1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
25 #include "libgfortran.h"
29 __product_i4 (gfc_array_i4
* retarray
, gfc_array_i4
*array
, index_type
*pdim
)
31 index_type count
[GFC_MAX_DIMENSIONS
- 1];
32 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
33 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
34 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
43 /* Make dim zero based to avoid confusion. */
45 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
46 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
47 if (array
->dim
[0].stride
== 0)
48 array
->dim
[0].stride
= 1;
49 if (retarray
->dim
[0].stride
== 0)
50 retarray
->dim
[0].stride
= 1;
52 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
55 delta
= array
->dim
[dim
].stride
;
57 for (n
= 0; n
< dim
; n
++)
59 sstride
[n
] = array
->dim
[n
].stride
;
60 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
62 for (n
= dim
; n
< rank
; n
++)
64 sstride
[n
] = array
->dim
[n
+ 1].stride
;
66 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
69 for (n
= 0; n
< rank
; n
++)
72 dstride
[n
] = retarray
->dim
[n
].stride
;
78 dest
= retarray
->data
;
88 for (n
= 0; n
< len
; n
++, src
+= delta
)
95 /* Advance to the next element. */
100 while (count
[n
] == extent
[n
])
102 /* When we get to the end of a dimension, reset it and increment
103 the next dimension. */
105 /* We could precalculate these products, but this is a less
106 frequently used path so proabably not worth it. */
107 base
-= sstride
[n
] * extent
[n
];
108 dest
-= dstride
[n
] * extent
[n
];
112 /* Break out of the look. */
127 __mproduct_i4 (gfc_array_i4
* retarray
, gfc_array_i4
* array
, index_type
*pdim
, gfc_array_l4
* mask
)
129 index_type count
[GFC_MAX_DIMENSIONS
- 1];
130 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
131 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
132 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
133 index_type mstride
[GFC_MAX_DIMENSIONS
- 1];
136 GFC_LOGICAL_4
*mbase
;
145 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
146 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
147 if (array
->dim
[0].stride
== 0)
148 array
->dim
[0].stride
= 1;
149 if (retarray
->dim
[0].stride
== 0)
150 retarray
->dim
[0].stride
= 1;
152 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
155 delta
= array
->dim
[dim
].stride
;
156 mdelta
= mask
->dim
[dim
].stride
;
158 for (n
= 0; n
< dim
; n
++)
160 sstride
[n
] = array
->dim
[n
].stride
;
161 mstride
[n
] = mask
->dim
[n
].stride
;
162 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
164 for (n
= dim
; n
< rank
; n
++)
166 sstride
[n
] = array
->dim
[n
+ 1].stride
;
167 mstride
[n
] = mask
->dim
[n
+ 1].stride
;
169 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
172 for (n
= 0; n
< rank
; n
++)
175 dstride
[n
] = retarray
->dim
[n
].stride
;
180 dest
= retarray
->data
;
184 if (GFC_DESCRIPTOR_SIZE (mask
) != 4)
186 /* This allows the same loop to be used for all logical types. */
187 assert (GFC_DESCRIPTOR_SIZE (mask
) == 8);
188 for (n
= 0; n
< rank
; n
++)
191 mbase
= (GFOR_POINTER_L8_TO_L4 (mbase
));
198 GFC_INTEGER_4 result
;
204 for (n
= 0; n
< len
; n
++, src
+= delta
, msrc
+= mdelta
)
212 /* Advance to the next element. */
218 while (count
[n
] == extent
[n
])
220 /* When we get to the end of a dimension, reset it and increment
221 the next dimension. */
223 /* We could precalculate these products, but this is a less
224 frequently used path so proabably not worth it. */
225 base
-= sstride
[n
] * extent
[n
];
226 mbase
-= mstride
[n
] * extent
[n
];
227 dest
-= dstride
[n
] * extent
[n
];
231 /* Break out of the look. */