Add a directory forgotten in merge.
[official-gcc.git] / libgfortran / generated / product_r4.c
blobc1dfd8b008ad7fba5493390000ffb7836c8749a9
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include "libgfortran.h"
28 void
29 __product_r4 (gfc_array_r4 * retarray, gfc_array_r4 *array, index_type *pdim)
31 index_type count[GFC_MAX_DIMENSIONS - 1];
32 index_type extent[GFC_MAX_DIMENSIONS - 1];
33 index_type sstride[GFC_MAX_DIMENSIONS - 1];
34 index_type dstride[GFC_MAX_DIMENSIONS - 1];
35 GFC_REAL_4 *base;
36 GFC_REAL_4 *dest;
37 index_type rank;
38 index_type n;
39 index_type len;
40 index_type delta;
41 index_type dim;
43 /* Make dim zero based to avoid confusion. */
44 dim = (*pdim) - 1;
45 rank = GFC_DESCRIPTOR_RANK (array) - 1;
46 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
47 if (array->dim[0].stride == 0)
48 array->dim[0].stride = 1;
49 if (retarray->dim[0].stride == 0)
50 retarray->dim[0].stride = 1;
52 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
53 if (len <= 0)
54 return;
55 delta = array->dim[dim].stride;
57 for (n = 0; n < dim; n++)
59 sstride[n] = array->dim[n].stride;
60 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
62 for (n = dim; n < rank; n++)
64 sstride[n] = array->dim[n + 1].stride;
65 extent[n] =
66 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
69 for (n = 0; n < rank; n++)
71 count[n] = 0;
72 dstride[n] = retarray->dim[n].stride;
73 if (extent[n] <= 0)
74 return;
77 base = array->data;
78 dest = retarray->data;
80 while (base)
82 GFC_REAL_4 *src;
83 GFC_REAL_4 result;
84 src = base;
87 result = 1;
88 for (n = 0; n < len; n++, src += delta)
91 result *= *src;
93 *dest = result;
95 /* Advance to the next element. */
96 count[0]++;
97 base += sstride[0];
98 dest += dstride[0];
99 n = 0;
100 while (count[n] == extent[n])
102 /* When we get to the end of a dimension, reset it and increment
103 the next dimension. */
104 count[n] = 0;
105 /* We could precalculate these products, but this is a less
106 frequently used path so proabably not worth it. */
107 base -= sstride[n] * extent[n];
108 dest -= dstride[n] * extent[n];
109 n++;
110 if (n == rank)
112 /* Break out of the look. */
113 base = NULL;
114 break;
116 else
118 count[n]++;
119 base += sstride[n];
120 dest += dstride[n];
126 void
127 __mproduct_r4 (gfc_array_r4 * retarray, gfc_array_r4 * array, index_type *pdim, gfc_array_l4 * mask)
129 index_type count[GFC_MAX_DIMENSIONS - 1];
130 index_type extent[GFC_MAX_DIMENSIONS - 1];
131 index_type sstride[GFC_MAX_DIMENSIONS - 1];
132 index_type dstride[GFC_MAX_DIMENSIONS - 1];
133 index_type mstride[GFC_MAX_DIMENSIONS - 1];
134 GFC_REAL_4 *dest;
135 GFC_REAL_4 *base;
136 GFC_LOGICAL_4 *mbase;
137 int rank;
138 int dim;
139 index_type n;
140 index_type len;
141 index_type delta;
142 index_type mdelta;
144 dim = (*pdim) - 1;
145 rank = GFC_DESCRIPTOR_RANK (array) - 1;
146 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
147 if (array->dim[0].stride == 0)
148 array->dim[0].stride = 1;
149 if (retarray->dim[0].stride == 0)
150 retarray->dim[0].stride = 1;
152 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
153 if (len <= 0)
154 return;
155 delta = array->dim[dim].stride;
156 mdelta = mask->dim[dim].stride;
158 for (n = 0; n < dim; n++)
160 sstride[n] = array->dim[n].stride;
161 mstride[n] = mask->dim[n].stride;
162 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
164 for (n = dim; n < rank; n++)
166 sstride[n] = array->dim[n + 1].stride;
167 mstride[n] = mask->dim[n + 1].stride;
168 extent[n] =
169 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
172 for (n = 0; n < rank; n++)
174 count[n] = 0;
175 dstride[n] = retarray->dim[n].stride;
176 if (extent[n] <= 0)
177 return;
180 dest = retarray->data;
181 base = array->data;
182 mbase = mask->data;
184 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
186 /* This allows the same loop to be used for all logical types. */
187 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
188 for (n = 0; n < rank; n++)
189 mstride[n] <<= 1;
190 mdelta <<= 1;
191 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
194 while (base)
196 GFC_REAL_4 *src;
197 GFC_LOGICAL_4 *msrc;
198 GFC_REAL_4 result;
199 src = base;
200 msrc = mbase;
203 result = 1;
204 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
207 if (*msrc)
208 result *= *src;
210 *dest = result;
212 /* Advance to the next element. */
213 count[0]++;
214 base += sstride[0];
215 mbase += mstride[0];
216 dest += dstride[0];
217 n = 0;
218 while (count[n] == extent[n])
220 /* When we get to the end of a dimension, reset it and increment
221 the next dimension. */
222 count[n] = 0;
223 /* We could precalculate these products, but this is a less
224 frequently used path so proabably not worth it. */
225 base -= sstride[n] * extent[n];
226 mbase -= mstride[n] * extent[n];
227 dest -= dstride[n] * extent[n];
228 n++;
229 if (n == rank)
231 /* Break out of the look. */
232 base = NULL;
233 break;
235 else
237 count[n]++;
238 base += sstride[n];
239 mbase += mstride[n];
240 dest += dstride[n];