1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
43 Global Optimization by Suppression of Partial Redundancies
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
115 Rice University Ph.D. thesis, Apr. 1996
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
125 Advanced Compiler Design and Implementation
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
148 #include "coretypes.h"
156 #include "hard-reg-set.h"
159 #include "insn-config.h"
161 #include "basic-block.h"
163 #include "function.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing
270 /* GCSE global vars. */
273 static FILE *gcse_file
;
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
278 * If we changed any jumps via cprop.
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse
;
283 /* Bitmaps are normally not included in debugging dumps.
284 However it's useful to be able to print them from GDB.
285 We could create special functions for this, but it's simpler to
286 just allow passing stderr to the dump_foo fns. Since stderr can
287 be a macro, we store a copy here. */
288 static FILE *debug_stderr
;
290 /* An obstack for our working variables. */
291 static struct obstack gcse_obstack
;
293 struct reg_use
{rtx reg_rtx
; };
295 /* Hash table of expressions. */
299 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
301 /* Index in the available expression bitmaps. */
303 /* Next entry with the same hash. */
304 struct expr
*next_same_hash
;
305 /* List of anticipatable occurrences in basic blocks in the function.
306 An "anticipatable occurrence" is one that is the first occurrence in the
307 basic block, the operands are not modified in the basic block prior
308 to the occurrence and the output is not used between the start of
309 the block and the occurrence. */
310 struct occr
*antic_occr
;
311 /* List of available occurrence in basic blocks in the function.
312 An "available occurrence" is one that is the last occurrence in the
313 basic block and the operands are not modified by following statements in
314 the basic block [including this insn]. */
315 struct occr
*avail_occr
;
316 /* Non-null if the computation is PRE redundant.
317 The value is the newly created pseudo-reg to record a copy of the
318 expression in all the places that reach the redundant copy. */
322 /* Occurrence of an expression.
323 There is one per basic block. If a pattern appears more than once the
324 last appearance is used [or first for anticipatable expressions]. */
328 /* Next occurrence of this expression. */
330 /* The insn that computes the expression. */
332 /* Nonzero if this [anticipatable] occurrence has been deleted. */
334 /* Nonzero if this [available] occurrence has been copied to
336 /* ??? This is mutually exclusive with deleted_p, so they could share
341 /* Expression and copy propagation hash tables.
342 Each hash table is an array of buckets.
343 ??? It is known that if it were an array of entries, structure elements
344 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
345 not clear whether in the final analysis a sufficient amount of memory would
346 be saved as the size of the available expression bitmaps would be larger
347 [one could build a mapping table without holes afterwards though].
348 Someday I'll perform the computation and figure it out. */
353 This is an array of `expr_hash_table_size' elements. */
356 /* Size of the hash table, in elements. */
359 /* Number of hash table elements. */
360 unsigned int n_elems
;
362 /* Whether the table is expression of copy propagation one. */
366 /* Expression hash table. */
367 static struct hash_table expr_hash_table
;
369 /* Copy propagation hash table. */
370 static struct hash_table set_hash_table
;
372 /* Mapping of uids to cuids.
373 Only real insns get cuids. */
374 static int *uid_cuid
;
376 /* Highest UID in UID_CUID. */
379 /* Get the cuid of an insn. */
380 #ifdef ENABLE_CHECKING
381 #define INSN_CUID(INSN) \
382 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
384 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
387 /* Number of cuids. */
390 /* Mapping of cuids to insns. */
391 static rtx
*cuid_insn
;
393 /* Get insn from cuid. */
394 #define CUID_INSN(CUID) (cuid_insn[CUID])
396 /* Maximum register number in function prior to doing gcse + 1.
397 Registers created during this pass have regno >= max_gcse_regno.
398 This is named with "gcse" to not collide with global of same name. */
399 static unsigned int max_gcse_regno
;
401 /* Table of registers that are modified.
403 For each register, each element is a list of places where the pseudo-reg
406 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
407 requires knowledge of which blocks kill which regs [and thus could use
408 a bitmap instead of the lists `reg_set_table' uses].
410 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
411 num-regs) [however perhaps it may be useful to keep the data as is]. One
412 advantage of recording things this way is that `reg_set_table' is fairly
413 sparse with respect to pseudo regs but for hard regs could be fairly dense
414 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
415 up functions like compute_transp since in the case of pseudo-regs we only
416 need to iterate over the number of times a pseudo-reg is set, not over the
417 number of basic blocks [clearly there is a bit of a slow down in the cases
418 where a pseudo is set more than once in a block, however it is believed
419 that the net effect is to speed things up]. This isn't done for hard-regs
420 because recording call-clobbered hard-regs in `reg_set_table' at each
421 function call can consume a fair bit of memory, and iterating over
422 hard-regs stored this way in compute_transp will be more expensive. */
424 typedef struct reg_set
426 /* The next setting of this register. */
427 struct reg_set
*next
;
428 /* The index of the block where it was set. */
432 static reg_set
**reg_set_table
;
434 /* Size of `reg_set_table'.
435 The table starts out at max_gcse_regno + slop, and is enlarged as
437 static int reg_set_table_size
;
439 /* Amount to grow `reg_set_table' by when it's full. */
440 #define REG_SET_TABLE_SLOP 100
442 /* This is a list of expressions which are MEMs and will be used by load
444 Load motion tracks MEMs which aren't killed by
445 anything except itself. (i.e., loads and stores to a single location).
446 We can then allow movement of these MEM refs with a little special
447 allowance. (all stores copy the same value to the reaching reg used
448 for the loads). This means all values used to store into memory must have
449 no side effects so we can re-issue the setter value.
450 Store Motion uses this structure as an expression table to track stores
451 which look interesting, and might be moveable towards the exit block. */
455 struct expr
* expr
; /* Gcse expression reference for LM. */
456 rtx pattern
; /* Pattern of this mem. */
457 rtx pattern_regs
; /* List of registers mentioned by the mem. */
458 rtx loads
; /* INSN list of loads seen. */
459 rtx stores
; /* INSN list of stores seen. */
460 struct ls_expr
* next
; /* Next in the list. */
461 int invalid
; /* Invalid for some reason. */
462 int index
; /* If it maps to a bitmap index. */
463 unsigned int hash_index
; /* Index when in a hash table. */
464 rtx reaching_reg
; /* Register to use when re-writing. */
467 /* Array of implicit set patterns indexed by basic block index. */
468 static rtx
*implicit_sets
;
470 /* Head of the list of load/store memory refs. */
471 static struct ls_expr
* pre_ldst_mems
= NULL
;
473 /* Bitmap containing one bit for each register in the program.
474 Used when performing GCSE to track which registers have been set since
475 the start of the basic block. */
476 static regset reg_set_bitmap
;
478 /* For each block, a bitmap of registers set in the block.
479 This is used by compute_transp.
480 It is computed during hash table computation and not by compute_sets
481 as it includes registers added since the last pass (or between cprop and
482 gcse) and it's currently not easy to realloc sbitmap vectors. */
483 static sbitmap
*reg_set_in_block
;
485 /* Array, indexed by basic block number for a list of insns which modify
486 memory within that block. */
487 static rtx
* modify_mem_list
;
488 static bitmap modify_mem_list_set
;
490 /* This array parallels modify_mem_list, but is kept canonicalized. */
491 static rtx
* canon_modify_mem_list
;
493 /* Bitmap indexed by block numbers to record which blocks contain
495 static bitmap blocks_with_calls
;
497 /* Various variables for statistics gathering. */
499 /* Memory used in a pass.
500 This isn't intended to be absolutely precise. Its intent is only
501 to keep an eye on memory usage. */
502 static int bytes_used
;
504 /* GCSE substitutions made. */
505 static int gcse_subst_count
;
506 /* Number of copy instructions created. */
507 static int gcse_create_count
;
508 /* Number of local constants propagated. */
509 static int local_const_prop_count
;
510 /* Number of local copys propagated. */
511 static int local_copy_prop_count
;
512 /* Number of global constants propagated. */
513 static int global_const_prop_count
;
514 /* Number of global copys propagated. */
515 static int global_copy_prop_count
;
517 /* For available exprs */
518 static sbitmap
*ae_kill
, *ae_gen
;
520 static void compute_can_copy (void);
521 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
522 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
523 static void *grealloc (void *, size_t);
524 static void *gcse_alloc (unsigned long);
525 static void alloc_gcse_mem (rtx
);
526 static void free_gcse_mem (void);
527 static void alloc_reg_set_mem (int);
528 static void free_reg_set_mem (void);
529 static void record_one_set (int, rtx
);
530 static void record_set_info (rtx
, rtx
, void *);
531 static void compute_sets (rtx
);
532 static void hash_scan_insn (rtx
, struct hash_table
*, int);
533 static void hash_scan_set (rtx
, rtx
, struct hash_table
*);
534 static void hash_scan_clobber (rtx
, rtx
, struct hash_table
*);
535 static void hash_scan_call (rtx
, rtx
, struct hash_table
*);
536 static int want_to_gcse_p (rtx
);
537 static bool can_assign_to_reg_p (rtx
);
538 static bool gcse_constant_p (rtx
);
539 static int oprs_unchanged_p (rtx
, rtx
, int);
540 static int oprs_anticipatable_p (rtx
, rtx
);
541 static int oprs_available_p (rtx
, rtx
);
542 static void insert_expr_in_table (rtx
, enum machine_mode
, rtx
, int, int,
543 struct hash_table
*);
544 static void insert_set_in_table (rtx
, rtx
, struct hash_table
*);
545 static unsigned int hash_expr (rtx
, enum machine_mode
, int *, int);
546 static unsigned int hash_set (int, int);
547 static int expr_equiv_p (rtx
, rtx
);
548 static void record_last_reg_set_info (rtx
, int);
549 static void record_last_mem_set_info (rtx
);
550 static void record_last_set_info (rtx
, rtx
, void *);
551 static void compute_hash_table (struct hash_table
*);
552 static void alloc_hash_table (int, struct hash_table
*, int);
553 static void free_hash_table (struct hash_table
*);
554 static void compute_hash_table_work (struct hash_table
*);
555 static void dump_hash_table (FILE *, const char *, struct hash_table
*);
556 static struct expr
*lookup_set (unsigned int, struct hash_table
*);
557 static struct expr
*next_set (unsigned int, struct expr
*);
558 static void reset_opr_set_tables (void);
559 static int oprs_not_set_p (rtx
, rtx
);
560 static void mark_call (rtx
);
561 static void mark_set (rtx
, rtx
);
562 static void mark_clobber (rtx
, rtx
);
563 static void mark_oprs_set (rtx
);
564 static void alloc_cprop_mem (int, int);
565 static void free_cprop_mem (void);
566 static void compute_transp (rtx
, int, sbitmap
*, int);
567 static void compute_transpout (void);
568 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
569 struct hash_table
*);
570 static void compute_cprop_data (void);
571 static void find_used_regs (rtx
*, void *);
572 static int try_replace_reg (rtx
, rtx
, rtx
);
573 static struct expr
*find_avail_set (int, rtx
);
574 static int cprop_jump (basic_block
, rtx
, rtx
, rtx
, rtx
);
575 static void mems_conflict_for_gcse_p (rtx
, rtx
, void *);
576 static int load_killed_in_block_p (basic_block
, int, rtx
, int);
577 static void canon_list_insert (rtx
, rtx
, void *);
578 static int cprop_insn (rtx
, int);
579 static int cprop (int);
580 static void find_implicit_sets (void);
581 static int one_cprop_pass (int, int, int);
582 static bool constprop_register (rtx
, rtx
, rtx
, int);
583 static struct expr
*find_bypass_set (int, int);
584 static bool reg_killed_on_edge (rtx
, edge
);
585 static int bypass_block (basic_block
, rtx
, rtx
);
586 static int bypass_conditional_jumps (void);
587 static void alloc_pre_mem (int, int);
588 static void free_pre_mem (void);
589 static void compute_pre_data (void);
590 static int pre_expr_reaches_here_p (basic_block
, struct expr
*,
592 static void insert_insn_end_bb (struct expr
*, basic_block
, int);
593 static void pre_insert_copy_insn (struct expr
*, rtx
);
594 static void pre_insert_copies (void);
595 static int pre_delete (void);
596 static int pre_gcse (void);
597 static int one_pre_gcse_pass (int);
598 static void add_label_notes (rtx
, rtx
);
599 static void alloc_code_hoist_mem (int, int);
600 static void free_code_hoist_mem (void);
601 static void compute_code_hoist_vbeinout (void);
602 static void compute_code_hoist_data (void);
603 static int hoist_expr_reaches_here_p (basic_block
, int, basic_block
, char *);
604 static void hoist_code (void);
605 static int one_code_hoisting_pass (void);
606 static rtx
process_insert_insn (struct expr
*);
607 static int pre_edge_insert (struct edge_list
*, struct expr
**);
608 static int pre_expr_reaches_here_p_work (basic_block
, struct expr
*,
609 basic_block
, char *);
610 static struct ls_expr
* ldst_entry (rtx
);
611 static void free_ldst_entry (struct ls_expr
*);
612 static void free_ldst_mems (void);
613 static void print_ldst_list (FILE *);
614 static struct ls_expr
* find_rtx_in_ldst (rtx
);
615 static int enumerate_ldsts (void);
616 static inline struct ls_expr
* first_ls_expr (void);
617 static inline struct ls_expr
* next_ls_expr (struct ls_expr
*);
618 static int simple_mem (rtx
);
619 static void invalidate_any_buried_refs (rtx
);
620 static void compute_ld_motion_mems (void);
621 static void trim_ld_motion_mems (void);
622 static void update_ld_motion_stores (struct expr
*);
623 static void reg_set_info (rtx
, rtx
, void *);
624 static void reg_clear_last_set (rtx
, rtx
, void *);
625 static bool store_ops_ok (rtx
, int *);
626 static rtx
extract_mentioned_regs (rtx
);
627 static rtx
extract_mentioned_regs_helper (rtx
, rtx
);
628 static void find_moveable_store (rtx
, int *, int *);
629 static int compute_store_table (void);
630 static bool load_kills_store (rtx
, rtx
, int);
631 static bool find_loads (rtx
, rtx
, int);
632 static bool store_killed_in_insn (rtx
, rtx
, rtx
, int);
633 static bool store_killed_after (rtx
, rtx
, rtx
, basic_block
, int *, rtx
*);
634 static bool store_killed_before (rtx
, rtx
, rtx
, basic_block
, int *);
635 static void build_store_vectors (void);
636 static void insert_insn_start_bb (rtx
, basic_block
);
637 static int insert_store (struct ls_expr
*, edge
);
638 static void remove_reachable_equiv_notes (basic_block
, struct ls_expr
*);
639 static void replace_store_insn (rtx
, rtx
, basic_block
, struct ls_expr
*);
640 static void delete_store (struct ls_expr
*, basic_block
);
641 static void free_store_memory (void);
642 static void store_motion (void);
643 static void free_insn_expr_list_list (rtx
*);
644 static void clear_modify_mem_tables (void);
645 static void free_modify_mem_tables (void);
646 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx
);
647 static void local_cprop_find_used_regs (rtx
*, void *);
648 static bool do_local_cprop (rtx
, rtx
, int, rtx
*);
649 static bool adjust_libcall_notes (rtx
, rtx
, rtx
, rtx
*);
650 static void local_cprop_pass (int);
651 static bool is_too_expensive (const char *);
654 /* Entry point for global common subexpression elimination.
655 F is the first instruction in the function. Return nonzero if a
659 gcse_main (rtx f
, FILE *file
)
662 /* Bytes used at start of pass. */
663 int initial_bytes_used
;
664 /* Maximum number of bytes used by a pass. */
666 /* Point to release obstack data from for each pass. */
667 char *gcse_obstack_bottom
;
669 /* We do not construct an accurate cfg in functions which call
670 setjmp, so just punt to be safe. */
671 if (current_function_calls_setjmp
)
674 /* Assume that we do not need to run jump optimizations after gcse. */
675 run_jump_opt_after_gcse
= 0;
677 /* For calling dump_foo fns from gdb. */
678 debug_stderr
= stderr
;
681 /* Identify the basic block information for this function, including
682 successors and predecessors. */
683 max_gcse_regno
= max_reg_num ();
686 dump_flow_info (file
);
688 /* Return if there's nothing to do, or it is too expensive. */
689 if (n_basic_blocks
<= 1 || is_too_expensive (_("GCSE disabled")))
692 gcc_obstack_init (&gcse_obstack
);
696 init_alias_analysis ();
697 /* Record where pseudo-registers are set. This data is kept accurate
698 during each pass. ??? We could also record hard-reg information here
699 [since it's unchanging], however it is currently done during hash table
702 It may be tempting to compute MEM set information here too, but MEM sets
703 will be subject to code motion one day and thus we need to compute
704 information about memory sets when we build the hash tables. */
706 alloc_reg_set_mem (max_gcse_regno
);
710 initial_bytes_used
= bytes_used
;
712 gcse_obstack_bottom
= gcse_alloc (1);
714 while (changed
&& pass
< MAX_GCSE_PASSES
)
718 fprintf (file
, "GCSE pass %d\n\n", pass
+ 1);
720 /* Initialize bytes_used to the space for the pred/succ lists,
721 and the reg_set_table data. */
722 bytes_used
= initial_bytes_used
;
724 /* Each pass may create new registers, so recalculate each time. */
725 max_gcse_regno
= max_reg_num ();
729 /* Don't allow constant propagation to modify jumps
731 timevar_push (TV_CPROP1
);
732 changed
= one_cprop_pass (pass
+ 1, 0, 0);
733 timevar_pop (TV_CPROP1
);
739 timevar_push (TV_PRE
);
740 changed
|= one_pre_gcse_pass (pass
+ 1);
741 /* We may have just created new basic blocks. Release and
742 recompute various things which are sized on the number of
746 free_modify_mem_tables ();
747 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
748 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
751 alloc_reg_set_mem (max_reg_num ());
753 run_jump_opt_after_gcse
= 1;
754 timevar_pop (TV_PRE
);
757 if (max_pass_bytes
< bytes_used
)
758 max_pass_bytes
= bytes_used
;
760 /* Free up memory, then reallocate for code hoisting. We can
761 not re-use the existing allocated memory because the tables
762 will not have info for the insns or registers created by
763 partial redundancy elimination. */
766 /* It does not make sense to run code hoisting unless we are optimizing
767 for code size -- it rarely makes programs faster, and can make
768 them bigger if we did partial redundancy elimination (when optimizing
769 for space, we don't run the partial redundancy algorithms). */
772 timevar_push (TV_HOIST
);
773 max_gcse_regno
= max_reg_num ();
775 changed
|= one_code_hoisting_pass ();
778 if (max_pass_bytes
< bytes_used
)
779 max_pass_bytes
= bytes_used
;
780 timevar_pop (TV_HOIST
);
785 fprintf (file
, "\n");
789 obstack_free (&gcse_obstack
, gcse_obstack_bottom
);
793 /* Do one last pass of copy propagation, including cprop into
794 conditional jumps. */
796 max_gcse_regno
= max_reg_num ();
798 /* This time, go ahead and allow cprop to alter jumps. */
799 timevar_push (TV_CPROP2
);
800 one_cprop_pass (pass
+ 1, 1, 0);
801 timevar_pop (TV_CPROP2
);
806 fprintf (file
, "GCSE of %s: %d basic blocks, ",
807 current_function_name (), n_basic_blocks
);
808 fprintf (file
, "%d pass%s, %d bytes\n\n",
809 pass
, pass
> 1 ? "es" : "", max_pass_bytes
);
812 obstack_free (&gcse_obstack
, NULL
);
815 /* We are finished with alias. */
816 end_alias_analysis ();
817 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
819 if (!optimize_size
&& flag_gcse_sm
)
821 timevar_push (TV_LSM
);
823 timevar_pop (TV_LSM
);
826 /* Record where pseudo-registers are set. */
827 return run_jump_opt_after_gcse
;
830 /* Misc. utilities. */
832 /* Nonzero for each mode that supports (set (reg) (reg)).
833 This is trivially true for integer and floating point values.
834 It may or may not be true for condition codes. */
835 static char can_copy
[(int) NUM_MACHINE_MODES
];
837 /* Compute which modes support reg/reg copy operations. */
840 compute_can_copy (void)
843 #ifndef AVOID_CCMODE_COPIES
846 memset (can_copy
, 0, NUM_MACHINE_MODES
);
849 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
850 if (GET_MODE_CLASS (i
) == MODE_CC
)
852 #ifdef AVOID_CCMODE_COPIES
855 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
856 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
857 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
867 /* Returns whether the mode supports reg/reg copy operations. */
870 can_copy_p (enum machine_mode mode
)
872 static bool can_copy_init_p
= false;
874 if (! can_copy_init_p
)
877 can_copy_init_p
= true;
880 return can_copy
[mode
] != 0;
883 /* Cover function to xmalloc to record bytes allocated. */
886 gmalloc (size_t size
)
889 return xmalloc (size
);
892 /* Cover function to xcalloc to record bytes allocated. */
895 gcalloc (size_t nelem
, size_t elsize
)
897 bytes_used
+= nelem
* elsize
;
898 return xcalloc (nelem
, elsize
);
901 /* Cover function to xrealloc.
902 We don't record the additional size since we don't know it.
903 It won't affect memory usage stats much anyway. */
906 grealloc (void *ptr
, size_t size
)
908 return xrealloc (ptr
, size
);
911 /* Cover function to obstack_alloc. */
914 gcse_alloc (unsigned long size
)
917 return obstack_alloc (&gcse_obstack
, size
);
920 /* Allocate memory for the cuid mapping array,
921 and reg/memory set tracking tables.
923 This is called at the start of each pass. */
926 alloc_gcse_mem (rtx f
)
931 /* Find the largest UID and create a mapping from UIDs to CUIDs.
932 CUIDs are like UIDs except they increase monotonically, have no gaps,
933 and only apply to real insns. */
935 max_uid
= get_max_uid ();
936 uid_cuid
= gcalloc (max_uid
+ 1, sizeof (int));
937 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
940 uid_cuid
[INSN_UID (insn
)] = i
++;
942 uid_cuid
[INSN_UID (insn
)] = i
;
945 /* Create a table mapping cuids to insns. */
948 cuid_insn
= gcalloc (max_cuid
+ 1, sizeof (rtx
));
949 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
951 CUID_INSN (i
++) = insn
;
953 /* Allocate vars to track sets of regs. */
954 reg_set_bitmap
= BITMAP_ALLOC (NULL
);
956 /* Allocate vars to track sets of regs, memory per block. */
957 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
, max_gcse_regno
);
958 /* Allocate array to keep a list of insns which modify memory in each
960 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
961 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
962 modify_mem_list_set
= BITMAP_ALLOC (NULL
);
963 blocks_with_calls
= BITMAP_ALLOC (NULL
);
966 /* Free memory allocated by alloc_gcse_mem. */
974 BITMAP_FREE (reg_set_bitmap
);
976 sbitmap_vector_free (reg_set_in_block
);
977 free_modify_mem_tables ();
978 BITMAP_FREE (modify_mem_list_set
);
979 BITMAP_FREE (blocks_with_calls
);
982 /* Compute the local properties of each recorded expression.
984 Local properties are those that are defined by the block, irrespective of
987 An expression is transparent in a block if its operands are not modified
990 An expression is computed (locally available) in a block if it is computed
991 at least once and expression would contain the same value if the
992 computation was moved to the end of the block.
994 An expression is locally anticipatable in a block if it is computed at
995 least once and expression would contain the same value if the computation
996 was moved to the beginning of the block.
998 We call this routine for cprop, pre and code hoisting. They all compute
999 basically the same information and thus can easily share this code.
1001 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1002 properties. If NULL, then it is not necessary to compute or record that
1003 particular property.
1005 TABLE controls which hash table to look at. If it is set hash table,
1006 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1010 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
,
1011 struct hash_table
*table
)
1015 /* Initialize any bitmaps that were passed in. */
1019 sbitmap_vector_zero (transp
, last_basic_block
);
1021 sbitmap_vector_ones (transp
, last_basic_block
);
1025 sbitmap_vector_zero (comp
, last_basic_block
);
1027 sbitmap_vector_zero (antloc
, last_basic_block
);
1029 for (i
= 0; i
< table
->size
; i
++)
1033 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1035 int indx
= expr
->bitmap_index
;
1038 /* The expression is transparent in this block if it is not killed.
1039 We start by assuming all are transparent [none are killed], and
1040 then reset the bits for those that are. */
1042 compute_transp (expr
->expr
, indx
, transp
, table
->set_p
);
1044 /* The occurrences recorded in antic_occr are exactly those that
1045 we want to set to nonzero in ANTLOC. */
1047 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1049 SET_BIT (antloc
[BLOCK_NUM (occr
->insn
)], indx
);
1051 /* While we're scanning the table, this is a good place to
1053 occr
->deleted_p
= 0;
1056 /* The occurrences recorded in avail_occr are exactly those that
1057 we want to set to nonzero in COMP. */
1059 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1061 SET_BIT (comp
[BLOCK_NUM (occr
->insn
)], indx
);
1063 /* While we're scanning the table, this is a good place to
1068 /* While we're scanning the table, this is a good place to
1070 expr
->reaching_reg
= 0;
1075 /* Register set information.
1077 `reg_set_table' records where each register is set or otherwise
1080 static struct obstack reg_set_obstack
;
1083 alloc_reg_set_mem (int n_regs
)
1085 reg_set_table_size
= n_regs
+ REG_SET_TABLE_SLOP
;
1086 reg_set_table
= gcalloc (reg_set_table_size
, sizeof (struct reg_set
*));
1088 gcc_obstack_init (®_set_obstack
);
1092 free_reg_set_mem (void)
1094 free (reg_set_table
);
1095 obstack_free (®_set_obstack
, NULL
);
1098 /* Record REGNO in the reg_set table. */
1101 record_one_set (int regno
, rtx insn
)
1103 /* Allocate a new reg_set element and link it onto the list. */
1104 struct reg_set
*new_reg_info
;
1106 /* If the table isn't big enough, enlarge it. */
1107 if (regno
>= reg_set_table_size
)
1109 int new_size
= regno
+ REG_SET_TABLE_SLOP
;
1111 reg_set_table
= grealloc (reg_set_table
,
1112 new_size
* sizeof (struct reg_set
*));
1113 memset (reg_set_table
+ reg_set_table_size
, 0,
1114 (new_size
- reg_set_table_size
) * sizeof (struct reg_set
*));
1115 reg_set_table_size
= new_size
;
1118 new_reg_info
= obstack_alloc (®_set_obstack
, sizeof (struct reg_set
));
1119 bytes_used
+= sizeof (struct reg_set
);
1120 new_reg_info
->bb_index
= BLOCK_NUM (insn
);
1121 new_reg_info
->next
= reg_set_table
[regno
];
1122 reg_set_table
[regno
] = new_reg_info
;
1125 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1126 an insn. The DATA is really the instruction in which the SET is
1130 record_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
1132 rtx record_set_insn
= (rtx
) data
;
1134 if (REG_P (dest
) && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
1135 record_one_set (REGNO (dest
), record_set_insn
);
1138 /* Scan the function and record each set of each pseudo-register.
1140 This is called once, at the start of the gcse pass. See the comments for
1141 `reg_set_table' for further documentation. */
1144 compute_sets (rtx f
)
1148 for (insn
= f
; insn
!= 0; insn
= NEXT_INSN (insn
))
1150 note_stores (PATTERN (insn
), record_set_info
, insn
);
1153 /* Hash table support. */
1155 struct reg_avail_info
1157 basic_block last_bb
;
1162 static struct reg_avail_info
*reg_avail_info
;
1163 static basic_block current_bb
;
1166 /* See whether X, the source of a set, is something we want to consider for
1170 want_to_gcse_p (rtx x
)
1172 switch (GET_CODE (x
))
1183 return can_assign_to_reg_p (x
);
1187 /* Used internally by can_assign_to_reg_p. */
1189 static GTY(()) rtx test_insn
;
1191 /* Return true if we can assign X to a pseudo register. */
1194 can_assign_to_reg_p (rtx x
)
1196 int num_clobbers
= 0;
1199 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1200 if (general_operand (x
, GET_MODE (x
)))
1202 else if (GET_MODE (x
) == VOIDmode
)
1205 /* Otherwise, check if we can make a valid insn from it. First initialize
1206 our test insn if we haven't already. */
1210 = make_insn_raw (gen_rtx_SET (VOIDmode
,
1211 gen_rtx_REG (word_mode
,
1212 FIRST_PSEUDO_REGISTER
* 2),
1214 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
1217 /* Now make an insn like the one we would make when GCSE'ing and see if
1219 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
1220 SET_SRC (PATTERN (test_insn
)) = x
;
1221 return ((icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
)) >= 0
1222 && (num_clobbers
== 0 || ! added_clobbers_hard_reg_p (icode
)));
1225 /* Return nonzero if the operands of expression X are unchanged from the
1226 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1227 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1230 oprs_unchanged_p (rtx x
, rtx insn
, int avail_p
)
1239 code
= GET_CODE (x
);
1244 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
1246 if (info
->last_bb
!= current_bb
)
1249 return info
->last_set
< INSN_CUID (insn
);
1251 return info
->first_set
>= INSN_CUID (insn
);
1255 if (load_killed_in_block_p (current_bb
, INSN_CUID (insn
),
1259 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
1285 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1289 /* If we are about to do the last recursive call needed at this
1290 level, change it into iteration. This function is called enough
1293 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
1295 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
1298 else if (fmt
[i
] == 'E')
1299 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1300 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
1307 /* Used for communication between mems_conflict_for_gcse_p and
1308 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1309 conflict between two memory references. */
1310 static int gcse_mems_conflict_p
;
1312 /* Used for communication between mems_conflict_for_gcse_p and
1313 load_killed_in_block_p. A memory reference for a load instruction,
1314 mems_conflict_for_gcse_p will see if a memory store conflicts with
1315 this memory load. */
1316 static rtx gcse_mem_operand
;
1318 /* DEST is the output of an instruction. If it is a memory reference, and
1319 possibly conflicts with the load found in gcse_mem_operand, then set
1320 gcse_mems_conflict_p to a nonzero value. */
1323 mems_conflict_for_gcse_p (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
1324 void *data ATTRIBUTE_UNUSED
)
1326 while (GET_CODE (dest
) == SUBREG
1327 || GET_CODE (dest
) == ZERO_EXTRACT
1328 || GET_CODE (dest
) == STRICT_LOW_PART
)
1329 dest
= XEXP (dest
, 0);
1331 /* If DEST is not a MEM, then it will not conflict with the load. Note
1332 that function calls are assumed to clobber memory, but are handled
1337 /* If we are setting a MEM in our list of specially recognized MEMs,
1338 don't mark as killed this time. */
1340 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
1342 if (!find_rtx_in_ldst (dest
))
1343 gcse_mems_conflict_p
= 1;
1347 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
1349 gcse_mems_conflict_p
= 1;
1352 /* Return nonzero if the expression in X (a memory reference) is killed
1353 in block BB before or after the insn with the CUID in UID_LIMIT.
1354 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1357 To check the entire block, set UID_LIMIT to max_uid + 1 and
1361 load_killed_in_block_p (basic_block bb
, int uid_limit
, rtx x
, int avail_p
)
1363 rtx list_entry
= modify_mem_list
[bb
->index
];
1367 /* Ignore entries in the list that do not apply. */
1369 && INSN_CUID (XEXP (list_entry
, 0)) < uid_limit
)
1371 && INSN_CUID (XEXP (list_entry
, 0)) > uid_limit
))
1373 list_entry
= XEXP (list_entry
, 1);
1377 setter
= XEXP (list_entry
, 0);
1379 /* If SETTER is a call everything is clobbered. Note that calls
1380 to pure functions are never put on the list, so we need not
1381 worry about them. */
1382 if (CALL_P (setter
))
1385 /* SETTER must be an INSN of some kind that sets memory. Call
1386 note_stores to examine each hunk of memory that is modified.
1388 The note_stores interface is pretty limited, so we have to
1389 communicate via global variables. Yuk. */
1390 gcse_mem_operand
= x
;
1391 gcse_mems_conflict_p
= 0;
1392 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1393 if (gcse_mems_conflict_p
)
1395 list_entry
= XEXP (list_entry
, 1);
1400 /* Return nonzero if the operands of expression X are unchanged from
1401 the start of INSN's basic block up to but not including INSN. */
1404 oprs_anticipatable_p (rtx x
, rtx insn
)
1406 return oprs_unchanged_p (x
, insn
, 0);
1409 /* Return nonzero if the operands of expression X are unchanged from
1410 INSN to the end of INSN's basic block. */
1413 oprs_available_p (rtx x
, rtx insn
)
1415 return oprs_unchanged_p (x
, insn
, 1);
1418 /* Hash expression X.
1420 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1421 indicating if a volatile operand is found or if the expression contains
1422 something we don't want to insert in the table. HASH_TABLE_SIZE is
1423 the current size of the hash table to be probed. */
1426 hash_expr (rtx x
, enum machine_mode mode
, int *do_not_record_p
,
1427 int hash_table_size
)
1431 *do_not_record_p
= 0;
1433 hash
= hash_rtx (x
, mode
, do_not_record_p
,
1434 NULL
, /*have_reg_qty=*/false);
1435 return hash
% hash_table_size
;
1438 /* Hash a set of register REGNO.
1440 Sets are hashed on the register that is set. This simplifies the PRE copy
1443 ??? May need to make things more elaborate. Later, as necessary. */
1446 hash_set (int regno
, int hash_table_size
)
1451 return hash
% hash_table_size
;
1454 /* Return nonzero if exp1 is equivalent to exp2. */
1457 expr_equiv_p (rtx x
, rtx y
)
1459 return exp_equiv_p (x
, y
, 0, true);
1462 /* Insert expression X in INSN in the hash TABLE.
1463 If it is already present, record it as the last occurrence in INSN's
1466 MODE is the mode of the value X is being stored into.
1467 It is only used if X is a CONST_INT.
1469 ANTIC_P is nonzero if X is an anticipatable expression.
1470 AVAIL_P is nonzero if X is an available expression. */
1473 insert_expr_in_table (rtx x
, enum machine_mode mode
, rtx insn
, int antic_p
,
1474 int avail_p
, struct hash_table
*table
)
1476 int found
, do_not_record_p
;
1478 struct expr
*cur_expr
, *last_expr
= NULL
;
1479 struct occr
*antic_occr
, *avail_occr
;
1481 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1483 /* Do not insert expression in table if it contains volatile operands,
1484 or if hash_expr determines the expression is something we don't want
1485 to or can't handle. */
1486 if (do_not_record_p
)
1489 cur_expr
= table
->table
[hash
];
1492 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1494 /* If the expression isn't found, save a pointer to the end of
1496 last_expr
= cur_expr
;
1497 cur_expr
= cur_expr
->next_same_hash
;
1502 cur_expr
= gcse_alloc (sizeof (struct expr
));
1503 bytes_used
+= sizeof (struct expr
);
1504 if (table
->table
[hash
] == NULL
)
1505 /* This is the first pattern that hashed to this index. */
1506 table
->table
[hash
] = cur_expr
;
1508 /* Add EXPR to end of this hash chain. */
1509 last_expr
->next_same_hash
= cur_expr
;
1511 /* Set the fields of the expr element. */
1513 cur_expr
->bitmap_index
= table
->n_elems
++;
1514 cur_expr
->next_same_hash
= NULL
;
1515 cur_expr
->antic_occr
= NULL
;
1516 cur_expr
->avail_occr
= NULL
;
1519 /* Now record the occurrence(s). */
1522 antic_occr
= cur_expr
->antic_occr
;
1524 if (antic_occr
&& BLOCK_NUM (antic_occr
->insn
) != BLOCK_NUM (insn
))
1528 /* Found another instance of the expression in the same basic block.
1529 Prefer the currently recorded one. We want the first one in the
1530 block and the block is scanned from start to end. */
1531 ; /* nothing to do */
1534 /* First occurrence of this expression in this basic block. */
1535 antic_occr
= gcse_alloc (sizeof (struct occr
));
1536 bytes_used
+= sizeof (struct occr
);
1537 antic_occr
->insn
= insn
;
1538 antic_occr
->next
= cur_expr
->antic_occr
;
1539 antic_occr
->deleted_p
= 0;
1540 cur_expr
->antic_occr
= antic_occr
;
1546 avail_occr
= cur_expr
->avail_occr
;
1548 if (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) == BLOCK_NUM (insn
))
1550 /* Found another instance of the expression in the same basic block.
1551 Prefer this occurrence to the currently recorded one. We want
1552 the last one in the block and the block is scanned from start
1554 avail_occr
->insn
= insn
;
1558 /* First occurrence of this expression in this basic block. */
1559 avail_occr
= gcse_alloc (sizeof (struct occr
));
1560 bytes_used
+= sizeof (struct occr
);
1561 avail_occr
->insn
= insn
;
1562 avail_occr
->next
= cur_expr
->avail_occr
;
1563 avail_occr
->deleted_p
= 0;
1564 cur_expr
->avail_occr
= avail_occr
;
1569 /* Insert pattern X in INSN in the hash table.
1570 X is a SET of a reg to either another reg or a constant.
1571 If it is already present, record it as the last occurrence in INSN's
1575 insert_set_in_table (rtx x
, rtx insn
, struct hash_table
*table
)
1579 struct expr
*cur_expr
, *last_expr
= NULL
;
1580 struct occr
*cur_occr
;
1582 gcc_assert (GET_CODE (x
) == SET
&& REG_P (SET_DEST (x
)));
1584 hash
= hash_set (REGNO (SET_DEST (x
)), table
->size
);
1586 cur_expr
= table
->table
[hash
];
1589 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1591 /* If the expression isn't found, save a pointer to the end of
1593 last_expr
= cur_expr
;
1594 cur_expr
= cur_expr
->next_same_hash
;
1599 cur_expr
= gcse_alloc (sizeof (struct expr
));
1600 bytes_used
+= sizeof (struct expr
);
1601 if (table
->table
[hash
] == NULL
)
1602 /* This is the first pattern that hashed to this index. */
1603 table
->table
[hash
] = cur_expr
;
1605 /* Add EXPR to end of this hash chain. */
1606 last_expr
->next_same_hash
= cur_expr
;
1608 /* Set the fields of the expr element.
1609 We must copy X because it can be modified when copy propagation is
1610 performed on its operands. */
1611 cur_expr
->expr
= copy_rtx (x
);
1612 cur_expr
->bitmap_index
= table
->n_elems
++;
1613 cur_expr
->next_same_hash
= NULL
;
1614 cur_expr
->antic_occr
= NULL
;
1615 cur_expr
->avail_occr
= NULL
;
1618 /* Now record the occurrence. */
1619 cur_occr
= cur_expr
->avail_occr
;
1621 if (cur_occr
&& BLOCK_NUM (cur_occr
->insn
) == BLOCK_NUM (insn
))
1623 /* Found another instance of the expression in the same basic block.
1624 Prefer this occurrence to the currently recorded one. We want
1625 the last one in the block and the block is scanned from start
1627 cur_occr
->insn
= insn
;
1631 /* First occurrence of this expression in this basic block. */
1632 cur_occr
= gcse_alloc (sizeof (struct occr
));
1633 bytes_used
+= sizeof (struct occr
);
1635 cur_occr
->insn
= insn
;
1636 cur_occr
->next
= cur_expr
->avail_occr
;
1637 cur_occr
->deleted_p
= 0;
1638 cur_expr
->avail_occr
= cur_occr
;
1642 /* Determine whether the rtx X should be treated as a constant for
1643 the purposes of GCSE's constant propagation. */
1646 gcse_constant_p (rtx x
)
1648 /* Consider a COMPARE of two integers constant. */
1649 if (GET_CODE (x
) == COMPARE
1650 && GET_CODE (XEXP (x
, 0)) == CONST_INT
1651 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1654 /* Consider a COMPARE of the same registers is a constant
1655 if they are not floating point registers. */
1656 if (GET_CODE(x
) == COMPARE
1657 && REG_P (XEXP (x
, 0)) && REG_P (XEXP (x
, 1))
1658 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 1))
1659 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
1660 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 1))))
1663 return CONSTANT_P (x
);
1666 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1670 hash_scan_set (rtx pat
, rtx insn
, struct hash_table
*table
)
1672 rtx src
= SET_SRC (pat
);
1673 rtx dest
= SET_DEST (pat
);
1676 if (GET_CODE (src
) == CALL
)
1677 hash_scan_call (src
, insn
, table
);
1679 else if (REG_P (dest
))
1681 unsigned int regno
= REGNO (dest
);
1684 /* If this is a single set and we are doing constant propagation,
1685 see if a REG_NOTE shows this equivalent to a constant. */
1686 if (table
->set_p
&& (note
= find_reg_equal_equiv_note (insn
)) != 0
1687 && gcse_constant_p (XEXP (note
, 0)))
1688 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
1690 /* Only record sets of pseudo-regs in the hash table. */
1692 && regno
>= FIRST_PSEUDO_REGISTER
1693 /* Don't GCSE something if we can't do a reg/reg copy. */
1694 && can_copy_p (GET_MODE (dest
))
1695 /* GCSE commonly inserts instruction after the insn. We can't
1696 do that easily for EH_REGION notes so disable GCSE on these
1698 && !find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1699 /* Is SET_SRC something we want to gcse? */
1700 && want_to_gcse_p (src
)
1701 /* Don't CSE a nop. */
1702 && ! set_noop_p (pat
)
1703 /* Don't GCSE if it has attached REG_EQUIV note.
1704 At this point this only function parameters should have
1705 REG_EQUIV notes and if the argument slot is used somewhere
1706 explicitly, it means address of parameter has been taken,
1707 so we should not extend the lifetime of the pseudo. */
1708 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1709 || ! MEM_P (XEXP (note
, 0))))
1711 /* An expression is not anticipatable if its operands are
1712 modified before this insn or if this is not the only SET in
1714 int antic_p
= oprs_anticipatable_p (src
, insn
) && single_set (insn
);
1715 /* An expression is not available if its operands are
1716 subsequently modified, including this insn. It's also not
1717 available if this is a branch, because we can't insert
1718 a set after the branch. */
1719 int avail_p
= (oprs_available_p (src
, insn
)
1720 && ! JUMP_P (insn
));
1722 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
, table
);
1725 /* Record sets for constant/copy propagation. */
1726 else if (table
->set_p
1727 && regno
>= FIRST_PSEUDO_REGISTER
1729 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
1730 && can_copy_p (GET_MODE (dest
))
1731 && REGNO (src
) != regno
)
1732 || gcse_constant_p (src
))
1733 /* A copy is not available if its src or dest is subsequently
1734 modified. Here we want to search from INSN+1 on, but
1735 oprs_available_p searches from INSN on. */
1736 && (insn
== BB_END (BLOCK_FOR_INSN (insn
))
1737 || ((tmp
= next_nonnote_insn (insn
)) != NULL_RTX
1738 && oprs_available_p (pat
, tmp
))))
1739 insert_set_in_table (pat
, insn
, table
);
1741 /* In case of store we want to consider the memory value as available in
1742 the REG stored in that memory. This makes it possible to remove
1743 redundant loads from due to stores to the same location. */
1744 else if (flag_gcse_las
&& REG_P (src
) && MEM_P (dest
))
1746 unsigned int regno
= REGNO (src
);
1748 /* Do not do this for constant/copy propagation. */
1750 /* Only record sets of pseudo-regs in the hash table. */
1751 && regno
>= FIRST_PSEUDO_REGISTER
1752 /* Don't GCSE something if we can't do a reg/reg copy. */
1753 && can_copy_p (GET_MODE (src
))
1754 /* GCSE commonly inserts instruction after the insn. We can't
1755 do that easily for EH_REGION notes so disable GCSE on these
1757 && ! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1758 /* Is SET_DEST something we want to gcse? */
1759 && want_to_gcse_p (dest
)
1760 /* Don't CSE a nop. */
1761 && ! set_noop_p (pat
)
1762 /* Don't GCSE if it has attached REG_EQUIV note.
1763 At this point this only function parameters should have
1764 REG_EQUIV notes and if the argument slot is used somewhere
1765 explicitly, it means address of parameter has been taken,
1766 so we should not extend the lifetime of the pseudo. */
1767 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1768 || ! MEM_P (XEXP (note
, 0))))
1770 /* Stores are never anticipatable. */
1772 /* An expression is not available if its operands are
1773 subsequently modified, including this insn. It's also not
1774 available if this is a branch, because we can't insert
1775 a set after the branch. */
1776 int avail_p
= oprs_available_p (dest
, insn
)
1779 /* Record the memory expression (DEST) in the hash table. */
1780 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
1781 antic_p
, avail_p
, table
);
1787 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1788 struct hash_table
*table ATTRIBUTE_UNUSED
)
1790 /* Currently nothing to do. */
1794 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1795 struct hash_table
*table ATTRIBUTE_UNUSED
)
1797 /* Currently nothing to do. */
1800 /* Process INSN and add hash table entries as appropriate.
1802 Only available expressions that set a single pseudo-reg are recorded.
1804 Single sets in a PARALLEL could be handled, but it's an extra complication
1805 that isn't dealt with right now. The trick is handling the CLOBBERs that
1806 are also in the PARALLEL. Later.
1808 If SET_P is nonzero, this is for the assignment hash table,
1809 otherwise it is for the expression hash table.
1810 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1811 not record any expressions. */
1814 hash_scan_insn (rtx insn
, struct hash_table
*table
, int in_libcall_block
)
1816 rtx pat
= PATTERN (insn
);
1819 if (in_libcall_block
)
1822 /* Pick out the sets of INSN and for other forms of instructions record
1823 what's been modified. */
1825 if (GET_CODE (pat
) == SET
)
1826 hash_scan_set (pat
, insn
, table
);
1827 else if (GET_CODE (pat
) == PARALLEL
)
1828 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1830 rtx x
= XVECEXP (pat
, 0, i
);
1832 if (GET_CODE (x
) == SET
)
1833 hash_scan_set (x
, insn
, table
);
1834 else if (GET_CODE (x
) == CLOBBER
)
1835 hash_scan_clobber (x
, insn
, table
);
1836 else if (GET_CODE (x
) == CALL
)
1837 hash_scan_call (x
, insn
, table
);
1840 else if (GET_CODE (pat
) == CLOBBER
)
1841 hash_scan_clobber (pat
, insn
, table
);
1842 else if (GET_CODE (pat
) == CALL
)
1843 hash_scan_call (pat
, insn
, table
);
1847 dump_hash_table (FILE *file
, const char *name
, struct hash_table
*table
)
1850 /* Flattened out table, so it's printed in proper order. */
1851 struct expr
**flat_table
;
1852 unsigned int *hash_val
;
1855 flat_table
= xcalloc (table
->n_elems
, sizeof (struct expr
*));
1856 hash_val
= xmalloc (table
->n_elems
* sizeof (unsigned int));
1858 for (i
= 0; i
< (int) table
->size
; i
++)
1859 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1861 flat_table
[expr
->bitmap_index
] = expr
;
1862 hash_val
[expr
->bitmap_index
] = i
;
1865 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
1866 name
, table
->size
, table
->n_elems
);
1868 for (i
= 0; i
< (int) table
->n_elems
; i
++)
1869 if (flat_table
[i
] != 0)
1871 expr
= flat_table
[i
];
1872 fprintf (file
, "Index %d (hash value %d)\n ",
1873 expr
->bitmap_index
, hash_val
[i
]);
1874 print_rtl (file
, expr
->expr
);
1875 fprintf (file
, "\n");
1878 fprintf (file
, "\n");
1884 /* Record register first/last/block set information for REGNO in INSN.
1886 first_set records the first place in the block where the register
1887 is set and is used to compute "anticipatability".
1889 last_set records the last place in the block where the register
1890 is set and is used to compute "availability".
1892 last_bb records the block for which first_set and last_set are
1893 valid, as a quick test to invalidate them.
1895 reg_set_in_block records whether the register is set in the block
1896 and is used to compute "transparency". */
1899 record_last_reg_set_info (rtx insn
, int regno
)
1901 struct reg_avail_info
*info
= ®_avail_info
[regno
];
1902 int cuid
= INSN_CUID (insn
);
1904 info
->last_set
= cuid
;
1905 if (info
->last_bb
!= current_bb
)
1907 info
->last_bb
= current_bb
;
1908 info
->first_set
= cuid
;
1909 SET_BIT (reg_set_in_block
[current_bb
->index
], regno
);
1914 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1915 Note we store a pair of elements in the list, so they have to be
1916 taken off pairwise. */
1919 canon_list_insert (rtx dest ATTRIBUTE_UNUSED
, rtx unused1 ATTRIBUTE_UNUSED
,
1922 rtx dest_addr
, insn
;
1925 while (GET_CODE (dest
) == SUBREG
1926 || GET_CODE (dest
) == ZERO_EXTRACT
1927 || GET_CODE (dest
) == STRICT_LOW_PART
)
1928 dest
= XEXP (dest
, 0);
1930 /* If DEST is not a MEM, then it will not conflict with a load. Note
1931 that function calls are assumed to clobber memory, but are handled
1937 dest_addr
= get_addr (XEXP (dest
, 0));
1938 dest_addr
= canon_rtx (dest_addr
);
1939 insn
= (rtx
) v_insn
;
1940 bb
= BLOCK_NUM (insn
);
1942 canon_modify_mem_list
[bb
] =
1943 alloc_EXPR_LIST (VOIDmode
, dest_addr
, canon_modify_mem_list
[bb
]);
1944 canon_modify_mem_list
[bb
] =
1945 alloc_EXPR_LIST (VOIDmode
, dest
, canon_modify_mem_list
[bb
]);
1948 /* Record memory modification information for INSN. We do not actually care
1949 about the memory location(s) that are set, or even how they are set (consider
1950 a CALL_INSN). We merely need to record which insns modify memory. */
1953 record_last_mem_set_info (rtx insn
)
1955 int bb
= BLOCK_NUM (insn
);
1957 /* load_killed_in_block_p will handle the case of calls clobbering
1959 modify_mem_list
[bb
] = alloc_INSN_LIST (insn
, modify_mem_list
[bb
]);
1960 bitmap_set_bit (modify_mem_list_set
, bb
);
1964 /* Note that traversals of this loop (other than for free-ing)
1965 will break after encountering a CALL_INSN. So, there's no
1966 need to insert a pair of items, as canon_list_insert does. */
1967 canon_modify_mem_list
[bb
] =
1968 alloc_INSN_LIST (insn
, canon_modify_mem_list
[bb
]);
1969 bitmap_set_bit (blocks_with_calls
, bb
);
1972 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
1975 /* Called from compute_hash_table via note_stores to handle one
1976 SET or CLOBBER in an insn. DATA is really the instruction in which
1977 the SET is taking place. */
1980 record_last_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
1982 rtx last_set_insn
= (rtx
) data
;
1984 if (GET_CODE (dest
) == SUBREG
)
1985 dest
= SUBREG_REG (dest
);
1988 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
1989 else if (MEM_P (dest
)
1990 /* Ignore pushes, they clobber nothing. */
1991 && ! push_operand (dest
, GET_MODE (dest
)))
1992 record_last_mem_set_info (last_set_insn
);
1995 /* Top level function to create an expression or assignment hash table.
1997 Expression entries are placed in the hash table if
1998 - they are of the form (set (pseudo-reg) src),
1999 - src is something we want to perform GCSE on,
2000 - none of the operands are subsequently modified in the block
2002 Assignment entries are placed in the hash table if
2003 - they are of the form (set (pseudo-reg) src),
2004 - src is something we want to perform const/copy propagation on,
2005 - none of the operands or target are subsequently modified in the block
2007 Currently src must be a pseudo-reg or a const_int.
2009 TABLE is the table computed. */
2012 compute_hash_table_work (struct hash_table
*table
)
2016 /* While we compute the hash table we also compute a bit array of which
2017 registers are set in which blocks.
2018 ??? This isn't needed during const/copy propagation, but it's cheap to
2020 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
2022 /* re-Cache any INSN_LIST nodes we have allocated. */
2023 clear_modify_mem_tables ();
2024 /* Some working arrays used to track first and last set in each block. */
2025 reg_avail_info
= gmalloc (max_gcse_regno
* sizeof (struct reg_avail_info
));
2027 for (i
= 0; i
< max_gcse_regno
; ++i
)
2028 reg_avail_info
[i
].last_bb
= NULL
;
2030 FOR_EACH_BB (current_bb
)
2034 int in_libcall_block
;
2036 /* First pass over the instructions records information used to
2037 determine when registers and memory are first and last set.
2038 ??? hard-reg reg_set_in_block computation
2039 could be moved to compute_sets since they currently don't change. */
2041 for (insn
= BB_HEAD (current_bb
);
2042 insn
&& insn
!= NEXT_INSN (BB_END (current_bb
));
2043 insn
= NEXT_INSN (insn
))
2045 if (! INSN_P (insn
))
2050 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2051 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2052 record_last_reg_set_info (insn
, regno
);
2057 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
2060 /* Insert implicit sets in the hash table. */
2062 && implicit_sets
[current_bb
->index
] != NULL_RTX
)
2063 hash_scan_set (implicit_sets
[current_bb
->index
],
2064 BB_HEAD (current_bb
), table
);
2066 /* The next pass builds the hash table. */
2068 for (insn
= BB_HEAD (current_bb
), in_libcall_block
= 0;
2069 insn
&& insn
!= NEXT_INSN (BB_END (current_bb
));
2070 insn
= NEXT_INSN (insn
))
2073 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
2074 in_libcall_block
= 1;
2075 else if (table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2076 in_libcall_block
= 0;
2077 hash_scan_insn (insn
, table
, in_libcall_block
);
2078 if (!table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2079 in_libcall_block
= 0;
2083 free (reg_avail_info
);
2084 reg_avail_info
= NULL
;
2087 /* Allocate space for the set/expr hash TABLE.
2088 N_INSNS is the number of instructions in the function.
2089 It is used to determine the number of buckets to use.
2090 SET_P determines whether set or expression table will
2094 alloc_hash_table (int n_insns
, struct hash_table
*table
, int set_p
)
2098 table
->size
= n_insns
/ 4;
2099 if (table
->size
< 11)
2102 /* Attempt to maintain efficient use of hash table.
2103 Making it an odd number is simplest for now.
2104 ??? Later take some measurements. */
2106 n
= table
->size
* sizeof (struct expr
*);
2107 table
->table
= gmalloc (n
);
2108 table
->set_p
= set_p
;
2111 /* Free things allocated by alloc_hash_table. */
2114 free_hash_table (struct hash_table
*table
)
2116 free (table
->table
);
2119 /* Compute the hash TABLE for doing copy/const propagation or
2120 expression hash table. */
2123 compute_hash_table (struct hash_table
*table
)
2125 /* Initialize count of number of entries in hash table. */
2127 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
2129 compute_hash_table_work (table
);
2132 /* Expression tracking support. */
2134 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2135 table entry, or NULL if not found. */
2137 static struct expr
*
2138 lookup_set (unsigned int regno
, struct hash_table
*table
)
2140 unsigned int hash
= hash_set (regno
, table
->size
);
2143 expr
= table
->table
[hash
];
2145 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
2146 expr
= expr
->next_same_hash
;
2151 /* Return the next entry for REGNO in list EXPR. */
2153 static struct expr
*
2154 next_set (unsigned int regno
, struct expr
*expr
)
2157 expr
= expr
->next_same_hash
;
2158 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
2163 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2164 types may be mixed. */
2167 free_insn_expr_list_list (rtx
*listp
)
2171 for (list
= *listp
; list
; list
= next
)
2173 next
= XEXP (list
, 1);
2174 if (GET_CODE (list
) == EXPR_LIST
)
2175 free_EXPR_LIST_node (list
);
2177 free_INSN_LIST_node (list
);
2183 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2185 clear_modify_mem_tables (void)
2190 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set
, 0, i
, bi
)
2192 free_INSN_LIST_list (modify_mem_list
+ i
);
2193 free_insn_expr_list_list (canon_modify_mem_list
+ i
);
2195 bitmap_clear (modify_mem_list_set
);
2196 bitmap_clear (blocks_with_calls
);
2199 /* Release memory used by modify_mem_list_set. */
2202 free_modify_mem_tables (void)
2204 clear_modify_mem_tables ();
2205 free (modify_mem_list
);
2206 free (canon_modify_mem_list
);
2207 modify_mem_list
= 0;
2208 canon_modify_mem_list
= 0;
2211 /* Reset tables used to keep track of what's still available [since the
2212 start of the block]. */
2215 reset_opr_set_tables (void)
2217 /* Maintain a bitmap of which regs have been set since beginning of
2219 CLEAR_REG_SET (reg_set_bitmap
);
2221 /* Also keep a record of the last instruction to modify memory.
2222 For now this is very trivial, we only record whether any memory
2223 location has been modified. */
2224 clear_modify_mem_tables ();
2227 /* Return nonzero if the operands of X are not set before INSN in
2228 INSN's basic block. */
2231 oprs_not_set_p (rtx x
, rtx insn
)
2240 code
= GET_CODE (x
);
2256 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
2257 INSN_CUID (insn
), x
, 0))
2260 return oprs_not_set_p (XEXP (x
, 0), insn
);
2263 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
2269 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2273 /* If we are about to do the last recursive call
2274 needed at this level, change it into iteration.
2275 This function is called enough to be worth it. */
2277 return oprs_not_set_p (XEXP (x
, i
), insn
);
2279 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
2282 else if (fmt
[i
] == 'E')
2283 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2284 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
2291 /* Mark things set by a CALL. */
2294 mark_call (rtx insn
)
2296 if (! CONST_OR_PURE_CALL_P (insn
))
2297 record_last_mem_set_info (insn
);
2300 /* Mark things set by a SET. */
2303 mark_set (rtx pat
, rtx insn
)
2305 rtx dest
= SET_DEST (pat
);
2307 while (GET_CODE (dest
) == SUBREG
2308 || GET_CODE (dest
) == ZERO_EXTRACT
2309 || GET_CODE (dest
) == STRICT_LOW_PART
)
2310 dest
= XEXP (dest
, 0);
2313 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (dest
));
2314 else if (MEM_P (dest
))
2315 record_last_mem_set_info (insn
);
2317 if (GET_CODE (SET_SRC (pat
)) == CALL
)
2321 /* Record things set by a CLOBBER. */
2324 mark_clobber (rtx pat
, rtx insn
)
2326 rtx clob
= XEXP (pat
, 0);
2328 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
2329 clob
= XEXP (clob
, 0);
2332 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (clob
));
2334 record_last_mem_set_info (insn
);
2337 /* Record things set by INSN.
2338 This data is used by oprs_not_set_p. */
2341 mark_oprs_set (rtx insn
)
2343 rtx pat
= PATTERN (insn
);
2346 if (GET_CODE (pat
) == SET
)
2347 mark_set (pat
, insn
);
2348 else if (GET_CODE (pat
) == PARALLEL
)
2349 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2351 rtx x
= XVECEXP (pat
, 0, i
);
2353 if (GET_CODE (x
) == SET
)
2355 else if (GET_CODE (x
) == CLOBBER
)
2356 mark_clobber (x
, insn
);
2357 else if (GET_CODE (x
) == CALL
)
2361 else if (GET_CODE (pat
) == CLOBBER
)
2362 mark_clobber (pat
, insn
);
2363 else if (GET_CODE (pat
) == CALL
)
2368 /* Compute copy/constant propagation working variables. */
2370 /* Local properties of assignments. */
2371 static sbitmap
*cprop_pavloc
;
2372 static sbitmap
*cprop_absaltered
;
2374 /* Global properties of assignments (computed from the local properties). */
2375 static sbitmap
*cprop_avin
;
2376 static sbitmap
*cprop_avout
;
2378 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2379 basic blocks. N_SETS is the number of sets. */
2382 alloc_cprop_mem (int n_blocks
, int n_sets
)
2384 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2385 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2387 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2388 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2391 /* Free vars used by copy/const propagation. */
2394 free_cprop_mem (void)
2396 sbitmap_vector_free (cprop_pavloc
);
2397 sbitmap_vector_free (cprop_absaltered
);
2398 sbitmap_vector_free (cprop_avin
);
2399 sbitmap_vector_free (cprop_avout
);
2402 /* For each block, compute whether X is transparent. X is either an
2403 expression or an assignment [though we don't care which, for this context
2404 an assignment is treated as an expression]. For each block where an
2405 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2409 compute_transp (rtx x
, int indx
, sbitmap
*bmap
, int set_p
)
2417 /* repeat is used to turn tail-recursion into iteration since GCC
2418 can't do it when there's no return value. */
2424 code
= GET_CODE (x
);
2430 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2433 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2434 SET_BIT (bmap
[bb
->index
], indx
);
2438 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2439 SET_BIT (bmap
[r
->bb_index
], indx
);
2444 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2447 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2448 RESET_BIT (bmap
[bb
->index
], indx
);
2452 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2453 RESET_BIT (bmap
[r
->bb_index
], indx
);
2464 /* First handle all the blocks with calls. We don't need to
2465 do any list walking for them. */
2466 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls
, 0, bb_index
, bi
)
2469 SET_BIT (bmap
[bb_index
], indx
);
2471 RESET_BIT (bmap
[bb_index
], indx
);
2474 /* Now iterate over the blocks which have memory modifications
2475 but which do not have any calls. */
2476 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set
, blocks_with_calls
,
2479 rtx list_entry
= canon_modify_mem_list
[bb_index
];
2483 rtx dest
, dest_addr
;
2485 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2486 Examine each hunk of memory that is modified. */
2488 dest
= XEXP (list_entry
, 0);
2489 list_entry
= XEXP (list_entry
, 1);
2490 dest_addr
= XEXP (list_entry
, 0);
2492 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
2493 x
, rtx_addr_varies_p
))
2496 SET_BIT (bmap
[bb_index
], indx
);
2498 RESET_BIT (bmap
[bb_index
], indx
);
2501 list_entry
= XEXP (list_entry
, 1);
2525 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2529 /* If we are about to do the last recursive call
2530 needed at this level, change it into iteration.
2531 This function is called enough to be worth it. */
2538 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
2540 else if (fmt
[i
] == 'E')
2541 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2542 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
2546 /* Top level routine to do the dataflow analysis needed by copy/const
2550 compute_cprop_data (void)
2552 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, &set_hash_table
);
2553 compute_available (cprop_pavloc
, cprop_absaltered
,
2554 cprop_avout
, cprop_avin
);
2557 /* Copy/constant propagation. */
2559 /* Maximum number of register uses in an insn that we handle. */
2562 /* Table of uses found in an insn.
2563 Allocated statically to avoid alloc/free complexity and overhead. */
2564 static struct reg_use reg_use_table
[MAX_USES
];
2566 /* Index into `reg_use_table' while building it. */
2567 static int reg_use_count
;
2569 /* Set up a list of register numbers used in INSN. The found uses are stored
2570 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2571 and contains the number of uses in the table upon exit.
2573 ??? If a register appears multiple times we will record it multiple times.
2574 This doesn't hurt anything but it will slow things down. */
2577 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
2584 /* repeat is used to turn tail-recursion into iteration since GCC
2585 can't do it when there's no return value. */
2590 code
= GET_CODE (x
);
2593 if (reg_use_count
== MAX_USES
)
2596 reg_use_table
[reg_use_count
].reg_rtx
= x
;
2600 /* Recursively scan the operands of this expression. */
2602 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2606 /* If we are about to do the last recursive call
2607 needed at this level, change it into iteration.
2608 This function is called enough to be worth it. */
2615 find_used_regs (&XEXP (x
, i
), data
);
2617 else if (fmt
[i
] == 'E')
2618 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2619 find_used_regs (&XVECEXP (x
, i
, j
), data
);
2623 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2624 Returns nonzero is successful. */
2627 try_replace_reg (rtx from
, rtx to
, rtx insn
)
2629 rtx note
= find_reg_equal_equiv_note (insn
);
2632 rtx set
= single_set (insn
);
2634 validate_replace_src_group (from
, to
, insn
);
2635 if (num_changes_pending () && apply_change_group ())
2638 /* Try to simplify SET_SRC if we have substituted a constant. */
2639 if (success
&& set
&& CONSTANT_P (to
))
2641 src
= simplify_rtx (SET_SRC (set
));
2644 validate_change (insn
, &SET_SRC (set
), src
, 0);
2647 /* If there is already a NOTE, update the expression in it with our
2650 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), from
, to
);
2652 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
2654 /* If above failed and this is a single set, try to simplify the source of
2655 the set given our substitution. We could perhaps try this for multiple
2656 SETs, but it probably won't buy us anything. */
2657 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
2659 if (!rtx_equal_p (src
, SET_SRC (set
))
2660 && validate_change (insn
, &SET_SRC (set
), src
, 0))
2663 /* If we've failed to do replacement, have a single SET, don't already
2664 have a note, and have no special SET, add a REG_EQUAL note to not
2665 lose information. */
2666 if (!success
&& note
== 0 && set
!= 0
2667 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
)
2668 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
2671 /* REG_EQUAL may get simplified into register.
2672 We don't allow that. Remove that note. This code ought
2673 not to happen, because previous code ought to synthesize
2674 reg-reg move, but be on the safe side. */
2675 if (note
&& REG_P (XEXP (note
, 0)))
2676 remove_note (insn
, note
);
2681 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2682 NULL no such set is found. */
2684 static struct expr
*
2685 find_avail_set (int regno
, rtx insn
)
2687 /* SET1 contains the last set found that can be returned to the caller for
2688 use in a substitution. */
2689 struct expr
*set1
= 0;
2691 /* Loops are not possible here. To get a loop we would need two sets
2692 available at the start of the block containing INSN. i.e. we would
2693 need two sets like this available at the start of the block:
2695 (set (reg X) (reg Y))
2696 (set (reg Y) (reg X))
2698 This can not happen since the set of (reg Y) would have killed the
2699 set of (reg X) making it unavailable at the start of this block. */
2703 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
2705 /* Find a set that is available at the start of the block
2706 which contains INSN. */
2709 if (TEST_BIT (cprop_avin
[BLOCK_NUM (insn
)], set
->bitmap_index
))
2711 set
= next_set (regno
, set
);
2714 /* If no available set was found we've reached the end of the
2715 (possibly empty) copy chain. */
2719 gcc_assert (GET_CODE (set
->expr
) == SET
);
2721 src
= SET_SRC (set
->expr
);
2723 /* We know the set is available.
2724 Now check that SRC is ANTLOC (i.e. none of the source operands
2725 have changed since the start of the block).
2727 If the source operand changed, we may still use it for the next
2728 iteration of this loop, but we may not use it for substitutions. */
2730 if (gcse_constant_p (src
) || oprs_not_set_p (src
, insn
))
2733 /* If the source of the set is anything except a register, then
2734 we have reached the end of the copy chain. */
2738 /* Follow the copy chain, i.e. start another iteration of the loop
2739 and see if we have an available copy into SRC. */
2740 regno
= REGNO (src
);
2743 /* SET1 holds the last set that was available and anticipatable at
2748 /* Subroutine of cprop_insn that tries to propagate constants into
2749 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2750 it is the instruction that immediately precedes JUMP, and must be a
2751 single SET of a register. FROM is what we will try to replace,
2752 SRC is the constant we will try to substitute for it. Returns nonzero
2753 if a change was made. */
2756 cprop_jump (basic_block bb
, rtx setcc
, rtx jump
, rtx from
, rtx src
)
2758 rtx
new, set_src
, note_src
;
2759 rtx set
= pc_set (jump
);
2760 rtx note
= find_reg_equal_equiv_note (jump
);
2764 note_src
= XEXP (note
, 0);
2765 if (GET_CODE (note_src
) == EXPR_LIST
)
2766 note_src
= NULL_RTX
;
2768 else note_src
= NULL_RTX
;
2770 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2771 set_src
= note_src
? note_src
: SET_SRC (set
);
2773 /* First substitute the SETCC condition into the JUMP instruction,
2774 then substitute that given values into this expanded JUMP. */
2775 if (setcc
!= NULL_RTX
2776 && !modified_between_p (from
, setcc
, jump
)
2777 && !modified_between_p (src
, setcc
, jump
))
2780 rtx setcc_set
= single_set (setcc
);
2781 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
2782 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
2783 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
2784 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
2790 new = simplify_replace_rtx (set_src
, from
, src
);
2792 /* If no simplification can be made, then try the next register. */
2793 if (rtx_equal_p (new, SET_SRC (set
)))
2796 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2801 /* Ensure the value computed inside the jump insn to be equivalent
2802 to one computed by setcc. */
2803 if (setcc
&& modified_in_p (new, setcc
))
2805 if (! validate_change (jump
, &SET_SRC (set
), new, 0))
2807 /* When (some) constants are not valid in a comparison, and there
2808 are two registers to be replaced by constants before the entire
2809 comparison can be folded into a constant, we need to keep
2810 intermediate information in REG_EQUAL notes. For targets with
2811 separate compare insns, such notes are added by try_replace_reg.
2812 When we have a combined compare-and-branch instruction, however,
2813 we need to attach a note to the branch itself to make this
2814 optimization work. */
2816 if (!rtx_equal_p (new, note_src
))
2817 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new));
2821 /* Remove REG_EQUAL note after simplification. */
2823 remove_note (jump
, note
);
2825 /* If this has turned into an unconditional jump,
2826 then put a barrier after it so that the unreachable
2827 code will be deleted. */
2828 if (GET_CODE (SET_SRC (set
)) == LABEL_REF
)
2829 emit_barrier_after (jump
);
2833 /* Delete the cc0 setter. */
2834 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
2835 delete_insn (setcc
);
2838 run_jump_opt_after_gcse
= 1;
2840 global_const_prop_count
++;
2841 if (gcse_file
!= NULL
)
2844 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2845 REGNO (from
), INSN_UID (jump
));
2846 print_rtl (gcse_file
, src
);
2847 fprintf (gcse_file
, "\n");
2849 purge_dead_edges (bb
);
2855 constprop_register (rtx insn
, rtx from
, rtx to
, int alter_jumps
)
2859 /* Check for reg or cc0 setting instructions followed by
2860 conditional branch instructions first. */
2862 && (sset
= single_set (insn
)) != NULL
2864 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
2866 rtx dest
= SET_DEST (sset
);
2867 if ((REG_P (dest
) || CC0_P (dest
))
2868 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
), from
, to
))
2872 /* Handle normal insns next. */
2873 if (NONJUMP_INSN_P (insn
)
2874 && try_replace_reg (from
, to
, insn
))
2877 /* Try to propagate a CONST_INT into a conditional jump.
2878 We're pretty specific about what we will handle in this
2879 code, we can extend this as necessary over time.
2881 Right now the insn in question must look like
2882 (set (pc) (if_then_else ...)) */
2883 else if (alter_jumps
&& any_condjump_p (insn
) && onlyjump_p (insn
))
2884 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, to
);
2888 /* Perform constant and copy propagation on INSN.
2889 The result is nonzero if a change was made. */
2892 cprop_insn (rtx insn
, int alter_jumps
)
2894 struct reg_use
*reg_used
;
2902 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
2904 note
= find_reg_equal_equiv_note (insn
);
2906 /* We may win even when propagating constants into notes. */
2908 find_used_regs (&XEXP (note
, 0), NULL
);
2910 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
2911 reg_used
++, reg_use_count
--)
2913 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
2917 /* Ignore registers created by GCSE.
2918 We do this because ... */
2919 if (regno
>= max_gcse_regno
)
2922 /* If the register has already been set in this block, there's
2923 nothing we can do. */
2924 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
2927 /* Find an assignment that sets reg_used and is available
2928 at the start of the block. */
2929 set
= find_avail_set (regno
, insn
);
2934 /* ??? We might be able to handle PARALLELs. Later. */
2935 gcc_assert (GET_CODE (pat
) == SET
);
2937 src
= SET_SRC (pat
);
2939 /* Constant propagation. */
2940 if (gcse_constant_p (src
))
2942 if (constprop_register (insn
, reg_used
->reg_rtx
, src
, alter_jumps
))
2945 global_const_prop_count
++;
2946 if (gcse_file
!= NULL
)
2948 fprintf (gcse_file
, "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
2949 fprintf (gcse_file
, "insn %d with constant ", INSN_UID (insn
));
2950 print_rtl (gcse_file
, src
);
2951 fprintf (gcse_file
, "\n");
2953 if (INSN_DELETED_P (insn
))
2957 else if (REG_P (src
)
2958 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2959 && REGNO (src
) != regno
)
2961 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
2964 global_copy_prop_count
++;
2965 if (gcse_file
!= NULL
)
2967 fprintf (gcse_file
, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2968 regno
, INSN_UID (insn
));
2969 fprintf (gcse_file
, " with reg %d\n", REGNO (src
));
2972 /* The original insn setting reg_used may or may not now be
2973 deletable. We leave the deletion to flow. */
2974 /* FIXME: If it turns out that the insn isn't deletable,
2975 then we may have unnecessarily extended register lifetimes
2976 and made things worse. */
2984 /* Like find_used_regs, but avoid recording uses that appear in
2985 input-output contexts such as zero_extract or pre_dec. This
2986 restricts the cases we consider to those for which local cprop
2987 can legitimately make replacements. */
2990 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
2997 switch (GET_CODE (x
))
3001 case STRICT_LOW_PART
:
3010 /* Can only legitimately appear this early in the context of
3011 stack pushes for function arguments, but handle all of the
3012 codes nonetheless. */
3016 /* Setting a subreg of a register larger than word_mode leaves
3017 the non-written words unchanged. */
3018 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
3026 find_used_regs (xptr
, data
);
3029 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3030 their REG_EQUAL notes need updating. */
3033 do_local_cprop (rtx x
, rtx insn
, int alter_jumps
, rtx
*libcall_sp
)
3035 rtx newreg
= NULL
, newcnst
= NULL
;
3037 /* Rule out USE instructions and ASM statements as we don't want to
3038 change the hard registers mentioned. */
3040 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
3041 || (GET_CODE (PATTERN (insn
)) != USE
3042 && asm_noperands (PATTERN (insn
)) < 0)))
3044 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0);
3045 struct elt_loc_list
*l
;
3049 for (l
= val
->locs
; l
; l
= l
->next
)
3051 rtx this_rtx
= l
->loc
;
3054 /* Don't CSE non-constant values out of libcall blocks. */
3055 if (l
->in_libcall
&& ! CONSTANT_P (this_rtx
))
3058 if (gcse_constant_p (this_rtx
))
3060 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
3061 /* Don't copy propagate if it has attached REG_EQUIV note.
3062 At this point this only function parameters should have
3063 REG_EQUIV notes and if the argument slot is used somewhere
3064 explicitly, it means address of parameter has been taken,
3065 so we should not extend the lifetime of the pseudo. */
3066 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
3067 || ! MEM_P (XEXP (note
, 0))))
3070 if (newcnst
&& constprop_register (insn
, x
, newcnst
, alter_jumps
))
3072 /* If we find a case where we can't fix the retval REG_EQUAL notes
3073 match the new register, we either have to abandon this replacement
3074 or fix delete_trivially_dead_insns to preserve the setting insn,
3075 or make it delete the REG_EUAQL note, and fix up all passes that
3076 require the REG_EQUAL note there. */
3079 adjusted
= adjust_libcall_notes (x
, newcnst
, insn
, libcall_sp
);
3080 gcc_assert (adjusted
);
3082 if (gcse_file
!= NULL
)
3084 fprintf (gcse_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
3086 fprintf (gcse_file
, "insn %d with constant ",
3088 print_rtl (gcse_file
, newcnst
);
3089 fprintf (gcse_file
, "\n");
3091 local_const_prop_count
++;
3094 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
3096 adjust_libcall_notes (x
, newreg
, insn
, libcall_sp
);
3097 if (gcse_file
!= NULL
)
3100 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3101 REGNO (x
), INSN_UID (insn
));
3102 fprintf (gcse_file
, " with reg %d\n", REGNO (newreg
));
3104 local_copy_prop_count
++;
3111 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3112 their REG_EQUAL notes need updating to reflect that OLDREG has been
3113 replaced with NEWVAL in INSN. Return true if all substitutions could
3116 adjust_libcall_notes (rtx oldreg
, rtx newval
, rtx insn
, rtx
*libcall_sp
)
3120 while ((end
= *libcall_sp
++))
3122 rtx note
= find_reg_equal_equiv_note (end
);
3129 if (reg_set_between_p (newval
, PREV_INSN (insn
), end
))
3133 note
= find_reg_equal_equiv_note (end
);
3136 if (reg_mentioned_p (newval
, XEXP (note
, 0)))
3139 while ((end
= *libcall_sp
++));
3143 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), oldreg
, newval
);
3149 #define MAX_NESTED_LIBCALLS 9
3152 local_cprop_pass (int alter_jumps
)
3155 struct reg_use
*reg_used
;
3156 rtx libcall_stack
[MAX_NESTED_LIBCALLS
+ 1], *libcall_sp
;
3157 bool changed
= false;
3159 cselib_init (false);
3160 libcall_sp
= &libcall_stack
[MAX_NESTED_LIBCALLS
];
3162 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3166 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
3170 gcc_assert (libcall_sp
!= libcall_stack
);
3171 *--libcall_sp
= XEXP (note
, 0);
3173 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
3176 note
= find_reg_equal_equiv_note (insn
);
3180 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
, NULL
);
3182 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
3184 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
3185 reg_used
++, reg_use_count
--)
3186 if (do_local_cprop (reg_used
->reg_rtx
, insn
, alter_jumps
,
3192 if (INSN_DELETED_P (insn
))
3195 while (reg_use_count
);
3197 cselib_process_insn (insn
);
3200 /* Global analysis may get into infinite loops for unreachable blocks. */
3201 if (changed
&& alter_jumps
)
3203 delete_unreachable_blocks ();
3204 free_reg_set_mem ();
3205 alloc_reg_set_mem (max_reg_num ());
3206 compute_sets (get_insns ());
3210 /* Forward propagate copies. This includes copies and constants. Return
3211 nonzero if a change was made. */
3214 cprop (int alter_jumps
)
3220 /* Note we start at block 1. */
3221 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3223 if (gcse_file
!= NULL
)
3224 fprintf (gcse_file
, "\n");
3229 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
3231 /* Reset tables used to keep track of what's still valid [since the
3232 start of the block]. */
3233 reset_opr_set_tables ();
3235 for (insn
= BB_HEAD (bb
);
3236 insn
!= NULL
&& insn
!= NEXT_INSN (BB_END (bb
));
3237 insn
= NEXT_INSN (insn
))
3240 changed
|= cprop_insn (insn
, alter_jumps
);
3242 /* Keep track of everything modified by this insn. */
3243 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3244 call mark_oprs_set if we turned the insn into a NOTE. */
3245 if (! NOTE_P (insn
))
3246 mark_oprs_set (insn
);
3250 if (gcse_file
!= NULL
)
3251 fprintf (gcse_file
, "\n");
3256 /* Similar to get_condition, only the resulting condition must be
3257 valid at JUMP, instead of at EARLIEST.
3259 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3260 settle for the condition variable in the jump instruction being integral.
3261 We prefer to be able to record the value of a user variable, rather than
3262 the value of a temporary used in a condition. This could be solved by
3263 recording the value of *every* register scaned by canonicalize_condition,
3264 but this would require some code reorganization. */
3267 fis_get_condition (rtx jump
)
3269 return get_condition (jump
, NULL
, false, true);
3272 /* Check the comparison COND to see if we can safely form an implicit set from
3273 it. COND is either an EQ or NE comparison. */
3276 implicit_set_cond_p (rtx cond
)
3278 enum machine_mode mode
= GET_MODE (XEXP (cond
, 0));
3279 rtx cst
= XEXP (cond
, 1);
3281 /* We can't perform this optimization if either operand might be or might
3282 contain a signed zero. */
3283 if (HONOR_SIGNED_ZEROS (mode
))
3285 /* It is sufficient to check if CST is or contains a zero. We must
3286 handle float, complex, and vector. If any subpart is a zero, then
3287 the optimization can't be performed. */
3288 /* ??? The complex and vector checks are not implemented yet. We just
3289 always return zero for them. */
3290 if (GET_CODE (cst
) == CONST_DOUBLE
)
3293 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
3294 if (REAL_VALUES_EQUAL (d
, dconst0
))
3301 return gcse_constant_p (cst
);
3304 /* Find the implicit sets of a function. An "implicit set" is a constraint
3305 on the value of a variable, implied by a conditional jump. For example,
3306 following "if (x == 2)", the then branch may be optimized as though the
3307 conditional performed an "explicit set", in this example, "x = 2". This
3308 function records the set patterns that are implicit at the start of each
3312 find_implicit_sets (void)
3314 basic_block bb
, dest
;
3320 /* Check for more than one successor. */
3321 if (EDGE_COUNT (bb
->succs
) > 1)
3323 cond
= fis_get_condition (BB_END (bb
));
3326 && (GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
3327 && REG_P (XEXP (cond
, 0))
3328 && REGNO (XEXP (cond
, 0)) >= FIRST_PSEUDO_REGISTER
3329 && implicit_set_cond_p (cond
))
3331 dest
= GET_CODE (cond
) == EQ
? BRANCH_EDGE (bb
)->dest
3332 : FALLTHRU_EDGE (bb
)->dest
;
3334 if (dest
&& EDGE_COUNT (dest
->preds
) == 1
3335 && dest
!= EXIT_BLOCK_PTR
)
3337 new = gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
3339 implicit_sets
[dest
->index
] = new;
3342 fprintf(gcse_file
, "Implicit set of reg %d in ",
3343 REGNO (XEXP (cond
, 0)));
3344 fprintf(gcse_file
, "basic block %d\n", dest
->index
);
3352 fprintf (gcse_file
, "Found %d implicit sets\n", count
);
3355 /* Perform one copy/constant propagation pass.
3356 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3357 propagation into conditional jumps. If BYPASS_JUMPS is true,
3358 perform conditional jump bypassing optimizations. */
3361 one_cprop_pass (int pass
, int cprop_jumps
, int bypass_jumps
)
3365 global_const_prop_count
= local_const_prop_count
= 0;
3366 global_copy_prop_count
= local_copy_prop_count
= 0;
3368 local_cprop_pass (cprop_jumps
);
3370 /* Determine implicit sets. */
3371 implicit_sets
= xcalloc (last_basic_block
, sizeof (rtx
));
3372 find_implicit_sets ();
3374 alloc_hash_table (max_cuid
, &set_hash_table
, 1);
3375 compute_hash_table (&set_hash_table
);
3377 /* Free implicit_sets before peak usage. */
3378 free (implicit_sets
);
3379 implicit_sets
= NULL
;
3382 dump_hash_table (gcse_file
, "SET", &set_hash_table
);
3383 if (set_hash_table
.n_elems
> 0)
3385 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
3386 compute_cprop_data ();
3387 changed
= cprop (cprop_jumps
);
3389 changed
|= bypass_conditional_jumps ();
3393 free_hash_table (&set_hash_table
);
3397 fprintf (gcse_file
, "CPROP of %s, pass %d: %d bytes needed, ",
3398 current_function_name (), pass
, bytes_used
);
3399 fprintf (gcse_file
, "%d local const props, %d local copy props\n\n",
3400 local_const_prop_count
, local_copy_prop_count
);
3401 fprintf (gcse_file
, "%d global const props, %d global copy props\n\n",
3402 global_const_prop_count
, global_copy_prop_count
);
3404 /* Global analysis may get into infinite loops for unreachable blocks. */
3405 if (changed
&& cprop_jumps
)
3406 delete_unreachable_blocks ();
3411 /* Bypass conditional jumps. */
3413 /* The value of last_basic_block at the beginning of the jump_bypass
3414 pass. The use of redirect_edge_and_branch_force may introduce new
3415 basic blocks, but the data flow analysis is only valid for basic
3416 block indices less than bypass_last_basic_block. */
3418 static int bypass_last_basic_block
;
3420 /* Find a set of REGNO to a constant that is available at the end of basic
3421 block BB. Returns NULL if no such set is found. Based heavily upon
3424 static struct expr
*
3425 find_bypass_set (int regno
, int bb
)
3427 struct expr
*result
= 0;
3432 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
3436 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
3438 set
= next_set (regno
, set
);
3444 gcc_assert (GET_CODE (set
->expr
) == SET
);
3446 src
= SET_SRC (set
->expr
);
3447 if (gcse_constant_p (src
))
3453 regno
= REGNO (src
);
3459 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3460 any of the instructions inserted on an edge. Jump bypassing places
3461 condition code setters on CFG edges using insert_insn_on_edge. This
3462 function is required to check that our data flow analysis is still
3463 valid prior to commit_edge_insertions. */
3466 reg_killed_on_edge (rtx reg
, edge e
)
3470 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
3471 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
3477 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3478 basic block BB which has more than one predecessor. If not NULL, SETCC
3479 is the first instruction of BB, which is immediately followed by JUMP_INSN
3480 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3481 Returns nonzero if a change was made.
3483 During the jump bypassing pass, we may place copies of SETCC instructions
3484 on CFG edges. The following routine must be careful to pay attention to
3485 these inserted insns when performing its transformations. */
3488 bypass_block (basic_block bb
, rtx setcc
, rtx jump
)
3493 int may_be_loop_header
;
3497 insn
= (setcc
!= NULL
) ? setcc
: jump
;
3499 /* Determine set of register uses in INSN. */
3501 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
3502 note
= find_reg_equal_equiv_note (insn
);
3504 find_used_regs (&XEXP (note
, 0), NULL
);
3506 may_be_loop_header
= false;
3507 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3508 if (e
->flags
& EDGE_DFS_BACK
)
3510 may_be_loop_header
= true;
3515 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
3519 if (e
->flags
& EDGE_COMPLEX
)
3525 /* We can't redirect edges from new basic blocks. */
3526 if (e
->src
->index
>= bypass_last_basic_block
)
3532 /* The irreducible loops created by redirecting of edges entering the
3533 loop from outside would decrease effectiveness of some of the following
3534 optimizations, so prevent this. */
3535 if (may_be_loop_header
3536 && !(e
->flags
& EDGE_DFS_BACK
))
3542 for (i
= 0; i
< reg_use_count
; i
++)
3544 struct reg_use
*reg_used
= ®_use_table
[i
];
3545 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
3546 basic_block dest
, old_dest
;
3550 if (regno
>= max_gcse_regno
)
3553 set
= find_bypass_set (regno
, e
->src
->index
);
3558 /* Check the data flow is valid after edge insertions. */
3559 if (e
->insns
.r
&& reg_killed_on_edge (reg_used
->reg_rtx
, e
))
3562 src
= SET_SRC (pc_set (jump
));
3565 src
= simplify_replace_rtx (src
,
3566 SET_DEST (PATTERN (setcc
)),
3567 SET_SRC (PATTERN (setcc
)));
3569 new = simplify_replace_rtx (src
, reg_used
->reg_rtx
,
3570 SET_SRC (set
->expr
));
3572 /* Jump bypassing may have already placed instructions on
3573 edges of the CFG. We can't bypass an outgoing edge that
3574 has instructions associated with it, as these insns won't
3575 get executed if the incoming edge is redirected. */
3579 edest
= FALLTHRU_EDGE (bb
);
3580 dest
= edest
->insns
.r
? NULL
: edest
->dest
;
3582 else if (GET_CODE (new) == LABEL_REF
)
3586 dest
= BLOCK_FOR_INSN (XEXP (new, 0));
3587 /* Don't bypass edges containing instructions. */
3588 FOR_EACH_EDGE (edest
, ei2
, bb
->succs
)
3589 if (edest
->dest
== dest
&& edest
->insns
.r
)
3598 /* Avoid unification of the edge with other edges from original
3599 branch. We would end up emitting the instruction on "both"
3602 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
))))
3607 FOR_EACH_EDGE (e2
, ei2
, e
->src
->succs
)
3608 if (e2
->dest
== dest
)
3618 && dest
!= EXIT_BLOCK_PTR
)
3620 redirect_edge_and_branch_force (e
, dest
);
3622 /* Copy the register setter to the redirected edge.
3623 Don't copy CC0 setters, as CC0 is dead after jump. */
3626 rtx pat
= PATTERN (setcc
);
3627 if (!CC0_P (SET_DEST (pat
)))
3628 insert_insn_on_edge (copy_insn (pat
), e
);
3631 if (gcse_file
!= NULL
)
3633 fprintf (gcse_file
, "JUMP-BYPASS: Proved reg %d "
3634 "in jump_insn %d equals constant ",
3635 regno
, INSN_UID (jump
));
3636 print_rtl (gcse_file
, SET_SRC (set
->expr
));
3637 fprintf (gcse_file
, "\nBypass edge from %d->%d to %d\n",
3638 e
->src
->index
, old_dest
->index
, dest
->index
);
3651 /* Find basic blocks with more than one predecessor that only contain a
3652 single conditional jump. If the result of the comparison is known at
3653 compile-time from any incoming edge, redirect that edge to the
3654 appropriate target. Returns nonzero if a change was made.
3656 This function is now mis-named, because we also handle indirect jumps. */
3659 bypass_conditional_jumps (void)
3667 /* Note we start at block 1. */
3668 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3671 bypass_last_basic_block
= last_basic_block
;
3672 mark_dfs_back_edges ();
3675 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
3676 EXIT_BLOCK_PTR
, next_bb
)
3678 /* Check for more than one predecessor. */
3679 if (EDGE_COUNT (bb
->preds
) > 1)
3682 for (insn
= BB_HEAD (bb
);
3683 insn
!= NULL
&& insn
!= NEXT_INSN (BB_END (bb
));
3684 insn
= NEXT_INSN (insn
))
3685 if (NONJUMP_INSN_P (insn
))
3689 if (GET_CODE (PATTERN (insn
)) != SET
)
3692 dest
= SET_DEST (PATTERN (insn
));
3693 if (REG_P (dest
) || CC0_P (dest
))
3698 else if (JUMP_P (insn
))
3700 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
3701 && onlyjump_p (insn
))
3702 changed
|= bypass_block (bb
, setcc
, insn
);
3705 else if (INSN_P (insn
))
3710 /* If we bypassed any register setting insns, we inserted a
3711 copy on the redirected edge. These need to be committed. */
3713 commit_edge_insertions();
3718 /* Compute PRE+LCM working variables. */
3720 /* Local properties of expressions. */
3721 /* Nonzero for expressions that are transparent in the block. */
3722 static sbitmap
*transp
;
3724 /* Nonzero for expressions that are transparent at the end of the block.
3725 This is only zero for expressions killed by abnormal critical edge
3726 created by a calls. */
3727 static sbitmap
*transpout
;
3729 /* Nonzero for expressions that are computed (available) in the block. */
3730 static sbitmap
*comp
;
3732 /* Nonzero for expressions that are locally anticipatable in the block. */
3733 static sbitmap
*antloc
;
3735 /* Nonzero for expressions where this block is an optimal computation
3737 static sbitmap
*pre_optimal
;
3739 /* Nonzero for expressions which are redundant in a particular block. */
3740 static sbitmap
*pre_redundant
;
3742 /* Nonzero for expressions which should be inserted on a specific edge. */
3743 static sbitmap
*pre_insert_map
;
3745 /* Nonzero for expressions which should be deleted in a specific block. */
3746 static sbitmap
*pre_delete_map
;
3748 /* Contains the edge_list returned by pre_edge_lcm. */
3749 static struct edge_list
*edge_list
;
3751 /* Redundant insns. */
3752 static sbitmap pre_redundant_insns
;
3754 /* Allocate vars used for PRE analysis. */
3757 alloc_pre_mem (int n_blocks
, int n_exprs
)
3759 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3760 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3761 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3764 pre_redundant
= NULL
;
3765 pre_insert_map
= NULL
;
3766 pre_delete_map
= NULL
;
3767 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3769 /* pre_insert and pre_delete are allocated later. */
3772 /* Free vars used for PRE analysis. */
3777 sbitmap_vector_free (transp
);
3778 sbitmap_vector_free (comp
);
3780 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3783 sbitmap_vector_free (pre_optimal
);
3785 sbitmap_vector_free (pre_redundant
);
3787 sbitmap_vector_free (pre_insert_map
);
3789 sbitmap_vector_free (pre_delete_map
);
3791 transp
= comp
= NULL
;
3792 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
3795 /* Top level routine to do the dataflow analysis needed by PRE. */
3798 compute_pre_data (void)
3800 sbitmap trapping_expr
;
3804 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
3805 sbitmap_vector_zero (ae_kill
, last_basic_block
);
3807 /* Collect expressions which might trap. */
3808 trapping_expr
= sbitmap_alloc (expr_hash_table
.n_elems
);
3809 sbitmap_zero (trapping_expr
);
3810 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
3813 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
3814 if (may_trap_p (e
->expr
))
3815 SET_BIT (trapping_expr
, e
->bitmap_index
);
3818 /* Compute ae_kill for each basic block using:
3828 /* If the current block is the destination of an abnormal edge, we
3829 kill all trapping expressions because we won't be able to properly
3830 place the instruction on the edge. So make them neither
3831 anticipatable nor transparent. This is fairly conservative. */
3832 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3833 if (e
->flags
& EDGE_ABNORMAL
)
3835 sbitmap_difference (antloc
[bb
->index
], antloc
[bb
->index
], trapping_expr
);
3836 sbitmap_difference (transp
[bb
->index
], transp
[bb
->index
], trapping_expr
);
3840 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
3841 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
3844 edge_list
= pre_edge_lcm (gcse_file
, expr_hash_table
.n_elems
, transp
, comp
, antloc
,
3845 ae_kill
, &pre_insert_map
, &pre_delete_map
);
3846 sbitmap_vector_free (antloc
);
3848 sbitmap_vector_free (ae_kill
);
3850 sbitmap_free (trapping_expr
);
3855 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3858 VISITED is a pointer to a working buffer for tracking which BB's have
3859 been visited. It is NULL for the top-level call.
3861 We treat reaching expressions that go through blocks containing the same
3862 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3863 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3864 2 as not reaching. The intent is to improve the probability of finding
3865 only one reaching expression and to reduce register lifetimes by picking
3866 the closest such expression. */
3869 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct expr
*expr
, basic_block bb
, char *visited
)
3874 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
3876 basic_block pred_bb
= pred
->src
;
3878 if (pred
->src
== ENTRY_BLOCK_PTR
3879 /* Has predecessor has already been visited? */
3880 || visited
[pred_bb
->index
])
3881 ;/* Nothing to do. */
3883 /* Does this predecessor generate this expression? */
3884 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
3886 /* Is this the occurrence we're looking for?
3887 Note that there's only one generating occurrence per block
3888 so we just need to check the block number. */
3889 if (occr_bb
== pred_bb
)
3892 visited
[pred_bb
->index
] = 1;
3894 /* Ignore this predecessor if it kills the expression. */
3895 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
3896 visited
[pred_bb
->index
] = 1;
3898 /* Neither gen nor kill. */
3901 visited
[pred_bb
->index
] = 1;
3902 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
3907 /* All paths have been checked. */
3911 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3912 memory allocated for that function is returned. */
3915 pre_expr_reaches_here_p (basic_block occr_bb
, struct expr
*expr
, basic_block bb
)
3918 char *visited
= xcalloc (last_basic_block
, 1);
3920 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
3927 /* Given an expr, generate RTL which we can insert at the end of a BB,
3928 or on an edge. Set the block number of any insns generated to
3932 process_insert_insn (struct expr
*expr
)
3934 rtx reg
= expr
->reaching_reg
;
3935 rtx exp
= copy_rtx (expr
->expr
);
3940 /* If the expression is something that's an operand, like a constant,
3941 just copy it to a register. */
3942 if (general_operand (exp
, GET_MODE (reg
)))
3943 emit_move_insn (reg
, exp
);
3945 /* Otherwise, make a new insn to compute this expression and make sure the
3946 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3947 expression to make sure we don't have any sharing issues. */
3950 rtx insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
));
3952 if (insn_invalid_p (insn
))
3963 /* Add EXPR to the end of basic block BB.
3965 This is used by both the PRE and code hoisting.
3967 For PRE, we want to verify that the expr is either transparent
3968 or locally anticipatable in the target block. This check makes
3969 no sense for code hoisting. */
3972 insert_insn_end_bb (struct expr
*expr
, basic_block bb
, int pre
)
3974 rtx insn
= BB_END (bb
);
3976 rtx reg
= expr
->reaching_reg
;
3977 int regno
= REGNO (reg
);
3980 pat
= process_insert_insn (expr
);
3981 gcc_assert (pat
&& INSN_P (pat
));
3984 while (NEXT_INSN (pat_end
) != NULL_RTX
)
3985 pat_end
= NEXT_INSN (pat_end
);
3987 /* If the last insn is a jump, insert EXPR in front [taking care to
3988 handle cc0, etc. properly]. Similarly we need to care trapping
3989 instructions in presence of non-call exceptions. */
3992 || (NONJUMP_INSN_P (insn
)
3993 && (EDGE_COUNT (bb
->succs
) > 1
3994 || EDGE_SUCC (bb
, 0)->flags
& EDGE_ABNORMAL
)))
3999 /* It should always be the case that we can put these instructions
4000 anywhere in the basic block with performing PRE optimizations.
4002 gcc_assert (!NONJUMP_INSN_P (insn
) || !pre
4003 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4004 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4006 /* If this is a jump table, then we can't insert stuff here. Since
4007 we know the previous real insn must be the tablejump, we insert
4008 the new instruction just before the tablejump. */
4009 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
4010 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
4011 insn
= prev_real_insn (insn
);
4014 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4015 if cc0 isn't set. */
4016 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
4018 insn
= XEXP (note
, 0);
4021 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
4022 if (maybe_cc0_setter
4023 && INSN_P (maybe_cc0_setter
)
4024 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
4025 insn
= maybe_cc0_setter
;
4028 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4029 new_insn
= emit_insn_before_noloc (pat
, insn
);
4032 /* Likewise if the last insn is a call, as will happen in the presence
4033 of exception handling. */
4034 else if (CALL_P (insn
)
4035 && (EDGE_COUNT (bb
->succs
) > 1 || EDGE_SUCC (bb
, 0)->flags
& EDGE_ABNORMAL
))
4037 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4038 we search backward and place the instructions before the first
4039 parameter is loaded. Do this for everyone for consistency and a
4040 presumption that we'll get better code elsewhere as well.
4042 It should always be the case that we can put these instructions
4043 anywhere in the basic block with performing PRE optimizations.
4047 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4048 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4050 /* Since different machines initialize their parameter registers
4051 in different orders, assume nothing. Collect the set of all
4052 parameter registers. */
4053 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
4055 /* If we found all the parameter loads, then we want to insert
4056 before the first parameter load.
4058 If we did not find all the parameter loads, then we might have
4059 stopped on the head of the block, which could be a CODE_LABEL.
4060 If we inserted before the CODE_LABEL, then we would be putting
4061 the insn in the wrong basic block. In that case, put the insn
4062 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4063 while (LABEL_P (insn
)
4064 || NOTE_INSN_BASIC_BLOCK_P (insn
))
4065 insn
= NEXT_INSN (insn
);
4067 new_insn
= emit_insn_before_noloc (pat
, insn
);
4070 new_insn
= emit_insn_after_noloc (pat
, insn
);
4076 add_label_notes (PATTERN (pat
), new_insn
);
4077 note_stores (PATTERN (pat
), record_set_info
, pat
);
4081 pat
= NEXT_INSN (pat
);
4084 gcse_create_count
++;
4088 fprintf (gcse_file
, "PRE/HOIST: end of bb %d, insn %d, ",
4089 bb
->index
, INSN_UID (new_insn
));
4090 fprintf (gcse_file
, "copying expression %d to reg %d\n",
4091 expr
->bitmap_index
, regno
);
4095 /* Insert partially redundant expressions on edges in the CFG to make
4096 the expressions fully redundant. */
4099 pre_edge_insert (struct edge_list
*edge_list
, struct expr
**index_map
)
4101 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
4104 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4105 if it reaches any of the deleted expressions. */
4107 set_size
= pre_insert_map
[0]->size
;
4108 num_edges
= NUM_EDGES (edge_list
);
4109 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
4110 sbitmap_vector_zero (inserted
, num_edges
);
4112 for (e
= 0; e
< num_edges
; e
++)
4115 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
4117 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
4119 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
4121 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
4122 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
4124 struct expr
*expr
= index_map
[j
];
4127 /* Now look at each deleted occurrence of this expression. */
4128 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4130 if (! occr
->deleted_p
)
4133 /* Insert this expression on this edge if it would
4134 reach the deleted occurrence in BB. */
4135 if (!TEST_BIT (inserted
[e
], j
))
4138 edge eg
= INDEX_EDGE (edge_list
, e
);
4140 /* We can't insert anything on an abnormal and
4141 critical edge, so we insert the insn at the end of
4142 the previous block. There are several alternatives
4143 detailed in Morgans book P277 (sec 10.5) for
4144 handling this situation. This one is easiest for
4147 if (eg
->flags
& EDGE_ABNORMAL
)
4148 insert_insn_end_bb (index_map
[j
], bb
, 0);
4151 insn
= process_insert_insn (index_map
[j
]);
4152 insert_insn_on_edge (insn
, eg
);
4157 fprintf (gcse_file
, "PRE/HOIST: edge (%d,%d), ",
4159 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
4160 fprintf (gcse_file
, "copy expression %d\n",
4161 expr
->bitmap_index
);
4164 update_ld_motion_stores (expr
);
4165 SET_BIT (inserted
[e
], j
);
4167 gcse_create_count
++;
4174 sbitmap_vector_free (inserted
);
4178 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4179 Given "old_reg <- expr" (INSN), instead of adding after it
4180 reaching_reg <- old_reg
4181 it's better to do the following:
4182 reaching_reg <- expr
4183 old_reg <- reaching_reg
4184 because this way copy propagation can discover additional PRE
4185 opportunities. But if this fails, we try the old way.
4186 When "expr" is a store, i.e.
4187 given "MEM <- old_reg", instead of adding after it
4188 reaching_reg <- old_reg
4189 it's better to add it before as follows:
4190 reaching_reg <- old_reg
4191 MEM <- reaching_reg. */
4194 pre_insert_copy_insn (struct expr
*expr
, rtx insn
)
4196 rtx reg
= expr
->reaching_reg
;
4197 int regno
= REGNO (reg
);
4198 int indx
= expr
->bitmap_index
;
4199 rtx pat
= PATTERN (insn
);
4204 /* This block matches the logic in hash_scan_insn. */
4205 switch (GET_CODE (pat
))
4212 /* Search through the parallel looking for the set whose
4213 source was the expression that we're interested in. */
4215 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4217 rtx x
= XVECEXP (pat
, 0, i
);
4218 if (GET_CODE (x
) == SET
4219 && expr_equiv_p (SET_SRC (x
), expr
->expr
))
4231 if (REG_P (SET_DEST (set
)))
4233 old_reg
= SET_DEST (set
);
4234 /* Check if we can modify the set destination in the original insn. */
4235 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
4237 new_insn
= gen_move_insn (old_reg
, reg
);
4238 new_insn
= emit_insn_after (new_insn
, insn
);
4240 /* Keep register set table up to date. */
4241 record_one_set (regno
, insn
);
4245 new_insn
= gen_move_insn (reg
, old_reg
);
4246 new_insn
= emit_insn_after (new_insn
, insn
);
4248 /* Keep register set table up to date. */
4249 record_one_set (regno
, new_insn
);
4252 else /* This is possible only in case of a store to memory. */
4254 old_reg
= SET_SRC (set
);
4255 new_insn
= gen_move_insn (reg
, old_reg
);
4257 /* Check if we can modify the set source in the original insn. */
4258 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
4259 new_insn
= emit_insn_before (new_insn
, insn
);
4261 new_insn
= emit_insn_after (new_insn
, insn
);
4263 /* Keep register set table up to date. */
4264 record_one_set (regno
, new_insn
);
4267 gcse_create_count
++;
4271 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4272 BLOCK_NUM (insn
), INSN_UID (new_insn
), indx
,
4273 INSN_UID (insn
), regno
);
4276 /* Copy available expressions that reach the redundant expression
4277 to `reaching_reg'. */
4280 pre_insert_copies (void)
4282 unsigned int i
, added_copy
;
4287 /* For each available expression in the table, copy the result to
4288 `reaching_reg' if the expression reaches a deleted one.
4290 ??? The current algorithm is rather brute force.
4291 Need to do some profiling. */
4293 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4294 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4296 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4297 we don't want to insert a copy here because the expression may not
4298 really be redundant. So only insert an insn if the expression was
4299 deleted. This test also avoids further processing if the
4300 expression wasn't deleted anywhere. */
4301 if (expr
->reaching_reg
== NULL
)
4304 /* Set when we add a copy for that expression. */
4307 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4309 if (! occr
->deleted_p
)
4312 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
4314 rtx insn
= avail
->insn
;
4316 /* No need to handle this one if handled already. */
4317 if (avail
->copied_p
)
4320 /* Don't handle this one if it's a redundant one. */
4321 if (TEST_BIT (pre_redundant_insns
, INSN_CUID (insn
)))
4324 /* Or if the expression doesn't reach the deleted one. */
4325 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
4327 BLOCK_FOR_INSN (occr
->insn
)))
4332 /* Copy the result of avail to reaching_reg. */
4333 pre_insert_copy_insn (expr
, insn
);
4334 avail
->copied_p
= 1;
4339 update_ld_motion_stores (expr
);
4343 /* Emit move from SRC to DEST noting the equivalence with expression computed
4346 gcse_emit_move_after (rtx src
, rtx dest
, rtx insn
)
4349 rtx set
= single_set (insn
), set2
;
4353 /* This should never fail since we're creating a reg->reg copy
4354 we've verified to be valid. */
4356 new = emit_insn_after (gen_move_insn (dest
, src
), insn
);
4358 /* Note the equivalence for local CSE pass. */
4359 set2
= single_set (new);
4360 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
4362 if ((note
= find_reg_equal_equiv_note (insn
)))
4363 eqv
= XEXP (note
, 0);
4365 eqv
= SET_SRC (set
);
4367 set_unique_reg_note (new, REG_EQUAL
, copy_insn_1 (eqv
));
4372 /* Delete redundant computations.
4373 Deletion is done by changing the insn to copy the `reaching_reg' of
4374 the expression into the result of the SET. It is left to later passes
4375 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4377 Returns nonzero if a change is made. */
4388 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4389 for (expr
= expr_hash_table
.table
[i
];
4391 expr
= expr
->next_same_hash
)
4393 int indx
= expr
->bitmap_index
;
4395 /* We only need to search antic_occr since we require
4398 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4400 rtx insn
= occr
->insn
;
4402 basic_block bb
= BLOCK_FOR_INSN (insn
);
4404 /* We only delete insns that have a single_set. */
4405 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
)
4406 && (set
= single_set (insn
)) != 0)
4408 /* Create a pseudo-reg to store the result of reaching
4409 expressions into. Get the mode for the new pseudo from
4410 the mode of the original destination pseudo. */
4411 if (expr
->reaching_reg
== NULL
)
4413 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4415 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4417 occr
->deleted_p
= 1;
4418 SET_BIT (pre_redundant_insns
, INSN_CUID (insn
));
4425 "PRE: redundant insn %d (expression %d) in ",
4426 INSN_UID (insn
), indx
);
4427 fprintf (gcse_file
, "bb %d, reaching reg is %d\n",
4428 bb
->index
, REGNO (expr
->reaching_reg
));
4437 /* Perform GCSE optimizations using PRE.
4438 This is called by one_pre_gcse_pass after all the dataflow analysis
4441 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4442 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4443 Compiler Design and Implementation.
4445 ??? A new pseudo reg is created to hold the reaching expression. The nice
4446 thing about the classical approach is that it would try to use an existing
4447 reg. If the register can't be adequately optimized [i.e. we introduce
4448 reload problems], one could add a pass here to propagate the new register
4451 ??? We don't handle single sets in PARALLELs because we're [currently] not
4452 able to copy the rest of the parallel when we insert copies to create full
4453 redundancies from partial redundancies. However, there's no reason why we
4454 can't handle PARALLELs in the cases where there are no partial
4461 int did_insert
, changed
;
4462 struct expr
**index_map
;
4465 /* Compute a mapping from expression number (`bitmap_index') to
4466 hash table entry. */
4468 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
4469 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4470 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4471 index_map
[expr
->bitmap_index
] = expr
;
4473 /* Reset bitmap used to track which insns are redundant. */
4474 pre_redundant_insns
= sbitmap_alloc (max_cuid
);
4475 sbitmap_zero (pre_redundant_insns
);
4477 /* Delete the redundant insns first so that
4478 - we know what register to use for the new insns and for the other
4479 ones with reaching expressions
4480 - we know which insns are redundant when we go to create copies */
4482 changed
= pre_delete ();
4484 did_insert
= pre_edge_insert (edge_list
, index_map
);
4486 /* In other places with reaching expressions, copy the expression to the
4487 specially allocated pseudo-reg that reaches the redundant expr. */
4488 pre_insert_copies ();
4491 commit_edge_insertions ();
4496 sbitmap_free (pre_redundant_insns
);
4500 /* Top level routine to perform one PRE GCSE pass.
4502 Return nonzero if a change was made. */
4505 one_pre_gcse_pass (int pass
)
4509 gcse_subst_count
= 0;
4510 gcse_create_count
= 0;
4512 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4513 add_noreturn_fake_exit_edges ();
4515 compute_ld_motion_mems ();
4517 compute_hash_table (&expr_hash_table
);
4518 trim_ld_motion_mems ();
4520 dump_hash_table (gcse_file
, "Expression", &expr_hash_table
);
4522 if (expr_hash_table
.n_elems
> 0)
4524 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
4525 compute_pre_data ();
4526 changed
|= pre_gcse ();
4527 free_edge_list (edge_list
);
4532 remove_fake_exit_edges ();
4533 free_hash_table (&expr_hash_table
);
4537 fprintf (gcse_file
, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4538 current_function_name (), pass
, bytes_used
);
4539 fprintf (gcse_file
, "%d substs, %d insns created\n",
4540 gcse_subst_count
, gcse_create_count
);
4546 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4547 If notes are added to an insn which references a CODE_LABEL, the
4548 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4549 because the following loop optimization pass requires them. */
4551 /* ??? This is very similar to the loop.c add_label_notes function. We
4552 could probably share code here. */
4554 /* ??? If there was a jump optimization pass after gcse and before loop,
4555 then we would not need to do this here, because jump would add the
4556 necessary REG_LABEL notes. */
4559 add_label_notes (rtx x
, rtx insn
)
4561 enum rtx_code code
= GET_CODE (x
);
4565 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
4567 /* This code used to ignore labels that referred to dispatch tables to
4568 avoid flow generating (slightly) worse code.
4570 We no longer ignore such label references (see LABEL_REF handling in
4571 mark_jump_label for additional information). */
4573 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, XEXP (x
, 0),
4575 if (LABEL_P (XEXP (x
, 0)))
4576 LABEL_NUSES (XEXP (x
, 0))++;
4580 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
4583 add_label_notes (XEXP (x
, i
), insn
);
4584 else if (fmt
[i
] == 'E')
4585 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4586 add_label_notes (XVECEXP (x
, i
, j
), insn
);
4590 /* Compute transparent outgoing information for each block.
4592 An expression is transparent to an edge unless it is killed by
4593 the edge itself. This can only happen with abnormal control flow,
4594 when the edge is traversed through a call. This happens with
4595 non-local labels and exceptions.
4597 This would not be necessary if we split the edge. While this is
4598 normally impossible for abnormal critical edges, with some effort
4599 it should be possible with exception handling, since we still have
4600 control over which handler should be invoked. But due to increased
4601 EH table sizes, this may not be worthwhile. */
4604 compute_transpout (void)
4610 sbitmap_vector_ones (transpout
, last_basic_block
);
4614 /* Note that flow inserted a nop a the end of basic blocks that
4615 end in call instructions for reasons other than abnormal
4617 if (! CALL_P (BB_END (bb
)))
4620 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4621 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
4622 if (MEM_P (expr
->expr
))
4624 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
4625 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
4628 /* ??? Optimally, we would use interprocedural alias
4629 analysis to determine if this mem is actually killed
4631 RESET_BIT (transpout
[bb
->index
], expr
->bitmap_index
);
4636 /* Code Hoisting variables and subroutines. */
4638 /* Very busy expressions. */
4639 static sbitmap
*hoist_vbein
;
4640 static sbitmap
*hoist_vbeout
;
4642 /* Hoistable expressions. */
4643 static sbitmap
*hoist_exprs
;
4645 /* ??? We could compute post dominators and run this algorithm in
4646 reverse to perform tail merging, doing so would probably be
4647 more effective than the tail merging code in jump.c.
4649 It's unclear if tail merging could be run in parallel with
4650 code hoisting. It would be nice. */
4652 /* Allocate vars used for code hoisting analysis. */
4655 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
4657 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4658 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4659 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4661 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4662 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4663 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4664 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4667 /* Free vars used for code hoisting analysis. */
4670 free_code_hoist_mem (void)
4672 sbitmap_vector_free (antloc
);
4673 sbitmap_vector_free (transp
);
4674 sbitmap_vector_free (comp
);
4676 sbitmap_vector_free (hoist_vbein
);
4677 sbitmap_vector_free (hoist_vbeout
);
4678 sbitmap_vector_free (hoist_exprs
);
4679 sbitmap_vector_free (transpout
);
4681 free_dominance_info (CDI_DOMINATORS
);
4684 /* Compute the very busy expressions at entry/exit from each block.
4686 An expression is very busy if all paths from a given point
4687 compute the expression. */
4690 compute_code_hoist_vbeinout (void)
4692 int changed
, passes
;
4695 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
4696 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
4705 /* We scan the blocks in the reverse order to speed up
4707 FOR_EACH_BB_REVERSE (bb
)
4709 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
], antloc
[bb
->index
],
4710 hoist_vbeout
[bb
->index
], transp
[bb
->index
]);
4711 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
4712 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
], hoist_vbein
, bb
->index
);
4719 fprintf (gcse_file
, "hoisting vbeinout computation: %d passes\n", passes
);
4722 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4725 compute_code_hoist_data (void)
4727 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
4728 compute_transpout ();
4729 compute_code_hoist_vbeinout ();
4730 calculate_dominance_info (CDI_DOMINATORS
);
4732 fprintf (gcse_file
, "\n");
4735 /* Determine if the expression identified by EXPR_INDEX would
4736 reach BB unimpared if it was placed at the end of EXPR_BB.
4738 It's unclear exactly what Muchnick meant by "unimpared". It seems
4739 to me that the expression must either be computed or transparent in
4740 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4741 would allow the expression to be hoisted out of loops, even if
4742 the expression wasn't a loop invariant.
4744 Contrast this to reachability for PRE where an expression is
4745 considered reachable if *any* path reaches instead of *all*
4749 hoist_expr_reaches_here_p (basic_block expr_bb
, int expr_index
, basic_block bb
, char *visited
)
4753 int visited_allocated_locally
= 0;
4756 if (visited
== NULL
)
4758 visited_allocated_locally
= 1;
4759 visited
= xcalloc (last_basic_block
, 1);
4762 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
4764 basic_block pred_bb
= pred
->src
;
4766 if (pred
->src
== ENTRY_BLOCK_PTR
)
4768 else if (pred_bb
== expr_bb
)
4770 else if (visited
[pred_bb
->index
])
4773 /* Does this predecessor generate this expression? */
4774 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
4776 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
4782 visited
[pred_bb
->index
] = 1;
4783 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
4788 if (visited_allocated_locally
)
4791 return (pred
== NULL
);
4794 /* Actually perform code hoisting. */
4799 basic_block bb
, dominated
;
4801 unsigned int domby_len
;
4803 struct expr
**index_map
;
4806 sbitmap_vector_zero (hoist_exprs
, last_basic_block
);
4808 /* Compute a mapping from expression number (`bitmap_index') to
4809 hash table entry. */
4811 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
4812 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4813 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4814 index_map
[expr
->bitmap_index
] = expr
;
4816 /* Walk over each basic block looking for potentially hoistable
4817 expressions, nothing gets hoisted from the entry block. */
4821 int insn_inserted_p
;
4823 domby_len
= get_dominated_by (CDI_DOMINATORS
, bb
, &domby
);
4824 /* Examine each expression that is very busy at the exit of this
4825 block. These are the potentially hoistable expressions. */
4826 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
4830 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
)
4831 && TEST_BIT (transpout
[bb
->index
], i
))
4833 /* We've found a potentially hoistable expression, now
4834 we look at every block BB dominates to see if it
4835 computes the expression. */
4836 for (j
= 0; j
< domby_len
; j
++)
4838 dominated
= domby
[j
];
4839 /* Ignore self dominance. */
4840 if (bb
== dominated
)
4842 /* We've found a dominated block, now see if it computes
4843 the busy expression and whether or not moving that
4844 expression to the "beginning" of that block is safe. */
4845 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4848 /* Note if the expression would reach the dominated block
4849 unimpared if it was placed at the end of BB.
4851 Keep track of how many times this expression is hoistable
4852 from a dominated block into BB. */
4853 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4857 /* If we found more than one hoistable occurrence of this
4858 expression, then note it in the bitmap of expressions to
4859 hoist. It makes no sense to hoist things which are computed
4860 in only one BB, and doing so tends to pessimize register
4861 allocation. One could increase this value to try harder
4862 to avoid any possible code expansion due to register
4863 allocation issues; however experiments have shown that
4864 the vast majority of hoistable expressions are only movable
4865 from two successors, so raising this threshold is likely
4866 to nullify any benefit we get from code hoisting. */
4869 SET_BIT (hoist_exprs
[bb
->index
], i
);
4874 /* If we found nothing to hoist, then quit now. */
4881 /* Loop over all the hoistable expressions. */
4882 for (i
= 0; i
< hoist_exprs
[bb
->index
]->n_bits
; i
++)
4884 /* We want to insert the expression into BB only once, so
4885 note when we've inserted it. */
4886 insn_inserted_p
= 0;
4888 /* These tests should be the same as the tests above. */
4889 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
))
4891 /* We've found a potentially hoistable expression, now
4892 we look at every block BB dominates to see if it
4893 computes the expression. */
4894 for (j
= 0; j
< domby_len
; j
++)
4896 dominated
= domby
[j
];
4897 /* Ignore self dominance. */
4898 if (bb
== dominated
)
4901 /* We've found a dominated block, now see if it computes
4902 the busy expression and whether or not moving that
4903 expression to the "beginning" of that block is safe. */
4904 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4907 /* The expression is computed in the dominated block and
4908 it would be safe to compute it at the start of the
4909 dominated block. Now we have to determine if the
4910 expression would reach the dominated block if it was
4911 placed at the end of BB. */
4912 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4914 struct expr
*expr
= index_map
[i
];
4915 struct occr
*occr
= expr
->antic_occr
;
4919 /* Find the right occurrence of this expression. */
4920 while (BLOCK_FOR_INSN (occr
->insn
) != dominated
&& occr
)
4925 set
= single_set (insn
);
4928 /* Create a pseudo-reg to store the result of reaching
4929 expressions into. Get the mode for the new pseudo
4930 from the mode of the original destination pseudo. */
4931 if (expr
->reaching_reg
== NULL
)
4933 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4935 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4937 occr
->deleted_p
= 1;
4938 if (!insn_inserted_p
)
4940 insert_insn_end_bb (index_map
[i
], bb
, 0);
4941 insn_inserted_p
= 1;
4953 /* Top level routine to perform one code hoisting (aka unification) pass
4955 Return nonzero if a change was made. */
4958 one_code_hoisting_pass (void)
4962 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4963 compute_hash_table (&expr_hash_table
);
4965 dump_hash_table (gcse_file
, "Code Hosting Expressions", &expr_hash_table
);
4967 if (expr_hash_table
.n_elems
> 0)
4969 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
4970 compute_code_hoist_data ();
4972 free_code_hoist_mem ();
4975 free_hash_table (&expr_hash_table
);
4980 /* Here we provide the things required to do store motion towards
4981 the exit. In order for this to be effective, gcse also needed to
4982 be taught how to move a load when it is kill only by a store to itself.
4987 void foo(float scale)
4989 for (i=0; i<10; i++)
4993 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4994 the load out since its live around the loop, and stored at the bottom
4997 The 'Load Motion' referred to and implemented in this file is
4998 an enhancement to gcse which when using edge based lcm, recognizes
4999 this situation and allows gcse to move the load out of the loop.
5001 Once gcse has hoisted the load, store motion can then push this
5002 load towards the exit, and we end up with no loads or stores of 'i'
5005 /* This will search the ldst list for a matching expression. If it
5006 doesn't find one, we create one and initialize it. */
5008 static struct ls_expr
*
5011 int do_not_record_p
= 0;
5012 struct ls_expr
* ptr
;
5015 hash
= hash_rtx (x
, GET_MODE (x
), &do_not_record_p
,
5016 NULL
, /*have_reg_qty=*/false);
5018 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5019 if (ptr
->hash_index
== hash
&& expr_equiv_p (ptr
->pattern
, x
))
5022 ptr
= xmalloc (sizeof (struct ls_expr
));
5024 ptr
->next
= pre_ldst_mems
;
5027 ptr
->pattern_regs
= NULL_RTX
;
5028 ptr
->loads
= NULL_RTX
;
5029 ptr
->stores
= NULL_RTX
;
5030 ptr
->reaching_reg
= NULL_RTX
;
5033 ptr
->hash_index
= hash
;
5034 pre_ldst_mems
= ptr
;
5039 /* Free up an individual ldst entry. */
5042 free_ldst_entry (struct ls_expr
* ptr
)
5044 free_INSN_LIST_list (& ptr
->loads
);
5045 free_INSN_LIST_list (& ptr
->stores
);
5050 /* Free up all memory associated with the ldst list. */
5053 free_ldst_mems (void)
5055 while (pre_ldst_mems
)
5057 struct ls_expr
* tmp
= pre_ldst_mems
;
5059 pre_ldst_mems
= pre_ldst_mems
->next
;
5061 free_ldst_entry (tmp
);
5064 pre_ldst_mems
= NULL
;
5067 /* Dump debugging info about the ldst list. */
5070 print_ldst_list (FILE * file
)
5072 struct ls_expr
* ptr
;
5074 fprintf (file
, "LDST list: \n");
5076 for (ptr
= first_ls_expr(); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5078 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
5080 print_rtl (file
, ptr
->pattern
);
5082 fprintf (file
, "\n Loads : ");
5085 print_rtl (file
, ptr
->loads
);
5087 fprintf (file
, "(nil)");
5089 fprintf (file
, "\n Stores : ");
5092 print_rtl (file
, ptr
->stores
);
5094 fprintf (file
, "(nil)");
5096 fprintf (file
, "\n\n");
5099 fprintf (file
, "\n");
5102 /* Returns 1 if X is in the list of ldst only expressions. */
5104 static struct ls_expr
*
5105 find_rtx_in_ldst (rtx x
)
5107 struct ls_expr
* ptr
;
5109 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5110 if (expr_equiv_p (ptr
->pattern
, x
) && ! ptr
->invalid
)
5116 /* Assign each element of the list of mems a monotonically increasing value. */
5119 enumerate_ldsts (void)
5121 struct ls_expr
* ptr
;
5124 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5130 /* Return first item in the list. */
5132 static inline struct ls_expr
*
5133 first_ls_expr (void)
5135 return pre_ldst_mems
;
5138 /* Return the next item in the list after the specified one. */
5140 static inline struct ls_expr
*
5141 next_ls_expr (struct ls_expr
* ptr
)
5146 /* Load Motion for loads which only kill themselves. */
5148 /* Return true if x is a simple MEM operation, with no registers or
5149 side effects. These are the types of loads we consider for the
5150 ld_motion list, otherwise we let the usual aliasing take care of it. */
5158 if (MEM_VOLATILE_P (x
))
5161 if (GET_MODE (x
) == BLKmode
)
5164 /* If we are handling exceptions, we must be careful with memory references
5165 that may trap. If we are not, the behavior is undefined, so we may just
5167 if (flag_non_call_exceptions
&& may_trap_p (x
))
5170 if (side_effects_p (x
))
5173 /* Do not consider function arguments passed on stack. */
5174 if (reg_mentioned_p (stack_pointer_rtx
, x
))
5177 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
5183 /* Make sure there isn't a buried reference in this pattern anywhere.
5184 If there is, invalidate the entry for it since we're not capable
5185 of fixing it up just yet.. We have to be sure we know about ALL
5186 loads since the aliasing code will allow all entries in the
5187 ld_motion list to not-alias itself. If we miss a load, we will get
5188 the wrong value since gcse might common it and we won't know to
5192 invalidate_any_buried_refs (rtx x
)
5196 struct ls_expr
* ptr
;
5198 /* Invalidate it in the list. */
5199 if (MEM_P (x
) && simple_mem (x
))
5201 ptr
= ldst_entry (x
);
5205 /* Recursively process the insn. */
5206 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5208 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
5211 invalidate_any_buried_refs (XEXP (x
, i
));
5212 else if (fmt
[i
] == 'E')
5213 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5214 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
5218 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5219 being defined as MEM loads and stores to symbols, with no side effects
5220 and no registers in the expression. For a MEM destination, we also
5221 check that the insn is still valid if we replace the destination with a
5222 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5223 which don't match this criteria, they are invalidated and trimmed out
5227 compute_ld_motion_mems (void)
5229 struct ls_expr
* ptr
;
5233 pre_ldst_mems
= NULL
;
5237 for (insn
= BB_HEAD (bb
);
5238 insn
&& insn
!= NEXT_INSN (BB_END (bb
));
5239 insn
= NEXT_INSN (insn
))
5243 if (GET_CODE (PATTERN (insn
)) == SET
)
5245 rtx src
= SET_SRC (PATTERN (insn
));
5246 rtx dest
= SET_DEST (PATTERN (insn
));
5248 /* Check for a simple LOAD... */
5249 if (MEM_P (src
) && simple_mem (src
))
5251 ptr
= ldst_entry (src
);
5253 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
5259 /* Make sure there isn't a buried load somewhere. */
5260 invalidate_any_buried_refs (src
);
5263 /* Check for stores. Don't worry about aliased ones, they
5264 will block any movement we might do later. We only care
5265 about this exact pattern since those are the only
5266 circumstance that we will ignore the aliasing info. */
5267 if (MEM_P (dest
) && simple_mem (dest
))
5269 ptr
= ldst_entry (dest
);
5272 && GET_CODE (src
) != ASM_OPERANDS
5273 /* Check for REG manually since want_to_gcse_p
5274 returns 0 for all REGs. */
5275 && can_assign_to_reg_p (src
))
5276 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
5282 invalidate_any_buried_refs (PATTERN (insn
));
5288 /* Remove any references that have been either invalidated or are not in the
5289 expression list for pre gcse. */
5292 trim_ld_motion_mems (void)
5294 struct ls_expr
* * last
= & pre_ldst_mems
;
5295 struct ls_expr
* ptr
= pre_ldst_mems
;
5301 /* Delete if entry has been made invalid. */
5304 /* Delete if we cannot find this mem in the expression list. */
5305 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
5307 for (expr
= expr_hash_table
.table
[hash
];
5309 expr
= expr
->next_same_hash
)
5310 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
5314 expr
= (struct expr
*) 0;
5318 /* Set the expression field if we are keeping it. */
5326 free_ldst_entry (ptr
);
5331 /* Show the world what we've found. */
5332 if (gcse_file
&& pre_ldst_mems
!= NULL
)
5333 print_ldst_list (gcse_file
);
5336 /* This routine will take an expression which we are replacing with
5337 a reaching register, and update any stores that are needed if
5338 that expression is in the ld_motion list. Stores are updated by
5339 copying their SRC to the reaching register, and then storing
5340 the reaching register into the store location. These keeps the
5341 correct value in the reaching register for the loads. */
5344 update_ld_motion_stores (struct expr
* expr
)
5346 struct ls_expr
* mem_ptr
;
5348 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
5350 /* We can try to find just the REACHED stores, but is shouldn't
5351 matter to set the reaching reg everywhere... some might be
5352 dead and should be eliminated later. */
5354 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5355 where reg is the reaching reg used in the load. We checked in
5356 compute_ld_motion_mems that we can replace (set mem expr) with
5357 (set reg expr) in that insn. */
5358 rtx list
= mem_ptr
->stores
;
5360 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
5362 rtx insn
= XEXP (list
, 0);
5363 rtx pat
= PATTERN (insn
);
5364 rtx src
= SET_SRC (pat
);
5365 rtx reg
= expr
->reaching_reg
;
5368 /* If we've already copied it, continue. */
5369 if (expr
->reaching_reg
== src
)
5374 fprintf (gcse_file
, "PRE: store updated with reaching reg ");
5375 print_rtl (gcse_file
, expr
->reaching_reg
);
5376 fprintf (gcse_file
, ":\n ");
5377 print_inline_rtx (gcse_file
, insn
, 8);
5378 fprintf (gcse_file
, "\n");
5381 copy
= gen_move_insn ( reg
, copy_rtx (SET_SRC (pat
)));
5382 new = emit_insn_before (copy
, insn
);
5383 record_one_set (REGNO (reg
), new);
5384 SET_SRC (pat
) = reg
;
5386 /* un-recognize this pattern since it's probably different now. */
5387 INSN_CODE (insn
) = -1;
5388 gcse_create_count
++;
5393 /* Store motion code. */
5395 #define ANTIC_STORE_LIST(x) ((x)->loads)
5396 #define AVAIL_STORE_LIST(x) ((x)->stores)
5397 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5399 /* This is used to communicate the target bitvector we want to use in the
5400 reg_set_info routine when called via the note_stores mechanism. */
5401 static int * regvec
;
5403 /* And current insn, for the same routine. */
5404 static rtx compute_store_table_current_insn
;
5406 /* Used in computing the reverse edge graph bit vectors. */
5407 static sbitmap
* st_antloc
;
5409 /* Global holding the number of store expressions we are dealing with. */
5410 static int num_stores
;
5412 /* Checks to set if we need to mark a register set. Called from
5416 reg_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
5419 sbitmap bb_reg
= data
;
5421 if (GET_CODE (dest
) == SUBREG
)
5422 dest
= SUBREG_REG (dest
);
5426 regvec
[REGNO (dest
)] = INSN_UID (compute_store_table_current_insn
);
5428 SET_BIT (bb_reg
, REGNO (dest
));
5432 /* Clear any mark that says that this insn sets dest. Called from
5436 reg_clear_last_set (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
5439 int *dead_vec
= data
;
5441 if (GET_CODE (dest
) == SUBREG
)
5442 dest
= SUBREG_REG (dest
);
5445 dead_vec
[REGNO (dest
)] == INSN_UID (compute_store_table_current_insn
))
5446 dead_vec
[REGNO (dest
)] = 0;
5449 /* Return zero if some of the registers in list X are killed
5450 due to set of registers in bitmap REGS_SET. */
5453 store_ops_ok (rtx x
, int *regs_set
)
5457 for (; x
; x
= XEXP (x
, 1))
5460 if (regs_set
[REGNO(reg
)])
5467 /* Returns a list of registers mentioned in X. */
5469 extract_mentioned_regs (rtx x
)
5471 return extract_mentioned_regs_helper (x
, NULL_RTX
);
5474 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5477 extract_mentioned_regs_helper (rtx x
, rtx accum
)
5483 /* Repeat is used to turn tail-recursion into iteration. */
5489 code
= GET_CODE (x
);
5493 return alloc_EXPR_LIST (0, x
, accum
);
5503 /* We do not run this function with arguments having side effects. */
5522 i
= GET_RTX_LENGTH (code
) - 1;
5523 fmt
= GET_RTX_FORMAT (code
);
5529 rtx tem
= XEXP (x
, i
);
5531 /* If we are about to do the last recursive call
5532 needed at this level, change it into iteration. */
5539 accum
= extract_mentioned_regs_helper (tem
, accum
);
5541 else if (fmt
[i
] == 'E')
5545 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5546 accum
= extract_mentioned_regs_helper (XVECEXP (x
, i
, j
), accum
);
5553 /* Determine whether INSN is MEM store pattern that we will consider moving.
5554 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5555 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5556 including) the insn in this basic block. We must be passing through BB from
5557 head to end, as we are using this fact to speed things up.
5559 The results are stored this way:
5561 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5562 -- if the processed expression is not anticipatable, NULL_RTX is added
5563 there instead, so that we can use it as indicator that no further
5564 expression of this type may be anticipatable
5565 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5566 consequently, all of them but this head are dead and may be deleted.
5567 -- if the expression is not available, the insn due to that it fails to be
5568 available is stored in reaching_reg.
5570 The things are complicated a bit by fact that there already may be stores
5571 to the same MEM from other blocks; also caller must take care of the
5572 necessary cleanup of the temporary markers after end of the basic block.
5576 find_moveable_store (rtx insn
, int *regs_set_before
, int *regs_set_after
)
5578 struct ls_expr
* ptr
;
5580 int check_anticipatable
, check_available
;
5581 basic_block bb
= BLOCK_FOR_INSN (insn
);
5583 set
= single_set (insn
);
5587 dest
= SET_DEST (set
);
5589 if (! MEM_P (dest
) || MEM_VOLATILE_P (dest
)
5590 || GET_MODE (dest
) == BLKmode
)
5593 if (side_effects_p (dest
))
5596 /* If we are handling exceptions, we must be careful with memory references
5597 that may trap. If we are not, the behavior is undefined, so we may just
5599 if (flag_non_call_exceptions
&& may_trap_p (dest
))
5602 /* Even if the destination cannot trap, the source may. In this case we'd
5603 need to handle updating the REG_EH_REGION note. */
5604 if (find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
5607 ptr
= ldst_entry (dest
);
5608 if (!ptr
->pattern_regs
)
5609 ptr
->pattern_regs
= extract_mentioned_regs (dest
);
5611 /* Do not check for anticipatability if we either found one anticipatable
5612 store already, or tested for one and found out that it was killed. */
5613 check_anticipatable
= 0;
5614 if (!ANTIC_STORE_LIST (ptr
))
5615 check_anticipatable
= 1;
5618 tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0);
5620 && BLOCK_FOR_INSN (tmp
) != bb
)
5621 check_anticipatable
= 1;
5623 if (check_anticipatable
)
5625 if (store_killed_before (dest
, ptr
->pattern_regs
, insn
, bb
, regs_set_before
))
5629 ANTIC_STORE_LIST (ptr
) = alloc_INSN_LIST (tmp
,
5630 ANTIC_STORE_LIST (ptr
));
5633 /* It is not necessary to check whether store is available if we did
5634 it successfully before; if we failed before, do not bother to check
5635 until we reach the insn that caused us to fail. */
5636 check_available
= 0;
5637 if (!AVAIL_STORE_LIST (ptr
))
5638 check_available
= 1;
5641 tmp
= XEXP (AVAIL_STORE_LIST (ptr
), 0);
5642 if (BLOCK_FOR_INSN (tmp
) != bb
)
5643 check_available
= 1;
5645 if (check_available
)
5647 /* Check that we have already reached the insn at that the check
5648 failed last time. */
5649 if (LAST_AVAIL_CHECK_FAILURE (ptr
))
5651 for (tmp
= BB_END (bb
);
5652 tmp
!= insn
&& tmp
!= LAST_AVAIL_CHECK_FAILURE (ptr
);
5653 tmp
= PREV_INSN (tmp
))
5656 check_available
= 0;
5659 check_available
= store_killed_after (dest
, ptr
->pattern_regs
, insn
,
5661 &LAST_AVAIL_CHECK_FAILURE (ptr
));
5663 if (!check_available
)
5664 AVAIL_STORE_LIST (ptr
) = alloc_INSN_LIST (insn
, AVAIL_STORE_LIST (ptr
));
5667 /* Find available and anticipatable stores. */
5670 compute_store_table (void)
5676 int *last_set_in
, *already_set
;
5677 struct ls_expr
* ptr
, **prev_next_ptr_ptr
;
5679 max_gcse_regno
= max_reg_num ();
5681 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
,
5683 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
5685 last_set_in
= xcalloc (max_gcse_regno
, sizeof (int));
5686 already_set
= xmalloc (sizeof (int) * max_gcse_regno
);
5688 /* Find all the stores we care about. */
5691 /* First compute the registers set in this block. */
5692 regvec
= last_set_in
;
5694 for (insn
= BB_HEAD (bb
);
5695 insn
!= NEXT_INSN (BB_END (bb
));
5696 insn
= NEXT_INSN (insn
))
5698 if (! INSN_P (insn
))
5703 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5704 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5706 last_set_in
[regno
] = INSN_UID (insn
);
5707 SET_BIT (reg_set_in_block
[bb
->index
], regno
);
5711 pat
= PATTERN (insn
);
5712 compute_store_table_current_insn
= insn
;
5713 note_stores (pat
, reg_set_info
, reg_set_in_block
[bb
->index
]);
5716 /* Now find the stores. */
5717 memset (already_set
, 0, sizeof (int) * max_gcse_regno
);
5718 regvec
= already_set
;
5719 for (insn
= BB_HEAD (bb
);
5720 insn
!= NEXT_INSN (BB_END (bb
));
5721 insn
= NEXT_INSN (insn
))
5723 if (! INSN_P (insn
))
5728 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5729 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5730 already_set
[regno
] = 1;
5733 pat
= PATTERN (insn
);
5734 note_stores (pat
, reg_set_info
, NULL
);
5736 /* Now that we've marked regs, look for stores. */
5737 find_moveable_store (insn
, already_set
, last_set_in
);
5739 /* Unmark regs that are no longer set. */
5740 compute_store_table_current_insn
= insn
;
5741 note_stores (pat
, reg_clear_last_set
, last_set_in
);
5744 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5745 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
)
5746 && last_set_in
[regno
] == INSN_UID (insn
))
5747 last_set_in
[regno
] = 0;
5751 #ifdef ENABLE_CHECKING
5752 /* last_set_in should now be all-zero. */
5753 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
5754 gcc_assert (!last_set_in
[regno
]);
5757 /* Clear temporary marks. */
5758 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5760 LAST_AVAIL_CHECK_FAILURE(ptr
) = NULL_RTX
;
5761 if (ANTIC_STORE_LIST (ptr
)
5762 && (tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0)) == NULL_RTX
)
5763 ANTIC_STORE_LIST (ptr
) = XEXP (ANTIC_STORE_LIST (ptr
), 1);
5767 /* Remove the stores that are not available anywhere, as there will
5768 be no opportunity to optimize them. */
5769 for (ptr
= pre_ldst_mems
, prev_next_ptr_ptr
= &pre_ldst_mems
;
5771 ptr
= *prev_next_ptr_ptr
)
5773 if (!AVAIL_STORE_LIST (ptr
))
5775 *prev_next_ptr_ptr
= ptr
->next
;
5776 free_ldst_entry (ptr
);
5779 prev_next_ptr_ptr
= &ptr
->next
;
5782 ret
= enumerate_ldsts ();
5786 fprintf (gcse_file
, "ST_avail and ST_antic (shown under loads..)\n");
5787 print_ldst_list (gcse_file
);
5795 /* Check to see if the load X is aliased with STORE_PATTERN.
5796 AFTER is true if we are checking the case when STORE_PATTERN occurs
5800 load_kills_store (rtx x
, rtx store_pattern
, int after
)
5803 return anti_dependence (x
, store_pattern
);
5805 return true_dependence (store_pattern
, GET_MODE (store_pattern
), x
,
5809 /* Go through the entire insn X, looking for any loads which might alias
5810 STORE_PATTERN. Return true if found.
5811 AFTER is true if we are checking the case when STORE_PATTERN occurs
5812 after the insn X. */
5815 find_loads (rtx x
, rtx store_pattern
, int after
)
5824 if (GET_CODE (x
) == SET
)
5829 if (load_kills_store (x
, store_pattern
, after
))
5833 /* Recursively process the insn. */
5834 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5836 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0 && !ret
; i
--)
5839 ret
|= find_loads (XEXP (x
, i
), store_pattern
, after
);
5840 else if (fmt
[i
] == 'E')
5841 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5842 ret
|= find_loads (XVECEXP (x
, i
, j
), store_pattern
, after
);
5847 /* Check if INSN kills the store pattern X (is aliased with it).
5848 AFTER is true if we are checking the case when store X occurs
5849 after the insn. Return true if it does. */
5852 store_killed_in_insn (rtx x
, rtx x_regs
, rtx insn
, int after
)
5854 rtx reg
, base
, note
;
5861 /* A normal or pure call might read from pattern,
5862 but a const call will not. */
5863 if (! CONST_OR_PURE_CALL_P (insn
) || pure_call_p (insn
))
5866 /* But even a const call reads its parameters. Check whether the
5867 base of some of registers used in mem is stack pointer. */
5868 for (reg
= x_regs
; reg
; reg
= XEXP (reg
, 1))
5870 base
= find_base_term (XEXP (reg
, 0));
5872 || (GET_CODE (base
) == ADDRESS
5873 && GET_MODE (base
) == Pmode
5874 && XEXP (base
, 0) == stack_pointer_rtx
))
5881 if (GET_CODE (PATTERN (insn
)) == SET
)
5883 rtx pat
= PATTERN (insn
);
5884 rtx dest
= SET_DEST (pat
);
5886 if (GET_CODE (dest
) == ZERO_EXTRACT
)
5887 dest
= XEXP (dest
, 0);
5889 /* Check for memory stores to aliased objects. */
5891 && !expr_equiv_p (dest
, x
))
5895 if (output_dependence (dest
, x
))
5900 if (output_dependence (x
, dest
))
5904 if (find_loads (SET_SRC (pat
), x
, after
))
5907 else if (find_loads (PATTERN (insn
), x
, after
))
5910 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5911 location aliased with X, then this insn kills X. */
5912 note
= find_reg_equal_equiv_note (insn
);
5915 note
= XEXP (note
, 0);
5917 /* However, if the note represents a must alias rather than a may
5918 alias relationship, then it does not kill X. */
5919 if (expr_equiv_p (note
, x
))
5922 /* See if there are any aliased loads in the note. */
5923 return find_loads (note
, x
, after
);
5926 /* Returns true if the expression X is loaded or clobbered on or after INSN
5927 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5928 or after the insn. X_REGS is list of registers mentioned in X. If the store
5929 is killed, return the last insn in that it occurs in FAIL_INSN. */
5932 store_killed_after (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
5933 int *regs_set_after
, rtx
*fail_insn
)
5935 rtx last
= BB_END (bb
), act
;
5937 if (!store_ops_ok (x_regs
, regs_set_after
))
5939 /* We do not know where it will happen. */
5941 *fail_insn
= NULL_RTX
;
5945 /* Scan from the end, so that fail_insn is determined correctly. */
5946 for (act
= last
; act
!= PREV_INSN (insn
); act
= PREV_INSN (act
))
5947 if (store_killed_in_insn (x
, x_regs
, act
, false))
5957 /* Returns true if the expression X is loaded or clobbered on or before INSN
5958 within basic block BB. X_REGS is list of registers mentioned in X.
5959 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
5961 store_killed_before (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
5962 int *regs_set_before
)
5964 rtx first
= BB_HEAD (bb
);
5966 if (!store_ops_ok (x_regs
, regs_set_before
))
5969 for ( ; insn
!= PREV_INSN (first
); insn
= PREV_INSN (insn
))
5970 if (store_killed_in_insn (x
, x_regs
, insn
, true))
5976 /* Fill in available, anticipatable, transparent and kill vectors in
5977 STORE_DATA, based on lists of available and anticipatable stores. */
5979 build_store_vectors (void)
5982 int *regs_set_in_block
;
5984 struct ls_expr
* ptr
;
5987 /* Build the gen_vector. This is any store in the table which is not killed
5988 by aliasing later in its block. */
5989 ae_gen
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
5990 sbitmap_vector_zero (ae_gen
, last_basic_block
);
5992 st_antloc
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
5993 sbitmap_vector_zero (st_antloc
, last_basic_block
);
5995 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5997 for (st
= AVAIL_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
5999 insn
= XEXP (st
, 0);
6000 bb
= BLOCK_FOR_INSN (insn
);
6002 /* If we've already seen an available expression in this block,
6003 we can delete this one (It occurs earlier in the block). We'll
6004 copy the SRC expression to an unused register in case there
6005 are any side effects. */
6006 if (TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6008 rtx r
= gen_reg_rtx (GET_MODE (ptr
->pattern
));
6010 fprintf (gcse_file
, "Removing redundant store:\n");
6011 replace_store_insn (r
, XEXP (st
, 0), bb
, ptr
);
6014 SET_BIT (ae_gen
[bb
->index
], ptr
->index
);
6017 for (st
= ANTIC_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
6019 insn
= XEXP (st
, 0);
6020 bb
= BLOCK_FOR_INSN (insn
);
6021 SET_BIT (st_antloc
[bb
->index
], ptr
->index
);
6025 ae_kill
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6026 sbitmap_vector_zero (ae_kill
, last_basic_block
);
6028 transp
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6029 sbitmap_vector_zero (transp
, last_basic_block
);
6030 regs_set_in_block
= xmalloc (sizeof (int) * max_gcse_regno
);
6034 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
6035 regs_set_in_block
[regno
] = TEST_BIT (reg_set_in_block
[bb
->index
], regno
);
6037 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6039 if (store_killed_after (ptr
->pattern
, ptr
->pattern_regs
, BB_HEAD (bb
),
6040 bb
, regs_set_in_block
, NULL
))
6042 /* It should not be necessary to consider the expression
6043 killed if it is both anticipatable and available. */
6044 if (!TEST_BIT (st_antloc
[bb
->index
], ptr
->index
)
6045 || !TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6046 SET_BIT (ae_kill
[bb
->index
], ptr
->index
);
6049 SET_BIT (transp
[bb
->index
], ptr
->index
);
6053 free (regs_set_in_block
);
6057 dump_sbitmap_vector (gcse_file
, "st_antloc", "", st_antloc
, last_basic_block
);
6058 dump_sbitmap_vector (gcse_file
, "st_kill", "", ae_kill
, last_basic_block
);
6059 dump_sbitmap_vector (gcse_file
, "Transpt", "", transp
, last_basic_block
);
6060 dump_sbitmap_vector (gcse_file
, "st_avloc", "", ae_gen
, last_basic_block
);
6064 /* Insert an instruction at the beginning of a basic block, and update
6065 the BB_HEAD if needed. */
6068 insert_insn_start_bb (rtx insn
, basic_block bb
)
6070 /* Insert at start of successor block. */
6071 rtx prev
= PREV_INSN (BB_HEAD (bb
));
6072 rtx before
= BB_HEAD (bb
);
6075 if (! LABEL_P (before
)
6076 && (! NOTE_P (before
)
6077 || NOTE_LINE_NUMBER (before
) != NOTE_INSN_BASIC_BLOCK
))
6080 if (prev
== BB_END (bb
))
6082 before
= NEXT_INSN (before
);
6085 insn
= emit_insn_after_noloc (insn
, prev
);
6089 fprintf (gcse_file
, "STORE_MOTION insert store at start of BB %d:\n",
6091 print_inline_rtx (gcse_file
, insn
, 6);
6092 fprintf (gcse_file
, "\n");
6096 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6097 the memory reference, and E is the edge to insert it on. Returns nonzero
6098 if an edge insertion was performed. */
6101 insert_store (struct ls_expr
* expr
, edge e
)
6108 /* We did all the deleted before this insert, so if we didn't delete a
6109 store, then we haven't set the reaching reg yet either. */
6110 if (expr
->reaching_reg
== NULL_RTX
)
6113 if (e
->flags
& EDGE_FAKE
)
6116 reg
= expr
->reaching_reg
;
6117 insn
= gen_move_insn (copy_rtx (expr
->pattern
), reg
);
6119 /* If we are inserting this expression on ALL predecessor edges of a BB,
6120 insert it at the start of the BB, and reset the insert bits on the other
6121 edges so we don't try to insert it on the other edges. */
6123 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6124 if (!(tmp
->flags
& EDGE_FAKE
))
6126 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6128 gcc_assert (index
!= EDGE_INDEX_NO_EDGE
);
6129 if (! TEST_BIT (pre_insert_map
[index
], expr
->index
))
6133 /* If tmp is NULL, we found an insertion on every edge, blank the
6134 insertion vector for these edges, and insert at the start of the BB. */
6135 if (!tmp
&& bb
!= EXIT_BLOCK_PTR
)
6137 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6139 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6140 RESET_BIT (pre_insert_map
[index
], expr
->index
);
6142 insert_insn_start_bb (insn
, bb
);
6146 /* We can't put stores in the front of blocks pointed to by abnormal
6147 edges since that may put a store where one didn't used to be. */
6148 gcc_assert (!(e
->flags
& EDGE_ABNORMAL
));
6150 insert_insn_on_edge (insn
, e
);
6154 fprintf (gcse_file
, "STORE_MOTION insert insn on edge (%d, %d):\n",
6155 e
->src
->index
, e
->dest
->index
);
6156 print_inline_rtx (gcse_file
, insn
, 6);
6157 fprintf (gcse_file
, "\n");
6163 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6164 memory location in SMEXPR set in basic block BB.
6166 This could be rather expensive. */
6169 remove_reachable_equiv_notes (basic_block bb
, struct ls_expr
*smexpr
)
6171 edge_iterator
*stack
, ei
;
6174 sbitmap visited
= sbitmap_alloc (last_basic_block
);
6175 rtx last
, insn
, note
;
6176 rtx mem
= smexpr
->pattern
;
6178 stack
= xmalloc (sizeof (edge_iterator
) * n_basic_blocks
);
6180 ei
= ei_start (bb
->succs
);
6182 sbitmap_zero (visited
);
6184 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6192 sbitmap_free (visited
);
6195 act
= ei_edge (stack
[--sp
]);
6199 if (bb
== EXIT_BLOCK_PTR
6200 || TEST_BIT (visited
, bb
->index
))
6204 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6207 SET_BIT (visited
, bb
->index
);
6209 if (TEST_BIT (st_antloc
[bb
->index
], smexpr
->index
))
6211 for (last
= ANTIC_STORE_LIST (smexpr
);
6212 BLOCK_FOR_INSN (XEXP (last
, 0)) != bb
;
6213 last
= XEXP (last
, 1))
6215 last
= XEXP (last
, 0);
6218 last
= NEXT_INSN (BB_END (bb
));
6220 for (insn
= BB_HEAD (bb
); insn
!= last
; insn
= NEXT_INSN (insn
))
6223 note
= find_reg_equal_equiv_note (insn
);
6224 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6228 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6230 remove_note (insn
, note
);
6235 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6237 if (EDGE_COUNT (bb
->succs
) > 0)
6241 ei
= ei_start (bb
->succs
);
6242 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6247 /* This routine will replace a store with a SET to a specified register. */
6250 replace_store_insn (rtx reg
, rtx del
, basic_block bb
, struct ls_expr
*smexpr
)
6252 rtx insn
, mem
, note
, set
, ptr
, pair
;
6254 mem
= smexpr
->pattern
;
6255 insn
= gen_move_insn (reg
, SET_SRC (single_set (del
)));
6256 insn
= emit_insn_after (insn
, del
);
6261 "STORE_MOTION delete insn in BB %d:\n ", bb
->index
);
6262 print_inline_rtx (gcse_file
, del
, 6);
6263 fprintf (gcse_file
, "\nSTORE MOTION replaced with insn:\n ");
6264 print_inline_rtx (gcse_file
, insn
, 6);
6265 fprintf (gcse_file
, "\n");
6268 for (ptr
= ANTIC_STORE_LIST (smexpr
); ptr
; ptr
= XEXP (ptr
, 1))
6269 if (XEXP (ptr
, 0) == del
)
6271 XEXP (ptr
, 0) = insn
;
6275 /* Move the notes from the deleted insn to its replacement, and patch
6276 up the LIBCALL notes. */
6277 REG_NOTES (insn
) = REG_NOTES (del
);
6279 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
6282 pair
= XEXP (note
, 0);
6283 note
= find_reg_note (pair
, REG_LIBCALL
, NULL_RTX
);
6284 XEXP (note
, 0) = insn
;
6286 note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
6289 pair
= XEXP (note
, 0);
6290 note
= find_reg_note (pair
, REG_RETVAL
, NULL_RTX
);
6291 XEXP (note
, 0) = insn
;
6296 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6297 they are no longer accurate provided that they are reached by this
6298 definition, so drop them. */
6299 for (; insn
!= NEXT_INSN (BB_END (bb
)); insn
= NEXT_INSN (insn
))
6302 set
= single_set (insn
);
6305 if (expr_equiv_p (SET_DEST (set
), mem
))
6307 note
= find_reg_equal_equiv_note (insn
);
6308 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6312 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6314 remove_note (insn
, note
);
6316 remove_reachable_equiv_notes (bb
, smexpr
);
6320 /* Delete a store, but copy the value that would have been stored into
6321 the reaching_reg for later storing. */
6324 delete_store (struct ls_expr
* expr
, basic_block bb
)
6328 if (expr
->reaching_reg
== NULL_RTX
)
6329 expr
->reaching_reg
= gen_reg_rtx (GET_MODE (expr
->pattern
));
6331 reg
= expr
->reaching_reg
;
6333 for (i
= AVAIL_STORE_LIST (expr
); i
; i
= XEXP (i
, 1))
6336 if (BLOCK_FOR_INSN (del
) == bb
)
6338 /* We know there is only one since we deleted redundant
6339 ones during the available computation. */
6340 replace_store_insn (reg
, del
, bb
, expr
);
6346 /* Free memory used by store motion. */
6349 free_store_memory (void)
6354 sbitmap_vector_free (ae_gen
);
6356 sbitmap_vector_free (ae_kill
);
6358 sbitmap_vector_free (transp
);
6360 sbitmap_vector_free (st_antloc
);
6362 sbitmap_vector_free (pre_insert_map
);
6364 sbitmap_vector_free (pre_delete_map
);
6365 if (reg_set_in_block
)
6366 sbitmap_vector_free (reg_set_in_block
);
6368 ae_gen
= ae_kill
= transp
= st_antloc
= NULL
;
6369 pre_insert_map
= pre_delete_map
= reg_set_in_block
= NULL
;
6372 /* Perform store motion. Much like gcse, except we move expressions the
6373 other way by looking at the flowgraph in reverse. */
6380 struct ls_expr
* ptr
;
6381 int update_flow
= 0;
6385 fprintf (gcse_file
, "before store motion\n");
6386 print_rtl (gcse_file
, get_insns ());
6389 init_alias_analysis ();
6391 /* Find all the available and anticipatable stores. */
6392 num_stores
= compute_store_table ();
6393 if (num_stores
== 0)
6395 sbitmap_vector_free (reg_set_in_block
);
6396 end_alias_analysis ();
6400 /* Now compute kill & transp vectors. */
6401 build_store_vectors ();
6402 add_noreturn_fake_exit_edges ();
6403 connect_infinite_loops_to_exit ();
6405 edge_list
= pre_edge_rev_lcm (gcse_file
, num_stores
, transp
, ae_gen
,
6406 st_antloc
, ae_kill
, &pre_insert_map
,
6409 /* Now we want to insert the new stores which are going to be needed. */
6410 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6412 /* If any of the edges we have above are abnormal, we can't move this
6414 for (x
= NUM_EDGES (edge_list
) - 1; x
>= 0; x
--)
6415 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
)
6416 && (INDEX_EDGE (edge_list
, x
)->flags
& EDGE_ABNORMAL
))
6421 if (gcse_file
!= NULL
)
6423 "Can't replace store %d: abnormal edge from %d to %d\n",
6424 ptr
->index
, INDEX_EDGE (edge_list
, x
)->src
->index
,
6425 INDEX_EDGE (edge_list
, x
)->dest
->index
);
6429 /* Now we want to insert the new stores which are going to be needed. */
6432 if (TEST_BIT (pre_delete_map
[bb
->index
], ptr
->index
))
6433 delete_store (ptr
, bb
);
6435 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
6436 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
))
6437 update_flow
|= insert_store (ptr
, INDEX_EDGE (edge_list
, x
));
6441 commit_edge_insertions ();
6443 free_store_memory ();
6444 free_edge_list (edge_list
);
6445 remove_fake_exit_edges ();
6446 end_alias_analysis ();
6450 /* Entry point for jump bypassing optimization pass. */
6453 bypass_jumps (FILE *file
)
6457 /* We do not construct an accurate cfg in functions which call
6458 setjmp, so just punt to be safe. */
6459 if (current_function_calls_setjmp
)
6462 /* For calling dump_foo fns from gdb. */
6463 debug_stderr
= stderr
;
6466 /* Identify the basic block information for this function, including
6467 successors and predecessors. */
6468 max_gcse_regno
= max_reg_num ();
6471 dump_flow_info (file
);
6473 /* Return if there's nothing to do, or it is too expensive. */
6474 if (n_basic_blocks
<= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6477 gcc_obstack_init (&gcse_obstack
);
6480 /* We need alias. */
6481 init_alias_analysis ();
6483 /* Record where pseudo-registers are set. This data is kept accurate
6484 during each pass. ??? We could also record hard-reg information here
6485 [since it's unchanging], however it is currently done during hash table
6488 It may be tempting to compute MEM set information here too, but MEM sets
6489 will be subject to code motion one day and thus we need to compute
6490 information about memory sets when we build the hash tables. */
6492 alloc_reg_set_mem (max_gcse_regno
);
6493 compute_sets (get_insns ());
6495 max_gcse_regno
= max_reg_num ();
6496 alloc_gcse_mem (get_insns ());
6497 changed
= one_cprop_pass (MAX_GCSE_PASSES
+ 2, 1, 1);
6502 fprintf (file
, "BYPASS of %s: %d basic blocks, ",
6503 current_function_name (), n_basic_blocks
);
6504 fprintf (file
, "%d bytes\n\n", bytes_used
);
6507 obstack_free (&gcse_obstack
, NULL
);
6508 free_reg_set_mem ();
6510 /* We are finished with alias. */
6511 end_alias_analysis ();
6512 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
6517 /* Return true if the graph is too expensive to optimize. PASS is the
6518 optimization about to be performed. */
6521 is_too_expensive (const char *pass
)
6523 /* Trying to perform global optimizations on flow graphs which have
6524 a high connectivity will take a long time and is unlikely to be
6525 particularly useful.
6527 In normal circumstances a cfg should have about twice as many
6528 edges as blocks. But we do not want to punish small functions
6529 which have a couple switch statements. Rather than simply
6530 threshold the number of blocks, uses something with a more
6531 graceful degradation. */
6532 if (n_edges
> 20000 + n_basic_blocks
* 4)
6534 if (warn_disabled_optimization
)
6535 warning ("%s: %d basic blocks and %d edges/basic block",
6536 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
6541 /* If allocating memory for the cprop bitmap would take up too much
6542 storage it's better just to disable the optimization. */
6544 * SBITMAP_SET_SIZE (max_reg_num ())
6545 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
6547 if (warn_disabled_optimization
)
6548 warning ("%s: %d basic blocks and %d registers",
6549 pass
, n_basic_blocks
, max_reg_num ());
6557 #include "gt-gcse.h"