Some fixes for profile test cases for autofdo
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob5c0f4f66c0cd9149b5e5d2919622987058d4e51a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Itypes; use Itypes;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Namet.Sp; use Namet.Sp;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Output; use Output;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Case; use Sem_Case;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Dist; use Sem_Dist;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Stand; use Stand;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Tbuild; use Tbuild;
64 with Uintp; use Uintp;
66 package body Sem_Ch4 is
68 -- Tables which speed up the identification of dangerous calls to Ada 2012
69 -- functions with writable actuals (AI05-0144).
71 -- The following table enumerates the Ada constructs which may evaluate in
72 -- arbitrary order. It does not cover all the language constructs which can
73 -- be evaluated in arbitrary order but the subset needed for AI05-0144.
75 Has_Arbitrary_Evaluation_Order : constant array (Node_Kind) of Boolean :=
76 (N_Aggregate => True,
77 N_Assignment_Statement => True,
78 N_Entry_Call_Statement => True,
79 N_Extension_Aggregate => True,
80 N_Full_Type_Declaration => True,
81 N_Indexed_Component => True,
82 N_Object_Declaration => True,
83 N_Pragma => True,
84 N_Range => True,
85 N_Slice => True,
86 N_Array_Type_Definition => True,
87 N_Membership_Test => True,
88 N_Binary_Op => True,
89 N_Subprogram_Call => True,
90 others => False);
92 -- The following table enumerates the nodes on which we stop climbing when
93 -- locating the outermost Ada construct that can be evaluated in arbitrary
94 -- order.
96 Stop_Subtree_Climbing : constant array (Node_Kind) of Boolean :=
97 (N_Aggregate => True,
98 N_Assignment_Statement => True,
99 N_Entry_Call_Statement => True,
100 N_Extended_Return_Statement => True,
101 N_Extension_Aggregate => True,
102 N_Full_Type_Declaration => True,
103 N_Object_Declaration => True,
104 N_Object_Renaming_Declaration => True,
105 N_Package_Specification => True,
106 N_Pragma => True,
107 N_Procedure_Call_Statement => True,
108 N_Simple_Return_Statement => True,
109 N_Has_Condition => True,
110 others => False);
112 -----------------------
113 -- Local Subprograms --
114 -----------------------
116 procedure Analyze_Concatenation_Rest (N : Node_Id);
117 -- Does the "rest" of the work of Analyze_Concatenation, after the left
118 -- operand has been analyzed. See Analyze_Concatenation for details.
120 procedure Analyze_Expression (N : Node_Id);
121 -- For expressions that are not names, this is just a call to analyze. If
122 -- the expression is a name, it may be a call to a parameterless function,
123 -- and if so must be converted into an explicit call node and analyzed as
124 -- such. This deproceduring must be done during the first pass of overload
125 -- resolution, because otherwise a procedure call with overloaded actuals
126 -- may fail to resolve.
128 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
129 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call is an
130 -- operator name or an expanded name whose selector is an operator name,
131 -- and one possible interpretation is as a predefined operator.
133 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
134 -- If the prefix of a selected_component is overloaded, the proper
135 -- interpretation that yields a record type with the proper selector
136 -- name must be selected.
138 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
139 -- Procedure to analyze a user defined binary operator, which is resolved
140 -- like a function, but instead of a list of actuals it is presented
141 -- with the left and right operands of an operator node.
143 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
144 -- Procedure to analyze a user defined unary operator, which is resolved
145 -- like a function, but instead of a list of actuals, it is presented with
146 -- the operand of the operator node.
148 procedure Ambiguous_Operands (N : Node_Id);
149 -- For equality, membership, and comparison operators with overloaded
150 -- arguments, list possible interpretations.
152 procedure Analyze_One_Call
153 (N : Node_Id;
154 Nam : Entity_Id;
155 Report : Boolean;
156 Success : out Boolean;
157 Skip_First : Boolean := False);
158 -- Check one interpretation of an overloaded subprogram name for
159 -- compatibility with the types of the actuals in a call. If there is a
160 -- single interpretation which does not match, post error if Report is
161 -- set to True.
163 -- Nam is the entity that provides the formals against which the actuals
164 -- are checked. Nam is either the name of a subprogram, or the internal
165 -- subprogram type constructed for an access_to_subprogram. If the actuals
166 -- are compatible with Nam, then Nam is added to the list of candidate
167 -- interpretations for N, and Success is set to True.
169 -- The flag Skip_First is used when analyzing a call that was rewritten
170 -- from object notation. In this case the first actual may have to receive
171 -- an explicit dereference, depending on the first formal of the operation
172 -- being called. The caller will have verified that the object is legal
173 -- for the call. If the remaining parameters match, the first parameter
174 -- will rewritten as a dereference if needed, prior to completing analysis.
176 procedure Check_Misspelled_Selector
177 (Prefix : Entity_Id;
178 Sel : Node_Id);
179 -- Give possible misspelling message if Sel seems likely to be a mis-
180 -- spelling of one of the selectors of the Prefix. This is called by
181 -- Analyze_Selected_Component after producing an invalid selector error
182 -- message.
184 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
185 -- Verify that type T is declared in scope S. Used to find interpretations
186 -- for operators given by expanded names. This is abstracted as a separate
187 -- function to handle extensions to System, where S is System, but T is
188 -- declared in the extension.
190 procedure Find_Arithmetic_Types
191 (L, R : Node_Id;
192 Op_Id : Entity_Id;
193 N : Node_Id);
194 -- L and R are the operands of an arithmetic operator. Find consistent
195 -- pairs of interpretations for L and R that have a numeric type consistent
196 -- with the semantics of the operator.
198 procedure Find_Comparison_Types
199 (L, R : Node_Id;
200 Op_Id : Entity_Id;
201 N : Node_Id);
202 -- L and R are operands of a comparison operator. Find consistent pairs of
203 -- interpretations for L and R.
205 procedure Find_Concatenation_Types
206 (L, R : Node_Id;
207 Op_Id : Entity_Id;
208 N : Node_Id);
209 -- For the four varieties of concatenation
211 procedure Find_Equality_Types
212 (L, R : Node_Id;
213 Op_Id : Entity_Id;
214 N : Node_Id);
215 -- Ditto for equality operators
217 procedure Find_Boolean_Types
218 (L, R : Node_Id;
219 Op_Id : Entity_Id;
220 N : Node_Id);
221 -- Ditto for binary logical operations
223 procedure Find_Negation_Types
224 (R : Node_Id;
225 Op_Id : Entity_Id;
226 N : Node_Id);
227 -- Find consistent interpretation for operand of negation operator
229 procedure Find_Non_Universal_Interpretations
230 (N : Node_Id;
231 R : Node_Id;
232 Op_Id : Entity_Id;
233 T1 : Entity_Id);
234 -- For equality and comparison operators, the result is always boolean,
235 -- and the legality of the operation is determined from the visibility
236 -- of the operand types. If one of the operands has a universal interpre-
237 -- tation, the legality check uses some compatible non-universal
238 -- interpretation of the other operand. N can be an operator node, or
239 -- a function call whose name is an operator designator. Any_Access, which
240 -- is the initial type of the literal NULL, is a universal type for the
241 -- purpose of this routine.
243 function Find_Primitive_Operation (N : Node_Id) return Boolean;
244 -- Find candidate interpretations for the name Obj.Proc when it appears
245 -- in a subprogram renaming declaration.
247 procedure Find_Unary_Types
248 (R : Node_Id;
249 Op_Id : Entity_Id;
250 N : Node_Id);
251 -- Unary arithmetic types: plus, minus, abs
253 procedure Check_Arithmetic_Pair
254 (T1, T2 : Entity_Id;
255 Op_Id : Entity_Id;
256 N : Node_Id);
257 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid types
258 -- for left and right operand. Determine whether they constitute a valid
259 -- pair for the given operator, and record the corresponding interpretation
260 -- of the operator node. The node N may be an operator node (the usual
261 -- case) or a function call whose prefix is an operator designator. In
262 -- both cases Op_Id is the operator name itself.
264 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
265 -- Give detailed information on overloaded call where none of the
266 -- interpretations match. N is the call node, Nam the designator for
267 -- the overloaded entity being called.
269 function Junk_Operand (N : Node_Id) return Boolean;
270 -- Test for an operand that is an inappropriate entity (e.g. a package
271 -- name or a label). If so, issue an error message and return True. If
272 -- the operand is not an inappropriate entity kind, return False.
274 procedure Operator_Check (N : Node_Id);
275 -- Verify that an operator has received some valid interpretation. If none
276 -- was found, determine whether a use clause would make the operation
277 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
278 -- every type compatible with the operator, even if the operator for the
279 -- type is not directly visible. The routine uses this type to emit a more
280 -- informative message.
282 function Process_Implicit_Dereference_Prefix
283 (E : Entity_Id;
284 P : Node_Id) return Entity_Id;
285 -- Called when P is the prefix of an implicit dereference, denoting an
286 -- object E. The function returns the designated type of the prefix, taking
287 -- into account that the designated type of an anonymous access type may be
288 -- a limited view, when the non-limited view is visible.
290 -- If in semantics only mode (-gnatc or generic), the function also records
291 -- that the prefix is a reference to E, if any. Normally, such a reference
292 -- is generated only when the implicit dereference is expanded into an
293 -- explicit one, but for consistency we must generate the reference when
294 -- expansion is disabled as well.
296 procedure Remove_Abstract_Operations (N : Node_Id);
297 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
298 -- operation is not a candidate interpretation.
300 function Try_Container_Indexing
301 (N : Node_Id;
302 Prefix : Node_Id;
303 Exprs : List_Id) return Boolean;
304 -- AI05-0139: Generalized indexing to support iterators over containers
306 function Try_Indexed_Call
307 (N : Node_Id;
308 Nam : Entity_Id;
309 Typ : Entity_Id;
310 Skip_First : Boolean) return Boolean;
311 -- If a function has defaults for all its actuals, a call to it may in fact
312 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
313 -- interpretation as an indexing, prior to analysis as a call. If both are
314 -- possible, the node is overloaded with both interpretations (same symbol
315 -- but two different types). If the call is written in prefix form, the
316 -- prefix becomes the first parameter in the call, and only the remaining
317 -- actuals must be checked for the presence of defaults.
319 function Try_Indirect_Call
320 (N : Node_Id;
321 Nam : Entity_Id;
322 Typ : Entity_Id) return Boolean;
323 -- Similarly, a function F that needs no actuals can return an access to a
324 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
325 -- the call may be overloaded with both interpretations.
327 function Try_Object_Operation
328 (N : Node_Id;
329 CW_Test_Only : Boolean := False) return Boolean;
330 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
331 -- is a call in this notation, it is transformed into a normal subprogram
332 -- call where the prefix is a parameter, and True is returned. If node
333 -- N is not of this form, it is unchanged, and False is returned. If
334 -- CW_Test_Only is true then N is an N_Selected_Component node which
335 -- is part of a call to an entry or procedure of a tagged concurrent
336 -- type and this routine is invoked to search for class-wide subprograms
337 -- conflicting with the target entity.
339 procedure wpo (T : Entity_Id);
340 pragma Warnings (Off, wpo);
341 -- Used for debugging: obtain list of primitive operations even if
342 -- type is not frozen and dispatch table is not built yet.
344 ------------------------
345 -- Ambiguous_Operands --
346 ------------------------
348 procedure Ambiguous_Operands (N : Node_Id) is
349 procedure List_Operand_Interps (Opnd : Node_Id);
351 --------------------------
352 -- List_Operand_Interps --
353 --------------------------
355 procedure List_Operand_Interps (Opnd : Node_Id) is
356 Nam : Node_Id;
357 Err : Node_Id := N;
359 begin
360 if Is_Overloaded (Opnd) then
361 if Nkind (Opnd) in N_Op then
362 Nam := Opnd;
364 elsif Nkind (Opnd) = N_Function_Call then
365 Nam := Name (Opnd);
367 elsif Ada_Version >= Ada_2012 then
368 declare
369 It : Interp;
370 I : Interp_Index;
372 begin
373 Get_First_Interp (Opnd, I, It);
374 while Present (It.Nam) loop
375 if Has_Implicit_Dereference (It.Typ) then
376 Error_Msg_N
377 ("can be interpreted as implicit dereference", Opnd);
378 return;
379 end if;
381 Get_Next_Interp (I, It);
382 end loop;
383 end;
385 return;
386 end if;
388 else
389 return;
390 end if;
392 if Opnd = Left_Opnd (N) then
393 Error_Msg_N
394 ("\left operand has the following interpretations", N);
395 else
396 Error_Msg_N
397 ("\right operand has the following interpretations", N);
398 Err := Opnd;
399 end if;
401 List_Interps (Nam, Err);
402 end List_Operand_Interps;
404 -- Start of processing for Ambiguous_Operands
406 begin
407 if Nkind (N) in N_Membership_Test then
408 Error_Msg_N ("ambiguous operands for membership", N);
410 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
411 Error_Msg_N ("ambiguous operands for equality", N);
413 else
414 Error_Msg_N ("ambiguous operands for comparison", N);
415 end if;
417 if All_Errors_Mode then
418 List_Operand_Interps (Left_Opnd (N));
419 List_Operand_Interps (Right_Opnd (N));
420 else
421 Error_Msg_N ("\use -gnatf switch for details", N);
422 end if;
423 end Ambiguous_Operands;
425 -----------------------
426 -- Analyze_Aggregate --
427 -----------------------
429 -- Most of the analysis of Aggregates requires that the type be known,
430 -- and is therefore put off until resolution.
432 procedure Analyze_Aggregate (N : Node_Id) is
433 begin
434 if No (Etype (N)) then
435 Set_Etype (N, Any_Composite);
436 end if;
437 end Analyze_Aggregate;
439 -----------------------
440 -- Analyze_Allocator --
441 -----------------------
443 procedure Analyze_Allocator (N : Node_Id) is
444 Loc : constant Source_Ptr := Sloc (N);
445 Sav_Errs : constant Nat := Serious_Errors_Detected;
446 E : Node_Id := Expression (N);
447 Acc_Type : Entity_Id;
448 Type_Id : Entity_Id;
449 P : Node_Id;
450 C : Node_Id;
451 Onode : Node_Id;
453 begin
454 Check_SPARK_05_Restriction ("allocator is not allowed", N);
456 -- Deal with allocator restrictions
458 -- In accordance with H.4(7), the No_Allocators restriction only applies
459 -- to user-written allocators. The same consideration applies to the
460 -- No_Standard_Allocators_Before_Elaboration restriction.
462 if Comes_From_Source (N) then
463 Check_Restriction (No_Allocators, N);
465 -- Processing for No_Standard_Allocators_After_Elaboration, loop to
466 -- look at enclosing context, checking task/main subprogram case.
468 C := N;
469 P := Parent (C);
470 while Present (P) loop
472 -- For the task case we need a handled sequence of statements,
473 -- where the occurrence of the allocator is within the statements
474 -- and the parent is a task body
476 if Nkind (P) = N_Handled_Sequence_Of_Statements
477 and then Is_List_Member (C)
478 and then List_Containing (C) = Statements (P)
479 then
480 Onode := Original_Node (Parent (P));
482 -- Check for allocator within task body, this is a definite
483 -- violation of No_Allocators_After_Elaboration we can detect
484 -- at compile time.
486 if Nkind (Onode) = N_Task_Body then
487 Check_Restriction
488 (No_Standard_Allocators_After_Elaboration, N);
489 exit;
490 end if;
491 end if;
493 -- The other case is appearance in a subprogram body. This is
494 -- a violation if this is a library level subprogram with no
495 -- parameters. Note that this is now a static error even if the
496 -- subprogram is not the main program (this is a change, in an
497 -- earlier version only the main program was affected, and the
498 -- check had to be done in the binder.
500 if Nkind (P) = N_Subprogram_Body
501 and then Nkind (Parent (P)) = N_Compilation_Unit
502 and then No (Parameter_Specifications (Specification (P)))
503 then
504 Check_Restriction
505 (No_Standard_Allocators_After_Elaboration, N);
506 end if;
508 C := P;
509 P := Parent (C);
510 end loop;
511 end if;
513 -- Ada 2012 (AI05-0111-3): Analyze the subpool_specification, if
514 -- any. The expected type for the name is any type. A non-overloading
515 -- rule then requires it to be of a type descended from
516 -- System.Storage_Pools.Subpools.Subpool_Handle.
518 -- This isn't exactly what the AI says, but it seems to be the right
519 -- rule. The AI should be fixed.???
521 declare
522 Subpool : constant Node_Id := Subpool_Handle_Name (N);
524 begin
525 if Present (Subpool) then
526 Analyze (Subpool);
528 if Is_Overloaded (Subpool) then
529 Error_Msg_N ("ambiguous subpool handle", Subpool);
530 end if;
532 -- Check that Etype (Subpool) is descended from Subpool_Handle
534 Resolve (Subpool);
535 end if;
536 end;
538 -- Analyze the qualified expression or subtype indication
540 if Nkind (E) = N_Qualified_Expression then
541 Acc_Type := Create_Itype (E_Allocator_Type, N);
542 Set_Etype (Acc_Type, Acc_Type);
543 Find_Type (Subtype_Mark (E));
545 -- Analyze the qualified expression, and apply the name resolution
546 -- rule given in 4.7(3).
548 Analyze (E);
549 Type_Id := Etype (E);
550 Set_Directly_Designated_Type (Acc_Type, Type_Id);
552 -- A qualified expression requires an exact match of the type,
553 -- class-wide matching is not allowed.
555 -- if Is_Class_Wide_Type (Type_Id)
556 -- and then Base_Type
557 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
558 -- then
559 -- Wrong_Type (Expression (E), Type_Id);
560 -- end if;
562 -- We don't analyze the qualified expression itself because it's
563 -- part of the allocator. It is fully analyzed and resolved when
564 -- the allocator is resolved with the context type.
566 Set_Etype (E, Type_Id);
568 -- Case where allocator has a subtype indication
570 else
571 declare
572 Def_Id : Entity_Id;
573 Base_Typ : Entity_Id;
575 begin
576 -- If the allocator includes a N_Subtype_Indication then a
577 -- constraint is present, otherwise the node is a subtype mark.
578 -- Introduce an explicit subtype declaration into the tree
579 -- defining some anonymous subtype and rewrite the allocator to
580 -- use this subtype rather than the subtype indication.
582 -- It is important to introduce the explicit subtype declaration
583 -- so that the bounds of the subtype indication are attached to
584 -- the tree in case the allocator is inside a generic unit.
586 -- Finally, if there is no subtype indication and the type is
587 -- a tagged unconstrained type with discriminants, the designated
588 -- object is constrained by their default values, and it is
589 -- simplest to introduce an explicit constraint now. In some cases
590 -- this is done during expansion, but freeze actions are certain
591 -- to be emitted in the proper order if constraint is explicit.
593 if Is_Entity_Name (E) and then Expander_Active then
594 Find_Type (E);
595 Type_Id := Entity (E);
597 if Is_Tagged_Type (Type_Id)
598 and then Has_Discriminants (Type_Id)
599 and then not Is_Constrained (Type_Id)
600 and then
601 Present
602 (Discriminant_Default_Value
603 (First_Discriminant (Type_Id)))
604 then
605 declare
606 Constr : constant List_Id := New_List;
607 Loc : constant Source_Ptr := Sloc (E);
608 Discr : Entity_Id := First_Discriminant (Type_Id);
610 begin
611 if Present (Discriminant_Default_Value (Discr)) then
612 while Present (Discr) loop
613 Append (Discriminant_Default_Value (Discr), Constr);
614 Next_Discriminant (Discr);
615 end loop;
617 Rewrite (E,
618 Make_Subtype_Indication (Loc,
619 Subtype_Mark => New_Occurrence_Of (Type_Id, Loc),
620 Constraint =>
621 Make_Index_Or_Discriminant_Constraint (Loc,
622 Constraints => Constr)));
623 end if;
624 end;
625 end if;
626 end if;
628 if Nkind (E) = N_Subtype_Indication then
630 -- A constraint is only allowed for a composite type in Ada
631 -- 95. In Ada 83, a constraint is also allowed for an
632 -- access-to-composite type, but the constraint is ignored.
634 Find_Type (Subtype_Mark (E));
635 Base_Typ := Entity (Subtype_Mark (E));
637 if Is_Elementary_Type (Base_Typ) then
638 if not (Ada_Version = Ada_83
639 and then Is_Access_Type (Base_Typ))
640 then
641 Error_Msg_N ("constraint not allowed here", E);
643 if Nkind (Constraint (E)) =
644 N_Index_Or_Discriminant_Constraint
645 then
646 Error_Msg_N -- CODEFIX
647 ("\if qualified expression was meant, " &
648 "use apostrophe", Constraint (E));
649 end if;
650 end if;
652 -- Get rid of the bogus constraint:
654 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
655 Analyze_Allocator (N);
656 return;
657 end if;
659 if Expander_Active then
660 Def_Id := Make_Temporary (Loc, 'S');
662 Insert_Action (E,
663 Make_Subtype_Declaration (Loc,
664 Defining_Identifier => Def_Id,
665 Subtype_Indication => Relocate_Node (E)));
667 if Sav_Errs /= Serious_Errors_Detected
668 and then Nkind (Constraint (E)) =
669 N_Index_Or_Discriminant_Constraint
670 then
671 Error_Msg_N -- CODEFIX
672 ("if qualified expression was meant, "
673 & "use apostrophe!", Constraint (E));
674 end if;
676 E := New_Occurrence_Of (Def_Id, Loc);
677 Rewrite (Expression (N), E);
678 end if;
679 end if;
681 Type_Id := Process_Subtype (E, N);
682 Acc_Type := Create_Itype (E_Allocator_Type, N);
683 Set_Etype (Acc_Type, Acc_Type);
684 Set_Directly_Designated_Type (Acc_Type, Type_Id);
685 Check_Fully_Declared (Type_Id, N);
687 -- Ada 2005 (AI-231): If the designated type is itself an access
688 -- type that excludes null, its default initialization will
689 -- be a null object, and we can insert an unconditional raise
690 -- before the allocator.
692 -- Ada 2012 (AI-104): A not null indication here is altogether
693 -- illegal.
695 if Can_Never_Be_Null (Type_Id) then
696 declare
697 Not_Null_Check : constant Node_Id :=
698 Make_Raise_Constraint_Error (Sloc (E),
699 Reason => CE_Null_Not_Allowed);
701 begin
702 if Expander_Active then
703 Insert_Action (N, Not_Null_Check);
704 Analyze (Not_Null_Check);
706 elsif Warn_On_Ada_2012_Compatibility then
707 Error_Msg_N
708 ("null value not allowed here in Ada 2012?y?", E);
709 end if;
710 end;
711 end if;
713 -- Check for missing initialization. Skip this check if we already
714 -- had errors on analyzing the allocator, since in that case these
715 -- are probably cascaded errors.
717 if not Is_Definite_Subtype (Type_Id)
718 and then Serious_Errors_Detected = Sav_Errs
719 then
720 -- The build-in-place machinery may produce an allocator when
721 -- the designated type is indefinite but the underlying type is
722 -- not. In this case the unknown discriminants are meaningless
723 -- and should not trigger error messages. Check the parent node
724 -- because the allocator is marked as coming from source.
726 if Present (Underlying_Type (Type_Id))
727 and then Is_Definite_Subtype (Underlying_Type (Type_Id))
728 and then not Comes_From_Source (Parent (N))
729 then
730 null;
732 elsif Is_Class_Wide_Type (Type_Id) then
733 Error_Msg_N
734 ("initialization required in class-wide allocation", N);
736 else
737 if Ada_Version < Ada_2005
738 and then Is_Limited_Type (Type_Id)
739 then
740 Error_Msg_N ("unconstrained allocation not allowed", N);
742 if Is_Array_Type (Type_Id) then
743 Error_Msg_N
744 ("\constraint with array bounds required", N);
746 elsif Has_Unknown_Discriminants (Type_Id) then
747 null;
749 else pragma Assert (Has_Discriminants (Type_Id));
750 Error_Msg_N
751 ("\constraint with discriminant values required", N);
752 end if;
754 -- Limited Ada 2005 and general non-limited case
756 else
757 Error_Msg_N
758 ("uninitialized unconstrained allocation not "
759 & "allowed", N);
761 if Is_Array_Type (Type_Id) then
762 Error_Msg_N
763 ("\qualified expression or constraint with "
764 & "array bounds required", N);
766 elsif Has_Unknown_Discriminants (Type_Id) then
767 Error_Msg_N ("\qualified expression required", N);
769 else pragma Assert (Has_Discriminants (Type_Id));
770 Error_Msg_N
771 ("\qualified expression or constraint with "
772 & "discriminant values required", N);
773 end if;
774 end if;
775 end if;
776 end if;
777 end;
778 end if;
780 if Is_Abstract_Type (Type_Id) then
781 Error_Msg_N ("cannot allocate abstract object", E);
782 end if;
784 if Has_Task (Designated_Type (Acc_Type)) then
785 Check_Restriction (No_Tasking, N);
786 Check_Restriction (Max_Tasks, N);
787 Check_Restriction (No_Task_Allocators, N);
788 end if;
790 -- Check restriction against dynamically allocated protected objects
792 if Has_Protected (Designated_Type (Acc_Type)) then
793 Check_Restriction (No_Protected_Type_Allocators, N);
794 end if;
796 -- AI05-0013-1: No_Nested_Finalization forbids allocators if the access
797 -- type is nested, and the designated type needs finalization. The rule
798 -- is conservative in that class-wide types need finalization.
800 if Needs_Finalization (Designated_Type (Acc_Type))
801 and then not Is_Library_Level_Entity (Acc_Type)
802 then
803 Check_Restriction (No_Nested_Finalization, N);
804 end if;
806 -- Check that an allocator of a nested access type doesn't create a
807 -- protected object when restriction No_Local_Protected_Objects applies.
809 if Has_Protected (Designated_Type (Acc_Type))
810 and then not Is_Library_Level_Entity (Acc_Type)
811 then
812 Check_Restriction (No_Local_Protected_Objects, N);
813 end if;
815 -- Likewise for No_Local_Timing_Events
817 if Has_Timing_Event (Designated_Type (Acc_Type))
818 and then not Is_Library_Level_Entity (Acc_Type)
819 then
820 Check_Restriction (No_Local_Timing_Events, N);
821 end if;
823 -- If the No_Streams restriction is set, check that the type of the
824 -- object is not, and does not contain, any subtype derived from
825 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
826 -- Has_Stream just for efficiency reasons. There is no point in
827 -- spending time on a Has_Stream check if the restriction is not set.
829 if Restriction_Check_Required (No_Streams) then
830 if Has_Stream (Designated_Type (Acc_Type)) then
831 Check_Restriction (No_Streams, N);
832 end if;
833 end if;
835 Set_Etype (N, Acc_Type);
837 if not Is_Library_Level_Entity (Acc_Type) then
838 Check_Restriction (No_Local_Allocators, N);
839 end if;
841 if Serious_Errors_Detected > Sav_Errs then
842 Set_Error_Posted (N);
843 Set_Etype (N, Any_Type);
844 end if;
845 end Analyze_Allocator;
847 ---------------------------
848 -- Analyze_Arithmetic_Op --
849 ---------------------------
851 procedure Analyze_Arithmetic_Op (N : Node_Id) is
852 L : constant Node_Id := Left_Opnd (N);
853 R : constant Node_Id := Right_Opnd (N);
854 Op_Id : Entity_Id;
856 begin
857 Candidate_Type := Empty;
858 Analyze_Expression (L);
859 Analyze_Expression (R);
861 -- If the entity is already set, the node is the instantiation of a
862 -- generic node with a non-local reference, or was manufactured by a
863 -- call to Make_Op_xxx. In either case the entity is known to be valid,
864 -- and we do not need to collect interpretations, instead we just get
865 -- the single possible interpretation.
867 Op_Id := Entity (N);
869 if Present (Op_Id) then
870 if Ekind (Op_Id) = E_Operator then
872 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
873 and then Treat_Fixed_As_Integer (N)
874 then
875 null;
876 else
877 Set_Etype (N, Any_Type);
878 Find_Arithmetic_Types (L, R, Op_Id, N);
879 end if;
881 else
882 Set_Etype (N, Any_Type);
883 Add_One_Interp (N, Op_Id, Etype (Op_Id));
884 end if;
886 -- Entity is not already set, so we do need to collect interpretations
888 else
889 Set_Etype (N, Any_Type);
891 Op_Id := Get_Name_Entity_Id (Chars (N));
892 while Present (Op_Id) loop
893 if Ekind (Op_Id) = E_Operator
894 and then Present (Next_Entity (First_Entity (Op_Id)))
895 then
896 Find_Arithmetic_Types (L, R, Op_Id, N);
898 -- The following may seem superfluous, because an operator cannot
899 -- be generic, but this ignores the cleverness of the author of
900 -- ACVC bc1013a.
902 elsif Is_Overloadable (Op_Id) then
903 Analyze_User_Defined_Binary_Op (N, Op_Id);
904 end if;
906 Op_Id := Homonym (Op_Id);
907 end loop;
908 end if;
910 Operator_Check (N);
911 Check_Function_Writable_Actuals (N);
912 end Analyze_Arithmetic_Op;
914 ------------------
915 -- Analyze_Call --
916 ------------------
918 -- Function, procedure, and entry calls are checked here. The Name in
919 -- the call may be overloaded. The actuals have been analyzed and may
920 -- themselves be overloaded. On exit from this procedure, the node N
921 -- may have zero, one or more interpretations. In the first case an
922 -- error message is produced. In the last case, the node is flagged
923 -- as overloaded and the interpretations are collected in All_Interp.
925 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
926 -- the type-checking is similar to that of other calls.
928 procedure Analyze_Call (N : Node_Id) is
929 Actuals : constant List_Id := Parameter_Associations (N);
930 Nam : Node_Id;
931 X : Interp_Index;
932 It : Interp;
933 Nam_Ent : Entity_Id;
934 Success : Boolean := False;
936 Deref : Boolean := False;
937 -- Flag indicates whether an interpretation of the prefix is a
938 -- parameterless call that returns an access_to_subprogram.
940 procedure Check_Mixed_Parameter_And_Named_Associations;
941 -- Check that parameter and named associations are not mixed. This is
942 -- a restriction in SPARK mode.
944 procedure Check_Writable_Actuals (N : Node_Id);
945 -- If the call has out or in-out parameters then mark its outermost
946 -- enclosing construct as a node on which the writable actuals check
947 -- must be performed.
949 function Name_Denotes_Function return Boolean;
950 -- If the type of the name is an access to subprogram, this may be the
951 -- type of a name, or the return type of the function being called. If
952 -- the name is not an entity then it can denote a protected function.
953 -- Until we distinguish Etype from Return_Type, we must use this routine
954 -- to resolve the meaning of the name in the call.
956 procedure No_Interpretation;
957 -- Output error message when no valid interpretation exists
959 --------------------------------------------------
960 -- Check_Mixed_Parameter_And_Named_Associations --
961 --------------------------------------------------
963 procedure Check_Mixed_Parameter_And_Named_Associations is
964 Actual : Node_Id;
965 Named_Seen : Boolean;
967 begin
968 Named_Seen := False;
970 Actual := First (Actuals);
971 while Present (Actual) loop
972 case Nkind (Actual) is
973 when N_Parameter_Association =>
974 if Named_Seen then
975 Check_SPARK_05_Restriction
976 ("named association cannot follow positional one",
977 Actual);
978 exit;
979 end if;
981 when others =>
982 Named_Seen := True;
983 end case;
985 Next (Actual);
986 end loop;
987 end Check_Mixed_Parameter_And_Named_Associations;
989 ----------------------------
990 -- Check_Writable_Actuals --
991 ----------------------------
993 -- The identification of conflicts in calls to functions with writable
994 -- actuals is performed in the analysis phase of the front end to ensure
995 -- that it reports exactly the same errors compiling with and without
996 -- expansion enabled. It is performed in two stages:
998 -- 1) When a call to a function with out-mode parameters is found,
999 -- we climb to the outermost enclosing construct that can be
1000 -- evaluated in arbitrary order and we mark it with the flag
1001 -- Check_Actuals.
1003 -- 2) When the analysis of the marked node is complete, we traverse
1004 -- its decorated subtree searching for conflicts (see function
1005 -- Sem_Util.Check_Function_Writable_Actuals).
1007 -- The unique exception to this general rule is for aggregates, since
1008 -- their analysis is performed by the front end in the resolution
1009 -- phase. For aggregates we do not climb to their enclosing construct:
1010 -- we restrict the analysis to the subexpressions initializing the
1011 -- aggregate components.
1013 -- This implies that the analysis of expressions containing aggregates
1014 -- is not complete, since there may be conflicts on writable actuals
1015 -- involving subexpressions of the enclosing logical or arithmetic
1016 -- expressions. However, we cannot wait and perform the analysis when
1017 -- the whole subtree is resolved, since the subtrees may be transformed,
1018 -- thus adding extra complexity and computation cost to identify and
1019 -- report exactly the same errors compiling with and without expansion
1020 -- enabled.
1022 procedure Check_Writable_Actuals (N : Node_Id) is
1023 begin
1024 if Comes_From_Source (N)
1025 and then Present (Get_Subprogram_Entity (N))
1026 and then Has_Out_Or_In_Out_Parameter (Get_Subprogram_Entity (N))
1027 then
1028 -- For procedures and entries there is no need to climb since
1029 -- we only need to check if the actuals of this call invoke
1030 -- functions whose out-mode parameters overlap.
1032 if Nkind (N) /= N_Function_Call then
1033 Set_Check_Actuals (N);
1035 -- For calls to functions we climb to the outermost enclosing
1036 -- construct where the out-mode actuals of this function may
1037 -- introduce conflicts.
1039 else
1040 declare
1041 Outermost : Node_Id;
1042 P : Node_Id := N;
1044 begin
1045 while Present (P) loop
1047 -- For object declarations we can climb to the node from
1048 -- its object definition branch or from its initializing
1049 -- expression. We prefer to mark the child node as the
1050 -- outermost construct to avoid adding further complexity
1051 -- to the routine that will later take care of
1052 -- performing the writable actuals check.
1054 if Has_Arbitrary_Evaluation_Order (Nkind (P))
1055 and then not Nkind_In (P, N_Assignment_Statement,
1056 N_Object_Declaration)
1057 then
1058 Outermost := P;
1059 end if;
1061 -- Avoid climbing more than needed!
1063 exit when Stop_Subtree_Climbing (Nkind (P))
1064 or else (Nkind (P) = N_Range
1065 and then not
1066 Nkind_In (Parent (P), N_In, N_Not_In));
1068 P := Parent (P);
1069 end loop;
1071 Set_Check_Actuals (Outermost);
1072 end;
1073 end if;
1074 end if;
1075 end Check_Writable_Actuals;
1077 ---------------------------
1078 -- Name_Denotes_Function --
1079 ---------------------------
1081 function Name_Denotes_Function return Boolean is
1082 begin
1083 if Is_Entity_Name (Nam) then
1084 return Ekind (Entity (Nam)) = E_Function;
1085 elsif Nkind (Nam) = N_Selected_Component then
1086 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
1087 else
1088 return False;
1089 end if;
1090 end Name_Denotes_Function;
1092 -----------------------
1093 -- No_Interpretation --
1094 -----------------------
1096 procedure No_Interpretation is
1097 L : constant Boolean := Is_List_Member (N);
1098 K : constant Node_Kind := Nkind (Parent (N));
1100 begin
1101 -- If the node is in a list whose parent is not an expression then it
1102 -- must be an attempted procedure call.
1104 if L and then K not in N_Subexpr then
1105 if Ekind (Entity (Nam)) = E_Generic_Procedure then
1106 Error_Msg_NE
1107 ("must instantiate generic procedure& before call",
1108 Nam, Entity (Nam));
1109 else
1110 Error_Msg_N ("procedure or entry name expected", Nam);
1111 end if;
1113 -- Check for tasking cases where only an entry call will do
1115 elsif not L
1116 and then Nkind_In (K, N_Entry_Call_Alternative,
1117 N_Triggering_Alternative)
1118 then
1119 Error_Msg_N ("entry name expected", Nam);
1121 -- Otherwise give general error message
1123 else
1124 Error_Msg_N ("invalid prefix in call", Nam);
1125 end if;
1126 end No_Interpretation;
1128 -- Start of processing for Analyze_Call
1130 begin
1131 if Restriction_Check_Required (SPARK_05) then
1132 Check_Mixed_Parameter_And_Named_Associations;
1133 end if;
1135 -- Initialize the type of the result of the call to the error type,
1136 -- which will be reset if the type is successfully resolved.
1138 Set_Etype (N, Any_Type);
1140 Nam := Name (N);
1142 if not Is_Overloaded (Nam) then
1144 -- Only one interpretation to check
1146 if Ekind (Etype (Nam)) = E_Subprogram_Type then
1147 Nam_Ent := Etype (Nam);
1149 -- If the prefix is an access_to_subprogram, this may be an indirect
1150 -- call. This is the case if the name in the call is not an entity
1151 -- name, or if it is a function name in the context of a procedure
1152 -- call. In this latter case, we have a call to a parameterless
1153 -- function that returns a pointer_to_procedure which is the entity
1154 -- being called. Finally, F (X) may be a call to a parameterless
1155 -- function that returns a pointer to a function with parameters.
1156 -- Note that if F returns an access-to-subprogram whose designated
1157 -- type is an array, F (X) cannot be interpreted as an indirect call
1158 -- through the result of the call to F.
1160 elsif Is_Access_Type (Etype (Nam))
1161 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
1162 and then
1163 (not Name_Denotes_Function
1164 or else Nkind (N) = N_Procedure_Call_Statement
1165 or else
1166 (Nkind (Parent (N)) /= N_Explicit_Dereference
1167 and then Is_Entity_Name (Nam)
1168 and then No (First_Formal (Entity (Nam)))
1169 and then not
1170 Is_Array_Type (Etype (Designated_Type (Etype (Nam))))
1171 and then Present (Actuals)))
1172 then
1173 Nam_Ent := Designated_Type (Etype (Nam));
1174 Insert_Explicit_Dereference (Nam);
1176 -- Selected component case. Simple entry or protected operation,
1177 -- where the entry name is given by the selector name.
1179 elsif Nkind (Nam) = N_Selected_Component then
1180 Nam_Ent := Entity (Selector_Name (Nam));
1182 if not Ekind_In (Nam_Ent, E_Entry,
1183 E_Entry_Family,
1184 E_Function,
1185 E_Procedure)
1186 then
1187 Error_Msg_N ("name in call is not a callable entity", Nam);
1188 Set_Etype (N, Any_Type);
1189 return;
1190 end if;
1192 -- If the name is an Indexed component, it can be a call to a member
1193 -- of an entry family. The prefix must be a selected component whose
1194 -- selector is the entry. Analyze_Procedure_Call normalizes several
1195 -- kinds of call into this form.
1197 elsif Nkind (Nam) = N_Indexed_Component then
1198 if Nkind (Prefix (Nam)) = N_Selected_Component then
1199 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
1200 else
1201 Error_Msg_N ("name in call is not a callable entity", Nam);
1202 Set_Etype (N, Any_Type);
1203 return;
1204 end if;
1206 elsif not Is_Entity_Name (Nam) then
1207 Error_Msg_N ("name in call is not a callable entity", Nam);
1208 Set_Etype (N, Any_Type);
1209 return;
1211 else
1212 Nam_Ent := Entity (Nam);
1214 -- If not overloadable, this may be a generalized indexing
1215 -- operation with named associations. Rewrite again as an
1216 -- indexed component and analyze as container indexing.
1218 if not Is_Overloadable (Nam_Ent) then
1219 if Present
1220 (Find_Value_Of_Aspect
1221 (Etype (Nam_Ent), Aspect_Constant_Indexing))
1222 then
1223 Replace (N,
1224 Make_Indexed_Component (Sloc (N),
1225 Prefix => Nam,
1226 Expressions => Parameter_Associations (N)));
1228 if Try_Container_Indexing (N, Nam, Expressions (N)) then
1229 return;
1230 else
1231 No_Interpretation;
1232 end if;
1234 else
1235 No_Interpretation;
1236 end if;
1238 return;
1239 end if;
1240 end if;
1242 -- Operations generated for RACW stub types are called only through
1243 -- dispatching, and can never be the static interpretation of a call.
1245 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
1246 No_Interpretation;
1247 return;
1248 end if;
1250 Analyze_One_Call (N, Nam_Ent, True, Success);
1252 -- If this is an indirect call, the return type of the access_to
1253 -- subprogram may be an incomplete type. At the point of the call,
1254 -- use the full type if available, and at the same time update the
1255 -- return type of the access_to_subprogram.
1257 if Success
1258 and then Nkind (Nam) = N_Explicit_Dereference
1259 and then Ekind (Etype (N)) = E_Incomplete_Type
1260 and then Present (Full_View (Etype (N)))
1261 then
1262 Set_Etype (N, Full_View (Etype (N)));
1263 Set_Etype (Nam_Ent, Etype (N));
1264 end if;
1266 -- Overloaded call
1268 else
1269 -- An overloaded selected component must denote overloaded operations
1270 -- of a concurrent type. The interpretations are attached to the
1271 -- simple name of those operations.
1273 if Nkind (Nam) = N_Selected_Component then
1274 Nam := Selector_Name (Nam);
1275 end if;
1277 Get_First_Interp (Nam, X, It);
1278 while Present (It.Nam) loop
1279 Nam_Ent := It.Nam;
1280 Deref := False;
1282 -- Name may be call that returns an access to subprogram, or more
1283 -- generally an overloaded expression one of whose interpretations
1284 -- yields an access to subprogram. If the name is an entity, we do
1285 -- not dereference, because the node is a call that returns the
1286 -- access type: note difference between f(x), where the call may
1287 -- return an access subprogram type, and f(x)(y), where the type
1288 -- returned by the call to f is implicitly dereferenced to analyze
1289 -- the outer call.
1291 if Is_Access_Type (Nam_Ent) then
1292 Nam_Ent := Designated_Type (Nam_Ent);
1294 elsif Is_Access_Type (Etype (Nam_Ent))
1295 and then
1296 (not Is_Entity_Name (Nam)
1297 or else Nkind (N) = N_Procedure_Call_Statement)
1298 and then Ekind (Designated_Type (Etype (Nam_Ent)))
1299 = E_Subprogram_Type
1300 then
1301 Nam_Ent := Designated_Type (Etype (Nam_Ent));
1303 if Is_Entity_Name (Nam) then
1304 Deref := True;
1305 end if;
1306 end if;
1308 -- If the call has been rewritten from a prefixed call, the first
1309 -- parameter has been analyzed, but may need a subsequent
1310 -- dereference, so skip its analysis now.
1312 if N /= Original_Node (N)
1313 and then Nkind (Original_Node (N)) = Nkind (N)
1314 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
1315 and then Present (Parameter_Associations (N))
1316 and then Present (Etype (First (Parameter_Associations (N))))
1317 then
1318 Analyze_One_Call
1319 (N, Nam_Ent, False, Success, Skip_First => True);
1320 else
1321 Analyze_One_Call (N, Nam_Ent, False, Success);
1322 end if;
1324 -- If the interpretation succeeds, mark the proper type of the
1325 -- prefix (any valid candidate will do). If not, remove the
1326 -- candidate interpretation. This only needs to be done for
1327 -- overloaded protected operations, for other entities disambi-
1328 -- guation is done directly in Resolve.
1330 if Success then
1331 if Deref
1332 and then Nkind (Parent (N)) /= N_Explicit_Dereference
1333 then
1334 Set_Entity (Nam, It.Nam);
1335 Insert_Explicit_Dereference (Nam);
1336 Set_Etype (Nam, Nam_Ent);
1338 else
1339 Set_Etype (Nam, It.Typ);
1340 end if;
1342 elsif Nkind_In (Name (N), N_Selected_Component,
1343 N_Function_Call)
1344 then
1345 Remove_Interp (X);
1346 end if;
1348 Get_Next_Interp (X, It);
1349 end loop;
1351 -- If the name is the result of a function call, it can only be a
1352 -- call to a function returning an access to subprogram. Insert
1353 -- explicit dereference.
1355 if Nkind (Nam) = N_Function_Call then
1356 Insert_Explicit_Dereference (Nam);
1357 end if;
1359 if Etype (N) = Any_Type then
1361 -- None of the interpretations is compatible with the actuals
1363 Diagnose_Call (N, Nam);
1365 -- Special checks for uninstantiated put routines
1367 if Nkind (N) = N_Procedure_Call_Statement
1368 and then Is_Entity_Name (Nam)
1369 and then Chars (Nam) = Name_Put
1370 and then List_Length (Actuals) = 1
1371 then
1372 declare
1373 Arg : constant Node_Id := First (Actuals);
1374 Typ : Entity_Id;
1376 begin
1377 if Nkind (Arg) = N_Parameter_Association then
1378 Typ := Etype (Explicit_Actual_Parameter (Arg));
1379 else
1380 Typ := Etype (Arg);
1381 end if;
1383 if Is_Signed_Integer_Type (Typ) then
1384 Error_Msg_N
1385 ("possible missing instantiation of "
1386 & "'Text_'I'O.'Integer_'I'O!", Nam);
1388 elsif Is_Modular_Integer_Type (Typ) then
1389 Error_Msg_N
1390 ("possible missing instantiation of "
1391 & "'Text_'I'O.'Modular_'I'O!", Nam);
1393 elsif Is_Floating_Point_Type (Typ) then
1394 Error_Msg_N
1395 ("possible missing instantiation of "
1396 & "'Text_'I'O.'Float_'I'O!", Nam);
1398 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1399 Error_Msg_N
1400 ("possible missing instantiation of "
1401 & "'Text_'I'O.'Fixed_'I'O!", Nam);
1403 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1404 Error_Msg_N
1405 ("possible missing instantiation of "
1406 & "'Text_'I'O.'Decimal_'I'O!", Nam);
1408 elsif Is_Enumeration_Type (Typ) then
1409 Error_Msg_N
1410 ("possible missing instantiation of "
1411 & "'Text_'I'O.'Enumeration_'I'O!", Nam);
1412 end if;
1413 end;
1414 end if;
1416 elsif not Is_Overloaded (N)
1417 and then Is_Entity_Name (Nam)
1418 then
1419 -- Resolution yields a single interpretation. Verify that the
1420 -- reference has capitalization consistent with the declaration.
1422 Set_Entity_With_Checks (Nam, Entity (Nam));
1423 Generate_Reference (Entity (Nam), Nam);
1425 Set_Etype (Nam, Etype (Entity (Nam)));
1426 else
1427 Remove_Abstract_Operations (N);
1428 end if;
1430 End_Interp_List;
1431 end if;
1433 if Ada_Version >= Ada_2012 then
1435 -- Check if the call contains a function with writable actuals
1437 Check_Writable_Actuals (N);
1439 -- If found and the outermost construct that can be evaluated in
1440 -- an arbitrary order is precisely this call, then check all its
1441 -- actuals.
1443 Check_Function_Writable_Actuals (N);
1444 end if;
1445 end Analyze_Call;
1447 -----------------------------
1448 -- Analyze_Case_Expression --
1449 -----------------------------
1451 procedure Analyze_Case_Expression (N : Node_Id) is
1452 procedure Non_Static_Choice_Error (Choice : Node_Id);
1453 -- Error routine invoked by the generic instantiation below when
1454 -- the case expression has a non static choice.
1456 package Case_Choices_Analysis is new
1457 Generic_Analyze_Choices
1458 (Process_Associated_Node => No_OP);
1459 use Case_Choices_Analysis;
1461 package Case_Choices_Checking is new
1462 Generic_Check_Choices
1463 (Process_Empty_Choice => No_OP,
1464 Process_Non_Static_Choice => Non_Static_Choice_Error,
1465 Process_Associated_Node => No_OP);
1466 use Case_Choices_Checking;
1468 -----------------------------
1469 -- Non_Static_Choice_Error --
1470 -----------------------------
1472 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1473 begin
1474 Flag_Non_Static_Expr
1475 ("choice given in case expression is not static!", Choice);
1476 end Non_Static_Choice_Error;
1478 -- Local variables
1480 Expr : constant Node_Id := Expression (N);
1481 Alt : Node_Id;
1482 Exp_Type : Entity_Id;
1483 Exp_Btype : Entity_Id;
1485 FirstX : Node_Id := Empty;
1486 -- First expression in the case for which there is some type information
1487 -- available, i.e. it is not Any_Type, which can happen because of some
1488 -- error, or from the use of e.g. raise Constraint_Error.
1490 Others_Present : Boolean;
1491 -- Indicates if Others was present
1493 Wrong_Alt : Node_Id := Empty;
1494 -- For error reporting
1496 -- Start of processing for Analyze_Case_Expression
1498 begin
1499 if Comes_From_Source (N) then
1500 Check_Compiler_Unit ("case expression", N);
1501 end if;
1503 Analyze_And_Resolve (Expr, Any_Discrete);
1504 Check_Unset_Reference (Expr);
1505 Exp_Type := Etype (Expr);
1506 Exp_Btype := Base_Type (Exp_Type);
1508 Alt := First (Alternatives (N));
1509 while Present (Alt) loop
1510 Analyze (Expression (Alt));
1512 if No (FirstX) and then Etype (Expression (Alt)) /= Any_Type then
1513 FirstX := Expression (Alt);
1514 end if;
1516 Next (Alt);
1517 end loop;
1519 -- Get our initial type from the first expression for which we got some
1520 -- useful type information from the expression.
1522 if not Is_Overloaded (FirstX) then
1523 Set_Etype (N, Etype (FirstX));
1525 else
1526 declare
1527 I : Interp_Index;
1528 It : Interp;
1530 begin
1531 Set_Etype (N, Any_Type);
1533 Get_First_Interp (FirstX, I, It);
1534 while Present (It.Nam) loop
1536 -- For each interpretation of the first expression, we only
1537 -- add the interpretation if every other expression in the
1538 -- case expression alternatives has a compatible type.
1540 Alt := Next (First (Alternatives (N)));
1541 while Present (Alt) loop
1542 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1543 Next (Alt);
1544 end loop;
1546 if No (Alt) then
1547 Add_One_Interp (N, It.Typ, It.Typ);
1548 else
1549 Wrong_Alt := Alt;
1550 end if;
1552 Get_Next_Interp (I, It);
1553 end loop;
1554 end;
1555 end if;
1557 Exp_Btype := Base_Type (Exp_Type);
1559 -- The expression must be of a discrete type which must be determinable
1560 -- independently of the context in which the expression occurs, but
1561 -- using the fact that the expression must be of a discrete type.
1562 -- Moreover, the type this expression must not be a character literal
1563 -- (which is always ambiguous).
1565 -- If error already reported by Resolve, nothing more to do
1567 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1568 return;
1570 -- Special casee message for character literal
1572 elsif Exp_Btype = Any_Character then
1573 Error_Msg_N
1574 ("character literal as case expression is ambiguous", Expr);
1575 return;
1576 end if;
1578 if Etype (N) = Any_Type and then Present (Wrong_Alt) then
1579 Error_Msg_N
1580 ("type incompatible with that of previous alternatives",
1581 Expression (Wrong_Alt));
1582 return;
1583 end if;
1585 -- If the case expression is a formal object of mode in out, then
1586 -- treat it as having a nonstatic subtype by forcing use of the base
1587 -- type (which has to get passed to Check_Case_Choices below). Also
1588 -- use base type when the case expression is parenthesized.
1590 if Paren_Count (Expr) > 0
1591 or else (Is_Entity_Name (Expr)
1592 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1593 then
1594 Exp_Type := Exp_Btype;
1595 end if;
1597 -- The case expression alternatives cover the range of a static subtype
1598 -- subject to aspect Static_Predicate. Do not check the choices when the
1599 -- case expression has not been fully analyzed yet because this may lead
1600 -- to bogus errors.
1602 if Is_OK_Static_Subtype (Exp_Type)
1603 and then Has_Static_Predicate_Aspect (Exp_Type)
1604 and then In_Spec_Expression
1605 then
1606 null;
1608 -- Call Analyze_Choices and Check_Choices to do the rest of the work
1610 else
1611 Analyze_Choices (Alternatives (N), Exp_Type);
1612 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1613 end if;
1615 if Exp_Type = Universal_Integer and then not Others_Present then
1616 Error_Msg_N
1617 ("case on universal integer requires OTHERS choice", Expr);
1618 end if;
1619 end Analyze_Case_Expression;
1621 ---------------------------
1622 -- Analyze_Comparison_Op --
1623 ---------------------------
1625 procedure Analyze_Comparison_Op (N : Node_Id) is
1626 L : constant Node_Id := Left_Opnd (N);
1627 R : constant Node_Id := Right_Opnd (N);
1628 Op_Id : Entity_Id := Entity (N);
1630 begin
1631 Set_Etype (N, Any_Type);
1632 Candidate_Type := Empty;
1634 Analyze_Expression (L);
1635 Analyze_Expression (R);
1637 if Present (Op_Id) then
1638 if Ekind (Op_Id) = E_Operator then
1639 Find_Comparison_Types (L, R, Op_Id, N);
1640 else
1641 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1642 end if;
1644 if Is_Overloaded (L) then
1645 Set_Etype (L, Intersect_Types (L, R));
1646 end if;
1648 else
1649 Op_Id := Get_Name_Entity_Id (Chars (N));
1650 while Present (Op_Id) loop
1651 if Ekind (Op_Id) = E_Operator then
1652 Find_Comparison_Types (L, R, Op_Id, N);
1653 else
1654 Analyze_User_Defined_Binary_Op (N, Op_Id);
1655 end if;
1657 Op_Id := Homonym (Op_Id);
1658 end loop;
1659 end if;
1661 Operator_Check (N);
1662 Check_Function_Writable_Actuals (N);
1663 end Analyze_Comparison_Op;
1665 ---------------------------
1666 -- Analyze_Concatenation --
1667 ---------------------------
1669 procedure Analyze_Concatenation (N : Node_Id) is
1671 -- We wish to avoid deep recursion, because concatenations are often
1672 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1673 -- operands nonrecursively until we find something that is not a
1674 -- concatenation (A in this case), or has already been analyzed. We
1675 -- analyze that, and then walk back up the tree following Parent
1676 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1677 -- work at each level. The Parent pointers allow us to avoid recursion,
1678 -- and thus avoid running out of memory.
1680 NN : Node_Id := N;
1681 L : Node_Id;
1683 begin
1684 Candidate_Type := Empty;
1686 -- The following code is equivalent to:
1688 -- Set_Etype (N, Any_Type);
1689 -- Analyze_Expression (Left_Opnd (N));
1690 -- Analyze_Concatenation_Rest (N);
1692 -- where the Analyze_Expression call recurses back here if the left
1693 -- operand is a concatenation.
1695 -- Walk down left operands
1697 loop
1698 Set_Etype (NN, Any_Type);
1699 L := Left_Opnd (NN);
1700 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1701 NN := L;
1702 end loop;
1704 -- Now (given the above example) NN is A&B and L is A
1706 -- First analyze L ...
1708 Analyze_Expression (L);
1710 -- ... then walk NN back up until we reach N (where we started), calling
1711 -- Analyze_Concatenation_Rest along the way.
1713 loop
1714 Analyze_Concatenation_Rest (NN);
1715 exit when NN = N;
1716 NN := Parent (NN);
1717 end loop;
1718 end Analyze_Concatenation;
1720 --------------------------------
1721 -- Analyze_Concatenation_Rest --
1722 --------------------------------
1724 -- If the only one-dimensional array type in scope is String,
1725 -- this is the resulting type of the operation. Otherwise there
1726 -- will be a concatenation operation defined for each user-defined
1727 -- one-dimensional array.
1729 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1730 L : constant Node_Id := Left_Opnd (N);
1731 R : constant Node_Id := Right_Opnd (N);
1732 Op_Id : Entity_Id := Entity (N);
1733 LT : Entity_Id;
1734 RT : Entity_Id;
1736 begin
1737 Analyze_Expression (R);
1739 -- If the entity is present, the node appears in an instance, and
1740 -- denotes a predefined concatenation operation. The resulting type is
1741 -- obtained from the arguments when possible. If the arguments are
1742 -- aggregates, the array type and the concatenation type must be
1743 -- visible.
1745 if Present (Op_Id) then
1746 if Ekind (Op_Id) = E_Operator then
1747 LT := Base_Type (Etype (L));
1748 RT := Base_Type (Etype (R));
1750 if Is_Array_Type (LT)
1751 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1752 then
1753 Add_One_Interp (N, Op_Id, LT);
1755 elsif Is_Array_Type (RT)
1756 and then LT = Base_Type (Component_Type (RT))
1757 then
1758 Add_One_Interp (N, Op_Id, RT);
1760 -- If one operand is a string type or a user-defined array type,
1761 -- and the other is a literal, result is of the specific type.
1763 elsif
1764 (Root_Type (LT) = Standard_String
1765 or else Scope (LT) /= Standard_Standard)
1766 and then Etype (R) = Any_String
1767 then
1768 Add_One_Interp (N, Op_Id, LT);
1770 elsif
1771 (Root_Type (RT) = Standard_String
1772 or else Scope (RT) /= Standard_Standard)
1773 and then Etype (L) = Any_String
1774 then
1775 Add_One_Interp (N, Op_Id, RT);
1777 elsif not Is_Generic_Type (Etype (Op_Id)) then
1778 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1780 else
1781 -- Type and its operations must be visible
1783 Set_Entity (N, Empty);
1784 Analyze_Concatenation (N);
1785 end if;
1787 else
1788 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1789 end if;
1791 else
1792 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1793 while Present (Op_Id) loop
1794 if Ekind (Op_Id) = E_Operator then
1796 -- Do not consider operators declared in dead code, they can
1797 -- not be part of the resolution.
1799 if Is_Eliminated (Op_Id) then
1800 null;
1801 else
1802 Find_Concatenation_Types (L, R, Op_Id, N);
1803 end if;
1805 else
1806 Analyze_User_Defined_Binary_Op (N, Op_Id);
1807 end if;
1809 Op_Id := Homonym (Op_Id);
1810 end loop;
1811 end if;
1813 Operator_Check (N);
1814 end Analyze_Concatenation_Rest;
1816 -------------------------
1817 -- Analyze_Equality_Op --
1818 -------------------------
1820 procedure Analyze_Equality_Op (N : Node_Id) is
1821 Loc : constant Source_Ptr := Sloc (N);
1822 L : constant Node_Id := Left_Opnd (N);
1823 R : constant Node_Id := Right_Opnd (N);
1824 Op_Id : Entity_Id;
1826 begin
1827 Set_Etype (N, Any_Type);
1828 Candidate_Type := Empty;
1830 Analyze_Expression (L);
1831 Analyze_Expression (R);
1833 -- If the entity is set, the node is a generic instance with a non-local
1834 -- reference to the predefined operator or to a user-defined function.
1835 -- It can also be an inequality that is expanded into the negation of a
1836 -- call to a user-defined equality operator.
1838 -- For the predefined case, the result is Boolean, regardless of the
1839 -- type of the operands. The operands may even be limited, if they are
1840 -- generic actuals. If they are overloaded, label the left argument with
1841 -- the common type that must be present, or with the type of the formal
1842 -- of the user-defined function.
1844 if Present (Entity (N)) then
1845 Op_Id := Entity (N);
1847 if Ekind (Op_Id) = E_Operator then
1848 Add_One_Interp (N, Op_Id, Standard_Boolean);
1849 else
1850 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1851 end if;
1853 if Is_Overloaded (L) then
1854 if Ekind (Op_Id) = E_Operator then
1855 Set_Etype (L, Intersect_Types (L, R));
1856 else
1857 Set_Etype (L, Etype (First_Formal (Op_Id)));
1858 end if;
1859 end if;
1861 else
1862 Op_Id := Get_Name_Entity_Id (Chars (N));
1863 while Present (Op_Id) loop
1864 if Ekind (Op_Id) = E_Operator then
1865 Find_Equality_Types (L, R, Op_Id, N);
1866 else
1867 Analyze_User_Defined_Binary_Op (N, Op_Id);
1868 end if;
1870 Op_Id := Homonym (Op_Id);
1871 end loop;
1872 end if;
1874 -- If there was no match, and the operator is inequality, this may be
1875 -- a case where inequality has not been made explicit, as for tagged
1876 -- types. Analyze the node as the negation of an equality operation.
1877 -- This cannot be done earlier, because before analysis we cannot rule
1878 -- out the presence of an explicit inequality.
1880 if Etype (N) = Any_Type
1881 and then Nkind (N) = N_Op_Ne
1882 then
1883 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1884 while Present (Op_Id) loop
1885 if Ekind (Op_Id) = E_Operator then
1886 Find_Equality_Types (L, R, Op_Id, N);
1887 else
1888 Analyze_User_Defined_Binary_Op (N, Op_Id);
1889 end if;
1891 Op_Id := Homonym (Op_Id);
1892 end loop;
1894 if Etype (N) /= Any_Type then
1895 Op_Id := Entity (N);
1897 Rewrite (N,
1898 Make_Op_Not (Loc,
1899 Right_Opnd =>
1900 Make_Op_Eq (Loc,
1901 Left_Opnd => Left_Opnd (N),
1902 Right_Opnd => Right_Opnd (N))));
1904 Set_Entity (Right_Opnd (N), Op_Id);
1905 Analyze (N);
1906 end if;
1907 end if;
1909 Operator_Check (N);
1910 Check_Function_Writable_Actuals (N);
1911 end Analyze_Equality_Op;
1913 ----------------------------------
1914 -- Analyze_Explicit_Dereference --
1915 ----------------------------------
1917 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1918 Loc : constant Source_Ptr := Sloc (N);
1919 P : constant Node_Id := Prefix (N);
1920 T : Entity_Id;
1921 I : Interp_Index;
1922 It : Interp;
1923 New_N : Node_Id;
1925 function Is_Function_Type return Boolean;
1926 -- Check whether node may be interpreted as an implicit function call
1928 ----------------------
1929 -- Is_Function_Type --
1930 ----------------------
1932 function Is_Function_Type return Boolean is
1933 I : Interp_Index;
1934 It : Interp;
1936 begin
1937 if not Is_Overloaded (N) then
1938 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1939 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1941 else
1942 Get_First_Interp (N, I, It);
1943 while Present (It.Nam) loop
1944 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1945 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1946 then
1947 return False;
1948 end if;
1950 Get_Next_Interp (I, It);
1951 end loop;
1953 return True;
1954 end if;
1955 end Is_Function_Type;
1957 -- Start of processing for Analyze_Explicit_Dereference
1959 begin
1960 -- If source node, check SPARK restriction. We guard this with the
1961 -- source node check, because ???
1963 if Comes_From_Source (N) then
1964 Check_SPARK_05_Restriction ("explicit dereference is not allowed", N);
1965 end if;
1967 -- In formal verification mode, keep track of all reads and writes
1968 -- through explicit dereferences.
1970 if GNATprove_Mode then
1971 SPARK_Specific.Generate_Dereference (N);
1972 end if;
1974 Analyze (P);
1975 Set_Etype (N, Any_Type);
1977 -- Test for remote access to subprogram type, and if so return
1978 -- after rewriting the original tree.
1980 if Remote_AST_E_Dereference (P) then
1981 return;
1982 end if;
1984 -- Normal processing for other than remote access to subprogram type
1986 if not Is_Overloaded (P) then
1987 if Is_Access_Type (Etype (P)) then
1989 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1990 -- avoid other problems caused by the Private_Subtype and it is
1991 -- safe to go to the Base_Type because this is the same as
1992 -- converting the access value to its Base_Type.
1994 declare
1995 DT : Entity_Id := Designated_Type (Etype (P));
1997 begin
1998 if Ekind (DT) = E_Private_Subtype
1999 and then Is_For_Access_Subtype (DT)
2000 then
2001 DT := Base_Type (DT);
2002 end if;
2004 -- An explicit dereference is a legal occurrence of an
2005 -- incomplete type imported through a limited_with clause, if
2006 -- the full view is visible, or if we are within an instance
2007 -- body, where the enclosing body has a regular with_clause
2008 -- on the unit.
2010 if From_Limited_With (DT)
2011 and then not From_Limited_With (Scope (DT))
2012 and then
2013 (Is_Immediately_Visible (Scope (DT))
2014 or else
2015 (Is_Child_Unit (Scope (DT))
2016 and then Is_Visible_Lib_Unit (Scope (DT)))
2017 or else In_Instance_Body)
2018 then
2019 Set_Etype (N, Available_View (DT));
2021 else
2022 Set_Etype (N, DT);
2023 end if;
2024 end;
2026 elsif Etype (P) /= Any_Type then
2027 Error_Msg_N ("prefix of dereference must be an access type", N);
2028 return;
2029 end if;
2031 else
2032 Get_First_Interp (P, I, It);
2033 while Present (It.Nam) loop
2034 T := It.Typ;
2036 if Is_Access_Type (T) then
2037 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
2038 end if;
2040 Get_Next_Interp (I, It);
2041 end loop;
2043 -- Error if no interpretation of the prefix has an access type
2045 if Etype (N) = Any_Type then
2046 Error_Msg_N
2047 ("access type required in prefix of explicit dereference", P);
2048 Set_Etype (N, Any_Type);
2049 return;
2050 end if;
2051 end if;
2053 if Is_Function_Type
2054 and then Nkind (Parent (N)) /= N_Indexed_Component
2056 and then (Nkind (Parent (N)) /= N_Function_Call
2057 or else N /= Name (Parent (N)))
2059 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
2060 or else N /= Name (Parent (N)))
2062 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
2063 and then (Nkind (Parent (N)) /= N_Attribute_Reference
2064 or else
2065 (Attribute_Name (Parent (N)) /= Name_Address
2066 and then
2067 Attribute_Name (Parent (N)) /= Name_Access))
2068 then
2069 -- Name is a function call with no actuals, in a context that
2070 -- requires deproceduring (including as an actual in an enclosing
2071 -- function or procedure call). There are some pathological cases
2072 -- where the prefix might include functions that return access to
2073 -- subprograms and others that return a regular type. Disambiguation
2074 -- of those has to take place in Resolve.
2076 New_N :=
2077 Make_Function_Call (Loc,
2078 Name => Make_Explicit_Dereference (Loc, P),
2079 Parameter_Associations => New_List);
2081 -- If the prefix is overloaded, remove operations that have formals,
2082 -- we know that this is a parameterless call.
2084 if Is_Overloaded (P) then
2085 Get_First_Interp (P, I, It);
2086 while Present (It.Nam) loop
2087 T := It.Typ;
2089 if No (First_Formal (Base_Type (Designated_Type (T)))) then
2090 Set_Etype (P, T);
2091 else
2092 Remove_Interp (I);
2093 end if;
2095 Get_Next_Interp (I, It);
2096 end loop;
2097 end if;
2099 Rewrite (N, New_N);
2100 Analyze (N);
2102 elsif not Is_Function_Type
2103 and then Is_Overloaded (N)
2104 then
2105 -- The prefix may include access to subprograms and other access
2106 -- types. If the context selects the interpretation that is a
2107 -- function call (not a procedure call) we cannot rewrite the node
2108 -- yet, but we include the result of the call interpretation.
2110 Get_First_Interp (N, I, It);
2111 while Present (It.Nam) loop
2112 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
2113 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
2114 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
2115 then
2116 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
2117 end if;
2119 Get_Next_Interp (I, It);
2120 end loop;
2121 end if;
2123 -- A value of remote access-to-class-wide must not be dereferenced
2124 -- (RM E.2.2(16)).
2126 Validate_Remote_Access_To_Class_Wide_Type (N);
2127 end Analyze_Explicit_Dereference;
2129 ------------------------
2130 -- Analyze_Expression --
2131 ------------------------
2133 procedure Analyze_Expression (N : Node_Id) is
2134 begin
2136 -- If the expression is an indexed component that will be rewritten
2137 -- as a container indexing, it has already been analyzed.
2139 if Nkind (N) = N_Indexed_Component
2140 and then Present (Generalized_Indexing (N))
2141 then
2142 null;
2144 else
2145 Analyze (N);
2146 Check_Parameterless_Call (N);
2147 end if;
2148 end Analyze_Expression;
2150 -------------------------------------
2151 -- Analyze_Expression_With_Actions --
2152 -------------------------------------
2154 procedure Analyze_Expression_With_Actions (N : Node_Id) is
2155 A : Node_Id;
2157 begin
2158 A := First (Actions (N));
2159 while Present (A) loop
2160 Analyze (A);
2161 Next (A);
2162 end loop;
2164 Analyze_Expression (Expression (N));
2165 Set_Etype (N, Etype (Expression (N)));
2166 end Analyze_Expression_With_Actions;
2168 ---------------------------
2169 -- Analyze_If_Expression --
2170 ---------------------------
2172 procedure Analyze_If_Expression (N : Node_Id) is
2173 Condition : constant Node_Id := First (Expressions (N));
2174 Then_Expr : constant Node_Id := Next (Condition);
2175 Else_Expr : Node_Id;
2177 begin
2178 -- Defend against error of missing expressions from previous error
2180 if No (Then_Expr) then
2181 Check_Error_Detected;
2182 return;
2183 end if;
2185 if Comes_From_Source (N) then
2186 Check_SPARK_05_Restriction ("if expression is not allowed", N);
2187 end if;
2189 Else_Expr := Next (Then_Expr);
2191 if Comes_From_Source (N) then
2192 Check_Compiler_Unit ("if expression", N);
2193 end if;
2195 -- Analyze and resolve the condition. We need to resolve this now so
2196 -- that it gets folded to True/False if possible, before we analyze
2197 -- the THEN/ELSE branches, because when analyzing these branches, we
2198 -- may call Is_Statically_Unevaluated, which expects the condition of
2199 -- an enclosing IF to have been analyze/resolved/evaluated.
2201 Analyze_Expression (Condition);
2202 Resolve (Condition, Any_Boolean);
2204 -- Analyze THEN expression and (if present) ELSE expression. For those
2205 -- we delay resolution in the normal manner, because of overloading etc.
2207 Analyze_Expression (Then_Expr);
2209 if Present (Else_Expr) then
2210 Analyze_Expression (Else_Expr);
2211 end if;
2213 -- If then expression not overloaded, then that decides the type
2215 if not Is_Overloaded (Then_Expr) then
2216 Set_Etype (N, Etype (Then_Expr));
2218 -- Case where then expression is overloaded
2220 else
2221 declare
2222 I : Interp_Index;
2223 It : Interp;
2225 begin
2226 Set_Etype (N, Any_Type);
2228 -- Loop through interpretations of Then_Expr
2230 Get_First_Interp (Then_Expr, I, It);
2231 while Present (It.Nam) loop
2233 -- Add possible interpretation of Then_Expr if no Else_Expr, or
2234 -- Else_Expr is present and has a compatible type.
2236 if No (Else_Expr)
2237 or else Has_Compatible_Type (Else_Expr, It.Typ)
2238 then
2239 Add_One_Interp (N, It.Typ, It.Typ);
2240 end if;
2242 Get_Next_Interp (I, It);
2243 end loop;
2245 -- If no valid interpretation has been found, then the type of the
2246 -- ELSE expression does not match any interpretation of the THEN
2247 -- expression.
2249 if Etype (N) = Any_Type then
2250 Error_Msg_N
2251 ("type incompatible with that of `THEN` expression",
2252 Else_Expr);
2253 return;
2254 end if;
2255 end;
2256 end if;
2257 end Analyze_If_Expression;
2259 ------------------------------------
2260 -- Analyze_Indexed_Component_Form --
2261 ------------------------------------
2263 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
2264 P : constant Node_Id := Prefix (N);
2265 Exprs : constant List_Id := Expressions (N);
2266 Exp : Node_Id;
2267 P_T : Entity_Id;
2268 E : Node_Id;
2269 U_N : Entity_Id;
2271 procedure Process_Function_Call;
2272 -- Prefix in indexed component form is an overloadable entity, so the
2273 -- node is a function call. Reformat it as such.
2275 procedure Process_Indexed_Component;
2276 -- Prefix in indexed component form is actually an indexed component.
2277 -- This routine processes it, knowing that the prefix is already
2278 -- resolved.
2280 procedure Process_Indexed_Component_Or_Slice;
2281 -- An indexed component with a single index may designate a slice if
2282 -- the index is a subtype mark. This routine disambiguates these two
2283 -- cases by resolving the prefix to see if it is a subtype mark.
2285 procedure Process_Overloaded_Indexed_Component;
2286 -- If the prefix of an indexed component is overloaded, the proper
2287 -- interpretation is selected by the index types and the context.
2289 ---------------------------
2290 -- Process_Function_Call --
2291 ---------------------------
2293 procedure Process_Function_Call is
2294 Loc : constant Source_Ptr := Sloc (N);
2295 Actual : Node_Id;
2297 begin
2298 Change_Node (N, N_Function_Call);
2299 Set_Name (N, P);
2300 Set_Parameter_Associations (N, Exprs);
2302 -- Analyze actuals prior to analyzing the call itself
2304 Actual := First (Parameter_Associations (N));
2305 while Present (Actual) loop
2306 Analyze (Actual);
2307 Check_Parameterless_Call (Actual);
2309 -- Move to next actual. Note that we use Next, not Next_Actual
2310 -- here. The reason for this is a bit subtle. If a function call
2311 -- includes named associations, the parser recognizes the node
2312 -- as a call, and it is analyzed as such. If all associations are
2313 -- positional, the parser builds an indexed_component node, and
2314 -- it is only after analysis of the prefix that the construct
2315 -- is recognized as a call, in which case Process_Function_Call
2316 -- rewrites the node and analyzes the actuals. If the list of
2317 -- actuals is malformed, the parser may leave the node as an
2318 -- indexed component (despite the presence of named associations).
2319 -- The iterator Next_Actual is equivalent to Next if the list is
2320 -- positional, but follows the normalized chain of actuals when
2321 -- named associations are present. In this case normalization has
2322 -- not taken place, and actuals remain unanalyzed, which leads to
2323 -- subsequent crashes or loops if there is an attempt to continue
2324 -- analysis of the program.
2326 -- IF there is a single actual and it is a type name, the node
2327 -- can only be interpreted as a slice of a parameterless call.
2328 -- Rebuild the node as such and analyze.
2330 if No (Next (Actual))
2331 and then Is_Entity_Name (Actual)
2332 and then Is_Type (Entity (Actual))
2333 and then Is_Discrete_Type (Entity (Actual))
2334 then
2335 Replace (N,
2336 Make_Slice (Loc,
2337 Prefix => P,
2338 Discrete_Range =>
2339 New_Occurrence_Of (Entity (Actual), Loc)));
2340 Analyze (N);
2341 return;
2343 else
2344 Next (Actual);
2345 end if;
2346 end loop;
2348 Analyze_Call (N);
2349 end Process_Function_Call;
2351 -------------------------------
2352 -- Process_Indexed_Component --
2353 -------------------------------
2355 procedure Process_Indexed_Component is
2356 Exp : Node_Id;
2357 Array_Type : Entity_Id;
2358 Index : Node_Id;
2359 Pent : Entity_Id := Empty;
2361 begin
2362 Exp := First (Exprs);
2364 if Is_Overloaded (P) then
2365 Process_Overloaded_Indexed_Component;
2367 else
2368 Array_Type := Etype (P);
2370 if Is_Entity_Name (P) then
2371 Pent := Entity (P);
2372 elsif Nkind (P) = N_Selected_Component
2373 and then Is_Entity_Name (Selector_Name (P))
2374 then
2375 Pent := Entity (Selector_Name (P));
2376 end if;
2378 -- Prefix must be appropriate for an array type, taking into
2379 -- account a possible implicit dereference.
2381 if Is_Access_Type (Array_Type) then
2382 Error_Msg_NW
2383 (Warn_On_Dereference, "?d?implicit dereference", N);
2384 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
2385 end if;
2387 if Is_Array_Type (Array_Type) then
2388 null;
2390 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
2391 Analyze (Exp);
2392 Set_Etype (N, Any_Type);
2394 if not Has_Compatible_Type
2395 (Exp, Entry_Index_Type (Pent))
2396 then
2397 Error_Msg_N ("invalid index type in entry name", N);
2399 elsif Present (Next (Exp)) then
2400 Error_Msg_N ("too many subscripts in entry reference", N);
2402 else
2403 Set_Etype (N, Etype (P));
2404 end if;
2406 return;
2408 elsif Is_Record_Type (Array_Type)
2409 and then Remote_AST_I_Dereference (P)
2410 then
2411 return;
2413 elsif Try_Container_Indexing (N, P, Exprs) then
2414 return;
2416 elsif Array_Type = Any_Type then
2417 Set_Etype (N, Any_Type);
2419 -- In most cases the analysis of the prefix will have emitted
2420 -- an error already, but if the prefix may be interpreted as a
2421 -- call in prefixed notation, the report is left to the caller.
2422 -- To prevent cascaded errors, report only if no previous ones.
2424 if Serious_Errors_Detected = 0 then
2425 Error_Msg_N ("invalid prefix in indexed component", P);
2427 if Nkind (P) = N_Expanded_Name then
2428 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
2429 end if;
2430 end if;
2432 return;
2434 -- Here we definitely have a bad indexing
2436 else
2437 if Nkind (Parent (N)) = N_Requeue_Statement
2438 and then Present (Pent) and then Ekind (Pent) = E_Entry
2439 then
2440 Error_Msg_N
2441 ("REQUEUE does not permit parameters", First (Exprs));
2443 elsif Is_Entity_Name (P)
2444 and then Etype (P) = Standard_Void_Type
2445 then
2446 Error_Msg_NE ("incorrect use of &", P, Entity (P));
2448 else
2449 Error_Msg_N ("array type required in indexed component", P);
2450 end if;
2452 Set_Etype (N, Any_Type);
2453 return;
2454 end if;
2456 Index := First_Index (Array_Type);
2457 while Present (Index) and then Present (Exp) loop
2458 if not Has_Compatible_Type (Exp, Etype (Index)) then
2459 Wrong_Type (Exp, Etype (Index));
2460 Set_Etype (N, Any_Type);
2461 return;
2462 end if;
2464 Next_Index (Index);
2465 Next (Exp);
2466 end loop;
2468 Set_Etype (N, Component_Type (Array_Type));
2469 Check_Implicit_Dereference (N, Etype (N));
2471 if Present (Index) then
2472 Error_Msg_N
2473 ("too few subscripts in array reference", First (Exprs));
2475 elsif Present (Exp) then
2476 Error_Msg_N ("too many subscripts in array reference", Exp);
2477 end if;
2478 end if;
2479 end Process_Indexed_Component;
2481 ----------------------------------------
2482 -- Process_Indexed_Component_Or_Slice --
2483 ----------------------------------------
2485 procedure Process_Indexed_Component_Or_Slice is
2486 begin
2487 Exp := First (Exprs);
2488 while Present (Exp) loop
2489 Analyze_Expression (Exp);
2490 Next (Exp);
2491 end loop;
2493 Exp := First (Exprs);
2495 -- If one index is present, and it is a subtype name, then the node
2496 -- denotes a slice (note that the case of an explicit range for a
2497 -- slice was already built as an N_Slice node in the first place,
2498 -- so that case is not handled here).
2500 -- We use a replace rather than a rewrite here because this is one
2501 -- of the cases in which the tree built by the parser is plain wrong.
2503 if No (Next (Exp))
2504 and then Is_Entity_Name (Exp)
2505 and then Is_Type (Entity (Exp))
2506 then
2507 Replace (N,
2508 Make_Slice (Sloc (N),
2509 Prefix => P,
2510 Discrete_Range => New_Copy (Exp)));
2511 Analyze (N);
2513 -- Otherwise (more than one index present, or single index is not
2514 -- a subtype name), then we have the indexed component case.
2516 else
2517 Process_Indexed_Component;
2518 end if;
2519 end Process_Indexed_Component_Or_Slice;
2521 ------------------------------------------
2522 -- Process_Overloaded_Indexed_Component --
2523 ------------------------------------------
2525 procedure Process_Overloaded_Indexed_Component is
2526 Exp : Node_Id;
2527 I : Interp_Index;
2528 It : Interp;
2529 Typ : Entity_Id;
2530 Index : Node_Id;
2531 Found : Boolean;
2533 begin
2534 Set_Etype (N, Any_Type);
2536 Get_First_Interp (P, I, It);
2537 while Present (It.Nam) loop
2538 Typ := It.Typ;
2540 if Is_Access_Type (Typ) then
2541 Typ := Designated_Type (Typ);
2542 Error_Msg_NW
2543 (Warn_On_Dereference, "?d?implicit dereference", N);
2544 end if;
2546 if Is_Array_Type (Typ) then
2548 -- Got a candidate: verify that index types are compatible
2550 Index := First_Index (Typ);
2551 Found := True;
2552 Exp := First (Exprs);
2553 while Present (Index) and then Present (Exp) loop
2554 if Has_Compatible_Type (Exp, Etype (Index)) then
2555 null;
2556 else
2557 Found := False;
2558 Remove_Interp (I);
2559 exit;
2560 end if;
2562 Next_Index (Index);
2563 Next (Exp);
2564 end loop;
2566 if Found and then No (Index) and then No (Exp) then
2567 declare
2568 CT : constant Entity_Id :=
2569 Base_Type (Component_Type (Typ));
2570 begin
2571 Add_One_Interp (N, CT, CT);
2572 Check_Implicit_Dereference (N, CT);
2573 end;
2574 end if;
2576 elsif Try_Container_Indexing (N, P, Exprs) then
2577 return;
2579 end if;
2581 Get_Next_Interp (I, It);
2582 end loop;
2584 if Etype (N) = Any_Type then
2585 Error_Msg_N ("no legal interpretation for indexed component", N);
2586 Set_Is_Overloaded (N, False);
2587 end if;
2589 End_Interp_List;
2590 end Process_Overloaded_Indexed_Component;
2592 -- Start of processing for Analyze_Indexed_Component_Form
2594 begin
2595 -- Get name of array, function or type
2597 Analyze (P);
2599 -- If P is an explicit dereference whose prefix is of a remote access-
2600 -- to-subprogram type, then N has already been rewritten as a subprogram
2601 -- call and analyzed.
2603 if Nkind (N) in N_Subprogram_Call then
2604 return;
2606 -- When the prefix is attribute 'Loop_Entry and the sole expression of
2607 -- the indexed component denotes a loop name, the indexed form is turned
2608 -- into an attribute reference.
2610 elsif Nkind (N) = N_Attribute_Reference
2611 and then Attribute_Name (N) = Name_Loop_Entry
2612 then
2613 return;
2614 end if;
2616 pragma Assert (Nkind (N) = N_Indexed_Component);
2618 P_T := Base_Type (Etype (P));
2620 if Is_Entity_Name (P) and then Present (Entity (P)) then
2621 U_N := Entity (P);
2623 if Is_Type (U_N) then
2625 -- Reformat node as a type conversion
2627 E := Remove_Head (Exprs);
2629 if Present (First (Exprs)) then
2630 Error_Msg_N
2631 ("argument of type conversion must be single expression", N);
2632 end if;
2634 Change_Node (N, N_Type_Conversion);
2635 Set_Subtype_Mark (N, P);
2636 Set_Etype (N, U_N);
2637 Set_Expression (N, E);
2639 -- After changing the node, call for the specific Analysis
2640 -- routine directly, to avoid a double call to the expander.
2642 Analyze_Type_Conversion (N);
2643 return;
2644 end if;
2646 if Is_Overloadable (U_N) then
2647 Process_Function_Call;
2649 elsif Ekind (Etype (P)) = E_Subprogram_Type
2650 or else (Is_Access_Type (Etype (P))
2651 and then
2652 Ekind (Designated_Type (Etype (P))) =
2653 E_Subprogram_Type)
2654 then
2655 -- Call to access_to-subprogram with possible implicit dereference
2657 Process_Function_Call;
2659 elsif Is_Generic_Subprogram (U_N) then
2661 -- A common beginner's (or C++ templates fan) error
2663 Error_Msg_N ("generic subprogram cannot be called", N);
2664 Set_Etype (N, Any_Type);
2665 return;
2667 else
2668 Process_Indexed_Component_Or_Slice;
2669 end if;
2671 -- If not an entity name, prefix is an expression that may denote
2672 -- an array or an access-to-subprogram.
2674 else
2675 if Ekind (P_T) = E_Subprogram_Type
2676 or else (Is_Access_Type (P_T)
2677 and then
2678 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2679 then
2680 Process_Function_Call;
2682 elsif Nkind (P) = N_Selected_Component
2683 and then Present (Entity (Selector_Name (P)))
2684 and then Is_Overloadable (Entity (Selector_Name (P)))
2685 then
2686 Process_Function_Call;
2688 -- In ASIS mode within a generic, a prefixed call is analyzed and
2689 -- partially rewritten but the original indexed component has not
2690 -- yet been rewritten as a call. Perform the replacement now.
2692 elsif Nkind (P) = N_Selected_Component
2693 and then Nkind (Parent (P)) = N_Function_Call
2694 and then ASIS_Mode
2695 then
2696 Rewrite (N, Parent (P));
2697 Analyze (N);
2699 else
2700 -- Indexed component, slice, or a call to a member of a family
2701 -- entry, which will be converted to an entry call later.
2703 Process_Indexed_Component_Or_Slice;
2704 end if;
2705 end if;
2707 Analyze_Dimension (N);
2708 end Analyze_Indexed_Component_Form;
2710 ------------------------
2711 -- Analyze_Logical_Op --
2712 ------------------------
2714 procedure Analyze_Logical_Op (N : Node_Id) is
2715 L : constant Node_Id := Left_Opnd (N);
2716 R : constant Node_Id := Right_Opnd (N);
2717 Op_Id : Entity_Id := Entity (N);
2719 begin
2720 Set_Etype (N, Any_Type);
2721 Candidate_Type := Empty;
2723 Analyze_Expression (L);
2724 Analyze_Expression (R);
2726 if Present (Op_Id) then
2728 if Ekind (Op_Id) = E_Operator then
2729 Find_Boolean_Types (L, R, Op_Id, N);
2730 else
2731 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2732 end if;
2734 else
2735 Op_Id := Get_Name_Entity_Id (Chars (N));
2736 while Present (Op_Id) loop
2737 if Ekind (Op_Id) = E_Operator then
2738 Find_Boolean_Types (L, R, Op_Id, N);
2739 else
2740 Analyze_User_Defined_Binary_Op (N, Op_Id);
2741 end if;
2743 Op_Id := Homonym (Op_Id);
2744 end loop;
2745 end if;
2747 Operator_Check (N);
2748 Check_Function_Writable_Actuals (N);
2749 end Analyze_Logical_Op;
2751 ---------------------------
2752 -- Analyze_Membership_Op --
2753 ---------------------------
2755 procedure Analyze_Membership_Op (N : Node_Id) is
2756 Loc : constant Source_Ptr := Sloc (N);
2757 L : constant Node_Id := Left_Opnd (N);
2758 R : constant Node_Id := Right_Opnd (N);
2760 Index : Interp_Index;
2761 It : Interp;
2762 Found : Boolean := False;
2763 I_F : Interp_Index;
2764 T_F : Entity_Id;
2766 procedure Try_One_Interp (T1 : Entity_Id);
2767 -- Routine to try one proposed interpretation. Note that the context
2768 -- of the operation plays no role in resolving the arguments, so that
2769 -- if there is more than one interpretation of the operands that is
2770 -- compatible with a membership test, the operation is ambiguous.
2772 --------------------
2773 -- Try_One_Interp --
2774 --------------------
2776 procedure Try_One_Interp (T1 : Entity_Id) is
2777 begin
2778 if Has_Compatible_Type (R, T1) then
2779 if Found
2780 and then Base_Type (T1) /= Base_Type (T_F)
2781 then
2782 It := Disambiguate (L, I_F, Index, Any_Type);
2784 if It = No_Interp then
2785 Ambiguous_Operands (N);
2786 Set_Etype (L, Any_Type);
2787 return;
2789 else
2790 T_F := It.Typ;
2791 end if;
2793 else
2794 Found := True;
2795 T_F := T1;
2796 I_F := Index;
2797 end if;
2799 Set_Etype (L, T_F);
2800 end if;
2801 end Try_One_Interp;
2803 procedure Analyze_Set_Membership;
2804 -- If a set of alternatives is present, analyze each and find the
2805 -- common type to which they must all resolve.
2807 ----------------------------
2808 -- Analyze_Set_Membership --
2809 ----------------------------
2811 procedure Analyze_Set_Membership is
2812 Alt : Node_Id;
2813 Index : Interp_Index;
2814 It : Interp;
2815 Candidate_Interps : Node_Id;
2816 Common_Type : Entity_Id := Empty;
2818 begin
2819 if Comes_From_Source (N) then
2820 Check_Compiler_Unit ("set membership", N);
2821 end if;
2823 Analyze (L);
2824 Candidate_Interps := L;
2826 if not Is_Overloaded (L) then
2827 Common_Type := Etype (L);
2829 Alt := First (Alternatives (N));
2830 while Present (Alt) loop
2831 Analyze (Alt);
2833 if not Has_Compatible_Type (Alt, Common_Type) then
2834 Wrong_Type (Alt, Common_Type);
2835 end if;
2837 Next (Alt);
2838 end loop;
2840 else
2841 Alt := First (Alternatives (N));
2842 while Present (Alt) loop
2843 Analyze (Alt);
2844 if not Is_Overloaded (Alt) then
2845 Common_Type := Etype (Alt);
2847 else
2848 Get_First_Interp (Alt, Index, It);
2849 while Present (It.Typ) loop
2850 if not
2851 Has_Compatible_Type (Candidate_Interps, It.Typ)
2852 then
2853 Remove_Interp (Index);
2854 end if;
2856 Get_Next_Interp (Index, It);
2857 end loop;
2859 Get_First_Interp (Alt, Index, It);
2861 if No (It.Typ) then
2862 Error_Msg_N ("alternative has no legal type", Alt);
2863 return;
2864 end if;
2866 -- If alternative is not overloaded, we have a unique type
2867 -- for all of them.
2869 Set_Etype (Alt, It.Typ);
2870 Get_Next_Interp (Index, It);
2872 if No (It.Typ) then
2873 Set_Is_Overloaded (Alt, False);
2874 Common_Type := Etype (Alt);
2875 end if;
2877 Candidate_Interps := Alt;
2878 end if;
2880 Next (Alt);
2881 end loop;
2882 end if;
2884 Set_Etype (N, Standard_Boolean);
2886 if Present (Common_Type) then
2887 Set_Etype (L, Common_Type);
2889 -- The left operand may still be overloaded, to be resolved using
2890 -- the Common_Type.
2892 else
2893 Error_Msg_N ("cannot resolve membership operation", N);
2894 end if;
2895 end Analyze_Set_Membership;
2897 -- Start of processing for Analyze_Membership_Op
2899 begin
2900 Analyze_Expression (L);
2902 if No (R) and then Ada_Version >= Ada_2012 then
2903 Analyze_Set_Membership;
2904 Check_Function_Writable_Actuals (N);
2906 return;
2907 end if;
2909 if Nkind (R) = N_Range
2910 or else (Nkind (R) = N_Attribute_Reference
2911 and then Attribute_Name (R) = Name_Range)
2912 then
2913 Analyze (R);
2915 if not Is_Overloaded (L) then
2916 Try_One_Interp (Etype (L));
2918 else
2919 Get_First_Interp (L, Index, It);
2920 while Present (It.Typ) loop
2921 Try_One_Interp (It.Typ);
2922 Get_Next_Interp (Index, It);
2923 end loop;
2924 end if;
2926 -- If not a range, it can be a subtype mark, or else it is a degenerate
2927 -- membership test with a singleton value, i.e. a test for equality,
2928 -- if the types are compatible.
2930 else
2931 Analyze (R);
2933 if Is_Entity_Name (R)
2934 and then Is_Type (Entity (R))
2935 then
2936 Find_Type (R);
2937 Check_Fully_Declared (Entity (R), R);
2939 elsif Ada_Version >= Ada_2012
2940 and then Has_Compatible_Type (R, Etype (L))
2941 then
2942 if Nkind (N) = N_In then
2943 Rewrite (N,
2944 Make_Op_Eq (Loc,
2945 Left_Opnd => L,
2946 Right_Opnd => R));
2947 else
2948 Rewrite (N,
2949 Make_Op_Ne (Loc,
2950 Left_Opnd => L,
2951 Right_Opnd => R));
2952 end if;
2954 Analyze (N);
2955 return;
2957 else
2958 -- In all versions of the language, if we reach this point there
2959 -- is a previous error that will be diagnosed below.
2961 Find_Type (R);
2962 end if;
2963 end if;
2965 -- Compatibility between expression and subtype mark or range is
2966 -- checked during resolution. The result of the operation is Boolean
2967 -- in any case.
2969 Set_Etype (N, Standard_Boolean);
2971 if Comes_From_Source (N)
2972 and then Present (Right_Opnd (N))
2973 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2974 then
2975 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2976 end if;
2978 Check_Function_Writable_Actuals (N);
2979 end Analyze_Membership_Op;
2981 -----------------
2982 -- Analyze_Mod --
2983 -----------------
2985 procedure Analyze_Mod (N : Node_Id) is
2986 begin
2987 -- A special warning check, if we have an expression of the form:
2988 -- expr mod 2 * literal
2989 -- where literal is 64 or less, then probably what was meant was
2990 -- expr mod 2 ** literal
2991 -- so issue an appropriate warning.
2993 if Warn_On_Suspicious_Modulus_Value
2994 and then Nkind (Right_Opnd (N)) = N_Integer_Literal
2995 and then Intval (Right_Opnd (N)) = Uint_2
2996 and then Nkind (Parent (N)) = N_Op_Multiply
2997 and then Nkind (Right_Opnd (Parent (N))) = N_Integer_Literal
2998 and then Intval (Right_Opnd (Parent (N))) <= Uint_64
2999 then
3000 Error_Msg_N
3001 ("suspicious MOD value, was '*'* intended'??M?", Parent (N));
3002 end if;
3004 -- Remaining processing is same as for other arithmetic operators
3006 Analyze_Arithmetic_Op (N);
3007 end Analyze_Mod;
3009 ----------------------
3010 -- Analyze_Negation --
3011 ----------------------
3013 procedure Analyze_Negation (N : Node_Id) is
3014 R : constant Node_Id := Right_Opnd (N);
3015 Op_Id : Entity_Id := Entity (N);
3017 begin
3018 Set_Etype (N, Any_Type);
3019 Candidate_Type := Empty;
3021 Analyze_Expression (R);
3023 if Present (Op_Id) then
3024 if Ekind (Op_Id) = E_Operator then
3025 Find_Negation_Types (R, Op_Id, N);
3026 else
3027 Add_One_Interp (N, Op_Id, Etype (Op_Id));
3028 end if;
3030 else
3031 Op_Id := Get_Name_Entity_Id (Chars (N));
3032 while Present (Op_Id) loop
3033 if Ekind (Op_Id) = E_Operator then
3034 Find_Negation_Types (R, Op_Id, N);
3035 else
3036 Analyze_User_Defined_Unary_Op (N, Op_Id);
3037 end if;
3039 Op_Id := Homonym (Op_Id);
3040 end loop;
3041 end if;
3043 Operator_Check (N);
3044 end Analyze_Negation;
3046 ------------------
3047 -- Analyze_Null --
3048 ------------------
3050 procedure Analyze_Null (N : Node_Id) is
3051 begin
3052 Check_SPARK_05_Restriction ("null is not allowed", N);
3054 Set_Etype (N, Any_Access);
3055 end Analyze_Null;
3057 ----------------------
3058 -- Analyze_One_Call --
3059 ----------------------
3061 procedure Analyze_One_Call
3062 (N : Node_Id;
3063 Nam : Entity_Id;
3064 Report : Boolean;
3065 Success : out Boolean;
3066 Skip_First : Boolean := False)
3068 Actuals : constant List_Id := Parameter_Associations (N);
3069 Prev_T : constant Entity_Id := Etype (N);
3071 Must_Skip : constant Boolean := Skip_First
3072 or else Nkind (Original_Node (N)) = N_Selected_Component
3073 or else
3074 (Nkind (Original_Node (N)) = N_Indexed_Component
3075 and then Nkind (Prefix (Original_Node (N)))
3076 = N_Selected_Component);
3077 -- The first formal must be omitted from the match when trying to find
3078 -- a primitive operation that is a possible interpretation, and also
3079 -- after the call has been rewritten, because the corresponding actual
3080 -- is already known to be compatible, and because this may be an
3081 -- indexing of a call with default parameters.
3083 Formal : Entity_Id;
3084 Actual : Node_Id;
3085 Is_Indexed : Boolean := False;
3086 Is_Indirect : Boolean := False;
3087 Subp_Type : constant Entity_Id := Etype (Nam);
3088 Norm_OK : Boolean;
3090 function Compatible_Types_In_Predicate
3091 (T1 : Entity_Id;
3092 T2 : Entity_Id) return Boolean;
3093 -- For an Ada 2012 predicate or invariant, a call may mention an
3094 -- incomplete type, while resolution of the corresponding predicate
3095 -- function may see the full view, as a consequence of the delayed
3096 -- resolution of the corresponding expressions. This may occur in
3097 -- the body of a predicate function, or in a call to such. Anomalies
3098 -- involving private and full views can also happen. In each case,
3099 -- rewrite node or add conversions to remove spurious type errors.
3101 procedure Indicate_Name_And_Type;
3102 -- If candidate interpretation matches, indicate name and type of result
3103 -- on call node.
3105 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
3106 -- There may be a user-defined operator that hides the current
3107 -- interpretation. We must check for this independently of the
3108 -- analysis of the call with the user-defined operation, because
3109 -- the parameter names may be wrong and yet the hiding takes place.
3110 -- This fixes a problem with ACATS test B34014O.
3112 -- When the type Address is a visible integer type, and the DEC
3113 -- system extension is visible, the predefined operator may be
3114 -- hidden as well, by one of the address operations in auxdec.
3115 -- Finally, The abstract operations on address do not hide the
3116 -- predefined operator (this is the purpose of making them abstract).
3118 -----------------------------------
3119 -- Compatible_Types_In_Predicate --
3120 -----------------------------------
3122 function Compatible_Types_In_Predicate
3123 (T1 : Entity_Id;
3124 T2 : Entity_Id) return Boolean
3126 function Common_Type (T : Entity_Id) return Entity_Id;
3127 -- Find non-private full view if any, without going to ancestor type
3128 -- (as opposed to Underlying_Type).
3130 -----------------
3131 -- Common_Type --
3132 -----------------
3134 function Common_Type (T : Entity_Id) return Entity_Id is
3135 begin
3136 if Is_Private_Type (T) and then Present (Full_View (T)) then
3137 return Base_Type (Full_View (T));
3138 else
3139 return Base_Type (T);
3140 end if;
3141 end Common_Type;
3143 -- Start of processing for Compatible_Types_In_Predicate
3145 begin
3146 if (Ekind (Current_Scope) = E_Function
3147 and then Is_Predicate_Function (Current_Scope))
3148 or else
3149 (Ekind (Nam) = E_Function
3150 and then Is_Predicate_Function (Nam))
3151 then
3152 if Is_Incomplete_Type (T1)
3153 and then Present (Full_View (T1))
3154 and then Full_View (T1) = T2
3155 then
3156 Set_Etype (Formal, Etype (Actual));
3157 return True;
3159 elsif Common_Type (T1) = Common_Type (T2) then
3160 Rewrite (Actual, Unchecked_Convert_To (Etype (Formal), Actual));
3161 return True;
3163 else
3164 return False;
3165 end if;
3167 else
3168 return False;
3169 end if;
3170 end Compatible_Types_In_Predicate;
3172 ----------------------------
3173 -- Indicate_Name_And_Type --
3174 ----------------------------
3176 procedure Indicate_Name_And_Type is
3177 begin
3178 Add_One_Interp (N, Nam, Etype (Nam));
3179 Check_Implicit_Dereference (N, Etype (Nam));
3180 Success := True;
3182 -- If the prefix of the call is a name, indicate the entity
3183 -- being called. If it is not a name, it is an expression that
3184 -- denotes an access to subprogram or else an entry or family. In
3185 -- the latter case, the name is a selected component, and the entity
3186 -- being called is noted on the selector.
3188 if not Is_Type (Nam) then
3189 if Is_Entity_Name (Name (N)) then
3190 Set_Entity (Name (N), Nam);
3191 Set_Etype (Name (N), Etype (Nam));
3193 elsif Nkind (Name (N)) = N_Selected_Component then
3194 Set_Entity (Selector_Name (Name (N)), Nam);
3195 end if;
3196 end if;
3198 if Debug_Flag_E and not Report then
3199 Write_Str (" Overloaded call ");
3200 Write_Int (Int (N));
3201 Write_Str (" compatible with ");
3202 Write_Int (Int (Nam));
3203 Write_Eol;
3204 end if;
3205 end Indicate_Name_And_Type;
3207 ------------------------
3208 -- Operator_Hidden_By --
3209 ------------------------
3211 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
3212 Act1 : constant Node_Id := First_Actual (N);
3213 Act2 : constant Node_Id := Next_Actual (Act1);
3214 Form1 : constant Entity_Id := First_Formal (Fun);
3215 Form2 : constant Entity_Id := Next_Formal (Form1);
3217 begin
3218 if Ekind (Fun) /= E_Function or else Is_Abstract_Subprogram (Fun) then
3219 return False;
3221 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
3222 return False;
3224 elsif Present (Form2) then
3225 if No (Act2)
3226 or else not Has_Compatible_Type (Act2, Etype (Form2))
3227 then
3228 return False;
3229 end if;
3231 elsif Present (Act2) then
3232 return False;
3233 end if;
3235 -- Now we know that the arity of the operator matches the function,
3236 -- and the function call is a valid interpretation. The function
3237 -- hides the operator if it has the right signature, or if one of
3238 -- its operands is a non-abstract operation on Address when this is
3239 -- a visible integer type.
3241 return Hides_Op (Fun, Nam)
3242 or else Is_Descendant_Of_Address (Etype (Form1))
3243 or else
3244 (Present (Form2)
3245 and then Is_Descendant_Of_Address (Etype (Form2)));
3246 end Operator_Hidden_By;
3248 -- Start of processing for Analyze_One_Call
3250 begin
3251 Success := False;
3253 -- If the subprogram has no formals or if all the formals have defaults,
3254 -- and the return type is an array type, the node may denote an indexing
3255 -- of the result of a parameterless call. In Ada 2005, the subprogram
3256 -- may have one non-defaulted formal, and the call may have been written
3257 -- in prefix notation, so that the rebuilt parameter list has more than
3258 -- one actual.
3260 if not Is_Overloadable (Nam)
3261 and then Ekind (Nam) /= E_Subprogram_Type
3262 and then Ekind (Nam) /= E_Entry_Family
3263 then
3264 return;
3265 end if;
3267 -- An indexing requires at least one actual. The name of the call cannot
3268 -- be an implicit indirect call, so it cannot be a generated explicit
3269 -- dereference.
3271 if not Is_Empty_List (Actuals)
3272 and then
3273 (Needs_No_Actuals (Nam)
3274 or else
3275 (Needs_One_Actual (Nam)
3276 and then Present (Next_Actual (First (Actuals)))))
3277 then
3278 if Is_Array_Type (Subp_Type)
3279 and then
3280 (Nkind (Name (N)) /= N_Explicit_Dereference
3281 or else Comes_From_Source (Name (N)))
3282 then
3283 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
3285 elsif Is_Access_Type (Subp_Type)
3286 and then Is_Array_Type (Designated_Type (Subp_Type))
3287 then
3288 Is_Indexed :=
3289 Try_Indexed_Call
3290 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
3292 -- The prefix can also be a parameterless function that returns an
3293 -- access to subprogram, in which case this is an indirect call.
3294 -- If this succeeds, an explicit dereference is added later on,
3295 -- in Analyze_Call or Resolve_Call.
3297 elsif Is_Access_Type (Subp_Type)
3298 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
3299 then
3300 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
3301 end if;
3303 end if;
3305 -- If the call has been transformed into a slice, it is of the form
3306 -- F (Subtype) where F is parameterless. The node has been rewritten in
3307 -- Try_Indexed_Call and there is nothing else to do.
3309 if Is_Indexed
3310 and then Nkind (N) = N_Slice
3311 then
3312 return;
3313 end if;
3315 Normalize_Actuals
3316 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
3318 if not Norm_OK then
3320 -- If an indirect call is a possible interpretation, indicate
3321 -- success to the caller. This may be an indexing of an explicit
3322 -- dereference of a call that returns an access type (see above).
3324 if Is_Indirect
3325 or else (Is_Indexed
3326 and then Nkind (Name (N)) = N_Explicit_Dereference
3327 and then Comes_From_Source (Name (N)))
3328 then
3329 Success := True;
3330 return;
3332 -- Mismatch in number or names of parameters
3334 elsif Debug_Flag_E then
3335 Write_Str (" normalization fails in call ");
3336 Write_Int (Int (N));
3337 Write_Str (" with subprogram ");
3338 Write_Int (Int (Nam));
3339 Write_Eol;
3340 end if;
3342 -- If the context expects a function call, discard any interpretation
3343 -- that is a procedure. If the node is not overloaded, leave as is for
3344 -- better error reporting when type mismatch is found.
3346 elsif Nkind (N) = N_Function_Call
3347 and then Is_Overloaded (Name (N))
3348 and then Ekind (Nam) = E_Procedure
3349 then
3350 return;
3352 -- Ditto for function calls in a procedure context
3354 elsif Nkind (N) = N_Procedure_Call_Statement
3355 and then Is_Overloaded (Name (N))
3356 and then Etype (Nam) /= Standard_Void_Type
3357 then
3358 return;
3360 elsif No (Actuals) then
3362 -- If Normalize succeeds, then there are default parameters for
3363 -- all formals.
3365 Indicate_Name_And_Type;
3367 elsif Ekind (Nam) = E_Operator then
3368 if Nkind (N) = N_Procedure_Call_Statement then
3369 return;
3370 end if;
3372 -- This can occur when the prefix of the call is an operator
3373 -- name or an expanded name whose selector is an operator name.
3375 Analyze_Operator_Call (N, Nam);
3377 if Etype (N) /= Prev_T then
3379 -- Check that operator is not hidden by a function interpretation
3381 if Is_Overloaded (Name (N)) then
3382 declare
3383 I : Interp_Index;
3384 It : Interp;
3386 begin
3387 Get_First_Interp (Name (N), I, It);
3388 while Present (It.Nam) loop
3389 if Operator_Hidden_By (It.Nam) then
3390 Set_Etype (N, Prev_T);
3391 return;
3392 end if;
3394 Get_Next_Interp (I, It);
3395 end loop;
3396 end;
3397 end if;
3399 -- If operator matches formals, record its name on the call.
3400 -- If the operator is overloaded, Resolve will select the
3401 -- correct one from the list of interpretations. The call
3402 -- node itself carries the first candidate.
3404 Set_Entity (Name (N), Nam);
3405 Success := True;
3407 elsif Report and then Etype (N) = Any_Type then
3408 Error_Msg_N ("incompatible arguments for operator", N);
3409 end if;
3411 else
3412 -- Normalize_Actuals has chained the named associations in the
3413 -- correct order of the formals.
3415 Actual := First_Actual (N);
3416 Formal := First_Formal (Nam);
3418 -- If we are analyzing a call rewritten from object notation, skip
3419 -- first actual, which may be rewritten later as an explicit
3420 -- dereference.
3422 if Must_Skip then
3423 Next_Actual (Actual);
3424 Next_Formal (Formal);
3425 end if;
3427 while Present (Actual) and then Present (Formal) loop
3428 if Nkind (Parent (Actual)) /= N_Parameter_Association
3429 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
3430 then
3431 -- The actual can be compatible with the formal, but we must
3432 -- also check that the context is not an address type that is
3433 -- visibly an integer type. In this case the use of literals is
3434 -- illegal, except in the body of descendants of system, where
3435 -- arithmetic operations on address are of course used.
3437 if Has_Compatible_Type (Actual, Etype (Formal))
3438 and then
3439 (Etype (Actual) /= Universal_Integer
3440 or else not Is_Descendant_Of_Address (Etype (Formal))
3441 or else
3442 Is_Predefined_File_Name
3443 (Unit_File_Name (Get_Source_Unit (N))))
3444 then
3445 Next_Actual (Actual);
3446 Next_Formal (Formal);
3448 -- In Allow_Integer_Address mode, we allow an actual integer to
3449 -- match a formal address type and vice versa. We only do this
3450 -- if we are certain that an error will otherwise be issued
3452 elsif Address_Integer_Convert_OK
3453 (Etype (Actual), Etype (Formal))
3454 and then (Report and not Is_Indexed and not Is_Indirect)
3455 then
3456 -- Handle this case by introducing an unchecked conversion
3458 Rewrite (Actual,
3459 Unchecked_Convert_To (Etype (Formal),
3460 Relocate_Node (Actual)));
3461 Analyze_And_Resolve (Actual, Etype (Formal));
3462 Next_Actual (Actual);
3463 Next_Formal (Formal);
3465 -- Under relaxed RM semantics silently replace occurrences of
3466 -- null by System.Address_Null. We only do this if we know that
3467 -- an error will otherwise be issued.
3469 elsif Null_To_Null_Address_Convert_OK (Actual, Etype (Formal))
3470 and then (Report and not Is_Indexed and not Is_Indirect)
3471 then
3472 Replace_Null_By_Null_Address (Actual);
3473 Analyze_And_Resolve (Actual, Etype (Formal));
3474 Next_Actual (Actual);
3475 Next_Formal (Formal);
3477 elsif Compatible_Types_In_Predicate
3478 (Etype (Formal), Etype (Actual))
3479 then
3480 Next_Actual (Actual);
3481 Next_Formal (Formal);
3483 -- In a complex case where an enclosing generic and a nested
3484 -- generic package, both declared with partially parameterized
3485 -- formal subprograms with the same names, are instantiated
3486 -- with the same type, the types of the actual parameter and
3487 -- that of the formal may appear incompatible at first sight.
3489 -- generic
3490 -- type Outer_T is private;
3491 -- with function Func (Formal : Outer_T)
3492 -- return ... is <>;
3494 -- package Outer_Gen is
3495 -- generic
3496 -- type Inner_T is private;
3497 -- with function Func (Formal : Inner_T) -- (1)
3498 -- return ... is <>;
3500 -- package Inner_Gen is
3501 -- function Inner_Func (Formal : Inner_T) -- (2)
3502 -- return ... is (Func (Formal));
3503 -- end Inner_Gen;
3504 -- end Outer_Generic;
3506 -- package Outer_Inst is new Outer_Gen (Actual_T);
3507 -- package Inner_Inst is new Outer_Inst.Inner_Gen (Actual_T);
3509 -- In the example above, the type of parameter
3510 -- Inner_Func.Formal at (2) is incompatible with the type of
3511 -- Func.Formal at (1) in the context of instantiations
3512 -- Outer_Inst and Inner_Inst. In reality both types are generic
3513 -- actual subtypes renaming base type Actual_T as part of the
3514 -- generic prologues for the instantiations.
3516 -- Recognize this case and add a type conversion to allow this
3517 -- kind of generic actual subtype conformance. Note that this
3518 -- is done only when the call is non-overloaded because the
3519 -- resolution mechanism already has the means to disambiguate
3520 -- similar cases.
3522 elsif not Is_Overloaded (Name (N))
3523 and then Is_Type (Etype (Actual))
3524 and then Is_Type (Etype (Formal))
3525 and then Is_Generic_Actual_Type (Etype (Actual))
3526 and then Is_Generic_Actual_Type (Etype (Formal))
3527 and then Base_Type (Etype (Actual)) =
3528 Base_Type (Etype (Formal))
3529 then
3530 Rewrite (Actual,
3531 Convert_To (Etype (Formal), Relocate_Node (Actual)));
3532 Analyze_And_Resolve (Actual, Etype (Formal));
3533 Next_Actual (Actual);
3534 Next_Formal (Formal);
3536 -- Handle failed type check
3538 else
3539 if Debug_Flag_E then
3540 Write_Str (" type checking fails in call ");
3541 Write_Int (Int (N));
3542 Write_Str (" with formal ");
3543 Write_Int (Int (Formal));
3544 Write_Str (" in subprogram ");
3545 Write_Int (Int (Nam));
3546 Write_Eol;
3547 end if;
3549 -- Comment needed on the following test???
3551 if Report and not Is_Indexed and not Is_Indirect then
3553 -- Ada 2005 (AI-251): Complete the error notification
3554 -- to help new Ada 2005 users.
3556 if Is_Class_Wide_Type (Etype (Formal))
3557 and then Is_Interface (Etype (Etype (Formal)))
3558 and then not Interface_Present_In_Ancestor
3559 (Typ => Etype (Actual),
3560 Iface => Etype (Etype (Formal)))
3561 then
3562 Error_Msg_NE
3563 ("(Ada 2005) does not implement interface }",
3564 Actual, Etype (Etype (Formal)));
3565 end if;
3567 Wrong_Type (Actual, Etype (Formal));
3569 if Nkind (Actual) = N_Op_Eq
3570 and then Nkind (Left_Opnd (Actual)) = N_Identifier
3571 then
3572 Formal := First_Formal (Nam);
3573 while Present (Formal) loop
3574 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
3575 Error_Msg_N -- CODEFIX
3576 ("possible misspelling of `='>`!", Actual);
3577 exit;
3578 end if;
3580 Next_Formal (Formal);
3581 end loop;
3582 end if;
3584 if All_Errors_Mode then
3585 Error_Msg_Sloc := Sloc (Nam);
3587 if Etype (Formal) = Any_Type then
3588 Error_Msg_N
3589 ("there is no legal actual parameter", Actual);
3590 end if;
3592 if Is_Overloadable (Nam)
3593 and then Present (Alias (Nam))
3594 and then not Comes_From_Source (Nam)
3595 then
3596 Error_Msg_NE
3597 ("\\ =='> in call to inherited operation & #!",
3598 Actual, Nam);
3600 elsif Ekind (Nam) = E_Subprogram_Type then
3601 declare
3602 Access_To_Subprogram_Typ :
3603 constant Entity_Id :=
3604 Defining_Identifier
3605 (Associated_Node_For_Itype (Nam));
3606 begin
3607 Error_Msg_NE
3608 ("\\ =='> in call to dereference of &#!",
3609 Actual, Access_To_Subprogram_Typ);
3610 end;
3612 else
3613 Error_Msg_NE
3614 ("\\ =='> in call to &#!", Actual, Nam);
3616 end if;
3617 end if;
3618 end if;
3620 return;
3621 end if;
3623 else
3624 -- Normalize_Actuals has verified that a default value exists
3625 -- for this formal. Current actual names a subsequent formal.
3627 Next_Formal (Formal);
3628 end if;
3629 end loop;
3631 -- On exit, all actuals match
3633 Indicate_Name_And_Type;
3634 end if;
3635 end Analyze_One_Call;
3637 ---------------------------
3638 -- Analyze_Operator_Call --
3639 ---------------------------
3641 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
3642 Op_Name : constant Name_Id := Chars (Op_Id);
3643 Act1 : constant Node_Id := First_Actual (N);
3644 Act2 : constant Node_Id := Next_Actual (Act1);
3646 begin
3647 -- Binary operator case
3649 if Present (Act2) then
3651 -- If more than two operands, then not binary operator after all
3653 if Present (Next_Actual (Act2)) then
3654 return;
3655 end if;
3657 -- Otherwise action depends on operator
3659 case Op_Name is
3660 when Name_Op_Add |
3661 Name_Op_Subtract |
3662 Name_Op_Multiply |
3663 Name_Op_Divide |
3664 Name_Op_Mod |
3665 Name_Op_Rem |
3666 Name_Op_Expon =>
3667 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
3669 when Name_Op_And |
3670 Name_Op_Or |
3671 Name_Op_Xor =>
3672 Find_Boolean_Types (Act1, Act2, Op_Id, N);
3674 when Name_Op_Lt |
3675 Name_Op_Le |
3676 Name_Op_Gt |
3677 Name_Op_Ge =>
3678 Find_Comparison_Types (Act1, Act2, Op_Id, N);
3680 when Name_Op_Eq |
3681 Name_Op_Ne =>
3682 Find_Equality_Types (Act1, Act2, Op_Id, N);
3684 when Name_Op_Concat =>
3685 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
3687 -- Is this when others, or should it be an abort???
3689 when others =>
3690 null;
3691 end case;
3693 -- Unary operator case
3695 else
3696 case Op_Name is
3697 when Name_Op_Subtract |
3698 Name_Op_Add |
3699 Name_Op_Abs =>
3700 Find_Unary_Types (Act1, Op_Id, N);
3702 when Name_Op_Not =>
3703 Find_Negation_Types (Act1, Op_Id, N);
3705 -- Is this when others correct, or should it be an abort???
3707 when others =>
3708 null;
3709 end case;
3710 end if;
3711 end Analyze_Operator_Call;
3713 -------------------------------------------
3714 -- Analyze_Overloaded_Selected_Component --
3715 -------------------------------------------
3717 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
3718 Nam : constant Node_Id := Prefix (N);
3719 Sel : constant Node_Id := Selector_Name (N);
3720 Comp : Entity_Id;
3721 I : Interp_Index;
3722 It : Interp;
3723 T : Entity_Id;
3725 begin
3726 Set_Etype (Sel, Any_Type);
3728 Get_First_Interp (Nam, I, It);
3729 while Present (It.Typ) loop
3730 if Is_Access_Type (It.Typ) then
3731 T := Designated_Type (It.Typ);
3732 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
3733 else
3734 T := It.Typ;
3735 end if;
3737 -- Locate the component. For a private prefix the selector can denote
3738 -- a discriminant.
3740 if Is_Record_Type (T) or else Is_Private_Type (T) then
3742 -- If the prefix is a class-wide type, the visible components are
3743 -- those of the base type.
3745 if Is_Class_Wide_Type (T) then
3746 T := Etype (T);
3747 end if;
3749 Comp := First_Entity (T);
3750 while Present (Comp) loop
3751 if Chars (Comp) = Chars (Sel)
3752 and then Is_Visible_Component (Comp)
3753 then
3755 -- AI05-105: if the context is an object renaming with
3756 -- an anonymous access type, the expected type of the
3757 -- object must be anonymous. This is a name resolution rule.
3759 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
3760 or else No (Access_Definition (Parent (N)))
3761 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
3762 or else
3763 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
3764 then
3765 Set_Entity (Sel, Comp);
3766 Set_Etype (Sel, Etype (Comp));
3767 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3768 Check_Implicit_Dereference (N, Etype (Comp));
3770 -- This also specifies a candidate to resolve the name.
3771 -- Further overloading will be resolved from context.
3772 -- The selector name itself does not carry overloading
3773 -- information.
3775 Set_Etype (Nam, It.Typ);
3777 else
3778 -- Named access type in the context of a renaming
3779 -- declaration with an access definition. Remove
3780 -- inapplicable candidate.
3782 Remove_Interp (I);
3783 end if;
3784 end if;
3786 Next_Entity (Comp);
3787 end loop;
3789 elsif Is_Concurrent_Type (T) then
3790 Comp := First_Entity (T);
3791 while Present (Comp)
3792 and then Comp /= First_Private_Entity (T)
3793 loop
3794 if Chars (Comp) = Chars (Sel) then
3795 if Is_Overloadable (Comp) then
3796 Add_One_Interp (Sel, Comp, Etype (Comp));
3797 else
3798 Set_Entity_With_Checks (Sel, Comp);
3799 Generate_Reference (Comp, Sel);
3800 end if;
3802 Set_Etype (Sel, Etype (Comp));
3803 Set_Etype (N, Etype (Comp));
3804 Set_Etype (Nam, It.Typ);
3806 -- For access type case, introduce explicit dereference for
3807 -- more uniform treatment of entry calls. Do this only once
3808 -- if several interpretations yield an access type.
3810 if Is_Access_Type (Etype (Nam))
3811 and then Nkind (Nam) /= N_Explicit_Dereference
3812 then
3813 Insert_Explicit_Dereference (Nam);
3814 Error_Msg_NW
3815 (Warn_On_Dereference, "?d?implicit dereference", N);
3816 end if;
3817 end if;
3819 Next_Entity (Comp);
3820 end loop;
3822 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3823 end if;
3825 Get_Next_Interp (I, It);
3826 end loop;
3828 if Etype (N) = Any_Type
3829 and then not Try_Object_Operation (N)
3830 then
3831 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3832 Set_Entity (Sel, Any_Id);
3833 Set_Etype (Sel, Any_Type);
3834 end if;
3835 end Analyze_Overloaded_Selected_Component;
3837 ----------------------------------
3838 -- Analyze_Qualified_Expression --
3839 ----------------------------------
3841 procedure Analyze_Qualified_Expression (N : Node_Id) is
3842 Mark : constant Entity_Id := Subtype_Mark (N);
3843 Expr : constant Node_Id := Expression (N);
3844 I : Interp_Index;
3845 It : Interp;
3846 T : Entity_Id;
3848 begin
3849 Analyze_Expression (Expr);
3851 Set_Etype (N, Any_Type);
3852 Find_Type (Mark);
3853 T := Entity (Mark);
3854 Set_Etype (N, T);
3856 if T = Any_Type then
3857 return;
3858 end if;
3860 Check_Fully_Declared (T, N);
3862 -- If expected type is class-wide, check for exact match before
3863 -- expansion, because if the expression is a dispatching call it
3864 -- may be rewritten as explicit dereference with class-wide result.
3865 -- If expression is overloaded, retain only interpretations that
3866 -- will yield exact matches.
3868 if Is_Class_Wide_Type (T) then
3869 if not Is_Overloaded (Expr) then
3870 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3871 if Nkind (Expr) = N_Aggregate then
3872 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3873 else
3874 Wrong_Type (Expr, T);
3875 end if;
3876 end if;
3878 else
3879 Get_First_Interp (Expr, I, It);
3881 while Present (It.Nam) loop
3882 if Base_Type (It.Typ) /= Base_Type (T) then
3883 Remove_Interp (I);
3884 end if;
3886 Get_Next_Interp (I, It);
3887 end loop;
3888 end if;
3889 end if;
3891 Set_Etype (N, T);
3892 end Analyze_Qualified_Expression;
3894 -----------------------------------
3895 -- Analyze_Quantified_Expression --
3896 -----------------------------------
3898 procedure Analyze_Quantified_Expression (N : Node_Id) is
3899 function Is_Empty_Range (Typ : Entity_Id) return Boolean;
3900 -- If the iterator is part of a quantified expression, and the range is
3901 -- known to be statically empty, emit a warning and replace expression
3902 -- with its static value. Returns True if the replacement occurs.
3904 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean;
3905 -- Determine whether if expression If_Expr lacks an else part or if it
3906 -- has one, it evaluates to True.
3908 --------------------
3909 -- Is_Empty_Range --
3910 --------------------
3912 function Is_Empty_Range (Typ : Entity_Id) return Boolean is
3913 Loc : constant Source_Ptr := Sloc (N);
3915 begin
3916 if Is_Array_Type (Typ)
3917 and then Compile_Time_Known_Bounds (Typ)
3918 and then
3919 (Expr_Value (Type_Low_Bound (Etype (First_Index (Typ)))) >
3920 Expr_Value (Type_High_Bound (Etype (First_Index (Typ)))))
3921 then
3922 Preanalyze_And_Resolve (Condition (N), Standard_Boolean);
3924 if All_Present (N) then
3925 Error_Msg_N
3926 ("??quantified expression with ALL "
3927 & "over a null range has value True", N);
3928 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
3930 else
3931 Error_Msg_N
3932 ("??quantified expression with SOME "
3933 & "over a null range has value False", N);
3934 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
3935 end if;
3937 Analyze (N);
3938 return True;
3940 else
3941 return False;
3942 end if;
3943 end Is_Empty_Range;
3945 -----------------------------
3946 -- No_Else_Or_Trivial_True --
3947 -----------------------------
3949 function No_Else_Or_Trivial_True (If_Expr : Node_Id) return Boolean is
3950 Else_Expr : constant Node_Id :=
3951 Next (Next (First (Expressions (If_Expr))));
3952 begin
3953 return
3954 No (Else_Expr)
3955 or else (Compile_Time_Known_Value (Else_Expr)
3956 and then Is_True (Expr_Value (Else_Expr)));
3957 end No_Else_Or_Trivial_True;
3959 -- Local variables
3961 Cond : constant Node_Id := Condition (N);
3962 Loop_Id : Entity_Id;
3963 QE_Scop : Entity_Id;
3965 -- Start of processing for Analyze_Quantified_Expression
3967 begin
3968 Check_SPARK_05_Restriction ("quantified expression is not allowed", N);
3970 -- Create a scope to emulate the loop-like behavior of the quantified
3971 -- expression. The scope is needed to provide proper visibility of the
3972 -- loop variable.
3974 QE_Scop := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
3975 Set_Etype (QE_Scop, Standard_Void_Type);
3976 Set_Scope (QE_Scop, Current_Scope);
3977 Set_Parent (QE_Scop, N);
3979 Push_Scope (QE_Scop);
3981 -- All constituents are preanalyzed and resolved to avoid untimely
3982 -- generation of various temporaries and types. Full analysis and
3983 -- expansion is carried out when the quantified expression is
3984 -- transformed into an expression with actions.
3986 if Present (Iterator_Specification (N)) then
3987 Preanalyze (Iterator_Specification (N));
3989 -- Do not proceed with the analysis when the range of iteration is
3990 -- empty. The appropriate error is issued by Is_Empty_Range.
3992 if Is_Entity_Name (Name (Iterator_Specification (N)))
3993 and then Is_Empty_Range (Etype (Name (Iterator_Specification (N))))
3994 then
3995 return;
3996 end if;
3998 else pragma Assert (Present (Loop_Parameter_Specification (N)));
3999 declare
4000 Loop_Par : constant Node_Id := Loop_Parameter_Specification (N);
4002 begin
4003 Preanalyze (Loop_Par);
4005 if Nkind (Discrete_Subtype_Definition (Loop_Par)) = N_Function_Call
4006 and then Parent (Loop_Par) /= N
4007 then
4008 -- The parser cannot distinguish between a loop specification
4009 -- and an iterator specification. If after pre-analysis the
4010 -- proper form has been recognized, rewrite the expression to
4011 -- reflect the right kind. This is needed for proper ASIS
4012 -- navigation. If expansion is enabled, the transformation is
4013 -- performed when the expression is rewritten as a loop.
4015 Set_Iterator_Specification (N,
4016 New_Copy_Tree (Iterator_Specification (Parent (Loop_Par))));
4018 Set_Defining_Identifier (Iterator_Specification (N),
4019 Relocate_Node (Defining_Identifier (Loop_Par)));
4020 Set_Name (Iterator_Specification (N),
4021 Relocate_Node (Discrete_Subtype_Definition (Loop_Par)));
4022 Set_Comes_From_Source (Iterator_Specification (N),
4023 Comes_From_Source (Loop_Parameter_Specification (N)));
4024 Set_Loop_Parameter_Specification (N, Empty);
4025 end if;
4026 end;
4027 end if;
4029 Preanalyze_And_Resolve (Cond, Standard_Boolean);
4031 End_Scope;
4032 Set_Etype (N, Standard_Boolean);
4034 -- Verify that the loop variable is used within the condition of the
4035 -- quantified expression.
4037 if Present (Iterator_Specification (N)) then
4038 Loop_Id := Defining_Identifier (Iterator_Specification (N));
4039 else
4040 Loop_Id := Defining_Identifier (Loop_Parameter_Specification (N));
4041 end if;
4043 if Warn_On_Suspicious_Contract
4044 and then not Referenced (Loop_Id, Cond)
4045 then
4046 -- Generating C, this check causes spurious warnings on inlined
4047 -- postconditions; we can safely disable it because this check
4048 -- was previously performed when analyzing the internally built
4049 -- postconditions procedure.
4051 if Modify_Tree_For_C and then In_Inlined_Body then
4052 null;
4053 else
4054 Error_Msg_N ("?T?unused variable &", Loop_Id);
4055 end if;
4056 end if;
4058 -- Diagnose a possible misuse of the SOME existential quantifier. When
4059 -- we have a quantified expression of the form:
4061 -- for some X => (if P then Q [else True])
4063 -- any value for X that makes P False results in the if expression being
4064 -- trivially True, and so also results in the quantified expression
4065 -- being trivially True.
4067 if Warn_On_Suspicious_Contract
4068 and then not All_Present (N)
4069 and then Nkind (Cond) = N_If_Expression
4070 and then No_Else_Or_Trivial_True (Cond)
4071 then
4072 Error_Msg_N ("?T?suspicious expression", N);
4073 Error_Msg_N ("\\did you mean (for all X ='> (if P then Q))", N);
4074 Error_Msg_N ("\\or (for some X ='> P and then Q) instead'?", N);
4075 end if;
4076 end Analyze_Quantified_Expression;
4078 -------------------
4079 -- Analyze_Range --
4080 -------------------
4082 procedure Analyze_Range (N : Node_Id) is
4083 L : constant Node_Id := Low_Bound (N);
4084 H : constant Node_Id := High_Bound (N);
4085 I1, I2 : Interp_Index;
4086 It1, It2 : Interp;
4088 procedure Check_Common_Type (T1, T2 : Entity_Id);
4089 -- Verify the compatibility of two types, and choose the
4090 -- non universal one if the other is universal.
4092 procedure Check_High_Bound (T : Entity_Id);
4093 -- Test one interpretation of the low bound against all those
4094 -- of the high bound.
4096 procedure Check_Universal_Expression (N : Node_Id);
4097 -- In Ada 83, reject bounds of a universal range that are not literals
4098 -- or entity names.
4100 -----------------------
4101 -- Check_Common_Type --
4102 -----------------------
4104 procedure Check_Common_Type (T1, T2 : Entity_Id) is
4105 begin
4106 if Covers (T1 => T1, T2 => T2)
4107 or else
4108 Covers (T1 => T2, T2 => T1)
4109 then
4110 if T1 = Universal_Integer
4111 or else T1 = Universal_Real
4112 or else T1 = Any_Character
4113 then
4114 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
4116 elsif T1 = T2 then
4117 Add_One_Interp (N, T1, T1);
4119 else
4120 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
4121 end if;
4122 end if;
4123 end Check_Common_Type;
4125 ----------------------
4126 -- Check_High_Bound --
4127 ----------------------
4129 procedure Check_High_Bound (T : Entity_Id) is
4130 begin
4131 if not Is_Overloaded (H) then
4132 Check_Common_Type (T, Etype (H));
4133 else
4134 Get_First_Interp (H, I2, It2);
4135 while Present (It2.Typ) loop
4136 Check_Common_Type (T, It2.Typ);
4137 Get_Next_Interp (I2, It2);
4138 end loop;
4139 end if;
4140 end Check_High_Bound;
4142 -----------------------------
4143 -- Is_Universal_Expression --
4144 -----------------------------
4146 procedure Check_Universal_Expression (N : Node_Id) is
4147 begin
4148 if Etype (N) = Universal_Integer
4149 and then Nkind (N) /= N_Integer_Literal
4150 and then not Is_Entity_Name (N)
4151 and then Nkind (N) /= N_Attribute_Reference
4152 then
4153 Error_Msg_N ("illegal bound in discrete range", N);
4154 end if;
4155 end Check_Universal_Expression;
4157 -- Start of processing for Analyze_Range
4159 begin
4160 Set_Etype (N, Any_Type);
4161 Analyze_Expression (L);
4162 Analyze_Expression (H);
4164 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
4165 return;
4167 else
4168 if not Is_Overloaded (L) then
4169 Check_High_Bound (Etype (L));
4170 else
4171 Get_First_Interp (L, I1, It1);
4172 while Present (It1.Typ) loop
4173 Check_High_Bound (It1.Typ);
4174 Get_Next_Interp (I1, It1);
4175 end loop;
4176 end if;
4178 -- If result is Any_Type, then we did not find a compatible pair
4180 if Etype (N) = Any_Type then
4181 Error_Msg_N ("incompatible types in range ", N);
4182 end if;
4183 end if;
4185 if Ada_Version = Ada_83
4186 and then
4187 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
4188 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
4189 then
4190 Check_Universal_Expression (L);
4191 Check_Universal_Expression (H);
4192 end if;
4194 Check_Function_Writable_Actuals (N);
4195 end Analyze_Range;
4197 -----------------------
4198 -- Analyze_Reference --
4199 -----------------------
4201 procedure Analyze_Reference (N : Node_Id) is
4202 P : constant Node_Id := Prefix (N);
4203 E : Entity_Id;
4204 T : Entity_Id;
4205 Acc_Type : Entity_Id;
4207 begin
4208 Analyze (P);
4210 -- An interesting error check, if we take the 'Ref of an object for
4211 -- which a pragma Atomic or Volatile has been given, and the type of the
4212 -- object is not Atomic or Volatile, then we are in trouble. The problem
4213 -- is that no trace of the atomic/volatile status will remain for the
4214 -- backend to respect when it deals with the resulting pointer, since
4215 -- the pointer type will not be marked atomic (it is a pointer to the
4216 -- base type of the object).
4218 -- It is not clear if that can ever occur, but in case it does, we will
4219 -- generate an error message. Not clear if this message can ever be
4220 -- generated, and pretty clear that it represents a bug if it is, still
4221 -- seems worth checking, except in CodePeer mode where we do not really
4222 -- care and don't want to bother the user.
4224 T := Etype (P);
4226 if Is_Entity_Name (P)
4227 and then Is_Object_Reference (P)
4228 and then not CodePeer_Mode
4229 then
4230 E := Entity (P);
4231 T := Etype (P);
4233 if (Has_Atomic_Components (E)
4234 and then not Has_Atomic_Components (T))
4235 or else
4236 (Has_Volatile_Components (E)
4237 and then not Has_Volatile_Components (T))
4238 or else (Is_Atomic (E) and then not Is_Atomic (T))
4239 or else (Is_Volatile (E) and then not Is_Volatile (T))
4240 then
4241 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
4242 end if;
4243 end if;
4245 -- Carry on with normal processing
4247 Acc_Type := Create_Itype (E_Allocator_Type, N);
4248 Set_Etype (Acc_Type, Acc_Type);
4249 Set_Directly_Designated_Type (Acc_Type, Etype (P));
4250 Set_Etype (N, Acc_Type);
4251 end Analyze_Reference;
4253 --------------------------------
4254 -- Analyze_Selected_Component --
4255 --------------------------------
4257 -- Prefix is a record type or a task or protected type. In the latter case,
4258 -- the selector must denote a visible entry.
4260 procedure Analyze_Selected_Component (N : Node_Id) is
4261 Name : constant Node_Id := Prefix (N);
4262 Sel : constant Node_Id := Selector_Name (N);
4263 Act_Decl : Node_Id;
4264 Comp : Entity_Id;
4265 Has_Candidate : Boolean := False;
4266 In_Scope : Boolean;
4267 Parent_N : Node_Id;
4268 Pent : Entity_Id := Empty;
4269 Prefix_Type : Entity_Id;
4271 Type_To_Use : Entity_Id;
4272 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
4273 -- a class-wide type, we use its root type, whose components are
4274 -- present in the class-wide type.
4276 Is_Single_Concurrent_Object : Boolean;
4277 -- Set True if the prefix is a single task or a single protected object
4279 procedure Find_Component_In_Instance (Rec : Entity_Id);
4280 -- In an instance, a component of a private extension may not be visible
4281 -- while it was visible in the generic. Search candidate scope for a
4282 -- component with the proper identifier. This is only done if all other
4283 -- searches have failed. If a match is found, the Etype of both N and
4284 -- Sel are set from this component, and the entity of Sel is set to
4285 -- reference this component. If no match is found, Entity (Sel) remains
4286 -- unset. For a derived type that is an actual of the instance, the
4287 -- desired component may be found in any ancestor.
4289 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
4290 -- It is known that the parent of N denotes a subprogram call. Comp
4291 -- is an overloadable component of the concurrent type of the prefix.
4292 -- Determine whether all formals of the parent of N and Comp are mode
4293 -- conformant. If the parent node is not analyzed yet it may be an
4294 -- indexed component rather than a function call.
4296 function Has_Dereference (Nod : Node_Id) return Boolean;
4297 -- Check whether prefix includes a dereference at any level.
4299 --------------------------------
4300 -- Find_Component_In_Instance --
4301 --------------------------------
4303 procedure Find_Component_In_Instance (Rec : Entity_Id) is
4304 Comp : Entity_Id;
4305 Typ : Entity_Id;
4307 begin
4308 Typ := Rec;
4309 while Present (Typ) loop
4310 Comp := First_Component (Typ);
4311 while Present (Comp) loop
4312 if Chars (Comp) = Chars (Sel) then
4313 Set_Entity_With_Checks (Sel, Comp);
4314 Set_Etype (Sel, Etype (Comp));
4315 Set_Etype (N, Etype (Comp));
4316 return;
4317 end if;
4319 Next_Component (Comp);
4320 end loop;
4322 -- If not found, the component may be declared in the parent
4323 -- type or its full view, if any.
4325 if Is_Derived_Type (Typ) then
4326 Typ := Etype (Typ);
4328 if Is_Private_Type (Typ) then
4329 Typ := Full_View (Typ);
4330 end if;
4332 else
4333 return;
4334 end if;
4335 end loop;
4337 -- If we fall through, no match, so no changes made
4339 return;
4340 end Find_Component_In_Instance;
4342 ------------------------------
4343 -- Has_Mode_Conformant_Spec --
4344 ------------------------------
4346 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
4347 Comp_Param : Entity_Id;
4348 Param : Node_Id;
4349 Param_Typ : Entity_Id;
4351 begin
4352 Comp_Param := First_Formal (Comp);
4354 if Nkind (Parent (N)) = N_Indexed_Component then
4355 Param := First (Expressions (Parent (N)));
4356 else
4357 Param := First (Parameter_Associations (Parent (N)));
4358 end if;
4360 while Present (Comp_Param)
4361 and then Present (Param)
4362 loop
4363 Param_Typ := Find_Parameter_Type (Param);
4365 if Present (Param_Typ)
4366 and then
4367 not Conforming_Types
4368 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
4369 then
4370 return False;
4371 end if;
4373 Next_Formal (Comp_Param);
4374 Next (Param);
4375 end loop;
4377 -- One of the specs has additional formals; there is no match, unless
4378 -- this may be an indexing of a parameterless call.
4380 -- Note that when expansion is disabled, the corresponding record
4381 -- type of synchronized types is not constructed, so that there is
4382 -- no point is attempting an interpretation as a prefixed call, as
4383 -- this is bound to fail because the primitive operations will not
4384 -- be properly located.
4386 if Present (Comp_Param) or else Present (Param) then
4387 if Needs_No_Actuals (Comp)
4388 and then Is_Array_Type (Etype (Comp))
4389 and then not Expander_Active
4390 then
4391 return True;
4392 else
4393 return False;
4394 end if;
4395 end if;
4397 return True;
4398 end Has_Mode_Conformant_Spec;
4400 ---------------------
4401 -- Has_Dereference --
4402 ---------------------
4404 function Has_Dereference (Nod : Node_Id) return Boolean is
4405 begin
4406 if Nkind (Nod) = N_Explicit_Dereference then
4407 return True;
4409 -- When expansion is disabled an explicit dereference may not have
4410 -- been inserted, but if this is an access type the indirection makes
4411 -- the call safe.
4413 elsif Is_Access_Type (Etype (Nod)) then
4414 return True;
4416 elsif Nkind_In (Nod, N_Indexed_Component, N_Selected_Component) then
4417 return Has_Dereference (Prefix (Nod));
4419 else
4420 return False;
4421 end if;
4422 end Has_Dereference;
4424 -- Start of processing for Analyze_Selected_Component
4426 begin
4427 Set_Etype (N, Any_Type);
4429 if Is_Overloaded (Name) then
4430 Analyze_Overloaded_Selected_Component (N);
4431 return;
4433 elsif Etype (Name) = Any_Type then
4434 Set_Entity (Sel, Any_Id);
4435 Set_Etype (Sel, Any_Type);
4436 return;
4438 else
4439 Prefix_Type := Etype (Name);
4440 end if;
4442 if Is_Access_Type (Prefix_Type) then
4444 -- A RACW object can never be used as prefix of a selected component
4445 -- since that means it is dereferenced without being a controlling
4446 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
4447 -- reporting an error, we must check whether this is actually a
4448 -- dispatching call in prefix form.
4450 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
4451 and then Comes_From_Source (N)
4452 then
4453 if Try_Object_Operation (N) then
4454 return;
4455 else
4456 Error_Msg_N
4457 ("invalid dereference of a remote access-to-class-wide value",
4459 end if;
4461 -- Normal case of selected component applied to access type
4463 else
4464 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4466 if Is_Entity_Name (Name) then
4467 Pent := Entity (Name);
4468 elsif Nkind (Name) = N_Selected_Component
4469 and then Is_Entity_Name (Selector_Name (Name))
4470 then
4471 Pent := Entity (Selector_Name (Name));
4472 end if;
4474 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
4475 end if;
4477 -- If we have an explicit dereference of a remote access-to-class-wide
4478 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
4479 -- have to check for the case of a prefix that is a controlling operand
4480 -- of a prefixed dispatching call, as the dereference is legal in that
4481 -- case. Normally this condition is checked in Validate_Remote_Access_
4482 -- To_Class_Wide_Type, but we have to defer the checking for selected
4483 -- component prefixes because of the prefixed dispatching call case.
4484 -- Note that implicit dereferences are checked for this just above.
4486 elsif Nkind (Name) = N_Explicit_Dereference
4487 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
4488 and then Comes_From_Source (N)
4489 then
4490 if Try_Object_Operation (N) then
4491 return;
4492 else
4493 Error_Msg_N
4494 ("invalid dereference of a remote access-to-class-wide value",
4496 end if;
4497 end if;
4499 -- (Ada 2005): if the prefix is the limited view of a type, and
4500 -- the context already includes the full view, use the full view
4501 -- in what follows, either to retrieve a component of to find
4502 -- a primitive operation. If the prefix is an explicit dereference,
4503 -- set the type of the prefix to reflect this transformation.
4504 -- If the non-limited view is itself an incomplete type, get the
4505 -- full view if available.
4507 if From_Limited_With (Prefix_Type)
4508 and then Has_Non_Limited_View (Prefix_Type)
4509 then
4510 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
4512 if Nkind (N) = N_Explicit_Dereference then
4513 Set_Etype (Prefix (N), Prefix_Type);
4514 end if;
4515 end if;
4517 if Ekind (Prefix_Type) = E_Private_Subtype then
4518 Prefix_Type := Base_Type (Prefix_Type);
4519 end if;
4521 Type_To_Use := Prefix_Type;
4523 -- For class-wide types, use the entity list of the root type. This
4524 -- indirection is specially important for private extensions because
4525 -- only the root type get switched (not the class-wide type).
4527 if Is_Class_Wide_Type (Prefix_Type) then
4528 Type_To_Use := Root_Type (Prefix_Type);
4529 end if;
4531 -- If the prefix is a single concurrent object, use its name in error
4532 -- messages, rather than that of its anonymous type.
4534 Is_Single_Concurrent_Object :=
4535 Is_Concurrent_Type (Prefix_Type)
4536 and then Is_Internal_Name (Chars (Prefix_Type))
4537 and then not Is_Derived_Type (Prefix_Type)
4538 and then Is_Entity_Name (Name);
4540 Comp := First_Entity (Type_To_Use);
4542 -- If the selector has an original discriminant, the node appears in
4543 -- an instance. Replace the discriminant with the corresponding one
4544 -- in the current discriminated type. For nested generics, this must
4545 -- be done transitively, so note the new original discriminant.
4547 if Nkind (Sel) = N_Identifier
4548 and then In_Instance
4549 and then Present (Original_Discriminant (Sel))
4550 then
4551 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
4553 -- Mark entity before rewriting, for completeness and because
4554 -- subsequent semantic checks might examine the original node.
4556 Set_Entity (Sel, Comp);
4557 Rewrite (Selector_Name (N), New_Occurrence_Of (Comp, Sloc (N)));
4558 Set_Original_Discriminant (Selector_Name (N), Comp);
4559 Set_Etype (N, Etype (Comp));
4560 Check_Implicit_Dereference (N, Etype (Comp));
4562 if Is_Access_Type (Etype (Name)) then
4563 Insert_Explicit_Dereference (Name);
4564 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
4565 end if;
4567 elsif Is_Record_Type (Prefix_Type) then
4569 -- Find component with given name. In an instance, if the node is
4570 -- known as a prefixed call, do not examine components whose
4571 -- visibility may be accidental.
4573 while Present (Comp) and then not Is_Prefixed_Call (N) loop
4574 if Chars (Comp) = Chars (Sel)
4575 and then Is_Visible_Component (Comp, N)
4576 then
4577 Set_Entity_With_Checks (Sel, Comp);
4578 Set_Etype (Sel, Etype (Comp));
4580 if Ekind (Comp) = E_Discriminant then
4581 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
4582 Error_Msg_N
4583 ("cannot reference discriminant of unchecked union",
4584 Sel);
4585 end if;
4587 if Is_Generic_Type (Prefix_Type)
4588 or else
4589 Is_Generic_Type (Root_Type (Prefix_Type))
4590 then
4591 Set_Original_Discriminant (Sel, Comp);
4592 end if;
4593 end if;
4595 -- Resolve the prefix early otherwise it is not possible to
4596 -- build the actual subtype of the component: it may need
4597 -- to duplicate this prefix and duplication is only allowed
4598 -- on fully resolved expressions.
4600 Resolve (Name);
4602 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
4603 -- subtypes in a package specification.
4604 -- Example:
4606 -- limited with Pkg;
4607 -- package Pkg is
4608 -- type Acc_Inc is access Pkg.T;
4609 -- X : Acc_Inc;
4610 -- N : Natural := X.all.Comp; -- ERROR, limited view
4611 -- end Pkg; -- Comp is not visible
4613 if Nkind (Name) = N_Explicit_Dereference
4614 and then From_Limited_With (Etype (Prefix (Name)))
4615 and then not Is_Potentially_Use_Visible (Etype (Name))
4616 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
4617 N_Package_Specification
4618 then
4619 Error_Msg_NE
4620 ("premature usage of incomplete}", Prefix (Name),
4621 Etype (Prefix (Name)));
4622 end if;
4624 -- We never need an actual subtype for the case of a selection
4625 -- for a indexed component of a non-packed array, since in
4626 -- this case gigi generates all the checks and can find the
4627 -- necessary bounds information.
4629 -- We also do not need an actual subtype for the case of a
4630 -- first, last, length, or range attribute applied to a
4631 -- non-packed array, since gigi can again get the bounds in
4632 -- these cases (gigi cannot handle the packed case, since it
4633 -- has the bounds of the packed array type, not the original
4634 -- bounds of the type). However, if the prefix is itself a
4635 -- selected component, as in a.b.c (i), gigi may regard a.b.c
4636 -- as a dynamic-sized temporary, so we do generate an actual
4637 -- subtype for this case.
4639 Parent_N := Parent (N);
4641 if not Is_Packed (Etype (Comp))
4642 and then
4643 ((Nkind (Parent_N) = N_Indexed_Component
4644 and then Nkind (Name) /= N_Selected_Component)
4645 or else
4646 (Nkind (Parent_N) = N_Attribute_Reference
4647 and then
4648 Nam_In (Attribute_Name (Parent_N), Name_First,
4649 Name_Last,
4650 Name_Length,
4651 Name_Range)))
4652 then
4653 Set_Etype (N, Etype (Comp));
4655 -- If full analysis is not enabled, we do not generate an
4656 -- actual subtype, because in the absence of expansion
4657 -- reference to a formal of a protected type, for example,
4658 -- will not be properly transformed, and will lead to
4659 -- out-of-scope references in gigi.
4661 -- In all other cases, we currently build an actual subtype.
4662 -- It seems likely that many of these cases can be avoided,
4663 -- but right now, the front end makes direct references to the
4664 -- bounds (e.g. in generating a length check), and if we do
4665 -- not make an actual subtype, we end up getting a direct
4666 -- reference to a discriminant, which will not do.
4668 elsif Full_Analysis then
4669 Act_Decl :=
4670 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
4671 Insert_Action (N, Act_Decl);
4673 if No (Act_Decl) then
4674 Set_Etype (N, Etype (Comp));
4676 else
4677 -- Component type depends on discriminants. Enter the
4678 -- main attributes of the subtype.
4680 declare
4681 Subt : constant Entity_Id :=
4682 Defining_Identifier (Act_Decl);
4684 begin
4685 Set_Etype (Subt, Base_Type (Etype (Comp)));
4686 Set_Ekind (Subt, Ekind (Etype (Comp)));
4687 Set_Etype (N, Subt);
4688 end;
4689 end if;
4691 -- If Full_Analysis not enabled, just set the Etype
4693 else
4694 Set_Etype (N, Etype (Comp));
4695 end if;
4697 Check_Implicit_Dereference (N, Etype (N));
4698 return;
4699 end if;
4701 -- If the prefix is a private extension, check only the visible
4702 -- components of the partial view. This must include the tag,
4703 -- which can appear in expanded code in a tag check.
4705 if Ekind (Type_To_Use) = E_Record_Type_With_Private
4706 and then Chars (Selector_Name (N)) /= Name_uTag
4707 then
4708 exit when Comp = Last_Entity (Type_To_Use);
4709 end if;
4711 Next_Entity (Comp);
4712 end loop;
4714 -- Ada 2005 (AI-252): The selected component can be interpreted as
4715 -- a prefixed view of a subprogram. Depending on the context, this is
4716 -- either a name that can appear in a renaming declaration, or part
4717 -- of an enclosing call given in prefix form.
4719 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
4720 -- selected component should resolve to a name.
4722 if Ada_Version >= Ada_2005
4723 and then Is_Tagged_Type (Prefix_Type)
4724 and then not Is_Concurrent_Type (Prefix_Type)
4725 then
4726 if Nkind (Parent (N)) = N_Generic_Association
4727 or else Nkind (Parent (N)) = N_Requeue_Statement
4728 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
4729 then
4730 if Find_Primitive_Operation (N) then
4731 return;
4732 end if;
4734 elsif Try_Object_Operation (N) then
4735 return;
4736 end if;
4738 -- If the transformation fails, it will be necessary to redo the
4739 -- analysis with all errors enabled, to indicate candidate
4740 -- interpretations and reasons for each failure ???
4742 end if;
4744 elsif Is_Private_Type (Prefix_Type) then
4746 -- Allow access only to discriminants of the type. If the type has
4747 -- no full view, gigi uses the parent type for the components, so we
4748 -- do the same here.
4750 if No (Full_View (Prefix_Type)) then
4751 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
4752 Comp := First_Entity (Type_To_Use);
4753 end if;
4755 while Present (Comp) loop
4756 if Chars (Comp) = Chars (Sel) then
4757 if Ekind (Comp) = E_Discriminant then
4758 Set_Entity_With_Checks (Sel, Comp);
4759 Generate_Reference (Comp, Sel);
4761 Set_Etype (Sel, Etype (Comp));
4762 Set_Etype (N, Etype (Comp));
4763 Check_Implicit_Dereference (N, Etype (N));
4765 if Is_Generic_Type (Prefix_Type)
4766 or else Is_Generic_Type (Root_Type (Prefix_Type))
4767 then
4768 Set_Original_Discriminant (Sel, Comp);
4769 end if;
4771 -- Before declaring an error, check whether this is tagged
4772 -- private type and a call to a primitive operation.
4774 elsif Ada_Version >= Ada_2005
4775 and then Is_Tagged_Type (Prefix_Type)
4776 and then Try_Object_Operation (N)
4777 then
4778 return;
4780 else
4781 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4782 Error_Msg_NE ("invisible selector& for }", N, Sel);
4783 Set_Entity (Sel, Any_Id);
4784 Set_Etype (N, Any_Type);
4785 end if;
4787 return;
4788 end if;
4790 Next_Entity (Comp);
4791 end loop;
4793 elsif Is_Concurrent_Type (Prefix_Type) then
4795 -- Find visible operation with given name. For a protected type,
4796 -- the possible candidates are discriminants, entries or protected
4797 -- procedures. For a task type, the set can only include entries or
4798 -- discriminants if the task type is not an enclosing scope. If it
4799 -- is an enclosing scope (e.g. in an inner task) then all entities
4800 -- are visible, but the prefix must denote the enclosing scope, i.e.
4801 -- can only be a direct name or an expanded name.
4803 Set_Etype (Sel, Any_Type);
4804 In_Scope := In_Open_Scopes (Prefix_Type);
4806 while Present (Comp) loop
4807 -- Do not examine private operations of the type if not within
4808 -- its scope.
4810 if Chars (Comp) = Chars (Sel) then
4811 if Is_Overloadable (Comp)
4812 and then (In_Scope
4813 or else Comp /= First_Private_Entity (Type_To_Use))
4814 then
4815 Add_One_Interp (Sel, Comp, Etype (Comp));
4817 -- If the prefix is tagged, the correct interpretation may
4818 -- lie in the primitive or class-wide operations of the
4819 -- type. Perform a simple conformance check to determine
4820 -- whether Try_Object_Operation should be invoked even if
4821 -- a visible entity is found.
4823 if Is_Tagged_Type (Prefix_Type)
4824 and then
4825 Nkind_In (Parent (N), N_Procedure_Call_Statement,
4826 N_Function_Call,
4827 N_Indexed_Component)
4828 and then Has_Mode_Conformant_Spec (Comp)
4829 then
4830 Has_Candidate := True;
4831 end if;
4833 -- Note: a selected component may not denote a component of a
4834 -- protected type (4.1.3(7)).
4836 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
4837 or else (In_Scope
4838 and then not Is_Protected_Type (Prefix_Type)
4839 and then Is_Entity_Name (Name))
4840 then
4841 Set_Entity_With_Checks (Sel, Comp);
4842 Generate_Reference (Comp, Sel);
4844 -- The selector is not overloadable, so we have a candidate
4845 -- interpretation.
4847 Has_Candidate := True;
4849 else
4850 goto Next_Comp;
4851 end if;
4853 Set_Etype (Sel, Etype (Comp));
4854 Set_Etype (N, Etype (Comp));
4856 if Ekind (Comp) = E_Discriminant then
4857 Set_Original_Discriminant (Sel, Comp);
4858 end if;
4860 -- For access type case, introduce explicit dereference for
4861 -- more uniform treatment of entry calls.
4863 if Is_Access_Type (Etype (Name)) then
4864 Insert_Explicit_Dereference (Name);
4865 Error_Msg_NW
4866 (Warn_On_Dereference, "?d?implicit dereference", N);
4867 end if;
4868 end if;
4870 <<Next_Comp>>
4871 Next_Entity (Comp);
4872 exit when not In_Scope
4873 and then
4874 Comp = First_Private_Entity (Base_Type (Prefix_Type));
4875 end loop;
4877 -- If the scope is a current instance, the prefix cannot be an
4878 -- expression of the same type, unless the selector designates a
4879 -- public operation (otherwise that would represent an attempt to
4880 -- reach an internal entity of another synchronized object).
4881 -- This is legal if prefix is an access to such type and there is
4882 -- a dereference, or is a component with a dereferenced prefix.
4883 -- It is also legal if the prefix is a component of a task type,
4884 -- and the selector is one of the task operations.
4886 if In_Scope
4887 and then not Is_Entity_Name (Name)
4888 and then not Has_Dereference (Name)
4889 then
4890 if Is_Task_Type (Prefix_Type)
4891 and then Present (Entity (Sel))
4892 and then Ekind_In (Entity (Sel), E_Entry, E_Entry_Family)
4893 then
4894 null;
4896 else
4897 Error_Msg_NE
4898 ("invalid reference to internal operation of some object of "
4899 & "type &", N, Type_To_Use);
4900 Set_Entity (Sel, Any_Id);
4901 Set_Etype (Sel, Any_Type);
4902 return;
4903 end if;
4904 end if;
4906 -- If there is no visible entity with the given name or none of the
4907 -- visible entities are plausible interpretations, check whether
4908 -- there is some other primitive operation with that name.
4910 if Ada_Version >= Ada_2005 and then Is_Tagged_Type (Prefix_Type) then
4911 if (Etype (N) = Any_Type
4912 or else not Has_Candidate)
4913 and then Try_Object_Operation (N)
4914 then
4915 return;
4917 -- If the context is not syntactically a procedure call, it
4918 -- may be a call to a primitive function declared outside of
4919 -- the synchronized type.
4921 -- If the context is a procedure call, there might still be
4922 -- an overloading between an entry and a primitive procedure
4923 -- declared outside of the synchronized type, called in prefix
4924 -- notation. This is harder to disambiguate because in one case
4925 -- the controlling formal is implicit ???
4927 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
4928 and then Nkind (Parent (N)) /= N_Indexed_Component
4929 and then Try_Object_Operation (N)
4930 then
4931 return;
4932 end if;
4934 -- Ada 2012 (AI05-0090-1): If we found a candidate of a call to an
4935 -- entry or procedure of a tagged concurrent type we must check
4936 -- if there are class-wide subprograms covering the primitive. If
4937 -- true then Try_Object_Operation reports the error.
4939 if Has_Candidate
4940 and then Is_Concurrent_Type (Prefix_Type)
4941 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
4942 then
4943 -- Duplicate the call. This is required to avoid problems with
4944 -- the tree transformations performed by Try_Object_Operation.
4945 -- Set properly the parent of the copied call, because it is
4946 -- about to be reanalyzed.
4948 declare
4949 Par : constant Node_Id := New_Copy_Tree (Parent (N));
4951 begin
4952 Set_Parent (Par, Parent (Parent (N)));
4954 if Try_Object_Operation
4955 (Sinfo.Name (Par), CW_Test_Only => True)
4956 then
4957 return;
4958 end if;
4959 end;
4960 end if;
4961 end if;
4963 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
4965 -- Case of a prefix of a protected type: selector might denote
4966 -- an invisible private component.
4968 Comp := First_Private_Entity (Base_Type (Prefix_Type));
4969 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
4970 Next_Entity (Comp);
4971 end loop;
4973 if Present (Comp) then
4974 if Is_Single_Concurrent_Object then
4975 Error_Msg_Node_2 := Entity (Name);
4976 Error_Msg_NE ("invisible selector& for &", N, Sel);
4978 else
4979 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
4980 Error_Msg_NE ("invisible selector& for }", N, Sel);
4981 end if;
4982 return;
4983 end if;
4984 end if;
4986 Set_Is_Overloaded (N, Is_Overloaded (Sel));
4988 else
4989 -- Invalid prefix
4991 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
4992 end if;
4994 -- If N still has no type, the component is not defined in the prefix
4996 if Etype (N) = Any_Type then
4998 if Is_Single_Concurrent_Object then
4999 Error_Msg_Node_2 := Entity (Name);
5000 Error_Msg_NE ("no selector& for&", N, Sel);
5002 Check_Misspelled_Selector (Type_To_Use, Sel);
5004 -- If this is a derived formal type, the parent may have different
5005 -- visibility at this point. Try for an inherited component before
5006 -- reporting an error.
5008 elsif Is_Generic_Type (Prefix_Type)
5009 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
5010 and then Prefix_Type /= Etype (Prefix_Type)
5011 and then Is_Record_Type (Etype (Prefix_Type))
5012 then
5013 Set_Etype (Prefix (N), Etype (Prefix_Type));
5014 Analyze_Selected_Component (N);
5015 return;
5017 -- Similarly, if this is the actual for a formal derived type, or
5018 -- a derived type thereof, the component inherited from the generic
5019 -- parent may not be visible in the actual, but the selected
5020 -- component is legal. Climb up the derivation chain of the generic
5021 -- parent type until we find the proper ancestor type.
5023 elsif In_Instance and then Is_Tagged_Type (Prefix_Type) then
5024 declare
5025 Par : Entity_Id := Prefix_Type;
5026 begin
5027 -- Climb up derivation chain to generic actual subtype
5029 while not Is_Generic_Actual_Type (Par) loop
5030 if Ekind (Par) = E_Record_Type then
5031 Par := Parent_Subtype (Par);
5032 exit when No (Par);
5033 else
5034 exit when Par = Etype (Par);
5035 Par := Etype (Par);
5036 end if;
5037 end loop;
5039 if Present (Par) and then Is_Generic_Actual_Type (Par) then
5041 -- Now look for component in ancestor types
5043 Par := Generic_Parent_Type (Declaration_Node (Par));
5044 loop
5045 Find_Component_In_Instance (Par);
5046 exit when Present (Entity (Sel))
5047 or else Par = Etype (Par);
5048 Par := Etype (Par);
5049 end loop;
5051 -- Another special case: the type is an extension of a private
5052 -- type T, is an actual in an instance, and we are in the body
5053 -- of the instance, so the generic body had a full view of the
5054 -- type declaration for T or of some ancestor that defines the
5055 -- component in question.
5057 elsif Is_Derived_Type (Type_To_Use)
5058 and then Used_As_Generic_Actual (Type_To_Use)
5059 and then In_Instance_Body
5060 then
5061 Find_Component_In_Instance (Parent_Subtype (Type_To_Use));
5063 -- In ASIS mode the generic parent type may be absent. Examine
5064 -- the parent type directly for a component that may have been
5065 -- visible in a parent generic unit.
5067 elsif Is_Derived_Type (Prefix_Type) then
5068 Par := Etype (Prefix_Type);
5069 Find_Component_In_Instance (Par);
5070 end if;
5071 end;
5073 -- The search above must have eventually succeeded, since the
5074 -- selected component was legal in the generic.
5076 if No (Entity (Sel)) then
5077 raise Program_Error;
5078 end if;
5080 return;
5082 -- Component not found, specialize error message when appropriate
5084 else
5085 if Ekind (Prefix_Type) = E_Record_Subtype then
5087 -- Check whether this is a component of the base type which
5088 -- is absent from a statically constrained subtype. This will
5089 -- raise constraint error at run time, but is not a compile-
5090 -- time error. When the selector is illegal for base type as
5091 -- well fall through and generate a compilation error anyway.
5093 Comp := First_Component (Base_Type (Prefix_Type));
5094 while Present (Comp) loop
5095 if Chars (Comp) = Chars (Sel)
5096 and then Is_Visible_Component (Comp)
5097 then
5098 Set_Entity_With_Checks (Sel, Comp);
5099 Generate_Reference (Comp, Sel);
5100 Set_Etype (Sel, Etype (Comp));
5101 Set_Etype (N, Etype (Comp));
5103 -- Emit appropriate message. The node will be replaced
5104 -- by an appropriate raise statement.
5106 -- Note that in SPARK mode, as with all calls to apply a
5107 -- compile time constraint error, this will be made into
5108 -- an error to simplify the processing of the formal
5109 -- verification backend.
5111 Apply_Compile_Time_Constraint_Error
5112 (N, "component not present in }??",
5113 CE_Discriminant_Check_Failed,
5114 Ent => Prefix_Type, Rep => False);
5116 Set_Raises_Constraint_Error (N);
5117 return;
5118 end if;
5120 Next_Component (Comp);
5121 end loop;
5123 end if;
5125 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
5126 Error_Msg_NE ("no selector& for}", N, Sel);
5128 -- Add information in the case of an incomplete prefix
5130 if Is_Incomplete_Type (Type_To_Use) then
5131 declare
5132 Inc : constant Entity_Id := First_Subtype (Type_To_Use);
5134 begin
5135 if From_Limited_With (Scope (Type_To_Use)) then
5136 Error_Msg_NE
5137 ("\limited view of& has no components", N, Inc);
5139 else
5140 Error_Msg_NE
5141 ("\premature usage of incomplete type&", N, Inc);
5143 if Nkind (Parent (Inc)) =
5144 N_Incomplete_Type_Declaration
5145 then
5146 -- Record location of premature use in entity so that
5147 -- a continuation message is generated when the
5148 -- completion is seen.
5150 Set_Premature_Use (Parent (Inc), N);
5151 end if;
5152 end if;
5153 end;
5154 end if;
5156 Check_Misspelled_Selector (Type_To_Use, Sel);
5157 end if;
5159 Set_Entity (Sel, Any_Id);
5160 Set_Etype (Sel, Any_Type);
5161 end if;
5162 end Analyze_Selected_Component;
5164 ---------------------------
5165 -- Analyze_Short_Circuit --
5166 ---------------------------
5168 procedure Analyze_Short_Circuit (N : Node_Id) is
5169 L : constant Node_Id := Left_Opnd (N);
5170 R : constant Node_Id := Right_Opnd (N);
5171 Ind : Interp_Index;
5172 It : Interp;
5174 begin
5175 Analyze_Expression (L);
5176 Analyze_Expression (R);
5177 Set_Etype (N, Any_Type);
5179 if not Is_Overloaded (L) then
5180 if Root_Type (Etype (L)) = Standard_Boolean
5181 and then Has_Compatible_Type (R, Etype (L))
5182 then
5183 Add_One_Interp (N, Etype (L), Etype (L));
5184 end if;
5186 else
5187 Get_First_Interp (L, Ind, It);
5188 while Present (It.Typ) loop
5189 if Root_Type (It.Typ) = Standard_Boolean
5190 and then Has_Compatible_Type (R, It.Typ)
5191 then
5192 Add_One_Interp (N, It.Typ, It.Typ);
5193 end if;
5195 Get_Next_Interp (Ind, It);
5196 end loop;
5197 end if;
5199 -- Here we have failed to find an interpretation. Clearly we know that
5200 -- it is not the case that both operands can have an interpretation of
5201 -- Boolean, but this is by far the most likely intended interpretation.
5202 -- So we simply resolve both operands as Booleans, and at least one of
5203 -- these resolutions will generate an error message, and we do not need
5204 -- to give another error message on the short circuit operation itself.
5206 if Etype (N) = Any_Type then
5207 Resolve (L, Standard_Boolean);
5208 Resolve (R, Standard_Boolean);
5209 Set_Etype (N, Standard_Boolean);
5210 end if;
5211 end Analyze_Short_Circuit;
5213 -------------------
5214 -- Analyze_Slice --
5215 -------------------
5217 procedure Analyze_Slice (N : Node_Id) is
5218 D : constant Node_Id := Discrete_Range (N);
5219 P : constant Node_Id := Prefix (N);
5220 Array_Type : Entity_Id;
5221 Index_Type : Entity_Id;
5223 procedure Analyze_Overloaded_Slice;
5224 -- If the prefix is overloaded, select those interpretations that
5225 -- yield a one-dimensional array type.
5227 ------------------------------
5228 -- Analyze_Overloaded_Slice --
5229 ------------------------------
5231 procedure Analyze_Overloaded_Slice is
5232 I : Interp_Index;
5233 It : Interp;
5234 Typ : Entity_Id;
5236 begin
5237 Set_Etype (N, Any_Type);
5239 Get_First_Interp (P, I, It);
5240 while Present (It.Nam) loop
5241 Typ := It.Typ;
5243 if Is_Access_Type (Typ) then
5244 Typ := Designated_Type (Typ);
5245 Error_Msg_NW
5246 (Warn_On_Dereference, "?d?implicit dereference", N);
5247 end if;
5249 if Is_Array_Type (Typ)
5250 and then Number_Dimensions (Typ) = 1
5251 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
5252 then
5253 Add_One_Interp (N, Typ, Typ);
5254 end if;
5256 Get_Next_Interp (I, It);
5257 end loop;
5259 if Etype (N) = Any_Type then
5260 Error_Msg_N ("expect array type in prefix of slice", N);
5261 end if;
5262 end Analyze_Overloaded_Slice;
5264 -- Start of processing for Analyze_Slice
5266 begin
5267 if Comes_From_Source (N) then
5268 Check_SPARK_05_Restriction ("slice is not allowed", N);
5269 end if;
5271 Analyze (P);
5272 Analyze (D);
5274 if Is_Overloaded (P) then
5275 Analyze_Overloaded_Slice;
5277 else
5278 Array_Type := Etype (P);
5279 Set_Etype (N, Any_Type);
5281 if Is_Access_Type (Array_Type) then
5282 Array_Type := Designated_Type (Array_Type);
5283 Error_Msg_NW (Warn_On_Dereference, "?d?implicit dereference", N);
5284 end if;
5286 if not Is_Array_Type (Array_Type) then
5287 Wrong_Type (P, Any_Array);
5289 elsif Number_Dimensions (Array_Type) > 1 then
5290 Error_Msg_N
5291 ("type is not one-dimensional array in slice prefix", N);
5293 else
5294 if Ekind (Array_Type) = E_String_Literal_Subtype then
5295 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
5296 else
5297 Index_Type := Etype (First_Index (Array_Type));
5298 end if;
5300 if not Has_Compatible_Type (D, Index_Type) then
5301 Wrong_Type (D, Index_Type);
5302 else
5303 Set_Etype (N, Array_Type);
5304 end if;
5305 end if;
5306 end if;
5307 end Analyze_Slice;
5309 -----------------------------
5310 -- Analyze_Type_Conversion --
5311 -----------------------------
5313 procedure Analyze_Type_Conversion (N : Node_Id) is
5314 Expr : constant Node_Id := Expression (N);
5315 Typ : Entity_Id;
5317 begin
5318 -- If Conversion_OK is set, then the Etype is already set, and the only
5319 -- processing required is to analyze the expression. This is used to
5320 -- construct certain "illegal" conversions which are not allowed by Ada
5321 -- semantics, but can be handled by Gigi, see Sinfo for further details.
5323 if Conversion_OK (N) then
5324 Analyze (Expr);
5325 return;
5326 end if;
5328 -- Otherwise full type analysis is required, as well as some semantic
5329 -- checks to make sure the argument of the conversion is appropriate.
5331 Find_Type (Subtype_Mark (N));
5332 Typ := Entity (Subtype_Mark (N));
5333 Set_Etype (N, Typ);
5334 Check_Fully_Declared (Typ, N);
5335 Analyze_Expression (Expr);
5336 Validate_Remote_Type_Type_Conversion (N);
5338 -- Only remaining step is validity checks on the argument. These
5339 -- are skipped if the conversion does not come from the source.
5341 if not Comes_From_Source (N) then
5342 return;
5344 -- If there was an error in a generic unit, no need to replicate the
5345 -- error message. Conversely, constant-folding in the generic may
5346 -- transform the argument of a conversion into a string literal, which
5347 -- is legal. Therefore the following tests are not performed in an
5348 -- instance. The same applies to an inlined body.
5350 elsif In_Instance or In_Inlined_Body then
5351 return;
5353 elsif Nkind (Expr) = N_Null then
5354 Error_Msg_N ("argument of conversion cannot be null", N);
5355 Error_Msg_N ("\use qualified expression instead", N);
5356 Set_Etype (N, Any_Type);
5358 elsif Nkind (Expr) = N_Aggregate then
5359 Error_Msg_N ("argument of conversion cannot be aggregate", N);
5360 Error_Msg_N ("\use qualified expression instead", N);
5362 elsif Nkind (Expr) = N_Allocator then
5363 Error_Msg_N ("argument of conversion cannot be an allocator", N);
5364 Error_Msg_N ("\use qualified expression instead", N);
5366 elsif Nkind (Expr) = N_String_Literal then
5367 Error_Msg_N ("argument of conversion cannot be string literal", N);
5368 Error_Msg_N ("\use qualified expression instead", N);
5370 elsif Nkind (Expr) = N_Character_Literal then
5371 if Ada_Version = Ada_83 then
5372 Resolve (Expr, Typ);
5373 else
5374 Error_Msg_N ("argument of conversion cannot be character literal",
5376 Error_Msg_N ("\use qualified expression instead", N);
5377 end if;
5379 elsif Nkind (Expr) = N_Attribute_Reference
5380 and then Nam_In (Attribute_Name (Expr), Name_Access,
5381 Name_Unchecked_Access,
5382 Name_Unrestricted_Access)
5383 then
5384 Error_Msg_N ("argument of conversion cannot be access", N);
5385 Error_Msg_N ("\use qualified expression instead", N);
5386 end if;
5388 -- A formal parameter of a specific tagged type whose related subprogram
5389 -- is subject to pragma Extensions_Visible with value "False" cannot
5390 -- appear in a class-wide conversion (SPARK RM 6.1.7(3)). Do not check
5391 -- internally generated expressions.
5393 if Is_Class_Wide_Type (Typ)
5394 and then Comes_From_Source (Expr)
5395 and then Is_EVF_Expression (Expr)
5396 then
5397 Error_Msg_N
5398 ("formal parameter cannot be converted to class-wide type when "
5399 & "Extensions_Visible is False", Expr);
5400 end if;
5401 end Analyze_Type_Conversion;
5403 ----------------------
5404 -- Analyze_Unary_Op --
5405 ----------------------
5407 procedure Analyze_Unary_Op (N : Node_Id) is
5408 R : constant Node_Id := Right_Opnd (N);
5409 Op_Id : Entity_Id := Entity (N);
5411 begin
5412 Set_Etype (N, Any_Type);
5413 Candidate_Type := Empty;
5415 Analyze_Expression (R);
5417 if Present (Op_Id) then
5418 if Ekind (Op_Id) = E_Operator then
5419 Find_Unary_Types (R, Op_Id, N);
5420 else
5421 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5422 end if;
5424 else
5425 Op_Id := Get_Name_Entity_Id (Chars (N));
5426 while Present (Op_Id) loop
5427 if Ekind (Op_Id) = E_Operator then
5428 if No (Next_Entity (First_Entity (Op_Id))) then
5429 Find_Unary_Types (R, Op_Id, N);
5430 end if;
5432 elsif Is_Overloadable (Op_Id) then
5433 Analyze_User_Defined_Unary_Op (N, Op_Id);
5434 end if;
5436 Op_Id := Homonym (Op_Id);
5437 end loop;
5438 end if;
5440 Operator_Check (N);
5441 end Analyze_Unary_Op;
5443 ----------------------------------
5444 -- Analyze_Unchecked_Expression --
5445 ----------------------------------
5447 procedure Analyze_Unchecked_Expression (N : Node_Id) is
5448 begin
5449 Analyze (Expression (N), Suppress => All_Checks);
5450 Set_Etype (N, Etype (Expression (N)));
5451 Save_Interps (Expression (N), N);
5452 end Analyze_Unchecked_Expression;
5454 ---------------------------------------
5455 -- Analyze_Unchecked_Type_Conversion --
5456 ---------------------------------------
5458 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
5459 begin
5460 Find_Type (Subtype_Mark (N));
5461 Analyze_Expression (Expression (N));
5462 Set_Etype (N, Entity (Subtype_Mark (N)));
5463 end Analyze_Unchecked_Type_Conversion;
5465 ------------------------------------
5466 -- Analyze_User_Defined_Binary_Op --
5467 ------------------------------------
5469 procedure Analyze_User_Defined_Binary_Op
5470 (N : Node_Id;
5471 Op_Id : Entity_Id)
5473 begin
5474 -- Only do analysis if the operator Comes_From_Source, since otherwise
5475 -- the operator was generated by the expander, and all such operators
5476 -- always refer to the operators in package Standard.
5478 if Comes_From_Source (N) then
5479 declare
5480 F1 : constant Entity_Id := First_Formal (Op_Id);
5481 F2 : constant Entity_Id := Next_Formal (F1);
5483 begin
5484 -- Verify that Op_Id is a visible binary function. Note that since
5485 -- we know Op_Id is overloaded, potentially use visible means use
5486 -- visible for sure (RM 9.4(11)).
5488 if Ekind (Op_Id) = E_Function
5489 and then Present (F2)
5490 and then (Is_Immediately_Visible (Op_Id)
5491 or else Is_Potentially_Use_Visible (Op_Id))
5492 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
5493 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
5494 then
5495 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5497 -- If the left operand is overloaded, indicate that the current
5498 -- type is a viable candidate. This is redundant in most cases,
5499 -- but for equality and comparison operators where the context
5500 -- does not impose a type on the operands, setting the proper
5501 -- type is necessary to avoid subsequent ambiguities during
5502 -- resolution, when both user-defined and predefined operators
5503 -- may be candidates.
5505 if Is_Overloaded (Left_Opnd (N)) then
5506 Set_Etype (Left_Opnd (N), Etype (F1));
5507 end if;
5509 if Debug_Flag_E then
5510 Write_Str ("user defined operator ");
5511 Write_Name (Chars (Op_Id));
5512 Write_Str (" on node ");
5513 Write_Int (Int (N));
5514 Write_Eol;
5515 end if;
5516 end if;
5517 end;
5518 end if;
5519 end Analyze_User_Defined_Binary_Op;
5521 -----------------------------------
5522 -- Analyze_User_Defined_Unary_Op --
5523 -----------------------------------
5525 procedure Analyze_User_Defined_Unary_Op
5526 (N : Node_Id;
5527 Op_Id : Entity_Id)
5529 begin
5530 -- Only do analysis if the operator Comes_From_Source, since otherwise
5531 -- the operator was generated by the expander, and all such operators
5532 -- always refer to the operators in package Standard.
5534 if Comes_From_Source (N) then
5535 declare
5536 F : constant Entity_Id := First_Formal (Op_Id);
5538 begin
5539 -- Verify that Op_Id is a visible unary function. Note that since
5540 -- we know Op_Id is overloaded, potentially use visible means use
5541 -- visible for sure (RM 9.4(11)).
5543 if Ekind (Op_Id) = E_Function
5544 and then No (Next_Formal (F))
5545 and then (Is_Immediately_Visible (Op_Id)
5546 or else Is_Potentially_Use_Visible (Op_Id))
5547 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
5548 then
5549 Add_One_Interp (N, Op_Id, Etype (Op_Id));
5550 end if;
5551 end;
5552 end if;
5553 end Analyze_User_Defined_Unary_Op;
5555 ---------------------------
5556 -- Check_Arithmetic_Pair --
5557 ---------------------------
5559 procedure Check_Arithmetic_Pair
5560 (T1, T2 : Entity_Id;
5561 Op_Id : Entity_Id;
5562 N : Node_Id)
5564 Op_Name : constant Name_Id := Chars (Op_Id);
5566 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
5567 -- Check whether the fixed-point type Typ has a user-defined operator
5568 -- (multiplication or division) that should hide the corresponding
5569 -- predefined operator. Used to implement Ada 2005 AI-264, to make
5570 -- such operators more visible and therefore useful.
5572 -- If the name of the operation is an expanded name with prefix
5573 -- Standard, the predefined universal fixed operator is available,
5574 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
5576 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
5577 -- Get specific type (i.e. non-universal type if there is one)
5579 ------------------
5580 -- Has_Fixed_Op --
5581 ------------------
5583 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
5584 Bas : constant Entity_Id := Base_Type (Typ);
5585 Ent : Entity_Id;
5586 F1 : Entity_Id;
5587 F2 : Entity_Id;
5589 begin
5590 -- If the universal_fixed operation is given explicitly the rule
5591 -- concerning primitive operations of the type do not apply.
5593 if Nkind (N) = N_Function_Call
5594 and then Nkind (Name (N)) = N_Expanded_Name
5595 and then Entity (Prefix (Name (N))) = Standard_Standard
5596 then
5597 return False;
5598 end if;
5600 -- The operation is treated as primitive if it is declared in the
5601 -- same scope as the type, and therefore on the same entity chain.
5603 Ent := Next_Entity (Typ);
5604 while Present (Ent) loop
5605 if Chars (Ent) = Chars (Op) then
5606 F1 := First_Formal (Ent);
5607 F2 := Next_Formal (F1);
5609 -- The operation counts as primitive if either operand or
5610 -- result are of the given base type, and both operands are
5611 -- fixed point types.
5613 if (Base_Type (Etype (F1)) = Bas
5614 and then Is_Fixed_Point_Type (Etype (F2)))
5616 or else
5617 (Base_Type (Etype (F2)) = Bas
5618 and then Is_Fixed_Point_Type (Etype (F1)))
5620 or else
5621 (Base_Type (Etype (Ent)) = Bas
5622 and then Is_Fixed_Point_Type (Etype (F1))
5623 and then Is_Fixed_Point_Type (Etype (F2)))
5624 then
5625 return True;
5626 end if;
5627 end if;
5629 Next_Entity (Ent);
5630 end loop;
5632 return False;
5633 end Has_Fixed_Op;
5635 -------------------
5636 -- Specific_Type --
5637 -------------------
5639 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
5640 begin
5641 if T1 = Universal_Integer or else T1 = Universal_Real then
5642 return Base_Type (T2);
5643 else
5644 return Base_Type (T1);
5645 end if;
5646 end Specific_Type;
5648 -- Start of processing for Check_Arithmetic_Pair
5650 begin
5651 if Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
5652 if Is_Numeric_Type (T1)
5653 and then Is_Numeric_Type (T2)
5654 and then (Covers (T1 => T1, T2 => T2)
5655 or else
5656 Covers (T1 => T2, T2 => T1))
5657 then
5658 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5659 end if;
5661 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide) then
5662 if Is_Fixed_Point_Type (T1)
5663 and then (Is_Fixed_Point_Type (T2) or else T2 = Universal_Real)
5664 then
5665 -- If Treat_Fixed_As_Integer is set then the Etype is already set
5666 -- and no further processing is required (this is the case of an
5667 -- operator constructed by Exp_Fixd for a fixed point operation)
5668 -- Otherwise add one interpretation with universal fixed result
5669 -- If the operator is given in functional notation, it comes
5670 -- from source and Fixed_As_Integer cannot apply.
5672 if (Nkind (N) not in N_Op
5673 or else not Treat_Fixed_As_Integer (N))
5674 and then
5675 (not Has_Fixed_Op (T1, Op_Id)
5676 or else Nkind (Parent (N)) = N_Type_Conversion)
5677 then
5678 Add_One_Interp (N, Op_Id, Universal_Fixed);
5679 end if;
5681 elsif Is_Fixed_Point_Type (T2)
5682 and then (Nkind (N) not in N_Op
5683 or else not Treat_Fixed_As_Integer (N))
5684 and then T1 = Universal_Real
5685 and then
5686 (not Has_Fixed_Op (T1, Op_Id)
5687 or else Nkind (Parent (N)) = N_Type_Conversion)
5688 then
5689 Add_One_Interp (N, Op_Id, Universal_Fixed);
5691 elsif Is_Numeric_Type (T1)
5692 and then Is_Numeric_Type (T2)
5693 and then (Covers (T1 => T1, T2 => T2)
5694 or else
5695 Covers (T1 => T2, T2 => T1))
5696 then
5697 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5699 elsif Is_Fixed_Point_Type (T1)
5700 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5701 or else T2 = Universal_Integer)
5702 then
5703 Add_One_Interp (N, Op_Id, T1);
5705 elsif T2 = Universal_Real
5706 and then Base_Type (T1) = Base_Type (Standard_Integer)
5707 and then Op_Name = Name_Op_Multiply
5708 then
5709 Add_One_Interp (N, Op_Id, Any_Fixed);
5711 elsif T1 = Universal_Real
5712 and then Base_Type (T2) = Base_Type (Standard_Integer)
5713 then
5714 Add_One_Interp (N, Op_Id, Any_Fixed);
5716 elsif Is_Fixed_Point_Type (T2)
5717 and then (Base_Type (T1) = Base_Type (Standard_Integer)
5718 or else T1 = Universal_Integer)
5719 and then Op_Name = Name_Op_Multiply
5720 then
5721 Add_One_Interp (N, Op_Id, T2);
5723 elsif T1 = Universal_Real and then T2 = Universal_Integer then
5724 Add_One_Interp (N, Op_Id, T1);
5726 elsif T2 = Universal_Real
5727 and then T1 = Universal_Integer
5728 and then Op_Name = Name_Op_Multiply
5729 then
5730 Add_One_Interp (N, Op_Id, T2);
5731 end if;
5733 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
5735 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
5736 -- set does not require any special processing, since the Etype is
5737 -- already set (case of operation constructed by Exp_Fixed).
5739 if Is_Integer_Type (T1)
5740 and then (Covers (T1 => T1, T2 => T2)
5741 or else
5742 Covers (T1 => T2, T2 => T1))
5743 then
5744 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
5745 end if;
5747 elsif Op_Name = Name_Op_Expon then
5748 if Is_Numeric_Type (T1)
5749 and then not Is_Fixed_Point_Type (T1)
5750 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5751 or else T2 = Universal_Integer)
5752 then
5753 Add_One_Interp (N, Op_Id, Base_Type (T1));
5754 end if;
5756 else pragma Assert (Nkind (N) in N_Op_Shift);
5758 -- If not one of the predefined operators, the node may be one
5759 -- of the intrinsic functions. Its kind is always specific, and
5760 -- we can use it directly, rather than the name of the operation.
5762 if Is_Integer_Type (T1)
5763 and then (Base_Type (T2) = Base_Type (Standard_Integer)
5764 or else T2 = Universal_Integer)
5765 then
5766 Add_One_Interp (N, Op_Id, Base_Type (T1));
5767 end if;
5768 end if;
5769 end Check_Arithmetic_Pair;
5771 -------------------------------
5772 -- Check_Misspelled_Selector --
5773 -------------------------------
5775 procedure Check_Misspelled_Selector
5776 (Prefix : Entity_Id;
5777 Sel : Node_Id)
5779 Max_Suggestions : constant := 2;
5780 Nr_Of_Suggestions : Natural := 0;
5782 Suggestion_1 : Entity_Id := Empty;
5783 Suggestion_2 : Entity_Id := Empty;
5785 Comp : Entity_Id;
5787 begin
5788 -- All the components of the prefix of selector Sel are matched against
5789 -- Sel and a count is maintained of possible misspellings. When at
5790 -- the end of the analysis there are one or two (not more) possible
5791 -- misspellings, these misspellings will be suggested as possible
5792 -- correction.
5794 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
5796 -- Concurrent types should be handled as well ???
5798 return;
5799 end if;
5801 Comp := First_Entity (Prefix);
5802 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
5803 if Is_Visible_Component (Comp) then
5804 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
5805 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
5807 case Nr_Of_Suggestions is
5808 when 1 => Suggestion_1 := Comp;
5809 when 2 => Suggestion_2 := Comp;
5810 when others => null;
5811 end case;
5812 end if;
5813 end if;
5815 Comp := Next_Entity (Comp);
5816 end loop;
5818 -- Report at most two suggestions
5820 if Nr_Of_Suggestions = 1 then
5821 Error_Msg_NE -- CODEFIX
5822 ("\possible misspelling of&", Sel, Suggestion_1);
5824 elsif Nr_Of_Suggestions = 2 then
5825 Error_Msg_Node_2 := Suggestion_2;
5826 Error_Msg_NE -- CODEFIX
5827 ("\possible misspelling of& or&", Sel, Suggestion_1);
5828 end if;
5829 end Check_Misspelled_Selector;
5831 ----------------------
5832 -- Defined_In_Scope --
5833 ----------------------
5835 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
5837 S1 : constant Entity_Id := Scope (Base_Type (T));
5838 begin
5839 return S1 = S
5840 or else (S1 = System_Aux_Id and then S = Scope (S1));
5841 end Defined_In_Scope;
5843 -------------------
5844 -- Diagnose_Call --
5845 -------------------
5847 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
5848 Actual : Node_Id;
5849 X : Interp_Index;
5850 It : Interp;
5851 Err_Mode : Boolean;
5852 New_Nam : Node_Id;
5853 Void_Interp_Seen : Boolean := False;
5855 Success : Boolean;
5856 pragma Warnings (Off, Boolean);
5858 begin
5859 if Ada_Version >= Ada_2005 then
5860 Actual := First_Actual (N);
5861 while Present (Actual) loop
5863 -- Ada 2005 (AI-50217): Post an error in case of premature
5864 -- usage of an entity from the limited view.
5866 if not Analyzed (Etype (Actual))
5867 and then From_Limited_With (Etype (Actual))
5868 then
5869 Error_Msg_Qual_Level := 1;
5870 Error_Msg_NE
5871 ("missing with_clause for scope of imported type&",
5872 Actual, Etype (Actual));
5873 Error_Msg_Qual_Level := 0;
5874 end if;
5876 Next_Actual (Actual);
5877 end loop;
5878 end if;
5880 -- Analyze each candidate call again, with full error reporting
5881 -- for each.
5883 Error_Msg_N
5884 ("no candidate interpretations match the actuals:!", Nam);
5885 Err_Mode := All_Errors_Mode;
5886 All_Errors_Mode := True;
5888 -- If this is a call to an operation of a concurrent type,
5889 -- the failed interpretations have been removed from the
5890 -- name. Recover them to provide full diagnostics.
5892 if Nkind (Parent (Nam)) = N_Selected_Component then
5893 Set_Entity (Nam, Empty);
5894 New_Nam := New_Copy_Tree (Parent (Nam));
5895 Set_Is_Overloaded (New_Nam, False);
5896 Set_Is_Overloaded (Selector_Name (New_Nam), False);
5897 Set_Parent (New_Nam, Parent (Parent (Nam)));
5898 Analyze_Selected_Component (New_Nam);
5899 Get_First_Interp (Selector_Name (New_Nam), X, It);
5900 else
5901 Get_First_Interp (Nam, X, It);
5902 end if;
5904 while Present (It.Nam) loop
5905 if Etype (It.Nam) = Standard_Void_Type then
5906 Void_Interp_Seen := True;
5907 end if;
5909 Analyze_One_Call (N, It.Nam, True, Success);
5910 Get_Next_Interp (X, It);
5911 end loop;
5913 if Nkind (N) = N_Function_Call then
5914 Get_First_Interp (Nam, X, It);
5915 while Present (It.Nam) loop
5916 if Ekind_In (It.Nam, E_Function, E_Operator) then
5917 return;
5918 else
5919 Get_Next_Interp (X, It);
5920 end if;
5921 end loop;
5923 -- If all interpretations are procedures, this deserves a
5924 -- more precise message. Ditto if this appears as the prefix
5925 -- of a selected component, which may be a lexical error.
5927 Error_Msg_N
5928 ("\context requires function call, found procedure name", Nam);
5930 if Nkind (Parent (N)) = N_Selected_Component
5931 and then N = Prefix (Parent (N))
5932 then
5933 Error_Msg_N -- CODEFIX
5934 ("\period should probably be semicolon", Parent (N));
5935 end if;
5937 elsif Nkind (N) = N_Procedure_Call_Statement
5938 and then not Void_Interp_Seen
5939 then
5940 Error_Msg_N (
5941 "\function name found in procedure call", Nam);
5942 end if;
5944 All_Errors_Mode := Err_Mode;
5945 end Diagnose_Call;
5947 ---------------------------
5948 -- Find_Arithmetic_Types --
5949 ---------------------------
5951 procedure Find_Arithmetic_Types
5952 (L, R : Node_Id;
5953 Op_Id : Entity_Id;
5954 N : Node_Id)
5956 Index1 : Interp_Index;
5957 Index2 : Interp_Index;
5958 It1 : Interp;
5959 It2 : Interp;
5961 procedure Check_Right_Argument (T : Entity_Id);
5962 -- Check right operand of operator
5964 --------------------------
5965 -- Check_Right_Argument --
5966 --------------------------
5968 procedure Check_Right_Argument (T : Entity_Id) is
5969 begin
5970 if not Is_Overloaded (R) then
5971 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
5972 else
5973 Get_First_Interp (R, Index2, It2);
5974 while Present (It2.Typ) loop
5975 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
5976 Get_Next_Interp (Index2, It2);
5977 end loop;
5978 end if;
5979 end Check_Right_Argument;
5981 -- Start of processing for Find_Arithmetic_Types
5983 begin
5984 if not Is_Overloaded (L) then
5985 Check_Right_Argument (Etype (L));
5987 else
5988 Get_First_Interp (L, Index1, It1);
5989 while Present (It1.Typ) loop
5990 Check_Right_Argument (It1.Typ);
5991 Get_Next_Interp (Index1, It1);
5992 end loop;
5993 end if;
5995 end Find_Arithmetic_Types;
5997 ------------------------
5998 -- Find_Boolean_Types --
5999 ------------------------
6001 procedure Find_Boolean_Types
6002 (L, R : Node_Id;
6003 Op_Id : Entity_Id;
6004 N : Node_Id)
6006 Index : Interp_Index;
6007 It : Interp;
6009 procedure Check_Numeric_Argument (T : Entity_Id);
6010 -- Special case for logical operations one of whose operands is an
6011 -- integer literal. If both are literal the result is any modular type.
6013 ----------------------------
6014 -- Check_Numeric_Argument --
6015 ----------------------------
6017 procedure Check_Numeric_Argument (T : Entity_Id) is
6018 begin
6019 if T = Universal_Integer then
6020 Add_One_Interp (N, Op_Id, Any_Modular);
6022 elsif Is_Modular_Integer_Type (T) then
6023 Add_One_Interp (N, Op_Id, T);
6024 end if;
6025 end Check_Numeric_Argument;
6027 -- Start of processing for Find_Boolean_Types
6029 begin
6030 if not Is_Overloaded (L) then
6031 if Etype (L) = Universal_Integer
6032 or else Etype (L) = Any_Modular
6033 then
6034 if not Is_Overloaded (R) then
6035 Check_Numeric_Argument (Etype (R));
6037 else
6038 Get_First_Interp (R, Index, It);
6039 while Present (It.Typ) loop
6040 Check_Numeric_Argument (It.Typ);
6041 Get_Next_Interp (Index, It);
6042 end loop;
6043 end if;
6045 -- If operands are aggregates, we must assume that they may be
6046 -- boolean arrays, and leave disambiguation for the second pass.
6047 -- If only one is an aggregate, verify that the other one has an
6048 -- interpretation as a boolean array
6050 elsif Nkind (L) = N_Aggregate then
6051 if Nkind (R) = N_Aggregate then
6052 Add_One_Interp (N, Op_Id, Etype (L));
6054 elsif not Is_Overloaded (R) then
6055 if Valid_Boolean_Arg (Etype (R)) then
6056 Add_One_Interp (N, Op_Id, Etype (R));
6057 end if;
6059 else
6060 Get_First_Interp (R, Index, It);
6061 while Present (It.Typ) loop
6062 if Valid_Boolean_Arg (It.Typ) then
6063 Add_One_Interp (N, Op_Id, It.Typ);
6064 end if;
6066 Get_Next_Interp (Index, It);
6067 end loop;
6068 end if;
6070 elsif Valid_Boolean_Arg (Etype (L))
6071 and then Has_Compatible_Type (R, Etype (L))
6072 then
6073 Add_One_Interp (N, Op_Id, Etype (L));
6074 end if;
6076 else
6077 Get_First_Interp (L, Index, It);
6078 while Present (It.Typ) loop
6079 if Valid_Boolean_Arg (It.Typ)
6080 and then Has_Compatible_Type (R, It.Typ)
6081 then
6082 Add_One_Interp (N, Op_Id, It.Typ);
6083 end if;
6085 Get_Next_Interp (Index, It);
6086 end loop;
6087 end if;
6088 end Find_Boolean_Types;
6090 ---------------------------
6091 -- Find_Comparison_Types --
6092 ---------------------------
6094 procedure Find_Comparison_Types
6095 (L, R : Node_Id;
6096 Op_Id : Entity_Id;
6097 N : Node_Id)
6099 Index : Interp_Index;
6100 It : Interp;
6101 Found : Boolean := False;
6102 I_F : Interp_Index;
6103 T_F : Entity_Id;
6104 Scop : Entity_Id := Empty;
6106 procedure Try_One_Interp (T1 : Entity_Id);
6107 -- Routine to try one proposed interpretation. Note that the context
6108 -- of the operator plays no role in resolving the arguments, so that
6109 -- if there is more than one interpretation of the operands that is
6110 -- compatible with comparison, the operation is ambiguous.
6112 --------------------
6113 -- Try_One_Interp --
6114 --------------------
6116 procedure Try_One_Interp (T1 : Entity_Id) is
6117 begin
6119 -- If the operator is an expanded name, then the type of the operand
6120 -- must be defined in the corresponding scope. If the type is
6121 -- universal, the context will impose the correct type.
6123 if Present (Scop)
6124 and then not Defined_In_Scope (T1, Scop)
6125 and then T1 /= Universal_Integer
6126 and then T1 /= Universal_Real
6127 and then T1 /= Any_String
6128 and then T1 /= Any_Composite
6129 then
6130 return;
6131 end if;
6133 if Valid_Comparison_Arg (T1) and then Has_Compatible_Type (R, T1) then
6134 if Found and then Base_Type (T1) /= Base_Type (T_F) then
6135 It := Disambiguate (L, I_F, Index, Any_Type);
6137 if It = No_Interp then
6138 Ambiguous_Operands (N);
6139 Set_Etype (L, Any_Type);
6140 return;
6142 else
6143 T_F := It.Typ;
6144 end if;
6146 else
6147 Found := True;
6148 T_F := T1;
6149 I_F := Index;
6150 end if;
6152 Set_Etype (L, T_F);
6153 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6155 end if;
6156 end Try_One_Interp;
6158 -- Start of processing for Find_Comparison_Types
6160 begin
6161 -- If left operand is aggregate, the right operand has to
6162 -- provide a usable type for it.
6164 if Nkind (L) = N_Aggregate and then Nkind (R) /= N_Aggregate then
6165 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6166 return;
6167 end if;
6169 if Nkind (N) = N_Function_Call
6170 and then Nkind (Name (N)) = N_Expanded_Name
6171 then
6172 Scop := Entity (Prefix (Name (N)));
6174 -- The prefix may be a package renaming, and the subsequent test
6175 -- requires the original package.
6177 if Ekind (Scop) = E_Package
6178 and then Present (Renamed_Entity (Scop))
6179 then
6180 Scop := Renamed_Entity (Scop);
6181 Set_Entity (Prefix (Name (N)), Scop);
6182 end if;
6183 end if;
6185 if not Is_Overloaded (L) then
6186 Try_One_Interp (Etype (L));
6188 else
6189 Get_First_Interp (L, Index, It);
6190 while Present (It.Typ) loop
6191 Try_One_Interp (It.Typ);
6192 Get_Next_Interp (Index, It);
6193 end loop;
6194 end if;
6195 end Find_Comparison_Types;
6197 ----------------------------------------
6198 -- Find_Non_Universal_Interpretations --
6199 ----------------------------------------
6201 procedure Find_Non_Universal_Interpretations
6202 (N : Node_Id;
6203 R : Node_Id;
6204 Op_Id : Entity_Id;
6205 T1 : Entity_Id)
6207 Index : Interp_Index;
6208 It : Interp;
6210 begin
6211 if T1 = Universal_Integer or else T1 = Universal_Real
6213 -- If the left operand of an equality operator is null, the visibility
6214 -- of the operator must be determined from the interpretation of the
6215 -- right operand. This processing must be done for Any_Access, which
6216 -- is the internal representation of the type of the literal null.
6218 or else T1 = Any_Access
6219 then
6220 if not Is_Overloaded (R) then
6221 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
6222 else
6223 Get_First_Interp (R, Index, It);
6224 while Present (It.Typ) loop
6225 if Covers (It.Typ, T1) then
6226 Add_One_Interp
6227 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
6228 end if;
6230 Get_Next_Interp (Index, It);
6231 end loop;
6232 end if;
6233 else
6234 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
6235 end if;
6236 end Find_Non_Universal_Interpretations;
6238 ------------------------------
6239 -- Find_Concatenation_Types --
6240 ------------------------------
6242 procedure Find_Concatenation_Types
6243 (L, R : Node_Id;
6244 Op_Id : Entity_Id;
6245 N : Node_Id)
6247 Op_Type : constant Entity_Id := Etype (Op_Id);
6249 begin
6250 if Is_Array_Type (Op_Type)
6251 and then not Is_Limited_Type (Op_Type)
6253 and then (Has_Compatible_Type (L, Op_Type)
6254 or else
6255 Has_Compatible_Type (L, Component_Type (Op_Type)))
6257 and then (Has_Compatible_Type (R, Op_Type)
6258 or else
6259 Has_Compatible_Type (R, Component_Type (Op_Type)))
6260 then
6261 Add_One_Interp (N, Op_Id, Op_Type);
6262 end if;
6263 end Find_Concatenation_Types;
6265 -------------------------
6266 -- Find_Equality_Types --
6267 -------------------------
6269 procedure Find_Equality_Types
6270 (L, R : Node_Id;
6271 Op_Id : Entity_Id;
6272 N : Node_Id)
6274 Index : Interp_Index;
6275 It : Interp;
6276 Found : Boolean := False;
6277 I_F : Interp_Index;
6278 T_F : Entity_Id;
6279 Scop : Entity_Id := Empty;
6281 procedure Try_One_Interp (T1 : Entity_Id);
6282 -- The context of the equality operator plays no role in resolving the
6283 -- arguments, so that if there is more than one interpretation of the
6284 -- operands that is compatible with equality, the construct is ambiguous
6285 -- and an error can be emitted now, after trying to disambiguate, i.e.
6286 -- applying preference rules.
6288 --------------------
6289 -- Try_One_Interp --
6290 --------------------
6292 procedure Try_One_Interp (T1 : Entity_Id) is
6293 Bas : constant Entity_Id := Base_Type (T1);
6295 begin
6296 -- If the operator is an expanded name, then the type of the operand
6297 -- must be defined in the corresponding scope. If the type is
6298 -- universal, the context will impose the correct type. An anonymous
6299 -- type for a 'Access reference is also universal in this sense, as
6300 -- the actual type is obtained from context.
6302 -- In Ada 2005, the equality operator for anonymous access types
6303 -- is declared in Standard, and preference rules apply to it.
6305 if Present (Scop) then
6306 if Defined_In_Scope (T1, Scop)
6307 or else T1 = Universal_Integer
6308 or else T1 = Universal_Real
6309 or else T1 = Any_Access
6310 or else T1 = Any_String
6311 or else T1 = Any_Composite
6312 or else (Ekind (T1) = E_Access_Subprogram_Type
6313 and then not Comes_From_Source (T1))
6314 then
6315 null;
6317 elsif Ekind (T1) = E_Anonymous_Access_Type
6318 and then Scop = Standard_Standard
6319 then
6320 null;
6322 else
6323 -- The scope does not contain an operator for the type
6325 return;
6326 end if;
6328 -- If we have infix notation, the operator must be usable. Within
6329 -- an instance, if the type is already established we know it is
6330 -- correct. If an operand is universal it is compatible with any
6331 -- numeric type.
6333 elsif In_Open_Scopes (Scope (Bas))
6334 or else Is_Potentially_Use_Visible (Bas)
6335 or else In_Use (Bas)
6336 or else (In_Use (Scope (Bas)) and then not Is_Hidden (Bas))
6338 -- In an instance, the type may have been immediately visible.
6339 -- Either the types are compatible, or one operand is universal
6340 -- (numeric or null).
6342 or else (In_Instance
6343 and then
6344 (First_Subtype (T1) = First_Subtype (Etype (R))
6345 or else Nkind (R) = N_Null
6346 or else
6347 (Is_Numeric_Type (T1)
6348 and then Is_Universal_Numeric_Type (Etype (R)))))
6350 -- In Ada 2005, the equality on anonymous access types is declared
6351 -- in Standard, and is always visible.
6353 or else Ekind (T1) = E_Anonymous_Access_Type
6354 then
6355 null;
6357 else
6358 -- Save candidate type for subsequent error message, if any
6360 if not Is_Limited_Type (T1) then
6361 Candidate_Type := T1;
6362 end if;
6364 return;
6365 end if;
6367 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
6368 -- Do not allow anonymous access types in equality operators.
6370 if Ada_Version < Ada_2005
6371 and then Ekind (T1) = E_Anonymous_Access_Type
6372 then
6373 return;
6374 end if;
6376 -- If the right operand has a type compatible with T1, check for an
6377 -- acceptable interpretation, unless T1 is limited (no predefined
6378 -- equality available), or this is use of a "/=" for a tagged type.
6379 -- In the latter case, possible interpretations of equality need
6380 -- to be considered, we don't want the default inequality declared
6381 -- in Standard to be chosen, and the "/=" will be rewritten as a
6382 -- negation of "=" (see the end of Analyze_Equality_Op). This ensures
6383 -- that rewriting happens during analysis rather than being
6384 -- delayed until expansion (this is needed for ASIS, which only sees
6385 -- the unexpanded tree). Note that if the node is N_Op_Ne, but Op_Id
6386 -- is Name_Op_Eq then we still proceed with the interpretation,
6387 -- because that indicates the potential rewriting case where the
6388 -- interpretation to consider is actually "=" and the node may be
6389 -- about to be rewritten by Analyze_Equality_Op.
6391 if T1 /= Standard_Void_Type
6392 and then Has_Compatible_Type (R, T1)
6394 and then
6395 ((not Is_Limited_Type (T1)
6396 and then not Is_Limited_Composite (T1))
6398 or else
6399 (Is_Array_Type (T1)
6400 and then not Is_Limited_Type (Component_Type (T1))
6401 and then Available_Full_View_Of_Component (T1)))
6403 and then
6404 (Nkind (N) /= N_Op_Ne
6405 or else not Is_Tagged_Type (T1)
6406 or else Chars (Op_Id) = Name_Op_Eq)
6407 then
6408 if Found
6409 and then Base_Type (T1) /= Base_Type (T_F)
6410 then
6411 It := Disambiguate (L, I_F, Index, Any_Type);
6413 if It = No_Interp then
6414 Ambiguous_Operands (N);
6415 Set_Etype (L, Any_Type);
6416 return;
6418 else
6419 T_F := It.Typ;
6420 end if;
6422 else
6423 Found := True;
6424 T_F := T1;
6425 I_F := Index;
6426 end if;
6428 if not Analyzed (L) then
6429 Set_Etype (L, T_F);
6430 end if;
6432 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
6434 -- Case of operator was not visible, Etype still set to Any_Type
6436 if Etype (N) = Any_Type then
6437 Found := False;
6438 end if;
6440 elsif Scop = Standard_Standard
6441 and then Ekind (T1) = E_Anonymous_Access_Type
6442 then
6443 Found := True;
6444 end if;
6445 end Try_One_Interp;
6447 -- Start of processing for Find_Equality_Types
6449 begin
6450 -- If left operand is aggregate, the right operand has to
6451 -- provide a usable type for it.
6453 if Nkind (L) = N_Aggregate
6454 and then Nkind (R) /= N_Aggregate
6455 then
6456 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
6457 return;
6458 end if;
6460 if Nkind (N) = N_Function_Call
6461 and then Nkind (Name (N)) = N_Expanded_Name
6462 then
6463 Scop := Entity (Prefix (Name (N)));
6465 -- The prefix may be a package renaming, and the subsequent test
6466 -- requires the original package.
6468 if Ekind (Scop) = E_Package
6469 and then Present (Renamed_Entity (Scop))
6470 then
6471 Scop := Renamed_Entity (Scop);
6472 Set_Entity (Prefix (Name (N)), Scop);
6473 end if;
6474 end if;
6476 if not Is_Overloaded (L) then
6477 Try_One_Interp (Etype (L));
6479 else
6480 Get_First_Interp (L, Index, It);
6481 while Present (It.Typ) loop
6482 Try_One_Interp (It.Typ);
6483 Get_Next_Interp (Index, It);
6484 end loop;
6485 end if;
6486 end Find_Equality_Types;
6488 -------------------------
6489 -- Find_Negation_Types --
6490 -------------------------
6492 procedure Find_Negation_Types
6493 (R : Node_Id;
6494 Op_Id : Entity_Id;
6495 N : Node_Id)
6497 Index : Interp_Index;
6498 It : Interp;
6500 begin
6501 if not Is_Overloaded (R) then
6502 if Etype (R) = Universal_Integer then
6503 Add_One_Interp (N, Op_Id, Any_Modular);
6504 elsif Valid_Boolean_Arg (Etype (R)) then
6505 Add_One_Interp (N, Op_Id, Etype (R));
6506 end if;
6508 else
6509 Get_First_Interp (R, Index, It);
6510 while Present (It.Typ) loop
6511 if Valid_Boolean_Arg (It.Typ) then
6512 Add_One_Interp (N, Op_Id, It.Typ);
6513 end if;
6515 Get_Next_Interp (Index, It);
6516 end loop;
6517 end if;
6518 end Find_Negation_Types;
6520 ------------------------------
6521 -- Find_Primitive_Operation --
6522 ------------------------------
6524 function Find_Primitive_Operation (N : Node_Id) return Boolean is
6525 Obj : constant Node_Id := Prefix (N);
6526 Op : constant Node_Id := Selector_Name (N);
6528 Prim : Elmt_Id;
6529 Prims : Elist_Id;
6530 Typ : Entity_Id;
6532 begin
6533 Set_Etype (Op, Any_Type);
6535 if Is_Access_Type (Etype (Obj)) then
6536 Typ := Designated_Type (Etype (Obj));
6537 else
6538 Typ := Etype (Obj);
6539 end if;
6541 if Is_Class_Wide_Type (Typ) then
6542 Typ := Root_Type (Typ);
6543 end if;
6545 Prims := Primitive_Operations (Typ);
6547 Prim := First_Elmt (Prims);
6548 while Present (Prim) loop
6549 if Chars (Node (Prim)) = Chars (Op) then
6550 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
6551 Set_Etype (N, Etype (Node (Prim)));
6552 end if;
6554 Next_Elmt (Prim);
6555 end loop;
6557 -- Now look for class-wide operations of the type or any of its
6558 -- ancestors by iterating over the homonyms of the selector.
6560 declare
6561 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
6562 Hom : Entity_Id;
6564 begin
6565 Hom := Current_Entity (Op);
6566 while Present (Hom) loop
6567 if (Ekind (Hom) = E_Procedure
6568 or else
6569 Ekind (Hom) = E_Function)
6570 and then Scope (Hom) = Scope (Typ)
6571 and then Present (First_Formal (Hom))
6572 and then
6573 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6574 or else
6575 (Is_Access_Type (Etype (First_Formal (Hom)))
6576 and then
6577 Ekind (Etype (First_Formal (Hom))) =
6578 E_Anonymous_Access_Type
6579 and then
6580 Base_Type
6581 (Designated_Type (Etype (First_Formal (Hom)))) =
6582 Cls_Type))
6583 then
6584 Add_One_Interp (Op, Hom, Etype (Hom));
6585 Set_Etype (N, Etype (Hom));
6586 end if;
6588 Hom := Homonym (Hom);
6589 end loop;
6590 end;
6592 return Etype (Op) /= Any_Type;
6593 end Find_Primitive_Operation;
6595 ----------------------
6596 -- Find_Unary_Types --
6597 ----------------------
6599 procedure Find_Unary_Types
6600 (R : Node_Id;
6601 Op_Id : Entity_Id;
6602 N : Node_Id)
6604 Index : Interp_Index;
6605 It : Interp;
6607 begin
6608 if not Is_Overloaded (R) then
6609 if Is_Numeric_Type (Etype (R)) then
6611 -- In an instance a generic actual may be a numeric type even if
6612 -- the formal in the generic unit was not. In that case, the
6613 -- predefined operator was not a possible interpretation in the
6614 -- generic, and cannot be one in the instance, unless the operator
6615 -- is an actual of an instance.
6617 if In_Instance
6618 and then
6619 not Is_Numeric_Type (Corresponding_Generic_Type (Etype (R)))
6620 then
6621 null;
6622 else
6623 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
6624 end if;
6625 end if;
6627 else
6628 Get_First_Interp (R, Index, It);
6629 while Present (It.Typ) loop
6630 if Is_Numeric_Type (It.Typ) then
6631 if In_Instance
6632 and then
6633 not Is_Numeric_Type
6634 (Corresponding_Generic_Type (Etype (It.Typ)))
6635 then
6636 null;
6638 else
6639 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
6640 end if;
6641 end if;
6643 Get_Next_Interp (Index, It);
6644 end loop;
6645 end if;
6646 end Find_Unary_Types;
6648 ------------------
6649 -- Junk_Operand --
6650 ------------------
6652 function Junk_Operand (N : Node_Id) return Boolean is
6653 Enode : Node_Id;
6655 begin
6656 if Error_Posted (N) then
6657 return False;
6658 end if;
6660 -- Get entity to be tested
6662 if Is_Entity_Name (N)
6663 and then Present (Entity (N))
6664 then
6665 Enode := N;
6667 -- An odd case, a procedure name gets converted to a very peculiar
6668 -- function call, and here is where we detect this happening.
6670 elsif Nkind (N) = N_Function_Call
6671 and then Is_Entity_Name (Name (N))
6672 and then Present (Entity (Name (N)))
6673 then
6674 Enode := Name (N);
6676 -- Another odd case, there are at least some cases of selected
6677 -- components where the selected component is not marked as having
6678 -- an entity, even though the selector does have an entity
6680 elsif Nkind (N) = N_Selected_Component
6681 and then Present (Entity (Selector_Name (N)))
6682 then
6683 Enode := Selector_Name (N);
6685 else
6686 return False;
6687 end if;
6689 -- Now test the entity we got to see if it is a bad case
6691 case Ekind (Entity (Enode)) is
6693 when E_Package =>
6694 Error_Msg_N
6695 ("package name cannot be used as operand", Enode);
6697 when Generic_Unit_Kind =>
6698 Error_Msg_N
6699 ("generic unit name cannot be used as operand", Enode);
6701 when Type_Kind =>
6702 Error_Msg_N
6703 ("subtype name cannot be used as operand", Enode);
6705 when Entry_Kind =>
6706 Error_Msg_N
6707 ("entry name cannot be used as operand", Enode);
6709 when E_Procedure =>
6710 Error_Msg_N
6711 ("procedure name cannot be used as operand", Enode);
6713 when E_Exception =>
6714 Error_Msg_N
6715 ("exception name cannot be used as operand", Enode);
6717 when E_Block | E_Label | E_Loop =>
6718 Error_Msg_N
6719 ("label name cannot be used as operand", Enode);
6721 when others =>
6722 return False;
6724 end case;
6726 return True;
6727 end Junk_Operand;
6729 --------------------
6730 -- Operator_Check --
6731 --------------------
6733 procedure Operator_Check (N : Node_Id) is
6734 begin
6735 Remove_Abstract_Operations (N);
6737 -- Test for case of no interpretation found for operator
6739 if Etype (N) = Any_Type then
6740 declare
6741 L : Node_Id;
6742 R : Node_Id;
6743 Op_Id : Entity_Id := Empty;
6745 begin
6746 R := Right_Opnd (N);
6748 if Nkind (N) in N_Binary_Op then
6749 L := Left_Opnd (N);
6750 else
6751 L := Empty;
6752 end if;
6754 -- If either operand has no type, then don't complain further,
6755 -- since this simply means that we have a propagated error.
6757 if R = Error
6758 or else Etype (R) = Any_Type
6759 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
6760 then
6761 -- For the rather unusual case where one of the operands is
6762 -- a Raise_Expression, whose initial type is Any_Type, use
6763 -- the type of the other operand.
6765 if Nkind (L) = N_Raise_Expression then
6766 Set_Etype (L, Etype (R));
6767 Set_Etype (N, Etype (R));
6769 elsif Nkind (R) = N_Raise_Expression then
6770 Set_Etype (R, Etype (L));
6771 Set_Etype (N, Etype (L));
6772 end if;
6774 return;
6776 -- We explicitly check for the case of concatenation of component
6777 -- with component to avoid reporting spurious matching array types
6778 -- that might happen to be lurking in distant packages (such as
6779 -- run-time packages). This also prevents inconsistencies in the
6780 -- messages for certain ACVC B tests, which can vary depending on
6781 -- types declared in run-time interfaces. Another improvement when
6782 -- aggregates are present is to look for a well-typed operand.
6784 elsif Present (Candidate_Type)
6785 and then (Nkind (N) /= N_Op_Concat
6786 or else Is_Array_Type (Etype (L))
6787 or else Is_Array_Type (Etype (R)))
6788 then
6789 if Nkind (N) = N_Op_Concat then
6790 if Etype (L) /= Any_Composite
6791 and then Is_Array_Type (Etype (L))
6792 then
6793 Candidate_Type := Etype (L);
6795 elsif Etype (R) /= Any_Composite
6796 and then Is_Array_Type (Etype (R))
6797 then
6798 Candidate_Type := Etype (R);
6799 end if;
6800 end if;
6802 Error_Msg_NE -- CODEFIX
6803 ("operator for} is not directly visible!",
6804 N, First_Subtype (Candidate_Type));
6806 declare
6807 U : constant Node_Id :=
6808 Cunit (Get_Source_Unit (Candidate_Type));
6809 begin
6810 if Unit_Is_Visible (U) then
6811 Error_Msg_N -- CODEFIX
6812 ("use clause would make operation legal!", N);
6813 else
6814 Error_Msg_NE -- CODEFIX
6815 ("add with_clause and use_clause for&!",
6816 N, Defining_Entity (Unit (U)));
6817 end if;
6818 end;
6819 return;
6821 -- If either operand is a junk operand (e.g. package name), then
6822 -- post appropriate error messages, but do not complain further.
6824 -- Note that the use of OR in this test instead of OR ELSE is
6825 -- quite deliberate, we may as well check both operands in the
6826 -- binary operator case.
6828 elsif Junk_Operand (R)
6829 or -- really mean OR here and not OR ELSE, see above
6830 (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
6831 then
6832 return;
6834 -- If we have a logical operator, one of whose operands is
6835 -- Boolean, then we know that the other operand cannot resolve to
6836 -- Boolean (since we got no interpretations), but in that case we
6837 -- pretty much know that the other operand should be Boolean, so
6838 -- resolve it that way (generating an error).
6840 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
6841 if Etype (L) = Standard_Boolean then
6842 Resolve (R, Standard_Boolean);
6843 return;
6844 elsif Etype (R) = Standard_Boolean then
6845 Resolve (L, Standard_Boolean);
6846 return;
6847 end if;
6849 -- For an arithmetic operator or comparison operator, if one
6850 -- of the operands is numeric, then we know the other operand
6851 -- is not the same numeric type. If it is a non-numeric type,
6852 -- then probably it is intended to match the other operand.
6854 elsif Nkind_In (N, N_Op_Add,
6855 N_Op_Divide,
6856 N_Op_Ge,
6857 N_Op_Gt,
6858 N_Op_Le)
6859 or else
6860 Nkind_In (N, N_Op_Lt,
6861 N_Op_Mod,
6862 N_Op_Multiply,
6863 N_Op_Rem,
6864 N_Op_Subtract)
6865 then
6866 -- If Allow_Integer_Address is active, check whether the
6867 -- operation becomes legal after converting an operand.
6869 if Is_Numeric_Type (Etype (L))
6870 and then not Is_Numeric_Type (Etype (R))
6871 then
6872 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
6873 Rewrite (R,
6874 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
6876 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6877 Analyze_Comparison_Op (N);
6878 else
6879 Analyze_Arithmetic_Op (N);
6880 end if;
6881 else
6882 Resolve (R, Etype (L));
6883 end if;
6885 return;
6887 elsif Is_Numeric_Type (Etype (R))
6888 and then not Is_Numeric_Type (Etype (L))
6889 then
6890 if Address_Integer_Convert_OK (Etype (L), Etype (R)) then
6891 Rewrite (L,
6892 Unchecked_Convert_To (Etype (R), Relocate_Node (L)));
6894 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6895 Analyze_Comparison_Op (N);
6896 else
6897 Analyze_Arithmetic_Op (N);
6898 end if;
6900 return;
6902 else
6903 Resolve (L, Etype (R));
6904 end if;
6906 return;
6908 elsif Allow_Integer_Address
6909 and then Is_Descendant_Of_Address (Etype (L))
6910 and then Is_Descendant_Of_Address (Etype (R))
6911 and then not Error_Posted (N)
6912 then
6913 declare
6914 Addr_Type : constant Entity_Id := Etype (L);
6916 begin
6917 Rewrite (L,
6918 Unchecked_Convert_To (
6919 Standard_Integer, Relocate_Node (L)));
6920 Rewrite (R,
6921 Unchecked_Convert_To (
6922 Standard_Integer, Relocate_Node (R)));
6924 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6925 Analyze_Comparison_Op (N);
6926 else
6927 Analyze_Arithmetic_Op (N);
6928 end if;
6930 -- If this is an operand in an enclosing arithmetic
6931 -- operation, Convert the result as an address so that
6932 -- arithmetic folding of address can continue.
6934 if Nkind (Parent (N)) in N_Op then
6935 Rewrite (N,
6936 Unchecked_Convert_To (Addr_Type, Relocate_Node (N)));
6937 end if;
6939 return;
6940 end;
6942 -- Under relaxed RM semantics silently replace occurrences of
6943 -- null by System.Address_Null.
6945 elsif Null_To_Null_Address_Convert_OK (N) then
6946 Replace_Null_By_Null_Address (N);
6948 if Nkind_In (N, N_Op_Ge, N_Op_Gt, N_Op_Le, N_Op_Lt) then
6949 Analyze_Comparison_Op (N);
6950 else
6951 Analyze_Arithmetic_Op (N);
6952 end if;
6954 return;
6955 end if;
6957 -- Comparisons on A'Access are common enough to deserve a
6958 -- special message.
6960 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
6961 and then Ekind (Etype (L)) = E_Access_Attribute_Type
6962 and then Ekind (Etype (R)) = E_Access_Attribute_Type
6963 then
6964 Error_Msg_N
6965 ("two access attributes cannot be compared directly", N);
6966 Error_Msg_N
6967 ("\use qualified expression for one of the operands",
6969 return;
6971 -- Another one for C programmers
6973 elsif Nkind (N) = N_Op_Concat
6974 and then Valid_Boolean_Arg (Etype (L))
6975 and then Valid_Boolean_Arg (Etype (R))
6976 then
6977 Error_Msg_N ("invalid operands for concatenation", N);
6978 Error_Msg_N -- CODEFIX
6979 ("\maybe AND was meant", N);
6980 return;
6982 -- A special case for comparison of access parameter with null
6984 elsif Nkind (N) = N_Op_Eq
6985 and then Is_Entity_Name (L)
6986 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
6987 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
6988 N_Access_Definition
6989 and then Nkind (R) = N_Null
6990 then
6991 Error_Msg_N ("access parameter is not allowed to be null", L);
6992 Error_Msg_N ("\(call would raise Constraint_Error)", L);
6993 return;
6995 -- Another special case for exponentiation, where the right
6996 -- operand must be Natural, independently of the base.
6998 elsif Nkind (N) = N_Op_Expon
6999 and then Is_Numeric_Type (Etype (L))
7000 and then not Is_Overloaded (R)
7001 and then
7002 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
7003 and then Base_Type (Etype (R)) /= Universal_Integer
7004 then
7005 if Ada_Version >= Ada_2012
7006 and then Has_Dimension_System (Etype (L))
7007 then
7008 Error_Msg_NE
7009 ("exponent for dimensioned type must be a rational" &
7010 ", found}", R, Etype (R));
7011 else
7012 Error_Msg_NE
7013 ("exponent must be of type Natural, found}", R, Etype (R));
7014 end if;
7016 return;
7018 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
7019 if Address_Integer_Convert_OK (Etype (R), Etype (L)) then
7020 Rewrite (R,
7021 Unchecked_Convert_To (Etype (L), Relocate_Node (R)));
7022 Analyze_Equality_Op (N);
7023 return;
7025 -- Under relaxed RM semantics silently replace occurrences of
7026 -- null by System.Address_Null.
7028 elsif Null_To_Null_Address_Convert_OK (N) then
7029 Replace_Null_By_Null_Address (N);
7030 Analyze_Equality_Op (N);
7031 return;
7032 end if;
7033 end if;
7035 -- If we fall through then just give general message. Note that in
7036 -- the following messages, if the operand is overloaded we choose
7037 -- an arbitrary type to complain about, but that is probably more
7038 -- useful than not giving a type at all.
7040 if Nkind (N) in N_Unary_Op then
7041 Error_Msg_Node_2 := Etype (R);
7042 Error_Msg_N ("operator& not defined for}", N);
7043 return;
7045 else
7046 if Nkind (N) in N_Binary_Op then
7047 if not Is_Overloaded (L)
7048 and then not Is_Overloaded (R)
7049 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7050 then
7051 Error_Msg_Node_2 := First_Subtype (Etype (R));
7052 Error_Msg_N ("there is no applicable operator& for}", N);
7054 else
7055 -- Another attempt to find a fix: one of the candidate
7056 -- interpretations may not be use-visible. This has
7057 -- already been checked for predefined operators, so
7058 -- we examine only user-defined functions.
7060 Op_Id := Get_Name_Entity_Id (Chars (N));
7062 while Present (Op_Id) loop
7063 if Ekind (Op_Id) /= E_Operator
7064 and then Is_Overloadable (Op_Id)
7065 then
7066 if not Is_Immediately_Visible (Op_Id)
7067 and then not In_Use (Scope (Op_Id))
7068 and then not Is_Abstract_Subprogram (Op_Id)
7069 and then not Is_Hidden (Op_Id)
7070 and then Ekind (Scope (Op_Id)) = E_Package
7071 and then
7072 Has_Compatible_Type
7073 (L, Etype (First_Formal (Op_Id)))
7074 and then Present
7075 (Next_Formal (First_Formal (Op_Id)))
7076 and then
7077 Has_Compatible_Type
7079 Etype (Next_Formal (First_Formal (Op_Id))))
7080 then
7081 Error_Msg_N
7082 ("No legal interpretation for operator&", N);
7083 Error_Msg_NE
7084 ("\use clause on& would make operation legal",
7085 N, Scope (Op_Id));
7086 exit;
7087 end if;
7088 end if;
7090 Op_Id := Homonym (Op_Id);
7091 end loop;
7093 if No (Op_Id) then
7094 Error_Msg_N ("invalid operand types for operator&", N);
7096 if Nkind (N) /= N_Op_Concat then
7097 Error_Msg_NE ("\left operand has}!", N, Etype (L));
7098 Error_Msg_NE ("\right operand has}!", N, Etype (R));
7100 -- For concatenation operators it is more difficult to
7101 -- determine which is the wrong operand. It is worth
7102 -- flagging explicitly an access type, for those who
7103 -- might think that a dereference happens here.
7105 elsif Is_Access_Type (Etype (L)) then
7106 Error_Msg_N ("\left operand is access type", N);
7108 elsif Is_Access_Type (Etype (R)) then
7109 Error_Msg_N ("\right operand is access type", N);
7110 end if;
7111 end if;
7112 end if;
7113 end if;
7114 end if;
7115 end;
7116 end if;
7117 end Operator_Check;
7119 -----------------------------------------
7120 -- Process_Implicit_Dereference_Prefix --
7121 -----------------------------------------
7123 function Process_Implicit_Dereference_Prefix
7124 (E : Entity_Id;
7125 P : Entity_Id) return Entity_Id
7127 Ref : Node_Id;
7128 Typ : constant Entity_Id := Designated_Type (Etype (P));
7130 begin
7131 if Present (E)
7132 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
7133 then
7134 -- We create a dummy reference to E to ensure that the reference is
7135 -- not considered as part of an assignment (an implicit dereference
7136 -- can never assign to its prefix). The Comes_From_Source attribute
7137 -- needs to be propagated for accurate warnings.
7139 Ref := New_Occurrence_Of (E, Sloc (P));
7140 Set_Comes_From_Source (Ref, Comes_From_Source (P));
7141 Generate_Reference (E, Ref);
7142 end if;
7144 -- An implicit dereference is a legal occurrence of an incomplete type
7145 -- imported through a limited_with clause, if the full view is visible.
7147 if From_Limited_With (Typ)
7148 and then not From_Limited_With (Scope (Typ))
7149 and then
7150 (Is_Immediately_Visible (Scope (Typ))
7151 or else
7152 (Is_Child_Unit (Scope (Typ))
7153 and then Is_Visible_Lib_Unit (Scope (Typ))))
7154 then
7155 return Available_View (Typ);
7156 else
7157 return Typ;
7158 end if;
7159 end Process_Implicit_Dereference_Prefix;
7161 --------------------------------
7162 -- Remove_Abstract_Operations --
7163 --------------------------------
7165 procedure Remove_Abstract_Operations (N : Node_Id) is
7166 Abstract_Op : Entity_Id := Empty;
7167 Address_Descendant : Boolean := False;
7168 I : Interp_Index;
7169 It : Interp;
7171 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
7172 -- activate this if either extensions are enabled, or if the abstract
7173 -- operation in question comes from a predefined file. This latter test
7174 -- allows us to use abstract to make operations invisible to users. In
7175 -- particular, if type Address is non-private and abstract subprograms
7176 -- are used to hide its operators, they will be truly hidden.
7178 type Operand_Position is (First_Op, Second_Op);
7179 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
7181 procedure Remove_Address_Interpretations (Op : Operand_Position);
7182 -- Ambiguities may arise when the operands are literal and the address
7183 -- operations in s-auxdec are visible. In that case, remove the
7184 -- interpretation of a literal as Address, to retain the semantics
7185 -- of Address as a private type.
7187 ------------------------------------
7188 -- Remove_Address_Interpretations --
7189 ------------------------------------
7191 procedure Remove_Address_Interpretations (Op : Operand_Position) is
7192 Formal : Entity_Id;
7194 begin
7195 if Is_Overloaded (N) then
7196 Get_First_Interp (N, I, It);
7197 while Present (It.Nam) loop
7198 Formal := First_Entity (It.Nam);
7200 if Op = Second_Op then
7201 Formal := Next_Entity (Formal);
7202 end if;
7204 if Is_Descendant_Of_Address (Etype (Formal)) then
7205 Address_Descendant := True;
7206 Remove_Interp (I);
7207 end if;
7209 Get_Next_Interp (I, It);
7210 end loop;
7211 end if;
7212 end Remove_Address_Interpretations;
7214 -- Start of processing for Remove_Abstract_Operations
7216 begin
7217 if Is_Overloaded (N) then
7218 if Debug_Flag_V then
7219 Write_Str ("Remove_Abstract_Operations: ");
7220 Write_Overloads (N);
7221 end if;
7223 Get_First_Interp (N, I, It);
7225 while Present (It.Nam) loop
7226 if Is_Overloadable (It.Nam)
7227 and then Is_Abstract_Subprogram (It.Nam)
7228 and then not Is_Dispatching_Operation (It.Nam)
7229 then
7230 Abstract_Op := It.Nam;
7232 if Is_Descendant_Of_Address (It.Typ) then
7233 Address_Descendant := True;
7234 Remove_Interp (I);
7235 exit;
7237 -- In Ada 2005, this operation does not participate in overload
7238 -- resolution. If the operation is defined in a predefined
7239 -- unit, it is one of the operations declared abstract in some
7240 -- variants of System, and it must be removed as well.
7242 elsif Ada_Version >= Ada_2005
7243 or else Is_Predefined_File_Name
7244 (Unit_File_Name (Get_Source_Unit (It.Nam)))
7245 then
7246 Remove_Interp (I);
7247 exit;
7248 end if;
7249 end if;
7251 Get_Next_Interp (I, It);
7252 end loop;
7254 if No (Abstract_Op) then
7256 -- If some interpretation yields an integer type, it is still
7257 -- possible that there are address interpretations. Remove them
7258 -- if one operand is a literal, to avoid spurious ambiguities
7259 -- on systems where Address is a visible integer type.
7261 if Is_Overloaded (N)
7262 and then Nkind (N) in N_Op
7263 and then Is_Integer_Type (Etype (N))
7264 then
7265 if Nkind (N) in N_Binary_Op then
7266 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
7267 Remove_Address_Interpretations (Second_Op);
7269 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
7270 Remove_Address_Interpretations (First_Op);
7271 end if;
7272 end if;
7273 end if;
7275 elsif Nkind (N) in N_Op then
7277 -- Remove interpretations that treat literals as addresses. This
7278 -- is never appropriate, even when Address is defined as a visible
7279 -- Integer type. The reason is that we would really prefer Address
7280 -- to behave as a private type, even in this case. If Address is a
7281 -- visible integer type, we get lots of overload ambiguities.
7283 if Nkind (N) in N_Binary_Op then
7284 declare
7285 U1 : constant Boolean :=
7286 Present (Universal_Interpretation (Right_Opnd (N)));
7287 U2 : constant Boolean :=
7288 Present (Universal_Interpretation (Left_Opnd (N)));
7290 begin
7291 if U1 then
7292 Remove_Address_Interpretations (Second_Op);
7293 end if;
7295 if U2 then
7296 Remove_Address_Interpretations (First_Op);
7297 end if;
7299 if not (U1 and U2) then
7301 -- Remove corresponding predefined operator, which is
7302 -- always added to the overload set.
7304 Get_First_Interp (N, I, It);
7305 while Present (It.Nam) loop
7306 if Scope (It.Nam) = Standard_Standard
7307 and then Base_Type (It.Typ) =
7308 Base_Type (Etype (Abstract_Op))
7309 then
7310 Remove_Interp (I);
7311 end if;
7313 Get_Next_Interp (I, It);
7314 end loop;
7316 elsif Is_Overloaded (N)
7317 and then Present (Univ_Type)
7318 then
7319 -- If both operands have a universal interpretation,
7320 -- it is still necessary to remove interpretations that
7321 -- yield Address. Any remaining ambiguities will be
7322 -- removed in Disambiguate.
7324 Get_First_Interp (N, I, It);
7325 while Present (It.Nam) loop
7326 if Is_Descendant_Of_Address (It.Typ) then
7327 Remove_Interp (I);
7329 elsif not Is_Type (It.Nam) then
7330 Set_Entity (N, It.Nam);
7331 end if;
7333 Get_Next_Interp (I, It);
7334 end loop;
7335 end if;
7336 end;
7337 end if;
7339 elsif Nkind (N) = N_Function_Call
7340 and then
7341 (Nkind (Name (N)) = N_Operator_Symbol
7342 or else
7343 (Nkind (Name (N)) = N_Expanded_Name
7344 and then
7345 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
7346 then
7348 declare
7349 Arg1 : constant Node_Id := First (Parameter_Associations (N));
7350 U1 : constant Boolean :=
7351 Present (Universal_Interpretation (Arg1));
7352 U2 : constant Boolean :=
7353 Present (Next (Arg1)) and then
7354 Present (Universal_Interpretation (Next (Arg1)));
7356 begin
7357 if U1 then
7358 Remove_Address_Interpretations (First_Op);
7359 end if;
7361 if U2 then
7362 Remove_Address_Interpretations (Second_Op);
7363 end if;
7365 if not (U1 and U2) then
7366 Get_First_Interp (N, I, It);
7367 while Present (It.Nam) loop
7368 if Scope (It.Nam) = Standard_Standard
7369 and then It.Typ = Base_Type (Etype (Abstract_Op))
7370 then
7371 Remove_Interp (I);
7372 end if;
7374 Get_Next_Interp (I, It);
7375 end loop;
7376 end if;
7377 end;
7378 end if;
7380 -- If the removal has left no valid interpretations, emit an error
7381 -- message now and label node as illegal.
7383 if Present (Abstract_Op) then
7384 Get_First_Interp (N, I, It);
7386 if No (It.Nam) then
7388 -- Removal of abstract operation left no viable candidate
7390 Set_Etype (N, Any_Type);
7391 Error_Msg_Sloc := Sloc (Abstract_Op);
7392 Error_Msg_NE
7393 ("cannot call abstract operation& declared#", N, Abstract_Op);
7395 -- In Ada 2005, an abstract operation may disable predefined
7396 -- operators. Since the context is not yet known, we mark the
7397 -- predefined operators as potentially hidden. Do not include
7398 -- predefined operators when addresses are involved since this
7399 -- case is handled separately.
7401 elsif Ada_Version >= Ada_2005 and then not Address_Descendant then
7402 while Present (It.Nam) loop
7403 if Is_Numeric_Type (It.Typ)
7404 and then Scope (It.Typ) = Standard_Standard
7405 then
7406 Set_Abstract_Op (I, Abstract_Op);
7407 end if;
7409 Get_Next_Interp (I, It);
7410 end loop;
7411 end if;
7412 end if;
7414 if Debug_Flag_V then
7415 Write_Str ("Remove_Abstract_Operations done: ");
7416 Write_Overloads (N);
7417 end if;
7418 end if;
7419 end Remove_Abstract_Operations;
7421 ----------------------------
7422 -- Try_Container_Indexing --
7423 ----------------------------
7425 function Try_Container_Indexing
7426 (N : Node_Id;
7427 Prefix : Node_Id;
7428 Exprs : List_Id) return Boolean
7430 Pref_Typ : constant Entity_Id := Etype (Prefix);
7432 function Constant_Indexing_OK return Boolean;
7433 -- Constant_Indexing is legal if there is no Variable_Indexing defined
7434 -- for the type, or else node not a target of assignment, or an actual
7435 -- for an IN OUT or OUT formal (RM 4.1.6 (11)).
7437 function Find_Indexing_Operations
7438 (T : Entity_Id;
7439 Nam : Name_Id;
7440 Is_Constant : Boolean) return Node_Id;
7441 -- Return a reference to the primitive operation of type T denoted by
7442 -- name Nam. If the operation is overloaded, the reference carries all
7443 -- interpretations. Flag Is_Constant should be set when the context is
7444 -- constant indexing.
7446 --------------------------
7447 -- Constant_Indexing_OK --
7448 --------------------------
7450 function Constant_Indexing_OK return Boolean is
7451 Par : Node_Id;
7453 begin
7454 if No (Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing)) then
7455 return True;
7457 elsif not Is_Variable (Prefix) then
7458 return True;
7459 end if;
7461 Par := N;
7462 while Present (Par) loop
7463 if Nkind (Parent (Par)) = N_Assignment_Statement
7464 and then Par = Name (Parent (Par))
7465 then
7466 return False;
7468 -- The call may be overloaded, in which case we assume that its
7469 -- resolution does not depend on the type of the parameter that
7470 -- includes the indexing operation.
7472 elsif Nkind_In (Parent (Par), N_Function_Call,
7473 N_Procedure_Call_Statement)
7474 and then Is_Entity_Name (Name (Parent (Par)))
7475 then
7476 declare
7477 Actual : Node_Id;
7478 Formal : Entity_Id;
7479 Proc : Entity_Id;
7481 begin
7482 -- We should look for an interpretation with the proper
7483 -- number of formals, and determine whether it is an
7484 -- In_Parameter, but for now we examine the formal that
7485 -- corresponds to the indexing, and assume that variable
7486 -- indexing is required if some interpretation has an
7487 -- assignable formal at that position. Still does not
7488 -- cover the most complex cases ???
7490 if Is_Overloaded (Name (Parent (Par))) then
7491 declare
7492 Proc : constant Node_Id := Name (Parent (Par));
7493 A : Node_Id;
7494 F : Entity_Id;
7495 I : Interp_Index;
7496 It : Interp;
7498 begin
7499 Get_First_Interp (Proc, I, It);
7500 while Present (It.Nam) loop
7501 F := First_Formal (It.Nam);
7502 A := First (Parameter_Associations (Parent (Par)));
7504 while Present (F) and then Present (A) loop
7505 if A = Par then
7506 if Ekind (F) /= E_In_Parameter then
7507 return False;
7508 else
7509 exit; -- interpretation is safe
7510 end if;
7511 end if;
7513 Next_Formal (F);
7514 Next_Actual (A);
7515 end loop;
7517 Get_Next_Interp (I, It);
7518 end loop;
7519 end;
7521 return True;
7523 else
7524 Proc := Entity (Name (Parent (Par)));
7526 -- If this is an indirect call, get formals from
7527 -- designated type.
7529 if Is_Access_Subprogram_Type (Etype (Proc)) then
7530 Proc := Designated_Type (Etype (Proc));
7531 end if;
7532 end if;
7534 Formal := First_Formal (Proc);
7535 Actual := First_Actual (Parent (Par));
7537 -- Find corresponding actual
7539 while Present (Actual) loop
7540 exit when Actual = Par;
7541 Next_Actual (Actual);
7543 if Present (Formal) then
7544 Next_Formal (Formal);
7546 -- Otherwise this is a parameter mismatch, the error is
7547 -- reported elsewhere.
7549 else
7550 return False;
7551 end if;
7552 end loop;
7554 return Ekind (Formal) = E_In_Parameter;
7555 end;
7557 elsif Nkind (Parent (Par)) = N_Object_Renaming_Declaration then
7558 return False;
7560 -- If the indexed component is a prefix it may be the first actual
7561 -- of a prefixed call. Retrieve the called entity, if any, and
7562 -- check its first formal. Determine if the context is a procedure
7563 -- or function call.
7565 elsif Nkind (Parent (Par)) = N_Selected_Component then
7566 declare
7567 Sel : constant Node_Id := Selector_Name (Parent (Par));
7568 Nam : constant Entity_Id := Current_Entity (Sel);
7570 begin
7571 if Present (Nam) and then Is_Overloadable (Nam) then
7572 if Nkind (Parent (Parent (Par))) =
7573 N_Procedure_Call_Statement
7574 then
7575 return False;
7577 elsif Ekind (Nam) = E_Function
7578 and then Present (First_Formal (Nam))
7579 then
7580 return Ekind (First_Formal (Nam)) = E_In_Parameter;
7581 end if;
7582 end if;
7583 end;
7585 elsif Nkind (Par) in N_Op then
7586 return True;
7587 end if;
7589 Par := Parent (Par);
7590 end loop;
7592 -- In all other cases, constant indexing is legal
7594 return True;
7595 end Constant_Indexing_OK;
7597 ------------------------------
7598 -- Find_Indexing_Operations --
7599 ------------------------------
7601 function Find_Indexing_Operations
7602 (T : Entity_Id;
7603 Nam : Name_Id;
7604 Is_Constant : Boolean) return Node_Id
7606 procedure Inspect_Declarations
7607 (Typ : Entity_Id;
7608 Ref : in out Node_Id);
7609 -- Traverse the declarative list where type Typ resides and collect
7610 -- all suitable interpretations in node Ref.
7612 procedure Inspect_Primitives
7613 (Typ : Entity_Id;
7614 Ref : in out Node_Id);
7615 -- Traverse the list of primitive operations of type Typ and collect
7616 -- all suitable interpretations in node Ref.
7618 function Is_OK_Candidate
7619 (Subp_Id : Entity_Id;
7620 Typ : Entity_Id) return Boolean;
7621 -- Determine whether subprogram Subp_Id is a suitable indexing
7622 -- operation for type Typ. To qualify as such, the subprogram must
7623 -- be a function, have at least two parameters, and the type of the
7624 -- first parameter must be either Typ, or Typ'Class, or access [to
7625 -- constant] with designated type Typ or Typ'Class.
7627 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id);
7628 -- Store subprogram Subp_Id as an interpretation in node Ref
7630 --------------------------
7631 -- Inspect_Declarations --
7632 --------------------------
7634 procedure Inspect_Declarations
7635 (Typ : Entity_Id;
7636 Ref : in out Node_Id)
7638 Typ_Decl : constant Node_Id := Declaration_Node (Typ);
7639 Decl : Node_Id;
7640 Subp_Id : Entity_Id;
7642 begin
7643 -- Ensure that the routine is not called with itypes, which lack a
7644 -- declarative node.
7646 pragma Assert (Present (Typ_Decl));
7647 pragma Assert (Is_List_Member (Typ_Decl));
7649 Decl := First (List_Containing (Typ_Decl));
7650 while Present (Decl) loop
7651 if Nkind (Decl) = N_Subprogram_Declaration then
7652 Subp_Id := Defining_Entity (Decl);
7654 if Is_OK_Candidate (Subp_Id, Typ) then
7655 Record_Interp (Subp_Id, Ref);
7656 end if;
7657 end if;
7659 Next (Decl);
7660 end loop;
7661 end Inspect_Declarations;
7663 ------------------------
7664 -- Inspect_Primitives --
7665 ------------------------
7667 procedure Inspect_Primitives
7668 (Typ : Entity_Id;
7669 Ref : in out Node_Id)
7671 Prim_Elmt : Elmt_Id;
7672 Prim_Id : Entity_Id;
7674 begin
7675 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
7676 while Present (Prim_Elmt) loop
7677 Prim_Id := Node (Prim_Elmt);
7679 if Is_OK_Candidate (Prim_Id, Typ) then
7680 Record_Interp (Prim_Id, Ref);
7681 end if;
7683 Next_Elmt (Prim_Elmt);
7684 end loop;
7685 end Inspect_Primitives;
7687 ---------------------
7688 -- Is_OK_Candidate --
7689 ---------------------
7691 function Is_OK_Candidate
7692 (Subp_Id : Entity_Id;
7693 Typ : Entity_Id) return Boolean
7695 Formal : Entity_Id;
7696 Formal_Typ : Entity_Id;
7697 Param_Typ : Node_Id;
7699 begin
7700 -- To classify as a suitable candidate, the subprogram must be a
7701 -- function whose name matches the argument of aspect Constant or
7702 -- Variable_Indexing.
7704 if Ekind (Subp_Id) = E_Function and then Chars (Subp_Id) = Nam then
7705 Formal := First_Formal (Subp_Id);
7707 -- The candidate requires at least two parameters
7709 if Present (Formal) and then Present (Next_Formal (Formal)) then
7710 Formal_Typ := Empty;
7711 Param_Typ := Parameter_Type (Parent (Formal));
7713 -- Use the designated type when the first parameter is of an
7714 -- access type.
7716 if Nkind (Param_Typ) = N_Access_Definition
7717 and then Present (Subtype_Mark (Param_Typ))
7718 then
7719 -- When the context is a constant indexing, the access
7720 -- definition must be access-to-constant. This does not
7721 -- apply to variable indexing.
7723 if not Is_Constant
7724 or else Constant_Present (Param_Typ)
7725 then
7726 Formal_Typ := Etype (Subtype_Mark (Param_Typ));
7727 end if;
7729 -- Otherwise use the parameter type
7731 else
7732 Formal_Typ := Etype (Param_Typ);
7733 end if;
7735 if Present (Formal_Typ) then
7737 -- Use the specific type when the parameter type is
7738 -- class-wide.
7740 if Is_Class_Wide_Type (Formal_Typ) then
7741 Formal_Typ := Etype (Base_Type (Formal_Typ));
7742 end if;
7744 -- Use the full view when the parameter type is private
7745 -- or incomplete.
7747 if Is_Incomplete_Or_Private_Type (Formal_Typ)
7748 and then Present (Full_View (Formal_Typ))
7749 then
7750 Formal_Typ := Full_View (Formal_Typ);
7751 end if;
7753 -- The type of the first parameter must denote the type
7754 -- of the container or acts as its ancestor type.
7756 return
7757 Formal_Typ = Typ
7758 or else Is_Ancestor (Formal_Typ, Typ);
7759 end if;
7760 end if;
7761 end if;
7763 return False;
7764 end Is_OK_Candidate;
7766 -------------------
7767 -- Record_Interp --
7768 -------------------
7770 procedure Record_Interp (Subp_Id : Entity_Id; Ref : in out Node_Id) is
7771 begin
7772 if Present (Ref) then
7773 Add_One_Interp (Ref, Subp_Id, Etype (Subp_Id));
7775 -- Otherwise this is the first interpretation. Create a reference
7776 -- where all remaining interpretations will be collected.
7778 else
7779 Ref := New_Occurrence_Of (Subp_Id, Sloc (T));
7780 end if;
7781 end Record_Interp;
7783 -- Local variables
7785 Ref : Node_Id;
7786 Typ : Entity_Id;
7788 -- Start of processing for Find_Indexing_Operations
7790 begin
7791 Typ := T;
7793 -- Use the specific type when the parameter type is class-wide
7795 if Is_Class_Wide_Type (Typ) then
7796 Typ := Root_Type (Typ);
7797 end if;
7799 Ref := Empty;
7800 Typ := Underlying_Type (Base_Type (Typ));
7802 Inspect_Primitives (Typ, Ref);
7803 Inspect_Declarations (Typ, Ref);
7805 return Ref;
7806 end Find_Indexing_Operations;
7808 -- Local variables
7810 Loc : constant Source_Ptr := Sloc (N);
7811 Assoc : List_Id;
7812 C_Type : Entity_Id;
7813 Func : Entity_Id;
7814 Func_Name : Node_Id;
7815 Indexing : Node_Id;
7817 Is_Constant_Indexing : Boolean := False;
7818 -- This flag reflects the nature of the container indexing. Note that
7819 -- the context may be suited for constant indexing, but the type may
7820 -- lack a Constant_Indexing annotation.
7822 -- Start of processing for Try_Container_Indexing
7824 begin
7825 -- Node may have been analyzed already when testing for a prefixed
7826 -- call, in which case do not redo analysis.
7828 if Present (Generalized_Indexing (N)) then
7829 return True;
7830 end if;
7832 C_Type := Pref_Typ;
7834 -- If indexing a class-wide container, obtain indexing primitive from
7835 -- specific type.
7837 if Is_Class_Wide_Type (C_Type) then
7838 C_Type := Etype (Base_Type (C_Type));
7839 end if;
7841 -- Check whether the type has a specified indexing aspect
7843 Func_Name := Empty;
7845 -- The context is suitable for constant indexing, so obtain the name of
7846 -- the indexing function from aspect Constant_Indexing.
7848 if Constant_Indexing_OK then
7849 Func_Name :=
7850 Find_Value_Of_Aspect (Pref_Typ, Aspect_Constant_Indexing);
7851 end if;
7853 if Present (Func_Name) then
7854 Is_Constant_Indexing := True;
7856 -- Otherwise attempt variable indexing
7858 else
7859 Func_Name :=
7860 Find_Value_Of_Aspect (Pref_Typ, Aspect_Variable_Indexing);
7861 end if;
7863 -- The type is not subject to either form of indexing, therefore the
7864 -- indexed component does not denote container indexing. If this is a
7865 -- true error, it is diagnosed by the caller.
7867 if No (Func_Name) then
7869 -- The prefix itself may be an indexing of a container. Rewrite it
7870 -- as such and retry.
7872 if Has_Implicit_Dereference (Pref_Typ) then
7873 Build_Explicit_Dereference (Prefix, First_Discriminant (Pref_Typ));
7874 return Try_Container_Indexing (N, Prefix, Exprs);
7876 -- Otherwise this is definitely not container indexing
7878 else
7879 return False;
7880 end if;
7882 -- If the container type is derived from another container type, the
7883 -- value of the inherited aspect is the Reference operation declared
7884 -- for the parent type.
7886 -- However, Reference is also a primitive operation of the type, and the
7887 -- inherited operation has a different signature. We retrieve the right
7888 -- ones (the function may be overloaded) from the list of primitive
7889 -- operations of the derived type.
7891 -- Note that predefined containers are typically all derived from one of
7892 -- the Controlled types. The code below is motivated by containers that
7893 -- are derived from other types with a Reference aspect.
7895 elsif Is_Derived_Type (C_Type)
7896 and then Etype (First_Formal (Entity (Func_Name))) /= Pref_Typ
7897 then
7898 Func_Name :=
7899 Find_Indexing_Operations
7900 (T => C_Type,
7901 Nam => Chars (Func_Name),
7902 Is_Constant => Is_Constant_Indexing);
7903 end if;
7905 Assoc := New_List (Relocate_Node (Prefix));
7907 -- A generalized indexing may have nore than one index expression, so
7908 -- transfer all of them to the argument list to be used in the call.
7909 -- Note that there may be named associations, in which case the node
7910 -- was rewritten earlier as a call, and has been transformed back into
7911 -- an indexed expression to share the following processing.
7913 -- The generalized indexing node is the one on which analysis and
7914 -- resolution take place. Before expansion the original node is replaced
7915 -- with the generalized indexing node, which is a call, possibly with a
7916 -- dereference operation.
7918 if Comes_From_Source (N) then
7919 Check_Compiler_Unit ("generalized indexing", N);
7920 end if;
7922 -- Create argument list for function call that represents generalized
7923 -- indexing. Note that indices (i.e. actuals) may themselves be
7924 -- overloaded.
7926 declare
7927 Arg : Node_Id;
7928 New_Arg : Node_Id;
7930 begin
7931 Arg := First (Exprs);
7932 while Present (Arg) loop
7933 New_Arg := Relocate_Node (Arg);
7935 -- The arguments can be parameter associations, in which case the
7936 -- explicit actual parameter carries the overloadings.
7938 if Nkind (New_Arg) /= N_Parameter_Association then
7939 Save_Interps (Arg, New_Arg);
7940 end if;
7942 Append (New_Arg, Assoc);
7943 Next (Arg);
7944 end loop;
7945 end;
7947 if not Is_Overloaded (Func_Name) then
7948 Func := Entity (Func_Name);
7949 Indexing :=
7950 Make_Function_Call (Loc,
7951 Name => New_Occurrence_Of (Func, Loc),
7952 Parameter_Associations => Assoc);
7953 Set_Parent (Indexing, Parent (N));
7954 Set_Generalized_Indexing (N, Indexing);
7955 Analyze (Indexing);
7956 Set_Etype (N, Etype (Indexing));
7958 -- If the return type of the indexing function is a reference type,
7959 -- add the dereference as a possible interpretation. Note that the
7960 -- indexing aspect may be a function that returns the element type
7961 -- with no intervening implicit dereference, and that the reference
7962 -- discriminant is not the first discriminant.
7964 if Has_Discriminants (Etype (Func)) then
7965 Check_Implicit_Dereference (N, Etype (Func));
7966 end if;
7968 else
7969 -- If there are multiple indexing functions, build a function call
7970 -- and analyze it for each of the possible interpretations.
7972 Indexing :=
7973 Make_Function_Call (Loc,
7974 Name =>
7975 Make_Identifier (Loc, Chars (Func_Name)),
7976 Parameter_Associations => Assoc);
7978 Set_Parent (Indexing, Parent (N));
7979 Set_Generalized_Indexing (N, Indexing);
7980 Set_Etype (N, Any_Type);
7981 Set_Etype (Name (Indexing), Any_Type);
7983 declare
7984 I : Interp_Index;
7985 It : Interp;
7986 Success : Boolean;
7988 begin
7989 Get_First_Interp (Func_Name, I, It);
7990 Set_Etype (Indexing, Any_Type);
7992 -- Analyze eacn candidae function with the given actuals
7994 while Present (It.Nam) loop
7995 Analyze_One_Call (Indexing, It.Nam, False, Success);
7996 Get_Next_Interp (I, It);
7997 end loop;
7999 -- If there are several successful candidates, resolution will
8000 -- be by result. Mark the interpretations of the function name
8001 -- itself.
8003 if Is_Overloaded (Indexing) then
8004 Get_First_Interp (Indexing, I, It);
8006 while Present (It.Nam) loop
8007 Add_One_Interp (Name (Indexing), It.Nam, It.Typ);
8008 Get_Next_Interp (I, It);
8009 end loop;
8011 else
8012 Set_Etype (Name (Indexing), Etype (Indexing));
8013 end if;
8015 -- Now add the candidate interpretations to the indexing node
8016 -- itself, to be replaced later by the function call.
8018 if Is_Overloaded (Name (Indexing)) then
8019 Get_First_Interp (Name (Indexing), I, It);
8021 while Present (It.Nam) loop
8022 Add_One_Interp (N, It.Nam, It.Typ);
8024 -- Add dereference interpretation if the result type has
8025 -- implicit reference discriminants.
8027 if Has_Discriminants (Etype (It.Nam)) then
8028 Check_Implicit_Dereference (N, Etype (It.Nam));
8029 end if;
8031 Get_Next_Interp (I, It);
8032 end loop;
8034 else
8035 Set_Etype (N, Etype (Name (Indexing)));
8036 if Has_Discriminants (Etype (N)) then
8037 Check_Implicit_Dereference (N, Etype (N));
8038 end if;
8039 end if;
8040 end;
8041 end if;
8043 if Etype (Indexing) = Any_Type then
8044 Error_Msg_NE
8045 ("container cannot be indexed with&", N, Etype (First (Exprs)));
8046 Rewrite (N, New_Occurrence_Of (Any_Id, Loc));
8047 end if;
8049 return True;
8050 end Try_Container_Indexing;
8052 -----------------------
8053 -- Try_Indirect_Call --
8054 -----------------------
8056 function Try_Indirect_Call
8057 (N : Node_Id;
8058 Nam : Entity_Id;
8059 Typ : Entity_Id) return Boolean
8061 Actual : Node_Id;
8062 Formal : Entity_Id;
8064 Call_OK : Boolean;
8065 pragma Warnings (Off, Call_OK);
8067 begin
8068 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
8070 Actual := First_Actual (N);
8071 Formal := First_Formal (Designated_Type (Typ));
8072 while Present (Actual) and then Present (Formal) loop
8073 if not Has_Compatible_Type (Actual, Etype (Formal)) then
8074 return False;
8075 end if;
8077 Next (Actual);
8078 Next_Formal (Formal);
8079 end loop;
8081 if No (Actual) and then No (Formal) then
8082 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
8084 -- Nam is a candidate interpretation for the name in the call,
8085 -- if it is not an indirect call.
8087 if not Is_Type (Nam)
8088 and then Is_Entity_Name (Name (N))
8089 then
8090 Set_Entity (Name (N), Nam);
8091 end if;
8093 return True;
8095 else
8096 return False;
8097 end if;
8098 end Try_Indirect_Call;
8100 ----------------------
8101 -- Try_Indexed_Call --
8102 ----------------------
8104 function Try_Indexed_Call
8105 (N : Node_Id;
8106 Nam : Entity_Id;
8107 Typ : Entity_Id;
8108 Skip_First : Boolean) return Boolean
8110 Loc : constant Source_Ptr := Sloc (N);
8111 Actuals : constant List_Id := Parameter_Associations (N);
8112 Actual : Node_Id;
8113 Index : Entity_Id;
8115 begin
8116 Actual := First (Actuals);
8118 -- If the call was originally written in prefix form, skip the first
8119 -- actual, which is obviously not defaulted.
8121 if Skip_First then
8122 Next (Actual);
8123 end if;
8125 Index := First_Index (Typ);
8126 while Present (Actual) and then Present (Index) loop
8128 -- If the parameter list has a named association, the expression
8129 -- is definitely a call and not an indexed component.
8131 if Nkind (Actual) = N_Parameter_Association then
8132 return False;
8133 end if;
8135 if Is_Entity_Name (Actual)
8136 and then Is_Type (Entity (Actual))
8137 and then No (Next (Actual))
8138 then
8139 -- A single actual that is a type name indicates a slice if the
8140 -- type is discrete, and an error otherwise.
8142 if Is_Discrete_Type (Entity (Actual)) then
8143 Rewrite (N,
8144 Make_Slice (Loc,
8145 Prefix =>
8146 Make_Function_Call (Loc,
8147 Name => Relocate_Node (Name (N))),
8148 Discrete_Range =>
8149 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
8151 Analyze (N);
8153 else
8154 Error_Msg_N ("invalid use of type in expression", Actual);
8155 Set_Etype (N, Any_Type);
8156 end if;
8158 return True;
8160 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
8161 return False;
8162 end if;
8164 Next (Actual);
8165 Next_Index (Index);
8166 end loop;
8168 if No (Actual) and then No (Index) then
8169 Add_One_Interp (N, Nam, Component_Type (Typ));
8171 -- Nam is a candidate interpretation for the name in the call,
8172 -- if it is not an indirect call.
8174 if not Is_Type (Nam)
8175 and then Is_Entity_Name (Name (N))
8176 then
8177 Set_Entity (Name (N), Nam);
8178 end if;
8180 return True;
8181 else
8182 return False;
8183 end if;
8184 end Try_Indexed_Call;
8186 --------------------------
8187 -- Try_Object_Operation --
8188 --------------------------
8190 function Try_Object_Operation
8191 (N : Node_Id; CW_Test_Only : Boolean := False) return Boolean
8193 K : constant Node_Kind := Nkind (Parent (N));
8194 Is_Subprg_Call : constant Boolean := K in N_Subprogram_Call;
8195 Loc : constant Source_Ptr := Sloc (N);
8196 Obj : constant Node_Id := Prefix (N);
8198 Subprog : constant Node_Id :=
8199 Make_Identifier (Sloc (Selector_Name (N)),
8200 Chars => Chars (Selector_Name (N)));
8201 -- Identifier on which possible interpretations will be collected
8203 Report_Error : Boolean := False;
8204 -- If no candidate interpretation matches the context, redo analysis
8205 -- with Report_Error True to provide additional information.
8207 Actual : Node_Id;
8208 Candidate : Entity_Id := Empty;
8209 New_Call_Node : Node_Id := Empty;
8210 Node_To_Replace : Node_Id;
8211 Obj_Type : Entity_Id := Etype (Obj);
8212 Success : Boolean := False;
8214 function Valid_Candidate
8215 (Success : Boolean;
8216 Call : Node_Id;
8217 Subp : Entity_Id) return Entity_Id;
8218 -- If the subprogram is a valid interpretation, record it, and add
8219 -- to the list of interpretations of Subprog. Otherwise return Empty.
8221 procedure Complete_Object_Operation
8222 (Call_Node : Node_Id;
8223 Node_To_Replace : Node_Id);
8224 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
8225 -- Call_Node, insert the object (or its dereference) as the first actual
8226 -- in the call, and complete the analysis of the call.
8228 procedure Report_Ambiguity (Op : Entity_Id);
8229 -- If a prefixed procedure call is ambiguous, indicate whether the
8230 -- call includes an implicit dereference or an implicit 'Access.
8232 procedure Transform_Object_Operation
8233 (Call_Node : out Node_Id;
8234 Node_To_Replace : out Node_Id);
8235 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
8236 -- Call_Node is the resulting subprogram call, Node_To_Replace is
8237 -- either N or the parent of N, and Subprog is a reference to the
8238 -- subprogram we are trying to match.
8240 function Try_Class_Wide_Operation
8241 (Call_Node : Node_Id;
8242 Node_To_Replace : Node_Id) return Boolean;
8243 -- Traverse all ancestor types looking for a class-wide subprogram
8244 -- for which the current operation is a valid non-dispatching call.
8246 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
8247 -- If prefix is overloaded, its interpretation may include different
8248 -- tagged types, and we must examine the primitive operations and
8249 -- the class-wide operations of each in order to find candidate
8250 -- interpretations for the call as a whole.
8252 function Try_Primitive_Operation
8253 (Call_Node : Node_Id;
8254 Node_To_Replace : Node_Id) return Boolean;
8255 -- Traverse the list of primitive subprograms looking for a dispatching
8256 -- operation for which the current node is a valid call .
8258 ---------------------
8259 -- Valid_Candidate --
8260 ---------------------
8262 function Valid_Candidate
8263 (Success : Boolean;
8264 Call : Node_Id;
8265 Subp : Entity_Id) return Entity_Id
8267 Arr_Type : Entity_Id;
8268 Comp_Type : Entity_Id;
8270 begin
8271 -- If the subprogram is a valid interpretation, record it in global
8272 -- variable Subprog, to collect all possible overloadings.
8274 if Success then
8275 if Subp /= Entity (Subprog) then
8276 Add_One_Interp (Subprog, Subp, Etype (Subp));
8277 end if;
8278 end if;
8280 -- If the call may be an indexed call, retrieve component type of
8281 -- resulting expression, and add possible interpretation.
8283 Arr_Type := Empty;
8284 Comp_Type := Empty;
8286 if Nkind (Call) = N_Function_Call
8287 and then Nkind (Parent (N)) = N_Indexed_Component
8288 and then Needs_One_Actual (Subp)
8289 then
8290 if Is_Array_Type (Etype (Subp)) then
8291 Arr_Type := Etype (Subp);
8293 elsif Is_Access_Type (Etype (Subp))
8294 and then Is_Array_Type (Designated_Type (Etype (Subp)))
8295 then
8296 Arr_Type := Designated_Type (Etype (Subp));
8297 end if;
8298 end if;
8300 if Present (Arr_Type) then
8302 -- Verify that the actuals (excluding the object) match the types
8303 -- of the indexes.
8305 declare
8306 Actual : Node_Id;
8307 Index : Node_Id;
8309 begin
8310 Actual := Next (First_Actual (Call));
8311 Index := First_Index (Arr_Type);
8312 while Present (Actual) and then Present (Index) loop
8313 if not Has_Compatible_Type (Actual, Etype (Index)) then
8314 Arr_Type := Empty;
8315 exit;
8316 end if;
8318 Next_Actual (Actual);
8319 Next_Index (Index);
8320 end loop;
8322 if No (Actual)
8323 and then No (Index)
8324 and then Present (Arr_Type)
8325 then
8326 Comp_Type := Component_Type (Arr_Type);
8327 end if;
8328 end;
8330 if Present (Comp_Type)
8331 and then Etype (Subprog) /= Comp_Type
8332 then
8333 Add_One_Interp (Subprog, Subp, Comp_Type);
8334 end if;
8335 end if;
8337 if Etype (Call) /= Any_Type then
8338 return Subp;
8339 else
8340 return Empty;
8341 end if;
8342 end Valid_Candidate;
8344 -------------------------------
8345 -- Complete_Object_Operation --
8346 -------------------------------
8348 procedure Complete_Object_Operation
8349 (Call_Node : Node_Id;
8350 Node_To_Replace : Node_Id)
8352 Control : constant Entity_Id := First_Formal (Entity (Subprog));
8353 Formal_Type : constant Entity_Id := Etype (Control);
8354 First_Actual : Node_Id;
8356 begin
8357 -- Place the name of the operation, with its interpretations,
8358 -- on the rewritten call.
8360 Set_Name (Call_Node, Subprog);
8362 First_Actual := First (Parameter_Associations (Call_Node));
8364 -- For cross-reference purposes, treat the new node as being in the
8365 -- source if the original one is. Set entity and type, even though
8366 -- they may be overwritten during resolution if overloaded.
8368 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
8369 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
8371 if Nkind (N) = N_Selected_Component
8372 and then not Inside_A_Generic
8373 then
8374 Set_Entity (Selector_Name (N), Entity (Subprog));
8375 Set_Etype (Selector_Name (N), Etype (Entity (Subprog)));
8376 end if;
8378 -- If need be, rewrite first actual as an explicit dereference. If
8379 -- the call is overloaded, the rewriting can only be done once the
8380 -- primitive operation is identified.
8382 if Is_Overloaded (Subprog) then
8384 -- The prefix itself may be overloaded, and its interpretations
8385 -- must be propagated to the new actual in the call.
8387 if Is_Overloaded (Obj) then
8388 Save_Interps (Obj, First_Actual);
8389 end if;
8391 Rewrite (First_Actual, Obj);
8393 elsif not Is_Access_Type (Formal_Type)
8394 and then Is_Access_Type (Etype (Obj))
8395 then
8396 Rewrite (First_Actual,
8397 Make_Explicit_Dereference (Sloc (Obj), Obj));
8398 Analyze (First_Actual);
8400 -- If we need to introduce an explicit dereference, verify that
8401 -- the resulting actual is compatible with the mode of the formal.
8403 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
8404 and then Is_Access_Constant (Etype (Obj))
8405 then
8406 Error_Msg_NE
8407 ("expect variable in call to&", Prefix (N), Entity (Subprog));
8408 end if;
8410 -- Conversely, if the formal is an access parameter and the object
8411 -- is not, replace the actual with a 'Access reference. Its analysis
8412 -- will check that the object is aliased.
8414 elsif Is_Access_Type (Formal_Type)
8415 and then not Is_Access_Type (Etype (Obj))
8416 then
8417 -- A special case: A.all'access is illegal if A is an access to a
8418 -- constant and the context requires an access to a variable.
8420 if not Is_Access_Constant (Formal_Type) then
8421 if (Nkind (Obj) = N_Explicit_Dereference
8422 and then Is_Access_Constant (Etype (Prefix (Obj))))
8423 or else not Is_Variable (Obj)
8424 then
8425 Error_Msg_NE
8426 ("actual for & must be a variable", Obj, Control);
8427 end if;
8428 end if;
8430 Rewrite (First_Actual,
8431 Make_Attribute_Reference (Loc,
8432 Attribute_Name => Name_Access,
8433 Prefix => Relocate_Node (Obj)));
8435 if not Is_Aliased_View (Obj) then
8436 Error_Msg_NE
8437 ("object in prefixed call to & must be aliased "
8438 & "(RM 4.1.3 (13 1/2))", Prefix (First_Actual), Subprog);
8439 end if;
8441 Analyze (First_Actual);
8443 else
8444 if Is_Overloaded (Obj) then
8445 Save_Interps (Obj, First_Actual);
8446 end if;
8448 Rewrite (First_Actual, Obj);
8449 end if;
8451 -- The operation is obtained from the dispatch table and not by
8452 -- visibility, and may be declared in a unit that is not explicitly
8453 -- referenced in the source, but is nevertheless required in the
8454 -- context of the current unit. Indicate that operation and its scope
8455 -- are referenced, to prevent spurious and misleading warnings. If
8456 -- the operation is overloaded, all primitives are in the same scope
8457 -- and we can use any of them.
8459 Set_Referenced (Entity (Subprog), True);
8460 Set_Referenced (Scope (Entity (Subprog)), True);
8462 Rewrite (Node_To_Replace, Call_Node);
8464 -- Propagate the interpretations collected in subprog to the new
8465 -- function call node, to be resolved from context.
8467 if Is_Overloaded (Subprog) then
8468 Save_Interps (Subprog, Node_To_Replace);
8470 else
8471 -- The type of the subprogram may be a limited view obtained
8472 -- transitively from another unit. If full view is available,
8473 -- use it to analyze call.
8475 declare
8476 T : constant Entity_Id := Etype (Subprog);
8477 begin
8478 if From_Limited_With (T) then
8479 Set_Etype (Entity (Subprog), Available_View (T));
8480 end if;
8481 end;
8483 Analyze (Node_To_Replace);
8485 -- If the operation has been rewritten into a call, which may get
8486 -- subsequently an explicit dereference, preserve the type on the
8487 -- original node (selected component or indexed component) for
8488 -- subsequent legality tests, e.g. Is_Variable. which examines
8489 -- the original node.
8491 if Nkind (Node_To_Replace) = N_Function_Call then
8492 Set_Etype
8493 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
8494 end if;
8495 end if;
8496 end Complete_Object_Operation;
8498 ----------------------
8499 -- Report_Ambiguity --
8500 ----------------------
8502 procedure Report_Ambiguity (Op : Entity_Id) is
8503 Access_Actual : constant Boolean :=
8504 Is_Access_Type (Etype (Prefix (N)));
8505 Access_Formal : Boolean := False;
8507 begin
8508 Error_Msg_Sloc := Sloc (Op);
8510 if Present (First_Formal (Op)) then
8511 Access_Formal := Is_Access_Type (Etype (First_Formal (Op)));
8512 end if;
8514 if Access_Formal and then not Access_Actual then
8515 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8516 Error_Msg_N
8517 ("\possible interpretation "
8518 & "(inherited, with implicit 'Access) #", N);
8519 else
8520 Error_Msg_N
8521 ("\possible interpretation (with implicit 'Access) #", N);
8522 end if;
8524 elsif not Access_Formal and then Access_Actual then
8525 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8526 Error_Msg_N
8527 ("\possible interpretation "
8528 & "(inherited, with implicit dereference) #", N);
8529 else
8530 Error_Msg_N
8531 ("\possible interpretation (with implicit dereference) #", N);
8532 end if;
8534 else
8535 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
8536 Error_Msg_N ("\possible interpretation (inherited)#", N);
8537 else
8538 Error_Msg_N -- CODEFIX
8539 ("\possible interpretation#", N);
8540 end if;
8541 end if;
8542 end Report_Ambiguity;
8544 --------------------------------
8545 -- Transform_Object_Operation --
8546 --------------------------------
8548 procedure Transform_Object_Operation
8549 (Call_Node : out Node_Id;
8550 Node_To_Replace : out Node_Id)
8552 Dummy : constant Node_Id := New_Copy (Obj);
8553 -- Placeholder used as a first parameter in the call, replaced
8554 -- eventually by the proper object.
8556 Parent_Node : constant Node_Id := Parent (N);
8558 Actual : Node_Id;
8559 Actuals : List_Id;
8561 begin
8562 -- Common case covering 1) Call to a procedure and 2) Call to a
8563 -- function that has some additional actuals.
8565 if Nkind (Parent_Node) in N_Subprogram_Call
8567 -- N is a selected component node containing the name of the
8568 -- subprogram. If N is not the name of the parent node we must
8569 -- not replace the parent node by the new construct. This case
8570 -- occurs when N is a parameterless call to a subprogram that
8571 -- is an actual parameter of a call to another subprogram. For
8572 -- example:
8573 -- Some_Subprogram (..., Obj.Operation, ...)
8575 and then Name (Parent_Node) = N
8576 then
8577 Node_To_Replace := Parent_Node;
8579 Actuals := Parameter_Associations (Parent_Node);
8581 if Present (Actuals) then
8582 Prepend (Dummy, Actuals);
8583 else
8584 Actuals := New_List (Dummy);
8585 end if;
8587 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
8588 Call_Node :=
8589 Make_Procedure_Call_Statement (Loc,
8590 Name => New_Copy (Subprog),
8591 Parameter_Associations => Actuals);
8593 else
8594 Call_Node :=
8595 Make_Function_Call (Loc,
8596 Name => New_Copy (Subprog),
8597 Parameter_Associations => Actuals);
8598 end if;
8600 -- Before analysis, a function call appears as an indexed component
8601 -- if there are no named associations.
8603 elsif Nkind (Parent_Node) = N_Indexed_Component
8604 and then N = Prefix (Parent_Node)
8605 then
8606 Node_To_Replace := Parent_Node;
8607 Actuals := Expressions (Parent_Node);
8609 Actual := First (Actuals);
8610 while Present (Actual) loop
8611 Analyze (Actual);
8612 Next (Actual);
8613 end loop;
8615 Prepend (Dummy, Actuals);
8617 Call_Node :=
8618 Make_Function_Call (Loc,
8619 Name => New_Copy (Subprog),
8620 Parameter_Associations => Actuals);
8622 -- Parameterless call: Obj.F is rewritten as F (Obj)
8624 else
8625 Node_To_Replace := N;
8627 Call_Node :=
8628 Make_Function_Call (Loc,
8629 Name => New_Copy (Subprog),
8630 Parameter_Associations => New_List (Dummy));
8631 end if;
8632 end Transform_Object_Operation;
8634 ------------------------------
8635 -- Try_Class_Wide_Operation --
8636 ------------------------------
8638 function Try_Class_Wide_Operation
8639 (Call_Node : Node_Id;
8640 Node_To_Replace : Node_Id) return Boolean
8642 Anc_Type : Entity_Id;
8643 Matching_Op : Entity_Id := Empty;
8644 Error : Boolean;
8646 procedure Traverse_Homonyms
8647 (Anc_Type : Entity_Id;
8648 Error : out Boolean);
8649 -- Traverse the homonym chain of the subprogram searching for those
8650 -- homonyms whose first formal has the Anc_Type's class-wide type,
8651 -- or an anonymous access type designating the class-wide type. If
8652 -- an ambiguity is detected, then Error is set to True.
8654 procedure Traverse_Interfaces
8655 (Anc_Type : Entity_Id;
8656 Error : out Boolean);
8657 -- Traverse the list of interfaces, if any, associated with Anc_Type
8658 -- and search for acceptable class-wide homonyms associated with each
8659 -- interface. If an ambiguity is detected, then Error is set to True.
8661 -----------------------
8662 -- Traverse_Homonyms --
8663 -----------------------
8665 procedure Traverse_Homonyms
8666 (Anc_Type : Entity_Id;
8667 Error : out Boolean)
8669 Cls_Type : Entity_Id;
8670 Hom : Entity_Id;
8671 Hom_Ref : Node_Id;
8672 Success : Boolean;
8674 begin
8675 Error := False;
8677 Cls_Type := Class_Wide_Type (Anc_Type);
8679 Hom := Current_Entity (Subprog);
8681 -- Find a non-hidden operation whose first parameter is of the
8682 -- class-wide type, a subtype thereof, or an anonymous access
8683 -- to same. If in an instance, the operation can be considered
8684 -- even if hidden (it may be hidden because the instantiation
8685 -- is expanded after the containing package has been analyzed).
8687 while Present (Hom) loop
8688 if Ekind_In (Hom, E_Procedure, E_Function)
8689 and then (not Is_Hidden (Hom) or else In_Instance)
8690 and then Scope (Hom) = Scope (Anc_Type)
8691 and then Present (First_Formal (Hom))
8692 and then
8693 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
8694 or else
8695 (Is_Access_Type (Etype (First_Formal (Hom)))
8696 and then
8697 Ekind (Etype (First_Formal (Hom))) =
8698 E_Anonymous_Access_Type
8699 and then
8700 Base_Type
8701 (Designated_Type (Etype (First_Formal (Hom)))) =
8702 Cls_Type))
8703 then
8704 -- If the context is a procedure call, ignore functions
8705 -- in the name of the call.
8707 if Ekind (Hom) = E_Function
8708 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
8709 and then N = Name (Parent (N))
8710 then
8711 goto Next_Hom;
8713 -- If the context is a function call, ignore procedures
8714 -- in the name of the call.
8716 elsif Ekind (Hom) = E_Procedure
8717 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
8718 then
8719 goto Next_Hom;
8720 end if;
8722 Set_Etype (Call_Node, Any_Type);
8723 Set_Is_Overloaded (Call_Node, False);
8724 Success := False;
8726 if No (Matching_Op) then
8727 Hom_Ref := New_Occurrence_Of (Hom, Sloc (Subprog));
8728 Set_Etype (Call_Node, Any_Type);
8729 Set_Parent (Call_Node, Parent (Node_To_Replace));
8731 Set_Name (Call_Node, Hom_Ref);
8733 Analyze_One_Call
8734 (N => Call_Node,
8735 Nam => Hom,
8736 Report => Report_Error,
8737 Success => Success,
8738 Skip_First => True);
8740 Matching_Op :=
8741 Valid_Candidate (Success, Call_Node, Hom);
8743 else
8744 Analyze_One_Call
8745 (N => Call_Node,
8746 Nam => Hom,
8747 Report => Report_Error,
8748 Success => Success,
8749 Skip_First => True);
8751 if Present (Valid_Candidate (Success, Call_Node, Hom))
8752 and then Nkind (Call_Node) /= N_Function_Call
8753 then
8754 Error_Msg_NE ("ambiguous call to&", N, Hom);
8755 Report_Ambiguity (Matching_Op);
8756 Report_Ambiguity (Hom);
8757 Error := True;
8758 return;
8759 end if;
8760 end if;
8761 end if;
8763 <<Next_Hom>>
8764 Hom := Homonym (Hom);
8765 end loop;
8766 end Traverse_Homonyms;
8768 -------------------------
8769 -- Traverse_Interfaces --
8770 -------------------------
8772 procedure Traverse_Interfaces
8773 (Anc_Type : Entity_Id;
8774 Error : out Boolean)
8776 Intface_List : constant List_Id :=
8777 Abstract_Interface_List (Anc_Type);
8778 Intface : Node_Id;
8780 begin
8781 Error := False;
8783 if Is_Non_Empty_List (Intface_List) then
8784 Intface := First (Intface_List);
8785 while Present (Intface) loop
8787 -- Look for acceptable class-wide homonyms associated with
8788 -- the interface.
8790 Traverse_Homonyms (Etype (Intface), Error);
8792 if Error then
8793 return;
8794 end if;
8796 -- Continue the search by looking at each of the interface's
8797 -- associated interface ancestors.
8799 Traverse_Interfaces (Etype (Intface), Error);
8801 if Error then
8802 return;
8803 end if;
8805 Next (Intface);
8806 end loop;
8807 end if;
8808 end Traverse_Interfaces;
8810 -- Start of processing for Try_Class_Wide_Operation
8812 begin
8813 -- If we are searching only for conflicting class-wide subprograms
8814 -- then initialize directly Matching_Op with the target entity.
8816 if CW_Test_Only then
8817 Matching_Op := Entity (Selector_Name (N));
8818 end if;
8820 -- Loop through ancestor types (including interfaces), traversing
8821 -- the homonym chain of the subprogram, trying out those homonyms
8822 -- whose first formal has the class-wide type of the ancestor, or
8823 -- an anonymous access type designating the class-wide type.
8825 Anc_Type := Obj_Type;
8826 loop
8827 -- Look for a match among homonyms associated with the ancestor
8829 Traverse_Homonyms (Anc_Type, Error);
8831 if Error then
8832 return True;
8833 end if;
8835 -- Continue the search for matches among homonyms associated with
8836 -- any interfaces implemented by the ancestor.
8838 Traverse_Interfaces (Anc_Type, Error);
8840 if Error then
8841 return True;
8842 end if;
8844 exit when Etype (Anc_Type) = Anc_Type;
8845 Anc_Type := Etype (Anc_Type);
8846 end loop;
8848 if Present (Matching_Op) then
8849 Set_Etype (Call_Node, Etype (Matching_Op));
8850 end if;
8852 return Present (Matching_Op);
8853 end Try_Class_Wide_Operation;
8855 -----------------------------------
8856 -- Try_One_Prefix_Interpretation --
8857 -----------------------------------
8859 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
8861 -- If the interpretation does not have a valid candidate type,
8862 -- preserve current value of Obj_Type for subsequent errors.
8864 Prev_Obj_Type : constant Entity_Id := Obj_Type;
8866 begin
8867 Obj_Type := T;
8869 if Is_Access_Type (Obj_Type) then
8870 Obj_Type := Designated_Type (Obj_Type);
8871 end if;
8873 if Ekind (Obj_Type) = E_Private_Subtype then
8874 Obj_Type := Base_Type (Obj_Type);
8875 end if;
8877 if Is_Class_Wide_Type (Obj_Type) then
8878 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
8879 end if;
8881 -- The type may have be obtained through a limited_with clause,
8882 -- in which case the primitive operations are available on its
8883 -- non-limited view. If still incomplete, retrieve full view.
8885 if Ekind (Obj_Type) = E_Incomplete_Type
8886 and then From_Limited_With (Obj_Type)
8887 and then Has_Non_Limited_View (Obj_Type)
8888 then
8889 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
8890 end if;
8892 -- If the object is not tagged, or the type is still an incomplete
8893 -- type, this is not a prefixed call.
8895 if not Is_Tagged_Type (Obj_Type)
8896 or else Is_Incomplete_Type (Obj_Type)
8897 then
8899 -- Restore previous type if current one is not legal candidate
8901 Obj_Type := Prev_Obj_Type;
8902 return;
8903 end if;
8905 declare
8906 Dup_Call_Node : constant Node_Id := New_Copy (New_Call_Node);
8907 CW_Result : Boolean;
8908 Prim_Result : Boolean;
8909 pragma Unreferenced (CW_Result);
8911 begin
8912 if not CW_Test_Only then
8913 Prim_Result :=
8914 Try_Primitive_Operation
8915 (Call_Node => New_Call_Node,
8916 Node_To_Replace => Node_To_Replace);
8917 end if;
8919 -- Check if there is a class-wide subprogram covering the
8920 -- primitive. This check must be done even if a candidate
8921 -- was found in order to report ambiguous calls.
8923 if not (Prim_Result) then
8924 CW_Result :=
8925 Try_Class_Wide_Operation
8926 (Call_Node => New_Call_Node,
8927 Node_To_Replace => Node_To_Replace);
8929 -- If we found a primitive we search for class-wide subprograms
8930 -- using a duplicate of the call node (done to avoid missing its
8931 -- decoration if there is no ambiguity).
8933 else
8934 CW_Result :=
8935 Try_Class_Wide_Operation
8936 (Call_Node => Dup_Call_Node,
8937 Node_To_Replace => Node_To_Replace);
8938 end if;
8939 end;
8940 end Try_One_Prefix_Interpretation;
8942 -----------------------------
8943 -- Try_Primitive_Operation --
8944 -----------------------------
8946 function Try_Primitive_Operation
8947 (Call_Node : Node_Id;
8948 Node_To_Replace : Node_Id) return Boolean
8950 Elmt : Elmt_Id;
8951 Prim_Op : Entity_Id;
8952 Matching_Op : Entity_Id := Empty;
8953 Prim_Op_Ref : Node_Id := Empty;
8955 Corr_Type : Entity_Id := Empty;
8956 -- If the prefix is a synchronized type, the controlling type of
8957 -- the primitive operation is the corresponding record type, else
8958 -- this is the object type itself.
8960 Success : Boolean := False;
8962 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
8963 -- For tagged types the candidate interpretations are found in
8964 -- the list of primitive operations of the type and its ancestors.
8965 -- For formal tagged types we have to find the operations declared
8966 -- in the same scope as the type (including in the generic formal
8967 -- part) because the type itself carries no primitive operations,
8968 -- except for formal derived types that inherit the operations of
8969 -- the parent and progenitors.
8971 -- If the context is a generic subprogram body, the generic formals
8972 -- are visible by name, but are not in the entity list of the
8973 -- subprogram because that list starts with the subprogram formals.
8974 -- We retrieve the candidate operations from the generic declaration.
8976 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id;
8977 -- Prefix notation can also be used on operations that are not
8978 -- primitives of the type, but are declared in the same immediate
8979 -- declarative part, which can only mean the corresponding package
8980 -- body (See RM 4.1.3 (9.2/3)). If we are in that body we extend the
8981 -- list of primitives with body operations with the same name that
8982 -- may be candidates, so that Try_Primitive_Operations can examine
8983 -- them if no real primitive is found.
8985 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
8986 -- An operation that overrides an inherited operation in the private
8987 -- part of its package may be hidden, but if the inherited operation
8988 -- is visible a direct call to it will dispatch to the private one,
8989 -- which is therefore a valid candidate.
8991 function Names_Match
8992 (Obj_Type : Entity_Id;
8993 Prim_Op : Entity_Id;
8994 Subprog : Entity_Id) return Boolean;
8995 -- Return True if the names of Prim_Op and Subprog match. If Obj_Type
8996 -- is a protected type then compare also the original name of Prim_Op
8997 -- with the name of Subprog (since the expander may have added a
8998 -- prefix to its original name --see Exp_Ch9.Build_Selected_Name).
9000 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
9001 -- Verify that the prefix, dereferenced if need be, is a valid
9002 -- controlling argument in a call to Op. The remaining actuals
9003 -- are checked in the subsequent call to Analyze_One_Call.
9005 ------------------------------
9006 -- Collect_Generic_Type_Ops --
9007 ------------------------------
9009 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
9010 Bas : constant Entity_Id := Base_Type (T);
9011 Candidates : constant Elist_Id := New_Elmt_List;
9012 Subp : Entity_Id;
9013 Formal : Entity_Id;
9015 procedure Check_Candidate;
9016 -- The operation is a candidate if its first parameter is a
9017 -- controlling operand of the desired type.
9019 -----------------------
9020 -- Check_Candidate; --
9021 -----------------------
9023 procedure Check_Candidate is
9024 begin
9025 Formal := First_Formal (Subp);
9027 if Present (Formal)
9028 and then Is_Controlling_Formal (Formal)
9029 and then
9030 (Base_Type (Etype (Formal)) = Bas
9031 or else
9032 (Is_Access_Type (Etype (Formal))
9033 and then Designated_Type (Etype (Formal)) = Bas))
9034 then
9035 Append_Elmt (Subp, Candidates);
9036 end if;
9037 end Check_Candidate;
9039 -- Start of processing for Collect_Generic_Type_Ops
9041 begin
9042 if Is_Derived_Type (T) then
9043 return Primitive_Operations (T);
9045 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
9047 -- Scan the list of generic formals to find subprograms
9048 -- that may have a first controlling formal of the type.
9050 if Nkind (Unit_Declaration_Node (Scope (T))) =
9051 N_Generic_Subprogram_Declaration
9052 then
9053 declare
9054 Decl : Node_Id;
9056 begin
9057 Decl :=
9058 First (Generic_Formal_Declarations
9059 (Unit_Declaration_Node (Scope (T))));
9060 while Present (Decl) loop
9061 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
9062 Subp := Defining_Entity (Decl);
9063 Check_Candidate;
9064 end if;
9066 Next (Decl);
9067 end loop;
9068 end;
9069 end if;
9070 return Candidates;
9072 else
9073 -- Scan the list of entities declared in the same scope as
9074 -- the type. In general this will be an open scope, given that
9075 -- the call we are analyzing can only appear within a generic
9076 -- declaration or body (either the one that declares T, or a
9077 -- child unit).
9079 -- For a subtype representing a generic actual type, go to the
9080 -- base type.
9082 if Is_Generic_Actual_Type (T) then
9083 Subp := First_Entity (Scope (Base_Type (T)));
9084 else
9085 Subp := First_Entity (Scope (T));
9086 end if;
9088 while Present (Subp) loop
9089 if Is_Overloadable (Subp) then
9090 Check_Candidate;
9091 end if;
9093 Next_Entity (Subp);
9094 end loop;
9096 return Candidates;
9097 end if;
9098 end Collect_Generic_Type_Ops;
9100 ----------------------------
9101 -- Extended_Primitive_Ops --
9102 ----------------------------
9104 function Extended_Primitive_Ops (T : Entity_Id) return Elist_Id is
9105 Type_Scope : constant Entity_Id := Scope (T);
9107 Body_Decls : List_Id;
9108 Op_Found : Boolean;
9109 Op : Entity_Id;
9110 Op_List : Elist_Id;
9112 begin
9113 Op_List := Primitive_Operations (T);
9115 if Ekind (Type_Scope) = E_Package
9116 and then In_Package_Body (Type_Scope)
9117 and then In_Open_Scopes (Type_Scope)
9118 then
9119 -- Retrieve list of declarations of package body.
9121 Body_Decls :=
9122 Declarations
9123 (Unit_Declaration_Node
9124 (Corresponding_Body
9125 (Unit_Declaration_Node (Type_Scope))));
9127 Op := Current_Entity (Subprog);
9128 Op_Found := False;
9129 while Present (Op) loop
9130 if Comes_From_Source (Op)
9131 and then Is_Overloadable (Op)
9133 -- Exclude overriding primitive operations of a type
9134 -- extension declared in the package body, to prevent
9135 -- duplicates in extended list.
9137 and then not Is_Primitive (Op)
9138 and then Is_List_Member (Unit_Declaration_Node (Op))
9139 and then List_Containing (Unit_Declaration_Node (Op)) =
9140 Body_Decls
9141 then
9142 if not Op_Found then
9144 -- Copy list of primitives so it is not affected for
9145 -- other uses.
9147 Op_List := New_Copy_Elist (Op_List);
9148 Op_Found := True;
9149 end if;
9151 Append_Elmt (Op, Op_List);
9152 end if;
9154 Op := Homonym (Op);
9155 end loop;
9156 end if;
9158 return Op_List;
9159 end Extended_Primitive_Ops;
9161 ---------------------------
9162 -- Is_Private_Overriding --
9163 ---------------------------
9165 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
9166 Visible_Op : constant Entity_Id := Homonym (Op);
9168 begin
9169 return Present (Visible_Op)
9170 and then Scope (Op) = Scope (Visible_Op)
9171 and then not Comes_From_Source (Visible_Op)
9172 and then Alias (Visible_Op) = Op
9173 and then not Is_Hidden (Visible_Op);
9174 end Is_Private_Overriding;
9176 -----------------
9177 -- Names_Match --
9178 -----------------
9180 function Names_Match
9181 (Obj_Type : Entity_Id;
9182 Prim_Op : Entity_Id;
9183 Subprog : Entity_Id) return Boolean is
9184 begin
9185 -- Common case: exact match
9187 if Chars (Prim_Op) = Chars (Subprog) then
9188 return True;
9190 -- For protected type primitives the expander may have built the
9191 -- name of the dispatching primitive prepending the type name to
9192 -- avoid conflicts with the name of the protected subprogram (see
9193 -- Exp_Ch9.Build_Selected_Name).
9195 elsif Is_Protected_Type (Obj_Type) then
9196 return
9197 Present (Original_Protected_Subprogram (Prim_Op))
9198 and then Chars (Original_Protected_Subprogram (Prim_Op)) =
9199 Chars (Subprog);
9200 end if;
9202 return False;
9203 end Names_Match;
9205 -----------------------------
9206 -- Valid_First_Argument_Of --
9207 -----------------------------
9209 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
9210 Typ : Entity_Id := Etype (First_Formal (Op));
9212 begin
9213 if Is_Concurrent_Type (Typ)
9214 and then Present (Corresponding_Record_Type (Typ))
9215 then
9216 Typ := Corresponding_Record_Type (Typ);
9217 end if;
9219 -- Simple case. Object may be a subtype of the tagged type or
9220 -- may be the corresponding record of a synchronized type.
9222 return Obj_Type = Typ
9223 or else Base_Type (Obj_Type) = Typ
9224 or else Corr_Type = Typ
9226 -- Prefix can be dereferenced
9228 or else
9229 (Is_Access_Type (Corr_Type)
9230 and then Designated_Type (Corr_Type) = Typ)
9232 -- Formal is an access parameter, for which the object
9233 -- can provide an access.
9235 or else
9236 (Ekind (Typ) = E_Anonymous_Access_Type
9237 and then
9238 Base_Type (Designated_Type (Typ)) = Base_Type (Corr_Type));
9239 end Valid_First_Argument_Of;
9241 -- Start of processing for Try_Primitive_Operation
9243 begin
9244 -- Look for subprograms in the list of primitive operations. The name
9245 -- must be identical, and the kind of call indicates the expected
9246 -- kind of operation (function or procedure). If the type is a
9247 -- (tagged) synchronized type, the primitive ops are attached to the
9248 -- corresponding record (base) type.
9250 if Is_Concurrent_Type (Obj_Type) then
9251 if Present (Corresponding_Record_Type (Obj_Type)) then
9252 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
9253 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
9254 else
9255 Corr_Type := Obj_Type;
9256 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
9257 end if;
9259 elsif not Is_Generic_Type (Obj_Type) then
9260 Corr_Type := Obj_Type;
9261 Elmt := First_Elmt (Extended_Primitive_Ops (Obj_Type));
9263 else
9264 Corr_Type := Obj_Type;
9265 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
9266 end if;
9268 while Present (Elmt) loop
9269 Prim_Op := Node (Elmt);
9271 if Names_Match (Obj_Type, Prim_Op, Subprog)
9272 and then Present (First_Formal (Prim_Op))
9273 and then Valid_First_Argument_Of (Prim_Op)
9274 and then
9275 (Nkind (Call_Node) = N_Function_Call)
9277 (Ekind (Prim_Op) = E_Function)
9278 then
9279 -- Ada 2005 (AI-251): If this primitive operation corresponds
9280 -- to an immediate ancestor interface there is no need to add
9281 -- it to the list of interpretations; the corresponding aliased
9282 -- primitive is also in this list of primitive operations and
9283 -- will be used instead.
9285 if (Present (Interface_Alias (Prim_Op))
9286 and then Is_Ancestor (Find_Dispatching_Type
9287 (Alias (Prim_Op)), Corr_Type))
9289 -- Do not consider hidden primitives unless the type is in an
9290 -- open scope or we are within an instance, where visibility
9291 -- is known to be correct, or else if this is an overriding
9292 -- operation in the private part for an inherited operation.
9294 or else (Is_Hidden (Prim_Op)
9295 and then not Is_Immediately_Visible (Obj_Type)
9296 and then not In_Instance
9297 and then not Is_Private_Overriding (Prim_Op))
9298 then
9299 goto Continue;
9300 end if;
9302 Set_Etype (Call_Node, Any_Type);
9303 Set_Is_Overloaded (Call_Node, False);
9305 if No (Matching_Op) then
9306 Prim_Op_Ref := New_Occurrence_Of (Prim_Op, Sloc (Subprog));
9307 Candidate := Prim_Op;
9309 Set_Parent (Call_Node, Parent (Node_To_Replace));
9311 Set_Name (Call_Node, Prim_Op_Ref);
9312 Success := False;
9314 Analyze_One_Call
9315 (N => Call_Node,
9316 Nam => Prim_Op,
9317 Report => Report_Error,
9318 Success => Success,
9319 Skip_First => True);
9321 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
9323 -- More than one interpretation, collect for subsequent
9324 -- disambiguation. If this is a procedure call and there
9325 -- is another match, report ambiguity now.
9327 else
9328 Analyze_One_Call
9329 (N => Call_Node,
9330 Nam => Prim_Op,
9331 Report => Report_Error,
9332 Success => Success,
9333 Skip_First => True);
9335 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
9336 and then Nkind (Call_Node) /= N_Function_Call
9337 then
9338 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
9339 Report_Ambiguity (Matching_Op);
9340 Report_Ambiguity (Prim_Op);
9341 return True;
9342 end if;
9343 end if;
9344 end if;
9346 <<Continue>>
9347 Next_Elmt (Elmt);
9348 end loop;
9350 if Present (Matching_Op) then
9351 Set_Etype (Call_Node, Etype (Matching_Op));
9352 end if;
9354 return Present (Matching_Op);
9355 end Try_Primitive_Operation;
9357 -- Start of processing for Try_Object_Operation
9359 begin
9360 Analyze_Expression (Obj);
9362 -- Analyze the actuals if node is known to be a subprogram call
9364 if Is_Subprg_Call and then N = Name (Parent (N)) then
9365 Actual := First (Parameter_Associations (Parent (N)));
9366 while Present (Actual) loop
9367 Analyze_Expression (Actual);
9368 Next (Actual);
9369 end loop;
9370 end if;
9372 -- Build a subprogram call node, using a copy of Obj as its first
9373 -- actual. This is a placeholder, to be replaced by an explicit
9374 -- dereference when needed.
9376 Transform_Object_Operation
9377 (Call_Node => New_Call_Node,
9378 Node_To_Replace => Node_To_Replace);
9380 Set_Etype (New_Call_Node, Any_Type);
9381 Set_Etype (Subprog, Any_Type);
9382 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
9384 if not Is_Overloaded (Obj) then
9385 Try_One_Prefix_Interpretation (Obj_Type);
9387 else
9388 declare
9389 I : Interp_Index;
9390 It : Interp;
9391 begin
9392 Get_First_Interp (Obj, I, It);
9393 while Present (It.Nam) loop
9394 Try_One_Prefix_Interpretation (It.Typ);
9395 Get_Next_Interp (I, It);
9396 end loop;
9397 end;
9398 end if;
9400 if Etype (New_Call_Node) /= Any_Type then
9402 -- No need to complete the tree transformations if we are only
9403 -- searching for conflicting class-wide subprograms
9405 if CW_Test_Only then
9406 return False;
9407 else
9408 Complete_Object_Operation
9409 (Call_Node => New_Call_Node,
9410 Node_To_Replace => Node_To_Replace);
9411 return True;
9412 end if;
9414 elsif Present (Candidate) then
9416 -- The argument list is not type correct. Re-analyze with error
9417 -- reporting enabled, and use one of the possible candidates.
9418 -- In All_Errors_Mode, re-analyze all failed interpretations.
9420 if All_Errors_Mode then
9421 Report_Error := True;
9422 if Try_Primitive_Operation
9423 (Call_Node => New_Call_Node,
9424 Node_To_Replace => Node_To_Replace)
9426 or else
9427 Try_Class_Wide_Operation
9428 (Call_Node => New_Call_Node,
9429 Node_To_Replace => Node_To_Replace)
9430 then
9431 null;
9432 end if;
9434 else
9435 Analyze_One_Call
9436 (N => New_Call_Node,
9437 Nam => Candidate,
9438 Report => True,
9439 Success => Success,
9440 Skip_First => True);
9441 end if;
9443 -- No need for further errors
9445 return True;
9447 else
9448 -- There was no candidate operation, so report it as an error
9449 -- in the caller: Analyze_Selected_Component.
9451 return False;
9452 end if;
9453 end Try_Object_Operation;
9455 ---------
9456 -- wpo --
9457 ---------
9459 procedure wpo (T : Entity_Id) is
9460 Op : Entity_Id;
9461 E : Elmt_Id;
9463 begin
9464 if not Is_Tagged_Type (T) then
9465 return;
9466 end if;
9468 E := First_Elmt (Primitive_Operations (Base_Type (T)));
9469 while Present (E) loop
9470 Op := Node (E);
9471 Write_Int (Int (Op));
9472 Write_Str (" === ");
9473 Write_Name (Chars (Op));
9474 Write_Str (" in ");
9475 Write_Name (Chars (Scope (Op)));
9476 Next_Elmt (E);
9477 Write_Eol;
9478 end loop;
9479 end wpo;
9481 end Sem_Ch4;