1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
38 #include "coretypes.h"
44 #include "tree-pass.h"
46 #include "insn-config.h"
53 /* Optimize jump y; x: ... y: jumpif... x?
54 Don't know if it is worth bothering with. */
55 /* Optimize two cases of conditional jump to conditional jump?
56 This can never delete any instruction or make anything dead,
57 or even change what is live at any point.
58 So perhaps let combiner do it. */
60 static void init_label_info (rtx_insn
*);
61 static void mark_all_labels (rtx_insn
*);
62 static void mark_jump_label_1 (rtx
, rtx_insn
*, bool, bool);
63 static void mark_jump_label_asm (rtx
, rtx_insn
*);
64 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
65 static int invert_exp_1 (rtx
, rtx
);
67 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
69 rebuild_jump_labels_1 (rtx_insn
*f
, bool count_forced
)
73 timevar_push (TV_REBUILD_JUMP
);
77 /* Keep track of labels used from static data; we don't track them
78 closely enough to delete them here, so make sure their reference
79 count doesn't drop to zero. */
82 for (insn
= forced_labels
; insn
; insn
= insn
->next ())
83 if (LABEL_P (insn
->insn ()))
84 LABEL_NUSES (insn
->insn ())++;
85 timevar_pop (TV_REBUILD_JUMP
);
88 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
89 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
90 instructions and jumping insns that have labels as operands
93 rebuild_jump_labels (rtx_insn
*f
)
95 rebuild_jump_labels_1 (f
, true);
98 /* This function is like rebuild_jump_labels, but doesn't run over
99 forced_labels. It can be used on insn chains that aren't the
100 main function chain. */
102 rebuild_jump_labels_chain (rtx_insn
*chain
)
104 rebuild_jump_labels_1 (chain
, false);
107 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
108 non-fallthru insn. This is not generally true, as multiple barriers
109 may have crept in, or the BARRIER may be separated from the last
110 real insn by one or more NOTEs.
112 This simple pass moves barriers and removes duplicates so that the
116 cleanup_barriers (void)
119 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
121 if (BARRIER_P (insn
))
123 rtx_insn
*prev
= prev_nonnote_insn (insn
);
129 /* Make sure we do not split a call and its corresponding
130 CALL_ARG_LOCATION note. */
131 rtx_insn
*next
= NEXT_INSN (prev
);
134 && NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
138 if (BARRIER_P (prev
))
140 else if (prev
!= PREV_INSN (insn
))
142 basic_block bb
= BLOCK_FOR_INSN (prev
);
143 rtx_insn
*end
= PREV_INSN (insn
);
144 reorder_insns_nobb (insn
, insn
, prev
);
147 /* If the backend called in machine reorg compute_bb_for_insn
148 and didn't free_bb_for_insn again, preserve basic block
149 boundaries. Move the end of basic block to PREV since
150 it is followed by a barrier now, and clear BLOCK_FOR_INSN
151 on the following notes.
152 ??? Maybe the proper solution for the targets that have
153 cfg around after machine reorg is not to run cleanup_barriers
158 prev
= NEXT_INSN (prev
);
159 if (prev
!= insn
&& BLOCK_FOR_INSN (prev
) == bb
)
160 BLOCK_FOR_INSN (prev
) = NULL
;
172 const pass_data pass_data_cleanup_barriers
=
175 "barriers", /* name */
176 OPTGROUP_NONE
, /* optinfo_flags */
178 0, /* properties_required */
179 0, /* properties_provided */
180 0, /* properties_destroyed */
181 0, /* todo_flags_start */
182 0, /* todo_flags_finish */
185 class pass_cleanup_barriers
: public rtl_opt_pass
188 pass_cleanup_barriers (gcc::context
*ctxt
)
189 : rtl_opt_pass (pass_data_cleanup_barriers
, ctxt
)
192 /* opt_pass methods: */
193 virtual unsigned int execute (function
*) { return cleanup_barriers (); }
195 }; // class pass_cleanup_barriers
200 make_pass_cleanup_barriers (gcc::context
*ctxt
)
202 return new pass_cleanup_barriers (ctxt
);
206 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
207 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
208 notes whose labels don't occur in the insn any more. */
211 init_label_info (rtx_insn
*f
)
215 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
218 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
220 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
221 sticky and not reset here; that way we won't lose association
222 with a label when e.g. the source for a target register
223 disappears out of reach for targets that may use jump-target
224 registers. Jump transformations are supposed to transform
225 any REG_LABEL_TARGET notes. The target label reference in a
226 branch may disappear from the branch (and from the
227 instruction before it) for other reasons, like register
234 for (note
= REG_NOTES (insn
); note
; note
= next
)
236 next
= XEXP (note
, 1);
237 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
238 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
239 remove_note (insn
, note
);
245 /* A subroutine of mark_all_labels. Trivially propagate a simple label
246 load into a jump_insn that uses it. */
249 maybe_propagate_label_ref (rtx_insn
*jump_insn
, rtx_insn
*prev_nonjump_insn
)
251 rtx label_note
, pc
, pc_src
;
253 pc
= pc_set (jump_insn
);
254 pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
255 label_note
= find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
257 /* If the previous non-jump insn sets something to a label,
258 something that this jump insn uses, make that label the primary
259 target of this insn if we don't yet have any. That previous
260 insn must be a single_set and not refer to more than one label.
261 The jump insn must not refer to other labels as jump targets
262 and must be a plain (set (pc) ...), maybe in a parallel, and
263 may refer to the item being set only directly or as one of the
264 arms in an IF_THEN_ELSE. */
266 if (label_note
!= NULL
&& pc_src
!= NULL
)
268 rtx label_set
= single_set (prev_nonjump_insn
);
269 rtx label_dest
= label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
271 if (label_set
!= NULL
272 /* The source must be the direct LABEL_REF, not a
273 PLUS, UNSPEC, IF_THEN_ELSE etc. */
274 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
275 && (rtx_equal_p (label_dest
, pc_src
)
276 || (GET_CODE (pc_src
) == IF_THEN_ELSE
277 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
278 || rtx_equal_p (label_dest
, XEXP (pc_src
, 2))))))
280 /* The CODE_LABEL referred to in the note must be the
281 CODE_LABEL in the LABEL_REF of the "set". We can
282 conveniently use it for the marker function, which
283 requires a LABEL_REF wrapping. */
284 gcc_assert (XEXP (label_note
, 0) == LABEL_REF_LABEL (SET_SRC (label_set
)));
286 mark_jump_label_1 (label_set
, jump_insn
, false, true);
288 gcc_assert (JUMP_LABEL (jump_insn
) == XEXP (label_note
, 0));
293 /* Mark the label each jump jumps to.
294 Combine consecutive labels, and count uses of labels. */
297 mark_all_labels (rtx_insn
*f
)
301 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
304 FOR_EACH_BB_FN (bb
, cfun
)
306 /* In cfglayout mode, we don't bother with trivial next-insn
307 propagation of LABEL_REFs into JUMP_LABEL. This will be
308 handled by other optimizers using better algorithms. */
309 FOR_BB_INSNS (bb
, insn
)
311 gcc_assert (! insn
->deleted ());
312 if (NONDEBUG_INSN_P (insn
))
313 mark_jump_label (PATTERN (insn
), insn
, 0);
316 /* In cfglayout mode, there may be non-insns between the
317 basic blocks. If those non-insns represent tablejump data,
318 they contain label references that we must record. */
319 for (insn
= BB_HEADER (bb
); insn
; insn
= NEXT_INSN (insn
))
320 if (JUMP_TABLE_DATA_P (insn
))
321 mark_jump_label (PATTERN (insn
), insn
, 0);
322 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
323 if (JUMP_TABLE_DATA_P (insn
))
324 mark_jump_label (PATTERN (insn
), insn
, 0);
329 rtx_insn
*prev_nonjump_insn
= NULL
;
330 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
332 if (insn
->deleted ())
334 else if (LABEL_P (insn
))
335 prev_nonjump_insn
= NULL
;
336 else if (JUMP_TABLE_DATA_P (insn
))
337 mark_jump_label (PATTERN (insn
), insn
, 0);
338 else if (NONDEBUG_INSN_P (insn
))
340 mark_jump_label (PATTERN (insn
), insn
, 0);
343 if (JUMP_LABEL (insn
) == NULL
&& prev_nonjump_insn
!= NULL
)
344 maybe_propagate_label_ref (insn
, prev_nonjump_insn
);
347 prev_nonjump_insn
= insn
;
353 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
354 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
355 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
356 know whether it's source is floating point or integer comparison. Machine
357 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
358 to help this function avoid overhead in these cases. */
360 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
361 const_rtx arg1
, const_rtx insn
)
365 /* If this is not actually a comparison, we can't reverse it. */
366 if (GET_RTX_CLASS (code
) != RTX_COMPARE
367 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
370 mode
= GET_MODE (arg0
);
371 if (mode
== VOIDmode
)
372 mode
= GET_MODE (arg1
);
374 /* First see if machine description supplies us way to reverse the
375 comparison. Give it priority over everything else to allow
376 machine description to do tricks. */
377 if (GET_MODE_CLASS (mode
) == MODE_CC
378 && REVERSIBLE_CC_MODE (mode
))
379 return REVERSE_CONDITION (code
, mode
);
381 /* Try a few special cases based on the comparison code. */
390 /* It is always safe to reverse EQ and NE, even for the floating
391 point. Similarly the unsigned comparisons are never used for
392 floating point so we can reverse them in the default way. */
393 return reverse_condition (code
);
398 /* In case we already see unordered comparison, we can be sure to
399 be dealing with floating point so we don't need any more tests. */
400 return reverse_condition_maybe_unordered (code
);
405 /* We don't have safe way to reverse these yet. */
411 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
413 /* Try to search for the comparison to determine the real mode.
414 This code is expensive, but with sane machine description it
415 will be never used, since REVERSIBLE_CC_MODE will return true
420 /* These CONST_CAST's are okay because prev_nonnote_insn just
421 returns its argument and we assign it to a const_rtx
423 for (rtx_insn
*prev
= prev_nonnote_insn (CONST_CAST_RTX (insn
));
424 prev
!= 0 && !LABEL_P (prev
);
425 prev
= prev_nonnote_insn (prev
))
427 const_rtx set
= set_of (arg0
, prev
);
428 if (set
&& GET_CODE (set
) == SET
429 && rtx_equal_p (SET_DEST (set
), arg0
))
431 rtx src
= SET_SRC (set
);
433 if (GET_CODE (src
) == COMPARE
)
435 rtx comparison
= src
;
436 arg0
= XEXP (src
, 0);
437 mode
= GET_MODE (arg0
);
438 if (mode
== VOIDmode
)
439 mode
= GET_MODE (XEXP (comparison
, 1));
442 /* We can get past reg-reg moves. This may be useful for model
443 of i387 comparisons that first move flag registers around. */
450 /* If register is clobbered in some ununderstandable way,
457 /* Test for an integer condition, or a floating-point comparison
458 in which NaNs can be ignored. */
459 if (CONST_INT_P (arg0
)
460 || (GET_MODE (arg0
) != VOIDmode
461 && GET_MODE_CLASS (mode
) != MODE_CC
462 && !HONOR_NANS (mode
)))
463 return reverse_condition (code
);
468 /* A wrapper around the previous function to take COMPARISON as rtx
469 expression. This simplifies many callers. */
471 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
473 if (!COMPARISON_P (comparison
))
475 return reversed_comparison_code_parts (GET_CODE (comparison
),
476 XEXP (comparison
, 0),
477 XEXP (comparison
, 1), insn
);
480 /* Return comparison with reversed code of EXP.
481 Return NULL_RTX in case we fail to do the reversal. */
483 reversed_comparison (const_rtx exp
, machine_mode mode
)
485 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
486 if (reversed_code
== UNKNOWN
)
489 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
490 XEXP (exp
, 0), XEXP (exp
, 1));
494 /* Given an rtx-code for a comparison, return the code for the negated
495 comparison. If no such code exists, return UNKNOWN.
497 WATCH OUT! reverse_condition is not safe to use on a jump that might
498 be acting on the results of an IEEE floating point comparison, because
499 of the special treatment of non-signaling nans in comparisons.
500 Use reversed_comparison_code instead. */
503 reverse_condition (enum rtx_code code
)
545 /* Similar, but we're allowed to generate unordered comparisons, which
546 makes it safe for IEEE floating-point. Of course, we have to recognize
547 that the target will support them too... */
550 reverse_condition_maybe_unordered (enum rtx_code code
)
588 /* Similar, but return the code when two operands of a comparison are swapped.
589 This IS safe for IEEE floating-point. */
592 swap_condition (enum rtx_code code
)
634 /* Given a comparison CODE, return the corresponding unsigned comparison.
635 If CODE is an equality comparison or already an unsigned comparison,
639 unsigned_condition (enum rtx_code code
)
665 /* Similarly, return the signed version of a comparison. */
668 signed_condition (enum rtx_code code
)
694 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
695 truth of CODE1 implies the truth of CODE2. */
698 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
700 /* UNKNOWN comparison codes can happen as a result of trying to revert
702 They can't match anything, so we have to reject them here. */
703 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
712 if (code2
== UNLE
|| code2
== UNGE
)
717 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
723 if (code2
== UNLE
|| code2
== NE
)
728 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
733 if (code2
== UNGE
|| code2
== NE
)
738 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
744 if (code2
== ORDERED
)
749 if (code2
== NE
|| code2
== ORDERED
)
754 if (code2
== LEU
|| code2
== NE
)
759 if (code2
== GEU
|| code2
== NE
)
764 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
765 || code2
== UNGE
|| code2
== UNGT
)
776 /* Return 1 if INSN is an unconditional jump and nothing else. */
779 simplejump_p (const rtx_insn
*insn
)
781 return (JUMP_P (insn
)
782 && GET_CODE (PATTERN (insn
)) == SET
783 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
784 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
787 /* Return nonzero if INSN is a (possibly) conditional jump
790 Use of this function is deprecated, since we need to support combined
791 branch and compare insns. Use any_condjump_p instead whenever possible. */
794 condjump_p (const rtx_insn
*insn
)
796 const_rtx x
= PATTERN (insn
);
798 if (GET_CODE (x
) != SET
799 || GET_CODE (SET_DEST (x
)) != PC
)
803 if (GET_CODE (x
) == LABEL_REF
)
806 return (GET_CODE (x
) == IF_THEN_ELSE
807 && ((GET_CODE (XEXP (x
, 2)) == PC
808 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
809 || ANY_RETURN_P (XEXP (x
, 1))))
810 || (GET_CODE (XEXP (x
, 1)) == PC
811 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
812 || ANY_RETURN_P (XEXP (x
, 2))))));
815 /* Return nonzero if INSN is a (possibly) conditional jump inside a
818 Use this function is deprecated, since we need to support combined
819 branch and compare insns. Use any_condjump_p instead whenever possible. */
822 condjump_in_parallel_p (const rtx_insn
*insn
)
824 const_rtx x
= PATTERN (insn
);
826 if (GET_CODE (x
) != PARALLEL
)
829 x
= XVECEXP (x
, 0, 0);
831 if (GET_CODE (x
) != SET
)
833 if (GET_CODE (SET_DEST (x
)) != PC
)
835 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
837 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
839 if (XEXP (SET_SRC (x
), 2) == pc_rtx
840 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
841 || ANY_RETURN_P (XEXP (SET_SRC (x
), 1))))
843 if (XEXP (SET_SRC (x
), 1) == pc_rtx
844 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
845 || ANY_RETURN_P (XEXP (SET_SRC (x
), 2))))
850 /* Return set of PC, otherwise NULL. */
853 pc_set (const rtx_insn
*insn
)
858 pat
= PATTERN (insn
);
860 /* The set is allowed to appear either as the insn pattern or
861 the first set in a PARALLEL. */
862 if (GET_CODE (pat
) == PARALLEL
)
863 pat
= XVECEXP (pat
, 0, 0);
864 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
870 /* Return true when insn is an unconditional direct jump,
871 possibly bundled inside a PARALLEL. */
874 any_uncondjump_p (const rtx_insn
*insn
)
876 const_rtx x
= pc_set (insn
);
879 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
881 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
886 /* Return true when insn is a conditional jump. This function works for
887 instructions containing PC sets in PARALLELs. The instruction may have
888 various other effects so before removing the jump you must verify
891 Note that unlike condjump_p it returns false for unconditional jumps. */
894 any_condjump_p (const rtx_insn
*insn
)
896 const_rtx x
= pc_set (insn
);
901 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
904 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
905 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
907 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
|| a
== SIMPLE_RETURN
))
909 && (b
== LABEL_REF
|| b
== RETURN
|| b
== SIMPLE_RETURN
)));
912 /* Return the label of a conditional jump. */
915 condjump_label (const rtx_insn
*insn
)
917 rtx x
= pc_set (insn
);
922 if (GET_CODE (x
) == LABEL_REF
)
924 if (GET_CODE (x
) != IF_THEN_ELSE
)
926 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
928 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
933 /* Return TRUE if INSN is a return jump. */
936 returnjump_p (const rtx_insn
*insn
)
940 subrtx_iterator::array_type array
;
941 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
944 switch (GET_CODE (x
))
952 if (SET_IS_RETURN_P (x
))
964 /* Return true if INSN is a (possibly conditional) return insn. */
967 eh_returnjump_p (rtx_insn
*insn
)
971 subrtx_iterator::array_type array
;
972 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
973 if (GET_CODE (*iter
) == EH_RETURN
)
979 /* Return true if INSN is a jump that only transfers control and
983 onlyjump_p (const rtx_insn
*insn
)
990 set
= single_set (insn
);
993 if (GET_CODE (SET_DEST (set
)) != PC
)
995 if (side_effects_p (SET_SRC (set
)))
1001 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1002 NULL or a return. */
1004 jump_to_label_p (const rtx_insn
*insn
)
1006 return (JUMP_P (insn
)
1007 && JUMP_LABEL (insn
) != NULL
&& !ANY_RETURN_P (JUMP_LABEL (insn
)));
1010 /* Return nonzero if X is an RTX that only sets the condition codes
1011 and has no side effects. */
1014 only_sets_cc0_p (const_rtx x
)
1022 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1025 /* Return 1 if X is an RTX that does nothing but set the condition codes
1026 and CLOBBER or USE registers.
1027 Return -1 if X does explicitly set the condition codes,
1028 but also does other things. */
1031 sets_cc0_p (const_rtx x
)
1039 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1041 if (GET_CODE (x
) == PARALLEL
)
1045 int other_things
= 0;
1046 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1048 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1049 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1051 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1054 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1059 /* Find all CODE_LABELs referred to in X, and increment their use
1060 counts. If INSN is a JUMP_INSN and there is at least one
1061 CODE_LABEL referenced in INSN as a jump target, then store the last
1062 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1063 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1064 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1065 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1066 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1067 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1069 Note that two labels separated by a loop-beginning note
1070 must be kept distinct if we have not yet done loop-optimization,
1071 because the gap between them is where loop-optimize
1072 will want to move invariant code to. CROSS_JUMP tells us
1073 that loop-optimization is done with. */
1076 mark_jump_label (rtx x
, rtx_insn
*insn
, int in_mem
)
1078 rtx asmop
= extract_asm_operands (x
);
1080 mark_jump_label_asm (asmop
, insn
);
1082 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
1083 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
1086 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1087 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1088 jump-target; when the JUMP_LABEL field of INSN should be set or a
1089 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1093 mark_jump_label_1 (rtx x
, rtx_insn
*insn
, bool in_mem
, bool is_target
)
1095 RTX_CODE code
= GET_CODE (x
);
1112 gcc_assert (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == x
);
1113 JUMP_LABEL (insn
) = x
;
1123 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (x
);
1124 for (i
= 0; i
< seq
->len (); i
++)
1125 mark_jump_label (PATTERN (seq
->insn (i
)),
1134 /* If this is a constant-pool reference, see if it is a label. */
1135 if (CONSTANT_POOL_ADDRESS_P (x
))
1136 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1139 /* Handle operands in the condition of an if-then-else as for a
1144 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1145 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1146 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1151 rtx label
= LABEL_REF_LABEL (x
);
1153 /* Ignore remaining references to unreachable labels that
1154 have been deleted. */
1156 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1159 gcc_assert (LABEL_P (label
));
1161 /* Ignore references to labels of containing functions. */
1162 if (LABEL_REF_NONLOCAL_P (x
))
1165 LABEL_REF_LABEL (x
) = label
;
1166 if (! insn
|| ! insn
->deleted ())
1167 ++LABEL_NUSES (label
);
1172 /* Do not change a previous setting of JUMP_LABEL. If the
1173 JUMP_LABEL slot is occupied by a different label,
1174 create a note for this label. */
1175 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1176 JUMP_LABEL (insn
) = label
;
1180 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1182 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1183 for LABEL unless there already is one. All uses of
1184 a label, except for the primary target of a jump,
1185 must have such a note. */
1186 if (! find_reg_note (insn
, kind
, label
))
1187 add_reg_note (insn
, kind
, label
);
1193 /* Do walk the labels in a vector, but not the first operand of an
1194 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1197 if (! insn
->deleted ())
1199 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1201 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1202 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL
, in_mem
,
1211 fmt
= GET_RTX_FORMAT (code
);
1213 /* The primary target of a tablejump is the label of the ADDR_VEC,
1214 which is canonically mentioned *last* in the insn. To get it
1215 marked as JUMP_LABEL, we iterate over items in reverse order. */
1216 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1219 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1220 else if (fmt
[i
] == 'E')
1224 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1225 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1231 /* Worker function for mark_jump_label. Handle asm insns specially.
1232 In particular, output operands need not be considered so we can
1233 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1234 need to be considered targets. */
1237 mark_jump_label_asm (rtx asmop
, rtx_insn
*insn
)
1241 for (i
= ASM_OPERANDS_INPUT_LENGTH (asmop
) - 1; i
>= 0; --i
)
1242 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop
, i
), insn
, false, false);
1244 for (i
= ASM_OPERANDS_LABEL_LENGTH (asmop
) - 1; i
>= 0; --i
)
1245 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop
, i
), insn
, false, true);
1248 /* Delete insn INSN from the chain of insns and update label ref counts
1249 and delete insns now unreachable.
1251 Returns the first insn after INSN that was not deleted.
1253 Usage of this instruction is deprecated. Use delete_insn instead and
1254 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1257 delete_related_insns (rtx uncast_insn
)
1259 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
1260 int was_code_label
= (LABEL_P (insn
));
1262 rtx_insn
*next
= NEXT_INSN (insn
), *prev
= PREV_INSN (insn
);
1264 while (next
&& next
->deleted ())
1265 next
= NEXT_INSN (next
);
1267 /* This insn is already deleted => return first following nondeleted. */
1268 if (insn
->deleted ())
1273 /* If instruction is followed by a barrier,
1274 delete the barrier too. */
1276 if (next
!= 0 && BARRIER_P (next
))
1279 /* If this is a call, then we have to remove the var tracking note
1280 for the call arguments. */
1283 || (NONJUMP_INSN_P (insn
)
1284 && GET_CODE (PATTERN (insn
)) == SEQUENCE
1285 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))))
1289 for (p
= next
&& next
->deleted () ? NEXT_INSN (next
) : next
;
1292 if (NOTE_KIND (p
) == NOTE_INSN_CALL_ARG_LOCATION
)
1299 /* If deleting a jump, decrement the count of the label,
1300 and delete the label if it is now unused. */
1302 if (jump_to_label_p (insn
))
1304 rtx lab
= JUMP_LABEL (insn
);
1305 rtx_jump_table_data
*lab_next
;
1307 if (LABEL_NUSES (lab
) == 0)
1308 /* This can delete NEXT or PREV,
1309 either directly if NEXT is JUMP_LABEL (INSN),
1310 or indirectly through more levels of jumps. */
1311 delete_related_insns (lab
);
1312 else if (tablejump_p (insn
, NULL
, &lab_next
))
1314 /* If we're deleting the tablejump, delete the dispatch table.
1315 We may not be able to kill the label immediately preceding
1316 just yet, as it might be referenced in code leading up to
1318 delete_related_insns (lab_next
);
1322 /* Likewise if we're deleting a dispatch table. */
1324 if (rtx_jump_table_data
*table
= dyn_cast
<rtx_jump_table_data
*> (insn
))
1326 rtvec labels
= table
->get_labels ();
1328 int len
= GET_NUM_ELEM (labels
);
1330 for (i
= 0; i
< len
; i
++)
1331 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels
, i
), 0)) == 0)
1332 delete_related_insns (XEXP (RTVEC_ELT (labels
, i
), 0));
1333 while (next
&& next
->deleted ())
1334 next
= NEXT_INSN (next
);
1338 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1339 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1341 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1342 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1343 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1344 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1345 && LABEL_P (XEXP (note
, 0)))
1346 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1347 delete_related_insns (XEXP (note
, 0));
1349 while (prev
&& (prev
->deleted () || NOTE_P (prev
)))
1350 prev
= PREV_INSN (prev
);
1352 /* If INSN was a label and a dispatch table follows it,
1353 delete the dispatch table. The tablejump must have gone already.
1354 It isn't useful to fall through into a table. */
1357 && NEXT_INSN (insn
) != 0
1358 && JUMP_TABLE_DATA_P (NEXT_INSN (insn
)))
1359 next
= delete_related_insns (NEXT_INSN (insn
));
1361 /* If INSN was a label, delete insns following it if now unreachable. */
1363 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1368 code
= GET_CODE (next
);
1370 next
= NEXT_INSN (next
);
1371 /* Keep going past other deleted labels to delete what follows. */
1372 else if (code
== CODE_LABEL
&& next
->deleted ())
1373 next
= NEXT_INSN (next
);
1374 /* Keep the (use (insn))s created by dbr_schedule, which needs
1375 them in order to track liveness relative to a previous
1377 else if (INSN_P (next
)
1378 && GET_CODE (PATTERN (next
)) == USE
1379 && INSN_P (XEXP (PATTERN (next
), 0)))
1380 next
= NEXT_INSN (next
);
1381 else if (code
== BARRIER
|| INSN_P (next
))
1382 /* Note: if this deletes a jump, it can cause more
1383 deletion of unreachable code, after a different label.
1384 As long as the value from this recursive call is correct,
1385 this invocation functions correctly. */
1386 next
= delete_related_insns (next
);
1392 /* I feel a little doubtful about this loop,
1393 but I see no clean and sure alternative way
1394 to find the first insn after INSN that is not now deleted.
1395 I hope this works. */
1396 while (next
&& next
->deleted ())
1397 next
= NEXT_INSN (next
);
1401 /* Delete a range of insns from FROM to TO, inclusive.
1402 This is for the sake of peephole optimization, so assume
1403 that whatever these insns do will still be done by a new
1404 peephole insn that will replace them. */
1407 delete_for_peephole (rtx_insn
*from
, rtx_insn
*to
)
1409 rtx_insn
*insn
= from
;
1413 rtx_insn
*next
= NEXT_INSN (insn
);
1414 rtx_insn
*prev
= PREV_INSN (insn
);
1418 insn
->set_deleted();
1420 /* Patch this insn out of the chain. */
1421 /* We don't do this all at once, because we
1422 must preserve all NOTEs. */
1424 SET_NEXT_INSN (prev
) = next
;
1427 SET_PREV_INSN (next
) = prev
;
1435 /* Note that if TO is an unconditional jump
1436 we *do not* delete the BARRIER that follows,
1437 since the peephole that replaces this sequence
1438 is also an unconditional jump in that case. */
1441 /* A helper function for redirect_exp_1; examines its input X and returns
1442 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1444 redirect_target (rtx x
)
1448 if (!ANY_RETURN_P (x
))
1449 return gen_rtx_LABEL_REF (Pmode
, x
);
1453 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1454 NLABEL as a return. Accrue modifications into the change group. */
1457 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1460 RTX_CODE code
= GET_CODE (x
);
1464 if ((code
== LABEL_REF
&& LABEL_REF_LABEL (x
) == olabel
)
1467 x
= redirect_target (nlabel
);
1468 if (GET_CODE (x
) == LABEL_REF
&& loc
== &PATTERN (insn
))
1469 x
= gen_rtx_SET (pc_rtx
, x
);
1470 validate_change (insn
, loc
, x
, 1);
1474 if (code
== SET
&& SET_DEST (x
) == pc_rtx
1475 && ANY_RETURN_P (nlabel
)
1476 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1477 && LABEL_REF_LABEL (SET_SRC (x
)) == olabel
)
1479 validate_change (insn
, loc
, nlabel
, 1);
1483 if (code
== IF_THEN_ELSE
)
1485 /* Skip the condition of an IF_THEN_ELSE. We only want to
1486 change jump destinations, not eventual label comparisons. */
1487 redirect_exp_1 (&XEXP (x
, 1), olabel
, nlabel
, insn
);
1488 redirect_exp_1 (&XEXP (x
, 2), olabel
, nlabel
, insn
);
1492 fmt
= GET_RTX_FORMAT (code
);
1493 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1496 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1497 else if (fmt
[i
] == 'E')
1500 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1501 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1506 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1507 the modifications into the change group. Return false if we did
1508 not see how to do that. */
1511 redirect_jump_1 (rtx_insn
*jump
, rtx nlabel
)
1513 int ochanges
= num_validated_changes ();
1516 gcc_assert (nlabel
!= NULL_RTX
);
1517 asmop
= extract_asm_operands (PATTERN (jump
));
1522 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop
) == 1);
1523 loc
= &ASM_OPERANDS_LABEL (asmop
, 0);
1525 else if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1526 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1528 loc
= &PATTERN (jump
);
1530 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1531 return num_validated_changes () > ochanges
;
1534 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1535 jump target label is unused as a result, it and the code following
1538 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1539 in that case we are to turn the jump into a (possibly conditional)
1542 The return value will be 1 if the change was made, 0 if it wasn't
1543 (this can only occur when trying to produce return insns). */
1546 redirect_jump (rtx_jump_insn
*jump
, rtx nlabel
, int delete_unused
)
1548 rtx olabel
= jump
->jump_label ();
1552 /* If there is no label, we are asked to redirect to the EXIT block.
1553 When before the epilogue is emitted, return/simple_return cannot be
1554 created so we return 0 immediately. After the epilogue is emitted,
1555 we always expect a label, either a non-null label, or a
1556 return/simple_return RTX. */
1558 if (!epilogue_completed
)
1563 if (nlabel
== olabel
)
1566 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1569 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1573 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1575 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1576 count has dropped to zero. */
1578 redirect_jump_2 (rtx_jump_insn
*jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1583 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1585 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1586 moving FUNCTION_END note. Just sanity check that no user still worry
1588 gcc_assert (delete_unused
>= 0);
1589 JUMP_LABEL (jump
) = nlabel
;
1590 if (!ANY_RETURN_P (nlabel
))
1591 ++LABEL_NUSES (nlabel
);
1593 /* Update labels in any REG_EQUAL note. */
1594 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1596 if (ANY_RETURN_P (nlabel
)
1597 || (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1598 remove_note (jump
, note
);
1601 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1602 confirm_change_group ();
1606 /* Handle the case where we had a conditional crossing jump to a return
1607 label and are now changing it into a direct conditional return.
1608 The jump is no longer crossing in that case. */
1609 if (ANY_RETURN_P (nlabel
))
1610 CROSSING_JUMP_P (jump
) = 0;
1612 if (!ANY_RETURN_P (olabel
)
1613 && --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1614 /* Undefined labels will remain outside the insn stream. */
1615 && INSN_UID (olabel
))
1616 delete_related_insns (olabel
);
1618 invert_br_probabilities (jump
);
1621 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1622 modifications into the change group. Return nonzero for success. */
1624 invert_exp_1 (rtx x
, rtx insn
)
1626 RTX_CODE code
= GET_CODE (x
);
1628 if (code
== IF_THEN_ELSE
)
1630 rtx comp
= XEXP (x
, 0);
1632 enum rtx_code reversed_code
;
1634 /* We can do this in two ways: The preferable way, which can only
1635 be done if this is not an integer comparison, is to reverse
1636 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1637 of the IF_THEN_ELSE. If we can't do either, fail. */
1639 reversed_code
= reversed_comparison_code (comp
, insn
);
1641 if (reversed_code
!= UNKNOWN
)
1643 validate_change (insn
, &XEXP (x
, 0),
1644 gen_rtx_fmt_ee (reversed_code
,
1645 GET_MODE (comp
), XEXP (comp
, 0),
1652 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1653 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1660 /* Invert the condition of the jump JUMP, and make it jump to label
1661 NLABEL instead of where it jumps now. Accrue changes into the
1662 change group. Return false if we didn't see how to perform the
1663 inversion and redirection. */
1666 invert_jump_1 (rtx_jump_insn
*jump
, rtx nlabel
)
1668 rtx x
= pc_set (jump
);
1672 ochanges
= num_validated_changes ();
1675 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1678 if (num_validated_changes () == ochanges
)
1681 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1682 in Pmode, so checking this is not merely an optimization. */
1683 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1686 /* Invert the condition of the jump JUMP, and make it jump to label
1687 NLABEL instead of where it jumps now. Return true if successful. */
1690 invert_jump (rtx_jump_insn
*jump
, rtx nlabel
, int delete_unused
)
1692 rtx olabel
= JUMP_LABEL (jump
);
1694 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1696 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1704 /* Like rtx_equal_p except that it considers two REGs as equal
1705 if they renumber to the same value and considers two commutative
1706 operations to be the same if the order of the operands has been
1710 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1713 const enum rtx_code code
= GET_CODE (x
);
1719 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1720 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1721 && REG_P (SUBREG_REG (y
)))))
1723 int reg_x
= -1, reg_y
= -1;
1724 int byte_x
= 0, byte_y
= 0;
1725 struct subreg_info info
;
1727 if (GET_MODE (x
) != GET_MODE (y
))
1730 /* If we haven't done any renumbering, don't
1731 make any assumptions. */
1732 if (reg_renumber
== 0)
1733 return rtx_equal_p (x
, y
);
1737 reg_x
= REGNO (SUBREG_REG (x
));
1738 byte_x
= SUBREG_BYTE (x
);
1740 if (reg_renumber
[reg_x
] >= 0)
1742 subreg_get_info (reg_renumber
[reg_x
],
1743 GET_MODE (SUBREG_REG (x
)), byte_x
,
1744 GET_MODE (x
), &info
);
1745 if (!info
.representable_p
)
1747 reg_x
= info
.offset
;
1754 if (reg_renumber
[reg_x
] >= 0)
1755 reg_x
= reg_renumber
[reg_x
];
1758 if (GET_CODE (y
) == SUBREG
)
1760 reg_y
= REGNO (SUBREG_REG (y
));
1761 byte_y
= SUBREG_BYTE (y
);
1763 if (reg_renumber
[reg_y
] >= 0)
1765 subreg_get_info (reg_renumber
[reg_y
],
1766 GET_MODE (SUBREG_REG (y
)), byte_y
,
1767 GET_MODE (y
), &info
);
1768 if (!info
.representable_p
)
1770 reg_y
= info
.offset
;
1777 if (reg_renumber
[reg_y
] >= 0)
1778 reg_y
= reg_renumber
[reg_y
];
1781 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1784 /* Now we have disposed of all the cases
1785 in which different rtx codes can match. */
1786 if (code
!= GET_CODE (y
))
1799 /* We can't assume nonlocal labels have their following insns yet. */
1800 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1801 return LABEL_REF_LABEL (x
) == LABEL_REF_LABEL (y
);
1803 /* Two label-refs are equivalent if they point at labels
1804 in the same position in the instruction stream. */
1807 rtx_insn
*xi
= next_nonnote_nondebug_insn (LABEL_REF_LABEL (x
));
1808 rtx_insn
*yi
= next_nonnote_nondebug_insn (LABEL_REF_LABEL (y
));
1809 while (xi
&& LABEL_P (xi
))
1810 xi
= next_nonnote_nondebug_insn (xi
);
1811 while (yi
&& LABEL_P (yi
))
1812 yi
= next_nonnote_nondebug_insn (yi
);
1817 return XSTR (x
, 0) == XSTR (y
, 0);
1820 /* If we didn't match EQ equality above, they aren't the same. */
1827 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1829 if (GET_MODE (x
) != GET_MODE (y
))
1832 /* MEMs referring to different address space are not equivalent. */
1833 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
1836 /* For commutative operations, the RTX match if the operand match in any
1837 order. Also handle the simple binary and unary cases without a loop. */
1838 if (targetm
.commutative_p (x
, UNKNOWN
))
1839 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1840 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1841 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1842 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1843 else if (NON_COMMUTATIVE_P (x
))
1844 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1845 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1846 else if (UNARY_P (x
))
1847 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1849 /* Compare the elements. If any pair of corresponding elements
1850 fail to match, return 0 for the whole things. */
1852 fmt
= GET_RTX_FORMAT (code
);
1853 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1859 if (XWINT (x
, i
) != XWINT (y
, i
))
1864 if (XINT (x
, i
) != XINT (y
, i
))
1866 if (((code
== ASM_OPERANDS
&& i
== 6)
1867 || (code
== ASM_INPUT
&& i
== 1)))
1874 if (XTREE (x
, i
) != XTREE (y
, i
))
1879 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1884 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1889 if (XEXP (x
, i
) != XEXP (y
, i
))
1896 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1898 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1899 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1910 /* If X is a hard register or equivalent to one or a subregister of one,
1911 return the hard register number. If X is a pseudo register that was not
1912 assigned a hard register, return the pseudo register number. Otherwise,
1913 return -1. Any rtx is valid for X. */
1916 true_regnum (const_rtx x
)
1920 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
1921 && (lra_in_progress
|| reg_renumber
[REGNO (x
)] >= 0))
1922 return reg_renumber
[REGNO (x
)];
1925 if (GET_CODE (x
) == SUBREG
)
1927 int base
= true_regnum (SUBREG_REG (x
));
1929 && base
< FIRST_PSEUDO_REGISTER
)
1931 struct subreg_info info
;
1933 subreg_get_info (lra_in_progress
1934 ? (unsigned) base
: REGNO (SUBREG_REG (x
)),
1935 GET_MODE (SUBREG_REG (x
)),
1936 SUBREG_BYTE (x
), GET_MODE (x
), &info
);
1938 if (info
.representable_p
)
1939 return base
+ info
.offset
;
1945 /* Return regno of the register REG and handle subregs too. */
1947 reg_or_subregno (const_rtx reg
)
1949 if (GET_CODE (reg
) == SUBREG
)
1950 reg
= SUBREG_REG (reg
);
1951 gcc_assert (REG_P (reg
));