Add a directory forgotten in merge.
[official-gcc.git] / libgfortran / generated / maxval_i4.c
blobc1c5ee7806e83f37e5957dca0bdd60153b0e586a
1 /* Implementation of the MAXVAL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include <float.h>
26 #include "libgfortran.h"
29 void
30 __maxval_i4 (gfc_array_i4 * retarray, gfc_array_i4 *array, index_type *pdim)
32 index_type count[GFC_MAX_DIMENSIONS - 1];
33 index_type extent[GFC_MAX_DIMENSIONS - 1];
34 index_type sstride[GFC_MAX_DIMENSIONS - 1];
35 index_type dstride[GFC_MAX_DIMENSIONS - 1];
36 GFC_INTEGER_4 *base;
37 GFC_INTEGER_4 *dest;
38 index_type rank;
39 index_type n;
40 index_type len;
41 index_type delta;
42 index_type dim;
44 /* Make dim zero based to avoid confusion. */
45 dim = (*pdim) - 1;
46 rank = GFC_DESCRIPTOR_RANK (array) - 1;
47 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
48 if (array->dim[0].stride == 0)
49 array->dim[0].stride = 1;
50 if (retarray->dim[0].stride == 0)
51 retarray->dim[0].stride = 1;
53 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
54 if (len <= 0)
55 return;
56 delta = array->dim[dim].stride;
58 for (n = 0; n < dim; n++)
60 sstride[n] = array->dim[n].stride;
61 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
63 for (n = dim; n < rank; n++)
65 sstride[n] = array->dim[n + 1].stride;
66 extent[n] =
67 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
70 for (n = 0; n < rank; n++)
72 count[n] = 0;
73 dstride[n] = retarray->dim[n].stride;
74 if (extent[n] <= 0)
75 return;
78 base = array->data;
79 dest = retarray->data;
81 while (base)
83 GFC_INTEGER_4 *src;
84 GFC_INTEGER_4 result;
85 src = base;
88 result = -GFC_INTEGER_4_HUGE;
89 for (n = 0; n < len; n++, src += delta)
92 if (*src > result)
93 result = *src;
95 *dest = result;
97 /* Advance to the next element. */
98 count[0]++;
99 base += sstride[0];
100 dest += dstride[0];
101 n = 0;
102 while (count[n] == extent[n])
104 /* When we get to the end of a dimension, reset it and increment
105 the next dimension. */
106 count[n] = 0;
107 /* We could precalculate these products, but this is a less
108 frequently used path so proabably not worth it. */
109 base -= sstride[n] * extent[n];
110 dest -= dstride[n] * extent[n];
111 n++;
112 if (n == rank)
114 /* Break out of the look. */
115 base = NULL;
116 break;
118 else
120 count[n]++;
121 base += sstride[n];
122 dest += dstride[n];
128 void
129 __mmaxval_i4 (gfc_array_i4 * retarray, gfc_array_i4 * array, index_type *pdim, gfc_array_l4 * mask)
131 index_type count[GFC_MAX_DIMENSIONS - 1];
132 index_type extent[GFC_MAX_DIMENSIONS - 1];
133 index_type sstride[GFC_MAX_DIMENSIONS - 1];
134 index_type dstride[GFC_MAX_DIMENSIONS - 1];
135 index_type mstride[GFC_MAX_DIMENSIONS - 1];
136 GFC_INTEGER_4 *dest;
137 GFC_INTEGER_4 *base;
138 GFC_LOGICAL_4 *mbase;
139 int rank;
140 int dim;
141 index_type n;
142 index_type len;
143 index_type delta;
144 index_type mdelta;
146 dim = (*pdim) - 1;
147 rank = GFC_DESCRIPTOR_RANK (array) - 1;
148 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
149 if (array->dim[0].stride == 0)
150 array->dim[0].stride = 1;
151 if (retarray->dim[0].stride == 0)
152 retarray->dim[0].stride = 1;
154 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
155 if (len <= 0)
156 return;
157 delta = array->dim[dim].stride;
158 mdelta = mask->dim[dim].stride;
160 for (n = 0; n < dim; n++)
162 sstride[n] = array->dim[n].stride;
163 mstride[n] = mask->dim[n].stride;
164 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
166 for (n = dim; n < rank; n++)
168 sstride[n] = array->dim[n + 1].stride;
169 mstride[n] = mask->dim[n + 1].stride;
170 extent[n] =
171 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
174 for (n = 0; n < rank; n++)
176 count[n] = 0;
177 dstride[n] = retarray->dim[n].stride;
178 if (extent[n] <= 0)
179 return;
182 dest = retarray->data;
183 base = array->data;
184 mbase = mask->data;
186 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
188 /* This allows the same loop to be used for all logical types. */
189 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
190 for (n = 0; n < rank; n++)
191 mstride[n] <<= 1;
192 mdelta <<= 1;
193 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
196 while (base)
198 GFC_INTEGER_4 *src;
199 GFC_LOGICAL_4 *msrc;
200 GFC_INTEGER_4 result;
201 src = base;
202 msrc = mbase;
205 result = -GFC_INTEGER_4_HUGE;
206 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
209 if (*msrc && *src > result)
210 result = *src;
212 *dest = result;
214 /* Advance to the next element. */
215 count[0]++;
216 base += sstride[0];
217 mbase += mstride[0];
218 dest += dstride[0];
219 n = 0;
220 while (count[n] == extent[n])
222 /* When we get to the end of a dimension, reset it and increment
223 the next dimension. */
224 count[n] = 0;
225 /* We could precalculate these products, but this is a less
226 frequently used path so proabably not worth it. */
227 base -= sstride[n] * extent[n];
228 mbase -= mstride[n] * extent[n];
229 dest -= dstride[n] * extent[n];
230 n++;
231 if (n == rank)
233 /* Break out of the look. */
234 base = NULL;
235 break;
237 else
239 count[n]++;
240 base += sstride[n];
241 mbase += mstride[n];
242 dest += dstride[n];