_ref_been_instrumented (&r);
873 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
875 asan_mem_ref src0, src1, dest;
876 asan_mem_ref_init (&src0, NULL, 1);
877 asan_mem_ref_init (&src1, NULL, 1);
878 asan_mem_ref_init (&dest, NULL, 1);
880 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
881 bool src0_is_store = false, src1_is_store = false,
882 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
883 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
884 &src0, &src0_len, &src0_is_store,
885 &src1, &src1_len, &src1_is_store,
886 &dest, &dest_len, &dest_is_store,
887 &dest_is_deref, &intercepted_p))
889 if (src0.start != NULL_TREE
890 && !has_mem_ref_been_instrumented (&src0, src0_len))
891 return false;
893 if (src1.start != NULL_TREE
894 && !has_mem_ref_been_instrumented (&src1, src1_len))
895 return false;
897 if (dest.start != NULL_TREE
898 && !has_mem_ref_been_instrumented (&dest, dest_len))
899 return false;
901 return true;
904 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
906 asan_mem_ref r;
907 asan_mem_ref_init (&r, NULL, 1);
909 r.start = gimple_call_lhs (stmt);
910 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
911 return has_mem_ref_been_instrumented (&r);
914 return false;
917 /* Insert a memory reference into the hash table. */
919 static void
920 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
922 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
924 asan_mem_ref r;
925 asan_mem_ref_init (&r, ref, access_size);
927 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
928 if (*slot == NULL || (*slot)->access_size < access_size)
929 *slot = asan_mem_ref_new (ref, access_size);
932 /* Initialize shadow_ptr_types array. */
934 static void
935 asan_init_shadow_ptr_types (void)
937 asan_shadow_set = new_alias_set ();
938 tree types[3] = { signed_char_type_node, short_integer_type_node,
939 integer_type_node };
941 for (unsigned i = 0; i < 3; i++)
943 shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
944 TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
945 shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
948 initialize_sanitizer_builtins ();
951 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
953 static tree
954 asan_pp_string (pretty_printer *pp)
956 const char *buf = pp_formatted_text (pp);
957 size_t len = strlen (buf);
958 tree ret = build_string (len + 1, buf);
959 TREE_TYPE (ret)
960 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
961 build_index_type (size_int (len)));
962 TREE_READONLY (ret) = 1;
963 TREE_STATIC (ret) = 1;
964 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
967 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
969 static rtx
970 asan_shadow_cst (unsigned char shadow_bytes[4])
972 int i;
973 unsigned HOST_WIDE_INT val = 0;
974 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
975 for (i = 0; i < 4; i++)
976 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
977 << (BITS_PER_UNIT * i);
978 return gen_int_mode (val, SImode);
981 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
982 though. */
984 static void
985 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
987 rtx_insn *insn, *insns, *jump;
988 rtx_code_label *top_label;
989 rtx end, addr, tmp;
991 start_sequence ();
992 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
993 insns = get_insns ();
994 end_sequence ();
995 for (insn = insns; insn; insn = NEXT_INSN (insn))
996 if (CALL_P (insn))
997 break;
998 if (insn == NULL_RTX)
1000 emit_insn (insns);
1001 return;
1004 gcc_assert ((len & 3) == 0);
1005 top_label = gen_label_rtx ();
1006 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1007 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1008 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1009 emit_label (top_label);
1011 emit_move_insn (shadow_mem, const0_rtx);
1012 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1013 true, OPTAB_LIB_WIDEN);
1014 if (tmp != addr)
1015 emit_move_insn (addr, tmp);
1016 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1017 jump = get_last_insn ();
1018 gcc_assert (JUMP_P (jump));
1019 add_int_reg_note (jump, REG_BR_PROB, REG_BR_PROB_BASE * 80 / 100);
1022 void
1023 asan_function_start (void)
1025 section *fnsec = function_section (current_function_decl);
1026 switch_to_section (fnsec);
1027 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1028 current_function_funcdef_no);
1031 /* Return number of shadow bytes that are occupied by a local variable
1032 of SIZE bytes. */
1034 static unsigned HOST_WIDE_INT
1035 shadow_mem_size (unsigned HOST_WIDE_INT size)
1037 return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
1040 /* Insert code to protect stack vars. The prologue sequence should be emitted
1041 directly, epilogue sequence returned. BASE is the register holding the
1042 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1043 array contains pairs of offsets in reverse order, always the end offset
1044 of some gap that needs protection followed by starting offset,
1045 and DECLS is an array of representative decls for each var partition.
1046 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1047 elements long (OFFSETS include gap before the first variable as well
1048 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1049 register which stack vars DECL_RTLs are based on. Either BASE should be
1050 assigned to PBASE, when not doing use after return protection, or
1051 corresponding address based on __asan_stack_malloc* return value. */
1053 rtx_insn *
1054 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1055 HOST_WIDE_INT *offsets, tree *decls, int length)
1057 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1058 rtx_code_label *lab;
1059 rtx_insn *insns;
1060 char buf[32];
1061 unsigned char shadow_bytes[4];
1062 HOST_WIDE_INT base_offset = offsets[length - 1];
1063 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1064 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1065 HOST_WIDE_INT last_offset;
1066 int l;
1067 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1068 tree str_cst, decl, id;
1069 int use_after_return_class = -1;
1071 if (shadow_ptr_types[0] == NULL_TREE)
1072 asan_init_shadow_ptr_types ();
1074 /* First of all, prepare the description string. */
1075 pretty_printer asan_pp;
1077 pp_decimal_int (&asan_pp, length / 2 - 1);
1078 pp_space (&asan_pp);
1079 for (l = length - 2; l; l -= 2)
1081 tree decl = decls[l / 2 - 1];
1082 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1083 pp_space (&asan_pp);
1084 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1085 pp_space (&asan_pp);
1086 if (DECL_P (decl) && DECL_NAME (decl))
1088 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1089 pp_space (&asan_pp);
1090 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1092 else
1093 pp_string (&asan_pp, "9 <unknown>");
1094 pp_space (&asan_pp);
1096 str_cst = asan_pp_string (&asan_pp);
1098 /* Emit the prologue sequence. */
1099 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1100 && ASAN_USE_AFTER_RETURN)
1102 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1103 /* __asan_stack_malloc_N guarantees alignment
1104 N < 6 ? (64 << N) : 4096 bytes. */
1105 if (alignb > (use_after_return_class < 6
1106 ? (64U << use_after_return_class) : 4096U))
1107 use_after_return_class = -1;
1108 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1109 base_align_bias = ((asan_frame_size + alignb - 1)
1110 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1112 /* Align base if target is STRICT_ALIGNMENT. */
1113 if (STRICT_ALIGNMENT)
1114 base = expand_binop (Pmode, and_optab, base,
1115 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1116 << ASAN_SHADOW_SHIFT)
1117 / BITS_PER_UNIT), Pmode), NULL_RTX,
1118 1, OPTAB_DIRECT);
1120 if (use_after_return_class == -1 && pbase)
1121 emit_move_insn (pbase, base);
1123 base = expand_binop (Pmode, add_optab, base,
1124 gen_int_mode (base_offset - base_align_bias, Pmode),
1125 NULL_RTX, 1, OPTAB_DIRECT);
1126 orig_base = NULL_RTX;
1127 if (use_after_return_class != -1)
1129 if (asan_detect_stack_use_after_return == NULL_TREE)
1131 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1132 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1133 integer_type_node);
1134 SET_DECL_ASSEMBLER_NAME (decl, id);
1135 TREE_ADDRESSABLE (decl) = 1;
1136 DECL_ARTIFICIAL (decl) = 1;
1137 DECL_IGNORED_P (decl) = 1;
1138 DECL_EXTERNAL (decl) = 1;
1139 TREE_STATIC (decl) = 1;
1140 TREE_PUBLIC (decl) = 1;
1141 TREE_USED (decl) = 1;
1142 asan_detect_stack_use_after_return = decl;
1144 orig_base = gen_reg_rtx (Pmode);
1145 emit_move_insn (orig_base, base);
1146 ret = expand_normal (asan_detect_stack_use_after_return);
1147 lab = gen_label_rtx ();
1148 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1149 VOIDmode, 0, lab,
1150 profile_probability::very_likely ());
1151 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1152 use_after_return_class);
1153 ret = init_one_libfunc (buf);
1154 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode, 1,
1155 GEN_INT (asan_frame_size
1156 + base_align_bias),
1157 TYPE_MODE (pointer_sized_int_node));
1158 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1159 and NULL otherwise. Check RET value is NULL here and jump over the
1160 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1161 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1162 VOIDmode, 0, lab,
1163 profile_probability:: very_unlikely ());
1164 ret = convert_memory_address (Pmode, ret);
1165 emit_move_insn (base, ret);
1166 emit_label (lab);
1167 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1168 gen_int_mode (base_align_bias
1169 - base_offset, Pmode),
1170 NULL_RTX, 1, OPTAB_DIRECT));
1172 mem = gen_rtx_MEM (ptr_mode, base);
1173 mem = adjust_address (mem, VOIDmode, base_align_bias);
1174 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1175 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1176 emit_move_insn (mem, expand_normal (str_cst));
1177 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1178 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1179 id = get_identifier (buf);
1180 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1181 VAR_DECL, id, char_type_node);
1182 SET_DECL_ASSEMBLER_NAME (decl, id);
1183 TREE_ADDRESSABLE (decl) = 1;
1184 TREE_READONLY (decl) = 1;
1185 DECL_ARTIFICIAL (decl) = 1;
1186 DECL_IGNORED_P (decl) = 1;
1187 TREE_STATIC (decl) = 1;
1188 TREE_PUBLIC (decl) = 0;
1189 TREE_USED (decl) = 1;
1190 DECL_INITIAL (decl) = decl;
1191 TREE_ASM_WRITTEN (decl) = 1;
1192 TREE_ASM_WRITTEN (id) = 1;
1193 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1194 shadow_base = expand_binop (Pmode, lshr_optab, base,
1195 GEN_INT (ASAN_SHADOW_SHIFT),
1196 NULL_RTX, 1, OPTAB_DIRECT);
1197 shadow_base
1198 = plus_constant (Pmode, shadow_base,
1199 asan_shadow_offset ()
1200 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1201 gcc_assert (asan_shadow_set != -1
1202 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1203 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1204 set_mem_alias_set (shadow_mem, asan_shadow_set);
1205 if (STRICT_ALIGNMENT)
1206 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1207 prev_offset = base_offset;
1208 for (l = length; l; l -= 2)
1210 if (l == 2)
1211 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1212 offset = offsets[l - 1];
1213 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1215 int i;
1216 HOST_WIDE_INT aoff
1217 = base_offset + ((offset - base_offset)
1218 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1219 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1220 (aoff - prev_offset)
1221 >> ASAN_SHADOW_SHIFT);
1222 prev_offset = aoff;
1223 for (i = 0; i < 4; i++, aoff += ASAN_SHADOW_GRANULARITY)
1224 if (aoff < offset)
1226 if (aoff < offset - (HOST_WIDE_INT)ASAN_SHADOW_GRANULARITY + 1)
1227 shadow_bytes[i] = 0;
1228 else
1229 shadow_bytes[i] = offset - aoff;
1231 else
1232 shadow_bytes[i] = ASAN_STACK_MAGIC_MIDDLE;
1233 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1234 offset = aoff;
1236 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1238 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1239 (offset - prev_offset)
1240 >> ASAN_SHADOW_SHIFT);
1241 prev_offset = offset;
1242 memset (shadow_bytes, cur_shadow_byte, 4);
1243 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1244 offset += ASAN_RED_ZONE_SIZE;
1246 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1248 do_pending_stack_adjust ();
1250 /* Construct epilogue sequence. */
1251 start_sequence ();
1253 lab = NULL;
1254 if (use_after_return_class != -1)
1256 rtx_code_label *lab2 = gen_label_rtx ();
1257 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1258 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1259 VOIDmode, 0, lab2,
1260 profile_probability::very_likely ());
1261 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1262 set_mem_alias_set (shadow_mem, asan_shadow_set);
1263 mem = gen_rtx_MEM (ptr_mode, base);
1264 mem = adjust_address (mem, VOIDmode, base_align_bias);
1265 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1266 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1267 if (use_after_return_class < 5
1268 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1269 BITS_PER_UNIT, true))
1270 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1271 BITS_PER_UNIT, true, 0);
1272 else if (use_after_return_class >= 5
1273 || !set_storage_via_setmem (shadow_mem,
1274 GEN_INT (sz),
1275 gen_int_mode (c, QImode),
1276 BITS_PER_UNIT, BITS_PER_UNIT,
1277 -1, sz, sz, sz))
1279 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1280 use_after_return_class);
1281 ret = init_one_libfunc (buf);
1282 rtx addr = convert_memory_address (ptr_mode, base);
1283 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1284 emit_library_call (ret, LCT_NORMAL, ptr_mode, 3, addr, ptr_mode,
1285 GEN_INT (asan_frame_size + base_align_bias),
1286 TYPE_MODE (pointer_sized_int_node),
1287 orig_addr, ptr_mode);
1289 lab = gen_label_rtx ();
1290 emit_jump (lab);
1291 emit_label (lab2);
1294 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1295 set_mem_alias_set (shadow_mem, asan_shadow_set);
1297 if (STRICT_ALIGNMENT)
1298 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1300 /* Unpoison shadow memory of a stack at the very end of a function.
1301 As we're poisoning stack variables at the end of their scope,
1302 shadow memory must be properly unpoisoned here. The easiest approach
1303 would be to collect all variables that should not be unpoisoned and
1304 we unpoison shadow memory of the whole stack except ranges
1305 occupied by these variables. */
1306 last_offset = base_offset;
1307 HOST_WIDE_INT current_offset = last_offset;
1308 if (length)
1310 HOST_WIDE_INT var_end_offset = 0;
1311 HOST_WIDE_INT stack_start = offsets[length - 1];
1312 gcc_assert (last_offset == stack_start);
1314 for (int l = length - 2; l > 0; l -= 2)
1316 HOST_WIDE_INT var_offset = offsets[l];
1317 current_offset = var_offset;
1318 var_end_offset = offsets[l - 1];
1319 HOST_WIDE_INT rounded_size = ROUND_UP (var_end_offset - var_offset,
1320 BITS_PER_UNIT);
1322 /* Should we unpoison the variable? */
1323 if (asan_handled_variables != NULL
1324 && asan_handled_variables->contains (decl))
1326 if (dump_file && (dump_flags & TDF_DETAILS))
1328 const char *n = (DECL_NAME (decl)
1329 ? IDENTIFIER_POINTER (DECL_NAME (decl))
1330 : "<unknown>");
1331 fprintf (dump_file, "Unpoisoning shadow stack for variable: "
1332 "%s (%" PRId64 "B)\n", n,
1333 var_end_offset - var_offset);
1336 unsigned HOST_WIDE_INT s
1337 = shadow_mem_size (current_offset - last_offset);
1338 asan_clear_shadow (shadow_mem, s);
1339 HOST_WIDE_INT shift
1340 = shadow_mem_size (current_offset - last_offset + rounded_size);
1341 shadow_mem = adjust_address (shadow_mem, VOIDmode, shift);
1342 last_offset = var_offset + rounded_size;
1343 current_offset = last_offset;
1348 /* Handle last redzone. */
1349 current_offset = offsets[0];
1350 asan_clear_shadow (shadow_mem,
1351 shadow_mem_size (current_offset - last_offset));
1354 /* Clean-up set with instrumented stack variables. */
1355 delete asan_handled_variables;
1356 asan_handled_variables = NULL;
1357 delete asan_used_labels;
1358 asan_used_labels = NULL;
1360 do_pending_stack_adjust ();
1361 if (lab)
1362 emit_label (lab);
1364 insns = get_insns ();
1365 end_sequence ();
1366 return insns;
1369 /* Return true if DECL, a global var, might be overridden and needs
1370 therefore a local alias. */
1372 static bool
1373 asan_needs_local_alias (tree decl)
1375 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1378 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1379 therefore doesn't need protection. */
1381 static bool
1382 is_odr_indicator (tree decl)
1384 return (DECL_ARTIFICIAL (decl)
1385 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
1388 /* Return true if DECL is a VAR_DECL that should be protected
1389 by Address Sanitizer, by appending a red zone with protected
1390 shadow memory after it and aligning it to at least
1391 ASAN_RED_ZONE_SIZE bytes. */
1393 bool
1394 asan_protect_global (tree decl)
1396 if (!ASAN_GLOBALS)
1397 return false;
1399 rtx rtl, symbol;
1401 if (TREE_CODE (decl) == STRING_CST)
1403 /* Instrument all STRING_CSTs except those created
1404 by asan_pp_string here. */
1405 if (shadow_ptr_types[0] != NULL_TREE
1406 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1407 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1408 return false;
1409 return true;
1411 if (!VAR_P (decl)
1412 /* TLS vars aren't statically protectable. */
1413 || DECL_THREAD_LOCAL_P (decl)
1414 /* Externs will be protected elsewhere. */
1415 || DECL_EXTERNAL (decl)
1416 || !DECL_RTL_SET_P (decl)
1417 /* Comdat vars pose an ABI problem, we can't know if
1418 the var that is selected by the linker will have
1419 padding or not. */
1420 || DECL_ONE_ONLY (decl)
1421 /* Similarly for common vars. People can use -fno-common.
1422 Note: Linux kernel is built with -fno-common, so we do instrument
1423 globals there even if it is C. */
1424 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1425 /* Don't protect if using user section, often vars placed
1426 into user section from multiple TUs are then assumed
1427 to be an array of such vars, putting padding in there
1428 breaks this assumption. */
1429 || (DECL_SECTION_NAME (decl) != NULL
1430 && !symtab_node::get (decl)->implicit_section
1431 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1432 || DECL_SIZE (decl) == 0
1433 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1434 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1435 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1436 || TREE_TYPE (decl) == ubsan_get_source_location_type ()
1437 || is_odr_indicator (decl))
1438 return false;
1440 rtl = DECL_RTL (decl);
1441 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1442 return false;
1443 symbol = XEXP (rtl, 0);
1445 if (CONSTANT_POOL_ADDRESS_P (symbol)
1446 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1447 return false;
1449 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1450 return false;
1452 #ifndef ASM_OUTPUT_DEF
1453 if (asan_needs_local_alias (decl))
1454 return false;
1455 #endif
1457 return true;
1460 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1461 IS_STORE is either 1 (for a store) or 0 (for a load). */
1463 static tree
1464 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1465 int *nargs)
1467 static enum built_in_function report[2][2][6]
1468 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1469 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1470 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1471 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1472 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1473 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1474 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1475 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1476 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1477 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1478 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1479 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1480 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1481 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1482 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1483 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1484 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1485 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1486 if (size_in_bytes == -1)
1488 *nargs = 2;
1489 return builtin_decl_implicit (report[recover_p][is_store][5]);
1491 *nargs = 1;
1492 int size_log2 = exact_log2 (size_in_bytes);
1493 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1496 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1497 IS_STORE is either 1 (for a store) or 0 (for a load). */
1499 static tree
1500 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1501 int *nargs)
1503 static enum built_in_function check[2][2][6]
1504 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1505 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1506 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1507 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1508 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1509 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1510 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1511 BUILT_IN_ASAN_LOAD2_NOABORT,
1512 BUILT_IN_ASAN_LOAD4_NOABORT,
1513 BUILT_IN_ASAN_LOAD8_NOABORT,
1514 BUILT_IN_ASAN_LOAD16_NOABORT,
1515 BUILT_IN_ASAN_LOADN_NOABORT },
1516 { BUILT_IN_ASAN_STORE1_NOABORT,
1517 BUILT_IN_ASAN_STORE2_NOABORT,
1518 BUILT_IN_ASAN_STORE4_NOABORT,
1519 BUILT_IN_ASAN_STORE8_NOABORT,
1520 BUILT_IN_ASAN_STORE16_NOABORT,
1521 BUILT_IN_ASAN_STOREN_NOABORT } } };
1522 if (size_in_bytes == -1)
1524 *nargs = 2;
1525 return builtin_decl_implicit (check[recover_p][is_store][5]);
1527 *nargs = 1;
1528 int size_log2 = exact_log2 (size_in_bytes);
1529 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1532 /* Split the current basic block and create a condition statement
1533 insertion point right before or after the statement pointed to by
1534 ITER. Return an iterator to the point at which the caller might
1535 safely insert the condition statement.
1537 THEN_BLOCK must be set to the address of an uninitialized instance
1538 of basic_block. The function will then set *THEN_BLOCK to the
1539 'then block' of the condition statement to be inserted by the
1540 caller.
1542 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1543 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1545 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1546 block' of the condition statement to be inserted by the caller.
1548 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1549 statements starting from *ITER, and *THEN_BLOCK is a new empty
1550 block.
1552 *ITER is adjusted to point to always point to the first statement
1553 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1554 same as what ITER was pointing to prior to calling this function,
1555 if BEFORE_P is true; otherwise, it is its following statement. */
1557 gimple_stmt_iterator
1558 create_cond_insert_point (gimple_stmt_iterator *iter,
1559 bool before_p,
1560 bool then_more_likely_p,
1561 bool create_then_fallthru_edge,
1562 basic_block *then_block,
1563 basic_block *fallthrough_block)
1565 gimple_stmt_iterator gsi = *iter;
1567 if (!gsi_end_p (gsi) && before_p)
1568 gsi_prev (&gsi);
1570 basic_block cur_bb = gsi_bb (*iter);
1572 edge e = split_block (cur_bb, gsi_stmt (gsi));
1574 /* Get a hold on the 'condition block', the 'then block' and the
1575 'else block'. */
1576 basic_block cond_bb = e->src;
1577 basic_block fallthru_bb = e->dest;
1578 basic_block then_bb = create_empty_bb (cond_bb);
1579 if (current_loops)
1581 add_bb_to_loop (then_bb, cond_bb->loop_father);
1582 loops_state_set (LOOPS_NEED_FIXUP);
1585 /* Set up the newly created 'then block'. */
1586 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1587 int fallthrough_probability
1588 = then_more_likely_p
1589 ? PROB_VERY_UNLIKELY
1590 : PROB_ALWAYS - PROB_VERY_UNLIKELY;
1591 e->probability = profile_probability::from_reg_br_prob_base
1592 (PROB_ALWAYS - fallthrough_probability);
1593 if (create_then_fallthru_edge)
1594 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1596 /* Set up the fallthrough basic block. */
1597 e = find_edge (cond_bb, fallthru_bb);
1598 e->flags = EDGE_FALSE_VALUE;
1599 e->count = cond_bb->count;
1600 e->probability
1601 = profile_probability::from_reg_br_prob_base (fallthrough_probability);
1603 /* Update dominance info for the newly created then_bb; note that
1604 fallthru_bb's dominance info has already been updated by
1605 split_bock. */
1606 if (dom_info_available_p (CDI_DOMINATORS))
1607 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1609 *then_block = then_bb;
1610 *fallthrough_block = fallthru_bb;
1611 *iter = gsi_start_bb (fallthru_bb);
1613 return gsi_last_bb (cond_bb);
1616 /* Insert an if condition followed by a 'then block' right before the
1617 statement pointed to by ITER. The fallthrough block -- which is the
1618 else block of the condition as well as the destination of the
1619 outcoming edge of the 'then block' -- starts with the statement
1620 pointed to by ITER.
1622 COND is the condition of the if.
1624 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1625 'then block' is higher than the probability of the edge to the
1626 fallthrough block.
1628 Upon completion of the function, *THEN_BB is set to the newly
1629 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1630 fallthrough block.
1632 *ITER is adjusted to still point to the same statement it was
1633 pointing to initially. */
1635 static void
1636 insert_if_then_before_iter (gcond *cond,
1637 gimple_stmt_iterator *iter,
1638 bool then_more_likely_p,
1639 basic_block *then_bb,
1640 basic_block *fallthrough_bb)
1642 gimple_stmt_iterator cond_insert_point =
1643 create_cond_insert_point (iter,
1644 /*before_p=*/true,
1645 then_more_likely_p,
1646 /*create_then_fallthru_edge=*/true,
1647 then_bb,
1648 fallthrough_bb);
1649 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1652 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
1653 If RETURN_ADDRESS is set to true, return memory location instread
1654 of a value in the shadow memory. */
1656 static tree
1657 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1658 tree base_addr, tree shadow_ptr_type,
1659 bool return_address = false)
1661 tree t, uintptr_type = TREE_TYPE (base_addr);
1662 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1663 gimple *g;
1665 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1666 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
1667 base_addr, t);
1668 gimple_set_location (g, location);
1669 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1671 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1672 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
1673 gimple_assign_lhs (g), t);
1674 gimple_set_location (g, location);
1675 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1677 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
1678 gimple_assign_lhs (g));
1679 gimple_set_location (g, location);
1680 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1682 if (!return_address)
1684 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1685 build_int_cst (shadow_ptr_type, 0));
1686 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
1687 gimple_set_location (g, location);
1688 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1691 return gimple_assign_lhs (g);
1694 /* BASE can already be an SSA_NAME; in that case, do not create a
1695 new SSA_NAME for it. */
1697 static tree
1698 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1699 bool before_p)
1701 if (TREE_CODE (base) == SSA_NAME)
1702 return base;
1703 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
1704 TREE_CODE (base), base);
1705 gimple_set_location (g, loc);
1706 if (before_p)
1707 gsi_insert_before (iter, g, GSI_SAME_STMT);
1708 else
1709 gsi_insert_after (iter, g, GSI_NEW_STMT);
1710 return gimple_assign_lhs (g);
1713 /* LEN can already have necessary size and precision;
1714 in that case, do not create a new variable. */
1716 tree
1717 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1718 bool before_p)
1720 if (ptrofftype_p (len))
1721 return len;
1722 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1723 NOP_EXPR, len);
1724 gimple_set_location (g, loc);
1725 if (before_p)
1726 gsi_insert_before (iter, g, GSI_SAME_STMT);
1727 else
1728 gsi_insert_after (iter, g, GSI_NEW_STMT);
1729 return gimple_assign_lhs (g);
1732 /* Instrument the memory access instruction BASE. Insert new
1733 statements before or after ITER.
1735 Note that the memory access represented by BASE can be either an
1736 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1737 location. IS_STORE is TRUE for a store, FALSE for a load.
1738 BEFORE_P is TRUE for inserting the instrumentation code before
1739 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1740 for a scalar memory access and FALSE for memory region access.
1741 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1742 length. ALIGN tells alignment of accessed memory object.
1744 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1745 memory region have already been instrumented.
1747 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1748 statement it was pointing to prior to calling this function,
1749 otherwise, it points to the statement logically following it. */
1751 static void
1752 build_check_stmt (location_t loc, tree base, tree len,
1753 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1754 bool is_non_zero_len, bool before_p, bool is_store,
1755 bool is_scalar_access, unsigned int align = 0)
1757 gimple_stmt_iterator gsi = *iter;
1758 gimple *g;
1760 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1762 gsi = *iter;
1764 base = unshare_expr (base);
1765 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1767 if (len)
1769 len = unshare_expr (len);
1770 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1772 else
1774 gcc_assert (size_in_bytes != -1);
1775 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1778 if (size_in_bytes > 1)
1780 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1781 || size_in_bytes > 16)
1782 is_scalar_access = false;
1783 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1785 /* On non-strict alignment targets, if
1786 16-byte access is just 8-byte aligned,
1787 this will result in misaligned shadow
1788 memory 2 byte load, but otherwise can
1789 be handled using one read. */
1790 if (size_in_bytes != 16
1791 || STRICT_ALIGNMENT
1792 || align < 8 * BITS_PER_UNIT)
1793 is_scalar_access = false;
1797 HOST_WIDE_INT flags = 0;
1798 if (is_store)
1799 flags |= ASAN_CHECK_STORE;
1800 if (is_non_zero_len)
1801 flags |= ASAN_CHECK_NON_ZERO_LEN;
1802 if (is_scalar_access)
1803 flags |= ASAN_CHECK_SCALAR_ACCESS;
1805 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
1806 build_int_cst (integer_type_node, flags),
1807 base, len,
1808 build_int_cst (integer_type_node,
1809 align / BITS_PER_UNIT));
1810 gimple_set_location (g, loc);
1811 if (before_p)
1812 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
1813 else
1815 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
1816 gsi_next (&gsi);
1817 *iter = gsi;
1821 /* If T represents a memory access, add instrumentation code before ITER.
1822 LOCATION is source code location.
1823 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
1825 static void
1826 instrument_derefs (gimple_stmt_iterator *iter, tree t,
1827 location_t location, bool is_store)
1829 if (is_store && !ASAN_INSTRUMENT_WRITES)
1830 return;
1831 if (!is_store && !ASAN_INSTRUMENT_READS)
1832 return;
1834 tree type, base;
1835 HOST_WIDE_INT size_in_bytes;
1836 if (location == UNKNOWN_LOCATION)
1837 location = EXPR_LOCATION (t);
1839 type = TREE_TYPE (t);
1840 switch (TREE_CODE (t))
1842 case ARRAY_REF:
1843 case COMPONENT_REF:
1844 case INDIRECT_REF:
1845 case MEM_REF:
1846 case VAR_DECL:
1847 case BIT_FIELD_REF:
1848 break;
1849 /* FALLTHRU */
1850 default:
1851 return;
1854 size_in_bytes = int_size_in_bytes (type);
1855 if (size_in_bytes <= 0)
1856 return;
1858 HOST_WIDE_INT bitsize, bitpos;
1859 tree offset;
1860 machine_mode mode;
1861 int unsignedp, reversep, volatilep = 0;
1862 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
1863 &unsignedp, &reversep, &volatilep);
1865 if (TREE_CODE (t) == COMPONENT_REF
1866 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
1868 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
1869 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
1870 TREE_OPERAND (t, 0), repr,
1871 TREE_OPERAND (t, 2)),
1872 location, is_store);
1873 return;
1876 if (bitpos % BITS_PER_UNIT
1877 || bitsize != size_in_bytes * BITS_PER_UNIT)
1878 return;
1880 if (VAR_P (inner) && DECL_HARD_REGISTER (inner))
1881 return;
1883 if (VAR_P (inner)
1884 && offset == NULL_TREE
1885 && bitpos >= 0
1886 && DECL_SIZE (inner)
1887 && tree_fits_shwi_p (DECL_SIZE (inner))
1888 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
1890 if (DECL_THREAD_LOCAL_P (inner))
1891 return;
1892 if (!ASAN_GLOBALS && is_global_var (inner))
1893 return;
1894 if (!TREE_STATIC (inner))
1896 /* Automatic vars in the current function will be always
1897 accessible. */
1898 if (decl_function_context (inner) == current_function_decl
1899 && (!asan_sanitize_use_after_scope ()
1900 || !TREE_ADDRESSABLE (inner)))
1901 return;
1903 /* Always instrument external vars, they might be dynamically
1904 initialized. */
1905 else if (!DECL_EXTERNAL (inner))
1907 /* For static vars if they are known not to be dynamically
1908 initialized, they will be always accessible. */
1909 varpool_node *vnode = varpool_node::get (inner);
1910 if (vnode && !vnode->dynamically_initialized)
1911 return;
1915 base = build_fold_addr_expr (t);
1916 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
1918 unsigned int align = get_object_alignment (t);
1919 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
1920 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
1921 is_store, /*is_scalar_access*/true, align);
1922 update_mem_ref_hash_table (base, size_in_bytes);
1923 update_mem_ref_hash_table (t, size_in_bytes);
1928 /* Insert a memory reference into the hash table if access length
1929 can be determined in compile time. */
1931 static void
1932 maybe_update_mem_ref_hash_table (tree base, tree len)
1934 if (!POINTER_TYPE_P (TREE_TYPE (base))
1935 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
1936 return;
1938 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1940 if (size_in_bytes != -1)
1941 update_mem_ref_hash_table (base, size_in_bytes);
1944 /* Instrument an access to a contiguous memory region that starts at
1945 the address pointed to by BASE, over a length of LEN (expressed in
1946 the sizeof (*BASE) bytes). ITER points to the instruction before
1947 which the instrumentation instructions must be inserted. LOCATION
1948 is the source location that the instrumentation instructions must
1949 have. If IS_STORE is true, then the memory access is a store;
1950 otherwise, it's a load. */
1952 static void
1953 instrument_mem_region_access (tree base, tree len,
1954 gimple_stmt_iterator *iter,
1955 location_t location, bool is_store)
1957 if (!POINTER_TYPE_P (TREE_TYPE (base))
1958 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
1959 || integer_zerop (len))
1960 return;
1962 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
1964 if ((size_in_bytes == -1)
1965 || !has_mem_ref_been_instrumented (base, size_in_bytes))
1967 build_check_stmt (location, base, len, size_in_bytes, iter,
1968 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
1969 is_store, /*is_scalar_access*/false, /*align*/0);
1972 maybe_update_mem_ref_hash_table (base, len);
1973 *iter = gsi_for_stmt (gsi_stmt (*iter));
1976 /* Instrument the call to a built-in memory access function that is
1977 pointed to by the iterator ITER.
1979 Upon completion, return TRUE iff *ITER has been advanced to the
1980 statement following the one it was originally pointing to. */
1982 static bool
1983 instrument_builtin_call (gimple_stmt_iterator *iter)
1985 if (!ASAN_MEMINTRIN)
1986 return false;
1988 bool iter_advanced_p = false;
1989 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
1991 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
1993 location_t loc = gimple_location (call);
1995 asan_mem_ref src0, src1, dest;
1996 asan_mem_ref_init (&src0, NULL, 1);
1997 asan_mem_ref_init (&src1, NULL, 1);
1998 asan_mem_ref_init (&dest, NULL, 1);
2000 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
2001 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
2002 dest_is_deref = false, intercepted_p = true;
2004 if (get_mem_refs_of_builtin_call (call,
2005 &src0, &src0_len, &src0_is_store,
2006 &src1, &src1_len, &src1_is_store,
2007 &dest, &dest_len, &dest_is_store,
2008 &dest_is_deref, &intercepted_p))
2010 if (dest_is_deref)
2012 instrument_derefs (iter, dest.start, loc, dest_is_store);
2013 gsi_next (iter);
2014 iter_advanced_p = true;
2016 else if (!intercepted_p
2017 && (src0_len || src1_len || dest_len))
2019 if (src0.start != NULL_TREE)
2020 instrument_mem_region_access (src0.start, src0_len,
2021 iter, loc, /*is_store=*/false);
2022 if (src1.start != NULL_TREE)
2023 instrument_mem_region_access (src1.start, src1_len,
2024 iter, loc, /*is_store=*/false);
2025 if (dest.start != NULL_TREE)
2026 instrument_mem_region_access (dest.start, dest_len,
2027 iter, loc, /*is_store=*/true);
2029 *iter = gsi_for_stmt (call);
2030 gsi_next (iter);
2031 iter_advanced_p = true;
2033 else
2035 if (src0.start != NULL_TREE)
2036 maybe_update_mem_ref_hash_table (src0.start, src0_len);
2037 if (src1.start != NULL_TREE)
2038 maybe_update_mem_ref_hash_table (src1.start, src1_len);
2039 if (dest.start != NULL_TREE)
2040 maybe_update_mem_ref_hash_table (dest.start, dest_len);
2043 return iter_advanced_p;
2046 /* Instrument the assignment statement ITER if it is subject to
2047 instrumentation. Return TRUE iff instrumentation actually
2048 happened. In that case, the iterator ITER is advanced to the next
2049 logical expression following the one initially pointed to by ITER,
2050 and the relevant memory reference that which access has been
2051 instrumented is added to the memory references hash table. */
2053 static bool
2054 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2056 gimple *s = gsi_stmt (*iter);
2058 gcc_assert (gimple_assign_single_p (s));
2060 tree ref_expr = NULL_TREE;
2061 bool is_store, is_instrumented = false;
2063 if (gimple_store_p (s))
2065 ref_expr = gimple_assign_lhs (s);
2066 is_store = true;
2067 instrument_derefs (iter, ref_expr,
2068 gimple_location (s),
2069 is_store);
2070 is_instrumented = true;
2073 if (gimple_assign_load_p (s))
2075 ref_expr = gimple_assign_rhs1 (s);
2076 is_store = false;
2077 instrument_derefs (iter, ref_expr,
2078 gimple_location (s),
2079 is_store);
2080 is_instrumented = true;
2083 if (is_instrumented)
2084 gsi_next (iter);
2086 return is_instrumented;
2089 /* Instrument the function call pointed to by the iterator ITER, if it
2090 is subject to instrumentation. At the moment, the only function
2091 calls that are instrumented are some built-in functions that access
2092 memory. Look at instrument_builtin_call to learn more.
2094 Upon completion return TRUE iff *ITER was advanced to the statement
2095 following the one it was originally pointing to. */
2097 static bool
2098 maybe_instrument_call (gimple_stmt_iterator *iter)
2100 gimple *stmt = gsi_stmt (*iter);
2101 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2103 if (is_builtin && instrument_builtin_call (iter))
2104 return true;
2106 if (gimple_call_noreturn_p (stmt))
2108 if (is_builtin)
2110 tree callee = gimple_call_fndecl (stmt);
2111 switch (DECL_FUNCTION_CODE (callee))
2113 case BUILT_IN_UNREACHABLE:
2114 case BUILT_IN_TRAP:
2115 /* Don't instrument these. */
2116 return false;
2117 default:
2118 break;
2121 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2122 gimple *g = gimple_build_call (decl, 0);
2123 gimple_set_location (g, gimple_location (stmt));
2124 gsi_insert_before (iter, g, GSI_SAME_STMT);
2127 bool instrumented = false;
2128 if (gimple_store_p (stmt))
2130 tree ref_expr = gimple_call_lhs (stmt);
2131 instrument_derefs (iter, ref_expr,
2132 gimple_location (stmt),
2133 /*is_store=*/true);
2135 instrumented = true;
2138 /* Walk through gimple_call arguments and check them id needed. */
2139 unsigned args_num = gimple_call_num_args (stmt);
2140 for (unsigned i = 0; i < args_num; ++i)
2142 tree arg = gimple_call_arg (stmt, i);
2143 /* If ARG is not a non-aggregate register variable, compiler in general
2144 creates temporary for it and pass it as argument to gimple call.
2145 But in some cases, e.g. when we pass by value a small structure that
2146 fits to register, compiler can avoid extra overhead by pulling out
2147 these temporaries. In this case, we should check the argument. */
2148 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2150 instrument_derefs (iter, arg,
2151 gimple_location (stmt),
2152 /*is_store=*/false);
2153 instrumented = true;
2156 if (instrumented)
2157 gsi_next (iter);
2158 return instrumented;
2161 /* Walk each instruction of all basic block and instrument those that
2162 represent memory references: loads, stores, or function calls.
2163 In a given basic block, this function avoids instrumenting memory
2164 references that have already been instrumented. */
2166 static void
2167 transform_statements (void)
2169 basic_block bb, last_bb = NULL;
2170 gimple_stmt_iterator i;
2171 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2173 FOR_EACH_BB_FN (bb, cfun)
2175 basic_block prev_bb = bb;
2177 if (bb->index >= saved_last_basic_block) continue;
2179 /* Flush the mem ref hash table, if current bb doesn't have
2180 exactly one predecessor, or if that predecessor (skipping
2181 over asan created basic blocks) isn't the last processed
2182 basic block. Thus we effectively flush on extended basic
2183 block boundaries. */
2184 while (single_pred_p (prev_bb))
2186 prev_bb = single_pred (prev_bb);
2187 if (prev_bb->index < saved_last_basic_block)
2188 break;
2190 if (prev_bb != last_bb)
2191 empty_mem_ref_hash_table ();
2192 last_bb = bb;
2194 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2196 gimple *s = gsi_stmt (i);
2198 if (has_stmt_been_instrumented_p (s))
2199 gsi_next (&i);
2200 else if (gimple_assign_single_p (s)
2201 && !gimple_clobber_p (s)
2202 && maybe_instrument_assignment (&i))
2203 /* Nothing to do as maybe_instrument_assignment advanced
2204 the iterator I. */;
2205 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2206 /* Nothing to do as maybe_instrument_call
2207 advanced the iterator I. */;
2208 else
2210 /* No instrumentation happened.
2212 If the current instruction is a function call that
2213 might free something, let's forget about the memory
2214 references that got instrumented. Otherwise we might
2215 miss some instrumentation opportunities. Do the same
2216 for a ASAN_MARK poisoning internal function. */
2217 if (is_gimple_call (s)
2218 && (!nonfreeing_call_p (s)
2219 || asan_mark_p (s, ASAN_MARK_POISON)))
2220 empty_mem_ref_hash_table ();
2222 gsi_next (&i);
2226 free_mem_ref_resources ();
2229 /* Build
2230 __asan_before_dynamic_init (module_name)
2232 __asan_after_dynamic_init ()
2233 call. */
2235 tree
2236 asan_dynamic_init_call (bool after_p)
2238 if (shadow_ptr_types[0] == NULL_TREE)
2239 asan_init_shadow_ptr_types ();
2241 tree fn = builtin_decl_implicit (after_p
2242 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2243 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2244 tree module_name_cst = NULL_TREE;
2245 if (!after_p)
2247 pretty_printer module_name_pp;
2248 pp_string (&module_name_pp, main_input_filename);
2250 module_name_cst = asan_pp_string (&module_name_pp);
2251 module_name_cst = fold_convert (const_ptr_type_node,
2252 module_name_cst);
2255 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2258 /* Build
2259 struct __asan_global
2261 const void *__beg;
2262 uptr __size;
2263 uptr __size_with_redzone;
2264 const void *__name;
2265 const void *__module_name;
2266 uptr __has_dynamic_init;
2267 __asan_global_source_location *__location;
2268 char *__odr_indicator;
2269 } type. */
2271 static tree
2272 asan_global_struct (void)
2274 static const char *field_names[]
2275 = { "__beg", "__size", "__size_with_redzone",
2276 "__name", "__module_name", "__has_dynamic_init", "__location",
2277 "__odr_indicator" };
2278 tree fields[ARRAY_SIZE (field_names)], ret;
2279 unsigned i;
2281 ret = make_node (RECORD_TYPE);
2282 for (i = 0; i < ARRAY_SIZE (field_names); i++)
2284 fields[i]
2285 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2286 get_identifier (field_names[i]),
2287 (i == 0 || i == 3) ? const_ptr_type_node
2288 : pointer_sized_int_node);
2289 DECL_CONTEXT (fields[i]) = ret;
2290 if (i)
2291 DECL_CHAIN (fields[i - 1]) = fields[i];
2293 tree type_decl = build_decl (input_location, TYPE_DECL,
2294 get_identifier ("__asan_global"), ret);
2295 DECL_IGNORED_P (type_decl) = 1;
2296 DECL_ARTIFICIAL (type_decl) = 1;
2297 TYPE_FIELDS (ret) = fields[0];
2298 TYPE_NAME (ret) = type_decl;
2299 TYPE_STUB_DECL (ret) = type_decl;
2300 layout_type (ret);
2301 return ret;
2304 /* Create and return odr indicator symbol for DECL.
2305 TYPE is __asan_global struct type as returned by asan_global_struct. */
2307 static tree
2308 create_odr_indicator (tree decl, tree type)
2310 char *name;
2311 tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2312 tree decl_name
2313 = (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
2314 : DECL_NAME (decl));
2315 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2316 if (decl_name == NULL_TREE)
2317 return build_int_cst (uptr, 0);
2318 size_t len = strlen (IDENTIFIER_POINTER (decl_name)) + sizeof ("__odr_asan_");
2319 name = XALLOCAVEC (char, len);
2320 snprintf (name, len, "__odr_asan_%s", IDENTIFIER_POINTER (decl_name));
2321 #ifndef NO_DOT_IN_LABEL
2322 name[sizeof ("__odr_asan") - 1] = '.';
2323 #elif !defined(NO_DOLLAR_IN_LABEL)
2324 name[sizeof ("__odr_asan") - 1] = '$';
2325 #endif
2326 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
2327 char_type_node);
2328 TREE_ADDRESSABLE (var) = 1;
2329 TREE_READONLY (var) = 0;
2330 TREE_THIS_VOLATILE (var) = 1;
2331 DECL_GIMPLE_REG_P (var) = 0;
2332 DECL_ARTIFICIAL (var) = 1;
2333 DECL_IGNORED_P (var) = 1;
2334 TREE_STATIC (var) = 1;
2335 TREE_PUBLIC (var) = 1;
2336 DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
2337 DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
2339 TREE_USED (var) = 1;
2340 tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
2341 build_int_cst (unsigned_type_node, 0));
2342 TREE_CONSTANT (ctor) = 1;
2343 TREE_STATIC (ctor) = 1;
2344 DECL_INITIAL (var) = ctor;
2345 DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
2346 NULL, DECL_ATTRIBUTES (var));
2347 make_decl_rtl (var);
2348 varpool_node::finalize_decl (var);
2349 return fold_convert (uptr, build_fold_addr_expr (var));
2352 /* Return true if DECL, a global var, might be overridden and needs
2353 an additional odr indicator symbol. */
2355 static bool
2356 asan_needs_odr_indicator_p (tree decl)
2358 /* Don't emit ODR indicators for kernel because:
2359 a) Kernel is written in C thus doesn't need ODR indicators.
2360 b) Some kernel code may have assumptions about symbols containing specific
2361 patterns in their names. Since ODR indicators contain original names
2362 of symbols they are emitted for, these assumptions would be broken for
2363 ODR indicator symbols. */
2364 return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
2365 && !DECL_ARTIFICIAL (decl)
2366 && !DECL_WEAK (decl)
2367 && TREE_PUBLIC (decl));
2370 /* Append description of a single global DECL into vector V.
2371 TYPE is __asan_global struct type as returned by asan_global_struct. */
2373 static void
2374 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2376 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2377 unsigned HOST_WIDE_INT size;
2378 tree str_cst, module_name_cst, refdecl = decl;
2379 vec<constructor_elt, va_gc> *vinner = NULL;
2381 pretty_printer asan_pp, module_name_pp;
2383 if (DECL_NAME (decl))
2384 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2385 else
2386 pp_string (&asan_pp, "<unknown>");
2387 str_cst = asan_pp_string (&asan_pp);
2389 pp_string (&module_name_pp, main_input_filename);
2390 module_name_cst = asan_pp_string (&module_name_pp);
2392 if (asan_needs_local_alias (decl))
2394 char buf[20];
2395 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2396 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2397 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2398 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2399 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2400 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2401 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2402 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2403 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2404 TREE_STATIC (refdecl) = 1;
2405 TREE_PUBLIC (refdecl) = 0;
2406 TREE_USED (refdecl) = 1;
2407 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2410 tree odr_indicator_ptr
2411 = (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
2412 : build_int_cst (uptr, 0));
2413 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2414 fold_convert (const_ptr_type_node,
2415 build_fold_addr_expr (refdecl)));
2416 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2417 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2418 size += asan_red_zone_size (size);
2419 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2420 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2421 fold_convert (const_ptr_type_node, str_cst));
2422 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2423 fold_convert (const_ptr_type_node, module_name_cst));
2424 varpool_node *vnode = varpool_node::get (decl);
2425 int has_dynamic_init = 0;
2426 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2427 proper fix for PR 79061 will be applied. */
2428 if (!in_lto_p)
2429 has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2430 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2431 build_int_cst (uptr, has_dynamic_init));
2432 tree locptr = NULL_TREE;
2433 location_t loc = DECL_SOURCE_LOCATION (decl);
2434 expanded_location xloc = expand_location (loc);
2435 if (xloc.file != NULL)
2437 static int lasanloccnt = 0;
2438 char buf[25];
2439 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2440 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2441 ubsan_get_source_location_type ());
2442 TREE_STATIC (var) = 1;
2443 TREE_PUBLIC (var) = 0;
2444 DECL_ARTIFICIAL (var) = 1;
2445 DECL_IGNORED_P (var) = 1;
2446 pretty_printer filename_pp;
2447 pp_string (&filename_pp, xloc.file);
2448 tree str = asan_pp_string (&filename_pp);
2449 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2450 NULL_TREE, str, NULL_TREE,
2451 build_int_cst (unsigned_type_node,
2452 xloc.line), NULL_TREE,
2453 build_int_cst (unsigned_type_node,
2454 xloc.column));
2455 TREE_CONSTANT (ctor) = 1;
2456 TREE_STATIC (ctor) = 1;
2457 DECL_INITIAL (var) = ctor;
2458 varpool_node::finalize_decl (var);
2459 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2461 else
2462 locptr = build_int_cst (uptr, 0);
2463 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2464 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
2465 init = build_constructor (type, vinner);
2466 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2469 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2470 void
2471 initialize_sanitizer_builtins (void)
2473 tree decl;
2475 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2476 return;
2478 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2479 tree BT_FN_VOID_PTR
2480 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2481 tree BT_FN_VOID_CONST_PTR
2482 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2483 tree BT_FN_VOID_PTR_PTR
2484 = build_function_type_list (void_type_node, ptr_type_node,
2485 ptr_type_node, NULL_TREE);
2486 tree BT_FN_VOID_PTR_PTR_PTR
2487 = build_function_type_list (void_type_node, ptr_type_node,
2488 ptr_type_node, ptr_type_node, NULL_TREE);
2489 tree BT_FN_VOID_PTR_PTRMODE
2490 = build_function_type_list (void_type_node, ptr_type_node,
2491 pointer_sized_int_node, NULL_TREE);
2492 tree BT_FN_VOID_INT
2493 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2494 tree BT_FN_SIZE_CONST_PTR_INT
2495 = build_function_type_list (size_type_node, const_ptr_type_node,
2496 integer_type_node, NULL_TREE);
2497 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2498 tree BT_FN_IX_CONST_VPTR_INT[5];
2499 tree BT_FN_IX_VPTR_IX_INT[5];
2500 tree BT_FN_VOID_VPTR_IX_INT[5];
2501 tree vptr
2502 = build_pointer_type (build_qualified_type (void_type_node,
2503 TYPE_QUAL_VOLATILE));
2504 tree cvptr
2505 = build_pointer_type (build_qualified_type (void_type_node,
2506 TYPE_QUAL_VOLATILE
2507 |TYPE_QUAL_CONST));
2508 tree boolt
2509 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2510 int i;
2511 for (i = 0; i < 5; i++)
2513 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2514 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2515 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2516 integer_type_node, integer_type_node,
2517 NULL_TREE);
2518 BT_FN_IX_CONST_VPTR_INT[i]
2519 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2520 BT_FN_IX_VPTR_IX_INT[i]
2521 = build_function_type_list (ix, vptr, ix, integer_type_node,
2522 NULL_TREE);
2523 BT_FN_VOID_VPTR_IX_INT[i]
2524 = build_function_type_list (void_type_node, vptr, ix,
2525 integer_type_node, NULL_TREE);
2527 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2528 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2529 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2530 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2531 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2532 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2533 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2534 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2535 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2536 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2537 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2538 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2539 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2540 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2541 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2542 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2543 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2544 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2545 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2546 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2547 #undef ATTR_NOTHROW_LEAF_LIST
2548 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2549 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2550 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2551 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2552 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2553 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2554 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2555 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2556 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2557 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2558 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2559 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2560 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2561 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2562 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2563 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2564 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2565 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2566 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2567 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2568 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2569 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2570 #undef DEF_BUILTIN_STUB
2571 #define DEF_BUILTIN_STUB(ENUM, NAME)
2572 #undef DEF_SANITIZER_BUILTIN
2573 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2574 do { \
2575 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2576 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2577 set_call_expr_flags (decl, ATTRS); \
2578 set_builtin_decl (ENUM, decl, true); \
2579 } while (0);
2581 #include "sanitizer.def"
2583 /* -fsanitize=object-size uses __builtin_object_size, but that might
2584 not be available for e.g. Fortran at this point. We use
2585 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2586 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2587 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2588 DEF_SANITIZER_BUILTIN (BUILT_IN_OBJECT_SIZE, "object_size",
2589 BT_FN_SIZE_CONST_PTR_INT,
2590 ATTR_PURE_NOTHROW_LEAF_LIST)
2592 #undef DEF_SANITIZER_BUILTIN
2593 #undef DEF_BUILTIN_STUB
2596 /* Called via htab_traverse. Count number of emitted
2597 STRING_CSTs in the constant hash table. */
2600 count_string_csts (constant_descriptor_tree **slot,
2601 unsigned HOST_WIDE_INT *data)
2603 struct constant_descriptor_tree *desc = *slot;
2604 if (TREE_CODE (desc->value) == STRING_CST
2605 && TREE_ASM_WRITTEN (desc->value)
2606 && asan_protect_global (desc->value))
2607 ++*data;
2608 return 1;
2611 /* Helper structure to pass two parameters to
2612 add_string_csts. */
2614 struct asan_add_string_csts_data
2616 tree type;
2617 vec<constructor_elt, va_gc> *v;
2620 /* Called via hash_table::traverse. Call asan_add_global
2621 on emitted STRING_CSTs from the constant hash table. */
2624 add_string_csts (constant_descriptor_tree **slot,
2625 asan_add_string_csts_data *aascd)
2627 struct constant_descriptor_tree *desc = *slot;
2628 if (TREE_CODE (desc->value) == STRING_CST
2629 && TREE_ASM_WRITTEN (desc->value)
2630 && asan_protect_global (desc->value))
2632 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2633 aascd->type, aascd->v);
2635 return 1;
2638 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2639 invoke ggc_collect. */
2640 static GTY(()) tree asan_ctor_statements;
2642 /* Module-level instrumentation.
2643 - Insert __asan_init_vN() into the list of CTORs.
2644 - TODO: insert redzones around globals.
2647 void
2648 asan_finish_file (void)
2650 varpool_node *vnode;
2651 unsigned HOST_WIDE_INT gcount = 0;
2653 if (shadow_ptr_types[0] == NULL_TREE)
2654 asan_init_shadow_ptr_types ();
2655 /* Avoid instrumenting code in the asan ctors/dtors.
2656 We don't need to insert padding after the description strings,
2657 nor after .LASAN* array. */
2658 flag_sanitize &= ~SANITIZE_ADDRESS;
2660 /* For user-space we want asan constructors to run first.
2661 Linux kernel does not support priorities other than default, and the only
2662 other user of constructors is coverage. So we run with the default
2663 priority. */
2664 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
2665 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
2667 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2669 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2670 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2671 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
2672 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2674 FOR_EACH_DEFINED_VARIABLE (vnode)
2675 if (TREE_ASM_WRITTEN (vnode->decl)
2676 && asan_protect_global (vnode->decl))
2677 ++gcount;
2678 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2679 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2680 (&gcount);
2681 if (gcount)
2683 tree type = asan_global_struct (), var, ctor;
2684 tree dtor_statements = NULL_TREE;
2685 vec<constructor_elt, va_gc> *v;
2686 char buf[20];
2688 type = build_array_type_nelts (type, gcount);
2689 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2690 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2691 type);
2692 TREE_STATIC (var) = 1;
2693 TREE_PUBLIC (var) = 0;
2694 DECL_ARTIFICIAL (var) = 1;
2695 DECL_IGNORED_P (var) = 1;
2696 vec_alloc (v, gcount);
2697 FOR_EACH_DEFINED_VARIABLE (vnode)
2698 if (TREE_ASM_WRITTEN (vnode->decl)
2699 && asan_protect_global (vnode->decl))
2700 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2701 struct asan_add_string_csts_data aascd;
2702 aascd.type = TREE_TYPE (type);
2703 aascd.v = v;
2704 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2705 (&aascd);
2706 ctor = build_constructor (type, v);
2707 TREE_CONSTANT (ctor) = 1;
2708 TREE_STATIC (ctor) = 1;
2709 DECL_INITIAL (var) = ctor;
2710 varpool_node::finalize_decl (var);
2712 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2713 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2714 append_to_statement_list (build_call_expr (fn, 2,
2715 build_fold_addr_expr (var),
2716 gcount_tree),
2717 &asan_ctor_statements);
2719 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2720 append_to_statement_list (build_call_expr (fn, 2,
2721 build_fold_addr_expr (var),
2722 gcount_tree),
2723 &dtor_statements);
2724 cgraph_build_static_cdtor ('D', dtor_statements, priority);
2726 if (asan_ctor_statements)
2727 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
2728 flag_sanitize |= SANITIZE_ADDRESS;
2731 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
2732 on SHADOW address. Newly added statements will be added to ITER with
2733 given location LOC. We mark SIZE bytes in shadow memory, where
2734 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
2735 end of a variable. */
2737 static void
2738 asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
2739 tree shadow,
2740 unsigned HOST_WIDE_INT base_addr_offset,
2741 bool is_clobber, unsigned size,
2742 unsigned last_chunk_size)
2744 tree shadow_ptr_type;
2746 switch (size)
2748 case 1:
2749 shadow_ptr_type = shadow_ptr_types[0];
2750 break;
2751 case 2:
2752 shadow_ptr_type = shadow_ptr_types[1];
2753 break;
2754 case 4:
2755 shadow_ptr_type = shadow_ptr_types[2];
2756 break;
2757 default:
2758 gcc_unreachable ();
2761 unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
2762 unsigned HOST_WIDE_INT val = 0;
2763 unsigned last_pos = size;
2764 if (last_chunk_size && !is_clobber)
2765 last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
2766 for (unsigned i = 0; i < size; ++i)
2768 unsigned char shadow_c = c;
2769 if (i == last_pos)
2770 shadow_c = last_chunk_size;
2771 val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
2774 /* Handle last chunk in unpoisoning. */
2775 tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
2777 tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
2778 build_int_cst (shadow_ptr_type, base_addr_offset));
2780 gimple *g = gimple_build_assign (dest, magic);
2781 gimple_set_location (g, loc);
2782 gsi_insert_after (iter, g, GSI_NEW_STMT);
2785 /* Expand the ASAN_MARK builtins. */
2787 bool
2788 asan_expand_mark_ifn (gimple_stmt_iterator *iter)
2790 gimple *g = gsi_stmt (*iter);
2791 location_t loc = gimple_location (g);
2792 HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
2793 bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
2795 tree base = gimple_call_arg (g, 1);
2796 gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
2797 tree decl = TREE_OPERAND (base, 0);
2799 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
2800 if (TREE_CODE (decl) == COMPONENT_REF
2801 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
2802 decl = TREE_OPERAND (decl, 0);
2804 gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
2805 if (asan_handled_variables == NULL)
2806 asan_handled_variables = new hash_set<tree> (16);
2807 asan_handled_variables->add (decl);
2808 tree len = gimple_call_arg (g, 2);
2810 gcc_assert (tree_fits_shwi_p (len));
2811 unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
2812 gcc_assert (size_in_bytes);
2814 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2815 NOP_EXPR, base);
2816 gimple_set_location (g, loc);
2817 gsi_replace (iter, g, false);
2818 tree base_addr = gimple_assign_lhs (g);
2820 /* Generate direct emission if size_in_bytes is small. */
2821 if (size_in_bytes <= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD)
2823 unsigned HOST_WIDE_INT shadow_size = shadow_mem_size (size_in_bytes);
2825 tree shadow = build_shadow_mem_access (iter, loc, base_addr,
2826 shadow_ptr_types[0], true);
2828 for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
2830 unsigned size = 1;
2831 if (shadow_size - offset >= 4)
2832 size = 4;
2833 else if (shadow_size - offset >= 2)
2834 size = 2;
2836 unsigned HOST_WIDE_INT last_chunk_size = 0;
2837 unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
2838 if (s > size_in_bytes)
2839 last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
2841 asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
2842 size, last_chunk_size);
2843 offset += size;
2846 else
2848 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2849 NOP_EXPR, len);
2850 gimple_set_location (g, loc);
2851 gsi_insert_before (iter, g, GSI_SAME_STMT);
2852 tree sz_arg = gimple_assign_lhs (g);
2854 tree fun
2855 = builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
2856 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
2857 g = gimple_build_call (fun, 2, base_addr, sz_arg);
2858 gimple_set_location (g, loc);
2859 gsi_insert_after (iter, g, GSI_NEW_STMT);
2862 return false;
2865 /* Expand the ASAN_{LOAD,STORE} builtins. */
2867 bool
2868 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
2870 gimple *g = gsi_stmt (*iter);
2871 location_t loc = gimple_location (g);
2872 bool recover_p;
2873 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2874 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
2875 else
2876 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
2878 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
2879 gcc_assert (flags < ASAN_CHECK_LAST);
2880 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
2881 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
2882 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
2884 tree base = gimple_call_arg (g, 1);
2885 tree len = gimple_call_arg (g, 2);
2886 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
2888 HOST_WIDE_INT size_in_bytes
2889 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2891 if (use_calls)
2893 /* Instrument using callbacks. */
2894 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2895 NOP_EXPR, base);
2896 gimple_set_location (g, loc);
2897 gsi_insert_before (iter, g, GSI_SAME_STMT);
2898 tree base_addr = gimple_assign_lhs (g);
2900 int nargs;
2901 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
2902 if (nargs == 1)
2903 g = gimple_build_call (fun, 1, base_addr);
2904 else
2906 gcc_assert (nargs == 2);
2907 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2908 NOP_EXPR, len);
2909 gimple_set_location (g, loc);
2910 gsi_insert_before (iter, g, GSI_SAME_STMT);
2911 tree sz_arg = gimple_assign_lhs (g);
2912 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
2914 gimple_set_location (g, loc);
2915 gsi_replace (iter, g, false);
2916 return false;
2919 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
2921 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
2922 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2924 gimple_stmt_iterator gsi = *iter;
2926 if (!is_non_zero_len)
2928 /* So, the length of the memory area to asan-protect is
2929 non-constant. Let's guard the generated instrumentation code
2930 like:
2932 if (len != 0)
2934 //asan instrumentation code goes here.
2936 // falltrough instructions, starting with *ITER. */
2938 g = gimple_build_cond (NE_EXPR,
2939 len,
2940 build_int_cst (TREE_TYPE (len), 0),
2941 NULL_TREE, NULL_TREE);
2942 gimple_set_location (g, loc);
2944 basic_block then_bb, fallthrough_bb;
2945 insert_if_then_before_iter (as_a <gcond *> (g), iter,
2946 /*then_more_likely_p=*/true,
2947 &then_bb, &fallthrough_bb);
2948 /* Note that fallthrough_bb starts with the statement that was
2949 pointed to by ITER. */
2951 /* The 'then block' of the 'if (len != 0) condition is where
2952 we'll generate the asan instrumentation code now. */
2953 gsi = gsi_last_bb (then_bb);
2956 /* Get an iterator on the point where we can add the condition
2957 statement for the instrumentation. */
2958 basic_block then_bb, else_bb;
2959 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
2960 /*then_more_likely_p=*/false,
2961 /*create_then_fallthru_edge*/recover_p,
2962 &then_bb,
2963 &else_bb);
2965 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2966 NOP_EXPR, base);
2967 gimple_set_location (g, loc);
2968 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
2969 tree base_addr = gimple_assign_lhs (g);
2971 tree t = NULL_TREE;
2972 if (real_size_in_bytes >= 8)
2974 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2975 shadow_ptr_type);
2976 t = shadow;
2978 else
2980 /* Slow path for 1, 2 and 4 byte accesses. */
2981 /* Test (shadow != 0)
2982 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
2983 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
2984 shadow_ptr_type);
2985 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
2986 gimple_seq seq = NULL;
2987 gimple_seq_add_stmt (&seq, shadow_test);
2988 /* Aligned (>= 8 bytes) can test just
2989 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
2990 to be 0. */
2991 if (align < 8)
2993 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
2994 base_addr, 7));
2995 gimple_seq_add_stmt (&seq,
2996 build_type_cast (shadow_type,
2997 gimple_seq_last (seq)));
2998 if (real_size_in_bytes > 1)
2999 gimple_seq_add_stmt (&seq,
3000 build_assign (PLUS_EXPR,
3001 gimple_seq_last (seq),
3002 real_size_in_bytes - 1));
3003 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
3005 else
3006 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
3007 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
3008 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3009 gimple_seq_last (seq)));
3010 t = gimple_assign_lhs (gimple_seq_last (seq));
3011 gimple_seq_set_location (seq, loc);
3012 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3014 /* For non-constant, misaligned or otherwise weird access sizes,
3015 check first and last byte. */
3016 if (size_in_bytes == -1)
3018 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3019 MINUS_EXPR, len,
3020 build_int_cst (pointer_sized_int_node, 1));
3021 gimple_set_location (g, loc);
3022 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3023 tree last = gimple_assign_lhs (g);
3024 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3025 PLUS_EXPR, base_addr, last);
3026 gimple_set_location (g, loc);
3027 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3028 tree base_end_addr = gimple_assign_lhs (g);
3030 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
3031 shadow_ptr_type);
3032 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3033 gimple_seq seq = NULL;
3034 gimple_seq_add_stmt (&seq, shadow_test);
3035 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3036 base_end_addr, 7));
3037 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
3038 gimple_seq_last (seq)));
3039 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
3040 gimple_seq_last (seq),
3041 shadow));
3042 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3043 gimple_seq_last (seq)));
3044 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
3045 gimple_seq_last (seq)));
3046 t = gimple_assign_lhs (gimple_seq_last (seq));
3047 gimple_seq_set_location (seq, loc);
3048 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3052 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
3053 NULL_TREE, NULL_TREE);
3054 gimple_set_location (g, loc);
3055 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3057 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3058 gsi = gsi_start_bb (then_bb);
3059 int nargs;
3060 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
3061 g = gimple_build_call (fun, nargs, base_addr, len);
3062 gimple_set_location (g, loc);
3063 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3065 gsi_remove (iter, true);
3066 *iter = gsi_start_bb (else_bb);
3068 return true;
3071 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3072 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3074 static tree
3075 create_asan_shadow_var (tree var_decl,
3076 hash_map<tree, tree> &shadow_vars_mapping)
3078 tree *slot = shadow_vars_mapping.get (var_decl);
3079 if (slot == NULL)
3081 tree shadow_var = copy_node (var_decl);
3083 copy_body_data id;
3084 memset (&id, 0, sizeof (copy_body_data));
3085 id.src_fn = id.dst_fn = current_function_decl;
3086 copy_decl_for_dup_finish (&id, var_decl, shadow_var);
3088 DECL_ARTIFICIAL (shadow_var) = 1;
3089 DECL_IGNORED_P (shadow_var) = 1;
3090 DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
3091 gimple_add_tmp_var (shadow_var);
3093 shadow_vars_mapping.put (var_decl, shadow_var);
3094 return shadow_var;
3096 else
3097 return *slot;
3100 /* Expand ASAN_POISON ifn. */
3102 bool
3103 asan_expand_poison_ifn (gimple_stmt_iterator *iter,
3104 bool *need_commit_edge_insert,
3105 hash_map<tree, tree> &shadow_vars_mapping)
3107 gimple *g = gsi_stmt (*iter);
3108 tree poisoned_var = gimple_call_lhs (g);
3109 if (!poisoned_var || has_zero_uses (poisoned_var))
3111 gsi_remove (iter, true);
3112 return true;
3115 if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
3116 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
3117 create_tmp_var (TREE_TYPE (poisoned_var)));
3119 tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
3120 shadow_vars_mapping);
3122 bool recover_p;
3123 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3124 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3125 else
3126 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3127 tree size = DECL_SIZE_UNIT (shadow_var);
3128 gimple *poison_call
3129 = gimple_build_call_internal (IFN_ASAN_MARK, 3,
3130 build_int_cst (integer_type_node,
3131 ASAN_MARK_POISON),
3132 build_fold_addr_expr (shadow_var), size);
3134 gimple *use;
3135 imm_use_iterator imm_iter;
3136 FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
3138 if (is_gimple_debug (use))
3139 continue;
3141 int nargs;
3142 bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
3143 tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
3144 &nargs);
3146 gcall *call = gimple_build_call (fun, 1,
3147 build_fold_addr_expr (shadow_var));
3148 gimple_set_location (call, gimple_location (use));
3149 gimple *call_to_insert = call;
3151 /* The USE can be a gimple PHI node. If so, insert the call on
3152 all edges leading to the PHI node. */
3153 if (is_a <gphi *> (use))
3155 gphi *phi = dyn_cast<gphi *> (use);
3156 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
3157 if (gimple_phi_arg_def (phi, i) == poisoned_var)
3159 edge e = gimple_phi_arg_edge (phi, i);
3161 if (call_to_insert == NULL)
3162 call_to_insert = gimple_copy (call);
3164 gsi_insert_seq_on_edge (e, call_to_insert);
3165 *need_commit_edge_insert = true;
3166 call_to_insert = NULL;
3169 else
3171 gimple_stmt_iterator gsi = gsi_for_stmt (use);
3172 if (store_p)
3173 gsi_replace (&gsi, call, true);
3174 else
3175 gsi_insert_before (&gsi, call, GSI_NEW_STMT);
3179 SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
3180 SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
3181 gsi_replace (iter, poison_call, false);
3183 return true;
3186 /* Instrument the current function. */
3188 static unsigned int
3189 asan_instrument (void)
3191 if (shadow_ptr_types[0] == NULL_TREE)
3192 asan_init_shadow_ptr_types ();
3193 transform_statements ();
3194 return 0;
3197 static bool
3198 gate_asan (void)
3200 return sanitize_flags_p (SANITIZE_ADDRESS);
3203 namespace {
3205 const pass_data pass_data_asan =
3207 GIMPLE_PASS, /* type */
3208 "asan", /* name */
3209 OPTGROUP_NONE, /* optinfo_flags */
3210 TV_NONE, /* tv_id */
3211 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3212 0, /* properties_provided */
3213 0, /* properties_destroyed */
3214 0, /* todo_flags_start */
3215 TODO_update_ssa, /* todo_flags_finish */
3218 class pass_asan : public gimple_opt_pass
3220 public:
3221 pass_asan (gcc::context *ctxt)
3222 : gimple_opt_pass (pass_data_asan, ctxt)
3225 /* opt_pass methods: */
3226 opt_pass * clone () { return new pass_asan (m_ctxt); }
3227 virtual bool gate (function *) { return gate_asan (); }
3228 virtual unsigned int execute (function *) { return asan_instrument (); }
3230 }; // class pass_asan
3232 } // anon namespace
3234 gimple_opt_pass *
3235 make_pass_asan (gcc::context *ctxt)
3237 return new pass_asan (ctxt);
3240 namespace {
3242 const pass_data pass_data_asan_O0 =
3244 GIMPLE_PASS, /* type */
3245 "asan0", /* name */
3246 OPTGROUP_NONE, /* optinfo_flags */
3247 TV_NONE, /* tv_id */
3248 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3249 0, /* properties_provided */
3250 0, /* properties_destroyed */
3251 0, /* todo_flags_start */
3252 TODO_update_ssa, /* todo_flags_finish */
3255 class pass_asan_O0 : public gimple_opt_pass
3257 public:
3258 pass_asan_O0 (gcc::context *ctxt)
3259 : gimple_opt_pass (pass_data_asan_O0, ctxt)
3262 /* opt_pass methods: */
3263 virtual bool gate (function *) { return !optimize && gate_asan (); }
3264 virtual unsigned int execute (function *) { return asan_instrument (); }
3266 }; // class pass_asan_O0
3268 } // anon namespace
3270 gimple_opt_pass *
3271 make_pass_asan_O0 (gcc::context *ctxt)
3273 return new pass_asan_O0 (ctxt);
3276 #include "gt-asan.h"