Use base inequality for some vector alias checks
[official-gcc.git] / gcc / tree-ssa-tail-merge.c
bloba65ff31d900951c527ccf4f64c0415bb5639b278
1 /* Tail merging for gimple.
2 Copyright (C) 2011-2017 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Pass overview.
24 MOTIVATIONAL EXAMPLE
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
110 CONTEXT
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
157 IMPLEMENTATION
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
167 LIMITATIONS/TODO
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
179 PASS PLACEMENT
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
184 SWITCHES
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "backend.h"
192 #include "tree.h"
193 #include "gimple.h"
194 #include "cfghooks.h"
195 #include "tree-pass.h"
196 #include "ssa.h"
197 #include "fold-const.h"
198 #include "trans-mem.h"
199 #include "cfganal.h"
200 #include "cfgcleanup.h"
201 #include "gimple-iterator.h"
202 #include "tree-cfg.h"
203 #include "tree-into-ssa.h"
204 #include "params.h"
205 #include "tree-ssa-sccvn.h"
206 #include "cfgloop.h"
207 #include "tree-eh.h"
208 #include "tree-cfgcleanup.h"
210 const int ignore_edge_flags = EDGE_DFS_BACK | EDGE_EXECUTABLE;
212 /* Describes a group of bbs with the same successors. The successor bbs are
213 cached in succs, and the successor edge flags are cached in succ_flags.
214 If a bb has the EDGE_TRUE/FALSE_VALUE flags swapped compared to succ_flags,
215 it's marked in inverse.
216 Additionally, the hash value for the struct is cached in hashval, and
217 in_worklist indicates whether it's currently part of worklist. */
219 struct same_succ : pointer_hash <same_succ>
221 /* The bbs that have the same successor bbs. */
222 bitmap bbs;
223 /* The successor bbs. */
224 bitmap succs;
225 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
226 bb. */
227 bitmap inverse;
228 /* The edge flags for each of the successor bbs. */
229 vec<int> succ_flags;
230 /* Indicates whether the struct is currently in the worklist. */
231 bool in_worklist;
232 /* The hash value of the struct. */
233 hashval_t hashval;
235 /* hash_table support. */
236 static inline hashval_t hash (const same_succ *);
237 static int equal (const same_succ *, const same_succ *);
238 static void remove (same_succ *);
241 /* hash routine for hash_table support, returns hashval of E. */
243 inline hashval_t
244 same_succ::hash (const same_succ *e)
246 return e->hashval;
249 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
251 struct bb_cluster
253 /* The bbs in the cluster. */
254 bitmap bbs;
255 /* The preds of the bbs in the cluster. */
256 bitmap preds;
257 /* Index in all_clusters vector. */
258 int index;
259 /* The bb to replace the cluster with. */
260 basic_block rep_bb;
263 /* Per bb-info. */
265 struct aux_bb_info
267 /* The number of non-debug statements in the bb. */
268 int size;
269 /* The same_succ that this bb is a member of. */
270 same_succ *bb_same_succ;
271 /* The cluster that this bb is a member of. */
272 bb_cluster *cluster;
273 /* The vop state at the exit of a bb. This is shortlived data, used to
274 communicate data between update_block_by and update_vuses. */
275 tree vop_at_exit;
276 /* The bb that either contains or is dominated by the dependencies of the
277 bb. */
278 basic_block dep_bb;
281 /* Macros to access the fields of struct aux_bb_info. */
283 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
284 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
285 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
286 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
287 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
289 /* Returns true if the only effect a statement STMT has, is to define locally
290 used SSA_NAMEs. */
292 static bool
293 stmt_local_def (gimple *stmt)
295 basic_block bb, def_bb;
296 imm_use_iterator iter;
297 use_operand_p use_p;
298 tree val;
299 def_operand_p def_p;
301 if (gimple_vdef (stmt) != NULL_TREE
302 || gimple_has_side_effects (stmt)
303 || gimple_could_trap_p_1 (stmt, false, false)
304 || gimple_vuse (stmt) != NULL_TREE)
305 return false;
307 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_DEF);
308 if (def_p == NULL)
309 return false;
311 val = DEF_FROM_PTR (def_p);
312 if (val == NULL_TREE || TREE_CODE (val) != SSA_NAME)
313 return false;
315 def_bb = gimple_bb (stmt);
317 FOR_EACH_IMM_USE_FAST (use_p, iter, val)
319 if (is_gimple_debug (USE_STMT (use_p)))
320 continue;
321 bb = gimple_bb (USE_STMT (use_p));
322 if (bb == def_bb)
323 continue;
325 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI
326 && EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src == def_bb)
327 continue;
329 return false;
332 return true;
335 /* Let GSI skip forwards over local defs. */
337 static void
338 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
340 gimple *stmt;
342 while (true)
344 if (gsi_end_p (*gsi))
345 return;
346 stmt = gsi_stmt (*gsi);
347 if (!stmt_local_def (stmt))
348 return;
349 gsi_next_nondebug (gsi);
353 /* VAL1 and VAL2 are either:
354 - uses in BB1 and BB2, or
355 - phi alternatives for BB1 and BB2.
356 Return true if the uses have the same gvn value. */
358 static bool
359 gvn_uses_equal (tree val1, tree val2)
361 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
363 if (val1 == val2)
364 return true;
366 if (vn_valueize (val1) != vn_valueize (val2))
367 return false;
369 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
370 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
373 /* Prints E to FILE. */
375 static void
376 same_succ_print (FILE *file, const same_succ *e)
378 unsigned int i;
379 bitmap_print (file, e->bbs, "bbs:", "\n");
380 bitmap_print (file, e->succs, "succs:", "\n");
381 bitmap_print (file, e->inverse, "inverse:", "\n");
382 fprintf (file, "flags:");
383 for (i = 0; i < e->succ_flags.length (); ++i)
384 fprintf (file, " %x", e->succ_flags[i]);
385 fprintf (file, "\n");
388 /* Prints same_succ VE to VFILE. */
390 inline int
391 ssa_same_succ_print_traverse (same_succ **pe, FILE *file)
393 const same_succ *e = *pe;
394 same_succ_print (file, e);
395 return 1;
398 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
400 static void
401 update_dep_bb (basic_block use_bb, tree val)
403 basic_block dep_bb;
405 /* Not a dep. */
406 if (TREE_CODE (val) != SSA_NAME)
407 return;
409 /* Skip use of global def. */
410 if (SSA_NAME_IS_DEFAULT_DEF (val))
411 return;
413 /* Skip use of local def. */
414 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
415 if (dep_bb == use_bb)
416 return;
418 if (BB_DEP_BB (use_bb) == NULL
419 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
420 BB_DEP_BB (use_bb) = dep_bb;
423 /* Update BB_DEP_BB, given the dependencies in STMT. */
425 static void
426 stmt_update_dep_bb (gimple *stmt)
428 ssa_op_iter iter;
429 use_operand_p use;
431 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
432 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
435 /* Calculates hash value for same_succ VE. */
437 static hashval_t
438 same_succ_hash (const same_succ *e)
440 inchash::hash hstate (bitmap_hash (e->succs));
441 int flags;
442 unsigned int i;
443 unsigned int first = bitmap_first_set_bit (e->bbs);
444 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, first);
445 int size = 0;
446 gimple *stmt;
447 tree arg;
448 unsigned int s;
449 bitmap_iterator bs;
451 for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
452 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
454 stmt = gsi_stmt (gsi);
455 stmt_update_dep_bb (stmt);
456 if (stmt_local_def (stmt))
457 continue;
458 size++;
460 hstate.add_int (gimple_code (stmt));
461 if (is_gimple_assign (stmt))
462 hstate.add_int (gimple_assign_rhs_code (stmt));
463 if (!is_gimple_call (stmt))
464 continue;
465 if (gimple_call_internal_p (stmt))
466 hstate.add_int (gimple_call_internal_fn (stmt));
467 else
469 inchash::add_expr (gimple_call_fn (stmt), hstate);
470 if (gimple_call_chain (stmt))
471 inchash::add_expr (gimple_call_chain (stmt), hstate);
473 for (i = 0; i < gimple_call_num_args (stmt); i++)
475 arg = gimple_call_arg (stmt, i);
476 arg = vn_valueize (arg);
477 inchash::add_expr (arg, hstate);
481 hstate.add_int (size);
482 BB_SIZE (bb) = size;
484 hstate.add_int (bb->loop_father->num);
486 for (i = 0; i < e->succ_flags.length (); ++i)
488 flags = e->succ_flags[i];
489 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
490 hstate.add_int (flags);
493 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
495 int n = find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, s))->dest_idx;
496 for (gphi_iterator gsi = gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun, s));
497 !gsi_end_p (gsi);
498 gsi_next (&gsi))
500 gphi *phi = gsi.phi ();
501 tree lhs = gimple_phi_result (phi);
502 tree val = gimple_phi_arg_def (phi, n);
504 if (virtual_operand_p (lhs))
505 continue;
506 update_dep_bb (bb, val);
510 return hstate.end ();
513 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
514 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
515 the other edge flags. */
517 static bool
518 inverse_flags (const same_succ *e1, const same_succ *e2)
520 int f1a, f1b, f2a, f2b;
521 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
523 if (e1->succ_flags.length () != 2)
524 return false;
526 f1a = e1->succ_flags[0];
527 f1b = e1->succ_flags[1];
528 f2a = e2->succ_flags[0];
529 f2b = e2->succ_flags[1];
531 if (f1a == f2a && f1b == f2b)
532 return false;
534 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
537 /* Compares SAME_SUCCs E1 and E2. */
540 same_succ::equal (const same_succ *e1, const same_succ *e2)
542 unsigned int i, first1, first2;
543 gimple_stmt_iterator gsi1, gsi2;
544 gimple *s1, *s2;
545 basic_block bb1, bb2;
547 if (e1 == e2)
548 return 1;
550 if (e1->hashval != e2->hashval)
551 return 0;
553 if (e1->succ_flags.length () != e2->succ_flags.length ())
554 return 0;
556 if (!bitmap_equal_p (e1->succs, e2->succs))
557 return 0;
559 if (!inverse_flags (e1, e2))
561 for (i = 0; i < e1->succ_flags.length (); ++i)
562 if (e1->succ_flags[i] != e2->succ_flags[i])
563 return 0;
566 first1 = bitmap_first_set_bit (e1->bbs);
567 first2 = bitmap_first_set_bit (e2->bbs);
569 bb1 = BASIC_BLOCK_FOR_FN (cfun, first1);
570 bb2 = BASIC_BLOCK_FOR_FN (cfun, first2);
572 if (BB_SIZE (bb1) != BB_SIZE (bb2))
573 return 0;
575 if (bb1->loop_father != bb2->loop_father)
576 return 0;
578 gsi1 = gsi_start_nondebug_bb (bb1);
579 gsi2 = gsi_start_nondebug_bb (bb2);
580 gsi_advance_fw_nondebug_nonlocal (&gsi1);
581 gsi_advance_fw_nondebug_nonlocal (&gsi2);
582 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
584 s1 = gsi_stmt (gsi1);
585 s2 = gsi_stmt (gsi2);
586 if (gimple_code (s1) != gimple_code (s2))
587 return 0;
588 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
589 return 0;
590 gsi_next_nondebug (&gsi1);
591 gsi_next_nondebug (&gsi2);
592 gsi_advance_fw_nondebug_nonlocal (&gsi1);
593 gsi_advance_fw_nondebug_nonlocal (&gsi2);
596 return 1;
599 /* Alloc and init a new SAME_SUCC. */
601 static same_succ *
602 same_succ_alloc (void)
604 same_succ *same = XNEW (struct same_succ);
606 same->bbs = BITMAP_ALLOC (NULL);
607 same->succs = BITMAP_ALLOC (NULL);
608 same->inverse = BITMAP_ALLOC (NULL);
609 same->succ_flags.create (10);
610 same->in_worklist = false;
612 return same;
615 /* Delete same_succ E. */
617 void
618 same_succ::remove (same_succ *e)
620 BITMAP_FREE (e->bbs);
621 BITMAP_FREE (e->succs);
622 BITMAP_FREE (e->inverse);
623 e->succ_flags.release ();
625 XDELETE (e);
628 /* Reset same_succ SAME. */
630 static void
631 same_succ_reset (same_succ *same)
633 bitmap_clear (same->bbs);
634 bitmap_clear (same->succs);
635 bitmap_clear (same->inverse);
636 same->succ_flags.truncate (0);
639 static hash_table<same_succ> *same_succ_htab;
641 /* Array that is used to store the edge flags for a successor. */
643 static int *same_succ_edge_flags;
645 /* Bitmap that is used to mark bbs that are recently deleted. */
647 static bitmap deleted_bbs;
649 /* Bitmap that is used to mark predecessors of bbs that are
650 deleted. */
652 static bitmap deleted_bb_preds;
654 /* Prints same_succ_htab to stderr. */
656 extern void debug_same_succ (void);
657 DEBUG_FUNCTION void
658 debug_same_succ ( void)
660 same_succ_htab->traverse <FILE *, ssa_same_succ_print_traverse> (stderr);
664 /* Vector of bbs to process. */
666 static vec<same_succ *> worklist;
668 /* Prints worklist to FILE. */
670 static void
671 print_worklist (FILE *file)
673 unsigned int i;
674 for (i = 0; i < worklist.length (); ++i)
675 same_succ_print (file, worklist[i]);
678 /* Adds SAME to worklist. */
680 static void
681 add_to_worklist (same_succ *same)
683 if (same->in_worklist)
684 return;
686 if (bitmap_count_bits (same->bbs) < 2)
687 return;
689 same->in_worklist = true;
690 worklist.safe_push (same);
693 /* Add BB to same_succ_htab. */
695 static void
696 find_same_succ_bb (basic_block bb, same_succ **same_p)
698 unsigned int j;
699 bitmap_iterator bj;
700 same_succ *same = *same_p;
701 same_succ **slot;
702 edge_iterator ei;
703 edge e;
705 if (bb == NULL)
706 return;
707 bitmap_set_bit (same->bbs, bb->index);
708 FOR_EACH_EDGE (e, ei, bb->succs)
710 int index = e->dest->index;
711 bitmap_set_bit (same->succs, index);
712 same_succ_edge_flags[index] = (e->flags & ~ignore_edge_flags);
714 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
715 same->succ_flags.safe_push (same_succ_edge_flags[j]);
717 same->hashval = same_succ_hash (same);
719 slot = same_succ_htab->find_slot_with_hash (same, same->hashval, INSERT);
720 if (*slot == NULL)
722 *slot = same;
723 BB_SAME_SUCC (bb) = same;
724 add_to_worklist (same);
725 *same_p = NULL;
727 else
729 bitmap_set_bit ((*slot)->bbs, bb->index);
730 BB_SAME_SUCC (bb) = *slot;
731 add_to_worklist (*slot);
732 if (inverse_flags (same, *slot))
733 bitmap_set_bit ((*slot)->inverse, bb->index);
734 same_succ_reset (same);
738 /* Find bbs with same successors. */
740 static void
741 find_same_succ (void)
743 same_succ *same = same_succ_alloc ();
744 basic_block bb;
746 FOR_EACH_BB_FN (bb, cfun)
748 find_same_succ_bb (bb, &same);
749 if (same == NULL)
750 same = same_succ_alloc ();
753 same_succ::remove (same);
756 /* Initializes worklist administration. */
758 static void
759 init_worklist (void)
761 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
762 same_succ_htab = new hash_table<same_succ> (n_basic_blocks_for_fn (cfun));
763 same_succ_edge_flags = XCNEWVEC (int, last_basic_block_for_fn (cfun));
764 deleted_bbs = BITMAP_ALLOC (NULL);
765 deleted_bb_preds = BITMAP_ALLOC (NULL);
766 worklist.create (n_basic_blocks_for_fn (cfun));
767 find_same_succ ();
769 if (dump_file && (dump_flags & TDF_DETAILS))
771 fprintf (dump_file, "initial worklist:\n");
772 print_worklist (dump_file);
776 /* Deletes worklist administration. */
778 static void
779 delete_worklist (void)
781 free_aux_for_blocks ();
782 delete same_succ_htab;
783 same_succ_htab = NULL;
784 XDELETEVEC (same_succ_edge_flags);
785 same_succ_edge_flags = NULL;
786 BITMAP_FREE (deleted_bbs);
787 BITMAP_FREE (deleted_bb_preds);
788 worklist.release ();
791 /* Mark BB as deleted, and mark its predecessors. */
793 static void
794 mark_basic_block_deleted (basic_block bb)
796 edge e;
797 edge_iterator ei;
799 bitmap_set_bit (deleted_bbs, bb->index);
801 FOR_EACH_EDGE (e, ei, bb->preds)
802 bitmap_set_bit (deleted_bb_preds, e->src->index);
805 /* Removes BB from its corresponding same_succ. */
807 static void
808 same_succ_flush_bb (basic_block bb)
810 same_succ *same = BB_SAME_SUCC (bb);
811 if (! same)
812 return;
814 BB_SAME_SUCC (bb) = NULL;
815 if (bitmap_single_bit_set_p (same->bbs))
816 same_succ_htab->remove_elt_with_hash (same, same->hashval);
817 else
818 bitmap_clear_bit (same->bbs, bb->index);
821 /* Removes all bbs in BBS from their corresponding same_succ. */
823 static void
824 same_succ_flush_bbs (bitmap bbs)
826 unsigned int i;
827 bitmap_iterator bi;
829 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
830 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun, i));
833 /* Release the last vdef in BB, either normal or phi result. */
835 static void
836 release_last_vdef (basic_block bb)
838 for (gimple_stmt_iterator i = gsi_last_bb (bb); !gsi_end_p (i);
839 gsi_prev_nondebug (&i))
841 gimple *stmt = gsi_stmt (i);
842 if (gimple_vdef (stmt) == NULL_TREE)
843 continue;
845 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
846 return;
849 for (gphi_iterator i = gsi_start_phis (bb); !gsi_end_p (i);
850 gsi_next (&i))
852 gphi *phi = i.phi ();
853 tree res = gimple_phi_result (phi);
855 if (!virtual_operand_p (res))
856 continue;
858 mark_virtual_phi_result_for_renaming (phi);
859 return;
863 /* For deleted_bb_preds, find bbs with same successors. */
865 static void
866 update_worklist (void)
868 unsigned int i;
869 bitmap_iterator bi;
870 basic_block bb;
871 same_succ *same;
873 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
874 bitmap_clear (deleted_bbs);
876 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
877 same_succ_flush_bbs (deleted_bb_preds);
879 same = same_succ_alloc ();
880 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
882 bb = BASIC_BLOCK_FOR_FN (cfun, i);
883 gcc_assert (bb != NULL);
884 find_same_succ_bb (bb, &same);
885 if (same == NULL)
886 same = same_succ_alloc ();
888 same_succ::remove (same);
889 bitmap_clear (deleted_bb_preds);
892 /* Prints cluster C to FILE. */
894 static void
895 print_cluster (FILE *file, bb_cluster *c)
897 if (c == NULL)
898 return;
899 bitmap_print (file, c->bbs, "bbs:", "\n");
900 bitmap_print (file, c->preds, "preds:", "\n");
903 /* Prints cluster C to stderr. */
905 extern void debug_cluster (bb_cluster *);
906 DEBUG_FUNCTION void
907 debug_cluster (bb_cluster *c)
909 print_cluster (stderr, c);
912 /* Update C->rep_bb, given that BB is added to the cluster. */
914 static void
915 update_rep_bb (bb_cluster *c, basic_block bb)
917 /* Initial. */
918 if (c->rep_bb == NULL)
920 c->rep_bb = bb;
921 return;
924 /* Current needs no deps, keep it. */
925 if (BB_DEP_BB (c->rep_bb) == NULL)
926 return;
928 /* Bb needs no deps, change rep_bb. */
929 if (BB_DEP_BB (bb) == NULL)
931 c->rep_bb = bb;
932 return;
935 /* Bb needs last deps earlier than current, change rep_bb. A potential
936 problem with this, is that the first deps might also be earlier, which
937 would mean we prefer longer lifetimes for the deps. To be able to check
938 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
939 BB_DEP_BB, which is really BB_LAST_DEP_BB.
940 The benefit of choosing the bb with last deps earlier, is that it can
941 potentially be used as replacement for more bbs. */
942 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
943 c->rep_bb = bb;
946 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
948 static void
949 add_bb_to_cluster (bb_cluster *c, basic_block bb)
951 edge e;
952 edge_iterator ei;
954 bitmap_set_bit (c->bbs, bb->index);
956 FOR_EACH_EDGE (e, ei, bb->preds)
957 bitmap_set_bit (c->preds, e->src->index);
959 update_rep_bb (c, bb);
962 /* Allocate and init new cluster. */
964 static bb_cluster *
965 new_cluster (void)
967 bb_cluster *c;
968 c = XCNEW (bb_cluster);
969 c->bbs = BITMAP_ALLOC (NULL);
970 c->preds = BITMAP_ALLOC (NULL);
971 c->rep_bb = NULL;
972 return c;
975 /* Delete clusters. */
977 static void
978 delete_cluster (bb_cluster *c)
980 if (c == NULL)
981 return;
982 BITMAP_FREE (c->bbs);
983 BITMAP_FREE (c->preds);
984 XDELETE (c);
988 /* Array that contains all clusters. */
990 static vec<bb_cluster *> all_clusters;
992 /* Allocate all cluster vectors. */
994 static void
995 alloc_cluster_vectors (void)
997 all_clusters.create (n_basic_blocks_for_fn (cfun));
1000 /* Reset all cluster vectors. */
1002 static void
1003 reset_cluster_vectors (void)
1005 unsigned int i;
1006 basic_block bb;
1007 for (i = 0; i < all_clusters.length (); ++i)
1008 delete_cluster (all_clusters[i]);
1009 all_clusters.truncate (0);
1010 FOR_EACH_BB_FN (bb, cfun)
1011 BB_CLUSTER (bb) = NULL;
1014 /* Delete all cluster vectors. */
1016 static void
1017 delete_cluster_vectors (void)
1019 unsigned int i;
1020 for (i = 0; i < all_clusters.length (); ++i)
1021 delete_cluster (all_clusters[i]);
1022 all_clusters.release ();
1025 /* Merge cluster C2 into C1. */
1027 static void
1028 merge_clusters (bb_cluster *c1, bb_cluster *c2)
1030 bitmap_ior_into (c1->bbs, c2->bbs);
1031 bitmap_ior_into (c1->preds, c2->preds);
1034 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1035 all_clusters, or merge c with existing cluster. */
1037 static void
1038 set_cluster (basic_block bb1, basic_block bb2)
1040 basic_block merge_bb, other_bb;
1041 bb_cluster *merge, *old, *c;
1043 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1045 c = new_cluster ();
1046 add_bb_to_cluster (c, bb1);
1047 add_bb_to_cluster (c, bb2);
1048 BB_CLUSTER (bb1) = c;
1049 BB_CLUSTER (bb2) = c;
1050 c->index = all_clusters.length ();
1051 all_clusters.safe_push (c);
1053 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1055 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1056 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1057 merge = BB_CLUSTER (merge_bb);
1058 add_bb_to_cluster (merge, other_bb);
1059 BB_CLUSTER (other_bb) = merge;
1061 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1063 unsigned int i;
1064 bitmap_iterator bi;
1066 old = BB_CLUSTER (bb2);
1067 merge = BB_CLUSTER (bb1);
1068 merge_clusters (merge, old);
1069 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1070 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun, i)) = merge;
1071 all_clusters[old->index] = NULL;
1072 update_rep_bb (merge, old->rep_bb);
1073 delete_cluster (old);
1075 else
1076 gcc_unreachable ();
1079 /* Return true if gimple operands T1 and T2 have the same value. */
1081 static bool
1082 gimple_operand_equal_value_p (tree t1, tree t2)
1084 if (t1 == t2)
1085 return true;
1087 if (t1 == NULL_TREE
1088 || t2 == NULL_TREE)
1089 return false;
1091 if (operand_equal_p (t1, t2, OEP_MATCH_SIDE_EFFECTS))
1092 return true;
1094 return gvn_uses_equal (t1, t2);
1097 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1098 gimple_bb (s2) are members of SAME_SUCC. */
1100 static bool
1101 gimple_equal_p (same_succ *same_succ, gimple *s1, gimple *s2)
1103 unsigned int i;
1104 tree lhs1, lhs2;
1105 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1106 tree t1, t2;
1107 bool inv_cond;
1108 enum tree_code code1, code2;
1110 if (gimple_code (s1) != gimple_code (s2))
1111 return false;
1113 switch (gimple_code (s1))
1115 case GIMPLE_CALL:
1116 if (!gimple_call_same_target_p (s1, s2))
1117 return false;
1119 t1 = gimple_call_chain (s1);
1120 t2 = gimple_call_chain (s2);
1121 if (!gimple_operand_equal_value_p (t1, t2))
1122 return false;
1124 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1125 return false;
1127 for (i = 0; i < gimple_call_num_args (s1); ++i)
1129 t1 = gimple_call_arg (s1, i);
1130 t2 = gimple_call_arg (s2, i);
1131 if (!gimple_operand_equal_value_p (t1, t2))
1132 return false;
1135 lhs1 = gimple_get_lhs (s1);
1136 lhs2 = gimple_get_lhs (s2);
1137 if (lhs1 == NULL_TREE && lhs2 == NULL_TREE)
1138 return true;
1139 if (lhs1 == NULL_TREE || lhs2 == NULL_TREE)
1140 return false;
1141 if (TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME)
1142 return vn_valueize (lhs1) == vn_valueize (lhs2);
1143 return operand_equal_p (lhs1, lhs2, 0);
1145 case GIMPLE_ASSIGN:
1146 lhs1 = gimple_get_lhs (s1);
1147 lhs2 = gimple_get_lhs (s2);
1148 if (TREE_CODE (lhs1) != SSA_NAME
1149 && TREE_CODE (lhs2) != SSA_NAME)
1150 return (operand_equal_p (lhs1, lhs2, 0)
1151 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1),
1152 gimple_assign_rhs1 (s2)));
1153 else if (TREE_CODE (lhs1) == SSA_NAME
1154 && TREE_CODE (lhs2) == SSA_NAME)
1155 return operand_equal_p (gimple_assign_rhs1 (s1),
1156 gimple_assign_rhs1 (s2), 0);
1157 return false;
1159 case GIMPLE_COND:
1160 t1 = gimple_cond_lhs (s1);
1161 t2 = gimple_cond_lhs (s2);
1162 if (!gimple_operand_equal_value_p (t1, t2))
1163 return false;
1165 t1 = gimple_cond_rhs (s1);
1166 t2 = gimple_cond_rhs (s2);
1167 if (!gimple_operand_equal_value_p (t1, t2))
1168 return false;
1170 code1 = gimple_expr_code (s1);
1171 code2 = gimple_expr_code (s2);
1172 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1173 != bitmap_bit_p (same_succ->inverse, bb2->index));
1174 if (inv_cond)
1176 bool honor_nans = HONOR_NANS (t1);
1177 code2 = invert_tree_comparison (code2, honor_nans);
1179 return code1 == code2;
1181 default:
1182 return false;
1186 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1187 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1188 processed statements. */
1190 static void
1191 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi, tree *vuse,
1192 bool *vuse_escaped)
1194 gimple *stmt;
1195 tree lvuse;
1197 while (true)
1199 if (gsi_end_p (*gsi))
1200 return;
1201 stmt = gsi_stmt (*gsi);
1203 lvuse = gimple_vuse (stmt);
1204 if (lvuse != NULL_TREE)
1206 *vuse = lvuse;
1207 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_DEF))
1208 *vuse_escaped = true;
1211 if (!stmt_local_def (stmt))
1212 return;
1213 gsi_prev_nondebug (gsi);
1217 /* Return true if equal (in the sense of gimple_equal_p) statements STMT1 and
1218 STMT2 are allowed to be merged. */
1220 static bool
1221 merge_stmts_p (gimple *stmt1, gimple *stmt2)
1223 /* What could be better than this here is to blacklist the bb
1224 containing the stmt, when encountering the stmt f.i. in
1225 same_succ_hash. */
1226 if (is_tm_ending (stmt1))
1227 return false;
1229 /* Verify EH landing pads. */
1230 if (lookup_stmt_eh_lp_fn (cfun, stmt1) != lookup_stmt_eh_lp_fn (cfun, stmt2))
1231 return false;
1233 if (is_gimple_call (stmt1)
1234 && gimple_call_internal_p (stmt1))
1235 switch (gimple_call_internal_fn (stmt1))
1237 case IFN_UBSAN_NULL:
1238 case IFN_UBSAN_BOUNDS:
1239 case IFN_UBSAN_VPTR:
1240 case IFN_UBSAN_CHECK_ADD:
1241 case IFN_UBSAN_CHECK_SUB:
1242 case IFN_UBSAN_CHECK_MUL:
1243 case IFN_UBSAN_OBJECT_SIZE:
1244 case IFN_UBSAN_PTR:
1245 case IFN_ASAN_CHECK:
1246 /* For these internal functions, gimple_location is an implicit
1247 parameter, which will be used explicitly after expansion.
1248 Merging these statements may cause confusing line numbers in
1249 sanitizer messages. */
1250 return gimple_location (stmt1) == gimple_location (stmt2);
1251 default:
1252 break;
1255 return true;
1258 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1259 clusters them. */
1261 static void
1262 find_duplicate (same_succ *same_succ, basic_block bb1, basic_block bb2)
1264 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1265 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1266 tree vuse1 = NULL_TREE, vuse2 = NULL_TREE;
1267 bool vuse_escaped = false;
1269 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1270 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1272 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1274 gimple *stmt1 = gsi_stmt (gsi1);
1275 gimple *stmt2 = gsi_stmt (gsi2);
1277 if (gimple_code (stmt1) == GIMPLE_LABEL
1278 && gimple_code (stmt2) == GIMPLE_LABEL)
1279 break;
1281 if (!gimple_equal_p (same_succ, stmt1, stmt2))
1282 return;
1284 if (!merge_stmts_p (stmt1, stmt2))
1285 return;
1287 gsi_prev_nondebug (&gsi1);
1288 gsi_prev_nondebug (&gsi2);
1289 gsi_advance_bw_nondebug_nonlocal (&gsi1, &vuse1, &vuse_escaped);
1290 gsi_advance_bw_nondebug_nonlocal (&gsi2, &vuse2, &vuse_escaped);
1293 while (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1295 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1)));
1296 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
1297 return;
1298 gsi_prev (&gsi1);
1300 while (!gsi_end_p (gsi2) && gimple_code (gsi_stmt (gsi2)) == GIMPLE_LABEL)
1302 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi2)));
1303 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
1304 return;
1305 gsi_prev (&gsi2);
1307 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1308 return;
1310 /* If the incoming vuses are not the same, and the vuse escaped into an
1311 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1312 which potentially means the semantics of one of the blocks will be changed.
1313 TODO: make this check more precise. */
1314 if (vuse_escaped && vuse1 != vuse2)
1315 return;
1317 if (dump_file)
1318 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1319 bb1->index, bb2->index);
1321 set_cluster (bb1, bb2);
1324 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1325 E2 are equal. */
1327 static bool
1328 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1330 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1331 gphi_iterator gsi;
1333 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1335 gphi *phi = gsi.phi ();
1336 tree lhs = gimple_phi_result (phi);
1337 tree val1 = gimple_phi_arg_def (phi, n1);
1338 tree val2 = gimple_phi_arg_def (phi, n2);
1340 if (virtual_operand_p (lhs))
1341 continue;
1343 if (operand_equal_for_phi_arg_p (val1, val2))
1344 continue;
1345 if (gvn_uses_equal (val1, val2))
1346 continue;
1348 return false;
1351 return true;
1354 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1355 phi alternatives for BB1 and BB2 are equal. */
1357 static bool
1358 same_phi_alternatives (same_succ *same_succ, basic_block bb1, basic_block bb2)
1360 unsigned int s;
1361 bitmap_iterator bs;
1362 edge e1, e2;
1363 basic_block succ;
1365 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1367 succ = BASIC_BLOCK_FOR_FN (cfun, s);
1368 e1 = find_edge (bb1, succ);
1369 e2 = find_edge (bb2, succ);
1370 if (e1->flags & EDGE_COMPLEX
1371 || e2->flags & EDGE_COMPLEX)
1372 return false;
1374 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1375 the same value. */
1376 if (!same_phi_alternatives_1 (succ, e1, e2))
1377 return false;
1380 return true;
1383 /* Return true if BB has non-vop phis. */
1385 static bool
1386 bb_has_non_vop_phi (basic_block bb)
1388 gimple_seq phis = phi_nodes (bb);
1389 gimple *phi;
1391 if (phis == NULL)
1392 return false;
1394 if (!gimple_seq_singleton_p (phis))
1395 return true;
1397 phi = gimple_seq_first_stmt (phis);
1398 return !virtual_operand_p (gimple_phi_result (phi));
1401 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1402 invariant that uses in FROM are dominates by their defs. */
1404 static bool
1405 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1407 basic_block cd, dep_bb = BB_DEP_BB (to);
1408 edge_iterator ei;
1409 edge e;
1411 if (dep_bb == NULL)
1412 return true;
1414 bitmap from_preds = BITMAP_ALLOC (NULL);
1415 FOR_EACH_EDGE (e, ei, from->preds)
1416 bitmap_set_bit (from_preds, e->src->index);
1417 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1418 BITMAP_FREE (from_preds);
1420 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1423 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1424 replacement bb) and vice versa maintains the invariant that uses in the
1425 replacement are dominates by their defs. */
1427 static bool
1428 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1430 if (BB_CLUSTER (bb1) != NULL)
1431 bb1 = BB_CLUSTER (bb1)->rep_bb;
1433 if (BB_CLUSTER (bb2) != NULL)
1434 bb2 = BB_CLUSTER (bb2)->rep_bb;
1436 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1437 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1440 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1442 static void
1443 find_clusters_1 (same_succ *same_succ)
1445 basic_block bb1, bb2;
1446 unsigned int i, j;
1447 bitmap_iterator bi, bj;
1448 int nr_comparisons;
1449 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1451 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1453 bb1 = BASIC_BLOCK_FOR_FN (cfun, i);
1455 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1456 phi-nodes in bb1 and bb2, with the same alternatives for the same
1457 preds. */
1458 if (bb_has_non_vop_phi (bb1) || bb_has_eh_pred (bb1))
1459 continue;
1461 nr_comparisons = 0;
1462 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1464 bb2 = BASIC_BLOCK_FOR_FN (cfun, j);
1466 if (bb_has_non_vop_phi (bb2) || bb_has_eh_pred (bb2))
1467 continue;
1469 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1470 continue;
1472 /* Limit quadratic behavior. */
1473 nr_comparisons++;
1474 if (nr_comparisons > max_comparisons)
1475 break;
1477 /* This is a conservative dependency check. We could test more
1478 precise for allowed replacement direction. */
1479 if (!deps_ok_for_redirect (bb1, bb2))
1480 continue;
1482 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1483 continue;
1485 find_duplicate (same_succ, bb1, bb2);
1490 /* Find clusters of bbs which can be merged. */
1492 static void
1493 find_clusters (void)
1495 same_succ *same;
1497 while (!worklist.is_empty ())
1499 same = worklist.pop ();
1500 same->in_worklist = false;
1501 if (dump_file && (dump_flags & TDF_DETAILS))
1503 fprintf (dump_file, "processing worklist entry\n");
1504 same_succ_print (dump_file, same);
1506 find_clusters_1 (same);
1510 /* Returns the vop phi of BB, if any. */
1512 static gphi *
1513 vop_phi (basic_block bb)
1515 gphi *stmt;
1516 gphi_iterator gsi;
1517 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1519 stmt = gsi.phi ();
1520 if (! virtual_operand_p (gimple_phi_result (stmt)))
1521 continue;
1522 return stmt;
1524 return NULL;
1527 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1529 static void
1530 replace_block_by (basic_block bb1, basic_block bb2)
1532 edge pred_edge;
1533 edge e1, e2;
1534 edge_iterator ei;
1535 unsigned int i;
1536 gphi *bb2_phi;
1538 bb2_phi = vop_phi (bb2);
1540 /* Mark the basic block as deleted. */
1541 mark_basic_block_deleted (bb1);
1543 /* Redirect the incoming edges of bb1 to bb2. */
1544 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1546 pred_edge = EDGE_PRED (bb1, i - 1);
1547 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1548 gcc_assert (pred_edge != NULL);
1550 if (bb2_phi == NULL)
1551 continue;
1553 /* The phi might have run out of capacity when the redirect added an
1554 argument, which means it could have been replaced. Refresh it. */
1555 bb2_phi = vop_phi (bb2);
1557 add_phi_arg (bb2_phi, SSA_NAME_VAR (gimple_phi_result (bb2_phi)),
1558 pred_edge, UNKNOWN_LOCATION);
1561 bb2->count += bb1->count;
1563 /* Merge the outgoing edge counts from bb1 onto bb2. */
1564 profile_count out_sum = profile_count::zero ();
1565 int out_freq_sum = 0;
1567 /* Recompute the edge probabilities from the new merged edge count.
1568 Use the sum of the new merged edge counts computed above instead
1569 of bb2's merged count, in case there are profile count insanities
1570 making the bb count inconsistent with the edge weights. */
1571 FOR_EACH_EDGE (e1, ei, bb1->succs)
1573 if (e1->count.initialized_p ())
1574 out_sum += e1->count;
1575 out_freq_sum += EDGE_FREQUENCY (e1);
1577 FOR_EACH_EDGE (e1, ei, bb2->succs)
1579 if (e1->count.initialized_p ())
1580 out_sum += e1->count;
1581 out_freq_sum += EDGE_FREQUENCY (e1);
1584 FOR_EACH_EDGE (e1, ei, bb1->succs)
1586 e2 = find_edge (bb2, e1->dest);
1587 gcc_assert (e2);
1588 e2->count += e1->count;
1589 if (out_sum > 0 && e2->count.initialized_p ())
1591 e2->probability = e2->count.probability_in (bb2->count);
1593 else if (bb1->frequency && bb2->frequency)
1594 e2->probability = e1->probability;
1595 else if (bb2->frequency && !bb1->frequency)
1597 else if (out_freq_sum)
1598 e2->probability = profile_probability::from_reg_br_prob_base
1599 (GCOV_COMPUTE_SCALE (EDGE_FREQUENCY (e1)
1600 + EDGE_FREQUENCY (e2),
1601 out_freq_sum));
1602 out_sum += e2->count;
1604 bb2->frequency += bb1->frequency;
1605 if (bb2->frequency > BB_FREQ_MAX)
1606 bb2->frequency = BB_FREQ_MAX;
1608 /* Move over any user labels from bb1 after the bb2 labels. */
1609 gimple_stmt_iterator gsi1 = gsi_start_bb (bb1);
1610 if (!gsi_end_p (gsi1) && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1612 gimple_stmt_iterator gsi2 = gsi_after_labels (bb2);
1613 while (!gsi_end_p (gsi1)
1614 && gimple_code (gsi_stmt (gsi1)) == GIMPLE_LABEL)
1616 tree label = gimple_label_label (as_a <glabel *> (gsi_stmt (gsi1)));
1617 gcc_assert (!DECL_NONLOCAL (label) && !FORCED_LABEL (label));
1618 if (DECL_ARTIFICIAL (label))
1619 gsi_next (&gsi1);
1620 else
1621 gsi_move_before (&gsi1, &gsi2);
1625 /* Clear range info from all stmts in BB2 -- this transformation
1626 could make them out of date. */
1627 reset_flow_sensitive_info_in_bb (bb2);
1629 /* Do updates that use bb1, before deleting bb1. */
1630 release_last_vdef (bb1);
1631 same_succ_flush_bb (bb1);
1633 delete_basic_block (bb1);
1636 /* Bbs for which update_debug_stmt need to be called. */
1638 static bitmap update_bbs;
1640 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1641 number of bbs removed. */
1643 static int
1644 apply_clusters (void)
1646 basic_block bb1, bb2;
1647 bb_cluster *c;
1648 unsigned int i, j;
1649 bitmap_iterator bj;
1650 int nr_bbs_removed = 0;
1652 for (i = 0; i < all_clusters.length (); ++i)
1654 c = all_clusters[i];
1655 if (c == NULL)
1656 continue;
1658 bb2 = c->rep_bb;
1659 bitmap_set_bit (update_bbs, bb2->index);
1661 bitmap_clear_bit (c->bbs, bb2->index);
1662 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1664 bb1 = BASIC_BLOCK_FOR_FN (cfun, j);
1665 bitmap_clear_bit (update_bbs, bb1->index);
1667 replace_block_by (bb1, bb2);
1668 nr_bbs_removed++;
1672 return nr_bbs_removed;
1675 /* Resets debug statement STMT if it has uses that are not dominated by their
1676 defs. */
1678 static void
1679 update_debug_stmt (gimple *stmt)
1681 use_operand_p use_p;
1682 ssa_op_iter oi;
1683 basic_block bbuse;
1685 if (!gimple_debug_bind_p (stmt))
1686 return;
1688 bbuse = gimple_bb (stmt);
1689 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1691 tree name = USE_FROM_PTR (use_p);
1692 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1693 basic_block bbdef = gimple_bb (def_stmt);
1694 if (bbdef == NULL || bbuse == bbdef
1695 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1696 continue;
1698 gimple_debug_bind_reset_value (stmt);
1699 update_stmt (stmt);
1700 break;
1704 /* Resets all debug statements that have uses that are not
1705 dominated by their defs. */
1707 static void
1708 update_debug_stmts (void)
1710 basic_block bb;
1711 bitmap_iterator bi;
1712 unsigned int i;
1714 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1716 gimple *stmt;
1717 gimple_stmt_iterator gsi;
1719 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1720 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1722 stmt = gsi_stmt (gsi);
1723 if (!is_gimple_debug (stmt))
1724 continue;
1725 update_debug_stmt (stmt);
1730 /* Runs tail merge optimization. */
1732 unsigned int
1733 tail_merge_optimize (unsigned int todo)
1735 int nr_bbs_removed_total = 0;
1736 int nr_bbs_removed;
1737 bool loop_entered = false;
1738 int iteration_nr = 0;
1739 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1741 if (!flag_tree_tail_merge
1742 || max_iterations == 0)
1743 return 0;
1745 timevar_push (TV_TREE_TAIL_MERGE);
1747 /* We enter from PRE which has critical edges split. Elimination
1748 does not process trivially dead code so cleanup the CFG if we
1749 are told so. And re-split critical edges then. */
1750 if (todo & TODO_cleanup_cfg)
1752 cleanup_tree_cfg ();
1753 todo &= ~TODO_cleanup_cfg;
1754 split_critical_edges ();
1757 if (!dom_info_available_p (CDI_DOMINATORS))
1759 /* PRE can leave us with unreachable blocks, remove them now. */
1760 delete_unreachable_blocks ();
1761 calculate_dominance_info (CDI_DOMINATORS);
1763 init_worklist ();
1765 while (!worklist.is_empty ())
1767 if (!loop_entered)
1769 loop_entered = true;
1770 alloc_cluster_vectors ();
1771 update_bbs = BITMAP_ALLOC (NULL);
1773 else
1774 reset_cluster_vectors ();
1776 iteration_nr++;
1777 if (dump_file && (dump_flags & TDF_DETAILS))
1778 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1780 find_clusters ();
1781 gcc_assert (worklist.is_empty ());
1782 if (all_clusters.is_empty ())
1783 break;
1785 nr_bbs_removed = apply_clusters ();
1786 nr_bbs_removed_total += nr_bbs_removed;
1787 if (nr_bbs_removed == 0)
1788 break;
1790 free_dominance_info (CDI_DOMINATORS);
1792 if (iteration_nr == max_iterations)
1793 break;
1795 calculate_dominance_info (CDI_DOMINATORS);
1796 update_worklist ();
1799 if (dump_file && (dump_flags & TDF_DETAILS))
1800 fprintf (dump_file, "htab collision / search: %f\n",
1801 same_succ_htab->collisions ());
1803 if (nr_bbs_removed_total > 0)
1805 if (MAY_HAVE_DEBUG_STMTS)
1807 calculate_dominance_info (CDI_DOMINATORS);
1808 update_debug_stmts ();
1811 if (dump_file && (dump_flags & TDF_DETAILS))
1813 fprintf (dump_file, "Before TODOs.\n");
1814 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1817 mark_virtual_operands_for_renaming (cfun);
1820 delete_worklist ();
1821 if (loop_entered)
1823 delete_cluster_vectors ();
1824 BITMAP_FREE (update_bbs);
1827 timevar_pop (TV_TREE_TAIL_MERGE);
1829 return todo;