1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
80 #include "coretypes.h"
95 #include "stor-layout.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts
;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges
;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras
;
120 /* Number of instructions combined in this function. */
122 static int combine_successes
;
124 /* Totals over entire compilation. */
126 static int total_attempts
, total_merges
, total_extras
, total_successes
;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn
*i2mod
;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs
;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs
;
145 struct reg_stat_type
{
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn
*last_death
;
149 /* Record last point of modification of (hard or pseudo) register n. */
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick
;
204 /* Record the value of label_tick when the value for register n is placed in
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
215 char last_set_sign_bit_copies
;
216 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid
;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies
;
238 unsigned HOST_WIDE_INT nonzero_bits
;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label
;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
251 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
255 static vec
<reg_stat_type
> reg_stat
;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max
;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set
;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid
;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn
*subst_insn
;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid
;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs
;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
303 static rtx_insn
*added_links_insn
;
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block
;
307 static bool optimize_this_for_speed_p
;
310 /* Length of the currently allocated uid_insn_cost array. */
312 static int max_uid_known
;
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
317 static int *uid_insn_cost
;
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
325 struct insn_link
*next
;
328 static struct insn_link
**uid_log_links
;
331 insn_uid_check (const_rtx insn
)
333 int uid
= INSN_UID (insn
);
334 gcc_checking_assert (uid
<= max_uid_known
);
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
344 /* Links for LOG_LINKS are allocated from this obstack. */
346 static struct obstack insn_link_obstack
;
348 /* Allocate a link. */
350 static inline struct insn_link
*
351 alloc_insn_link (rtx_insn
*insn
, unsigned int regno
, struct insn_link
*next
)
354 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
355 sizeof (struct insn_link
));
362 /* Incremented for each basic block. */
364 static int label_tick
;
366 /* Reset to label_tick for each extended basic block in scanning order. */
368 static int label_tick_ebb_start
;
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
373 static machine_mode nonzero_bits_mode
;
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
381 static int nonzero_sign_valid
;
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
387 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
393 union { rtx r
; int i
; machine_mode m
; struct insn_link
*l
; } old_contents
;
394 union { rtx
*r
; int *i
; struct insn_link
**l
; } where
;
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
407 rtx_insn
*other_insn
;
410 static struct undobuf undobuf
;
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
415 static int n_occurrences
;
417 static rtx
reg_nonzero_bits_for_combine (const_rtx
, machine_mode
, const_rtx
,
419 unsigned HOST_WIDE_INT
,
420 unsigned HOST_WIDE_INT
*);
421 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, machine_mode
, const_rtx
,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx
*, rtx
);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn
*);
428 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
429 static int cant_combine_insn_p (rtx_insn
*);
430 static int can_combine_p (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
431 rtx_insn
*, rtx_insn
*, rtx
*, rtx
*);
432 static int combinable_i3pat (rtx_insn
*, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
433 static int contains_muldiv (rtx
);
434 static rtx_insn
*try_combine (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx
*find_split_point (rtx
*, rtx_insn
*, bool);
439 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
440 static rtx
combine_simplify_rtx (rtx
, machine_mode
, int, int);
441 static rtx
simplify_if_then_else (rtx
);
442 static rtx
simplify_set (rtx
);
443 static rtx
simplify_logical (rtx
);
444 static rtx
expand_compound_operation (rtx
);
445 static const_rtx
expand_field_assignment (const_rtx
);
446 static rtx
make_extraction (machine_mode
, rtx
, HOST_WIDE_INT
,
447 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
448 static rtx
extract_left_shift (rtx
, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
450 unsigned HOST_WIDE_INT
*);
451 static rtx
canon_reg_for_combine (rtx
, rtx
);
452 static rtx
force_int_to_mode (rtx
, scalar_int_mode
, scalar_int_mode
,
453 scalar_int_mode
, unsigned HOST_WIDE_INT
, int);
454 static rtx
force_to_mode (rtx
, machine_mode
,
455 unsigned HOST_WIDE_INT
, int);
456 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
457 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
458 static int rtx_equal_for_field_assignment_p (rtx
, rtx
, bool = false);
459 static rtx
make_field_assignment (rtx
);
460 static rtx
apply_distributive_law (rtx
);
461 static rtx
distribute_and_simplify_rtx (rtx
, int);
462 static rtx
simplify_and_const_int_1 (machine_mode
, rtx
,
463 unsigned HOST_WIDE_INT
);
464 static rtx
simplify_and_const_int (rtx
, machine_mode
, rtx
,
465 unsigned HOST_WIDE_INT
);
466 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
467 HOST_WIDE_INT
, machine_mode
, int *);
468 static rtx
simplify_shift_const_1 (enum rtx_code
, machine_mode
, rtx
, int);
469 static rtx
simplify_shift_const (rtx
, enum rtx_code
, machine_mode
, rtx
,
471 static int recog_for_combine (rtx
*, rtx_insn
*, rtx
*);
472 static rtx
gen_lowpart_for_combine (machine_mode
, rtx
);
473 static enum rtx_code
simplify_compare_const (enum rtx_code
, machine_mode
,
475 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
476 static void update_table_tick (rtx
);
477 static void record_value_for_reg (rtx
, rtx_insn
*, rtx
);
478 static void check_promoted_subreg (rtx_insn
*, rtx
);
479 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
480 static void record_dead_and_set_regs (rtx_insn
*);
481 static int get_last_value_validate (rtx
*, rtx_insn
*, int, int);
482 static rtx
get_last_value (const_rtx
);
483 static int use_crosses_set_p (const_rtx
, int);
484 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
485 static int reg_dead_at_p (rtx
, rtx_insn
*);
486 static void move_deaths (rtx
, rtx
, int, rtx_insn
*, rtx
*);
487 static int reg_bitfield_target_p (rtx
, rtx
);
488 static void distribute_notes (rtx
, rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx
, rtx
, rtx
);
489 static void distribute_links (struct insn_link
*);
490 static void mark_used_regs_combine (rtx
);
491 static void record_promoted_value (rtx_insn
*, rtx
);
492 static bool unmentioned_reg_p (rtx
, rtx
);
493 static void record_truncated_values (rtx
*, void *);
494 static bool reg_truncated_to_mode (machine_mode
, const_rtx
);
495 static rtx
gen_lowpart_or_truncate (machine_mode
, rtx
);
498 /* It is not safe to use ordinary gen_lowpart in combine.
499 See comments in gen_lowpart_for_combine. */
500 #undef RTL_HOOKS_GEN_LOWPART
501 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
503 /* Our implementation of gen_lowpart never emits a new pseudo. */
504 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
505 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
507 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
508 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
510 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
511 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
513 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
514 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
516 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
519 /* Convenience wrapper for the canonicalize_comparison target hook.
520 Target hooks cannot use enum rtx_code. */
522 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
523 bool op0_preserve_value
)
525 int code_int
= (int)*code
;
526 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
527 *code
= (enum rtx_code
)code_int
;
530 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
531 PATTERN can not be split. Otherwise, it returns an insn sequence.
532 This is a wrapper around split_insns which ensures that the
533 reg_stat vector is made larger if the splitter creates a new
537 combine_split_insns (rtx pattern
, rtx_insn
*insn
)
542 ret
= split_insns (pattern
, insn
);
543 nregs
= max_reg_num ();
544 if (nregs
> reg_stat
.length ())
545 reg_stat
.safe_grow_cleared (nregs
);
549 /* This is used by find_single_use to locate an rtx in LOC that
550 contains exactly one use of DEST, which is typically either a REG
551 or CC0. It returns a pointer to the innermost rtx expression
552 containing DEST. Appearances of DEST that are being used to
553 totally replace it are not counted. */
556 find_single_use_1 (rtx dest
, rtx
*loc
)
559 enum rtx_code code
= GET_CODE (x
);
575 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
576 of a REG that occupies all of the REG, the insn uses DEST if
577 it is mentioned in the destination or the source. Otherwise, we
578 need just check the source. */
579 if (GET_CODE (SET_DEST (x
)) != CC0
580 && GET_CODE (SET_DEST (x
)) != PC
581 && !REG_P (SET_DEST (x
))
582 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
583 && REG_P (SUBREG_REG (SET_DEST (x
)))
584 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
585 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
586 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
587 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
590 return find_single_use_1 (dest
, &SET_SRC (x
));
594 return find_single_use_1 (dest
, &XEXP (x
, 0));
600 /* If it wasn't one of the common cases above, check each expression and
601 vector of this code. Look for a unique usage of DEST. */
603 fmt
= GET_RTX_FORMAT (code
);
604 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
608 if (dest
== XEXP (x
, i
)
609 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
610 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
613 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
616 result
= this_result
;
617 else if (this_result
)
618 /* Duplicate usage. */
621 else if (fmt
[i
] == 'E')
625 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
627 if (XVECEXP (x
, i
, j
) == dest
629 && REG_P (XVECEXP (x
, i
, j
))
630 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
633 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
636 result
= this_result
;
637 else if (this_result
)
647 /* See if DEST, produced in INSN, is used only a single time in the
648 sequel. If so, return a pointer to the innermost rtx expression in which
651 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
653 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
654 care about REG_DEAD notes or LOG_LINKS.
656 Otherwise, we find the single use by finding an insn that has a
657 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
658 only referenced once in that insn, we know that it must be the first
659 and last insn referencing DEST. */
662 find_single_use (rtx dest
, rtx_insn
*insn
, rtx_insn
**ploc
)
667 struct insn_link
*link
;
671 next
= NEXT_INSN (insn
);
673 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
676 result
= find_single_use_1 (dest
, &PATTERN (next
));
685 bb
= BLOCK_FOR_INSN (insn
);
686 for (next
= NEXT_INSN (insn
);
687 next
&& BLOCK_FOR_INSN (next
) == bb
;
688 next
= NEXT_INSN (next
))
689 if (NONDEBUG_INSN_P (next
) && dead_or_set_p (next
, dest
))
691 FOR_EACH_LOG_LINK (link
, next
)
692 if (link
->insn
== insn
&& link
->regno
== REGNO (dest
))
697 result
= find_single_use_1 (dest
, &PATTERN (next
));
707 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
708 insn. The substitution can be undone by undo_all. If INTO is already
709 set to NEWVAL, do not record this change. Because computing NEWVAL might
710 also call SUBST, we have to compute it before we put anything into
714 do_SUBST (rtx
*into
, rtx newval
)
719 if (oldval
== newval
)
722 /* We'd like to catch as many invalid transformations here as
723 possible. Unfortunately, there are way too many mode changes
724 that are perfectly valid, so we'd waste too much effort for
725 little gain doing the checks here. Focus on catching invalid
726 transformations involving integer constants. */
727 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
728 && CONST_INT_P (newval
))
730 /* Sanity check that we're replacing oldval with a CONST_INT
731 that is a valid sign-extension for the original mode. */
732 gcc_assert (INTVAL (newval
)
733 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
735 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
736 CONST_INT is not valid, because after the replacement, the
737 original mode would be gone. Unfortunately, we can't tell
738 when do_SUBST is called to replace the operand thereof, so we
739 perform this test on oldval instead, checking whether an
740 invalid replacement took place before we got here. */
741 gcc_assert (!(GET_CODE (oldval
) == SUBREG
742 && CONST_INT_P (SUBREG_REG (oldval
))));
743 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
744 && CONST_INT_P (XEXP (oldval
, 0))));
748 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
750 buf
= XNEW (struct undo
);
752 buf
->kind
= UNDO_RTX
;
754 buf
->old_contents
.r
= oldval
;
757 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
760 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
762 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
763 for the value of a HOST_WIDE_INT value (including CONST_INT) is
767 do_SUBST_INT (int *into
, int newval
)
772 if (oldval
== newval
)
776 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
778 buf
= XNEW (struct undo
);
780 buf
->kind
= UNDO_INT
;
782 buf
->old_contents
.i
= oldval
;
785 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
788 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
790 /* Similar to SUBST, but just substitute the mode. This is used when
791 changing the mode of a pseudo-register, so that any other
792 references to the entry in the regno_reg_rtx array will change as
796 do_SUBST_MODE (rtx
*into
, machine_mode newval
)
799 machine_mode oldval
= GET_MODE (*into
);
801 if (oldval
== newval
)
805 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
807 buf
= XNEW (struct undo
);
809 buf
->kind
= UNDO_MODE
;
811 buf
->old_contents
.m
= oldval
;
812 adjust_reg_mode (*into
, newval
);
814 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
817 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
819 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
822 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
825 struct insn_link
* oldval
= *into
;
827 if (oldval
== newval
)
831 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
833 buf
= XNEW (struct undo
);
835 buf
->kind
= UNDO_LINKS
;
837 buf
->old_contents
.l
= oldval
;
840 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
843 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
845 /* Subroutine of try_combine. Determine whether the replacement patterns
846 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
847 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
848 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
849 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
850 of all the instructions can be estimated and the replacements are more
851 expensive than the original sequence. */
854 combine_validate_cost (rtx_insn
*i0
, rtx_insn
*i1
, rtx_insn
*i2
, rtx_insn
*i3
,
855 rtx newpat
, rtx newi2pat
, rtx newotherpat
)
857 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
858 int new_i2_cost
, new_i3_cost
;
859 int old_cost
, new_cost
;
861 /* Lookup the original insn_rtx_costs. */
862 i2_cost
= INSN_COST (i2
);
863 i3_cost
= INSN_COST (i3
);
867 i1_cost
= INSN_COST (i1
);
870 i0_cost
= INSN_COST (i0
);
871 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
872 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
876 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
877 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
883 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
884 i1_cost
= i0_cost
= 0;
887 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
889 if (old_cost
&& i1
&& INSN_UID (i1
) == INSN_UID (i2
))
893 /* Calculate the replacement insn_rtx_costs. */
894 new_i3_cost
= insn_rtx_cost (newpat
, optimize_this_for_speed_p
);
897 new_i2_cost
= insn_rtx_cost (newi2pat
, optimize_this_for_speed_p
);
898 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
899 ? new_i2_cost
+ new_i3_cost
: 0;
903 new_cost
= new_i3_cost
;
907 if (undobuf
.other_insn
)
909 int old_other_cost
, new_other_cost
;
911 old_other_cost
= INSN_COST (undobuf
.other_insn
);
912 new_other_cost
= insn_rtx_cost (newotherpat
, optimize_this_for_speed_p
);
913 if (old_other_cost
> 0 && new_other_cost
> 0)
915 old_cost
+= old_other_cost
;
916 new_cost
+= new_other_cost
;
922 /* Disallow this combination if both new_cost and old_cost are greater than
923 zero, and new_cost is greater than old cost. */
924 int reject
= old_cost
> 0 && new_cost
> old_cost
;
928 fprintf (dump_file
, "%s combination of insns ",
929 reject
? "rejecting" : "allowing");
931 fprintf (dump_file
, "%d, ", INSN_UID (i0
));
932 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
933 fprintf (dump_file
, "%d, ", INSN_UID (i1
));
934 fprintf (dump_file
, "%d and %d\n", INSN_UID (i2
), INSN_UID (i3
));
936 fprintf (dump_file
, "original costs ");
938 fprintf (dump_file
, "%d + ", i0_cost
);
939 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
940 fprintf (dump_file
, "%d + ", i1_cost
);
941 fprintf (dump_file
, "%d + %d = %d\n", i2_cost
, i3_cost
, old_cost
);
944 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
945 new_i2_cost
, new_i3_cost
, new_cost
);
947 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
953 /* Update the uid_insn_cost array with the replacement costs. */
954 INSN_COST (i2
) = new_i2_cost
;
955 INSN_COST (i3
) = new_i3_cost
;
967 /* Delete any insns that copy a register to itself. */
970 delete_noop_moves (void)
972 rtx_insn
*insn
, *next
;
975 FOR_EACH_BB_FN (bb
, cfun
)
977 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
979 next
= NEXT_INSN (insn
);
980 if (INSN_P (insn
) && noop_move_p (insn
))
983 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
985 delete_insn_and_edges (insn
);
992 /* Return false if we do not want to (or cannot) combine DEF. */
994 can_combine_def_p (df_ref def
)
996 /* Do not consider if it is pre/post modification in MEM. */
997 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
1000 unsigned int regno
= DF_REF_REGNO (def
);
1002 /* Do not combine frame pointer adjustments. */
1003 if ((regno
== FRAME_POINTER_REGNUM
1004 && (!reload_completed
|| frame_pointer_needed
))
1005 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1006 && regno
== HARD_FRAME_POINTER_REGNUM
1007 && (!reload_completed
|| frame_pointer_needed
))
1008 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
1009 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
]))
1015 /* Return false if we do not want to (or cannot) combine USE. */
1017 can_combine_use_p (df_ref use
)
1019 /* Do not consider the usage of the stack pointer by function call. */
1020 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1026 /* Fill in log links field for all insns. */
1029 create_log_links (void)
1032 rtx_insn
**next_use
;
1036 next_use
= XCNEWVEC (rtx_insn
*, max_reg_num ());
1038 /* Pass through each block from the end, recording the uses of each
1039 register and establishing log links when def is encountered.
1040 Note that we do not clear next_use array in order to save time,
1041 so we have to test whether the use is in the same basic block as def.
1043 There are a few cases below when we do not consider the definition or
1044 usage -- these are taken from original flow.c did. Don't ask me why it is
1045 done this way; I don't know and if it works, I don't want to know. */
1047 FOR_EACH_BB_FN (bb
, cfun
)
1049 FOR_BB_INSNS_REVERSE (bb
, insn
)
1051 if (!NONDEBUG_INSN_P (insn
))
1054 /* Log links are created only once. */
1055 gcc_assert (!LOG_LINKS (insn
));
1057 FOR_EACH_INSN_DEF (def
, insn
)
1059 unsigned int regno
= DF_REF_REGNO (def
);
1062 if (!next_use
[regno
])
1065 if (!can_combine_def_p (def
))
1068 use_insn
= next_use
[regno
];
1069 next_use
[regno
] = NULL
;
1071 if (BLOCK_FOR_INSN (use_insn
) != bb
)
1076 We don't build a LOG_LINK for hard registers contained
1077 in ASM_OPERANDs. If these registers get replaced,
1078 we might wind up changing the semantics of the insn,
1079 even if reload can make what appear to be valid
1080 assignments later. */
1081 if (regno
< FIRST_PSEUDO_REGISTER
1082 && asm_noperands (PATTERN (use_insn
)) >= 0)
1085 /* Don't add duplicate links between instructions. */
1086 struct insn_link
*links
;
1087 FOR_EACH_LOG_LINK (links
, use_insn
)
1088 if (insn
== links
->insn
&& regno
== links
->regno
)
1092 LOG_LINKS (use_insn
)
1093 = alloc_insn_link (insn
, regno
, LOG_LINKS (use_insn
));
1096 FOR_EACH_INSN_USE (use
, insn
)
1097 if (can_combine_use_p (use
))
1098 next_use
[DF_REF_REGNO (use
)] = insn
;
1105 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1106 true if we found a LOG_LINK that proves that A feeds B. This only works
1107 if there are no instructions between A and B which could have a link
1108 depending on A, since in that case we would not record a link for B.
1109 We also check the implicit dependency created by a cc0 setter/user
1113 insn_a_feeds_b (rtx_insn
*a
, rtx_insn
*b
)
1115 struct insn_link
*links
;
1116 FOR_EACH_LOG_LINK (links
, b
)
1117 if (links
->insn
== a
)
1119 if (HAVE_cc0
&& sets_cc0_p (a
))
1124 /* Main entry point for combiner. F is the first insn of the function.
1125 NREGS is the first unused pseudo-reg number.
1127 Return nonzero if the combiner has turned an indirect jump
1128 instruction into a direct jump. */
1130 combine_instructions (rtx_insn
*f
, unsigned int nregs
)
1132 rtx_insn
*insn
, *next
;
1134 struct insn_link
*links
, *nextlinks
;
1136 basic_block last_bb
;
1138 int new_direct_jump_p
= 0;
1140 for (first
= f
; first
&& !NONDEBUG_INSN_P (first
); )
1141 first
= NEXT_INSN (first
);
1145 combine_attempts
= 0;
1148 combine_successes
= 0;
1150 rtl_hooks
= combine_rtl_hooks
;
1152 reg_stat
.safe_grow_cleared (nregs
);
1154 init_recog_no_volatile ();
1156 /* Allocate array for insn info. */
1157 max_uid_known
= get_max_uid ();
1158 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1159 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1160 gcc_obstack_init (&insn_link_obstack
);
1162 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1164 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1165 problems when, for example, we have j <<= 1 in a loop. */
1167 nonzero_sign_valid
= 0;
1168 label_tick
= label_tick_ebb_start
= 1;
1170 /* Scan all SETs and see if we can deduce anything about what
1171 bits are known to be zero for some registers and how many copies
1172 of the sign bit are known to exist for those registers.
1174 Also set any known values so that we can use it while searching
1175 for what bits are known to be set. */
1177 setup_incoming_promotions (first
);
1178 /* Allow the entry block and the first block to fall into the same EBB.
1179 Conceptually the incoming promotions are assigned to the entry block. */
1180 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1182 create_log_links ();
1183 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1185 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1190 if (!single_pred_p (this_basic_block
)
1191 || single_pred (this_basic_block
) != last_bb
)
1192 label_tick_ebb_start
= label_tick
;
1193 last_bb
= this_basic_block
;
1195 FOR_BB_INSNS (this_basic_block
, insn
)
1196 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1200 subst_low_luid
= DF_INSN_LUID (insn
);
1203 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
1205 record_dead_and_set_regs (insn
);
1208 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1209 if (REG_NOTE_KIND (links
) == REG_INC
)
1210 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1213 /* Record the current insn_rtx_cost of this instruction. */
1214 if (NONJUMP_INSN_P (insn
))
1215 INSN_COST (insn
) = insn_rtx_cost (PATTERN (insn
),
1216 optimize_this_for_speed_p
);
1219 fprintf (dump_file
, "insn_cost %d for ", INSN_COST (insn
));
1220 dump_insn_slim (dump_file
, insn
);
1225 nonzero_sign_valid
= 1;
1227 /* Now scan all the insns in forward order. */
1228 label_tick
= label_tick_ebb_start
= 1;
1230 setup_incoming_promotions (first
);
1231 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1232 int max_combine
= PARAM_VALUE (PARAM_MAX_COMBINE_INSNS
);
1234 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1236 rtx_insn
*last_combined_insn
= NULL
;
1237 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1242 if (!single_pred_p (this_basic_block
)
1243 || single_pred (this_basic_block
) != last_bb
)
1244 label_tick_ebb_start
= label_tick
;
1245 last_bb
= this_basic_block
;
1247 rtl_profile_for_bb (this_basic_block
);
1248 for (insn
= BB_HEAD (this_basic_block
);
1249 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1250 insn
= next
? next
: NEXT_INSN (insn
))
1253 if (!NONDEBUG_INSN_P (insn
))
1256 while (last_combined_insn
1257 && (!NONDEBUG_INSN_P (last_combined_insn
)
1258 || last_combined_insn
->deleted ()))
1259 last_combined_insn
= PREV_INSN (last_combined_insn
);
1260 if (last_combined_insn
== NULL_RTX
1261 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1262 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1263 last_combined_insn
= insn
;
1265 /* See if we know about function return values before this
1266 insn based upon SUBREG flags. */
1267 check_promoted_subreg (insn
, PATTERN (insn
));
1269 /* See if we can find hardregs and subreg of pseudos in
1270 narrower modes. This could help turning TRUNCATEs
1272 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1274 /* Try this insn with each insn it links back to. */
1276 FOR_EACH_LOG_LINK (links
, insn
)
1277 if ((next
= try_combine (insn
, links
->insn
, NULL
,
1278 NULL
, &new_direct_jump_p
,
1279 last_combined_insn
)) != 0)
1281 statistics_counter_event (cfun
, "two-insn combine", 1);
1285 /* Try each sequence of three linked insns ending with this one. */
1287 if (max_combine
>= 3)
1288 FOR_EACH_LOG_LINK (links
, insn
)
1290 rtx_insn
*link
= links
->insn
;
1292 /* If the linked insn has been replaced by a note, then there
1293 is no point in pursuing this chain any further. */
1297 FOR_EACH_LOG_LINK (nextlinks
, link
)
1298 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1299 NULL
, &new_direct_jump_p
,
1300 last_combined_insn
)) != 0)
1302 statistics_counter_event (cfun
, "three-insn combine", 1);
1307 /* Try to combine a jump insn that uses CC0
1308 with a preceding insn that sets CC0, and maybe with its
1309 logical predecessor as well.
1310 This is how we make decrement-and-branch insns.
1311 We need this special code because data flow connections
1312 via CC0 do not get entered in LOG_LINKS. */
1316 && (prev
= prev_nonnote_insn (insn
)) != 0
1317 && NONJUMP_INSN_P (prev
)
1318 && sets_cc0_p (PATTERN (prev
)))
1320 if ((next
= try_combine (insn
, prev
, NULL
, NULL
,
1322 last_combined_insn
)) != 0)
1325 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1326 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1327 NULL
, &new_direct_jump_p
,
1328 last_combined_insn
)) != 0)
1332 /* Do the same for an insn that explicitly references CC0. */
1333 if (HAVE_cc0
&& NONJUMP_INSN_P (insn
)
1334 && (prev
= prev_nonnote_insn (insn
)) != 0
1335 && NONJUMP_INSN_P (prev
)
1336 && sets_cc0_p (PATTERN (prev
))
1337 && GET_CODE (PATTERN (insn
)) == SET
1338 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
1340 if ((next
= try_combine (insn
, prev
, NULL
, NULL
,
1342 last_combined_insn
)) != 0)
1345 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1346 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1347 NULL
, &new_direct_jump_p
,
1348 last_combined_insn
)) != 0)
1352 /* Finally, see if any of the insns that this insn links to
1353 explicitly references CC0. If so, try this insn, that insn,
1354 and its predecessor if it sets CC0. */
1357 FOR_EACH_LOG_LINK (links
, insn
)
1358 if (NONJUMP_INSN_P (links
->insn
)
1359 && GET_CODE (PATTERN (links
->insn
)) == SET
1360 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (links
->insn
)))
1361 && (prev
= prev_nonnote_insn (links
->insn
)) != 0
1362 && NONJUMP_INSN_P (prev
)
1363 && sets_cc0_p (PATTERN (prev
))
1364 && (next
= try_combine (insn
, links
->insn
,
1365 prev
, NULL
, &new_direct_jump_p
,
1366 last_combined_insn
)) != 0)
1370 /* Try combining an insn with two different insns whose results it
1372 if (max_combine
>= 3)
1373 FOR_EACH_LOG_LINK (links
, insn
)
1374 for (nextlinks
= links
->next
; nextlinks
;
1375 nextlinks
= nextlinks
->next
)
1376 if ((next
= try_combine (insn
, links
->insn
,
1377 nextlinks
->insn
, NULL
,
1379 last_combined_insn
)) != 0)
1382 statistics_counter_event (cfun
, "three-insn combine", 1);
1386 /* Try four-instruction combinations. */
1387 if (max_combine
>= 4)
1388 FOR_EACH_LOG_LINK (links
, insn
)
1390 struct insn_link
*next1
;
1391 rtx_insn
*link
= links
->insn
;
1393 /* If the linked insn has been replaced by a note, then there
1394 is no point in pursuing this chain any further. */
1398 FOR_EACH_LOG_LINK (next1
, link
)
1400 rtx_insn
*link1
= next1
->insn
;
1403 /* I0 -> I1 -> I2 -> I3. */
1404 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1405 if ((next
= try_combine (insn
, link
, link1
,
1408 last_combined_insn
)) != 0)
1410 statistics_counter_event (cfun
, "four-insn combine", 1);
1413 /* I0, I1 -> I2, I2 -> I3. */
1414 for (nextlinks
= next1
->next
; nextlinks
;
1415 nextlinks
= nextlinks
->next
)
1416 if ((next
= try_combine (insn
, link
, link1
,
1419 last_combined_insn
)) != 0)
1421 statistics_counter_event (cfun
, "four-insn combine", 1);
1426 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1428 rtx_insn
*link1
= next1
->insn
;
1431 /* I0 -> I2; I1, I2 -> I3. */
1432 FOR_EACH_LOG_LINK (nextlinks
, link
)
1433 if ((next
= try_combine (insn
, link
, link1
,
1436 last_combined_insn
)) != 0)
1438 statistics_counter_event (cfun
, "four-insn combine", 1);
1441 /* I0 -> I1; I1, I2 -> I3. */
1442 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1443 if ((next
= try_combine (insn
, link
, link1
,
1446 last_combined_insn
)) != 0)
1448 statistics_counter_event (cfun
, "four-insn combine", 1);
1454 /* Try this insn with each REG_EQUAL note it links back to. */
1455 FOR_EACH_LOG_LINK (links
, insn
)
1458 rtx_insn
*temp
= links
->insn
;
1459 if ((set
= single_set (temp
)) != 0
1460 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1461 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1462 /* Avoid using a register that may already been marked
1463 dead by an earlier instruction. */
1464 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1465 && (GET_MODE (note
) == VOIDmode
1466 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1467 : (GET_MODE (SET_DEST (set
)) == GET_MODE (note
)
1468 && (GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
1469 || (GET_MODE (XEXP (SET_DEST (set
), 0))
1470 == GET_MODE (note
))))))
1472 /* Temporarily replace the set's source with the
1473 contents of the REG_EQUAL note. The insn will
1474 be deleted or recognized by try_combine. */
1475 rtx orig_src
= SET_SRC (set
);
1476 rtx orig_dest
= SET_DEST (set
);
1477 if (GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
)
1478 SET_DEST (set
) = XEXP (SET_DEST (set
), 0);
1479 SET_SRC (set
) = note
;
1481 i2mod_old_rhs
= copy_rtx (orig_src
);
1482 i2mod_new_rhs
= copy_rtx (note
);
1483 next
= try_combine (insn
, i2mod
, NULL
, NULL
,
1485 last_combined_insn
);
1489 statistics_counter_event (cfun
, "insn-with-note combine", 1);
1492 SET_SRC (set
) = orig_src
;
1493 SET_DEST (set
) = orig_dest
;
1498 record_dead_and_set_regs (insn
);
1505 default_rtl_profile ();
1507 new_direct_jump_p
|= purge_all_dead_edges ();
1508 delete_noop_moves ();
1511 obstack_free (&insn_link_obstack
, NULL
);
1512 free (uid_log_links
);
1513 free (uid_insn_cost
);
1514 reg_stat
.release ();
1517 struct undo
*undo
, *next
;
1518 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1526 total_attempts
+= combine_attempts
;
1527 total_merges
+= combine_merges
;
1528 total_extras
+= combine_extras
;
1529 total_successes
+= combine_successes
;
1531 nonzero_sign_valid
= 0;
1532 rtl_hooks
= general_rtl_hooks
;
1534 /* Make recognizer allow volatile MEMs again. */
1537 return new_direct_jump_p
;
1540 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1543 init_reg_last (void)
1548 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1549 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1552 /* Set up any promoted values for incoming argument registers. */
1555 setup_incoming_promotions (rtx_insn
*first
)
1558 bool strictly_local
= false;
1560 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1561 arg
= DECL_CHAIN (arg
))
1563 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1565 machine_mode mode1
, mode2
, mode3
, mode4
;
1567 /* Only continue if the incoming argument is in a register. */
1571 /* Determine, if possible, whether all call sites of the current
1572 function lie within the current compilation unit. (This does
1573 take into account the exporting of a function via taking its
1574 address, and so forth.) */
1575 strictly_local
= cgraph_node::local_info (current_function_decl
)->local
;
1577 /* The mode and signedness of the argument before any promotions happen
1578 (equal to the mode of the pseudo holding it at that stage). */
1579 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1580 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1582 /* The mode and signedness of the argument after any source language and
1583 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1584 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1585 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1587 /* The mode and signedness of the argument as it is actually passed,
1588 see assign_parm_setup_reg in function.c. */
1589 mode3
= promote_function_mode (TREE_TYPE (arg
), mode1
, &uns3
,
1590 TREE_TYPE (cfun
->decl
), 0);
1592 /* The mode of the register in which the argument is being passed. */
1593 mode4
= GET_MODE (reg
);
1595 /* Eliminate sign extensions in the callee when:
1596 (a) A mode promotion has occurred; */
1599 /* (b) The mode of the register is the same as the mode of
1600 the argument as it is passed; */
1603 /* (c) There's no language level extension; */
1606 /* (c.1) All callers are from the current compilation unit. If that's
1607 the case we don't have to rely on an ABI, we only have to know
1608 what we're generating right now, and we know that we will do the
1609 mode1 to mode2 promotion with the given sign. */
1610 else if (!strictly_local
)
1612 /* (c.2) The combination of the two promotions is useful. This is
1613 true when the signs match, or if the first promotion is unsigned.
1614 In the later case, (sign_extend (zero_extend x)) is the same as
1615 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1621 /* Record that the value was promoted from mode1 to mode3,
1622 so that any sign extension at the head of the current
1623 function may be eliminated. */
1624 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1625 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1626 record_value_for_reg (reg
, first
, x
);
1630 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1631 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1632 because some machines (maybe most) will actually do the sign-extension and
1633 this is the conservative approach.
1635 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1639 sign_extend_short_imm (rtx src
, machine_mode mode
, unsigned int prec
)
1641 scalar_int_mode int_mode
;
1642 if (CONST_INT_P (src
)
1643 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
1644 && GET_MODE_PRECISION (int_mode
) < prec
1646 && val_signbit_known_set_p (int_mode
, INTVAL (src
)))
1647 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (int_mode
));
1652 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1656 update_rsp_from_reg_equal (reg_stat_type
*rsp
, rtx_insn
*insn
, const_rtx set
,
1659 rtx reg_equal_note
= insn
? find_reg_equal_equiv_note (insn
) : NULL_RTX
;
1660 unsigned HOST_WIDE_INT bits
= 0;
1661 rtx reg_equal
= NULL
, src
= SET_SRC (set
);
1662 unsigned int num
= 0;
1665 reg_equal
= XEXP (reg_equal_note
, 0);
1667 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
1669 src
= sign_extend_short_imm (src
, GET_MODE (x
), BITS_PER_WORD
);
1671 reg_equal
= sign_extend_short_imm (reg_equal
, GET_MODE (x
), BITS_PER_WORD
);
1674 /* Don't call nonzero_bits if it cannot change anything. */
1675 if (rsp
->nonzero_bits
!= HOST_WIDE_INT_M1U
)
1677 bits
= nonzero_bits (src
, nonzero_bits_mode
);
1678 if (reg_equal
&& bits
)
1679 bits
&= nonzero_bits (reg_equal
, nonzero_bits_mode
);
1680 rsp
->nonzero_bits
|= bits
;
1683 /* Don't call num_sign_bit_copies if it cannot change anything. */
1684 if (rsp
->sign_bit_copies
!= 1)
1686 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1687 if (reg_equal
&& num
!= GET_MODE_PRECISION (GET_MODE (x
)))
1689 unsigned int numeq
= num_sign_bit_copies (reg_equal
, GET_MODE (x
));
1690 if (num
== 0 || numeq
> num
)
1693 if (rsp
->sign_bit_copies
== 0 || num
< rsp
->sign_bit_copies
)
1694 rsp
->sign_bit_copies
= num
;
1698 /* Called via note_stores. If X is a pseudo that is narrower than
1699 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1701 If we are setting only a portion of X and we can't figure out what
1702 portion, assume all bits will be used since we don't know what will
1705 Similarly, set how many bits of X are known to be copies of the sign bit
1706 at all locations in the function. This is the smallest number implied
1710 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1712 rtx_insn
*insn
= (rtx_insn
*) data
;
1713 scalar_int_mode mode
;
1716 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1717 /* If this register is undefined at the start of the file, we can't
1718 say what its contents were. */
1719 && ! REGNO_REG_SET_P
1720 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1721 && is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
1722 && HWI_COMPUTABLE_MODE_P (mode
))
1724 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1726 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1728 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1729 rsp
->sign_bit_copies
= 1;
1733 /* If this register is being initialized using itself, and the
1734 register is uninitialized in this basic block, and there are
1735 no LOG_LINKS which set the register, then part of the
1736 register is uninitialized. In that case we can't assume
1737 anything about the number of nonzero bits.
1739 ??? We could do better if we checked this in
1740 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1741 could avoid making assumptions about the insn which initially
1742 sets the register, while still using the information in other
1743 insns. We would have to be careful to check every insn
1744 involved in the combination. */
1747 && reg_referenced_p (x
, PATTERN (insn
))
1748 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1751 struct insn_link
*link
;
1753 FOR_EACH_LOG_LINK (link
, insn
)
1754 if (dead_or_set_p (link
->insn
, x
))
1758 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1759 rsp
->sign_bit_copies
= 1;
1764 /* If this is a complex assignment, see if we can convert it into a
1765 simple assignment. */
1766 set
= expand_field_assignment (set
);
1768 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1769 set what we know about X. */
1771 if (SET_DEST (set
) == x
1772 || (paradoxical_subreg_p (SET_DEST (set
))
1773 && SUBREG_REG (SET_DEST (set
)) == x
))
1774 update_rsp_from_reg_equal (rsp
, insn
, set
, x
);
1777 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1778 rsp
->sign_bit_copies
= 1;
1783 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1784 optionally insns that were previously combined into I3 or that will be
1785 combined into the merger of INSN and I3. The order is PRED, PRED2,
1786 INSN, SUCC, SUCC2, I3.
1788 Return 0 if the combination is not allowed for any reason.
1790 If the combination is allowed, *PDEST will be set to the single
1791 destination of INSN and *PSRC to the single source, and this function
1795 can_combine_p (rtx_insn
*insn
, rtx_insn
*i3
, rtx_insn
*pred ATTRIBUTE_UNUSED
,
1796 rtx_insn
*pred2 ATTRIBUTE_UNUSED
, rtx_insn
*succ
, rtx_insn
*succ2
,
1797 rtx
*pdest
, rtx
*psrc
)
1804 bool all_adjacent
= true;
1805 int (*is_volatile_p
) (const_rtx
);
1811 if (next_active_insn (succ2
) != i3
)
1812 all_adjacent
= false;
1813 if (next_active_insn (succ
) != succ2
)
1814 all_adjacent
= false;
1816 else if (next_active_insn (succ
) != i3
)
1817 all_adjacent
= false;
1818 if (next_active_insn (insn
) != succ
)
1819 all_adjacent
= false;
1821 else if (next_active_insn (insn
) != i3
)
1822 all_adjacent
= false;
1824 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1825 or a PARALLEL consisting of such a SET and CLOBBERs.
1827 If INSN has CLOBBER parallel parts, ignore them for our processing.
1828 By definition, these happen during the execution of the insn. When it
1829 is merged with another insn, all bets are off. If they are, in fact,
1830 needed and aren't also supplied in I3, they may be added by
1831 recog_for_combine. Otherwise, it won't match.
1833 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1836 Get the source and destination of INSN. If more than one, can't
1839 if (GET_CODE (PATTERN (insn
)) == SET
)
1840 set
= PATTERN (insn
);
1841 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1842 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1844 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1846 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1848 switch (GET_CODE (elt
))
1850 /* This is important to combine floating point insns
1851 for the SH4 port. */
1853 /* Combining an isolated USE doesn't make sense.
1854 We depend here on combinable_i3pat to reject them. */
1855 /* The code below this loop only verifies that the inputs of
1856 the SET in INSN do not change. We call reg_set_between_p
1857 to verify that the REG in the USE does not change between
1859 If the USE in INSN was for a pseudo register, the matching
1860 insn pattern will likely match any register; combining this
1861 with any other USE would only be safe if we knew that the
1862 used registers have identical values, or if there was
1863 something to tell them apart, e.g. different modes. For
1864 now, we forgo such complicated tests and simply disallow
1865 combining of USES of pseudo registers with any other USE. */
1866 if (REG_P (XEXP (elt
, 0))
1867 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1869 rtx i3pat
= PATTERN (i3
);
1870 int i
= XVECLEN (i3pat
, 0) - 1;
1871 unsigned int regno
= REGNO (XEXP (elt
, 0));
1875 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1877 if (GET_CODE (i3elt
) == USE
1878 && REG_P (XEXP (i3elt
, 0))
1879 && (REGNO (XEXP (i3elt
, 0)) == regno
1880 ? reg_set_between_p (XEXP (elt
, 0),
1881 PREV_INSN (insn
), i3
)
1882 : regno
>= FIRST_PSEUDO_REGISTER
))
1889 /* We can ignore CLOBBERs. */
1894 /* Ignore SETs whose result isn't used but not those that
1895 have side-effects. */
1896 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1897 && insn_nothrow_p (insn
)
1898 && !side_effects_p (elt
))
1901 /* If we have already found a SET, this is a second one and
1902 so we cannot combine with this insn. */
1910 /* Anything else means we can't combine. */
1916 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1917 so don't do anything with it. */
1918 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1927 /* The simplification in expand_field_assignment may call back to
1928 get_last_value, so set safe guard here. */
1929 subst_low_luid
= DF_INSN_LUID (insn
);
1931 set
= expand_field_assignment (set
);
1932 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1934 /* Do not eliminate user-specified register if it is in an
1935 asm input because we may break the register asm usage defined
1936 in GCC manual if allow to do so.
1937 Be aware that this may cover more cases than we expect but this
1938 should be harmless. */
1939 if (REG_P (dest
) && REG_USERVAR_P (dest
) && HARD_REGISTER_P (dest
)
1940 && extract_asm_operands (PATTERN (i3
)))
1943 /* Don't eliminate a store in the stack pointer. */
1944 if (dest
== stack_pointer_rtx
1945 /* Don't combine with an insn that sets a register to itself if it has
1946 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1947 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1948 /* Can't merge an ASM_OPERANDS. */
1949 || GET_CODE (src
) == ASM_OPERANDS
1950 /* Can't merge a function call. */
1951 || GET_CODE (src
) == CALL
1952 /* Don't eliminate a function call argument. */
1954 && (find_reg_fusage (i3
, USE
, dest
)
1956 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1957 && global_regs
[REGNO (dest
)])))
1958 /* Don't substitute into an incremented register. */
1959 || FIND_REG_INC_NOTE (i3
, dest
)
1960 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1961 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1962 /* Don't substitute into a non-local goto, this confuses CFG. */
1963 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1964 /* Make sure that DEST is not used after INSN but before SUCC, or
1965 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1968 && (reg_used_between_p (dest
, succ2
, i3
)
1969 || reg_used_between_p (dest
, succ
, succ2
)))
1970 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))
1972 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1973 that case SUCC is not in the insn stream, so use SUCC2
1974 instead for this test. */
1975 && reg_used_between_p (dest
, insn
,
1977 && INSN_UID (succ
) == INSN_UID (succ2
)
1979 /* Make sure that the value that is to be substituted for the register
1980 does not use any registers whose values alter in between. However,
1981 If the insns are adjacent, a use can't cross a set even though we
1982 think it might (this can happen for a sequence of insns each setting
1983 the same destination; last_set of that register might point to
1984 a NOTE). If INSN has a REG_EQUIV note, the register is always
1985 equivalent to the memory so the substitution is valid even if there
1986 are intervening stores. Also, don't move a volatile asm or
1987 UNSPEC_VOLATILE across any other insns. */
1990 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1991 && use_crosses_set_p (src
, DF_INSN_LUID (insn
)))
1992 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1993 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1994 /* Don't combine across a CALL_INSN, because that would possibly
1995 change whether the life span of some REGs crosses calls or not,
1996 and it is a pain to update that information.
1997 Exception: if source is a constant, moving it later can't hurt.
1998 Accept that as a special case. */
1999 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
2002 /* DEST must either be a REG or CC0. */
2005 /* If register alignment is being enforced for multi-word items in all
2006 cases except for parameters, it is possible to have a register copy
2007 insn referencing a hard register that is not allowed to contain the
2008 mode being copied and which would not be valid as an operand of most
2009 insns. Eliminate this problem by not combining with such an insn.
2011 Also, on some machines we don't want to extend the life of a hard
2015 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
2016 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
2017 /* Don't extend the life of a hard register unless it is
2018 user variable (if we have few registers) or it can't
2019 fit into the desired register (meaning something special
2021 Also avoid substituting a return register into I3, because
2022 reload can't handle a conflict with constraints of other
2024 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
2025 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
2028 else if (GET_CODE (dest
) != CC0
)
2032 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
2033 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
2034 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
2036 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
2038 /* If the clobber represents an earlyclobber operand, we must not
2039 substitute an expression containing the clobbered register.
2040 As we do not analyze the constraint strings here, we have to
2041 make the conservative assumption. However, if the register is
2042 a fixed hard reg, the clobber cannot represent any operand;
2043 we leave it up to the machine description to either accept or
2044 reject use-and-clobber patterns. */
2046 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
2047 || !fixed_regs
[REGNO (reg
)])
2048 if (reg_overlap_mentioned_p (reg
, src
))
2052 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2053 or not), reject, unless nothing volatile comes between it and I3 */
2055 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
2057 /* Make sure neither succ nor succ2 contains a volatile reference. */
2058 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
2060 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
2062 /* We'll check insns between INSN and I3 below. */
2065 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2066 to be an explicit register variable, and was chosen for a reason. */
2068 if (GET_CODE (src
) == ASM_OPERANDS
2069 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
2072 /* If INSN contains volatile references (specifically volatile MEMs),
2073 we cannot combine across any other volatile references.
2074 Even if INSN doesn't contain volatile references, any intervening
2075 volatile insn might affect machine state. */
2077 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
2081 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
2082 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
2085 /* If INSN contains an autoincrement or autodecrement, make sure that
2086 register is not used between there and I3, and not already used in
2087 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2088 Also insist that I3 not be a jump; if it were one
2089 and the incremented register were spilled, we would lose. */
2092 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2093 if (REG_NOTE_KIND (link
) == REG_INC
2095 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
2096 || (pred
!= NULL_RTX
2097 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
2098 || (pred2
!= NULL_RTX
2099 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
2100 || (succ
!= NULL_RTX
2101 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
2102 || (succ2
!= NULL_RTX
2103 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
2104 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
2107 /* Don't combine an insn that follows a CC0-setting insn.
2108 An insn that uses CC0 must not be separated from the one that sets it.
2109 We do, however, allow I2 to follow a CC0-setting insn if that insn
2110 is passed as I1; in that case it will be deleted also.
2111 We also allow combining in this case if all the insns are adjacent
2112 because that would leave the two CC0 insns adjacent as well.
2113 It would be more logical to test whether CC0 occurs inside I1 or I2,
2114 but that would be much slower, and this ought to be equivalent. */
2118 p
= prev_nonnote_insn (insn
);
2119 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
2124 /* If we get here, we have passed all the tests and the combination is
2133 /* LOC is the location within I3 that contains its pattern or the component
2134 of a PARALLEL of the pattern. We validate that it is valid for combining.
2136 One problem is if I3 modifies its output, as opposed to replacing it
2137 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2138 doing so would produce an insn that is not equivalent to the original insns.
2142 (set (reg:DI 101) (reg:DI 100))
2143 (set (subreg:SI (reg:DI 101) 0) <foo>)
2145 This is NOT equivalent to:
2147 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2148 (set (reg:DI 101) (reg:DI 100))])
2150 Not only does this modify 100 (in which case it might still be valid
2151 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2153 We can also run into a problem if I2 sets a register that I1
2154 uses and I1 gets directly substituted into I3 (not via I2). In that
2155 case, we would be getting the wrong value of I2DEST into I3, so we
2156 must reject the combination. This case occurs when I2 and I1 both
2157 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2158 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2159 of a SET must prevent combination from occurring. The same situation
2160 can occur for I0, in which case I0_NOT_IN_SRC is set.
2162 Before doing the above check, we first try to expand a field assignment
2163 into a set of logical operations.
2165 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2166 we place a register that is both set and used within I3. If more than one
2167 such register is detected, we fail.
2169 Return 1 if the combination is valid, zero otherwise. */
2172 combinable_i3pat (rtx_insn
*i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2173 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2177 if (GET_CODE (x
) == SET
)
2180 rtx dest
= SET_DEST (set
);
2181 rtx src
= SET_SRC (set
);
2182 rtx inner_dest
= dest
;
2185 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2186 || GET_CODE (inner_dest
) == SUBREG
2187 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2188 inner_dest
= XEXP (inner_dest
, 0);
2190 /* Check for the case where I3 modifies its output, as discussed
2191 above. We don't want to prevent pseudos from being combined
2192 into the address of a MEM, so only prevent the combination if
2193 i1 or i2 set the same MEM. */
2194 if ((inner_dest
!= dest
&&
2195 (!MEM_P (inner_dest
)
2196 || rtx_equal_p (i2dest
, inner_dest
)
2197 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2198 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2199 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2200 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2201 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2203 /* This is the same test done in can_combine_p except we can't test
2204 all_adjacent; we don't have to, since this instruction will stay
2205 in place, thus we are not considering increasing the lifetime of
2208 Also, if this insn sets a function argument, combining it with
2209 something that might need a spill could clobber a previous
2210 function argument; the all_adjacent test in can_combine_p also
2211 checks this; here, we do a more specific test for this case. */
2213 || (REG_P (inner_dest
)
2214 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2215 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
2216 GET_MODE (inner_dest
))))
2217 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2218 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2221 /* If DEST is used in I3, it is being killed in this insn, so
2222 record that for later. We have to consider paradoxical
2223 subregs here, since they kill the whole register, but we
2224 ignore partial subregs, STRICT_LOW_PART, etc.
2225 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2226 STACK_POINTER_REGNUM, since these are always considered to be
2227 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2229 if (GET_CODE (subdest
) == SUBREG
2230 && (GET_MODE_SIZE (GET_MODE (subdest
))
2231 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest
)))))
2232 subdest
= SUBREG_REG (subdest
);
2235 && reg_referenced_p (subdest
, PATTERN (i3
))
2236 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2237 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2238 || REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
)
2239 && (FRAME_POINTER_REGNUM
== ARG_POINTER_REGNUM
2240 || (REGNO (subdest
) != ARG_POINTER_REGNUM
2241 || ! fixed_regs
[REGNO (subdest
)]))
2242 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2244 if (*pi3dest_killed
)
2247 *pi3dest_killed
= subdest
;
2251 else if (GET_CODE (x
) == PARALLEL
)
2255 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2256 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2257 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2264 /* Return 1 if X is an arithmetic expression that contains a multiplication
2265 and division. We don't count multiplications by powers of two here. */
2268 contains_muldiv (rtx x
)
2270 switch (GET_CODE (x
))
2272 case MOD
: case DIV
: case UMOD
: case UDIV
:
2276 return ! (CONST_INT_P (XEXP (x
, 1))
2277 && pow2p_hwi (UINTVAL (XEXP (x
, 1))));
2280 return contains_muldiv (XEXP (x
, 0))
2281 || contains_muldiv (XEXP (x
, 1));
2284 return contains_muldiv (XEXP (x
, 0));
2290 /* Determine whether INSN can be used in a combination. Return nonzero if
2291 not. This is used in try_combine to detect early some cases where we
2292 can't perform combinations. */
2295 cant_combine_insn_p (rtx_insn
*insn
)
2300 /* If this isn't really an insn, we can't do anything.
2301 This can occur when flow deletes an insn that it has merged into an
2302 auto-increment address. */
2303 if (!NONDEBUG_INSN_P (insn
))
2306 /* Never combine loads and stores involving hard regs that are likely
2307 to be spilled. The register allocator can usually handle such
2308 reg-reg moves by tying. If we allow the combiner to make
2309 substitutions of likely-spilled regs, reload might die.
2310 As an exception, we allow combinations involving fixed regs; these are
2311 not available to the register allocator so there's no risk involved. */
2313 set
= single_set (insn
);
2316 src
= SET_SRC (set
);
2317 dest
= SET_DEST (set
);
2318 if (GET_CODE (src
) == SUBREG
)
2319 src
= SUBREG_REG (src
);
2320 if (GET_CODE (dest
) == SUBREG
)
2321 dest
= SUBREG_REG (dest
);
2322 if (REG_P (src
) && REG_P (dest
)
2323 && ((HARD_REGISTER_P (src
)
2324 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2325 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src
))))
2326 || (HARD_REGISTER_P (dest
)
2327 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2328 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2334 struct likely_spilled_retval_info
2336 unsigned regno
, nregs
;
2340 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2341 hard registers that are known to be written to / clobbered in full. */
2343 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2345 struct likely_spilled_retval_info
*const info
=
2346 (struct likely_spilled_retval_info
*) data
;
2347 unsigned regno
, nregs
;
2350 if (!REG_P (XEXP (set
, 0)))
2353 if (regno
>= info
->regno
+ info
->nregs
)
2355 nregs
= REG_NREGS (x
);
2356 if (regno
+ nregs
<= info
->regno
)
2358 new_mask
= (2U << (nregs
- 1)) - 1;
2359 if (regno
< info
->regno
)
2360 new_mask
>>= info
->regno
- regno
;
2362 new_mask
<<= regno
- info
->regno
;
2363 info
->mask
&= ~new_mask
;
2366 /* Return nonzero iff part of the return value is live during INSN, and
2367 it is likely spilled. This can happen when more than one insn is needed
2368 to copy the return value, e.g. when we consider to combine into the
2369 second copy insn for a complex value. */
2372 likely_spilled_retval_p (rtx_insn
*insn
)
2374 rtx_insn
*use
= BB_END (this_basic_block
);
2377 unsigned regno
, nregs
;
2378 /* We assume here that no machine mode needs more than
2379 32 hard registers when the value overlaps with a register
2380 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2382 struct likely_spilled_retval_info info
;
2384 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2386 reg
= XEXP (PATTERN (use
), 0);
2387 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2389 regno
= REGNO (reg
);
2390 nregs
= REG_NREGS (reg
);
2393 mask
= (2U << (nregs
- 1)) - 1;
2395 /* Disregard parts of the return value that are set later. */
2399 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2401 note_stores (PATTERN (p
), likely_spilled_retval_1
, &info
);
2404 /* Check if any of the (probably) live return value registers is
2409 if ((mask
& 1 << nregs
)
2410 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2416 /* Adjust INSN after we made a change to its destination.
2418 Changing the destination can invalidate notes that say something about
2419 the results of the insn and a LOG_LINK pointing to the insn. */
2422 adjust_for_new_dest (rtx_insn
*insn
)
2424 /* For notes, be conservative and simply remove them. */
2425 remove_reg_equal_equiv_notes (insn
);
2427 /* The new insn will have a destination that was previously the destination
2428 of an insn just above it. Call distribute_links to make a LOG_LINK from
2429 the next use of that destination. */
2431 rtx set
= single_set (insn
);
2434 rtx reg
= SET_DEST (set
);
2436 while (GET_CODE (reg
) == ZERO_EXTRACT
2437 || GET_CODE (reg
) == STRICT_LOW_PART
2438 || GET_CODE (reg
) == SUBREG
)
2439 reg
= XEXP (reg
, 0);
2440 gcc_assert (REG_P (reg
));
2442 distribute_links (alloc_insn_link (insn
, REGNO (reg
), NULL
));
2444 df_insn_rescan (insn
);
2447 /* Return TRUE if combine can reuse reg X in mode MODE.
2448 ADDED_SETS is nonzero if the original set is still required. */
2450 can_change_dest_mode (rtx x
, int added_sets
, machine_mode mode
)
2458 /* Allow hard registers if the new mode is legal, and occupies no more
2459 registers than the old mode. */
2460 if (regno
< FIRST_PSEUDO_REGISTER
)
2461 return (HARD_REGNO_MODE_OK (regno
, mode
)
2462 && REG_NREGS (x
) >= hard_regno_nregs
[regno
][mode
]);
2464 /* Or a pseudo that is only used once. */
2465 return (regno
< reg_n_sets_max
2466 && REG_N_SETS (regno
) == 1
2468 && !REG_USERVAR_P (x
));
2472 /* Check whether X, the destination of a set, refers to part of
2473 the register specified by REG. */
2476 reg_subword_p (rtx x
, rtx reg
)
2478 /* Check that reg is an integer mode register. */
2479 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2482 if (GET_CODE (x
) == STRICT_LOW_PART
2483 || GET_CODE (x
) == ZERO_EXTRACT
)
2486 return GET_CODE (x
) == SUBREG
2487 && SUBREG_REG (x
) == reg
2488 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2491 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2492 Note that the INSN should be deleted *after* removing dead edges, so
2493 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2494 but not for a (set (pc) (label_ref FOO)). */
2497 update_cfg_for_uncondjump (rtx_insn
*insn
)
2499 basic_block bb
= BLOCK_FOR_INSN (insn
);
2500 gcc_assert (BB_END (bb
) == insn
);
2502 purge_dead_edges (bb
);
2505 if (EDGE_COUNT (bb
->succs
) == 1)
2509 single_succ_edge (bb
)->flags
|= EDGE_FALLTHRU
;
2511 /* Remove barriers from the footer if there are any. */
2512 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
2513 if (BARRIER_P (insn
))
2515 if (PREV_INSN (insn
))
2516 SET_NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
2518 BB_FOOTER (bb
) = NEXT_INSN (insn
);
2519 if (NEXT_INSN (insn
))
2520 SET_PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
2522 else if (LABEL_P (insn
))
2527 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2528 by an arbitrary number of CLOBBERs. */
2530 is_parallel_of_n_reg_sets (rtx pat
, int n
)
2532 if (GET_CODE (pat
) != PARALLEL
)
2535 int len
= XVECLEN (pat
, 0);
2540 for (i
= 0; i
< n
; i
++)
2541 if (GET_CODE (XVECEXP (pat
, 0, i
)) != SET
2542 || !REG_P (SET_DEST (XVECEXP (pat
, 0, i
))))
2544 for ( ; i
< len
; i
++)
2545 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
2546 || XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
2552 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2553 CLOBBERs), can be split into individual SETs in that order, without
2554 changing semantics. */
2556 can_split_parallel_of_n_reg_sets (rtx_insn
*insn
, int n
)
2558 if (!insn_nothrow_p (insn
))
2561 rtx pat
= PATTERN (insn
);
2564 for (i
= 0; i
< n
; i
++)
2566 if (side_effects_p (SET_SRC (XVECEXP (pat
, 0, i
))))
2569 rtx reg
= SET_DEST (XVECEXP (pat
, 0, i
));
2571 for (j
= i
+ 1; j
< n
; j
++)
2572 if (reg_referenced_p (reg
, XVECEXP (pat
, 0, j
)))
2579 /* Try to combine the insns I0, I1 and I2 into I3.
2580 Here I0, I1 and I2 appear earlier than I3.
2581 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2584 If we are combining more than two insns and the resulting insn is not
2585 recognized, try splitting it into two insns. If that happens, I2 and I3
2586 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2587 Otherwise, I0, I1 and I2 are pseudo-deleted.
2589 Return 0 if the combination does not work. Then nothing is changed.
2590 If we did the combination, return the insn at which combine should
2593 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2594 new direct jump instruction.
2596 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2597 been I3 passed to an earlier try_combine within the same basic
2601 try_combine (rtx_insn
*i3
, rtx_insn
*i2
, rtx_insn
*i1
, rtx_insn
*i0
,
2602 int *new_direct_jump_p
, rtx_insn
*last_combined_insn
)
2604 /* New patterns for I3 and I2, respectively. */
2605 rtx newpat
, newi2pat
= 0;
2606 rtvec newpat_vec_with_clobbers
= 0;
2607 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2608 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2610 int added_sets_0
, added_sets_1
, added_sets_2
;
2611 /* Total number of SETs to put into I3. */
2613 /* Nonzero if I2's or I1's body now appears in I3. */
2614 int i2_is_used
= 0, i1_is_used
= 0;
2615 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2616 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2617 /* Contains I3 if the destination of I3 is used in its source, which means
2618 that the old life of I3 is being killed. If that usage is placed into
2619 I2 and not in I3, a REG_DEAD note must be made. */
2620 rtx i3dest_killed
= 0;
2621 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2622 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2623 /* Copy of SET_SRC of I1 and I0, if needed. */
2624 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2625 /* Set if I2DEST was reused as a scratch register. */
2626 bool i2scratch
= false;
2627 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2628 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2629 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2630 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2631 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2632 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2633 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2634 /* Notes that must be added to REG_NOTES in I3 and I2. */
2635 rtx new_i3_notes
, new_i2_notes
;
2636 /* Notes that we substituted I3 into I2 instead of the normal case. */
2637 int i3_subst_into_i2
= 0;
2638 /* Notes that I1, I2 or I3 is a MULT operation. */
2641 int changed_i3_dest
= 0;
2644 rtx_insn
*temp_insn
;
2646 struct insn_link
*link
;
2648 rtx new_other_notes
;
2651 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2653 if (i1
== i2
|| i0
== i2
|| (i0
&& i0
== i1
))
2656 /* Only try four-insn combinations when there's high likelihood of
2657 success. Look for simple insns, such as loads of constants or
2658 binary operations involving a constant. */
2666 if (!flag_expensive_optimizations
)
2669 for (i
= 0; i
< 4; i
++)
2671 rtx_insn
*insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2672 rtx set
= single_set (insn
);
2676 src
= SET_SRC (set
);
2677 if (CONSTANT_P (src
))
2682 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2684 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2685 || GET_CODE (src
) == LSHIFTRT
)
2689 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2690 are likely manipulating its value. Ideally we'll be able to combine
2691 all four insns into a bitfield insertion of some kind.
2693 Note the source in I0 might be inside a sign/zero extension and the
2694 memory modes in I0 and I3 might be different. So extract the address
2695 from the destination of I3 and search for it in the source of I0.
2697 In the event that there's a match but the source/dest do not actually
2698 refer to the same memory, the worst that happens is we try some
2699 combinations that we wouldn't have otherwise. */
2700 if ((set0
= single_set (i0
))
2701 /* Ensure the source of SET0 is a MEM, possibly buried inside
2703 && (GET_CODE (SET_SRC (set0
)) == MEM
2704 || ((GET_CODE (SET_SRC (set0
)) == ZERO_EXTEND
2705 || GET_CODE (SET_SRC (set0
)) == SIGN_EXTEND
)
2706 && GET_CODE (XEXP (SET_SRC (set0
), 0)) == MEM
))
2707 && (set3
= single_set (i3
))
2708 /* Ensure the destination of SET3 is a MEM. */
2709 && GET_CODE (SET_DEST (set3
)) == MEM
2710 /* Would it be better to extract the base address for the MEM
2711 in SET3 and look for that? I don't have cases where it matters
2712 but I could envision such cases. */
2713 && rtx_referenced_p (XEXP (SET_DEST (set3
), 0), SET_SRC (set0
)))
2716 if (ngood
< 2 && nshift
< 2)
2720 /* Exit early if one of the insns involved can't be used for
2723 || (i1
&& CALL_P (i1
))
2724 || (i0
&& CALL_P (i0
))
2725 || cant_combine_insn_p (i3
)
2726 || cant_combine_insn_p (i2
)
2727 || (i1
&& cant_combine_insn_p (i1
))
2728 || (i0
&& cant_combine_insn_p (i0
))
2729 || likely_spilled_retval_p (i3
))
2733 undobuf
.other_insn
= 0;
2735 /* Reset the hard register usage information. */
2736 CLEAR_HARD_REG_SET (newpat_used_regs
);
2738 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2741 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2742 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2744 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2745 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2747 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2748 INSN_UID (i2
), INSN_UID (i3
));
2751 /* If multiple insns feed into one of I2 or I3, they can be in any
2752 order. To simplify the code below, reorder them in sequence. */
2753 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2755 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2757 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2760 added_links_insn
= 0;
2762 /* First check for one important special case that the code below will
2763 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2764 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2765 we may be able to replace that destination with the destination of I3.
2766 This occurs in the common code where we compute both a quotient and
2767 remainder into a structure, in which case we want to do the computation
2768 directly into the structure to avoid register-register copies.
2770 Note that this case handles both multiple sets in I2 and also cases
2771 where I2 has a number of CLOBBERs inside the PARALLEL.
2773 We make very conservative checks below and only try to handle the
2774 most common cases of this. For example, we only handle the case
2775 where I2 and I3 are adjacent to avoid making difficult register
2778 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2779 && REG_P (SET_SRC (PATTERN (i3
)))
2780 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2781 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2782 && GET_CODE (PATTERN (i2
)) == PARALLEL
2783 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2784 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2785 below would need to check what is inside (and reg_overlap_mentioned_p
2786 doesn't support those codes anyway). Don't allow those destinations;
2787 the resulting insn isn't likely to be recognized anyway. */
2788 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2789 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2790 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2791 SET_DEST (PATTERN (i3
)))
2792 && next_active_insn (i2
) == i3
)
2794 rtx p2
= PATTERN (i2
);
2796 /* Make sure that the destination of I3,
2797 which we are going to substitute into one output of I2,
2798 is not used within another output of I2. We must avoid making this:
2799 (parallel [(set (mem (reg 69)) ...)
2800 (set (reg 69) ...)])
2801 which is not well-defined as to order of actions.
2802 (Besides, reload can't handle output reloads for this.)
2804 The problem can also happen if the dest of I3 is a memory ref,
2805 if another dest in I2 is an indirect memory ref.
2807 Neither can this PARALLEL be an asm. We do not allow combining
2808 that usually (see can_combine_p), so do not here either. */
2810 for (i
= 0; ok
&& i
< XVECLEN (p2
, 0); i
++)
2812 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2813 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2814 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2815 SET_DEST (XVECEXP (p2
, 0, i
))))
2817 else if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2818 && GET_CODE (SET_SRC (XVECEXP (p2
, 0, i
))) == ASM_OPERANDS
)
2823 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2824 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2825 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2830 subst_low_luid
= DF_INSN_LUID (i2
);
2832 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2833 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2834 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2835 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2837 /* Replace the dest in I2 with our dest and make the resulting
2838 insn the new pattern for I3. Then skip to where we validate
2839 the pattern. Everything was set up above. */
2840 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2842 i3_subst_into_i2
= 1;
2843 goto validate_replacement
;
2847 /* If I2 is setting a pseudo to a constant and I3 is setting some
2848 sub-part of it to another constant, merge them by making a new
2851 && (temp_expr
= single_set (i2
)) != 0
2852 && CONST_SCALAR_INT_P (SET_SRC (temp_expr
))
2853 && GET_CODE (PATTERN (i3
)) == SET
2854 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2855 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp_expr
)))
2857 rtx dest
= SET_DEST (PATTERN (i3
));
2861 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2863 if (CONST_INT_P (XEXP (dest
, 1))
2864 && CONST_INT_P (XEXP (dest
, 2)))
2866 width
= INTVAL (XEXP (dest
, 1));
2867 offset
= INTVAL (XEXP (dest
, 2));
2868 dest
= XEXP (dest
, 0);
2869 if (BITS_BIG_ENDIAN
)
2870 offset
= GET_MODE_PRECISION (GET_MODE (dest
)) - width
- offset
;
2875 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2876 dest
= XEXP (dest
, 0);
2877 width
= GET_MODE_PRECISION (GET_MODE (dest
));
2883 /* If this is the low part, we're done. */
2884 if (subreg_lowpart_p (dest
))
2886 /* Handle the case where inner is twice the size of outer. */
2887 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr
)))
2888 == 2 * GET_MODE_PRECISION (GET_MODE (dest
)))
2889 offset
+= GET_MODE_PRECISION (GET_MODE (dest
));
2890 /* Otherwise give up for now. */
2897 rtx inner
= SET_SRC (PATTERN (i3
));
2898 rtx outer
= SET_SRC (temp_expr
);
2901 = wi::insert (rtx_mode_t (outer
, GET_MODE (SET_DEST (temp_expr
))),
2902 rtx_mode_t (inner
, GET_MODE (dest
)),
2907 subst_low_luid
= DF_INSN_LUID (i2
);
2908 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2909 i2dest
= SET_DEST (temp_expr
);
2910 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2912 /* Replace the source in I2 with the new constant and make the
2913 resulting insn the new pattern for I3. Then skip to where we
2914 validate the pattern. Everything was set up above. */
2915 SUBST (SET_SRC (temp_expr
),
2916 immed_wide_int_const (o
, GET_MODE (SET_DEST (temp_expr
))));
2918 newpat
= PATTERN (i2
);
2920 /* The dest of I3 has been replaced with the dest of I2. */
2921 changed_i3_dest
= 1;
2922 goto validate_replacement
;
2926 /* If we have no I1 and I2 looks like:
2927 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2929 make up a dummy I1 that is
2932 (set (reg:CC X) (compare:CC Y (const_int 0)))
2934 (We can ignore any trailing CLOBBERs.)
2936 This undoes a previous combination and allows us to match a branch-and-
2939 if (!HAVE_cc0
&& i1
== 0
2940 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2941 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2943 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2944 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2945 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2946 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1)))
2947 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2948 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2950 /* We make I1 with the same INSN_UID as I2. This gives it
2951 the same DF_INSN_LUID for value tracking. Our fake I1 will
2952 never appear in the insn stream so giving it the same INSN_UID
2953 as I2 will not cause a problem. */
2955 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2956 XVECEXP (PATTERN (i2
), 0, 1), INSN_LOCATION (i2
),
2958 INSN_UID (i1
) = INSN_UID (i2
);
2960 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2961 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2962 SET_DEST (PATTERN (i1
)));
2963 unsigned int regno
= REGNO (SET_DEST (PATTERN (i1
)));
2964 SUBST_LINK (LOG_LINKS (i2
),
2965 alloc_insn_link (i1
, regno
, LOG_LINKS (i2
)));
2968 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2969 make those two SETs separate I1 and I2 insns, and make an I0 that is
2971 if (!HAVE_cc0
&& i0
== 0
2972 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2973 && can_split_parallel_of_n_reg_sets (i2
, 2)
2974 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2975 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2977 /* If there is no I1, there is no I0 either. */
2980 /* We make I1 with the same INSN_UID as I2. This gives it
2981 the same DF_INSN_LUID for value tracking. Our fake I1 will
2982 never appear in the insn stream so giving it the same INSN_UID
2983 as I2 will not cause a problem. */
2985 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2986 XVECEXP (PATTERN (i2
), 0, 0), INSN_LOCATION (i2
),
2988 INSN_UID (i1
) = INSN_UID (i2
);
2990 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 1));
2993 /* Verify that I2 and I1 are valid for combining. */
2994 if (! can_combine_p (i2
, i3
, i0
, i1
, NULL
, NULL
, &i2dest
, &i2src
)
2995 || (i1
&& ! can_combine_p (i1
, i3
, i0
, NULL
, i2
, NULL
,
2997 || (i0
&& ! can_combine_p (i0
, i3
, NULL
, NULL
, i1
, i2
,
3004 /* Record whether I2DEST is used in I2SRC and similarly for the other
3005 cases. Knowing this will help in register status updating below. */
3006 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
3007 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
3008 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
3009 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
3010 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
3011 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
3012 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
3013 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
3014 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
3016 /* For the earlier insns, determine which of the subsequent ones they
3018 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
3019 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
3020 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
3021 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
3022 && reg_overlap_mentioned_p (i0dest
, i2src
))));
3024 /* Ensure that I3's pattern can be the destination of combines. */
3025 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
3026 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
3027 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
3028 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
3035 /* See if any of the insns is a MULT operation. Unless one is, we will
3036 reject a combination that is, since it must be slower. Be conservative
3038 if (GET_CODE (i2src
) == MULT
3039 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
3040 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
3041 || (GET_CODE (PATTERN (i3
)) == SET
3042 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
3045 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3046 We used to do this EXCEPT in one case: I3 has a post-inc in an
3047 output operand. However, that exception can give rise to insns like
3049 which is a famous insn on the PDP-11 where the value of r3 used as the
3050 source was model-dependent. Avoid this sort of thing. */
3053 if (!(GET_CODE (PATTERN (i3
)) == SET
3054 && REG_P (SET_SRC (PATTERN (i3
)))
3055 && MEM_P (SET_DEST (PATTERN (i3
)))
3056 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
3057 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
3058 /* It's not the exception. */
3063 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
3064 if (REG_NOTE_KIND (link
) == REG_INC
3065 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
3067 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
3074 /* See if the SETs in I1 or I2 need to be kept around in the merged
3075 instruction: whenever the value set there is still needed past I3.
3076 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3078 For the SET in I1, we have two cases: if I1 and I2 independently feed
3079 into I3, the set in I1 needs to be kept around unless I1DEST dies
3080 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3081 in I1 needs to be kept around unless I1DEST dies or is set in either
3082 I2 or I3. The same considerations apply to I0. */
3084 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
3087 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
3088 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
3093 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
3094 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
3095 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3096 && dead_or_set_p (i2
, i0dest
)));
3100 /* We are about to copy insns for the case where they need to be kept
3101 around. Check that they can be copied in the merged instruction. */
3103 if (targetm
.cannot_copy_insn_p
3104 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
3105 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
3106 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
3112 /* If the set in I2 needs to be kept around, we must make a copy of
3113 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3114 PATTERN (I2), we are only substituting for the original I1DEST, not into
3115 an already-substituted copy. This also prevents making self-referential
3116 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3121 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
3122 i2pat
= gen_rtx_SET (i2dest
, copy_rtx (i2src
));
3124 i2pat
= copy_rtx (PATTERN (i2
));
3129 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
3130 i1pat
= gen_rtx_SET (i1dest
, copy_rtx (i1src
));
3132 i1pat
= copy_rtx (PATTERN (i1
));
3137 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
3138 i0pat
= gen_rtx_SET (i0dest
, copy_rtx (i0src
));
3140 i0pat
= copy_rtx (PATTERN (i0
));
3145 /* Substitute in the latest insn for the regs set by the earlier ones. */
3147 maxreg
= max_reg_num ();
3151 /* Many machines that don't use CC0 have insns that can both perform an
3152 arithmetic operation and set the condition code. These operations will
3153 be represented as a PARALLEL with the first element of the vector
3154 being a COMPARE of an arithmetic operation with the constant zero.
3155 The second element of the vector will set some pseudo to the result
3156 of the same arithmetic operation. If we simplify the COMPARE, we won't
3157 match such a pattern and so will generate an extra insn. Here we test
3158 for this case, where both the comparison and the operation result are
3159 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3160 I2SRC. Later we will make the PARALLEL that contains I2. */
3162 if (!HAVE_cc0
&& i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
3163 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
3164 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
3165 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
3168 rtx
*cc_use_loc
= NULL
;
3169 rtx_insn
*cc_use_insn
= NULL
;
3170 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
3171 machine_mode compare_mode
, orig_compare_mode
;
3172 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
3173 scalar_int_mode mode
;
3175 newpat
= PATTERN (i3
);
3176 newpat_dest
= SET_DEST (newpat
);
3177 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
3179 if (undobuf
.other_insn
== 0
3180 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
3183 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
3184 if (is_a
<scalar_int_mode
> (GET_MODE (i2dest
), &mode
))
3185 compare_code
= simplify_compare_const (compare_code
, mode
,
3187 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
3190 /* Do the rest only if op1 is const0_rtx, which may be the
3191 result of simplification. */
3192 if (op1
== const0_rtx
)
3194 /* If a single use of the CC is found, prepare to modify it
3195 when SELECT_CC_MODE returns a new CC-class mode, or when
3196 the above simplify_compare_const() returned a new comparison
3197 operator. undobuf.other_insn is assigned the CC use insn
3198 when modifying it. */
3201 #ifdef SELECT_CC_MODE
3202 machine_mode new_mode
3203 = SELECT_CC_MODE (compare_code
, op0
, op1
);
3204 if (new_mode
!= orig_compare_mode
3205 && can_change_dest_mode (SET_DEST (newpat
),
3206 added_sets_2
, new_mode
))
3208 unsigned int regno
= REGNO (newpat_dest
);
3209 compare_mode
= new_mode
;
3210 if (regno
< FIRST_PSEUDO_REGISTER
)
3211 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
3214 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
3215 newpat_dest
= regno_reg_rtx
[regno
];
3219 /* Cases for modifying the CC-using comparison. */
3220 if (compare_code
!= orig_compare_code
3221 /* ??? Do we need to verify the zero rtx? */
3222 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
3224 /* Replace cc_use_loc with entire new RTX. */
3226 gen_rtx_fmt_ee (compare_code
, compare_mode
,
3227 newpat_dest
, const0_rtx
));
3228 undobuf
.other_insn
= cc_use_insn
;
3230 else if (compare_mode
!= orig_compare_mode
)
3232 /* Just replace the CC reg with a new mode. */
3233 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
3234 undobuf
.other_insn
= cc_use_insn
;
3238 /* Now we modify the current newpat:
3239 First, SET_DEST(newpat) is updated if the CC mode has been
3240 altered. For targets without SELECT_CC_MODE, this should be
3242 if (compare_mode
!= orig_compare_mode
)
3243 SUBST (SET_DEST (newpat
), newpat_dest
);
3244 /* This is always done to propagate i2src into newpat. */
3245 SUBST (SET_SRC (newpat
),
3246 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3247 /* Create new version of i2pat if needed; the below PARALLEL
3248 creation needs this to work correctly. */
3249 if (! rtx_equal_p (i2src
, op0
))
3250 i2pat
= gen_rtx_SET (i2dest
, op0
);
3255 if (i2_is_used
== 0)
3257 /* It is possible that the source of I2 or I1 may be performing
3258 an unneeded operation, such as a ZERO_EXTEND of something
3259 that is known to have the high part zero. Handle that case
3260 by letting subst look at the inner insns.
3262 Another way to do this would be to have a function that tries
3263 to simplify a single insn instead of merging two or more
3264 insns. We don't do this because of the potential of infinite
3265 loops and because of the potential extra memory required.
3266 However, doing it the way we are is a bit of a kludge and
3267 doesn't catch all cases.
3269 But only do this if -fexpensive-optimizations since it slows
3270 things down and doesn't usually win.
3272 This is not done in the COMPARE case above because the
3273 unmodified I2PAT is used in the PARALLEL and so a pattern
3274 with a modified I2SRC would not match. */
3276 if (flag_expensive_optimizations
)
3278 /* Pass pc_rtx so no substitutions are done, just
3282 subst_low_luid
= DF_INSN_LUID (i1
);
3283 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3286 subst_low_luid
= DF_INSN_LUID (i2
);
3287 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3290 n_occurrences
= 0; /* `subst' counts here */
3291 subst_low_luid
= DF_INSN_LUID (i2
);
3293 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3294 copy of I2SRC each time we substitute it, in order to avoid creating
3295 self-referential RTL when we will be substituting I1SRC for I1DEST
3296 later. Likewise if I0 feeds into I2, either directly or indirectly
3297 through I1, and I0DEST is in I0SRC. */
3298 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3299 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3300 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3301 && i0dest_in_i0src
));
3304 /* Record whether I2's body now appears within I3's body. */
3305 i2_is_used
= n_occurrences
;
3308 /* If we already got a failure, don't try to do more. Otherwise, try to
3309 substitute I1 if we have it. */
3311 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3313 /* Check that an autoincrement side-effect on I1 has not been lost.
3314 This happens if I1DEST is mentioned in I2 and dies there, and
3315 has disappeared from the new pattern. */
3316 if ((FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3318 && dead_or_set_p (i2
, i1dest
)
3319 && !reg_overlap_mentioned_p (i1dest
, newpat
))
3320 /* Before we can do this substitution, we must redo the test done
3321 above (see detailed comments there) that ensures I1DEST isn't
3322 mentioned in any SETs in NEWPAT that are field assignments. */
3323 || !combinable_i3pat (NULL
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3331 subst_low_luid
= DF_INSN_LUID (i1
);
3333 /* If the following substitution will modify I1SRC, make a copy of it
3334 for the case where it is substituted for I1DEST in I2PAT later. */
3335 if (added_sets_2
&& i1_feeds_i2_n
)
3336 i1src_copy
= copy_rtx (i1src
);
3338 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3339 copy of I1SRC each time we substitute it, in order to avoid creating
3340 self-referential RTL when we will be substituting I0SRC for I0DEST
3342 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3343 i0_feeds_i1_n
&& i0dest_in_i0src
);
3346 /* Record whether I1's body now appears within I3's body. */
3347 i1_is_used
= n_occurrences
;
3350 /* Likewise for I0 if we have it. */
3352 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3354 if ((FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3355 && ((i0_feeds_i2_n
&& dead_or_set_p (i2
, i0dest
))
3356 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
)))
3357 && !reg_overlap_mentioned_p (i0dest
, newpat
))
3358 || !combinable_i3pat (NULL
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3365 /* If the following substitution will modify I0SRC, make a copy of it
3366 for the case where it is substituted for I0DEST in I1PAT later. */
3367 if (added_sets_1
&& i0_feeds_i1_n
)
3368 i0src_copy
= copy_rtx (i0src
);
3369 /* And a copy for I0DEST in I2PAT substitution. */
3370 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3371 || (i0_feeds_i2_n
)))
3372 i0src_copy2
= copy_rtx (i0src
);
3375 subst_low_luid
= DF_INSN_LUID (i0
);
3376 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3380 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3381 to count all the ways that I2SRC and I1SRC can be used. */
3382 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3383 && i2_is_used
+ added_sets_2
> 1)
3384 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3385 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3387 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3388 && (n_occurrences
+ added_sets_0
3389 + (added_sets_1
&& i0_feeds_i1_n
)
3390 + (added_sets_2
&& i0_feeds_i2_n
)
3392 /* Fail if we tried to make a new register. */
3393 || max_reg_num () != maxreg
3394 /* Fail if we couldn't do something and have a CLOBBER. */
3395 || GET_CODE (newpat
) == CLOBBER
3396 /* Fail if this new pattern is a MULT and we didn't have one before
3397 at the outer level. */
3398 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3405 /* If the actions of the earlier insns must be kept
3406 in addition to substituting them into the latest one,
3407 we must make a new PARALLEL for the latest insn
3408 to hold additional the SETs. */
3410 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3412 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3415 if (GET_CODE (newpat
) == PARALLEL
)
3417 rtvec old
= XVEC (newpat
, 0);
3418 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3419 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3420 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3421 sizeof (old
->elem
[0]) * old
->num_elem
);
3426 total_sets
= 1 + extra_sets
;
3427 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3428 XVECEXP (newpat
, 0, 0) = old
;
3432 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3438 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
, 0, 0, 0);
3440 XVECEXP (newpat
, 0, --total_sets
) = t
;
3446 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3447 i0_feeds_i1_n
&& i0dest_in_i0src
);
3448 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3449 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
, 0, 0, 0);
3451 XVECEXP (newpat
, 0, --total_sets
) = t
;
3455 validate_replacement
:
3457 /* Note which hard regs this insn has as inputs. */
3458 mark_used_regs_combine (newpat
);
3460 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3461 consider splitting this pattern, we might need these clobbers. */
3462 if (i1
&& GET_CODE (newpat
) == PARALLEL
3463 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3465 int len
= XVECLEN (newpat
, 0);
3467 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3468 for (i
= 0; i
< len
; i
++)
3469 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3472 /* We have recognized nothing yet. */
3473 insn_code_number
= -1;
3475 /* See if this is a PARALLEL of two SETs where one SET's destination is
3476 a register that is unused and this isn't marked as an instruction that
3477 might trap in an EH region. In that case, we just need the other SET.
3478 We prefer this over the PARALLEL.
3480 This can occur when simplifying a divmod insn. We *must* test for this
3481 case here because the code below that splits two independent SETs doesn't
3482 handle this case correctly when it updates the register status.
3484 It's pointless doing this if we originally had two sets, one from
3485 i3, and one from i2. Combining then splitting the parallel results
3486 in the original i2 again plus an invalid insn (which we delete).
3487 The net effect is only to move instructions around, which makes
3488 debug info less accurate. */
3490 if (!(added_sets_2
&& i1
== 0)
3491 && is_parallel_of_n_reg_sets (newpat
, 2)
3492 && asm_noperands (newpat
) < 0)
3494 rtx set0
= XVECEXP (newpat
, 0, 0);
3495 rtx set1
= XVECEXP (newpat
, 0, 1);
3496 rtx oldpat
= newpat
;
3498 if (((REG_P (SET_DEST (set1
))
3499 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3500 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3501 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3502 && insn_nothrow_p (i3
)
3503 && !side_effects_p (SET_SRC (set1
)))
3506 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3509 else if (((REG_P (SET_DEST (set0
))
3510 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3511 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3512 && find_reg_note (i3
, REG_UNUSED
,
3513 SUBREG_REG (SET_DEST (set0
)))))
3514 && insn_nothrow_p (i3
)
3515 && !side_effects_p (SET_SRC (set0
)))
3518 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3520 if (insn_code_number
>= 0)
3521 changed_i3_dest
= 1;
3524 if (insn_code_number
< 0)
3528 /* Is the result of combination a valid instruction? */
3529 if (insn_code_number
< 0)
3530 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3532 /* If we were combining three insns and the result is a simple SET
3533 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3534 insns. There are two ways to do this. It can be split using a
3535 machine-specific method (like when you have an addition of a large
3536 constant) or by combine in the function find_split_point. */
3538 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3539 && asm_noperands (newpat
) < 0)
3541 rtx parallel
, *split
;
3542 rtx_insn
*m_split_insn
;
3544 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3545 use I2DEST as a scratch register will help. In the latter case,
3546 convert I2DEST to the mode of the source of NEWPAT if we can. */
3548 m_split_insn
= combine_split_insns (newpat
, i3
);
3550 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3551 inputs of NEWPAT. */
3553 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3554 possible to try that as a scratch reg. This would require adding
3555 more code to make it work though. */
3557 if (m_split_insn
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3559 machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3561 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3562 (temporarily, until we are committed to this instruction
3563 combination) does not work: for example, any call to nonzero_bits
3564 on the register (from a splitter in the MD file, for example)
3565 will get the old information, which is invalid.
3567 Since nowadays we can create registers during combine just fine,
3568 we should just create a new one here, not reuse i2dest. */
3570 /* First try to split using the original register as a
3571 scratch register. */
3572 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3573 gen_rtvec (2, newpat
,
3574 gen_rtx_CLOBBER (VOIDmode
,
3576 m_split_insn
= combine_split_insns (parallel
, i3
);
3578 /* If that didn't work, try changing the mode of I2DEST if
3580 if (m_split_insn
== 0
3581 && new_mode
!= GET_MODE (i2dest
)
3582 && new_mode
!= VOIDmode
3583 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3585 machine_mode old_mode
= GET_MODE (i2dest
);
3588 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3589 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3592 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
3593 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3596 parallel
= (gen_rtx_PARALLEL
3598 gen_rtvec (2, newpat
,
3599 gen_rtx_CLOBBER (VOIDmode
,
3601 m_split_insn
= combine_split_insns (parallel
, i3
);
3603 if (m_split_insn
== 0
3604 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3608 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3609 buf
= undobuf
.undos
;
3610 undobuf
.undos
= buf
->next
;
3611 buf
->next
= undobuf
.frees
;
3612 undobuf
.frees
= buf
;
3616 i2scratch
= m_split_insn
!= 0;
3619 /* If recog_for_combine has discarded clobbers, try to use them
3620 again for the split. */
3621 if (m_split_insn
== 0 && newpat_vec_with_clobbers
)
3623 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3624 m_split_insn
= combine_split_insns (parallel
, i3
);
3627 if (m_split_insn
&& NEXT_INSN (m_split_insn
) == NULL_RTX
)
3629 rtx m_split_pat
= PATTERN (m_split_insn
);
3630 insn_code_number
= recog_for_combine (&m_split_pat
, i3
, &new_i3_notes
);
3631 if (insn_code_number
>= 0)
3632 newpat
= m_split_pat
;
3634 else if (m_split_insn
&& NEXT_INSN (NEXT_INSN (m_split_insn
)) == NULL_RTX
3635 && (next_nonnote_nondebug_insn (i2
) == i3
3636 || ! use_crosses_set_p (PATTERN (m_split_insn
), DF_INSN_LUID (i2
))))
3639 rtx newi3pat
= PATTERN (NEXT_INSN (m_split_insn
));
3640 newi2pat
= PATTERN (m_split_insn
);
3642 i3set
= single_set (NEXT_INSN (m_split_insn
));
3643 i2set
= single_set (m_split_insn
);
3645 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3647 /* If I2 or I3 has multiple SETs, we won't know how to track
3648 register status, so don't use these insns. If I2's destination
3649 is used between I2 and I3, we also can't use these insns. */
3651 if (i2_code_number
>= 0 && i2set
&& i3set
3652 && (next_nonnote_nondebug_insn (i2
) == i3
3653 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3654 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3656 if (insn_code_number
>= 0)
3659 /* It is possible that both insns now set the destination of I3.
3660 If so, we must show an extra use of it. */
3662 if (insn_code_number
>= 0)
3664 rtx new_i3_dest
= SET_DEST (i3set
);
3665 rtx new_i2_dest
= SET_DEST (i2set
);
3667 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3668 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3669 || GET_CODE (new_i3_dest
) == SUBREG
)
3670 new_i3_dest
= XEXP (new_i3_dest
, 0);
3672 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3673 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3674 || GET_CODE (new_i2_dest
) == SUBREG
)
3675 new_i2_dest
= XEXP (new_i2_dest
, 0);
3677 if (REG_P (new_i3_dest
)
3678 && REG_P (new_i2_dest
)
3679 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
)
3680 && REGNO (new_i2_dest
) < reg_n_sets_max
)
3681 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3685 /* If we can split it and use I2DEST, go ahead and see if that
3686 helps things be recognized. Verify that none of the registers
3687 are set between I2 and I3. */
3688 if (insn_code_number
< 0
3689 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3690 && (!HAVE_cc0
|| REG_P (i2dest
))
3691 /* We need I2DEST in the proper mode. If it is a hard register
3692 or the only use of a pseudo, we can change its mode.
3693 Make sure we don't change a hard register to have a mode that
3694 isn't valid for it, or change the number of registers. */
3695 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3696 || GET_MODE (*split
) == VOIDmode
3697 || can_change_dest_mode (i2dest
, added_sets_2
,
3699 && (next_nonnote_nondebug_insn (i2
) == i3
3700 || ! use_crosses_set_p (*split
, DF_INSN_LUID (i2
)))
3701 /* We can't overwrite I2DEST if its value is still used by
3703 && ! reg_referenced_p (i2dest
, newpat
))
3705 rtx newdest
= i2dest
;
3706 enum rtx_code split_code
= GET_CODE (*split
);
3707 machine_mode split_mode
= GET_MODE (*split
);
3708 bool subst_done
= false;
3709 newi2pat
= NULL_RTX
;
3713 /* *SPLIT may be part of I2SRC, so make sure we have the
3714 original expression around for later debug processing.
3715 We should not need I2SRC any more in other cases. */
3716 if (MAY_HAVE_DEBUG_INSNS
)
3717 i2src
= copy_rtx (i2src
);
3721 /* Get NEWDEST as a register in the proper mode. We have already
3722 validated that we can do this. */
3723 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3725 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3726 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3729 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
3730 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3734 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3735 an ASHIFT. This can occur if it was inside a PLUS and hence
3736 appeared to be a memory address. This is a kludge. */
3737 if (split_code
== MULT
3738 && CONST_INT_P (XEXP (*split
, 1))
3739 && INTVAL (XEXP (*split
, 1)) > 0
3740 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3742 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3743 XEXP (*split
, 0), GEN_INT (i
)));
3744 /* Update split_code because we may not have a multiply
3746 split_code
= GET_CODE (*split
);
3749 /* Similarly for (plus (mult FOO (const_int pow2))). */
3750 if (split_code
== PLUS
3751 && GET_CODE (XEXP (*split
, 0)) == MULT
3752 && CONST_INT_P (XEXP (XEXP (*split
, 0), 1))
3753 && INTVAL (XEXP (XEXP (*split
, 0), 1)) > 0
3754 && (i
= exact_log2 (UINTVAL (XEXP (XEXP (*split
, 0), 1)))) >= 0)
3756 rtx nsplit
= XEXP (*split
, 0);
3757 SUBST (XEXP (*split
, 0), gen_rtx_ASHIFT (GET_MODE (nsplit
),
3758 XEXP (nsplit
, 0), GEN_INT (i
)));
3759 /* Update split_code because we may not have a multiply
3761 split_code
= GET_CODE (*split
);
3764 #ifdef INSN_SCHEDULING
3765 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3766 be written as a ZERO_EXTEND. */
3767 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3769 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3770 what it really is. */
3771 if (load_extend_op (GET_MODE (SUBREG_REG (*split
)))
3773 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3774 SUBREG_REG (*split
)));
3776 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3777 SUBREG_REG (*split
)));
3781 /* Attempt to split binary operators using arithmetic identities. */
3782 if (BINARY_P (SET_SRC (newpat
))
3783 && split_mode
== GET_MODE (SET_SRC (newpat
))
3784 && ! side_effects_p (SET_SRC (newpat
)))
3786 rtx setsrc
= SET_SRC (newpat
);
3787 machine_mode mode
= GET_MODE (setsrc
);
3788 enum rtx_code code
= GET_CODE (setsrc
);
3789 rtx src_op0
= XEXP (setsrc
, 0);
3790 rtx src_op1
= XEXP (setsrc
, 1);
3792 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3793 if (rtx_equal_p (src_op0
, src_op1
))
3795 newi2pat
= gen_rtx_SET (newdest
, src_op0
);
3796 SUBST (XEXP (setsrc
, 0), newdest
);
3797 SUBST (XEXP (setsrc
, 1), newdest
);
3800 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3801 else if ((code
== PLUS
|| code
== MULT
)
3802 && GET_CODE (src_op0
) == code
3803 && GET_CODE (XEXP (src_op0
, 0)) == code
3804 && (INTEGRAL_MODE_P (mode
)
3805 || (FLOAT_MODE_P (mode
)
3806 && flag_unsafe_math_optimizations
)))
3808 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3809 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3810 rtx r
= XEXP (src_op0
, 1);
3813 /* Split both "((X op Y) op X) op Y" and
3814 "((X op Y) op Y) op X" as "T op T" where T is
3816 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3817 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3819 newi2pat
= gen_rtx_SET (newdest
, XEXP (src_op0
, 0));
3820 SUBST (XEXP (setsrc
, 0), newdest
);
3821 SUBST (XEXP (setsrc
, 1), newdest
);
3824 /* Split "((X op X) op Y) op Y)" as "T op T" where
3826 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3828 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3829 newi2pat
= gen_rtx_SET (newdest
, tmp
);
3830 SUBST (XEXP (setsrc
, 0), newdest
);
3831 SUBST (XEXP (setsrc
, 1), newdest
);
3839 newi2pat
= gen_rtx_SET (newdest
, *split
);
3840 SUBST (*split
, newdest
);
3843 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3845 /* recog_for_combine might have added CLOBBERs to newi2pat.
3846 Make sure NEWPAT does not depend on the clobbered regs. */
3847 if (GET_CODE (newi2pat
) == PARALLEL
)
3848 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3849 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3851 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3852 if (reg_overlap_mentioned_p (reg
, newpat
))
3859 /* If the split point was a MULT and we didn't have one before,
3860 don't use one now. */
3861 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3862 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3866 /* Check for a case where we loaded from memory in a narrow mode and
3867 then sign extended it, but we need both registers. In that case,
3868 we have a PARALLEL with both loads from the same memory location.
3869 We can split this into a load from memory followed by a register-register
3870 copy. This saves at least one insn, more if register allocation can
3873 We cannot do this if the destination of the first assignment is a
3874 condition code register or cc0. We eliminate this case by making sure
3875 the SET_DEST and SET_SRC have the same mode.
3877 We cannot do this if the destination of the second assignment is
3878 a register that we have already assumed is zero-extended. Similarly
3879 for a SUBREG of such a register. */
3881 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3882 && GET_CODE (newpat
) == PARALLEL
3883 && XVECLEN (newpat
, 0) == 2
3884 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3885 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3886 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3887 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3888 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3889 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3890 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3891 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3893 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3894 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3895 && ! (temp_expr
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3897 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3898 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < BITS_PER_WORD
3899 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < HOST_BITS_PER_INT
3900 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3901 != GET_MODE_MASK (word_mode
))))
3902 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3903 && (temp_expr
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3905 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3906 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < BITS_PER_WORD
3907 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < HOST_BITS_PER_INT
3908 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3909 != GET_MODE_MASK (word_mode
)))))
3910 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3911 SET_SRC (XVECEXP (newpat
, 0, 1)))
3912 && ! find_reg_note (i3
, REG_UNUSED
,
3913 SET_DEST (XVECEXP (newpat
, 0, 0))))
3917 newi2pat
= XVECEXP (newpat
, 0, 0);
3918 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3919 newpat
= XVECEXP (newpat
, 0, 1);
3920 SUBST (SET_SRC (newpat
),
3921 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3922 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3924 if (i2_code_number
>= 0)
3925 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3927 if (insn_code_number
>= 0)
3931 /* Similarly, check for a case where we have a PARALLEL of two independent
3932 SETs but we started with three insns. In this case, we can do the sets
3933 as two separate insns. This case occurs when some SET allows two
3934 other insns to combine, but the destination of that SET is still live.
3936 Also do this if we started with two insns and (at least) one of the
3937 resulting sets is a noop; this noop will be deleted later. */
3939 else if (insn_code_number
< 0 && asm_noperands (newpat
) < 0
3940 && GET_CODE (newpat
) == PARALLEL
3941 && XVECLEN (newpat
, 0) == 2
3942 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3943 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3944 && (i1
|| set_noop_p (XVECEXP (newpat
, 0, 0))
3945 || set_noop_p (XVECEXP (newpat
, 0, 1)))
3946 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
3947 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
3948 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3949 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3950 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3951 XVECEXP (newpat
, 0, 0))
3952 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
3953 XVECEXP (newpat
, 0, 1))
3954 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
3955 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
3957 rtx set0
= XVECEXP (newpat
, 0, 0);
3958 rtx set1
= XVECEXP (newpat
, 0, 1);
3960 /* Normally, it doesn't matter which of the two is done first,
3961 but the one that references cc0 can't be the second, and
3962 one which uses any regs/memory set in between i2 and i3 can't
3963 be first. The PARALLEL might also have been pre-existing in i3,
3964 so we need to make sure that we won't wrongly hoist a SET to i2
3965 that would conflict with a death note present in there. */
3966 if (!use_crosses_set_p (SET_SRC (set1
), DF_INSN_LUID (i2
))
3967 && !(REG_P (SET_DEST (set1
))
3968 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
3969 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
3970 && find_reg_note (i2
, REG_DEAD
,
3971 SUBREG_REG (SET_DEST (set1
))))
3972 && (!HAVE_cc0
|| !reg_referenced_p (cc0_rtx
, set0
))
3973 /* If I3 is a jump, ensure that set0 is a jump so that
3974 we do not create invalid RTL. */
3975 && (!JUMP_P (i3
) || SET_DEST (set0
) == pc_rtx
)
3981 else if (!use_crosses_set_p (SET_SRC (set0
), DF_INSN_LUID (i2
))
3982 && !(REG_P (SET_DEST (set0
))
3983 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
3984 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
3985 && find_reg_note (i2
, REG_DEAD
,
3986 SUBREG_REG (SET_DEST (set0
))))
3987 && (!HAVE_cc0
|| !reg_referenced_p (cc0_rtx
, set1
))
3988 /* If I3 is a jump, ensure that set1 is a jump so that
3989 we do not create invalid RTL. */
3990 && (!JUMP_P (i3
) || SET_DEST (set1
) == pc_rtx
)
4002 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
4004 if (i2_code_number
>= 0)
4006 /* recog_for_combine might have added CLOBBERs to newi2pat.
4007 Make sure NEWPAT does not depend on the clobbered regs. */
4008 if (GET_CODE (newi2pat
) == PARALLEL
)
4010 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
4011 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
4013 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
4014 if (reg_overlap_mentioned_p (reg
, newpat
))
4022 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
4026 /* If it still isn't recognized, fail and change things back the way they
4028 if ((insn_code_number
< 0
4029 /* Is the result a reasonable ASM_OPERANDS? */
4030 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
4036 /* If we had to change another insn, make sure it is valid also. */
4037 if (undobuf
.other_insn
)
4039 CLEAR_HARD_REG_SET (newpat_used_regs
);
4041 other_pat
= PATTERN (undobuf
.other_insn
);
4042 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
4045 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
4052 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4053 they are adjacent to each other or not. */
4056 rtx_insn
*p
= prev_nonnote_insn (i3
);
4057 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
4058 && sets_cc0_p (newi2pat
))
4065 /* Only allow this combination if insn_rtx_costs reports that the
4066 replacement instructions are cheaper than the originals. */
4067 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
4073 if (MAY_HAVE_DEBUG_INSNS
)
4077 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
4078 if (undo
->kind
== UNDO_MODE
)
4080 rtx reg
= *undo
->where
.r
;
4081 machine_mode new_mode
= GET_MODE (reg
);
4082 machine_mode old_mode
= undo
->old_contents
.m
;
4084 /* Temporarily revert mode back. */
4085 adjust_reg_mode (reg
, old_mode
);
4087 if (reg
== i2dest
&& i2scratch
)
4089 /* If we used i2dest as a scratch register with a
4090 different mode, substitute it for the original
4091 i2src while its original mode is temporarily
4092 restored, and then clear i2scratch so that we don't
4093 do it again later. */
4094 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
4097 /* Put back the new mode. */
4098 adjust_reg_mode (reg
, new_mode
);
4102 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
4103 rtx_insn
*first
, *last
;
4108 last
= last_combined_insn
;
4113 last
= undobuf
.other_insn
;
4115 if (DF_INSN_LUID (last
)
4116 < DF_INSN_LUID (last_combined_insn
))
4117 last
= last_combined_insn
;
4120 /* We're dealing with a reg that changed mode but not
4121 meaning, so we want to turn it into a subreg for
4122 the new mode. However, because of REG sharing and
4123 because its mode had already changed, we have to do
4124 it in two steps. First, replace any debug uses of
4125 reg, with its original mode temporarily restored,
4126 with this copy we have created; then, replace the
4127 copy with the SUBREG of the original shared reg,
4128 once again changed to the new mode. */
4129 propagate_for_debug (first
, last
, reg
, tempreg
,
4131 adjust_reg_mode (reg
, new_mode
);
4132 propagate_for_debug (first
, last
, tempreg
,
4133 lowpart_subreg (old_mode
, reg
, new_mode
),
4139 /* If we will be able to accept this, we have made a
4140 change to the destination of I3. This requires us to
4141 do a few adjustments. */
4143 if (changed_i3_dest
)
4145 PATTERN (i3
) = newpat
;
4146 adjust_for_new_dest (i3
);
4149 /* We now know that we can do this combination. Merge the insns and
4150 update the status of registers and LOG_LINKS. */
4152 if (undobuf
.other_insn
)
4156 PATTERN (undobuf
.other_insn
) = other_pat
;
4158 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4159 ensure that they are still valid. Then add any non-duplicate
4160 notes added by recog_for_combine. */
4161 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
4163 next
= XEXP (note
, 1);
4165 if ((REG_NOTE_KIND (note
) == REG_DEAD
4166 && !reg_referenced_p (XEXP (note
, 0),
4167 PATTERN (undobuf
.other_insn
)))
4168 ||(REG_NOTE_KIND (note
) == REG_UNUSED
4169 && !reg_set_p (XEXP (note
, 0),
4170 PATTERN (undobuf
.other_insn
)))
4171 /* Simply drop equal note since it may be no longer valid
4172 for other_insn. It may be possible to record that CC
4173 register is changed and only discard those notes, but
4174 in practice it's unnecessary complication and doesn't
4175 give any meaningful improvement.
4178 || REG_NOTE_KIND (note
) == REG_EQUAL
4179 || REG_NOTE_KIND (note
) == REG_EQUIV
)
4180 remove_note (undobuf
.other_insn
, note
);
4183 distribute_notes (new_other_notes
, undobuf
.other_insn
,
4184 undobuf
.other_insn
, NULL
, NULL_RTX
, NULL_RTX
,
4191 struct insn_link
*link
;
4194 /* I3 now uses what used to be its destination and which is now
4195 I2's destination. This requires us to do a few adjustments. */
4196 PATTERN (i3
) = newpat
;
4197 adjust_for_new_dest (i3
);
4199 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4202 However, some later insn might be using I2's dest and have
4203 a LOG_LINK pointing at I3. We must remove this link.
4204 The simplest way to remove the link is to point it at I1,
4205 which we know will be a NOTE. */
4207 /* newi2pat is usually a SET here; however, recog_for_combine might
4208 have added some clobbers. */
4209 if (GET_CODE (newi2pat
) == PARALLEL
)
4210 ni2dest
= SET_DEST (XVECEXP (newi2pat
, 0, 0));
4212 ni2dest
= SET_DEST (newi2pat
);
4214 for (insn
= NEXT_INSN (i3
);
4215 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4216 || insn
!= BB_HEAD (this_basic_block
->next_bb
));
4217 insn
= NEXT_INSN (insn
))
4219 if (NONDEBUG_INSN_P (insn
)
4220 && reg_referenced_p (ni2dest
, PATTERN (insn
)))
4222 FOR_EACH_LOG_LINK (link
, insn
)
4223 if (link
->insn
== i3
)
4232 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
4233 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
4236 /* Compute which registers we expect to eliminate. newi2pat may be setting
4237 either i3dest or i2dest, so we must check it. */
4238 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4239 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
4242 /* For i1, we need to compute both local elimination and global
4243 elimination information with respect to newi2pat because i1dest
4244 may be the same as i3dest, in which case newi2pat may be setting
4245 i1dest. Global information is used when distributing REG_DEAD
4246 note for i2 and i3, in which case it does matter if newi2pat sets
4249 Local information is used when distributing REG_DEAD note for i1,
4250 in which case it doesn't matter if newi2pat sets i1dest or not.
4251 See PR62151, if we have four insns combination:
4253 i1: r1 <- i1src (using r0)
4255 i2: r0 <- i2src (using r1)
4256 i3: r3 <- i3src (using r0)
4258 From i1's point of view, r0 is eliminated, no matter if it is set
4259 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4260 should be discarded.
4262 Note local information only affects cases in forms like "I1->I2->I3",
4263 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4264 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4266 rtx local_elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
4269 rtx elim_i1
= (local_elim_i1
== 0
4270 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4272 /* Same case as i1. */
4273 rtx local_elim_i0
= (i0
== 0 || i0dest_in_i0src
|| !i0dest_killed
4275 rtx elim_i0
= (local_elim_i0
== 0
4276 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4279 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4281 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
4282 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
4284 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
4286 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
4288 /* Ensure that we do not have something that should not be shared but
4289 occurs multiple times in the new insns. Check this by first
4290 resetting all the `used' flags and then copying anything is shared. */
4292 reset_used_flags (i3notes
);
4293 reset_used_flags (i2notes
);
4294 reset_used_flags (i1notes
);
4295 reset_used_flags (i0notes
);
4296 reset_used_flags (newpat
);
4297 reset_used_flags (newi2pat
);
4298 if (undobuf
.other_insn
)
4299 reset_used_flags (PATTERN (undobuf
.other_insn
));
4301 i3notes
= copy_rtx_if_shared (i3notes
);
4302 i2notes
= copy_rtx_if_shared (i2notes
);
4303 i1notes
= copy_rtx_if_shared (i1notes
);
4304 i0notes
= copy_rtx_if_shared (i0notes
);
4305 newpat
= copy_rtx_if_shared (newpat
);
4306 newi2pat
= copy_rtx_if_shared (newi2pat
);
4307 if (undobuf
.other_insn
)
4308 reset_used_flags (PATTERN (undobuf
.other_insn
));
4310 INSN_CODE (i3
) = insn_code_number
;
4311 PATTERN (i3
) = newpat
;
4313 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4315 for (rtx link
= CALL_INSN_FUNCTION_USAGE (i3
); link
;
4316 link
= XEXP (link
, 1))
4320 /* I2SRC must still be meaningful at this point. Some
4321 splitting operations can invalidate I2SRC, but those
4322 operations do not apply to calls. */
4324 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4328 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4331 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4336 if (undobuf
.other_insn
)
4337 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4339 /* We had one special case above where I2 had more than one set and
4340 we replaced a destination of one of those sets with the destination
4341 of I3. In that case, we have to update LOG_LINKS of insns later
4342 in this basic block. Note that this (expensive) case is rare.
4344 Also, in this case, we must pretend that all REG_NOTEs for I2
4345 actually came from I3, so that REG_UNUSED notes from I2 will be
4346 properly handled. */
4348 if (i3_subst_into_i2
)
4350 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4351 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4352 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4353 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4354 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4355 && ! find_reg_note (i2
, REG_UNUSED
,
4356 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4357 for (temp_insn
= NEXT_INSN (i2
);
4359 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4360 || BB_HEAD (this_basic_block
) != temp_insn
);
4361 temp_insn
= NEXT_INSN (temp_insn
))
4362 if (temp_insn
!= i3
&& NONDEBUG_INSN_P (temp_insn
))
4363 FOR_EACH_LOG_LINK (link
, temp_insn
)
4364 if (link
->insn
== i2
)
4370 while (XEXP (link
, 1))
4371 link
= XEXP (link
, 1);
4372 XEXP (link
, 1) = i2notes
;
4379 LOG_LINKS (i3
) = NULL
;
4381 LOG_LINKS (i2
) = NULL
;
4386 if (MAY_HAVE_DEBUG_INSNS
&& i2scratch
)
4387 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4389 INSN_CODE (i2
) = i2_code_number
;
4390 PATTERN (i2
) = newi2pat
;
4394 if (MAY_HAVE_DEBUG_INSNS
&& i2src
)
4395 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4397 SET_INSN_DELETED (i2
);
4402 LOG_LINKS (i1
) = NULL
;
4404 if (MAY_HAVE_DEBUG_INSNS
)
4405 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4407 SET_INSN_DELETED (i1
);
4412 LOG_LINKS (i0
) = NULL
;
4414 if (MAY_HAVE_DEBUG_INSNS
)
4415 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4417 SET_INSN_DELETED (i0
);
4420 /* Get death notes for everything that is now used in either I3 or
4421 I2 and used to die in a previous insn. If we built two new
4422 patterns, move from I1 to I2 then I2 to I3 so that we get the
4423 proper movement on registers that I2 modifies. */
4426 from_luid
= DF_INSN_LUID (i0
);
4428 from_luid
= DF_INSN_LUID (i1
);
4430 from_luid
= DF_INSN_LUID (i2
);
4432 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4433 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4435 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4437 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL
,
4438 elim_i2
, elim_i1
, elim_i0
);
4440 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL
,
4441 elim_i2
, elim_i1
, elim_i0
);
4443 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL
,
4444 elim_i2
, local_elim_i1
, local_elim_i0
);
4446 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL
,
4447 elim_i2
, elim_i1
, local_elim_i0
);
4449 distribute_notes (midnotes
, NULL
, i3
, newi2pat
? i2
: NULL
,
4450 elim_i2
, elim_i1
, elim_i0
);
4452 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4453 know these are REG_UNUSED and want them to go to the desired insn,
4454 so we always pass it as i3. */
4456 if (newi2pat
&& new_i2_notes
)
4457 distribute_notes (new_i2_notes
, i2
, i2
, NULL
, NULL_RTX
, NULL_RTX
,
4461 distribute_notes (new_i3_notes
, i3
, i3
, NULL
, NULL_RTX
, NULL_RTX
,
4464 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4465 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4466 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4467 in that case, it might delete I2. Similarly for I2 and I1.
4468 Show an additional death due to the REG_DEAD note we make here. If
4469 we discard it in distribute_notes, we will decrement it again. */
4473 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4474 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4475 distribute_notes (new_note
, NULL
, i2
, NULL
, elim_i2
,
4478 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4479 elim_i2
, elim_i1
, elim_i0
);
4482 if (i2dest_in_i2src
)
4484 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4485 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4486 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4487 NULL_RTX
, NULL_RTX
);
4489 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4490 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4493 if (i1dest_in_i1src
)
4495 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4496 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4497 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4498 NULL_RTX
, NULL_RTX
);
4500 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4501 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4504 if (i0dest_in_i0src
)
4506 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4507 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4508 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4509 NULL_RTX
, NULL_RTX
);
4511 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4512 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4515 distribute_links (i3links
);
4516 distribute_links (i2links
);
4517 distribute_links (i1links
);
4518 distribute_links (i0links
);
4522 struct insn_link
*link
;
4523 rtx_insn
*i2_insn
= 0;
4524 rtx i2_val
= 0, set
;
4526 /* The insn that used to set this register doesn't exist, and
4527 this life of the register may not exist either. See if one of
4528 I3's links points to an insn that sets I2DEST. If it does,
4529 that is now the last known value for I2DEST. If we don't update
4530 this and I2 set the register to a value that depended on its old
4531 contents, we will get confused. If this insn is used, thing
4532 will be set correctly in combine_instructions. */
4533 FOR_EACH_LOG_LINK (link
, i3
)
4534 if ((set
= single_set (link
->insn
)) != 0
4535 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4536 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4538 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4540 /* If the reg formerly set in I2 died only once and that was in I3,
4541 zero its use count so it won't make `reload' do any work. */
4543 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4544 && ! i2dest_in_i2src
4545 && REGNO (i2dest
) < reg_n_sets_max
)
4546 INC_REG_N_SETS (REGNO (i2dest
), -1);
4549 if (i1
&& REG_P (i1dest
))
4551 struct insn_link
*link
;
4552 rtx_insn
*i1_insn
= 0;
4553 rtx i1_val
= 0, set
;
4555 FOR_EACH_LOG_LINK (link
, i3
)
4556 if ((set
= single_set (link
->insn
)) != 0
4557 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4558 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4560 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4563 && ! i1dest_in_i1src
4564 && REGNO (i1dest
) < reg_n_sets_max
)
4565 INC_REG_N_SETS (REGNO (i1dest
), -1);
4568 if (i0
&& REG_P (i0dest
))
4570 struct insn_link
*link
;
4571 rtx_insn
*i0_insn
= 0;
4572 rtx i0_val
= 0, set
;
4574 FOR_EACH_LOG_LINK (link
, i3
)
4575 if ((set
= single_set (link
->insn
)) != 0
4576 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4577 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4579 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4582 && ! i0dest_in_i0src
4583 && REGNO (i0dest
) < reg_n_sets_max
)
4584 INC_REG_N_SETS (REGNO (i0dest
), -1);
4587 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4588 been made to this insn. The order is important, because newi2pat
4589 can affect nonzero_bits of newpat. */
4591 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4592 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4595 if (undobuf
.other_insn
!= NULL_RTX
)
4599 fprintf (dump_file
, "modifying other_insn ");
4600 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4602 df_insn_rescan (undobuf
.other_insn
);
4605 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4609 fprintf (dump_file
, "modifying insn i0 ");
4610 dump_insn_slim (dump_file
, i0
);
4612 df_insn_rescan (i0
);
4615 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4619 fprintf (dump_file
, "modifying insn i1 ");
4620 dump_insn_slim (dump_file
, i1
);
4622 df_insn_rescan (i1
);
4625 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4629 fprintf (dump_file
, "modifying insn i2 ");
4630 dump_insn_slim (dump_file
, i2
);
4632 df_insn_rescan (i2
);
4635 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4639 fprintf (dump_file
, "modifying insn i3 ");
4640 dump_insn_slim (dump_file
, i3
);
4642 df_insn_rescan (i3
);
4645 /* Set new_direct_jump_p if a new return or simple jump instruction
4646 has been created. Adjust the CFG accordingly. */
4647 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4649 *new_direct_jump_p
= 1;
4650 mark_jump_label (PATTERN (i3
), i3
, 0);
4651 update_cfg_for_uncondjump (i3
);
4654 if (undobuf
.other_insn
!= NULL_RTX
4655 && (returnjump_p (undobuf
.other_insn
)
4656 || any_uncondjump_p (undobuf
.other_insn
)))
4658 *new_direct_jump_p
= 1;
4659 update_cfg_for_uncondjump (undobuf
.other_insn
);
4662 if (GET_CODE (PATTERN (i3
)) == TRAP_IF
4663 && XEXP (PATTERN (i3
), 0) == const1_rtx
)
4665 basic_block bb
= BLOCK_FOR_INSN (i3
);
4667 remove_edge (split_block (bb
, i3
));
4668 emit_barrier_after_bb (bb
);
4669 *new_direct_jump_p
= 1;
4672 if (undobuf
.other_insn
4673 && GET_CODE (PATTERN (undobuf
.other_insn
)) == TRAP_IF
4674 && XEXP (PATTERN (undobuf
.other_insn
), 0) == const1_rtx
)
4676 basic_block bb
= BLOCK_FOR_INSN (undobuf
.other_insn
);
4678 remove_edge (split_block (bb
, undobuf
.other_insn
));
4679 emit_barrier_after_bb (bb
);
4680 *new_direct_jump_p
= 1;
4683 /* A noop might also need cleaning up of CFG, if it comes from the
4684 simplification of a jump. */
4686 && GET_CODE (newpat
) == SET
4687 && SET_SRC (newpat
) == pc_rtx
4688 && SET_DEST (newpat
) == pc_rtx
)
4690 *new_direct_jump_p
= 1;
4691 update_cfg_for_uncondjump (i3
);
4694 if (undobuf
.other_insn
!= NULL_RTX
4695 && JUMP_P (undobuf
.other_insn
)
4696 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4697 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4698 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4700 *new_direct_jump_p
= 1;
4701 update_cfg_for_uncondjump (undobuf
.other_insn
);
4704 combine_successes
++;
4707 if (added_links_insn
4708 && (newi2pat
== 0 || DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i2
))
4709 && DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i3
))
4710 return added_links_insn
;
4712 return newi2pat
? i2
: i3
;
4715 /* Get a marker for undoing to the current state. */
4718 get_undo_marker (void)
4720 return undobuf
.undos
;
4723 /* Undo the modifications up to the marker. */
4726 undo_to_marker (void *marker
)
4728 struct undo
*undo
, *next
;
4730 for (undo
= undobuf
.undos
; undo
!= marker
; undo
= next
)
4738 *undo
->where
.r
= undo
->old_contents
.r
;
4741 *undo
->where
.i
= undo
->old_contents
.i
;
4744 adjust_reg_mode (*undo
->where
.r
, undo
->old_contents
.m
);
4747 *undo
->where
.l
= undo
->old_contents
.l
;
4753 undo
->next
= undobuf
.frees
;
4754 undobuf
.frees
= undo
;
4757 undobuf
.undos
= (struct undo
*) marker
;
4760 /* Undo all the modifications recorded in undobuf. */
4768 /* We've committed to accepting the changes we made. Move all
4769 of the undos to the free list. */
4774 struct undo
*undo
, *next
;
4776 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4779 undo
->next
= undobuf
.frees
;
4780 undobuf
.frees
= undo
;
4785 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4786 where we have an arithmetic expression and return that point. LOC will
4789 try_combine will call this function to see if an insn can be split into
4793 find_split_point (rtx
*loc
, rtx_insn
*insn
, bool set_src
)
4796 enum rtx_code code
= GET_CODE (x
);
4798 unsigned HOST_WIDE_INT len
= 0;
4799 HOST_WIDE_INT pos
= 0;
4801 rtx inner
= NULL_RTX
;
4802 scalar_int_mode mode
, inner_mode
;
4804 /* First special-case some codes. */
4808 #ifdef INSN_SCHEDULING
4809 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4811 if (MEM_P (SUBREG_REG (x
)))
4814 return find_split_point (&SUBREG_REG (x
), insn
, false);
4817 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4818 using LO_SUM and HIGH. */
4819 if (HAVE_lo_sum
&& (GET_CODE (XEXP (x
, 0)) == CONST
4820 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
))
4822 machine_mode address_mode
= get_address_mode (x
);
4825 gen_rtx_LO_SUM (address_mode
,
4826 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4828 return &XEXP (XEXP (x
, 0), 0);
4831 /* If we have a PLUS whose second operand is a constant and the
4832 address is not valid, perhaps will can split it up using
4833 the machine-specific way to split large constants. We use
4834 the first pseudo-reg (one of the virtual regs) as a placeholder;
4835 it will not remain in the result. */
4836 if (GET_CODE (XEXP (x
, 0)) == PLUS
4837 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4838 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4839 MEM_ADDR_SPACE (x
)))
4841 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4842 rtx_insn
*seq
= combine_split_insns (gen_rtx_SET (reg
, XEXP (x
, 0)),
4845 /* This should have produced two insns, each of which sets our
4846 placeholder. If the source of the second is a valid address,
4847 we can make put both sources together and make a split point
4851 && NEXT_INSN (seq
) != NULL_RTX
4852 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4853 && NONJUMP_INSN_P (seq
)
4854 && GET_CODE (PATTERN (seq
)) == SET
4855 && SET_DEST (PATTERN (seq
)) == reg
4856 && ! reg_mentioned_p (reg
,
4857 SET_SRC (PATTERN (seq
)))
4858 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4859 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4860 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4861 && memory_address_addr_space_p
4862 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4863 MEM_ADDR_SPACE (x
)))
4865 rtx src1
= SET_SRC (PATTERN (seq
));
4866 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4868 /* Replace the placeholder in SRC2 with SRC1. If we can
4869 find where in SRC2 it was placed, that can become our
4870 split point and we can replace this address with SRC2.
4871 Just try two obvious places. */
4873 src2
= replace_rtx (src2
, reg
, src1
);
4875 if (XEXP (src2
, 0) == src1
)
4876 split
= &XEXP (src2
, 0);
4877 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4878 && XEXP (XEXP (src2
, 0), 0) == src1
)
4879 split
= &XEXP (XEXP (src2
, 0), 0);
4883 SUBST (XEXP (x
, 0), src2
);
4888 /* If that didn't work, perhaps the first operand is complex and
4889 needs to be computed separately, so make a split point there.
4890 This will occur on machines that just support REG + CONST
4891 and have a constant moved through some previous computation. */
4893 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
4894 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4895 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4896 return &XEXP (XEXP (x
, 0), 0);
4899 /* If we have a PLUS whose first operand is complex, try computing it
4900 separately by making a split there. */
4901 if (GET_CODE (XEXP (x
, 0)) == PLUS
4902 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4904 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
4905 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4906 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4907 return &XEXP (XEXP (x
, 0), 0);
4911 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4912 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4913 we need to put the operand into a register. So split at that
4916 if (SET_DEST (x
) == cc0_rtx
4917 && GET_CODE (SET_SRC (x
)) != COMPARE
4918 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
4919 && !OBJECT_P (SET_SRC (x
))
4920 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
4921 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
4922 return &SET_SRC (x
);
4924 /* See if we can split SET_SRC as it stands. */
4925 split
= find_split_point (&SET_SRC (x
), insn
, true);
4926 if (split
&& split
!= &SET_SRC (x
))
4929 /* See if we can split SET_DEST as it stands. */
4930 split
= find_split_point (&SET_DEST (x
), insn
, false);
4931 if (split
&& split
!= &SET_DEST (x
))
4934 /* See if this is a bitfield assignment with everything constant. If
4935 so, this is an IOR of an AND, so split it into that. */
4936 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
4937 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_DEST (x
), 0)),
4939 && HWI_COMPUTABLE_MODE_P (inner_mode
)
4940 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
4941 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
4942 && CONST_INT_P (SET_SRC (x
))
4943 && ((INTVAL (XEXP (SET_DEST (x
), 1))
4944 + INTVAL (XEXP (SET_DEST (x
), 2)))
4945 <= GET_MODE_PRECISION (inner_mode
))
4946 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
4948 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
4949 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
4950 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
4951 rtx dest
= XEXP (SET_DEST (x
), 0);
4952 unsigned HOST_WIDE_INT mask
4953 = (HOST_WIDE_INT_1U
<< len
) - 1;
4956 if (BITS_BIG_ENDIAN
)
4957 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
4959 or_mask
= gen_int_mode (src
<< pos
, inner_mode
);
4962 simplify_gen_binary (IOR
, inner_mode
, dest
, or_mask
));
4965 rtx negmask
= gen_int_mode (~(mask
<< pos
), inner_mode
);
4967 simplify_gen_binary (IOR
, inner_mode
,
4968 simplify_gen_binary (AND
, inner_mode
,
4973 SUBST (SET_DEST (x
), dest
);
4975 split
= find_split_point (&SET_SRC (x
), insn
, true);
4976 if (split
&& split
!= &SET_SRC (x
))
4980 /* Otherwise, see if this is an operation that we can split into two.
4981 If so, try to split that. */
4982 code
= GET_CODE (SET_SRC (x
));
4987 /* If we are AND'ing with a large constant that is only a single
4988 bit and the result is only being used in a context where we
4989 need to know if it is zero or nonzero, replace it with a bit
4990 extraction. This will avoid the large constant, which might
4991 have taken more than one insn to make. If the constant were
4992 not a valid argument to the AND but took only one insn to make,
4993 this is no worse, but if it took more than one insn, it will
4996 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4997 && REG_P (XEXP (SET_SRC (x
), 0))
4998 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
4999 && REG_P (SET_DEST (x
))
5000 && (split
= find_single_use (SET_DEST (x
), insn
, NULL
)) != 0
5001 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
5002 && XEXP (*split
, 0) == SET_DEST (x
)
5003 && XEXP (*split
, 1) == const0_rtx
)
5005 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
5006 XEXP (SET_SRC (x
), 0),
5007 pos
, NULL_RTX
, 1, 1, 0, 0);
5008 if (extraction
!= 0)
5010 SUBST (SET_SRC (x
), extraction
);
5011 return find_split_point (loc
, insn
, false);
5017 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5018 is known to be on, this can be converted into a NEG of a shift. */
5019 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
5020 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
5021 && 1 <= (pos
= exact_log2
5022 (nonzero_bits (XEXP (SET_SRC (x
), 0),
5023 GET_MODE (XEXP (SET_SRC (x
), 0))))))
5025 machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
5029 gen_rtx_LSHIFTRT (mode
,
5030 XEXP (SET_SRC (x
), 0),
5033 split
= find_split_point (&SET_SRC (x
), insn
, true);
5034 if (split
&& split
!= &SET_SRC (x
))
5040 inner
= XEXP (SET_SRC (x
), 0);
5042 /* We can't optimize if either mode is a partial integer
5043 mode as we don't know how many bits are significant
5045 if (!is_int_mode (GET_MODE (inner
), &inner_mode
)
5046 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
5050 len
= GET_MODE_PRECISION (inner_mode
);
5056 if (is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_SRC (x
), 0)),
5058 && CONST_INT_P (XEXP (SET_SRC (x
), 1))
5059 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
5061 inner
= XEXP (SET_SRC (x
), 0);
5062 len
= INTVAL (XEXP (SET_SRC (x
), 1));
5063 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
5065 if (BITS_BIG_ENDIAN
)
5066 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
5067 unsignedp
= (code
== ZERO_EXTRACT
);
5076 && pos
+ len
<= GET_MODE_PRECISION (GET_MODE (inner
))
5077 && is_a
<scalar_int_mode
> (GET_MODE (SET_SRC (x
)), &mode
))
5079 /* For unsigned, we have a choice of a shift followed by an
5080 AND or two shifts. Use two shifts for field sizes where the
5081 constant might be too large. We assume here that we can
5082 always at least get 8-bit constants in an AND insn, which is
5083 true for every current RISC. */
5085 if (unsignedp
&& len
<= 8)
5087 unsigned HOST_WIDE_INT mask
5088 = (HOST_WIDE_INT_1U
<< len
) - 1;
5092 (mode
, gen_lowpart (mode
, inner
),
5094 gen_int_mode (mask
, mode
)));
5096 split
= find_split_point (&SET_SRC (x
), insn
, true);
5097 if (split
&& split
!= &SET_SRC (x
))
5104 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
5105 gen_rtx_ASHIFT (mode
,
5106 gen_lowpart (mode
, inner
),
5107 GEN_INT (GET_MODE_PRECISION (mode
)
5109 GEN_INT (GET_MODE_PRECISION (mode
) - len
)));
5111 split
= find_split_point (&SET_SRC (x
), insn
, true);
5112 if (split
&& split
!= &SET_SRC (x
))
5117 /* See if this is a simple operation with a constant as the second
5118 operand. It might be that this constant is out of range and hence
5119 could be used as a split point. */
5120 if (BINARY_P (SET_SRC (x
))
5121 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
5122 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
5123 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
5124 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
5125 return &XEXP (SET_SRC (x
), 1);
5127 /* Finally, see if this is a simple operation with its first operand
5128 not in a register. The operation might require this operand in a
5129 register, so return it as a split point. We can always do this
5130 because if the first operand were another operation, we would have
5131 already found it as a split point. */
5132 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
5133 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
5134 return &XEXP (SET_SRC (x
), 0);
5140 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5141 it is better to write this as (not (ior A B)) so we can split it.
5142 Similarly for IOR. */
5143 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
5146 gen_rtx_NOT (GET_MODE (x
),
5147 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
5149 XEXP (XEXP (x
, 0), 0),
5150 XEXP (XEXP (x
, 1), 0))));
5151 return find_split_point (loc
, insn
, set_src
);
5154 /* Many RISC machines have a large set of logical insns. If the
5155 second operand is a NOT, put it first so we will try to split the
5156 other operand first. */
5157 if (GET_CODE (XEXP (x
, 1)) == NOT
)
5159 rtx tem
= XEXP (x
, 0);
5160 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5161 SUBST (XEXP (x
, 1), tem
);
5167 /* Canonicalization can produce (minus A (mult B C)), where C is a
5168 constant. It may be better to try splitting (plus (mult B -C) A)
5169 instead if this isn't a multiply by a power of two. */
5170 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
5171 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
5172 && !pow2p_hwi (INTVAL (XEXP (XEXP (x
, 1), 1))))
5174 machine_mode mode
= GET_MODE (x
);
5175 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
5176 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
5177 SUBST (*loc
, gen_rtx_PLUS (mode
,
5179 XEXP (XEXP (x
, 1), 0),
5180 gen_int_mode (other_int
,
5183 return find_split_point (loc
, insn
, set_src
);
5186 /* Split at a multiply-accumulate instruction. However if this is
5187 the SET_SRC, we likely do not have such an instruction and it's
5188 worthless to try this split. */
5190 && (GET_CODE (XEXP (x
, 0)) == MULT
5191 || (GET_CODE (XEXP (x
, 0)) == ASHIFT
5192 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)))
5199 /* Otherwise, select our actions depending on our rtx class. */
5200 switch (GET_RTX_CLASS (code
))
5202 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5204 split
= find_split_point (&XEXP (x
, 2), insn
, false);
5209 case RTX_COMM_ARITH
:
5211 case RTX_COMM_COMPARE
:
5212 split
= find_split_point (&XEXP (x
, 1), insn
, false);
5217 /* Some machines have (and (shift ...) ...) insns. If X is not
5218 an AND, but XEXP (X, 0) is, use it as our split point. */
5219 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
5220 return &XEXP (x
, 0);
5222 split
= find_split_point (&XEXP (x
, 0), insn
, false);
5228 /* Otherwise, we don't have a split point. */
5233 /* Throughout X, replace FROM with TO, and return the result.
5234 The result is TO if X is FROM;
5235 otherwise the result is X, but its contents may have been modified.
5236 If they were modified, a record was made in undobuf so that
5237 undo_all will (among other things) return X to its original state.
5239 If the number of changes necessary is too much to record to undo,
5240 the excess changes are not made, so the result is invalid.
5241 The changes already made can still be undone.
5242 undobuf.num_undo is incremented for such changes, so by testing that
5243 the caller can tell whether the result is valid.
5245 `n_occurrences' is incremented each time FROM is replaced.
5247 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5249 IN_COND is nonzero if we are at the top level of a condition.
5251 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5252 by copying if `n_occurrences' is nonzero. */
5255 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
5257 enum rtx_code code
= GET_CODE (x
);
5258 machine_mode op0_mode
= VOIDmode
;
5263 /* Two expressions are equal if they are identical copies of a shared
5264 RTX or if they are both registers with the same register number
5267 #define COMBINE_RTX_EQUAL_P(X,Y) \
5269 || (REG_P (X) && REG_P (Y) \
5270 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5272 /* Do not substitute into clobbers of regs -- this will never result in
5274 if (GET_CODE (x
) == CLOBBER
&& REG_P (XEXP (x
, 0)))
5277 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
5280 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
5283 /* If X and FROM are the same register but different modes, they
5284 will not have been seen as equal above. However, the log links code
5285 will make a LOG_LINKS entry for that case. If we do nothing, we
5286 will try to rerecognize our original insn and, when it succeeds,
5287 we will delete the feeding insn, which is incorrect.
5289 So force this insn not to match in this (rare) case. */
5290 if (! in_dest
&& code
== REG
&& REG_P (from
)
5291 && reg_overlap_mentioned_p (x
, from
))
5292 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
5294 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5295 of which may contain things that can be combined. */
5296 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
5299 /* It is possible to have a subexpression appear twice in the insn.
5300 Suppose that FROM is a register that appears within TO.
5301 Then, after that subexpression has been scanned once by `subst',
5302 the second time it is scanned, TO may be found. If we were
5303 to scan TO here, we would find FROM within it and create a
5304 self-referent rtl structure which is completely wrong. */
5305 if (COMBINE_RTX_EQUAL_P (x
, to
))
5308 /* Parallel asm_operands need special attention because all of the
5309 inputs are shared across the arms. Furthermore, unsharing the
5310 rtl results in recognition failures. Failure to handle this case
5311 specially can result in circular rtl.
5313 Solve this by doing a normal pass across the first entry of the
5314 parallel, and only processing the SET_DESTs of the subsequent
5317 if (code
== PARALLEL
5318 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
5319 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
5321 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
5323 /* If this substitution failed, this whole thing fails. */
5324 if (GET_CODE (new_rtx
) == CLOBBER
5325 && XEXP (new_rtx
, 0) == const0_rtx
)
5328 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
5330 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
5332 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
5335 && GET_CODE (dest
) != CC0
5336 && GET_CODE (dest
) != PC
)
5338 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
5340 /* If this substitution failed, this whole thing fails. */
5341 if (GET_CODE (new_rtx
) == CLOBBER
5342 && XEXP (new_rtx
, 0) == const0_rtx
)
5345 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5351 len
= GET_RTX_LENGTH (code
);
5352 fmt
= GET_RTX_FORMAT (code
);
5354 /* We don't need to process a SET_DEST that is a register, CC0,
5355 or PC, so set up to skip this common case. All other cases
5356 where we want to suppress replacing something inside a
5357 SET_SRC are handled via the IN_DEST operand. */
5359 && (REG_P (SET_DEST (x
))
5360 || GET_CODE (SET_DEST (x
)) == CC0
5361 || GET_CODE (SET_DEST (x
)) == PC
))
5364 /* Trying to simplify the operands of a widening MULT is not likely
5365 to create RTL matching a machine insn. */
5367 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
5368 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
5369 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
5370 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
5371 && REG_P (XEXP (XEXP (x
, 0), 0))
5372 && REG_P (XEXP (XEXP (x
, 1), 0))
5377 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5380 op0_mode
= GET_MODE (XEXP (x
, 0));
5382 for (i
= 0; i
< len
; i
++)
5387 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5389 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5391 new_rtx
= (unique_copy
&& n_occurrences
5392 ? copy_rtx (to
) : to
);
5397 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5400 /* If this substitution failed, this whole thing
5402 if (GET_CODE (new_rtx
) == CLOBBER
5403 && XEXP (new_rtx
, 0) == const0_rtx
)
5407 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5410 else if (fmt
[i
] == 'e')
5412 /* If this is a register being set, ignore it. */
5413 new_rtx
= XEXP (x
, i
);
5416 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5418 || code
== STRICT_LOW_PART
))
5421 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5423 /* In general, don't install a subreg involving two
5424 modes not tieable. It can worsen register
5425 allocation, and can even make invalid reload
5426 insns, since the reg inside may need to be copied
5427 from in the outside mode, and that may be invalid
5428 if it is an fp reg copied in integer mode.
5430 We allow two exceptions to this: It is valid if
5431 it is inside another SUBREG and the mode of that
5432 SUBREG and the mode of the inside of TO is
5433 tieable and it is valid if X is a SET that copies
5436 if (GET_CODE (to
) == SUBREG
5437 && ! MODES_TIEABLE_P (GET_MODE (to
),
5438 GET_MODE (SUBREG_REG (to
)))
5439 && ! (code
== SUBREG
5440 && MODES_TIEABLE_P (GET_MODE (x
),
5441 GET_MODE (SUBREG_REG (to
))))
5445 && XEXP (x
, 0) == cc0_rtx
))))
5446 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5450 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5451 && simplify_subreg_regno (REGNO (to
), GET_MODE (to
),
5454 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5456 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5460 /* If we are in a SET_DEST, suppress most cases unless we
5461 have gone inside a MEM, in which case we want to
5462 simplify the address. We assume here that things that
5463 are actually part of the destination have their inner
5464 parts in the first expression. This is true for SUBREG,
5465 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5466 things aside from REG and MEM that should appear in a
5468 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5470 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5471 || code
== ZERO_EXTRACT
))
5474 code
== IF_THEN_ELSE
&& i
== 0,
5477 /* If we found that we will have to reject this combination,
5478 indicate that by returning the CLOBBER ourselves, rather than
5479 an expression containing it. This will speed things up as
5480 well as prevent accidents where two CLOBBERs are considered
5481 to be equal, thus producing an incorrect simplification. */
5483 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5486 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5488 machine_mode mode
= GET_MODE (x
);
5490 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5491 GET_MODE (SUBREG_REG (x
)),
5494 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5496 else if (CONST_SCALAR_INT_P (new_rtx
)
5497 && GET_CODE (x
) == ZERO_EXTEND
)
5499 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
5500 new_rtx
, GET_MODE (XEXP (x
, 0)));
5504 SUBST (XEXP (x
, i
), new_rtx
);
5509 /* Check if we are loading something from the constant pool via float
5510 extension; in this case we would undo compress_float_constant
5511 optimization and degenerate constant load to an immediate value. */
5512 if (GET_CODE (x
) == FLOAT_EXTEND
5513 && MEM_P (XEXP (x
, 0))
5514 && MEM_READONLY_P (XEXP (x
, 0)))
5516 rtx tmp
= avoid_constant_pool_reference (x
);
5521 /* Try to simplify X. If the simplification changed the code, it is likely
5522 that further simplification will help, so loop, but limit the number
5523 of repetitions that will be performed. */
5525 for (i
= 0; i
< 4; i
++)
5527 /* If X is sufficiently simple, don't bother trying to do anything
5529 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5530 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5532 if (GET_CODE (x
) == code
)
5535 code
= GET_CODE (x
);
5537 /* We no longer know the original mode of operand 0 since we
5538 have changed the form of X) */
5539 op0_mode
= VOIDmode
;
5545 /* If X is a commutative operation whose operands are not in the canonical
5546 order, use substitutions to swap them. */
5549 maybe_swap_commutative_operands (rtx x
)
5551 if (COMMUTATIVE_ARITH_P (x
)
5552 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5554 rtx temp
= XEXP (x
, 0);
5555 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5556 SUBST (XEXP (x
, 1), temp
);
5560 /* Simplify X, a piece of RTL. We just operate on the expression at the
5561 outer level; call `subst' to simplify recursively. Return the new
5564 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5565 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5569 combine_simplify_rtx (rtx x
, machine_mode op0_mode
, int in_dest
,
5572 enum rtx_code code
= GET_CODE (x
);
5573 machine_mode mode
= GET_MODE (x
);
5574 scalar_int_mode int_mode
;
5578 /* If this is a commutative operation, put a constant last and a complex
5579 expression first. We don't need to do this for comparisons here. */
5580 maybe_swap_commutative_operands (x
);
5582 /* Try to fold this expression in case we have constants that weren't
5585 switch (GET_RTX_CLASS (code
))
5588 if (op0_mode
== VOIDmode
)
5589 op0_mode
= GET_MODE (XEXP (x
, 0));
5590 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5593 case RTX_COMM_COMPARE
:
5595 machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5596 if (cmp_mode
== VOIDmode
)
5598 cmp_mode
= GET_MODE (XEXP (x
, 1));
5599 if (cmp_mode
== VOIDmode
)
5600 cmp_mode
= op0_mode
;
5602 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5603 XEXP (x
, 0), XEXP (x
, 1));
5606 case RTX_COMM_ARITH
:
5608 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5610 case RTX_BITFIELD_OPS
:
5612 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5613 XEXP (x
, 1), XEXP (x
, 2));
5622 code
= GET_CODE (temp
);
5623 op0_mode
= VOIDmode
;
5624 mode
= GET_MODE (temp
);
5627 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5628 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5629 things. Check for cases where both arms are testing the same
5632 Don't do anything if all operands are very simple. */
5635 && ((!OBJECT_P (XEXP (x
, 0))
5636 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5637 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5638 || (!OBJECT_P (XEXP (x
, 1))
5639 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5640 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5642 && (!OBJECT_P (XEXP (x
, 0))
5643 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5644 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5646 rtx cond
, true_rtx
, false_rtx
;
5648 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5650 /* If everything is a comparison, what we have is highly unlikely
5651 to be simpler, so don't use it. */
5652 && ! (COMPARISON_P (x
)
5653 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
))))
5655 rtx cop1
= const0_rtx
;
5656 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5658 if (cond_code
== NE
&& COMPARISON_P (cond
))
5661 /* Simplify the alternative arms; this may collapse the true and
5662 false arms to store-flag values. Be careful to use copy_rtx
5663 here since true_rtx or false_rtx might share RTL with x as a
5664 result of the if_then_else_cond call above. */
5665 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5666 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5668 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5669 is unlikely to be simpler. */
5670 if (general_operand (true_rtx
, VOIDmode
)
5671 && general_operand (false_rtx
, VOIDmode
))
5673 enum rtx_code reversed
;
5675 /* Restarting if we generate a store-flag expression will cause
5676 us to loop. Just drop through in this case. */
5678 /* If the result values are STORE_FLAG_VALUE and zero, we can
5679 just make the comparison operation. */
5680 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5681 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5683 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5684 && ((reversed
= reversed_comparison_code_parts
5685 (cond_code
, cond
, cop1
, NULL
))
5687 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5690 /* Likewise, we can make the negate of a comparison operation
5691 if the result values are - STORE_FLAG_VALUE and zero. */
5692 else if (CONST_INT_P (true_rtx
)
5693 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5694 && false_rtx
== const0_rtx
)
5695 x
= simplify_gen_unary (NEG
, mode
,
5696 simplify_gen_relational (cond_code
,
5700 else if (CONST_INT_P (false_rtx
)
5701 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5702 && true_rtx
== const0_rtx
5703 && ((reversed
= reversed_comparison_code_parts
5704 (cond_code
, cond
, cop1
, NULL
))
5706 x
= simplify_gen_unary (NEG
, mode
,
5707 simplify_gen_relational (reversed
,
5712 return gen_rtx_IF_THEN_ELSE (mode
,
5713 simplify_gen_relational (cond_code
,
5718 true_rtx
, false_rtx
);
5720 code
= GET_CODE (x
);
5721 op0_mode
= VOIDmode
;
5726 /* First see if we can apply the inverse distributive law. */
5727 if (code
== PLUS
|| code
== MINUS
5728 || code
== AND
|| code
== IOR
|| code
== XOR
)
5730 x
= apply_distributive_law (x
);
5731 code
= GET_CODE (x
);
5732 op0_mode
= VOIDmode
;
5735 /* If CODE is an associative operation not otherwise handled, see if we
5736 can associate some operands. This can win if they are constants or
5737 if they are logically related (i.e. (a & b) & a). */
5738 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5739 || code
== AND
|| code
== IOR
|| code
== XOR
5740 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5741 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5742 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5744 if (GET_CODE (XEXP (x
, 0)) == code
)
5746 rtx other
= XEXP (XEXP (x
, 0), 0);
5747 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5748 rtx inner_op1
= XEXP (x
, 1);
5751 /* Make sure we pass the constant operand if any as the second
5752 one if this is a commutative operation. */
5753 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5754 std::swap (inner_op0
, inner_op1
);
5755 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5756 : code
== DIV
? MULT
5758 mode
, inner_op0
, inner_op1
);
5760 /* For commutative operations, try the other pair if that one
5762 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5764 other
= XEXP (XEXP (x
, 0), 1);
5765 inner
= simplify_binary_operation (code
, mode
,
5766 XEXP (XEXP (x
, 0), 0),
5771 return simplify_gen_binary (code
, mode
, other
, inner
);
5775 /* A little bit of algebraic simplification here. */
5779 /* Ensure that our address has any ASHIFTs converted to MULT in case
5780 address-recognizing predicates are called later. */
5781 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5782 SUBST (XEXP (x
, 0), temp
);
5786 if (op0_mode
== VOIDmode
)
5787 op0_mode
= GET_MODE (SUBREG_REG (x
));
5789 /* See if this can be moved to simplify_subreg. */
5790 if (CONSTANT_P (SUBREG_REG (x
))
5791 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5792 /* Don't call gen_lowpart if the inner mode
5793 is VOIDmode and we cannot simplify it, as SUBREG without
5794 inner mode is invalid. */
5795 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5796 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5797 return gen_lowpart (mode
, SUBREG_REG (x
));
5799 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5803 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5808 /* If op is known to have all lower bits zero, the result is zero. */
5809 scalar_int_mode int_mode
, int_op0_mode
;
5811 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5812 && is_a
<scalar_int_mode
> (op0_mode
, &int_op0_mode
)
5813 && (GET_MODE_PRECISION (int_mode
)
5814 < GET_MODE_PRECISION (int_op0_mode
))
5815 && (subreg_lowpart_offset (int_mode
, int_op0_mode
)
5817 && HWI_COMPUTABLE_MODE_P (int_op0_mode
)
5818 && (nonzero_bits (SUBREG_REG (x
), int_op0_mode
)
5819 & GET_MODE_MASK (int_mode
)) == 0)
5820 return CONST0_RTX (int_mode
);
5823 /* Don't change the mode of the MEM if that would change the meaning
5825 if (MEM_P (SUBREG_REG (x
))
5826 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5827 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
5828 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
5829 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5831 /* Note that we cannot do any narrowing for non-constants since
5832 we might have been counting on using the fact that some bits were
5833 zero. We now do this in the SET. */
5838 temp
= expand_compound_operation (XEXP (x
, 0));
5840 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5841 replaced by (lshiftrt X C). This will convert
5842 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5844 if (GET_CODE (temp
) == ASHIFTRT
5845 && CONST_INT_P (XEXP (temp
, 1))
5846 && INTVAL (XEXP (temp
, 1)) == GET_MODE_PRECISION (mode
) - 1)
5847 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5848 INTVAL (XEXP (temp
, 1)));
5850 /* If X has only a single bit that might be nonzero, say, bit I, convert
5851 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5852 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5853 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5854 or a SUBREG of one since we'd be making the expression more
5855 complex if it was just a register. */
5858 && ! (GET_CODE (temp
) == SUBREG
5859 && REG_P (SUBREG_REG (temp
)))
5860 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5861 && (i
= exact_log2 (nonzero_bits (temp
, int_mode
))) >= 0)
5863 rtx temp1
= simplify_shift_const
5864 (NULL_RTX
, ASHIFTRT
, int_mode
,
5865 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
, temp
,
5866 GET_MODE_PRECISION (int_mode
) - 1 - i
),
5867 GET_MODE_PRECISION (int_mode
) - 1 - i
);
5869 /* If all we did was surround TEMP with the two shifts, we
5870 haven't improved anything, so don't use it. Otherwise,
5871 we are better off with TEMP1. */
5872 if (GET_CODE (temp1
) != ASHIFTRT
5873 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
5874 || XEXP (XEXP (temp1
, 0), 0) != temp
)
5880 /* We can't handle truncation to a partial integer mode here
5881 because we don't know the real bitsize of the partial
5883 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
5886 if (HWI_COMPUTABLE_MODE_P (mode
))
5888 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5889 GET_MODE_MASK (mode
), 0));
5891 /* We can truncate a constant value and return it. */
5892 if (CONST_INT_P (XEXP (x
, 0)))
5893 return gen_int_mode (INTVAL (XEXP (x
, 0)), mode
);
5895 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5896 whose value is a comparison can be replaced with a subreg if
5897 STORE_FLAG_VALUE permits. */
5898 if (HWI_COMPUTABLE_MODE_P (mode
)
5899 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
5900 && (temp
= get_last_value (XEXP (x
, 0)))
5901 && COMPARISON_P (temp
))
5902 return gen_lowpart (mode
, XEXP (x
, 0));
5906 /* (const (const X)) can become (const X). Do it this way rather than
5907 returning the inner CONST since CONST can be shared with a
5909 if (GET_CODE (XEXP (x
, 0)) == CONST
)
5910 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
5914 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5915 can add in an offset. find_split_point will split this address up
5916 again if it doesn't match. */
5917 if (HAVE_lo_sum
&& GET_CODE (XEXP (x
, 0)) == HIGH
5918 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
5923 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5924 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5925 bit-field and can be replaced by either a sign_extend or a
5926 sign_extract. The `and' may be a zero_extend and the two
5927 <c>, -<c> constants may be reversed. */
5928 if (GET_CODE (XEXP (x
, 0)) == XOR
5929 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5930 && CONST_INT_P (XEXP (x
, 1))
5931 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
5932 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
5933 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
5934 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
5935 && HWI_COMPUTABLE_MODE_P (int_mode
)
5936 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
5937 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5938 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5939 == (HOST_WIDE_INT_1U
<< (i
+ 1)) - 1))
5940 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
5941 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
5942 == (unsigned int) i
+ 1))))
5943 return simplify_shift_const
5944 (NULL_RTX
, ASHIFTRT
, int_mode
,
5945 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
5946 XEXP (XEXP (XEXP (x
, 0), 0), 0),
5947 GET_MODE_PRECISION (int_mode
) - (i
+ 1)),
5948 GET_MODE_PRECISION (int_mode
) - (i
+ 1));
5950 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5951 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5952 the bitsize of the mode - 1. This allows simplification of
5953 "a = (b & 8) == 0;" */
5954 if (XEXP (x
, 1) == constm1_rtx
5955 && !REG_P (XEXP (x
, 0))
5956 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5957 && REG_P (SUBREG_REG (XEXP (x
, 0))))
5958 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5959 && nonzero_bits (XEXP (x
, 0), int_mode
) == 1)
5960 return simplify_shift_const
5961 (NULL_RTX
, ASHIFTRT
, int_mode
,
5962 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
5963 gen_rtx_XOR (int_mode
, XEXP (x
, 0),
5965 GET_MODE_PRECISION (int_mode
) - 1),
5966 GET_MODE_PRECISION (int_mode
) - 1);
5968 /* If we are adding two things that have no bits in common, convert
5969 the addition into an IOR. This will often be further simplified,
5970 for example in cases like ((a & 1) + (a & 2)), which can
5973 if (HWI_COMPUTABLE_MODE_P (mode
)
5974 && (nonzero_bits (XEXP (x
, 0), mode
)
5975 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
5977 /* Try to simplify the expression further. */
5978 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5979 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
5981 /* If we could, great. If not, do not go ahead with the IOR
5982 replacement, since PLUS appears in many special purpose
5983 address arithmetic instructions. */
5984 if (GET_CODE (temp
) != CLOBBER
5985 && (GET_CODE (temp
) != IOR
5986 || ((XEXP (temp
, 0) != XEXP (x
, 0)
5987 || XEXP (temp
, 1) != XEXP (x
, 1))
5988 && (XEXP (temp
, 0) != XEXP (x
, 1)
5989 || XEXP (temp
, 1) != XEXP (x
, 0)))))
5993 /* Canonicalize x + x into x << 1. */
5994 if (GET_MODE_CLASS (mode
) == MODE_INT
5995 && rtx_equal_p (XEXP (x
, 0), XEXP (x
, 1))
5996 && !side_effects_p (XEXP (x
, 0)))
5997 return simplify_gen_binary (ASHIFT
, mode
, XEXP (x
, 0), const1_rtx
);
6002 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6003 (and <foo> (const_int pow2-1)) */
6004 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6005 && GET_CODE (XEXP (x
, 1)) == AND
6006 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
6007 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x
, 1), 1)))
6008 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
6009 return simplify_and_const_int (NULL_RTX
, int_mode
, XEXP (x
, 0),
6010 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
6014 /* If we have (mult (plus A B) C), apply the distributive law and then
6015 the inverse distributive law to see if things simplify. This
6016 occurs mostly in addresses, often when unrolling loops. */
6018 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
6020 rtx result
= distribute_and_simplify_rtx (x
, 0);
6025 /* Try simplify a*(b/c) as (a*b)/c. */
6026 if (FLOAT_MODE_P (mode
) && flag_associative_math
6027 && GET_CODE (XEXP (x
, 0)) == DIV
)
6029 rtx tem
= simplify_binary_operation (MULT
, mode
,
6030 XEXP (XEXP (x
, 0), 0),
6033 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
6038 /* If this is a divide by a power of two, treat it as a shift if
6039 its first operand is a shift. */
6040 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6041 && CONST_INT_P (XEXP (x
, 1))
6042 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
6043 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
6044 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6045 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
6046 || GET_CODE (XEXP (x
, 0)) == ROTATE
6047 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
6048 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, int_mode
,
6053 case GT
: case GTU
: case GE
: case GEU
:
6054 case LT
: case LTU
: case LE
: case LEU
:
6055 case UNEQ
: case LTGT
:
6056 case UNGT
: case UNGE
:
6057 case UNLT
: case UNLE
:
6058 case UNORDERED
: case ORDERED
:
6059 /* If the first operand is a condition code, we can't do anything
6061 if (GET_CODE (XEXP (x
, 0)) == COMPARE
6062 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
6063 && ! CC0_P (XEXP (x
, 0))))
6065 rtx op0
= XEXP (x
, 0);
6066 rtx op1
= XEXP (x
, 1);
6067 enum rtx_code new_code
;
6069 if (GET_CODE (op0
) == COMPARE
)
6070 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
6072 /* Simplify our comparison, if possible. */
6073 new_code
= simplify_comparison (code
, &op0
, &op1
);
6075 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6076 if only the low-order bit is possibly nonzero in X (such as when
6077 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6078 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6079 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6082 Remove any ZERO_EXTRACT we made when thinking this was a
6083 comparison. It may now be simpler to use, e.g., an AND. If a
6084 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6085 the call to make_compound_operation in the SET case.
6087 Don't apply these optimizations if the caller would
6088 prefer a comparison rather than a value.
6089 E.g., for the condition in an IF_THEN_ELSE most targets need
6090 an explicit comparison. */
6095 else if (STORE_FLAG_VALUE
== 1
6097 && is_int_mode (mode
, &int_mode
)
6098 && op1
== const0_rtx
6099 && int_mode
== GET_MODE (op0
)
6100 && nonzero_bits (op0
, int_mode
) == 1)
6101 return gen_lowpart (int_mode
,
6102 expand_compound_operation (op0
));
6104 else if (STORE_FLAG_VALUE
== 1
6106 && is_int_mode (mode
, &int_mode
)
6107 && op1
== const0_rtx
6108 && int_mode
== GET_MODE (op0
)
6109 && (num_sign_bit_copies (op0
, int_mode
)
6110 == GET_MODE_PRECISION (int_mode
)))
6112 op0
= expand_compound_operation (op0
);
6113 return simplify_gen_unary (NEG
, int_mode
,
6114 gen_lowpart (int_mode
, op0
),
6118 else if (STORE_FLAG_VALUE
== 1
6120 && is_int_mode (mode
, &int_mode
)
6121 && op1
== const0_rtx
6122 && int_mode
== GET_MODE (op0
)
6123 && nonzero_bits (op0
, int_mode
) == 1)
6125 op0
= expand_compound_operation (op0
);
6126 return simplify_gen_binary (XOR
, int_mode
,
6127 gen_lowpart (int_mode
, op0
),
6131 else if (STORE_FLAG_VALUE
== 1
6133 && is_int_mode (mode
, &int_mode
)
6134 && op1
== const0_rtx
6135 && int_mode
== GET_MODE (op0
)
6136 && (num_sign_bit_copies (op0
, int_mode
)
6137 == GET_MODE_PRECISION (int_mode
)))
6139 op0
= expand_compound_operation (op0
);
6140 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), 1);
6143 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6148 else if (STORE_FLAG_VALUE
== -1
6150 && is_int_mode (mode
, &int_mode
)
6151 && op1
== const0_rtx
6152 && int_mode
== GET_MODE (op0
)
6153 && (num_sign_bit_copies (op0
, int_mode
)
6154 == GET_MODE_PRECISION (int_mode
)))
6155 return gen_lowpart (int_mode
, expand_compound_operation (op0
));
6157 else if (STORE_FLAG_VALUE
== -1
6159 && is_int_mode (mode
, &int_mode
)
6160 && op1
== const0_rtx
6161 && int_mode
== GET_MODE (op0
)
6162 && nonzero_bits (op0
, int_mode
) == 1)
6164 op0
= expand_compound_operation (op0
);
6165 return simplify_gen_unary (NEG
, int_mode
,
6166 gen_lowpart (int_mode
, op0
),
6170 else if (STORE_FLAG_VALUE
== -1
6172 && is_int_mode (mode
, &int_mode
)
6173 && op1
== const0_rtx
6174 && int_mode
== GET_MODE (op0
)
6175 && (num_sign_bit_copies (op0
, int_mode
)
6176 == GET_MODE_PRECISION (int_mode
)))
6178 op0
= expand_compound_operation (op0
);
6179 return simplify_gen_unary (NOT
, int_mode
,
6180 gen_lowpart (int_mode
, op0
),
6184 /* If X is 0/1, (eq X 0) is X-1. */
6185 else if (STORE_FLAG_VALUE
== -1
6187 && is_int_mode (mode
, &int_mode
)
6188 && op1
== const0_rtx
6189 && int_mode
== GET_MODE (op0
)
6190 && nonzero_bits (op0
, int_mode
) == 1)
6192 op0
= expand_compound_operation (op0
);
6193 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), -1);
6196 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6197 one bit that might be nonzero, we can convert (ne x 0) to
6198 (ashift x c) where C puts the bit in the sign bit. Remove any
6199 AND with STORE_FLAG_VALUE when we are done, since we are only
6200 going to test the sign bit. */
6202 && is_int_mode (mode
, &int_mode
)
6203 && HWI_COMPUTABLE_MODE_P (int_mode
)
6204 && val_signbit_p (int_mode
, STORE_FLAG_VALUE
)
6205 && op1
== const0_rtx
6206 && int_mode
== GET_MODE (op0
)
6207 && (i
= exact_log2 (nonzero_bits (op0
, int_mode
))) >= 0)
6209 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6210 expand_compound_operation (op0
),
6211 GET_MODE_PRECISION (int_mode
) - 1 - i
);
6212 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
6218 /* If the code changed, return a whole new comparison.
6219 We also need to avoid using SUBST in cases where
6220 simplify_comparison has widened a comparison with a CONST_INT,
6221 since in that case the wider CONST_INT may fail the sanity
6222 checks in do_SUBST. */
6223 if (new_code
!= code
6224 || (CONST_INT_P (op1
)
6225 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
6226 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
6227 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
6229 /* Otherwise, keep this operation, but maybe change its operands.
6230 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6231 SUBST (XEXP (x
, 0), op0
);
6232 SUBST (XEXP (x
, 1), op1
);
6237 return simplify_if_then_else (x
);
6243 /* If we are processing SET_DEST, we are done. */
6247 return expand_compound_operation (x
);
6250 return simplify_set (x
);
6254 return simplify_logical (x
);
6261 /* If this is a shift by a constant amount, simplify it. */
6262 if (CONST_INT_P (XEXP (x
, 1)))
6263 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
6264 INTVAL (XEXP (x
, 1)));
6266 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
6268 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
6270 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
6282 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6285 simplify_if_then_else (rtx x
)
6287 machine_mode mode
= GET_MODE (x
);
6288 rtx cond
= XEXP (x
, 0);
6289 rtx true_rtx
= XEXP (x
, 1);
6290 rtx false_rtx
= XEXP (x
, 2);
6291 enum rtx_code true_code
= GET_CODE (cond
);
6292 int comparison_p
= COMPARISON_P (cond
);
6295 enum rtx_code false_code
;
6297 scalar_int_mode int_mode
, inner_mode
;
6299 /* Simplify storing of the truth value. */
6300 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
6301 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
6302 XEXP (cond
, 0), XEXP (cond
, 1));
6304 /* Also when the truth value has to be reversed. */
6306 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
6307 && (reversed
= reversed_comparison (cond
, mode
)))
6310 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6311 in it is being compared against certain values. Get the true and false
6312 comparisons and see if that says anything about the value of each arm. */
6315 && ((false_code
= reversed_comparison_code (cond
, NULL
))
6317 && REG_P (XEXP (cond
, 0)))
6320 rtx from
= XEXP (cond
, 0);
6321 rtx true_val
= XEXP (cond
, 1);
6322 rtx false_val
= true_val
;
6325 /* If FALSE_CODE is EQ, swap the codes and arms. */
6327 if (false_code
== EQ
)
6329 swapped
= 1, true_code
= EQ
, false_code
= NE
;
6330 std::swap (true_rtx
, false_rtx
);
6333 scalar_int_mode from_mode
;
6334 if (is_a
<scalar_int_mode
> (GET_MODE (from
), &from_mode
))
6336 /* If we are comparing against zero and the expression being
6337 tested has only a single bit that might be nonzero, that is
6338 its value when it is not equal to zero. Similarly if it is
6339 known to be -1 or 0. */
6341 && true_val
== const0_rtx
6342 && pow2p_hwi (nzb
= nonzero_bits (from
, from_mode
)))
6345 false_val
= gen_int_mode (nzb
, from_mode
);
6347 else if (true_code
== EQ
6348 && true_val
== const0_rtx
6349 && (num_sign_bit_copies (from
, from_mode
)
6350 == GET_MODE_PRECISION (from_mode
)))
6353 false_val
= constm1_rtx
;
6357 /* Now simplify an arm if we know the value of the register in the
6358 branch and it is used in the arm. Be careful due to the potential
6359 of locally-shared RTL. */
6361 if (reg_mentioned_p (from
, true_rtx
))
6362 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
6364 pc_rtx
, pc_rtx
, 0, 0, 0);
6365 if (reg_mentioned_p (from
, false_rtx
))
6366 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
6368 pc_rtx
, pc_rtx
, 0, 0, 0);
6370 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
6371 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
6373 true_rtx
= XEXP (x
, 1);
6374 false_rtx
= XEXP (x
, 2);
6375 true_code
= GET_CODE (cond
);
6378 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6379 reversed, do so to avoid needing two sets of patterns for
6380 subtract-and-branch insns. Similarly if we have a constant in the true
6381 arm, the false arm is the same as the first operand of the comparison, or
6382 the false arm is more complicated than the true arm. */
6385 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
6386 && (true_rtx
== pc_rtx
6387 || (CONSTANT_P (true_rtx
)
6388 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
6389 || true_rtx
== const0_rtx
6390 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
6391 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
6392 && !OBJECT_P (false_rtx
))
6393 || reg_mentioned_p (true_rtx
, false_rtx
)
6394 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
6396 true_code
= reversed_comparison_code (cond
, NULL
);
6397 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
6398 SUBST (XEXP (x
, 1), false_rtx
);
6399 SUBST (XEXP (x
, 2), true_rtx
);
6401 std::swap (true_rtx
, false_rtx
);
6404 /* It is possible that the conditional has been simplified out. */
6405 true_code
= GET_CODE (cond
);
6406 comparison_p
= COMPARISON_P (cond
);
6409 /* If the two arms are identical, we don't need the comparison. */
6411 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6414 /* Convert a == b ? b : a to "a". */
6415 if (true_code
== EQ
&& ! side_effects_p (cond
)
6416 && !HONOR_NANS (mode
)
6417 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6418 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6420 else if (true_code
== NE
&& ! side_effects_p (cond
)
6421 && !HONOR_NANS (mode
)
6422 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6423 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6426 /* Look for cases where we have (abs x) or (neg (abs X)). */
6428 if (GET_MODE_CLASS (mode
) == MODE_INT
6430 && XEXP (cond
, 1) == const0_rtx
6431 && GET_CODE (false_rtx
) == NEG
6432 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6433 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6434 && ! side_effects_p (true_rtx
))
6439 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6443 simplify_gen_unary (NEG
, mode
,
6444 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6450 /* Look for MIN or MAX. */
6452 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
6454 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6455 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6456 && ! side_effects_p (cond
))
6461 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6464 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6467 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6470 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6475 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6476 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6477 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6478 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6479 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6480 neither 1 or -1, but it isn't worth checking for. */
6482 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6484 && is_int_mode (mode
, &int_mode
)
6485 && ! side_effects_p (x
))
6487 rtx t
= make_compound_operation (true_rtx
, SET
);
6488 rtx f
= make_compound_operation (false_rtx
, SET
);
6489 rtx cond_op0
= XEXP (cond
, 0);
6490 rtx cond_op1
= XEXP (cond
, 1);
6491 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6492 machine_mode m
= int_mode
;
6493 rtx z
= 0, c1
= NULL_RTX
;
6495 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6496 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6497 || GET_CODE (t
) == ASHIFT
6498 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6499 && rtx_equal_p (XEXP (t
, 0), f
))
6500 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6502 /* If an identity-zero op is commutative, check whether there
6503 would be a match if we swapped the operands. */
6504 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6505 || GET_CODE (t
) == XOR
)
6506 && rtx_equal_p (XEXP (t
, 1), f
))
6507 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6508 else if (GET_CODE (t
) == SIGN_EXTEND
6509 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6510 && (GET_CODE (XEXP (t
, 0)) == PLUS
6511 || GET_CODE (XEXP (t
, 0)) == MINUS
6512 || GET_CODE (XEXP (t
, 0)) == IOR
6513 || GET_CODE (XEXP (t
, 0)) == XOR
6514 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6515 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6516 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6517 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6518 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6519 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6520 && (num_sign_bit_copies (f
, GET_MODE (f
))
6522 (GET_MODE_PRECISION (int_mode
)
6523 - GET_MODE_PRECISION (inner_mode
))))
6525 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6526 extend_op
= SIGN_EXTEND
;
6529 else if (GET_CODE (t
) == SIGN_EXTEND
6530 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6531 && (GET_CODE (XEXP (t
, 0)) == PLUS
6532 || GET_CODE (XEXP (t
, 0)) == IOR
6533 || GET_CODE (XEXP (t
, 0)) == XOR
)
6534 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6535 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6536 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6537 && (num_sign_bit_copies (f
, GET_MODE (f
))
6539 (GET_MODE_PRECISION (int_mode
)
6540 - GET_MODE_PRECISION (inner_mode
))))
6542 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6543 extend_op
= SIGN_EXTEND
;
6546 else if (GET_CODE (t
) == ZERO_EXTEND
6547 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6548 && (GET_CODE (XEXP (t
, 0)) == PLUS
6549 || GET_CODE (XEXP (t
, 0)) == MINUS
6550 || GET_CODE (XEXP (t
, 0)) == IOR
6551 || GET_CODE (XEXP (t
, 0)) == XOR
6552 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6553 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6554 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6555 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6556 && HWI_COMPUTABLE_MODE_P (int_mode
)
6557 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6558 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6559 && ((nonzero_bits (f
, GET_MODE (f
))
6560 & ~GET_MODE_MASK (inner_mode
))
6563 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6564 extend_op
= ZERO_EXTEND
;
6567 else if (GET_CODE (t
) == ZERO_EXTEND
6568 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6569 && (GET_CODE (XEXP (t
, 0)) == PLUS
6570 || GET_CODE (XEXP (t
, 0)) == IOR
6571 || GET_CODE (XEXP (t
, 0)) == XOR
)
6572 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6573 && HWI_COMPUTABLE_MODE_P (int_mode
)
6574 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6575 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6576 && ((nonzero_bits (f
, GET_MODE (f
))
6577 & ~GET_MODE_MASK (inner_mode
))
6580 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6581 extend_op
= ZERO_EXTEND
;
6587 temp
= subst (simplify_gen_relational (true_code
, m
, VOIDmode
,
6588 cond_op0
, cond_op1
),
6589 pc_rtx
, pc_rtx
, 0, 0, 0);
6590 temp
= simplify_gen_binary (MULT
, m
, temp
,
6591 simplify_gen_binary (MULT
, m
, c1
,
6593 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6594 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6596 if (extend_op
!= UNKNOWN
)
6597 temp
= simplify_gen_unary (extend_op
, int_mode
, temp
, m
);
6603 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6604 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6605 negation of a single bit, we can convert this operation to a shift. We
6606 can actually do this more generally, but it doesn't seem worth it. */
6609 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6610 && XEXP (cond
, 1) == const0_rtx
6611 && false_rtx
== const0_rtx
6612 && CONST_INT_P (true_rtx
)
6613 && ((1 == nonzero_bits (XEXP (cond
, 0), int_mode
)
6614 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6615 || ((num_sign_bit_copies (XEXP (cond
, 0), int_mode
)
6616 == GET_MODE_PRECISION (int_mode
))
6617 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6619 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6620 gen_lowpart (int_mode
, XEXP (cond
, 0)), i
);
6622 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6623 non-zero bit in A is C1. */
6624 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6625 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6626 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6627 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (cond
, 0)), &inner_mode
)
6628 && (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))
6629 == nonzero_bits (XEXP (cond
, 0), inner_mode
)
6630 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))) >= 0)
6632 rtx val
= XEXP (cond
, 0);
6633 if (inner_mode
== int_mode
)
6635 else if (GET_MODE_PRECISION (inner_mode
) < GET_MODE_PRECISION (int_mode
))
6636 return simplify_gen_unary (ZERO_EXTEND
, int_mode
, val
, inner_mode
);
6642 /* Simplify X, a SET expression. Return the new expression. */
6645 simplify_set (rtx x
)
6647 rtx src
= SET_SRC (x
);
6648 rtx dest
= SET_DEST (x
);
6650 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6651 rtx_insn
*other_insn
;
6653 scalar_int_mode int_mode
;
6655 /* (set (pc) (return)) gets written as (return). */
6656 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6659 /* Now that we know for sure which bits of SRC we are using, see if we can
6660 simplify the expression for the object knowing that we only need the
6663 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6665 src
= force_to_mode (src
, mode
, HOST_WIDE_INT_M1U
, 0);
6666 SUBST (SET_SRC (x
), src
);
6669 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6670 the comparison result and try to simplify it unless we already have used
6671 undobuf.other_insn. */
6672 if ((GET_MODE_CLASS (mode
) == MODE_CC
6673 || GET_CODE (src
) == COMPARE
6675 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6676 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6677 && COMPARISON_P (*cc_use
)
6678 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6680 enum rtx_code old_code
= GET_CODE (*cc_use
);
6681 enum rtx_code new_code
;
6683 int other_changed
= 0;
6684 rtx inner_compare
= NULL_RTX
;
6685 machine_mode compare_mode
= GET_MODE (dest
);
6687 if (GET_CODE (src
) == COMPARE
)
6689 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6690 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6692 inner_compare
= op0
;
6693 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6697 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6699 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6702 new_code
= old_code
;
6703 else if (!CONSTANT_P (tmp
))
6705 new_code
= GET_CODE (tmp
);
6706 op0
= XEXP (tmp
, 0);
6707 op1
= XEXP (tmp
, 1);
6711 rtx pat
= PATTERN (other_insn
);
6712 undobuf
.other_insn
= other_insn
;
6713 SUBST (*cc_use
, tmp
);
6715 /* Attempt to simplify CC user. */
6716 if (GET_CODE (pat
) == SET
)
6718 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6719 if (new_rtx
!= NULL_RTX
)
6720 SUBST (SET_SRC (pat
), new_rtx
);
6723 /* Convert X into a no-op move. */
6724 SUBST (SET_DEST (x
), pc_rtx
);
6725 SUBST (SET_SRC (x
), pc_rtx
);
6729 /* Simplify our comparison, if possible. */
6730 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6732 #ifdef SELECT_CC_MODE
6733 /* If this machine has CC modes other than CCmode, check to see if we
6734 need to use a different CC mode here. */
6735 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6736 compare_mode
= GET_MODE (op0
);
6737 else if (inner_compare
6738 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6739 && new_code
== old_code
6740 && op0
== XEXP (inner_compare
, 0)
6741 && op1
== XEXP (inner_compare
, 1))
6742 compare_mode
= GET_MODE (inner_compare
);
6744 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6746 /* If the mode changed, we have to change SET_DEST, the mode in the
6747 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6748 a hard register, just build new versions with the proper mode. If it
6749 is a pseudo, we lose unless it is only time we set the pseudo, in
6750 which case we can safely change its mode. */
6751 if (!HAVE_cc0
&& compare_mode
!= GET_MODE (dest
))
6753 if (can_change_dest_mode (dest
, 0, compare_mode
))
6755 unsigned int regno
= REGNO (dest
);
6758 if (regno
< FIRST_PSEUDO_REGISTER
)
6759 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6762 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
6763 new_dest
= regno_reg_rtx
[regno
];
6766 SUBST (SET_DEST (x
), new_dest
);
6767 SUBST (XEXP (*cc_use
, 0), new_dest
);
6773 #endif /* SELECT_CC_MODE */
6775 /* If the code changed, we have to build a new comparison in
6776 undobuf.other_insn. */
6777 if (new_code
!= old_code
)
6779 int other_changed_previously
= other_changed
;
6780 unsigned HOST_WIDE_INT mask
;
6781 rtx old_cc_use
= *cc_use
;
6783 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6787 /* If the only change we made was to change an EQ into an NE or
6788 vice versa, OP0 has only one bit that might be nonzero, and OP1
6789 is zero, check if changing the user of the condition code will
6790 produce a valid insn. If it won't, we can keep the original code
6791 in that insn by surrounding our operation with an XOR. */
6793 if (((old_code
== NE
&& new_code
== EQ
)
6794 || (old_code
== EQ
&& new_code
== NE
))
6795 && ! other_changed_previously
&& op1
== const0_rtx
6796 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6797 && pow2p_hwi (mask
= nonzero_bits (op0
, GET_MODE (op0
))))
6799 rtx pat
= PATTERN (other_insn
), note
= 0;
6801 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6802 && ! check_asm_operands (pat
)))
6804 *cc_use
= old_cc_use
;
6807 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
6815 undobuf
.other_insn
= other_insn
;
6817 /* Don't generate a compare of a CC with 0, just use that CC. */
6818 if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6820 SUBST (SET_SRC (x
), op0
);
6823 /* Otherwise, if we didn't previously have the same COMPARE we
6824 want, create it from scratch. */
6825 else if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
6826 || XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6828 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6834 /* Get SET_SRC in a form where we have placed back any
6835 compound expressions. Then do the checks below. */
6836 src
= make_compound_operation (src
, SET
);
6837 SUBST (SET_SRC (x
), src
);
6840 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6841 and X being a REG or (subreg (reg)), we may be able to convert this to
6842 (set (subreg:m2 x) (op)).
6844 We can always do this if M1 is narrower than M2 because that means that
6845 we only care about the low bits of the result.
6847 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6848 perform a narrower operation than requested since the high-order bits will
6849 be undefined. On machine where it is defined, this transformation is safe
6850 as long as M1 and M2 have the same number of words. */
6852 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6853 && !OBJECT_P (SUBREG_REG (src
))
6854 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
6856 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
6857 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
6858 && (WORD_REGISTER_OPERATIONS
|| !paradoxical_subreg_p (src
))
6859 #ifdef CANNOT_CHANGE_MODE_CLASS
6860 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
6861 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
6862 GET_MODE (SUBREG_REG (src
)),
6866 || (GET_CODE (dest
) == SUBREG
6867 && REG_P (SUBREG_REG (dest
)))))
6869 SUBST (SET_DEST (x
),
6870 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
6872 SUBST (SET_SRC (x
), SUBREG_REG (src
));
6874 src
= SET_SRC (x
), dest
= SET_DEST (x
);
6877 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6880 && GET_CODE (src
) == SUBREG
6881 && subreg_lowpart_p (src
)
6882 && (GET_MODE_PRECISION (GET_MODE (src
))
6883 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src
)))))
6885 rtx inner
= SUBREG_REG (src
);
6886 machine_mode inner_mode
= GET_MODE (inner
);
6888 /* Here we make sure that we don't have a sign bit on. */
6889 if (val_signbit_known_clear_p (GET_MODE (src
),
6890 nonzero_bits (inner
, inner_mode
)))
6892 SUBST (SET_SRC (x
), inner
);
6897 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6898 would require a paradoxical subreg. Replace the subreg with a
6899 zero_extend to avoid the reload that would otherwise be required. */
6901 enum rtx_code extend_op
;
6902 if (paradoxical_subreg_p (src
)
6903 && MEM_P (SUBREG_REG (src
))
6904 && (extend_op
= load_extend_op (GET_MODE (SUBREG_REG (src
)))) != UNKNOWN
)
6907 gen_rtx_fmt_e (extend_op
, GET_MODE (src
), SUBREG_REG (src
)));
6912 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6913 are comparing an item known to be 0 or -1 against 0, use a logical
6914 operation instead. Check for one of the arms being an IOR of the other
6915 arm with some value. We compute three terms to be IOR'ed together. In
6916 practice, at most two will be nonzero. Then we do the IOR's. */
6918 if (GET_CODE (dest
) != PC
6919 && GET_CODE (src
) == IF_THEN_ELSE
6920 && is_int_mode (GET_MODE (src
), &int_mode
)
6921 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
6922 && XEXP (XEXP (src
, 0), 1) == const0_rtx
6923 && int_mode
== GET_MODE (XEXP (XEXP (src
, 0), 0))
6924 && (!HAVE_conditional_move
6925 || ! can_conditionally_move_p (int_mode
))
6926 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0), int_mode
)
6927 == GET_MODE_PRECISION (int_mode
))
6928 && ! side_effects_p (src
))
6930 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6931 ? XEXP (src
, 1) : XEXP (src
, 2));
6932 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6933 ? XEXP (src
, 2) : XEXP (src
, 1));
6934 rtx term1
= const0_rtx
, term2
, term3
;
6936 if (GET_CODE (true_rtx
) == IOR
6937 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
6938 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
6939 else if (GET_CODE (true_rtx
) == IOR
6940 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
6941 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
6942 else if (GET_CODE (false_rtx
) == IOR
6943 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
6944 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
6945 else if (GET_CODE (false_rtx
) == IOR
6946 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
6947 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
6949 term2
= simplify_gen_binary (AND
, int_mode
,
6950 XEXP (XEXP (src
, 0), 0), true_rtx
);
6951 term3
= simplify_gen_binary (AND
, int_mode
,
6952 simplify_gen_unary (NOT
, int_mode
,
6953 XEXP (XEXP (src
, 0), 0),
6958 simplify_gen_binary (IOR
, int_mode
,
6959 simplify_gen_binary (IOR
, int_mode
,
6966 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6967 whole thing fail. */
6968 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
6970 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
6973 /* Convert this into a field assignment operation, if possible. */
6974 return make_field_assignment (x
);
6977 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6981 simplify_logical (rtx x
)
6983 rtx op0
= XEXP (x
, 0);
6984 rtx op1
= XEXP (x
, 1);
6985 scalar_int_mode mode
;
6987 switch (GET_CODE (x
))
6990 /* We can call simplify_and_const_int only if we don't lose
6991 any (sign) bits when converting INTVAL (op1) to
6992 "unsigned HOST_WIDE_INT". */
6993 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
6994 && CONST_INT_P (op1
)
6995 && (HWI_COMPUTABLE_MODE_P (mode
)
6996 || INTVAL (op1
) > 0))
6998 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
6999 if (GET_CODE (x
) != AND
)
7006 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7007 apply the distributive law and then the inverse distributive
7008 law to see if things simplify. */
7009 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
7011 rtx result
= distribute_and_simplify_rtx (x
, 0);
7015 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
7017 rtx result
= distribute_and_simplify_rtx (x
, 1);
7024 /* If we have (ior (and A B) C), apply the distributive law and then
7025 the inverse distributive law to see if things simplify. */
7027 if (GET_CODE (op0
) == AND
)
7029 rtx result
= distribute_and_simplify_rtx (x
, 0);
7034 if (GET_CODE (op1
) == AND
)
7036 rtx result
= distribute_and_simplify_rtx (x
, 1);
7049 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7050 operations" because they can be replaced with two more basic operations.
7051 ZERO_EXTEND is also considered "compound" because it can be replaced with
7052 an AND operation, which is simpler, though only one operation.
7054 The function expand_compound_operation is called with an rtx expression
7055 and will convert it to the appropriate shifts and AND operations,
7056 simplifying at each stage.
7058 The function make_compound_operation is called to convert an expression
7059 consisting of shifts and ANDs into the equivalent compound expression.
7060 It is the inverse of this function, loosely speaking. */
7063 expand_compound_operation (rtx x
)
7065 unsigned HOST_WIDE_INT pos
= 0, len
;
7067 unsigned int modewidth
;
7069 scalar_int_mode inner_mode
;
7071 switch (GET_CODE (x
))
7077 /* We can't necessarily use a const_int for a multiword mode;
7078 it depends on implicitly extending the value.
7079 Since we don't know the right way to extend it,
7080 we can't tell whether the implicit way is right.
7082 Even for a mode that is no wider than a const_int,
7083 we can't win, because we need to sign extend one of its bits through
7084 the rest of it, and we don't know which bit. */
7085 if (CONST_INT_P (XEXP (x
, 0)))
7088 /* Reject modes that aren't scalar integers because turning vector
7089 or complex modes into shifts causes problems. */
7090 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7093 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7094 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7095 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7096 reloaded. If not for that, MEM's would very rarely be safe.
7098 Reject modes bigger than a word, because we might not be able
7099 to reference a two-register group starting with an arbitrary register
7100 (and currently gen_lowpart might crash for a SUBREG). */
7102 if (GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7105 len
= GET_MODE_PRECISION (inner_mode
);
7106 /* If the inner object has VOIDmode (the only way this can happen
7107 is if it is an ASM_OPERANDS), we can't do anything since we don't
7108 know how much masking to do. */
7120 /* If the operand is a CLOBBER, just return it. */
7121 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
7124 if (!CONST_INT_P (XEXP (x
, 1))
7125 || !CONST_INT_P (XEXP (x
, 2)))
7128 /* Reject modes that aren't scalar integers because turning vector
7129 or complex modes into shifts causes problems. */
7130 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7133 len
= INTVAL (XEXP (x
, 1));
7134 pos
= INTVAL (XEXP (x
, 2));
7136 /* This should stay within the object being extracted, fail otherwise. */
7137 if (len
+ pos
> GET_MODE_PRECISION (inner_mode
))
7140 if (BITS_BIG_ENDIAN
)
7141 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
7149 /* We've rejected non-scalar operations by now. */
7150 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (x
));
7152 /* Convert sign extension to zero extension, if we know that the high
7153 bit is not set, as this is easier to optimize. It will be converted
7154 back to cheaper alternative in make_extraction. */
7155 if (GET_CODE (x
) == SIGN_EXTEND
7156 && HWI_COMPUTABLE_MODE_P (mode
)
7157 && ((nonzero_bits (XEXP (x
, 0), inner_mode
)
7158 & ~(((unsigned HOST_WIDE_INT
) GET_MODE_MASK (inner_mode
)) >> 1))
7161 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, XEXP (x
, 0));
7162 rtx temp2
= expand_compound_operation (temp
);
7164 /* Make sure this is a profitable operation. */
7165 if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7166 > set_src_cost (temp2
, mode
, optimize_this_for_speed_p
))
7168 else if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7169 > set_src_cost (temp
, mode
, optimize_this_for_speed_p
))
7175 /* We can optimize some special cases of ZERO_EXTEND. */
7176 if (GET_CODE (x
) == ZERO_EXTEND
)
7178 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7179 know that the last value didn't have any inappropriate bits
7181 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7182 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7183 && HWI_COMPUTABLE_MODE_P (mode
)
7184 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
)
7185 & ~GET_MODE_MASK (inner_mode
)) == 0)
7186 return XEXP (XEXP (x
, 0), 0);
7188 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7189 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7190 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7191 && subreg_lowpart_p (XEXP (x
, 0))
7192 && HWI_COMPUTABLE_MODE_P (mode
)
7193 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), mode
)
7194 & ~GET_MODE_MASK (inner_mode
)) == 0)
7195 return SUBREG_REG (XEXP (x
, 0));
7197 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7198 is a comparison and STORE_FLAG_VALUE permits. This is like
7199 the first case, but it works even when MODE is larger
7200 than HOST_WIDE_INT. */
7201 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7202 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7203 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
7204 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7205 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7206 return XEXP (XEXP (x
, 0), 0);
7208 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7209 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7210 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7211 && subreg_lowpart_p (XEXP (x
, 0))
7212 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
7213 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7214 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7215 return SUBREG_REG (XEXP (x
, 0));
7219 /* If we reach here, we want to return a pair of shifts. The inner
7220 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7221 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7222 logical depending on the value of UNSIGNEDP.
7224 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7225 converted into an AND of a shift.
7227 We must check for the case where the left shift would have a negative
7228 count. This can happen in a case like (x >> 31) & 255 on machines
7229 that can't shift by a constant. On those machines, we would first
7230 combine the shift with the AND to produce a variable-position
7231 extraction. Then the constant of 31 would be substituted in
7232 to produce such a position. */
7234 modewidth
= GET_MODE_PRECISION (mode
);
7235 if (modewidth
>= pos
+ len
)
7237 tem
= gen_lowpart (mode
, XEXP (x
, 0));
7238 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
7240 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
7241 tem
, modewidth
- pos
- len
);
7242 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
7243 mode
, tem
, modewidth
- len
);
7245 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
7246 tem
= simplify_and_const_int (NULL_RTX
, mode
,
7247 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7250 (HOST_WIDE_INT_1U
<< len
) - 1);
7252 /* Any other cases we can't handle. */
7255 /* If we couldn't do this for some reason, return the original
7257 if (GET_CODE (tem
) == CLOBBER
)
7263 /* X is a SET which contains an assignment of one object into
7264 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7265 or certain SUBREGS). If possible, convert it into a series of
7268 We half-heartedly support variable positions, but do not at all
7269 support variable lengths. */
7272 expand_field_assignment (const_rtx x
)
7275 rtx pos
; /* Always counts from low bit. */
7277 rtx mask
, cleared
, masked
;
7278 scalar_int_mode compute_mode
;
7280 /* Loop until we find something we can't simplify. */
7283 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
7284 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
7286 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
7287 len
= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0)));
7288 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
7290 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
7291 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
7293 inner
= XEXP (SET_DEST (x
), 0);
7294 len
= INTVAL (XEXP (SET_DEST (x
), 1));
7295 pos
= XEXP (SET_DEST (x
), 2);
7297 /* A constant position should stay within the width of INNER. */
7298 if (CONST_INT_P (pos
)
7299 && INTVAL (pos
) + len
> GET_MODE_PRECISION (GET_MODE (inner
)))
7302 if (BITS_BIG_ENDIAN
)
7304 if (CONST_INT_P (pos
))
7305 pos
= GEN_INT (GET_MODE_PRECISION (GET_MODE (inner
)) - len
7307 else if (GET_CODE (pos
) == MINUS
7308 && CONST_INT_P (XEXP (pos
, 1))
7309 && (INTVAL (XEXP (pos
, 1))
7310 == GET_MODE_PRECISION (GET_MODE (inner
)) - len
))
7311 /* If position is ADJUST - X, new position is X. */
7312 pos
= XEXP (pos
, 0);
7315 HOST_WIDE_INT prec
= GET_MODE_PRECISION (GET_MODE (inner
));
7316 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
7317 gen_int_mode (prec
- len
,
7324 /* A SUBREG between two modes that occupy the same numbers of words
7325 can be done by moving the SUBREG to the source. */
7326 else if (GET_CODE (SET_DEST (x
)) == SUBREG
7327 /* We need SUBREGs to compute nonzero_bits properly. */
7328 && nonzero_sign_valid
7329 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
7330 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
7331 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
7332 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
7334 x
= gen_rtx_SET (SUBREG_REG (SET_DEST (x
)),
7336 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
7343 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7344 inner
= SUBREG_REG (inner
);
7346 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7347 if (!is_a
<scalar_int_mode
> (GET_MODE (inner
), &compute_mode
))
7349 /* Don't do anything for vector or complex integral types. */
7350 if (! FLOAT_MODE_P (GET_MODE (inner
)))
7353 /* Try to find an integral mode to pun with. */
7354 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner
)), 0)
7355 .exists (&compute_mode
))
7358 inner
= gen_lowpart (compute_mode
, inner
);
7361 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7362 if (len
>= HOST_BITS_PER_WIDE_INT
)
7365 /* Don't try to compute in too wide unsupported modes. */
7366 if (!targetm
.scalar_mode_supported_p (compute_mode
))
7369 /* Now compute the equivalent expression. Make a copy of INNER
7370 for the SET_DEST in case it is a MEM into which we will substitute;
7371 we don't want shared RTL in that case. */
7372 mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< len
) - 1,
7374 cleared
= simplify_gen_binary (AND
, compute_mode
,
7375 simplify_gen_unary (NOT
, compute_mode
,
7376 simplify_gen_binary (ASHIFT
,
7381 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
7382 simplify_gen_binary (
7384 gen_lowpart (compute_mode
, SET_SRC (x
)),
7388 x
= gen_rtx_SET (copy_rtx (inner
),
7389 simplify_gen_binary (IOR
, compute_mode
,
7396 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7397 it is an RTX that represents the (variable) starting position; otherwise,
7398 POS is the (constant) starting bit position. Both are counted from the LSB.
7400 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7402 IN_DEST is nonzero if this is a reference in the destination of a SET.
7403 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7404 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7407 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7408 ZERO_EXTRACT should be built even for bits starting at bit 0.
7410 MODE is the desired mode of the result (if IN_DEST == 0).
7412 The result is an RTX for the extraction or NULL_RTX if the target
7416 make_extraction (machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7417 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7418 int in_dest
, int in_compare
)
7420 /* This mode describes the size of the storage area
7421 to fetch the overall value from. Within that, we
7422 ignore the POS lowest bits, etc. */
7423 machine_mode is_mode
= GET_MODE (inner
);
7424 machine_mode inner_mode
;
7425 machine_mode wanted_inner_mode
;
7426 machine_mode wanted_inner_reg_mode
= word_mode
;
7427 machine_mode pos_mode
= word_mode
;
7428 machine_mode extraction_mode
= word_mode
;
7430 rtx orig_pos_rtx
= pos_rtx
;
7431 HOST_WIDE_INT orig_pos
;
7433 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7434 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7436 if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7438 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7439 consider just the QI as the memory to extract from.
7440 The subreg adds or removes high bits; its mode is
7441 irrelevant to the meaning of this extraction,
7442 since POS and LEN count from the lsb. */
7443 if (MEM_P (SUBREG_REG (inner
)))
7444 is_mode
= GET_MODE (SUBREG_REG (inner
));
7445 inner
= SUBREG_REG (inner
);
7447 else if (GET_CODE (inner
) == ASHIFT
7448 && CONST_INT_P (XEXP (inner
, 1))
7449 && pos_rtx
== 0 && pos
== 0
7450 && len
> UINTVAL (XEXP (inner
, 1)))
7452 /* We're extracting the least significant bits of an rtx
7453 (ashift X (const_int C)), where LEN > C. Extract the
7454 least significant (LEN - C) bits of X, giving an rtx
7455 whose mode is MODE, then shift it left C times. */
7456 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7457 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7458 unsignedp
, in_dest
, in_compare
);
7460 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7462 else if (GET_CODE (inner
) == TRUNCATE
)
7463 inner
= XEXP (inner
, 0);
7465 inner_mode
= GET_MODE (inner
);
7467 /* See if this can be done without an extraction. We never can if the
7468 width of the field is not the same as that of some integer mode. For
7469 registers, we can only avoid the extraction if the position is at the
7470 low-order bit and this is either not in the destination or we have the
7471 appropriate STRICT_LOW_PART operation available.
7473 For MEM, we can avoid an extract if the field starts on an appropriate
7474 boundary and we can change the mode of the memory reference. */
7476 scalar_int_mode tmode
;
7477 if (int_mode_for_size (len
, 1).exists (&tmode
)
7478 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7480 && (pos
== 0 || REG_P (inner
))
7481 && (inner_mode
== tmode
7483 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7484 || reg_truncated_to_mode (tmode
, inner
))
7487 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7488 || (MEM_P (inner
) && pos_rtx
== 0
7490 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7491 : BITS_PER_UNIT
)) == 0
7492 /* We can't do this if we are widening INNER_MODE (it
7493 may not be aligned, for one thing). */
7494 && !paradoxical_subreg_p (tmode
, inner_mode
)
7495 && (inner_mode
== tmode
7496 || (! mode_dependent_address_p (XEXP (inner
, 0),
7497 MEM_ADDR_SPACE (inner
))
7498 && ! MEM_VOLATILE_P (inner
))))))
7500 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7501 field. If the original and current mode are the same, we need not
7502 adjust the offset. Otherwise, we do if bytes big endian.
7504 If INNER is not a MEM, get a piece consisting of just the field
7505 of interest (in this case POS % BITS_PER_WORD must be 0). */
7509 HOST_WIDE_INT offset
;
7511 /* POS counts from lsb, but make OFFSET count in memory order. */
7512 if (BYTES_BIG_ENDIAN
)
7513 offset
= (GET_MODE_PRECISION (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
7515 offset
= pos
/ BITS_PER_UNIT
;
7517 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7519 else if (REG_P (inner
))
7521 if (tmode
!= inner_mode
)
7523 /* We can't call gen_lowpart in a DEST since we
7524 always want a SUBREG (see below) and it would sometimes
7525 return a new hard register. */
7529 = subreg_offset_from_lsb (tmode
, inner_mode
, pos
);
7531 /* Avoid creating invalid subregs, for example when
7532 simplifying (x>>32)&255. */
7533 if (!validate_subreg (tmode
, inner_mode
, inner
, offset
))
7536 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, offset
);
7539 new_rtx
= gen_lowpart (tmode
, inner
);
7545 new_rtx
= force_to_mode (inner
, tmode
,
7546 len
>= HOST_BITS_PER_WIDE_INT
7548 : (HOST_WIDE_INT_1U
<< len
) - 1, 0);
7550 /* If this extraction is going into the destination of a SET,
7551 make a STRICT_LOW_PART unless we made a MEM. */
7554 return (MEM_P (new_rtx
) ? new_rtx
7555 : (GET_CODE (new_rtx
) != SUBREG
7556 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7557 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7562 if (CONST_SCALAR_INT_P (new_rtx
))
7563 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7564 mode
, new_rtx
, tmode
);
7566 /* If we know that no extraneous bits are set, and that the high
7567 bit is not set, convert the extraction to the cheaper of
7568 sign and zero extension, that are equivalent in these cases. */
7569 if (flag_expensive_optimizations
7570 && (HWI_COMPUTABLE_MODE_P (tmode
)
7571 && ((nonzero_bits (new_rtx
, tmode
)
7572 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7575 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7576 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7578 /* Prefer ZERO_EXTENSION, since it gives more information to
7580 if (set_src_cost (temp
, mode
, optimize_this_for_speed_p
)
7581 <= set_src_cost (temp1
, mode
, optimize_this_for_speed_p
))
7586 /* Otherwise, sign- or zero-extend unless we already are in the
7589 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7593 /* Unless this is a COMPARE or we have a funny memory reference,
7594 don't do anything with zero-extending field extracts starting at
7595 the low-order bit since they are simple AND operations. */
7596 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7597 && ! in_compare
&& unsignedp
)
7600 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7601 if the position is not a constant and the length is not 1. In all
7602 other cases, we would only be going outside our object in cases when
7603 an original shift would have been undefined. */
7605 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_PRECISION (is_mode
))
7606 || (pos_rtx
!= 0 && len
!= 1)))
7609 enum extraction_pattern pattern
= (in_dest
? EP_insv
7610 : unsignedp
? EP_extzv
: EP_extv
);
7612 /* If INNER is not from memory, we want it to have the mode of a register
7613 extraction pattern's structure operand, or word_mode if there is no
7614 such pattern. The same applies to extraction_mode and pos_mode
7615 and their respective operands.
7617 For memory, assume that the desired extraction_mode and pos_mode
7618 are the same as for a register operation, since at present we don't
7619 have named patterns for aligned memory structures. */
7620 struct extraction_insn insn
;
7621 if (get_best_reg_extraction_insn (&insn
, pattern
,
7622 GET_MODE_BITSIZE (inner_mode
), mode
))
7624 wanted_inner_reg_mode
= insn
.struct_mode
.require ();
7625 pos_mode
= insn
.pos_mode
;
7626 extraction_mode
= insn
.field_mode
;
7629 /* Never narrow an object, since that might not be safe. */
7631 if (mode
!= VOIDmode
7632 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
7633 extraction_mode
= mode
;
7636 wanted_inner_mode
= wanted_inner_reg_mode
;
7639 /* Be careful not to go beyond the extracted object and maintain the
7640 natural alignment of the memory. */
7641 wanted_inner_mode
= smallest_int_mode_for_size (len
);
7642 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7643 > GET_MODE_BITSIZE (wanted_inner_mode
))
7644 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
).require ();
7649 if (BITS_BIG_ENDIAN
)
7651 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7652 BITS_BIG_ENDIAN style. If position is constant, compute new
7653 position. Otherwise, build subtraction.
7654 Note that POS is relative to the mode of the original argument.
7655 If it's a MEM we need to recompute POS relative to that.
7656 However, if we're extracting from (or inserting into) a register,
7657 we want to recompute POS relative to wanted_inner_mode. */
7658 int width
= (MEM_P (inner
)
7659 ? GET_MODE_BITSIZE (is_mode
)
7660 : GET_MODE_BITSIZE (wanted_inner_mode
));
7663 pos
= width
- len
- pos
;
7666 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7667 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7669 /* POS may be less than 0 now, but we check for that below.
7670 Note that it can only be less than 0 if !MEM_P (inner). */
7673 /* If INNER has a wider mode, and this is a constant extraction, try to
7674 make it smaller and adjust the byte to point to the byte containing
7676 if (wanted_inner_mode
!= VOIDmode
7677 && inner_mode
!= wanted_inner_mode
7679 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
7681 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7682 && ! MEM_VOLATILE_P (inner
))
7686 /* The computations below will be correct if the machine is big
7687 endian in both bits and bytes or little endian in bits and bytes.
7688 If it is mixed, we must adjust. */
7690 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7691 adjust OFFSET to compensate. */
7692 if (BYTES_BIG_ENDIAN
7693 && paradoxical_subreg_p (is_mode
, inner_mode
))
7694 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7696 /* We can now move to the desired byte. */
7697 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7698 * GET_MODE_SIZE (wanted_inner_mode
);
7699 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7701 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7702 && is_mode
!= wanted_inner_mode
)
7703 offset
= (GET_MODE_SIZE (is_mode
)
7704 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7706 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7709 /* If INNER is not memory, get it into the proper mode. If we are changing
7710 its mode, POS must be a constant and smaller than the size of the new
7712 else if (!MEM_P (inner
))
7714 /* On the LHS, don't create paradoxical subregs implicitely truncating
7715 the register unless TRULY_NOOP_TRUNCATION. */
7717 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7721 if (GET_MODE (inner
) != wanted_inner_mode
7723 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7729 inner
= force_to_mode (inner
, wanted_inner_mode
,
7731 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7733 : (((HOST_WIDE_INT_1U
<< len
) - 1)
7738 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7739 have to zero extend. Otherwise, we can just use a SUBREG.
7741 We dealt with constant rtxes earlier, so pos_rtx cannot
7742 have VOIDmode at this point. */
7744 && (GET_MODE_SIZE (pos_mode
)
7745 > GET_MODE_SIZE (as_a
<scalar_int_mode
> (GET_MODE (pos_rtx
)))))
7747 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7748 GET_MODE (pos_rtx
));
7750 /* If we know that no extraneous bits are set, and that the high
7751 bit is not set, convert extraction to cheaper one - either
7752 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7754 if (flag_expensive_optimizations
7755 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7756 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7757 & ~(((unsigned HOST_WIDE_INT
)
7758 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7762 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7763 GET_MODE (pos_rtx
));
7765 /* Prefer ZERO_EXTENSION, since it gives more information to
7767 if (set_src_cost (temp1
, pos_mode
, optimize_this_for_speed_p
)
7768 < set_src_cost (temp
, pos_mode
, optimize_this_for_speed_p
))
7774 /* Make POS_RTX unless we already have it and it is correct. If we don't
7775 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7777 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7778 pos_rtx
= orig_pos_rtx
;
7780 else if (pos_rtx
== 0)
7781 pos_rtx
= GEN_INT (pos
);
7783 /* Make the required operation. See if we can use existing rtx. */
7784 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7785 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7787 new_rtx
= gen_lowpart (mode
, new_rtx
);
7792 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7793 with any other operations in X. Return X without that shift if so. */
7796 extract_left_shift (rtx x
, int count
)
7798 enum rtx_code code
= GET_CODE (x
);
7799 machine_mode mode
= GET_MODE (x
);
7805 /* This is the shift itself. If it is wide enough, we will return
7806 either the value being shifted if the shift count is equal to
7807 COUNT or a shift for the difference. */
7808 if (CONST_INT_P (XEXP (x
, 1))
7809 && INTVAL (XEXP (x
, 1)) >= count
)
7810 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
7811 INTVAL (XEXP (x
, 1)) - count
);
7815 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7816 return simplify_gen_unary (code
, mode
, tem
, mode
);
7820 case PLUS
: case IOR
: case XOR
: case AND
:
7821 /* If we can safely shift this constant and we find the inner shift,
7822 make a new operation. */
7823 if (CONST_INT_P (XEXP (x
, 1))
7824 && (UINTVAL (XEXP (x
, 1))
7825 & (((HOST_WIDE_INT_1U
<< count
)) - 1)) == 0
7826 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7828 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
7829 return simplify_gen_binary (code
, mode
, tem
,
7830 gen_int_mode (val
, mode
));
7841 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7842 level of the expression and MODE is its mode. IN_CODE is as for
7843 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7844 that should be used when recursing on operands of *X_PTR.
7846 There are two possible actions:
7848 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7849 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7851 - Return a new rtx, which the caller returns directly. */
7854 make_compound_operation_int (machine_mode mode
, rtx
*x_ptr
,
7855 enum rtx_code in_code
,
7856 enum rtx_code
*next_code_ptr
)
7859 enum rtx_code next_code
= *next_code_ptr
;
7860 enum rtx_code code
= GET_CODE (x
);
7861 int mode_width
= GET_MODE_PRECISION (mode
);
7866 scalar_int_mode inner_mode
;
7867 bool equality_comparison
= false;
7871 equality_comparison
= true;
7875 /* Process depending on the code of this operation. If NEW is set
7876 nonzero, it will be returned. */
7881 /* Convert shifts by constants into multiplications if inside
7883 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
7884 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7885 && INTVAL (XEXP (x
, 1)) >= 0)
7887 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
7888 HOST_WIDE_INT multval
= HOST_WIDE_INT_1
<< count
;
7890 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7891 if (GET_CODE (new_rtx
) == NEG
)
7893 new_rtx
= XEXP (new_rtx
, 0);
7896 multval
= trunc_int_for_mode (multval
, mode
);
7897 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
7904 lhs
= make_compound_operation (lhs
, next_code
);
7905 rhs
= make_compound_operation (rhs
, next_code
);
7906 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
)
7908 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
7910 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7912 else if (GET_CODE (lhs
) == MULT
7913 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
7915 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
7916 simplify_gen_unary (NEG
, mode
,
7919 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7923 SUBST (XEXP (x
, 0), lhs
);
7924 SUBST (XEXP (x
, 1), rhs
);
7926 maybe_swap_commutative_operands (x
);
7932 lhs
= make_compound_operation (lhs
, next_code
);
7933 rhs
= make_compound_operation (rhs
, next_code
);
7934 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
)
7936 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
7938 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7940 else if (GET_CODE (rhs
) == MULT
7941 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
7943 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
7944 simplify_gen_unary (NEG
, mode
,
7947 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7951 SUBST (XEXP (x
, 0), lhs
);
7952 SUBST (XEXP (x
, 1), rhs
);
7957 /* If the second operand is not a constant, we can't do anything
7959 if (!CONST_INT_P (XEXP (x
, 1)))
7962 /* If the constant is a power of two minus one and the first operand
7963 is a logical right shift, make an extraction. */
7964 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7965 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7967 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7968 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
7969 0, in_code
== COMPARE
);
7972 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7973 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
7974 && subreg_lowpart_p (XEXP (x
, 0))
7975 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (XEXP (x
, 0))),
7977 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
7978 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7980 rtx inner_x0
= SUBREG_REG (XEXP (x
, 0));
7981 new_rtx
= make_compound_operation (XEXP (inner_x0
, 0), next_code
);
7982 new_rtx
= make_extraction (inner_mode
, new_rtx
, 0,
7984 i
, 1, 0, in_code
== COMPARE
);
7986 /* If we narrowed the mode when dropping the subreg, then we lose. */
7987 if (GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (mode
))
7990 /* If that didn't give anything, see if the AND simplifies on
7992 if (!new_rtx
&& i
>= 0)
7994 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7995 new_rtx
= make_extraction (mode
, new_rtx
, 0, NULL_RTX
, i
, 1,
7996 0, in_code
== COMPARE
);
7999 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8000 else if ((GET_CODE (XEXP (x
, 0)) == XOR
8001 || GET_CODE (XEXP (x
, 0)) == IOR
)
8002 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
8003 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
8004 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8006 /* Apply the distributive law, and then try to make extractions. */
8007 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
8008 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
8010 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
8012 new_rtx
= make_compound_operation (new_rtx
, in_code
);
8015 /* If we are have (and (rotate X C) M) and C is larger than the number
8016 of bits in M, this is an extraction. */
8018 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
8019 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8020 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
8021 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
8023 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8024 new_rtx
= make_extraction (mode
, new_rtx
,
8025 (GET_MODE_PRECISION (mode
)
8026 - INTVAL (XEXP (XEXP (x
, 0), 1))),
8027 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8030 /* On machines without logical shifts, if the operand of the AND is
8031 a logical shift and our mask turns off all the propagated sign
8032 bits, we can replace the logical shift with an arithmetic shift. */
8033 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8034 && !have_insn_for (LSHIFTRT
, mode
)
8035 && have_insn_for (ASHIFTRT
, mode
)
8036 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8037 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8038 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8039 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
8041 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
8043 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
8044 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
8046 gen_rtx_ASHIFTRT (mode
,
8047 make_compound_operation
8048 (XEXP (XEXP (x
, 0), 0), next_code
),
8049 XEXP (XEXP (x
, 0), 1)));
8052 /* If the constant is one less than a power of two, this might be
8053 representable by an extraction even if no shift is present.
8054 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8055 we are in a COMPARE. */
8056 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8057 new_rtx
= make_extraction (mode
,
8058 make_compound_operation (XEXP (x
, 0),
8060 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8062 /* If we are in a comparison and this is an AND with a power of two,
8063 convert this into the appropriate bit extract. */
8064 else if (in_code
== COMPARE
8065 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
8066 && (equality_comparison
|| i
< GET_MODE_PRECISION (mode
) - 1))
8067 new_rtx
= make_extraction (mode
,
8068 make_compound_operation (XEXP (x
, 0),
8070 i
, NULL_RTX
, 1, 1, 0, 1);
8072 /* If the one operand is a paradoxical subreg of a register or memory and
8073 the constant (limited to the smaller mode) has only zero bits where
8074 the sub expression has known zero bits, this can be expressed as
8076 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
)
8080 sub
= XEXP (XEXP (x
, 0), 0);
8081 machine_mode sub_mode
= GET_MODE (sub
);
8082 if ((REG_P (sub
) || MEM_P (sub
))
8083 && GET_MODE_PRECISION (sub_mode
) < mode_width
)
8085 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (sub_mode
);
8086 unsigned HOST_WIDE_INT mask
;
8088 /* original AND constant with all the known zero bits set */
8089 mask
= UINTVAL (XEXP (x
, 1)) | (~nonzero_bits (sub
, sub_mode
));
8090 if ((mask
& mode_mask
) == mode_mask
)
8092 new_rtx
= make_compound_operation (sub
, next_code
);
8093 new_rtx
= make_extraction (mode
, new_rtx
, 0, 0,
8094 GET_MODE_PRECISION (sub_mode
),
8095 1, 0, in_code
== COMPARE
);
8103 /* If the sign bit is known to be zero, replace this with an
8104 arithmetic shift. */
8105 if (have_insn_for (ASHIFTRT
, mode
)
8106 && ! have_insn_for (LSHIFTRT
, mode
)
8107 && mode_width
<= HOST_BITS_PER_WIDE_INT
8108 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
8110 new_rtx
= gen_rtx_ASHIFTRT (mode
,
8111 make_compound_operation (XEXP (x
, 0),
8123 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8124 this is a SIGN_EXTRACT. */
8125 if (CONST_INT_P (rhs
)
8126 && GET_CODE (lhs
) == ASHIFT
8127 && CONST_INT_P (XEXP (lhs
, 1))
8128 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
8129 && INTVAL (XEXP (lhs
, 1)) >= 0
8130 && INTVAL (rhs
) < mode_width
)
8132 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
8133 new_rtx
= make_extraction (mode
, new_rtx
,
8134 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
8135 NULL_RTX
, mode_width
- INTVAL (rhs
),
8136 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8140 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8141 If so, try to merge the shifts into a SIGN_EXTEND. We could
8142 also do this for some cases of SIGN_EXTRACT, but it doesn't
8143 seem worth the effort; the case checked for occurs on Alpha. */
8146 && ! (GET_CODE (lhs
) == SUBREG
8147 && (OBJECT_P (SUBREG_REG (lhs
))))
8148 && CONST_INT_P (rhs
)
8149 && INTVAL (rhs
) >= 0
8150 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
8151 && INTVAL (rhs
) < mode_width
8152 && (new_rtx
= extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
8153 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
, next_code
),
8154 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
8155 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8160 /* Call ourselves recursively on the inner expression. If we are
8161 narrowing the object and it has a different RTL code from
8162 what it originally did, do this SUBREG as a force_to_mode. */
8164 rtx inner
= SUBREG_REG (x
), simplified
;
8165 enum rtx_code subreg_code
= in_code
;
8167 /* If the SUBREG is masking of a logical right shift,
8168 make an extraction. */
8169 if (GET_CODE (inner
) == LSHIFTRT
8170 && is_a
<scalar_int_mode
> (GET_MODE (inner
), &inner_mode
)
8171 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (inner_mode
)
8172 && CONST_INT_P (XEXP (inner
, 1))
8173 && UINTVAL (XEXP (inner
, 1)) < GET_MODE_PRECISION (inner_mode
)
8174 && subreg_lowpart_p (x
))
8176 new_rtx
= make_compound_operation (XEXP (inner
, 0), next_code
);
8177 int width
= GET_MODE_PRECISION (inner_mode
)
8178 - INTVAL (XEXP (inner
, 1));
8179 if (width
> mode_width
)
8181 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (inner
, 1),
8182 width
, 1, 0, in_code
== COMPARE
);
8186 /* If in_code is COMPARE, it isn't always safe to pass it through
8187 to the recursive make_compound_operation call. */
8188 if (subreg_code
== COMPARE
8189 && (!subreg_lowpart_p (x
)
8190 || GET_CODE (inner
) == SUBREG
8191 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8192 is (const_int 0), rather than
8193 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8194 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8195 for non-equality comparisons against 0 is not equivalent
8196 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8197 || (GET_CODE (inner
) == AND
8198 && CONST_INT_P (XEXP (inner
, 1))
8199 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
8200 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
8201 >= GET_MODE_BITSIZE (mode
) - 1)))
8204 tem
= make_compound_operation (inner
, subreg_code
);
8207 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
8211 if (GET_CODE (tem
) != GET_CODE (inner
)
8212 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
8213 && subreg_lowpart_p (x
))
8216 = force_to_mode (tem
, mode
, HOST_WIDE_INT_M1U
, 0);
8218 /* If we have something other than a SUBREG, we might have
8219 done an expansion, so rerun ourselves. */
8220 if (GET_CODE (newer
) != SUBREG
)
8221 newer
= make_compound_operation (newer
, in_code
);
8223 /* force_to_mode can expand compounds. If it just re-expanded the
8224 compound, use gen_lowpart to convert to the desired mode. */
8225 if (rtx_equal_p (newer
, x
)
8226 /* Likewise if it re-expanded the compound only partially.
8227 This happens for SUBREG of ZERO_EXTRACT if they extract
8228 the same number of bits. */
8229 || (GET_CODE (newer
) == SUBREG
8230 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
8231 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
8232 && GET_CODE (inner
) == AND
8233 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
8234 return gen_lowpart (GET_MODE (x
), tem
);
8249 *x_ptr
= gen_lowpart (mode
, new_rtx
);
8250 *next_code_ptr
= next_code
;
8254 /* Look at the expression rooted at X. Look for expressions
8255 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8256 Form these expressions.
8258 Return the new rtx, usually just X.
8260 Also, for machines like the VAX that don't have logical shift insns,
8261 try to convert logical to arithmetic shift operations in cases where
8262 they are equivalent. This undoes the canonicalizations to logical
8263 shifts done elsewhere.
8265 We try, as much as possible, to re-use rtl expressions to save memory.
8267 IN_CODE says what kind of expression we are processing. Normally, it is
8268 SET. In a memory address it is MEM. When processing the arguments of
8269 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8270 precisely it is an equality comparison against zero. */
8273 make_compound_operation (rtx x
, enum rtx_code in_code
)
8275 enum rtx_code code
= GET_CODE (x
);
8278 enum rtx_code next_code
;
8281 /* Select the code to be used in recursive calls. Once we are inside an
8282 address, we stay there. If we have a comparison, set to COMPARE,
8283 but once inside, go back to our default of SET. */
8285 next_code
= (code
== MEM
? MEM
8286 : ((code
== COMPARE
|| COMPARISON_P (x
))
8287 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
8288 : in_code
== COMPARE
|| in_code
== EQ
? SET
: in_code
);
8290 scalar_int_mode mode
;
8291 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
8293 rtx new_rtx
= make_compound_operation_int (mode
, &x
, in_code
,
8297 code
= GET_CODE (x
);
8300 /* Now recursively process each operand of this operation. We need to
8301 handle ZERO_EXTEND specially so that we don't lose track of the
8303 if (code
== ZERO_EXTEND
)
8305 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8306 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8307 new_rtx
, GET_MODE (XEXP (x
, 0)));
8310 SUBST (XEXP (x
, 0), new_rtx
);
8314 fmt
= GET_RTX_FORMAT (code
);
8315 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
8318 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
8319 SUBST (XEXP (x
, i
), new_rtx
);
8321 else if (fmt
[i
] == 'E')
8322 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8324 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
8325 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
8328 maybe_swap_commutative_operands (x
);
8332 /* Given M see if it is a value that would select a field of bits
8333 within an item, but not the entire word. Return -1 if not.
8334 Otherwise, return the starting position of the field, where 0 is the
8337 *PLEN is set to the length of the field. */
8340 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
8342 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8343 int pos
= m
? ctz_hwi (m
) : -1;
8347 /* Now shift off the low-order zero bits and see if we have a
8348 power of two minus 1. */
8349 len
= exact_log2 ((m
>> pos
) + 1);
8358 /* If X refers to a register that equals REG in value, replace these
8359 references with REG. */
8361 canon_reg_for_combine (rtx x
, rtx reg
)
8368 enum rtx_code code
= GET_CODE (x
);
8369 switch (GET_RTX_CLASS (code
))
8372 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8373 if (op0
!= XEXP (x
, 0))
8374 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
8379 case RTX_COMM_ARITH
:
8380 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8381 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8382 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8383 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
8387 case RTX_COMM_COMPARE
:
8388 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8389 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8390 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8391 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
8392 GET_MODE (op0
), op0
, op1
);
8396 case RTX_BITFIELD_OPS
:
8397 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8398 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8399 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
8400 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
8401 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
8402 GET_MODE (op0
), op0
, op1
, op2
);
8408 if (rtx_equal_p (get_last_value (reg
), x
)
8409 || rtx_equal_p (reg
, get_last_value (x
)))
8418 fmt
= GET_RTX_FORMAT (code
);
8420 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8423 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
8424 if (op
!= XEXP (x
, i
))
8434 else if (fmt
[i
] == 'E')
8437 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8439 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
8440 if (op
!= XVECEXP (x
, i
, j
))
8447 XVECEXP (x
, i
, j
) = op
;
8458 /* Return X converted to MODE. If the value is already truncated to
8459 MODE we can just return a subreg even though in the general case we
8460 would need an explicit truncation. */
8463 gen_lowpart_or_truncate (machine_mode mode
, rtx x
)
8465 if (!CONST_INT_P (x
)
8466 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
))
8467 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
8468 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
8470 /* Bit-cast X into an integer mode. */
8471 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
8472 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)).require (), x
);
8473 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
).require (),
8477 return gen_lowpart (mode
, x
);
8480 /* See if X can be simplified knowing that we will only refer to it in
8481 MODE and will only refer to those bits that are nonzero in MASK.
8482 If other bits are being computed or if masking operations are done
8483 that select a superset of the bits in MASK, they can sometimes be
8486 Return a possibly simplified expression, but always convert X to
8487 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8489 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8490 are all off in X. This is used when X will be complemented, by either
8491 NOT, NEG, or XOR. */
8494 force_to_mode (rtx x
, machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8497 enum rtx_code code
= GET_CODE (x
);
8498 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8499 machine_mode op_mode
;
8500 unsigned HOST_WIDE_INT nonzero
;
8502 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8503 code below will do the wrong thing since the mode of such an
8504 expression is VOIDmode.
8506 Also do nothing if X is a CLOBBER; this can happen if X was
8507 the return value from a call to gen_lowpart. */
8508 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8511 /* We want to perform the operation in its present mode unless we know
8512 that the operation is valid in MODE, in which case we do the operation
8514 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8515 && have_insn_for (code
, mode
))
8516 ? mode
: GET_MODE (x
));
8518 /* It is not valid to do a right-shift in a narrower mode
8519 than the one it came in with. */
8520 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8521 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (GET_MODE (x
)))
8522 op_mode
= GET_MODE (x
);
8524 /* Truncate MASK to fit OP_MODE. */
8526 mask
&= GET_MODE_MASK (op_mode
);
8528 /* Determine what bits of X are guaranteed to be (non)zero. */
8529 nonzero
= nonzero_bits (x
, mode
);
8531 /* If none of the bits in X are needed, return a zero. */
8532 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8535 /* If X is a CONST_INT, return a new one. Do this here since the
8536 test below will fail. */
8537 if (CONST_INT_P (x
))
8539 if (SCALAR_INT_MODE_P (mode
))
8540 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8543 x
= GEN_INT (INTVAL (x
) & mask
);
8544 return gen_lowpart_common (mode
, x
);
8548 /* If X is narrower than MODE and we want all the bits in X's mode, just
8549 get X in the proper mode. */
8550 if (paradoxical_subreg_p (mode
, GET_MODE (x
))
8551 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8552 return gen_lowpart (mode
, x
);
8554 /* We can ignore the effect of a SUBREG if it narrows the mode or
8555 if the constant masks to zero all the bits the mode doesn't have. */
8556 if (GET_CODE (x
) == SUBREG
8557 && subreg_lowpart_p (x
)
8558 && ((GET_MODE_SIZE (GET_MODE (x
))
8559 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8561 & GET_MODE_MASK (GET_MODE (x
))
8562 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
8563 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8565 scalar_int_mode int_mode
, xmode
;
8566 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
8567 && is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
))
8568 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8570 return force_int_to_mode (x
, int_mode
, xmode
,
8571 as_a
<scalar_int_mode
> (op_mode
),
8574 return gen_lowpart_or_truncate (mode
, x
);
8577 /* Subroutine of force_to_mode that handles cases in which both X and
8578 the result are scalar integers. MODE is the mode of the result,
8579 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8580 is preferred for simplified versions of X. The other arguments
8581 are as for force_to_mode. */
8584 force_int_to_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode xmode
,
8585 scalar_int_mode op_mode
, unsigned HOST_WIDE_INT mask
,
8588 enum rtx_code code
= GET_CODE (x
);
8589 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8590 unsigned HOST_WIDE_INT fuller_mask
;
8593 /* When we have an arithmetic operation, or a shift whose count we
8594 do not know, we need to assume that all bits up to the highest-order
8595 bit in MASK will be needed. This is how we form such a mask. */
8596 if (mask
& (HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1)))
8597 fuller_mask
= HOST_WIDE_INT_M1U
;
8599 fuller_mask
= ((HOST_WIDE_INT_1U
<< (floor_log2 (mask
) + 1))
8605 /* If X is a (clobber (const_int)), return it since we know we are
8606 generating something that won't match. */
8613 x
= expand_compound_operation (x
);
8614 if (GET_CODE (x
) != code
)
8615 return force_to_mode (x
, mode
, mask
, next_select
);
8619 /* Similarly for a truncate. */
8620 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8623 /* If this is an AND with a constant, convert it into an AND
8624 whose constant is the AND of that constant with MASK. If it
8625 remains an AND of MASK, delete it since it is redundant. */
8627 if (CONST_INT_P (XEXP (x
, 1)))
8629 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8630 mask
& INTVAL (XEXP (x
, 1)));
8633 /* If X is still an AND, see if it is an AND with a mask that
8634 is just some low-order bits. If so, and it is MASK, we don't
8637 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8638 && (INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (xmode
)) == mask
)
8641 /* If it remains an AND, try making another AND with the bits
8642 in the mode mask that aren't in MASK turned on. If the
8643 constant in the AND is wide enough, this might make a
8644 cheaper constant. */
8646 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8647 && GET_MODE_MASK (xmode
) != mask
8648 && HWI_COMPUTABLE_MODE_P (xmode
))
8650 unsigned HOST_WIDE_INT cval
8651 = UINTVAL (XEXP (x
, 1)) | (GET_MODE_MASK (xmode
) & ~mask
);
8654 y
= simplify_gen_binary (AND
, xmode
, XEXP (x
, 0),
8655 gen_int_mode (cval
, xmode
));
8656 if (set_src_cost (y
, xmode
, optimize_this_for_speed_p
)
8657 < set_src_cost (x
, xmode
, optimize_this_for_speed_p
))
8667 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8668 low-order bits (as in an alignment operation) and FOO is already
8669 aligned to that boundary, mask C1 to that boundary as well.
8670 This may eliminate that PLUS and, later, the AND. */
8673 unsigned int width
= GET_MODE_PRECISION (mode
);
8674 unsigned HOST_WIDE_INT smask
= mask
;
8676 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8677 number, sign extend it. */
8679 if (width
< HOST_BITS_PER_WIDE_INT
8680 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8681 smask
|= HOST_WIDE_INT_M1U
<< width
;
8683 if (CONST_INT_P (XEXP (x
, 1))
8684 && pow2p_hwi (- smask
)
8685 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8686 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8687 return force_to_mode (plus_constant (xmode
, XEXP (x
, 0),
8688 (INTVAL (XEXP (x
, 1)) & smask
)),
8689 mode
, smask
, next_select
);
8695 /* Substituting into the operands of a widening MULT is not likely to
8696 create RTL matching a machine insn. */
8698 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
8699 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
8700 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
8701 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
8702 && REG_P (XEXP (XEXP (x
, 0), 0))
8703 && REG_P (XEXP (XEXP (x
, 1), 0)))
8704 return gen_lowpart_or_truncate (mode
, x
);
8706 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8707 most significant bit in MASK since carries from those bits will
8708 affect the bits we are interested in. */
8713 /* If X is (minus C Y) where C's least set bit is larger than any bit
8714 in the mask, then we may replace with (neg Y). */
8715 if (CONST_INT_P (XEXP (x
, 0))
8716 && least_bit_hwi (UINTVAL (XEXP (x
, 0))) > mask
)
8718 x
= simplify_gen_unary (NEG
, xmode
, XEXP (x
, 1), xmode
);
8719 return force_to_mode (x
, mode
, mask
, next_select
);
8722 /* Similarly, if C contains every bit in the fuller_mask, then we may
8723 replace with (not Y). */
8724 if (CONST_INT_P (XEXP (x
, 0))
8725 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8727 x
= simplify_gen_unary (NOT
, xmode
, XEXP (x
, 1), xmode
);
8728 return force_to_mode (x
, mode
, mask
, next_select
);
8736 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8737 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8738 operation which may be a bitfield extraction. Ensure that the
8739 constant we form is not wider than the mode of X. */
8741 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8742 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8743 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8744 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8745 && CONST_INT_P (XEXP (x
, 1))
8746 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8747 + floor_log2 (INTVAL (XEXP (x
, 1))))
8748 < GET_MODE_PRECISION (xmode
))
8749 && (UINTVAL (XEXP (x
, 1))
8750 & ~nonzero_bits (XEXP (x
, 0), xmode
)) == 0)
8752 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8753 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8755 temp
= simplify_gen_binary (GET_CODE (x
), xmode
,
8756 XEXP (XEXP (x
, 0), 0), temp
);
8757 x
= simplify_gen_binary (LSHIFTRT
, xmode
, temp
,
8758 XEXP (XEXP (x
, 0), 1));
8759 return force_to_mode (x
, mode
, mask
, next_select
);
8763 /* For most binary operations, just propagate into the operation and
8764 change the mode if we have an operation of that mode. */
8766 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8767 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8769 /* If we ended up truncating both operands, truncate the result of the
8770 operation instead. */
8771 if (GET_CODE (op0
) == TRUNCATE
8772 && GET_CODE (op1
) == TRUNCATE
)
8774 op0
= XEXP (op0
, 0);
8775 op1
= XEXP (op1
, 0);
8778 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8779 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8781 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8783 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8789 /* For left shifts, do the same, but just for the first operand.
8790 However, we cannot do anything with shifts where we cannot
8791 guarantee that the counts are smaller than the size of the mode
8792 because such a count will have a different meaning in a
8795 if (! (CONST_INT_P (XEXP (x
, 1))
8796 && INTVAL (XEXP (x
, 1)) >= 0
8797 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
8798 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
8799 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
8800 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
8803 /* If the shift count is a constant and we can do arithmetic in
8804 the mode of the shift, refine which bits we need. Otherwise, use the
8805 conservative form of the mask. */
8806 if (CONST_INT_P (XEXP (x
, 1))
8807 && INTVAL (XEXP (x
, 1)) >= 0
8808 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
8809 && HWI_COMPUTABLE_MODE_P (op_mode
))
8810 mask
>>= INTVAL (XEXP (x
, 1));
8814 op0
= gen_lowpart_or_truncate (op_mode
,
8815 force_to_mode (XEXP (x
, 0), op_mode
,
8816 mask
, next_select
));
8818 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
8820 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
8826 /* Here we can only do something if the shift count is a constant,
8827 this shift constant is valid for the host, and we can do arithmetic
8830 if (CONST_INT_P (XEXP (x
, 1))
8831 && INTVAL (XEXP (x
, 1)) >= 0
8832 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8833 && HWI_COMPUTABLE_MODE_P (op_mode
))
8835 rtx inner
= XEXP (x
, 0);
8836 unsigned HOST_WIDE_INT inner_mask
;
8838 /* Select the mask of the bits we need for the shift operand. */
8839 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
8841 /* We can only change the mode of the shift if we can do arithmetic
8842 in the mode of the shift and INNER_MASK is no wider than the
8843 width of X's mode. */
8844 if ((inner_mask
& ~GET_MODE_MASK (xmode
)) != 0)
8847 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
8849 if (xmode
!= op_mode
|| inner
!= XEXP (x
, 0))
8851 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
8856 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8857 shift and AND produces only copies of the sign bit (C2 is one less
8858 than a power of two), we can do this with just a shift. */
8860 if (GET_CODE (x
) == LSHIFTRT
8861 && CONST_INT_P (XEXP (x
, 1))
8862 /* The shift puts one of the sign bit copies in the least significant
8864 && ((INTVAL (XEXP (x
, 1))
8865 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
8866 >= GET_MODE_PRECISION (xmode
))
8867 && pow2p_hwi (mask
+ 1)
8868 /* Number of bits left after the shift must be more than the mask
8870 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
8871 <= GET_MODE_PRECISION (xmode
))
8872 /* Must be more sign bit copies than the mask needs. */
8873 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
8874 >= exact_log2 (mask
+ 1)))
8875 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0),
8876 GEN_INT (GET_MODE_PRECISION (xmode
)
8877 - exact_log2 (mask
+ 1)));
8882 /* If we are just looking for the sign bit, we don't need this shift at
8883 all, even if it has a variable count. */
8884 if (val_signbit_p (xmode
, mask
))
8885 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8887 /* If this is a shift by a constant, get a mask that contains those bits
8888 that are not copies of the sign bit. We then have two cases: If
8889 MASK only includes those bits, this can be a logical shift, which may
8890 allow simplifications. If MASK is a single-bit field not within
8891 those bits, we are requesting a copy of the sign bit and hence can
8892 shift the sign bit to the appropriate location. */
8894 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
8895 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8897 unsigned HOST_WIDE_INT nonzero
;
8900 /* If the considered data is wider than HOST_WIDE_INT, we can't
8901 represent a mask for all its bits in a single scalar.
8902 But we only care about the lower bits, so calculate these. */
8904 if (GET_MODE_PRECISION (xmode
) > HOST_BITS_PER_WIDE_INT
)
8906 nonzero
= HOST_WIDE_INT_M1U
;
8908 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8909 is the number of bits a full-width mask would have set.
8910 We need only shift if these are fewer than nonzero can
8911 hold. If not, we must keep all bits set in nonzero. */
8913 if (GET_MODE_PRECISION (xmode
) - INTVAL (XEXP (x
, 1))
8914 < HOST_BITS_PER_WIDE_INT
)
8915 nonzero
>>= INTVAL (XEXP (x
, 1))
8916 + HOST_BITS_PER_WIDE_INT
8917 - GET_MODE_PRECISION (xmode
);
8921 nonzero
= GET_MODE_MASK (xmode
);
8922 nonzero
>>= INTVAL (XEXP (x
, 1));
8925 if ((mask
& ~nonzero
) == 0)
8927 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, xmode
,
8928 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
8929 if (GET_CODE (x
) != ASHIFTRT
)
8930 return force_to_mode (x
, mode
, mask
, next_select
);
8933 else if ((i
= exact_log2 (mask
)) >= 0)
8935 x
= simplify_shift_const
8936 (NULL_RTX
, LSHIFTRT
, xmode
, XEXP (x
, 0),
8937 GET_MODE_PRECISION (xmode
) - 1 - i
);
8939 if (GET_CODE (x
) != ASHIFTRT
)
8940 return force_to_mode (x
, mode
, mask
, next_select
);
8944 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8945 even if the shift count isn't a constant. */
8947 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0), XEXP (x
, 1));
8951 /* If this is a zero- or sign-extension operation that just affects bits
8952 we don't care about, remove it. Be sure the call above returned
8953 something that is still a shift. */
8955 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
8956 && CONST_INT_P (XEXP (x
, 1))
8957 && INTVAL (XEXP (x
, 1)) >= 0
8958 && (INTVAL (XEXP (x
, 1))
8959 <= GET_MODE_PRECISION (xmode
) - (floor_log2 (mask
) + 1))
8960 && GET_CODE (XEXP (x
, 0)) == ASHIFT
8961 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
8962 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
8969 /* If the shift count is constant and we can do computations
8970 in the mode of X, compute where the bits we care about are.
8971 Otherwise, we can't do anything. Don't change the mode of
8972 the shift or propagate MODE into the shift, though. */
8973 if (CONST_INT_P (XEXP (x
, 1))
8974 && INTVAL (XEXP (x
, 1)) >= 0)
8976 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
8977 xmode
, gen_int_mode (mask
, xmode
),
8979 if (temp
&& CONST_INT_P (temp
))
8980 x
= simplify_gen_binary (code
, xmode
,
8981 force_to_mode (XEXP (x
, 0), xmode
,
8982 INTVAL (temp
), next_select
),
8988 /* If we just want the low-order bit, the NEG isn't needed since it
8989 won't change the low-order bit. */
8991 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
8993 /* We need any bits less significant than the most significant bit in
8994 MASK since carries from those bits will affect the bits we are
9000 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9001 same as the XOR case above. Ensure that the constant we form is not
9002 wider than the mode of X. */
9004 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
9005 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
9006 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
9007 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
9008 < GET_MODE_PRECISION (xmode
))
9009 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
9011 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)), xmode
);
9012 temp
= simplify_gen_binary (XOR
, xmode
, XEXP (XEXP (x
, 0), 0), temp
);
9013 x
= simplify_gen_binary (LSHIFTRT
, xmode
,
9014 temp
, XEXP (XEXP (x
, 0), 1));
9016 return force_to_mode (x
, mode
, mask
, next_select
);
9019 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9020 use the full mask inside the NOT. */
9024 op0
= gen_lowpart_or_truncate (op_mode
,
9025 force_to_mode (XEXP (x
, 0), mode
, mask
,
9027 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
9029 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
9035 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9036 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9037 which is equal to STORE_FLAG_VALUE. */
9038 if ((mask
& ~STORE_FLAG_VALUE
) == 0
9039 && XEXP (x
, 1) == const0_rtx
9040 && GET_MODE (XEXP (x
, 0)) == mode
9041 && pow2p_hwi (nonzero_bits (XEXP (x
, 0), mode
))
9042 && (nonzero_bits (XEXP (x
, 0), mode
)
9043 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
9044 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
9049 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9050 written in a narrower mode. We play it safe and do not do so. */
9052 op0
= gen_lowpart_or_truncate (xmode
,
9053 force_to_mode (XEXP (x
, 1), mode
,
9054 mask
, next_select
));
9055 op1
= gen_lowpart_or_truncate (xmode
,
9056 force_to_mode (XEXP (x
, 2), mode
,
9057 mask
, next_select
));
9058 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
9059 x
= simplify_gen_ternary (IF_THEN_ELSE
, xmode
,
9060 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
9068 /* Ensure we return a value of the proper mode. */
9069 return gen_lowpart_or_truncate (mode
, x
);
9072 /* Return nonzero if X is an expression that has one of two values depending on
9073 whether some other value is zero or nonzero. In that case, we return the
9074 value that is being tested, *PTRUE is set to the value if the rtx being
9075 returned has a nonzero value, and *PFALSE is set to the other alternative.
9077 If we return zero, we set *PTRUE and *PFALSE to X. */
9080 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
9082 machine_mode mode
= GET_MODE (x
);
9083 enum rtx_code code
= GET_CODE (x
);
9084 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
9085 unsigned HOST_WIDE_INT nz
;
9086 scalar_int_mode int_mode
;
9088 /* If we are comparing a value against zero, we are done. */
9089 if ((code
== NE
|| code
== EQ
)
9090 && XEXP (x
, 1) == const0_rtx
)
9092 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
9093 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
9097 /* If this is a unary operation whose operand has one of two values, apply
9098 our opcode to compute those values. */
9099 else if (UNARY_P (x
)
9100 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
9102 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
9103 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
9104 GET_MODE (XEXP (x
, 0)));
9108 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9109 make can't possibly match and would suppress other optimizations. */
9110 else if (code
== COMPARE
)
9113 /* If this is a binary operation, see if either side has only one of two
9114 values. If either one does or if both do and they are conditional on
9115 the same value, compute the new true and false values. */
9116 else if (BINARY_P (x
))
9118 rtx op0
= XEXP (x
, 0);
9119 rtx op1
= XEXP (x
, 1);
9120 cond0
= if_then_else_cond (op0
, &true0
, &false0
);
9121 cond1
= if_then_else_cond (op1
, &true1
, &false1
);
9123 if ((cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
))
9124 && (REG_P (op0
) || REG_P (op1
)))
9126 /* Try to enable a simplification by undoing work done by
9127 if_then_else_cond if it converted a REG into something more
9132 true0
= false0
= op0
;
9137 true1
= false1
= op1
;
9141 if ((cond0
!= 0 || cond1
!= 0)
9142 && ! (cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
)))
9144 /* If if_then_else_cond returned zero, then true/false are the
9145 same rtl. We must copy one of them to prevent invalid rtl
9148 true0
= copy_rtx (true0
);
9149 else if (cond1
== 0)
9150 true1
= copy_rtx (true1
);
9152 if (COMPARISON_P (x
))
9154 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
9156 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
9161 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
9162 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
9165 return cond0
? cond0
: cond1
;
9168 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9169 operands is zero when the other is nonzero, and vice-versa,
9170 and STORE_FLAG_VALUE is 1 or -1. */
9172 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9173 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
9175 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9177 rtx op0
= XEXP (XEXP (x
, 0), 1);
9178 rtx op1
= XEXP (XEXP (x
, 1), 1);
9180 cond0
= XEXP (XEXP (x
, 0), 0);
9181 cond1
= XEXP (XEXP (x
, 1), 0);
9183 if (COMPARISON_P (cond0
)
9184 && COMPARISON_P (cond1
)
9185 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9186 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9187 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9188 || ((swap_condition (GET_CODE (cond0
))
9189 == reversed_comparison_code (cond1
, NULL
))
9190 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9191 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9192 && ! side_effects_p (x
))
9194 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
9195 *pfalse
= simplify_gen_binary (MULT
, mode
,
9197 ? simplify_gen_unary (NEG
, mode
,
9205 /* Similarly for MULT, AND and UMIN, except that for these the result
9207 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9208 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
9209 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9211 cond0
= XEXP (XEXP (x
, 0), 0);
9212 cond1
= XEXP (XEXP (x
, 1), 0);
9214 if (COMPARISON_P (cond0
)
9215 && COMPARISON_P (cond1
)
9216 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9217 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9218 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9219 || ((swap_condition (GET_CODE (cond0
))
9220 == reversed_comparison_code (cond1
, NULL
))
9221 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9222 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9223 && ! side_effects_p (x
))
9225 *ptrue
= *pfalse
= const0_rtx
;
9231 else if (code
== IF_THEN_ELSE
)
9233 /* If we have IF_THEN_ELSE already, extract the condition and
9234 canonicalize it if it is NE or EQ. */
9235 cond0
= XEXP (x
, 0);
9236 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
9237 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
9238 return XEXP (cond0
, 0);
9239 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
9241 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
9242 return XEXP (cond0
, 0);
9248 /* If X is a SUBREG, we can narrow both the true and false values
9249 if the inner expression, if there is a condition. */
9250 else if (code
== SUBREG
9251 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
9254 true0
= simplify_gen_subreg (mode
, true0
,
9255 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9256 false0
= simplify_gen_subreg (mode
, false0
,
9257 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9258 if (true0
&& false0
)
9266 /* If X is a constant, this isn't special and will cause confusions
9267 if we treat it as such. Likewise if it is equivalent to a constant. */
9268 else if (CONSTANT_P (x
)
9269 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
9272 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9273 will be least confusing to the rest of the compiler. */
9274 else if (mode
== BImode
)
9276 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
9280 /* If X is known to be either 0 or -1, those are the true and
9281 false values when testing X. */
9282 else if (x
== constm1_rtx
|| x
== const0_rtx
9283 || (is_a
<scalar_int_mode
> (mode
, &int_mode
)
9284 && (num_sign_bit_copies (x
, int_mode
)
9285 == GET_MODE_PRECISION (int_mode
))))
9287 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
9291 /* Likewise for 0 or a single bit. */
9292 else if (HWI_COMPUTABLE_MODE_P (mode
)
9293 && pow2p_hwi (nz
= nonzero_bits (x
, mode
)))
9295 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
9299 /* Otherwise fail; show no condition with true and false values the same. */
9300 *ptrue
= *pfalse
= x
;
9304 /* Return the value of expression X given the fact that condition COND
9305 is known to be true when applied to REG as its first operand and VAL
9306 as its second. X is known to not be shared and so can be modified in
9309 We only handle the simplest cases, and specifically those cases that
9310 arise with IF_THEN_ELSE expressions. */
9313 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
9315 enum rtx_code code
= GET_CODE (x
);
9319 if (side_effects_p (x
))
9322 /* If either operand of the condition is a floating point value,
9323 then we have to avoid collapsing an EQ comparison. */
9325 && rtx_equal_p (x
, reg
)
9326 && ! FLOAT_MODE_P (GET_MODE (x
))
9327 && ! FLOAT_MODE_P (GET_MODE (val
)))
9330 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
9333 /* If X is (abs REG) and we know something about REG's relationship
9334 with zero, we may be able to simplify this. */
9336 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
9339 case GE
: case GT
: case EQ
:
9342 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
9344 GET_MODE (XEXP (x
, 0)));
9349 /* The only other cases we handle are MIN, MAX, and comparisons if the
9350 operands are the same as REG and VAL. */
9352 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
9354 if (rtx_equal_p (XEXP (x
, 0), val
))
9356 std::swap (val
, reg
);
9357 cond
= swap_condition (cond
);
9360 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
9362 if (COMPARISON_P (x
))
9364 if (comparison_dominates_p (cond
, code
))
9365 return const_true_rtx
;
9367 code
= reversed_comparison_code (x
, NULL
);
9369 && comparison_dominates_p (cond
, code
))
9374 else if (code
== SMAX
|| code
== SMIN
9375 || code
== UMIN
|| code
== UMAX
)
9377 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
9379 /* Do not reverse the condition when it is NE or EQ.
9380 This is because we cannot conclude anything about
9381 the value of 'SMAX (x, y)' when x is not equal to y,
9382 but we can when x equals y. */
9383 if ((code
== SMAX
|| code
== UMAX
)
9384 && ! (cond
== EQ
|| cond
== NE
))
9385 cond
= reverse_condition (cond
);
9390 return unsignedp
? x
: XEXP (x
, 1);
9392 return unsignedp
? x
: XEXP (x
, 0);
9394 return unsignedp
? XEXP (x
, 1) : x
;
9396 return unsignedp
? XEXP (x
, 0) : x
;
9403 else if (code
== SUBREG
)
9405 machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
9406 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
9408 if (SUBREG_REG (x
) != r
)
9410 /* We must simplify subreg here, before we lose track of the
9411 original inner_mode. */
9412 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
9413 inner_mode
, SUBREG_BYTE (x
));
9417 SUBST (SUBREG_REG (x
), r
);
9422 /* We don't have to handle SIGN_EXTEND here, because even in the
9423 case of replacing something with a modeless CONST_INT, a
9424 CONST_INT is already (supposed to be) a valid sign extension for
9425 its narrower mode, which implies it's already properly
9426 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9427 story is different. */
9428 else if (code
== ZERO_EXTEND
)
9430 machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
9431 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
9433 if (XEXP (x
, 0) != r
)
9435 /* We must simplify the zero_extend here, before we lose
9436 track of the original inner_mode. */
9437 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
9442 SUBST (XEXP (x
, 0), r
);
9448 fmt
= GET_RTX_FORMAT (code
);
9449 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9452 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
9453 else if (fmt
[i
] == 'E')
9454 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9455 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
9462 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9463 assignment as a field assignment. */
9466 rtx_equal_for_field_assignment_p (rtx x
, rtx y
, bool widen_x
)
9468 if (widen_x
&& GET_MODE (x
) != GET_MODE (y
))
9470 if (paradoxical_subreg_p (GET_MODE (x
), GET_MODE (y
)))
9472 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
9474 /* For big endian, adjust the memory offset. */
9475 if (BYTES_BIG_ENDIAN
)
9476 x
= adjust_address_nv (x
, GET_MODE (y
),
9477 -subreg_lowpart_offset (GET_MODE (x
),
9480 x
= adjust_address_nv (x
, GET_MODE (y
), 0);
9483 if (x
== y
|| rtx_equal_p (x
, y
))
9486 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
9489 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9490 Note that all SUBREGs of MEM are paradoxical; otherwise they
9491 would have been rewritten. */
9492 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
9493 && MEM_P (SUBREG_REG (y
))
9494 && rtx_equal_p (SUBREG_REG (y
),
9495 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
9498 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
9499 && MEM_P (SUBREG_REG (x
))
9500 && rtx_equal_p (SUBREG_REG (x
),
9501 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
9504 /* We used to see if get_last_value of X and Y were the same but that's
9505 not correct. In one direction, we'll cause the assignment to have
9506 the wrong destination and in the case, we'll import a register into this
9507 insn that might have already have been dead. So fail if none of the
9508 above cases are true. */
9512 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9513 Return that assignment if so.
9515 We only handle the most common cases. */
9518 make_field_assignment (rtx x
)
9520 rtx dest
= SET_DEST (x
);
9521 rtx src
= SET_SRC (x
);
9526 unsigned HOST_WIDE_INT len
;
9529 /* All the rules in this function are specific to scalar integers. */
9530 scalar_int_mode mode
;
9531 if (!is_a
<scalar_int_mode
> (GET_MODE (dest
), &mode
))
9534 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9535 a clear of a one-bit field. We will have changed it to
9536 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9539 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
9540 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
9541 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
9542 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9544 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9547 return gen_rtx_SET (assign
, const0_rtx
);
9551 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
9552 && subreg_lowpart_p (XEXP (src
, 0))
9553 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
9554 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
9555 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
9556 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
9557 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
9558 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9560 assign
= make_extraction (VOIDmode
, dest
, 0,
9561 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9564 return gen_rtx_SET (assign
, const0_rtx
);
9568 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9570 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9571 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9572 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9574 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9577 return gen_rtx_SET (assign
, const1_rtx
);
9581 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9582 SRC is an AND with all bits of that field set, then we can discard
9584 if (GET_CODE (dest
) == ZERO_EXTRACT
9585 && CONST_INT_P (XEXP (dest
, 1))
9586 && GET_CODE (src
) == AND
9587 && CONST_INT_P (XEXP (src
, 1)))
9589 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9590 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9591 unsigned HOST_WIDE_INT ze_mask
;
9593 if (width
>= HOST_BITS_PER_WIDE_INT
)
9596 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9598 /* Complete overlap. We can remove the source AND. */
9599 if ((and_mask
& ze_mask
) == ze_mask
)
9600 return gen_rtx_SET (dest
, XEXP (src
, 0));
9602 /* Partial overlap. We can reduce the source AND. */
9603 if ((and_mask
& ze_mask
) != and_mask
)
9605 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9606 gen_int_mode (and_mask
& ze_mask
, mode
));
9607 return gen_rtx_SET (dest
, src
);
9611 /* The other case we handle is assignments into a constant-position
9612 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9613 a mask that has all one bits except for a group of zero bits and
9614 OTHER is known to have zeros where C1 has ones, this is such an
9615 assignment. Compute the position and length from C1. Shift OTHER
9616 to the appropriate position, force it to the required mode, and
9617 make the extraction. Check for the AND in both operands. */
9619 /* One or more SUBREGs might obscure the constant-position field
9620 assignment. The first one we are likely to encounter is an outer
9621 narrowing SUBREG, which we can just strip for the purposes of
9622 identifying the constant-field assignment. */
9623 scalar_int_mode src_mode
= mode
;
9624 if (GET_CODE (src
) == SUBREG
9625 && subreg_lowpart_p (src
)
9626 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (src
)), &src_mode
))
9627 src
= SUBREG_REG (src
);
9629 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9632 rhs
= expand_compound_operation (XEXP (src
, 0));
9633 lhs
= expand_compound_operation (XEXP (src
, 1));
9635 if (GET_CODE (rhs
) == AND
9636 && CONST_INT_P (XEXP (rhs
, 1))
9637 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9638 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9639 /* The second SUBREG that might get in the way is a paradoxical
9640 SUBREG around the first operand of the AND. We want to
9641 pretend the operand is as wide as the destination here. We
9642 do this by adjusting the MEM to wider mode for the sole
9643 purpose of the call to rtx_equal_for_field_assignment_p. Also
9644 note this trick only works for MEMs. */
9645 else if (GET_CODE (rhs
) == AND
9646 && paradoxical_subreg_p (XEXP (rhs
, 0))
9647 && MEM_P (SUBREG_REG (XEXP (rhs
, 0)))
9648 && CONST_INT_P (XEXP (rhs
, 1))
9649 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs
, 0)),
9651 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9652 else if (GET_CODE (lhs
) == AND
9653 && CONST_INT_P (XEXP (lhs
, 1))
9654 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9655 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9656 /* The second SUBREG that might get in the way is a paradoxical
9657 SUBREG around the first operand of the AND. We want to
9658 pretend the operand is as wide as the destination here. We
9659 do this by adjusting the MEM to wider mode for the sole
9660 purpose of the call to rtx_equal_for_field_assignment_p. Also
9661 note this trick only works for MEMs. */
9662 else if (GET_CODE (lhs
) == AND
9663 && paradoxical_subreg_p (XEXP (lhs
, 0))
9664 && MEM_P (SUBREG_REG (XEXP (lhs
, 0)))
9665 && CONST_INT_P (XEXP (lhs
, 1))
9666 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs
, 0)),
9668 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9672 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (mode
), &len
);
9674 || pos
+ len
> GET_MODE_PRECISION (mode
)
9675 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
9676 || (c1
& nonzero_bits (other
, mode
)) != 0)
9679 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9683 /* The mode to use for the source is the mode of the assignment, or of
9684 what is inside a possible STRICT_LOW_PART. */
9685 machine_mode new_mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9686 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9688 /* Shift OTHER right POS places and make it the source, restricting it
9689 to the proper length and mode. */
9691 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9692 src_mode
, other
, pos
),
9694 src
= force_to_mode (src
, new_mode
,
9695 len
>= HOST_BITS_PER_WIDE_INT
9697 : (HOST_WIDE_INT_1U
<< len
) - 1,
9700 /* If SRC is masked by an AND that does not make a difference in
9701 the value being stored, strip it. */
9702 if (GET_CODE (assign
) == ZERO_EXTRACT
9703 && CONST_INT_P (XEXP (assign
, 1))
9704 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9705 && GET_CODE (src
) == AND
9706 && CONST_INT_P (XEXP (src
, 1))
9707 && UINTVAL (XEXP (src
, 1))
9708 == (HOST_WIDE_INT_1U
<< INTVAL (XEXP (assign
, 1))) - 1)
9709 src
= XEXP (src
, 0);
9711 return gen_rtx_SET (assign
, src
);
9714 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9718 apply_distributive_law (rtx x
)
9720 enum rtx_code code
= GET_CODE (x
);
9721 enum rtx_code inner_code
;
9722 rtx lhs
, rhs
, other
;
9725 /* Distributivity is not true for floating point as it can change the
9726 value. So we don't do it unless -funsafe-math-optimizations. */
9727 if (FLOAT_MODE_P (GET_MODE (x
))
9728 && ! flag_unsafe_math_optimizations
)
9731 /* The outer operation can only be one of the following: */
9732 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9733 && code
!= PLUS
&& code
!= MINUS
)
9739 /* If either operand is a primitive we can't do anything, so get out
9741 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9744 lhs
= expand_compound_operation (lhs
);
9745 rhs
= expand_compound_operation (rhs
);
9746 inner_code
= GET_CODE (lhs
);
9747 if (inner_code
!= GET_CODE (rhs
))
9750 /* See if the inner and outer operations distribute. */
9757 /* These all distribute except over PLUS. */
9758 if (code
== PLUS
|| code
== MINUS
)
9763 if (code
!= PLUS
&& code
!= MINUS
)
9768 /* This is also a multiply, so it distributes over everything. */
9771 /* This used to handle SUBREG, but this turned out to be counter-
9772 productive, since (subreg (op ...)) usually is not handled by
9773 insn patterns, and this "optimization" therefore transformed
9774 recognizable patterns into unrecognizable ones. Therefore the
9775 SUBREG case was removed from here.
9777 It is possible that distributing SUBREG over arithmetic operations
9778 leads to an intermediate result than can then be optimized further,
9779 e.g. by moving the outer SUBREG to the other side of a SET as done
9780 in simplify_set. This seems to have been the original intent of
9781 handling SUBREGs here.
9783 However, with current GCC this does not appear to actually happen,
9784 at least on major platforms. If some case is found where removing
9785 the SUBREG case here prevents follow-on optimizations, distributing
9786 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9792 /* Set LHS and RHS to the inner operands (A and B in the example
9793 above) and set OTHER to the common operand (C in the example).
9794 There is only one way to do this unless the inner operation is
9796 if (COMMUTATIVE_ARITH_P (lhs
)
9797 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
9798 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
9799 else if (COMMUTATIVE_ARITH_P (lhs
)
9800 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
9801 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
9802 else if (COMMUTATIVE_ARITH_P (lhs
)
9803 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
9804 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
9805 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
9806 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
9810 /* Form the new inner operation, seeing if it simplifies first. */
9811 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
9813 /* There is one exception to the general way of distributing:
9814 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9815 if (code
== XOR
&& inner_code
== IOR
)
9818 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
9821 /* We may be able to continuing distributing the result, so call
9822 ourselves recursively on the inner operation before forming the
9823 outer operation, which we return. */
9824 return simplify_gen_binary (inner_code
, GET_MODE (x
),
9825 apply_distributive_law (tem
), other
);
9828 /* See if X is of the form (* (+ A B) C), and if so convert to
9829 (+ (* A C) (* B C)) and try to simplify.
9831 Most of the time, this results in no change. However, if some of
9832 the operands are the same or inverses of each other, simplifications
9835 For example, (and (ior A B) (not B)) can occur as the result of
9836 expanding a bit field assignment. When we apply the distributive
9837 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9838 which then simplifies to (and (A (not B))).
9840 Note that no checks happen on the validity of applying the inverse
9841 distributive law. This is pointless since we can do it in the
9842 few places where this routine is called.
9844 N is the index of the term that is decomposed (the arithmetic operation,
9845 i.e. (+ A B) in the first example above). !N is the index of the term that
9846 is distributed, i.e. of C in the first example above. */
9848 distribute_and_simplify_rtx (rtx x
, int n
)
9851 enum rtx_code outer_code
, inner_code
;
9852 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
9854 /* Distributivity is not true for floating point as it can change the
9855 value. So we don't do it unless -funsafe-math-optimizations. */
9856 if (FLOAT_MODE_P (GET_MODE (x
))
9857 && ! flag_unsafe_math_optimizations
)
9860 decomposed
= XEXP (x
, n
);
9861 if (!ARITHMETIC_P (decomposed
))
9864 mode
= GET_MODE (x
);
9865 outer_code
= GET_CODE (x
);
9866 distributed
= XEXP (x
, !n
);
9868 inner_code
= GET_CODE (decomposed
);
9869 inner_op0
= XEXP (decomposed
, 0);
9870 inner_op1
= XEXP (decomposed
, 1);
9872 /* Special case (and (xor B C) (not A)), which is equivalent to
9873 (xor (ior A B) (ior A C)) */
9874 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
9876 distributed
= XEXP (distributed
, 0);
9882 /* Distribute the second term. */
9883 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
9884 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
9888 /* Distribute the first term. */
9889 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
9890 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
9893 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
9895 if (GET_CODE (tmp
) != outer_code
9896 && (set_src_cost (tmp
, mode
, optimize_this_for_speed_p
)
9897 < set_src_cost (x
, mode
, optimize_this_for_speed_p
)))
9903 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9904 in MODE. Return an equivalent form, if different from (and VAROP
9905 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9908 simplify_and_const_int_1 (machine_mode mode
, rtx varop
,
9909 unsigned HOST_WIDE_INT constop
)
9911 unsigned HOST_WIDE_INT nonzero
;
9912 unsigned HOST_WIDE_INT orig_constop
;
9917 orig_constop
= constop
;
9918 if (GET_CODE (varop
) == CLOBBER
)
9921 /* Simplify VAROP knowing that we will be only looking at some of the
9924 Note by passing in CONSTOP, we guarantee that the bits not set in
9925 CONSTOP are not significant and will never be examined. We must
9926 ensure that is the case by explicitly masking out those bits
9927 before returning. */
9928 varop
= force_to_mode (varop
, mode
, constop
, 0);
9930 /* If VAROP is a CLOBBER, we will fail so return it. */
9931 if (GET_CODE (varop
) == CLOBBER
)
9934 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9935 to VAROP and return the new constant. */
9936 if (CONST_INT_P (varop
))
9937 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
9939 /* See what bits may be nonzero in VAROP. Unlike the general case of
9940 a call to nonzero_bits, here we don't care about bits outside
9943 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
9945 /* Turn off all bits in the constant that are known to already be zero.
9946 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9947 which is tested below. */
9951 /* If we don't have any bits left, return zero. */
9955 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9956 a power of two, we can replace this with an ASHIFT. */
9957 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
9958 && (i
= exact_log2 (constop
)) >= 0)
9959 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
9961 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9962 or XOR, then try to apply the distributive law. This may eliminate
9963 operations if either branch can be simplified because of the AND.
9964 It may also make some cases more complex, but those cases probably
9965 won't match a pattern either with or without this. */
9967 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
9971 apply_distributive_law
9972 (simplify_gen_binary (GET_CODE (varop
), GET_MODE (varop
),
9973 simplify_and_const_int (NULL_RTX
,
9977 simplify_and_const_int (NULL_RTX
,
9982 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9983 the AND and see if one of the operands simplifies to zero. If so, we
9984 may eliminate it. */
9986 if (GET_CODE (varop
) == PLUS
9987 && pow2p_hwi (constop
+ 1))
9991 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
9992 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
9993 if (o0
== const0_rtx
)
9995 if (o1
== const0_rtx
)
9999 /* Make a SUBREG if necessary. If we can't make it, fail. */
10000 varop
= gen_lowpart (mode
, varop
);
10001 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10004 /* If we are only masking insignificant bits, return VAROP. */
10005 if (constop
== nonzero
)
10008 if (varop
== orig_varop
&& constop
== orig_constop
)
10011 /* Otherwise, return an AND. */
10012 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
10016 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10019 Return an equivalent form, if different from X. Otherwise, return X. If
10020 X is zero, we are to always construct the equivalent form. */
10023 simplify_and_const_int (rtx x
, machine_mode mode
, rtx varop
,
10024 unsigned HOST_WIDE_INT constop
)
10026 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
10031 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
10032 gen_int_mode (constop
, mode
));
10033 if (GET_MODE (x
) != mode
)
10034 x
= gen_lowpart (mode
, x
);
10038 /* Given a REG, X, compute which bits in X can be nonzero.
10039 We don't care about bits outside of those defined in MODE.
10041 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10042 a shift, AND, or zero_extract, we can do better. */
10045 reg_nonzero_bits_for_combine (const_rtx x
, machine_mode mode
,
10046 const_rtx known_x ATTRIBUTE_UNUSED
,
10047 machine_mode known_mode ATTRIBUTE_UNUSED
,
10048 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED
,
10049 unsigned HOST_WIDE_INT
*nonzero
)
10052 reg_stat_type
*rsp
;
10054 /* If X is a register whose nonzero bits value is current, use it.
10055 Otherwise, if X is a register whose value we can find, use that
10056 value. Otherwise, use the previously-computed global nonzero bits
10057 for this register. */
10059 rsp
= ®_stat
[REGNO (x
)];
10060 if (rsp
->last_set_value
!= 0
10061 && (rsp
->last_set_mode
== mode
10062 || (GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
10063 && GET_MODE_CLASS (mode
) == MODE_INT
))
10064 && ((rsp
->last_set_label
>= label_tick_ebb_start
10065 && rsp
->last_set_label
< label_tick
)
10066 || (rsp
->last_set_label
== label_tick
10067 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10068 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10069 && REGNO (x
) < reg_n_sets_max
10070 && REG_N_SETS (REGNO (x
)) == 1
10071 && !REGNO_REG_SET_P
10072 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10075 /* Note that, even if the precision of last_set_mode is lower than that
10076 of mode, record_value_for_reg invoked nonzero_bits on the register
10077 with nonzero_bits_mode (because last_set_mode is necessarily integral
10078 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10079 are all valid, hence in mode too since nonzero_bits_mode is defined
10080 to the largest HWI_COMPUTABLE_MODE_P mode. */
10081 *nonzero
&= rsp
->last_set_nonzero_bits
;
10085 tem
= get_last_value (x
);
10088 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
10089 tem
= sign_extend_short_imm (tem
, GET_MODE (x
),
10090 GET_MODE_PRECISION (mode
));
10095 if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
10097 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
10099 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
))
10100 /* We don't know anything about the upper bits. */
10101 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
10109 /* Return the number of bits at the high-order end of X that are known to
10110 be equal to the sign bit. X will be used in mode MODE; if MODE is
10111 VOIDmode, X will be used in its own mode. The returned value will always
10112 be between 1 and the number of bits in MODE. */
10115 reg_num_sign_bit_copies_for_combine (const_rtx x
, machine_mode mode
,
10116 const_rtx known_x ATTRIBUTE_UNUSED
,
10117 machine_mode known_mode
10119 unsigned int known_ret ATTRIBUTE_UNUSED
,
10120 unsigned int *result
)
10123 reg_stat_type
*rsp
;
10125 rsp
= ®_stat
[REGNO (x
)];
10126 if (rsp
->last_set_value
!= 0
10127 && rsp
->last_set_mode
== mode
10128 && ((rsp
->last_set_label
>= label_tick_ebb_start
10129 && rsp
->last_set_label
< label_tick
)
10130 || (rsp
->last_set_label
== label_tick
10131 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10132 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10133 && REGNO (x
) < reg_n_sets_max
10134 && REG_N_SETS (REGNO (x
)) == 1
10135 && !REGNO_REG_SET_P
10136 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10139 *result
= rsp
->last_set_sign_bit_copies
;
10143 tem
= get_last_value (x
);
10147 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
10148 && GET_MODE_PRECISION (GET_MODE (x
)) == GET_MODE_PRECISION (mode
))
10149 *result
= rsp
->sign_bit_copies
;
10154 /* Return the number of "extended" bits there are in X, when interpreted
10155 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10156 unsigned quantities, this is the number of high-order zero bits.
10157 For signed quantities, this is the number of copies of the sign bit
10158 minus 1. In both case, this function returns the number of "spare"
10159 bits. For example, if two quantities for which this function returns
10160 at least 1 are added, the addition is known not to overflow.
10162 This function will always return 0 unless called during combine, which
10163 implies that it must be called from a define_split. */
10166 extended_count (const_rtx x
, machine_mode mode
, int unsignedp
)
10168 if (nonzero_sign_valid
== 0)
10171 scalar_int_mode int_mode
;
10173 ? (is_a
<scalar_int_mode
> (mode
, &int_mode
)
10174 && HWI_COMPUTABLE_MODE_P (int_mode
)
10175 ? (unsigned int) (GET_MODE_PRECISION (int_mode
) - 1
10176 - floor_log2 (nonzero_bits (x
, int_mode
)))
10178 : num_sign_bit_copies (x
, mode
) - 1);
10181 /* This function is called from `simplify_shift_const' to merge two
10182 outer operations. Specifically, we have already found that we need
10183 to perform operation *POP0 with constant *PCONST0 at the outermost
10184 position. We would now like to also perform OP1 with constant CONST1
10185 (with *POP0 being done last).
10187 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10188 the resulting operation. *PCOMP_P is set to 1 if we would need to
10189 complement the innermost operand, otherwise it is unchanged.
10191 MODE is the mode in which the operation will be done. No bits outside
10192 the width of this mode matter. It is assumed that the width of this mode
10193 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10195 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10196 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10197 result is simply *PCONST0.
10199 If the resulting operation cannot be expressed as one operation, we
10200 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10203 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, machine_mode mode
, int *pcomp_p
)
10205 enum rtx_code op0
= *pop0
;
10206 HOST_WIDE_INT const0
= *pconst0
;
10208 const0
&= GET_MODE_MASK (mode
);
10209 const1
&= GET_MODE_MASK (mode
);
10211 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10215 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10218 if (op1
== UNKNOWN
|| op0
== SET
)
10221 else if (op0
== UNKNOWN
)
10222 op0
= op1
, const0
= const1
;
10224 else if (op0
== op1
)
10248 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10249 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
10252 /* If the two constants aren't the same, we can't do anything. The
10253 remaining six cases can all be done. */
10254 else if (const0
!= const1
)
10262 /* (a & b) | b == b */
10264 else /* op1 == XOR */
10265 /* (a ^ b) | b == a | b */
10271 /* (a & b) ^ b == (~a) & b */
10272 op0
= AND
, *pcomp_p
= 1;
10273 else /* op1 == IOR */
10274 /* (a | b) ^ b == a & ~b */
10275 op0
= AND
, const0
= ~const0
;
10280 /* (a | b) & b == b */
10282 else /* op1 == XOR */
10283 /* (a ^ b) & b) == (~a) & b */
10290 /* Check for NO-OP cases. */
10291 const0
&= GET_MODE_MASK (mode
);
10293 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
10295 else if (const0
== 0 && op0
== AND
)
10297 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
10303 /* ??? Slightly redundant with the above mask, but not entirely.
10304 Moving this above means we'd have to sign-extend the mode mask
10305 for the final test. */
10306 if (op0
!= UNKNOWN
&& op0
!= NEG
)
10307 *pconst0
= trunc_int_for_mode (const0
, mode
);
10312 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10313 the shift in. The original shift operation CODE is performed on OP in
10314 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10315 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10316 result of the shift is subject to operation OUTER_CODE with operand
10319 static machine_mode
10320 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
10321 machine_mode orig_mode
, machine_mode mode
,
10322 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
10324 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
10326 /* In general we can't perform in wider mode for right shift and rotate. */
10330 /* We can still widen if the bits brought in from the left are identical
10331 to the sign bit of ORIG_MODE. */
10332 if (num_sign_bit_copies (op
, mode
)
10333 > (unsigned) (GET_MODE_PRECISION (mode
)
10334 - GET_MODE_PRECISION (orig_mode
)))
10339 /* Similarly here but with zero bits. */
10340 if (HWI_COMPUTABLE_MODE_P (mode
)
10341 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
10344 /* We can also widen if the bits brought in will be masked off. This
10345 operation is performed in ORIG_MODE. */
10346 if (outer_code
== AND
)
10348 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
10351 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
10360 gcc_unreachable ();
10367 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10368 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10369 if we cannot simplify it. Otherwise, return a simplified value.
10371 The shift is normally computed in the widest mode we find in VAROP, as
10372 long as it isn't a different number of words than RESULT_MODE. Exceptions
10373 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10376 simplify_shift_const_1 (enum rtx_code code
, machine_mode result_mode
,
10377 rtx varop
, int orig_count
)
10379 enum rtx_code orig_code
= code
;
10380 rtx orig_varop
= varop
;
10382 machine_mode mode
= result_mode
;
10383 machine_mode shift_mode
;
10384 scalar_int_mode tmode
, inner_mode
, int_mode
, int_varop_mode
, int_result_mode
;
10385 unsigned int mode_words
10386 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
10387 /* We form (outer_op (code varop count) (outer_const)). */
10388 enum rtx_code outer_op
= UNKNOWN
;
10389 HOST_WIDE_INT outer_const
= 0;
10390 int complement_p
= 0;
10393 /* Make sure and truncate the "natural" shift on the way in. We don't
10394 want to do this inside the loop as it makes it more difficult to
10396 if (SHIFT_COUNT_TRUNCATED
)
10397 orig_count
&= GET_MODE_UNIT_BITSIZE (mode
) - 1;
10399 /* If we were given an invalid count, don't do anything except exactly
10400 what was requested. */
10402 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_UNIT_PRECISION (mode
))
10405 count
= orig_count
;
10407 /* Unless one of the branches of the `if' in this loop does a `continue',
10408 we will `break' the loop after the `if'. */
10412 /* If we have an operand of (clobber (const_int 0)), fail. */
10413 if (GET_CODE (varop
) == CLOBBER
)
10416 /* Convert ROTATERT to ROTATE. */
10417 if (code
== ROTATERT
)
10419 unsigned int bitsize
= GET_MODE_UNIT_PRECISION (result_mode
);
10421 count
= bitsize
- count
;
10424 shift_mode
= result_mode
;
10425 if (shift_mode
!= mode
)
10427 /* We only change the modes of scalar shifts. */
10428 int_mode
= as_a
<scalar_int_mode
> (mode
);
10429 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10430 shift_mode
= try_widen_shift_mode (code
, varop
, count
,
10431 int_result_mode
, int_mode
,
10432 outer_op
, outer_const
);
10435 scalar_int_mode shift_unit_mode
10436 = as_a
<scalar_int_mode
> (GET_MODE_INNER (shift_mode
));
10438 /* Handle cases where the count is greater than the size of the mode
10439 minus 1. For ASHIFT, use the size minus one as the count (this can
10440 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10441 take the count modulo the size. For other shifts, the result is
10444 Since these shifts are being produced by the compiler by combining
10445 multiple operations, each of which are defined, we know what the
10446 result is supposed to be. */
10448 if (count
> (GET_MODE_PRECISION (shift_unit_mode
) - 1))
10450 if (code
== ASHIFTRT
)
10451 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10452 else if (code
== ROTATE
|| code
== ROTATERT
)
10453 count
%= GET_MODE_PRECISION (shift_unit_mode
);
10456 /* We can't simply return zero because there may be an
10458 varop
= const0_rtx
;
10464 /* If we discovered we had to complement VAROP, leave. Making a NOT
10465 here would cause an infinite loop. */
10469 if (shift_mode
== shift_unit_mode
)
10471 /* An arithmetic right shift of a quantity known to be -1 or 0
10473 if (code
== ASHIFTRT
10474 && (num_sign_bit_copies (varop
, shift_unit_mode
)
10475 == GET_MODE_PRECISION (shift_unit_mode
)))
10481 /* If we are doing an arithmetic right shift and discarding all but
10482 the sign bit copies, this is equivalent to doing a shift by the
10483 bitsize minus one. Convert it into that shift because it will
10484 often allow other simplifications. */
10486 if (code
== ASHIFTRT
10487 && (count
+ num_sign_bit_copies (varop
, shift_unit_mode
)
10488 >= GET_MODE_PRECISION (shift_unit_mode
)))
10489 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10491 /* We simplify the tests below and elsewhere by converting
10492 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10493 `make_compound_operation' will convert it to an ASHIFTRT for
10494 those machines (such as VAX) that don't have an LSHIFTRT. */
10495 if (code
== ASHIFTRT
10496 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10497 && val_signbit_known_clear_p (shift_unit_mode
,
10498 nonzero_bits (varop
,
10502 if (((code
== LSHIFTRT
10503 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10504 && !(nonzero_bits (varop
, shift_unit_mode
) >> count
))
10506 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10507 && !((nonzero_bits (varop
, shift_unit_mode
) << count
)
10508 & GET_MODE_MASK (shift_unit_mode
))))
10509 && !side_effects_p (varop
))
10510 varop
= const0_rtx
;
10513 switch (GET_CODE (varop
))
10519 new_rtx
= expand_compound_operation (varop
);
10520 if (new_rtx
!= varop
)
10528 /* The following rules apply only to scalars. */
10529 if (shift_mode
!= shift_unit_mode
)
10531 int_mode
= as_a
<scalar_int_mode
> (mode
);
10533 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10534 minus the width of a smaller mode, we can do this with a
10535 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10536 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10537 && ! mode_dependent_address_p (XEXP (varop
, 0),
10538 MEM_ADDR_SPACE (varop
))
10539 && ! MEM_VOLATILE_P (varop
)
10540 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode
) - count
, 1)
10543 new_rtx
= adjust_address_nv (varop
, tmode
,
10544 BYTES_BIG_ENDIAN
? 0
10545 : count
/ BITS_PER_UNIT
);
10547 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
10548 : ZERO_EXTEND
, int_mode
, new_rtx
);
10555 /* The following rules apply only to scalars. */
10556 if (shift_mode
!= shift_unit_mode
)
10558 int_mode
= as_a
<scalar_int_mode
> (mode
);
10559 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10561 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10562 the same number of words as what we've seen so far. Then store
10563 the widest mode in MODE. */
10564 if (subreg_lowpart_p (varop
)
10565 && is_int_mode (GET_MODE (SUBREG_REG (varop
)), &inner_mode
)
10566 && GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_varop_mode
)
10567 && (unsigned int) ((GET_MODE_SIZE (inner_mode
)
10568 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
10570 && GET_MODE_CLASS (int_varop_mode
) == MODE_INT
)
10572 varop
= SUBREG_REG (varop
);
10573 if (GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_mode
))
10580 /* Some machines use MULT instead of ASHIFT because MULT
10581 is cheaper. But it is still better on those machines to
10582 merge two shifts into one. */
10583 if (CONST_INT_P (XEXP (varop
, 1))
10584 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
10587 = simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
10589 GEN_INT (exact_log2 (
10590 UINTVAL (XEXP (varop
, 1)))));
10596 /* Similar, for when divides are cheaper. */
10597 if (CONST_INT_P (XEXP (varop
, 1))
10598 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
10601 = simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
10603 GEN_INT (exact_log2 (
10604 UINTVAL (XEXP (varop
, 1)))));
10610 /* If we are extracting just the sign bit of an arithmetic
10611 right shift, that shift is not needed. However, the sign
10612 bit of a wider mode may be different from what would be
10613 interpreted as the sign bit in a narrower mode, so, if
10614 the result is narrower, don't discard the shift. */
10615 if (code
== LSHIFTRT
10616 && count
== (GET_MODE_UNIT_BITSIZE (result_mode
) - 1)
10617 && (GET_MODE_UNIT_BITSIZE (result_mode
)
10618 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop
))))
10620 varop
= XEXP (varop
, 0);
10629 /* The following rules apply only to scalars. */
10630 if (shift_mode
!= shift_unit_mode
)
10632 int_mode
= as_a
<scalar_int_mode
> (mode
);
10633 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10634 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10636 /* Here we have two nested shifts. The result is usually the
10637 AND of a new shift with a mask. We compute the result below. */
10638 if (CONST_INT_P (XEXP (varop
, 1))
10639 && INTVAL (XEXP (varop
, 1)) >= 0
10640 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (int_varop_mode
)
10641 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
10642 && HWI_COMPUTABLE_MODE_P (int_mode
))
10644 enum rtx_code first_code
= GET_CODE (varop
);
10645 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10646 unsigned HOST_WIDE_INT mask
;
10649 /* We have one common special case. We can't do any merging if
10650 the inner code is an ASHIFTRT of a smaller mode. However, if
10651 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10652 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10653 we can convert it to
10654 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10655 This simplifies certain SIGN_EXTEND operations. */
10656 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10657 && count
== (GET_MODE_PRECISION (int_result_mode
)
10658 - GET_MODE_PRECISION (int_varop_mode
)))
10660 /* C3 has the low-order C1 bits zero. */
10662 mask
= GET_MODE_MASK (int_mode
)
10663 & ~((HOST_WIDE_INT_1U
<< first_count
) - 1);
10665 varop
= simplify_and_const_int (NULL_RTX
, int_result_mode
,
10666 XEXP (varop
, 0), mask
);
10667 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
,
10668 int_result_mode
, varop
, count
);
10669 count
= first_count
;
10674 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10675 than C1 high-order bits equal to the sign bit, we can convert
10676 this to either an ASHIFT or an ASHIFTRT depending on the
10679 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10681 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10682 && int_varop_mode
== shift_unit_mode
10683 && (num_sign_bit_copies (XEXP (varop
, 0), shift_unit_mode
)
10686 varop
= XEXP (varop
, 0);
10687 count
-= first_count
;
10697 /* There are some cases we can't do. If CODE is ASHIFTRT,
10698 we can only do this if FIRST_CODE is also ASHIFTRT.
10700 We can't do the case when CODE is ROTATE and FIRST_CODE is
10703 If the mode of this shift is not the mode of the outer shift,
10704 we can't do this if either shift is a right shift or ROTATE.
10706 Finally, we can't do any of these if the mode is too wide
10707 unless the codes are the same.
10709 Handle the case where the shift codes are the same
10712 if (code
== first_code
)
10714 if (int_varop_mode
!= int_result_mode
10715 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10716 || code
== ROTATE
))
10719 count
+= first_count
;
10720 varop
= XEXP (varop
, 0);
10724 if (code
== ASHIFTRT
10725 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10726 || GET_MODE_PRECISION (int_mode
) > HOST_BITS_PER_WIDE_INT
10727 || (int_varop_mode
!= int_result_mode
10728 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10729 || first_code
== ROTATE
10730 || code
== ROTATE
)))
10733 /* To compute the mask to apply after the shift, shift the
10734 nonzero bits of the inner shift the same way the
10735 outer shift will. */
10737 mask_rtx
= gen_int_mode (nonzero_bits (varop
, int_varop_mode
),
10741 = simplify_const_binary_operation (code
, int_result_mode
,
10742 mask_rtx
, GEN_INT (count
));
10744 /* Give up if we can't compute an outer operation to use. */
10746 || !CONST_INT_P (mask_rtx
)
10747 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10749 int_result_mode
, &complement_p
))
10752 /* If the shifts are in the same direction, we add the
10753 counts. Otherwise, we subtract them. */
10754 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10755 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10756 count
+= first_count
;
10758 count
-= first_count
;
10760 /* If COUNT is positive, the new shift is usually CODE,
10761 except for the two exceptions below, in which case it is
10762 FIRST_CODE. If the count is negative, FIRST_CODE should
10765 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10766 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10768 else if (count
< 0)
10769 code
= first_code
, count
= -count
;
10771 varop
= XEXP (varop
, 0);
10775 /* If we have (A << B << C) for any shift, we can convert this to
10776 (A << C << B). This wins if A is a constant. Only try this if
10777 B is not a constant. */
10779 else if (GET_CODE (varop
) == code
10780 && CONST_INT_P (XEXP (varop
, 0))
10781 && !CONST_INT_P (XEXP (varop
, 1)))
10783 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10784 sure the result will be masked. See PR70222. */
10785 if (code
== LSHIFTRT
10786 && int_mode
!= int_result_mode
10787 && !merge_outer_ops (&outer_op
, &outer_const
, AND
,
10788 GET_MODE_MASK (int_result_mode
)
10789 >> orig_count
, int_result_mode
,
10792 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10793 up outer sign extension (often left and right shift) is
10794 hardly more efficient than the original. See PR70429. */
10795 if (code
== ASHIFTRT
&& int_mode
!= int_result_mode
)
10798 rtx new_rtx
= simplify_const_binary_operation (code
, int_mode
,
10801 varop
= gen_rtx_fmt_ee (code
, int_mode
, new_rtx
, XEXP (varop
, 1));
10808 /* The following rules apply only to scalars. */
10809 if (shift_mode
!= shift_unit_mode
)
10812 /* Make this fit the case below. */
10813 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
10819 /* The following rules apply only to scalars. */
10820 if (shift_mode
!= shift_unit_mode
)
10822 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10823 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10825 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10826 with C the size of VAROP - 1 and the shift is logical if
10827 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10828 we have an (le X 0) operation. If we have an arithmetic shift
10829 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10830 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10832 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
10833 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
10834 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10835 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10836 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
10837 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10840 varop
= gen_rtx_LE (int_varop_mode
, XEXP (varop
, 1),
10843 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10844 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
10849 /* If we have (shift (logical)), move the logical to the outside
10850 to allow it to possibly combine with another logical and the
10851 shift to combine with another shift. This also canonicalizes to
10852 what a ZERO_EXTRACT looks like. Also, some machines have
10853 (and (shift)) insns. */
10855 if (CONST_INT_P (XEXP (varop
, 1))
10856 /* We can't do this if we have (ashiftrt (xor)) and the
10857 constant has its sign bit set in shift_unit_mode with
10858 shift_unit_mode wider than result_mode. */
10859 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10860 && int_result_mode
!= shift_unit_mode
10861 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10863 && (new_rtx
= simplify_const_binary_operation
10864 (code
, int_result_mode
,
10865 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
10866 GEN_INT (count
))) != 0
10867 && CONST_INT_P (new_rtx
)
10868 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
10869 INTVAL (new_rtx
), int_result_mode
,
10872 varop
= XEXP (varop
, 0);
10876 /* If we can't do that, try to simplify the shift in each arm of the
10877 logical expression, make a new logical expression, and apply
10878 the inverse distributive law. This also can't be done for
10879 (ashiftrt (xor)) where we've widened the shift and the constant
10880 changes the sign bit. */
10881 if (CONST_INT_P (XEXP (varop
, 1))
10882 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10883 && int_result_mode
!= shift_unit_mode
10884 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10887 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
10888 XEXP (varop
, 0), count
);
10889 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
10890 XEXP (varop
, 1), count
);
10892 varop
= simplify_gen_binary (GET_CODE (varop
), shift_unit_mode
,
10894 varop
= apply_distributive_law (varop
);
10902 /* The following rules apply only to scalars. */
10903 if (shift_mode
!= shift_unit_mode
)
10905 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10907 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10908 says that the sign bit can be tested, FOO has mode MODE, C is
10909 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10910 that may be nonzero. */
10911 if (code
== LSHIFTRT
10912 && XEXP (varop
, 1) == const0_rtx
10913 && GET_MODE (XEXP (varop
, 0)) == int_result_mode
10914 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
10915 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
10916 && STORE_FLAG_VALUE
== -1
10917 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
10918 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
10919 int_result_mode
, &complement_p
))
10921 varop
= XEXP (varop
, 0);
10928 /* The following rules apply only to scalars. */
10929 if (shift_mode
!= shift_unit_mode
)
10931 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10933 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10934 than the number of bits in the mode is equivalent to A. */
10935 if (code
== LSHIFTRT
10936 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
10937 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1)
10939 varop
= XEXP (varop
, 0);
10944 /* NEG commutes with ASHIFT since it is multiplication. Move the
10945 NEG outside to allow shifts to combine. */
10947 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0,
10948 int_result_mode
, &complement_p
))
10950 varop
= XEXP (varop
, 0);
10956 /* The following rules apply only to scalars. */
10957 if (shift_mode
!= shift_unit_mode
)
10959 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10961 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10962 is one less than the number of bits in the mode is
10963 equivalent to (xor A 1). */
10964 if (code
== LSHIFTRT
10965 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
10966 && XEXP (varop
, 1) == constm1_rtx
10967 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
10968 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
10969 int_result_mode
, &complement_p
))
10972 varop
= XEXP (varop
, 0);
10976 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10977 that might be nonzero in BAR are those being shifted out and those
10978 bits are known zero in FOO, we can replace the PLUS with FOO.
10979 Similarly in the other operand order. This code occurs when
10980 we are computing the size of a variable-size array. */
10982 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10983 && count
< HOST_BITS_PER_WIDE_INT
10984 && nonzero_bits (XEXP (varop
, 1), int_result_mode
) >> count
== 0
10985 && (nonzero_bits (XEXP (varop
, 1), int_result_mode
)
10986 & nonzero_bits (XEXP (varop
, 0), int_result_mode
)) == 0)
10988 varop
= XEXP (varop
, 0);
10991 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10992 && count
< HOST_BITS_PER_WIDE_INT
10993 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
10994 && 0 == (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
10996 && 0 == (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
10997 & nonzero_bits (XEXP (varop
, 1), int_result_mode
)))
10999 varop
= XEXP (varop
, 1);
11003 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11005 && CONST_INT_P (XEXP (varop
, 1))
11006 && (new_rtx
= simplify_const_binary_operation
11007 (ASHIFT
, int_result_mode
,
11008 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11009 GEN_INT (count
))) != 0
11010 && CONST_INT_P (new_rtx
)
11011 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
11012 INTVAL (new_rtx
), int_result_mode
,
11015 varop
= XEXP (varop
, 0);
11019 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11020 signbit', and attempt to change the PLUS to an XOR and move it to
11021 the outer operation as is done above in the AND/IOR/XOR case
11022 leg for shift(logical). See details in logical handling above
11023 for reasoning in doing so. */
11024 if (code
== LSHIFTRT
11025 && CONST_INT_P (XEXP (varop
, 1))
11026 && mode_signbit_p (int_result_mode
, XEXP (varop
, 1))
11027 && (new_rtx
= simplify_const_binary_operation
11028 (code
, int_result_mode
,
11029 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11030 GEN_INT (count
))) != 0
11031 && CONST_INT_P (new_rtx
)
11032 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
11033 INTVAL (new_rtx
), int_result_mode
,
11036 varop
= XEXP (varop
, 0);
11043 /* The following rules apply only to scalars. */
11044 if (shift_mode
!= shift_unit_mode
)
11046 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
11048 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11049 with C the size of VAROP - 1 and the shift is logical if
11050 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11051 we have a (gt X 0) operation. If the shift is arithmetic with
11052 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11053 we have a (neg (gt X 0)) operation. */
11055 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
11056 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
11057 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
11058 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
11059 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11060 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
11061 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
11064 varop
= gen_rtx_GT (int_varop_mode
, XEXP (varop
, 1),
11067 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
11068 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
11075 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11076 if the truncate does not affect the value. */
11077 if (code
== LSHIFTRT
11078 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
11079 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11080 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
11081 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop
, 0)))
11082 - GET_MODE_UNIT_PRECISION (GET_MODE (varop
)))))
11084 rtx varop_inner
= XEXP (varop
, 0);
11087 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
11088 XEXP (varop_inner
, 0),
11090 (count
+ INTVAL (XEXP (varop_inner
, 1))));
11091 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
11104 shift_mode
= result_mode
;
11105 if (shift_mode
!= mode
)
11107 /* We only change the modes of scalar shifts. */
11108 int_mode
= as_a
<scalar_int_mode
> (mode
);
11109 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11110 shift_mode
= try_widen_shift_mode (code
, varop
, count
, int_result_mode
,
11111 int_mode
, outer_op
, outer_const
);
11114 /* We have now finished analyzing the shift. The result should be
11115 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11116 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11117 to the result of the shift. OUTER_CONST is the relevant constant,
11118 but we must turn off all bits turned off in the shift. */
11120 if (outer_op
== UNKNOWN
11121 && orig_code
== code
&& orig_count
== count
11122 && varop
== orig_varop
11123 && shift_mode
== GET_MODE (varop
))
11126 /* Make a SUBREG if necessary. If we can't make it, fail. */
11127 varop
= gen_lowpart (shift_mode
, varop
);
11128 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
11131 /* If we have an outer operation and we just made a shift, it is
11132 possible that we could have simplified the shift were it not
11133 for the outer operation. So try to do the simplification
11136 if (outer_op
!= UNKNOWN
)
11137 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
11142 x
= simplify_gen_binary (code
, shift_mode
, varop
, GEN_INT (count
));
11144 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11145 turn off all the bits that the shift would have turned off. */
11146 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
11147 /* We only change the modes of scalar shifts. */
11148 x
= simplify_and_const_int (NULL_RTX
, as_a
<scalar_int_mode
> (shift_mode
),
11149 x
, GET_MODE_MASK (result_mode
) >> orig_count
);
11151 /* Do the remainder of the processing in RESULT_MODE. */
11152 x
= gen_lowpart_or_truncate (result_mode
, x
);
11154 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11157 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
11159 if (outer_op
!= UNKNOWN
)
11161 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11163 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
11164 && GET_MODE_PRECISION (int_result_mode
) < HOST_BITS_PER_WIDE_INT
)
11165 outer_const
= trunc_int_for_mode (outer_const
, int_result_mode
);
11167 if (outer_op
== AND
)
11168 x
= simplify_and_const_int (NULL_RTX
, int_result_mode
, x
, outer_const
);
11169 else if (outer_op
== SET
)
11171 /* This means that we have determined that the result is
11172 equivalent to a constant. This should be rare. */
11173 if (!side_effects_p (x
))
11174 x
= GEN_INT (outer_const
);
11176 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
11177 x
= simplify_gen_unary (outer_op
, int_result_mode
, x
, int_result_mode
);
11179 x
= simplify_gen_binary (outer_op
, int_result_mode
, x
,
11180 GEN_INT (outer_const
));
11186 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11187 The result of the shift is RESULT_MODE. If we cannot simplify it,
11188 return X or, if it is NULL, synthesize the expression with
11189 simplify_gen_binary. Otherwise, return a simplified value.
11191 The shift is normally computed in the widest mode we find in VAROP, as
11192 long as it isn't a different number of words than RESULT_MODE. Exceptions
11193 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11196 simplify_shift_const (rtx x
, enum rtx_code code
, machine_mode result_mode
,
11197 rtx varop
, int count
)
11199 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
11204 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
, GEN_INT (count
));
11205 if (GET_MODE (x
) != result_mode
)
11206 x
= gen_lowpart (result_mode
, x
);
11211 /* A subroutine of recog_for_combine. See there for arguments and
11215 recog_for_combine_1 (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11217 rtx pat
= *pnewpat
;
11218 rtx pat_without_clobbers
;
11219 int insn_code_number
;
11220 int num_clobbers_to_add
= 0;
11222 rtx notes
= NULL_RTX
;
11223 rtx old_notes
, old_pat
;
11226 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11227 we use to indicate that something didn't match. If we find such a
11228 thing, force rejection. */
11229 if (GET_CODE (pat
) == PARALLEL
)
11230 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
11231 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
11232 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
11235 old_pat
= PATTERN (insn
);
11236 old_notes
= REG_NOTES (insn
);
11237 PATTERN (insn
) = pat
;
11238 REG_NOTES (insn
) = NULL_RTX
;
11240 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11241 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11243 if (insn_code_number
< 0)
11244 fputs ("Failed to match this instruction:\n", dump_file
);
11246 fputs ("Successfully matched this instruction:\n", dump_file
);
11247 print_rtl_single (dump_file
, pat
);
11250 /* If it isn't, there is the possibility that we previously had an insn
11251 that clobbered some register as a side effect, but the combined
11252 insn doesn't need to do that. So try once more without the clobbers
11253 unless this represents an ASM insn. */
11255 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
11256 && GET_CODE (pat
) == PARALLEL
)
11260 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
11261 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
11264 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
11268 SUBST_INT (XVECLEN (pat
, 0), pos
);
11271 pat
= XVECEXP (pat
, 0, 0);
11273 PATTERN (insn
) = pat
;
11274 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11275 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11277 if (insn_code_number
< 0)
11278 fputs ("Failed to match this instruction:\n", dump_file
);
11280 fputs ("Successfully matched this instruction:\n", dump_file
);
11281 print_rtl_single (dump_file
, pat
);
11285 pat_without_clobbers
= pat
;
11287 PATTERN (insn
) = old_pat
;
11288 REG_NOTES (insn
) = old_notes
;
11290 /* Recognize all noop sets, these will be killed by followup pass. */
11291 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
11292 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
11294 /* If we had any clobbers to add, make a new pattern than contains
11295 them. Then check to make sure that all of them are dead. */
11296 if (num_clobbers_to_add
)
11298 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
11299 rtvec_alloc (GET_CODE (pat
) == PARALLEL
11300 ? (XVECLEN (pat
, 0)
11301 + num_clobbers_to_add
)
11302 : num_clobbers_to_add
+ 1));
11304 if (GET_CODE (pat
) == PARALLEL
)
11305 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11306 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
11308 XVECEXP (newpat
, 0, 0) = pat
;
11310 add_clobbers (newpat
, insn_code_number
);
11312 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
11313 i
< XVECLEN (newpat
, 0); i
++)
11315 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
11316 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
11318 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
11320 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
11321 notes
= alloc_reg_note (REG_UNUSED
,
11322 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
11328 if (insn_code_number
>= 0
11329 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
11331 old_pat
= PATTERN (insn
);
11332 old_notes
= REG_NOTES (insn
);
11333 old_icode
= INSN_CODE (insn
);
11334 PATTERN (insn
) = pat
;
11335 REG_NOTES (insn
) = notes
;
11336 INSN_CODE (insn
) = insn_code_number
;
11338 /* Allow targets to reject combined insn. */
11339 if (!targetm
.legitimate_combined_insn (insn
))
11341 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11342 fputs ("Instruction not appropriate for target.",
11345 /* Callers expect recog_for_combine to strip
11346 clobbers from the pattern on failure. */
11347 pat
= pat_without_clobbers
;
11350 insn_code_number
= -1;
11353 PATTERN (insn
) = old_pat
;
11354 REG_NOTES (insn
) = old_notes
;
11355 INSN_CODE (insn
) = old_icode
;
11361 return insn_code_number
;
11364 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11365 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11366 Return whether anything was so changed. */
11369 change_zero_ext (rtx pat
)
11371 bool changed
= false;
11372 rtx
*src
= &SET_SRC (pat
);
11374 subrtx_ptr_iterator::array_type array
;
11375 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11378 scalar_int_mode mode
, inner_mode
;
11379 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
11383 if (GET_CODE (x
) == ZERO_EXTRACT
11384 && CONST_INT_P (XEXP (x
, 1))
11385 && CONST_INT_P (XEXP (x
, 2))
11386 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
)
11387 && GET_MODE_PRECISION (inner_mode
) <= GET_MODE_PRECISION (mode
))
11389 size
= INTVAL (XEXP (x
, 1));
11391 int start
= INTVAL (XEXP (x
, 2));
11392 if (BITS_BIG_ENDIAN
)
11393 start
= GET_MODE_PRECISION (inner_mode
) - size
- start
;
11396 x
= gen_rtx_LSHIFTRT (inner_mode
, XEXP (x
, 0), GEN_INT (start
));
11399 if (mode
!= inner_mode
)
11400 x
= gen_lowpart_SUBREG (mode
, x
);
11402 else if (GET_CODE (x
) == ZERO_EXTEND
11403 && GET_CODE (XEXP (x
, 0)) == SUBREG
11404 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x
, 0))))
11405 && !paradoxical_subreg_p (XEXP (x
, 0))
11406 && subreg_lowpart_p (XEXP (x
, 0)))
11408 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11409 size
= GET_MODE_PRECISION (inner_mode
);
11410 x
= SUBREG_REG (XEXP (x
, 0));
11411 if (GET_MODE (x
) != mode
)
11412 x
= gen_lowpart_SUBREG (mode
, x
);
11414 else if (GET_CODE (x
) == ZERO_EXTEND
11415 && REG_P (XEXP (x
, 0))
11416 && HARD_REGISTER_P (XEXP (x
, 0))
11417 && can_change_dest_mode (XEXP (x
, 0), 0, mode
))
11419 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11420 size
= GET_MODE_PRECISION (inner_mode
);
11421 x
= gen_rtx_REG (mode
, REGNO (XEXP (x
, 0)));
11426 if (!(GET_CODE (x
) == LSHIFTRT
11427 && CONST_INT_P (XEXP (x
, 1))
11428 && size
+ INTVAL (XEXP (x
, 1)) == GET_MODE_PRECISION (mode
)))
11430 wide_int mask
= wi::mask (size
, false, GET_MODE_PRECISION (mode
));
11431 x
= gen_rtx_AND (mode
, x
, immed_wide_int_const (mask
, mode
));
11439 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11440 maybe_swap_commutative_operands (**iter
);
11442 rtx
*dst
= &SET_DEST (pat
);
11443 scalar_int_mode mode
;
11444 if (GET_CODE (*dst
) == ZERO_EXTRACT
11445 && REG_P (XEXP (*dst
, 0))
11446 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (*dst
, 0)), &mode
)
11447 && CONST_INT_P (XEXP (*dst
, 1))
11448 && CONST_INT_P (XEXP (*dst
, 2)))
11450 rtx reg
= XEXP (*dst
, 0);
11451 int width
= INTVAL (XEXP (*dst
, 1));
11452 int offset
= INTVAL (XEXP (*dst
, 2));
11453 int reg_width
= GET_MODE_PRECISION (mode
);
11454 if (BITS_BIG_ENDIAN
)
11455 offset
= reg_width
- width
- offset
;
11458 wide_int mask
= wi::shifted_mask (offset
, width
, true, reg_width
);
11459 wide_int mask2
= wi::shifted_mask (offset
, width
, false, reg_width
);
11460 x
= gen_rtx_AND (mode
, reg
, immed_wide_int_const (mask
, mode
));
11462 y
= gen_rtx_ASHIFT (mode
, SET_SRC (pat
), GEN_INT (offset
));
11465 z
= gen_rtx_AND (mode
, y
, immed_wide_int_const (mask2
, mode
));
11466 w
= gen_rtx_IOR (mode
, x
, z
);
11467 SUBST (SET_DEST (pat
), reg
);
11468 SUBST (SET_SRC (pat
), w
);
11476 /* Like recog, but we receive the address of a pointer to a new pattern.
11477 We try to match the rtx that the pointer points to.
11478 If that fails, we may try to modify or replace the pattern,
11479 storing the replacement into the same pointer object.
11481 Modifications include deletion or addition of CLOBBERs. If the
11482 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11483 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11484 (and undo if that fails).
11486 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11487 the CLOBBERs are placed.
11489 The value is the final insn code from the pattern ultimately matched,
11493 recog_for_combine (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11495 rtx pat
= *pnewpat
;
11496 int insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11497 if (insn_code_number
>= 0 || check_asm_operands (pat
))
11498 return insn_code_number
;
11500 void *marker
= get_undo_marker ();
11501 bool changed
= false;
11503 if (GET_CODE (pat
) == SET
)
11504 changed
= change_zero_ext (pat
);
11505 else if (GET_CODE (pat
) == PARALLEL
)
11508 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11510 rtx set
= XVECEXP (pat
, 0, i
);
11511 if (GET_CODE (set
) == SET
)
11512 changed
|= change_zero_ext (set
);
11518 insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11520 if (insn_code_number
< 0)
11521 undo_to_marker (marker
);
11524 return insn_code_number
;
11527 /* Like gen_lowpart_general but for use by combine. In combine it
11528 is not possible to create any new pseudoregs. However, it is
11529 safe to create invalid memory addresses, because combine will
11530 try to recognize them and all they will do is make the combine
11533 If for some reason this cannot do its job, an rtx
11534 (clobber (const_int 0)) is returned.
11535 An insn containing that will not be recognized. */
11538 gen_lowpart_for_combine (machine_mode omode
, rtx x
)
11540 machine_mode imode
= GET_MODE (x
);
11541 unsigned int osize
= GET_MODE_SIZE (omode
);
11542 unsigned int isize
= GET_MODE_SIZE (imode
);
11545 if (omode
== imode
)
11548 /* We can only support MODE being wider than a word if X is a
11549 constant integer or has a mode the same size. */
11550 if (GET_MODE_SIZE (omode
) > UNITS_PER_WORD
11551 && ! (CONST_SCALAR_INT_P (x
) || isize
== osize
))
11554 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11555 won't know what to do. So we will strip off the SUBREG here and
11556 process normally. */
11557 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
11559 x
= SUBREG_REG (x
);
11561 /* For use in case we fall down into the address adjustments
11562 further below, we need to adjust the known mode and size of
11563 x; imode and isize, since we just adjusted x. */
11564 imode
= GET_MODE (x
);
11566 if (imode
== omode
)
11569 isize
= GET_MODE_SIZE (imode
);
11572 result
= gen_lowpart_common (omode
, x
);
11581 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11583 if (MEM_VOLATILE_P (x
)
11584 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
11587 /* If we want to refer to something bigger than the original memref,
11588 generate a paradoxical subreg instead. That will force a reload
11589 of the original memref X. */
11590 if (paradoxical_subreg_p (omode
, imode
))
11591 return gen_rtx_SUBREG (omode
, x
, 0);
11593 if (WORDS_BIG_ENDIAN
)
11594 offset
= MAX (isize
, UNITS_PER_WORD
) - MAX (osize
, UNITS_PER_WORD
);
11596 /* Adjust the address so that the address-after-the-data is
11598 if (BYTES_BIG_ENDIAN
)
11599 offset
-= MIN (UNITS_PER_WORD
, osize
) - MIN (UNITS_PER_WORD
, isize
);
11601 return adjust_address_nv (x
, omode
, offset
);
11604 /* If X is a comparison operator, rewrite it in a new mode. This
11605 probably won't match, but may allow further simplifications. */
11606 else if (COMPARISON_P (x
))
11607 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
11609 /* If we couldn't simplify X any other way, just enclose it in a
11610 SUBREG. Normally, this SUBREG won't match, but some patterns may
11611 include an explicit SUBREG or we may simplify it further in combine. */
11616 if (imode
== VOIDmode
)
11618 imode
= int_mode_for_mode (omode
).require ();
11619 x
= gen_lowpart_common (imode
, x
);
11623 res
= lowpart_subreg (omode
, x
, imode
);
11629 return gen_rtx_CLOBBER (omode
, const0_rtx
);
11632 /* Try to simplify a comparison between OP0 and a constant OP1,
11633 where CODE is the comparison code that will be tested, into a
11634 (CODE OP0 const0_rtx) form.
11636 The result is a possibly different comparison code to use.
11637 *POP1 may be updated. */
11639 static enum rtx_code
11640 simplify_compare_const (enum rtx_code code
, machine_mode mode
,
11641 rtx op0
, rtx
*pop1
)
11643 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
11644 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
11646 /* Get the constant we are comparing against and turn off all bits
11647 not on in our mode. */
11648 if (mode
!= VOIDmode
)
11649 const_op
= trunc_int_for_mode (const_op
, mode
);
11651 /* If we are comparing against a constant power of two and the value
11652 being compared can only have that single bit nonzero (e.g., it was
11653 `and'ed with that bit), we can replace this with a comparison
11656 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
11657 || code
== LT
|| code
== LTU
)
11658 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11659 && pow2p_hwi (const_op
& GET_MODE_MASK (mode
))
11660 && (nonzero_bits (op0
, mode
)
11661 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (mode
))))
11663 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
11667 /* Similarly, if we are comparing a value known to be either -1 or
11668 0 with -1, change it to the opposite comparison against zero. */
11670 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
11671 || code
== GEU
|| code
== LTU
)
11672 && num_sign_bit_copies (op0
, mode
) == mode_width
)
11674 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
11678 /* Do some canonicalizations based on the comparison code. We prefer
11679 comparisons against zero and then prefer equality comparisons.
11680 If we can reduce the size of a constant, we will do that too. */
11684 /* < C is equivalent to <= (C - 1) */
11689 /* ... fall through to LE case below. */
11690 gcc_fallthrough ();
11696 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11703 /* If we are doing a <= 0 comparison on a value known to have
11704 a zero sign bit, we can replace this with == 0. */
11705 else if (const_op
== 0
11706 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11707 && (nonzero_bits (op0
, mode
)
11708 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
11714 /* >= C is equivalent to > (C - 1). */
11719 /* ... fall through to GT below. */
11720 gcc_fallthrough ();
11726 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11733 /* If we are doing a > 0 comparison on a value known to have
11734 a zero sign bit, we can replace this with != 0. */
11735 else if (const_op
== 0
11736 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11737 && (nonzero_bits (op0
, mode
)
11738 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
11744 /* < C is equivalent to <= (C - 1). */
11749 /* ... fall through ... */
11751 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11752 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11753 && (unsigned HOST_WIDE_INT
) const_op
11754 == HOST_WIDE_INT_1U
<< (mode_width
- 1))
11764 /* unsigned <= 0 is equivalent to == 0 */
11767 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11768 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11769 && (unsigned HOST_WIDE_INT
) const_op
11770 == (HOST_WIDE_INT_1U
<< (mode_width
- 1)) - 1)
11778 /* >= C is equivalent to > (C - 1). */
11783 /* ... fall through ... */
11786 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11787 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11788 && (unsigned HOST_WIDE_INT
) const_op
11789 == HOST_WIDE_INT_1U
<< (mode_width
- 1))
11799 /* unsigned > 0 is equivalent to != 0 */
11802 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11803 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11804 && (unsigned HOST_WIDE_INT
) const_op
11805 == (HOST_WIDE_INT_1U
<< (mode_width
- 1)) - 1)
11816 *pop1
= GEN_INT (const_op
);
11820 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11821 comparison code that will be tested.
11823 The result is a possibly different comparison code to use. *POP0 and
11824 *POP1 may be updated.
11826 It is possible that we might detect that a comparison is either always
11827 true or always false. However, we do not perform general constant
11828 folding in combine, so this knowledge isn't useful. Such tautologies
11829 should have been detected earlier. Hence we ignore all such cases. */
11831 static enum rtx_code
11832 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
11838 scalar_int_mode mode
, inner_mode
, tmode
;
11839 opt_scalar_int_mode tmode_iter
;
11841 /* Try a few ways of applying the same transformation to both operands. */
11844 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11845 so check specially. */
11846 if (!WORD_REGISTER_OPERATIONS
11847 && code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
11848 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
11849 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11850 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
11851 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
11852 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
11853 && is_a
<scalar_int_mode
> (GET_MODE (op0
), &mode
)
11854 && (is_a
<scalar_int_mode
>
11855 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))), &inner_mode
))
11856 && inner_mode
== GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0)))
11857 && CONST_INT_P (XEXP (op0
, 1))
11858 && XEXP (op0
, 1) == XEXP (op1
, 1)
11859 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11860 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
11861 && (INTVAL (XEXP (op0
, 1))
11862 == (GET_MODE_PRECISION (mode
)
11863 - GET_MODE_PRECISION (inner_mode
))))
11865 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
11866 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
11869 /* If both operands are the same constant shift, see if we can ignore the
11870 shift. We can if the shift is a rotate or if the bits shifted out of
11871 this shift are known to be zero for both inputs and if the type of
11872 comparison is compatible with the shift. */
11873 if (GET_CODE (op0
) == GET_CODE (op1
)
11874 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
11875 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
11876 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
11877 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
11878 || (GET_CODE (op0
) == ASHIFTRT
11879 && (code
!= GTU
&& code
!= LTU
11880 && code
!= GEU
&& code
!= LEU
)))
11881 && CONST_INT_P (XEXP (op0
, 1))
11882 && INTVAL (XEXP (op0
, 1)) >= 0
11883 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11884 && XEXP (op0
, 1) == XEXP (op1
, 1))
11886 machine_mode mode
= GET_MODE (op0
);
11887 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11888 int shift_count
= INTVAL (XEXP (op0
, 1));
11890 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
11891 mask
&= (mask
>> shift_count
) << shift_count
;
11892 else if (GET_CODE (op0
) == ASHIFT
)
11893 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
11895 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
11896 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
11897 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
11902 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11903 SUBREGs are of the same mode, and, in both cases, the AND would
11904 be redundant if the comparison was done in the narrower mode,
11905 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11906 and the operand's possibly nonzero bits are 0xffffff01; in that case
11907 if we only care about QImode, we don't need the AND). This case
11908 occurs if the output mode of an scc insn is not SImode and
11909 STORE_FLAG_VALUE == 1 (e.g., the 386).
11911 Similarly, check for a case where the AND's are ZERO_EXTEND
11912 operations from some narrower mode even though a SUBREG is not
11915 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
11916 && CONST_INT_P (XEXP (op0
, 1))
11917 && CONST_INT_P (XEXP (op1
, 1)))
11919 rtx inner_op0
= XEXP (op0
, 0);
11920 rtx inner_op1
= XEXP (op1
, 0);
11921 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
11922 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
11925 if (paradoxical_subreg_p (inner_op0
)
11926 && GET_CODE (inner_op1
) == SUBREG
11927 && (GET_MODE (SUBREG_REG (inner_op0
))
11928 == GET_MODE (SUBREG_REG (inner_op1
)))
11929 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0
)))
11930 <= HOST_BITS_PER_WIDE_INT
)
11931 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
11932 GET_MODE (SUBREG_REG (inner_op0
)))))
11933 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
11934 GET_MODE (SUBREG_REG (inner_op1
))))))
11936 op0
= SUBREG_REG (inner_op0
);
11937 op1
= SUBREG_REG (inner_op1
);
11939 /* The resulting comparison is always unsigned since we masked
11940 off the original sign bit. */
11941 code
= unsigned_condition (code
);
11947 FOR_EACH_MODE_UNTIL (tmode
,
11948 as_a
<scalar_int_mode
> (GET_MODE (op0
)))
11949 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
11951 op0
= gen_lowpart_or_truncate (tmode
, inner_op0
);
11952 op1
= gen_lowpart_or_truncate (tmode
, inner_op1
);
11953 code
= unsigned_condition (code
);
11962 /* If both operands are NOT, we can strip off the outer operation
11963 and adjust the comparison code for swapped operands; similarly for
11964 NEG, except that this must be an equality comparison. */
11965 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
11966 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
11967 && (code
== EQ
|| code
== NE
)))
11968 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
11974 /* If the first operand is a constant, swap the operands and adjust the
11975 comparison code appropriately, but don't do this if the second operand
11976 is already a constant integer. */
11977 if (swap_commutative_operands_p (op0
, op1
))
11979 std::swap (op0
, op1
);
11980 code
= swap_condition (code
);
11983 /* We now enter a loop during which we will try to simplify the comparison.
11984 For the most part, we only are concerned with comparisons with zero,
11985 but some things may really be comparisons with zero but not start
11986 out looking that way. */
11988 while (CONST_INT_P (op1
))
11990 machine_mode mode
= GET_MODE (op0
);
11991 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
11992 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11993 int equality_comparison_p
;
11994 int sign_bit_comparison_p
;
11995 int unsigned_comparison_p
;
11996 HOST_WIDE_INT const_op
;
11998 /* We only want to handle integral modes. This catches VOIDmode,
11999 CCmode, and the floating-point modes. An exception is that we
12000 can handle VOIDmode if OP0 is a COMPARE or a comparison
12003 if (GET_MODE_CLASS (mode
) != MODE_INT
12004 && ! (mode
== VOIDmode
12005 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
12008 /* Try to simplify the compare to constant, possibly changing the
12009 comparison op, and/or changing op1 to zero. */
12010 code
= simplify_compare_const (code
, mode
, op0
, &op1
);
12011 const_op
= INTVAL (op1
);
12013 /* Compute some predicates to simplify code below. */
12015 equality_comparison_p
= (code
== EQ
|| code
== NE
);
12016 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
12017 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
12020 /* If this is a sign bit comparison and we can do arithmetic in
12021 MODE, say that we will only be needing the sign bit of OP0. */
12022 if (sign_bit_comparison_p
&& HWI_COMPUTABLE_MODE_P (mode
))
12023 op0
= force_to_mode (op0
, mode
,
12025 << (GET_MODE_PRECISION (mode
) - 1),
12028 /* Now try cases based on the opcode of OP0. If none of the cases
12029 does a "continue", we exit this loop immediately after the
12032 switch (GET_CODE (op0
))
12035 /* If we are extracting a single bit from a variable position in
12036 a constant that has only a single bit set and are comparing it
12037 with zero, we can convert this into an equality comparison
12038 between the position and the location of the single bit. */
12039 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12040 have already reduced the shift count modulo the word size. */
12041 if (!SHIFT_COUNT_TRUNCATED
12042 && CONST_INT_P (XEXP (op0
, 0))
12043 && XEXP (op0
, 1) == const1_rtx
12044 && equality_comparison_p
&& const_op
== 0
12045 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
12047 if (BITS_BIG_ENDIAN
)
12048 i
= BITS_PER_WORD
- 1 - i
;
12050 op0
= XEXP (op0
, 2);
12054 /* Result is nonzero iff shift count is equal to I. */
12055 code
= reverse_condition (code
);
12062 tem
= expand_compound_operation (op0
);
12071 /* If testing for equality, we can take the NOT of the constant. */
12072 if (equality_comparison_p
12073 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
12075 op0
= XEXP (op0
, 0);
12080 /* If just looking at the sign bit, reverse the sense of the
12082 if (sign_bit_comparison_p
)
12084 op0
= XEXP (op0
, 0);
12085 code
= (code
== GE
? LT
: GE
);
12091 /* If testing for equality, we can take the NEG of the constant. */
12092 if (equality_comparison_p
12093 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
12095 op0
= XEXP (op0
, 0);
12100 /* The remaining cases only apply to comparisons with zero. */
12104 /* When X is ABS or is known positive,
12105 (neg X) is < 0 if and only if X != 0. */
12107 if (sign_bit_comparison_p
12108 && (GET_CODE (XEXP (op0
, 0)) == ABS
12109 || (mode_width
<= HOST_BITS_PER_WIDE_INT
12110 && (nonzero_bits (XEXP (op0
, 0), mode
)
12111 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12114 op0
= XEXP (op0
, 0);
12115 code
= (code
== LT
? NE
: EQ
);
12119 /* If we have NEG of something whose two high-order bits are the
12120 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12121 if (num_sign_bit_copies (op0
, mode
) >= 2)
12123 op0
= XEXP (op0
, 0);
12124 code
= swap_condition (code
);
12130 /* If we are testing equality and our count is a constant, we
12131 can perform the inverse operation on our RHS. */
12132 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12133 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
12134 op1
, XEXP (op0
, 1))) != 0)
12136 op0
= XEXP (op0
, 0);
12141 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12142 a particular bit. Convert it to an AND of a constant of that
12143 bit. This will be converted into a ZERO_EXTRACT. */
12144 if (const_op
== 0 && sign_bit_comparison_p
12145 && CONST_INT_P (XEXP (op0
, 1))
12146 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12148 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12151 - INTVAL (XEXP (op0
, 1)))));
12152 code
= (code
== LT
? NE
: EQ
);
12156 /* Fall through. */
12159 /* ABS is ignorable inside an equality comparison with zero. */
12160 if (const_op
== 0 && equality_comparison_p
)
12162 op0
= XEXP (op0
, 0);
12168 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12169 (compare FOO CONST) if CONST fits in FOO's mode and we
12170 are either testing inequality or have an unsigned
12171 comparison with ZERO_EXTEND or a signed comparison with
12172 SIGN_EXTEND. But don't do it if we don't have a compare
12173 insn of the given mode, since we'd have to revert it
12174 later on, and then we wouldn't know whether to sign- or
12176 mode
= GET_MODE (XEXP (op0
, 0));
12177 if (GET_MODE_CLASS (mode
) == MODE_INT
12178 && ! unsigned_comparison_p
12179 && HWI_COMPUTABLE_MODE_P (mode
)
12180 && trunc_int_for_mode (const_op
, mode
) == const_op
12181 && have_insn_for (COMPARE
, mode
))
12183 op0
= XEXP (op0
, 0);
12189 /* Check for the case where we are comparing A - C1 with C2, that is
12191 (subreg:MODE (plus (A) (-C1))) op (C2)
12193 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12194 comparison in the wider mode. One of the following two conditions
12195 must be true in order for this to be valid:
12197 1. The mode extension results in the same bit pattern being added
12198 on both sides and the comparison is equality or unsigned. As
12199 C2 has been truncated to fit in MODE, the pattern can only be
12202 2. The mode extension results in the sign bit being copied on
12205 The difficulty here is that we have predicates for A but not for
12206 (A - C1) so we need to check that C1 is within proper bounds so
12207 as to perturbate A as little as possible. */
12209 if (mode_width
<= HOST_BITS_PER_WIDE_INT
12210 && subreg_lowpart_p (op0
)
12211 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) > mode_width
12212 && GET_CODE (SUBREG_REG (op0
)) == PLUS
12213 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
12215 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
12216 rtx a
= XEXP (SUBREG_REG (op0
), 0);
12217 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
12220 && (unsigned HOST_WIDE_INT
) c1
12221 < HOST_WIDE_INT_1U
<< (mode_width
- 1)
12222 && (equality_comparison_p
|| unsigned_comparison_p
)
12223 /* (A - C1) zero-extends if it is positive and sign-extends
12224 if it is negative, C2 both zero- and sign-extends. */
12225 && ((0 == (nonzero_bits (a
, inner_mode
)
12226 & ~GET_MODE_MASK (mode
))
12228 /* (A - C1) sign-extends if it is positive and 1-extends
12229 if it is negative, C2 both sign- and 1-extends. */
12230 || (num_sign_bit_copies (a
, inner_mode
)
12231 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12234 || ((unsigned HOST_WIDE_INT
) c1
12235 < HOST_WIDE_INT_1U
<< (mode_width
- 2)
12236 /* (A - C1) always sign-extends, like C2. */
12237 && num_sign_bit_copies (a
, inner_mode
)
12238 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12239 - (mode_width
- 1))))
12241 op0
= SUBREG_REG (op0
);
12246 /* If the inner mode is narrower and we are extracting the low part,
12247 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12248 if (paradoxical_subreg_p (op0
))
12250 else if (subreg_lowpart_p (op0
)
12251 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
12252 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
12253 && (code
== NE
|| code
== EQ
)
12254 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
12255 && !paradoxical_subreg_p (op0
)
12256 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
12257 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
12259 /* Remove outer subregs that don't do anything. */
12260 tem
= gen_lowpart (inner_mode
, op1
);
12262 if ((nonzero_bits (tem
, inner_mode
)
12263 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
12265 op0
= SUBREG_REG (op0
);
12277 mode
= GET_MODE (XEXP (op0
, 0));
12278 if (GET_MODE_CLASS (mode
) == MODE_INT
12279 && (unsigned_comparison_p
|| equality_comparison_p
)
12280 && HWI_COMPUTABLE_MODE_P (mode
)
12281 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
12283 && have_insn_for (COMPARE
, mode
))
12285 op0
= XEXP (op0
, 0);
12291 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12292 this for equality comparisons due to pathological cases involving
12294 if (equality_comparison_p
12295 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
12296 op1
, XEXP (op0
, 1))))
12298 op0
= XEXP (op0
, 0);
12303 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12304 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
12305 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
12307 op0
= XEXP (XEXP (op0
, 0), 0);
12308 code
= (code
== LT
? EQ
: NE
);
12314 /* We used to optimize signed comparisons against zero, but that
12315 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12316 arrive here as equality comparisons, or (GEU, LTU) are
12317 optimized away. No need to special-case them. */
12319 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12320 (eq B (minus A C)), whichever simplifies. We can only do
12321 this for equality comparisons due to pathological cases involving
12323 if (equality_comparison_p
12324 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
12325 XEXP (op0
, 1), op1
)))
12327 op0
= XEXP (op0
, 0);
12332 if (equality_comparison_p
12333 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
12334 XEXP (op0
, 0), op1
)))
12336 op0
= XEXP (op0
, 1);
12341 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12342 of bits in X minus 1, is one iff X > 0. */
12343 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
12344 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12345 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
12346 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12348 op0
= XEXP (op0
, 1);
12349 code
= (code
== GE
? LE
: GT
);
12355 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12356 if C is zero or B is a constant. */
12357 if (equality_comparison_p
12358 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
12359 XEXP (op0
, 1), op1
)))
12361 op0
= XEXP (op0
, 0);
12368 case UNEQ
: case LTGT
:
12369 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
12370 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
12371 case UNORDERED
: case ORDERED
:
12372 /* We can't do anything if OP0 is a condition code value, rather
12373 than an actual data value. */
12375 || CC0_P (XEXP (op0
, 0))
12376 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
12379 /* Get the two operands being compared. */
12380 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
12381 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
12383 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
12385 /* Check for the cases where we simply want the result of the
12386 earlier test or the opposite of that result. */
12387 if (code
== NE
|| code
== EQ
12388 || (val_signbit_known_set_p (GET_MODE (op0
), STORE_FLAG_VALUE
)
12389 && (code
== LT
|| code
== GE
)))
12391 enum rtx_code new_code
;
12392 if (code
== LT
|| code
== NE
)
12393 new_code
= GET_CODE (op0
);
12395 new_code
= reversed_comparison_code (op0
, NULL
);
12397 if (new_code
!= UNKNOWN
)
12408 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12410 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
12411 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
12412 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12414 op0
= XEXP (op0
, 1);
12415 code
= (code
== GE
? GT
: LE
);
12421 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12422 will be converted to a ZERO_EXTRACT later. */
12423 if (const_op
== 0 && equality_comparison_p
12424 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12425 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
12427 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
12428 XEXP (XEXP (op0
, 0), 1));
12429 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12433 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12434 zero and X is a comparison and C1 and C2 describe only bits set
12435 in STORE_FLAG_VALUE, we can compare with X. */
12436 if (const_op
== 0 && equality_comparison_p
12437 && mode_width
<= HOST_BITS_PER_WIDE_INT
12438 && CONST_INT_P (XEXP (op0
, 1))
12439 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
12440 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12441 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
12442 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
12444 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12445 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
12446 if ((~STORE_FLAG_VALUE
& mask
) == 0
12447 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
12448 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
12449 && COMPARISON_P (tem
))))
12451 op0
= XEXP (XEXP (op0
, 0), 0);
12456 /* If we are doing an equality comparison of an AND of a bit equal
12457 to the sign bit, replace this with a LT or GE comparison of
12458 the underlying value. */
12459 if (equality_comparison_p
12461 && CONST_INT_P (XEXP (op0
, 1))
12462 && mode_width
<= HOST_BITS_PER_WIDE_INT
12463 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12464 == HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12466 op0
= XEXP (op0
, 0);
12467 code
= (code
== EQ
? GE
: LT
);
12471 /* If this AND operation is really a ZERO_EXTEND from a narrower
12472 mode, the constant fits within that mode, and this is either an
12473 equality or unsigned comparison, try to do this comparison in
12478 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12479 -> (ne:DI (reg:SI 4) (const_int 0))
12481 unless TRULY_NOOP_TRUNCATION allows it or the register is
12482 known to hold a value of the required mode the
12483 transformation is invalid. */
12484 if ((equality_comparison_p
|| unsigned_comparison_p
)
12485 && CONST_INT_P (XEXP (op0
, 1))
12486 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
12487 & GET_MODE_MASK (mode
))
12489 && const_op
>> i
== 0
12490 && int_mode_for_size (i
, 1).exists (&tmode
))
12492 op0
= gen_lowpart_or_truncate (tmode
, XEXP (op0
, 0));
12496 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12497 fits in both M1 and M2 and the SUBREG is either paradoxical
12498 or represents the low part, permute the SUBREG and the AND
12500 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
12501 && CONST_INT_P (XEXP (op0
, 1)))
12503 unsigned HOST_WIDE_INT c1
= INTVAL (XEXP (op0
, 1));
12504 /* Require an integral mode, to avoid creating something like
12506 if ((is_a
<scalar_int_mode
>
12507 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))), &tmode
))
12508 /* It is unsafe to commute the AND into the SUBREG if the
12509 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12510 not defined. As originally written the upper bits
12511 have a defined value due to the AND operation.
12512 However, if we commute the AND inside the SUBREG then
12513 they no longer have defined values and the meaning of
12514 the code has been changed.
12515 Also C1 should not change value in the smaller mode,
12516 see PR67028 (a positive C1 can become negative in the
12517 smaller mode, so that the AND does no longer mask the
12519 && ((WORD_REGISTER_OPERATIONS
12520 && mode_width
> GET_MODE_PRECISION (tmode
)
12521 && mode_width
<= BITS_PER_WORD
12522 && trunc_int_for_mode (c1
, tmode
) == (HOST_WIDE_INT
) c1
)
12523 || (mode_width
<= GET_MODE_PRECISION (tmode
)
12524 && subreg_lowpart_p (XEXP (op0
, 0))))
12525 && mode_width
<= HOST_BITS_PER_WIDE_INT
12526 && HWI_COMPUTABLE_MODE_P (tmode
)
12527 && (c1
& ~mask
) == 0
12528 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
12530 && c1
!= GET_MODE_MASK (tmode
))
12532 op0
= simplify_gen_binary (AND
, tmode
,
12533 SUBREG_REG (XEXP (op0
, 0)),
12534 gen_int_mode (c1
, tmode
));
12535 op0
= gen_lowpart (mode
, op0
);
12540 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12541 if (const_op
== 0 && equality_comparison_p
12542 && XEXP (op0
, 1) == const1_rtx
12543 && GET_CODE (XEXP (op0
, 0)) == NOT
)
12545 op0
= simplify_and_const_int (NULL_RTX
, mode
,
12546 XEXP (XEXP (op0
, 0), 0), 1);
12547 code
= (code
== NE
? EQ
: NE
);
12551 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12552 (eq (and (lshiftrt X) 1) 0).
12553 Also handle the case where (not X) is expressed using xor. */
12554 if (const_op
== 0 && equality_comparison_p
12555 && XEXP (op0
, 1) == const1_rtx
12556 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
12558 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
12559 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
12561 if (GET_CODE (shift_op
) == NOT
12562 || (GET_CODE (shift_op
) == XOR
12563 && CONST_INT_P (XEXP (shift_op
, 1))
12564 && CONST_INT_P (shift_count
)
12565 && HWI_COMPUTABLE_MODE_P (mode
)
12566 && (UINTVAL (XEXP (shift_op
, 1))
12567 == HOST_WIDE_INT_1U
12568 << INTVAL (shift_count
))))
12571 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
12572 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12573 code
= (code
== NE
? EQ
: NE
);
12580 /* If we have (compare (ashift FOO N) (const_int C)) and
12581 the high order N bits of FOO (N+1 if an inequality comparison)
12582 are known to be zero, we can do this by comparing FOO with C
12583 shifted right N bits so long as the low-order N bits of C are
12585 if (CONST_INT_P (XEXP (op0
, 1))
12586 && INTVAL (XEXP (op0
, 1)) >= 0
12587 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
12588 < HOST_BITS_PER_WIDE_INT
)
12589 && (((unsigned HOST_WIDE_INT
) const_op
12590 & ((HOST_WIDE_INT_1U
<< INTVAL (XEXP (op0
, 1)))
12592 && mode_width
<= HOST_BITS_PER_WIDE_INT
12593 && (nonzero_bits (XEXP (op0
, 0), mode
)
12594 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
12595 + ! equality_comparison_p
))) == 0)
12597 /* We must perform a logical shift, not an arithmetic one,
12598 as we want the top N bits of C to be zero. */
12599 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
12601 temp
>>= INTVAL (XEXP (op0
, 1));
12602 op1
= gen_int_mode (temp
, mode
);
12603 op0
= XEXP (op0
, 0);
12607 /* If we are doing a sign bit comparison, it means we are testing
12608 a particular bit. Convert it to the appropriate AND. */
12609 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12610 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12612 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12615 - INTVAL (XEXP (op0
, 1)))));
12616 code
= (code
== LT
? NE
: EQ
);
12620 /* If this an equality comparison with zero and we are shifting
12621 the low bit to the sign bit, we can convert this to an AND of the
12623 if (const_op
== 0 && equality_comparison_p
12624 && CONST_INT_P (XEXP (op0
, 1))
12625 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12627 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
12633 /* If this is an equality comparison with zero, we can do this
12634 as a logical shift, which might be much simpler. */
12635 if (equality_comparison_p
&& const_op
== 0
12636 && CONST_INT_P (XEXP (op0
, 1)))
12638 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
12640 INTVAL (XEXP (op0
, 1)));
12644 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12645 do the comparison in a narrower mode. */
12646 if (! unsigned_comparison_p
12647 && CONST_INT_P (XEXP (op0
, 1))
12648 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12649 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
12650 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12652 && (((unsigned HOST_WIDE_INT
) const_op
12653 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12654 <= GET_MODE_MASK (tmode
)))
12656 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
12660 /* Likewise if OP0 is a PLUS of a sign extension with a
12661 constant, which is usually represented with the PLUS
12662 between the shifts. */
12663 if (! unsigned_comparison_p
12664 && CONST_INT_P (XEXP (op0
, 1))
12665 && GET_CODE (XEXP (op0
, 0)) == PLUS
12666 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12667 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
12668 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
12669 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12671 && (((unsigned HOST_WIDE_INT
) const_op
12672 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12673 <= GET_MODE_MASK (tmode
)))
12675 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
12676 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
12677 rtx new_const
= simplify_gen_binary (ASHIFTRT
, GET_MODE (op0
),
12678 add_const
, XEXP (op0
, 1));
12680 op0
= simplify_gen_binary (PLUS
, tmode
,
12681 gen_lowpart (tmode
, inner
),
12688 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12689 the low order N bits of FOO are known to be zero, we can do this
12690 by comparing FOO with C shifted left N bits so long as no
12691 overflow occurs. Even if the low order N bits of FOO aren't known
12692 to be zero, if the comparison is >= or < we can use the same
12693 optimization and for > or <= by setting all the low
12694 order N bits in the comparison constant. */
12695 if (CONST_INT_P (XEXP (op0
, 1))
12696 && INTVAL (XEXP (op0
, 1)) > 0
12697 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
12698 && mode_width
<= HOST_BITS_PER_WIDE_INT
12699 && (((unsigned HOST_WIDE_INT
) const_op
12700 + (GET_CODE (op0
) != LSHIFTRT
12701 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
12704 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
12706 unsigned HOST_WIDE_INT low_bits
12707 = (nonzero_bits (XEXP (op0
, 0), mode
)
12708 & ((HOST_WIDE_INT_1U
12709 << INTVAL (XEXP (op0
, 1))) - 1));
12710 if (low_bits
== 0 || !equality_comparison_p
)
12712 /* If the shift was logical, then we must make the condition
12714 if (GET_CODE (op0
) == LSHIFTRT
)
12715 code
= unsigned_condition (code
);
12717 const_op
= (unsigned HOST_WIDE_INT
) const_op
12718 << INTVAL (XEXP (op0
, 1));
12720 && (code
== GT
|| code
== GTU
12721 || code
== LE
|| code
== LEU
))
12723 |= ((HOST_WIDE_INT_1
<< INTVAL (XEXP (op0
, 1))) - 1);
12724 op1
= GEN_INT (const_op
);
12725 op0
= XEXP (op0
, 0);
12730 /* If we are using this shift to extract just the sign bit, we
12731 can replace this with an LT or GE comparison. */
12733 && (equality_comparison_p
|| sign_bit_comparison_p
)
12734 && CONST_INT_P (XEXP (op0
, 1))
12735 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12737 op0
= XEXP (op0
, 0);
12738 code
= (code
== NE
|| code
== GT
? LT
: GE
);
12750 /* Now make any compound operations involved in this comparison. Then,
12751 check for an outmost SUBREG on OP0 that is not doing anything or is
12752 paradoxical. The latter transformation must only be performed when
12753 it is known that the "extra" bits will be the same in op0 and op1 or
12754 that they don't matter. There are three cases to consider:
12756 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12757 care bits and we can assume they have any convenient value. So
12758 making the transformation is safe.
12760 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12761 In this case the upper bits of op0 are undefined. We should not make
12762 the simplification in that case as we do not know the contents of
12765 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12766 In that case we know those bits are zeros or ones. We must also be
12767 sure that they are the same as the upper bits of op1.
12769 We can never remove a SUBREG for a non-equality comparison because
12770 the sign bit is in a different place in the underlying object. */
12772 rtx_code op0_mco_code
= SET
;
12773 if (op1
== const0_rtx
)
12774 op0_mco_code
= code
== NE
|| code
== EQ
? EQ
: COMPARE
;
12776 op0
= make_compound_operation (op0
, op0_mco_code
);
12777 op1
= make_compound_operation (op1
, SET
);
12779 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
12780 && is_int_mode (GET_MODE (op0
), &mode
)
12781 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
12782 && (code
== NE
|| code
== EQ
))
12784 if (paradoxical_subreg_p (op0
))
12786 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12788 if (REG_P (SUBREG_REG (op0
)))
12790 op0
= SUBREG_REG (op0
);
12791 op1
= gen_lowpart (inner_mode
, op1
);
12794 else if (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
12795 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
12796 & ~GET_MODE_MASK (mode
)) == 0)
12798 tem
= gen_lowpart (inner_mode
, op1
);
12800 if ((nonzero_bits (tem
, inner_mode
) & ~GET_MODE_MASK (mode
)) == 0)
12801 op0
= SUBREG_REG (op0
), op1
= tem
;
12805 /* We now do the opposite procedure: Some machines don't have compare
12806 insns in all modes. If OP0's mode is an integer mode smaller than a
12807 word and we can't do a compare in that mode, see if there is a larger
12808 mode for which we can do the compare. There are a number of cases in
12809 which we can use the wider mode. */
12811 if (is_int_mode (GET_MODE (op0
), &mode
)
12812 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
12813 && ! have_insn_for (COMPARE
, mode
))
12814 FOR_EACH_WIDER_MODE (tmode_iter
, mode
)
12816 tmode
= tmode_iter
.require ();
12817 if (!HWI_COMPUTABLE_MODE_P (tmode
))
12819 if (have_insn_for (COMPARE
, tmode
))
12823 /* If this is a test for negative, we can make an explicit
12824 test of the sign bit. Test this first so we can use
12825 a paradoxical subreg to extend OP0. */
12827 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
12828 && HWI_COMPUTABLE_MODE_P (mode
))
12830 unsigned HOST_WIDE_INT sign
12831 = HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (mode
) - 1);
12832 op0
= simplify_gen_binary (AND
, tmode
,
12833 gen_lowpart (tmode
, op0
),
12834 gen_int_mode (sign
, tmode
));
12835 code
= (code
== LT
) ? NE
: EQ
;
12839 /* If the only nonzero bits in OP0 and OP1 are those in the
12840 narrower mode and this is an equality or unsigned comparison,
12841 we can use the wider mode. Similarly for sign-extended
12842 values, in which case it is true for all comparisons. */
12843 zero_extended
= ((code
== EQ
|| code
== NE
12844 || code
== GEU
|| code
== GTU
12845 || code
== LEU
|| code
== LTU
)
12846 && (nonzero_bits (op0
, tmode
)
12847 & ~GET_MODE_MASK (mode
)) == 0
12848 && ((CONST_INT_P (op1
)
12849 || (nonzero_bits (op1
, tmode
)
12850 & ~GET_MODE_MASK (mode
)) == 0)));
12853 || ((num_sign_bit_copies (op0
, tmode
)
12854 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12855 - GET_MODE_PRECISION (mode
)))
12856 && (num_sign_bit_copies (op1
, tmode
)
12857 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12858 - GET_MODE_PRECISION (mode
)))))
12860 /* If OP0 is an AND and we don't have an AND in MODE either,
12861 make a new AND in the proper mode. */
12862 if (GET_CODE (op0
) == AND
12863 && !have_insn_for (AND
, mode
))
12864 op0
= simplify_gen_binary (AND
, tmode
,
12865 gen_lowpart (tmode
,
12867 gen_lowpart (tmode
,
12873 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
12875 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
12880 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
12882 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
12891 /* We may have changed the comparison operands. Re-canonicalize. */
12892 if (swap_commutative_operands_p (op0
, op1
))
12894 std::swap (op0
, op1
);
12895 code
= swap_condition (code
);
12898 /* If this machine only supports a subset of valid comparisons, see if we
12899 can convert an unsupported one into a supported one. */
12900 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
12908 /* Utility function for record_value_for_reg. Count number of
12913 enum rtx_code code
= GET_CODE (x
);
12917 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
12918 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
12920 rtx x0
= XEXP (x
, 0);
12921 rtx x1
= XEXP (x
, 1);
12924 return 1 + 2 * count_rtxs (x0
);
12926 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
12927 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
12928 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12929 return 2 + 2 * count_rtxs (x0
)
12930 + count_rtxs (x
== XEXP (x1
, 0)
12931 ? XEXP (x1
, 1) : XEXP (x1
, 0));
12933 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
12934 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
12935 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12936 return 2 + 2 * count_rtxs (x1
)
12937 + count_rtxs (x
== XEXP (x0
, 0)
12938 ? XEXP (x0
, 1) : XEXP (x0
, 0));
12941 fmt
= GET_RTX_FORMAT (code
);
12942 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12944 ret
+= count_rtxs (XEXP (x
, i
));
12945 else if (fmt
[i
] == 'E')
12946 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12947 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
12952 /* Utility function for following routine. Called when X is part of a value
12953 being stored into last_set_value. Sets last_set_table_tick
12954 for each register mentioned. Similar to mention_regs in cse.c */
12957 update_table_tick (rtx x
)
12959 enum rtx_code code
= GET_CODE (x
);
12960 const char *fmt
= GET_RTX_FORMAT (code
);
12965 unsigned int regno
= REGNO (x
);
12966 unsigned int endregno
= END_REGNO (x
);
12969 for (r
= regno
; r
< endregno
; r
++)
12971 reg_stat_type
*rsp
= ®_stat
[r
];
12972 rsp
->last_set_table_tick
= label_tick
;
12978 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12981 /* Check for identical subexpressions. If x contains
12982 identical subexpression we only have to traverse one of
12984 if (i
== 0 && ARITHMETIC_P (x
))
12986 /* Note that at this point x1 has already been
12988 rtx x0
= XEXP (x
, 0);
12989 rtx x1
= XEXP (x
, 1);
12991 /* If x0 and x1 are identical then there is no need to
12996 /* If x0 is identical to a subexpression of x1 then while
12997 processing x1, x0 has already been processed. Thus we
12998 are done with x. */
12999 if (ARITHMETIC_P (x1
)
13000 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13003 /* If x1 is identical to a subexpression of x0 then we
13004 still have to process the rest of x0. */
13005 if (ARITHMETIC_P (x0
)
13006 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13008 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
13013 update_table_tick (XEXP (x
, i
));
13015 else if (fmt
[i
] == 'E')
13016 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13017 update_table_tick (XVECEXP (x
, i
, j
));
13020 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13021 are saying that the register is clobbered and we no longer know its
13022 value. If INSN is zero, don't update reg_stat[].last_set; this is
13023 only permitted with VALUE also zero and is used to invalidate the
13027 record_value_for_reg (rtx reg
, rtx_insn
*insn
, rtx value
)
13029 unsigned int regno
= REGNO (reg
);
13030 unsigned int endregno
= END_REGNO (reg
);
13032 reg_stat_type
*rsp
;
13034 /* If VALUE contains REG and we have a previous value for REG, substitute
13035 the previous value. */
13036 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
13040 /* Set things up so get_last_value is allowed to see anything set up to
13042 subst_low_luid
= DF_INSN_LUID (insn
);
13043 tem
= get_last_value (reg
);
13045 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13046 it isn't going to be useful and will take a lot of time to process,
13047 so just use the CLOBBER. */
13051 if (ARITHMETIC_P (tem
)
13052 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
13053 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
13054 tem
= XEXP (tem
, 0);
13055 else if (count_occurrences (value
, reg
, 1) >= 2)
13057 /* If there are two or more occurrences of REG in VALUE,
13058 prevent the value from growing too much. */
13059 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
13060 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
13063 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
13067 /* For each register modified, show we don't know its value, that
13068 we don't know about its bitwise content, that its value has been
13069 updated, and that we don't know the location of the death of the
13071 for (i
= regno
; i
< endregno
; i
++)
13073 rsp
= ®_stat
[i
];
13076 rsp
->last_set
= insn
;
13078 rsp
->last_set_value
= 0;
13079 rsp
->last_set_mode
= VOIDmode
;
13080 rsp
->last_set_nonzero_bits
= 0;
13081 rsp
->last_set_sign_bit_copies
= 0;
13082 rsp
->last_death
= 0;
13083 rsp
->truncated_to_mode
= VOIDmode
;
13086 /* Mark registers that are being referenced in this value. */
13088 update_table_tick (value
);
13090 /* Now update the status of each register being set.
13091 If someone is using this register in this block, set this register
13092 to invalid since we will get confused between the two lives in this
13093 basic block. This makes using this register always invalid. In cse, we
13094 scan the table to invalidate all entries using this register, but this
13095 is too much work for us. */
13097 for (i
= regno
; i
< endregno
; i
++)
13099 rsp
= ®_stat
[i
];
13100 rsp
->last_set_label
= label_tick
;
13102 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
13103 rsp
->last_set_invalid
= 1;
13105 rsp
->last_set_invalid
= 0;
13108 /* The value being assigned might refer to X (like in "x++;"). In that
13109 case, we must replace it with (clobber (const_int 0)) to prevent
13111 rsp
= ®_stat
[regno
];
13112 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
13114 value
= copy_rtx (value
);
13115 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
13119 /* For the main register being modified, update the value, the mode, the
13120 nonzero bits, and the number of sign bit copies. */
13122 rsp
->last_set_value
= value
;
13126 machine_mode mode
= GET_MODE (reg
);
13127 subst_low_luid
= DF_INSN_LUID (insn
);
13128 rsp
->last_set_mode
= mode
;
13129 if (GET_MODE_CLASS (mode
) == MODE_INT
13130 && HWI_COMPUTABLE_MODE_P (mode
))
13131 mode
= nonzero_bits_mode
;
13132 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
13133 rsp
->last_set_sign_bit_copies
13134 = num_sign_bit_copies (value
, GET_MODE (reg
));
13138 /* Called via note_stores from record_dead_and_set_regs to handle one
13139 SET or CLOBBER in an insn. DATA is the instruction in which the
13140 set is occurring. */
13143 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
13145 rtx_insn
*record_dead_insn
= (rtx_insn
*) data
;
13147 if (GET_CODE (dest
) == SUBREG
)
13148 dest
= SUBREG_REG (dest
);
13150 if (!record_dead_insn
)
13153 record_value_for_reg (dest
, NULL
, NULL_RTX
);
13159 /* If we are setting the whole register, we know its value. Otherwise
13160 show that we don't know the value. We can handle SUBREG in
13162 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
13163 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
13164 else if (GET_CODE (setter
) == SET
13165 && GET_CODE (SET_DEST (setter
)) == SUBREG
13166 && SUBREG_REG (SET_DEST (setter
)) == dest
13167 && GET_MODE_PRECISION (GET_MODE (dest
)) <= BITS_PER_WORD
13168 && subreg_lowpart_p (SET_DEST (setter
)))
13169 record_value_for_reg (dest
, record_dead_insn
,
13170 gen_lowpart (GET_MODE (dest
),
13171 SET_SRC (setter
)));
13173 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
13175 else if (MEM_P (dest
)
13176 /* Ignore pushes, they clobber nothing. */
13177 && ! push_operand (dest
, GET_MODE (dest
)))
13178 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
13181 /* Update the records of when each REG was most recently set or killed
13182 for the things done by INSN. This is the last thing done in processing
13183 INSN in the combiner loop.
13185 We update reg_stat[], in particular fields last_set, last_set_value,
13186 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13187 last_death, and also the similar information mem_last_set (which insn
13188 most recently modified memory) and last_call_luid (which insn was the
13189 most recent subroutine call). */
13192 record_dead_and_set_regs (rtx_insn
*insn
)
13197 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
13199 if (REG_NOTE_KIND (link
) == REG_DEAD
13200 && REG_P (XEXP (link
, 0)))
13202 unsigned int regno
= REGNO (XEXP (link
, 0));
13203 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
13205 for (i
= regno
; i
< endregno
; i
++)
13207 reg_stat_type
*rsp
;
13209 rsp
= ®_stat
[i
];
13210 rsp
->last_death
= insn
;
13213 else if (REG_NOTE_KIND (link
) == REG_INC
)
13214 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
13219 hard_reg_set_iterator hrsi
;
13220 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, i
, hrsi
)
13222 reg_stat_type
*rsp
;
13224 rsp
= ®_stat
[i
];
13225 rsp
->last_set_invalid
= 1;
13226 rsp
->last_set
= insn
;
13227 rsp
->last_set_value
= 0;
13228 rsp
->last_set_mode
= VOIDmode
;
13229 rsp
->last_set_nonzero_bits
= 0;
13230 rsp
->last_set_sign_bit_copies
= 0;
13231 rsp
->last_death
= 0;
13232 rsp
->truncated_to_mode
= VOIDmode
;
13235 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
13237 /* We can't combine into a call pattern. Remember, though, that
13238 the return value register is set at this LUID. We could
13239 still replace a register with the return value from the
13240 wrong subroutine call! */
13241 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
13244 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
13247 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13248 register present in the SUBREG, so for each such SUBREG go back and
13249 adjust nonzero and sign bit information of the registers that are
13250 known to have some zero/sign bits set.
13252 This is needed because when combine blows the SUBREGs away, the
13253 information on zero/sign bits is lost and further combines can be
13254 missed because of that. */
13257 record_promoted_value (rtx_insn
*insn
, rtx subreg
)
13259 struct insn_link
*links
;
13261 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
13262 machine_mode mode
= GET_MODE (subreg
);
13264 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
13267 for (links
= LOG_LINKS (insn
); links
;)
13269 reg_stat_type
*rsp
;
13271 insn
= links
->insn
;
13272 set
= single_set (insn
);
13274 if (! set
|| !REG_P (SET_DEST (set
))
13275 || REGNO (SET_DEST (set
)) != regno
13276 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
13278 links
= links
->next
;
13282 rsp
= ®_stat
[regno
];
13283 if (rsp
->last_set
== insn
)
13285 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
13286 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
13289 if (REG_P (SET_SRC (set
)))
13291 regno
= REGNO (SET_SRC (set
));
13292 links
= LOG_LINKS (insn
);
13299 /* Check if X, a register, is known to contain a value already
13300 truncated to MODE. In this case we can use a subreg to refer to
13301 the truncated value even though in the generic case we would need
13302 an explicit truncation. */
13305 reg_truncated_to_mode (machine_mode mode
, const_rtx x
)
13307 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
13308 machine_mode truncated
= rsp
->truncated_to_mode
;
13311 || rsp
->truncation_label
< label_tick_ebb_start
)
13313 if (GET_MODE_SIZE (truncated
) <= GET_MODE_SIZE (mode
))
13315 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
13320 /* If X is a hard reg or a subreg record the mode that the register is
13321 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13322 to turn a truncate into a subreg using this information. Return true
13323 if traversing X is complete. */
13326 record_truncated_value (rtx x
)
13328 machine_mode truncated_mode
;
13329 reg_stat_type
*rsp
;
13331 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
13333 machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
13334 truncated_mode
= GET_MODE (x
);
13336 if (GET_MODE_SIZE (original_mode
) <= GET_MODE_SIZE (truncated_mode
))
13339 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
13342 x
= SUBREG_REG (x
);
13344 /* ??? For hard-regs we now record everything. We might be able to
13345 optimize this using last_set_mode. */
13346 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
13347 truncated_mode
= GET_MODE (x
);
13351 rsp
= ®_stat
[REGNO (x
)];
13352 if (rsp
->truncated_to_mode
== 0
13353 || rsp
->truncation_label
< label_tick_ebb_start
13354 || (GET_MODE_SIZE (truncated_mode
)
13355 < GET_MODE_SIZE (rsp
->truncated_to_mode
)))
13357 rsp
->truncated_to_mode
= truncated_mode
;
13358 rsp
->truncation_label
= label_tick
;
13364 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13365 the modes they are used in. This can help truning TRUNCATEs into
13369 record_truncated_values (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
13371 subrtx_var_iterator::array_type array
;
13372 FOR_EACH_SUBRTX_VAR (iter
, array
, *loc
, NONCONST
)
13373 if (record_truncated_value (*iter
))
13374 iter
.skip_subrtxes ();
13377 /* Scan X for promoted SUBREGs. For each one found,
13378 note what it implies to the registers used in it. */
13381 check_promoted_subreg (rtx_insn
*insn
, rtx x
)
13383 if (GET_CODE (x
) == SUBREG
13384 && SUBREG_PROMOTED_VAR_P (x
)
13385 && REG_P (SUBREG_REG (x
)))
13386 record_promoted_value (insn
, x
);
13389 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
13392 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
13396 check_promoted_subreg (insn
, XEXP (x
, i
));
13400 if (XVEC (x
, i
) != 0)
13401 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13402 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
13408 /* Verify that all the registers and memory references mentioned in *LOC are
13409 still valid. *LOC was part of a value set in INSN when label_tick was
13410 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13411 the invalid references with (clobber (const_int 0)) and return 1. This
13412 replacement is useful because we often can get useful information about
13413 the form of a value (e.g., if it was produced by a shift that always
13414 produces -1 or 0) even though we don't know exactly what registers it
13415 was produced from. */
13418 get_last_value_validate (rtx
*loc
, rtx_insn
*insn
, int tick
, int replace
)
13421 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
13422 int len
= GET_RTX_LENGTH (GET_CODE (x
));
13427 unsigned int regno
= REGNO (x
);
13428 unsigned int endregno
= END_REGNO (x
);
13431 for (j
= regno
; j
< endregno
; j
++)
13433 reg_stat_type
*rsp
= ®_stat
[j
];
13434 if (rsp
->last_set_invalid
13435 /* If this is a pseudo-register that was only set once and not
13436 live at the beginning of the function, it is always valid. */
13437 || (! (regno
>= FIRST_PSEUDO_REGISTER
13438 && regno
< reg_n_sets_max
13439 && REG_N_SETS (regno
) == 1
13440 && (!REGNO_REG_SET_P
13441 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
13443 && rsp
->last_set_label
> tick
))
13446 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13453 /* If this is a memory reference, make sure that there were no stores after
13454 it that might have clobbered the value. We don't have alias info, so we
13455 assume any store invalidates it. Moreover, we only have local UIDs, so
13456 we also assume that there were stores in the intervening basic blocks. */
13457 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
13458 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
13461 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13465 for (i
= 0; i
< len
; i
++)
13469 /* Check for identical subexpressions. If x contains
13470 identical subexpression we only have to traverse one of
13472 if (i
== 1 && ARITHMETIC_P (x
))
13474 /* Note that at this point x0 has already been checked
13475 and found valid. */
13476 rtx x0
= XEXP (x
, 0);
13477 rtx x1
= XEXP (x
, 1);
13479 /* If x0 and x1 are identical then x is also valid. */
13483 /* If x1 is identical to a subexpression of x0 then
13484 while checking x0, x1 has already been checked. Thus
13485 it is valid and so as x. */
13486 if (ARITHMETIC_P (x0
)
13487 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13490 /* If x0 is identical to a subexpression of x1 then x is
13491 valid iff the rest of x1 is valid. */
13492 if (ARITHMETIC_P (x1
)
13493 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13495 get_last_value_validate (&XEXP (x1
,
13496 x0
== XEXP (x1
, 0) ? 1 : 0),
13497 insn
, tick
, replace
);
13500 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
13504 else if (fmt
[i
] == 'E')
13505 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13506 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
13507 insn
, tick
, replace
) == 0)
13511 /* If we haven't found a reason for it to be invalid, it is valid. */
13515 /* Get the last value assigned to X, if known. Some registers
13516 in the value may be replaced with (clobber (const_int 0)) if their value
13517 is known longer known reliably. */
13520 get_last_value (const_rtx x
)
13522 unsigned int regno
;
13524 reg_stat_type
*rsp
;
13526 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13527 then convert it to the desired mode. If this is a paradoxical SUBREG,
13528 we cannot predict what values the "extra" bits might have. */
13529 if (GET_CODE (x
) == SUBREG
13530 && subreg_lowpart_p (x
)
13531 && !paradoxical_subreg_p (x
)
13532 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
13533 return gen_lowpart (GET_MODE (x
), value
);
13539 rsp
= ®_stat
[regno
];
13540 value
= rsp
->last_set_value
;
13542 /* If we don't have a value, or if it isn't for this basic block and
13543 it's either a hard register, set more than once, or it's a live
13544 at the beginning of the function, return 0.
13546 Because if it's not live at the beginning of the function then the reg
13547 is always set before being used (is never used without being set).
13548 And, if it's set only once, and it's always set before use, then all
13549 uses must have the same last value, even if it's not from this basic
13553 || (rsp
->last_set_label
< label_tick_ebb_start
13554 && (regno
< FIRST_PSEUDO_REGISTER
13555 || regno
>= reg_n_sets_max
13556 || REG_N_SETS (regno
) != 1
13558 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
13561 /* If the value was set in a later insn than the ones we are processing,
13562 we can't use it even if the register was only set once. */
13563 if (rsp
->last_set_label
== label_tick
13564 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
13567 /* If fewer bits were set than what we are asked for now, we cannot use
13569 if (GET_MODE_PRECISION (rsp
->last_set_mode
)
13570 < GET_MODE_PRECISION (GET_MODE (x
)))
13573 /* If the value has all its registers valid, return it. */
13574 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
13577 /* Otherwise, make a copy and replace any invalid register with
13578 (clobber (const_int 0)). If that fails for some reason, return 0. */
13580 value
= copy_rtx (value
);
13581 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
13587 /* Return nonzero if expression X refers to a REG or to memory
13588 that is set in an instruction more recent than FROM_LUID. */
13591 use_crosses_set_p (const_rtx x
, int from_luid
)
13595 enum rtx_code code
= GET_CODE (x
);
13599 unsigned int regno
= REGNO (x
);
13600 unsigned endreg
= END_REGNO (x
);
13602 #ifdef PUSH_ROUNDING
13603 /* Don't allow uses of the stack pointer to be moved,
13604 because we don't know whether the move crosses a push insn. */
13605 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
13608 for (; regno
< endreg
; regno
++)
13610 reg_stat_type
*rsp
= ®_stat
[regno
];
13612 && rsp
->last_set_label
== label_tick
13613 && DF_INSN_LUID (rsp
->last_set
) > from_luid
)
13619 if (code
== MEM
&& mem_last_set
> from_luid
)
13622 fmt
= GET_RTX_FORMAT (code
);
13624 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13629 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
13630 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_luid
))
13633 else if (fmt
[i
] == 'e'
13634 && use_crosses_set_p (XEXP (x
, i
), from_luid
))
13640 /* Define three variables used for communication between the following
13643 static unsigned int reg_dead_regno
, reg_dead_endregno
;
13644 static int reg_dead_flag
;
13646 /* Function called via note_stores from reg_dead_at_p.
13648 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13649 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13652 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
13654 unsigned int regno
, endregno
;
13659 regno
= REGNO (dest
);
13660 endregno
= END_REGNO (dest
);
13661 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
13662 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
13665 /* Return nonzero if REG is known to be dead at INSN.
13667 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13668 referencing REG, it is dead. If we hit a SET referencing REG, it is
13669 live. Otherwise, see if it is live or dead at the start of the basic
13670 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13671 must be assumed to be always live. */
13674 reg_dead_at_p (rtx reg
, rtx_insn
*insn
)
13679 /* Set variables for reg_dead_at_p_1. */
13680 reg_dead_regno
= REGNO (reg
);
13681 reg_dead_endregno
= END_REGNO (reg
);
13685 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13686 we allow the machine description to decide whether use-and-clobber
13687 patterns are OK. */
13688 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
13690 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13691 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
13695 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13696 beginning of basic block. */
13697 block
= BLOCK_FOR_INSN (insn
);
13702 if (find_regno_note (insn
, REG_UNUSED
, reg_dead_regno
))
13705 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
13707 return reg_dead_flag
== 1 ? 1 : 0;
13709 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
13713 if (insn
== BB_HEAD (block
))
13716 insn
= PREV_INSN (insn
);
13719 /* Look at live-in sets for the basic block that we were in. */
13720 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13721 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
13727 /* Note hard registers in X that are used. */
13730 mark_used_regs_combine (rtx x
)
13732 RTX_CODE code
= GET_CODE (x
);
13733 unsigned int regno
;
13744 case ADDR_DIFF_VEC
:
13746 /* CC0 must die in the insn after it is set, so we don't need to take
13747 special note of it here. */
13752 /* If we are clobbering a MEM, mark any hard registers inside the
13753 address as used. */
13754 if (MEM_P (XEXP (x
, 0)))
13755 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
13760 /* A hard reg in a wide mode may really be multiple registers.
13761 If so, mark all of them just like the first. */
13762 if (regno
< FIRST_PSEUDO_REGISTER
)
13764 /* None of this applies to the stack, frame or arg pointers. */
13765 if (regno
== STACK_POINTER_REGNUM
13766 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13767 && regno
== HARD_FRAME_POINTER_REGNUM
)
13768 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
13769 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
13770 || regno
== FRAME_POINTER_REGNUM
)
13773 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
13779 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13781 rtx testreg
= SET_DEST (x
);
13783 while (GET_CODE (testreg
) == SUBREG
13784 || GET_CODE (testreg
) == ZERO_EXTRACT
13785 || GET_CODE (testreg
) == STRICT_LOW_PART
)
13786 testreg
= XEXP (testreg
, 0);
13788 if (MEM_P (testreg
))
13789 mark_used_regs_combine (XEXP (testreg
, 0));
13791 mark_used_regs_combine (SET_SRC (x
));
13799 /* Recursively scan the operands of this expression. */
13802 const char *fmt
= GET_RTX_FORMAT (code
);
13804 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13807 mark_used_regs_combine (XEXP (x
, i
));
13808 else if (fmt
[i
] == 'E')
13812 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13813 mark_used_regs_combine (XVECEXP (x
, i
, j
));
13819 /* Remove register number REGNO from the dead registers list of INSN.
13821 Return the note used to record the death, if there was one. */
13824 remove_death (unsigned int regno
, rtx_insn
*insn
)
13826 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
13829 remove_note (insn
, note
);
13834 /* For each register (hardware or pseudo) used within expression X, if its
13835 death is in an instruction with luid between FROM_LUID (inclusive) and
13836 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13837 list headed by PNOTES.
13839 That said, don't move registers killed by maybe_kill_insn.
13841 This is done when X is being merged by combination into TO_INSN. These
13842 notes will then be distributed as needed. */
13845 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx_insn
*to_insn
,
13850 enum rtx_code code
= GET_CODE (x
);
13854 unsigned int regno
= REGNO (x
);
13855 rtx_insn
*where_dead
= reg_stat
[regno
].last_death
;
13857 /* Don't move the register if it gets killed in between from and to. */
13858 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
13859 && ! reg_referenced_p (x
, maybe_kill_insn
))
13863 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
13864 && DF_INSN_LUID (where_dead
) >= from_luid
13865 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
13867 rtx note
= remove_death (regno
, where_dead
);
13869 /* It is possible for the call above to return 0. This can occur
13870 when last_death points to I2 or I1 that we combined with.
13871 In that case make a new note.
13873 We must also check for the case where X is a hard register
13874 and NOTE is a death note for a range of hard registers
13875 including X. In that case, we must put REG_DEAD notes for
13876 the remaining registers in place of NOTE. */
13878 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
13879 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13880 > GET_MODE_SIZE (GET_MODE (x
))))
13882 unsigned int deadregno
= REGNO (XEXP (note
, 0));
13883 unsigned int deadend
= END_REGNO (XEXP (note
, 0));
13884 unsigned int ourend
= END_REGNO (x
);
13887 for (i
= deadregno
; i
< deadend
; i
++)
13888 if (i
< regno
|| i
>= ourend
)
13889 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
13892 /* If we didn't find any note, or if we found a REG_DEAD note that
13893 covers only part of the given reg, and we have a multi-reg hard
13894 register, then to be safe we must check for REG_DEAD notes
13895 for each register other than the first. They could have
13896 their own REG_DEAD notes lying around. */
13897 else if ((note
== 0
13899 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13900 < GET_MODE_SIZE (GET_MODE (x
)))))
13901 && regno
< FIRST_PSEUDO_REGISTER
13902 && REG_NREGS (x
) > 1)
13904 unsigned int ourend
= END_REGNO (x
);
13905 unsigned int i
, offset
;
13909 offset
= hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))];
13913 for (i
= regno
+ offset
; i
< ourend
; i
++)
13914 move_deaths (regno_reg_rtx
[i
],
13915 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
13918 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
13920 XEXP (note
, 1) = *pnotes
;
13924 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
13930 else if (GET_CODE (x
) == SET
)
13932 rtx dest
= SET_DEST (x
);
13934 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13936 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13937 that accesses one word of a multi-word item, some
13938 piece of everything register in the expression is used by
13939 this insn, so remove any old death. */
13940 /* ??? So why do we test for equality of the sizes? */
13942 if (GET_CODE (dest
) == ZERO_EXTRACT
13943 || GET_CODE (dest
) == STRICT_LOW_PART
13944 || (GET_CODE (dest
) == SUBREG
13945 && (((GET_MODE_SIZE (GET_MODE (dest
))
13946 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
13947 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
13948 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
13950 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13954 /* If this is some other SUBREG, we know it replaces the entire
13955 value, so use that as the destination. */
13956 if (GET_CODE (dest
) == SUBREG
)
13957 dest
= SUBREG_REG (dest
);
13959 /* If this is a MEM, adjust deaths of anything used in the address.
13960 For a REG (the only other possibility), the entire value is
13961 being replaced so the old value is not used in this insn. */
13964 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
13969 else if (GET_CODE (x
) == CLOBBER
)
13972 len
= GET_RTX_LENGTH (code
);
13973 fmt
= GET_RTX_FORMAT (code
);
13975 for (i
= 0; i
< len
; i
++)
13980 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
13981 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
13984 else if (fmt
[i
] == 'e')
13985 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13989 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13990 pattern of an insn. X must be a REG. */
13993 reg_bitfield_target_p (rtx x
, rtx body
)
13997 if (GET_CODE (body
) == SET
)
13999 rtx dest
= SET_DEST (body
);
14001 unsigned int regno
, tregno
, endregno
, endtregno
;
14003 if (GET_CODE (dest
) == ZERO_EXTRACT
)
14004 target
= XEXP (dest
, 0);
14005 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
14006 target
= SUBREG_REG (XEXP (dest
, 0));
14010 if (GET_CODE (target
) == SUBREG
)
14011 target
= SUBREG_REG (target
);
14013 if (!REG_P (target
))
14016 tregno
= REGNO (target
), regno
= REGNO (x
);
14017 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
14018 return target
== x
;
14020 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
14021 endregno
= end_hard_regno (GET_MODE (x
), regno
);
14023 return endregno
> tregno
&& regno
< endtregno
;
14026 else if (GET_CODE (body
) == PARALLEL
)
14027 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
14028 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
14034 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14035 as appropriate. I3 and I2 are the insns resulting from the combination
14036 insns including FROM (I2 may be zero).
14038 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14039 not need REG_DEAD notes because they are being substituted for. This
14040 saves searching in the most common cases.
14042 Each note in the list is either ignored or placed on some insns, depending
14043 on the type of note. */
14046 distribute_notes (rtx notes
, rtx_insn
*from_insn
, rtx_insn
*i3
, rtx_insn
*i2
,
14047 rtx elim_i2
, rtx elim_i1
, rtx elim_i0
)
14049 rtx note
, next_note
;
14051 rtx_insn
*tem_insn
;
14053 for (note
= notes
; note
; note
= next_note
)
14055 rtx_insn
*place
= 0, *place2
= 0;
14057 next_note
= XEXP (note
, 1);
14058 switch (REG_NOTE_KIND (note
))
14062 /* Doesn't matter much where we put this, as long as it's somewhere.
14063 It is preferable to keep these notes on branches, which is most
14064 likely to be i3. */
14068 case REG_NON_LOCAL_GOTO
:
14073 gcc_assert (i2
&& JUMP_P (i2
));
14078 case REG_EH_REGION
:
14079 /* These notes must remain with the call or trapping instruction. */
14082 else if (i2
&& CALL_P (i2
))
14086 gcc_assert (cfun
->can_throw_non_call_exceptions
);
14087 if (may_trap_p (i3
))
14089 else if (i2
&& may_trap_p (i2
))
14091 /* ??? Otherwise assume we've combined things such that we
14092 can now prove that the instructions can't trap. Drop the
14093 note in this case. */
14097 case REG_ARGS_SIZE
:
14098 /* ??? How to distribute between i3-i1. Assume i3 contains the
14099 entire adjustment. Assert i3 contains at least some adjust. */
14100 if (!noop_move_p (i3
))
14102 int old_size
, args_size
= INTVAL (XEXP (note
, 0));
14103 /* fixup_args_size_notes looks at REG_NORETURN note,
14104 so ensure the note is placed there first. */
14108 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
14109 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
14113 XEXP (n
, 1) = REG_NOTES (i3
);
14114 REG_NOTES (i3
) = n
;
14118 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
14119 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14120 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14121 gcc_assert (old_size
!= args_size
14123 && !ACCUMULATE_OUTGOING_ARGS
14124 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
14131 case REG_CALL_DECL
:
14132 /* These notes must remain with the call. It should not be
14133 possible for both I2 and I3 to be a call. */
14138 gcc_assert (i2
&& CALL_P (i2
));
14144 /* Any clobbers for i3 may still exist, and so we must process
14145 REG_UNUSED notes from that insn.
14147 Any clobbers from i2 or i1 can only exist if they were added by
14148 recog_for_combine. In that case, recog_for_combine created the
14149 necessary REG_UNUSED notes. Trying to keep any original
14150 REG_UNUSED notes from these insns can cause incorrect output
14151 if it is for the same register as the original i3 dest.
14152 In that case, we will notice that the register is set in i3,
14153 and then add a REG_UNUSED note for the destination of i3, which
14154 is wrong. However, it is possible to have REG_UNUSED notes from
14155 i2 or i1 for register which were both used and clobbered, so
14156 we keep notes from i2 or i1 if they will turn into REG_DEAD
14159 /* If this register is set or clobbered in I3, put the note there
14160 unless there is one already. */
14161 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
14163 if (from_insn
!= i3
)
14166 if (! (REG_P (XEXP (note
, 0))
14167 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
14168 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
14171 /* Otherwise, if this register is used by I3, then this register
14172 now dies here, so we must put a REG_DEAD note here unless there
14174 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
14175 && ! (REG_P (XEXP (note
, 0))
14176 ? find_regno_note (i3
, REG_DEAD
,
14177 REGNO (XEXP (note
, 0)))
14178 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
14180 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14188 /* These notes say something about results of an insn. We can
14189 only support them if they used to be on I3 in which case they
14190 remain on I3. Otherwise they are ignored.
14192 If the note refers to an expression that is not a constant, we
14193 must also ignore the note since we cannot tell whether the
14194 equivalence is still true. It might be possible to do
14195 slightly better than this (we only have a problem if I2DEST
14196 or I1DEST is present in the expression), but it doesn't
14197 seem worth the trouble. */
14199 if (from_insn
== i3
14200 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
14205 /* These notes say something about how a register is used. They must
14206 be present on any use of the register in I2 or I3. */
14207 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
14210 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
14219 case REG_LABEL_TARGET
:
14220 case REG_LABEL_OPERAND
:
14221 /* This can show up in several ways -- either directly in the
14222 pattern, or hidden off in the constant pool with (or without?)
14223 a REG_EQUAL note. */
14224 /* ??? Ignore the without-reg_equal-note problem for now. */
14225 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
14226 || ((tem_note
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
14227 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14228 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0)))
14232 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
14233 || ((tem_note
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
14234 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14235 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0))))
14243 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14244 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14246 if (place
&& JUMP_P (place
)
14247 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14248 && (JUMP_LABEL (place
) == NULL
14249 || JUMP_LABEL (place
) == XEXP (note
, 0)))
14251 rtx label
= JUMP_LABEL (place
);
14254 JUMP_LABEL (place
) = XEXP (note
, 0);
14255 else if (LABEL_P (label
))
14256 LABEL_NUSES (label
)--;
14259 if (place2
&& JUMP_P (place2
)
14260 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14261 && (JUMP_LABEL (place2
) == NULL
14262 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
14264 rtx label
= JUMP_LABEL (place2
);
14267 JUMP_LABEL (place2
) = XEXP (note
, 0);
14268 else if (LABEL_P (label
))
14269 LABEL_NUSES (label
)--;
14275 /* This note says something about the value of a register prior
14276 to the execution of an insn. It is too much trouble to see
14277 if the note is still correct in all situations. It is better
14278 to simply delete it. */
14282 /* If we replaced the right hand side of FROM_INSN with a
14283 REG_EQUAL note, the original use of the dying register
14284 will not have been combined into I3 and I2. In such cases,
14285 FROM_INSN is guaranteed to be the first of the combined
14286 instructions, so we simply need to search back before
14287 FROM_INSN for the previous use or set of this register,
14288 then alter the notes there appropriately.
14290 If the register is used as an input in I3, it dies there.
14291 Similarly for I2, if it is nonzero and adjacent to I3.
14293 If the register is not used as an input in either I3 or I2
14294 and it is not one of the registers we were supposed to eliminate,
14295 there are two possibilities. We might have a non-adjacent I2
14296 or we might have somehow eliminated an additional register
14297 from a computation. For example, we might have had A & B where
14298 we discover that B will always be zero. In this case we will
14299 eliminate the reference to A.
14301 In both cases, we must search to see if we can find a previous
14302 use of A and put the death note there. */
14305 && from_insn
== i2mod
14306 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
14307 tem_insn
= from_insn
;
14311 && CALL_P (from_insn
)
14312 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
14314 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
14316 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
14317 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14319 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
14321 && reg_overlap_mentioned_p (XEXP (note
, 0),
14323 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
14324 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
14327 /* If the new I2 sets the same register that is marked dead
14328 in the note, we do not know where to put the note.
14330 if (i2
!= 0 && reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14336 basic_block bb
= this_basic_block
;
14338 for (tem_insn
= PREV_INSN (tem_insn
); place
== 0; tem_insn
= PREV_INSN (tem_insn
))
14340 if (!NONDEBUG_INSN_P (tem_insn
))
14342 if (tem_insn
== BB_HEAD (bb
))
14347 /* If the register is being set at TEM_INSN, see if that is all
14348 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14349 into a REG_UNUSED note instead. Don't delete sets to
14350 global register vars. */
14351 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
14352 || !global_regs
[REGNO (XEXP (note
, 0))])
14353 && reg_set_p (XEXP (note
, 0), PATTERN (tem_insn
)))
14355 rtx set
= single_set (tem_insn
);
14356 rtx inner_dest
= 0;
14357 rtx_insn
*cc0_setter
= NULL
;
14360 for (inner_dest
= SET_DEST (set
);
14361 (GET_CODE (inner_dest
) == STRICT_LOW_PART
14362 || GET_CODE (inner_dest
) == SUBREG
14363 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
14364 inner_dest
= XEXP (inner_dest
, 0))
14367 /* Verify that it was the set, and not a clobber that
14368 modified the register.
14370 CC0 targets must be careful to maintain setter/user
14371 pairs. If we cannot delete the setter due to side
14372 effects, mark the user with an UNUSED note instead
14375 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
14376 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
14378 || (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
14379 || ((cc0_setter
= prev_cc0_setter (tem_insn
)) != NULL
14380 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))))
14382 /* Move the notes and links of TEM_INSN elsewhere.
14383 This might delete other dead insns recursively.
14384 First set the pattern to something that won't use
14386 rtx old_notes
= REG_NOTES (tem_insn
);
14388 PATTERN (tem_insn
) = pc_rtx
;
14389 REG_NOTES (tem_insn
) = NULL
;
14391 distribute_notes (old_notes
, tem_insn
, tem_insn
, NULL
,
14392 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14393 distribute_links (LOG_LINKS (tem_insn
));
14395 unsigned int regno
= REGNO (XEXP (note
, 0));
14396 reg_stat_type
*rsp
= ®_stat
[regno
];
14397 if (rsp
->last_set
== tem_insn
)
14398 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14400 SET_INSN_DELETED (tem_insn
);
14401 if (tem_insn
== i2
)
14404 /* Delete the setter too. */
14407 PATTERN (cc0_setter
) = pc_rtx
;
14408 old_notes
= REG_NOTES (cc0_setter
);
14409 REG_NOTES (cc0_setter
) = NULL
;
14411 distribute_notes (old_notes
, cc0_setter
,
14413 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14414 distribute_links (LOG_LINKS (cc0_setter
));
14416 SET_INSN_DELETED (cc0_setter
);
14417 if (cc0_setter
== i2
)
14423 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
14425 /* If there isn't already a REG_UNUSED note, put one
14426 here. Do not place a REG_DEAD note, even if
14427 the register is also used here; that would not
14428 match the algorithm used in lifetime analysis
14429 and can cause the consistency check in the
14430 scheduler to fail. */
14431 if (! find_regno_note (tem_insn
, REG_UNUSED
,
14432 REGNO (XEXP (note
, 0))))
14437 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem_insn
))
14438 || (CALL_P (tem_insn
)
14439 && find_reg_fusage (tem_insn
, USE
, XEXP (note
, 0))))
14443 /* If we are doing a 3->2 combination, and we have a
14444 register which formerly died in i3 and was not used
14445 by i2, which now no longer dies in i3 and is used in
14446 i2 but does not die in i2, and place is between i2
14447 and i3, then we may need to move a link from place to
14449 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
14451 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
14452 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14454 struct insn_link
*links
= LOG_LINKS (place
);
14455 LOG_LINKS (place
) = NULL
;
14456 distribute_links (links
);
14461 if (tem_insn
== BB_HEAD (bb
))
14467 /* If the register is set or already dead at PLACE, we needn't do
14468 anything with this note if it is still a REG_DEAD note.
14469 We check here if it is set at all, not if is it totally replaced,
14470 which is what `dead_or_set_p' checks, so also check for it being
14473 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
14475 unsigned int regno
= REGNO (XEXP (note
, 0));
14476 reg_stat_type
*rsp
= ®_stat
[regno
];
14478 if (dead_or_set_p (place
, XEXP (note
, 0))
14479 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
14481 /* Unless the register previously died in PLACE, clear
14482 last_death. [I no longer understand why this is
14484 if (rsp
->last_death
!= place
)
14485 rsp
->last_death
= 0;
14489 rsp
->last_death
= place
;
14491 /* If this is a death note for a hard reg that is occupying
14492 multiple registers, ensure that we are still using all
14493 parts of the object. If we find a piece of the object
14494 that is unused, we must arrange for an appropriate REG_DEAD
14495 note to be added for it. However, we can't just emit a USE
14496 and tag the note to it, since the register might actually
14497 be dead; so we recourse, and the recursive call then finds
14498 the previous insn that used this register. */
14500 if (place
&& REG_NREGS (XEXP (note
, 0)) > 1)
14502 unsigned int endregno
= END_REGNO (XEXP (note
, 0));
14503 bool all_used
= true;
14506 for (i
= regno
; i
< endregno
; i
++)
14507 if ((! refers_to_regno_p (i
, PATTERN (place
))
14508 && ! find_regno_fusage (place
, USE
, i
))
14509 || dead_or_set_regno_p (place
, i
))
14517 /* Put only REG_DEAD notes for pieces that are
14518 not already dead or set. */
14520 for (i
= regno
; i
< endregno
;
14521 i
+= hard_regno_nregs
[i
][reg_raw_mode
[i
]])
14523 rtx piece
= regno_reg_rtx
[i
];
14524 basic_block bb
= this_basic_block
;
14526 if (! dead_or_set_p (place
, piece
)
14527 && ! reg_bitfield_target_p (piece
,
14530 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
14533 distribute_notes (new_note
, place
, place
,
14534 NULL
, NULL_RTX
, NULL_RTX
,
14537 else if (! refers_to_regno_p (i
, PATTERN (place
))
14538 && ! find_regno_fusage (place
, USE
, i
))
14539 for (tem_insn
= PREV_INSN (place
); ;
14540 tem_insn
= PREV_INSN (tem_insn
))
14542 if (!NONDEBUG_INSN_P (tem_insn
))
14544 if (tem_insn
== BB_HEAD (bb
))
14548 if (dead_or_set_p (tem_insn
, piece
)
14549 || reg_bitfield_target_p (piece
,
14550 PATTERN (tem_insn
)))
14552 add_reg_note (tem_insn
, REG_UNUSED
, piece
);
14565 /* Any other notes should not be present at this point in the
14567 gcc_unreachable ();
14572 XEXP (note
, 1) = REG_NOTES (place
);
14573 REG_NOTES (place
) = note
;
14577 add_shallow_copy_of_reg_note (place2
, note
);
14581 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14582 I3, I2, and I1 to new locations. This is also called to add a link
14583 pointing at I3 when I3's destination is changed. */
14586 distribute_links (struct insn_link
*links
)
14588 struct insn_link
*link
, *next_link
;
14590 for (link
= links
; link
; link
= next_link
)
14592 rtx_insn
*place
= 0;
14596 next_link
= link
->next
;
14598 /* If the insn that this link points to is a NOTE, ignore it. */
14599 if (NOTE_P (link
->insn
))
14603 rtx pat
= PATTERN (link
->insn
);
14604 if (GET_CODE (pat
) == SET
)
14606 else if (GET_CODE (pat
) == PARALLEL
)
14609 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
14611 set
= XVECEXP (pat
, 0, i
);
14612 if (GET_CODE (set
) != SET
)
14615 reg
= SET_DEST (set
);
14616 while (GET_CODE (reg
) == ZERO_EXTRACT
14617 || GET_CODE (reg
) == STRICT_LOW_PART
14618 || GET_CODE (reg
) == SUBREG
)
14619 reg
= XEXP (reg
, 0);
14624 if (REGNO (reg
) == link
->regno
)
14627 if (i
== XVECLEN (pat
, 0))
14633 reg
= SET_DEST (set
);
14635 while (GET_CODE (reg
) == ZERO_EXTRACT
14636 || GET_CODE (reg
) == STRICT_LOW_PART
14637 || GET_CODE (reg
) == SUBREG
)
14638 reg
= XEXP (reg
, 0);
14640 /* A LOG_LINK is defined as being placed on the first insn that uses
14641 a register and points to the insn that sets the register. Start
14642 searching at the next insn after the target of the link and stop
14643 when we reach a set of the register or the end of the basic block.
14645 Note that this correctly handles the link that used to point from
14646 I3 to I2. Also note that not much searching is typically done here
14647 since most links don't point very far away. */
14649 for (insn
= NEXT_INSN (link
->insn
);
14650 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
14651 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
14652 insn
= NEXT_INSN (insn
))
14653 if (DEBUG_INSN_P (insn
))
14655 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
14657 if (reg_referenced_p (reg
, PATTERN (insn
)))
14661 else if (CALL_P (insn
)
14662 && find_reg_fusage (insn
, USE
, reg
))
14667 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
14670 /* If we found a place to put the link, place it there unless there
14671 is already a link to the same insn as LINK at that point. */
14675 struct insn_link
*link2
;
14677 FOR_EACH_LOG_LINK (link2
, place
)
14678 if (link2
->insn
== link
->insn
&& link2
->regno
== link
->regno
)
14683 link
->next
= LOG_LINKS (place
);
14684 LOG_LINKS (place
) = link
;
14686 /* Set added_links_insn to the earliest insn we added a
14688 if (added_links_insn
== 0
14689 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
14690 added_links_insn
= place
;
14696 /* Check for any register or memory mentioned in EQUIV that is not
14697 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14698 of EXPR where some registers may have been replaced by constants. */
14701 unmentioned_reg_p (rtx equiv
, rtx expr
)
14703 subrtx_iterator::array_type array
;
14704 FOR_EACH_SUBRTX (iter
, array
, equiv
, NONCONST
)
14706 const_rtx x
= *iter
;
14707 if ((REG_P (x
) || MEM_P (x
))
14708 && !reg_mentioned_p (x
, expr
))
14714 DEBUG_FUNCTION
void
14715 dump_combine_stats (FILE *file
)
14719 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14720 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
14724 dump_combine_total_stats (FILE *file
)
14728 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14729 total_attempts
, total_merges
, total_extras
, total_successes
);
14732 /* Try combining insns through substitution. */
14733 static unsigned int
14734 rest_of_handle_combine (void)
14736 int rebuild_jump_labels_after_combine
;
14738 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
14739 df_note_add_problem ();
14742 regstat_init_n_sets_and_refs ();
14743 reg_n_sets_max
= max_reg_num ();
14745 rebuild_jump_labels_after_combine
14746 = combine_instructions (get_insns (), max_reg_num ());
14748 /* Combining insns may have turned an indirect jump into a
14749 direct jump. Rebuild the JUMP_LABEL fields of jumping
14751 if (rebuild_jump_labels_after_combine
)
14753 if (dom_info_available_p (CDI_DOMINATORS
))
14754 free_dominance_info (CDI_DOMINATORS
);
14755 timevar_push (TV_JUMP
);
14756 rebuild_jump_labels (get_insns ());
14758 timevar_pop (TV_JUMP
);
14761 regstat_free_n_sets_and_refs ();
14767 const pass_data pass_data_combine
=
14769 RTL_PASS
, /* type */
14770 "combine", /* name */
14771 OPTGROUP_NONE
, /* optinfo_flags */
14772 TV_COMBINE
, /* tv_id */
14773 PROP_cfglayout
, /* properties_required */
14774 0, /* properties_provided */
14775 0, /* properties_destroyed */
14776 0, /* todo_flags_start */
14777 TODO_df_finish
, /* todo_flags_finish */
14780 class pass_combine
: public rtl_opt_pass
14783 pass_combine (gcc::context
*ctxt
)
14784 : rtl_opt_pass (pass_data_combine
, ctxt
)
14787 /* opt_pass methods: */
14788 virtual bool gate (function
*) { return (optimize
> 0); }
14789 virtual unsigned int execute (function
*)
14791 return rest_of_handle_combine ();
14794 }; // class pass_combine
14796 } // anon namespace
14799 make_pass_combine (gcc::context
*ctxt
)
14801 return new pass_combine (ctxt
);