Some fixes for profile test cases for autofdo
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob4053ead57d607e449d70849ceb63a15748d00ea4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Itypes; use Itypes;
45 with Layout; use Layout;
46 with Lib; use Lib;
47 with Lib.Xref; use Lib.Xref;
48 with Namet; use Namet;
49 with Nmake; use Nmake;
50 with Opt; use Opt;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Case; use Sem_Case;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch6; use Sem_Ch6;
59 with Sem_Ch7; use Sem_Ch7;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Prepare_Private_Subtype_Completion
609 (Id : Entity_Id;
610 Related_Nod : Node_Id);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
616 procedure Process_Incomplete_Dependents
617 (N : Node_Id;
618 Full_T : Entity_Id;
619 Inc_T : Entity_Id);
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
623 -- incomplete type.
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
630 -- Full_T is N's defining identifier.
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
637 -- full type.
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
643 procedure Process_Real_Range_Specification (Def : Node_Id);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
649 procedure Propagate_Default_Init_Cond_Attributes
650 (From_Typ : Entity_Id;
651 To_Typ : Entity_Id;
652 Parent_To_Derivation : Boolean := False;
653 Private_To_Full_View : Boolean := False);
654 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
655 -- all attributes related to pragma Default_Initial_Condition from From_Typ
656 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
657 -- the creation of a derived type. Flag Private_To_Full_View should be set
658 -- when processing both views of a private type.
660 procedure Record_Type_Declaration
661 (T : Entity_Id;
662 N : Node_Id;
663 Prev : Entity_Id);
664 -- Process a record type declaration (for both untagged and tagged
665 -- records). Parameters T and N are exactly like in procedure
666 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
667 -- for this routine. If this is the completion of an incomplete type
668 -- declaration, Prev is the entity of the incomplete declaration, used for
669 -- cross-referencing. Otherwise Prev = T.
671 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
672 -- This routine is used to process the actual record type definition (both
673 -- for untagged and tagged records). Def is a record type definition node.
674 -- This procedure analyzes the components in this record type definition.
675 -- Prev_T is the entity for the enclosing record type. It is provided so
676 -- that its Has_Task flag can be set if any of the component have Has_Task
677 -- set. If the declaration is the completion of an incomplete type
678 -- declaration, Prev_T is the original incomplete type, whose full view is
679 -- the record type.
681 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
682 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
683 -- build a copy of the declaration tree of the parent, and we create
684 -- independently the list of components for the derived type. Semantic
685 -- information uses the component entities, but record representation
686 -- clauses are validated on the declaration tree. This procedure replaces
687 -- discriminants and components in the declaration with those that have
688 -- been created by Inherit_Components.
690 procedure Set_Fixed_Range
691 (E : Entity_Id;
692 Loc : Source_Ptr;
693 Lo : Ureal;
694 Hi : Ureal);
695 -- Build a range node with the given bounds and set it as the Scalar_Range
696 -- of the given fixed-point type entity. Loc is the source location used
697 -- for the constructed range. See body for further details.
699 procedure Set_Scalar_Range_For_Subtype
700 (Def_Id : Entity_Id;
701 R : Node_Id;
702 Subt : Entity_Id);
703 -- This routine is used to set the scalar range field for a subtype given
704 -- Def_Id, the entity for the subtype, and R, the range expression for the
705 -- scalar range. Subt provides the parent subtype to be used to analyze,
706 -- resolve, and check the given range.
708 procedure Set_Default_SSO (T : Entity_Id);
709 -- T is the entity for an array or record being declared. This procedure
710 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
711 -- to the setting of Opt.Default_SSO.
713 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
714 -- Create a new signed integer entity, and apply the constraint to obtain
715 -- the required first named subtype of this type.
717 procedure Set_Stored_Constraint_From_Discriminant_Constraint
718 (E : Entity_Id);
719 -- E is some record type. This routine computes E's Stored_Constraint
720 -- from its Discriminant_Constraint.
722 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
723 -- Check that an entity in a list of progenitors is an interface,
724 -- emit error otherwise.
726 -----------------------
727 -- Access_Definition --
728 -----------------------
730 function Access_Definition
731 (Related_Nod : Node_Id;
732 N : Node_Id) return Entity_Id
734 Anon_Type : Entity_Id;
735 Anon_Scope : Entity_Id;
736 Desig_Type : Entity_Id;
737 Enclosing_Prot_Type : Entity_Id := Empty;
739 begin
740 Check_SPARK_05_Restriction ("access type is not allowed", N);
742 if Is_Entry (Current_Scope)
743 and then Is_Task_Type (Etype (Scope (Current_Scope)))
744 then
745 Error_Msg_N ("task entries cannot have access parameters", N);
746 return Empty;
747 end if;
749 -- Ada 2005: For an object declaration the corresponding anonymous
750 -- type is declared in the current scope.
752 -- If the access definition is the return type of another access to
753 -- function, scope is the current one, because it is the one of the
754 -- current type declaration, except for the pathological case below.
756 if Nkind_In (Related_Nod, N_Object_Declaration,
757 N_Access_Function_Definition)
758 then
759 Anon_Scope := Current_Scope;
761 -- A pathological case: function returning access functions that
762 -- return access functions, etc. Each anonymous access type created
763 -- is in the enclosing scope of the outermost function.
765 declare
766 Par : Node_Id;
768 begin
769 Par := Related_Nod;
770 while Nkind_In (Par, N_Access_Function_Definition,
771 N_Access_Definition)
772 loop
773 Par := Parent (Par);
774 end loop;
776 if Nkind (Par) = N_Function_Specification then
777 Anon_Scope := Scope (Defining_Entity (Par));
778 end if;
779 end;
781 -- For the anonymous function result case, retrieve the scope of the
782 -- function specification's associated entity rather than using the
783 -- current scope. The current scope will be the function itself if the
784 -- formal part is currently being analyzed, but will be the parent scope
785 -- in the case of a parameterless function, and we always want to use
786 -- the function's parent scope. Finally, if the function is a child
787 -- unit, we must traverse the tree to retrieve the proper entity.
789 elsif Nkind (Related_Nod) = N_Function_Specification
790 and then Nkind (Parent (N)) /= N_Parameter_Specification
791 then
792 -- If the current scope is a protected type, the anonymous access
793 -- is associated with one of the protected operations, and must
794 -- be available in the scope that encloses the protected declaration.
795 -- Otherwise the type is in the scope enclosing the subprogram.
797 -- If the function has formals, The return type of a subprogram
798 -- declaration is analyzed in the scope of the subprogram (see
799 -- Process_Formals) and thus the protected type, if present, is
800 -- the scope of the current function scope.
802 if Ekind (Current_Scope) = E_Protected_Type then
803 Enclosing_Prot_Type := Current_Scope;
805 elsif Ekind (Current_Scope) = E_Function
806 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
807 then
808 Enclosing_Prot_Type := Scope (Current_Scope);
809 end if;
811 if Present (Enclosing_Prot_Type) then
812 Anon_Scope := Scope (Enclosing_Prot_Type);
814 else
815 Anon_Scope := Scope (Defining_Entity (Related_Nod));
816 end if;
818 -- For an access type definition, if the current scope is a child
819 -- unit it is the scope of the type.
821 elsif Is_Compilation_Unit (Current_Scope) then
822 Anon_Scope := Current_Scope;
824 -- For access formals, access components, and access discriminants, the
825 -- scope is that of the enclosing declaration,
827 else
828 Anon_Scope := Scope (Current_Scope);
829 end if;
831 Anon_Type :=
832 Create_Itype
833 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
835 if All_Present (N)
836 and then Ada_Version >= Ada_2005
837 then
838 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
839 end if;
841 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
842 -- the corresponding semantic routine
844 if Present (Access_To_Subprogram_Definition (N)) then
846 -- Compiler runtime units are compiled in Ada 2005 mode when building
847 -- the runtime library but must also be compilable in Ada 95 mode
848 -- (when bootstrapping the compiler).
850 Check_Compiler_Unit ("anonymous access to subprogram", N);
852 Access_Subprogram_Declaration
853 (T_Name => Anon_Type,
854 T_Def => Access_To_Subprogram_Definition (N));
856 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
857 Set_Ekind
858 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
859 else
860 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
861 end if;
863 Set_Can_Use_Internal_Rep
864 (Anon_Type, not Always_Compatible_Rep_On_Target);
866 -- If the anonymous access is associated with a protected operation,
867 -- create a reference to it after the enclosing protected definition
868 -- because the itype will be used in the subsequent bodies.
870 -- If the anonymous access itself is protected, a full type
871 -- declaratiton will be created for it, so that the equivalent
872 -- record type can be constructed. For further details, see
873 -- Replace_Anonymous_Access_To_Protected-Subprogram.
875 if Ekind (Current_Scope) = E_Protected_Type
876 and then not Protected_Present (Access_To_Subprogram_Definition (N))
877 then
878 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
879 end if;
881 return Anon_Type;
882 end if;
884 Find_Type (Subtype_Mark (N));
885 Desig_Type := Entity (Subtype_Mark (N));
887 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
888 Set_Etype (Anon_Type, Anon_Type);
890 -- Make sure the anonymous access type has size and alignment fields
891 -- set, as required by gigi. This is necessary in the case of the
892 -- Task_Body_Procedure.
894 if not Has_Private_Component (Desig_Type) then
895 Layout_Type (Anon_Type);
896 end if;
898 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
899 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
900 -- the null value is allowed. In Ada 95 the null value is never allowed.
902 if Ada_Version >= Ada_2005 then
903 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
904 else
905 Set_Can_Never_Be_Null (Anon_Type, True);
906 end if;
908 -- The anonymous access type is as public as the discriminated type or
909 -- subprogram that defines it. It is imported (for back-end purposes)
910 -- if the designated type is.
912 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
914 -- Ada 2005 (AI-231): Propagate the access-constant attribute
916 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
918 -- The context is either a subprogram declaration, object declaration,
919 -- or an access discriminant, in a private or a full type declaration.
920 -- In the case of a subprogram, if the designated type is incomplete,
921 -- the operation will be a primitive operation of the full type, to be
922 -- updated subsequently. If the type is imported through a limited_with
923 -- clause, the subprogram is not a primitive operation of the type
924 -- (which is declared elsewhere in some other scope).
926 if Ekind (Desig_Type) = E_Incomplete_Type
927 and then not From_Limited_With (Desig_Type)
928 and then Is_Overloadable (Current_Scope)
929 then
930 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
931 Set_Has_Delayed_Freeze (Current_Scope);
932 end if;
934 -- Ada 2005: If the designated type is an interface that may contain
935 -- tasks, create a Master entity for the declaration. This must be done
936 -- before expansion of the full declaration, because the declaration may
937 -- include an expression that is an allocator, whose expansion needs the
938 -- proper Master for the created tasks.
940 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
941 then
942 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
943 then
944 Build_Class_Wide_Master (Anon_Type);
946 -- Similarly, if the type is an anonymous access that designates
947 -- tasks, create a master entity for it in the current context.
949 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
950 then
951 Build_Master_Entity (Defining_Identifier (Related_Nod));
952 Build_Master_Renaming (Anon_Type);
953 end if;
954 end if;
956 -- For a private component of a protected type, it is imperative that
957 -- the back-end elaborate the type immediately after the protected
958 -- declaration, because this type will be used in the declarations
959 -- created for the component within each protected body, so we must
960 -- create an itype reference for it now.
962 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
963 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
965 -- Similarly, if the access definition is the return result of a
966 -- function, create an itype reference for it because it will be used
967 -- within the function body. For a regular function that is not a
968 -- compilation unit, insert reference after the declaration. For a
969 -- protected operation, insert it after the enclosing protected type
970 -- declaration. In either case, do not create a reference for a type
971 -- obtained through a limited_with clause, because this would introduce
972 -- semantic dependencies.
974 -- Similarly, do not create a reference if the designated type is a
975 -- generic formal, because no use of it will reach the backend.
977 elsif Nkind (Related_Nod) = N_Function_Specification
978 and then not From_Limited_With (Desig_Type)
979 and then not Is_Generic_Type (Desig_Type)
980 then
981 if Present (Enclosing_Prot_Type) then
982 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
984 elsif Is_List_Member (Parent (Related_Nod))
985 and then Nkind (Parent (N)) /= N_Parameter_Specification
986 then
987 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
988 end if;
990 -- Finally, create an itype reference for an object declaration of an
991 -- anonymous access type. This is strictly necessary only for deferred
992 -- constants, but in any case will avoid out-of-scope problems in the
993 -- back-end.
995 elsif Nkind (Related_Nod) = N_Object_Declaration then
996 Build_Itype_Reference (Anon_Type, Related_Nod);
997 end if;
999 return Anon_Type;
1000 end Access_Definition;
1002 -----------------------------------
1003 -- Access_Subprogram_Declaration --
1004 -----------------------------------
1006 procedure Access_Subprogram_Declaration
1007 (T_Name : Entity_Id;
1008 T_Def : Node_Id)
1010 procedure Check_For_Premature_Usage (Def : Node_Id);
1011 -- Check that type T_Name is not used, directly or recursively, as a
1012 -- parameter or a return type in Def. Def is either a subtype, an
1013 -- access_definition, or an access_to_subprogram_definition.
1015 -------------------------------
1016 -- Check_For_Premature_Usage --
1017 -------------------------------
1019 procedure Check_For_Premature_Usage (Def : Node_Id) is
1020 Param : Node_Id;
1022 begin
1023 -- Check for a subtype mark
1025 if Nkind (Def) in N_Has_Etype then
1026 if Etype (Def) = T_Name then
1027 Error_Msg_N
1028 ("type& cannot be used before end of its declaration", Def);
1029 end if;
1031 -- If this is not a subtype, then this is an access_definition
1033 elsif Nkind (Def) = N_Access_Definition then
1034 if Present (Access_To_Subprogram_Definition (Def)) then
1035 Check_For_Premature_Usage
1036 (Access_To_Subprogram_Definition (Def));
1037 else
1038 Check_For_Premature_Usage (Subtype_Mark (Def));
1039 end if;
1041 -- The only cases left are N_Access_Function_Definition and
1042 -- N_Access_Procedure_Definition.
1044 else
1045 if Present (Parameter_Specifications (Def)) then
1046 Param := First (Parameter_Specifications (Def));
1047 while Present (Param) loop
1048 Check_For_Premature_Usage (Parameter_Type (Param));
1049 Param := Next (Param);
1050 end loop;
1051 end if;
1053 if Nkind (Def) = N_Access_Function_Definition then
1054 Check_For_Premature_Usage (Result_Definition (Def));
1055 end if;
1056 end if;
1057 end Check_For_Premature_Usage;
1059 -- Local variables
1061 Formals : constant List_Id := Parameter_Specifications (T_Def);
1062 Formal : Entity_Id;
1063 D_Ityp : Node_Id;
1064 Desig_Type : constant Entity_Id :=
1065 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1067 -- Start of processing for Access_Subprogram_Declaration
1069 begin
1070 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1072 -- Associate the Itype node with the inner full-type declaration or
1073 -- subprogram spec or entry body. This is required to handle nested
1074 -- anonymous declarations. For example:
1076 -- procedure P
1077 -- (X : access procedure
1078 -- (Y : access procedure
1079 -- (Z : access T)))
1081 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1082 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1083 N_Private_Type_Declaration,
1084 N_Private_Extension_Declaration,
1085 N_Procedure_Specification,
1086 N_Function_Specification,
1087 N_Entry_Body)
1089 or else
1090 Nkind_In (D_Ityp, N_Object_Declaration,
1091 N_Object_Renaming_Declaration,
1092 N_Formal_Object_Declaration,
1093 N_Formal_Type_Declaration,
1094 N_Task_Type_Declaration,
1095 N_Protected_Type_Declaration))
1096 loop
1097 D_Ityp := Parent (D_Ityp);
1098 pragma Assert (D_Ityp /= Empty);
1099 end loop;
1101 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1103 if Nkind_In (D_Ityp, N_Procedure_Specification,
1104 N_Function_Specification)
1105 then
1106 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1108 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1109 N_Object_Declaration,
1110 N_Object_Renaming_Declaration,
1111 N_Formal_Type_Declaration)
1112 then
1113 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1114 end if;
1116 if Nkind (T_Def) = N_Access_Function_Definition then
1117 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1118 declare
1119 Acc : constant Node_Id := Result_Definition (T_Def);
1121 begin
1122 if Present (Access_To_Subprogram_Definition (Acc))
1123 and then
1124 Protected_Present (Access_To_Subprogram_Definition (Acc))
1125 then
1126 Set_Etype
1127 (Desig_Type,
1128 Replace_Anonymous_Access_To_Protected_Subprogram
1129 (T_Def));
1131 else
1132 Set_Etype
1133 (Desig_Type,
1134 Access_Definition (T_Def, Result_Definition (T_Def)));
1135 end if;
1136 end;
1138 else
1139 Analyze (Result_Definition (T_Def));
1141 declare
1142 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1144 begin
1145 -- If a null exclusion is imposed on the result type, then
1146 -- create a null-excluding itype (an access subtype) and use
1147 -- it as the function's Etype.
1149 if Is_Access_Type (Typ)
1150 and then Null_Exclusion_In_Return_Present (T_Def)
1151 then
1152 Set_Etype (Desig_Type,
1153 Create_Null_Excluding_Itype
1154 (T => Typ,
1155 Related_Nod => T_Def,
1156 Scope_Id => Current_Scope));
1158 else
1159 if From_Limited_With (Typ) then
1161 -- AI05-151: Incomplete types are allowed in all basic
1162 -- declarations, including access to subprograms.
1164 if Ada_Version >= Ada_2012 then
1165 null;
1167 else
1168 Error_Msg_NE
1169 ("illegal use of incomplete type&",
1170 Result_Definition (T_Def), Typ);
1171 end if;
1173 elsif Ekind (Current_Scope) = E_Package
1174 and then In_Private_Part (Current_Scope)
1175 then
1176 if Ekind (Typ) = E_Incomplete_Type then
1177 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1179 elsif Is_Class_Wide_Type (Typ)
1180 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1181 then
1182 Append_Elmt
1183 (Desig_Type, Private_Dependents (Etype (Typ)));
1184 end if;
1185 end if;
1187 Set_Etype (Desig_Type, Typ);
1188 end if;
1189 end;
1190 end if;
1192 if not (Is_Type (Etype (Desig_Type))) then
1193 Error_Msg_N
1194 ("expect type in function specification",
1195 Result_Definition (T_Def));
1196 end if;
1198 else
1199 Set_Etype (Desig_Type, Standard_Void_Type);
1200 end if;
1202 if Present (Formals) then
1203 Push_Scope (Desig_Type);
1205 -- Some special tests here. These special tests can be removed
1206 -- if and when Itypes always have proper parent pointers to their
1207 -- declarations???
1209 -- Special test 1) Link defining_identifier of formals. Required by
1210 -- First_Formal to provide its functionality.
1212 declare
1213 F : Node_Id;
1215 begin
1216 F := First (Formals);
1218 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1219 -- when it is part of an unconstrained type and subtype expansion
1220 -- is disabled. To avoid back-end problems with shared profiles,
1221 -- use previous subprogram type as the designated type, and then
1222 -- remove scope added above.
1224 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1225 then
1226 Set_Etype (T_Name, T_Name);
1227 Init_Size_Align (T_Name);
1228 Set_Directly_Designated_Type (T_Name,
1229 Scope (Defining_Identifier (F)));
1230 End_Scope;
1231 return;
1232 end if;
1234 while Present (F) loop
1235 if No (Parent (Defining_Identifier (F))) then
1236 Set_Parent (Defining_Identifier (F), F);
1237 end if;
1239 Next (F);
1240 end loop;
1241 end;
1243 Process_Formals (Formals, Parent (T_Def));
1245 -- Special test 2) End_Scope requires that the parent pointer be set
1246 -- to something reasonable, but Itypes don't have parent pointers. So
1247 -- we set it and then unset it ???
1249 Set_Parent (Desig_Type, T_Name);
1250 End_Scope;
1251 Set_Parent (Desig_Type, Empty);
1252 end if;
1254 -- Check for premature usage of the type being defined
1256 Check_For_Premature_Usage (T_Def);
1258 -- The return type and/or any parameter type may be incomplete. Mark the
1259 -- subprogram_type as depending on the incomplete type, so that it can
1260 -- be updated when the full type declaration is seen. This only applies
1261 -- to incomplete types declared in some enclosing scope, not to limited
1262 -- views from other packages.
1264 -- Prior to Ada 2012, access to functions can only have in_parameters.
1266 if Present (Formals) then
1267 Formal := First_Formal (Desig_Type);
1268 while Present (Formal) loop
1269 if Ekind (Formal) /= E_In_Parameter
1270 and then Nkind (T_Def) = N_Access_Function_Definition
1271 and then Ada_Version < Ada_2012
1272 then
1273 Error_Msg_N ("functions can only have IN parameters", Formal);
1274 end if;
1276 if Ekind (Etype (Formal)) = E_Incomplete_Type
1277 and then In_Open_Scopes (Scope (Etype (Formal)))
1278 then
1279 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1280 Set_Has_Delayed_Freeze (Desig_Type);
1281 end if;
1283 Next_Formal (Formal);
1284 end loop;
1285 end if;
1287 -- Check whether an indirect call without actuals may be possible. This
1288 -- is used when resolving calls whose result is then indexed.
1290 May_Need_Actuals (Desig_Type);
1292 -- If the return type is incomplete, this is legal as long as the type
1293 -- is declared in the current scope and will be completed in it (rather
1294 -- than being part of limited view).
1296 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1297 and then not Has_Delayed_Freeze (Desig_Type)
1298 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1299 then
1300 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1301 Set_Has_Delayed_Freeze (Desig_Type);
1302 end if;
1304 Check_Delayed_Subprogram (Desig_Type);
1306 if Protected_Present (T_Def) then
1307 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1308 Set_Convention (Desig_Type, Convention_Protected);
1309 else
1310 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1311 end if;
1313 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1315 Set_Etype (T_Name, T_Name);
1316 Init_Size_Align (T_Name);
1317 Set_Directly_Designated_Type (T_Name, Desig_Type);
1319 Generate_Reference_To_Formals (T_Name);
1321 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1323 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1325 Check_Restriction (No_Access_Subprograms, T_Def);
1326 end Access_Subprogram_Declaration;
1328 ----------------------------
1329 -- Access_Type_Declaration --
1330 ----------------------------
1332 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1333 P : constant Node_Id := Parent (Def);
1334 S : constant Node_Id := Subtype_Indication (Def);
1336 Full_Desig : Entity_Id;
1338 begin
1339 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1341 -- Check for permissible use of incomplete type
1343 if Nkind (S) /= N_Subtype_Indication then
1344 Analyze (S);
1346 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1347 Set_Directly_Designated_Type (T, Entity (S));
1349 -- If the designated type is a limited view, we cannot tell if
1350 -- the full view contains tasks, and there is no way to handle
1351 -- that full view in a client. We create a master entity for the
1352 -- scope, which will be used when a client determines that one
1353 -- is needed.
1355 if From_Limited_With (Entity (S))
1356 and then not Is_Class_Wide_Type (Entity (S))
1357 then
1358 Set_Ekind (T, E_Access_Type);
1359 Build_Master_Entity (T);
1360 Build_Master_Renaming (T);
1361 end if;
1363 else
1364 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1365 end if;
1367 -- If the access definition is of the form: ACCESS NOT NULL ..
1368 -- the subtype indication must be of an access type. Create
1369 -- a null-excluding subtype of it.
1371 if Null_Excluding_Subtype (Def) then
1372 if not Is_Access_Type (Entity (S)) then
1373 Error_Msg_N ("null exclusion must apply to access type", Def);
1375 else
1376 declare
1377 Loc : constant Source_Ptr := Sloc (S);
1378 Decl : Node_Id;
1379 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1381 begin
1382 Decl :=
1383 Make_Subtype_Declaration (Loc,
1384 Defining_Identifier => Nam,
1385 Subtype_Indication =>
1386 New_Occurrence_Of (Entity (S), Loc));
1387 Set_Null_Exclusion_Present (Decl);
1388 Insert_Before (Parent (Def), Decl);
1389 Analyze (Decl);
1390 Set_Entity (S, Nam);
1391 end;
1392 end if;
1393 end if;
1395 else
1396 Set_Directly_Designated_Type (T,
1397 Process_Subtype (S, P, T, 'P'));
1398 end if;
1400 if All_Present (Def) or Constant_Present (Def) then
1401 Set_Ekind (T, E_General_Access_Type);
1402 else
1403 Set_Ekind (T, E_Access_Type);
1404 end if;
1406 Full_Desig := Designated_Type (T);
1408 if Base_Type (Full_Desig) = T then
1409 Error_Msg_N ("access type cannot designate itself", S);
1411 -- In Ada 2005, the type may have a limited view through some unit in
1412 -- its own context, allowing the following circularity that cannot be
1413 -- detected earlier.
1415 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1416 then
1417 Error_Msg_N
1418 ("access type cannot designate its own class-wide type", S);
1420 -- Clean up indication of tagged status to prevent cascaded errors
1422 Set_Is_Tagged_Type (T, False);
1423 end if;
1425 Set_Etype (T, T);
1427 -- If the type has appeared already in a with_type clause, it is frozen
1428 -- and the pointer size is already set. Else, initialize.
1430 if not From_Limited_With (T) then
1431 Init_Size_Align (T);
1432 end if;
1434 -- Note that Has_Task is always false, since the access type itself
1435 -- is not a task type. See Einfo for more description on this point.
1436 -- Exactly the same consideration applies to Has_Controlled_Component
1437 -- and to Has_Protected.
1439 Set_Has_Task (T, False);
1440 Set_Has_Protected (T, False);
1441 Set_Has_Timing_Event (T, False);
1442 Set_Has_Controlled_Component (T, False);
1444 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1445 -- problems where an incomplete view of this entity has been previously
1446 -- established by a limited with and an overlaid version of this field
1447 -- (Stored_Constraint) was initialized for the incomplete view.
1449 -- This reset is performed in most cases except where the access type
1450 -- has been created for the purposes of allocating or deallocating a
1451 -- build-in-place object. Such access types have explicitly set pools
1452 -- and finalization masters.
1454 if No (Associated_Storage_Pool (T)) then
1455 Set_Finalization_Master (T, Empty);
1456 end if;
1458 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1459 -- attributes
1461 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1462 Set_Is_Access_Constant (T, Constant_Present (Def));
1463 end Access_Type_Declaration;
1465 ----------------------------------
1466 -- Add_Interface_Tag_Components --
1467 ----------------------------------
1469 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1470 Loc : constant Source_Ptr := Sloc (N);
1471 L : List_Id;
1472 Last_Tag : Node_Id;
1474 procedure Add_Tag (Iface : Entity_Id);
1475 -- Add tag for one of the progenitor interfaces
1477 -------------
1478 -- Add_Tag --
1479 -------------
1481 procedure Add_Tag (Iface : Entity_Id) is
1482 Decl : Node_Id;
1483 Def : Node_Id;
1484 Tag : Entity_Id;
1485 Offset : Entity_Id;
1487 begin
1488 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1490 -- This is a reasonable place to propagate predicates
1492 if Has_Predicates (Iface) then
1493 Set_Has_Predicates (Typ);
1494 end if;
1496 Def :=
1497 Make_Component_Definition (Loc,
1498 Aliased_Present => True,
1499 Subtype_Indication =>
1500 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1502 Tag := Make_Temporary (Loc, 'V');
1504 Decl :=
1505 Make_Component_Declaration (Loc,
1506 Defining_Identifier => Tag,
1507 Component_Definition => Def);
1509 Analyze_Component_Declaration (Decl);
1511 Set_Analyzed (Decl);
1512 Set_Ekind (Tag, E_Component);
1513 Set_Is_Tag (Tag);
1514 Set_Is_Aliased (Tag);
1515 Set_Related_Type (Tag, Iface);
1516 Init_Component_Location (Tag);
1518 pragma Assert (Is_Frozen (Iface));
1520 Set_DT_Entry_Count (Tag,
1521 DT_Entry_Count (First_Entity (Iface)));
1523 if No (Last_Tag) then
1524 Prepend (Decl, L);
1525 else
1526 Insert_After (Last_Tag, Decl);
1527 end if;
1529 Last_Tag := Decl;
1531 -- If the ancestor has discriminants we need to give special support
1532 -- to store the offset_to_top value of the secondary dispatch tables.
1533 -- For this purpose we add a supplementary component just after the
1534 -- field that contains the tag associated with each secondary DT.
1536 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1537 Def :=
1538 Make_Component_Definition (Loc,
1539 Subtype_Indication =>
1540 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1542 Offset := Make_Temporary (Loc, 'V');
1544 Decl :=
1545 Make_Component_Declaration (Loc,
1546 Defining_Identifier => Offset,
1547 Component_Definition => Def);
1549 Analyze_Component_Declaration (Decl);
1551 Set_Analyzed (Decl);
1552 Set_Ekind (Offset, E_Component);
1553 Set_Is_Aliased (Offset);
1554 Set_Related_Type (Offset, Iface);
1555 Init_Component_Location (Offset);
1556 Insert_After (Last_Tag, Decl);
1557 Last_Tag := Decl;
1558 end if;
1559 end Add_Tag;
1561 -- Local variables
1563 Elmt : Elmt_Id;
1564 Ext : Node_Id;
1565 Comp : Node_Id;
1567 -- Start of processing for Add_Interface_Tag_Components
1569 begin
1570 if not RTE_Available (RE_Interface_Tag) then
1571 Error_Msg
1572 ("(Ada 2005) interface types not supported by this run-time!",
1573 Sloc (N));
1574 return;
1575 end if;
1577 if Ekind (Typ) /= E_Record_Type
1578 or else (Is_Concurrent_Record_Type (Typ)
1579 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1580 or else (not Is_Concurrent_Record_Type (Typ)
1581 and then No (Interfaces (Typ))
1582 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1583 then
1584 return;
1585 end if;
1587 -- Find the current last tag
1589 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1590 Ext := Record_Extension_Part (Type_Definition (N));
1591 else
1592 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1593 Ext := Type_Definition (N);
1594 end if;
1596 Last_Tag := Empty;
1598 if not (Present (Component_List (Ext))) then
1599 Set_Null_Present (Ext, False);
1600 L := New_List;
1601 Set_Component_List (Ext,
1602 Make_Component_List (Loc,
1603 Component_Items => L,
1604 Null_Present => False));
1605 else
1606 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1607 L := Component_Items
1608 (Component_List
1609 (Record_Extension_Part
1610 (Type_Definition (N))));
1611 else
1612 L := Component_Items
1613 (Component_List
1614 (Type_Definition (N)));
1615 end if;
1617 -- Find the last tag component
1619 Comp := First (L);
1620 while Present (Comp) loop
1621 if Nkind (Comp) = N_Component_Declaration
1622 and then Is_Tag (Defining_Identifier (Comp))
1623 then
1624 Last_Tag := Comp;
1625 end if;
1627 Next (Comp);
1628 end loop;
1629 end if;
1631 -- At this point L references the list of components and Last_Tag
1632 -- references the current last tag (if any). Now we add the tag
1633 -- corresponding with all the interfaces that are not implemented
1634 -- by the parent.
1636 if Present (Interfaces (Typ)) then
1637 Elmt := First_Elmt (Interfaces (Typ));
1638 while Present (Elmt) loop
1639 Add_Tag (Node (Elmt));
1640 Next_Elmt (Elmt);
1641 end loop;
1642 end if;
1643 end Add_Interface_Tag_Components;
1645 -------------------------------------
1646 -- Add_Internal_Interface_Entities --
1647 -------------------------------------
1649 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1650 Elmt : Elmt_Id;
1651 Iface : Entity_Id;
1652 Iface_Elmt : Elmt_Id;
1653 Iface_Prim : Entity_Id;
1654 Ifaces_List : Elist_Id;
1655 New_Subp : Entity_Id := Empty;
1656 Prim : Entity_Id;
1657 Restore_Scope : Boolean := False;
1659 begin
1660 pragma Assert (Ada_Version >= Ada_2005
1661 and then Is_Record_Type (Tagged_Type)
1662 and then Is_Tagged_Type (Tagged_Type)
1663 and then Has_Interfaces (Tagged_Type)
1664 and then not Is_Interface (Tagged_Type));
1666 -- Ensure that the internal entities are added to the scope of the type
1668 if Scope (Tagged_Type) /= Current_Scope then
1669 Push_Scope (Scope (Tagged_Type));
1670 Restore_Scope := True;
1671 end if;
1673 Collect_Interfaces (Tagged_Type, Ifaces_List);
1675 Iface_Elmt := First_Elmt (Ifaces_List);
1676 while Present (Iface_Elmt) loop
1677 Iface := Node (Iface_Elmt);
1679 -- Originally we excluded here from this processing interfaces that
1680 -- are parents of Tagged_Type because their primitives are located
1681 -- in the primary dispatch table (and hence no auxiliary internal
1682 -- entities are required to handle secondary dispatch tables in such
1683 -- case). However, these auxiliary entities are also required to
1684 -- handle derivations of interfaces in formals of generics (see
1685 -- Derive_Subprograms).
1687 Elmt := First_Elmt (Primitive_Operations (Iface));
1688 while Present (Elmt) loop
1689 Iface_Prim := Node (Elmt);
1691 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1692 Prim :=
1693 Find_Primitive_Covering_Interface
1694 (Tagged_Type => Tagged_Type,
1695 Iface_Prim => Iface_Prim);
1697 if No (Prim) and then Serious_Errors_Detected > 0 then
1698 goto Continue;
1699 end if;
1701 pragma Assert (Present (Prim));
1703 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1704 -- differs from the name of the interface primitive then it is
1705 -- a private primitive inherited from a parent type. In such
1706 -- case, given that Tagged_Type covers the interface, the
1707 -- inherited private primitive becomes visible. For such
1708 -- purpose we add a new entity that renames the inherited
1709 -- private primitive.
1711 if Chars (Prim) /= Chars (Iface_Prim) then
1712 pragma Assert (Has_Suffix (Prim, 'P'));
1713 Derive_Subprogram
1714 (New_Subp => New_Subp,
1715 Parent_Subp => Iface_Prim,
1716 Derived_Type => Tagged_Type,
1717 Parent_Type => Iface);
1718 Set_Alias (New_Subp, Prim);
1719 Set_Is_Abstract_Subprogram
1720 (New_Subp, Is_Abstract_Subprogram (Prim));
1721 end if;
1723 Derive_Subprogram
1724 (New_Subp => New_Subp,
1725 Parent_Subp => Iface_Prim,
1726 Derived_Type => Tagged_Type,
1727 Parent_Type => Iface);
1729 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1730 -- associated with interface types. These entities are
1731 -- only registered in the list of primitives of its
1732 -- corresponding tagged type because they are only used
1733 -- to fill the contents of the secondary dispatch tables.
1734 -- Therefore they are removed from the homonym chains.
1736 Set_Is_Hidden (New_Subp);
1737 Set_Is_Internal (New_Subp);
1738 Set_Alias (New_Subp, Prim);
1739 Set_Is_Abstract_Subprogram
1740 (New_Subp, Is_Abstract_Subprogram (Prim));
1741 Set_Interface_Alias (New_Subp, Iface_Prim);
1743 -- If the returned type is an interface then propagate it to
1744 -- the returned type. Needed by the thunk to generate the code
1745 -- which displaces "this" to reference the corresponding
1746 -- secondary dispatch table in the returned object.
1748 if Is_Interface (Etype (Iface_Prim)) then
1749 Set_Etype (New_Subp, Etype (Iface_Prim));
1750 end if;
1752 -- Internal entities associated with interface types are only
1753 -- registered in the list of primitives of the tagged type.
1754 -- They are only used to fill the contents of the secondary
1755 -- dispatch tables. Therefore they are not needed in the
1756 -- homonym chains.
1758 Remove_Homonym (New_Subp);
1760 -- Hidden entities associated with interfaces must have set
1761 -- the Has_Delay_Freeze attribute to ensure that, in case
1762 -- of locally defined tagged types (or compiling with static
1763 -- dispatch tables generation disabled) the corresponding
1764 -- entry of the secondary dispatch table is filled when such
1765 -- an entity is frozen. This is an expansion activity that must
1766 -- be suppressed for ASIS because it leads to gigi elaboration
1767 -- issues in annotate mode.
1769 if not ASIS_Mode then
1770 Set_Has_Delayed_Freeze (New_Subp);
1771 end if;
1772 end if;
1774 <<Continue>>
1775 Next_Elmt (Elmt);
1776 end loop;
1778 Next_Elmt (Iface_Elmt);
1779 end loop;
1781 if Restore_Scope then
1782 Pop_Scope;
1783 end if;
1784 end Add_Internal_Interface_Entities;
1786 -----------------------------------
1787 -- Analyze_Component_Declaration --
1788 -----------------------------------
1790 procedure Analyze_Component_Declaration (N : Node_Id) is
1791 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1792 Id : constant Entity_Id := Defining_Identifier (N);
1793 E : constant Node_Id := Expression (N);
1794 Typ : constant Node_Id :=
1795 Subtype_Indication (Component_Definition (N));
1796 T : Entity_Id;
1797 P : Entity_Id;
1799 function Contains_POC (Constr : Node_Id) return Boolean;
1800 -- Determines whether a constraint uses the discriminant of a record
1801 -- type thus becoming a per-object constraint (POC).
1803 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1804 -- Typ is the type of the current component, check whether this type is
1805 -- a limited type. Used to validate declaration against that of
1806 -- enclosing record.
1808 ------------------
1809 -- Contains_POC --
1810 ------------------
1812 function Contains_POC (Constr : Node_Id) return Boolean is
1813 begin
1814 -- Prevent cascaded errors
1816 if Error_Posted (Constr) then
1817 return False;
1818 end if;
1820 case Nkind (Constr) is
1821 when N_Attribute_Reference =>
1822 return Attribute_Name (Constr) = Name_Access
1823 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1825 when N_Discriminant_Association =>
1826 return Denotes_Discriminant (Expression (Constr));
1828 when N_Identifier =>
1829 return Denotes_Discriminant (Constr);
1831 when N_Index_Or_Discriminant_Constraint =>
1832 declare
1833 IDC : Node_Id;
1835 begin
1836 IDC := First (Constraints (Constr));
1837 while Present (IDC) loop
1839 -- One per-object constraint is sufficient
1841 if Contains_POC (IDC) then
1842 return True;
1843 end if;
1845 Next (IDC);
1846 end loop;
1848 return False;
1849 end;
1851 when N_Range =>
1852 return Denotes_Discriminant (Low_Bound (Constr))
1853 or else
1854 Denotes_Discriminant (High_Bound (Constr));
1856 when N_Range_Constraint =>
1857 return Denotes_Discriminant (Range_Expression (Constr));
1859 when others =>
1860 return False;
1862 end case;
1863 end Contains_POC;
1865 ----------------------
1866 -- Is_Known_Limited --
1867 ----------------------
1869 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1870 P : constant Entity_Id := Etype (Typ);
1871 R : constant Entity_Id := Root_Type (Typ);
1873 begin
1874 if Is_Limited_Record (Typ) then
1875 return True;
1877 -- If the root type is limited (and not a limited interface)
1878 -- so is the current type
1880 elsif Is_Limited_Record (R)
1881 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1882 then
1883 return True;
1885 -- Else the type may have a limited interface progenitor, but a
1886 -- limited record parent.
1888 elsif R /= P and then Is_Limited_Record (P) then
1889 return True;
1891 else
1892 return False;
1893 end if;
1894 end Is_Known_Limited;
1896 -- Start of processing for Analyze_Component_Declaration
1898 begin
1899 Generate_Definition (Id);
1900 Enter_Name (Id);
1902 if Present (Typ) then
1903 T := Find_Type_Of_Object
1904 (Subtype_Indication (Component_Definition (N)), N);
1906 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1907 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1908 end if;
1910 -- Ada 2005 (AI-230): Access Definition case
1912 else
1913 pragma Assert (Present
1914 (Access_Definition (Component_Definition (N))));
1916 T := Access_Definition
1917 (Related_Nod => N,
1918 N => Access_Definition (Component_Definition (N)));
1919 Set_Is_Local_Anonymous_Access (T);
1921 -- Ada 2005 (AI-254)
1923 if Present (Access_To_Subprogram_Definition
1924 (Access_Definition (Component_Definition (N))))
1925 and then Protected_Present (Access_To_Subprogram_Definition
1926 (Access_Definition
1927 (Component_Definition (N))))
1928 then
1929 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1930 end if;
1931 end if;
1933 -- If the subtype is a constrained subtype of the enclosing record,
1934 -- (which must have a partial view) the back-end does not properly
1935 -- handle the recursion. Rewrite the component declaration with an
1936 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1937 -- the tree directly because side effects have already been removed from
1938 -- discriminant constraints.
1940 if Ekind (T) = E_Access_Subtype
1941 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1942 and then Comes_From_Source (T)
1943 and then Nkind (Parent (T)) = N_Subtype_Declaration
1944 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1945 then
1946 Rewrite
1947 (Subtype_Indication (Component_Definition (N)),
1948 New_Copy_Tree (Subtype_Indication (Parent (T))));
1949 T := Find_Type_Of_Object
1950 (Subtype_Indication (Component_Definition (N)), N);
1951 end if;
1953 -- If the component declaration includes a default expression, then we
1954 -- check that the component is not of a limited type (RM 3.7(5)),
1955 -- and do the special preanalysis of the expression (see section on
1956 -- "Handling of Default and Per-Object Expressions" in the spec of
1957 -- package Sem).
1959 if Present (E) then
1960 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1961 Preanalyze_Default_Expression (E, T);
1962 Check_Initialization (T, E);
1964 if Ada_Version >= Ada_2005
1965 and then Ekind (T) = E_Anonymous_Access_Type
1966 and then Etype (E) /= Any_Type
1967 then
1968 -- Check RM 3.9.2(9): "if the expected type for an expression is
1969 -- an anonymous access-to-specific tagged type, then the object
1970 -- designated by the expression shall not be dynamically tagged
1971 -- unless it is a controlling operand in a call on a dispatching
1972 -- operation"
1974 if Is_Tagged_Type (Directly_Designated_Type (T))
1975 and then
1976 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1977 and then
1978 Ekind (Directly_Designated_Type (Etype (E))) =
1979 E_Class_Wide_Type
1980 then
1981 Error_Msg_N
1982 ("access to specific tagged type required (RM 3.9.2(9))", E);
1983 end if;
1985 -- (Ada 2005: AI-230): Accessibility check for anonymous
1986 -- components
1988 if Type_Access_Level (Etype (E)) >
1989 Deepest_Type_Access_Level (T)
1990 then
1991 Error_Msg_N
1992 ("expression has deeper access level than component " &
1993 "(RM 3.10.2 (12.2))", E);
1994 end if;
1996 -- The initialization expression is a reference to an access
1997 -- discriminant. The type of the discriminant is always deeper
1998 -- than any access type.
2000 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2001 and then Is_Entity_Name (E)
2002 and then Ekind (Entity (E)) = E_In_Parameter
2003 and then Present (Discriminal_Link (Entity (E)))
2004 then
2005 Error_Msg_N
2006 ("discriminant has deeper accessibility level than target",
2008 end if;
2009 end if;
2010 end if;
2012 -- The parent type may be a private view with unknown discriminants,
2013 -- and thus unconstrained. Regular components must be constrained.
2015 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2016 if Is_Class_Wide_Type (T) then
2017 Error_Msg_N
2018 ("class-wide subtype with unknown discriminants" &
2019 " in component declaration",
2020 Subtype_Indication (Component_Definition (N)));
2021 else
2022 Error_Msg_N
2023 ("unconstrained subtype in component declaration",
2024 Subtype_Indication (Component_Definition (N)));
2025 end if;
2027 -- Components cannot be abstract, except for the special case of
2028 -- the _Parent field (case of extending an abstract tagged type)
2030 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2031 Error_Msg_N ("type of a component cannot be abstract", N);
2032 end if;
2034 Set_Etype (Id, T);
2035 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2037 -- The component declaration may have a per-object constraint, set
2038 -- the appropriate flag in the defining identifier of the subtype.
2040 if Present (Subtype_Indication (Component_Definition (N))) then
2041 declare
2042 Sindic : constant Node_Id :=
2043 Subtype_Indication (Component_Definition (N));
2044 begin
2045 if Nkind (Sindic) = N_Subtype_Indication
2046 and then Present (Constraint (Sindic))
2047 and then Contains_POC (Constraint (Sindic))
2048 then
2049 Set_Has_Per_Object_Constraint (Id);
2050 end if;
2051 end;
2052 end if;
2054 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2055 -- out some static checks.
2057 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2058 Null_Exclusion_Static_Checks (N);
2059 end if;
2061 -- If this component is private (or depends on a private type), flag the
2062 -- record type to indicate that some operations are not available.
2064 P := Private_Component (T);
2066 if Present (P) then
2068 -- Check for circular definitions
2070 if P = Any_Type then
2071 Set_Etype (Id, Any_Type);
2073 -- There is a gap in the visibility of operations only if the
2074 -- component type is not defined in the scope of the record type.
2076 elsif Scope (P) = Scope (Current_Scope) then
2077 null;
2079 elsif Is_Limited_Type (P) then
2080 Set_Is_Limited_Composite (Current_Scope);
2082 else
2083 Set_Is_Private_Composite (Current_Scope);
2084 end if;
2085 end if;
2087 if P /= Any_Type
2088 and then Is_Limited_Type (T)
2089 and then Chars (Id) /= Name_uParent
2090 and then Is_Tagged_Type (Current_Scope)
2091 then
2092 if Is_Derived_Type (Current_Scope)
2093 and then not Is_Known_Limited (Current_Scope)
2094 then
2095 Error_Msg_N
2096 ("extension of nonlimited type cannot have limited components",
2099 if Is_Interface (Root_Type (Current_Scope)) then
2100 Error_Msg_N
2101 ("\limitedness is not inherited from limited interface", N);
2102 Error_Msg_N ("\add LIMITED to type indication", N);
2103 end if;
2105 Explain_Limited_Type (T, N);
2106 Set_Etype (Id, Any_Type);
2107 Set_Is_Limited_Composite (Current_Scope, False);
2109 elsif not Is_Derived_Type (Current_Scope)
2110 and then not Is_Limited_Record (Current_Scope)
2111 and then not Is_Concurrent_Type (Current_Scope)
2112 then
2113 Error_Msg_N
2114 ("nonlimited tagged type cannot have limited components", N);
2115 Explain_Limited_Type (T, N);
2116 Set_Etype (Id, Any_Type);
2117 Set_Is_Limited_Composite (Current_Scope, False);
2118 end if;
2119 end if;
2121 -- If the component is an unconstrained task or protected type with
2122 -- discriminants, the component and the enclosing record are limited
2123 -- and the component is constrained by its default values. Compute
2124 -- its actual subtype, else it may be allocated the maximum size by
2125 -- the backend, and possibly overflow.
2127 if Is_Concurrent_Type (T)
2128 and then not Is_Constrained (T)
2129 and then Has_Discriminants (T)
2130 and then not Has_Discriminants (Current_Scope)
2131 then
2132 declare
2133 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2135 begin
2136 Set_Etype (Id, Act_T);
2138 -- Rewrite component definition to use the constrained subtype
2140 Rewrite (Component_Definition (N),
2141 Make_Component_Definition (Loc,
2142 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2143 end;
2144 end if;
2146 Set_Original_Record_Component (Id, Id);
2148 if Has_Aspects (N) then
2149 Analyze_Aspect_Specifications (N, Id);
2150 end if;
2152 Analyze_Dimension (N);
2153 end Analyze_Component_Declaration;
2155 --------------------------
2156 -- Analyze_Declarations --
2157 --------------------------
2159 procedure Analyze_Declarations (L : List_Id) is
2160 Decl : Node_Id;
2162 procedure Adjust_Decl;
2163 -- Adjust Decl not to include implicit label declarations, since these
2164 -- have strange Sloc values that result in elaboration check problems.
2165 -- (They have the sloc of the label as found in the source, and that
2166 -- is ahead of the current declarative part).
2168 procedure Check_Entry_Contracts;
2169 -- Perform a pre-analysis of the pre- and postconditions of an entry
2170 -- declaration. This must be done before full resolution and creation
2171 -- of the parameter block, etc. to catch illegal uses within the
2172 -- contract expression. Full analysis of the expression is done when
2173 -- the contract is processed.
2175 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2176 -- Determine whether Body_Decl denotes the body of a late controlled
2177 -- primitive (either Initialize, Adjust or Finalize). If this is the
2178 -- case, add a proper spec if the body lacks one. The spec is inserted
2179 -- before Body_Decl and immediately analyzed.
2181 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2182 -- Spec_Id is the entity of a package that may define abstract states.
2183 -- If the states have visible refinement, remove the visibility of each
2184 -- constituent at the end of the package body declarations.
2186 -----------------
2187 -- Adjust_Decl --
2188 -----------------
2190 procedure Adjust_Decl is
2191 begin
2192 while Present (Prev (Decl))
2193 and then Nkind (Decl) = N_Implicit_Label_Declaration
2194 loop
2195 Prev (Decl);
2196 end loop;
2197 end Adjust_Decl;
2199 ---------------------------
2200 -- Check_Entry_Contracts --
2201 ---------------------------
2203 procedure Check_Entry_Contracts is
2204 ASN : Node_Id;
2205 Ent : Entity_Id;
2206 Exp : Node_Id;
2208 begin
2209 Ent := First_Entity (Current_Scope);
2210 while Present (Ent) loop
2212 -- This only concerns entries with pre/postconditions
2214 if Ekind (Ent) = E_Entry
2215 and then Present (Contract (Ent))
2216 and then Present (Pre_Post_Conditions (Contract (Ent)))
2217 then
2218 ASN := Pre_Post_Conditions (Contract (Ent));
2219 Push_Scope (Ent);
2220 Install_Formals (Ent);
2222 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2223 -- is performed on a copy of the pragma expression, to prevent
2224 -- modifying the original expression.
2226 while Present (ASN) loop
2227 if Nkind (ASN) = N_Pragma then
2228 Exp :=
2229 New_Copy_Tree
2230 (Expression
2231 (First (Pragma_Argument_Associations (ASN))));
2232 Set_Parent (Exp, ASN);
2234 -- ??? why not Preanalyze_Assert_Expression
2236 Preanalyze (Exp);
2237 end if;
2239 ASN := Next_Pragma (ASN);
2240 end loop;
2242 End_Scope;
2243 end if;
2245 Next_Entity (Ent);
2246 end loop;
2247 end Check_Entry_Contracts;
2249 --------------------------------------
2250 -- Handle_Late_Controlled_Primitive --
2251 --------------------------------------
2253 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2254 Body_Spec : constant Node_Id := Specification (Body_Decl);
2255 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2256 Loc : constant Source_Ptr := Sloc (Body_Id);
2257 Params : constant List_Id :=
2258 Parameter_Specifications (Body_Spec);
2259 Spec : Node_Id;
2260 Spec_Id : Entity_Id;
2261 Typ : Node_Id;
2263 begin
2264 -- Consider only procedure bodies whose name matches one of the three
2265 -- controlled primitives.
2267 if Nkind (Body_Spec) /= N_Procedure_Specification
2268 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2269 Name_Finalize,
2270 Name_Initialize)
2271 then
2272 return;
2274 -- A controlled primitive must have exactly one formal which is not
2275 -- an anonymous access type.
2277 elsif List_Length (Params) /= 1 then
2278 return;
2279 end if;
2281 Typ := Parameter_Type (First (Params));
2283 if Nkind (Typ) = N_Access_Definition then
2284 return;
2285 end if;
2287 Find_Type (Typ);
2289 -- The type of the formal must be derived from [Limited_]Controlled
2291 if not Is_Controlled (Entity (Typ)) then
2292 return;
2293 end if;
2295 -- Check whether a specification exists for this body. We do not
2296 -- analyze the spec of the body in full, because it will be analyzed
2297 -- again when the body is properly analyzed, and we cannot create
2298 -- duplicate entries in the formals chain. We look for an explicit
2299 -- specification because the body may be an overriding operation and
2300 -- an inherited spec may be present.
2302 Spec_Id := Current_Entity (Body_Id);
2304 while Present (Spec_Id) loop
2305 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2306 and then Scope (Spec_Id) = Current_Scope
2307 and then Present (First_Formal (Spec_Id))
2308 and then No (Next_Formal (First_Formal (Spec_Id)))
2309 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2310 and then Comes_From_Source (Spec_Id)
2311 then
2312 return;
2313 end if;
2315 Spec_Id := Homonym (Spec_Id);
2316 end loop;
2318 -- At this point the body is known to be a late controlled primitive.
2319 -- Generate a matching spec and insert it before the body. Note the
2320 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2321 -- tree in this case.
2323 Spec := Copy_Separate_Tree (Body_Spec);
2325 -- Ensure that the subprogram declaration does not inherit the null
2326 -- indicator from the body as we now have a proper spec/body pair.
2328 Set_Null_Present (Spec, False);
2330 -- Ensure that the freeze node is inserted after the declaration of
2331 -- the primitive since its expansion will freeze the primitive.
2333 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2335 Insert_Before_And_Analyze (Body_Decl, Decl);
2336 end Handle_Late_Controlled_Primitive;
2338 --------------------------------
2339 -- Remove_Visible_Refinements --
2340 --------------------------------
2342 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2343 State_Elmt : Elmt_Id;
2344 begin
2345 if Present (Abstract_States (Spec_Id)) then
2346 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2347 while Present (State_Elmt) loop
2348 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2349 Next_Elmt (State_Elmt);
2350 end loop;
2351 end if;
2352 end Remove_Visible_Refinements;
2354 -- Local variables
2356 Context : Node_Id := Empty;
2357 Freeze_From : Entity_Id := Empty;
2358 Next_Decl : Node_Id;
2360 Body_Seen : Boolean := False;
2361 -- Flag set when the first body [stub] is encountered
2363 -- Start of processing for Analyze_Declarations
2365 begin
2366 if Restriction_Check_Required (SPARK_05) then
2367 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2368 end if;
2370 Decl := First (L);
2371 while Present (Decl) loop
2373 -- Package spec cannot contain a package declaration in SPARK
2375 if Nkind (Decl) = N_Package_Declaration
2376 and then Nkind (Parent (L)) = N_Package_Specification
2377 then
2378 Check_SPARK_05_Restriction
2379 ("package specification cannot contain a package declaration",
2380 Decl);
2381 end if;
2383 -- Complete analysis of declaration
2385 Analyze (Decl);
2386 Next_Decl := Next (Decl);
2388 if No (Freeze_From) then
2389 Freeze_From := First_Entity (Current_Scope);
2390 end if;
2392 -- At the end of a declarative part, freeze remaining entities
2393 -- declared in it. The end of the visible declarations of package
2394 -- specification is not the end of a declarative part if private
2395 -- declarations are present. The end of a package declaration is a
2396 -- freezing point only if it a library package. A task definition or
2397 -- protected type definition is not a freeze point either. Finally,
2398 -- we do not freeze entities in generic scopes, because there is no
2399 -- code generated for them and freeze nodes will be generated for
2400 -- the instance.
2402 -- The end of a package instantiation is not a freeze point, but
2403 -- for now we make it one, because the generic body is inserted
2404 -- (currently) immediately after. Generic instantiations will not
2405 -- be a freeze point once delayed freezing of bodies is implemented.
2406 -- (This is needed in any case for early instantiations ???).
2408 if No (Next_Decl) then
2409 if Nkind (Parent (L)) = N_Component_List then
2410 null;
2412 elsif Nkind_In (Parent (L), N_Protected_Definition,
2413 N_Task_Definition)
2414 then
2415 Check_Entry_Contracts;
2417 elsif Nkind (Parent (L)) /= N_Package_Specification then
2418 if Nkind (Parent (L)) = N_Package_Body then
2419 Freeze_From := First_Entity (Current_Scope);
2420 end if;
2422 -- There may have been several freezing points previously,
2423 -- for example object declarations or subprogram bodies, but
2424 -- at the end of a declarative part we check freezing from
2425 -- the beginning, even though entities may already be frozen,
2426 -- in order to perform visibility checks on delayed aspects.
2428 Adjust_Decl;
2429 Freeze_All (First_Entity (Current_Scope), Decl);
2430 Freeze_From := Last_Entity (Current_Scope);
2432 elsif Scope (Current_Scope) /= Standard_Standard
2433 and then not Is_Child_Unit (Current_Scope)
2434 and then No (Generic_Parent (Parent (L)))
2435 then
2436 null;
2438 elsif L /= Visible_Declarations (Parent (L))
2439 or else No (Private_Declarations (Parent (L)))
2440 or else Is_Empty_List (Private_Declarations (Parent (L)))
2441 then
2442 Adjust_Decl;
2443 Freeze_All (First_Entity (Current_Scope), Decl);
2444 Freeze_From := Last_Entity (Current_Scope);
2446 -- At the end of the visible declarations the expressions in
2447 -- aspects of all entities declared so far must be resolved.
2448 -- The entities themselves might be frozen later, and the
2449 -- generated pragmas and attribute definition clauses analyzed
2450 -- in full at that point, but name resolution must take place
2451 -- now.
2452 -- In addition to being the proper semantics, this is mandatory
2453 -- within generic units, because global name capture requires
2454 -- those expressions to be analyzed, given that the generated
2455 -- pragmas do not appear in the original generic tree.
2457 elsif Serious_Errors_Detected = 0 then
2458 declare
2459 E : Entity_Id;
2461 begin
2462 E := First_Entity (Current_Scope);
2463 while Present (E) loop
2464 Resolve_Aspect_Expressions (E);
2465 Next_Entity (E);
2466 end loop;
2467 end;
2468 end if;
2470 -- If next node is a body then freeze all types before the body.
2471 -- An exception occurs for some expander-generated bodies. If these
2472 -- are generated at places where in general language rules would not
2473 -- allow a freeze point, then we assume that the expander has
2474 -- explicitly checked that all required types are properly frozen,
2475 -- and we do not cause general freezing here. This special circuit
2476 -- is used when the encountered body is marked as having already
2477 -- been analyzed.
2479 -- In all other cases (bodies that come from source, and expander
2480 -- generated bodies that have not been analyzed yet), freeze all
2481 -- types now. Note that in the latter case, the expander must take
2482 -- care to attach the bodies at a proper place in the tree so as to
2483 -- not cause unwanted freezing at that point.
2485 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2487 -- When a controlled type is frozen, the expander generates stream
2488 -- and controlled type support routines. If the freeze is caused
2489 -- by the stand alone body of Initialize, Adjust and Finalize, the
2490 -- expander will end up using the wrong version of these routines
2491 -- as the body has not been processed yet. To remedy this, detect
2492 -- a late controlled primitive and create a proper spec for it.
2493 -- This ensures that the primitive will override its inherited
2494 -- counterpart before the freeze takes place.
2496 -- If the declaration we just processed is a body, do not attempt
2497 -- to examine Next_Decl as the late primitive idiom can only apply
2498 -- to the first encountered body.
2500 -- The spec of the late primitive is not generated in ASIS mode to
2501 -- ensure a consistent list of primitives that indicates the true
2502 -- semantic structure of the program (which is not relevant when
2503 -- generating executable code.
2505 -- ??? a cleaner approach may be possible and/or this solution
2506 -- could be extended to general-purpose late primitives, TBD.
2508 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2509 then
2510 Body_Seen := True;
2512 if Nkind (Next_Decl) = N_Subprogram_Body then
2513 Handle_Late_Controlled_Primitive (Next_Decl);
2514 end if;
2515 end if;
2517 Adjust_Decl;
2518 Freeze_All (Freeze_From, Decl);
2519 Freeze_From := Last_Entity (Current_Scope);
2520 end if;
2522 Decl := Next_Decl;
2523 end loop;
2525 -- Analyze the contracts of packages and their bodies
2527 if Present (L) then
2528 Context := Parent (L);
2530 if Nkind (Context) = N_Package_Specification then
2532 -- When a package has private declarations, its contract must be
2533 -- analyzed at the end of the said declarations. This way both the
2534 -- analysis and freeze actions are properly synchronized in case
2535 -- of private type use within the contract.
2537 if L = Private_Declarations (Context) then
2538 Analyze_Package_Contract (Defining_Entity (Context));
2540 -- Build the bodies of the default initial condition procedures
2541 -- for all types subject to pragma Default_Initial_Condition.
2542 -- From a purely Ada stand point, this is a freezing activity,
2543 -- however freezing is not available under GNATprove_Mode. To
2544 -- accomodate both scenarios, the bodies are build at the end
2545 -- of private declaration analysis.
2547 Build_Default_Init_Cond_Procedure_Bodies (L);
2549 -- Otherwise the contract is analyzed at the end of the visible
2550 -- declarations.
2552 elsif L = Visible_Declarations (Context)
2553 and then No (Private_Declarations (Context))
2554 then
2555 Analyze_Package_Contract (Defining_Entity (Context));
2556 end if;
2558 elsif Nkind (Context) = N_Package_Body then
2559 Analyze_Package_Body_Contract (Defining_Entity (Context));
2560 end if;
2562 -- Analyze the contracts of various constructs now due to the delayed
2563 -- visibility needs of their aspects and pragmas.
2565 Analyze_Contracts (L);
2567 if Nkind (Context) = N_Package_Body then
2569 -- Ensure that all abstract states and objects declared in the
2570 -- state space of a package body are utilized as constituents.
2572 Check_Unused_Body_States (Defining_Entity (Context));
2574 -- State refinements are visible up to the end of the package body
2575 -- declarations. Hide the state refinements from visibility to
2576 -- restore the original state conditions.
2578 Remove_Visible_Refinements (Corresponding_Spec (Context));
2579 end if;
2581 -- Verify that all abstract states found in any package declared in
2582 -- the input declarative list have proper refinements. The check is
2583 -- performed only when the context denotes a block, entry, package,
2584 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2586 Check_State_Refinements (Context);
2587 end if;
2588 end Analyze_Declarations;
2590 -----------------------------------
2591 -- Analyze_Full_Type_Declaration --
2592 -----------------------------------
2594 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2595 Def : constant Node_Id := Type_Definition (N);
2596 Def_Id : constant Entity_Id := Defining_Identifier (N);
2597 T : Entity_Id;
2598 Prev : Entity_Id;
2600 Is_Remote : constant Boolean :=
2601 (Is_Remote_Types (Current_Scope)
2602 or else Is_Remote_Call_Interface (Current_Scope))
2603 and then not (In_Private_Part (Current_Scope)
2604 or else In_Package_Body (Current_Scope));
2606 procedure Check_Nonoverridable_Aspects;
2607 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2608 -- be overridden, and can only be confirmed on derivation.
2610 procedure Check_Ops_From_Incomplete_Type;
2611 -- If there is a tagged incomplete partial view of the type, traverse
2612 -- the primitives of the incomplete view and change the type of any
2613 -- controlling formals and result to indicate the full view. The
2614 -- primitives will be added to the full type's primitive operations
2615 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2616 -- is called from Process_Incomplete_Dependents).
2618 ----------------------------------
2619 -- Check_Nonoverridable_Aspects --
2620 ----------------------------------
2622 procedure Check_Nonoverridable_Aspects is
2623 Prev_Aspects : constant List_Id :=
2624 Aspect_Specifications (Parent (Def_Id));
2625 Par_Type : Entity_Id;
2627 function Has_Aspect_Spec
2628 (Specs : List_Id;
2629 Aspect_Name : Name_Id) return Boolean;
2630 -- Check whether a list of aspect specifications includes an entry
2631 -- for a specific aspect. The list is either that of a partial or
2632 -- a full view.
2634 ---------------------
2635 -- Has_Aspect_Spec --
2636 ---------------------
2638 function Has_Aspect_Spec
2639 (Specs : List_Id;
2640 Aspect_Name : Name_Id) return Boolean
2642 Spec : Node_Id;
2643 begin
2644 Spec := First (Specs);
2645 while Present (Spec) loop
2646 if Chars (Identifier (Spec)) = Aspect_Name then
2647 return True;
2648 end if;
2649 Next (Spec);
2650 end loop;
2651 return False;
2652 end Has_Aspect_Spec;
2654 -- Start of processing for Check_Nonoverridable_Aspects
2656 begin
2658 -- Get parent type of derived type. Note that Prev is the entity
2659 -- in the partial declaration, but its contents are now those of
2660 -- full view, while Def_Id reflects the partial view.
2662 if Is_Private_Type (Def_Id) then
2663 Par_Type := Etype (Full_View (Def_Id));
2664 else
2665 Par_Type := Etype (Def_Id);
2666 end if;
2668 -- If there is an inherited Implicit_Dereference, verify that it is
2669 -- made explicit in the partial view.
2671 if Has_Discriminants (Base_Type (Par_Type))
2672 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2673 and then Present (Discriminant_Specifications (Parent (Prev)))
2674 and then Present (Get_Reference_Discriminant (Par_Type))
2675 then
2677 not Has_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference)
2678 then
2679 Error_Msg_N
2680 ("type does not inherit implicit dereference", Prev);
2682 else
2683 -- If one of the views has the aspect specified, verify that it
2684 -- is consistent with that of the parent.
2686 declare
2687 Par_Discr : constant Entity_Id :=
2688 Get_Reference_Discriminant (Par_Type);
2689 Cur_Discr : constant Entity_Id :=
2690 Get_Reference_Discriminant (Prev);
2691 begin
2692 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2693 Error_Msg_N ("aspect incosistent with that of parent", N);
2694 end if;
2695 end;
2696 end if;
2697 end if;
2699 -- TBD : other nonoverridable aspects.
2700 end Check_Nonoverridable_Aspects;
2702 ------------------------------------
2703 -- Check_Ops_From_Incomplete_Type --
2704 ------------------------------------
2706 procedure Check_Ops_From_Incomplete_Type is
2707 Elmt : Elmt_Id;
2708 Formal : Entity_Id;
2709 Op : Entity_Id;
2711 begin
2712 if Prev /= T
2713 and then Ekind (Prev) = E_Incomplete_Type
2714 and then Is_Tagged_Type (Prev)
2715 and then Is_Tagged_Type (T)
2716 then
2717 Elmt := First_Elmt (Primitive_Operations (Prev));
2718 while Present (Elmt) loop
2719 Op := Node (Elmt);
2721 Formal := First_Formal (Op);
2722 while Present (Formal) loop
2723 if Etype (Formal) = Prev then
2724 Set_Etype (Formal, T);
2725 end if;
2727 Next_Formal (Formal);
2728 end loop;
2730 if Etype (Op) = Prev then
2731 Set_Etype (Op, T);
2732 end if;
2734 Next_Elmt (Elmt);
2735 end loop;
2736 end if;
2737 end Check_Ops_From_Incomplete_Type;
2739 -- Start of processing for Analyze_Full_Type_Declaration
2741 begin
2742 Prev := Find_Type_Name (N);
2744 -- The full view, if present, now points to the current type. If there
2745 -- is an incomplete partial view, set a link to it, to simplify the
2746 -- retrieval of primitive operations of the type.
2748 -- Ada 2005 (AI-50217): If the type was previously decorated when
2749 -- imported through a LIMITED WITH clause, it appears as incomplete
2750 -- but has no full view.
2752 if Ekind (Prev) = E_Incomplete_Type
2753 and then Present (Full_View (Prev))
2754 then
2755 T := Full_View (Prev);
2756 Set_Incomplete_View (N, Parent (Prev));
2757 else
2758 T := Prev;
2759 end if;
2761 Set_Is_Pure (T, Is_Pure (Current_Scope));
2763 -- We set the flag Is_First_Subtype here. It is needed to set the
2764 -- corresponding flag for the Implicit class-wide-type created
2765 -- during tagged types processing.
2767 Set_Is_First_Subtype (T, True);
2769 -- Only composite types other than array types are allowed to have
2770 -- discriminants.
2772 case Nkind (Def) is
2774 -- For derived types, the rule will be checked once we've figured
2775 -- out the parent type.
2777 when N_Derived_Type_Definition =>
2778 null;
2780 -- For record types, discriminants are allowed, unless we are in
2781 -- SPARK.
2783 when N_Record_Definition =>
2784 if Present (Discriminant_Specifications (N)) then
2785 Check_SPARK_05_Restriction
2786 ("discriminant type is not allowed",
2787 Defining_Identifier
2788 (First (Discriminant_Specifications (N))));
2789 end if;
2791 when others =>
2792 if Present (Discriminant_Specifications (N)) then
2793 Error_Msg_N
2794 ("elementary or array type cannot have discriminants",
2795 Defining_Identifier
2796 (First (Discriminant_Specifications (N))));
2797 end if;
2798 end case;
2800 -- Elaborate the type definition according to kind, and generate
2801 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2802 -- already done (this happens during the reanalysis that follows a call
2803 -- to the high level optimizer).
2805 if not Analyzed (T) then
2806 Set_Analyzed (T);
2808 case Nkind (Def) is
2809 when N_Access_To_Subprogram_Definition =>
2810 Access_Subprogram_Declaration (T, Def);
2812 -- If this is a remote access to subprogram, we must create the
2813 -- equivalent fat pointer type, and related subprograms.
2815 if Is_Remote then
2816 Process_Remote_AST_Declaration (N);
2817 end if;
2819 -- Validate categorization rule against access type declaration
2820 -- usually a violation in Pure unit, Shared_Passive unit.
2822 Validate_Access_Type_Declaration (T, N);
2824 when N_Access_To_Object_Definition =>
2825 Access_Type_Declaration (T, Def);
2827 -- Validate categorization rule against access type declaration
2828 -- usually a violation in Pure unit, Shared_Passive unit.
2830 Validate_Access_Type_Declaration (T, N);
2832 -- If we are in a Remote_Call_Interface package and define a
2833 -- RACW, then calling stubs and specific stream attributes
2834 -- must be added.
2836 if Is_Remote
2837 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2838 then
2839 Add_RACW_Features (Def_Id);
2840 end if;
2842 when N_Array_Type_Definition =>
2843 Array_Type_Declaration (T, Def);
2845 when N_Derived_Type_Definition =>
2846 Derived_Type_Declaration (T, N, T /= Def_Id);
2848 when N_Enumeration_Type_Definition =>
2849 Enumeration_Type_Declaration (T, Def);
2851 when N_Floating_Point_Definition =>
2852 Floating_Point_Type_Declaration (T, Def);
2854 when N_Decimal_Fixed_Point_Definition =>
2855 Decimal_Fixed_Point_Type_Declaration (T, Def);
2857 when N_Ordinary_Fixed_Point_Definition =>
2858 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2860 when N_Signed_Integer_Type_Definition =>
2861 Signed_Integer_Type_Declaration (T, Def);
2863 when N_Modular_Type_Definition =>
2864 Modular_Type_Declaration (T, Def);
2866 when N_Record_Definition =>
2867 Record_Type_Declaration (T, N, Prev);
2869 -- If declaration has a parse error, nothing to elaborate.
2871 when N_Error =>
2872 null;
2874 when others =>
2875 raise Program_Error;
2877 end case;
2878 end if;
2880 if Etype (T) = Any_Type then
2881 return;
2882 end if;
2884 -- Controlled type is not allowed in SPARK
2886 if Is_Visibly_Controlled (T) then
2887 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2888 end if;
2890 -- A type declared within a Ghost region is automatically Ghost
2891 -- (SPARK RM 6.9(2)).
2893 if Ghost_Mode > None then
2894 Set_Is_Ghost_Entity (T);
2895 end if;
2897 -- Some common processing for all types
2899 Set_Depends_On_Private (T, Has_Private_Component (T));
2900 Check_Ops_From_Incomplete_Type;
2902 -- Both the declared entity, and its anonymous base type if one was
2903 -- created, need freeze nodes allocated.
2905 declare
2906 B : constant Entity_Id := Base_Type (T);
2908 begin
2909 -- In the case where the base type differs from the first subtype, we
2910 -- pre-allocate a freeze node, and set the proper link to the first
2911 -- subtype. Freeze_Entity will use this preallocated freeze node when
2912 -- it freezes the entity.
2914 -- This does not apply if the base type is a generic type, whose
2915 -- declaration is independent of the current derived definition.
2917 if B /= T and then not Is_Generic_Type (B) then
2918 Ensure_Freeze_Node (B);
2919 Set_First_Subtype_Link (Freeze_Node (B), T);
2920 end if;
2922 -- A type that is imported through a limited_with clause cannot
2923 -- generate any code, and thus need not be frozen. However, an access
2924 -- type with an imported designated type needs a finalization list,
2925 -- which may be referenced in some other package that has non-limited
2926 -- visibility on the designated type. Thus we must create the
2927 -- finalization list at the point the access type is frozen, to
2928 -- prevent unsatisfied references at link time.
2930 if not From_Limited_With (T) or else Is_Access_Type (T) then
2931 Set_Has_Delayed_Freeze (T);
2932 end if;
2933 end;
2935 -- Case where T is the full declaration of some private type which has
2936 -- been swapped in Defining_Identifier (N).
2938 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2939 Process_Full_View (N, T, Def_Id);
2941 -- Record the reference. The form of this is a little strange, since
2942 -- the full declaration has been swapped in. So the first parameter
2943 -- here represents the entity to which a reference is made which is
2944 -- the "real" entity, i.e. the one swapped in, and the second
2945 -- parameter provides the reference location.
2947 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2948 -- since we don't want a complaint about the full type being an
2949 -- unwanted reference to the private type
2951 declare
2952 B : constant Boolean := Has_Pragma_Unreferenced (T);
2953 begin
2954 Set_Has_Pragma_Unreferenced (T, False);
2955 Generate_Reference (T, T, 'c');
2956 Set_Has_Pragma_Unreferenced (T, B);
2957 end;
2959 Set_Completion_Referenced (Def_Id);
2961 -- For completion of incomplete type, process incomplete dependents
2962 -- and always mark the full type as referenced (it is the incomplete
2963 -- type that we get for any real reference).
2965 elsif Ekind (Prev) = E_Incomplete_Type then
2966 Process_Incomplete_Dependents (N, T, Prev);
2967 Generate_Reference (Prev, Def_Id, 'c');
2968 Set_Completion_Referenced (Def_Id);
2970 -- If not private type or incomplete type completion, this is a real
2971 -- definition of a new entity, so record it.
2973 else
2974 Generate_Definition (Def_Id);
2975 end if;
2977 -- Propagate any pending access types whose finalization masters need to
2978 -- be fully initialized from the partial to the full view. Guard against
2979 -- an illegal full view that remains unanalyzed.
2981 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
2982 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
2983 end if;
2985 if Chars (Scope (Def_Id)) = Name_System
2986 and then Chars (Def_Id) = Name_Address
2987 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2988 then
2989 Set_Is_Descendant_Of_Address (Def_Id);
2990 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
2991 Set_Is_Descendant_Of_Address (Prev);
2992 end if;
2994 Set_Optimize_Alignment_Flags (Def_Id);
2995 Check_Eliminated (Def_Id);
2997 -- If the declaration is a completion and aspects are present, apply
2998 -- them to the entity for the type which is currently the partial
2999 -- view, but which is the one that will be frozen.
3001 if Has_Aspects (N) then
3003 -- In most cases the partial view is a private type, and both views
3004 -- appear in different declarative parts. In the unusual case where
3005 -- the partial view is incomplete, perform the analysis on the
3006 -- full view, to prevent freezing anomalies with the corresponding
3007 -- class-wide type, which otherwise might be frozen before the
3008 -- dispatch table is built.
3010 if Prev /= Def_Id
3011 and then Ekind (Prev) /= E_Incomplete_Type
3012 then
3013 Analyze_Aspect_Specifications (N, Prev);
3015 -- Normal case
3017 else
3018 Analyze_Aspect_Specifications (N, Def_Id);
3019 end if;
3020 end if;
3022 if Is_Derived_Type (Prev)
3023 and then Def_Id /= Prev
3024 then
3025 Check_Nonoverridable_Aspects;
3026 end if;
3027 end Analyze_Full_Type_Declaration;
3029 ----------------------------------
3030 -- Analyze_Incomplete_Type_Decl --
3031 ----------------------------------
3033 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3034 F : constant Boolean := Is_Pure (Current_Scope);
3035 T : Entity_Id;
3037 begin
3038 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3040 Generate_Definition (Defining_Identifier (N));
3042 -- Process an incomplete declaration. The identifier must not have been
3043 -- declared already in the scope. However, an incomplete declaration may
3044 -- appear in the private part of a package, for a private type that has
3045 -- already been declared.
3047 -- In this case, the discriminants (if any) must match
3049 T := Find_Type_Name (N);
3051 Set_Ekind (T, E_Incomplete_Type);
3052 Init_Size_Align (T);
3053 Set_Is_First_Subtype (T, True);
3054 Set_Etype (T, T);
3056 -- An incomplete type declared within a Ghost region is automatically
3057 -- Ghost (SPARK RM 6.9(2)).
3059 if Ghost_Mode > None then
3060 Set_Is_Ghost_Entity (T);
3061 end if;
3063 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3064 -- incomplete types.
3066 if Tagged_Present (N) then
3067 Set_Is_Tagged_Type (T, True);
3068 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3069 Make_Class_Wide_Type (T);
3070 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3071 end if;
3073 Set_Stored_Constraint (T, No_Elist);
3075 if Present (Discriminant_Specifications (N)) then
3076 Push_Scope (T);
3077 Process_Discriminants (N);
3078 End_Scope;
3079 end if;
3081 -- If the type has discriminants, nontrivial subtypes may be declared
3082 -- before the full view of the type. The full views of those subtypes
3083 -- will be built after the full view of the type.
3085 Set_Private_Dependents (T, New_Elmt_List);
3086 Set_Is_Pure (T, F);
3087 end Analyze_Incomplete_Type_Decl;
3089 -----------------------------------
3090 -- Analyze_Interface_Declaration --
3091 -----------------------------------
3093 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3094 CW : constant Entity_Id := Class_Wide_Type (T);
3096 begin
3097 Set_Is_Tagged_Type (T);
3098 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3100 Set_Is_Limited_Record (T, Limited_Present (Def)
3101 or else Task_Present (Def)
3102 or else Protected_Present (Def)
3103 or else Synchronized_Present (Def));
3105 -- Type is abstract if full declaration carries keyword, or if previous
3106 -- partial view did.
3108 Set_Is_Abstract_Type (T);
3109 Set_Is_Interface (T);
3111 -- Type is a limited interface if it includes the keyword limited, task,
3112 -- protected, or synchronized.
3114 Set_Is_Limited_Interface
3115 (T, Limited_Present (Def)
3116 or else Protected_Present (Def)
3117 or else Synchronized_Present (Def)
3118 or else Task_Present (Def));
3120 Set_Interfaces (T, New_Elmt_List);
3121 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3123 -- Complete the decoration of the class-wide entity if it was already
3124 -- built (i.e. during the creation of the limited view)
3126 if Present (CW) then
3127 Set_Is_Interface (CW);
3128 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3129 end if;
3131 -- Check runtime support for synchronized interfaces
3133 if (Is_Task_Interface (T)
3134 or else Is_Protected_Interface (T)
3135 or else Is_Synchronized_Interface (T))
3136 and then not RTE_Available (RE_Select_Specific_Data)
3137 then
3138 Error_Msg_CRT ("synchronized interfaces", T);
3139 end if;
3140 end Analyze_Interface_Declaration;
3142 -----------------------------
3143 -- Analyze_Itype_Reference --
3144 -----------------------------
3146 -- Nothing to do. This node is placed in the tree only for the benefit of
3147 -- back end processing, and has no effect on the semantic processing.
3149 procedure Analyze_Itype_Reference (N : Node_Id) is
3150 begin
3151 pragma Assert (Is_Itype (Itype (N)));
3152 null;
3153 end Analyze_Itype_Reference;
3155 --------------------------------
3156 -- Analyze_Number_Declaration --
3157 --------------------------------
3159 procedure Analyze_Number_Declaration (N : Node_Id) is
3160 E : constant Node_Id := Expression (N);
3161 Id : constant Entity_Id := Defining_Identifier (N);
3162 Index : Interp_Index;
3163 It : Interp;
3164 T : Entity_Id;
3166 begin
3167 Generate_Definition (Id);
3168 Enter_Name (Id);
3170 -- A number declared within a Ghost region is automatically Ghost
3171 -- (SPARK RM 6.9(2)).
3173 if Ghost_Mode > None then
3174 Set_Is_Ghost_Entity (Id);
3175 end if;
3177 -- This is an optimization of a common case of an integer literal
3179 if Nkind (E) = N_Integer_Literal then
3180 Set_Is_Static_Expression (E, True);
3181 Set_Etype (E, Universal_Integer);
3183 Set_Etype (Id, Universal_Integer);
3184 Set_Ekind (Id, E_Named_Integer);
3185 Set_Is_Frozen (Id, True);
3186 return;
3187 end if;
3189 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3191 -- Process expression, replacing error by integer zero, to avoid
3192 -- cascaded errors or aborts further along in the processing
3194 -- Replace Error by integer zero, which seems least likely to cause
3195 -- cascaded errors.
3197 if E = Error then
3198 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3199 Set_Error_Posted (E);
3200 end if;
3202 Analyze (E);
3204 -- Verify that the expression is static and numeric. If
3205 -- the expression is overloaded, we apply the preference
3206 -- rule that favors root numeric types.
3208 if not Is_Overloaded (E) then
3209 T := Etype (E);
3210 if Has_Dynamic_Predicate_Aspect (T) then
3211 Error_Msg_N
3212 ("subtype has dynamic predicate, "
3213 & "not allowed in number declaration", N);
3214 end if;
3216 else
3217 T := Any_Type;
3219 Get_First_Interp (E, Index, It);
3220 while Present (It.Typ) loop
3221 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3222 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3223 then
3224 if T = Any_Type then
3225 T := It.Typ;
3227 elsif It.Typ = Universal_Real
3228 or else
3229 It.Typ = Universal_Integer
3230 then
3231 -- Choose universal interpretation over any other
3233 T := It.Typ;
3234 exit;
3235 end if;
3236 end if;
3238 Get_Next_Interp (Index, It);
3239 end loop;
3240 end if;
3242 if Is_Integer_Type (T) then
3243 Resolve (E, T);
3244 Set_Etype (Id, Universal_Integer);
3245 Set_Ekind (Id, E_Named_Integer);
3247 elsif Is_Real_Type (T) then
3249 -- Because the real value is converted to universal_real, this is a
3250 -- legal context for a universal fixed expression.
3252 if T = Universal_Fixed then
3253 declare
3254 Loc : constant Source_Ptr := Sloc (N);
3255 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3256 Subtype_Mark =>
3257 New_Occurrence_Of (Universal_Real, Loc),
3258 Expression => Relocate_Node (E));
3260 begin
3261 Rewrite (E, Conv);
3262 Analyze (E);
3263 end;
3265 elsif T = Any_Fixed then
3266 Error_Msg_N ("illegal context for mixed mode operation", E);
3268 -- Expression is of the form : universal_fixed * integer. Try to
3269 -- resolve as universal_real.
3271 T := Universal_Real;
3272 Set_Etype (E, T);
3273 end if;
3275 Resolve (E, T);
3276 Set_Etype (Id, Universal_Real);
3277 Set_Ekind (Id, E_Named_Real);
3279 else
3280 Wrong_Type (E, Any_Numeric);
3281 Resolve (E, T);
3283 Set_Etype (Id, T);
3284 Set_Ekind (Id, E_Constant);
3285 Set_Never_Set_In_Source (Id, True);
3286 Set_Is_True_Constant (Id, True);
3287 return;
3288 end if;
3290 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3291 Set_Etype (E, Etype (Id));
3292 end if;
3294 if not Is_OK_Static_Expression (E) then
3295 Flag_Non_Static_Expr
3296 ("non-static expression used in number declaration!", E);
3297 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3298 Set_Etype (E, Any_Type);
3299 end if;
3301 Analyze_Dimension (N);
3302 end Analyze_Number_Declaration;
3304 --------------------------------
3305 -- Analyze_Object_Declaration --
3306 --------------------------------
3308 procedure Analyze_Object_Declaration (N : Node_Id) is
3309 Loc : constant Source_Ptr := Sloc (N);
3310 Id : constant Entity_Id := Defining_Identifier (N);
3311 Act_T : Entity_Id;
3312 T : Entity_Id;
3314 E : Node_Id := Expression (N);
3315 -- E is set to Expression (N) throughout this routine. When
3316 -- Expression (N) is modified, E is changed accordingly.
3318 Prev_Entity : Entity_Id := Empty;
3320 function Count_Tasks (T : Entity_Id) return Uint;
3321 -- This function is called when a non-generic library level object of a
3322 -- task type is declared. Its function is to count the static number of
3323 -- tasks declared within the type (it is only called if Has_Task is set
3324 -- for T). As a side effect, if an array of tasks with non-static bounds
3325 -- or a variant record type is encountered, Check_Restriction is called
3326 -- indicating the count is unknown.
3328 function Delayed_Aspect_Present return Boolean;
3329 -- If the declaration has an expression that is an aggregate, and it
3330 -- has aspects that require delayed analysis, the resolution of the
3331 -- aggregate must be deferred to the freeze point of the objet. This
3332 -- special processing was created for address clauses, but it must
3333 -- also apply to Alignment. This must be done before the aspect
3334 -- specifications are analyzed because we must handle the aggregate
3335 -- before the analysis of the object declaration is complete.
3337 -- Any other relevant delayed aspects on object declarations ???
3339 -----------------
3340 -- Count_Tasks --
3341 -----------------
3343 function Count_Tasks (T : Entity_Id) return Uint is
3344 C : Entity_Id;
3345 X : Node_Id;
3346 V : Uint;
3348 begin
3349 if Is_Task_Type (T) then
3350 return Uint_1;
3352 elsif Is_Record_Type (T) then
3353 if Has_Discriminants (T) then
3354 Check_Restriction (Max_Tasks, N);
3355 return Uint_0;
3357 else
3358 V := Uint_0;
3359 C := First_Component (T);
3360 while Present (C) loop
3361 V := V + Count_Tasks (Etype (C));
3362 Next_Component (C);
3363 end loop;
3365 return V;
3366 end if;
3368 elsif Is_Array_Type (T) then
3369 X := First_Index (T);
3370 V := Count_Tasks (Component_Type (T));
3371 while Present (X) loop
3372 C := Etype (X);
3374 if not Is_OK_Static_Subtype (C) then
3375 Check_Restriction (Max_Tasks, N);
3376 return Uint_0;
3377 else
3378 V := V * (UI_Max (Uint_0,
3379 Expr_Value (Type_High_Bound (C)) -
3380 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3381 end if;
3383 Next_Index (X);
3384 end loop;
3386 return V;
3388 else
3389 return Uint_0;
3390 end if;
3391 end Count_Tasks;
3393 ----------------------------
3394 -- Delayed_Aspect_Present --
3395 ----------------------------
3397 function Delayed_Aspect_Present return Boolean is
3398 A : Node_Id;
3399 A_Id : Aspect_Id;
3401 begin
3402 if Present (Aspect_Specifications (N)) then
3403 A := First (Aspect_Specifications (N));
3404 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3405 while Present (A) loop
3406 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3407 return True;
3408 end if;
3410 Next (A);
3411 end loop;
3412 end if;
3414 return False;
3415 end Delayed_Aspect_Present;
3417 -- Local variables
3419 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
3420 Related_Id : Entity_Id;
3422 -- Start of processing for Analyze_Object_Declaration
3424 begin
3425 -- There are three kinds of implicit types generated by an
3426 -- object declaration:
3428 -- 1. Those generated by the original Object Definition
3430 -- 2. Those generated by the Expression
3432 -- 3. Those used to constrain the Object Definition with the
3433 -- expression constraints when the definition is unconstrained.
3435 -- They must be generated in this order to avoid order of elaboration
3436 -- issues. Thus the first step (after entering the name) is to analyze
3437 -- the object definition.
3439 if Constant_Present (N) then
3440 Prev_Entity := Current_Entity_In_Scope (Id);
3442 if Present (Prev_Entity)
3443 and then
3444 -- If the homograph is an implicit subprogram, it is overridden
3445 -- by the current declaration.
3447 ((Is_Overloadable (Prev_Entity)
3448 and then Is_Inherited_Operation (Prev_Entity))
3450 -- The current object is a discriminal generated for an entry
3451 -- family index. Even though the index is a constant, in this
3452 -- particular context there is no true constant redeclaration.
3453 -- Enter_Name will handle the visibility.
3455 or else
3456 (Is_Discriminal (Id)
3457 and then Ekind (Discriminal_Link (Id)) =
3458 E_Entry_Index_Parameter)
3460 -- The current object is the renaming for a generic declared
3461 -- within the instance.
3463 or else
3464 (Ekind (Prev_Entity) = E_Package
3465 and then Nkind (Parent (Prev_Entity)) =
3466 N_Package_Renaming_Declaration
3467 and then not Comes_From_Source (Prev_Entity)
3468 and then
3469 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3471 -- The entity may be a homonym of a private component of the
3472 -- enclosing protected object, for which we create a local
3473 -- renaming declaration. The declaration is legal, even if
3474 -- useless when it just captures that component.
3476 or else
3477 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3478 and then Nkind (Parent (Prev_Entity)) =
3479 N_Object_Renaming_Declaration))
3480 then
3481 Prev_Entity := Empty;
3482 end if;
3483 end if;
3485 -- The object declaration is Ghost when it is subject to pragma Ghost or
3486 -- completes a deferred Ghost constant. Set the mode now to ensure that
3487 -- any nodes generated during analysis and expansion are properly marked
3488 -- as Ghost.
3490 Set_Ghost_Mode (N, Prev_Entity);
3492 if Present (Prev_Entity) then
3493 Constant_Redeclaration (Id, N, T);
3495 Generate_Reference (Prev_Entity, Id, 'c');
3496 Set_Completion_Referenced (Id);
3498 if Error_Posted (N) then
3500 -- Type mismatch or illegal redeclaration; do not analyze
3501 -- expression to avoid cascaded errors.
3503 T := Find_Type_Of_Object (Object_Definition (N), N);
3504 Set_Etype (Id, T);
3505 Set_Ekind (Id, E_Variable);
3506 goto Leave;
3507 end if;
3509 -- In the normal case, enter identifier at the start to catch premature
3510 -- usage in the initialization expression.
3512 else
3513 Generate_Definition (Id);
3514 Enter_Name (Id);
3516 Mark_Coextensions (N, Object_Definition (N));
3518 T := Find_Type_Of_Object (Object_Definition (N), N);
3520 if Nkind (Object_Definition (N)) = N_Access_Definition
3521 and then Present
3522 (Access_To_Subprogram_Definition (Object_Definition (N)))
3523 and then Protected_Present
3524 (Access_To_Subprogram_Definition (Object_Definition (N)))
3525 then
3526 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3527 end if;
3529 if Error_Posted (Id) then
3530 Set_Etype (Id, T);
3531 Set_Ekind (Id, E_Variable);
3532 goto Leave;
3533 end if;
3534 end if;
3536 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3537 -- out some static checks.
3539 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3541 -- In case of aggregates we must also take care of the correct
3542 -- initialization of nested aggregates bug this is done at the
3543 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
3545 if Present (Expression (N))
3546 and then Nkind (Expression (N)) = N_Aggregate
3547 then
3548 null;
3550 else
3551 declare
3552 Save_Typ : constant Entity_Id := Etype (Id);
3553 begin
3554 Set_Etype (Id, T); -- Temp. decoration for static checks
3555 Null_Exclusion_Static_Checks (N);
3556 Set_Etype (Id, Save_Typ);
3557 end;
3558 end if;
3559 end if;
3561 -- Object is marked pure if it is in a pure scope
3563 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3565 -- If deferred constant, make sure context is appropriate. We detect
3566 -- a deferred constant as a constant declaration with no expression.
3567 -- A deferred constant can appear in a package body if its completion
3568 -- is by means of an interface pragma.
3570 if Constant_Present (N) and then No (E) then
3572 -- A deferred constant may appear in the declarative part of the
3573 -- following constructs:
3575 -- blocks
3576 -- entry bodies
3577 -- extended return statements
3578 -- package specs
3579 -- package bodies
3580 -- subprogram bodies
3581 -- task bodies
3583 -- When declared inside a package spec, a deferred constant must be
3584 -- completed by a full constant declaration or pragma Import. In all
3585 -- other cases, the only proper completion is pragma Import. Extended
3586 -- return statements are flagged as invalid contexts because they do
3587 -- not have a declarative part and so cannot accommodate the pragma.
3589 if Ekind (Current_Scope) = E_Return_Statement then
3590 Error_Msg_N
3591 ("invalid context for deferred constant declaration (RM 7.4)",
3593 Error_Msg_N
3594 ("\declaration requires an initialization expression",
3596 Set_Constant_Present (N, False);
3598 -- In Ada 83, deferred constant must be of private type
3600 elsif not Is_Private_Type (T) then
3601 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3602 Error_Msg_N
3603 ("(Ada 83) deferred constant must be private type", N);
3604 end if;
3605 end if;
3607 -- If not a deferred constant, then the object declaration freezes
3608 -- its type, unless the object is of an anonymous type and has delayed
3609 -- aspects. In that case the type is frozen when the object itself is.
3611 else
3612 Check_Fully_Declared (T, N);
3614 if Has_Delayed_Aspects (Id)
3615 and then Is_Array_Type (T)
3616 and then Is_Itype (T)
3617 then
3618 Set_Has_Delayed_Freeze (T);
3619 else
3620 Freeze_Before (N, T);
3621 end if;
3622 end if;
3624 -- If the object was created by a constrained array definition, then
3625 -- set the link in both the anonymous base type and anonymous subtype
3626 -- that are built to represent the array type to point to the object.
3628 if Nkind (Object_Definition (Declaration_Node (Id))) =
3629 N_Constrained_Array_Definition
3630 then
3631 Set_Related_Array_Object (T, Id);
3632 Set_Related_Array_Object (Base_Type (T), Id);
3633 end if;
3635 -- Special checks for protected objects not at library level
3637 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
3638 Check_Restriction (No_Local_Protected_Objects, Id);
3640 -- Protected objects with interrupt handlers must be at library level
3642 -- Ada 2005: This test is not needed (and the corresponding clause
3643 -- in the RM is removed) because accessibility checks are sufficient
3644 -- to make handlers not at the library level illegal.
3646 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3647 -- applies to the '95 version of the language as well.
3649 if Is_Protected_Type (T)
3650 and then Has_Interrupt_Handler (T)
3651 and then Ada_Version < Ada_95
3652 then
3653 Error_Msg_N
3654 ("interrupt object can only be declared at library level", Id);
3655 end if;
3656 end if;
3658 -- Check for violation of No_Local_Timing_Events
3660 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
3661 Check_Restriction (No_Local_Timing_Events, Id);
3662 end if;
3664 -- The actual subtype of the object is the nominal subtype, unless
3665 -- the nominal one is unconstrained and obtained from the expression.
3667 Act_T := T;
3669 -- These checks should be performed before the initialization expression
3670 -- is considered, so that the Object_Definition node is still the same
3671 -- as in source code.
3673 -- In SPARK, the nominal subtype is always given by a subtype mark
3674 -- and must not be unconstrained. (The only exception to this is the
3675 -- acceptance of declarations of constants of type String.)
3677 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3678 then
3679 Check_SPARK_05_Restriction
3680 ("subtype mark required", Object_Definition (N));
3682 elsif Is_Array_Type (T)
3683 and then not Is_Constrained (T)
3684 and then T /= Standard_String
3685 then
3686 Check_SPARK_05_Restriction
3687 ("subtype mark of constrained type expected",
3688 Object_Definition (N));
3689 end if;
3691 -- There are no aliased objects in SPARK
3693 if Aliased_Present (N) then
3694 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3695 end if;
3697 -- Process initialization expression if present and not in error
3699 if Present (E) and then E /= Error then
3701 -- Generate an error in case of CPP class-wide object initialization.
3702 -- Required because otherwise the expansion of the class-wide
3703 -- assignment would try to use 'size to initialize the object
3704 -- (primitive that is not available in CPP tagged types).
3706 if Is_Class_Wide_Type (Act_T)
3707 and then
3708 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3709 or else
3710 (Present (Full_View (Root_Type (Etype (Act_T))))
3711 and then
3712 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3713 then
3714 Error_Msg_N
3715 ("predefined assignment not available for 'C'P'P tagged types",
3717 end if;
3719 Mark_Coextensions (N, E);
3720 Analyze (E);
3722 -- In case of errors detected in the analysis of the expression,
3723 -- decorate it with the expected type to avoid cascaded errors
3725 if No (Etype (E)) then
3726 Set_Etype (E, T);
3727 end if;
3729 -- If an initialization expression is present, then we set the
3730 -- Is_True_Constant flag. It will be reset if this is a variable
3731 -- and it is indeed modified.
3733 Set_Is_True_Constant (Id, True);
3735 -- If we are analyzing a constant declaration, set its completion
3736 -- flag after analyzing and resolving the expression.
3738 if Constant_Present (N) then
3739 Set_Has_Completion (Id);
3740 end if;
3742 -- Set type and resolve (type may be overridden later on). Note:
3743 -- Ekind (Id) must still be E_Void at this point so that incorrect
3744 -- early usage within E is properly diagnosed.
3746 Set_Etype (Id, T);
3748 -- If the expression is an aggregate we must look ahead to detect
3749 -- the possible presence of an address clause, and defer resolution
3750 -- and expansion of the aggregate to the freeze point of the entity.
3752 -- This is not always legal because the aggregate may contain other
3753 -- references that need freezing, e.g. references to other entities
3754 -- with address clauses. In any case, when compiling with -gnatI the
3755 -- presence of the address clause must be ignored.
3757 if Comes_From_Source (N)
3758 and then Expander_Active
3759 and then Nkind (E) = N_Aggregate
3760 and then
3761 ((Present (Following_Address_Clause (N))
3762 and then not Ignore_Rep_Clauses)
3763 or else Delayed_Aspect_Present)
3764 then
3765 Set_Etype (E, T);
3767 else
3768 Resolve (E, T);
3769 end if;
3771 -- No further action needed if E is a call to an inlined function
3772 -- which returns an unconstrained type and it has been expanded into
3773 -- a procedure call. In that case N has been replaced by an object
3774 -- declaration without initializing expression and it has been
3775 -- analyzed (see Expand_Inlined_Call).
3777 if Back_End_Inlining
3778 and then Expander_Active
3779 and then Nkind (E) = N_Function_Call
3780 and then Nkind (Name (E)) in N_Has_Entity
3781 and then Is_Inlined (Entity (Name (E)))
3782 and then not Is_Constrained (Etype (E))
3783 and then Analyzed (N)
3784 and then No (Expression (N))
3785 then
3786 Ghost_Mode := Save_Ghost_Mode;
3787 return;
3788 end if;
3790 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3791 -- node (which was marked already-analyzed), we need to set the type
3792 -- to something other than Any_Access in order to keep gigi happy.
3794 if Etype (E) = Any_Access then
3795 Set_Etype (E, T);
3796 end if;
3798 -- If the object is an access to variable, the initialization
3799 -- expression cannot be an access to constant.
3801 if Is_Access_Type (T)
3802 and then not Is_Access_Constant (T)
3803 and then Is_Access_Type (Etype (E))
3804 and then Is_Access_Constant (Etype (E))
3805 then
3806 Error_Msg_N
3807 ("access to variable cannot be initialized with an "
3808 & "access-to-constant expression", E);
3809 end if;
3811 if not Assignment_OK (N) then
3812 Check_Initialization (T, E);
3813 end if;
3815 Check_Unset_Reference (E);
3817 -- If this is a variable, then set current value. If this is a
3818 -- declared constant of a scalar type with a static expression,
3819 -- indicate that it is always valid.
3821 if not Constant_Present (N) then
3822 if Compile_Time_Known_Value (E) then
3823 Set_Current_Value (Id, E);
3824 end if;
3826 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3827 Set_Is_Known_Valid (Id);
3828 end if;
3830 -- Deal with setting of null flags
3832 if Is_Access_Type (T) then
3833 if Known_Non_Null (E) then
3834 Set_Is_Known_Non_Null (Id, True);
3835 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3836 Set_Is_Known_Null (Id, True);
3837 end if;
3838 end if;
3840 -- Check incorrect use of dynamically tagged expressions
3842 if Is_Tagged_Type (T) then
3843 Check_Dynamically_Tagged_Expression
3844 (Expr => E,
3845 Typ => T,
3846 Related_Nod => N);
3847 end if;
3849 Apply_Scalar_Range_Check (E, T);
3850 Apply_Static_Length_Check (E, T);
3852 if Nkind (Original_Node (N)) = N_Object_Declaration
3853 and then Comes_From_Source (Original_Node (N))
3855 -- Only call test if needed
3857 and then Restriction_Check_Required (SPARK_05)
3858 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3859 then
3860 Check_SPARK_05_Restriction
3861 ("initialization expression is not appropriate", E);
3862 end if;
3864 -- A formal parameter of a specific tagged type whose related
3865 -- subprogram is subject to pragma Extensions_Visible with value
3866 -- "False" cannot be implicitly converted to a class-wide type by
3867 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
3868 -- not consider internally generated expressions.
3870 if Is_Class_Wide_Type (T)
3871 and then Comes_From_Source (E)
3872 and then Is_EVF_Expression (E)
3873 then
3874 Error_Msg_N
3875 ("formal parameter cannot be implicitly converted to "
3876 & "class-wide type when Extensions_Visible is False", E);
3877 end if;
3878 end if;
3880 -- If the No_Streams restriction is set, check that the type of the
3881 -- object is not, and does not contain, any subtype derived from
3882 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3883 -- Has_Stream just for efficiency reasons. There is no point in
3884 -- spending time on a Has_Stream check if the restriction is not set.
3886 if Restriction_Check_Required (No_Streams) then
3887 if Has_Stream (T) then
3888 Check_Restriction (No_Streams, N);
3889 end if;
3890 end if;
3892 -- Deal with predicate check before we start to do major rewriting. It
3893 -- is OK to initialize and then check the initialized value, since the
3894 -- object goes out of scope if we get a predicate failure. Note that we
3895 -- do this in the analyzer and not the expander because the analyzer
3896 -- does some substantial rewriting in some cases.
3898 -- We need a predicate check if the type has predicates that are not
3899 -- ignored, and if either there is an initializing expression, or for
3900 -- default initialization when we have at least one case of an explicit
3901 -- default initial value and then this is not an internal declaration
3902 -- whose initialization comes later (as for an aggregate expansion).
3904 if not Suppress_Assignment_Checks (N)
3905 and then Present (Predicate_Function (T))
3906 and then not Predicates_Ignored (T)
3907 and then not No_Initialization (N)
3908 and then
3909 (Present (E)
3910 or else
3911 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3912 then
3913 -- If the type has a static predicate and the expression is known at
3914 -- compile time, see if the expression satisfies the predicate.
3916 if Present (E) then
3917 Check_Expression_Against_Static_Predicate (E, T);
3918 end if;
3920 -- If the type is a null record and there is no explicit initial
3921 -- expression, no predicate check applies.
3923 if No (E) and then Is_Null_Record_Type (T) then
3924 null;
3926 else
3927 Insert_After (N,
3928 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3929 end if;
3930 end if;
3932 -- Case of unconstrained type
3934 if not Is_Definite_Subtype (T) then
3936 -- In SPARK, a declaration of unconstrained type is allowed
3937 -- only for constants of type string.
3939 if Is_String_Type (T) and then not Constant_Present (N) then
3940 Check_SPARK_05_Restriction
3941 ("declaration of object of unconstrained type not allowed", N);
3942 end if;
3944 -- Nothing to do in deferred constant case
3946 if Constant_Present (N) and then No (E) then
3947 null;
3949 -- Case of no initialization present
3951 elsif No (E) then
3952 if No_Initialization (N) then
3953 null;
3955 elsif Is_Class_Wide_Type (T) then
3956 Error_Msg_N
3957 ("initialization required in class-wide declaration ", N);
3959 else
3960 Error_Msg_N
3961 ("unconstrained subtype not allowed (need initialization)",
3962 Object_Definition (N));
3964 if Is_Record_Type (T) and then Has_Discriminants (T) then
3965 Error_Msg_N
3966 ("\provide initial value or explicit discriminant values",
3967 Object_Definition (N));
3969 Error_Msg_NE
3970 ("\or give default discriminant values for type&",
3971 Object_Definition (N), T);
3973 elsif Is_Array_Type (T) then
3974 Error_Msg_N
3975 ("\provide initial value or explicit array bounds",
3976 Object_Definition (N));
3977 end if;
3978 end if;
3980 -- Case of initialization present but in error. Set initial
3981 -- expression as absent (but do not make above complaints)
3983 elsif E = Error then
3984 Set_Expression (N, Empty);
3985 E := Empty;
3987 -- Case of initialization present
3989 else
3990 -- Check restrictions in Ada 83
3992 if not Constant_Present (N) then
3994 -- Unconstrained variables not allowed in Ada 83 mode
3996 if Ada_Version = Ada_83
3997 and then Comes_From_Source (Object_Definition (N))
3998 then
3999 Error_Msg_N
4000 ("(Ada 83) unconstrained variable not allowed",
4001 Object_Definition (N));
4002 end if;
4003 end if;
4005 -- Now we constrain the variable from the initializing expression
4007 -- If the expression is an aggregate, it has been expanded into
4008 -- individual assignments. Retrieve the actual type from the
4009 -- expanded construct.
4011 if Is_Array_Type (T)
4012 and then No_Initialization (N)
4013 and then Nkind (Original_Node (E)) = N_Aggregate
4014 then
4015 Act_T := Etype (E);
4017 -- In case of class-wide interface object declarations we delay
4018 -- the generation of the equivalent record type declarations until
4019 -- its expansion because there are cases in they are not required.
4021 elsif Is_Interface (T) then
4022 null;
4024 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4025 -- we should prevent the generation of another Itype with the
4026 -- same name as the one already generated, or we end up with
4027 -- two identical types in GNATprove.
4029 elsif GNATprove_Mode then
4030 null;
4032 -- If the type is an unchecked union, no subtype can be built from
4033 -- the expression. Rewrite declaration as a renaming, which the
4034 -- back-end can handle properly. This is a rather unusual case,
4035 -- because most unchecked_union declarations have default values
4036 -- for discriminants and are thus not indefinite.
4038 elsif Is_Unchecked_Union (T) then
4039 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4040 Set_Ekind (Id, E_Constant);
4041 else
4042 Set_Ekind (Id, E_Variable);
4043 end if;
4045 -- An object declared within a Ghost region is automatically
4046 -- Ghost (SPARK RM 6.9(2)).
4048 if Ghost_Mode > None then
4049 Set_Is_Ghost_Entity (Id);
4051 -- The Ghost policy in effect at the point of declaration
4052 -- and at the point of completion must match
4053 -- (SPARK RM 6.9(14)).
4055 if Present (Prev_Entity)
4056 and then Is_Ghost_Entity (Prev_Entity)
4057 then
4058 Check_Ghost_Completion (Prev_Entity, Id);
4059 end if;
4060 end if;
4062 Rewrite (N,
4063 Make_Object_Renaming_Declaration (Loc,
4064 Defining_Identifier => Id,
4065 Subtype_Mark => New_Occurrence_Of (T, Loc),
4066 Name => E));
4068 Set_Renamed_Object (Id, E);
4069 Freeze_Before (N, T);
4070 Set_Is_Frozen (Id);
4072 Ghost_Mode := Save_Ghost_Mode;
4073 return;
4075 else
4076 -- Ensure that the generated subtype has a unique external name
4077 -- when the related object is public. This guarantees that the
4078 -- subtype and its bounds will not be affected by switches or
4079 -- pragmas that may offset the internal counter due to extra
4080 -- generated code.
4082 if Is_Public (Id) then
4083 Related_Id := Id;
4084 else
4085 Related_Id := Empty;
4086 end if;
4088 Expand_Subtype_From_Expr
4089 (N => N,
4090 Unc_Type => T,
4091 Subtype_Indic => Object_Definition (N),
4092 Exp => E,
4093 Related_Id => Related_Id);
4095 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4096 end if;
4098 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4100 if Aliased_Present (N) then
4101 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4102 end if;
4104 Freeze_Before (N, Act_T);
4105 Freeze_Before (N, T);
4106 end if;
4108 elsif Is_Array_Type (T)
4109 and then No_Initialization (N)
4110 and then (Nkind (Original_Node (E)) = N_Aggregate
4111 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4112 and then Nkind (Original_Node (Expression
4113 (Original_Node (E)))) = N_Aggregate))
4114 then
4115 if not Is_Entity_Name (Object_Definition (N)) then
4116 Act_T := Etype (E);
4117 Check_Compile_Time_Size (Act_T);
4119 if Aliased_Present (N) then
4120 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4121 end if;
4122 end if;
4124 -- When the given object definition and the aggregate are specified
4125 -- independently, and their lengths might differ do a length check.
4126 -- This cannot happen if the aggregate is of the form (others =>...)
4128 if not Is_Constrained (T) then
4129 null;
4131 elsif Nkind (E) = N_Raise_Constraint_Error then
4133 -- Aggregate is statically illegal. Place back in declaration
4135 Set_Expression (N, E);
4136 Set_No_Initialization (N, False);
4138 elsif T = Etype (E) then
4139 null;
4141 elsif Nkind (E) = N_Aggregate
4142 and then Present (Component_Associations (E))
4143 and then Present (Choices (First (Component_Associations (E))))
4144 and then Nkind (First
4145 (Choices (First (Component_Associations (E))))) = N_Others_Choice
4146 then
4147 null;
4149 else
4150 Apply_Length_Check (E, T);
4151 end if;
4153 -- If the type is limited unconstrained with defaulted discriminants and
4154 -- there is no expression, then the object is constrained by the
4155 -- defaults, so it is worthwhile building the corresponding subtype.
4157 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4158 and then not Is_Constrained (T)
4159 and then Has_Discriminants (T)
4160 then
4161 if No (E) then
4162 Act_T := Build_Default_Subtype (T, N);
4163 else
4164 -- Ada 2005: A limited object may be initialized by means of an
4165 -- aggregate. If the type has default discriminants it has an
4166 -- unconstrained nominal type, Its actual subtype will be obtained
4167 -- from the aggregate, and not from the default discriminants.
4169 Act_T := Etype (E);
4170 end if;
4172 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4174 elsif Nkind (E) = N_Function_Call
4175 and then Constant_Present (N)
4176 and then Has_Unconstrained_Elements (Etype (E))
4177 then
4178 -- The back-end has problems with constants of a discriminated type
4179 -- with defaults, if the initial value is a function call. We
4180 -- generate an intermediate temporary that will receive a reference
4181 -- to the result of the call. The initialization expression then
4182 -- becomes a dereference of that temporary.
4184 Remove_Side_Effects (E);
4186 -- If this is a constant declaration of an unconstrained type and
4187 -- the initialization is an aggregate, we can use the subtype of the
4188 -- aggregate for the declared entity because it is immutable.
4190 elsif not Is_Constrained (T)
4191 and then Has_Discriminants (T)
4192 and then Constant_Present (N)
4193 and then not Has_Unchecked_Union (T)
4194 and then Nkind (E) = N_Aggregate
4195 then
4196 Act_T := Etype (E);
4197 end if;
4199 -- Check No_Wide_Characters restriction
4201 Check_Wide_Character_Restriction (T, Object_Definition (N));
4203 -- Indicate this is not set in source. Certainly true for constants, and
4204 -- true for variables so far (will be reset for a variable if and when
4205 -- we encounter a modification in the source).
4207 Set_Never_Set_In_Source (Id);
4209 -- Now establish the proper kind and type of the object
4211 if Constant_Present (N) then
4212 Set_Ekind (Id, E_Constant);
4213 Set_Is_True_Constant (Id);
4215 else
4216 Set_Ekind (Id, E_Variable);
4218 -- A variable is set as shared passive if it appears in a shared
4219 -- passive package, and is at the outer level. This is not done for
4220 -- entities generated during expansion, because those are always
4221 -- manipulated locally.
4223 if Is_Shared_Passive (Current_Scope)
4224 and then Is_Library_Level_Entity (Id)
4225 and then Comes_From_Source (Id)
4226 then
4227 Set_Is_Shared_Passive (Id);
4228 Check_Shared_Var (Id, T, N);
4229 end if;
4231 -- Set Has_Initial_Value if initializing expression present. Note
4232 -- that if there is no initializing expression, we leave the state
4233 -- of this flag unchanged (usually it will be False, but notably in
4234 -- the case of exception choice variables, it will already be true).
4236 if Present (E) then
4237 Set_Has_Initial_Value (Id);
4238 end if;
4239 end if;
4241 -- Initialize alignment and size and capture alignment setting
4243 Init_Alignment (Id);
4244 Init_Esize (Id);
4245 Set_Optimize_Alignment_Flags (Id);
4247 -- An object declared within a Ghost region is automatically Ghost
4248 -- (SPARK RM 6.9(2)).
4250 if Ghost_Mode > None
4251 or else (Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity))
4252 then
4253 Set_Is_Ghost_Entity (Id);
4255 -- The Ghost policy in effect at the point of declaration and at the
4256 -- point of completion must match (SPARK RM 6.9(14)).
4258 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4259 Check_Ghost_Completion (Prev_Entity, Id);
4260 end if;
4261 end if;
4263 -- Deal with aliased case
4265 if Aliased_Present (N) then
4266 Set_Is_Aliased (Id);
4268 -- If the object is aliased and the type is unconstrained with
4269 -- defaulted discriminants and there is no expression, then the
4270 -- object is constrained by the defaults, so it is worthwhile
4271 -- building the corresponding subtype.
4273 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4274 -- unconstrained, then only establish an actual subtype if the
4275 -- nominal subtype is indefinite. In definite cases the object is
4276 -- unconstrained in Ada 2005.
4278 if No (E)
4279 and then Is_Record_Type (T)
4280 and then not Is_Constrained (T)
4281 and then Has_Discriminants (T)
4282 and then (Ada_Version < Ada_2005
4283 or else not Is_Definite_Subtype (T))
4284 then
4285 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4286 end if;
4287 end if;
4289 -- Now we can set the type of the object
4291 Set_Etype (Id, Act_T);
4293 -- Non-constant object is marked to be treated as volatile if type is
4294 -- volatile and we clear the Current_Value setting that may have been
4295 -- set above. Doing so for constants isn't required and might interfere
4296 -- with possible uses of the object as a static expression in contexts
4297 -- incompatible with volatility (e.g. as a case-statement alternative).
4299 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4300 Set_Treat_As_Volatile (Id);
4301 Set_Current_Value (Id, Empty);
4302 end if;
4304 -- Deal with controlled types
4306 if Has_Controlled_Component (Etype (Id))
4307 or else Is_Controlled (Etype (Id))
4308 then
4309 if not Is_Library_Level_Entity (Id) then
4310 Check_Restriction (No_Nested_Finalization, N);
4311 else
4312 Validate_Controlled_Object (Id);
4313 end if;
4314 end if;
4316 if Has_Task (Etype (Id)) then
4317 Check_Restriction (No_Tasking, N);
4319 -- Deal with counting max tasks
4321 -- Nothing to do if inside a generic
4323 if Inside_A_Generic then
4324 null;
4326 -- If library level entity, then count tasks
4328 elsif Is_Library_Level_Entity (Id) then
4329 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4331 -- If not library level entity, then indicate we don't know max
4332 -- tasks and also check task hierarchy restriction and blocking
4333 -- operation (since starting a task is definitely blocking).
4335 else
4336 Check_Restriction (Max_Tasks, N);
4337 Check_Restriction (No_Task_Hierarchy, N);
4338 Check_Potentially_Blocking_Operation (N);
4339 end if;
4341 -- A rather specialized test. If we see two tasks being declared
4342 -- of the same type in the same object declaration, and the task
4343 -- has an entry with an address clause, we know that program error
4344 -- will be raised at run time since we can't have two tasks with
4345 -- entries at the same address.
4347 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4348 declare
4349 E : Entity_Id;
4351 begin
4352 E := First_Entity (Etype (Id));
4353 while Present (E) loop
4354 if Ekind (E) = E_Entry
4355 and then Present (Get_Attribute_Definition_Clause
4356 (E, Attribute_Address))
4357 then
4358 Error_Msg_Warn := SPARK_Mode /= On;
4359 Error_Msg_N
4360 ("more than one task with same entry address<<", N);
4361 Error_Msg_N ("\Program_Error [<<", N);
4362 Insert_Action (N,
4363 Make_Raise_Program_Error (Loc,
4364 Reason => PE_Duplicated_Entry_Address));
4365 exit;
4366 end if;
4368 Next_Entity (E);
4369 end loop;
4370 end;
4371 end if;
4372 end if;
4374 -- Some simple constant-propagation: if the expression is a constant
4375 -- string initialized with a literal, share the literal. This avoids
4376 -- a run-time copy.
4378 if Present (E)
4379 and then Is_Entity_Name (E)
4380 and then Ekind (Entity (E)) = E_Constant
4381 and then Base_Type (Etype (E)) = Standard_String
4382 then
4383 declare
4384 Val : constant Node_Id := Constant_Value (Entity (E));
4385 begin
4386 if Present (Val) and then Nkind (Val) = N_String_Literal then
4387 Rewrite (E, New_Copy (Val));
4388 end if;
4389 end;
4390 end if;
4392 -- Another optimization: if the nominal subtype is unconstrained and
4393 -- the expression is a function call that returns an unconstrained
4394 -- type, rewrite the declaration as a renaming of the result of the
4395 -- call. The exceptions below are cases where the copy is expected,
4396 -- either by the back end (Aliased case) or by the semantics, as for
4397 -- initializing controlled types or copying tags for class-wide types.
4399 if Present (E)
4400 and then Nkind (E) = N_Explicit_Dereference
4401 and then Nkind (Original_Node (E)) = N_Function_Call
4402 and then not Is_Library_Level_Entity (Id)
4403 and then not Is_Constrained (Underlying_Type (T))
4404 and then not Is_Aliased (Id)
4405 and then not Is_Class_Wide_Type (T)
4406 and then not Is_Controlled_Active (T)
4407 and then not Has_Controlled_Component (Base_Type (T))
4408 and then Expander_Active
4409 then
4410 Rewrite (N,
4411 Make_Object_Renaming_Declaration (Loc,
4412 Defining_Identifier => Id,
4413 Access_Definition => Empty,
4414 Subtype_Mark => New_Occurrence_Of
4415 (Base_Type (Etype (Id)), Loc),
4416 Name => E));
4418 Set_Renamed_Object (Id, E);
4420 -- Force generation of debugging information for the constant and for
4421 -- the renamed function call.
4423 Set_Debug_Info_Needed (Id);
4424 Set_Debug_Info_Needed (Entity (Prefix (E)));
4425 end if;
4427 if Present (Prev_Entity)
4428 and then Is_Frozen (Prev_Entity)
4429 and then not Error_Posted (Id)
4430 then
4431 Error_Msg_N ("full constant declaration appears too late", N);
4432 end if;
4434 Check_Eliminated (Id);
4436 -- Deal with setting In_Private_Part flag if in private part
4438 if Ekind (Scope (Id)) = E_Package
4439 and then In_Private_Part (Scope (Id))
4440 then
4441 Set_In_Private_Part (Id);
4442 end if;
4444 <<Leave>>
4445 -- Initialize the refined state of a variable here because this is a
4446 -- common destination for legal and illegal object declarations.
4448 if Ekind (Id) = E_Variable then
4449 Set_Encapsulating_State (Id, Empty);
4450 end if;
4452 if Has_Aspects (N) then
4453 Analyze_Aspect_Specifications (N, Id);
4454 end if;
4456 Analyze_Dimension (N);
4458 -- Verify whether the object declaration introduces an illegal hidden
4459 -- state within a package subject to a null abstract state.
4461 if Ekind (Id) = E_Variable then
4462 Check_No_Hidden_State (Id);
4463 end if;
4465 Ghost_Mode := Save_Ghost_Mode;
4466 end Analyze_Object_Declaration;
4468 ---------------------------
4469 -- Analyze_Others_Choice --
4470 ---------------------------
4472 -- Nothing to do for the others choice node itself, the semantic analysis
4473 -- of the others choice will occur as part of the processing of the parent
4475 procedure Analyze_Others_Choice (N : Node_Id) is
4476 pragma Warnings (Off, N);
4477 begin
4478 null;
4479 end Analyze_Others_Choice;
4481 -------------------------------------------
4482 -- Analyze_Private_Extension_Declaration --
4483 -------------------------------------------
4485 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4486 Indic : constant Node_Id := Subtype_Indication (N);
4487 T : constant Entity_Id := Defining_Identifier (N);
4488 Iface : Entity_Id;
4489 Iface_Elmt : Elmt_Id;
4490 Parent_Base : Entity_Id;
4491 Parent_Type : Entity_Id;
4493 begin
4494 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4496 if Is_Non_Empty_List (Interface_List (N)) then
4497 declare
4498 Intf : Node_Id;
4499 T : Entity_Id;
4501 begin
4502 Intf := First (Interface_List (N));
4503 while Present (Intf) loop
4504 T := Find_Type_Of_Subtype_Indic (Intf);
4506 Diagnose_Interface (Intf, T);
4507 Next (Intf);
4508 end loop;
4509 end;
4510 end if;
4512 Generate_Definition (T);
4514 -- For other than Ada 2012, just enter the name in the current scope
4516 if Ada_Version < Ada_2012 then
4517 Enter_Name (T);
4519 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4520 -- case of private type that completes an incomplete type.
4522 else
4523 declare
4524 Prev : Entity_Id;
4526 begin
4527 Prev := Find_Type_Name (N);
4529 pragma Assert (Prev = T
4530 or else (Ekind (Prev) = E_Incomplete_Type
4531 and then Present (Full_View (Prev))
4532 and then Full_View (Prev) = T));
4533 end;
4534 end if;
4536 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4537 Parent_Base := Base_Type (Parent_Type);
4539 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4540 Set_Ekind (T, Ekind (Parent_Type));
4541 Set_Etype (T, Any_Type);
4542 goto Leave;
4544 elsif not Is_Tagged_Type (Parent_Type) then
4545 Error_Msg_N
4546 ("parent of type extension must be a tagged type ", Indic);
4547 goto Leave;
4549 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4550 Error_Msg_N ("premature derivation of incomplete type", Indic);
4551 goto Leave;
4553 elsif Is_Concurrent_Type (Parent_Type) then
4554 Error_Msg_N
4555 ("parent type of a private extension cannot be a synchronized "
4556 & "tagged type (RM 3.9.1 (3/1))", N);
4558 Set_Etype (T, Any_Type);
4559 Set_Ekind (T, E_Limited_Private_Type);
4560 Set_Private_Dependents (T, New_Elmt_List);
4561 Set_Error_Posted (T);
4562 goto Leave;
4563 end if;
4565 -- Perhaps the parent type should be changed to the class-wide type's
4566 -- specific type in this case to prevent cascading errors ???
4568 if Is_Class_Wide_Type (Parent_Type) then
4569 Error_Msg_N
4570 ("parent of type extension must not be a class-wide type", Indic);
4571 goto Leave;
4572 end if;
4574 if (not Is_Package_Or_Generic_Package (Current_Scope)
4575 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4576 or else In_Private_Part (Current_Scope)
4577 then
4578 Error_Msg_N ("invalid context for private extension", N);
4579 end if;
4581 -- Set common attributes
4583 Set_Is_Pure (T, Is_Pure (Current_Scope));
4584 Set_Scope (T, Current_Scope);
4585 Set_Ekind (T, E_Record_Type_With_Private);
4586 Init_Size_Align (T);
4587 Set_Default_SSO (T);
4589 Set_Etype (T, Parent_Base);
4590 Propagate_Concurrent_Flags (T, Parent_Base);
4592 Set_Convention (T, Convention (Parent_Type));
4593 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4594 Set_Is_First_Subtype (T);
4595 Make_Class_Wide_Type (T);
4597 if Unknown_Discriminants_Present (N) then
4598 Set_Discriminant_Constraint (T, No_Elist);
4599 end if;
4601 Build_Derived_Record_Type (N, Parent_Type, T);
4603 -- A private extension inherits any class-wide invariants coming from a
4604 -- parent type or an interface. Note that the invariant procedure of the
4605 -- parent type should not be inherited because the private extension may
4606 -- define invariants of its own.
4608 if Has_Inheritable_Invariants (Parent_Type) then
4609 Set_Has_Inherited_Invariants (T);
4611 elsif Present (Interfaces (T)) then
4612 Iface_Elmt := First_Elmt (Interfaces (T));
4613 while Present (Iface_Elmt) loop
4614 Iface := Node (Iface_Elmt);
4616 if Has_Inheritable_Invariants (Iface) then
4617 Set_Has_Inherited_Invariants (T);
4618 exit;
4619 end if;
4621 Next_Elmt (Iface_Elmt);
4622 end loop;
4623 end if;
4625 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4626 -- synchronized formal derived type.
4628 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4629 Set_Is_Limited_Record (T);
4631 -- Formal derived type case
4633 if Is_Generic_Type (T) then
4635 -- The parent must be a tagged limited type or a synchronized
4636 -- interface.
4638 if (not Is_Tagged_Type (Parent_Type)
4639 or else not Is_Limited_Type (Parent_Type))
4640 and then
4641 (not Is_Interface (Parent_Type)
4642 or else not Is_Synchronized_Interface (Parent_Type))
4643 then
4644 Error_Msg_NE
4645 ("parent type of & must be tagged limited or synchronized",
4646 N, T);
4647 end if;
4649 -- The progenitors (if any) must be limited or synchronized
4650 -- interfaces.
4652 if Present (Interfaces (T)) then
4653 Iface_Elmt := First_Elmt (Interfaces (T));
4654 while Present (Iface_Elmt) loop
4655 Iface := Node (Iface_Elmt);
4657 if not Is_Limited_Interface (Iface)
4658 and then not Is_Synchronized_Interface (Iface)
4659 then
4660 Error_Msg_NE
4661 ("progenitor & must be limited or synchronized",
4662 N, Iface);
4663 end if;
4665 Next_Elmt (Iface_Elmt);
4666 end loop;
4667 end if;
4669 -- Regular derived extension, the parent must be a limited or
4670 -- synchronized interface.
4672 else
4673 if not Is_Interface (Parent_Type)
4674 or else (not Is_Limited_Interface (Parent_Type)
4675 and then not Is_Synchronized_Interface (Parent_Type))
4676 then
4677 Error_Msg_NE
4678 ("parent type of & must be limited interface", N, T);
4679 end if;
4680 end if;
4682 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4683 -- extension with a synchronized parent must be explicitly declared
4684 -- synchronized, because the full view will be a synchronized type.
4685 -- This must be checked before the check for limited types below,
4686 -- to ensure that types declared limited are not allowed to extend
4687 -- synchronized interfaces.
4689 elsif Is_Interface (Parent_Type)
4690 and then Is_Synchronized_Interface (Parent_Type)
4691 and then not Synchronized_Present (N)
4692 then
4693 Error_Msg_NE
4694 ("private extension of& must be explicitly synchronized",
4695 N, Parent_Type);
4697 elsif Limited_Present (N) then
4698 Set_Is_Limited_Record (T);
4700 if not Is_Limited_Type (Parent_Type)
4701 and then
4702 (not Is_Interface (Parent_Type)
4703 or else not Is_Limited_Interface (Parent_Type))
4704 then
4705 Error_Msg_NE ("parent type& of limited extension must be limited",
4706 N, Parent_Type);
4707 end if;
4708 end if;
4710 <<Leave>>
4711 if Has_Aspects (N) then
4712 Analyze_Aspect_Specifications (N, T);
4713 end if;
4714 end Analyze_Private_Extension_Declaration;
4716 ---------------------------------
4717 -- Analyze_Subtype_Declaration --
4718 ---------------------------------
4720 procedure Analyze_Subtype_Declaration
4721 (N : Node_Id;
4722 Skip : Boolean := False)
4724 Id : constant Entity_Id := Defining_Identifier (N);
4725 R_Checks : Check_Result;
4726 T : Entity_Id;
4728 begin
4729 Generate_Definition (Id);
4730 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4731 Init_Size_Align (Id);
4733 -- The following guard condition on Enter_Name is to handle cases where
4734 -- the defining identifier has already been entered into the scope but
4735 -- the declaration as a whole needs to be analyzed.
4737 -- This case in particular happens for derived enumeration types. The
4738 -- derived enumeration type is processed as an inserted enumeration type
4739 -- declaration followed by a rewritten subtype declaration. The defining
4740 -- identifier, however, is entered into the name scope very early in the
4741 -- processing of the original type declaration and therefore needs to be
4742 -- avoided here, when the created subtype declaration is analyzed. (See
4743 -- Build_Derived_Types)
4745 -- This also happens when the full view of a private type is derived
4746 -- type with constraints. In this case the entity has been introduced
4747 -- in the private declaration.
4749 -- Finally this happens in some complex cases when validity checks are
4750 -- enabled, where the same subtype declaration may be analyzed twice.
4751 -- This can happen if the subtype is created by the pre-analysis of
4752 -- an attribute tht gives the range of a loop statement, and the loop
4753 -- itself appears within an if_statement that will be rewritten during
4754 -- expansion.
4756 if Skip
4757 or else (Present (Etype (Id))
4758 and then (Is_Private_Type (Etype (Id))
4759 or else Is_Task_Type (Etype (Id))
4760 or else Is_Rewrite_Substitution (N)))
4761 then
4762 null;
4764 elsif Current_Entity (Id) = Id then
4765 null;
4767 else
4768 Enter_Name (Id);
4769 end if;
4771 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4773 -- Class-wide equivalent types of records with unknown discriminants
4774 -- involve the generation of an itype which serves as the private view
4775 -- of a constrained record subtype. In such cases the base type of the
4776 -- current subtype we are processing is the private itype. Use the full
4777 -- of the private itype when decorating various attributes.
4779 if Is_Itype (T)
4780 and then Is_Private_Type (T)
4781 and then Present (Full_View (T))
4782 then
4783 T := Full_View (T);
4784 end if;
4786 -- Inherit common attributes
4788 Set_Is_Volatile (Id, Is_Volatile (T));
4789 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4790 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4791 Set_Convention (Id, Convention (T));
4793 -- If ancestor has predicates then so does the subtype, and in addition
4794 -- we must delay the freeze to properly arrange predicate inheritance.
4796 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4797 -- in which T = ID, so the above tests and assignments do nothing???
4799 if Has_Predicates (T)
4800 or else (Present (Ancestor_Subtype (T))
4801 and then Has_Predicates (Ancestor_Subtype (T)))
4802 then
4803 Set_Has_Predicates (Id);
4804 Set_Has_Delayed_Freeze (Id);
4806 -- Generated subtypes inherit the predicate function from the parent
4807 -- (no aspects to examine on the generated declaration).
4809 if not Comes_From_Source (N) then
4810 Set_Ekind (Id, Ekind (T));
4812 if Present (Predicate_Function (T)) then
4813 Set_Predicate_Function (Id, Predicate_Function (T));
4815 elsif Present (Ancestor_Subtype (T))
4816 and then Has_Predicates (Ancestor_Subtype (T))
4817 and then Present (Predicate_Function (Ancestor_Subtype (T)))
4818 then
4819 Set_Predicate_Function (Id,
4820 Predicate_Function (Ancestor_Subtype (T)));
4821 end if;
4822 end if;
4823 end if;
4825 -- Subtype of Boolean cannot have a constraint in SPARK
4827 if Is_Boolean_Type (T)
4828 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4829 then
4830 Check_SPARK_05_Restriction
4831 ("subtype of Boolean cannot have constraint", N);
4832 end if;
4834 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4835 declare
4836 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4837 One_Cstr : Node_Id;
4838 Low : Node_Id;
4839 High : Node_Id;
4841 begin
4842 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4843 One_Cstr := First (Constraints (Cstr));
4844 while Present (One_Cstr) loop
4846 -- Index or discriminant constraint in SPARK must be a
4847 -- subtype mark.
4849 if not
4850 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4851 then
4852 Check_SPARK_05_Restriction
4853 ("subtype mark required", One_Cstr);
4855 -- String subtype must have a lower bound of 1 in SPARK.
4856 -- Note that we do not need to test for the non-static case
4857 -- here, since that was already taken care of in
4858 -- Process_Range_Expr_In_Decl.
4860 elsif Base_Type (T) = Standard_String then
4861 Get_Index_Bounds (One_Cstr, Low, High);
4863 if Is_OK_Static_Expression (Low)
4864 and then Expr_Value (Low) /= 1
4865 then
4866 Check_SPARK_05_Restriction
4867 ("String subtype must have lower bound of 1", N);
4868 end if;
4869 end if;
4871 Next (One_Cstr);
4872 end loop;
4873 end if;
4874 end;
4875 end if;
4877 -- In the case where there is no constraint given in the subtype
4878 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4879 -- semantic attributes must be established here.
4881 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4882 Set_Etype (Id, Base_Type (T));
4884 -- Subtype of unconstrained array without constraint is not allowed
4885 -- in SPARK.
4887 if Is_Array_Type (T) and then not Is_Constrained (T) then
4888 Check_SPARK_05_Restriction
4889 ("subtype of unconstrained array must have constraint", N);
4890 end if;
4892 case Ekind (T) is
4893 when Array_Kind =>
4894 Set_Ekind (Id, E_Array_Subtype);
4895 Copy_Array_Subtype_Attributes (Id, T);
4897 when Decimal_Fixed_Point_Kind =>
4898 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4899 Set_Digits_Value (Id, Digits_Value (T));
4900 Set_Delta_Value (Id, Delta_Value (T));
4901 Set_Scale_Value (Id, Scale_Value (T));
4902 Set_Small_Value (Id, Small_Value (T));
4903 Set_Scalar_Range (Id, Scalar_Range (T));
4904 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4905 Set_Is_Constrained (Id, Is_Constrained (T));
4906 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4907 Set_RM_Size (Id, RM_Size (T));
4909 when Enumeration_Kind =>
4910 Set_Ekind (Id, E_Enumeration_Subtype);
4911 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4912 Set_Scalar_Range (Id, Scalar_Range (T));
4913 Set_Is_Character_Type (Id, Is_Character_Type (T));
4914 Set_Is_Constrained (Id, Is_Constrained (T));
4915 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4916 Set_RM_Size (Id, RM_Size (T));
4917 Inherit_Predicate_Flags (Id, T);
4919 when Ordinary_Fixed_Point_Kind =>
4920 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4921 Set_Scalar_Range (Id, Scalar_Range (T));
4922 Set_Small_Value (Id, Small_Value (T));
4923 Set_Delta_Value (Id, Delta_Value (T));
4924 Set_Is_Constrained (Id, Is_Constrained (T));
4925 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4926 Set_RM_Size (Id, RM_Size (T));
4928 when Float_Kind =>
4929 Set_Ekind (Id, E_Floating_Point_Subtype);
4930 Set_Scalar_Range (Id, Scalar_Range (T));
4931 Set_Digits_Value (Id, Digits_Value (T));
4932 Set_Is_Constrained (Id, Is_Constrained (T));
4934 -- If the floating point type has dimensions, these will be
4935 -- inherited subsequently when Analyze_Dimensions is called.
4937 when Signed_Integer_Kind =>
4938 Set_Ekind (Id, E_Signed_Integer_Subtype);
4939 Set_Scalar_Range (Id, Scalar_Range (T));
4940 Set_Is_Constrained (Id, Is_Constrained (T));
4941 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4942 Set_RM_Size (Id, RM_Size (T));
4943 Inherit_Predicate_Flags (Id, T);
4945 when Modular_Integer_Kind =>
4946 Set_Ekind (Id, E_Modular_Integer_Subtype);
4947 Set_Scalar_Range (Id, Scalar_Range (T));
4948 Set_Is_Constrained (Id, Is_Constrained (T));
4949 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4950 Set_RM_Size (Id, RM_Size (T));
4951 Inherit_Predicate_Flags (Id, T);
4953 when Class_Wide_Kind =>
4954 Set_Ekind (Id, E_Class_Wide_Subtype);
4955 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4956 Set_Cloned_Subtype (Id, T);
4957 Set_Is_Tagged_Type (Id, True);
4958 Set_Has_Unknown_Discriminants
4959 (Id, True);
4960 Set_No_Tagged_Streams_Pragma
4961 (Id, No_Tagged_Streams_Pragma (T));
4963 if Ekind (T) = E_Class_Wide_Subtype then
4964 Set_Equivalent_Type (Id, Equivalent_Type (T));
4965 end if;
4967 when E_Record_Type | E_Record_Subtype =>
4968 Set_Ekind (Id, E_Record_Subtype);
4970 if Ekind (T) = E_Record_Subtype
4971 and then Present (Cloned_Subtype (T))
4972 then
4973 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4974 else
4975 Set_Cloned_Subtype (Id, T);
4976 end if;
4978 Set_First_Entity (Id, First_Entity (T));
4979 Set_Last_Entity (Id, Last_Entity (T));
4980 Set_Has_Discriminants (Id, Has_Discriminants (T));
4981 Set_Is_Constrained (Id, Is_Constrained (T));
4982 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4983 Set_Has_Implicit_Dereference
4984 (Id, Has_Implicit_Dereference (T));
4985 Set_Has_Unknown_Discriminants
4986 (Id, Has_Unknown_Discriminants (T));
4988 if Has_Discriminants (T) then
4989 Set_Discriminant_Constraint
4990 (Id, Discriminant_Constraint (T));
4991 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4993 elsif Has_Unknown_Discriminants (Id) then
4994 Set_Discriminant_Constraint (Id, No_Elist);
4995 end if;
4997 if Is_Tagged_Type (T) then
4998 Set_Is_Tagged_Type (Id, True);
4999 Set_No_Tagged_Streams_Pragma
5000 (Id, No_Tagged_Streams_Pragma (T));
5001 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5002 Set_Direct_Primitive_Operations
5003 (Id, Direct_Primitive_Operations (T));
5004 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5006 if Is_Interface (T) then
5007 Set_Is_Interface (Id);
5008 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5009 end if;
5010 end if;
5012 when Private_Kind =>
5013 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5014 Set_Has_Discriminants (Id, Has_Discriminants (T));
5015 Set_Is_Constrained (Id, Is_Constrained (T));
5016 Set_First_Entity (Id, First_Entity (T));
5017 Set_Last_Entity (Id, Last_Entity (T));
5018 Set_Private_Dependents (Id, New_Elmt_List);
5019 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5020 Set_Has_Implicit_Dereference
5021 (Id, Has_Implicit_Dereference (T));
5022 Set_Has_Unknown_Discriminants
5023 (Id, Has_Unknown_Discriminants (T));
5024 Set_Known_To_Have_Preelab_Init
5025 (Id, Known_To_Have_Preelab_Init (T));
5027 if Is_Tagged_Type (T) then
5028 Set_Is_Tagged_Type (Id);
5029 Set_No_Tagged_Streams_Pragma (Id,
5030 No_Tagged_Streams_Pragma (T));
5031 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5032 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5033 Set_Direct_Primitive_Operations (Id,
5034 Direct_Primitive_Operations (T));
5035 end if;
5037 -- In general the attributes of the subtype of a private type
5038 -- are the attributes of the partial view of parent. However,
5039 -- the full view may be a discriminated type, and the subtype
5040 -- must share the discriminant constraint to generate correct
5041 -- calls to initialization procedures.
5043 if Has_Discriminants (T) then
5044 Set_Discriminant_Constraint
5045 (Id, Discriminant_Constraint (T));
5046 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5048 elsif Present (Full_View (T))
5049 and then Has_Discriminants (Full_View (T))
5050 then
5051 Set_Discriminant_Constraint
5052 (Id, Discriminant_Constraint (Full_View (T)));
5053 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5055 -- This would seem semantically correct, but apparently
5056 -- generates spurious errors about missing components ???
5058 -- Set_Has_Discriminants (Id);
5059 end if;
5061 Prepare_Private_Subtype_Completion (Id, N);
5063 -- If this is the subtype of a constrained private type with
5064 -- discriminants that has got a full view and we also have
5065 -- built a completion just above, show that the completion
5066 -- is a clone of the full view to the back-end.
5068 if Has_Discriminants (T)
5069 and then not Has_Unknown_Discriminants (T)
5070 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5071 and then Present (Full_View (T))
5072 and then Present (Full_View (Id))
5073 then
5074 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5075 end if;
5077 when Access_Kind =>
5078 Set_Ekind (Id, E_Access_Subtype);
5079 Set_Is_Constrained (Id, Is_Constrained (T));
5080 Set_Is_Access_Constant
5081 (Id, Is_Access_Constant (T));
5082 Set_Directly_Designated_Type
5083 (Id, Designated_Type (T));
5084 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5086 -- A Pure library_item must not contain the declaration of a
5087 -- named access type, except within a subprogram, generic
5088 -- subprogram, task unit, or protected unit, or if it has
5089 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5091 if Comes_From_Source (Id)
5092 and then In_Pure_Unit
5093 and then not In_Subprogram_Task_Protected_Unit
5094 and then not No_Pool_Assigned (Id)
5095 then
5096 Error_Msg_N
5097 ("named access types not allowed in pure unit", N);
5098 end if;
5100 when Concurrent_Kind =>
5101 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5102 Set_Corresponding_Record_Type (Id,
5103 Corresponding_Record_Type (T));
5104 Set_First_Entity (Id, First_Entity (T));
5105 Set_First_Private_Entity (Id, First_Private_Entity (T));
5106 Set_Has_Discriminants (Id, Has_Discriminants (T));
5107 Set_Is_Constrained (Id, Is_Constrained (T));
5108 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5109 Set_Last_Entity (Id, Last_Entity (T));
5111 if Is_Tagged_Type (T) then
5112 Set_No_Tagged_Streams_Pragma
5113 (Id, No_Tagged_Streams_Pragma (T));
5114 end if;
5116 if Has_Discriminants (T) then
5117 Set_Discriminant_Constraint
5118 (Id, Discriminant_Constraint (T));
5119 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5120 end if;
5122 when Incomplete_Kind =>
5123 if Ada_Version >= Ada_2005 then
5125 -- In Ada 2005 an incomplete type can be explicitly tagged:
5126 -- propagate indication. Note that we also have to include
5127 -- subtypes for Ada 2012 extended use of incomplete types.
5129 Set_Ekind (Id, E_Incomplete_Subtype);
5130 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5131 Set_Private_Dependents (Id, New_Elmt_List);
5133 if Is_Tagged_Type (Id) then
5134 Set_No_Tagged_Streams_Pragma
5135 (Id, No_Tagged_Streams_Pragma (T));
5136 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5137 end if;
5139 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5140 -- incomplete type visible through a limited with clause.
5142 if From_Limited_With (T)
5143 and then Present (Non_Limited_View (T))
5144 then
5145 Set_From_Limited_With (Id);
5146 Set_Non_Limited_View (Id, Non_Limited_View (T));
5148 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5149 -- to the private dependents of the original incomplete
5150 -- type for future transformation.
5152 else
5153 Append_Elmt (Id, Private_Dependents (T));
5154 end if;
5156 -- If the subtype name denotes an incomplete type an error
5157 -- was already reported by Process_Subtype.
5159 else
5160 Set_Etype (Id, Any_Type);
5161 end if;
5163 when others =>
5164 raise Program_Error;
5165 end case;
5166 end if;
5168 if Etype (Id) = Any_Type then
5169 goto Leave;
5170 end if;
5172 -- Some common processing on all types
5174 Set_Size_Info (Id, T);
5175 Set_First_Rep_Item (Id, First_Rep_Item (T));
5177 -- If the parent type is a generic actual, so is the subtype. This may
5178 -- happen in a nested instance. Why Comes_From_Source test???
5180 if not Comes_From_Source (N) then
5181 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5182 end if;
5184 -- If this is a subtype declaration for an actual in an instance,
5185 -- inherit static and dynamic predicates if any.
5187 -- If declaration has no aspect specifications, inherit predicate
5188 -- info as well. Unclear how to handle the case of both specified
5189 -- and inherited predicates ??? Other inherited aspects, such as
5190 -- invariants, should be OK, but the combination with later pragmas
5191 -- may also require special merging.
5193 if Has_Predicates (T)
5194 and then Present (Predicate_Function (T))
5195 and then
5196 ((In_Instance and then not Comes_From_Source (N))
5197 or else No (Aspect_Specifications (N)))
5198 then
5199 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5201 if Has_Static_Predicate (T) then
5202 Set_Has_Static_Predicate (Id);
5203 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5204 end if;
5205 end if;
5207 -- Propagate invariant-related attributes from the base type to the
5208 -- subtype.
5210 Propagate_Invariant_Attributes (Id, From_Typ => Base_Type (T));
5212 -- Remaining processing depends on characteristics of base type
5214 T := Etype (Id);
5216 Set_Is_Immediately_Visible (Id, True);
5217 Set_Depends_On_Private (Id, Has_Private_Component (T));
5218 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5220 if Is_Interface (T) then
5221 Set_Is_Interface (Id);
5222 end if;
5224 if Present (Generic_Parent_Type (N))
5225 and then
5226 (Nkind (Parent (Generic_Parent_Type (N))) /=
5227 N_Formal_Type_Declaration
5228 or else Nkind (Formal_Type_Definition
5229 (Parent (Generic_Parent_Type (N)))) /=
5230 N_Formal_Private_Type_Definition)
5231 then
5232 if Is_Tagged_Type (Id) then
5234 -- If this is a generic actual subtype for a synchronized type,
5235 -- the primitive operations are those of the corresponding record
5236 -- for which there is a separate subtype declaration.
5238 if Is_Concurrent_Type (Id) then
5239 null;
5240 elsif Is_Class_Wide_Type (Id) then
5241 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5242 else
5243 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5244 end if;
5246 elsif Scope (Etype (Id)) /= Standard_Standard then
5247 Derive_Subprograms (Generic_Parent_Type (N), Id);
5248 end if;
5249 end if;
5251 if Is_Private_Type (T) and then Present (Full_View (T)) then
5252 Conditional_Delay (Id, Full_View (T));
5254 -- The subtypes of components or subcomponents of protected types
5255 -- do not need freeze nodes, which would otherwise appear in the
5256 -- wrong scope (before the freeze node for the protected type). The
5257 -- proper subtypes are those of the subcomponents of the corresponding
5258 -- record.
5260 elsif Ekind (Scope (Id)) /= E_Protected_Type
5261 and then Present (Scope (Scope (Id))) -- error defense
5262 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5263 then
5264 Conditional_Delay (Id, T);
5265 end if;
5267 -- Check that Constraint_Error is raised for a scalar subtype indication
5268 -- when the lower or upper bound of a non-null range lies outside the
5269 -- range of the type mark.
5271 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5272 if Is_Scalar_Type (Etype (Id))
5273 and then Scalar_Range (Id) /=
5274 Scalar_Range
5275 (Etype (Subtype_Mark (Subtype_Indication (N))))
5276 then
5277 Apply_Range_Check
5278 (Scalar_Range (Id),
5279 Etype (Subtype_Mark (Subtype_Indication (N))));
5281 -- In the array case, check compatibility for each index
5283 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5284 then
5285 -- This really should be a subprogram that finds the indications
5286 -- to check???
5288 declare
5289 Subt_Index : Node_Id := First_Index (Id);
5290 Target_Index : Node_Id :=
5291 First_Index (Etype
5292 (Subtype_Mark (Subtype_Indication (N))));
5293 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5295 begin
5296 while Present (Subt_Index) loop
5297 if ((Nkind (Subt_Index) = N_Identifier
5298 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5299 or else Nkind (Subt_Index) = N_Subtype_Indication)
5300 and then
5301 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5302 then
5303 declare
5304 Target_Typ : constant Entity_Id :=
5305 Etype (Target_Index);
5306 begin
5307 R_Checks :=
5308 Get_Range_Checks
5309 (Scalar_Range (Etype (Subt_Index)),
5310 Target_Typ,
5311 Etype (Subt_Index),
5312 Defining_Identifier (N));
5314 -- Reset Has_Dynamic_Range_Check on the subtype to
5315 -- prevent elision of the index check due to a dynamic
5316 -- check generated for a preceding index (needed since
5317 -- Insert_Range_Checks tries to avoid generating
5318 -- redundant checks on a given declaration).
5320 Set_Has_Dynamic_Range_Check (N, False);
5322 Insert_Range_Checks
5323 (R_Checks,
5325 Target_Typ,
5326 Sloc (Defining_Identifier (N)));
5328 -- Record whether this index involved a dynamic check
5330 Has_Dyn_Chk :=
5331 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5332 end;
5333 end if;
5335 Next_Index (Subt_Index);
5336 Next_Index (Target_Index);
5337 end loop;
5339 -- Finally, mark whether the subtype involves dynamic checks
5341 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5342 end;
5343 end if;
5344 end if;
5346 Set_Optimize_Alignment_Flags (Id);
5347 Check_Eliminated (Id);
5349 <<Leave>>
5350 if Has_Aspects (N) then
5351 Analyze_Aspect_Specifications (N, Id);
5352 end if;
5354 Analyze_Dimension (N);
5356 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5357 -- indications on composite types where the constraints are dynamic.
5358 -- Note that object declarations and aggregates generate implicit
5359 -- subtype declarations, which this covers. One special case is that the
5360 -- implicitly generated "=" for discriminated types includes an
5361 -- offending subtype declaration, which is harmless, so we ignore it
5362 -- here.
5364 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5365 declare
5366 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5367 begin
5368 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5369 and then not (Is_Internal (Id)
5370 and then Is_TSS (Scope (Id),
5371 TSS_Composite_Equality))
5372 and then not Within_Init_Proc
5373 and then not All_Composite_Constraints_Static (Cstr)
5374 then
5375 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5376 end if;
5377 end;
5378 end if;
5379 end Analyze_Subtype_Declaration;
5381 --------------------------------
5382 -- Analyze_Subtype_Indication --
5383 --------------------------------
5385 procedure Analyze_Subtype_Indication (N : Node_Id) is
5386 T : constant Entity_Id := Subtype_Mark (N);
5387 R : constant Node_Id := Range_Expression (Constraint (N));
5389 begin
5390 Analyze (T);
5392 if R /= Error then
5393 Analyze (R);
5394 Set_Etype (N, Etype (R));
5395 Resolve (R, Entity (T));
5396 else
5397 Set_Error_Posted (R);
5398 Set_Error_Posted (T);
5399 end if;
5400 end Analyze_Subtype_Indication;
5402 --------------------------
5403 -- Analyze_Variant_Part --
5404 --------------------------
5406 procedure Analyze_Variant_Part (N : Node_Id) is
5407 Discr_Name : Node_Id;
5408 Discr_Type : Entity_Id;
5410 procedure Process_Variant (A : Node_Id);
5411 -- Analyze declarations for a single variant
5413 package Analyze_Variant_Choices is
5414 new Generic_Analyze_Choices (Process_Variant);
5415 use Analyze_Variant_Choices;
5417 ---------------------
5418 -- Process_Variant --
5419 ---------------------
5421 procedure Process_Variant (A : Node_Id) is
5422 CL : constant Node_Id := Component_List (A);
5423 begin
5424 if not Null_Present (CL) then
5425 Analyze_Declarations (Component_Items (CL));
5427 if Present (Variant_Part (CL)) then
5428 Analyze (Variant_Part (CL));
5429 end if;
5430 end if;
5431 end Process_Variant;
5433 -- Start of processing for Analyze_Variant_Part
5435 begin
5436 Discr_Name := Name (N);
5437 Analyze (Discr_Name);
5439 -- If Discr_Name bad, get out (prevent cascaded errors)
5441 if Etype (Discr_Name) = Any_Type then
5442 return;
5443 end if;
5445 -- Check invalid discriminant in variant part
5447 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5448 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5449 end if;
5451 Discr_Type := Etype (Entity (Discr_Name));
5453 if not Is_Discrete_Type (Discr_Type) then
5454 Error_Msg_N
5455 ("discriminant in a variant part must be of a discrete type",
5456 Name (N));
5457 return;
5458 end if;
5460 -- Now analyze the choices, which also analyzes the declarations that
5461 -- are associated with each choice.
5463 Analyze_Choices (Variants (N), Discr_Type);
5465 -- Note: we used to instantiate and call Check_Choices here to check
5466 -- that the choices covered the discriminant, but it's too early to do
5467 -- that because of statically predicated subtypes, whose analysis may
5468 -- be deferred to their freeze point which may be as late as the freeze
5469 -- point of the containing record. So this call is now to be found in
5470 -- Freeze_Record_Declaration.
5472 end Analyze_Variant_Part;
5474 ----------------------------
5475 -- Array_Type_Declaration --
5476 ----------------------------
5478 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5479 Component_Def : constant Node_Id := Component_Definition (Def);
5480 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5481 Element_Type : Entity_Id;
5482 Implicit_Base : Entity_Id;
5483 Index : Node_Id;
5484 Related_Id : Entity_Id := Empty;
5485 Nb_Index : Nat;
5486 P : constant Node_Id := Parent (Def);
5487 Priv : Entity_Id;
5489 begin
5490 if Nkind (Def) = N_Constrained_Array_Definition then
5491 Index := First (Discrete_Subtype_Definitions (Def));
5492 else
5493 Index := First (Subtype_Marks (Def));
5494 end if;
5496 -- Find proper names for the implicit types which may be public. In case
5497 -- of anonymous arrays we use the name of the first object of that type
5498 -- as prefix.
5500 if No (T) then
5501 Related_Id := Defining_Identifier (P);
5502 else
5503 Related_Id := T;
5504 end if;
5506 Nb_Index := 1;
5507 while Present (Index) loop
5508 Analyze (Index);
5510 -- Test for odd case of trying to index a type by the type itself
5512 if Is_Entity_Name (Index) and then Entity (Index) = T then
5513 Error_Msg_N ("type& cannot be indexed by itself", Index);
5514 Set_Entity (Index, Standard_Boolean);
5515 Set_Etype (Index, Standard_Boolean);
5516 end if;
5518 -- Check SPARK restriction requiring a subtype mark
5520 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5521 Check_SPARK_05_Restriction ("subtype mark required", Index);
5522 end if;
5524 -- Add a subtype declaration for each index of private array type
5525 -- declaration whose etype is also private. For example:
5527 -- package Pkg is
5528 -- type Index is private;
5529 -- private
5530 -- type Table is array (Index) of ...
5531 -- end;
5533 -- This is currently required by the expander for the internally
5534 -- generated equality subprogram of records with variant parts in
5535 -- which the etype of some component is such private type.
5537 if Ekind (Current_Scope) = E_Package
5538 and then In_Private_Part (Current_Scope)
5539 and then Has_Private_Declaration (Etype (Index))
5540 then
5541 declare
5542 Loc : constant Source_Ptr := Sloc (Def);
5543 New_E : Entity_Id;
5544 Decl : Entity_Id;
5546 begin
5547 New_E := Make_Temporary (Loc, 'T');
5548 Set_Is_Internal (New_E);
5550 Decl :=
5551 Make_Subtype_Declaration (Loc,
5552 Defining_Identifier => New_E,
5553 Subtype_Indication =>
5554 New_Occurrence_Of (Etype (Index), Loc));
5556 Insert_Before (Parent (Def), Decl);
5557 Analyze (Decl);
5558 Set_Etype (Index, New_E);
5560 -- If the index is a range the Entity attribute is not
5561 -- available. Example:
5563 -- package Pkg is
5564 -- type T is private;
5565 -- private
5566 -- type T is new Natural;
5567 -- Table : array (T(1) .. T(10)) of Boolean;
5568 -- end Pkg;
5570 if Nkind (Index) /= N_Range then
5571 Set_Entity (Index, New_E);
5572 end if;
5573 end;
5574 end if;
5576 Make_Index (Index, P, Related_Id, Nb_Index);
5578 -- Check error of subtype with predicate for index type
5580 Bad_Predicated_Subtype_Use
5581 ("subtype& has predicate, not allowed as index subtype",
5582 Index, Etype (Index));
5584 -- Move to next index
5586 Next_Index (Index);
5587 Nb_Index := Nb_Index + 1;
5588 end loop;
5590 -- Process subtype indication if one is present
5592 if Present (Component_Typ) then
5593 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5595 Set_Etype (Component_Typ, Element_Type);
5597 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5598 Check_SPARK_05_Restriction
5599 ("subtype mark required", Component_Typ);
5600 end if;
5602 -- Ada 2005 (AI-230): Access Definition case
5604 else pragma Assert (Present (Access_Definition (Component_Def)));
5606 -- Indicate that the anonymous access type is created by the
5607 -- array type declaration.
5609 Element_Type := Access_Definition
5610 (Related_Nod => P,
5611 N => Access_Definition (Component_Def));
5612 Set_Is_Local_Anonymous_Access (Element_Type);
5614 -- Propagate the parent. This field is needed if we have to generate
5615 -- the master_id associated with an anonymous access to task type
5616 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5618 Set_Parent (Element_Type, Parent (T));
5620 -- Ada 2005 (AI-230): In case of components that are anonymous access
5621 -- types the level of accessibility depends on the enclosing type
5622 -- declaration
5624 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5626 -- Ada 2005 (AI-254)
5628 declare
5629 CD : constant Node_Id :=
5630 Access_To_Subprogram_Definition
5631 (Access_Definition (Component_Def));
5632 begin
5633 if Present (CD) and then Protected_Present (CD) then
5634 Element_Type :=
5635 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5636 end if;
5637 end;
5638 end if;
5640 -- Constrained array case
5642 if No (T) then
5643 T := Create_Itype (E_Void, P, Related_Id, 'T');
5644 end if;
5646 if Nkind (Def) = N_Constrained_Array_Definition then
5648 -- Establish Implicit_Base as unconstrained base type
5650 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5652 Set_Etype (Implicit_Base, Implicit_Base);
5653 Set_Scope (Implicit_Base, Current_Scope);
5654 Set_Has_Delayed_Freeze (Implicit_Base);
5655 Set_Default_SSO (Implicit_Base);
5657 -- The constrained array type is a subtype of the unconstrained one
5659 Set_Ekind (T, E_Array_Subtype);
5660 Init_Size_Align (T);
5661 Set_Etype (T, Implicit_Base);
5662 Set_Scope (T, Current_Scope);
5663 Set_Is_Constrained (T);
5664 Set_First_Index (T,
5665 First (Discrete_Subtype_Definitions (Def)));
5666 Set_Has_Delayed_Freeze (T);
5668 -- Complete setup of implicit base type
5670 Set_Component_Size (Implicit_Base, Uint_0);
5671 Set_Component_Type (Implicit_Base, Element_Type);
5672 Set_Finalize_Storage_Only
5673 (Implicit_Base,
5674 Finalize_Storage_Only (Element_Type));
5675 Set_First_Index (Implicit_Base, First_Index (T));
5676 Set_Has_Controlled_Component
5677 (Implicit_Base,
5678 Has_Controlled_Component (Element_Type)
5679 or else Is_Controlled_Active (Element_Type));
5680 Set_Packed_Array_Impl_Type
5681 (Implicit_Base, Empty);
5683 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
5685 -- Inherit the "ghostness" from the constrained array type
5687 if Ghost_Mode > None or else Is_Ghost_Entity (T) then
5688 Set_Is_Ghost_Entity (Implicit_Base);
5689 end if;
5691 -- Unconstrained array case
5693 else
5694 Set_Ekind (T, E_Array_Type);
5695 Init_Size_Align (T);
5696 Set_Etype (T, T);
5697 Set_Scope (T, Current_Scope);
5698 Set_Component_Size (T, Uint_0);
5699 Set_Is_Constrained (T, False);
5700 Set_First_Index (T, First (Subtype_Marks (Def)));
5701 Set_Has_Delayed_Freeze (T, True);
5702 Propagate_Concurrent_Flags (T, Element_Type);
5703 Set_Has_Controlled_Component (T, Has_Controlled_Component
5704 (Element_Type)
5705 or else
5706 Is_Controlled_Active (Element_Type));
5707 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5708 (Element_Type));
5709 Set_Default_SSO (T);
5710 end if;
5712 -- Common attributes for both cases
5714 Set_Component_Type (Base_Type (T), Element_Type);
5715 Set_Packed_Array_Impl_Type (T, Empty);
5717 if Aliased_Present (Component_Definition (Def)) then
5718 Check_SPARK_05_Restriction
5719 ("aliased is not allowed", Component_Definition (Def));
5720 Set_Has_Aliased_Components (Etype (T));
5721 end if;
5723 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5724 -- array type to ensure that objects of this type are initialized.
5726 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5727 Set_Can_Never_Be_Null (T);
5729 if Null_Exclusion_Present (Component_Definition (Def))
5731 -- No need to check itypes because in their case this check was
5732 -- done at their point of creation
5734 and then not Is_Itype (Element_Type)
5735 then
5736 Error_Msg_N
5737 ("`NOT NULL` not allowed (null already excluded)",
5738 Subtype_Indication (Component_Definition (Def)));
5739 end if;
5740 end if;
5742 Priv := Private_Component (Element_Type);
5744 if Present (Priv) then
5746 -- Check for circular definitions
5748 if Priv = Any_Type then
5749 Set_Component_Type (Etype (T), Any_Type);
5751 -- There is a gap in the visibility of operations on the composite
5752 -- type only if the component type is defined in a different scope.
5754 elsif Scope (Priv) = Current_Scope then
5755 null;
5757 elsif Is_Limited_Type (Priv) then
5758 Set_Is_Limited_Composite (Etype (T));
5759 Set_Is_Limited_Composite (T);
5760 else
5761 Set_Is_Private_Composite (Etype (T));
5762 Set_Is_Private_Composite (T);
5763 end if;
5764 end if;
5766 -- A syntax error in the declaration itself may lead to an empty index
5767 -- list, in which case do a minimal patch.
5769 if No (First_Index (T)) then
5770 Error_Msg_N ("missing index definition in array type declaration", T);
5772 declare
5773 Indexes : constant List_Id :=
5774 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5775 begin
5776 Set_Discrete_Subtype_Definitions (Def, Indexes);
5777 Set_First_Index (T, First (Indexes));
5778 return;
5779 end;
5780 end if;
5782 -- Create a concatenation operator for the new type. Internal array
5783 -- types created for packed entities do not need such, they are
5784 -- compatible with the user-defined type.
5786 if Number_Dimensions (T) = 1
5787 and then not Is_Packed_Array_Impl_Type (T)
5788 then
5789 New_Concatenation_Op (T);
5790 end if;
5792 -- In the case of an unconstrained array the parser has already verified
5793 -- that all the indexes are unconstrained but we still need to make sure
5794 -- that the element type is constrained.
5796 if not Is_Definite_Subtype (Element_Type) then
5797 Error_Msg_N
5798 ("unconstrained element type in array declaration",
5799 Subtype_Indication (Component_Def));
5801 elsif Is_Abstract_Type (Element_Type) then
5802 Error_Msg_N
5803 ("the type of a component cannot be abstract",
5804 Subtype_Indication (Component_Def));
5805 end if;
5807 -- There may be an invariant declared for the component type, but
5808 -- the construction of the component invariant checking procedure
5809 -- takes place during expansion.
5810 end Array_Type_Declaration;
5812 ------------------------------------------------------
5813 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5814 ------------------------------------------------------
5816 function Replace_Anonymous_Access_To_Protected_Subprogram
5817 (N : Node_Id) return Entity_Id
5819 Loc : constant Source_Ptr := Sloc (N);
5821 Curr_Scope : constant Scope_Stack_Entry :=
5822 Scope_Stack.Table (Scope_Stack.Last);
5824 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5826 Acc : Node_Id;
5827 -- Access definition in declaration
5829 Comp : Node_Id;
5830 -- Object definition or formal definition with an access definition
5832 Decl : Node_Id;
5833 -- Declaration of anonymous access to subprogram type
5835 Spec : Node_Id;
5836 -- Original specification in access to subprogram
5838 P : Node_Id;
5840 begin
5841 Set_Is_Internal (Anon);
5843 case Nkind (N) is
5844 when N_Component_Declaration |
5845 N_Unconstrained_Array_Definition |
5846 N_Constrained_Array_Definition =>
5847 Comp := Component_Definition (N);
5848 Acc := Access_Definition (Comp);
5850 when N_Discriminant_Specification =>
5851 Comp := Discriminant_Type (N);
5852 Acc := Comp;
5854 when N_Parameter_Specification =>
5855 Comp := Parameter_Type (N);
5856 Acc := Comp;
5858 when N_Access_Function_Definition =>
5859 Comp := Result_Definition (N);
5860 Acc := Comp;
5862 when N_Object_Declaration =>
5863 Comp := Object_Definition (N);
5864 Acc := Comp;
5866 when N_Function_Specification =>
5867 Comp := Result_Definition (N);
5868 Acc := Comp;
5870 when others =>
5871 raise Program_Error;
5872 end case;
5874 Spec := Access_To_Subprogram_Definition (Acc);
5876 Decl :=
5877 Make_Full_Type_Declaration (Loc,
5878 Defining_Identifier => Anon,
5879 Type_Definition => Copy_Separate_Tree (Spec));
5881 Mark_Rewrite_Insertion (Decl);
5883 -- In ASIS mode, analyze the profile on the original node, because
5884 -- the separate copy does not provide enough links to recover the
5885 -- original tree. Analysis is limited to type annotations, within
5886 -- a temporary scope that serves as an anonymous subprogram to collect
5887 -- otherwise useless temporaries and itypes.
5889 if ASIS_Mode then
5890 declare
5891 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5893 begin
5894 if Nkind (Spec) = N_Access_Function_Definition then
5895 Set_Ekind (Typ, E_Function);
5896 else
5897 Set_Ekind (Typ, E_Procedure);
5898 end if;
5900 Set_Parent (Typ, N);
5901 Set_Scope (Typ, Current_Scope);
5902 Push_Scope (Typ);
5904 -- Nothing to do if procedure is parameterless
5906 if Present (Parameter_Specifications (Spec)) then
5907 Process_Formals (Parameter_Specifications (Spec), Spec);
5908 end if;
5910 if Nkind (Spec) = N_Access_Function_Definition then
5911 declare
5912 Def : constant Node_Id := Result_Definition (Spec);
5914 begin
5915 -- The result might itself be an anonymous access type, so
5916 -- have to recurse.
5918 if Nkind (Def) = N_Access_Definition then
5919 if Present (Access_To_Subprogram_Definition (Def)) then
5920 Set_Etype
5921 (Def,
5922 Replace_Anonymous_Access_To_Protected_Subprogram
5923 (Spec));
5924 else
5925 Find_Type (Subtype_Mark (Def));
5926 end if;
5928 else
5929 Find_Type (Def);
5930 end if;
5931 end;
5932 end if;
5934 End_Scope;
5935 end;
5936 end if;
5938 -- Insert the new declaration in the nearest enclosing scope. If the
5939 -- parent is a body and N is its return type, the declaration belongs
5940 -- in the enclosing scope. Likewise if N is the type of a parameter.
5942 P := Parent (N);
5944 if Nkind (N) = N_Function_Specification
5945 and then Nkind (P) = N_Subprogram_Body
5946 then
5947 P := Parent (P);
5948 elsif Nkind (N) = N_Parameter_Specification
5949 and then Nkind (P) in N_Subprogram_Specification
5950 and then Nkind (Parent (P)) = N_Subprogram_Body
5951 then
5952 P := Parent (Parent (P));
5953 end if;
5955 while Present (P) and then not Has_Declarations (P) loop
5956 P := Parent (P);
5957 end loop;
5959 pragma Assert (Present (P));
5961 if Nkind (P) = N_Package_Specification then
5962 Prepend (Decl, Visible_Declarations (P));
5963 else
5964 Prepend (Decl, Declarations (P));
5965 end if;
5967 -- Replace the anonymous type with an occurrence of the new declaration.
5968 -- In all cases the rewritten node does not have the null-exclusion
5969 -- attribute because (if present) it was already inherited by the
5970 -- anonymous entity (Anon). Thus, in case of components we do not
5971 -- inherit this attribute.
5973 if Nkind (N) = N_Parameter_Specification then
5974 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5975 Set_Etype (Defining_Identifier (N), Anon);
5976 Set_Null_Exclusion_Present (N, False);
5978 elsif Nkind (N) = N_Object_Declaration then
5979 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5980 Set_Etype (Defining_Identifier (N), Anon);
5982 elsif Nkind (N) = N_Access_Function_Definition then
5983 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5985 elsif Nkind (N) = N_Function_Specification then
5986 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5987 Set_Etype (Defining_Unit_Name (N), Anon);
5989 else
5990 Rewrite (Comp,
5991 Make_Component_Definition (Loc,
5992 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5993 end if;
5995 Mark_Rewrite_Insertion (Comp);
5997 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
5998 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
5999 and then not Is_Type (Current_Scope))
6000 then
6002 -- Declaration can be analyzed in the current scope.
6004 Analyze (Decl);
6006 else
6007 -- Temporarily remove the current scope (record or subprogram) from
6008 -- the stack to add the new declarations to the enclosing scope.
6009 -- The anonymous entity is an Itype with the proper attributes.
6011 Scope_Stack.Decrement_Last;
6012 Analyze (Decl);
6013 Set_Is_Itype (Anon);
6014 Set_Associated_Node_For_Itype (Anon, N);
6015 Scope_Stack.Append (Curr_Scope);
6016 end if;
6018 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6019 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6020 return Anon;
6021 end Replace_Anonymous_Access_To_Protected_Subprogram;
6023 -------------------------------
6024 -- Build_Derived_Access_Type --
6025 -------------------------------
6027 procedure Build_Derived_Access_Type
6028 (N : Node_Id;
6029 Parent_Type : Entity_Id;
6030 Derived_Type : Entity_Id)
6032 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6034 Desig_Type : Entity_Id;
6035 Discr : Entity_Id;
6036 Discr_Con_Elist : Elist_Id;
6037 Discr_Con_El : Elmt_Id;
6038 Subt : Entity_Id;
6040 begin
6041 -- Set the designated type so it is available in case this is an access
6042 -- to a self-referential type, e.g. a standard list type with a next
6043 -- pointer. Will be reset after subtype is built.
6045 Set_Directly_Designated_Type
6046 (Derived_Type, Designated_Type (Parent_Type));
6048 Subt := Process_Subtype (S, N);
6050 if Nkind (S) /= N_Subtype_Indication
6051 and then Subt /= Base_Type (Subt)
6052 then
6053 Set_Ekind (Derived_Type, E_Access_Subtype);
6054 end if;
6056 if Ekind (Derived_Type) = E_Access_Subtype then
6057 declare
6058 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6059 Ibase : constant Entity_Id :=
6060 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6061 Svg_Chars : constant Name_Id := Chars (Ibase);
6062 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6064 begin
6065 Copy_Node (Pbase, Ibase);
6067 -- Restore Itype status after Copy_Node
6069 Set_Is_Itype (Ibase);
6070 Set_Associated_Node_For_Itype (Ibase, N);
6072 Set_Chars (Ibase, Svg_Chars);
6073 Set_Next_Entity (Ibase, Svg_Next_E);
6074 Set_Sloc (Ibase, Sloc (Derived_Type));
6075 Set_Scope (Ibase, Scope (Derived_Type));
6076 Set_Freeze_Node (Ibase, Empty);
6077 Set_Is_Frozen (Ibase, False);
6078 Set_Comes_From_Source (Ibase, False);
6079 Set_Is_First_Subtype (Ibase, False);
6081 Set_Etype (Ibase, Pbase);
6082 Set_Etype (Derived_Type, Ibase);
6083 end;
6084 end if;
6086 Set_Directly_Designated_Type
6087 (Derived_Type, Designated_Type (Subt));
6089 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6090 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6091 Set_Size_Info (Derived_Type, Parent_Type);
6092 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6093 Set_Depends_On_Private (Derived_Type,
6094 Has_Private_Component (Derived_Type));
6095 Conditional_Delay (Derived_Type, Subt);
6097 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6098 -- that it is not redundant.
6100 if Null_Exclusion_Present (Type_Definition (N)) then
6101 Set_Can_Never_Be_Null (Derived_Type);
6103 elsif Can_Never_Be_Null (Parent_Type) then
6104 Set_Can_Never_Be_Null (Derived_Type);
6105 end if;
6107 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6108 -- the root type for this information.
6110 -- Apply range checks to discriminants for derived record case
6111 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6113 Desig_Type := Designated_Type (Derived_Type);
6115 if Is_Composite_Type (Desig_Type)
6116 and then (not Is_Array_Type (Desig_Type))
6117 and then Has_Discriminants (Desig_Type)
6118 and then Base_Type (Desig_Type) /= Desig_Type
6119 then
6120 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6121 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6123 Discr := First_Discriminant (Base_Type (Desig_Type));
6124 while Present (Discr_Con_El) loop
6125 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6126 Next_Elmt (Discr_Con_El);
6127 Next_Discriminant (Discr);
6128 end loop;
6129 end if;
6130 end Build_Derived_Access_Type;
6132 ------------------------------
6133 -- Build_Derived_Array_Type --
6134 ------------------------------
6136 procedure Build_Derived_Array_Type
6137 (N : Node_Id;
6138 Parent_Type : Entity_Id;
6139 Derived_Type : Entity_Id)
6141 Loc : constant Source_Ptr := Sloc (N);
6142 Tdef : constant Node_Id := Type_Definition (N);
6143 Indic : constant Node_Id := Subtype_Indication (Tdef);
6144 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6145 Implicit_Base : Entity_Id;
6146 New_Indic : Node_Id;
6148 procedure Make_Implicit_Base;
6149 -- If the parent subtype is constrained, the derived type is a subtype
6150 -- of an implicit base type derived from the parent base.
6152 ------------------------
6153 -- Make_Implicit_Base --
6154 ------------------------
6156 procedure Make_Implicit_Base is
6157 begin
6158 Implicit_Base :=
6159 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6161 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6162 Set_Etype (Implicit_Base, Parent_Base);
6164 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6165 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6167 Set_Has_Delayed_Freeze (Implicit_Base, True);
6169 -- Inherit the "ghostness" from the parent base type
6171 if Ghost_Mode > None or else Is_Ghost_Entity (Parent_Base) then
6172 Set_Is_Ghost_Entity (Implicit_Base);
6173 end if;
6174 end Make_Implicit_Base;
6176 -- Start of processing for Build_Derived_Array_Type
6178 begin
6179 if not Is_Constrained (Parent_Type) then
6180 if Nkind (Indic) /= N_Subtype_Indication then
6181 Set_Ekind (Derived_Type, E_Array_Type);
6183 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6184 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6186 Set_Has_Delayed_Freeze (Derived_Type, True);
6188 else
6189 Make_Implicit_Base;
6190 Set_Etype (Derived_Type, Implicit_Base);
6192 New_Indic :=
6193 Make_Subtype_Declaration (Loc,
6194 Defining_Identifier => Derived_Type,
6195 Subtype_Indication =>
6196 Make_Subtype_Indication (Loc,
6197 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6198 Constraint => Constraint (Indic)));
6200 Rewrite (N, New_Indic);
6201 Analyze (N);
6202 end if;
6204 else
6205 if Nkind (Indic) /= N_Subtype_Indication then
6206 Make_Implicit_Base;
6208 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6209 Set_Etype (Derived_Type, Implicit_Base);
6210 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6212 else
6213 Error_Msg_N ("illegal constraint on constrained type", Indic);
6214 end if;
6215 end if;
6217 -- If parent type is not a derived type itself, and is declared in
6218 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6219 -- the new type's concatenation operator since Derive_Subprograms
6220 -- will not inherit the parent's operator. If the parent type is
6221 -- unconstrained, the operator is of the unconstrained base type.
6223 if Number_Dimensions (Parent_Type) = 1
6224 and then not Is_Limited_Type (Parent_Type)
6225 and then not Is_Derived_Type (Parent_Type)
6226 and then not Is_Package_Or_Generic_Package
6227 (Scope (Base_Type (Parent_Type)))
6228 then
6229 if not Is_Constrained (Parent_Type)
6230 and then Is_Constrained (Derived_Type)
6231 then
6232 New_Concatenation_Op (Implicit_Base);
6233 else
6234 New_Concatenation_Op (Derived_Type);
6235 end if;
6236 end if;
6237 end Build_Derived_Array_Type;
6239 -----------------------------------
6240 -- Build_Derived_Concurrent_Type --
6241 -----------------------------------
6243 procedure Build_Derived_Concurrent_Type
6244 (N : Node_Id;
6245 Parent_Type : Entity_Id;
6246 Derived_Type : Entity_Id)
6248 Loc : constant Source_Ptr := Sloc (N);
6250 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6251 Corr_Decl : Node_Id;
6252 Corr_Decl_Needed : Boolean;
6253 -- If the derived type has fewer discriminants than its parent, the
6254 -- corresponding record is also a derived type, in order to account for
6255 -- the bound discriminants. We create a full type declaration for it in
6256 -- this case.
6258 Constraint_Present : constant Boolean :=
6259 Nkind (Subtype_Indication (Type_Definition (N))) =
6260 N_Subtype_Indication;
6262 D_Constraint : Node_Id;
6263 New_Constraint : Elist_Id;
6264 Old_Disc : Entity_Id;
6265 New_Disc : Entity_Id;
6266 New_N : Node_Id;
6268 begin
6269 Set_Stored_Constraint (Derived_Type, No_Elist);
6270 Corr_Decl_Needed := False;
6271 Old_Disc := Empty;
6273 if Present (Discriminant_Specifications (N))
6274 and then Constraint_Present
6275 then
6276 Old_Disc := First_Discriminant (Parent_Type);
6277 New_Disc := First (Discriminant_Specifications (N));
6278 while Present (New_Disc) and then Present (Old_Disc) loop
6279 Next_Discriminant (Old_Disc);
6280 Next (New_Disc);
6281 end loop;
6282 end if;
6284 if Present (Old_Disc) and then Expander_Active then
6286 -- The new type has fewer discriminants, so we need to create a new
6287 -- corresponding record, which is derived from the corresponding
6288 -- record of the parent, and has a stored constraint that captures
6289 -- the values of the discriminant constraints. The corresponding
6290 -- record is needed only if expander is active and code generation is
6291 -- enabled.
6293 -- The type declaration for the derived corresponding record has the
6294 -- same discriminant part and constraints as the current declaration.
6295 -- Copy the unanalyzed tree to build declaration.
6297 Corr_Decl_Needed := True;
6298 New_N := Copy_Separate_Tree (N);
6300 Corr_Decl :=
6301 Make_Full_Type_Declaration (Loc,
6302 Defining_Identifier => Corr_Record,
6303 Discriminant_Specifications =>
6304 Discriminant_Specifications (New_N),
6305 Type_Definition =>
6306 Make_Derived_Type_Definition (Loc,
6307 Subtype_Indication =>
6308 Make_Subtype_Indication (Loc,
6309 Subtype_Mark =>
6310 New_Occurrence_Of
6311 (Corresponding_Record_Type (Parent_Type), Loc),
6312 Constraint =>
6313 Constraint
6314 (Subtype_Indication (Type_Definition (New_N))))));
6315 end if;
6317 -- Copy Storage_Size and Relative_Deadline variables if task case
6319 if Is_Task_Type (Parent_Type) then
6320 Set_Storage_Size_Variable (Derived_Type,
6321 Storage_Size_Variable (Parent_Type));
6322 Set_Relative_Deadline_Variable (Derived_Type,
6323 Relative_Deadline_Variable (Parent_Type));
6324 end if;
6326 if Present (Discriminant_Specifications (N)) then
6327 Push_Scope (Derived_Type);
6328 Check_Or_Process_Discriminants (N, Derived_Type);
6330 if Constraint_Present then
6331 New_Constraint :=
6332 Expand_To_Stored_Constraint
6333 (Parent_Type,
6334 Build_Discriminant_Constraints
6335 (Parent_Type,
6336 Subtype_Indication (Type_Definition (N)), True));
6337 end if;
6339 End_Scope;
6341 elsif Constraint_Present then
6343 -- Build constrained subtype, copying the constraint, and derive
6344 -- from it to create a derived constrained type.
6346 declare
6347 Loc : constant Source_Ptr := Sloc (N);
6348 Anon : constant Entity_Id :=
6349 Make_Defining_Identifier (Loc,
6350 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6351 Decl : Node_Id;
6353 begin
6354 Decl :=
6355 Make_Subtype_Declaration (Loc,
6356 Defining_Identifier => Anon,
6357 Subtype_Indication =>
6358 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6359 Insert_Before (N, Decl);
6360 Analyze (Decl);
6362 Rewrite (Subtype_Indication (Type_Definition (N)),
6363 New_Occurrence_Of (Anon, Loc));
6364 Set_Analyzed (Derived_Type, False);
6365 Analyze (N);
6366 return;
6367 end;
6368 end if;
6370 -- By default, operations and private data are inherited from parent.
6371 -- However, in the presence of bound discriminants, a new corresponding
6372 -- record will be created, see below.
6374 Set_Has_Discriminants
6375 (Derived_Type, Has_Discriminants (Parent_Type));
6376 Set_Corresponding_Record_Type
6377 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6379 -- Is_Constrained is set according the parent subtype, but is set to
6380 -- False if the derived type is declared with new discriminants.
6382 Set_Is_Constrained
6383 (Derived_Type,
6384 (Is_Constrained (Parent_Type) or else Constraint_Present)
6385 and then not Present (Discriminant_Specifications (N)));
6387 if Constraint_Present then
6388 if not Has_Discriminants (Parent_Type) then
6389 Error_Msg_N ("untagged parent must have discriminants", N);
6391 elsif Present (Discriminant_Specifications (N)) then
6393 -- Verify that new discriminants are used to constrain old ones
6395 D_Constraint :=
6396 First
6397 (Constraints
6398 (Constraint (Subtype_Indication (Type_Definition (N)))));
6400 Old_Disc := First_Discriminant (Parent_Type);
6402 while Present (D_Constraint) loop
6403 if Nkind (D_Constraint) /= N_Discriminant_Association then
6405 -- Positional constraint. If it is a reference to a new
6406 -- discriminant, it constrains the corresponding old one.
6408 if Nkind (D_Constraint) = N_Identifier then
6409 New_Disc := First_Discriminant (Derived_Type);
6410 while Present (New_Disc) loop
6411 exit when Chars (New_Disc) = Chars (D_Constraint);
6412 Next_Discriminant (New_Disc);
6413 end loop;
6415 if Present (New_Disc) then
6416 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6417 end if;
6418 end if;
6420 Next_Discriminant (Old_Disc);
6422 -- if this is a named constraint, search by name for the old
6423 -- discriminants constrained by the new one.
6425 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6427 -- Find new discriminant with that name
6429 New_Disc := First_Discriminant (Derived_Type);
6430 while Present (New_Disc) loop
6431 exit when
6432 Chars (New_Disc) = Chars (Expression (D_Constraint));
6433 Next_Discriminant (New_Disc);
6434 end loop;
6436 if Present (New_Disc) then
6438 -- Verify that new discriminant renames some discriminant
6439 -- of the parent type, and associate the new discriminant
6440 -- with one or more old ones that it renames.
6442 declare
6443 Selector : Node_Id;
6445 begin
6446 Selector := First (Selector_Names (D_Constraint));
6447 while Present (Selector) loop
6448 Old_Disc := First_Discriminant (Parent_Type);
6449 while Present (Old_Disc) loop
6450 exit when Chars (Old_Disc) = Chars (Selector);
6451 Next_Discriminant (Old_Disc);
6452 end loop;
6454 if Present (Old_Disc) then
6455 Set_Corresponding_Discriminant
6456 (New_Disc, Old_Disc);
6457 end if;
6459 Next (Selector);
6460 end loop;
6461 end;
6462 end if;
6463 end if;
6465 Next (D_Constraint);
6466 end loop;
6468 New_Disc := First_Discriminant (Derived_Type);
6469 while Present (New_Disc) loop
6470 if No (Corresponding_Discriminant (New_Disc)) then
6471 Error_Msg_NE
6472 ("new discriminant& must constrain old one", N, New_Disc);
6474 elsif not
6475 Subtypes_Statically_Compatible
6476 (Etype (New_Disc),
6477 Etype (Corresponding_Discriminant (New_Disc)))
6478 then
6479 Error_Msg_NE
6480 ("& not statically compatible with parent discriminant",
6481 N, New_Disc);
6482 end if;
6484 Next_Discriminant (New_Disc);
6485 end loop;
6486 end if;
6488 elsif Present (Discriminant_Specifications (N)) then
6489 Error_Msg_N
6490 ("missing discriminant constraint in untagged derivation", N);
6491 end if;
6493 -- The entity chain of the derived type includes the new discriminants
6494 -- but shares operations with the parent.
6496 if Present (Discriminant_Specifications (N)) then
6497 Old_Disc := First_Discriminant (Parent_Type);
6498 while Present (Old_Disc) loop
6499 if No (Next_Entity (Old_Disc))
6500 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6501 then
6502 Set_Next_Entity
6503 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6504 exit;
6505 end if;
6507 Next_Discriminant (Old_Disc);
6508 end loop;
6510 else
6511 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6512 if Has_Discriminants (Parent_Type) then
6513 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6514 Set_Discriminant_Constraint (
6515 Derived_Type, Discriminant_Constraint (Parent_Type));
6516 end if;
6517 end if;
6519 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6521 Set_Has_Completion (Derived_Type);
6523 if Corr_Decl_Needed then
6524 Set_Stored_Constraint (Derived_Type, New_Constraint);
6525 Insert_After (N, Corr_Decl);
6526 Analyze (Corr_Decl);
6527 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6528 end if;
6529 end Build_Derived_Concurrent_Type;
6531 ------------------------------------
6532 -- Build_Derived_Enumeration_Type --
6533 ------------------------------------
6535 procedure Build_Derived_Enumeration_Type
6536 (N : Node_Id;
6537 Parent_Type : Entity_Id;
6538 Derived_Type : Entity_Id)
6540 Loc : constant Source_Ptr := Sloc (N);
6541 Def : constant Node_Id := Type_Definition (N);
6542 Indic : constant Node_Id := Subtype_Indication (Def);
6543 Implicit_Base : Entity_Id;
6544 Literal : Entity_Id;
6545 New_Lit : Entity_Id;
6546 Literals_List : List_Id;
6547 Type_Decl : Node_Id;
6548 Hi, Lo : Node_Id;
6549 Rang_Expr : Node_Id;
6551 begin
6552 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6553 -- not have explicit literals lists we need to process types derived
6554 -- from them specially. This is handled by Derived_Standard_Character.
6555 -- If the parent type is a generic type, there are no literals either,
6556 -- and we construct the same skeletal representation as for the generic
6557 -- parent type.
6559 if Is_Standard_Character_Type (Parent_Type) then
6560 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6562 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6563 declare
6564 Lo : Node_Id;
6565 Hi : Node_Id;
6567 begin
6568 if Nkind (Indic) /= N_Subtype_Indication then
6569 Lo :=
6570 Make_Attribute_Reference (Loc,
6571 Attribute_Name => Name_First,
6572 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6573 Set_Etype (Lo, Derived_Type);
6575 Hi :=
6576 Make_Attribute_Reference (Loc,
6577 Attribute_Name => Name_Last,
6578 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6579 Set_Etype (Hi, Derived_Type);
6581 Set_Scalar_Range (Derived_Type,
6582 Make_Range (Loc,
6583 Low_Bound => Lo,
6584 High_Bound => Hi));
6585 else
6587 -- Analyze subtype indication and verify compatibility
6588 -- with parent type.
6590 if Base_Type (Process_Subtype (Indic, N)) /=
6591 Base_Type (Parent_Type)
6592 then
6593 Error_Msg_N
6594 ("illegal constraint for formal discrete type", N);
6595 end if;
6596 end if;
6597 end;
6599 else
6600 -- If a constraint is present, analyze the bounds to catch
6601 -- premature usage of the derived literals.
6603 if Nkind (Indic) = N_Subtype_Indication
6604 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6605 then
6606 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6607 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6608 end if;
6610 -- Introduce an implicit base type for the derived type even if there
6611 -- is no constraint attached to it, since this seems closer to the
6612 -- Ada semantics. Build a full type declaration tree for the derived
6613 -- type using the implicit base type as the defining identifier. The
6614 -- build a subtype declaration tree which applies the constraint (if
6615 -- any) have it replace the derived type declaration.
6617 Literal := First_Literal (Parent_Type);
6618 Literals_List := New_List;
6619 while Present (Literal)
6620 and then Ekind (Literal) = E_Enumeration_Literal
6621 loop
6622 -- Literals of the derived type have the same representation as
6623 -- those of the parent type, but this representation can be
6624 -- overridden by an explicit representation clause. Indicate
6625 -- that there is no explicit representation given yet. These
6626 -- derived literals are implicit operations of the new type,
6627 -- and can be overridden by explicit ones.
6629 if Nkind (Literal) = N_Defining_Character_Literal then
6630 New_Lit :=
6631 Make_Defining_Character_Literal (Loc, Chars (Literal));
6632 else
6633 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6634 end if;
6636 Set_Ekind (New_Lit, E_Enumeration_Literal);
6637 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6638 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6639 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6640 Set_Alias (New_Lit, Literal);
6641 Set_Is_Known_Valid (New_Lit, True);
6643 Append (New_Lit, Literals_List);
6644 Next_Literal (Literal);
6645 end loop;
6647 Implicit_Base :=
6648 Make_Defining_Identifier (Sloc (Derived_Type),
6649 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6651 -- Indicate the proper nature of the derived type. This must be done
6652 -- before analysis of the literals, to recognize cases when a literal
6653 -- may be hidden by a previous explicit function definition (cf.
6654 -- c83031a).
6656 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6657 Set_Etype (Derived_Type, Implicit_Base);
6659 Type_Decl :=
6660 Make_Full_Type_Declaration (Loc,
6661 Defining_Identifier => Implicit_Base,
6662 Discriminant_Specifications => No_List,
6663 Type_Definition =>
6664 Make_Enumeration_Type_Definition (Loc, Literals_List));
6666 Mark_Rewrite_Insertion (Type_Decl);
6667 Insert_Before (N, Type_Decl);
6668 Analyze (Type_Decl);
6670 -- The anonymous base now has a full declaration, but this base
6671 -- is not a first subtype.
6673 Set_Is_First_Subtype (Implicit_Base, False);
6675 -- After the implicit base is analyzed its Etype needs to be changed
6676 -- to reflect the fact that it is derived from the parent type which
6677 -- was ignored during analysis. We also set the size at this point.
6679 Set_Etype (Implicit_Base, Parent_Type);
6681 Set_Size_Info (Implicit_Base, Parent_Type);
6682 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6683 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6685 -- Copy other flags from parent type
6687 Set_Has_Non_Standard_Rep
6688 (Implicit_Base, Has_Non_Standard_Rep
6689 (Parent_Type));
6690 Set_Has_Pragma_Ordered
6691 (Implicit_Base, Has_Pragma_Ordered
6692 (Parent_Type));
6693 Set_Has_Delayed_Freeze (Implicit_Base);
6695 -- Process the subtype indication including a validation check on the
6696 -- constraint, if any. If a constraint is given, its bounds must be
6697 -- implicitly converted to the new type.
6699 if Nkind (Indic) = N_Subtype_Indication then
6700 declare
6701 R : constant Node_Id :=
6702 Range_Expression (Constraint (Indic));
6704 begin
6705 if Nkind (R) = N_Range then
6706 Hi := Build_Scalar_Bound
6707 (High_Bound (R), Parent_Type, Implicit_Base);
6708 Lo := Build_Scalar_Bound
6709 (Low_Bound (R), Parent_Type, Implicit_Base);
6711 else
6712 -- Constraint is a Range attribute. Replace with explicit
6713 -- mention of the bounds of the prefix, which must be a
6714 -- subtype.
6716 Analyze (Prefix (R));
6717 Hi :=
6718 Convert_To (Implicit_Base,
6719 Make_Attribute_Reference (Loc,
6720 Attribute_Name => Name_Last,
6721 Prefix =>
6722 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6724 Lo :=
6725 Convert_To (Implicit_Base,
6726 Make_Attribute_Reference (Loc,
6727 Attribute_Name => Name_First,
6728 Prefix =>
6729 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6730 end if;
6731 end;
6733 else
6734 Hi :=
6735 Build_Scalar_Bound
6736 (Type_High_Bound (Parent_Type),
6737 Parent_Type, Implicit_Base);
6738 Lo :=
6739 Build_Scalar_Bound
6740 (Type_Low_Bound (Parent_Type),
6741 Parent_Type, Implicit_Base);
6742 end if;
6744 Rang_Expr :=
6745 Make_Range (Loc,
6746 Low_Bound => Lo,
6747 High_Bound => Hi);
6749 -- If we constructed a default range for the case where no range
6750 -- was given, then the expressions in the range must not freeze
6751 -- since they do not correspond to expressions in the source.
6753 if Nkind (Indic) /= N_Subtype_Indication then
6754 Set_Must_Not_Freeze (Lo);
6755 Set_Must_Not_Freeze (Hi);
6756 Set_Must_Not_Freeze (Rang_Expr);
6757 end if;
6759 Rewrite (N,
6760 Make_Subtype_Declaration (Loc,
6761 Defining_Identifier => Derived_Type,
6762 Subtype_Indication =>
6763 Make_Subtype_Indication (Loc,
6764 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6765 Constraint =>
6766 Make_Range_Constraint (Loc,
6767 Range_Expression => Rang_Expr))));
6769 Analyze (N);
6771 -- Propagate the aspects from the original type declaration to the
6772 -- declaration of the implicit base.
6774 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6776 -- Apply a range check. Since this range expression doesn't have an
6777 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6778 -- this right???
6780 if Nkind (Indic) = N_Subtype_Indication then
6781 Apply_Range_Check
6782 (Range_Expression (Constraint (Indic)), Parent_Type,
6783 Source_Typ => Entity (Subtype_Mark (Indic)));
6784 end if;
6785 end if;
6786 end Build_Derived_Enumeration_Type;
6788 --------------------------------
6789 -- Build_Derived_Numeric_Type --
6790 --------------------------------
6792 procedure Build_Derived_Numeric_Type
6793 (N : Node_Id;
6794 Parent_Type : Entity_Id;
6795 Derived_Type : Entity_Id)
6797 Loc : constant Source_Ptr := Sloc (N);
6798 Tdef : constant Node_Id := Type_Definition (N);
6799 Indic : constant Node_Id := Subtype_Indication (Tdef);
6800 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6801 No_Constraint : constant Boolean := Nkind (Indic) /=
6802 N_Subtype_Indication;
6803 Implicit_Base : Entity_Id;
6805 Lo : Node_Id;
6806 Hi : Node_Id;
6808 begin
6809 -- Process the subtype indication including a validation check on
6810 -- the constraint if any.
6812 Discard_Node (Process_Subtype (Indic, N));
6814 -- Introduce an implicit base type for the derived type even if there
6815 -- is no constraint attached to it, since this seems closer to the Ada
6816 -- semantics.
6818 Implicit_Base :=
6819 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6821 Set_Etype (Implicit_Base, Parent_Base);
6822 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6823 Set_Size_Info (Implicit_Base, Parent_Base);
6824 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6825 Set_Parent (Implicit_Base, Parent (Derived_Type));
6826 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6828 -- Set RM Size for discrete type or decimal fixed-point type
6829 -- Ordinary fixed-point is excluded, why???
6831 if Is_Discrete_Type (Parent_Base)
6832 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6833 then
6834 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6835 end if;
6837 Set_Has_Delayed_Freeze (Implicit_Base);
6839 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6840 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6842 Set_Scalar_Range (Implicit_Base,
6843 Make_Range (Loc,
6844 Low_Bound => Lo,
6845 High_Bound => Hi));
6847 if Has_Infinities (Parent_Base) then
6848 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6849 end if;
6851 -- The Derived_Type, which is the entity of the declaration, is a
6852 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6853 -- absence of an explicit constraint.
6855 Set_Etype (Derived_Type, Implicit_Base);
6857 -- If we did not have a constraint, then the Ekind is set from the
6858 -- parent type (otherwise Process_Subtype has set the bounds)
6860 if No_Constraint then
6861 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6862 end if;
6864 -- If we did not have a range constraint, then set the range from the
6865 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6867 if No_Constraint or else not Has_Range_Constraint (Indic) then
6868 Set_Scalar_Range (Derived_Type,
6869 Make_Range (Loc,
6870 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6871 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6872 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6874 if Has_Infinities (Parent_Type) then
6875 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6876 end if;
6878 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6879 end if;
6881 Set_Is_Descendant_Of_Address (Derived_Type,
6882 Is_Descendant_Of_Address (Parent_Type));
6883 Set_Is_Descendant_Of_Address (Implicit_Base,
6884 Is_Descendant_Of_Address (Parent_Type));
6886 -- Set remaining type-specific fields, depending on numeric type
6888 if Is_Modular_Integer_Type (Parent_Type) then
6889 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6891 Set_Non_Binary_Modulus
6892 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6894 Set_Is_Known_Valid
6895 (Implicit_Base, Is_Known_Valid (Parent_Base));
6897 elsif Is_Floating_Point_Type (Parent_Type) then
6899 -- Digits of base type is always copied from the digits value of
6900 -- the parent base type, but the digits of the derived type will
6901 -- already have been set if there was a constraint present.
6903 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6904 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6906 if No_Constraint then
6907 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6908 end if;
6910 elsif Is_Fixed_Point_Type (Parent_Type) then
6912 -- Small of base type and derived type are always copied from the
6913 -- parent base type, since smalls never change. The delta of the
6914 -- base type is also copied from the parent base type. However the
6915 -- delta of the derived type will have been set already if a
6916 -- constraint was present.
6918 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6919 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6920 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6922 if No_Constraint then
6923 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6924 end if;
6926 -- The scale and machine radix in the decimal case are always
6927 -- copied from the parent base type.
6929 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6930 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6931 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6933 Set_Machine_Radix_10
6934 (Derived_Type, Machine_Radix_10 (Parent_Base));
6935 Set_Machine_Radix_10
6936 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6938 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6940 if No_Constraint then
6941 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6943 else
6944 -- the analysis of the subtype_indication sets the
6945 -- digits value of the derived type.
6947 null;
6948 end if;
6949 end if;
6950 end if;
6952 if Is_Integer_Type (Parent_Type) then
6953 Set_Has_Shift_Operator
6954 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6955 end if;
6957 -- The type of the bounds is that of the parent type, and they
6958 -- must be converted to the derived type.
6960 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6962 -- The implicit_base should be frozen when the derived type is frozen,
6963 -- but note that it is used in the conversions of the bounds. For fixed
6964 -- types we delay the determination of the bounds until the proper
6965 -- freezing point. For other numeric types this is rejected by GCC, for
6966 -- reasons that are currently unclear (???), so we choose to freeze the
6967 -- implicit base now. In the case of integers and floating point types
6968 -- this is harmless because subsequent representation clauses cannot
6969 -- affect anything, but it is still baffling that we cannot use the
6970 -- same mechanism for all derived numeric types.
6972 -- There is a further complication: actually some representation
6973 -- clauses can affect the implicit base type. For example, attribute
6974 -- definition clauses for stream-oriented attributes need to set the
6975 -- corresponding TSS entries on the base type, and this normally
6976 -- cannot be done after the base type is frozen, so the circuitry in
6977 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6978 -- and not use Set_TSS in this case.
6980 -- There are also consequences for the case of delayed representation
6981 -- aspects for some cases. For example, a Size aspect is delayed and
6982 -- should not be evaluated to the freeze point. This early freezing
6983 -- means that the size attribute evaluation happens too early???
6985 if Is_Fixed_Point_Type (Parent_Type) then
6986 Conditional_Delay (Implicit_Base, Parent_Type);
6987 else
6988 Freeze_Before (N, Implicit_Base);
6989 end if;
6990 end Build_Derived_Numeric_Type;
6992 --------------------------------
6993 -- Build_Derived_Private_Type --
6994 --------------------------------
6996 procedure Build_Derived_Private_Type
6997 (N : Node_Id;
6998 Parent_Type : Entity_Id;
6999 Derived_Type : Entity_Id;
7000 Is_Completion : Boolean;
7001 Derive_Subps : Boolean := True)
7003 Loc : constant Source_Ptr := Sloc (N);
7004 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7005 Par_Scope : constant Entity_Id := Scope (Par_Base);
7006 Full_N : constant Node_Id := New_Copy_Tree (N);
7007 Full_Der : Entity_Id := New_Copy (Derived_Type);
7008 Full_P : Entity_Id;
7010 procedure Build_Full_Derivation;
7011 -- Build full derivation, i.e. derive from the full view
7013 procedure Copy_And_Build;
7014 -- Copy derived type declaration, replace parent with its full view,
7015 -- and build derivation
7017 ---------------------------
7018 -- Build_Full_Derivation --
7019 ---------------------------
7021 procedure Build_Full_Derivation is
7022 begin
7023 -- If parent scope is not open, install the declarations
7025 if not In_Open_Scopes (Par_Scope) then
7026 Install_Private_Declarations (Par_Scope);
7027 Install_Visible_Declarations (Par_Scope);
7028 Copy_And_Build;
7029 Uninstall_Declarations (Par_Scope);
7031 -- If parent scope is open and in another unit, and parent has a
7032 -- completion, then the derivation is taking place in the visible
7033 -- part of a child unit. In that case retrieve the full view of
7034 -- the parent momentarily.
7036 elsif not In_Same_Source_Unit (N, Parent_Type) then
7037 Full_P := Full_View (Parent_Type);
7038 Exchange_Declarations (Parent_Type);
7039 Copy_And_Build;
7040 Exchange_Declarations (Full_P);
7042 -- Otherwise it is a local derivation
7044 else
7045 Copy_And_Build;
7046 end if;
7047 end Build_Full_Derivation;
7049 --------------------
7050 -- Copy_And_Build --
7051 --------------------
7053 procedure Copy_And_Build is
7054 Full_Parent : Entity_Id := Parent_Type;
7056 begin
7057 -- If the parent is itself derived from another private type,
7058 -- installing the private declarations has not affected its
7059 -- privacy status, so use its own full view explicitly.
7061 if Is_Private_Type (Full_Parent)
7062 and then Present (Full_View (Full_Parent))
7063 then
7064 Full_Parent := Full_View (Full_Parent);
7065 end if;
7067 -- And its underlying full view if necessary
7069 if Is_Private_Type (Full_Parent)
7070 and then Present (Underlying_Full_View (Full_Parent))
7071 then
7072 Full_Parent := Underlying_Full_View (Full_Parent);
7073 end if;
7075 -- For record, access and most enumeration types, derivation from
7076 -- the full view requires a fully-fledged declaration. In the other
7077 -- cases, just use an itype.
7079 if Ekind (Full_Parent) in Record_Kind
7080 or else Ekind (Full_Parent) in Access_Kind
7081 or else
7082 (Ekind (Full_Parent) in Enumeration_Kind
7083 and then not Is_Standard_Character_Type (Full_Parent)
7084 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7085 then
7086 -- Copy and adjust declaration to provide a completion for what
7087 -- is originally a private declaration. Indicate that full view
7088 -- is internally generated.
7090 Set_Comes_From_Source (Full_N, False);
7091 Set_Comes_From_Source (Full_Der, False);
7092 Set_Parent (Full_Der, Full_N);
7093 Set_Defining_Identifier (Full_N, Full_Der);
7095 -- If there are no constraints, adjust the subtype mark
7097 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7098 N_Subtype_Indication
7099 then
7100 Set_Subtype_Indication
7101 (Type_Definition (Full_N),
7102 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7103 end if;
7105 Insert_After (N, Full_N);
7107 -- Build full view of derived type from full view of parent which
7108 -- is now installed. Subprograms have been derived on the partial
7109 -- view, the completion does not derive them anew.
7111 if Ekind (Full_Parent) in Record_Kind then
7113 -- If parent type is tagged, the completion inherits the proper
7114 -- primitive operations.
7116 if Is_Tagged_Type (Parent_Type) then
7117 Build_Derived_Record_Type
7118 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7119 else
7120 Build_Derived_Record_Type
7121 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7122 end if;
7124 else
7125 Build_Derived_Type
7126 (Full_N, Full_Parent, Full_Der,
7127 Is_Completion => False, Derive_Subps => False);
7128 end if;
7130 -- The full declaration has been introduced into the tree and
7131 -- processed in the step above. It should not be analyzed again
7132 -- (when encountered later in the current list of declarations)
7133 -- to prevent spurious name conflicts. The full entity remains
7134 -- invisible.
7136 Set_Analyzed (Full_N);
7138 else
7139 Full_Der :=
7140 Make_Defining_Identifier (Sloc (Derived_Type),
7141 Chars => Chars (Derived_Type));
7142 Set_Is_Itype (Full_Der);
7143 Set_Associated_Node_For_Itype (Full_Der, N);
7144 Set_Parent (Full_Der, N);
7145 Build_Derived_Type
7146 (N, Full_Parent, Full_Der,
7147 Is_Completion => False, Derive_Subps => False);
7148 end if;
7150 Set_Has_Private_Declaration (Full_Der);
7151 Set_Has_Private_Declaration (Derived_Type);
7153 Set_Scope (Full_Der, Scope (Derived_Type));
7154 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7155 Set_Has_Size_Clause (Full_Der, False);
7156 Set_Has_Alignment_Clause (Full_Der, False);
7157 Set_Has_Delayed_Freeze (Full_Der);
7158 Set_Is_Frozen (Full_Der, False);
7159 Set_Freeze_Node (Full_Der, Empty);
7160 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7161 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7163 -- The convention on the base type may be set in the private part
7164 -- and not propagated to the subtype until later, so we obtain the
7165 -- convention from the base type of the parent.
7167 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7168 end Copy_And_Build;
7170 -- Start of processing for Build_Derived_Private_Type
7172 begin
7173 if Is_Tagged_Type (Parent_Type) then
7174 Full_P := Full_View (Parent_Type);
7176 -- A type extension of a type with unknown discriminants is an
7177 -- indefinite type that the back-end cannot handle directly.
7178 -- We treat it as a private type, and build a completion that is
7179 -- derived from the full view of the parent, and hopefully has
7180 -- known discriminants.
7182 -- If the full view of the parent type has an underlying record view,
7183 -- use it to generate the underlying record view of this derived type
7184 -- (required for chains of derivations with unknown discriminants).
7186 -- Minor optimization: we avoid the generation of useless underlying
7187 -- record view entities if the private type declaration has unknown
7188 -- discriminants but its corresponding full view has no
7189 -- discriminants.
7191 if Has_Unknown_Discriminants (Parent_Type)
7192 and then Present (Full_P)
7193 and then (Has_Discriminants (Full_P)
7194 or else Present (Underlying_Record_View (Full_P)))
7195 and then not In_Open_Scopes (Par_Scope)
7196 and then Expander_Active
7197 then
7198 declare
7199 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7200 New_Ext : constant Node_Id :=
7201 Copy_Separate_Tree
7202 (Record_Extension_Part (Type_Definition (N)));
7203 Decl : Node_Id;
7205 begin
7206 Build_Derived_Record_Type
7207 (N, Parent_Type, Derived_Type, Derive_Subps);
7209 -- Build anonymous completion, as a derivation from the full
7210 -- view of the parent. This is not a completion in the usual
7211 -- sense, because the current type is not private.
7213 Decl :=
7214 Make_Full_Type_Declaration (Loc,
7215 Defining_Identifier => Full_Der,
7216 Type_Definition =>
7217 Make_Derived_Type_Definition (Loc,
7218 Subtype_Indication =>
7219 New_Copy_Tree
7220 (Subtype_Indication (Type_Definition (N))),
7221 Record_Extension_Part => New_Ext));
7223 -- If the parent type has an underlying record view, use it
7224 -- here to build the new underlying record view.
7226 if Present (Underlying_Record_View (Full_P)) then
7227 pragma Assert
7228 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7229 = N_Identifier);
7230 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7231 Underlying_Record_View (Full_P));
7232 end if;
7234 Install_Private_Declarations (Par_Scope);
7235 Install_Visible_Declarations (Par_Scope);
7236 Insert_Before (N, Decl);
7238 -- Mark entity as an underlying record view before analysis,
7239 -- to avoid generating the list of its primitive operations
7240 -- (which is not really required for this entity) and thus
7241 -- prevent spurious errors associated with missing overriding
7242 -- of abstract primitives (overridden only for Derived_Type).
7244 Set_Ekind (Full_Der, E_Record_Type);
7245 Set_Is_Underlying_Record_View (Full_Der);
7246 Set_Default_SSO (Full_Der);
7248 Analyze (Decl);
7250 pragma Assert (Has_Discriminants (Full_Der)
7251 and then not Has_Unknown_Discriminants (Full_Der));
7253 Uninstall_Declarations (Par_Scope);
7255 -- Freeze the underlying record view, to prevent generation of
7256 -- useless dispatching information, which is simply shared with
7257 -- the real derived type.
7259 Set_Is_Frozen (Full_Der);
7261 -- If the derived type has access discriminants, create
7262 -- references to their anonymous types now, to prevent
7263 -- back-end problems when their first use is in generated
7264 -- bodies of primitives.
7266 declare
7267 E : Entity_Id;
7269 begin
7270 E := First_Entity (Full_Der);
7272 while Present (E) loop
7273 if Ekind (E) = E_Discriminant
7274 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7275 then
7276 Build_Itype_Reference (Etype (E), Decl);
7277 end if;
7279 Next_Entity (E);
7280 end loop;
7281 end;
7283 -- Set up links between real entity and underlying record view
7285 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7286 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7287 end;
7289 -- If discriminants are known, build derived record
7291 else
7292 Build_Derived_Record_Type
7293 (N, Parent_Type, Derived_Type, Derive_Subps);
7294 end if;
7296 return;
7298 elsif Has_Discriminants (Parent_Type) then
7300 -- Build partial view of derived type from partial view of parent.
7301 -- This must be done before building the full derivation because the
7302 -- second derivation will modify the discriminants of the first and
7303 -- the discriminants are chained with the rest of the components in
7304 -- the full derivation.
7306 Build_Derived_Record_Type
7307 (N, Parent_Type, Derived_Type, Derive_Subps);
7309 -- Build the full derivation if this is not the anonymous derived
7310 -- base type created by Build_Derived_Record_Type in the constrained
7311 -- case (see point 5. of its head comment) since we build it for the
7312 -- derived subtype. And skip it for protected types altogether, as
7313 -- gigi does not use these types directly.
7315 if Present (Full_View (Parent_Type))
7316 and then not Is_Itype (Derived_Type)
7317 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7318 then
7319 declare
7320 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7321 Discr : Entity_Id;
7322 Last_Discr : Entity_Id;
7324 begin
7325 -- If this is not a completion, construct the implicit full
7326 -- view by deriving from the full view of the parent type.
7327 -- But if this is a completion, the derived private type
7328 -- being built is a full view and the full derivation can
7329 -- only be its underlying full view.
7331 Build_Full_Derivation;
7333 if not Is_Completion then
7334 Set_Full_View (Derived_Type, Full_Der);
7335 else
7336 Set_Underlying_Full_View (Derived_Type, Full_Der);
7337 end if;
7339 if not Is_Base_Type (Derived_Type) then
7340 Set_Full_View (Der_Base, Base_Type (Full_Der));
7341 end if;
7343 -- Copy the discriminant list from full view to the partial
7344 -- view (base type and its subtype). Gigi requires that the
7345 -- partial and full views have the same discriminants.
7347 -- Note that since the partial view points to discriminants
7348 -- in the full view, their scope will be that of the full
7349 -- view. This might cause some front end problems and need
7350 -- adjustment???
7352 Discr := First_Discriminant (Base_Type (Full_Der));
7353 Set_First_Entity (Der_Base, Discr);
7355 loop
7356 Last_Discr := Discr;
7357 Next_Discriminant (Discr);
7358 exit when No (Discr);
7359 end loop;
7361 Set_Last_Entity (Der_Base, Last_Discr);
7362 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7363 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7365 Set_Stored_Constraint
7366 (Full_Der, Stored_Constraint (Derived_Type));
7367 end;
7368 end if;
7370 elsif Present (Full_View (Parent_Type))
7371 and then Has_Discriminants (Full_View (Parent_Type))
7372 then
7373 if Has_Unknown_Discriminants (Parent_Type)
7374 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7375 N_Subtype_Indication
7376 then
7377 Error_Msg_N
7378 ("cannot constrain type with unknown discriminants",
7379 Subtype_Indication (Type_Definition (N)));
7380 return;
7381 end if;
7383 -- If this is not a completion, construct the implicit full view by
7384 -- deriving from the full view of the parent type. But if this is a
7385 -- completion, the derived private type being built is a full view
7386 -- and the full derivation can only be its underlying full view.
7388 Build_Full_Derivation;
7390 if not Is_Completion then
7391 Set_Full_View (Derived_Type, Full_Der);
7392 else
7393 Set_Underlying_Full_View (Derived_Type, Full_Der);
7394 end if;
7396 -- In any case, the primitive operations are inherited from the
7397 -- parent type, not from the internal full view.
7399 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7401 if Derive_Subps then
7402 Derive_Subprograms (Parent_Type, Derived_Type);
7403 end if;
7405 Set_Stored_Constraint (Derived_Type, No_Elist);
7406 Set_Is_Constrained
7407 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7409 else
7410 -- Untagged type, No discriminants on either view
7412 if Nkind (Subtype_Indication (Type_Definition (N))) =
7413 N_Subtype_Indication
7414 then
7415 Error_Msg_N
7416 ("illegal constraint on type without discriminants", N);
7417 end if;
7419 if Present (Discriminant_Specifications (N))
7420 and then Present (Full_View (Parent_Type))
7421 and then not Is_Tagged_Type (Full_View (Parent_Type))
7422 then
7423 Error_Msg_N ("cannot add discriminants to untagged type", N);
7424 end if;
7426 Set_Stored_Constraint (Derived_Type, No_Elist);
7427 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7428 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7429 Set_Disable_Controlled (Derived_Type, Disable_Controlled
7430 (Parent_Type));
7431 Set_Has_Controlled_Component
7432 (Derived_Type, Has_Controlled_Component
7433 (Parent_Type));
7435 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7437 if not Is_Controlled_Active (Parent_Type) then
7438 Set_Finalize_Storage_Only
7439 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7440 end if;
7442 -- If this is not a completion, construct the implicit full view by
7443 -- deriving from the full view of the parent type.
7445 -- ??? If the parent is untagged private and its completion is
7446 -- tagged, this mechanism will not work because we cannot derive from
7447 -- the tagged full view unless we have an extension.
7449 if Present (Full_View (Parent_Type))
7450 and then not Is_Tagged_Type (Full_View (Parent_Type))
7451 and then not Is_Completion
7452 then
7453 Build_Full_Derivation;
7454 Set_Full_View (Derived_Type, Full_Der);
7455 end if;
7456 end if;
7458 Set_Has_Unknown_Discriminants (Derived_Type,
7459 Has_Unknown_Discriminants (Parent_Type));
7461 if Is_Private_Type (Derived_Type) then
7462 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7463 end if;
7465 -- If the parent base type is in scope, add the derived type to its
7466 -- list of private dependents, because its full view may become
7467 -- visible subsequently (in a nested private part, a body, or in a
7468 -- further child unit).
7470 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7471 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7473 -- Check for unusual case where a type completed by a private
7474 -- derivation occurs within a package nested in a child unit, and
7475 -- the parent is declared in an ancestor.
7477 if Is_Child_Unit (Scope (Current_Scope))
7478 and then Is_Completion
7479 and then In_Private_Part (Current_Scope)
7480 and then Scope (Parent_Type) /= Current_Scope
7482 -- Note that if the parent has a completion in the private part,
7483 -- (which is itself a derivation from some other private type)
7484 -- it is that completion that is visible, there is no full view
7485 -- available, and no special processing is needed.
7487 and then Present (Full_View (Parent_Type))
7488 then
7489 -- In this case, the full view of the parent type will become
7490 -- visible in the body of the enclosing child, and only then will
7491 -- the current type be possibly non-private. Build an underlying
7492 -- full view that will be installed when the enclosing child body
7493 -- is compiled.
7495 if Present (Underlying_Full_View (Derived_Type)) then
7496 Full_Der := Underlying_Full_View (Derived_Type);
7497 else
7498 Build_Full_Derivation;
7499 Set_Underlying_Full_View (Derived_Type, Full_Der);
7500 end if;
7502 -- The full view will be used to swap entities on entry/exit to
7503 -- the body, and must appear in the entity list for the package.
7505 Append_Entity (Full_Der, Scope (Derived_Type));
7506 end if;
7507 end if;
7508 end Build_Derived_Private_Type;
7510 -------------------------------
7511 -- Build_Derived_Record_Type --
7512 -------------------------------
7514 -- 1. INTRODUCTION
7516 -- Ideally we would like to use the same model of type derivation for
7517 -- tagged and untagged record types. Unfortunately this is not quite
7518 -- possible because the semantics of representation clauses is different
7519 -- for tagged and untagged records under inheritance. Consider the
7520 -- following:
7522 -- type R (...) is [tagged] record ... end record;
7523 -- type T (...) is new R (...) [with ...];
7525 -- The representation clauses for T can specify a completely different
7526 -- record layout from R's. Hence the same component can be placed in two
7527 -- very different positions in objects of type T and R. If R and T are
7528 -- tagged types, representation clauses for T can only specify the layout
7529 -- of non inherited components, thus components that are common in R and T
7530 -- have the same position in objects of type R and T.
7532 -- This has two implications. The first is that the entire tree for R's
7533 -- declaration needs to be copied for T in the untagged case, so that T
7534 -- can be viewed as a record type of its own with its own representation
7535 -- clauses. The second implication is the way we handle discriminants.
7536 -- Specifically, in the untagged case we need a way to communicate to Gigi
7537 -- what are the real discriminants in the record, while for the semantics
7538 -- we need to consider those introduced by the user to rename the
7539 -- discriminants in the parent type. This is handled by introducing the
7540 -- notion of stored discriminants. See below for more.
7542 -- Fortunately the way regular components are inherited can be handled in
7543 -- the same way in tagged and untagged types.
7545 -- To complicate things a bit more the private view of a private extension
7546 -- cannot be handled in the same way as the full view (for one thing the
7547 -- semantic rules are somewhat different). We will explain what differs
7548 -- below.
7550 -- 2. DISCRIMINANTS UNDER INHERITANCE
7552 -- The semantic rules governing the discriminants of derived types are
7553 -- quite subtle.
7555 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7556 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7558 -- If parent type has discriminants, then the discriminants that are
7559 -- declared in the derived type are [3.4 (11)]:
7561 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7562 -- there is one;
7564 -- o Otherwise, each discriminant of the parent type (implicitly declared
7565 -- in the same order with the same specifications). In this case, the
7566 -- discriminants are said to be "inherited", or if unknown in the parent
7567 -- are also unknown in the derived type.
7569 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7571 -- o The parent subtype must be constrained;
7573 -- o If the parent type is not a tagged type, then each discriminant of
7574 -- the derived type must be used in the constraint defining a parent
7575 -- subtype. [Implementation note: This ensures that the new discriminant
7576 -- can share storage with an existing discriminant.]
7578 -- For the derived type each discriminant of the parent type is either
7579 -- inherited, constrained to equal some new discriminant of the derived
7580 -- type, or constrained to the value of an expression.
7582 -- When inherited or constrained to equal some new discriminant, the
7583 -- parent discriminant and the discriminant of the derived type are said
7584 -- to "correspond".
7586 -- If a discriminant of the parent type is constrained to a specific value
7587 -- in the derived type definition, then the discriminant is said to be
7588 -- "specified" by that derived type definition.
7590 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7592 -- We have spoken about stored discriminants in point 1 (introduction)
7593 -- above. There are two sort of stored discriminants: implicit and
7594 -- explicit. As long as the derived type inherits the same discriminants as
7595 -- the root record type, stored discriminants are the same as regular
7596 -- discriminants, and are said to be implicit. However, if any discriminant
7597 -- in the root type was renamed in the derived type, then the derived
7598 -- type will contain explicit stored discriminants. Explicit stored
7599 -- discriminants are discriminants in addition to the semantically visible
7600 -- discriminants defined for the derived type. Stored discriminants are
7601 -- used by Gigi to figure out what are the physical discriminants in
7602 -- objects of the derived type (see precise definition in einfo.ads).
7603 -- As an example, consider the following:
7605 -- type R (D1, D2, D3 : Int) is record ... end record;
7606 -- type T1 is new R;
7607 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7608 -- type T3 is new T2;
7609 -- type T4 (Y : Int) is new T3 (Y, 99);
7611 -- The following table summarizes the discriminants and stored
7612 -- discriminants in R and T1 through T4.
7614 -- Type Discrim Stored Discrim Comment
7615 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7616 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7617 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7618 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7619 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7621 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7622 -- find the corresponding discriminant in the parent type, while
7623 -- Original_Record_Component (abbreviated ORC below), the actual physical
7624 -- component that is renamed. Finally the field Is_Completely_Hidden
7625 -- (abbreviated ICH below) is set for all explicit stored discriminants
7626 -- (see einfo.ads for more info). For the above example this gives:
7628 -- Discrim CD ORC ICH
7629 -- ^^^^^^^ ^^ ^^^ ^^^
7630 -- D1 in R empty itself no
7631 -- D2 in R empty itself no
7632 -- D3 in R empty itself no
7634 -- D1 in T1 D1 in R itself no
7635 -- D2 in T1 D2 in R itself no
7636 -- D3 in T1 D3 in R itself no
7638 -- X1 in T2 D3 in T1 D3 in T2 no
7639 -- X2 in T2 D1 in T1 D1 in T2 no
7640 -- D1 in T2 empty itself yes
7641 -- D2 in T2 empty itself yes
7642 -- D3 in T2 empty itself yes
7644 -- X1 in T3 X1 in T2 D3 in T3 no
7645 -- X2 in T3 X2 in T2 D1 in T3 no
7646 -- D1 in T3 empty itself yes
7647 -- D2 in T3 empty itself yes
7648 -- D3 in T3 empty itself yes
7650 -- Y in T4 X1 in T3 D3 in T3 no
7651 -- D1 in T3 empty itself yes
7652 -- D2 in T3 empty itself yes
7653 -- D3 in T3 empty itself yes
7655 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7657 -- Type derivation for tagged types is fairly straightforward. If no
7658 -- discriminants are specified by the derived type, these are inherited
7659 -- from the parent. No explicit stored discriminants are ever necessary.
7660 -- The only manipulation that is done to the tree is that of adding a
7661 -- _parent field with parent type and constrained to the same constraint
7662 -- specified for the parent in the derived type definition. For instance:
7664 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7665 -- type T1 is new R with null record;
7666 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7668 -- are changed into:
7670 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7671 -- _parent : R (D1, D2, D3);
7672 -- end record;
7674 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7675 -- _parent : T1 (X2, 88, X1);
7676 -- end record;
7678 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7679 -- ORC and ICH fields are:
7681 -- Discrim CD ORC ICH
7682 -- ^^^^^^^ ^^ ^^^ ^^^
7683 -- D1 in R empty itself no
7684 -- D2 in R empty itself no
7685 -- D3 in R empty itself no
7687 -- D1 in T1 D1 in R D1 in R no
7688 -- D2 in T1 D2 in R D2 in R no
7689 -- D3 in T1 D3 in R D3 in R no
7691 -- X1 in T2 D3 in T1 D3 in R no
7692 -- X2 in T2 D1 in T1 D1 in R no
7694 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7696 -- Regardless of whether we dealing with a tagged or untagged type
7697 -- we will transform all derived type declarations of the form
7699 -- type T is new R (...) [with ...];
7700 -- or
7701 -- subtype S is R (...);
7702 -- type T is new S [with ...];
7703 -- into
7704 -- type BT is new R [with ...];
7705 -- subtype T is BT (...);
7707 -- That is, the base derived type is constrained only if it has no
7708 -- discriminants. The reason for doing this is that GNAT's semantic model
7709 -- assumes that a base type with discriminants is unconstrained.
7711 -- Note that, strictly speaking, the above transformation is not always
7712 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7714 -- procedure B34011A is
7715 -- type REC (D : integer := 0) is record
7716 -- I : Integer;
7717 -- end record;
7719 -- package P is
7720 -- type T6 is new Rec;
7721 -- function F return T6;
7722 -- end P;
7724 -- use P;
7725 -- package Q6 is
7726 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7727 -- end Q6;
7729 -- The definition of Q6.U is illegal. However transforming Q6.U into
7731 -- type BaseU is new T6;
7732 -- subtype U is BaseU (Q6.F.I)
7734 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7735 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7736 -- the transformation described above.
7738 -- There is another instance where the above transformation is incorrect.
7739 -- Consider:
7741 -- package Pack is
7742 -- type Base (D : Integer) is tagged null record;
7743 -- procedure P (X : Base);
7745 -- type Der is new Base (2) with null record;
7746 -- procedure P (X : Der);
7747 -- end Pack;
7749 -- Then the above transformation turns this into
7751 -- type Der_Base is new Base with null record;
7752 -- -- procedure P (X : Base) is implicitly inherited here
7753 -- -- as procedure P (X : Der_Base).
7755 -- subtype Der is Der_Base (2);
7756 -- procedure P (X : Der);
7757 -- -- The overriding of P (X : Der_Base) is illegal since we
7758 -- -- have a parameter conformance problem.
7760 -- To get around this problem, after having semantically processed Der_Base
7761 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7762 -- Discriminant_Constraint from Der so that when parameter conformance is
7763 -- checked when P is overridden, no semantic errors are flagged.
7765 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7767 -- Regardless of whether we are dealing with a tagged or untagged type
7768 -- we will transform all derived type declarations of the form
7770 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7771 -- type T is new R [with ...];
7772 -- into
7773 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7775 -- The reason for such transformation is that it allows us to implement a
7776 -- very clean form of component inheritance as explained below.
7778 -- Note that this transformation is not achieved by direct tree rewriting
7779 -- and manipulation, but rather by redoing the semantic actions that the
7780 -- above transformation will entail. This is done directly in routine
7781 -- Inherit_Components.
7783 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7785 -- In both tagged and untagged derived types, regular non discriminant
7786 -- components are inherited in the derived type from the parent type. In
7787 -- the absence of discriminants component, inheritance is straightforward
7788 -- as components can simply be copied from the parent.
7790 -- If the parent has discriminants, inheriting components constrained with
7791 -- these discriminants requires caution. Consider the following example:
7793 -- type R (D1, D2 : Positive) is [tagged] record
7794 -- S : String (D1 .. D2);
7795 -- end record;
7797 -- type T1 is new R [with null record];
7798 -- type T2 (X : positive) is new R (1, X) [with null record];
7800 -- As explained in 6. above, T1 is rewritten as
7801 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7802 -- which makes the treatment for T1 and T2 identical.
7804 -- What we want when inheriting S, is that references to D1 and D2 in R are
7805 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7806 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7807 -- with either discriminant references in the derived type or expressions.
7808 -- This replacement is achieved as follows: before inheriting R's
7809 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7810 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7811 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7812 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7813 -- by String (1 .. X).
7815 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7817 -- We explain here the rules governing private type extensions relevant to
7818 -- type derivation. These rules are explained on the following example:
7820 -- type D [(...)] is new A [(...)] with private; <-- partial view
7821 -- type D [(...)] is new P [(...)] with null record; <-- full view
7823 -- Type A is called the ancestor subtype of the private extension.
7824 -- Type P is the parent type of the full view of the private extension. It
7825 -- must be A or a type derived from A.
7827 -- The rules concerning the discriminants of private type extensions are
7828 -- [7.3(10-13)]:
7830 -- o If a private extension inherits known discriminants from the ancestor
7831 -- subtype, then the full view must also inherit its discriminants from
7832 -- the ancestor subtype and the parent subtype of the full view must be
7833 -- constrained if and only if the ancestor subtype is constrained.
7835 -- o If a partial view has unknown discriminants, then the full view may
7836 -- define a definite or an indefinite subtype, with or without
7837 -- discriminants.
7839 -- o If a partial view has neither known nor unknown discriminants, then
7840 -- the full view must define a definite subtype.
7842 -- o If the ancestor subtype of a private extension has constrained
7843 -- discriminants, then the parent subtype of the full view must impose a
7844 -- statically matching constraint on those discriminants.
7846 -- This means that only the following forms of private extensions are
7847 -- allowed:
7849 -- type D is new A with private; <-- partial view
7850 -- type D is new P with null record; <-- full view
7852 -- If A has no discriminants than P has no discriminants, otherwise P must
7853 -- inherit A's discriminants.
7855 -- type D is new A (...) with private; <-- partial view
7856 -- type D is new P (:::) with null record; <-- full view
7858 -- P must inherit A's discriminants and (...) and (:::) must statically
7859 -- match.
7861 -- subtype A is R (...);
7862 -- type D is new A with private; <-- partial view
7863 -- type D is new P with null record; <-- full view
7865 -- P must have inherited R's discriminants and must be derived from A or
7866 -- any of its subtypes.
7868 -- type D (..) is new A with private; <-- partial view
7869 -- type D (..) is new P [(:::)] with null record; <-- full view
7871 -- No specific constraints on P's discriminants or constraint (:::).
7872 -- Note that A can be unconstrained, but the parent subtype P must either
7873 -- be constrained or (:::) must be present.
7875 -- type D (..) is new A [(...)] with private; <-- partial view
7876 -- type D (..) is new P [(:::)] with null record; <-- full view
7878 -- P's constraints on A's discriminants must statically match those
7879 -- imposed by (...).
7881 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7883 -- The full view of a private extension is handled exactly as described
7884 -- above. The model chose for the private view of a private extension is
7885 -- the same for what concerns discriminants (i.e. they receive the same
7886 -- treatment as in the tagged case). However, the private view of the
7887 -- private extension always inherits the components of the parent base,
7888 -- without replacing any discriminant reference. Strictly speaking this is
7889 -- incorrect. However, Gigi never uses this view to generate code so this
7890 -- is a purely semantic issue. In theory, a set of transformations similar
7891 -- to those given in 5. and 6. above could be applied to private views of
7892 -- private extensions to have the same model of component inheritance as
7893 -- for non private extensions. However, this is not done because it would
7894 -- further complicate private type processing. Semantically speaking, this
7895 -- leaves us in an uncomfortable situation. As an example consider:
7897 -- package Pack is
7898 -- type R (D : integer) is tagged record
7899 -- S : String (1 .. D);
7900 -- end record;
7901 -- procedure P (X : R);
7902 -- type T is new R (1) with private;
7903 -- private
7904 -- type T is new R (1) with null record;
7905 -- end;
7907 -- This is transformed into:
7909 -- package Pack is
7910 -- type R (D : integer) is tagged record
7911 -- S : String (1 .. D);
7912 -- end record;
7913 -- procedure P (X : R);
7914 -- type T is new R (1) with private;
7915 -- private
7916 -- type BaseT is new R with null record;
7917 -- subtype T is BaseT (1);
7918 -- end;
7920 -- (strictly speaking the above is incorrect Ada)
7922 -- From the semantic standpoint the private view of private extension T
7923 -- should be flagged as constrained since one can clearly have
7925 -- Obj : T;
7927 -- in a unit withing Pack. However, when deriving subprograms for the
7928 -- private view of private extension T, T must be seen as unconstrained
7929 -- since T has discriminants (this is a constraint of the current
7930 -- subprogram derivation model). Thus, when processing the private view of
7931 -- a private extension such as T, we first mark T as unconstrained, we
7932 -- process it, we perform program derivation and just before returning from
7933 -- Build_Derived_Record_Type we mark T as constrained.
7935 -- ??? Are there are other uncomfortable cases that we will have to
7936 -- deal with.
7938 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7940 -- Types that are derived from a visible record type and have a private
7941 -- extension present other peculiarities. They behave mostly like private
7942 -- types, but if they have primitive operations defined, these will not
7943 -- have the proper signatures for further inheritance, because other
7944 -- primitive operations will use the implicit base that we define for
7945 -- private derivations below. This affect subprogram inheritance (see
7946 -- Derive_Subprograms for details). We also derive the implicit base from
7947 -- the base type of the full view, so that the implicit base is a record
7948 -- type and not another private type, This avoids infinite loops.
7950 procedure Build_Derived_Record_Type
7951 (N : Node_Id;
7952 Parent_Type : Entity_Id;
7953 Derived_Type : Entity_Id;
7954 Derive_Subps : Boolean := True)
7956 Discriminant_Specs : constant Boolean :=
7957 Present (Discriminant_Specifications (N));
7958 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7959 Loc : constant Source_Ptr := Sloc (N);
7960 Private_Extension : constant Boolean :=
7961 Nkind (N) = N_Private_Extension_Declaration;
7962 Assoc_List : Elist_Id;
7963 Constraint_Present : Boolean;
7964 Constrs : Elist_Id;
7965 Discrim : Entity_Id;
7966 Indic : Node_Id;
7967 Inherit_Discrims : Boolean := False;
7968 Last_Discrim : Entity_Id;
7969 New_Base : Entity_Id;
7970 New_Decl : Node_Id;
7971 New_Discrs : Elist_Id;
7972 New_Indic : Node_Id;
7973 Parent_Base : Entity_Id;
7974 Save_Etype : Entity_Id;
7975 Save_Discr_Constr : Elist_Id;
7976 Save_Next_Entity : Entity_Id;
7977 Type_Def : Node_Id;
7979 Discs : Elist_Id := New_Elmt_List;
7980 -- An empty Discs list means that there were no constraints in the
7981 -- subtype indication or that there was an error processing it.
7983 begin
7984 if Ekind (Parent_Type) = E_Record_Type_With_Private
7985 and then Present (Full_View (Parent_Type))
7986 and then Has_Discriminants (Parent_Type)
7987 then
7988 Parent_Base := Base_Type (Full_View (Parent_Type));
7989 else
7990 Parent_Base := Base_Type (Parent_Type);
7991 end if;
7993 -- AI05-0115 : if this is a derivation from a private type in some
7994 -- other scope that may lead to invisible components for the derived
7995 -- type, mark it accordingly.
7997 if Is_Private_Type (Parent_Type) then
7998 if Scope (Parent_Type) = Scope (Derived_Type) then
7999 null;
8001 elsif In_Open_Scopes (Scope (Parent_Type))
8002 and then In_Private_Part (Scope (Parent_Type))
8003 then
8004 null;
8006 else
8007 Set_Has_Private_Ancestor (Derived_Type);
8008 end if;
8010 else
8011 Set_Has_Private_Ancestor
8012 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8013 end if;
8015 -- Before we start the previously documented transformations, here is
8016 -- little fix for size and alignment of tagged types. Normally when we
8017 -- derive type D from type P, we copy the size and alignment of P as the
8018 -- default for D, and in the absence of explicit representation clauses
8019 -- for D, the size and alignment are indeed the same as the parent.
8021 -- But this is wrong for tagged types, since fields may be added, and
8022 -- the default size may need to be larger, and the default alignment may
8023 -- need to be larger.
8025 -- We therefore reset the size and alignment fields in the tagged case.
8026 -- Note that the size and alignment will in any case be at least as
8027 -- large as the parent type (since the derived type has a copy of the
8028 -- parent type in the _parent field)
8030 -- The type is also marked as being tagged here, which is needed when
8031 -- processing components with a self-referential anonymous access type
8032 -- in the call to Check_Anonymous_Access_Components below. Note that
8033 -- this flag is also set later on for completeness.
8035 if Is_Tagged then
8036 Set_Is_Tagged_Type (Derived_Type);
8037 Init_Size_Align (Derived_Type);
8038 end if;
8040 -- STEP 0a: figure out what kind of derived type declaration we have
8042 if Private_Extension then
8043 Type_Def := N;
8044 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8045 Set_Default_SSO (Derived_Type);
8047 else
8048 Type_Def := Type_Definition (N);
8050 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8051 -- Parent_Base can be a private type or private extension. However,
8052 -- for tagged types with an extension the newly added fields are
8053 -- visible and hence the Derived_Type is always an E_Record_Type.
8054 -- (except that the parent may have its own private fields).
8055 -- For untagged types we preserve the Ekind of the Parent_Base.
8057 if Present (Record_Extension_Part (Type_Def)) then
8058 Set_Ekind (Derived_Type, E_Record_Type);
8059 Set_Default_SSO (Derived_Type);
8061 -- Create internal access types for components with anonymous
8062 -- access types.
8064 if Ada_Version >= Ada_2005 then
8065 Check_Anonymous_Access_Components
8066 (N, Derived_Type, Derived_Type,
8067 Component_List (Record_Extension_Part (Type_Def)));
8068 end if;
8070 else
8071 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8072 end if;
8073 end if;
8075 -- Indic can either be an N_Identifier if the subtype indication
8076 -- contains no constraint or an N_Subtype_Indication if the subtype
8077 -- indication has a constraint.
8079 Indic := Subtype_Indication (Type_Def);
8080 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8082 -- Check that the type has visible discriminants. The type may be
8083 -- a private type with unknown discriminants whose full view has
8084 -- discriminants which are invisible.
8086 if Constraint_Present then
8087 if not Has_Discriminants (Parent_Base)
8088 or else
8089 (Has_Unknown_Discriminants (Parent_Base)
8090 and then Is_Private_Type (Parent_Base))
8091 then
8092 Error_Msg_N
8093 ("invalid constraint: type has no discriminant",
8094 Constraint (Indic));
8096 Constraint_Present := False;
8097 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8099 elsif Is_Constrained (Parent_Type) then
8100 Error_Msg_N
8101 ("invalid constraint: parent type is already constrained",
8102 Constraint (Indic));
8104 Constraint_Present := False;
8105 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8106 end if;
8107 end if;
8109 -- STEP 0b: If needed, apply transformation given in point 5. above
8111 if not Private_Extension
8112 and then Has_Discriminants (Parent_Type)
8113 and then not Discriminant_Specs
8114 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8115 then
8116 -- First, we must analyze the constraint (see comment in point 5.)
8117 -- The constraint may come from the subtype indication of the full
8118 -- declaration.
8120 if Constraint_Present then
8121 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8123 -- If there is no explicit constraint, there might be one that is
8124 -- inherited from a constrained parent type. In that case verify that
8125 -- it conforms to the constraint in the partial view. In perverse
8126 -- cases the parent subtypes of the partial and full view can have
8127 -- different constraints.
8129 elsif Present (Stored_Constraint (Parent_Type)) then
8130 New_Discrs := Stored_Constraint (Parent_Type);
8132 else
8133 New_Discrs := No_Elist;
8134 end if;
8136 if Has_Discriminants (Derived_Type)
8137 and then Has_Private_Declaration (Derived_Type)
8138 and then Present (Discriminant_Constraint (Derived_Type))
8139 and then Present (New_Discrs)
8140 then
8141 -- Verify that constraints of the full view statically match
8142 -- those given in the partial view.
8144 declare
8145 C1, C2 : Elmt_Id;
8147 begin
8148 C1 := First_Elmt (New_Discrs);
8149 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8150 while Present (C1) and then Present (C2) loop
8151 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8152 or else
8153 (Is_OK_Static_Expression (Node (C1))
8154 and then Is_OK_Static_Expression (Node (C2))
8155 and then
8156 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8157 then
8158 null;
8160 else
8161 if Constraint_Present then
8162 Error_Msg_N
8163 ("constraint not conformant to previous declaration",
8164 Node (C1));
8165 else
8166 Error_Msg_N
8167 ("constraint of full view is incompatible "
8168 & "with partial view", N);
8169 end if;
8170 end if;
8172 Next_Elmt (C1);
8173 Next_Elmt (C2);
8174 end loop;
8175 end;
8176 end if;
8178 -- Insert and analyze the declaration for the unconstrained base type
8180 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8182 New_Decl :=
8183 Make_Full_Type_Declaration (Loc,
8184 Defining_Identifier => New_Base,
8185 Type_Definition =>
8186 Make_Derived_Type_Definition (Loc,
8187 Abstract_Present => Abstract_Present (Type_Def),
8188 Limited_Present => Limited_Present (Type_Def),
8189 Subtype_Indication =>
8190 New_Occurrence_Of (Parent_Base, Loc),
8191 Record_Extension_Part =>
8192 Relocate_Node (Record_Extension_Part (Type_Def)),
8193 Interface_List => Interface_List (Type_Def)));
8195 Set_Parent (New_Decl, Parent (N));
8196 Mark_Rewrite_Insertion (New_Decl);
8197 Insert_Before (N, New_Decl);
8199 -- In the extension case, make sure ancestor is frozen appropriately
8200 -- (see also non-discriminated case below).
8202 if Present (Record_Extension_Part (Type_Def))
8203 or else Is_Interface (Parent_Base)
8204 then
8205 Freeze_Before (New_Decl, Parent_Type);
8206 end if;
8208 -- Note that this call passes False for the Derive_Subps parameter
8209 -- because subprogram derivation is deferred until after creating
8210 -- the subtype (see below).
8212 Build_Derived_Type
8213 (New_Decl, Parent_Base, New_Base,
8214 Is_Completion => False, Derive_Subps => False);
8216 -- ??? This needs re-examination to determine whether the
8217 -- above call can simply be replaced by a call to Analyze.
8219 Set_Analyzed (New_Decl);
8221 -- Insert and analyze the declaration for the constrained subtype
8223 if Constraint_Present then
8224 New_Indic :=
8225 Make_Subtype_Indication (Loc,
8226 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8227 Constraint => Relocate_Node (Constraint (Indic)));
8229 else
8230 declare
8231 Constr_List : constant List_Id := New_List;
8232 C : Elmt_Id;
8233 Expr : Node_Id;
8235 begin
8236 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8237 while Present (C) loop
8238 Expr := Node (C);
8240 -- It is safe here to call New_Copy_Tree since we called
8241 -- Force_Evaluation on each constraint previously
8242 -- in Build_Discriminant_Constraints.
8244 Append (New_Copy_Tree (Expr), To => Constr_List);
8246 Next_Elmt (C);
8247 end loop;
8249 New_Indic :=
8250 Make_Subtype_Indication (Loc,
8251 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8252 Constraint =>
8253 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8254 end;
8255 end if;
8257 Rewrite (N,
8258 Make_Subtype_Declaration (Loc,
8259 Defining_Identifier => Derived_Type,
8260 Subtype_Indication => New_Indic));
8262 Analyze (N);
8264 -- Derivation of subprograms must be delayed until the full subtype
8265 -- has been established, to ensure proper overriding of subprograms
8266 -- inherited by full types. If the derivations occurred as part of
8267 -- the call to Build_Derived_Type above, then the check for type
8268 -- conformance would fail because earlier primitive subprograms
8269 -- could still refer to the full type prior the change to the new
8270 -- subtype and hence would not match the new base type created here.
8271 -- Subprograms are not derived, however, when Derive_Subps is False
8272 -- (since otherwise there could be redundant derivations).
8274 if Derive_Subps then
8275 Derive_Subprograms (Parent_Type, Derived_Type);
8276 end if;
8278 -- For tagged types the Discriminant_Constraint of the new base itype
8279 -- is inherited from the first subtype so that no subtype conformance
8280 -- problem arise when the first subtype overrides primitive
8281 -- operations inherited by the implicit base type.
8283 if Is_Tagged then
8284 Set_Discriminant_Constraint
8285 (New_Base, Discriminant_Constraint (Derived_Type));
8286 end if;
8288 return;
8289 end if;
8291 -- If we get here Derived_Type will have no discriminants or it will be
8292 -- a discriminated unconstrained base type.
8294 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8296 if Is_Tagged then
8298 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8299 -- The declaration of a specific descendant of an interface type
8300 -- freezes the interface type (RM 13.14).
8302 if not Private_Extension or else Is_Interface (Parent_Base) then
8303 Freeze_Before (N, Parent_Type);
8304 end if;
8306 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8307 -- cannot be declared at a deeper level than its parent type is
8308 -- removed. The check on derivation within a generic body is also
8309 -- relaxed, but there's a restriction that a derived tagged type
8310 -- cannot be declared in a generic body if it's derived directly
8311 -- or indirectly from a formal type of that generic.
8313 if Ada_Version >= Ada_2005 then
8314 if Present (Enclosing_Generic_Body (Derived_Type)) then
8315 declare
8316 Ancestor_Type : Entity_Id;
8318 begin
8319 -- Check to see if any ancestor of the derived type is a
8320 -- formal type.
8322 Ancestor_Type := Parent_Type;
8323 while not Is_Generic_Type (Ancestor_Type)
8324 and then Etype (Ancestor_Type) /= Ancestor_Type
8325 loop
8326 Ancestor_Type := Etype (Ancestor_Type);
8327 end loop;
8329 -- If the derived type does have a formal type as an
8330 -- ancestor, then it's an error if the derived type is
8331 -- declared within the body of the generic unit that
8332 -- declares the formal type in its generic formal part. It's
8333 -- sufficient to check whether the ancestor type is declared
8334 -- inside the same generic body as the derived type (such as
8335 -- within a nested generic spec), in which case the
8336 -- derivation is legal. If the formal type is declared
8337 -- outside of that generic body, then it's guaranteed that
8338 -- the derived type is declared within the generic body of
8339 -- the generic unit declaring the formal type.
8341 if Is_Generic_Type (Ancestor_Type)
8342 and then Enclosing_Generic_Body (Ancestor_Type) /=
8343 Enclosing_Generic_Body (Derived_Type)
8344 then
8345 Error_Msg_NE
8346 ("parent type of& must not be descendant of formal type"
8347 & " of an enclosing generic body",
8348 Indic, Derived_Type);
8349 end if;
8350 end;
8351 end if;
8353 elsif Type_Access_Level (Derived_Type) /=
8354 Type_Access_Level (Parent_Type)
8355 and then not Is_Generic_Type (Derived_Type)
8356 then
8357 if Is_Controlled (Parent_Type) then
8358 Error_Msg_N
8359 ("controlled type must be declared at the library level",
8360 Indic);
8361 else
8362 Error_Msg_N
8363 ("type extension at deeper accessibility level than parent",
8364 Indic);
8365 end if;
8367 else
8368 declare
8369 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8370 begin
8371 if Present (GB)
8372 and then GB /= Enclosing_Generic_Body (Parent_Base)
8373 then
8374 Error_Msg_NE
8375 ("parent type of& must not be outside generic body"
8376 & " (RM 3.9.1(4))",
8377 Indic, Derived_Type);
8378 end if;
8379 end;
8380 end if;
8381 end if;
8383 -- Ada 2005 (AI-251)
8385 if Ada_Version >= Ada_2005 and then Is_Tagged then
8387 -- "The declaration of a specific descendant of an interface type
8388 -- freezes the interface type" (RM 13.14).
8390 declare
8391 Iface : Node_Id;
8392 begin
8393 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8394 Iface := First (Interface_List (Type_Def));
8395 while Present (Iface) loop
8396 Freeze_Before (N, Etype (Iface));
8397 Next (Iface);
8398 end loop;
8399 end if;
8400 end;
8401 end if;
8403 -- STEP 1b : preliminary cleanup of the full view of private types
8405 -- If the type is already marked as having discriminants, then it's the
8406 -- completion of a private type or private extension and we need to
8407 -- retain the discriminants from the partial view if the current
8408 -- declaration has Discriminant_Specifications so that we can verify
8409 -- conformance. However, we must remove any existing components that
8410 -- were inherited from the parent (and attached in Copy_And_Swap)
8411 -- because the full type inherits all appropriate components anyway, and
8412 -- we do not want the partial view's components interfering.
8414 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8415 Discrim := First_Discriminant (Derived_Type);
8416 loop
8417 Last_Discrim := Discrim;
8418 Next_Discriminant (Discrim);
8419 exit when No (Discrim);
8420 end loop;
8422 Set_Last_Entity (Derived_Type, Last_Discrim);
8424 -- In all other cases wipe out the list of inherited components (even
8425 -- inherited discriminants), it will be properly rebuilt here.
8427 else
8428 Set_First_Entity (Derived_Type, Empty);
8429 Set_Last_Entity (Derived_Type, Empty);
8430 end if;
8432 -- STEP 1c: Initialize some flags for the Derived_Type
8434 -- The following flags must be initialized here so that
8435 -- Process_Discriminants can check that discriminants of tagged types do
8436 -- not have a default initial value and that access discriminants are
8437 -- only specified for limited records. For completeness, these flags are
8438 -- also initialized along with all the other flags below.
8440 -- AI-419: Limitedness is not inherited from an interface parent, so to
8441 -- be limited in that case the type must be explicitly declared as
8442 -- limited. However, task and protected interfaces are always limited.
8444 if Limited_Present (Type_Def) then
8445 Set_Is_Limited_Record (Derived_Type);
8447 elsif Is_Limited_Record (Parent_Type)
8448 or else (Present (Full_View (Parent_Type))
8449 and then Is_Limited_Record (Full_View (Parent_Type)))
8450 then
8451 if not Is_Interface (Parent_Type)
8452 or else Is_Synchronized_Interface (Parent_Type)
8453 or else Is_Protected_Interface (Parent_Type)
8454 or else Is_Task_Interface (Parent_Type)
8455 then
8456 Set_Is_Limited_Record (Derived_Type);
8457 end if;
8458 end if;
8460 -- STEP 2a: process discriminants of derived type if any
8462 Push_Scope (Derived_Type);
8464 if Discriminant_Specs then
8465 Set_Has_Unknown_Discriminants (Derived_Type, False);
8467 -- The following call initializes fields Has_Discriminants and
8468 -- Discriminant_Constraint, unless we are processing the completion
8469 -- of a private type declaration.
8471 Check_Or_Process_Discriminants (N, Derived_Type);
8473 -- For untagged types, the constraint on the Parent_Type must be
8474 -- present and is used to rename the discriminants.
8476 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8477 Error_Msg_N ("untagged parent must have discriminants", Indic);
8479 elsif not Is_Tagged and then not Constraint_Present then
8480 Error_Msg_N
8481 ("discriminant constraint needed for derived untagged records",
8482 Indic);
8484 -- Otherwise the parent subtype must be constrained unless we have a
8485 -- private extension.
8487 elsif not Constraint_Present
8488 and then not Private_Extension
8489 and then not Is_Constrained (Parent_Type)
8490 then
8491 Error_Msg_N
8492 ("unconstrained type not allowed in this context", Indic);
8494 elsif Constraint_Present then
8495 -- The following call sets the field Corresponding_Discriminant
8496 -- for the discriminants in the Derived_Type.
8498 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8500 -- For untagged types all new discriminants must rename
8501 -- discriminants in the parent. For private extensions new
8502 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8504 Discrim := First_Discriminant (Derived_Type);
8505 while Present (Discrim) loop
8506 if not Is_Tagged
8507 and then No (Corresponding_Discriminant (Discrim))
8508 then
8509 Error_Msg_N
8510 ("new discriminants must constrain old ones", Discrim);
8512 elsif Private_Extension
8513 and then Present (Corresponding_Discriminant (Discrim))
8514 then
8515 Error_Msg_N
8516 ("only static constraints allowed for parent"
8517 & " discriminants in the partial view", Indic);
8518 exit;
8519 end if;
8521 -- If a new discriminant is used in the constraint, then its
8522 -- subtype must be statically compatible with the parent
8523 -- discriminant's subtype (3.7(15)).
8525 -- However, if the record contains an array constrained by
8526 -- the discriminant but with some different bound, the compiler
8527 -- attemps to create a smaller range for the discriminant type.
8528 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8529 -- the discriminant type is a scalar type, the check must use
8530 -- the original discriminant type in the parent declaration.
8532 declare
8533 Corr_Disc : constant Entity_Id :=
8534 Corresponding_Discriminant (Discrim);
8535 Disc_Type : constant Entity_Id := Etype (Discrim);
8536 Corr_Type : Entity_Id;
8538 begin
8539 if Present (Corr_Disc) then
8540 if Is_Scalar_Type (Disc_Type) then
8541 Corr_Type :=
8542 Entity (Discriminant_Type (Parent (Corr_Disc)));
8543 else
8544 Corr_Type := Etype (Corr_Disc);
8545 end if;
8547 if not
8548 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8549 then
8550 Error_Msg_N
8551 ("subtype must be compatible "
8552 & "with parent discriminant",
8553 Discrim);
8554 end if;
8555 end if;
8556 end;
8558 Next_Discriminant (Discrim);
8559 end loop;
8561 -- Check whether the constraints of the full view statically
8562 -- match those imposed by the parent subtype [7.3(13)].
8564 if Present (Stored_Constraint (Derived_Type)) then
8565 declare
8566 C1, C2 : Elmt_Id;
8568 begin
8569 C1 := First_Elmt (Discs);
8570 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8571 while Present (C1) and then Present (C2) loop
8572 if not
8573 Fully_Conformant_Expressions (Node (C1), Node (C2))
8574 then
8575 Error_Msg_N
8576 ("not conformant with previous declaration",
8577 Node (C1));
8578 end if;
8580 Next_Elmt (C1);
8581 Next_Elmt (C2);
8582 end loop;
8583 end;
8584 end if;
8585 end if;
8587 -- STEP 2b: No new discriminants, inherit discriminants if any
8589 else
8590 if Private_Extension then
8591 Set_Has_Unknown_Discriminants
8592 (Derived_Type,
8593 Has_Unknown_Discriminants (Parent_Type)
8594 or else Unknown_Discriminants_Present (N));
8596 -- The partial view of the parent may have unknown discriminants,
8597 -- but if the full view has discriminants and the parent type is
8598 -- in scope they must be inherited.
8600 elsif Has_Unknown_Discriminants (Parent_Type)
8601 and then
8602 (not Has_Discriminants (Parent_Type)
8603 or else not In_Open_Scopes (Scope (Parent_Type)))
8604 then
8605 Set_Has_Unknown_Discriminants (Derived_Type);
8606 end if;
8608 if not Has_Unknown_Discriminants (Derived_Type)
8609 and then not Has_Unknown_Discriminants (Parent_Base)
8610 and then Has_Discriminants (Parent_Type)
8611 then
8612 Inherit_Discrims := True;
8613 Set_Has_Discriminants
8614 (Derived_Type, True);
8615 Set_Discriminant_Constraint
8616 (Derived_Type, Discriminant_Constraint (Parent_Base));
8617 end if;
8619 -- The following test is true for private types (remember
8620 -- transformation 5. is not applied to those) and in an error
8621 -- situation.
8623 if Constraint_Present then
8624 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8625 end if;
8627 -- For now mark a new derived type as constrained only if it has no
8628 -- discriminants. At the end of Build_Derived_Record_Type we properly
8629 -- set this flag in the case of private extensions. See comments in
8630 -- point 9. just before body of Build_Derived_Record_Type.
8632 Set_Is_Constrained
8633 (Derived_Type,
8634 not (Inherit_Discrims
8635 or else Has_Unknown_Discriminants (Derived_Type)));
8636 end if;
8638 -- STEP 3: initialize fields of derived type
8640 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8641 Set_Stored_Constraint (Derived_Type, No_Elist);
8643 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8644 -- but cannot be interfaces
8646 if not Private_Extension
8647 and then Ekind (Derived_Type) /= E_Private_Type
8648 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8649 then
8650 if Interface_Present (Type_Def) then
8651 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8652 end if;
8654 Set_Interfaces (Derived_Type, No_Elist);
8655 end if;
8657 -- Fields inherited from the Parent_Type
8659 Set_Has_Specified_Layout
8660 (Derived_Type, Has_Specified_Layout (Parent_Type));
8661 Set_Is_Limited_Composite
8662 (Derived_Type, Is_Limited_Composite (Parent_Type));
8663 Set_Is_Private_Composite
8664 (Derived_Type, Is_Private_Composite (Parent_Type));
8666 if Is_Tagged_Type (Parent_Type) then
8667 Set_No_Tagged_Streams_Pragma
8668 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8669 end if;
8671 -- Fields inherited from the Parent_Base
8673 Set_Has_Controlled_Component
8674 (Derived_Type, Has_Controlled_Component (Parent_Base));
8675 Set_Has_Non_Standard_Rep
8676 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8677 Set_Has_Primitive_Operations
8678 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8680 -- Fields inherited from the Parent_Base in the non-private case
8682 if Ekind (Derived_Type) = E_Record_Type then
8683 Set_Has_Complex_Representation
8684 (Derived_Type, Has_Complex_Representation (Parent_Base));
8685 end if;
8687 -- Fields inherited from the Parent_Base for record types
8689 if Is_Record_Type (Derived_Type) then
8690 declare
8691 Parent_Full : Entity_Id;
8693 begin
8694 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8695 -- Parent_Base can be a private type or private extension. Go
8696 -- to the full view here to get the E_Record_Type specific flags.
8698 if Present (Full_View (Parent_Base)) then
8699 Parent_Full := Full_View (Parent_Base);
8700 else
8701 Parent_Full := Parent_Base;
8702 end if;
8704 Set_OK_To_Reorder_Components
8705 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8706 end;
8707 end if;
8709 -- Set fields for private derived types
8711 if Is_Private_Type (Derived_Type) then
8712 Set_Depends_On_Private (Derived_Type, True);
8713 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8715 -- Inherit fields from non private record types. If this is the
8716 -- completion of a derivation from a private type, the parent itself
8717 -- is private, and the attributes come from its full view, which must
8718 -- be present.
8720 else
8721 if Is_Private_Type (Parent_Base)
8722 and then not Is_Record_Type (Parent_Base)
8723 then
8724 Set_Component_Alignment
8725 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8726 Set_C_Pass_By_Copy
8727 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8728 else
8729 Set_Component_Alignment
8730 (Derived_Type, Component_Alignment (Parent_Base));
8731 Set_C_Pass_By_Copy
8732 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8733 end if;
8734 end if;
8736 -- Set fields for tagged types
8738 if Is_Tagged then
8739 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8741 -- All tagged types defined in Ada.Finalization are controlled
8743 if Chars (Scope (Derived_Type)) = Name_Finalization
8744 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8745 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8746 then
8747 Set_Is_Controlled (Derived_Type);
8748 else
8749 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8750 end if;
8752 -- Minor optimization: there is no need to generate the class-wide
8753 -- entity associated with an underlying record view.
8755 if not Is_Underlying_Record_View (Derived_Type) then
8756 Make_Class_Wide_Type (Derived_Type);
8757 end if;
8759 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8761 if Has_Discriminants (Derived_Type)
8762 and then Constraint_Present
8763 then
8764 Set_Stored_Constraint
8765 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8766 end if;
8768 if Ada_Version >= Ada_2005 then
8769 declare
8770 Ifaces_List : Elist_Id;
8772 begin
8773 -- Checks rules 3.9.4 (13/2 and 14/2)
8775 if Comes_From_Source (Derived_Type)
8776 and then not Is_Private_Type (Derived_Type)
8777 and then Is_Interface (Parent_Type)
8778 and then not Is_Interface (Derived_Type)
8779 then
8780 if Is_Task_Interface (Parent_Type) then
8781 Error_Msg_N
8782 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8783 Derived_Type);
8785 elsif Is_Protected_Interface (Parent_Type) then
8786 Error_Msg_N
8787 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8788 Derived_Type);
8789 end if;
8790 end if;
8792 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8794 Check_Interfaces (N, Type_Def);
8796 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8797 -- not already in the parents.
8799 Collect_Interfaces
8800 (T => Derived_Type,
8801 Ifaces_List => Ifaces_List,
8802 Exclude_Parents => True);
8804 Set_Interfaces (Derived_Type, Ifaces_List);
8806 -- If the derived type is the anonymous type created for
8807 -- a declaration whose parent has a constraint, propagate
8808 -- the interface list to the source type. This must be done
8809 -- prior to the completion of the analysis of the source type
8810 -- because the components in the extension may contain current
8811 -- instances whose legality depends on some ancestor.
8813 if Is_Itype (Derived_Type) then
8814 declare
8815 Def : constant Node_Id :=
8816 Associated_Node_For_Itype (Derived_Type);
8817 begin
8818 if Present (Def)
8819 and then Nkind (Def) = N_Full_Type_Declaration
8820 then
8821 Set_Interfaces
8822 (Defining_Identifier (Def), Ifaces_List);
8823 end if;
8824 end;
8825 end if;
8827 -- A derived type inherits any class-wide invariants coming
8828 -- from a parent type or an interface. Note that the invariant
8829 -- procedure of the parent type should not be inherited because
8830 -- the derived type may define invariants of its own.
8832 if Ada_Version >= Ada_2012
8833 and then not Is_Interface (Derived_Type)
8834 then
8835 if Has_Inherited_Invariants (Parent_Type)
8836 or else Has_Inheritable_Invariants (Parent_Type)
8837 then
8838 Set_Has_Inherited_Invariants (Derived_Type);
8840 elsif not Is_Empty_Elmt_List (Ifaces_List) then
8841 declare
8842 Iface : Entity_Id;
8843 Iface_Elmt : Elmt_Id;
8845 begin
8846 Iface_Elmt := First_Elmt (Ifaces_List);
8847 while Present (Iface_Elmt) loop
8848 Iface := Node (Iface_Elmt);
8850 if Has_Inheritable_Invariants (Iface) then
8851 Set_Has_Inherited_Invariants (Derived_Type);
8852 exit;
8853 end if;
8855 Next_Elmt (Iface_Elmt);
8856 end loop;
8857 end;
8858 end if;
8859 end if;
8861 -- A type extension is automatically Ghost when one of its
8862 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8863 -- also inherited when the parent type is Ghost, but this is
8864 -- done in Build_Derived_Type as the mechanism also handles
8865 -- untagged derivations.
8867 if Implements_Ghost_Interface (Derived_Type) then
8868 Set_Is_Ghost_Entity (Derived_Type);
8869 end if;
8870 end;
8871 end if;
8873 else
8874 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8875 Set_Has_Non_Standard_Rep
8876 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8877 end if;
8879 -- STEP 4: Inherit components from the parent base and constrain them.
8880 -- Apply the second transformation described in point 6. above.
8882 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8883 or else not Has_Discriminants (Parent_Type)
8884 or else not Is_Constrained (Parent_Type)
8885 then
8886 Constrs := Discs;
8887 else
8888 Constrs := Discriminant_Constraint (Parent_Type);
8889 end if;
8891 Assoc_List :=
8892 Inherit_Components
8893 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8895 -- STEP 5a: Copy the parent record declaration for untagged types
8897 if not Is_Tagged then
8899 -- Discriminant_Constraint (Derived_Type) has been properly
8900 -- constructed. Save it and temporarily set it to Empty because we
8901 -- do not want the call to New_Copy_Tree below to mess this list.
8903 if Has_Discriminants (Derived_Type) then
8904 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8905 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8906 else
8907 Save_Discr_Constr := No_Elist;
8908 end if;
8910 -- Save the Etype field of Derived_Type. It is correctly set now,
8911 -- but the call to New_Copy tree may remap it to point to itself,
8912 -- which is not what we want. Ditto for the Next_Entity field.
8914 Save_Etype := Etype (Derived_Type);
8915 Save_Next_Entity := Next_Entity (Derived_Type);
8917 -- Assoc_List maps all stored discriminants in the Parent_Base to
8918 -- stored discriminants in the Derived_Type. It is fundamental that
8919 -- no types or itypes with discriminants other than the stored
8920 -- discriminants appear in the entities declared inside
8921 -- Derived_Type, since the back end cannot deal with it.
8923 New_Decl :=
8924 New_Copy_Tree
8925 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8927 -- Restore the fields saved prior to the New_Copy_Tree call
8928 -- and compute the stored constraint.
8930 Set_Etype (Derived_Type, Save_Etype);
8931 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8933 if Has_Discriminants (Derived_Type) then
8934 Set_Discriminant_Constraint
8935 (Derived_Type, Save_Discr_Constr);
8936 Set_Stored_Constraint
8937 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8938 Replace_Components (Derived_Type, New_Decl);
8939 Set_Has_Implicit_Dereference
8940 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8941 end if;
8943 -- Insert the new derived type declaration
8945 Rewrite (N, New_Decl);
8947 -- STEP 5b: Complete the processing for record extensions in generics
8949 -- There is no completion for record extensions declared in the
8950 -- parameter part of a generic, so we need to complete processing for
8951 -- these generic record extensions here. The Record_Type_Definition call
8952 -- will change the Ekind of the components from E_Void to E_Component.
8954 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8955 Record_Type_Definition (Empty, Derived_Type);
8957 -- STEP 5c: Process the record extension for non private tagged types
8959 elsif not Private_Extension then
8960 Expand_Record_Extension (Derived_Type, Type_Def);
8962 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8963 -- derived type to propagate some semantic information. This led
8964 -- to other ASIS failures and has been removed.
8966 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8967 -- implemented interfaces if we are in expansion mode
8969 if Expander_Active
8970 and then Has_Interfaces (Derived_Type)
8971 then
8972 Add_Interface_Tag_Components (N, Derived_Type);
8973 end if;
8975 -- Analyze the record extension
8977 Record_Type_Definition
8978 (Record_Extension_Part (Type_Def), Derived_Type);
8979 end if;
8981 End_Scope;
8983 -- Nothing else to do if there is an error in the derivation.
8984 -- An unusual case: the full view may be derived from a type in an
8985 -- instance, when the partial view was used illegally as an actual
8986 -- in that instance, leading to a circular definition.
8988 if Etype (Derived_Type) = Any_Type
8989 or else Etype (Parent_Type) = Derived_Type
8990 then
8991 return;
8992 end if;
8994 -- Set delayed freeze and then derive subprograms, we need to do
8995 -- this in this order so that derived subprograms inherit the
8996 -- derived freeze if necessary.
8998 Set_Has_Delayed_Freeze (Derived_Type);
9000 if Derive_Subps then
9001 Derive_Subprograms (Parent_Type, Derived_Type);
9002 end if;
9004 -- If we have a private extension which defines a constrained derived
9005 -- type mark as constrained here after we have derived subprograms. See
9006 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9008 if Private_Extension and then Inherit_Discrims then
9009 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9010 Set_Is_Constrained (Derived_Type, True);
9011 Set_Discriminant_Constraint (Derived_Type, Discs);
9013 elsif Is_Constrained (Parent_Type) then
9014 Set_Is_Constrained
9015 (Derived_Type, True);
9016 Set_Discriminant_Constraint
9017 (Derived_Type, Discriminant_Constraint (Parent_Type));
9018 end if;
9019 end if;
9021 -- Update the class-wide type, which shares the now-completed entity
9022 -- list with its specific type. In case of underlying record views,
9023 -- we do not generate the corresponding class wide entity.
9025 if Is_Tagged
9026 and then not Is_Underlying_Record_View (Derived_Type)
9027 then
9028 Set_First_Entity
9029 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9030 Set_Last_Entity
9031 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9032 end if;
9034 Check_Function_Writable_Actuals (N);
9035 end Build_Derived_Record_Type;
9037 ------------------------
9038 -- Build_Derived_Type --
9039 ------------------------
9041 procedure Build_Derived_Type
9042 (N : Node_Id;
9043 Parent_Type : Entity_Id;
9044 Derived_Type : Entity_Id;
9045 Is_Completion : Boolean;
9046 Derive_Subps : Boolean := True)
9048 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9050 begin
9051 -- Set common attributes
9053 Set_Scope (Derived_Type, Current_Scope);
9055 Set_Etype (Derived_Type, Parent_Base);
9056 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9057 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9059 Set_Size_Info (Derived_Type, Parent_Type);
9060 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9061 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
9062 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9064 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9065 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9067 if Is_Tagged_Type (Derived_Type) then
9068 Set_No_Tagged_Streams_Pragma
9069 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9070 end if;
9072 -- If the parent has primitive routines, set the derived type link
9074 if Has_Primitive_Operations (Parent_Type) then
9075 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9076 end if;
9078 -- If the parent type is a private subtype, the convention on the base
9079 -- type may be set in the private part, and not propagated to the
9080 -- subtype until later, so we obtain the convention from the base type.
9082 Set_Convention (Derived_Type, Convention (Parent_Base));
9084 -- Set SSO default for record or array type
9086 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9087 and then Is_Base_Type (Derived_Type)
9088 then
9089 Set_Default_SSO (Derived_Type);
9090 end if;
9092 -- Propagate invariant information. The new type has invariants if
9093 -- they are inherited from the parent type, and these invariants can
9094 -- be further inherited, so both flags are set.
9096 -- We similarly inherit predicates
9098 if Has_Predicates (Parent_Type) then
9099 Set_Has_Predicates (Derived_Type);
9100 end if;
9102 -- The derived type inherits the representation clauses of the parent
9104 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9106 -- Propagate the attributes related to pragma Default_Initial_Condition
9107 -- from the parent type to the private extension. A derived type always
9108 -- inherits the default initial condition flag from the parent type. If
9109 -- the derived type carries its own Default_Initial_Condition pragma,
9110 -- the flag is later reset in Analyze_Pragma. Note that both flags are
9111 -- mutually exclusive.
9113 Propagate_Default_Init_Cond_Attributes
9114 (From_Typ => Parent_Type,
9115 To_Typ => Derived_Type,
9116 Parent_To_Derivation => True);
9118 -- If the parent type has delayed rep aspects, then mark the derived
9119 -- type as possibly inheriting a delayed rep aspect.
9121 if Has_Delayed_Rep_Aspects (Parent_Type) then
9122 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9123 end if;
9125 -- Propagate the attributes related to pragma Ghost from the parent type
9126 -- to the derived type or type extension (SPARK RM 6.9(9)).
9128 if Is_Ghost_Entity (Parent_Type) then
9129 Set_Is_Ghost_Entity (Derived_Type);
9130 end if;
9132 -- Type dependent processing
9134 case Ekind (Parent_Type) is
9135 when Numeric_Kind =>
9136 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9138 when Array_Kind =>
9139 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9141 when E_Record_Type
9142 | E_Record_Subtype
9143 | Class_Wide_Kind =>
9144 Build_Derived_Record_Type
9145 (N, Parent_Type, Derived_Type, Derive_Subps);
9146 return;
9148 when Enumeration_Kind =>
9149 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9151 when Access_Kind =>
9152 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9154 when Incomplete_Or_Private_Kind =>
9155 Build_Derived_Private_Type
9156 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9158 -- For discriminated types, the derivation includes deriving
9159 -- primitive operations. For others it is done below.
9161 if Is_Tagged_Type (Parent_Type)
9162 or else Has_Discriminants (Parent_Type)
9163 or else (Present (Full_View (Parent_Type))
9164 and then Has_Discriminants (Full_View (Parent_Type)))
9165 then
9166 return;
9167 end if;
9169 when Concurrent_Kind =>
9170 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9172 when others =>
9173 raise Program_Error;
9174 end case;
9176 -- Nothing more to do if some error occurred
9178 if Etype (Derived_Type) = Any_Type then
9179 return;
9180 end if;
9182 -- Set delayed freeze and then derive subprograms, we need to do this
9183 -- in this order so that derived subprograms inherit the derived freeze
9184 -- if necessary.
9186 Set_Has_Delayed_Freeze (Derived_Type);
9188 if Derive_Subps then
9189 Derive_Subprograms (Parent_Type, Derived_Type);
9190 end if;
9192 Set_Has_Primitive_Operations
9193 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9194 end Build_Derived_Type;
9196 -----------------------
9197 -- Build_Discriminal --
9198 -----------------------
9200 procedure Build_Discriminal (Discrim : Entity_Id) is
9201 D_Minal : Entity_Id;
9202 CR_Disc : Entity_Id;
9204 begin
9205 -- A discriminal has the same name as the discriminant
9207 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9209 Set_Ekind (D_Minal, E_In_Parameter);
9210 Set_Mechanism (D_Minal, Default_Mechanism);
9211 Set_Etype (D_Minal, Etype (Discrim));
9212 Set_Scope (D_Minal, Current_Scope);
9213 Set_Parent (D_Minal, Parent (Discrim));
9215 Set_Discriminal (Discrim, D_Minal);
9216 Set_Discriminal_Link (D_Minal, Discrim);
9218 -- For task types, build at once the discriminants of the corresponding
9219 -- record, which are needed if discriminants are used in entry defaults
9220 -- and in family bounds.
9222 if Is_Concurrent_Type (Current_Scope)
9223 or else
9224 Is_Limited_Type (Current_Scope)
9225 then
9226 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9228 Set_Ekind (CR_Disc, E_In_Parameter);
9229 Set_Mechanism (CR_Disc, Default_Mechanism);
9230 Set_Etype (CR_Disc, Etype (Discrim));
9231 Set_Scope (CR_Disc, Current_Scope);
9232 Set_Discriminal_Link (CR_Disc, Discrim);
9233 Set_CR_Discriminant (Discrim, CR_Disc);
9234 end if;
9235 end Build_Discriminal;
9237 ------------------------------------
9238 -- Build_Discriminant_Constraints --
9239 ------------------------------------
9241 function Build_Discriminant_Constraints
9242 (T : Entity_Id;
9243 Def : Node_Id;
9244 Derived_Def : Boolean := False) return Elist_Id
9246 C : constant Node_Id := Constraint (Def);
9247 Nb_Discr : constant Nat := Number_Discriminants (T);
9249 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9250 -- Saves the expression corresponding to a given discriminant in T
9252 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9253 -- Return the Position number within array Discr_Expr of a discriminant
9254 -- D within the discriminant list of the discriminated type T.
9256 procedure Process_Discriminant_Expression
9257 (Expr : Node_Id;
9258 D : Entity_Id);
9259 -- If this is a discriminant constraint on a partial view, do not
9260 -- generate an overflow check on the discriminant expression. The check
9261 -- will be generated when constraining the full view. Otherwise the
9262 -- backend creates duplicate symbols for the temporaries corresponding
9263 -- to the expressions to be checked, causing spurious assembler errors.
9265 ------------------
9266 -- Pos_Of_Discr --
9267 ------------------
9269 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9270 Disc : Entity_Id;
9272 begin
9273 Disc := First_Discriminant (T);
9274 for J in Discr_Expr'Range loop
9275 if Disc = D then
9276 return J;
9277 end if;
9279 Next_Discriminant (Disc);
9280 end loop;
9282 -- Note: Since this function is called on discriminants that are
9283 -- known to belong to the discriminated type, falling through the
9284 -- loop with no match signals an internal compiler error.
9286 raise Program_Error;
9287 end Pos_Of_Discr;
9289 -------------------------------------
9290 -- Process_Discriminant_Expression --
9291 -------------------------------------
9293 procedure Process_Discriminant_Expression
9294 (Expr : Node_Id;
9295 D : Entity_Id)
9297 BDT : constant Entity_Id := Base_Type (Etype (D));
9299 begin
9300 -- If this is a discriminant constraint on a partial view, do
9301 -- not generate an overflow on the discriminant expression. The
9302 -- check will be generated when constraining the full view.
9304 if Is_Private_Type (T)
9305 and then Present (Full_View (T))
9306 then
9307 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9308 else
9309 Analyze_And_Resolve (Expr, BDT);
9310 end if;
9311 end Process_Discriminant_Expression;
9313 -- Declarations local to Build_Discriminant_Constraints
9315 Discr : Entity_Id;
9316 E : Entity_Id;
9317 Elist : constant Elist_Id := New_Elmt_List;
9319 Constr : Node_Id;
9320 Expr : Node_Id;
9321 Id : Node_Id;
9322 Position : Nat;
9323 Found : Boolean;
9325 Discrim_Present : Boolean := False;
9327 -- Start of processing for Build_Discriminant_Constraints
9329 begin
9330 -- The following loop will process positional associations only.
9331 -- For a positional association, the (single) discriminant is
9332 -- implicitly specified by position, in textual order (RM 3.7.2).
9334 Discr := First_Discriminant (T);
9335 Constr := First (Constraints (C));
9336 for D in Discr_Expr'Range loop
9337 exit when Nkind (Constr) = N_Discriminant_Association;
9339 if No (Constr) then
9340 Error_Msg_N ("too few discriminants given in constraint", C);
9341 return New_Elmt_List;
9343 elsif Nkind (Constr) = N_Range
9344 or else (Nkind (Constr) = N_Attribute_Reference
9345 and then Attribute_Name (Constr) = Name_Range)
9346 then
9347 Error_Msg_N
9348 ("a range is not a valid discriminant constraint", Constr);
9349 Discr_Expr (D) := Error;
9351 else
9352 Process_Discriminant_Expression (Constr, Discr);
9353 Discr_Expr (D) := Constr;
9354 end if;
9356 Next_Discriminant (Discr);
9357 Next (Constr);
9358 end loop;
9360 if No (Discr) and then Present (Constr) then
9361 Error_Msg_N ("too many discriminants given in constraint", Constr);
9362 return New_Elmt_List;
9363 end if;
9365 -- Named associations can be given in any order, but if both positional
9366 -- and named associations are used in the same discriminant constraint,
9367 -- then positional associations must occur first, at their normal
9368 -- position. Hence once a named association is used, the rest of the
9369 -- discriminant constraint must use only named associations.
9371 while Present (Constr) loop
9373 -- Positional association forbidden after a named association
9375 if Nkind (Constr) /= N_Discriminant_Association then
9376 Error_Msg_N ("positional association follows named one", Constr);
9377 return New_Elmt_List;
9379 -- Otherwise it is a named association
9381 else
9382 -- E records the type of the discriminants in the named
9383 -- association. All the discriminants specified in the same name
9384 -- association must have the same type.
9386 E := Empty;
9388 -- Search the list of discriminants in T to see if the simple name
9389 -- given in the constraint matches any of them.
9391 Id := First (Selector_Names (Constr));
9392 while Present (Id) loop
9393 Found := False;
9395 -- If Original_Discriminant is present, we are processing a
9396 -- generic instantiation and this is an instance node. We need
9397 -- to find the name of the corresponding discriminant in the
9398 -- actual record type T and not the name of the discriminant in
9399 -- the generic formal. Example:
9401 -- generic
9402 -- type G (D : int) is private;
9403 -- package P is
9404 -- subtype W is G (D => 1);
9405 -- end package;
9406 -- type Rec (X : int) is record ... end record;
9407 -- package Q is new P (G => Rec);
9409 -- At the point of the instantiation, formal type G is Rec
9410 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9411 -- which really looks like "subtype W is Rec (D => 1);" at
9412 -- the point of instantiation, we want to find the discriminant
9413 -- that corresponds to D in Rec, i.e. X.
9415 if Present (Original_Discriminant (Id))
9416 and then In_Instance
9417 then
9418 Discr := Find_Corresponding_Discriminant (Id, T);
9419 Found := True;
9421 else
9422 Discr := First_Discriminant (T);
9423 while Present (Discr) loop
9424 if Chars (Discr) = Chars (Id) then
9425 Found := True;
9426 exit;
9427 end if;
9429 Next_Discriminant (Discr);
9430 end loop;
9432 if not Found then
9433 Error_Msg_N ("& does not match any discriminant", Id);
9434 return New_Elmt_List;
9436 -- If the parent type is a generic formal, preserve the
9437 -- name of the discriminant for subsequent instances.
9438 -- see comment at the beginning of this if statement.
9440 elsif Is_Generic_Type (Root_Type (T)) then
9441 Set_Original_Discriminant (Id, Discr);
9442 end if;
9443 end if;
9445 Position := Pos_Of_Discr (T, Discr);
9447 if Present (Discr_Expr (Position)) then
9448 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9450 else
9451 -- Each discriminant specified in the same named association
9452 -- must be associated with a separate copy of the
9453 -- corresponding expression.
9455 if Present (Next (Id)) then
9456 Expr := New_Copy_Tree (Expression (Constr));
9457 Set_Parent (Expr, Parent (Expression (Constr)));
9458 else
9459 Expr := Expression (Constr);
9460 end if;
9462 Discr_Expr (Position) := Expr;
9463 Process_Discriminant_Expression (Expr, Discr);
9464 end if;
9466 -- A discriminant association with more than one discriminant
9467 -- name is only allowed if the named discriminants are all of
9468 -- the same type (RM 3.7.1(8)).
9470 if E = Empty then
9471 E := Base_Type (Etype (Discr));
9473 elsif Base_Type (Etype (Discr)) /= E then
9474 Error_Msg_N
9475 ("all discriminants in an association " &
9476 "must have the same type", Id);
9477 end if;
9479 Next (Id);
9480 end loop;
9481 end if;
9483 Next (Constr);
9484 end loop;
9486 -- A discriminant constraint must provide exactly one value for each
9487 -- discriminant of the type (RM 3.7.1(8)).
9489 for J in Discr_Expr'Range loop
9490 if No (Discr_Expr (J)) then
9491 Error_Msg_N ("too few discriminants given in constraint", C);
9492 return New_Elmt_List;
9493 end if;
9494 end loop;
9496 -- Determine if there are discriminant expressions in the constraint
9498 for J in Discr_Expr'Range loop
9499 if Denotes_Discriminant
9500 (Discr_Expr (J), Check_Concurrent => True)
9501 then
9502 Discrim_Present := True;
9503 end if;
9504 end loop;
9506 -- Build an element list consisting of the expressions given in the
9507 -- discriminant constraint and apply the appropriate checks. The list
9508 -- is constructed after resolving any named discriminant associations
9509 -- and therefore the expressions appear in the textual order of the
9510 -- discriminants.
9512 Discr := First_Discriminant (T);
9513 for J in Discr_Expr'Range loop
9514 if Discr_Expr (J) /= Error then
9515 Append_Elmt (Discr_Expr (J), Elist);
9517 -- If any of the discriminant constraints is given by a
9518 -- discriminant and we are in a derived type declaration we
9519 -- have a discriminant renaming. Establish link between new
9520 -- and old discriminant.
9522 if Denotes_Discriminant (Discr_Expr (J)) then
9523 if Derived_Def then
9524 Set_Corresponding_Discriminant
9525 (Entity (Discr_Expr (J)), Discr);
9526 end if;
9528 -- Force the evaluation of non-discriminant expressions.
9529 -- If we have found a discriminant in the constraint 3.4(26)
9530 -- and 3.8(18) demand that no range checks are performed are
9531 -- after evaluation. If the constraint is for a component
9532 -- definition that has a per-object constraint, expressions are
9533 -- evaluated but not checked either. In all other cases perform
9534 -- a range check.
9536 else
9537 if Discrim_Present then
9538 null;
9540 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9541 and then
9542 Has_Per_Object_Constraint
9543 (Defining_Identifier (Parent (Parent (Def))))
9544 then
9545 null;
9547 elsif Is_Access_Type (Etype (Discr)) then
9548 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9550 else
9551 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9552 end if;
9554 Force_Evaluation (Discr_Expr (J));
9555 end if;
9557 -- Check that the designated type of an access discriminant's
9558 -- expression is not a class-wide type unless the discriminant's
9559 -- designated type is also class-wide.
9561 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9562 and then not Is_Class_Wide_Type
9563 (Designated_Type (Etype (Discr)))
9564 and then Etype (Discr_Expr (J)) /= Any_Type
9565 and then Is_Class_Wide_Type
9566 (Designated_Type (Etype (Discr_Expr (J))))
9567 then
9568 Wrong_Type (Discr_Expr (J), Etype (Discr));
9570 elsif Is_Access_Type (Etype (Discr))
9571 and then not Is_Access_Constant (Etype (Discr))
9572 and then Is_Access_Type (Etype (Discr_Expr (J)))
9573 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9574 then
9575 Error_Msg_NE
9576 ("constraint for discriminant& must be access to variable",
9577 Def, Discr);
9578 end if;
9579 end if;
9581 Next_Discriminant (Discr);
9582 end loop;
9584 return Elist;
9585 end Build_Discriminant_Constraints;
9587 ---------------------------------
9588 -- Build_Discriminated_Subtype --
9589 ---------------------------------
9591 procedure Build_Discriminated_Subtype
9592 (T : Entity_Id;
9593 Def_Id : Entity_Id;
9594 Elist : Elist_Id;
9595 Related_Nod : Node_Id;
9596 For_Access : Boolean := False)
9598 Has_Discrs : constant Boolean := Has_Discriminants (T);
9599 Constrained : constant Boolean :=
9600 (Has_Discrs
9601 and then not Is_Empty_Elmt_List (Elist)
9602 and then not Is_Class_Wide_Type (T))
9603 or else Is_Constrained (T);
9605 begin
9606 if Ekind (T) = E_Record_Type then
9607 if For_Access then
9608 Set_Ekind (Def_Id, E_Private_Subtype);
9609 Set_Is_For_Access_Subtype (Def_Id, True);
9610 else
9611 Set_Ekind (Def_Id, E_Record_Subtype);
9612 end if;
9614 -- Inherit preelaboration flag from base, for types for which it
9615 -- may have been set: records, private types, protected types.
9617 Set_Known_To_Have_Preelab_Init
9618 (Def_Id, Known_To_Have_Preelab_Init (T));
9620 elsif Ekind (T) = E_Task_Type then
9621 Set_Ekind (Def_Id, E_Task_Subtype);
9623 elsif Ekind (T) = E_Protected_Type then
9624 Set_Ekind (Def_Id, E_Protected_Subtype);
9625 Set_Known_To_Have_Preelab_Init
9626 (Def_Id, Known_To_Have_Preelab_Init (T));
9628 elsif Is_Private_Type (T) then
9629 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9630 Set_Known_To_Have_Preelab_Init
9631 (Def_Id, Known_To_Have_Preelab_Init (T));
9633 -- Private subtypes may have private dependents
9635 Set_Private_Dependents (Def_Id, New_Elmt_List);
9637 elsif Is_Class_Wide_Type (T) then
9638 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9640 else
9641 -- Incomplete type. Attach subtype to list of dependents, to be
9642 -- completed with full view of parent type, unless is it the
9643 -- designated subtype of a record component within an init_proc.
9644 -- This last case arises for a component of an access type whose
9645 -- designated type is incomplete (e.g. a Taft Amendment type).
9646 -- The designated subtype is within an inner scope, and needs no
9647 -- elaboration, because only the access type is needed in the
9648 -- initialization procedure.
9650 Set_Ekind (Def_Id, Ekind (T));
9652 if For_Access and then Within_Init_Proc then
9653 null;
9654 else
9655 Append_Elmt (Def_Id, Private_Dependents (T));
9656 end if;
9657 end if;
9659 Set_Etype (Def_Id, T);
9660 Init_Size_Align (Def_Id);
9661 Set_Has_Discriminants (Def_Id, Has_Discrs);
9662 Set_Is_Constrained (Def_Id, Constrained);
9664 Set_First_Entity (Def_Id, First_Entity (T));
9665 Set_Last_Entity (Def_Id, Last_Entity (T));
9666 Set_Has_Implicit_Dereference
9667 (Def_Id, Has_Implicit_Dereference (T));
9669 -- If the subtype is the completion of a private declaration, there may
9670 -- have been representation clauses for the partial view, and they must
9671 -- be preserved. Build_Derived_Type chains the inherited clauses with
9672 -- the ones appearing on the extension. If this comes from a subtype
9673 -- declaration, all clauses are inherited.
9675 if No (First_Rep_Item (Def_Id)) then
9676 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9677 end if;
9679 if Is_Tagged_Type (T) then
9680 Set_Is_Tagged_Type (Def_Id);
9681 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9682 Make_Class_Wide_Type (Def_Id);
9683 end if;
9685 Set_Stored_Constraint (Def_Id, No_Elist);
9687 if Has_Discrs then
9688 Set_Discriminant_Constraint (Def_Id, Elist);
9689 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9690 end if;
9692 if Is_Tagged_Type (T) then
9694 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9695 -- concurrent record type (which has the list of primitive
9696 -- operations).
9698 if Ada_Version >= Ada_2005
9699 and then Is_Concurrent_Type (T)
9700 then
9701 Set_Corresponding_Record_Type (Def_Id,
9702 Corresponding_Record_Type (T));
9703 else
9704 Set_Direct_Primitive_Operations (Def_Id,
9705 Direct_Primitive_Operations (T));
9706 end if;
9708 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9709 end if;
9711 -- Subtypes introduced by component declarations do not need to be
9712 -- marked as delayed, and do not get freeze nodes, because the semantics
9713 -- verifies that the parents of the subtypes are frozen before the
9714 -- enclosing record is frozen.
9716 if not Is_Type (Scope (Def_Id)) then
9717 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9719 if Is_Private_Type (T)
9720 and then Present (Full_View (T))
9721 then
9722 Conditional_Delay (Def_Id, Full_View (T));
9723 else
9724 Conditional_Delay (Def_Id, T);
9725 end if;
9726 end if;
9728 if Is_Record_Type (T) then
9729 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9731 if Has_Discrs
9732 and then not Is_Empty_Elmt_List (Elist)
9733 and then not For_Access
9734 then
9735 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9736 elsif not For_Access then
9737 Set_Cloned_Subtype (Def_Id, T);
9738 end if;
9739 end if;
9740 end Build_Discriminated_Subtype;
9742 ---------------------------
9743 -- Build_Itype_Reference --
9744 ---------------------------
9746 procedure Build_Itype_Reference
9747 (Ityp : Entity_Id;
9748 Nod : Node_Id)
9750 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9751 begin
9753 -- Itype references are only created for use by the back-end
9755 if Inside_A_Generic then
9756 return;
9757 else
9758 Set_Itype (IR, Ityp);
9759 Insert_After (Nod, IR);
9760 end if;
9761 end Build_Itype_Reference;
9763 ------------------------
9764 -- Build_Scalar_Bound --
9765 ------------------------
9767 function Build_Scalar_Bound
9768 (Bound : Node_Id;
9769 Par_T : Entity_Id;
9770 Der_T : Entity_Id) return Node_Id
9772 New_Bound : Entity_Id;
9774 begin
9775 -- Note: not clear why this is needed, how can the original bound
9776 -- be unanalyzed at this point? and if it is, what business do we
9777 -- have messing around with it? and why is the base type of the
9778 -- parent type the right type for the resolution. It probably is
9779 -- not. It is OK for the new bound we are creating, but not for
9780 -- the old one??? Still if it never happens, no problem.
9782 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9784 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9785 New_Bound := New_Copy (Bound);
9786 Set_Etype (New_Bound, Der_T);
9787 Set_Analyzed (New_Bound);
9789 elsif Is_Entity_Name (Bound) then
9790 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9792 -- The following is almost certainly wrong. What business do we have
9793 -- relocating a node (Bound) that is presumably still attached to
9794 -- the tree elsewhere???
9796 else
9797 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9798 end if;
9800 Set_Etype (New_Bound, Der_T);
9801 return New_Bound;
9802 end Build_Scalar_Bound;
9804 --------------------------------
9805 -- Build_Underlying_Full_View --
9806 --------------------------------
9808 procedure Build_Underlying_Full_View
9809 (N : Node_Id;
9810 Typ : Entity_Id;
9811 Par : Entity_Id)
9813 Loc : constant Source_Ptr := Sloc (N);
9814 Subt : constant Entity_Id :=
9815 Make_Defining_Identifier
9816 (Loc, New_External_Name (Chars (Typ), 'S'));
9818 Constr : Node_Id;
9819 Indic : Node_Id;
9820 C : Node_Id;
9821 Id : Node_Id;
9823 procedure Set_Discriminant_Name (Id : Node_Id);
9824 -- If the derived type has discriminants, they may rename discriminants
9825 -- of the parent. When building the full view of the parent, we need to
9826 -- recover the names of the original discriminants if the constraint is
9827 -- given by named associations.
9829 ---------------------------
9830 -- Set_Discriminant_Name --
9831 ---------------------------
9833 procedure Set_Discriminant_Name (Id : Node_Id) is
9834 Disc : Entity_Id;
9836 begin
9837 Set_Original_Discriminant (Id, Empty);
9839 if Has_Discriminants (Typ) then
9840 Disc := First_Discriminant (Typ);
9841 while Present (Disc) loop
9842 if Chars (Disc) = Chars (Id)
9843 and then Present (Corresponding_Discriminant (Disc))
9844 then
9845 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9846 end if;
9847 Next_Discriminant (Disc);
9848 end loop;
9849 end if;
9850 end Set_Discriminant_Name;
9852 -- Start of processing for Build_Underlying_Full_View
9854 begin
9855 if Nkind (N) = N_Full_Type_Declaration then
9856 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9858 elsif Nkind (N) = N_Subtype_Declaration then
9859 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9861 elsif Nkind (N) = N_Component_Declaration then
9862 Constr :=
9863 New_Copy_Tree
9864 (Constraint (Subtype_Indication (Component_Definition (N))));
9866 else
9867 raise Program_Error;
9868 end if;
9870 C := First (Constraints (Constr));
9871 while Present (C) loop
9872 if Nkind (C) = N_Discriminant_Association then
9873 Id := First (Selector_Names (C));
9874 while Present (Id) loop
9875 Set_Discriminant_Name (Id);
9876 Next (Id);
9877 end loop;
9878 end if;
9880 Next (C);
9881 end loop;
9883 Indic :=
9884 Make_Subtype_Declaration (Loc,
9885 Defining_Identifier => Subt,
9886 Subtype_Indication =>
9887 Make_Subtype_Indication (Loc,
9888 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9889 Constraint => New_Copy_Tree (Constr)));
9891 -- If this is a component subtype for an outer itype, it is not
9892 -- a list member, so simply set the parent link for analysis: if
9893 -- the enclosing type does not need to be in a declarative list,
9894 -- neither do the components.
9896 if Is_List_Member (N)
9897 and then Nkind (N) /= N_Component_Declaration
9898 then
9899 Insert_Before (N, Indic);
9900 else
9901 Set_Parent (Indic, Parent (N));
9902 end if;
9904 Analyze (Indic);
9905 Set_Underlying_Full_View (Typ, Full_View (Subt));
9906 end Build_Underlying_Full_View;
9908 -------------------------------
9909 -- Check_Abstract_Overriding --
9910 -------------------------------
9912 procedure Check_Abstract_Overriding (T : Entity_Id) is
9913 Alias_Subp : Entity_Id;
9914 Elmt : Elmt_Id;
9915 Op_List : Elist_Id;
9916 Subp : Entity_Id;
9917 Type_Def : Node_Id;
9919 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9920 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9921 -- which has pragma Implemented already set. Check whether Subp's entity
9922 -- kind conforms to the implementation kind of the overridden routine.
9924 procedure Check_Pragma_Implemented
9925 (Subp : Entity_Id;
9926 Iface_Subp : Entity_Id);
9927 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9928 -- Iface_Subp and both entities have pragma Implemented already set on
9929 -- them. Check whether the two implementation kinds are conforming.
9931 procedure Inherit_Pragma_Implemented
9932 (Subp : Entity_Id;
9933 Iface_Subp : Entity_Id);
9934 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9935 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9936 -- Propagate the implementation kind of Iface_Subp to Subp.
9938 ------------------------------
9939 -- Check_Pragma_Implemented --
9940 ------------------------------
9942 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9943 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9944 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9945 Subp_Alias : constant Entity_Id := Alias (Subp);
9946 Contr_Typ : Entity_Id;
9947 Impl_Subp : Entity_Id;
9949 begin
9950 -- Subp must have an alias since it is a hidden entity used to link
9951 -- an interface subprogram to its overriding counterpart.
9953 pragma Assert (Present (Subp_Alias));
9955 -- Handle aliases to synchronized wrappers
9957 Impl_Subp := Subp_Alias;
9959 if Is_Primitive_Wrapper (Impl_Subp) then
9960 Impl_Subp := Wrapped_Entity (Impl_Subp);
9961 end if;
9963 -- Extract the type of the controlling formal
9965 Contr_Typ := Etype (First_Formal (Subp_Alias));
9967 if Is_Concurrent_Record_Type (Contr_Typ) then
9968 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9969 end if;
9971 -- An interface subprogram whose implementation kind is By_Entry must
9972 -- be implemented by an entry.
9974 if Impl_Kind = Name_By_Entry
9975 and then Ekind (Impl_Subp) /= E_Entry
9976 then
9977 Error_Msg_Node_2 := Iface_Alias;
9978 Error_Msg_NE
9979 ("type & must implement abstract subprogram & with an entry",
9980 Subp_Alias, Contr_Typ);
9982 elsif Impl_Kind = Name_By_Protected_Procedure then
9984 -- An interface subprogram whose implementation kind is By_
9985 -- Protected_Procedure cannot be implemented by a primitive
9986 -- procedure of a task type.
9988 if Ekind (Contr_Typ) /= E_Protected_Type then
9989 Error_Msg_Node_2 := Contr_Typ;
9990 Error_Msg_NE
9991 ("interface subprogram & cannot be implemented by a " &
9992 "primitive procedure of task type &", Subp_Alias,
9993 Iface_Alias);
9995 -- An interface subprogram whose implementation kind is By_
9996 -- Protected_Procedure must be implemented by a procedure.
9998 elsif Ekind (Impl_Subp) /= E_Procedure then
9999 Error_Msg_Node_2 := Iface_Alias;
10000 Error_Msg_NE
10001 ("type & must implement abstract subprogram & with a " &
10002 "procedure", Subp_Alias, Contr_Typ);
10004 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10005 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10006 then
10007 Error_Msg_Name_1 := Impl_Kind;
10008 Error_Msg_N
10009 ("overriding operation& must have synchronization%",
10010 Subp_Alias);
10011 end if;
10013 -- If primitive has Optional synchronization, overriding operation
10014 -- must match if it has an explicit synchronization..
10016 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10017 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10018 then
10019 Error_Msg_Name_1 := Impl_Kind;
10020 Error_Msg_N
10021 ("overriding operation& must have syncrhonization%",
10022 Subp_Alias);
10023 end if;
10024 end Check_Pragma_Implemented;
10026 ------------------------------
10027 -- Check_Pragma_Implemented --
10028 ------------------------------
10030 procedure Check_Pragma_Implemented
10031 (Subp : Entity_Id;
10032 Iface_Subp : Entity_Id)
10034 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10035 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10037 begin
10038 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10039 -- and overriding subprogram are different. In general this is an
10040 -- error except when the implementation kind of the overridden
10041 -- subprograms is By_Any or Optional.
10043 if Iface_Kind /= Subp_Kind
10044 and then Iface_Kind /= Name_By_Any
10045 and then Iface_Kind /= Name_Optional
10046 then
10047 if Iface_Kind = Name_By_Entry then
10048 Error_Msg_N
10049 ("incompatible implementation kind, overridden subprogram " &
10050 "is marked By_Entry", Subp);
10051 else
10052 Error_Msg_N
10053 ("incompatible implementation kind, overridden subprogram " &
10054 "is marked By_Protected_Procedure", Subp);
10055 end if;
10056 end if;
10057 end Check_Pragma_Implemented;
10059 --------------------------------
10060 -- Inherit_Pragma_Implemented --
10061 --------------------------------
10063 procedure Inherit_Pragma_Implemented
10064 (Subp : Entity_Id;
10065 Iface_Subp : Entity_Id)
10067 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10068 Loc : constant Source_Ptr := Sloc (Subp);
10069 Impl_Prag : Node_Id;
10071 begin
10072 -- Since the implementation kind is stored as a representation item
10073 -- rather than a flag, create a pragma node.
10075 Impl_Prag :=
10076 Make_Pragma (Loc,
10077 Chars => Name_Implemented,
10078 Pragma_Argument_Associations => New_List (
10079 Make_Pragma_Argument_Association (Loc,
10080 Expression => New_Occurrence_Of (Subp, Loc)),
10082 Make_Pragma_Argument_Association (Loc,
10083 Expression => Make_Identifier (Loc, Iface_Kind))));
10085 -- The pragma doesn't need to be analyzed because it is internally
10086 -- built. It is safe to directly register it as a rep item since we
10087 -- are only interested in the characters of the implementation kind.
10089 Record_Rep_Item (Subp, Impl_Prag);
10090 end Inherit_Pragma_Implemented;
10092 -- Start of processing for Check_Abstract_Overriding
10094 begin
10095 Op_List := Primitive_Operations (T);
10097 -- Loop to check primitive operations
10099 Elmt := First_Elmt (Op_List);
10100 while Present (Elmt) loop
10101 Subp := Node (Elmt);
10102 Alias_Subp := Alias (Subp);
10104 -- Inherited subprograms are identified by the fact that they do not
10105 -- come from source, and the associated source location is the
10106 -- location of the first subtype of the derived type.
10108 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10109 -- subprograms that "require overriding".
10111 -- Special exception, do not complain about failure to override the
10112 -- stream routines _Input and _Output, as well as the primitive
10113 -- operations used in dispatching selects since we always provide
10114 -- automatic overridings for these subprograms.
10116 -- The partial view of T may have been a private extension, for
10117 -- which inherited functions dispatching on result are abstract.
10118 -- If the full view is a null extension, there is no need for
10119 -- overriding in Ada 2005, but wrappers need to be built for them
10120 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10122 if Is_Null_Extension (T)
10123 and then Has_Controlling_Result (Subp)
10124 and then Ada_Version >= Ada_2005
10125 and then Present (Alias_Subp)
10126 and then not Comes_From_Source (Subp)
10127 and then not Is_Abstract_Subprogram (Alias_Subp)
10128 and then not Is_Access_Type (Etype (Subp))
10129 then
10130 null;
10132 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10133 -- processing because this check is done with the aliased
10134 -- entity
10136 elsif Present (Interface_Alias (Subp)) then
10137 null;
10139 elsif (Is_Abstract_Subprogram (Subp)
10140 or else Requires_Overriding (Subp)
10141 or else
10142 (Has_Controlling_Result (Subp)
10143 and then Present (Alias_Subp)
10144 and then not Comes_From_Source (Subp)
10145 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10146 and then not Is_TSS (Subp, TSS_Stream_Input)
10147 and then not Is_TSS (Subp, TSS_Stream_Output)
10148 and then not Is_Abstract_Type (T)
10149 and then not Is_Predefined_Interface_Primitive (Subp)
10151 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10152 -- with abstract interface types because the check will be done
10153 -- with the aliased entity (otherwise we generate a duplicated
10154 -- error message).
10156 and then not Present (Interface_Alias (Subp))
10157 then
10158 if Present (Alias_Subp) then
10160 -- Only perform the check for a derived subprogram when the
10161 -- type has an explicit record extension. This avoids incorrect
10162 -- flagging of abstract subprograms for the case of a type
10163 -- without an extension that is derived from a formal type
10164 -- with a tagged actual (can occur within a private part).
10166 -- Ada 2005 (AI-391): In the case of an inherited function with
10167 -- a controlling result of the type, the rule does not apply if
10168 -- the type is a null extension (unless the parent function
10169 -- itself is abstract, in which case the function must still be
10170 -- be overridden). The expander will generate an overriding
10171 -- wrapper function calling the parent subprogram (see
10172 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10174 Type_Def := Type_Definition (Parent (T));
10176 if Nkind (Type_Def) = N_Derived_Type_Definition
10177 and then Present (Record_Extension_Part (Type_Def))
10178 and then
10179 (Ada_Version < Ada_2005
10180 or else not Is_Null_Extension (T)
10181 or else Ekind (Subp) = E_Procedure
10182 or else not Has_Controlling_Result (Subp)
10183 or else Is_Abstract_Subprogram (Alias_Subp)
10184 or else Requires_Overriding (Subp)
10185 or else Is_Access_Type (Etype (Subp)))
10186 then
10187 -- Avoid reporting error in case of abstract predefined
10188 -- primitive inherited from interface type because the
10189 -- body of internally generated predefined primitives
10190 -- of tagged types are generated later by Freeze_Type
10192 if Is_Interface (Root_Type (T))
10193 and then Is_Abstract_Subprogram (Subp)
10194 and then Is_Predefined_Dispatching_Operation (Subp)
10195 and then not Comes_From_Source (Ultimate_Alias (Subp))
10196 then
10197 null;
10199 -- A null extension is not obliged to override an inherited
10200 -- procedure subject to pragma Extensions_Visible with value
10201 -- False and at least one controlling OUT parameter
10202 -- (SPARK RM 6.1.7(6)).
10204 elsif Is_Null_Extension (T)
10205 and then Is_EVF_Procedure (Subp)
10206 then
10207 null;
10209 else
10210 Error_Msg_NE
10211 ("type must be declared abstract or & overridden",
10212 T, Subp);
10214 -- Traverse the whole chain of aliased subprograms to
10215 -- complete the error notification. This is especially
10216 -- useful for traceability of the chain of entities when
10217 -- the subprogram corresponds with an interface
10218 -- subprogram (which may be defined in another package).
10220 if Present (Alias_Subp) then
10221 declare
10222 E : Entity_Id;
10224 begin
10225 E := Subp;
10226 while Present (Alias (E)) loop
10228 -- Avoid reporting redundant errors on entities
10229 -- inherited from interfaces
10231 if Sloc (E) /= Sloc (T) then
10232 Error_Msg_Sloc := Sloc (E);
10233 Error_Msg_NE
10234 ("\& has been inherited #", T, Subp);
10235 end if;
10237 E := Alias (E);
10238 end loop;
10240 Error_Msg_Sloc := Sloc (E);
10242 -- AI05-0068: report if there is an overriding
10243 -- non-abstract subprogram that is invisible.
10245 if Is_Hidden (E)
10246 and then not Is_Abstract_Subprogram (E)
10247 then
10248 Error_Msg_NE
10249 ("\& subprogram# is not visible",
10250 T, Subp);
10252 -- Clarify the case where a non-null extension must
10253 -- override inherited procedure subject to pragma
10254 -- Extensions_Visible with value False and at least
10255 -- one controlling OUT param.
10257 elsif Is_EVF_Procedure (E) then
10258 Error_Msg_NE
10259 ("\& # is subject to Extensions_Visible False",
10260 T, Subp);
10262 else
10263 Error_Msg_NE
10264 ("\& has been inherited from subprogram #",
10265 T, Subp);
10266 end if;
10267 end;
10268 end if;
10269 end if;
10271 -- Ada 2005 (AI-345): Protected or task type implementing
10272 -- abstract interfaces.
10274 elsif Is_Concurrent_Record_Type (T)
10275 and then Present (Interfaces (T))
10276 then
10277 -- There is no need to check here RM 9.4(11.9/3) since we
10278 -- are processing the corresponding record type and the
10279 -- mode of the overriding subprograms was verified by
10280 -- Check_Conformance when the corresponding concurrent
10281 -- type declaration was analyzed.
10283 Error_Msg_NE
10284 ("interface subprogram & must be overridden", T, Subp);
10286 -- Examine primitive operations of synchronized type to find
10287 -- homonyms that have the wrong profile.
10289 declare
10290 Prim : Entity_Id;
10292 begin
10293 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10294 while Present (Prim) loop
10295 if Chars (Prim) = Chars (Subp) then
10296 Error_Msg_NE
10297 ("profile is not type conformant with prefixed "
10298 & "view profile of inherited operation&",
10299 Prim, Subp);
10300 end if;
10302 Next_Entity (Prim);
10303 end loop;
10304 end;
10305 end if;
10307 else
10308 Error_Msg_Node_2 := T;
10309 Error_Msg_N
10310 ("abstract subprogram& not allowed for type&", Subp);
10312 -- Also post unconditional warning on the type (unconditional
10313 -- so that if there are more than one of these cases, we get
10314 -- them all, and not just the first one).
10316 Error_Msg_Node_2 := Subp;
10317 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10318 end if;
10320 -- A subprogram subject to pragma Extensions_Visible with value
10321 -- "True" cannot override a subprogram subject to the same pragma
10322 -- with value "False" (SPARK RM 6.1.7(5)).
10324 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10325 and then Present (Overridden_Operation (Subp))
10326 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10327 Extensions_Visible_False
10328 then
10329 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10330 Error_Msg_N
10331 ("subprogram & with Extensions_Visible True cannot override "
10332 & "subprogram # with Extensions_Visible False", Subp);
10333 end if;
10335 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10337 -- Subp is an expander-generated procedure which maps an interface
10338 -- alias to a protected wrapper. The interface alias is flagged by
10339 -- pragma Implemented. Ensure that Subp is a procedure when the
10340 -- implementation kind is By_Protected_Procedure or an entry when
10341 -- By_Entry.
10343 if Ada_Version >= Ada_2012
10344 and then Is_Hidden (Subp)
10345 and then Present (Interface_Alias (Subp))
10346 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10347 then
10348 Check_Pragma_Implemented (Subp);
10349 end if;
10351 -- Subp is an interface primitive which overrides another interface
10352 -- primitive marked with pragma Implemented.
10354 if Ada_Version >= Ada_2012
10355 and then Present (Overridden_Operation (Subp))
10356 and then Has_Rep_Pragma
10357 (Overridden_Operation (Subp), Name_Implemented)
10358 then
10359 -- If the overriding routine is also marked by Implemented, check
10360 -- that the two implementation kinds are conforming.
10362 if Has_Rep_Pragma (Subp, Name_Implemented) then
10363 Check_Pragma_Implemented
10364 (Subp => Subp,
10365 Iface_Subp => Overridden_Operation (Subp));
10367 -- Otherwise the overriding routine inherits the implementation
10368 -- kind from the overridden subprogram.
10370 else
10371 Inherit_Pragma_Implemented
10372 (Subp => Subp,
10373 Iface_Subp => Overridden_Operation (Subp));
10374 end if;
10375 end if;
10377 -- If the operation is a wrapper for a synchronized primitive, it
10378 -- may be called indirectly through a dispatching select. We assume
10379 -- that it will be referenced elsewhere indirectly, and suppress
10380 -- warnings about an unused entity.
10382 if Is_Primitive_Wrapper (Subp)
10383 and then Present (Wrapped_Entity (Subp))
10384 then
10385 Set_Referenced (Wrapped_Entity (Subp));
10386 end if;
10388 Next_Elmt (Elmt);
10389 end loop;
10390 end Check_Abstract_Overriding;
10392 ------------------------------------------------
10393 -- Check_Access_Discriminant_Requires_Limited --
10394 ------------------------------------------------
10396 procedure Check_Access_Discriminant_Requires_Limited
10397 (D : Node_Id;
10398 Loc : Node_Id)
10400 begin
10401 -- A discriminant_specification for an access discriminant shall appear
10402 -- only in the declaration for a task or protected type, or for a type
10403 -- with the reserved word 'limited' in its definition or in one of its
10404 -- ancestors (RM 3.7(10)).
10406 -- AI-0063: The proper condition is that type must be immutably limited,
10407 -- or else be a partial view.
10409 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10410 if Is_Limited_View (Current_Scope)
10411 or else
10412 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10413 and then Limited_Present (Parent (Current_Scope)))
10414 then
10415 null;
10417 else
10418 Error_Msg_N
10419 ("access discriminants allowed only for limited types", Loc);
10420 end if;
10421 end if;
10422 end Check_Access_Discriminant_Requires_Limited;
10424 -----------------------------------
10425 -- Check_Aliased_Component_Types --
10426 -----------------------------------
10428 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10429 C : Entity_Id;
10431 begin
10432 -- ??? Also need to check components of record extensions, but not
10433 -- components of protected types (which are always limited).
10435 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10436 -- types to be unconstrained. This is safe because it is illegal to
10437 -- create access subtypes to such types with explicit discriminant
10438 -- constraints.
10440 if not Is_Limited_Type (T) then
10441 if Ekind (T) = E_Record_Type then
10442 C := First_Component (T);
10443 while Present (C) loop
10444 if Is_Aliased (C)
10445 and then Has_Discriminants (Etype (C))
10446 and then not Is_Constrained (Etype (C))
10447 and then not In_Instance_Body
10448 and then Ada_Version < Ada_2005
10449 then
10450 Error_Msg_N
10451 ("aliased component must be constrained (RM 3.6(11))",
10453 end if;
10455 Next_Component (C);
10456 end loop;
10458 elsif Ekind (T) = E_Array_Type then
10459 if Has_Aliased_Components (T)
10460 and then Has_Discriminants (Component_Type (T))
10461 and then not Is_Constrained (Component_Type (T))
10462 and then not In_Instance_Body
10463 and then Ada_Version < Ada_2005
10464 then
10465 Error_Msg_N
10466 ("aliased component type must be constrained (RM 3.6(11))",
10468 end if;
10469 end if;
10470 end if;
10471 end Check_Aliased_Component_Types;
10473 ---------------------------------------
10474 -- Check_Anonymous_Access_Components --
10475 ---------------------------------------
10477 procedure Check_Anonymous_Access_Components
10478 (Typ_Decl : Node_Id;
10479 Typ : Entity_Id;
10480 Prev : Entity_Id;
10481 Comp_List : Node_Id)
10483 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10484 Anon_Access : Entity_Id;
10485 Acc_Def : Node_Id;
10486 Comp : Node_Id;
10487 Comp_Def : Node_Id;
10488 Decl : Node_Id;
10489 Type_Def : Node_Id;
10491 procedure Build_Incomplete_Type_Declaration;
10492 -- If the record type contains components that include an access to the
10493 -- current record, then create an incomplete type declaration for the
10494 -- record, to be used as the designated type of the anonymous access.
10495 -- This is done only once, and only if there is no previous partial
10496 -- view of the type.
10498 function Designates_T (Subt : Node_Id) return Boolean;
10499 -- Check whether a node designates the enclosing record type, or 'Class
10500 -- of that type
10502 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10503 -- Check whether an access definition includes a reference to
10504 -- the enclosing record type. The reference can be a subtype mark
10505 -- in the access definition itself, a 'Class attribute reference, or
10506 -- recursively a reference appearing in a parameter specification
10507 -- or result definition of an access_to_subprogram definition.
10509 --------------------------------------
10510 -- Build_Incomplete_Type_Declaration --
10511 --------------------------------------
10513 procedure Build_Incomplete_Type_Declaration is
10514 Decl : Node_Id;
10515 Inc_T : Entity_Id;
10516 H : Entity_Id;
10518 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10519 -- it's "is new ... with record" or else "is tagged record ...".
10521 Is_Tagged : constant Boolean :=
10522 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10523 and then
10524 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10525 or else
10526 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10527 and then Tagged_Present (Type_Definition (Typ_Decl)));
10529 begin
10530 -- If there is a previous partial view, no need to create a new one
10531 -- If the partial view, given by Prev, is incomplete, If Prev is
10532 -- a private declaration, full declaration is flagged accordingly.
10534 if Prev /= Typ then
10535 if Is_Tagged then
10536 Make_Class_Wide_Type (Prev);
10537 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10538 Set_Etype (Class_Wide_Type (Typ), Typ);
10539 end if;
10541 return;
10543 elsif Has_Private_Declaration (Typ) then
10545 -- If we refer to T'Class inside T, and T is the completion of a
10546 -- private type, then make sure the class-wide type exists.
10548 if Is_Tagged then
10549 Make_Class_Wide_Type (Typ);
10550 end if;
10552 return;
10554 -- If there was a previous anonymous access type, the incomplete
10555 -- type declaration will have been created already.
10557 elsif Present (Current_Entity (Typ))
10558 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10559 and then Full_View (Current_Entity (Typ)) = Typ
10560 then
10561 if Is_Tagged
10562 and then Comes_From_Source (Current_Entity (Typ))
10563 and then not Is_Tagged_Type (Current_Entity (Typ))
10564 then
10565 Make_Class_Wide_Type (Typ);
10566 Error_Msg_N
10567 ("incomplete view of tagged type should be declared tagged??",
10568 Parent (Current_Entity (Typ)));
10569 end if;
10570 return;
10572 else
10573 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10574 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10576 -- Type has already been inserted into the current scope. Remove
10577 -- it, and add incomplete declaration for type, so that subsequent
10578 -- anonymous access types can use it. The entity is unchained from
10579 -- the homonym list and from immediate visibility. After analysis,
10580 -- the entity in the incomplete declaration becomes immediately
10581 -- visible in the record declaration that follows.
10583 H := Current_Entity (Typ);
10585 if H = Typ then
10586 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10587 else
10588 while Present (H)
10589 and then Homonym (H) /= Typ
10590 loop
10591 H := Homonym (Typ);
10592 end loop;
10594 Set_Homonym (H, Homonym (Typ));
10595 end if;
10597 Insert_Before (Typ_Decl, Decl);
10598 Analyze (Decl);
10599 Set_Full_View (Inc_T, Typ);
10601 if Is_Tagged then
10603 -- Create a common class-wide type for both views, and set the
10604 -- Etype of the class-wide type to the full view.
10606 Make_Class_Wide_Type (Inc_T);
10607 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10608 Set_Etype (Class_Wide_Type (Typ), Typ);
10609 end if;
10610 end if;
10611 end Build_Incomplete_Type_Declaration;
10613 ------------------
10614 -- Designates_T --
10615 ------------------
10617 function Designates_T (Subt : Node_Id) return Boolean is
10618 Type_Id : constant Name_Id := Chars (Typ);
10620 function Names_T (Nam : Node_Id) return Boolean;
10621 -- The record type has not been introduced in the current scope
10622 -- yet, so we must examine the name of the type itself, either
10623 -- an identifier T, or an expanded name of the form P.T, where
10624 -- P denotes the current scope.
10626 -------------
10627 -- Names_T --
10628 -------------
10630 function Names_T (Nam : Node_Id) return Boolean is
10631 begin
10632 if Nkind (Nam) = N_Identifier then
10633 return Chars (Nam) = Type_Id;
10635 elsif Nkind (Nam) = N_Selected_Component then
10636 if Chars (Selector_Name (Nam)) = Type_Id then
10637 if Nkind (Prefix (Nam)) = N_Identifier then
10638 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10640 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10641 return Chars (Selector_Name (Prefix (Nam))) =
10642 Chars (Current_Scope);
10643 else
10644 return False;
10645 end if;
10647 else
10648 return False;
10649 end if;
10651 else
10652 return False;
10653 end if;
10654 end Names_T;
10656 -- Start of processing for Designates_T
10658 begin
10659 if Nkind (Subt) = N_Identifier then
10660 return Chars (Subt) = Type_Id;
10662 -- Reference can be through an expanded name which has not been
10663 -- analyzed yet, and which designates enclosing scopes.
10665 elsif Nkind (Subt) = N_Selected_Component then
10666 if Names_T (Subt) then
10667 return True;
10669 -- Otherwise it must denote an entity that is already visible.
10670 -- The access definition may name a subtype of the enclosing
10671 -- type, if there is a previous incomplete declaration for it.
10673 else
10674 Find_Selected_Component (Subt);
10675 return
10676 Is_Entity_Name (Subt)
10677 and then Scope (Entity (Subt)) = Current_Scope
10678 and then
10679 (Chars (Base_Type (Entity (Subt))) = Type_Id
10680 or else
10681 (Is_Class_Wide_Type (Entity (Subt))
10682 and then
10683 Chars (Etype (Base_Type (Entity (Subt)))) =
10684 Type_Id));
10685 end if;
10687 -- A reference to the current type may appear as the prefix of
10688 -- a 'Class attribute.
10690 elsif Nkind (Subt) = N_Attribute_Reference
10691 and then Attribute_Name (Subt) = Name_Class
10692 then
10693 return Names_T (Prefix (Subt));
10695 else
10696 return False;
10697 end if;
10698 end Designates_T;
10700 ----------------
10701 -- Mentions_T --
10702 ----------------
10704 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10705 Param_Spec : Node_Id;
10707 Acc_Subprg : constant Node_Id :=
10708 Access_To_Subprogram_Definition (Acc_Def);
10710 begin
10711 if No (Acc_Subprg) then
10712 return Designates_T (Subtype_Mark (Acc_Def));
10713 end if;
10715 -- Component is an access_to_subprogram: examine its formals,
10716 -- and result definition in the case of an access_to_function.
10718 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10719 while Present (Param_Spec) loop
10720 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10721 and then Mentions_T (Parameter_Type (Param_Spec))
10722 then
10723 return True;
10725 elsif Designates_T (Parameter_Type (Param_Spec)) then
10726 return True;
10727 end if;
10729 Next (Param_Spec);
10730 end loop;
10732 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10733 if Nkind (Result_Definition (Acc_Subprg)) =
10734 N_Access_Definition
10735 then
10736 return Mentions_T (Result_Definition (Acc_Subprg));
10737 else
10738 return Designates_T (Result_Definition (Acc_Subprg));
10739 end if;
10740 end if;
10742 return False;
10743 end Mentions_T;
10745 -- Start of processing for Check_Anonymous_Access_Components
10747 begin
10748 if No (Comp_List) then
10749 return;
10750 end if;
10752 Comp := First (Component_Items (Comp_List));
10753 while Present (Comp) loop
10754 if Nkind (Comp) = N_Component_Declaration
10755 and then Present
10756 (Access_Definition (Component_Definition (Comp)))
10757 and then
10758 Mentions_T (Access_Definition (Component_Definition (Comp)))
10759 then
10760 Comp_Def := Component_Definition (Comp);
10761 Acc_Def :=
10762 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10764 Build_Incomplete_Type_Declaration;
10765 Anon_Access := Make_Temporary (Loc, 'S');
10767 -- Create a declaration for the anonymous access type: either
10768 -- an access_to_object or an access_to_subprogram.
10770 if Present (Acc_Def) then
10771 if Nkind (Acc_Def) = N_Access_Function_Definition then
10772 Type_Def :=
10773 Make_Access_Function_Definition (Loc,
10774 Parameter_Specifications =>
10775 Parameter_Specifications (Acc_Def),
10776 Result_Definition => Result_Definition (Acc_Def));
10777 else
10778 Type_Def :=
10779 Make_Access_Procedure_Definition (Loc,
10780 Parameter_Specifications =>
10781 Parameter_Specifications (Acc_Def));
10782 end if;
10784 else
10785 Type_Def :=
10786 Make_Access_To_Object_Definition (Loc,
10787 Subtype_Indication =>
10788 Relocate_Node
10789 (Subtype_Mark (Access_Definition (Comp_Def))));
10791 Set_Constant_Present
10792 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10793 Set_All_Present
10794 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10795 end if;
10797 Set_Null_Exclusion_Present
10798 (Type_Def,
10799 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10801 Decl :=
10802 Make_Full_Type_Declaration (Loc,
10803 Defining_Identifier => Anon_Access,
10804 Type_Definition => Type_Def);
10806 Insert_Before (Typ_Decl, Decl);
10807 Analyze (Decl);
10809 -- If an access to subprogram, create the extra formals
10811 if Present (Acc_Def) then
10812 Create_Extra_Formals (Designated_Type (Anon_Access));
10814 -- If an access to object, preserve entity of designated type,
10815 -- for ASIS use, before rewriting the component definition.
10817 else
10818 declare
10819 Desig : Entity_Id;
10821 begin
10822 Desig := Entity (Subtype_Indication (Type_Def));
10824 -- If the access definition is to the current record,
10825 -- the visible entity at this point is an incomplete
10826 -- type. Retrieve the full view to simplify ASIS queries
10828 if Ekind (Desig) = E_Incomplete_Type then
10829 Desig := Full_View (Desig);
10830 end if;
10832 Set_Entity
10833 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10834 end;
10835 end if;
10837 Rewrite (Comp_Def,
10838 Make_Component_Definition (Loc,
10839 Subtype_Indication =>
10840 New_Occurrence_Of (Anon_Access, Loc)));
10842 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10843 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10844 else
10845 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10846 end if;
10848 Set_Is_Local_Anonymous_Access (Anon_Access);
10849 end if;
10851 Next (Comp);
10852 end loop;
10854 if Present (Variant_Part (Comp_List)) then
10855 declare
10856 V : Node_Id;
10857 begin
10858 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10859 while Present (V) loop
10860 Check_Anonymous_Access_Components
10861 (Typ_Decl, Typ, Prev, Component_List (V));
10862 Next_Non_Pragma (V);
10863 end loop;
10864 end;
10865 end if;
10866 end Check_Anonymous_Access_Components;
10868 ----------------------
10869 -- Check_Completion --
10870 ----------------------
10872 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10873 E : Entity_Id;
10875 procedure Post_Error;
10876 -- Post error message for lack of completion for entity E
10878 ----------------
10879 -- Post_Error --
10880 ----------------
10882 procedure Post_Error is
10883 procedure Missing_Body;
10884 -- Output missing body message
10886 ------------------
10887 -- Missing_Body --
10888 ------------------
10890 procedure Missing_Body is
10891 begin
10892 -- Spec is in same unit, so we can post on spec
10894 if In_Same_Source_Unit (Body_Id, E) then
10895 Error_Msg_N ("missing body for &", E);
10897 -- Spec is in a separate unit, so we have to post on the body
10899 else
10900 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10901 end if;
10902 end Missing_Body;
10904 -- Start of processing for Post_Error
10906 begin
10907 if not Comes_From_Source (E) then
10908 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10910 -- It may be an anonymous protected type created for a
10911 -- single variable. Post error on variable, if present.
10913 declare
10914 Var : Entity_Id;
10916 begin
10917 Var := First_Entity (Current_Scope);
10918 while Present (Var) loop
10919 exit when Etype (Var) = E
10920 and then Comes_From_Source (Var);
10922 Next_Entity (Var);
10923 end loop;
10925 if Present (Var) then
10926 E := Var;
10927 end if;
10928 end;
10929 end if;
10930 end if;
10932 -- If a generated entity has no completion, then either previous
10933 -- semantic errors have disabled the expansion phase, or else we had
10934 -- missing subunits, or else we are compiling without expansion,
10935 -- or else something is very wrong.
10937 if not Comes_From_Source (E) then
10938 pragma Assert
10939 (Serious_Errors_Detected > 0
10940 or else Configurable_Run_Time_Violations > 0
10941 or else Subunits_Missing
10942 or else not Expander_Active);
10943 return;
10945 -- Here for source entity
10947 else
10948 -- Here if no body to post the error message, so we post the error
10949 -- on the declaration that has no completion. This is not really
10950 -- the right place to post it, think about this later ???
10952 if No (Body_Id) then
10953 if Is_Type (E) then
10954 Error_Msg_NE
10955 ("missing full declaration for }", Parent (E), E);
10956 else
10957 Error_Msg_NE ("missing body for &", Parent (E), E);
10958 end if;
10960 -- Package body has no completion for a declaration that appears
10961 -- in the corresponding spec. Post error on the body, with a
10962 -- reference to the non-completed declaration.
10964 else
10965 Error_Msg_Sloc := Sloc (E);
10967 if Is_Type (E) then
10968 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10970 elsif Is_Overloadable (E)
10971 and then Current_Entity_In_Scope (E) /= E
10972 then
10973 -- It may be that the completion is mistyped and appears as
10974 -- a distinct overloading of the entity.
10976 declare
10977 Candidate : constant Entity_Id :=
10978 Current_Entity_In_Scope (E);
10979 Decl : constant Node_Id :=
10980 Unit_Declaration_Node (Candidate);
10982 begin
10983 if Is_Overloadable (Candidate)
10984 and then Ekind (Candidate) = Ekind (E)
10985 and then Nkind (Decl) = N_Subprogram_Body
10986 and then Acts_As_Spec (Decl)
10987 then
10988 Check_Type_Conformant (Candidate, E);
10990 else
10991 Missing_Body;
10992 end if;
10993 end;
10995 else
10996 Missing_Body;
10997 end if;
10998 end if;
10999 end if;
11000 end Post_Error;
11002 -- Local variables
11004 Pack_Id : constant Entity_Id := Current_Scope;
11006 -- Start of processing for Check_Completion
11008 begin
11009 E := First_Entity (Pack_Id);
11010 while Present (E) loop
11011 if Is_Intrinsic_Subprogram (E) then
11012 null;
11014 -- The following situation requires special handling: a child unit
11015 -- that appears in the context clause of the body of its parent:
11017 -- procedure Parent.Child (...);
11019 -- with Parent.Child;
11020 -- package body Parent is
11022 -- Here Parent.Child appears as a local entity, but should not be
11023 -- flagged as requiring completion, because it is a compilation
11024 -- unit.
11026 -- Ignore missing completion for a subprogram that does not come from
11027 -- source (including the _Call primitive operation of RAS types,
11028 -- which has to have the flag Comes_From_Source for other purposes):
11029 -- we assume that the expander will provide the missing completion.
11030 -- In case of previous errors, other expansion actions that provide
11031 -- bodies for null procedures with not be invoked, so inhibit message
11032 -- in those cases.
11034 -- Note that E_Operator is not in the list that follows, because
11035 -- this kind is reserved for predefined operators, that are
11036 -- intrinsic and do not need completion.
11038 elsif Ekind_In (E, E_Function,
11039 E_Procedure,
11040 E_Generic_Function,
11041 E_Generic_Procedure)
11042 then
11043 if Has_Completion (E) then
11044 null;
11046 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11047 null;
11049 elsif Is_Subprogram (E)
11050 and then (not Comes_From_Source (E)
11051 or else Chars (E) = Name_uCall)
11052 then
11053 null;
11055 elsif
11056 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11057 then
11058 null;
11060 elsif Nkind (Parent (E)) = N_Procedure_Specification
11061 and then Null_Present (Parent (E))
11062 and then Serious_Errors_Detected > 0
11063 then
11064 null;
11066 else
11067 Post_Error;
11068 end if;
11070 elsif Is_Entry (E) then
11071 if not Has_Completion (E) and then
11072 (Ekind (Scope (E)) = E_Protected_Object
11073 or else Ekind (Scope (E)) = E_Protected_Type)
11074 then
11075 Post_Error;
11076 end if;
11078 elsif Is_Package_Or_Generic_Package (E) then
11079 if Unit_Requires_Body (E) then
11080 if not Has_Completion (E)
11081 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11082 N_Compilation_Unit
11083 then
11084 Post_Error;
11085 end if;
11087 elsif not Is_Child_Unit (E) then
11088 May_Need_Implicit_Body (E);
11089 end if;
11091 -- A formal incomplete type (Ada 2012) does not require a completion;
11092 -- other incomplete type declarations do.
11094 elsif Ekind (E) = E_Incomplete_Type
11095 and then No (Underlying_Type (E))
11096 and then not Is_Generic_Type (E)
11097 then
11098 Post_Error;
11100 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11101 and then not Has_Completion (E)
11102 then
11103 Post_Error;
11105 -- A single task declared in the current scope is a constant, verify
11106 -- that the body of its anonymous type is in the same scope. If the
11107 -- task is defined elsewhere, this may be a renaming declaration for
11108 -- which no completion is needed.
11110 elsif Ekind (E) = E_Constant
11111 and then Ekind (Etype (E)) = E_Task_Type
11112 and then not Has_Completion (Etype (E))
11113 and then Scope (Etype (E)) = Current_Scope
11114 then
11115 Post_Error;
11117 elsif Ekind (E) = E_Protected_Object
11118 and then not Has_Completion (Etype (E))
11119 then
11120 Post_Error;
11122 elsif Ekind (E) = E_Record_Type then
11123 if Is_Tagged_Type (E) then
11124 Check_Abstract_Overriding (E);
11125 Check_Conventions (E);
11126 end if;
11128 Check_Aliased_Component_Types (E);
11130 elsif Ekind (E) = E_Array_Type then
11131 Check_Aliased_Component_Types (E);
11133 end if;
11135 Next_Entity (E);
11136 end loop;
11137 end Check_Completion;
11139 ------------------------------------
11140 -- Check_CPP_Type_Has_No_Defaults --
11141 ------------------------------------
11143 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11144 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11145 Clist : Node_Id;
11146 Comp : Node_Id;
11148 begin
11149 -- Obtain the component list
11151 if Nkind (Tdef) = N_Record_Definition then
11152 Clist := Component_List (Tdef);
11153 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11154 Clist := Component_List (Record_Extension_Part (Tdef));
11155 end if;
11157 -- Check all components to ensure no default expressions
11159 if Present (Clist) then
11160 Comp := First (Component_Items (Clist));
11161 while Present (Comp) loop
11162 if Present (Expression (Comp)) then
11163 Error_Msg_N
11164 ("component of imported 'C'P'P type cannot have "
11165 & "default expression", Expression (Comp));
11166 end if;
11168 Next (Comp);
11169 end loop;
11170 end if;
11171 end Check_CPP_Type_Has_No_Defaults;
11173 ----------------------------
11174 -- Check_Delta_Expression --
11175 ----------------------------
11177 procedure Check_Delta_Expression (E : Node_Id) is
11178 begin
11179 if not (Is_Real_Type (Etype (E))) then
11180 Wrong_Type (E, Any_Real);
11182 elsif not Is_OK_Static_Expression (E) then
11183 Flag_Non_Static_Expr
11184 ("non-static expression used for delta value!", E);
11186 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11187 Error_Msg_N ("delta expression must be positive", E);
11189 else
11190 return;
11191 end if;
11193 -- If any of above errors occurred, then replace the incorrect
11194 -- expression by the real 0.1, which should prevent further errors.
11196 Rewrite (E,
11197 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11198 Analyze_And_Resolve (E, Standard_Float);
11199 end Check_Delta_Expression;
11201 -----------------------------
11202 -- Check_Digits_Expression --
11203 -----------------------------
11205 procedure Check_Digits_Expression (E : Node_Id) is
11206 begin
11207 if not (Is_Integer_Type (Etype (E))) then
11208 Wrong_Type (E, Any_Integer);
11210 elsif not Is_OK_Static_Expression (E) then
11211 Flag_Non_Static_Expr
11212 ("non-static expression used for digits value!", E);
11214 elsif Expr_Value (E) <= 0 then
11215 Error_Msg_N ("digits value must be greater than zero", E);
11217 else
11218 return;
11219 end if;
11221 -- If any of above errors occurred, then replace the incorrect
11222 -- expression by the integer 1, which should prevent further errors.
11224 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11225 Analyze_And_Resolve (E, Standard_Integer);
11227 end Check_Digits_Expression;
11229 --------------------------
11230 -- Check_Initialization --
11231 --------------------------
11233 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11234 begin
11235 -- Special processing for limited types
11237 if Is_Limited_Type (T)
11238 and then not In_Instance
11239 and then not In_Inlined_Body
11240 then
11241 if not OK_For_Limited_Init (T, Exp) then
11243 -- In GNAT mode, this is just a warning, to allow it to be evilly
11244 -- turned off. Otherwise it is a real error.
11246 if GNAT_Mode then
11247 Error_Msg_N
11248 ("??cannot initialize entities of limited type!", Exp);
11250 elsif Ada_Version < Ada_2005 then
11252 -- The side effect removal machinery may generate illegal Ada
11253 -- code to avoid the usage of access types and 'reference in
11254 -- SPARK mode. Since this is legal code with respect to theorem
11255 -- proving, do not emit the error.
11257 if GNATprove_Mode
11258 and then Nkind (Exp) = N_Function_Call
11259 and then Nkind (Parent (Exp)) = N_Object_Declaration
11260 and then not Comes_From_Source
11261 (Defining_Identifier (Parent (Exp)))
11262 then
11263 null;
11265 else
11266 Error_Msg_N
11267 ("cannot initialize entities of limited type", Exp);
11268 Explain_Limited_Type (T, Exp);
11269 end if;
11271 else
11272 -- Specialize error message according to kind of illegal
11273 -- initial expression.
11275 if Nkind (Exp) = N_Type_Conversion
11276 and then Nkind (Expression (Exp)) = N_Function_Call
11277 then
11278 Error_Msg_N
11279 ("illegal context for call"
11280 & " to function with limited result", Exp);
11282 else
11283 Error_Msg_N
11284 ("initialization of limited object requires aggregate "
11285 & "or function call", Exp);
11286 end if;
11287 end if;
11288 end if;
11289 end if;
11291 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11292 -- set unless we can be sure that no range check is required.
11294 if (GNATprove_Mode or not Expander_Active)
11295 and then Is_Scalar_Type (T)
11296 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11297 then
11298 Set_Do_Range_Check (Exp);
11299 end if;
11300 end Check_Initialization;
11302 ----------------------
11303 -- Check_Interfaces --
11304 ----------------------
11306 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11307 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11309 Iface : Node_Id;
11310 Iface_Def : Node_Id;
11311 Iface_Typ : Entity_Id;
11312 Parent_Node : Node_Id;
11314 Is_Task : Boolean := False;
11315 -- Set True if parent type or any progenitor is a task interface
11317 Is_Protected : Boolean := False;
11318 -- Set True if parent type or any progenitor is a protected interface
11320 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11321 -- Check that a progenitor is compatible with declaration. If an error
11322 -- message is output, it is posted on Error_Node.
11324 ------------------
11325 -- Check_Ifaces --
11326 ------------------
11328 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11329 Iface_Id : constant Entity_Id :=
11330 Defining_Identifier (Parent (Iface_Def));
11331 Type_Def : Node_Id;
11333 begin
11334 if Nkind (N) = N_Private_Extension_Declaration then
11335 Type_Def := N;
11336 else
11337 Type_Def := Type_Definition (N);
11338 end if;
11340 if Is_Task_Interface (Iface_Id) then
11341 Is_Task := True;
11343 elsif Is_Protected_Interface (Iface_Id) then
11344 Is_Protected := True;
11345 end if;
11347 if Is_Synchronized_Interface (Iface_Id) then
11349 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11350 -- extension derived from a synchronized interface must explicitly
11351 -- be declared synchronized, because the full view will be a
11352 -- synchronized type.
11354 if Nkind (N) = N_Private_Extension_Declaration then
11355 if not Synchronized_Present (N) then
11356 Error_Msg_NE
11357 ("private extension of& must be explicitly synchronized",
11358 N, Iface_Id);
11359 end if;
11361 -- However, by 3.9.4(16/2), a full type that is a record extension
11362 -- is never allowed to derive from a synchronized interface (note
11363 -- that interfaces must be excluded from this check, because those
11364 -- are represented by derived type definitions in some cases).
11366 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11367 and then not Interface_Present (Type_Definition (N))
11368 then
11369 Error_Msg_N ("record extension cannot derive from synchronized "
11370 & "interface", Error_Node);
11371 end if;
11372 end if;
11374 -- Check that the characteristics of the progenitor are compatible
11375 -- with the explicit qualifier in the declaration.
11376 -- The check only applies to qualifiers that come from source.
11377 -- Limited_Present also appears in the declaration of corresponding
11378 -- records, and the check does not apply to them.
11380 if Limited_Present (Type_Def)
11381 and then not
11382 Is_Concurrent_Record_Type (Defining_Identifier (N))
11383 then
11384 if Is_Limited_Interface (Parent_Type)
11385 and then not Is_Limited_Interface (Iface_Id)
11386 then
11387 Error_Msg_NE
11388 ("progenitor & must be limited interface",
11389 Error_Node, Iface_Id);
11391 elsif
11392 (Task_Present (Iface_Def)
11393 or else Protected_Present (Iface_Def)
11394 or else Synchronized_Present (Iface_Def))
11395 and then Nkind (N) /= N_Private_Extension_Declaration
11396 and then not Error_Posted (N)
11397 then
11398 Error_Msg_NE
11399 ("progenitor & must be limited interface",
11400 Error_Node, Iface_Id);
11401 end if;
11403 -- Protected interfaces can only inherit from limited, synchronized
11404 -- or protected interfaces.
11406 elsif Nkind (N) = N_Full_Type_Declaration
11407 and then Protected_Present (Type_Def)
11408 then
11409 if Limited_Present (Iface_Def)
11410 or else Synchronized_Present (Iface_Def)
11411 or else Protected_Present (Iface_Def)
11412 then
11413 null;
11415 elsif Task_Present (Iface_Def) then
11416 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11417 & "from task interface", Error_Node);
11419 else
11420 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11421 & "from non-limited interface", Error_Node);
11422 end if;
11424 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11425 -- limited and synchronized.
11427 elsif Synchronized_Present (Type_Def) then
11428 if Limited_Present (Iface_Def)
11429 or else Synchronized_Present (Iface_Def)
11430 then
11431 null;
11433 elsif Protected_Present (Iface_Def)
11434 and then Nkind (N) /= N_Private_Extension_Declaration
11435 then
11436 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11437 & "from protected interface", Error_Node);
11439 elsif Task_Present (Iface_Def)
11440 and then Nkind (N) /= N_Private_Extension_Declaration
11441 then
11442 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11443 & "from task interface", Error_Node);
11445 elsif not Is_Limited_Interface (Iface_Id) then
11446 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11447 & "from non-limited interface", Error_Node);
11448 end if;
11450 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11451 -- synchronized or task interfaces.
11453 elsif Nkind (N) = N_Full_Type_Declaration
11454 and then Task_Present (Type_Def)
11455 then
11456 if Limited_Present (Iface_Def)
11457 or else Synchronized_Present (Iface_Def)
11458 or else Task_Present (Iface_Def)
11459 then
11460 null;
11462 elsif Protected_Present (Iface_Def) then
11463 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11464 & "protected interface", Error_Node);
11466 else
11467 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11468 & "non-limited interface", Error_Node);
11469 end if;
11470 end if;
11471 end Check_Ifaces;
11473 -- Start of processing for Check_Interfaces
11475 begin
11476 if Is_Interface (Parent_Type) then
11477 if Is_Task_Interface (Parent_Type) then
11478 Is_Task := True;
11480 elsif Is_Protected_Interface (Parent_Type) then
11481 Is_Protected := True;
11482 end if;
11483 end if;
11485 if Nkind (N) = N_Private_Extension_Declaration then
11487 -- Check that progenitors are compatible with declaration
11489 Iface := First (Interface_List (Def));
11490 while Present (Iface) loop
11491 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11493 Parent_Node := Parent (Base_Type (Iface_Typ));
11494 Iface_Def := Type_Definition (Parent_Node);
11496 if not Is_Interface (Iface_Typ) then
11497 Diagnose_Interface (Iface, Iface_Typ);
11498 else
11499 Check_Ifaces (Iface_Def, Iface);
11500 end if;
11502 Next (Iface);
11503 end loop;
11505 if Is_Task and Is_Protected then
11506 Error_Msg_N
11507 ("type cannot derive from task and protected interface", N);
11508 end if;
11510 return;
11511 end if;
11513 -- Full type declaration of derived type.
11514 -- Check compatibility with parent if it is interface type
11516 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11517 and then Is_Interface (Parent_Type)
11518 then
11519 Parent_Node := Parent (Parent_Type);
11521 -- More detailed checks for interface varieties
11523 Check_Ifaces
11524 (Iface_Def => Type_Definition (Parent_Node),
11525 Error_Node => Subtype_Indication (Type_Definition (N)));
11526 end if;
11528 Iface := First (Interface_List (Def));
11529 while Present (Iface) loop
11530 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11532 Parent_Node := Parent (Base_Type (Iface_Typ));
11533 Iface_Def := Type_Definition (Parent_Node);
11535 if not Is_Interface (Iface_Typ) then
11536 Diagnose_Interface (Iface, Iface_Typ);
11538 else
11539 -- "The declaration of a specific descendant of an interface
11540 -- type freezes the interface type" RM 13.14
11542 Freeze_Before (N, Iface_Typ);
11543 Check_Ifaces (Iface_Def, Error_Node => Iface);
11544 end if;
11546 Next (Iface);
11547 end loop;
11549 if Is_Task and Is_Protected then
11550 Error_Msg_N
11551 ("type cannot derive from task and protected interface", N);
11552 end if;
11553 end Check_Interfaces;
11555 ------------------------------------
11556 -- Check_Or_Process_Discriminants --
11557 ------------------------------------
11559 -- If an incomplete or private type declaration was already given for the
11560 -- type, the discriminants may have already been processed if they were
11561 -- present on the incomplete declaration. In this case a full conformance
11562 -- check has been performed in Find_Type_Name, and we then recheck here
11563 -- some properties that can't be checked on the partial view alone.
11564 -- Otherwise we call Process_Discriminants.
11566 procedure Check_Or_Process_Discriminants
11567 (N : Node_Id;
11568 T : Entity_Id;
11569 Prev : Entity_Id := Empty)
11571 begin
11572 if Has_Discriminants (T) then
11574 -- Discriminants are already set on T if they were already present
11575 -- on the partial view. Make them visible to component declarations.
11577 declare
11578 D : Entity_Id;
11579 -- Discriminant on T (full view) referencing expr on partial view
11581 Prev_D : Entity_Id;
11582 -- Entity of corresponding discriminant on partial view
11584 New_D : Node_Id;
11585 -- Discriminant specification for full view, expression is
11586 -- the syntactic copy on full view (which has been checked for
11587 -- conformance with partial view), only used here to post error
11588 -- message.
11590 begin
11591 D := First_Discriminant (T);
11592 New_D := First (Discriminant_Specifications (N));
11593 while Present (D) loop
11594 Prev_D := Current_Entity (D);
11595 Set_Current_Entity (D);
11596 Set_Is_Immediately_Visible (D);
11597 Set_Homonym (D, Prev_D);
11599 -- Handle the case where there is an untagged partial view and
11600 -- the full view is tagged: must disallow discriminants with
11601 -- defaults, unless compiling for Ada 2012, which allows a
11602 -- limited tagged type to have defaulted discriminants (see
11603 -- AI05-0214). However, suppress error here if it was already
11604 -- reported on the default expression of the partial view.
11606 if Is_Tagged_Type (T)
11607 and then Present (Expression (Parent (D)))
11608 and then (not Is_Limited_Type (Current_Scope)
11609 or else Ada_Version < Ada_2012)
11610 and then not Error_Posted (Expression (Parent (D)))
11611 then
11612 if Ada_Version >= Ada_2012 then
11613 Error_Msg_N
11614 ("discriminants of nonlimited tagged type cannot have "
11615 & "defaults",
11616 Expression (New_D));
11617 else
11618 Error_Msg_N
11619 ("discriminants of tagged type cannot have defaults",
11620 Expression (New_D));
11621 end if;
11622 end if;
11624 -- Ada 2005 (AI-230): Access discriminant allowed in
11625 -- non-limited record types.
11627 if Ada_Version < Ada_2005 then
11629 -- This restriction gets applied to the full type here. It
11630 -- has already been applied earlier to the partial view.
11632 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11633 end if;
11635 Next_Discriminant (D);
11636 Next (New_D);
11637 end loop;
11638 end;
11640 elsif Present (Discriminant_Specifications (N)) then
11641 Process_Discriminants (N, Prev);
11642 end if;
11643 end Check_Or_Process_Discriminants;
11645 ----------------------
11646 -- Check_Real_Bound --
11647 ----------------------
11649 procedure Check_Real_Bound (Bound : Node_Id) is
11650 begin
11651 if not Is_Real_Type (Etype (Bound)) then
11652 Error_Msg_N
11653 ("bound in real type definition must be of real type", Bound);
11655 elsif not Is_OK_Static_Expression (Bound) then
11656 Flag_Non_Static_Expr
11657 ("non-static expression used for real type bound!", Bound);
11659 else
11660 return;
11661 end if;
11663 Rewrite
11664 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11665 Analyze (Bound);
11666 Resolve (Bound, Standard_Float);
11667 end Check_Real_Bound;
11669 ------------------------------
11670 -- Complete_Private_Subtype --
11671 ------------------------------
11673 procedure Complete_Private_Subtype
11674 (Priv : Entity_Id;
11675 Full : Entity_Id;
11676 Full_Base : Entity_Id;
11677 Related_Nod : Node_Id)
11679 Save_Next_Entity : Entity_Id;
11680 Save_Homonym : Entity_Id;
11682 begin
11683 -- Set semantic attributes for (implicit) private subtype completion.
11684 -- If the full type has no discriminants, then it is a copy of the
11685 -- full view of the base. Otherwise, it is a subtype of the base with
11686 -- a possible discriminant constraint. Save and restore the original
11687 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11688 -- not corrupt the entity chain.
11690 -- Note that the type of the full view is the same entity as the type
11691 -- of the partial view. In this fashion, the subtype has access to the
11692 -- correct view of the parent.
11694 Save_Next_Entity := Next_Entity (Full);
11695 Save_Homonym := Homonym (Priv);
11697 case Ekind (Full_Base) is
11698 when E_Record_Type |
11699 E_Record_Subtype |
11700 Class_Wide_Kind |
11701 Private_Kind |
11702 Task_Kind |
11703 Protected_Kind =>
11704 Copy_Node (Priv, Full);
11706 Set_Has_Discriminants
11707 (Full, Has_Discriminants (Full_Base));
11708 Set_Has_Unknown_Discriminants
11709 (Full, Has_Unknown_Discriminants (Full_Base));
11710 Set_First_Entity (Full, First_Entity (Full_Base));
11711 Set_Last_Entity (Full, Last_Entity (Full_Base));
11713 -- If the underlying base type is constrained, we know that the
11714 -- full view of the subtype is constrained as well (the converse
11715 -- is not necessarily true).
11717 if Is_Constrained (Full_Base) then
11718 Set_Is_Constrained (Full);
11719 end if;
11721 when others =>
11722 Copy_Node (Full_Base, Full);
11724 Set_Chars (Full, Chars (Priv));
11725 Conditional_Delay (Full, Priv);
11726 Set_Sloc (Full, Sloc (Priv));
11727 end case;
11729 Set_Next_Entity (Full, Save_Next_Entity);
11730 Set_Homonym (Full, Save_Homonym);
11731 Set_Associated_Node_For_Itype (Full, Related_Nod);
11733 -- Set common attributes for all subtypes: kind, convention, etc.
11735 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11736 Set_Convention (Full, Convention (Full_Base));
11738 -- The Etype of the full view is inconsistent. Gigi needs to see the
11739 -- structural full view, which is what the current scheme gives: the
11740 -- Etype of the full view is the etype of the full base. However, if the
11741 -- full base is a derived type, the full view then looks like a subtype
11742 -- of the parent, not a subtype of the full base. If instead we write:
11744 -- Set_Etype (Full, Full_Base);
11746 -- then we get inconsistencies in the front-end (confusion between
11747 -- views). Several outstanding bugs are related to this ???
11749 Set_Is_First_Subtype (Full, False);
11750 Set_Scope (Full, Scope (Priv));
11751 Set_Size_Info (Full, Full_Base);
11752 Set_RM_Size (Full, RM_Size (Full_Base));
11753 Set_Is_Itype (Full);
11755 -- A subtype of a private-type-without-discriminants, whose full-view
11756 -- has discriminants with default expressions, is not constrained.
11758 if not Has_Discriminants (Priv) then
11759 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11761 if Has_Discriminants (Full_Base) then
11762 Set_Discriminant_Constraint
11763 (Full, Discriminant_Constraint (Full_Base));
11765 -- The partial view may have been indefinite, the full view
11766 -- might not be.
11768 Set_Has_Unknown_Discriminants
11769 (Full, Has_Unknown_Discriminants (Full_Base));
11770 end if;
11771 end if;
11773 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11774 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11776 -- Freeze the private subtype entity if its parent is delayed, and not
11777 -- already frozen. We skip this processing if the type is an anonymous
11778 -- subtype of a record component, or is the corresponding record of a
11779 -- protected type, since these are processed when the enclosing type
11780 -- is frozen.
11782 if not Is_Type (Scope (Full)) then
11783 Set_Has_Delayed_Freeze (Full,
11784 Has_Delayed_Freeze (Full_Base)
11785 and then (not Is_Frozen (Full_Base)));
11786 end if;
11788 Set_Freeze_Node (Full, Empty);
11789 Set_Is_Frozen (Full, False);
11790 Set_Full_View (Priv, Full);
11792 if Has_Discriminants (Full) then
11793 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11794 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11796 if Has_Unknown_Discriminants (Full) then
11797 Set_Discriminant_Constraint (Full, No_Elist);
11798 end if;
11799 end if;
11801 if Ekind (Full_Base) = E_Record_Type
11802 and then Has_Discriminants (Full_Base)
11803 and then Has_Discriminants (Priv) -- might not, if errors
11804 and then not Has_Unknown_Discriminants (Priv)
11805 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11806 then
11807 Create_Constrained_Components
11808 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11810 -- If the full base is itself derived from private, build a congruent
11811 -- subtype of its underlying type, for use by the back end. For a
11812 -- constrained record component, the declaration cannot be placed on
11813 -- the component list, but it must nevertheless be built an analyzed, to
11814 -- supply enough information for Gigi to compute the size of component.
11816 elsif Ekind (Full_Base) in Private_Kind
11817 and then Is_Derived_Type (Full_Base)
11818 and then Has_Discriminants (Full_Base)
11819 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11820 then
11821 if not Is_Itype (Priv)
11822 and then
11823 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11824 then
11825 Build_Underlying_Full_View
11826 (Parent (Priv), Full, Etype (Full_Base));
11828 elsif Nkind (Related_Nod) = N_Component_Declaration then
11829 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11830 end if;
11832 elsif Is_Record_Type (Full_Base) then
11834 -- Show Full is simply a renaming of Full_Base
11836 Set_Cloned_Subtype (Full, Full_Base);
11837 end if;
11839 -- It is unsafe to share the bounds of a scalar type, because the Itype
11840 -- is elaborated on demand, and if a bound is non-static then different
11841 -- orders of elaboration in different units will lead to different
11842 -- external symbols.
11844 if Is_Scalar_Type (Full_Base) then
11845 Set_Scalar_Range (Full,
11846 Make_Range (Sloc (Related_Nod),
11847 Low_Bound =>
11848 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11849 High_Bound =>
11850 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11852 -- This completion inherits the bounds of the full parent, but if
11853 -- the parent is an unconstrained floating point type, so is the
11854 -- completion.
11856 if Is_Floating_Point_Type (Full_Base) then
11857 Set_Includes_Infinities
11858 (Scalar_Range (Full), Has_Infinities (Full_Base));
11859 end if;
11860 end if;
11862 -- ??? It seems that a lot of fields are missing that should be copied
11863 -- from Full_Base to Full. Here are some that are introduced in a
11864 -- non-disruptive way but a cleanup is necessary.
11866 if Is_Tagged_Type (Full_Base) then
11867 Set_Is_Tagged_Type (Full);
11868 Set_Direct_Primitive_Operations
11869 (Full, Direct_Primitive_Operations (Full_Base));
11870 Set_No_Tagged_Streams_Pragma
11871 (Full, No_Tagged_Streams_Pragma (Full_Base));
11873 -- Inherit class_wide type of full_base in case the partial view was
11874 -- not tagged. Otherwise it has already been created when the private
11875 -- subtype was analyzed.
11877 if No (Class_Wide_Type (Full)) then
11878 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11879 end if;
11881 -- If this is a subtype of a protected or task type, constrain its
11882 -- corresponding record, unless this is a subtype without constraints,
11883 -- i.e. a simple renaming as with an actual subtype in an instance.
11885 elsif Is_Concurrent_Type (Full_Base) then
11886 if Has_Discriminants (Full)
11887 and then Present (Corresponding_Record_Type (Full_Base))
11888 and then
11889 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11890 then
11891 Set_Corresponding_Record_Type (Full,
11892 Constrain_Corresponding_Record
11893 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11895 else
11896 Set_Corresponding_Record_Type (Full,
11897 Corresponding_Record_Type (Full_Base));
11898 end if;
11899 end if;
11901 -- Link rep item chain, and also setting of Has_Predicates from private
11902 -- subtype to full subtype, since we will need these on the full subtype
11903 -- to create the predicate function. Note that the full subtype may
11904 -- already have rep items, inherited from the full view of the base
11905 -- type, so we must be sure not to overwrite these entries.
11907 declare
11908 Append : Boolean;
11909 Item : Node_Id;
11910 Next_Item : Node_Id;
11912 begin
11913 Item := First_Rep_Item (Full);
11915 -- If no existing rep items on full type, we can just link directly
11916 -- to the list of items on the private type, if any exist.. Same if
11917 -- the rep items are only those inherited from the base
11919 if (No (Item)
11920 or else Nkind (Item) /= N_Aspect_Specification
11921 or else Entity (Item) = Full_Base)
11922 and then Present (First_Rep_Item (Priv))
11923 then
11924 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11926 -- Otherwise, search to the end of items currently linked to the full
11927 -- subtype and append the private items to the end. However, if Priv
11928 -- and Full already have the same list of rep items, then the append
11929 -- is not done, as that would create a circularity.
11931 elsif Item /= First_Rep_Item (Priv) then
11932 Append := True;
11933 loop
11934 Next_Item := Next_Rep_Item (Item);
11935 exit when No (Next_Item);
11936 Item := Next_Item;
11938 -- If the private view has aspect specifications, the full view
11939 -- inherits them. Since these aspects may already have been
11940 -- attached to the full view during derivation, do not append
11941 -- them if already present.
11943 if Item = First_Rep_Item (Priv) then
11944 Append := False;
11945 exit;
11946 end if;
11947 end loop;
11949 -- And link the private type items at the end of the chain
11951 if Append then
11952 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11953 end if;
11954 end if;
11955 end;
11957 -- Make sure Has_Predicates is set on full type if it is set on the
11958 -- private type. Note that it may already be set on the full type and
11959 -- if so, we don't want to unset it. Similarly, propagate information
11960 -- about delayed aspects, because the corresponding pragmas must be
11961 -- analyzed when one of the views is frozen. This last step is needed
11962 -- in particular when the full type is a scalar type for which an
11963 -- anonymous base type is constructed.
11965 -- The predicate functions are generated either at the freeze point
11966 -- of the type or at the end of the visible part, and we must avoid
11967 -- generating them twice.
11969 if Has_Predicates (Priv) then
11970 Set_Has_Predicates (Full);
11972 if Present (Predicate_Function (Priv))
11973 and then No (Predicate_Function (Full))
11974 then
11975 Set_Predicate_Function (Full, Predicate_Function (Priv));
11976 end if;
11977 end if;
11979 if Has_Delayed_Aspects (Priv) then
11980 Set_Has_Delayed_Aspects (Full);
11981 end if;
11982 end Complete_Private_Subtype;
11984 ----------------------------
11985 -- Constant_Redeclaration --
11986 ----------------------------
11988 procedure Constant_Redeclaration
11989 (Id : Entity_Id;
11990 N : Node_Id;
11991 T : out Entity_Id)
11993 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11994 Obj_Def : constant Node_Id := Object_Definition (N);
11995 New_T : Entity_Id;
11997 procedure Check_Possible_Deferred_Completion
11998 (Prev_Id : Entity_Id;
11999 Prev_Obj_Def : Node_Id;
12000 Curr_Obj_Def : Node_Id);
12001 -- Determine whether the two object definitions describe the partial
12002 -- and the full view of a constrained deferred constant. Generate
12003 -- a subtype for the full view and verify that it statically matches
12004 -- the subtype of the partial view.
12006 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12007 -- If deferred constant is an access type initialized with an allocator,
12008 -- check whether there is an illegal recursion in the definition,
12009 -- through a default value of some record subcomponent. This is normally
12010 -- detected when generating init procs, but requires this additional
12011 -- mechanism when expansion is disabled.
12013 ----------------------------------------
12014 -- Check_Possible_Deferred_Completion --
12015 ----------------------------------------
12017 procedure Check_Possible_Deferred_Completion
12018 (Prev_Id : Entity_Id;
12019 Prev_Obj_Def : Node_Id;
12020 Curr_Obj_Def : Node_Id)
12022 begin
12023 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12024 and then Present (Constraint (Prev_Obj_Def))
12025 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12026 and then Present (Constraint (Curr_Obj_Def))
12027 then
12028 declare
12029 Loc : constant Source_Ptr := Sloc (N);
12030 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12031 Decl : constant Node_Id :=
12032 Make_Subtype_Declaration (Loc,
12033 Defining_Identifier => Def_Id,
12034 Subtype_Indication =>
12035 Relocate_Node (Curr_Obj_Def));
12037 begin
12038 Insert_Before_And_Analyze (N, Decl);
12039 Set_Etype (Id, Def_Id);
12041 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12042 Error_Msg_Sloc := Sloc (Prev_Id);
12043 Error_Msg_N ("subtype does not statically match deferred "
12044 & "declaration #", N);
12045 end if;
12046 end;
12047 end if;
12048 end Check_Possible_Deferred_Completion;
12050 ---------------------------------
12051 -- Check_Recursive_Declaration --
12052 ---------------------------------
12054 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12055 Comp : Entity_Id;
12057 begin
12058 if Is_Record_Type (Typ) then
12059 Comp := First_Component (Typ);
12060 while Present (Comp) loop
12061 if Comes_From_Source (Comp) then
12062 if Present (Expression (Parent (Comp)))
12063 and then Is_Entity_Name (Expression (Parent (Comp)))
12064 and then Entity (Expression (Parent (Comp))) = Prev
12065 then
12066 Error_Msg_Sloc := Sloc (Parent (Comp));
12067 Error_Msg_NE
12068 ("illegal circularity with declaration for & #",
12069 N, Comp);
12070 return;
12072 elsif Is_Record_Type (Etype (Comp)) then
12073 Check_Recursive_Declaration (Etype (Comp));
12074 end if;
12075 end if;
12077 Next_Component (Comp);
12078 end loop;
12079 end if;
12080 end Check_Recursive_Declaration;
12082 -- Start of processing for Constant_Redeclaration
12084 begin
12085 if Nkind (Parent (Prev)) = N_Object_Declaration then
12086 if Nkind (Object_Definition
12087 (Parent (Prev))) = N_Subtype_Indication
12088 then
12089 -- Find type of new declaration. The constraints of the two
12090 -- views must match statically, but there is no point in
12091 -- creating an itype for the full view.
12093 if Nkind (Obj_Def) = N_Subtype_Indication then
12094 Find_Type (Subtype_Mark (Obj_Def));
12095 New_T := Entity (Subtype_Mark (Obj_Def));
12097 else
12098 Find_Type (Obj_Def);
12099 New_T := Entity (Obj_Def);
12100 end if;
12102 T := Etype (Prev);
12104 else
12105 -- The full view may impose a constraint, even if the partial
12106 -- view does not, so construct the subtype.
12108 New_T := Find_Type_Of_Object (Obj_Def, N);
12109 T := New_T;
12110 end if;
12112 else
12113 -- Current declaration is illegal, diagnosed below in Enter_Name
12115 T := Empty;
12116 New_T := Any_Type;
12117 end if;
12119 -- If previous full declaration or a renaming declaration exists, or if
12120 -- a homograph is present, let Enter_Name handle it, either with an
12121 -- error or with the removal of an overridden implicit subprogram.
12122 -- The previous one is a full declaration if it has an expression
12123 -- (which in the case of an aggregate is indicated by the Init flag).
12125 if Ekind (Prev) /= E_Constant
12126 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12127 or else Present (Expression (Parent (Prev)))
12128 or else Has_Init_Expression (Parent (Prev))
12129 or else Present (Full_View (Prev))
12130 then
12131 Enter_Name (Id);
12133 -- Verify that types of both declarations match, or else that both types
12134 -- are anonymous access types whose designated subtypes statically match
12135 -- (as allowed in Ada 2005 by AI-385).
12137 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12138 and then
12139 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12140 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12141 or else Is_Access_Constant (Etype (New_T)) /=
12142 Is_Access_Constant (Etype (Prev))
12143 or else Can_Never_Be_Null (Etype (New_T)) /=
12144 Can_Never_Be_Null (Etype (Prev))
12145 or else Null_Exclusion_Present (Parent (Prev)) /=
12146 Null_Exclusion_Present (Parent (Id))
12147 or else not Subtypes_Statically_Match
12148 (Designated_Type (Etype (Prev)),
12149 Designated_Type (Etype (New_T))))
12150 then
12151 Error_Msg_Sloc := Sloc (Prev);
12152 Error_Msg_N ("type does not match declaration#", N);
12153 Set_Full_View (Prev, Id);
12154 Set_Etype (Id, Any_Type);
12156 -- A deferred constant whose type is an anonymous array is always
12157 -- illegal (unless imported). A detailed error message might be
12158 -- helpful for Ada beginners.
12160 if Nkind (Object_Definition (Parent (Prev)))
12161 = N_Constrained_Array_Definition
12162 and then Nkind (Object_Definition (N))
12163 = N_Constrained_Array_Definition
12164 then
12165 Error_Msg_N ("\each anonymous array is a distinct type", N);
12166 Error_Msg_N ("a deferred constant must have a named type",
12167 Object_Definition (Parent (Prev)));
12168 end if;
12170 elsif
12171 Null_Exclusion_Present (Parent (Prev))
12172 and then not Null_Exclusion_Present (N)
12173 then
12174 Error_Msg_Sloc := Sloc (Prev);
12175 Error_Msg_N ("null-exclusion does not match declaration#", N);
12176 Set_Full_View (Prev, Id);
12177 Set_Etype (Id, Any_Type);
12179 -- If so, process the full constant declaration
12181 else
12182 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12183 -- the deferred declaration is constrained, then the subtype defined
12184 -- by the subtype_indication in the full declaration shall match it
12185 -- statically.
12187 Check_Possible_Deferred_Completion
12188 (Prev_Id => Prev,
12189 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12190 Curr_Obj_Def => Obj_Def);
12192 Set_Full_View (Prev, Id);
12193 Set_Is_Public (Id, Is_Public (Prev));
12194 Set_Is_Internal (Id);
12195 Append_Entity (Id, Current_Scope);
12197 -- Check ALIASED present if present before (RM 7.4(7))
12199 if Is_Aliased (Prev)
12200 and then not Aliased_Present (N)
12201 then
12202 Error_Msg_Sloc := Sloc (Prev);
12203 Error_Msg_N ("ALIASED required (see declaration #)", N);
12204 end if;
12206 -- Check that placement is in private part and that the incomplete
12207 -- declaration appeared in the visible part.
12209 if Ekind (Current_Scope) = E_Package
12210 and then not In_Private_Part (Current_Scope)
12211 then
12212 Error_Msg_Sloc := Sloc (Prev);
12213 Error_Msg_N
12214 ("full constant for declaration # must be in private part", N);
12216 elsif Ekind (Current_Scope) = E_Package
12217 and then
12218 List_Containing (Parent (Prev)) /=
12219 Visible_Declarations (Package_Specification (Current_Scope))
12220 then
12221 Error_Msg_N
12222 ("deferred constant must be declared in visible part",
12223 Parent (Prev));
12224 end if;
12226 if Is_Access_Type (T)
12227 and then Nkind (Expression (N)) = N_Allocator
12228 then
12229 Check_Recursive_Declaration (Designated_Type (T));
12230 end if;
12232 -- A deferred constant is a visible entity. If type has invariants,
12233 -- verify that the initial value satisfies them.
12235 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12236 Insert_After (N,
12237 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12238 end if;
12239 end if;
12240 end Constant_Redeclaration;
12242 ----------------------
12243 -- Constrain_Access --
12244 ----------------------
12246 procedure Constrain_Access
12247 (Def_Id : in out Entity_Id;
12248 S : Node_Id;
12249 Related_Nod : Node_Id)
12251 T : constant Entity_Id := Entity (Subtype_Mark (S));
12252 Desig_Type : constant Entity_Id := Designated_Type (T);
12253 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12254 Constraint_OK : Boolean := True;
12256 begin
12257 if Is_Array_Type (Desig_Type) then
12258 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12260 elsif (Is_Record_Type (Desig_Type)
12261 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12262 and then not Is_Constrained (Desig_Type)
12263 then
12264 -- ??? The following code is a temporary bypass to ignore a
12265 -- discriminant constraint on access type if it is constraining
12266 -- the current record. Avoid creating the implicit subtype of the
12267 -- record we are currently compiling since right now, we cannot
12268 -- handle these. For now, just return the access type itself.
12270 if Desig_Type = Current_Scope
12271 and then No (Def_Id)
12272 then
12273 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12274 Def_Id := Entity (Subtype_Mark (S));
12276 -- This call added to ensure that the constraint is analyzed
12277 -- (needed for a B test). Note that we still return early from
12278 -- this procedure to avoid recursive processing. ???
12280 Constrain_Discriminated_Type
12281 (Desig_Subtype, S, Related_Nod, For_Access => True);
12282 return;
12283 end if;
12285 -- Enforce rule that the constraint is illegal if there is an
12286 -- unconstrained view of the designated type. This means that the
12287 -- partial view (either a private type declaration or a derivation
12288 -- from a private type) has no discriminants. (Defect Report
12289 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12291 -- Rule updated for Ada 2005: The private type is said to have
12292 -- a constrained partial view, given that objects of the type
12293 -- can be declared. Furthermore, the rule applies to all access
12294 -- types, unlike the rule concerning default discriminants (see
12295 -- RM 3.7.1(7/3))
12297 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12298 and then Has_Private_Declaration (Desig_Type)
12299 and then In_Open_Scopes (Scope (Desig_Type))
12300 and then Has_Discriminants (Desig_Type)
12301 then
12302 declare
12303 Pack : constant Node_Id :=
12304 Unit_Declaration_Node (Scope (Desig_Type));
12305 Decls : List_Id;
12306 Decl : Node_Id;
12308 begin
12309 if Nkind (Pack) = N_Package_Declaration then
12310 Decls := Visible_Declarations (Specification (Pack));
12311 Decl := First (Decls);
12312 while Present (Decl) loop
12313 if (Nkind (Decl) = N_Private_Type_Declaration
12314 and then Chars (Defining_Identifier (Decl)) =
12315 Chars (Desig_Type))
12317 or else
12318 (Nkind (Decl) = N_Full_Type_Declaration
12319 and then
12320 Chars (Defining_Identifier (Decl)) =
12321 Chars (Desig_Type)
12322 and then Is_Derived_Type (Desig_Type)
12323 and then
12324 Has_Private_Declaration (Etype (Desig_Type)))
12325 then
12326 if No (Discriminant_Specifications (Decl)) then
12327 Error_Msg_N
12328 ("cannot constrain access type if designated "
12329 & "type has constrained partial view", S);
12330 end if;
12332 exit;
12333 end if;
12335 Next (Decl);
12336 end loop;
12337 end if;
12338 end;
12339 end if;
12341 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12342 For_Access => True);
12344 elsif Is_Concurrent_Type (Desig_Type)
12345 and then not Is_Constrained (Desig_Type)
12346 then
12347 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12349 else
12350 Error_Msg_N ("invalid constraint on access type", S);
12352 -- We simply ignore an invalid constraint
12354 Desig_Subtype := Desig_Type;
12355 Constraint_OK := False;
12356 end if;
12358 if No (Def_Id) then
12359 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12360 else
12361 Set_Ekind (Def_Id, E_Access_Subtype);
12362 end if;
12364 if Constraint_OK then
12365 Set_Etype (Def_Id, Base_Type (T));
12367 if Is_Private_Type (Desig_Type) then
12368 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12369 end if;
12370 else
12371 Set_Etype (Def_Id, Any_Type);
12372 end if;
12374 Set_Size_Info (Def_Id, T);
12375 Set_Is_Constrained (Def_Id, Constraint_OK);
12376 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12377 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12378 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12380 Conditional_Delay (Def_Id, T);
12382 -- AI-363 : Subtypes of general access types whose designated types have
12383 -- default discriminants are disallowed. In instances, the rule has to
12384 -- be checked against the actual, of which T is the subtype. In a
12385 -- generic body, the rule is checked assuming that the actual type has
12386 -- defaulted discriminants.
12388 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12389 if Ekind (Base_Type (T)) = E_General_Access_Type
12390 and then Has_Defaulted_Discriminants (Desig_Type)
12391 then
12392 if Ada_Version < Ada_2005 then
12393 Error_Msg_N
12394 ("access subtype of general access type would not " &
12395 "be allowed in Ada 2005?y?", S);
12396 else
12397 Error_Msg_N
12398 ("access subtype of general access type not allowed", S);
12399 end if;
12401 Error_Msg_N ("\discriminants have defaults", S);
12403 elsif Is_Access_Type (T)
12404 and then Is_Generic_Type (Desig_Type)
12405 and then Has_Discriminants (Desig_Type)
12406 and then In_Package_Body (Current_Scope)
12407 then
12408 if Ada_Version < Ada_2005 then
12409 Error_Msg_N
12410 ("access subtype would not be allowed in generic body "
12411 & "in Ada 2005?y?", S);
12412 else
12413 Error_Msg_N
12414 ("access subtype not allowed in generic body", S);
12415 end if;
12417 Error_Msg_N
12418 ("\designated type is a discriminated formal", S);
12419 end if;
12420 end if;
12421 end Constrain_Access;
12423 ---------------------
12424 -- Constrain_Array --
12425 ---------------------
12427 procedure Constrain_Array
12428 (Def_Id : in out Entity_Id;
12429 SI : Node_Id;
12430 Related_Nod : Node_Id;
12431 Related_Id : Entity_Id;
12432 Suffix : Character)
12434 C : constant Node_Id := Constraint (SI);
12435 Number_Of_Constraints : Nat := 0;
12436 Index : Node_Id;
12437 S, T : Entity_Id;
12438 Constraint_OK : Boolean := True;
12440 begin
12441 T := Entity (Subtype_Mark (SI));
12443 if Is_Access_Type (T) then
12444 T := Designated_Type (T);
12445 end if;
12447 -- If an index constraint follows a subtype mark in a subtype indication
12448 -- then the type or subtype denoted by the subtype mark must not already
12449 -- impose an index constraint. The subtype mark must denote either an
12450 -- unconstrained array type or an access type whose designated type
12451 -- is such an array type... (RM 3.6.1)
12453 if Is_Constrained (T) then
12454 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12455 Constraint_OK := False;
12457 else
12458 S := First (Constraints (C));
12459 while Present (S) loop
12460 Number_Of_Constraints := Number_Of_Constraints + 1;
12461 Next (S);
12462 end loop;
12464 -- In either case, the index constraint must provide a discrete
12465 -- range for each index of the array type and the type of each
12466 -- discrete range must be the same as that of the corresponding
12467 -- index. (RM 3.6.1)
12469 if Number_Of_Constraints /= Number_Dimensions (T) then
12470 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12471 Constraint_OK := False;
12473 else
12474 S := First (Constraints (C));
12475 Index := First_Index (T);
12476 Analyze (Index);
12478 -- Apply constraints to each index type
12480 for J in 1 .. Number_Of_Constraints loop
12481 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12482 Next (Index);
12483 Next (S);
12484 end loop;
12486 end if;
12487 end if;
12489 if No (Def_Id) then
12490 Def_Id :=
12491 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12492 Set_Parent (Def_Id, Related_Nod);
12494 else
12495 Set_Ekind (Def_Id, E_Array_Subtype);
12496 end if;
12498 Set_Size_Info (Def_Id, (T));
12499 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12500 Set_Etype (Def_Id, Base_Type (T));
12502 if Constraint_OK then
12503 Set_First_Index (Def_Id, First (Constraints (C)));
12504 else
12505 Set_First_Index (Def_Id, First_Index (T));
12506 end if;
12508 Set_Is_Constrained (Def_Id, True);
12509 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12510 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12512 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12513 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12515 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12516 -- We need to initialize the attribute because if Def_Id is previously
12517 -- analyzed through a limited_with clause, it will have the attributes
12518 -- of an incomplete type, one of which is an Elist that overlaps the
12519 -- Packed_Array_Impl_Type field.
12521 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12523 -- Build a freeze node if parent still needs one. Also make sure that
12524 -- the Depends_On_Private status is set because the subtype will need
12525 -- reprocessing at the time the base type does, and also we must set a
12526 -- conditional delay.
12528 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12529 Conditional_Delay (Def_Id, T);
12530 end Constrain_Array;
12532 ------------------------------
12533 -- Constrain_Component_Type --
12534 ------------------------------
12536 function Constrain_Component_Type
12537 (Comp : Entity_Id;
12538 Constrained_Typ : Entity_Id;
12539 Related_Node : Node_Id;
12540 Typ : Entity_Id;
12541 Constraints : Elist_Id) return Entity_Id
12543 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12544 Compon_Type : constant Entity_Id := Etype (Comp);
12546 function Build_Constrained_Array_Type
12547 (Old_Type : Entity_Id) return Entity_Id;
12548 -- If Old_Type is an array type, one of whose indexes is constrained
12549 -- by a discriminant, build an Itype whose constraint replaces the
12550 -- discriminant with its value in the constraint.
12552 function Build_Constrained_Discriminated_Type
12553 (Old_Type : Entity_Id) return Entity_Id;
12554 -- Ditto for record components
12556 function Build_Constrained_Access_Type
12557 (Old_Type : Entity_Id) return Entity_Id;
12558 -- Ditto for access types. Makes use of previous two functions, to
12559 -- constrain designated type.
12561 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12562 -- T is an array or discriminated type, C is a list of constraints
12563 -- that apply to T. This routine builds the constrained subtype.
12565 function Is_Discriminant (Expr : Node_Id) return Boolean;
12566 -- Returns True if Expr is a discriminant
12568 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12569 -- Find the value of discriminant Discrim in Constraint
12571 -----------------------------------
12572 -- Build_Constrained_Access_Type --
12573 -----------------------------------
12575 function Build_Constrained_Access_Type
12576 (Old_Type : Entity_Id) return Entity_Id
12578 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12579 Itype : Entity_Id;
12580 Desig_Subtype : Entity_Id;
12581 Scop : Entity_Id;
12583 begin
12584 -- if the original access type was not embedded in the enclosing
12585 -- type definition, there is no need to produce a new access
12586 -- subtype. In fact every access type with an explicit constraint
12587 -- generates an itype whose scope is the enclosing record.
12589 if not Is_Type (Scope (Old_Type)) then
12590 return Old_Type;
12592 elsif Is_Array_Type (Desig_Type) then
12593 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12595 elsif Has_Discriminants (Desig_Type) then
12597 -- This may be an access type to an enclosing record type for
12598 -- which we are constructing the constrained components. Return
12599 -- the enclosing record subtype. This is not always correct,
12600 -- but avoids infinite recursion. ???
12602 Desig_Subtype := Any_Type;
12604 for J in reverse 0 .. Scope_Stack.Last loop
12605 Scop := Scope_Stack.Table (J).Entity;
12607 if Is_Type (Scop)
12608 and then Base_Type (Scop) = Base_Type (Desig_Type)
12609 then
12610 Desig_Subtype := Scop;
12611 end if;
12613 exit when not Is_Type (Scop);
12614 end loop;
12616 if Desig_Subtype = Any_Type then
12617 Desig_Subtype :=
12618 Build_Constrained_Discriminated_Type (Desig_Type);
12619 end if;
12621 else
12622 return Old_Type;
12623 end if;
12625 if Desig_Subtype /= Desig_Type then
12627 -- The Related_Node better be here or else we won't be able
12628 -- to attach new itypes to a node in the tree.
12630 pragma Assert (Present (Related_Node));
12632 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12634 Set_Etype (Itype, Base_Type (Old_Type));
12635 Set_Size_Info (Itype, (Old_Type));
12636 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12637 Set_Depends_On_Private (Itype, Has_Private_Component
12638 (Old_Type));
12639 Set_Is_Access_Constant (Itype, Is_Access_Constant
12640 (Old_Type));
12642 -- The new itype needs freezing when it depends on a not frozen
12643 -- type and the enclosing subtype needs freezing.
12645 if Has_Delayed_Freeze (Constrained_Typ)
12646 and then not Is_Frozen (Constrained_Typ)
12647 then
12648 Conditional_Delay (Itype, Base_Type (Old_Type));
12649 end if;
12651 return Itype;
12653 else
12654 return Old_Type;
12655 end if;
12656 end Build_Constrained_Access_Type;
12658 ----------------------------------
12659 -- Build_Constrained_Array_Type --
12660 ----------------------------------
12662 function Build_Constrained_Array_Type
12663 (Old_Type : Entity_Id) return Entity_Id
12665 Lo_Expr : Node_Id;
12666 Hi_Expr : Node_Id;
12667 Old_Index : Node_Id;
12668 Range_Node : Node_Id;
12669 Constr_List : List_Id;
12671 Need_To_Create_Itype : Boolean := False;
12673 begin
12674 Old_Index := First_Index (Old_Type);
12675 while Present (Old_Index) loop
12676 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12678 if Is_Discriminant (Lo_Expr)
12679 or else
12680 Is_Discriminant (Hi_Expr)
12681 then
12682 Need_To_Create_Itype := True;
12683 end if;
12685 Next_Index (Old_Index);
12686 end loop;
12688 if Need_To_Create_Itype then
12689 Constr_List := New_List;
12691 Old_Index := First_Index (Old_Type);
12692 while Present (Old_Index) loop
12693 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12695 if Is_Discriminant (Lo_Expr) then
12696 Lo_Expr := Get_Discr_Value (Lo_Expr);
12697 end if;
12699 if Is_Discriminant (Hi_Expr) then
12700 Hi_Expr := Get_Discr_Value (Hi_Expr);
12701 end if;
12703 Range_Node :=
12704 Make_Range
12705 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12707 Append (Range_Node, To => Constr_List);
12709 Next_Index (Old_Index);
12710 end loop;
12712 return Build_Subtype (Old_Type, Constr_List);
12714 else
12715 return Old_Type;
12716 end if;
12717 end Build_Constrained_Array_Type;
12719 ------------------------------------------
12720 -- Build_Constrained_Discriminated_Type --
12721 ------------------------------------------
12723 function Build_Constrained_Discriminated_Type
12724 (Old_Type : Entity_Id) return Entity_Id
12726 Expr : Node_Id;
12727 Constr_List : List_Id;
12728 Old_Constraint : Elmt_Id;
12730 Need_To_Create_Itype : Boolean := False;
12732 begin
12733 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12734 while Present (Old_Constraint) loop
12735 Expr := Node (Old_Constraint);
12737 if Is_Discriminant (Expr) then
12738 Need_To_Create_Itype := True;
12739 end if;
12741 Next_Elmt (Old_Constraint);
12742 end loop;
12744 if Need_To_Create_Itype then
12745 Constr_List := New_List;
12747 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12748 while Present (Old_Constraint) loop
12749 Expr := Node (Old_Constraint);
12751 if Is_Discriminant (Expr) then
12752 Expr := Get_Discr_Value (Expr);
12753 end if;
12755 Append (New_Copy_Tree (Expr), To => Constr_List);
12757 Next_Elmt (Old_Constraint);
12758 end loop;
12760 return Build_Subtype (Old_Type, Constr_List);
12762 else
12763 return Old_Type;
12764 end if;
12765 end Build_Constrained_Discriminated_Type;
12767 -------------------
12768 -- Build_Subtype --
12769 -------------------
12771 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12772 Indic : Node_Id;
12773 Subtyp_Decl : Node_Id;
12774 Def_Id : Entity_Id;
12775 Btyp : Entity_Id := Base_Type (T);
12777 begin
12778 -- The Related_Node better be here or else we won't be able to
12779 -- attach new itypes to a node in the tree.
12781 pragma Assert (Present (Related_Node));
12783 -- If the view of the component's type is incomplete or private
12784 -- with unknown discriminants, then the constraint must be applied
12785 -- to the full type.
12787 if Has_Unknown_Discriminants (Btyp)
12788 and then Present (Underlying_Type (Btyp))
12789 then
12790 Btyp := Underlying_Type (Btyp);
12791 end if;
12793 Indic :=
12794 Make_Subtype_Indication (Loc,
12795 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12796 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12798 Def_Id := Create_Itype (Ekind (T), Related_Node);
12800 Subtyp_Decl :=
12801 Make_Subtype_Declaration (Loc,
12802 Defining_Identifier => Def_Id,
12803 Subtype_Indication => Indic);
12805 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12807 -- Itypes must be analyzed with checks off (see package Itypes)
12809 Analyze (Subtyp_Decl, Suppress => All_Checks);
12811 return Def_Id;
12812 end Build_Subtype;
12814 ---------------------
12815 -- Get_Discr_Value --
12816 ---------------------
12818 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12819 D : Entity_Id;
12820 E : Elmt_Id;
12822 begin
12823 -- The discriminant may be declared for the type, in which case we
12824 -- find it by iterating over the list of discriminants. If the
12825 -- discriminant is inherited from a parent type, it appears as the
12826 -- corresponding discriminant of the current type. This will be the
12827 -- case when constraining an inherited component whose constraint is
12828 -- given by a discriminant of the parent.
12830 D := First_Discriminant (Typ);
12831 E := First_Elmt (Constraints);
12833 while Present (D) loop
12834 if D = Entity (Discrim)
12835 or else D = CR_Discriminant (Entity (Discrim))
12836 or else Corresponding_Discriminant (D) = Entity (Discrim)
12837 then
12838 return Node (E);
12839 end if;
12841 Next_Discriminant (D);
12842 Next_Elmt (E);
12843 end loop;
12845 -- The Corresponding_Discriminant mechanism is incomplete, because
12846 -- the correspondence between new and old discriminants is not one
12847 -- to one: one new discriminant can constrain several old ones. In
12848 -- that case, scan sequentially the stored_constraint, the list of
12849 -- discriminants of the parents, and the constraints.
12851 -- Previous code checked for the present of the Stored_Constraint
12852 -- list for the derived type, but did not use it at all. Should it
12853 -- be present when the component is a discriminated task type?
12855 if Is_Derived_Type (Typ)
12856 and then Scope (Entity (Discrim)) = Etype (Typ)
12857 then
12858 D := First_Discriminant (Etype (Typ));
12859 E := First_Elmt (Constraints);
12860 while Present (D) loop
12861 if D = Entity (Discrim) then
12862 return Node (E);
12863 end if;
12865 Next_Discriminant (D);
12866 Next_Elmt (E);
12867 end loop;
12868 end if;
12870 -- Something is wrong if we did not find the value
12872 raise Program_Error;
12873 end Get_Discr_Value;
12875 ---------------------
12876 -- Is_Discriminant --
12877 ---------------------
12879 function Is_Discriminant (Expr : Node_Id) return Boolean is
12880 Discrim_Scope : Entity_Id;
12882 begin
12883 if Denotes_Discriminant (Expr) then
12884 Discrim_Scope := Scope (Entity (Expr));
12886 -- Either we have a reference to one of Typ's discriminants,
12888 pragma Assert (Discrim_Scope = Typ
12890 -- or to the discriminants of the parent type, in the case
12891 -- of a derivation of a tagged type with variants.
12893 or else Discrim_Scope = Etype (Typ)
12894 or else Full_View (Discrim_Scope) = Etype (Typ)
12896 -- or same as above for the case where the discriminants
12897 -- were declared in Typ's private view.
12899 or else (Is_Private_Type (Discrim_Scope)
12900 and then Chars (Discrim_Scope) = Chars (Typ))
12902 -- or else we are deriving from the full view and the
12903 -- discriminant is declared in the private entity.
12905 or else (Is_Private_Type (Typ)
12906 and then Chars (Discrim_Scope) = Chars (Typ))
12908 -- Or we are constrained the corresponding record of a
12909 -- synchronized type that completes a private declaration.
12911 or else (Is_Concurrent_Record_Type (Typ)
12912 and then
12913 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12915 -- or we have a class-wide type, in which case make sure the
12916 -- discriminant found belongs to the root type.
12918 or else (Is_Class_Wide_Type (Typ)
12919 and then Etype (Typ) = Discrim_Scope));
12921 return True;
12922 end if;
12924 -- In all other cases we have something wrong
12926 return False;
12927 end Is_Discriminant;
12929 -- Start of processing for Constrain_Component_Type
12931 begin
12932 if Nkind (Parent (Comp)) = N_Component_Declaration
12933 and then Comes_From_Source (Parent (Comp))
12934 and then Comes_From_Source
12935 (Subtype_Indication (Component_Definition (Parent (Comp))))
12936 and then
12937 Is_Entity_Name
12938 (Subtype_Indication (Component_Definition (Parent (Comp))))
12939 then
12940 return Compon_Type;
12942 elsif Is_Array_Type (Compon_Type) then
12943 return Build_Constrained_Array_Type (Compon_Type);
12945 elsif Has_Discriminants (Compon_Type) then
12946 return Build_Constrained_Discriminated_Type (Compon_Type);
12948 elsif Is_Access_Type (Compon_Type) then
12949 return Build_Constrained_Access_Type (Compon_Type);
12951 else
12952 return Compon_Type;
12953 end if;
12954 end Constrain_Component_Type;
12956 --------------------------
12957 -- Constrain_Concurrent --
12958 --------------------------
12960 -- For concurrent types, the associated record value type carries the same
12961 -- discriminants, so when we constrain a concurrent type, we must constrain
12962 -- the corresponding record type as well.
12964 procedure Constrain_Concurrent
12965 (Def_Id : in out Entity_Id;
12966 SI : Node_Id;
12967 Related_Nod : Node_Id;
12968 Related_Id : Entity_Id;
12969 Suffix : Character)
12971 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12972 -- case of a private subtype (needed when only doing semantic analysis).
12974 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12975 T_Val : Entity_Id;
12977 begin
12978 if Is_Access_Type (T_Ent) then
12979 T_Ent := Designated_Type (T_Ent);
12980 end if;
12982 T_Val := Corresponding_Record_Type (T_Ent);
12984 if Present (T_Val) then
12986 if No (Def_Id) then
12987 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12989 -- Elaborate itype now, as it may be used in a subsequent
12990 -- synchronized operation in another scope.
12992 if Nkind (Related_Nod) = N_Full_Type_Declaration then
12993 Build_Itype_Reference (Def_Id, Related_Nod);
12994 end if;
12995 end if;
12997 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12999 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13000 Set_Corresponding_Record_Type (Def_Id,
13001 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13003 else
13004 -- If there is no associated record, expansion is disabled and this
13005 -- is a generic context. Create a subtype in any case, so that
13006 -- semantic analysis can proceed.
13008 if No (Def_Id) then
13009 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13010 end if;
13012 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13013 end if;
13014 end Constrain_Concurrent;
13016 ------------------------------------
13017 -- Constrain_Corresponding_Record --
13018 ------------------------------------
13020 function Constrain_Corresponding_Record
13021 (Prot_Subt : Entity_Id;
13022 Corr_Rec : Entity_Id;
13023 Related_Nod : Node_Id) return Entity_Id
13025 T_Sub : constant Entity_Id :=
13026 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13028 begin
13029 Set_Etype (T_Sub, Corr_Rec);
13030 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13031 Set_Is_Constrained (T_Sub, True);
13032 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13033 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13035 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13036 Set_Discriminant_Constraint
13037 (T_Sub, Discriminant_Constraint (Prot_Subt));
13038 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13039 Create_Constrained_Components
13040 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13041 end if;
13043 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13045 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13046 Conditional_Delay (T_Sub, Corr_Rec);
13048 else
13049 -- This is a component subtype: it will be frozen in the context of
13050 -- the enclosing record's init_proc, so that discriminant references
13051 -- are resolved to discriminals. (Note: we used to skip freezing
13052 -- altogether in that case, which caused errors downstream for
13053 -- components of a bit packed array type).
13055 Set_Has_Delayed_Freeze (T_Sub);
13056 end if;
13058 return T_Sub;
13059 end Constrain_Corresponding_Record;
13061 -----------------------
13062 -- Constrain_Decimal --
13063 -----------------------
13065 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13066 T : constant Entity_Id := Entity (Subtype_Mark (S));
13067 C : constant Node_Id := Constraint (S);
13068 Loc : constant Source_Ptr := Sloc (C);
13069 Range_Expr : Node_Id;
13070 Digits_Expr : Node_Id;
13071 Digits_Val : Uint;
13072 Bound_Val : Ureal;
13074 begin
13075 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13077 if Nkind (C) = N_Range_Constraint then
13078 Range_Expr := Range_Expression (C);
13079 Digits_Val := Digits_Value (T);
13081 else
13082 pragma Assert (Nkind (C) = N_Digits_Constraint);
13084 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13086 Digits_Expr := Digits_Expression (C);
13087 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13089 Check_Digits_Expression (Digits_Expr);
13090 Digits_Val := Expr_Value (Digits_Expr);
13092 if Digits_Val > Digits_Value (T) then
13093 Error_Msg_N
13094 ("digits expression is incompatible with subtype", C);
13095 Digits_Val := Digits_Value (T);
13096 end if;
13098 if Present (Range_Constraint (C)) then
13099 Range_Expr := Range_Expression (Range_Constraint (C));
13100 else
13101 Range_Expr := Empty;
13102 end if;
13103 end if;
13105 Set_Etype (Def_Id, Base_Type (T));
13106 Set_Size_Info (Def_Id, (T));
13107 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13108 Set_Delta_Value (Def_Id, Delta_Value (T));
13109 Set_Scale_Value (Def_Id, Scale_Value (T));
13110 Set_Small_Value (Def_Id, Small_Value (T));
13111 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13112 Set_Digits_Value (Def_Id, Digits_Val);
13114 -- Manufacture range from given digits value if no range present
13116 if No (Range_Expr) then
13117 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13118 Range_Expr :=
13119 Make_Range (Loc,
13120 Low_Bound =>
13121 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13122 High_Bound =>
13123 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13124 end if;
13126 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13127 Set_Discrete_RM_Size (Def_Id);
13129 -- Unconditionally delay the freeze, since we cannot set size
13130 -- information in all cases correctly until the freeze point.
13132 Set_Has_Delayed_Freeze (Def_Id);
13133 end Constrain_Decimal;
13135 ----------------------------------
13136 -- Constrain_Discriminated_Type --
13137 ----------------------------------
13139 procedure Constrain_Discriminated_Type
13140 (Def_Id : Entity_Id;
13141 S : Node_Id;
13142 Related_Nod : Node_Id;
13143 For_Access : Boolean := False)
13145 E : Entity_Id := Entity (Subtype_Mark (S));
13146 T : Entity_Id;
13148 procedure Fixup_Bad_Constraint;
13149 -- Called after finding a bad constraint, and after having posted an
13150 -- appropriate error message. The goal is to leave type Def_Id in as
13151 -- reasonable state as possible.
13153 --------------------------
13154 -- Fixup_Bad_Constraint --
13155 --------------------------
13157 procedure Fixup_Bad_Constraint is
13158 begin
13159 -- Set a reasonable Ekind for the entity. For an incomplete type,
13160 -- we can't do much, but for other types, we can set the proper
13161 -- corresponding subtype kind.
13163 if Ekind (T) = E_Incomplete_Type then
13164 Set_Ekind (Def_Id, Ekind (T));
13165 else
13166 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13167 end if;
13169 -- Set Etype to the known type, to reduce chances of cascaded errors
13171 Set_Etype (Def_Id, E);
13172 Set_Error_Posted (Def_Id);
13173 end Fixup_Bad_Constraint;
13175 -- Local variables
13177 C : Node_Id;
13178 Constr : Elist_Id := New_Elmt_List;
13180 -- Start of processing for Constrain_Discriminated_Type
13182 begin
13183 C := Constraint (S);
13185 -- A discriminant constraint is only allowed in a subtype indication,
13186 -- after a subtype mark. This subtype mark must denote either a type
13187 -- with discriminants, or an access type whose designated type is a
13188 -- type with discriminants. A discriminant constraint specifies the
13189 -- values of these discriminants (RM 3.7.2(5)).
13191 T := Base_Type (Entity (Subtype_Mark (S)));
13193 if Is_Access_Type (T) then
13194 T := Designated_Type (T);
13195 end if;
13197 -- In an instance it may be necessary to retrieve the full view of a
13198 -- type with unknown discriminants, or a full view with defaulted
13199 -- discriminants. In other contexts the constraint is illegal.
13201 if In_Instance
13202 and then Is_Private_Type (T)
13203 and then Present (Full_View (T))
13204 and then
13205 (Has_Unknown_Discriminants (T)
13206 or else
13207 (not Has_Discriminants (T)
13208 and then Has_Discriminants (Full_View (T))
13209 and then Present (Discriminant_Default_Value
13210 (First_Discriminant (Full_View (T))))))
13211 then
13212 T := Full_View (T);
13213 E := Full_View (E);
13214 end if;
13216 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13217 -- generating an error for access-to-incomplete subtypes.
13219 if Ada_Version >= Ada_2005
13220 and then Ekind (T) = E_Incomplete_Type
13221 and then Nkind (Parent (S)) = N_Subtype_Declaration
13222 and then not Is_Itype (Def_Id)
13223 then
13224 -- A little sanity check: emit an error message if the type has
13225 -- discriminants to begin with. Type T may be a regular incomplete
13226 -- type or imported via a limited with clause.
13228 if Has_Discriminants (T)
13229 or else (From_Limited_With (T)
13230 and then Present (Non_Limited_View (T))
13231 and then Nkind (Parent (Non_Limited_View (T))) =
13232 N_Full_Type_Declaration
13233 and then Present (Discriminant_Specifications
13234 (Parent (Non_Limited_View (T)))))
13235 then
13236 Error_Msg_N
13237 ("(Ada 2005) incomplete subtype may not be constrained", C);
13238 else
13239 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13240 end if;
13242 Fixup_Bad_Constraint;
13243 return;
13245 -- Check that the type has visible discriminants. The type may be
13246 -- a private type with unknown discriminants whose full view has
13247 -- discriminants which are invisible.
13249 elsif not Has_Discriminants (T)
13250 or else
13251 (Has_Unknown_Discriminants (T)
13252 and then Is_Private_Type (T))
13253 then
13254 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13255 Fixup_Bad_Constraint;
13256 return;
13258 elsif Is_Constrained (E)
13259 or else (Ekind (E) = E_Class_Wide_Subtype
13260 and then Present (Discriminant_Constraint (E)))
13261 then
13262 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13263 Fixup_Bad_Constraint;
13264 return;
13265 end if;
13267 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13268 -- applies to the base type.
13270 T := Base_Type (T);
13272 Constr := Build_Discriminant_Constraints (T, S);
13274 -- If the list returned was empty we had an error in building the
13275 -- discriminant constraint. We have also already signalled an error
13276 -- in the incomplete type case
13278 if Is_Empty_Elmt_List (Constr) then
13279 Fixup_Bad_Constraint;
13280 return;
13281 end if;
13283 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13284 end Constrain_Discriminated_Type;
13286 ---------------------------
13287 -- Constrain_Enumeration --
13288 ---------------------------
13290 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13291 T : constant Entity_Id := Entity (Subtype_Mark (S));
13292 C : constant Node_Id := Constraint (S);
13294 begin
13295 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13297 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13299 Set_Etype (Def_Id, Base_Type (T));
13300 Set_Size_Info (Def_Id, (T));
13301 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13302 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13304 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13306 Set_Discrete_RM_Size (Def_Id);
13307 end Constrain_Enumeration;
13309 ----------------------
13310 -- Constrain_Float --
13311 ----------------------
13313 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13314 T : constant Entity_Id := Entity (Subtype_Mark (S));
13315 C : Node_Id;
13316 D : Node_Id;
13317 Rais : Node_Id;
13319 begin
13320 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13322 Set_Etype (Def_Id, Base_Type (T));
13323 Set_Size_Info (Def_Id, (T));
13324 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13326 -- Process the constraint
13328 C := Constraint (S);
13330 -- Digits constraint present
13332 if Nkind (C) = N_Digits_Constraint then
13334 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13335 Check_Restriction (No_Obsolescent_Features, C);
13337 if Warn_On_Obsolescent_Feature then
13338 Error_Msg_N
13339 ("subtype digits constraint is an " &
13340 "obsolescent feature (RM J.3(8))?j?", C);
13341 end if;
13343 D := Digits_Expression (C);
13344 Analyze_And_Resolve (D, Any_Integer);
13345 Check_Digits_Expression (D);
13346 Set_Digits_Value (Def_Id, Expr_Value (D));
13348 -- Check that digits value is in range. Obviously we can do this
13349 -- at compile time, but it is strictly a runtime check, and of
13350 -- course there is an ACVC test that checks this.
13352 if Digits_Value (Def_Id) > Digits_Value (T) then
13353 Error_Msg_Uint_1 := Digits_Value (T);
13354 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13355 Rais :=
13356 Make_Raise_Constraint_Error (Sloc (D),
13357 Reason => CE_Range_Check_Failed);
13358 Insert_Action (Declaration_Node (Def_Id), Rais);
13359 end if;
13361 C := Range_Constraint (C);
13363 -- No digits constraint present
13365 else
13366 Set_Digits_Value (Def_Id, Digits_Value (T));
13367 end if;
13369 -- Range constraint present
13371 if Nkind (C) = N_Range_Constraint then
13372 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13374 -- No range constraint present
13376 else
13377 pragma Assert (No (C));
13378 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13379 end if;
13381 Set_Is_Constrained (Def_Id);
13382 end Constrain_Float;
13384 ---------------------
13385 -- Constrain_Index --
13386 ---------------------
13388 procedure Constrain_Index
13389 (Index : Node_Id;
13390 S : Node_Id;
13391 Related_Nod : Node_Id;
13392 Related_Id : Entity_Id;
13393 Suffix : Character;
13394 Suffix_Index : Nat)
13396 Def_Id : Entity_Id;
13397 R : Node_Id := Empty;
13398 T : constant Entity_Id := Etype (Index);
13400 begin
13401 Def_Id :=
13402 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13403 Set_Etype (Def_Id, Base_Type (T));
13405 if Nkind (S) = N_Range
13406 or else
13407 (Nkind (S) = N_Attribute_Reference
13408 and then Attribute_Name (S) = Name_Range)
13409 then
13410 -- A Range attribute will be transformed into N_Range by Resolve
13412 Analyze (S);
13413 Set_Etype (S, T);
13414 R := S;
13416 Process_Range_Expr_In_Decl (R, T);
13418 if not Error_Posted (S)
13419 and then
13420 (Nkind (S) /= N_Range
13421 or else not Covers (T, (Etype (Low_Bound (S))))
13422 or else not Covers (T, (Etype (High_Bound (S)))))
13423 then
13424 if Base_Type (T) /= Any_Type
13425 and then Etype (Low_Bound (S)) /= Any_Type
13426 and then Etype (High_Bound (S)) /= Any_Type
13427 then
13428 Error_Msg_N ("range expected", S);
13429 end if;
13430 end if;
13432 elsif Nkind (S) = N_Subtype_Indication then
13434 -- The parser has verified that this is a discrete indication
13436 Resolve_Discrete_Subtype_Indication (S, T);
13437 Bad_Predicated_Subtype_Use
13438 ("subtype& has predicate, not allowed in index constraint",
13439 S, Entity (Subtype_Mark (S)));
13441 R := Range_Expression (Constraint (S));
13443 -- Capture values of bounds and generate temporaries for them if
13444 -- needed, since checks may cause duplication of the expressions
13445 -- which must not be reevaluated.
13447 -- The forced evaluation removes side effects from expressions, which
13448 -- should occur also in GNATprove mode. Otherwise, we end up with
13449 -- unexpected insertions of actions at places where this is not
13450 -- supposed to occur, e.g. on default parameters of a call.
13452 if Expander_Active or GNATprove_Mode then
13453 Force_Evaluation
13454 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13455 Force_Evaluation
13456 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13457 end if;
13459 elsif Nkind (S) = N_Discriminant_Association then
13461 -- Syntactically valid in subtype indication
13463 Error_Msg_N ("invalid index constraint", S);
13464 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13465 return;
13467 -- Subtype_Mark case, no anonymous subtypes to construct
13469 else
13470 Analyze (S);
13472 if Is_Entity_Name (S) then
13473 if not Is_Type (Entity (S)) then
13474 Error_Msg_N ("expect subtype mark for index constraint", S);
13476 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13477 Wrong_Type (S, Base_Type (T));
13479 -- Check error of subtype with predicate in index constraint
13481 else
13482 Bad_Predicated_Subtype_Use
13483 ("subtype& has predicate, not allowed in index constraint",
13484 S, Entity (S));
13485 end if;
13487 return;
13489 else
13490 Error_Msg_N ("invalid index constraint", S);
13491 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13492 return;
13493 end if;
13494 end if;
13496 -- Complete construction of the Itype
13498 if Is_Modular_Integer_Type (T) then
13499 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13501 elsif Is_Integer_Type (T) then
13502 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13504 else
13505 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13506 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13507 Set_First_Literal (Def_Id, First_Literal (T));
13508 end if;
13510 Set_Size_Info (Def_Id, (T));
13511 Set_RM_Size (Def_Id, RM_Size (T));
13512 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13514 Set_Scalar_Range (Def_Id, R);
13516 Set_Etype (S, Def_Id);
13517 Set_Discrete_RM_Size (Def_Id);
13518 end Constrain_Index;
13520 -----------------------
13521 -- Constrain_Integer --
13522 -----------------------
13524 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13525 T : constant Entity_Id := Entity (Subtype_Mark (S));
13526 C : constant Node_Id := Constraint (S);
13528 begin
13529 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13531 if Is_Modular_Integer_Type (T) then
13532 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13533 else
13534 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13535 end if;
13537 Set_Etype (Def_Id, Base_Type (T));
13538 Set_Size_Info (Def_Id, (T));
13539 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13540 Set_Discrete_RM_Size (Def_Id);
13541 end Constrain_Integer;
13543 ------------------------------
13544 -- Constrain_Ordinary_Fixed --
13545 ------------------------------
13547 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13548 T : constant Entity_Id := Entity (Subtype_Mark (S));
13549 C : Node_Id;
13550 D : Node_Id;
13551 Rais : Node_Id;
13553 begin
13554 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13555 Set_Etype (Def_Id, Base_Type (T));
13556 Set_Size_Info (Def_Id, (T));
13557 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13558 Set_Small_Value (Def_Id, Small_Value (T));
13560 -- Process the constraint
13562 C := Constraint (S);
13564 -- Delta constraint present
13566 if Nkind (C) = N_Delta_Constraint then
13568 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13569 Check_Restriction (No_Obsolescent_Features, C);
13571 if Warn_On_Obsolescent_Feature then
13572 Error_Msg_S
13573 ("subtype delta constraint is an " &
13574 "obsolescent feature (RM J.3(7))?j?");
13575 end if;
13577 D := Delta_Expression (C);
13578 Analyze_And_Resolve (D, Any_Real);
13579 Check_Delta_Expression (D);
13580 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13582 -- Check that delta value is in range. Obviously we can do this
13583 -- at compile time, but it is strictly a runtime check, and of
13584 -- course there is an ACVC test that checks this.
13586 if Delta_Value (Def_Id) < Delta_Value (T) then
13587 Error_Msg_N ("??delta value is too small", D);
13588 Rais :=
13589 Make_Raise_Constraint_Error (Sloc (D),
13590 Reason => CE_Range_Check_Failed);
13591 Insert_Action (Declaration_Node (Def_Id), Rais);
13592 end if;
13594 C := Range_Constraint (C);
13596 -- No delta constraint present
13598 else
13599 Set_Delta_Value (Def_Id, Delta_Value (T));
13600 end if;
13602 -- Range constraint present
13604 if Nkind (C) = N_Range_Constraint then
13605 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13607 -- No range constraint present
13609 else
13610 pragma Assert (No (C));
13611 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13612 end if;
13614 Set_Discrete_RM_Size (Def_Id);
13616 -- Unconditionally delay the freeze, since we cannot set size
13617 -- information in all cases correctly until the freeze point.
13619 Set_Has_Delayed_Freeze (Def_Id);
13620 end Constrain_Ordinary_Fixed;
13622 -----------------------
13623 -- Contain_Interface --
13624 -----------------------
13626 function Contain_Interface
13627 (Iface : Entity_Id;
13628 Ifaces : Elist_Id) return Boolean
13630 Iface_Elmt : Elmt_Id;
13632 begin
13633 if Present (Ifaces) then
13634 Iface_Elmt := First_Elmt (Ifaces);
13635 while Present (Iface_Elmt) loop
13636 if Node (Iface_Elmt) = Iface then
13637 return True;
13638 end if;
13640 Next_Elmt (Iface_Elmt);
13641 end loop;
13642 end if;
13644 return False;
13645 end Contain_Interface;
13647 ---------------------------
13648 -- Convert_Scalar_Bounds --
13649 ---------------------------
13651 procedure Convert_Scalar_Bounds
13652 (N : Node_Id;
13653 Parent_Type : Entity_Id;
13654 Derived_Type : Entity_Id;
13655 Loc : Source_Ptr)
13657 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13659 Lo : Node_Id;
13660 Hi : Node_Id;
13661 Rng : Node_Id;
13663 begin
13664 -- Defend against previous errors
13666 if No (Scalar_Range (Derived_Type)) then
13667 Check_Error_Detected;
13668 return;
13669 end if;
13671 Lo := Build_Scalar_Bound
13672 (Type_Low_Bound (Derived_Type),
13673 Parent_Type, Implicit_Base);
13675 Hi := Build_Scalar_Bound
13676 (Type_High_Bound (Derived_Type),
13677 Parent_Type, Implicit_Base);
13679 Rng :=
13680 Make_Range (Loc,
13681 Low_Bound => Lo,
13682 High_Bound => Hi);
13684 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13686 Set_Parent (Rng, N);
13687 Set_Scalar_Range (Derived_Type, Rng);
13689 -- Analyze the bounds
13691 Analyze_And_Resolve (Lo, Implicit_Base);
13692 Analyze_And_Resolve (Hi, Implicit_Base);
13694 -- Analyze the range itself, except that we do not analyze it if
13695 -- the bounds are real literals, and we have a fixed-point type.
13696 -- The reason for this is that we delay setting the bounds in this
13697 -- case till we know the final Small and Size values (see circuit
13698 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13700 if Is_Fixed_Point_Type (Parent_Type)
13701 and then Nkind (Lo) = N_Real_Literal
13702 and then Nkind (Hi) = N_Real_Literal
13703 then
13704 return;
13706 -- Here we do the analysis of the range
13708 -- Note: we do this manually, since if we do a normal Analyze and
13709 -- Resolve call, there are problems with the conversions used for
13710 -- the derived type range.
13712 else
13713 Set_Etype (Rng, Implicit_Base);
13714 Set_Analyzed (Rng, True);
13715 end if;
13716 end Convert_Scalar_Bounds;
13718 -------------------
13719 -- Copy_And_Swap --
13720 -------------------
13722 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13723 begin
13724 -- Initialize new full declaration entity by copying the pertinent
13725 -- fields of the corresponding private declaration entity.
13727 -- We temporarily set Ekind to a value appropriate for a type to
13728 -- avoid assert failures in Einfo from checking for setting type
13729 -- attributes on something that is not a type. Ekind (Priv) is an
13730 -- appropriate choice, since it allowed the attributes to be set
13731 -- in the first place. This Ekind value will be modified later.
13733 Set_Ekind (Full, Ekind (Priv));
13735 -- Also set Etype temporarily to Any_Type, again, in the absence
13736 -- of errors, it will be properly reset, and if there are errors,
13737 -- then we want a value of Any_Type to remain.
13739 Set_Etype (Full, Any_Type);
13741 -- Now start copying attributes
13743 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13745 if Has_Discriminants (Full) then
13746 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13747 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13748 end if;
13750 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13751 Set_Homonym (Full, Homonym (Priv));
13752 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13753 Set_Is_Public (Full, Is_Public (Priv));
13754 Set_Is_Pure (Full, Is_Pure (Priv));
13755 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13756 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13757 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13758 Set_Has_Pragma_Unreferenced_Objects
13759 (Full, Has_Pragma_Unreferenced_Objects
13760 (Priv));
13762 Conditional_Delay (Full, Priv);
13764 if Is_Tagged_Type (Full) then
13765 Set_Direct_Primitive_Operations
13766 (Full, Direct_Primitive_Operations (Priv));
13767 Set_No_Tagged_Streams_Pragma
13768 (Full, No_Tagged_Streams_Pragma (Priv));
13770 if Is_Base_Type (Priv) then
13771 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13772 end if;
13773 end if;
13775 Set_Is_Volatile (Full, Is_Volatile (Priv));
13776 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13777 Set_Scope (Full, Scope (Priv));
13778 Set_Next_Entity (Full, Next_Entity (Priv));
13779 Set_First_Entity (Full, First_Entity (Priv));
13780 Set_Last_Entity (Full, Last_Entity (Priv));
13782 -- If access types have been recorded for later handling, keep them in
13783 -- the full view so that they get handled when the full view freeze
13784 -- node is expanded.
13786 if Present (Freeze_Node (Priv))
13787 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13788 then
13789 Ensure_Freeze_Node (Full);
13790 Set_Access_Types_To_Process
13791 (Freeze_Node (Full),
13792 Access_Types_To_Process (Freeze_Node (Priv)));
13793 end if;
13795 -- Swap the two entities. Now Private is the full type entity and Full
13796 -- is the private one. They will be swapped back at the end of the
13797 -- private part. This swapping ensures that the entity that is visible
13798 -- in the private part is the full declaration.
13800 Exchange_Entities (Priv, Full);
13801 Append_Entity (Full, Scope (Full));
13802 end Copy_And_Swap;
13804 -------------------------------------
13805 -- Copy_Array_Base_Type_Attributes --
13806 -------------------------------------
13808 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13809 begin
13810 Set_Component_Alignment (T1, Component_Alignment (T2));
13811 Set_Component_Type (T1, Component_Type (T2));
13812 Set_Component_Size (T1, Component_Size (T2));
13813 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13814 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13815 Propagate_Concurrent_Flags (T1, T2);
13816 Set_Is_Packed (T1, Is_Packed (T2));
13817 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13818 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13819 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13820 end Copy_Array_Base_Type_Attributes;
13822 -----------------------------------
13823 -- Copy_Array_Subtype_Attributes --
13824 -----------------------------------
13826 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13827 begin
13828 Set_Size_Info (T1, T2);
13830 Set_First_Index (T1, First_Index (T2));
13831 Set_Is_Aliased (T1, Is_Aliased (T2));
13832 Set_Is_Volatile (T1, Is_Volatile (T2));
13833 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13834 Set_Is_Constrained (T1, Is_Constrained (T2));
13835 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13836 Inherit_Rep_Item_Chain (T1, T2);
13837 Set_Convention (T1, Convention (T2));
13838 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13839 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13840 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13841 end Copy_Array_Subtype_Attributes;
13843 -----------------------------------
13844 -- Create_Constrained_Components --
13845 -----------------------------------
13847 procedure Create_Constrained_Components
13848 (Subt : Entity_Id;
13849 Decl_Node : Node_Id;
13850 Typ : Entity_Id;
13851 Constraints : Elist_Id)
13853 Loc : constant Source_Ptr := Sloc (Subt);
13854 Comp_List : constant Elist_Id := New_Elmt_List;
13855 Parent_Type : constant Entity_Id := Etype (Typ);
13856 Assoc_List : constant List_Id := New_List;
13857 Discr_Val : Elmt_Id;
13858 Errors : Boolean;
13859 New_C : Entity_Id;
13860 Old_C : Entity_Id;
13861 Is_Static : Boolean := True;
13863 procedure Collect_Fixed_Components (Typ : Entity_Id);
13864 -- Collect parent type components that do not appear in a variant part
13866 procedure Create_All_Components;
13867 -- Iterate over Comp_List to create the components of the subtype
13869 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13870 -- Creates a new component from Old_Compon, copying all the fields from
13871 -- it, including its Etype, inserts the new component in the Subt entity
13872 -- chain and returns the new component.
13874 function Is_Variant_Record (T : Entity_Id) return Boolean;
13875 -- If true, and discriminants are static, collect only components from
13876 -- variants selected by discriminant values.
13878 ------------------------------
13879 -- Collect_Fixed_Components --
13880 ------------------------------
13882 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13883 begin
13884 -- Build association list for discriminants, and find components of the
13885 -- variant part selected by the values of the discriminants.
13887 Old_C := First_Discriminant (Typ);
13888 Discr_Val := First_Elmt (Constraints);
13889 while Present (Old_C) loop
13890 Append_To (Assoc_List,
13891 Make_Component_Association (Loc,
13892 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13893 Expression => New_Copy (Node (Discr_Val))));
13895 Next_Elmt (Discr_Val);
13896 Next_Discriminant (Old_C);
13897 end loop;
13899 -- The tag and the possible parent component are unconditionally in
13900 -- the subtype.
13902 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13903 Old_C := First_Component (Typ);
13904 while Present (Old_C) loop
13905 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13906 Append_Elmt (Old_C, Comp_List);
13907 end if;
13909 Next_Component (Old_C);
13910 end loop;
13911 end if;
13912 end Collect_Fixed_Components;
13914 ---------------------------
13915 -- Create_All_Components --
13916 ---------------------------
13918 procedure Create_All_Components is
13919 Comp : Elmt_Id;
13921 begin
13922 Comp := First_Elmt (Comp_List);
13923 while Present (Comp) loop
13924 Old_C := Node (Comp);
13925 New_C := Create_Component (Old_C);
13927 Set_Etype
13928 (New_C,
13929 Constrain_Component_Type
13930 (Old_C, Subt, Decl_Node, Typ, Constraints));
13931 Set_Is_Public (New_C, Is_Public (Subt));
13933 Next_Elmt (Comp);
13934 end loop;
13935 end Create_All_Components;
13937 ----------------------
13938 -- Create_Component --
13939 ----------------------
13941 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13942 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13944 begin
13945 if Ekind (Old_Compon) = E_Discriminant
13946 and then Is_Completely_Hidden (Old_Compon)
13947 then
13948 -- This is a shadow discriminant created for a discriminant of
13949 -- the parent type, which needs to be present in the subtype.
13950 -- Give the shadow discriminant an internal name that cannot
13951 -- conflict with that of visible components.
13953 Set_Chars (New_Compon, New_Internal_Name ('C'));
13954 end if;
13956 -- Set the parent so we have a proper link for freezing etc. This is
13957 -- not a real parent pointer, since of course our parent does not own
13958 -- up to us and reference us, we are an illegitimate child of the
13959 -- original parent.
13961 Set_Parent (New_Compon, Parent (Old_Compon));
13963 -- If the old component's Esize was already determined and is a
13964 -- static value, then the new component simply inherits it. Otherwise
13965 -- the old component's size may require run-time determination, but
13966 -- the new component's size still might be statically determinable
13967 -- (if, for example it has a static constraint). In that case we want
13968 -- Layout_Type to recompute the component's size, so we reset its
13969 -- size and positional fields.
13971 if Frontend_Layout_On_Target
13972 and then not Known_Static_Esize (Old_Compon)
13973 then
13974 Set_Esize (New_Compon, Uint_0);
13975 Init_Normalized_First_Bit (New_Compon);
13976 Init_Normalized_Position (New_Compon);
13977 Init_Normalized_Position_Max (New_Compon);
13978 end if;
13980 -- We do not want this node marked as Comes_From_Source, since
13981 -- otherwise it would get first class status and a separate cross-
13982 -- reference line would be generated. Illegitimate children do not
13983 -- rate such recognition.
13985 Set_Comes_From_Source (New_Compon, False);
13987 -- But it is a real entity, and a birth certificate must be properly
13988 -- registered by entering it into the entity list.
13990 Enter_Name (New_Compon);
13992 return New_Compon;
13993 end Create_Component;
13995 -----------------------
13996 -- Is_Variant_Record --
13997 -----------------------
13999 function Is_Variant_Record (T : Entity_Id) return Boolean is
14000 begin
14001 return Nkind (Parent (T)) = N_Full_Type_Declaration
14002 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14003 and then Present (Component_List (Type_Definition (Parent (T))))
14004 and then
14005 Present
14006 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14007 end Is_Variant_Record;
14009 -- Start of processing for Create_Constrained_Components
14011 begin
14012 pragma Assert (Subt /= Base_Type (Subt));
14013 pragma Assert (Typ = Base_Type (Typ));
14015 Set_First_Entity (Subt, Empty);
14016 Set_Last_Entity (Subt, Empty);
14018 -- Check whether constraint is fully static, in which case we can
14019 -- optimize the list of components.
14021 Discr_Val := First_Elmt (Constraints);
14022 while Present (Discr_Val) loop
14023 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14024 Is_Static := False;
14025 exit;
14026 end if;
14028 Next_Elmt (Discr_Val);
14029 end loop;
14031 Set_Has_Static_Discriminants (Subt, Is_Static);
14033 Push_Scope (Subt);
14035 -- Inherit the discriminants of the parent type
14037 Add_Discriminants : declare
14038 Num_Disc : Nat;
14039 Num_Gird : Nat;
14041 begin
14042 Num_Disc := 0;
14043 Old_C := First_Discriminant (Typ);
14045 while Present (Old_C) loop
14046 Num_Disc := Num_Disc + 1;
14047 New_C := Create_Component (Old_C);
14048 Set_Is_Public (New_C, Is_Public (Subt));
14049 Next_Discriminant (Old_C);
14050 end loop;
14052 -- For an untagged derived subtype, the number of discriminants may
14053 -- be smaller than the number of inherited discriminants, because
14054 -- several of them may be renamed by a single new discriminant or
14055 -- constrained. In this case, add the hidden discriminants back into
14056 -- the subtype, because they need to be present if the optimizer of
14057 -- the GCC 4.x back-end decides to break apart assignments between
14058 -- objects using the parent view into member-wise assignments.
14060 Num_Gird := 0;
14062 if Is_Derived_Type (Typ)
14063 and then not Is_Tagged_Type (Typ)
14064 then
14065 Old_C := First_Stored_Discriminant (Typ);
14067 while Present (Old_C) loop
14068 Num_Gird := Num_Gird + 1;
14069 Next_Stored_Discriminant (Old_C);
14070 end loop;
14071 end if;
14073 if Num_Gird > Num_Disc then
14075 -- Find out multiple uses of new discriminants, and add hidden
14076 -- components for the extra renamed discriminants. We recognize
14077 -- multiple uses through the Corresponding_Discriminant of a
14078 -- new discriminant: if it constrains several old discriminants,
14079 -- this field points to the last one in the parent type. The
14080 -- stored discriminants of the derived type have the same name
14081 -- as those of the parent.
14083 declare
14084 Constr : Elmt_Id;
14085 New_Discr : Entity_Id;
14086 Old_Discr : Entity_Id;
14088 begin
14089 Constr := First_Elmt (Stored_Constraint (Typ));
14090 Old_Discr := First_Stored_Discriminant (Typ);
14091 while Present (Constr) loop
14092 if Is_Entity_Name (Node (Constr))
14093 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14094 then
14095 New_Discr := Entity (Node (Constr));
14097 if Chars (Corresponding_Discriminant (New_Discr)) /=
14098 Chars (Old_Discr)
14099 then
14100 -- The new discriminant has been used to rename a
14101 -- subsequent old discriminant. Introduce a shadow
14102 -- component for the current old discriminant.
14104 New_C := Create_Component (Old_Discr);
14105 Set_Original_Record_Component (New_C, Old_Discr);
14106 end if;
14108 else
14109 -- The constraint has eliminated the old discriminant.
14110 -- Introduce a shadow component.
14112 New_C := Create_Component (Old_Discr);
14113 Set_Original_Record_Component (New_C, Old_Discr);
14114 end if;
14116 Next_Elmt (Constr);
14117 Next_Stored_Discriminant (Old_Discr);
14118 end loop;
14119 end;
14120 end if;
14121 end Add_Discriminants;
14123 if Is_Static
14124 and then Is_Variant_Record (Typ)
14125 then
14126 Collect_Fixed_Components (Typ);
14128 Gather_Components (
14129 Typ,
14130 Component_List (Type_Definition (Parent (Typ))),
14131 Governed_By => Assoc_List,
14132 Into => Comp_List,
14133 Report_Errors => Errors);
14134 pragma Assert (not Errors);
14136 Create_All_Components;
14138 -- If the subtype declaration is created for a tagged type derivation
14139 -- with constraints, we retrieve the record definition of the parent
14140 -- type to select the components of the proper variant.
14142 elsif Is_Static
14143 and then Is_Tagged_Type (Typ)
14144 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14145 and then
14146 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14147 and then Is_Variant_Record (Parent_Type)
14148 then
14149 Collect_Fixed_Components (Typ);
14151 Gather_Components
14152 (Typ,
14153 Component_List (Type_Definition (Parent (Parent_Type))),
14154 Governed_By => Assoc_List,
14155 Into => Comp_List,
14156 Report_Errors => Errors);
14158 -- Note: previously there was a check at this point that no errors
14159 -- were detected. As a consequence of AI05-220 there may be an error
14160 -- if an inherited discriminant that controls a variant has a non-
14161 -- static constraint.
14163 -- If the tagged derivation has a type extension, collect all the
14164 -- new components therein.
14166 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14167 then
14168 Old_C := First_Component (Typ);
14169 while Present (Old_C) loop
14170 if Original_Record_Component (Old_C) = Old_C
14171 and then Chars (Old_C) /= Name_uTag
14172 and then Chars (Old_C) /= Name_uParent
14173 then
14174 Append_Elmt (Old_C, Comp_List);
14175 end if;
14177 Next_Component (Old_C);
14178 end loop;
14179 end if;
14181 Create_All_Components;
14183 else
14184 -- If discriminants are not static, or if this is a multi-level type
14185 -- extension, we have to include all components of the parent type.
14187 Old_C := First_Component (Typ);
14188 while Present (Old_C) loop
14189 New_C := Create_Component (Old_C);
14191 Set_Etype
14192 (New_C,
14193 Constrain_Component_Type
14194 (Old_C, Subt, Decl_Node, Typ, Constraints));
14195 Set_Is_Public (New_C, Is_Public (Subt));
14197 Next_Component (Old_C);
14198 end loop;
14199 end if;
14201 End_Scope;
14202 end Create_Constrained_Components;
14204 ------------------------------------------
14205 -- Decimal_Fixed_Point_Type_Declaration --
14206 ------------------------------------------
14208 procedure Decimal_Fixed_Point_Type_Declaration
14209 (T : Entity_Id;
14210 Def : Node_Id)
14212 Loc : constant Source_Ptr := Sloc (Def);
14213 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14214 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14215 Implicit_Base : Entity_Id;
14216 Digs_Val : Uint;
14217 Delta_Val : Ureal;
14218 Scale_Val : Uint;
14219 Bound_Val : Ureal;
14221 begin
14222 Check_SPARK_05_Restriction
14223 ("decimal fixed point type is not allowed", Def);
14224 Check_Restriction (No_Fixed_Point, Def);
14226 -- Create implicit base type
14228 Implicit_Base :=
14229 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14230 Set_Etype (Implicit_Base, Implicit_Base);
14232 -- Analyze and process delta expression
14234 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14236 Check_Delta_Expression (Delta_Expr);
14237 Delta_Val := Expr_Value_R (Delta_Expr);
14239 -- Check delta is power of 10, and determine scale value from it
14241 declare
14242 Val : Ureal;
14244 begin
14245 Scale_Val := Uint_0;
14246 Val := Delta_Val;
14248 if Val < Ureal_1 then
14249 while Val < Ureal_1 loop
14250 Val := Val * Ureal_10;
14251 Scale_Val := Scale_Val + 1;
14252 end loop;
14254 if Scale_Val > 18 then
14255 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14256 Scale_Val := UI_From_Int (+18);
14257 end if;
14259 else
14260 while Val > Ureal_1 loop
14261 Val := Val / Ureal_10;
14262 Scale_Val := Scale_Val - 1;
14263 end loop;
14265 if Scale_Val < -18 then
14266 Error_Msg_N ("scale is less than minimum value of -18", Def);
14267 Scale_Val := UI_From_Int (-18);
14268 end if;
14269 end if;
14271 if Val /= Ureal_1 then
14272 Error_Msg_N ("delta expression must be a power of 10", Def);
14273 Delta_Val := Ureal_10 ** (-Scale_Val);
14274 end if;
14275 end;
14277 -- Set delta, scale and small (small = delta for decimal type)
14279 Set_Delta_Value (Implicit_Base, Delta_Val);
14280 Set_Scale_Value (Implicit_Base, Scale_Val);
14281 Set_Small_Value (Implicit_Base, Delta_Val);
14283 -- Analyze and process digits expression
14285 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14286 Check_Digits_Expression (Digs_Expr);
14287 Digs_Val := Expr_Value (Digs_Expr);
14289 if Digs_Val > 18 then
14290 Digs_Val := UI_From_Int (+18);
14291 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14292 end if;
14294 Set_Digits_Value (Implicit_Base, Digs_Val);
14295 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14297 -- Set range of base type from digits value for now. This will be
14298 -- expanded to represent the true underlying base range by Freeze.
14300 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14302 -- Note: We leave size as zero for now, size will be set at freeze
14303 -- time. We have to do this for ordinary fixed-point, because the size
14304 -- depends on the specified small, and we might as well do the same for
14305 -- decimal fixed-point.
14307 pragma Assert (Esize (Implicit_Base) = Uint_0);
14309 -- If there are bounds given in the declaration use them as the
14310 -- bounds of the first named subtype.
14312 if Present (Real_Range_Specification (Def)) then
14313 declare
14314 RRS : constant Node_Id := Real_Range_Specification (Def);
14315 Low : constant Node_Id := Low_Bound (RRS);
14316 High : constant Node_Id := High_Bound (RRS);
14317 Low_Val : Ureal;
14318 High_Val : Ureal;
14320 begin
14321 Analyze_And_Resolve (Low, Any_Real);
14322 Analyze_And_Resolve (High, Any_Real);
14323 Check_Real_Bound (Low);
14324 Check_Real_Bound (High);
14325 Low_Val := Expr_Value_R (Low);
14326 High_Val := Expr_Value_R (High);
14328 if Low_Val < (-Bound_Val) then
14329 Error_Msg_N
14330 ("range low bound too small for digits value", Low);
14331 Low_Val := -Bound_Val;
14332 end if;
14334 if High_Val > Bound_Val then
14335 Error_Msg_N
14336 ("range high bound too large for digits value", High);
14337 High_Val := Bound_Val;
14338 end if;
14340 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14341 end;
14343 -- If no explicit range, use range that corresponds to given
14344 -- digits value. This will end up as the final range for the
14345 -- first subtype.
14347 else
14348 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14349 end if;
14351 -- Complete entity for first subtype. The inheritance of the rep item
14352 -- chain ensures that SPARK-related pragmas are not clobbered when the
14353 -- decimal fixed point type acts as a full view of a private type.
14355 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14356 Set_Etype (T, Implicit_Base);
14357 Set_Size_Info (T, Implicit_Base);
14358 Inherit_Rep_Item_Chain (T, Implicit_Base);
14359 Set_Digits_Value (T, Digs_Val);
14360 Set_Delta_Value (T, Delta_Val);
14361 Set_Small_Value (T, Delta_Val);
14362 Set_Scale_Value (T, Scale_Val);
14363 Set_Is_Constrained (T);
14364 end Decimal_Fixed_Point_Type_Declaration;
14366 -----------------------------------
14367 -- Derive_Progenitor_Subprograms --
14368 -----------------------------------
14370 procedure Derive_Progenitor_Subprograms
14371 (Parent_Type : Entity_Id;
14372 Tagged_Type : Entity_Id)
14374 E : Entity_Id;
14375 Elmt : Elmt_Id;
14376 Iface : Entity_Id;
14377 Iface_Elmt : Elmt_Id;
14378 Iface_Subp : Entity_Id;
14379 New_Subp : Entity_Id := Empty;
14380 Prim_Elmt : Elmt_Id;
14381 Subp : Entity_Id;
14382 Typ : Entity_Id;
14384 begin
14385 pragma Assert (Ada_Version >= Ada_2005
14386 and then Is_Record_Type (Tagged_Type)
14387 and then Is_Tagged_Type (Tagged_Type)
14388 and then Has_Interfaces (Tagged_Type));
14390 -- Step 1: Transfer to the full-view primitives associated with the
14391 -- partial-view that cover interface primitives. Conceptually this
14392 -- work should be done later by Process_Full_View; done here to
14393 -- simplify its implementation at later stages. It can be safely
14394 -- done here because interfaces must be visible in the partial and
14395 -- private view (RM 7.3(7.3/2)).
14397 -- Small optimization: This work is only required if the parent may
14398 -- have entities whose Alias attribute reference an interface primitive.
14399 -- Such a situation may occur if the parent is an abstract type and the
14400 -- primitive has not been yet overridden or if the parent is a generic
14401 -- formal type covering interfaces.
14403 -- If the tagged type is not abstract, it cannot have abstract
14404 -- primitives (the only entities in the list of primitives of
14405 -- non-abstract tagged types that can reference abstract primitives
14406 -- through its Alias attribute are the internal entities that have
14407 -- attribute Interface_Alias, and these entities are generated later
14408 -- by Add_Internal_Interface_Entities).
14410 if In_Private_Part (Current_Scope)
14411 and then (Is_Abstract_Type (Parent_Type)
14412 or else
14413 Is_Generic_Type (Parent_Type))
14414 then
14415 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14416 while Present (Elmt) loop
14417 Subp := Node (Elmt);
14419 -- At this stage it is not possible to have entities in the list
14420 -- of primitives that have attribute Interface_Alias.
14422 pragma Assert (No (Interface_Alias (Subp)));
14424 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14426 if Is_Interface (Typ) then
14427 E := Find_Primitive_Covering_Interface
14428 (Tagged_Type => Tagged_Type,
14429 Iface_Prim => Subp);
14431 if Present (E)
14432 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14433 then
14434 Replace_Elmt (Elmt, E);
14435 Remove_Homonym (Subp);
14436 end if;
14437 end if;
14439 Next_Elmt (Elmt);
14440 end loop;
14441 end if;
14443 -- Step 2: Add primitives of progenitors that are not implemented by
14444 -- parents of Tagged_Type.
14446 if Present (Interfaces (Base_Type (Tagged_Type))) then
14447 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14448 while Present (Iface_Elmt) loop
14449 Iface := Node (Iface_Elmt);
14451 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14452 while Present (Prim_Elmt) loop
14453 Iface_Subp := Node (Prim_Elmt);
14455 -- Exclude derivation of predefined primitives except those
14456 -- that come from source, or are inherited from one that comes
14457 -- from source. Required to catch declarations of equality
14458 -- operators of interfaces. For example:
14460 -- type Iface is interface;
14461 -- function "=" (Left, Right : Iface) return Boolean;
14463 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14464 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14465 then
14466 E := Find_Primitive_Covering_Interface
14467 (Tagged_Type => Tagged_Type,
14468 Iface_Prim => Iface_Subp);
14470 -- If not found we derive a new primitive leaving its alias
14471 -- attribute referencing the interface primitive.
14473 if No (E) then
14474 Derive_Subprogram
14475 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14477 -- Ada 2012 (AI05-0197): If the covering primitive's name
14478 -- differs from the name of the interface primitive then it
14479 -- is a private primitive inherited from a parent type. In
14480 -- such case, given that Tagged_Type covers the interface,
14481 -- the inherited private primitive becomes visible. For such
14482 -- purpose we add a new entity that renames the inherited
14483 -- private primitive.
14485 elsif Chars (E) /= Chars (Iface_Subp) then
14486 pragma Assert (Has_Suffix (E, 'P'));
14487 Derive_Subprogram
14488 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14489 Set_Alias (New_Subp, E);
14490 Set_Is_Abstract_Subprogram (New_Subp,
14491 Is_Abstract_Subprogram (E));
14493 -- Propagate to the full view interface entities associated
14494 -- with the partial view.
14496 elsif In_Private_Part (Current_Scope)
14497 and then Present (Alias (E))
14498 and then Alias (E) = Iface_Subp
14499 and then
14500 List_Containing (Parent (E)) /=
14501 Private_Declarations
14502 (Specification
14503 (Unit_Declaration_Node (Current_Scope)))
14504 then
14505 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14506 end if;
14507 end if;
14509 Next_Elmt (Prim_Elmt);
14510 end loop;
14512 Next_Elmt (Iface_Elmt);
14513 end loop;
14514 end if;
14515 end Derive_Progenitor_Subprograms;
14517 -----------------------
14518 -- Derive_Subprogram --
14519 -----------------------
14521 procedure Derive_Subprogram
14522 (New_Subp : out Entity_Id;
14523 Parent_Subp : Entity_Id;
14524 Derived_Type : Entity_Id;
14525 Parent_Type : Entity_Id;
14526 Actual_Subp : Entity_Id := Empty)
14528 Formal : Entity_Id;
14529 -- Formal parameter of parent primitive operation
14531 Formal_Of_Actual : Entity_Id;
14532 -- Formal parameter of actual operation, when the derivation is to
14533 -- create a renaming for a primitive operation of an actual in an
14534 -- instantiation.
14536 New_Formal : Entity_Id;
14537 -- Formal of inherited operation
14539 Visible_Subp : Entity_Id := Parent_Subp;
14541 function Is_Private_Overriding return Boolean;
14542 -- If Subp is a private overriding of a visible operation, the inherited
14543 -- operation derives from the overridden op (even though its body is the
14544 -- overriding one) and the inherited operation is visible now. See
14545 -- sem_disp to see the full details of the handling of the overridden
14546 -- subprogram, which is removed from the list of primitive operations of
14547 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14548 -- and used to diagnose abstract operations that need overriding in the
14549 -- derived type.
14551 procedure Replace_Type (Id, New_Id : Entity_Id);
14552 -- When the type is an anonymous access type, create a new access type
14553 -- designating the derived type.
14555 procedure Set_Derived_Name;
14556 -- This procedure sets the appropriate Chars name for New_Subp. This
14557 -- is normally just a copy of the parent name. An exception arises for
14558 -- type support subprograms, where the name is changed to reflect the
14559 -- name of the derived type, e.g. if type foo is derived from type bar,
14560 -- then a procedure barDA is derived with a name fooDA.
14562 ---------------------------
14563 -- Is_Private_Overriding --
14564 ---------------------------
14566 function Is_Private_Overriding return Boolean is
14567 Prev : Entity_Id;
14569 begin
14570 -- If the parent is not a dispatching operation there is no
14571 -- need to investigate overridings
14573 if not Is_Dispatching_Operation (Parent_Subp) then
14574 return False;
14575 end if;
14577 -- The visible operation that is overridden is a homonym of the
14578 -- parent subprogram. We scan the homonym chain to find the one
14579 -- whose alias is the subprogram we are deriving.
14581 Prev := Current_Entity (Parent_Subp);
14582 while Present (Prev) loop
14583 if Ekind (Prev) = Ekind (Parent_Subp)
14584 and then Alias (Prev) = Parent_Subp
14585 and then Scope (Parent_Subp) = Scope (Prev)
14586 and then not Is_Hidden (Prev)
14587 then
14588 Visible_Subp := Prev;
14589 return True;
14590 end if;
14592 Prev := Homonym (Prev);
14593 end loop;
14595 return False;
14596 end Is_Private_Overriding;
14598 ------------------
14599 -- Replace_Type --
14600 ------------------
14602 procedure Replace_Type (Id, New_Id : Entity_Id) is
14603 Id_Type : constant Entity_Id := Etype (Id);
14604 Acc_Type : Entity_Id;
14605 Par : constant Node_Id := Parent (Derived_Type);
14607 begin
14608 -- When the type is an anonymous access type, create a new access
14609 -- type designating the derived type. This itype must be elaborated
14610 -- at the point of the derivation, not on subsequent calls that may
14611 -- be out of the proper scope for Gigi, so we insert a reference to
14612 -- it after the derivation.
14614 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14615 declare
14616 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14618 begin
14619 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14620 and then Present (Full_View (Desig_Typ))
14621 and then not Is_Private_Type (Parent_Type)
14622 then
14623 Desig_Typ := Full_View (Desig_Typ);
14624 end if;
14626 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14628 -- Ada 2005 (AI-251): Handle also derivations of abstract
14629 -- interface primitives.
14631 or else (Is_Interface (Desig_Typ)
14632 and then not Is_Class_Wide_Type (Desig_Typ))
14633 then
14634 Acc_Type := New_Copy (Id_Type);
14635 Set_Etype (Acc_Type, Acc_Type);
14636 Set_Scope (Acc_Type, New_Subp);
14638 -- Set size of anonymous access type. If we have an access
14639 -- to an unconstrained array, this is a fat pointer, so it
14640 -- is sizes at twice addtress size.
14642 if Is_Array_Type (Desig_Typ)
14643 and then not Is_Constrained (Desig_Typ)
14644 then
14645 Init_Size (Acc_Type, 2 * System_Address_Size);
14647 -- Other cases use a thin pointer
14649 else
14650 Init_Size (Acc_Type, System_Address_Size);
14651 end if;
14653 -- Set remaining characterstics of anonymous access type
14655 Init_Alignment (Acc_Type);
14656 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14658 Set_Etype (New_Id, Acc_Type);
14659 Set_Scope (New_Id, New_Subp);
14661 -- Create a reference to it
14663 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14665 else
14666 Set_Etype (New_Id, Id_Type);
14667 end if;
14668 end;
14670 -- In Ada2012, a formal may have an incomplete type but the type
14671 -- derivation that inherits the primitive follows the full view.
14673 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14674 or else
14675 (Ekind (Id_Type) = E_Record_Type_With_Private
14676 and then Present (Full_View (Id_Type))
14677 and then
14678 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14679 or else
14680 (Ada_Version >= Ada_2012
14681 and then Ekind (Id_Type) = E_Incomplete_Type
14682 and then Full_View (Id_Type) = Parent_Type)
14683 then
14684 -- Constraint checks on formals are generated during expansion,
14685 -- based on the signature of the original subprogram. The bounds
14686 -- of the derived type are not relevant, and thus we can use
14687 -- the base type for the formals. However, the return type may be
14688 -- used in a context that requires that the proper static bounds
14689 -- be used (a case statement, for example) and for those cases
14690 -- we must use the derived type (first subtype), not its base.
14692 -- If the derived_type_definition has no constraints, we know that
14693 -- the derived type has the same constraints as the first subtype
14694 -- of the parent, and we can also use it rather than its base,
14695 -- which can lead to more efficient code.
14697 if Etype (Id) = Parent_Type then
14698 if Is_Scalar_Type (Parent_Type)
14699 and then
14700 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14701 then
14702 Set_Etype (New_Id, Derived_Type);
14704 elsif Nkind (Par) = N_Full_Type_Declaration
14705 and then
14706 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14707 and then
14708 Is_Entity_Name
14709 (Subtype_Indication (Type_Definition (Par)))
14710 then
14711 Set_Etype (New_Id, Derived_Type);
14713 else
14714 Set_Etype (New_Id, Base_Type (Derived_Type));
14715 end if;
14717 else
14718 Set_Etype (New_Id, Base_Type (Derived_Type));
14719 end if;
14721 else
14722 Set_Etype (New_Id, Etype (Id));
14723 end if;
14724 end Replace_Type;
14726 ----------------------
14727 -- Set_Derived_Name --
14728 ----------------------
14730 procedure Set_Derived_Name is
14731 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14732 begin
14733 if Nm = TSS_Null then
14734 Set_Chars (New_Subp, Chars (Parent_Subp));
14735 else
14736 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14737 end if;
14738 end Set_Derived_Name;
14740 -- Start of processing for Derive_Subprogram
14742 begin
14743 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14744 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14746 -- Check whether the inherited subprogram is a private operation that
14747 -- should be inherited but not yet made visible. Such subprograms can
14748 -- become visible at a later point (e.g., the private part of a public
14749 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14750 -- following predicate is true, then this is not such a private
14751 -- operation and the subprogram simply inherits the name of the parent
14752 -- subprogram. Note the special check for the names of controlled
14753 -- operations, which are currently exempted from being inherited with
14754 -- a hidden name because they must be findable for generation of
14755 -- implicit run-time calls.
14757 if not Is_Hidden (Parent_Subp)
14758 or else Is_Internal (Parent_Subp)
14759 or else Is_Private_Overriding
14760 or else Is_Internal_Name (Chars (Parent_Subp))
14761 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14762 Name_Adjust,
14763 Name_Finalize)
14764 then
14765 Set_Derived_Name;
14767 -- An inherited dispatching equality will be overridden by an internally
14768 -- generated one, or by an explicit one, so preserve its name and thus
14769 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14770 -- private operation it may become invisible if the full view has
14771 -- progenitors, and the dispatch table will be malformed.
14772 -- We check that the type is limited to handle the anomalous declaration
14773 -- of Limited_Controlled, which is derived from a non-limited type, and
14774 -- which is handled specially elsewhere as well.
14776 elsif Chars (Parent_Subp) = Name_Op_Eq
14777 and then Is_Dispatching_Operation (Parent_Subp)
14778 and then Etype (Parent_Subp) = Standard_Boolean
14779 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14780 and then
14781 Etype (First_Formal (Parent_Subp)) =
14782 Etype (Next_Formal (First_Formal (Parent_Subp)))
14783 then
14784 Set_Derived_Name;
14786 -- If parent is hidden, this can be a regular derivation if the
14787 -- parent is immediately visible in a non-instantiating context,
14788 -- or if we are in the private part of an instance. This test
14789 -- should still be refined ???
14791 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14792 -- operation as a non-visible operation in cases where the parent
14793 -- subprogram might not be visible now, but was visible within the
14794 -- original generic, so it would be wrong to make the inherited
14795 -- subprogram non-visible now. (Not clear if this test is fully
14796 -- correct; are there any cases where we should declare the inherited
14797 -- operation as not visible to avoid it being overridden, e.g., when
14798 -- the parent type is a generic actual with private primitives ???)
14800 -- (they should be treated the same as other private inherited
14801 -- subprograms, but it's not clear how to do this cleanly). ???
14803 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14804 and then Is_Immediately_Visible (Parent_Subp)
14805 and then not In_Instance)
14806 or else In_Instance_Not_Visible
14807 then
14808 Set_Derived_Name;
14810 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14811 -- overrides an interface primitive because interface primitives
14812 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14814 elsif Ada_Version >= Ada_2005
14815 and then Is_Dispatching_Operation (Parent_Subp)
14816 and then Covers_Some_Interface (Parent_Subp)
14817 then
14818 Set_Derived_Name;
14820 -- Otherwise, the type is inheriting a private operation, so enter it
14821 -- with a special name so it can't be overridden.
14823 else
14824 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14825 end if;
14827 Set_Parent (New_Subp, Parent (Derived_Type));
14829 if Present (Actual_Subp) then
14830 Replace_Type (Actual_Subp, New_Subp);
14831 else
14832 Replace_Type (Parent_Subp, New_Subp);
14833 end if;
14835 Conditional_Delay (New_Subp, Parent_Subp);
14837 -- If we are creating a renaming for a primitive operation of an
14838 -- actual of a generic derived type, we must examine the signature
14839 -- of the actual primitive, not that of the generic formal, which for
14840 -- example may be an interface. However the name and initial value
14841 -- of the inherited operation are those of the formal primitive.
14843 Formal := First_Formal (Parent_Subp);
14845 if Present (Actual_Subp) then
14846 Formal_Of_Actual := First_Formal (Actual_Subp);
14847 else
14848 Formal_Of_Actual := Empty;
14849 end if;
14851 while Present (Formal) loop
14852 New_Formal := New_Copy (Formal);
14854 -- Normally we do not go copying parents, but in the case of
14855 -- formals, we need to link up to the declaration (which is the
14856 -- parameter specification), and it is fine to link up to the
14857 -- original formal's parameter specification in this case.
14859 Set_Parent (New_Formal, Parent (Formal));
14860 Append_Entity (New_Formal, New_Subp);
14862 if Present (Formal_Of_Actual) then
14863 Replace_Type (Formal_Of_Actual, New_Formal);
14864 Next_Formal (Formal_Of_Actual);
14865 else
14866 Replace_Type (Formal, New_Formal);
14867 end if;
14869 Next_Formal (Formal);
14870 end loop;
14872 -- If this derivation corresponds to a tagged generic actual, then
14873 -- primitive operations rename those of the actual. Otherwise the
14874 -- primitive operations rename those of the parent type, If the parent
14875 -- renames an intrinsic operator, so does the new subprogram. We except
14876 -- concatenation, which is always properly typed, and does not get
14877 -- expanded as other intrinsic operations.
14879 if No (Actual_Subp) then
14880 if Is_Intrinsic_Subprogram (Parent_Subp) then
14881 Set_Is_Intrinsic_Subprogram (New_Subp);
14883 if Present (Alias (Parent_Subp))
14884 and then Chars (Parent_Subp) /= Name_Op_Concat
14885 then
14886 Set_Alias (New_Subp, Alias (Parent_Subp));
14887 else
14888 Set_Alias (New_Subp, Parent_Subp);
14889 end if;
14891 else
14892 Set_Alias (New_Subp, Parent_Subp);
14893 end if;
14895 else
14896 Set_Alias (New_Subp, Actual_Subp);
14897 end if;
14899 -- Inherit the "ghostness" from the parent subprogram
14901 if Is_Ghost_Entity (Alias (New_Subp)) then
14902 Set_Is_Ghost_Entity (New_Subp);
14903 end if;
14905 -- Derived subprograms of a tagged type must inherit the convention
14906 -- of the parent subprogram (a requirement of AI-117). Derived
14907 -- subprograms of untagged types simply get convention Ada by default.
14909 -- If the derived type is a tagged generic formal type with unknown
14910 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14912 -- However, if the type is derived from a generic formal, the further
14913 -- inherited subprogram has the convention of the non-generic ancestor.
14914 -- Otherwise there would be no way to override the operation.
14915 -- (This is subject to forthcoming ARG discussions).
14917 if Is_Tagged_Type (Derived_Type) then
14918 if Is_Generic_Type (Derived_Type)
14919 and then Has_Unknown_Discriminants (Derived_Type)
14920 then
14921 Set_Convention (New_Subp, Convention_Intrinsic);
14923 else
14924 if Is_Generic_Type (Parent_Type)
14925 and then Has_Unknown_Discriminants (Parent_Type)
14926 then
14927 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14928 else
14929 Set_Convention (New_Subp, Convention (Parent_Subp));
14930 end if;
14931 end if;
14932 end if;
14934 -- Predefined controlled operations retain their name even if the parent
14935 -- is hidden (see above), but they are not primitive operations if the
14936 -- ancestor is not visible, for example if the parent is a private
14937 -- extension completed with a controlled extension. Note that a full
14938 -- type that is controlled can break privacy: the flag Is_Controlled is
14939 -- set on both views of the type.
14941 if Is_Controlled (Parent_Type)
14942 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14943 Name_Adjust,
14944 Name_Finalize)
14945 and then Is_Hidden (Parent_Subp)
14946 and then not Is_Visibly_Controlled (Parent_Type)
14947 then
14948 Set_Is_Hidden (New_Subp);
14949 end if;
14951 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14952 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14954 if Ekind (Parent_Subp) = E_Procedure then
14955 Set_Is_Valued_Procedure
14956 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14957 else
14958 Set_Has_Controlling_Result
14959 (New_Subp, Has_Controlling_Result (Parent_Subp));
14960 end if;
14962 -- No_Return must be inherited properly. If this is overridden in the
14963 -- case of a dispatching operation, then a check is made in Sem_Disp
14964 -- that the overriding operation is also No_Return (no such check is
14965 -- required for the case of non-dispatching operation.
14967 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14969 -- A derived function with a controlling result is abstract. If the
14970 -- Derived_Type is a nonabstract formal generic derived type, then
14971 -- inherited operations are not abstract: the required check is done at
14972 -- instantiation time. If the derivation is for a generic actual, the
14973 -- function is not abstract unless the actual is.
14975 if Is_Generic_Type (Derived_Type)
14976 and then not Is_Abstract_Type (Derived_Type)
14977 then
14978 null;
14980 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14981 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14983 -- A subprogram subject to pragma Extensions_Visible with value False
14984 -- requires overriding if the subprogram has at least one controlling
14985 -- OUT parameter (SPARK RM 6.1.7(6)).
14987 elsif Ada_Version >= Ada_2005
14988 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14989 or else (Is_Tagged_Type (Derived_Type)
14990 and then Etype (New_Subp) = Derived_Type
14991 and then not Is_Null_Extension (Derived_Type))
14992 or else (Is_Tagged_Type (Derived_Type)
14993 and then Ekind (Etype (New_Subp)) =
14994 E_Anonymous_Access_Type
14995 and then Designated_Type (Etype (New_Subp)) =
14996 Derived_Type
14997 and then not Is_Null_Extension (Derived_Type))
14998 or else (Comes_From_Source (Alias (New_Subp))
14999 and then Is_EVF_Procedure (Alias (New_Subp))))
15000 and then No (Actual_Subp)
15001 then
15002 if not Is_Tagged_Type (Derived_Type)
15003 or else Is_Abstract_Type (Derived_Type)
15004 or else Is_Abstract_Subprogram (Alias (New_Subp))
15005 then
15006 Set_Is_Abstract_Subprogram (New_Subp);
15007 else
15008 Set_Requires_Overriding (New_Subp);
15009 end if;
15011 elsif Ada_Version < Ada_2005
15012 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15013 or else (Is_Tagged_Type (Derived_Type)
15014 and then Etype (New_Subp) = Derived_Type
15015 and then No (Actual_Subp)))
15016 then
15017 Set_Is_Abstract_Subprogram (New_Subp);
15019 -- AI05-0097 : an inherited operation that dispatches on result is
15020 -- abstract if the derived type is abstract, even if the parent type
15021 -- is concrete and the derived type is a null extension.
15023 elsif Has_Controlling_Result (Alias (New_Subp))
15024 and then Is_Abstract_Type (Etype (New_Subp))
15025 then
15026 Set_Is_Abstract_Subprogram (New_Subp);
15028 -- Finally, if the parent type is abstract we must verify that all
15029 -- inherited operations are either non-abstract or overridden, or that
15030 -- the derived type itself is abstract (this check is performed at the
15031 -- end of a package declaration, in Check_Abstract_Overriding). A
15032 -- private overriding in the parent type will not be visible in the
15033 -- derivation if we are not in an inner package or in a child unit of
15034 -- the parent type, in which case the abstractness of the inherited
15035 -- operation is carried to the new subprogram.
15037 elsif Is_Abstract_Type (Parent_Type)
15038 and then not In_Open_Scopes (Scope (Parent_Type))
15039 and then Is_Private_Overriding
15040 and then Is_Abstract_Subprogram (Visible_Subp)
15041 then
15042 if No (Actual_Subp) then
15043 Set_Alias (New_Subp, Visible_Subp);
15044 Set_Is_Abstract_Subprogram (New_Subp, True);
15046 else
15047 -- If this is a derivation for an instance of a formal derived
15048 -- type, abstractness comes from the primitive operation of the
15049 -- actual, not from the operation inherited from the ancestor.
15051 Set_Is_Abstract_Subprogram
15052 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15053 end if;
15054 end if;
15056 New_Overloaded_Entity (New_Subp, Derived_Type);
15058 -- Check for case of a derived subprogram for the instantiation of a
15059 -- formal derived tagged type, if so mark the subprogram as dispatching
15060 -- and inherit the dispatching attributes of the actual subprogram. The
15061 -- derived subprogram is effectively renaming of the actual subprogram,
15062 -- so it needs to have the same attributes as the actual.
15064 if Present (Actual_Subp)
15065 and then Is_Dispatching_Operation (Actual_Subp)
15066 then
15067 Set_Is_Dispatching_Operation (New_Subp);
15069 if Present (DTC_Entity (Actual_Subp)) then
15070 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15071 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15072 end if;
15073 end if;
15075 -- Indicate that a derived subprogram does not require a body and that
15076 -- it does not require processing of default expressions.
15078 Set_Has_Completion (New_Subp);
15079 Set_Default_Expressions_Processed (New_Subp);
15081 if Ekind (New_Subp) = E_Function then
15082 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15083 end if;
15084 end Derive_Subprogram;
15086 ------------------------
15087 -- Derive_Subprograms --
15088 ------------------------
15090 procedure Derive_Subprograms
15091 (Parent_Type : Entity_Id;
15092 Derived_Type : Entity_Id;
15093 Generic_Actual : Entity_Id := Empty)
15095 Op_List : constant Elist_Id :=
15096 Collect_Primitive_Operations (Parent_Type);
15098 function Check_Derived_Type return Boolean;
15099 -- Check that all the entities derived from Parent_Type are found in
15100 -- the list of primitives of Derived_Type exactly in the same order.
15102 procedure Derive_Interface_Subprogram
15103 (New_Subp : out Entity_Id;
15104 Subp : Entity_Id;
15105 Actual_Subp : Entity_Id);
15106 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15107 -- (which is an interface primitive). If Generic_Actual is present then
15108 -- Actual_Subp is the actual subprogram corresponding with the generic
15109 -- subprogram Subp.
15111 function Check_Derived_Type return Boolean is
15112 E : Entity_Id;
15113 Elmt : Elmt_Id;
15114 List : Elist_Id;
15115 New_Subp : Entity_Id;
15116 Op_Elmt : Elmt_Id;
15117 Subp : Entity_Id;
15119 begin
15120 -- Traverse list of entities in the current scope searching for
15121 -- an incomplete type whose full-view is derived type
15123 E := First_Entity (Scope (Derived_Type));
15124 while Present (E) and then E /= Derived_Type loop
15125 if Ekind (E) = E_Incomplete_Type
15126 and then Present (Full_View (E))
15127 and then Full_View (E) = Derived_Type
15128 then
15129 -- Disable this test if Derived_Type completes an incomplete
15130 -- type because in such case more primitives can be added
15131 -- later to the list of primitives of Derived_Type by routine
15132 -- Process_Incomplete_Dependents
15134 return True;
15135 end if;
15137 E := Next_Entity (E);
15138 end loop;
15140 List := Collect_Primitive_Operations (Derived_Type);
15141 Elmt := First_Elmt (List);
15143 Op_Elmt := First_Elmt (Op_List);
15144 while Present (Op_Elmt) loop
15145 Subp := Node (Op_Elmt);
15146 New_Subp := Node (Elmt);
15148 -- At this early stage Derived_Type has no entities with attribute
15149 -- Interface_Alias. In addition, such primitives are always
15150 -- located at the end of the list of primitives of Parent_Type.
15151 -- Therefore, if found we can safely stop processing pending
15152 -- entities.
15154 exit when Present (Interface_Alias (Subp));
15156 -- Handle hidden entities
15158 if not Is_Predefined_Dispatching_Operation (Subp)
15159 and then Is_Hidden (Subp)
15160 then
15161 if Present (New_Subp)
15162 and then Primitive_Names_Match (Subp, New_Subp)
15163 then
15164 Next_Elmt (Elmt);
15165 end if;
15167 else
15168 if not Present (New_Subp)
15169 or else Ekind (Subp) /= Ekind (New_Subp)
15170 or else not Primitive_Names_Match (Subp, New_Subp)
15171 then
15172 return False;
15173 end if;
15175 Next_Elmt (Elmt);
15176 end if;
15178 Next_Elmt (Op_Elmt);
15179 end loop;
15181 return True;
15182 end Check_Derived_Type;
15184 ---------------------------------
15185 -- Derive_Interface_Subprogram --
15186 ---------------------------------
15188 procedure Derive_Interface_Subprogram
15189 (New_Subp : out Entity_Id;
15190 Subp : Entity_Id;
15191 Actual_Subp : Entity_Id)
15193 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15194 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15196 begin
15197 pragma Assert (Is_Interface (Iface_Type));
15199 Derive_Subprogram
15200 (New_Subp => New_Subp,
15201 Parent_Subp => Iface_Subp,
15202 Derived_Type => Derived_Type,
15203 Parent_Type => Iface_Type,
15204 Actual_Subp => Actual_Subp);
15206 -- Given that this new interface entity corresponds with a primitive
15207 -- of the parent that was not overridden we must leave it associated
15208 -- with its parent primitive to ensure that it will share the same
15209 -- dispatch table slot when overridden. We must set the Alias to Subp
15210 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15211 -- (in case we inherited Subp from Iface_Type via a nonabstract
15212 -- generic formal type).
15214 if No (Actual_Subp) then
15215 Set_Alias (New_Subp, Subp);
15217 declare
15218 T : Entity_Id := Find_Dispatching_Type (Subp);
15219 begin
15220 while Etype (T) /= T loop
15221 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15222 Set_Is_Abstract_Subprogram (New_Subp, False);
15223 exit;
15224 end if;
15226 T := Etype (T);
15227 end loop;
15228 end;
15230 -- For instantiations this is not needed since the previous call to
15231 -- Derive_Subprogram leaves the entity well decorated.
15233 else
15234 pragma Assert (Alias (New_Subp) = Actual_Subp);
15235 null;
15236 end if;
15237 end Derive_Interface_Subprogram;
15239 -- Local variables
15241 Alias_Subp : Entity_Id;
15242 Act_List : Elist_Id;
15243 Act_Elmt : Elmt_Id;
15244 Act_Subp : Entity_Id := Empty;
15245 Elmt : Elmt_Id;
15246 Need_Search : Boolean := False;
15247 New_Subp : Entity_Id := Empty;
15248 Parent_Base : Entity_Id;
15249 Subp : Entity_Id;
15251 -- Start of processing for Derive_Subprograms
15253 begin
15254 if Ekind (Parent_Type) = E_Record_Type_With_Private
15255 and then Has_Discriminants (Parent_Type)
15256 and then Present (Full_View (Parent_Type))
15257 then
15258 Parent_Base := Full_View (Parent_Type);
15259 else
15260 Parent_Base := Parent_Type;
15261 end if;
15263 if Present (Generic_Actual) then
15264 Act_List := Collect_Primitive_Operations (Generic_Actual);
15265 Act_Elmt := First_Elmt (Act_List);
15266 else
15267 Act_List := No_Elist;
15268 Act_Elmt := No_Elmt;
15269 end if;
15271 -- Derive primitives inherited from the parent. Note that if the generic
15272 -- actual is present, this is not really a type derivation, it is a
15273 -- completion within an instance.
15275 -- Case 1: Derived_Type does not implement interfaces
15277 if not Is_Tagged_Type (Derived_Type)
15278 or else (not Has_Interfaces (Derived_Type)
15279 and then not (Present (Generic_Actual)
15280 and then Has_Interfaces (Generic_Actual)))
15281 then
15282 Elmt := First_Elmt (Op_List);
15283 while Present (Elmt) loop
15284 Subp := Node (Elmt);
15286 -- Literals are derived earlier in the process of building the
15287 -- derived type, and are skipped here.
15289 if Ekind (Subp) = E_Enumeration_Literal then
15290 null;
15292 -- The actual is a direct descendant and the common primitive
15293 -- operations appear in the same order.
15295 -- If the generic parent type is present, the derived type is an
15296 -- instance of a formal derived type, and within the instance its
15297 -- operations are those of the actual. We derive from the formal
15298 -- type but make the inherited operations aliases of the
15299 -- corresponding operations of the actual.
15301 else
15302 pragma Assert (No (Node (Act_Elmt))
15303 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15304 and then
15305 Type_Conformant
15306 (Subp, Node (Act_Elmt),
15307 Skip_Controlling_Formals => True)));
15309 Derive_Subprogram
15310 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15312 if Present (Act_Elmt) then
15313 Next_Elmt (Act_Elmt);
15314 end if;
15315 end if;
15317 Next_Elmt (Elmt);
15318 end loop;
15320 -- Case 2: Derived_Type implements interfaces
15322 else
15323 -- If the parent type has no predefined primitives we remove
15324 -- predefined primitives from the list of primitives of generic
15325 -- actual to simplify the complexity of this algorithm.
15327 if Present (Generic_Actual) then
15328 declare
15329 Has_Predefined_Primitives : Boolean := False;
15331 begin
15332 -- Check if the parent type has predefined primitives
15334 Elmt := First_Elmt (Op_List);
15335 while Present (Elmt) loop
15336 Subp := Node (Elmt);
15338 if Is_Predefined_Dispatching_Operation (Subp)
15339 and then not Comes_From_Source (Ultimate_Alias (Subp))
15340 then
15341 Has_Predefined_Primitives := True;
15342 exit;
15343 end if;
15345 Next_Elmt (Elmt);
15346 end loop;
15348 -- Remove predefined primitives of Generic_Actual. We must use
15349 -- an auxiliary list because in case of tagged types the value
15350 -- returned by Collect_Primitive_Operations is the value stored
15351 -- in its Primitive_Operations attribute (and we don't want to
15352 -- modify its current contents).
15354 if not Has_Predefined_Primitives then
15355 declare
15356 Aux_List : constant Elist_Id := New_Elmt_List;
15358 begin
15359 Elmt := First_Elmt (Act_List);
15360 while Present (Elmt) loop
15361 Subp := Node (Elmt);
15363 if not Is_Predefined_Dispatching_Operation (Subp)
15364 or else Comes_From_Source (Subp)
15365 then
15366 Append_Elmt (Subp, Aux_List);
15367 end if;
15369 Next_Elmt (Elmt);
15370 end loop;
15372 Act_List := Aux_List;
15373 end;
15374 end if;
15376 Act_Elmt := First_Elmt (Act_List);
15377 Act_Subp := Node (Act_Elmt);
15378 end;
15379 end if;
15381 -- Stage 1: If the generic actual is not present we derive the
15382 -- primitives inherited from the parent type. If the generic parent
15383 -- type is present, the derived type is an instance of a formal
15384 -- derived type, and within the instance its operations are those of
15385 -- the actual. We derive from the formal type but make the inherited
15386 -- operations aliases of the corresponding operations of the actual.
15388 Elmt := First_Elmt (Op_List);
15389 while Present (Elmt) loop
15390 Subp := Node (Elmt);
15391 Alias_Subp := Ultimate_Alias (Subp);
15393 -- Do not derive internal entities of the parent that link
15394 -- interface primitives with their covering primitive. These
15395 -- entities will be added to this type when frozen.
15397 if Present (Interface_Alias (Subp)) then
15398 goto Continue;
15399 end if;
15401 -- If the generic actual is present find the corresponding
15402 -- operation in the generic actual. If the parent type is a
15403 -- direct ancestor of the derived type then, even if it is an
15404 -- interface, the operations are inherited from the primary
15405 -- dispatch table and are in the proper order. If we detect here
15406 -- that primitives are not in the same order we traverse the list
15407 -- of primitive operations of the actual to find the one that
15408 -- implements the interface primitive.
15410 if Need_Search
15411 or else
15412 (Present (Generic_Actual)
15413 and then Present (Act_Subp)
15414 and then not
15415 (Primitive_Names_Match (Subp, Act_Subp)
15416 and then
15417 Type_Conformant (Subp, Act_Subp,
15418 Skip_Controlling_Formals => True)))
15419 then
15420 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15421 Use_Full_View => True));
15423 -- Remember that we need searching for all pending primitives
15425 Need_Search := True;
15427 -- Handle entities associated with interface primitives
15429 if Present (Alias_Subp)
15430 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15431 and then not Is_Predefined_Dispatching_Operation (Subp)
15432 then
15433 -- Search for the primitive in the homonym chain
15435 Act_Subp :=
15436 Find_Primitive_Covering_Interface
15437 (Tagged_Type => Generic_Actual,
15438 Iface_Prim => Alias_Subp);
15440 -- Previous search may not locate primitives covering
15441 -- interfaces defined in generics units or instantiations.
15442 -- (it fails if the covering primitive has formals whose
15443 -- type is also defined in generics or instantiations).
15444 -- In such case we search in the list of primitives of the
15445 -- generic actual for the internal entity that links the
15446 -- interface primitive and the covering primitive.
15448 if No (Act_Subp)
15449 and then Is_Generic_Type (Parent_Type)
15450 then
15451 -- This code has been designed to handle only generic
15452 -- formals that implement interfaces that are defined
15453 -- in a generic unit or instantiation. If this code is
15454 -- needed for other cases we must review it because
15455 -- (given that it relies on Original_Location to locate
15456 -- the primitive of Generic_Actual that covers the
15457 -- interface) it could leave linked through attribute
15458 -- Alias entities of unrelated instantiations).
15460 pragma Assert
15461 (Is_Generic_Unit
15462 (Scope (Find_Dispatching_Type (Alias_Subp)))
15463 or else
15464 Instantiation_Depth
15465 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15467 declare
15468 Iface_Prim_Loc : constant Source_Ptr :=
15469 Original_Location (Sloc (Alias_Subp));
15471 Elmt : Elmt_Id;
15472 Prim : Entity_Id;
15474 begin
15475 Elmt :=
15476 First_Elmt (Primitive_Operations (Generic_Actual));
15478 Search : while Present (Elmt) loop
15479 Prim := Node (Elmt);
15481 if Present (Interface_Alias (Prim))
15482 and then Original_Location
15483 (Sloc (Interface_Alias (Prim))) =
15484 Iface_Prim_Loc
15485 then
15486 Act_Subp := Alias (Prim);
15487 exit Search;
15488 end if;
15490 Next_Elmt (Elmt);
15491 end loop Search;
15492 end;
15493 end if;
15495 pragma Assert (Present (Act_Subp)
15496 or else Is_Abstract_Type (Generic_Actual)
15497 or else Serious_Errors_Detected > 0);
15499 -- Handle predefined primitives plus the rest of user-defined
15500 -- primitives
15502 else
15503 Act_Elmt := First_Elmt (Act_List);
15504 while Present (Act_Elmt) loop
15505 Act_Subp := Node (Act_Elmt);
15507 exit when Primitive_Names_Match (Subp, Act_Subp)
15508 and then Type_Conformant
15509 (Subp, Act_Subp,
15510 Skip_Controlling_Formals => True)
15511 and then No (Interface_Alias (Act_Subp));
15513 Next_Elmt (Act_Elmt);
15514 end loop;
15516 if No (Act_Elmt) then
15517 Act_Subp := Empty;
15518 end if;
15519 end if;
15520 end if;
15522 -- Case 1: If the parent is a limited interface then it has the
15523 -- predefined primitives of synchronized interfaces. However, the
15524 -- actual type may be a non-limited type and hence it does not
15525 -- have such primitives.
15527 if Present (Generic_Actual)
15528 and then not Present (Act_Subp)
15529 and then Is_Limited_Interface (Parent_Base)
15530 and then Is_Predefined_Interface_Primitive (Subp)
15531 then
15532 null;
15534 -- Case 2: Inherit entities associated with interfaces that were
15535 -- not covered by the parent type. We exclude here null interface
15536 -- primitives because they do not need special management.
15538 -- We also exclude interface operations that are renamings. If the
15539 -- subprogram is an explicit renaming of an interface primitive,
15540 -- it is a regular primitive operation, and the presence of its
15541 -- alias is not relevant: it has to be derived like any other
15542 -- primitive.
15544 elsif Present (Alias (Subp))
15545 and then Nkind (Unit_Declaration_Node (Subp)) /=
15546 N_Subprogram_Renaming_Declaration
15547 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15548 and then not
15549 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15550 and then Null_Present (Parent (Alias_Subp)))
15551 then
15552 -- If this is an abstract private type then we transfer the
15553 -- derivation of the interface primitive from the partial view
15554 -- to the full view. This is safe because all the interfaces
15555 -- must be visible in the partial view. Done to avoid adding
15556 -- a new interface derivation to the private part of the
15557 -- enclosing package; otherwise this new derivation would be
15558 -- decorated as hidden when the analysis of the enclosing
15559 -- package completes.
15561 if Is_Abstract_Type (Derived_Type)
15562 and then In_Private_Part (Current_Scope)
15563 and then Has_Private_Declaration (Derived_Type)
15564 then
15565 declare
15566 Partial_View : Entity_Id;
15567 Elmt : Elmt_Id;
15568 Ent : Entity_Id;
15570 begin
15571 Partial_View := First_Entity (Current_Scope);
15572 loop
15573 exit when No (Partial_View)
15574 or else (Has_Private_Declaration (Partial_View)
15575 and then
15576 Full_View (Partial_View) = Derived_Type);
15578 Next_Entity (Partial_View);
15579 end loop;
15581 -- If the partial view was not found then the source code
15582 -- has errors and the derivation is not needed.
15584 if Present (Partial_View) then
15585 Elmt :=
15586 First_Elmt (Primitive_Operations (Partial_View));
15587 while Present (Elmt) loop
15588 Ent := Node (Elmt);
15590 if Present (Alias (Ent))
15591 and then Ultimate_Alias (Ent) = Alias (Subp)
15592 then
15593 Append_Elmt
15594 (Ent, Primitive_Operations (Derived_Type));
15595 exit;
15596 end if;
15598 Next_Elmt (Elmt);
15599 end loop;
15601 -- If the interface primitive was not found in the
15602 -- partial view then this interface primitive was
15603 -- overridden. We add a derivation to activate in
15604 -- Derive_Progenitor_Subprograms the machinery to
15605 -- search for it.
15607 if No (Elmt) then
15608 Derive_Interface_Subprogram
15609 (New_Subp => New_Subp,
15610 Subp => Subp,
15611 Actual_Subp => Act_Subp);
15612 end if;
15613 end if;
15614 end;
15615 else
15616 Derive_Interface_Subprogram
15617 (New_Subp => New_Subp,
15618 Subp => Subp,
15619 Actual_Subp => Act_Subp);
15620 end if;
15622 -- Case 3: Common derivation
15624 else
15625 Derive_Subprogram
15626 (New_Subp => New_Subp,
15627 Parent_Subp => Subp,
15628 Derived_Type => Derived_Type,
15629 Parent_Type => Parent_Base,
15630 Actual_Subp => Act_Subp);
15631 end if;
15633 -- No need to update Act_Elm if we must search for the
15634 -- corresponding operation in the generic actual
15636 if not Need_Search
15637 and then Present (Act_Elmt)
15638 then
15639 Next_Elmt (Act_Elmt);
15640 Act_Subp := Node (Act_Elmt);
15641 end if;
15643 <<Continue>>
15644 Next_Elmt (Elmt);
15645 end loop;
15647 -- Inherit additional operations from progenitors. If the derived
15648 -- type is a generic actual, there are not new primitive operations
15649 -- for the type because it has those of the actual, and therefore
15650 -- nothing needs to be done. The renamings generated above are not
15651 -- primitive operations, and their purpose is simply to make the
15652 -- proper operations visible within an instantiation.
15654 if No (Generic_Actual) then
15655 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15656 end if;
15657 end if;
15659 -- Final check: Direct descendants must have their primitives in the
15660 -- same order. We exclude from this test untagged types and instances
15661 -- of formal derived types. We skip this test if we have already
15662 -- reported serious errors in the sources.
15664 pragma Assert (not Is_Tagged_Type (Derived_Type)
15665 or else Present (Generic_Actual)
15666 or else Serious_Errors_Detected > 0
15667 or else Check_Derived_Type);
15668 end Derive_Subprograms;
15670 --------------------------------
15671 -- Derived_Standard_Character --
15672 --------------------------------
15674 procedure Derived_Standard_Character
15675 (N : Node_Id;
15676 Parent_Type : Entity_Id;
15677 Derived_Type : Entity_Id)
15679 Loc : constant Source_Ptr := Sloc (N);
15680 Def : constant Node_Id := Type_Definition (N);
15681 Indic : constant Node_Id := Subtype_Indication (Def);
15682 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15683 Implicit_Base : constant Entity_Id :=
15684 Create_Itype
15685 (E_Enumeration_Type, N, Derived_Type, 'B');
15687 Lo : Node_Id;
15688 Hi : Node_Id;
15690 begin
15691 Discard_Node (Process_Subtype (Indic, N));
15693 Set_Etype (Implicit_Base, Parent_Base);
15694 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15695 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15697 Set_Is_Character_Type (Implicit_Base, True);
15698 Set_Has_Delayed_Freeze (Implicit_Base);
15700 -- The bounds of the implicit base are the bounds of the parent base.
15701 -- Note that their type is the parent base.
15703 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15704 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15706 Set_Scalar_Range (Implicit_Base,
15707 Make_Range (Loc,
15708 Low_Bound => Lo,
15709 High_Bound => Hi));
15711 Conditional_Delay (Derived_Type, Parent_Type);
15713 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15714 Set_Etype (Derived_Type, Implicit_Base);
15715 Set_Size_Info (Derived_Type, Parent_Type);
15717 if Unknown_RM_Size (Derived_Type) then
15718 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15719 end if;
15721 Set_Is_Character_Type (Derived_Type, True);
15723 if Nkind (Indic) /= N_Subtype_Indication then
15725 -- If no explicit constraint, the bounds are those
15726 -- of the parent type.
15728 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15729 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15730 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15731 end if;
15733 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15735 -- Because the implicit base is used in the conversion of the bounds, we
15736 -- have to freeze it now. This is similar to what is done for numeric
15737 -- types, and it equally suspicious, but otherwise a non-static bound
15738 -- will have a reference to an unfrozen type, which is rejected by Gigi
15739 -- (???). This requires specific care for definition of stream
15740 -- attributes. For details, see comments at the end of
15741 -- Build_Derived_Numeric_Type.
15743 Freeze_Before (N, Implicit_Base);
15744 end Derived_Standard_Character;
15746 ------------------------------
15747 -- Derived_Type_Declaration --
15748 ------------------------------
15750 procedure Derived_Type_Declaration
15751 (T : Entity_Id;
15752 N : Node_Id;
15753 Is_Completion : Boolean)
15755 Parent_Type : Entity_Id;
15757 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15758 -- Check whether the parent type is a generic formal, or derives
15759 -- directly or indirectly from one.
15761 ------------------------
15762 -- Comes_From_Generic --
15763 ------------------------
15765 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15766 begin
15767 if Is_Generic_Type (Typ) then
15768 return True;
15770 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15771 return True;
15773 elsif Is_Private_Type (Typ)
15774 and then Present (Full_View (Typ))
15775 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15776 then
15777 return True;
15779 elsif Is_Generic_Actual_Type (Typ) then
15780 return True;
15782 else
15783 return False;
15784 end if;
15785 end Comes_From_Generic;
15787 -- Local variables
15789 Def : constant Node_Id := Type_Definition (N);
15790 Iface_Def : Node_Id;
15791 Indic : constant Node_Id := Subtype_Indication (Def);
15792 Extension : constant Node_Id := Record_Extension_Part (Def);
15793 Parent_Node : Node_Id;
15794 Taggd : Boolean;
15796 -- Start of processing for Derived_Type_Declaration
15798 begin
15799 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15801 -- Ada 2005 (AI-251): In case of interface derivation check that the
15802 -- parent is also an interface.
15804 if Interface_Present (Def) then
15805 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15807 if not Is_Interface (Parent_Type) then
15808 Diagnose_Interface (Indic, Parent_Type);
15810 else
15811 Parent_Node := Parent (Base_Type (Parent_Type));
15812 Iface_Def := Type_Definition (Parent_Node);
15814 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15815 -- other limited interfaces.
15817 if Limited_Present (Def) then
15818 if Limited_Present (Iface_Def) then
15819 null;
15821 elsif Protected_Present (Iface_Def) then
15822 Error_Msg_NE
15823 ("descendant of & must be declared as a protected "
15824 & "interface", N, Parent_Type);
15826 elsif Synchronized_Present (Iface_Def) then
15827 Error_Msg_NE
15828 ("descendant of & must be declared as a synchronized "
15829 & "interface", N, Parent_Type);
15831 elsif Task_Present (Iface_Def) then
15832 Error_Msg_NE
15833 ("descendant of & must be declared as a task interface",
15834 N, Parent_Type);
15836 else
15837 Error_Msg_N
15838 ("(Ada 2005) limited interface cannot inherit from "
15839 & "non-limited interface", Indic);
15840 end if;
15842 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15843 -- from non-limited or limited interfaces.
15845 elsif not Protected_Present (Def)
15846 and then not Synchronized_Present (Def)
15847 and then not Task_Present (Def)
15848 then
15849 if Limited_Present (Iface_Def) then
15850 null;
15852 elsif Protected_Present (Iface_Def) then
15853 Error_Msg_NE
15854 ("descendant of & must be declared as a protected "
15855 & "interface", N, Parent_Type);
15857 elsif Synchronized_Present (Iface_Def) then
15858 Error_Msg_NE
15859 ("descendant of & must be declared as a synchronized "
15860 & "interface", N, Parent_Type);
15862 elsif Task_Present (Iface_Def) then
15863 Error_Msg_NE
15864 ("descendant of & must be declared as a task interface",
15865 N, Parent_Type);
15866 else
15867 null;
15868 end if;
15869 end if;
15870 end if;
15871 end if;
15873 if Is_Tagged_Type (Parent_Type)
15874 and then Is_Concurrent_Type (Parent_Type)
15875 and then not Is_Interface (Parent_Type)
15876 then
15877 Error_Msg_N
15878 ("parent type of a record extension cannot be a synchronized "
15879 & "tagged type (RM 3.9.1 (3/1))", N);
15880 Set_Etype (T, Any_Type);
15881 return;
15882 end if;
15884 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15885 -- interfaces
15887 if Is_Tagged_Type (Parent_Type)
15888 and then Is_Non_Empty_List (Interface_List (Def))
15889 then
15890 declare
15891 Intf : Node_Id;
15892 T : Entity_Id;
15894 begin
15895 Intf := First (Interface_List (Def));
15896 while Present (Intf) loop
15897 T := Find_Type_Of_Subtype_Indic (Intf);
15899 if not Is_Interface (T) then
15900 Diagnose_Interface (Intf, T);
15902 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15903 -- a limited type from having a nonlimited progenitor.
15905 elsif (Limited_Present (Def)
15906 or else (not Is_Interface (Parent_Type)
15907 and then Is_Limited_Type (Parent_Type)))
15908 and then not Is_Limited_Interface (T)
15909 then
15910 Error_Msg_NE
15911 ("progenitor interface& of limited type must be limited",
15912 N, T);
15913 end if;
15915 Next (Intf);
15916 end loop;
15917 end;
15918 end if;
15920 if Parent_Type = Any_Type
15921 or else Etype (Parent_Type) = Any_Type
15922 or else (Is_Class_Wide_Type (Parent_Type)
15923 and then Etype (Parent_Type) = T)
15924 then
15925 -- If Parent_Type is undefined or illegal, make new type into a
15926 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15927 -- errors. If this is a self-definition, emit error now.
15929 if T = Parent_Type or else T = Etype (Parent_Type) then
15930 Error_Msg_N ("type cannot be used in its own definition", Indic);
15931 end if;
15933 Set_Ekind (T, Ekind (Parent_Type));
15934 Set_Etype (T, Any_Type);
15935 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15937 if Is_Tagged_Type (T)
15938 and then Is_Record_Type (T)
15939 then
15940 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15941 end if;
15943 return;
15944 end if;
15946 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15947 -- an interface is special because the list of interfaces in the full
15948 -- view can be given in any order. For example:
15950 -- type A is interface;
15951 -- type B is interface and A;
15952 -- type D is new B with private;
15953 -- private
15954 -- type D is new A and B with null record; -- 1 --
15956 -- In this case we perform the following transformation of -1-:
15958 -- type D is new B and A with null record;
15960 -- If the parent of the full-view covers the parent of the partial-view
15961 -- we have two possible cases:
15963 -- 1) They have the same parent
15964 -- 2) The parent of the full-view implements some further interfaces
15966 -- In both cases we do not need to perform the transformation. In the
15967 -- first case the source program is correct and the transformation is
15968 -- not needed; in the second case the source program does not fulfill
15969 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15970 -- later.
15972 -- This transformation not only simplifies the rest of the analysis of
15973 -- this type declaration but also simplifies the correct generation of
15974 -- the object layout to the expander.
15976 if In_Private_Part (Current_Scope)
15977 and then Is_Interface (Parent_Type)
15978 then
15979 declare
15980 Iface : Node_Id;
15981 Partial_View : Entity_Id;
15982 Partial_View_Parent : Entity_Id;
15983 New_Iface : Node_Id;
15985 begin
15986 -- Look for the associated private type declaration
15988 Partial_View := First_Entity (Current_Scope);
15989 loop
15990 exit when No (Partial_View)
15991 or else (Has_Private_Declaration (Partial_View)
15992 and then Full_View (Partial_View) = T);
15994 Next_Entity (Partial_View);
15995 end loop;
15997 -- If the partial view was not found then the source code has
15998 -- errors and the transformation is not needed.
16000 if Present (Partial_View) then
16001 Partial_View_Parent := Etype (Partial_View);
16003 -- If the parent of the full-view covers the parent of the
16004 -- partial-view we have nothing else to do.
16006 if Interface_Present_In_Ancestor
16007 (Parent_Type, Partial_View_Parent)
16008 then
16009 null;
16011 -- Traverse the list of interfaces of the full-view to look
16012 -- for the parent of the partial-view and perform the tree
16013 -- transformation.
16015 else
16016 Iface := First (Interface_List (Def));
16017 while Present (Iface) loop
16018 if Etype (Iface) = Etype (Partial_View) then
16019 Rewrite (Subtype_Indication (Def),
16020 New_Copy (Subtype_Indication
16021 (Parent (Partial_View))));
16023 New_Iface :=
16024 Make_Identifier (Sloc (N), Chars (Parent_Type));
16025 Append (New_Iface, Interface_List (Def));
16027 -- Analyze the transformed code
16029 Derived_Type_Declaration (T, N, Is_Completion);
16030 return;
16031 end if;
16033 Next (Iface);
16034 end loop;
16035 end if;
16036 end if;
16037 end;
16038 end if;
16040 -- Only composite types other than array types are allowed to have
16041 -- discriminants.
16043 if Present (Discriminant_Specifications (N)) then
16044 if (Is_Elementary_Type (Parent_Type)
16045 or else
16046 Is_Array_Type (Parent_Type))
16047 and then not Error_Posted (N)
16048 then
16049 Error_Msg_N
16050 ("elementary or array type cannot have discriminants",
16051 Defining_Identifier (First (Discriminant_Specifications (N))));
16052 Set_Has_Discriminants (T, False);
16054 -- The type is allowed to have discriminants
16056 else
16057 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16058 end if;
16059 end if;
16061 -- In Ada 83, a derived type defined in a package specification cannot
16062 -- be used for further derivation until the end of its visible part.
16063 -- Note that derivation in the private part of the package is allowed.
16065 if Ada_Version = Ada_83
16066 and then Is_Derived_Type (Parent_Type)
16067 and then In_Visible_Part (Scope (Parent_Type))
16068 then
16069 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16070 Error_Msg_N
16071 ("(Ada 83): premature use of type for derivation", Indic);
16072 end if;
16073 end if;
16075 -- Check for early use of incomplete or private type
16077 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16078 Error_Msg_N ("premature derivation of incomplete type", Indic);
16079 return;
16081 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16082 and then not Comes_From_Generic (Parent_Type))
16083 or else Has_Private_Component (Parent_Type)
16084 then
16085 -- The ancestor type of a formal type can be incomplete, in which
16086 -- case only the operations of the partial view are available in the
16087 -- generic. Subsequent checks may be required when the full view is
16088 -- analyzed to verify that a derivation from a tagged type has an
16089 -- extension.
16091 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16092 null;
16094 elsif No (Underlying_Type (Parent_Type))
16095 or else Has_Private_Component (Parent_Type)
16096 then
16097 Error_Msg_N
16098 ("premature derivation of derived or private type", Indic);
16100 -- Flag the type itself as being in error, this prevents some
16101 -- nasty problems with subsequent uses of the malformed type.
16103 Set_Error_Posted (T);
16105 -- Check that within the immediate scope of an untagged partial
16106 -- view it's illegal to derive from the partial view if the
16107 -- full view is tagged. (7.3(7))
16109 -- We verify that the Parent_Type is a partial view by checking
16110 -- that it is not a Full_Type_Declaration (i.e. a private type or
16111 -- private extension declaration), to distinguish a partial view
16112 -- from a derivation from a private type which also appears as
16113 -- E_Private_Type. If the parent base type is not declared in an
16114 -- enclosing scope there is no need to check.
16116 elsif Present (Full_View (Parent_Type))
16117 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16118 and then not Is_Tagged_Type (Parent_Type)
16119 and then Is_Tagged_Type (Full_View (Parent_Type))
16120 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16121 then
16122 Error_Msg_N
16123 ("premature derivation from type with tagged full view",
16124 Indic);
16125 end if;
16126 end if;
16128 -- Check that form of derivation is appropriate
16130 Taggd := Is_Tagged_Type (Parent_Type);
16132 -- Set the parent type to the class-wide type's specific type in this
16133 -- case to prevent cascading errors
16135 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16136 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16137 Set_Etype (T, Etype (Parent_Type));
16138 return;
16139 end if;
16141 if Present (Extension) and then not Taggd then
16142 Error_Msg_N
16143 ("type derived from untagged type cannot have extension", Indic);
16145 elsif No (Extension) and then Taggd then
16147 -- If this declaration is within a private part (or body) of a
16148 -- generic instantiation then the derivation is allowed (the parent
16149 -- type can only appear tagged in this case if it's a generic actual
16150 -- type, since it would otherwise have been rejected in the analysis
16151 -- of the generic template).
16153 if not Is_Generic_Actual_Type (Parent_Type)
16154 or else In_Visible_Part (Scope (Parent_Type))
16155 then
16156 if Is_Class_Wide_Type (Parent_Type) then
16157 Error_Msg_N
16158 ("parent type must not be a class-wide type", Indic);
16160 -- Use specific type to prevent cascaded errors.
16162 Parent_Type := Etype (Parent_Type);
16164 else
16165 Error_Msg_N
16166 ("type derived from tagged type must have extension", Indic);
16167 end if;
16168 end if;
16169 end if;
16171 -- AI-443: Synchronized formal derived types require a private
16172 -- extension. There is no point in checking the ancestor type or
16173 -- the progenitors since the construct is wrong to begin with.
16175 if Ada_Version >= Ada_2005
16176 and then Is_Generic_Type (T)
16177 and then Present (Original_Node (N))
16178 then
16179 declare
16180 Decl : constant Node_Id := Original_Node (N);
16182 begin
16183 if Nkind (Decl) = N_Formal_Type_Declaration
16184 and then Nkind (Formal_Type_Definition (Decl)) =
16185 N_Formal_Derived_Type_Definition
16186 and then Synchronized_Present (Formal_Type_Definition (Decl))
16187 and then No (Extension)
16189 -- Avoid emitting a duplicate error message
16191 and then not Error_Posted (Indic)
16192 then
16193 Error_Msg_N
16194 ("synchronized derived type must have extension", N);
16195 end if;
16196 end;
16197 end if;
16199 if Null_Exclusion_Present (Def)
16200 and then not Is_Access_Type (Parent_Type)
16201 then
16202 Error_Msg_N ("null exclusion can only apply to an access type", N);
16203 end if;
16205 -- Avoid deriving parent primitives of underlying record views
16207 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16208 Derive_Subps => not Is_Underlying_Record_View (T));
16210 -- AI-419: The parent type of an explicitly limited derived type must
16211 -- be a limited type or a limited interface.
16213 if Limited_Present (Def) then
16214 Set_Is_Limited_Record (T);
16216 if Is_Interface (T) then
16217 Set_Is_Limited_Interface (T);
16218 end if;
16220 if not Is_Limited_Type (Parent_Type)
16221 and then
16222 (not Is_Interface (Parent_Type)
16223 or else not Is_Limited_Interface (Parent_Type))
16224 then
16225 -- AI05-0096: a derivation in the private part of an instance is
16226 -- legal if the generic formal is untagged limited, and the actual
16227 -- is non-limited.
16229 if Is_Generic_Actual_Type (Parent_Type)
16230 and then In_Private_Part (Current_Scope)
16231 and then
16232 not Is_Tagged_Type
16233 (Generic_Parent_Type (Parent (Parent_Type)))
16234 then
16235 null;
16237 else
16238 Error_Msg_NE
16239 ("parent type& of limited type must be limited",
16240 N, Parent_Type);
16241 end if;
16242 end if;
16243 end if;
16245 -- In SPARK, there are no derived type definitions other than type
16246 -- extensions of tagged record types.
16248 if No (Extension) then
16249 Check_SPARK_05_Restriction
16250 ("derived type is not allowed", Original_Node (N));
16251 end if;
16252 end Derived_Type_Declaration;
16254 ------------------------
16255 -- Diagnose_Interface --
16256 ------------------------
16258 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16259 begin
16260 if not Is_Interface (E) and then E /= Any_Type then
16261 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16262 end if;
16263 end Diagnose_Interface;
16265 ----------------------------------
16266 -- Enumeration_Type_Declaration --
16267 ----------------------------------
16269 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16270 Ev : Uint;
16271 L : Node_Id;
16272 R_Node : Node_Id;
16273 B_Node : Node_Id;
16275 begin
16276 -- Create identifier node representing lower bound
16278 B_Node := New_Node (N_Identifier, Sloc (Def));
16279 L := First (Literals (Def));
16280 Set_Chars (B_Node, Chars (L));
16281 Set_Entity (B_Node, L);
16282 Set_Etype (B_Node, T);
16283 Set_Is_Static_Expression (B_Node, True);
16285 R_Node := New_Node (N_Range, Sloc (Def));
16286 Set_Low_Bound (R_Node, B_Node);
16288 Set_Ekind (T, E_Enumeration_Type);
16289 Set_First_Literal (T, L);
16290 Set_Etype (T, T);
16291 Set_Is_Constrained (T);
16293 Ev := Uint_0;
16295 -- Loop through literals of enumeration type setting pos and rep values
16296 -- except that if the Ekind is already set, then it means the literal
16297 -- was already constructed (case of a derived type declaration and we
16298 -- should not disturb the Pos and Rep values.
16300 while Present (L) loop
16301 if Ekind (L) /= E_Enumeration_Literal then
16302 Set_Ekind (L, E_Enumeration_Literal);
16303 Set_Enumeration_Pos (L, Ev);
16304 Set_Enumeration_Rep (L, Ev);
16305 Set_Is_Known_Valid (L, True);
16306 end if;
16308 Set_Etype (L, T);
16309 New_Overloaded_Entity (L);
16310 Generate_Definition (L);
16311 Set_Convention (L, Convention_Intrinsic);
16313 -- Case of character literal
16315 if Nkind (L) = N_Defining_Character_Literal then
16316 Set_Is_Character_Type (T, True);
16318 -- Check violation of No_Wide_Characters
16320 if Restriction_Check_Required (No_Wide_Characters) then
16321 Get_Name_String (Chars (L));
16323 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16324 Check_Restriction (No_Wide_Characters, L);
16325 end if;
16326 end if;
16327 end if;
16329 Ev := Ev + 1;
16330 Next (L);
16331 end loop;
16333 -- Now create a node representing upper bound
16335 B_Node := New_Node (N_Identifier, Sloc (Def));
16336 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16337 Set_Entity (B_Node, Last (Literals (Def)));
16338 Set_Etype (B_Node, T);
16339 Set_Is_Static_Expression (B_Node, True);
16341 Set_High_Bound (R_Node, B_Node);
16343 -- Initialize various fields of the type. Some of this information
16344 -- may be overwritten later through rep.clauses.
16346 Set_Scalar_Range (T, R_Node);
16347 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16348 Set_Enum_Esize (T);
16349 Set_Enum_Pos_To_Rep (T, Empty);
16351 -- Set Discard_Names if configuration pragma set, or if there is
16352 -- a parameterless pragma in the current declarative region
16354 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16355 Set_Discard_Names (T);
16356 end if;
16358 -- Process end label if there is one
16360 if Present (Def) then
16361 Process_End_Label (Def, 'e', T);
16362 end if;
16363 end Enumeration_Type_Declaration;
16365 ---------------------------------
16366 -- Expand_To_Stored_Constraint --
16367 ---------------------------------
16369 function Expand_To_Stored_Constraint
16370 (Typ : Entity_Id;
16371 Constraint : Elist_Id) return Elist_Id
16373 Explicitly_Discriminated_Type : Entity_Id;
16374 Expansion : Elist_Id;
16375 Discriminant : Entity_Id;
16377 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16378 -- Find the nearest type that actually specifies discriminants
16380 ---------------------------------
16381 -- Type_With_Explicit_Discrims --
16382 ---------------------------------
16384 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16385 Typ : constant E := Base_Type (Id);
16387 begin
16388 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16389 if Present (Full_View (Typ)) then
16390 return Type_With_Explicit_Discrims (Full_View (Typ));
16391 end if;
16393 else
16394 if Has_Discriminants (Typ) then
16395 return Typ;
16396 end if;
16397 end if;
16399 if Etype (Typ) = Typ then
16400 return Empty;
16401 elsif Has_Discriminants (Typ) then
16402 return Typ;
16403 else
16404 return Type_With_Explicit_Discrims (Etype (Typ));
16405 end if;
16407 end Type_With_Explicit_Discrims;
16409 -- Start of processing for Expand_To_Stored_Constraint
16411 begin
16412 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16413 return No_Elist;
16414 end if;
16416 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16418 if No (Explicitly_Discriminated_Type) then
16419 return No_Elist;
16420 end if;
16422 Expansion := New_Elmt_List;
16424 Discriminant :=
16425 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16426 while Present (Discriminant) loop
16427 Append_Elmt
16428 (Get_Discriminant_Value
16429 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16430 To => Expansion);
16431 Next_Stored_Discriminant (Discriminant);
16432 end loop;
16434 return Expansion;
16435 end Expand_To_Stored_Constraint;
16437 ---------------------------
16438 -- Find_Hidden_Interface --
16439 ---------------------------
16441 function Find_Hidden_Interface
16442 (Src : Elist_Id;
16443 Dest : Elist_Id) return Entity_Id
16445 Iface : Entity_Id;
16446 Iface_Elmt : Elmt_Id;
16448 begin
16449 if Present (Src) and then Present (Dest) then
16450 Iface_Elmt := First_Elmt (Src);
16451 while Present (Iface_Elmt) loop
16452 Iface := Node (Iface_Elmt);
16454 if Is_Interface (Iface)
16455 and then not Contain_Interface (Iface, Dest)
16456 then
16457 return Iface;
16458 end if;
16460 Next_Elmt (Iface_Elmt);
16461 end loop;
16462 end if;
16464 return Empty;
16465 end Find_Hidden_Interface;
16467 --------------------
16468 -- Find_Type_Name --
16469 --------------------
16471 function Find_Type_Name (N : Node_Id) return Entity_Id is
16472 Id : constant Entity_Id := Defining_Identifier (N);
16473 New_Id : Entity_Id;
16474 Prev : Entity_Id;
16475 Prev_Par : Node_Id;
16477 procedure Check_Duplicate_Aspects;
16478 -- Check that aspects specified in a completion have not been specified
16479 -- already in the partial view.
16481 procedure Tag_Mismatch;
16482 -- Diagnose a tagged partial view whose full view is untagged. We post
16483 -- the message on the full view, with a reference to the previous
16484 -- partial view. The partial view can be private or incomplete, and
16485 -- these are handled in a different manner, so we determine the position
16486 -- of the error message from the respective slocs of both.
16488 -----------------------------
16489 -- Check_Duplicate_Aspects --
16490 -----------------------------
16492 procedure Check_Duplicate_Aspects is
16493 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
16494 -- Return the corresponding aspect of the partial view which matches
16495 -- the aspect id of Asp. Return Empty is no such aspect exists.
16497 -----------------------------
16498 -- Get_Partial_View_Aspect --
16499 -----------------------------
16501 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
16502 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
16503 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
16504 Prev_Asp : Node_Id;
16506 begin
16507 if Present (Prev_Asps) then
16508 Prev_Asp := First (Prev_Asps);
16509 while Present (Prev_Asp) loop
16510 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
16511 return Prev_Asp;
16512 end if;
16514 Next (Prev_Asp);
16515 end loop;
16516 end if;
16518 return Empty;
16519 end Get_Partial_View_Aspect;
16521 -- Local variables
16523 Full_Asps : constant List_Id := Aspect_Specifications (N);
16524 Full_Asp : Node_Id;
16525 Part_Asp : Node_Id;
16527 -- Start of processing for Check_Duplicate_Aspects
16529 begin
16530 if Present (Full_Asps) then
16531 Full_Asp := First (Full_Asps);
16532 while Present (Full_Asp) loop
16533 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
16535 -- An aspect and its class-wide counterpart are two distinct
16536 -- aspects and may apply to both views of an entity.
16538 if Present (Part_Asp)
16539 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
16540 then
16541 Error_Msg_N
16542 ("aspect already specified in private declaration",
16543 Full_Asp);
16545 Remove (Full_Asp);
16546 return;
16547 end if;
16549 if Has_Discriminants (Prev)
16550 and then not Has_Unknown_Discriminants (Prev)
16551 and then Get_Aspect_Id (Full_Asp) =
16552 Aspect_Implicit_Dereference
16553 then
16554 Error_Msg_N
16555 ("cannot specify aspect if partial view has known "
16556 & "discriminants", Full_Asp);
16557 end if;
16559 Next (Full_Asp);
16560 end loop;
16561 end if;
16562 end Check_Duplicate_Aspects;
16564 ------------------
16565 -- Tag_Mismatch --
16566 ------------------
16568 procedure Tag_Mismatch is
16569 begin
16570 if Sloc (Prev) < Sloc (Id) then
16571 if Ada_Version >= Ada_2012
16572 and then Nkind (N) = N_Private_Type_Declaration
16573 then
16574 Error_Msg_NE
16575 ("declaration of private } must be a tagged type ", Id, Prev);
16576 else
16577 Error_Msg_NE
16578 ("full declaration of } must be a tagged type ", Id, Prev);
16579 end if;
16581 else
16582 if Ada_Version >= Ada_2012
16583 and then Nkind (N) = N_Private_Type_Declaration
16584 then
16585 Error_Msg_NE
16586 ("declaration of private } must be a tagged type ", Prev, Id);
16587 else
16588 Error_Msg_NE
16589 ("full declaration of } must be a tagged type ", Prev, Id);
16590 end if;
16591 end if;
16592 end Tag_Mismatch;
16594 -- Start of processing for Find_Type_Name
16596 begin
16597 -- Find incomplete declaration, if one was given
16599 Prev := Current_Entity_In_Scope (Id);
16601 -- New type declaration
16603 if No (Prev) then
16604 Enter_Name (Id);
16605 return Id;
16607 -- Previous declaration exists
16609 else
16610 Prev_Par := Parent (Prev);
16612 -- Error if not incomplete/private case except if previous
16613 -- declaration is implicit, etc. Enter_Name will emit error if
16614 -- appropriate.
16616 if not Is_Incomplete_Or_Private_Type (Prev) then
16617 Enter_Name (Id);
16618 New_Id := Id;
16620 -- Check invalid completion of private or incomplete type
16622 elsif not Nkind_In (N, N_Full_Type_Declaration,
16623 N_Task_Type_Declaration,
16624 N_Protected_Type_Declaration)
16625 and then
16626 (Ada_Version < Ada_2012
16627 or else not Is_Incomplete_Type (Prev)
16628 or else not Nkind_In (N, N_Private_Type_Declaration,
16629 N_Private_Extension_Declaration))
16630 then
16631 -- Completion must be a full type declarations (RM 7.3(4))
16633 Error_Msg_Sloc := Sloc (Prev);
16634 Error_Msg_NE ("invalid completion of }", Id, Prev);
16636 -- Set scope of Id to avoid cascaded errors. Entity is never
16637 -- examined again, except when saving globals in generics.
16639 Set_Scope (Id, Current_Scope);
16640 New_Id := Id;
16642 -- If this is a repeated incomplete declaration, no further
16643 -- checks are possible.
16645 if Nkind (N) = N_Incomplete_Type_Declaration then
16646 return Prev;
16647 end if;
16649 -- Case of full declaration of incomplete type
16651 elsif Ekind (Prev) = E_Incomplete_Type
16652 and then (Ada_Version < Ada_2012
16653 or else No (Full_View (Prev))
16654 or else not Is_Private_Type (Full_View (Prev)))
16655 then
16656 -- Indicate that the incomplete declaration has a matching full
16657 -- declaration. The defining occurrence of the incomplete
16658 -- declaration remains the visible one, and the procedure
16659 -- Get_Full_View dereferences it whenever the type is used.
16661 if Present (Full_View (Prev)) then
16662 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16663 end if;
16665 Set_Full_View (Prev, Id);
16666 Append_Entity (Id, Current_Scope);
16667 Set_Is_Public (Id, Is_Public (Prev));
16668 Set_Is_Internal (Id);
16669 New_Id := Prev;
16671 -- If the incomplete view is tagged, a class_wide type has been
16672 -- created already. Use it for the private type as well, in order
16673 -- to prevent multiple incompatible class-wide types that may be
16674 -- created for self-referential anonymous access components.
16676 if Is_Tagged_Type (Prev)
16677 and then Present (Class_Wide_Type (Prev))
16678 then
16679 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16680 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16682 -- Type of the class-wide type is the current Id. Previously
16683 -- this was not done for private declarations because of order-
16684 -- of-elaboration issues in the back end, but gigi now handles
16685 -- this properly.
16687 Set_Etype (Class_Wide_Type (Id), Id);
16688 end if;
16690 -- Case of full declaration of private type
16692 else
16693 -- If the private type was a completion of an incomplete type then
16694 -- update Prev to reference the private type
16696 if Ada_Version >= Ada_2012
16697 and then Ekind (Prev) = E_Incomplete_Type
16698 and then Present (Full_View (Prev))
16699 and then Is_Private_Type (Full_View (Prev))
16700 then
16701 Prev := Full_View (Prev);
16702 Prev_Par := Parent (Prev);
16703 end if;
16705 if Nkind (N) = N_Full_Type_Declaration
16706 and then Nkind_In
16707 (Type_Definition (N), N_Record_Definition,
16708 N_Derived_Type_Definition)
16709 and then Interface_Present (Type_Definition (N))
16710 then
16711 Error_Msg_N
16712 ("completion of private type cannot be an interface", N);
16713 end if;
16715 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16716 if Etype (Prev) /= Prev then
16718 -- Prev is a private subtype or a derived type, and needs
16719 -- no completion.
16721 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16722 New_Id := Id;
16724 elsif Ekind (Prev) = E_Private_Type
16725 and then Nkind_In (N, N_Task_Type_Declaration,
16726 N_Protected_Type_Declaration)
16727 then
16728 Error_Msg_N
16729 ("completion of nonlimited type cannot be limited", N);
16731 elsif Ekind (Prev) = E_Record_Type_With_Private
16732 and then Nkind_In (N, N_Task_Type_Declaration,
16733 N_Protected_Type_Declaration)
16734 then
16735 if not Is_Limited_Record (Prev) then
16736 Error_Msg_N
16737 ("completion of nonlimited type cannot be limited", N);
16739 elsif No (Interface_List (N)) then
16740 Error_Msg_N
16741 ("completion of tagged private type must be tagged",
16743 end if;
16744 end if;
16746 -- Ada 2005 (AI-251): Private extension declaration of a task
16747 -- type or a protected type. This case arises when covering
16748 -- interface types.
16750 elsif Nkind_In (N, N_Task_Type_Declaration,
16751 N_Protected_Type_Declaration)
16752 then
16753 null;
16755 elsif Nkind (N) /= N_Full_Type_Declaration
16756 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16757 then
16758 Error_Msg_N
16759 ("full view of private extension must be an extension", N);
16761 elsif not (Abstract_Present (Parent (Prev)))
16762 and then Abstract_Present (Type_Definition (N))
16763 then
16764 Error_Msg_N
16765 ("full view of non-abstract extension cannot be abstract", N);
16766 end if;
16768 if not In_Private_Part (Current_Scope) then
16769 Error_Msg_N
16770 ("declaration of full view must appear in private part", N);
16771 end if;
16773 if Ada_Version >= Ada_2012 then
16774 Check_Duplicate_Aspects;
16775 end if;
16777 Copy_And_Swap (Prev, Id);
16778 Set_Has_Private_Declaration (Prev);
16779 Set_Has_Private_Declaration (Id);
16781 -- AI12-0133: Indicate whether we have a partial view with
16782 -- unknown discriminants, in which case initialization of objects
16783 -- of the type do not receive an invariant check.
16785 Set_Partial_View_Has_Unknown_Discr
16786 (Prev, Has_Unknown_Discriminants (Id));
16788 -- Preserve aspect and iterator flags that may have been set on
16789 -- the partial view.
16791 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16792 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16794 -- If no error, propagate freeze_node from private to full view.
16795 -- It may have been generated for an early operational item.
16797 if Present (Freeze_Node (Id))
16798 and then Serious_Errors_Detected = 0
16799 and then No (Full_View (Id))
16800 then
16801 Set_Freeze_Node (Prev, Freeze_Node (Id));
16802 Set_Freeze_Node (Id, Empty);
16803 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16804 end if;
16806 Set_Full_View (Id, Prev);
16807 New_Id := Prev;
16808 end if;
16810 -- Verify that full declaration conforms to partial one
16812 if Is_Incomplete_Or_Private_Type (Prev)
16813 and then Present (Discriminant_Specifications (Prev_Par))
16814 then
16815 if Present (Discriminant_Specifications (N)) then
16816 if Ekind (Prev) = E_Incomplete_Type then
16817 Check_Discriminant_Conformance (N, Prev, Prev);
16818 else
16819 Check_Discriminant_Conformance (N, Prev, Id);
16820 end if;
16822 else
16823 Error_Msg_N
16824 ("missing discriminants in full type declaration", N);
16826 -- To avoid cascaded errors on subsequent use, share the
16827 -- discriminants of the partial view.
16829 Set_Discriminant_Specifications (N,
16830 Discriminant_Specifications (Prev_Par));
16831 end if;
16832 end if;
16834 -- A prior untagged partial view can have an associated class-wide
16835 -- type due to use of the class attribute, and in this case the full
16836 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16837 -- of incomplete tagged declarations, but we check for it.
16839 if Is_Type (Prev)
16840 and then (Is_Tagged_Type (Prev)
16841 or else Present (Class_Wide_Type (Prev)))
16842 then
16843 -- Ada 2012 (AI05-0162): A private type may be the completion of
16844 -- an incomplete type.
16846 if Ada_Version >= Ada_2012
16847 and then Is_Incomplete_Type (Prev)
16848 and then Nkind_In (N, N_Private_Type_Declaration,
16849 N_Private_Extension_Declaration)
16850 then
16851 -- No need to check private extensions since they are tagged
16853 if Nkind (N) = N_Private_Type_Declaration
16854 and then not Tagged_Present (N)
16855 then
16856 Tag_Mismatch;
16857 end if;
16859 -- The full declaration is either a tagged type (including
16860 -- a synchronized type that implements interfaces) or a
16861 -- type extension, otherwise this is an error.
16863 elsif Nkind_In (N, N_Task_Type_Declaration,
16864 N_Protected_Type_Declaration)
16865 then
16866 if No (Interface_List (N)) and then not Error_Posted (N) then
16867 Tag_Mismatch;
16868 end if;
16870 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16872 -- Indicate that the previous declaration (tagged incomplete
16873 -- or private declaration) requires the same on the full one.
16875 if not Tagged_Present (Type_Definition (N)) then
16876 Tag_Mismatch;
16877 Set_Is_Tagged_Type (Id);
16878 end if;
16880 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16881 if No (Record_Extension_Part (Type_Definition (N))) then
16882 Error_Msg_NE
16883 ("full declaration of } must be a record extension",
16884 Prev, Id);
16886 -- Set some attributes to produce a usable full view
16888 Set_Is_Tagged_Type (Id);
16889 end if;
16891 else
16892 Tag_Mismatch;
16893 end if;
16894 end if;
16896 if Present (Prev)
16897 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16898 and then Present (Premature_Use (Parent (Prev)))
16899 then
16900 Error_Msg_Sloc := Sloc (N);
16901 Error_Msg_N
16902 ("\full declaration #", Premature_Use (Parent (Prev)));
16903 end if;
16905 return New_Id;
16906 end if;
16907 end Find_Type_Name;
16909 -------------------------
16910 -- Find_Type_Of_Object --
16911 -------------------------
16913 function Find_Type_Of_Object
16914 (Obj_Def : Node_Id;
16915 Related_Nod : Node_Id) return Entity_Id
16917 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16918 P : Node_Id := Parent (Obj_Def);
16919 T : Entity_Id;
16920 Nam : Name_Id;
16922 begin
16923 -- If the parent is a component_definition node we climb to the
16924 -- component_declaration node
16926 if Nkind (P) = N_Component_Definition then
16927 P := Parent (P);
16928 end if;
16930 -- Case of an anonymous array subtype
16932 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16933 N_Unconstrained_Array_Definition)
16934 then
16935 T := Empty;
16936 Array_Type_Declaration (T, Obj_Def);
16938 -- Create an explicit subtype whenever possible
16940 elsif Nkind (P) /= N_Component_Declaration
16941 and then Def_Kind = N_Subtype_Indication
16942 then
16943 -- Base name of subtype on object name, which will be unique in
16944 -- the current scope.
16946 -- If this is a duplicate declaration, return base type, to avoid
16947 -- generating duplicate anonymous types.
16949 if Error_Posted (P) then
16950 Analyze (Subtype_Mark (Obj_Def));
16951 return Entity (Subtype_Mark (Obj_Def));
16952 end if;
16954 Nam :=
16955 New_External_Name
16956 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16958 T := Make_Defining_Identifier (Sloc (P), Nam);
16960 Insert_Action (Obj_Def,
16961 Make_Subtype_Declaration (Sloc (P),
16962 Defining_Identifier => T,
16963 Subtype_Indication => Relocate_Node (Obj_Def)));
16965 -- This subtype may need freezing, and this will not be done
16966 -- automatically if the object declaration is not in declarative
16967 -- part. Since this is an object declaration, the type cannot always
16968 -- be frozen here. Deferred constants do not freeze their type
16969 -- (which often enough will be private).
16971 if Nkind (P) = N_Object_Declaration
16972 and then Constant_Present (P)
16973 and then No (Expression (P))
16974 then
16975 null;
16977 -- Here we freeze the base type of object type to catch premature use
16978 -- of discriminated private type without a full view.
16980 else
16981 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16982 end if;
16984 -- Ada 2005 AI-406: the object definition in an object declaration
16985 -- can be an access definition.
16987 elsif Def_Kind = N_Access_Definition then
16988 T := Access_Definition (Related_Nod, Obj_Def);
16990 Set_Is_Local_Anonymous_Access
16992 V => (Ada_Version < Ada_2012)
16993 or else (Nkind (P) /= N_Object_Declaration)
16994 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16996 -- Otherwise, the object definition is just a subtype_mark
16998 else
16999 T := Process_Subtype (Obj_Def, Related_Nod);
17001 -- If expansion is disabled an object definition that is an aggregate
17002 -- will not get expanded and may lead to scoping problems in the back
17003 -- end, if the object is referenced in an inner scope. In that case
17004 -- create an itype reference for the object definition now. This
17005 -- may be redundant in some cases, but harmless.
17007 if Is_Itype (T)
17008 and then Nkind (Related_Nod) = N_Object_Declaration
17009 and then ASIS_Mode
17010 then
17011 Build_Itype_Reference (T, Related_Nod);
17012 end if;
17013 end if;
17015 return T;
17016 end Find_Type_Of_Object;
17018 --------------------------------
17019 -- Find_Type_Of_Subtype_Indic --
17020 --------------------------------
17022 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17023 Typ : Entity_Id;
17025 begin
17026 -- Case of subtype mark with a constraint
17028 if Nkind (S) = N_Subtype_Indication then
17029 Find_Type (Subtype_Mark (S));
17030 Typ := Entity (Subtype_Mark (S));
17032 if not
17033 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17034 then
17035 Error_Msg_N
17036 ("incorrect constraint for this kind of type", Constraint (S));
17037 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17038 end if;
17040 -- Otherwise we have a subtype mark without a constraint
17042 elsif Error_Posted (S) then
17043 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17044 return Any_Type;
17046 else
17047 Find_Type (S);
17048 Typ := Entity (S);
17049 end if;
17051 -- Check No_Wide_Characters restriction
17053 Check_Wide_Character_Restriction (Typ, S);
17055 return Typ;
17056 end Find_Type_Of_Subtype_Indic;
17058 -------------------------------------
17059 -- Floating_Point_Type_Declaration --
17060 -------------------------------------
17062 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17063 Digs : constant Node_Id := Digits_Expression (Def);
17064 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17065 Digs_Val : Uint;
17066 Base_Typ : Entity_Id;
17067 Implicit_Base : Entity_Id;
17068 Bound : Node_Id;
17070 function Can_Derive_From (E : Entity_Id) return Boolean;
17071 -- Find if given digits value, and possibly a specified range, allows
17072 -- derivation from specified type
17074 function Find_Base_Type return Entity_Id;
17075 -- Find a predefined base type that Def can derive from, or generate
17076 -- an error and substitute Long_Long_Float if none exists.
17078 ---------------------
17079 -- Can_Derive_From --
17080 ---------------------
17082 function Can_Derive_From (E : Entity_Id) return Boolean is
17083 Spec : constant Entity_Id := Real_Range_Specification (Def);
17085 begin
17086 -- Check specified "digits" constraint
17088 if Digs_Val > Digits_Value (E) then
17089 return False;
17090 end if;
17092 -- Check for matching range, if specified
17094 if Present (Spec) then
17095 if Expr_Value_R (Type_Low_Bound (E)) >
17096 Expr_Value_R (Low_Bound (Spec))
17097 then
17098 return False;
17099 end if;
17101 if Expr_Value_R (Type_High_Bound (E)) <
17102 Expr_Value_R (High_Bound (Spec))
17103 then
17104 return False;
17105 end if;
17106 end if;
17108 return True;
17109 end Can_Derive_From;
17111 --------------------
17112 -- Find_Base_Type --
17113 --------------------
17115 function Find_Base_Type return Entity_Id is
17116 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17118 begin
17119 -- Iterate over the predefined types in order, returning the first
17120 -- one that Def can derive from.
17122 while Present (Choice) loop
17123 if Can_Derive_From (Node (Choice)) then
17124 return Node (Choice);
17125 end if;
17127 Next_Elmt (Choice);
17128 end loop;
17130 -- If we can't derive from any existing type, use Long_Long_Float
17131 -- and give appropriate message explaining the problem.
17133 if Digs_Val > Max_Digs_Val then
17134 -- It might be the case that there is a type with the requested
17135 -- range, just not the combination of digits and range.
17137 Error_Msg_N
17138 ("no predefined type has requested range and precision",
17139 Real_Range_Specification (Def));
17141 else
17142 Error_Msg_N
17143 ("range too large for any predefined type",
17144 Real_Range_Specification (Def));
17145 end if;
17147 return Standard_Long_Long_Float;
17148 end Find_Base_Type;
17150 -- Start of processing for Floating_Point_Type_Declaration
17152 begin
17153 Check_Restriction (No_Floating_Point, Def);
17155 -- Create an implicit base type
17157 Implicit_Base :=
17158 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17160 -- Analyze and verify digits value
17162 Analyze_And_Resolve (Digs, Any_Integer);
17163 Check_Digits_Expression (Digs);
17164 Digs_Val := Expr_Value (Digs);
17166 -- Process possible range spec and find correct type to derive from
17168 Process_Real_Range_Specification (Def);
17170 -- Check that requested number of digits is not too high.
17172 if Digs_Val > Max_Digs_Val then
17174 -- The check for Max_Base_Digits may be somewhat expensive, as it
17175 -- requires reading System, so only do it when necessary.
17177 declare
17178 Max_Base_Digits : constant Uint :=
17179 Expr_Value
17180 (Expression
17181 (Parent (RTE (RE_Max_Base_Digits))));
17183 begin
17184 if Digs_Val > Max_Base_Digits then
17185 Error_Msg_Uint_1 := Max_Base_Digits;
17186 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17188 elsif No (Real_Range_Specification (Def)) then
17189 Error_Msg_Uint_1 := Max_Digs_Val;
17190 Error_Msg_N ("types with more than ^ digits need range spec "
17191 & "(RM 3.5.7(6))", Digs);
17192 end if;
17193 end;
17194 end if;
17196 -- Find a suitable type to derive from or complain and use a substitute
17198 Base_Typ := Find_Base_Type;
17200 -- If there are bounds given in the declaration use them as the bounds
17201 -- of the type, otherwise use the bounds of the predefined base type
17202 -- that was chosen based on the Digits value.
17204 if Present (Real_Range_Specification (Def)) then
17205 Set_Scalar_Range (T, Real_Range_Specification (Def));
17206 Set_Is_Constrained (T);
17208 -- The bounds of this range must be converted to machine numbers
17209 -- in accordance with RM 4.9(38).
17211 Bound := Type_Low_Bound (T);
17213 if Nkind (Bound) = N_Real_Literal then
17214 Set_Realval
17215 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17216 Set_Is_Machine_Number (Bound);
17217 end if;
17219 Bound := Type_High_Bound (T);
17221 if Nkind (Bound) = N_Real_Literal then
17222 Set_Realval
17223 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17224 Set_Is_Machine_Number (Bound);
17225 end if;
17227 else
17228 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17229 end if;
17231 -- Complete definition of implicit base and declared first subtype. The
17232 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17233 -- are not clobbered when the floating point type acts as a full view of
17234 -- a private type.
17236 Set_Etype (Implicit_Base, Base_Typ);
17237 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17238 Set_Size_Info (Implicit_Base, Base_Typ);
17239 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17240 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17241 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17242 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17244 Set_Ekind (T, E_Floating_Point_Subtype);
17245 Set_Etype (T, Implicit_Base);
17246 Set_Size_Info (T, Implicit_Base);
17247 Set_RM_Size (T, RM_Size (Implicit_Base));
17248 Inherit_Rep_Item_Chain (T, Implicit_Base);
17249 Set_Digits_Value (T, Digs_Val);
17250 end Floating_Point_Type_Declaration;
17252 ----------------------------
17253 -- Get_Discriminant_Value --
17254 ----------------------------
17256 -- This is the situation:
17258 -- There is a non-derived type
17260 -- type T0 (Dx, Dy, Dz...)
17262 -- There are zero or more levels of derivation, with each derivation
17263 -- either purely inheriting the discriminants, or defining its own.
17265 -- type Ti is new Ti-1
17266 -- or
17267 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17268 -- or
17269 -- subtype Ti is ...
17271 -- The subtype issue is avoided by the use of Original_Record_Component,
17272 -- and the fact that derived subtypes also derive the constraints.
17274 -- This chain leads back from
17276 -- Typ_For_Constraint
17278 -- Typ_For_Constraint has discriminants, and the value for each
17279 -- discriminant is given by its corresponding Elmt of Constraints.
17281 -- Discriminant is some discriminant in this hierarchy
17283 -- We need to return its value
17285 -- We do this by recursively searching each level, and looking for
17286 -- Discriminant. Once we get to the bottom, we start backing up
17287 -- returning the value for it which may in turn be a discriminant
17288 -- further up, so on the backup we continue the substitution.
17290 function Get_Discriminant_Value
17291 (Discriminant : Entity_Id;
17292 Typ_For_Constraint : Entity_Id;
17293 Constraint : Elist_Id) return Node_Id
17295 function Root_Corresponding_Discriminant
17296 (Discr : Entity_Id) return Entity_Id;
17297 -- Given a discriminant, traverse the chain of inherited discriminants
17298 -- and return the topmost discriminant.
17300 function Search_Derivation_Levels
17301 (Ti : Entity_Id;
17302 Discrim_Values : Elist_Id;
17303 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17304 -- This is the routine that performs the recursive search of levels
17305 -- as described above.
17307 -------------------------------------
17308 -- Root_Corresponding_Discriminant --
17309 -------------------------------------
17311 function Root_Corresponding_Discriminant
17312 (Discr : Entity_Id) return Entity_Id
17314 D : Entity_Id;
17316 begin
17317 D := Discr;
17318 while Present (Corresponding_Discriminant (D)) loop
17319 D := Corresponding_Discriminant (D);
17320 end loop;
17322 return D;
17323 end Root_Corresponding_Discriminant;
17325 ------------------------------
17326 -- Search_Derivation_Levels --
17327 ------------------------------
17329 function Search_Derivation_Levels
17330 (Ti : Entity_Id;
17331 Discrim_Values : Elist_Id;
17332 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17334 Assoc : Elmt_Id;
17335 Disc : Entity_Id;
17336 Result : Node_Or_Entity_Id;
17337 Result_Entity : Node_Id;
17339 begin
17340 -- If inappropriate type, return Error, this happens only in
17341 -- cascaded error situations, and we want to avoid a blow up.
17343 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17344 return Error;
17345 end if;
17347 -- Look deeper if possible. Use Stored_Constraints only for
17348 -- untagged types. For tagged types use the given constraint.
17349 -- This asymmetry needs explanation???
17351 if not Stored_Discrim_Values
17352 and then Present (Stored_Constraint (Ti))
17353 and then not Is_Tagged_Type (Ti)
17354 then
17355 Result :=
17356 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17357 else
17358 declare
17359 Td : constant Entity_Id := Etype (Ti);
17361 begin
17362 if Td = Ti then
17363 Result := Discriminant;
17365 else
17366 if Present (Stored_Constraint (Ti)) then
17367 Result :=
17368 Search_Derivation_Levels
17369 (Td, Stored_Constraint (Ti), True);
17370 else
17371 Result :=
17372 Search_Derivation_Levels
17373 (Td, Discrim_Values, Stored_Discrim_Values);
17374 end if;
17375 end if;
17376 end;
17377 end if;
17379 -- Extra underlying places to search, if not found above. For
17380 -- concurrent types, the relevant discriminant appears in the
17381 -- corresponding record. For a type derived from a private type
17382 -- without discriminant, the full view inherits the discriminants
17383 -- of the full view of the parent.
17385 if Result = Discriminant then
17386 if Is_Concurrent_Type (Ti)
17387 and then Present (Corresponding_Record_Type (Ti))
17388 then
17389 Result :=
17390 Search_Derivation_Levels (
17391 Corresponding_Record_Type (Ti),
17392 Discrim_Values,
17393 Stored_Discrim_Values);
17395 elsif Is_Private_Type (Ti)
17396 and then not Has_Discriminants (Ti)
17397 and then Present (Full_View (Ti))
17398 and then Etype (Full_View (Ti)) /= Ti
17399 then
17400 Result :=
17401 Search_Derivation_Levels (
17402 Full_View (Ti),
17403 Discrim_Values,
17404 Stored_Discrim_Values);
17405 end if;
17406 end if;
17408 -- If Result is not a (reference to a) discriminant, return it,
17409 -- otherwise set Result_Entity to the discriminant.
17411 if Nkind (Result) = N_Defining_Identifier then
17412 pragma Assert (Result = Discriminant);
17413 Result_Entity := Result;
17415 else
17416 if not Denotes_Discriminant (Result) then
17417 return Result;
17418 end if;
17420 Result_Entity := Entity (Result);
17421 end if;
17423 -- See if this level of derivation actually has discriminants because
17424 -- tagged derivations can add them, hence the lower levels need not
17425 -- have any.
17427 if not Has_Discriminants (Ti) then
17428 return Result;
17429 end if;
17431 -- Scan Ti's discriminants for Result_Entity, and return its
17432 -- corresponding value, if any.
17434 Result_Entity := Original_Record_Component (Result_Entity);
17436 Assoc := First_Elmt (Discrim_Values);
17438 if Stored_Discrim_Values then
17439 Disc := First_Stored_Discriminant (Ti);
17440 else
17441 Disc := First_Discriminant (Ti);
17442 end if;
17444 while Present (Disc) loop
17445 pragma Assert (Present (Assoc));
17447 if Original_Record_Component (Disc) = Result_Entity then
17448 return Node (Assoc);
17449 end if;
17451 Next_Elmt (Assoc);
17453 if Stored_Discrim_Values then
17454 Next_Stored_Discriminant (Disc);
17455 else
17456 Next_Discriminant (Disc);
17457 end if;
17458 end loop;
17460 -- Could not find it
17462 return Result;
17463 end Search_Derivation_Levels;
17465 -- Local Variables
17467 Result : Node_Or_Entity_Id;
17469 -- Start of processing for Get_Discriminant_Value
17471 begin
17472 -- ??? This routine is a gigantic mess and will be deleted. For the
17473 -- time being just test for the trivial case before calling recurse.
17475 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17476 declare
17477 D : Entity_Id;
17478 E : Elmt_Id;
17480 begin
17481 D := First_Discriminant (Typ_For_Constraint);
17482 E := First_Elmt (Constraint);
17483 while Present (D) loop
17484 if Chars (D) = Chars (Discriminant) then
17485 return Node (E);
17486 end if;
17488 Next_Discriminant (D);
17489 Next_Elmt (E);
17490 end loop;
17491 end;
17492 end if;
17494 Result := Search_Derivation_Levels
17495 (Typ_For_Constraint, Constraint, False);
17497 -- ??? hack to disappear when this routine is gone
17499 if Nkind (Result) = N_Defining_Identifier then
17500 declare
17501 D : Entity_Id;
17502 E : Elmt_Id;
17504 begin
17505 D := First_Discriminant (Typ_For_Constraint);
17506 E := First_Elmt (Constraint);
17507 while Present (D) loop
17508 if Root_Corresponding_Discriminant (D) = Discriminant then
17509 return Node (E);
17510 end if;
17512 Next_Discriminant (D);
17513 Next_Elmt (E);
17514 end loop;
17515 end;
17516 end if;
17518 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17519 return Result;
17520 end Get_Discriminant_Value;
17522 --------------------------
17523 -- Has_Range_Constraint --
17524 --------------------------
17526 function Has_Range_Constraint (N : Node_Id) return Boolean is
17527 C : constant Node_Id := Constraint (N);
17529 begin
17530 if Nkind (C) = N_Range_Constraint then
17531 return True;
17533 elsif Nkind (C) = N_Digits_Constraint then
17534 return
17535 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17536 or else Present (Range_Constraint (C));
17538 elsif Nkind (C) = N_Delta_Constraint then
17539 return Present (Range_Constraint (C));
17541 else
17542 return False;
17543 end if;
17544 end Has_Range_Constraint;
17546 ------------------------
17547 -- Inherit_Components --
17548 ------------------------
17550 function Inherit_Components
17551 (N : Node_Id;
17552 Parent_Base : Entity_Id;
17553 Derived_Base : Entity_Id;
17554 Is_Tagged : Boolean;
17555 Inherit_Discr : Boolean;
17556 Discs : Elist_Id) return Elist_Id
17558 Assoc_List : constant Elist_Id := New_Elmt_List;
17560 procedure Inherit_Component
17561 (Old_C : Entity_Id;
17562 Plain_Discrim : Boolean := False;
17563 Stored_Discrim : Boolean := False);
17564 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17565 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17566 -- True, Old_C is a stored discriminant. If they are both false then
17567 -- Old_C is a regular component.
17569 -----------------------
17570 -- Inherit_Component --
17571 -----------------------
17573 procedure Inherit_Component
17574 (Old_C : Entity_Id;
17575 Plain_Discrim : Boolean := False;
17576 Stored_Discrim : Boolean := False)
17578 procedure Set_Anonymous_Type (Id : Entity_Id);
17579 -- Id denotes the entity of an access discriminant or anonymous
17580 -- access component. Set the type of Id to either the same type of
17581 -- Old_C or create a new one depending on whether the parent and
17582 -- the child types are in the same scope.
17584 ------------------------
17585 -- Set_Anonymous_Type --
17586 ------------------------
17588 procedure Set_Anonymous_Type (Id : Entity_Id) is
17589 Old_Typ : constant Entity_Id := Etype (Old_C);
17591 begin
17592 if Scope (Parent_Base) = Scope (Derived_Base) then
17593 Set_Etype (Id, Old_Typ);
17595 -- The parent and the derived type are in two different scopes.
17596 -- Reuse the type of the original discriminant / component by
17597 -- copying it in order to preserve all attributes.
17599 else
17600 declare
17601 Typ : constant Entity_Id := New_Copy (Old_Typ);
17603 begin
17604 Set_Etype (Id, Typ);
17606 -- Since we do not generate component declarations for
17607 -- inherited components, associate the itype with the
17608 -- derived type.
17610 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17611 Set_Scope (Typ, Derived_Base);
17612 end;
17613 end if;
17614 end Set_Anonymous_Type;
17616 -- Local variables and constants
17618 New_C : constant Entity_Id := New_Copy (Old_C);
17620 Corr_Discrim : Entity_Id;
17621 Discrim : Entity_Id;
17623 -- Start of processing for Inherit_Component
17625 begin
17626 pragma Assert (not Is_Tagged or not Stored_Discrim);
17628 Set_Parent (New_C, Parent (Old_C));
17630 -- Regular discriminants and components must be inserted in the scope
17631 -- of the Derived_Base. Do it here.
17633 if not Stored_Discrim then
17634 Enter_Name (New_C);
17635 end if;
17637 -- For tagged types the Original_Record_Component must point to
17638 -- whatever this field was pointing to in the parent type. This has
17639 -- already been achieved by the call to New_Copy above.
17641 if not Is_Tagged then
17642 Set_Original_Record_Component (New_C, New_C);
17643 end if;
17645 -- Set the proper type of an access discriminant
17647 if Ekind (New_C) = E_Discriminant
17648 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17649 then
17650 Set_Anonymous_Type (New_C);
17651 end if;
17653 -- If we have inherited a component then see if its Etype contains
17654 -- references to Parent_Base discriminants. In this case, replace
17655 -- these references with the constraints given in Discs. We do not
17656 -- do this for the partial view of private types because this is
17657 -- not needed (only the components of the full view will be used
17658 -- for code generation) and cause problem. We also avoid this
17659 -- transformation in some error situations.
17661 if Ekind (New_C) = E_Component then
17663 -- Set the proper type of an anonymous access component
17665 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17666 Set_Anonymous_Type (New_C);
17668 elsif (Is_Private_Type (Derived_Base)
17669 and then not Is_Generic_Type (Derived_Base))
17670 or else (Is_Empty_Elmt_List (Discs)
17671 and then not Expander_Active)
17672 then
17673 Set_Etype (New_C, Etype (Old_C));
17675 else
17676 -- The current component introduces a circularity of the
17677 -- following kind:
17679 -- limited with Pack_2;
17680 -- package Pack_1 is
17681 -- type T_1 is tagged record
17682 -- Comp : access Pack_2.T_2;
17683 -- ...
17684 -- end record;
17685 -- end Pack_1;
17687 -- with Pack_1;
17688 -- package Pack_2 is
17689 -- type T_2 is new Pack_1.T_1 with ...;
17690 -- end Pack_2;
17692 Set_Etype
17693 (New_C,
17694 Constrain_Component_Type
17695 (Old_C, Derived_Base, N, Parent_Base, Discs));
17696 end if;
17697 end if;
17699 -- In derived tagged types it is illegal to reference a non
17700 -- discriminant component in the parent type. To catch this, mark
17701 -- these components with an Ekind of E_Void. This will be reset in
17702 -- Record_Type_Definition after processing the record extension of
17703 -- the derived type.
17705 -- If the declaration is a private extension, there is no further
17706 -- record extension to process, and the components retain their
17707 -- current kind, because they are visible at this point.
17709 if Is_Tagged and then Ekind (New_C) = E_Component
17710 and then Nkind (N) /= N_Private_Extension_Declaration
17711 then
17712 Set_Ekind (New_C, E_Void);
17713 end if;
17715 if Plain_Discrim then
17716 Set_Corresponding_Discriminant (New_C, Old_C);
17717 Build_Discriminal (New_C);
17719 -- If we are explicitly inheriting a stored discriminant it will be
17720 -- completely hidden.
17722 elsif Stored_Discrim then
17723 Set_Corresponding_Discriminant (New_C, Empty);
17724 Set_Discriminal (New_C, Empty);
17725 Set_Is_Completely_Hidden (New_C);
17727 -- Set the Original_Record_Component of each discriminant in the
17728 -- derived base to point to the corresponding stored that we just
17729 -- created.
17731 Discrim := First_Discriminant (Derived_Base);
17732 while Present (Discrim) loop
17733 Corr_Discrim := Corresponding_Discriminant (Discrim);
17735 -- Corr_Discrim could be missing in an error situation
17737 if Present (Corr_Discrim)
17738 and then Original_Record_Component (Corr_Discrim) = Old_C
17739 then
17740 Set_Original_Record_Component (Discrim, New_C);
17741 end if;
17743 Next_Discriminant (Discrim);
17744 end loop;
17746 Append_Entity (New_C, Derived_Base);
17747 end if;
17749 if not Is_Tagged then
17750 Append_Elmt (Old_C, Assoc_List);
17751 Append_Elmt (New_C, Assoc_List);
17752 end if;
17753 end Inherit_Component;
17755 -- Variables local to Inherit_Component
17757 Loc : constant Source_Ptr := Sloc (N);
17759 Parent_Discrim : Entity_Id;
17760 Stored_Discrim : Entity_Id;
17761 D : Entity_Id;
17762 Component : Entity_Id;
17764 -- Start of processing for Inherit_Components
17766 begin
17767 if not Is_Tagged then
17768 Append_Elmt (Parent_Base, Assoc_List);
17769 Append_Elmt (Derived_Base, Assoc_List);
17770 end if;
17772 -- Inherit parent discriminants if needed
17774 if Inherit_Discr then
17775 Parent_Discrim := First_Discriminant (Parent_Base);
17776 while Present (Parent_Discrim) loop
17777 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17778 Next_Discriminant (Parent_Discrim);
17779 end loop;
17780 end if;
17782 -- Create explicit stored discrims for untagged types when necessary
17784 if not Has_Unknown_Discriminants (Derived_Base)
17785 and then Has_Discriminants (Parent_Base)
17786 and then not Is_Tagged
17787 and then
17788 (not Inherit_Discr
17789 or else First_Discriminant (Parent_Base) /=
17790 First_Stored_Discriminant (Parent_Base))
17791 then
17792 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17793 while Present (Stored_Discrim) loop
17794 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17795 Next_Stored_Discriminant (Stored_Discrim);
17796 end loop;
17797 end if;
17799 -- See if we can apply the second transformation for derived types, as
17800 -- explained in point 6. in the comments above Build_Derived_Record_Type
17801 -- This is achieved by appending Derived_Base discriminants into Discs,
17802 -- which has the side effect of returning a non empty Discs list to the
17803 -- caller of Inherit_Components, which is what we want. This must be
17804 -- done for private derived types if there are explicit stored
17805 -- discriminants, to ensure that we can retrieve the values of the
17806 -- constraints provided in the ancestors.
17808 if Inherit_Discr
17809 and then Is_Empty_Elmt_List (Discs)
17810 and then Present (First_Discriminant (Derived_Base))
17811 and then
17812 (not Is_Private_Type (Derived_Base)
17813 or else Is_Completely_Hidden
17814 (First_Stored_Discriminant (Derived_Base))
17815 or else Is_Generic_Type (Derived_Base))
17816 then
17817 D := First_Discriminant (Derived_Base);
17818 while Present (D) loop
17819 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17820 Next_Discriminant (D);
17821 end loop;
17822 end if;
17824 -- Finally, inherit non-discriminant components unless they are not
17825 -- visible because defined or inherited from the full view of the
17826 -- parent. Don't inherit the _parent field of the parent type.
17828 Component := First_Entity (Parent_Base);
17829 while Present (Component) loop
17831 -- Ada 2005 (AI-251): Do not inherit components associated with
17832 -- secondary tags of the parent.
17834 if Ekind (Component) = E_Component
17835 and then Present (Related_Type (Component))
17836 then
17837 null;
17839 elsif Ekind (Component) /= E_Component
17840 or else Chars (Component) = Name_uParent
17841 then
17842 null;
17844 -- If the derived type is within the parent type's declarative
17845 -- region, then the components can still be inherited even though
17846 -- they aren't visible at this point. This can occur for cases
17847 -- such as within public child units where the components must
17848 -- become visible upon entering the child unit's private part.
17850 elsif not Is_Visible_Component (Component)
17851 and then not In_Open_Scopes (Scope (Parent_Base))
17852 then
17853 null;
17855 elsif Ekind_In (Derived_Base, E_Private_Type,
17856 E_Limited_Private_Type)
17857 then
17858 null;
17860 else
17861 Inherit_Component (Component);
17862 end if;
17864 Next_Entity (Component);
17865 end loop;
17867 -- For tagged derived types, inherited discriminants cannot be used in
17868 -- component declarations of the record extension part. To achieve this
17869 -- we mark the inherited discriminants as not visible.
17871 if Is_Tagged and then Inherit_Discr then
17872 D := First_Discriminant (Derived_Base);
17873 while Present (D) loop
17874 Set_Is_Immediately_Visible (D, False);
17875 Next_Discriminant (D);
17876 end loop;
17877 end if;
17879 return Assoc_List;
17880 end Inherit_Components;
17882 -----------------------------
17883 -- Inherit_Predicate_Flags --
17884 -----------------------------
17886 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17887 begin
17888 Set_Has_Predicates (Subt, Has_Predicates (Par));
17889 Set_Has_Static_Predicate_Aspect
17890 (Subt, Has_Static_Predicate_Aspect (Par));
17891 Set_Has_Dynamic_Predicate_Aspect
17892 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17893 end Inherit_Predicate_Flags;
17895 ----------------------
17896 -- Is_EVF_Procedure --
17897 ----------------------
17899 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17900 Formal : Entity_Id;
17902 begin
17903 -- Examine the formals of an Extensions_Visible False procedure looking
17904 -- for a controlling OUT parameter.
17906 if Ekind (Subp) = E_Procedure
17907 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17908 then
17909 Formal := First_Formal (Subp);
17910 while Present (Formal) loop
17911 if Ekind (Formal) = E_Out_Parameter
17912 and then Is_Controlling_Formal (Formal)
17913 then
17914 return True;
17915 end if;
17917 Next_Formal (Formal);
17918 end loop;
17919 end if;
17921 return False;
17922 end Is_EVF_Procedure;
17924 -----------------------
17925 -- Is_Null_Extension --
17926 -----------------------
17928 function Is_Null_Extension (T : Entity_Id) return Boolean is
17929 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17930 Comp_List : Node_Id;
17931 Comp : Node_Id;
17933 begin
17934 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17935 or else not Is_Tagged_Type (T)
17936 or else Nkind (Type_Definition (Type_Decl)) /=
17937 N_Derived_Type_Definition
17938 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17939 then
17940 return False;
17941 end if;
17943 Comp_List :=
17944 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17946 if Present (Discriminant_Specifications (Type_Decl)) then
17947 return False;
17949 elsif Present (Comp_List)
17950 and then Is_Non_Empty_List (Component_Items (Comp_List))
17951 then
17952 Comp := First (Component_Items (Comp_List));
17954 -- Only user-defined components are relevant. The component list
17955 -- may also contain a parent component and internal components
17956 -- corresponding to secondary tags, but these do not determine
17957 -- whether this is a null extension.
17959 while Present (Comp) loop
17960 if Comes_From_Source (Comp) then
17961 return False;
17962 end if;
17964 Next (Comp);
17965 end loop;
17967 return True;
17969 else
17970 return True;
17971 end if;
17972 end Is_Null_Extension;
17974 ------------------------------
17975 -- Is_Valid_Constraint_Kind --
17976 ------------------------------
17978 function Is_Valid_Constraint_Kind
17979 (T_Kind : Type_Kind;
17980 Constraint_Kind : Node_Kind) return Boolean
17982 begin
17983 case T_Kind is
17984 when Enumeration_Kind |
17985 Integer_Kind =>
17986 return Constraint_Kind = N_Range_Constraint;
17988 when Decimal_Fixed_Point_Kind =>
17989 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17990 N_Range_Constraint);
17992 when Ordinary_Fixed_Point_Kind =>
17993 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17994 N_Range_Constraint);
17996 when Float_Kind =>
17997 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17998 N_Range_Constraint);
18000 when Access_Kind |
18001 Array_Kind |
18002 E_Record_Type |
18003 E_Record_Subtype |
18004 Class_Wide_Kind |
18005 E_Incomplete_Type |
18006 Private_Kind |
18007 Concurrent_Kind =>
18008 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18010 when others =>
18011 return True; -- Error will be detected later
18012 end case;
18013 end Is_Valid_Constraint_Kind;
18015 --------------------------
18016 -- Is_Visible_Component --
18017 --------------------------
18019 function Is_Visible_Component
18020 (C : Entity_Id;
18021 N : Node_Id := Empty) return Boolean
18023 Original_Comp : Entity_Id := Empty;
18024 Original_Type : Entity_Id;
18025 Type_Scope : Entity_Id;
18027 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18028 -- Check whether parent type of inherited component is declared locally,
18029 -- possibly within a nested package or instance. The current scope is
18030 -- the derived record itself.
18032 -------------------
18033 -- Is_Local_Type --
18034 -------------------
18036 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18037 Scop : Entity_Id;
18039 begin
18040 Scop := Scope (Typ);
18041 while Present (Scop)
18042 and then Scop /= Standard_Standard
18043 loop
18044 if Scop = Scope (Current_Scope) then
18045 return True;
18046 end if;
18048 Scop := Scope (Scop);
18049 end loop;
18051 return False;
18052 end Is_Local_Type;
18054 -- Start of processing for Is_Visible_Component
18056 begin
18057 if Ekind_In (C, E_Component, E_Discriminant) then
18058 Original_Comp := Original_Record_Component (C);
18059 end if;
18061 if No (Original_Comp) then
18063 -- Premature usage, or previous error
18065 return False;
18067 else
18068 Original_Type := Scope (Original_Comp);
18069 Type_Scope := Scope (Base_Type (Scope (C)));
18070 end if;
18072 -- This test only concerns tagged types
18074 if not Is_Tagged_Type (Original_Type) then
18075 return True;
18077 -- If it is _Parent or _Tag, there is no visibility issue
18079 elsif not Comes_From_Source (Original_Comp) then
18080 return True;
18082 -- Discriminants are visible unless the (private) type has unknown
18083 -- discriminants. If the discriminant reference is inserted for a
18084 -- discriminant check on a full view it is also visible.
18086 elsif Ekind (Original_Comp) = E_Discriminant
18087 and then
18088 (not Has_Unknown_Discriminants (Original_Type)
18089 or else (Present (N)
18090 and then Nkind (N) = N_Selected_Component
18091 and then Nkind (Prefix (N)) = N_Type_Conversion
18092 and then not Comes_From_Source (Prefix (N))))
18093 then
18094 return True;
18096 -- In the body of an instantiation, no need to check for the visibility
18097 -- of a component.
18099 elsif In_Instance_Body then
18100 return True;
18102 -- If the component has been declared in an ancestor which is currently
18103 -- a private type, then it is not visible. The same applies if the
18104 -- component's containing type is not in an open scope and the original
18105 -- component's enclosing type is a visible full view of a private type
18106 -- (which can occur in cases where an attempt is being made to reference
18107 -- a component in a sibling package that is inherited from a visible
18108 -- component of a type in an ancestor package; the component in the
18109 -- sibling package should not be visible even though the component it
18110 -- inherited from is visible). This does not apply however in the case
18111 -- where the scope of the type is a private child unit, or when the
18112 -- parent comes from a local package in which the ancestor is currently
18113 -- visible. The latter suppression of visibility is needed for cases
18114 -- that are tested in B730006.
18116 elsif Is_Private_Type (Original_Type)
18117 or else
18118 (not Is_Private_Descendant (Type_Scope)
18119 and then not In_Open_Scopes (Type_Scope)
18120 and then Has_Private_Declaration (Original_Type))
18121 then
18122 -- If the type derives from an entity in a formal package, there
18123 -- are no additional visible components.
18125 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18126 N_Formal_Package_Declaration
18127 then
18128 return False;
18130 -- if we are not in the private part of the current package, there
18131 -- are no additional visible components.
18133 elsif Ekind (Scope (Current_Scope)) = E_Package
18134 and then not In_Private_Part (Scope (Current_Scope))
18135 then
18136 return False;
18137 else
18138 return
18139 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18140 and then In_Open_Scopes (Scope (Original_Type))
18141 and then Is_Local_Type (Type_Scope);
18142 end if;
18144 -- There is another weird way in which a component may be invisible when
18145 -- the private and the full view are not derived from the same ancestor.
18146 -- Here is an example :
18148 -- type A1 is tagged record F1 : integer; end record;
18149 -- type A2 is new A1 with record F2 : integer; end record;
18150 -- type T is new A1 with private;
18151 -- private
18152 -- type T is new A2 with null record;
18154 -- In this case, the full view of T inherits F1 and F2 but the private
18155 -- view inherits only F1
18157 else
18158 declare
18159 Ancestor : Entity_Id := Scope (C);
18161 begin
18162 loop
18163 if Ancestor = Original_Type then
18164 return True;
18166 -- The ancestor may have a partial view of the original type,
18167 -- but if the full view is in scope, as in a child body, the
18168 -- component is visible.
18170 elsif In_Private_Part (Scope (Original_Type))
18171 and then Full_View (Ancestor) = Original_Type
18172 then
18173 return True;
18175 elsif Ancestor = Etype (Ancestor) then
18177 -- No further ancestors to examine
18179 return False;
18180 end if;
18182 Ancestor := Etype (Ancestor);
18183 end loop;
18184 end;
18185 end if;
18186 end Is_Visible_Component;
18188 --------------------------
18189 -- Make_Class_Wide_Type --
18190 --------------------------
18192 procedure Make_Class_Wide_Type (T : Entity_Id) is
18193 CW_Type : Entity_Id;
18194 CW_Name : Name_Id;
18195 Next_E : Entity_Id;
18197 begin
18198 if Present (Class_Wide_Type (T)) then
18200 -- The class-wide type is a partially decorated entity created for a
18201 -- unanalyzed tagged type referenced through a limited with clause.
18202 -- When the tagged type is analyzed, its class-wide type needs to be
18203 -- redecorated. Note that we reuse the entity created by Decorate_
18204 -- Tagged_Type in order to preserve all links.
18206 if Materialize_Entity (Class_Wide_Type (T)) then
18207 CW_Type := Class_Wide_Type (T);
18208 Set_Materialize_Entity (CW_Type, False);
18210 -- The class wide type can have been defined by the partial view, in
18211 -- which case everything is already done.
18213 else
18214 return;
18215 end if;
18217 -- Default case, we need to create a new class-wide type
18219 else
18220 CW_Type :=
18221 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18222 end if;
18224 -- Inherit root type characteristics
18226 CW_Name := Chars (CW_Type);
18227 Next_E := Next_Entity (CW_Type);
18228 Copy_Node (T, CW_Type);
18229 Set_Comes_From_Source (CW_Type, False);
18230 Set_Chars (CW_Type, CW_Name);
18231 Set_Parent (CW_Type, Parent (T));
18232 Set_Next_Entity (CW_Type, Next_E);
18234 -- Ensure we have a new freeze node for the class-wide type. The partial
18235 -- view may have freeze action of its own, requiring a proper freeze
18236 -- node, and the same freeze node cannot be shared between the two
18237 -- types.
18239 Set_Has_Delayed_Freeze (CW_Type);
18240 Set_Freeze_Node (CW_Type, Empty);
18242 -- Customize the class-wide type: It has no prim. op., it cannot be
18243 -- abstract and its Etype points back to the specific root type.
18245 Set_Ekind (CW_Type, E_Class_Wide_Type);
18246 Set_Is_Tagged_Type (CW_Type, True);
18247 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18248 Set_Is_Abstract_Type (CW_Type, False);
18249 Set_Is_Constrained (CW_Type, False);
18250 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18251 Set_Default_SSO (CW_Type);
18253 if Ekind (T) = E_Class_Wide_Subtype then
18254 Set_Etype (CW_Type, Etype (Base_Type (T)));
18255 else
18256 Set_Etype (CW_Type, T);
18257 end if;
18259 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18261 -- If this is the class_wide type of a constrained subtype, it does
18262 -- not have discriminants.
18264 Set_Has_Discriminants (CW_Type,
18265 Has_Discriminants (T) and then not Is_Constrained (T));
18267 Set_Has_Unknown_Discriminants (CW_Type, True);
18268 Set_Class_Wide_Type (T, CW_Type);
18269 Set_Equivalent_Type (CW_Type, Empty);
18271 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18273 Set_Class_Wide_Type (CW_Type, CW_Type);
18275 -- Inherit the "ghostness" from the root tagged type
18277 if Ghost_Mode > None or else Is_Ghost_Entity (T) then
18278 Set_Is_Ghost_Entity (CW_Type);
18279 end if;
18280 end Make_Class_Wide_Type;
18282 ----------------
18283 -- Make_Index --
18284 ----------------
18286 procedure Make_Index
18287 (N : Node_Id;
18288 Related_Nod : Node_Id;
18289 Related_Id : Entity_Id := Empty;
18290 Suffix_Index : Nat := 1;
18291 In_Iter_Schm : Boolean := False)
18293 R : Node_Id;
18294 T : Entity_Id;
18295 Def_Id : Entity_Id := Empty;
18296 Found : Boolean := False;
18298 begin
18299 -- For a discrete range used in a constrained array definition and
18300 -- defined by a range, an implicit conversion to the predefined type
18301 -- INTEGER is assumed if each bound is either a numeric literal, a named
18302 -- number, or an attribute, and the type of both bounds (prior to the
18303 -- implicit conversion) is the type universal_integer. Otherwise, both
18304 -- bounds must be of the same discrete type, other than universal
18305 -- integer; this type must be determinable independently of the
18306 -- context, but using the fact that the type must be discrete and that
18307 -- both bounds must have the same type.
18309 -- Character literals also have a universal type in the absence of
18310 -- of additional context, and are resolved to Standard_Character.
18312 if Nkind (N) = N_Range then
18314 -- The index is given by a range constraint. The bounds are known
18315 -- to be of a consistent type.
18317 if not Is_Overloaded (N) then
18318 T := Etype (N);
18320 -- For universal bounds, choose the specific predefined type
18322 if T = Universal_Integer then
18323 T := Standard_Integer;
18325 elsif T = Any_Character then
18326 Ambiguous_Character (Low_Bound (N));
18328 T := Standard_Character;
18329 end if;
18331 -- The node may be overloaded because some user-defined operators
18332 -- are available, but if a universal interpretation exists it is
18333 -- also the selected one.
18335 elsif Universal_Interpretation (N) = Universal_Integer then
18336 T := Standard_Integer;
18338 else
18339 T := Any_Type;
18341 declare
18342 Ind : Interp_Index;
18343 It : Interp;
18345 begin
18346 Get_First_Interp (N, Ind, It);
18347 while Present (It.Typ) loop
18348 if Is_Discrete_Type (It.Typ) then
18350 if Found
18351 and then not Covers (It.Typ, T)
18352 and then not Covers (T, It.Typ)
18353 then
18354 Error_Msg_N ("ambiguous bounds in discrete range", N);
18355 exit;
18356 else
18357 T := It.Typ;
18358 Found := True;
18359 end if;
18360 end if;
18362 Get_Next_Interp (Ind, It);
18363 end loop;
18365 if T = Any_Type then
18366 Error_Msg_N ("discrete type required for range", N);
18367 Set_Etype (N, Any_Type);
18368 return;
18370 elsif T = Universal_Integer then
18371 T := Standard_Integer;
18372 end if;
18373 end;
18374 end if;
18376 if not Is_Discrete_Type (T) then
18377 Error_Msg_N ("discrete type required for range", N);
18378 Set_Etype (N, Any_Type);
18379 return;
18380 end if;
18382 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18383 and then Attribute_Name (Low_Bound (N)) = Name_First
18384 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18385 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18386 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18387 then
18388 -- The type of the index will be the type of the prefix, as long
18389 -- as the upper bound is 'Last of the same type.
18391 Def_Id := Entity (Prefix (Low_Bound (N)));
18393 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18394 or else Attribute_Name (High_Bound (N)) /= Name_Last
18395 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18396 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18397 then
18398 Def_Id := Empty;
18399 end if;
18400 end if;
18402 R := N;
18403 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18405 elsif Nkind (N) = N_Subtype_Indication then
18407 -- The index is given by a subtype with a range constraint
18409 T := Base_Type (Entity (Subtype_Mark (N)));
18411 if not Is_Discrete_Type (T) then
18412 Error_Msg_N ("discrete type required for range", N);
18413 Set_Etype (N, Any_Type);
18414 return;
18415 end if;
18417 R := Range_Expression (Constraint (N));
18419 Resolve (R, T);
18420 Process_Range_Expr_In_Decl
18421 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18423 elsif Nkind (N) = N_Attribute_Reference then
18425 -- Catch beginner's error (use of attribute other than 'Range)
18427 if Attribute_Name (N) /= Name_Range then
18428 Error_Msg_N ("expect attribute ''Range", N);
18429 Set_Etype (N, Any_Type);
18430 return;
18431 end if;
18433 -- If the node denotes the range of a type mark, that is also the
18434 -- resulting type, and we do not need to create an Itype for it.
18436 if Is_Entity_Name (Prefix (N))
18437 and then Comes_From_Source (N)
18438 and then Is_Type (Entity (Prefix (N)))
18439 and then Is_Discrete_Type (Entity (Prefix (N)))
18440 then
18441 Def_Id := Entity (Prefix (N));
18442 end if;
18444 Analyze_And_Resolve (N);
18445 T := Etype (N);
18446 R := N;
18448 -- If none of the above, must be a subtype. We convert this to a
18449 -- range attribute reference because in the case of declared first
18450 -- named subtypes, the types in the range reference can be different
18451 -- from the type of the entity. A range attribute normalizes the
18452 -- reference and obtains the correct types for the bounds.
18454 -- This transformation is in the nature of an expansion, is only
18455 -- done if expansion is active. In particular, it is not done on
18456 -- formal generic types, because we need to retain the name of the
18457 -- original index for instantiation purposes.
18459 else
18460 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18461 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18462 Set_Etype (N, Any_Integer);
18463 return;
18465 else
18466 -- The type mark may be that of an incomplete type. It is only
18467 -- now that we can get the full view, previous analysis does
18468 -- not look specifically for a type mark.
18470 Set_Entity (N, Get_Full_View (Entity (N)));
18471 Set_Etype (N, Entity (N));
18472 Def_Id := Entity (N);
18474 if not Is_Discrete_Type (Def_Id) then
18475 Error_Msg_N ("discrete type required for index", N);
18476 Set_Etype (N, Any_Type);
18477 return;
18478 end if;
18479 end if;
18481 if Expander_Active then
18482 Rewrite (N,
18483 Make_Attribute_Reference (Sloc (N),
18484 Attribute_Name => Name_Range,
18485 Prefix => Relocate_Node (N)));
18487 -- The original was a subtype mark that does not freeze. This
18488 -- means that the rewritten version must not freeze either.
18490 Set_Must_Not_Freeze (N);
18491 Set_Must_Not_Freeze (Prefix (N));
18492 Analyze_And_Resolve (N);
18493 T := Etype (N);
18494 R := N;
18496 -- If expander is inactive, type is legal, nothing else to construct
18498 else
18499 return;
18500 end if;
18501 end if;
18503 if not Is_Discrete_Type (T) then
18504 Error_Msg_N ("discrete type required for range", N);
18505 Set_Etype (N, Any_Type);
18506 return;
18508 elsif T = Any_Type then
18509 Set_Etype (N, Any_Type);
18510 return;
18511 end if;
18513 -- We will now create the appropriate Itype to describe the range, but
18514 -- first a check. If we originally had a subtype, then we just label
18515 -- the range with this subtype. Not only is there no need to construct
18516 -- a new subtype, but it is wrong to do so for two reasons:
18518 -- 1. A legality concern, if we have a subtype, it must not freeze,
18519 -- and the Itype would cause freezing incorrectly
18521 -- 2. An efficiency concern, if we created an Itype, it would not be
18522 -- recognized as the same type for the purposes of eliminating
18523 -- checks in some circumstances.
18525 -- We signal this case by setting the subtype entity in Def_Id
18527 if No (Def_Id) then
18528 Def_Id :=
18529 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18530 Set_Etype (Def_Id, Base_Type (T));
18532 if Is_Signed_Integer_Type (T) then
18533 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18535 elsif Is_Modular_Integer_Type (T) then
18536 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18538 else
18539 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18540 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18541 Set_First_Literal (Def_Id, First_Literal (T));
18542 end if;
18544 Set_Size_Info (Def_Id, (T));
18545 Set_RM_Size (Def_Id, RM_Size (T));
18546 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18548 Set_Scalar_Range (Def_Id, R);
18549 Conditional_Delay (Def_Id, T);
18551 if Nkind (N) = N_Subtype_Indication then
18552 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18553 end if;
18555 -- In the subtype indication case, if the immediate parent of the
18556 -- new subtype is non-static, then the subtype we create is non-
18557 -- static, even if its bounds are static.
18559 if Nkind (N) = N_Subtype_Indication
18560 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18561 then
18562 Set_Is_Non_Static_Subtype (Def_Id);
18563 end if;
18564 end if;
18566 -- Final step is to label the index with this constructed type
18568 Set_Etype (N, Def_Id);
18569 end Make_Index;
18571 ------------------------------
18572 -- Modular_Type_Declaration --
18573 ------------------------------
18575 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18576 Mod_Expr : constant Node_Id := Expression (Def);
18577 M_Val : Uint;
18579 procedure Set_Modular_Size (Bits : Int);
18580 -- Sets RM_Size to Bits, and Esize to normal word size above this
18582 ----------------------
18583 -- Set_Modular_Size --
18584 ----------------------
18586 procedure Set_Modular_Size (Bits : Int) is
18587 begin
18588 Set_RM_Size (T, UI_From_Int (Bits));
18590 if Bits <= 8 then
18591 Init_Esize (T, 8);
18593 elsif Bits <= 16 then
18594 Init_Esize (T, 16);
18596 elsif Bits <= 32 then
18597 Init_Esize (T, 32);
18599 else
18600 Init_Esize (T, System_Max_Binary_Modulus_Power);
18601 end if;
18603 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18604 Set_Is_Known_Valid (T);
18605 end if;
18606 end Set_Modular_Size;
18608 -- Start of processing for Modular_Type_Declaration
18610 begin
18611 -- If the mod expression is (exactly) 2 * literal, where literal is
18612 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18614 if Warn_On_Suspicious_Modulus_Value
18615 and then Nkind (Mod_Expr) = N_Op_Multiply
18616 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18617 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18618 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18619 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18620 then
18621 Error_Msg_N
18622 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18623 end if;
18625 -- Proceed with analysis of mod expression
18627 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18628 Set_Etype (T, T);
18629 Set_Ekind (T, E_Modular_Integer_Type);
18630 Init_Alignment (T);
18631 Set_Is_Constrained (T);
18633 if not Is_OK_Static_Expression (Mod_Expr) then
18634 Flag_Non_Static_Expr
18635 ("non-static expression used for modular type bound!", Mod_Expr);
18636 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18637 else
18638 M_Val := Expr_Value (Mod_Expr);
18639 end if;
18641 if M_Val < 1 then
18642 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18643 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18644 end if;
18646 if M_Val > 2 ** Standard_Long_Integer_Size then
18647 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18648 end if;
18650 Set_Modulus (T, M_Val);
18652 -- Create bounds for the modular type based on the modulus given in
18653 -- the type declaration and then analyze and resolve those bounds.
18655 Set_Scalar_Range (T,
18656 Make_Range (Sloc (Mod_Expr),
18657 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18658 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18660 -- Properly analyze the literals for the range. We do this manually
18661 -- because we can't go calling Resolve, since we are resolving these
18662 -- bounds with the type, and this type is certainly not complete yet.
18664 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18665 Set_Etype (High_Bound (Scalar_Range (T)), T);
18666 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18667 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18669 -- Loop through powers of two to find number of bits required
18671 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18673 -- Binary case
18675 if M_Val = 2 ** Bits then
18676 Set_Modular_Size (Bits);
18677 return;
18679 -- Nonbinary case
18681 elsif M_Val < 2 ** Bits then
18682 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18683 Set_Non_Binary_Modulus (T);
18685 if Bits > System_Max_Nonbinary_Modulus_Power then
18686 Error_Msg_Uint_1 :=
18687 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18688 Error_Msg_F
18689 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18690 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18691 return;
18693 else
18694 -- In the nonbinary case, set size as per RM 13.3(55)
18696 Set_Modular_Size (Bits);
18697 return;
18698 end if;
18699 end if;
18701 end loop;
18703 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18704 -- so we just signal an error and set the maximum size.
18706 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18707 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18709 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18710 Init_Alignment (T);
18712 end Modular_Type_Declaration;
18714 --------------------------
18715 -- New_Concatenation_Op --
18716 --------------------------
18718 procedure New_Concatenation_Op (Typ : Entity_Id) is
18719 Loc : constant Source_Ptr := Sloc (Typ);
18720 Op : Entity_Id;
18722 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18723 -- Create abbreviated declaration for the formal of a predefined
18724 -- Operator 'Op' of type 'Typ'
18726 --------------------
18727 -- Make_Op_Formal --
18728 --------------------
18730 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18731 Formal : Entity_Id;
18732 begin
18733 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18734 Set_Etype (Formal, Typ);
18735 Set_Mechanism (Formal, Default_Mechanism);
18736 return Formal;
18737 end Make_Op_Formal;
18739 -- Start of processing for New_Concatenation_Op
18741 begin
18742 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18744 Set_Ekind (Op, E_Operator);
18745 Set_Scope (Op, Current_Scope);
18746 Set_Etype (Op, Typ);
18747 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18748 Set_Is_Immediately_Visible (Op);
18749 Set_Is_Intrinsic_Subprogram (Op);
18750 Set_Has_Completion (Op);
18751 Append_Entity (Op, Current_Scope);
18753 Set_Name_Entity_Id (Name_Op_Concat, Op);
18755 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18756 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18757 end New_Concatenation_Op;
18759 -------------------------
18760 -- OK_For_Limited_Init --
18761 -------------------------
18763 -- ???Check all calls of this, and compare the conditions under which it's
18764 -- called.
18766 function OK_For_Limited_Init
18767 (Typ : Entity_Id;
18768 Exp : Node_Id) return Boolean
18770 begin
18771 return Is_CPP_Constructor_Call (Exp)
18772 or else (Ada_Version >= Ada_2005
18773 and then not Debug_Flag_Dot_L
18774 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18775 end OK_For_Limited_Init;
18777 -------------------------------
18778 -- OK_For_Limited_Init_In_05 --
18779 -------------------------------
18781 function OK_For_Limited_Init_In_05
18782 (Typ : Entity_Id;
18783 Exp : Node_Id) return Boolean
18785 begin
18786 -- An object of a limited interface type can be initialized with any
18787 -- expression of a nonlimited descendant type. However this does not
18788 -- apply if this is a view conversion of some other expression. This
18789 -- is checked below.
18791 if Is_Class_Wide_Type (Typ)
18792 and then Is_Limited_Interface (Typ)
18793 and then not Is_Limited_Type (Etype (Exp))
18794 and then Nkind (Exp) /= N_Type_Conversion
18795 then
18796 return True;
18797 end if;
18799 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18800 -- case of limited aggregates (including extension aggregates), and
18801 -- function calls. The function call may have been given in prefixed
18802 -- notation, in which case the original node is an indexed component.
18803 -- If the function is parameterless, the original node was an explicit
18804 -- dereference. The function may also be parameterless, in which case
18805 -- the source node is just an identifier.
18807 -- A branch of a conditional expression may have been removed if the
18808 -- condition is statically known. This happens during expansion, and
18809 -- thus will not happen if previous errors were encountered. The check
18810 -- will have been performed on the chosen branch, which replaces the
18811 -- original conditional expression.
18813 if No (Exp) then
18814 return True;
18815 end if;
18817 case Nkind (Original_Node (Exp)) is
18818 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18819 return True;
18821 when N_Identifier =>
18822 return Present (Entity (Original_Node (Exp)))
18823 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18825 when N_Qualified_Expression =>
18826 return
18827 OK_For_Limited_Init_In_05
18828 (Typ, Expression (Original_Node (Exp)));
18830 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18831 -- with a function call, the expander has rewritten the call into an
18832 -- N_Type_Conversion node to force displacement of the pointer to
18833 -- reference the component containing the secondary dispatch table.
18834 -- Otherwise a type conversion is not a legal context.
18835 -- A return statement for a build-in-place function returning a
18836 -- synchronized type also introduces an unchecked conversion.
18838 when N_Type_Conversion |
18839 N_Unchecked_Type_Conversion =>
18840 return not Comes_From_Source (Exp)
18841 and then
18842 OK_For_Limited_Init_In_05
18843 (Typ, Expression (Original_Node (Exp)));
18845 when N_Indexed_Component |
18846 N_Selected_Component |
18847 N_Explicit_Dereference =>
18848 return Nkind (Exp) = N_Function_Call;
18850 -- A use of 'Input is a function call, hence allowed. Normally the
18851 -- attribute will be changed to a call, but the attribute by itself
18852 -- can occur with -gnatc.
18854 when N_Attribute_Reference =>
18855 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18857 -- For a case expression, all dependent expressions must be legal
18859 when N_Case_Expression =>
18860 declare
18861 Alt : Node_Id;
18863 begin
18864 Alt := First (Alternatives (Original_Node (Exp)));
18865 while Present (Alt) loop
18866 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18867 return False;
18868 end if;
18870 Next (Alt);
18871 end loop;
18873 return True;
18874 end;
18876 -- For an if expression, all dependent expressions must be legal
18878 when N_If_Expression =>
18879 declare
18880 Then_Expr : constant Node_Id :=
18881 Next (First (Expressions (Original_Node (Exp))));
18882 Else_Expr : constant Node_Id := Next (Then_Expr);
18883 begin
18884 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18885 and then
18886 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18887 end;
18889 when others =>
18890 return False;
18891 end case;
18892 end OK_For_Limited_Init_In_05;
18894 -------------------------------------------
18895 -- Ordinary_Fixed_Point_Type_Declaration --
18896 -------------------------------------------
18898 procedure Ordinary_Fixed_Point_Type_Declaration
18899 (T : Entity_Id;
18900 Def : Node_Id)
18902 Loc : constant Source_Ptr := Sloc (Def);
18903 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18904 RRS : constant Node_Id := Real_Range_Specification (Def);
18905 Implicit_Base : Entity_Id;
18906 Delta_Val : Ureal;
18907 Small_Val : Ureal;
18908 Low_Val : Ureal;
18909 High_Val : Ureal;
18911 begin
18912 Check_Restriction (No_Fixed_Point, Def);
18914 -- Create implicit base type
18916 Implicit_Base :=
18917 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18918 Set_Etype (Implicit_Base, Implicit_Base);
18920 -- Analyze and process delta expression
18922 Analyze_And_Resolve (Delta_Expr, Any_Real);
18924 Check_Delta_Expression (Delta_Expr);
18925 Delta_Val := Expr_Value_R (Delta_Expr);
18927 Set_Delta_Value (Implicit_Base, Delta_Val);
18929 -- Compute default small from given delta, which is the largest power
18930 -- of two that does not exceed the given delta value.
18932 declare
18933 Tmp : Ureal;
18934 Scale : Int;
18936 begin
18937 Tmp := Ureal_1;
18938 Scale := 0;
18940 if Delta_Val < Ureal_1 then
18941 while Delta_Val < Tmp loop
18942 Tmp := Tmp / Ureal_2;
18943 Scale := Scale + 1;
18944 end loop;
18946 else
18947 loop
18948 Tmp := Tmp * Ureal_2;
18949 exit when Tmp > Delta_Val;
18950 Scale := Scale - 1;
18951 end loop;
18952 end if;
18954 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18955 end;
18957 Set_Small_Value (Implicit_Base, Small_Val);
18959 -- If no range was given, set a dummy range
18961 if RRS <= Empty_Or_Error then
18962 Low_Val := -Small_Val;
18963 High_Val := Small_Val;
18965 -- Otherwise analyze and process given range
18967 else
18968 declare
18969 Low : constant Node_Id := Low_Bound (RRS);
18970 High : constant Node_Id := High_Bound (RRS);
18972 begin
18973 Analyze_And_Resolve (Low, Any_Real);
18974 Analyze_And_Resolve (High, Any_Real);
18975 Check_Real_Bound (Low);
18976 Check_Real_Bound (High);
18978 -- Obtain and set the range
18980 Low_Val := Expr_Value_R (Low);
18981 High_Val := Expr_Value_R (High);
18983 if Low_Val > High_Val then
18984 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18985 end if;
18986 end;
18987 end if;
18989 -- The range for both the implicit base and the declared first subtype
18990 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18991 -- set a temporary range in place. Note that the bounds of the base
18992 -- type will be widened to be symmetrical and to fill the available
18993 -- bits when the type is frozen.
18995 -- We could do this with all discrete types, and probably should, but
18996 -- we absolutely have to do it for fixed-point, since the end-points
18997 -- of the range and the size are determined by the small value, which
18998 -- could be reset before the freeze point.
19000 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19001 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19003 -- Complete definition of first subtype. The inheritance of the rep item
19004 -- chain ensures that SPARK-related pragmas are not clobbered when the
19005 -- ordinary fixed point type acts as a full view of a private type.
19007 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19008 Set_Etype (T, Implicit_Base);
19009 Init_Size_Align (T);
19010 Inherit_Rep_Item_Chain (T, Implicit_Base);
19011 Set_Small_Value (T, Small_Val);
19012 Set_Delta_Value (T, Delta_Val);
19013 Set_Is_Constrained (T);
19014 end Ordinary_Fixed_Point_Type_Declaration;
19016 ----------------------------------
19017 -- Preanalyze_Assert_Expression --
19018 ----------------------------------
19020 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19021 begin
19022 In_Assertion_Expr := In_Assertion_Expr + 1;
19023 Preanalyze_Spec_Expression (N, T);
19024 In_Assertion_Expr := In_Assertion_Expr - 1;
19025 end Preanalyze_Assert_Expression;
19027 -----------------------------------
19028 -- Preanalyze_Default_Expression --
19029 -----------------------------------
19031 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19032 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19033 begin
19034 In_Default_Expr := True;
19035 Preanalyze_Spec_Expression (N, T);
19036 In_Default_Expr := Save_In_Default_Expr;
19037 end Preanalyze_Default_Expression;
19039 --------------------------------
19040 -- Preanalyze_Spec_Expression --
19041 --------------------------------
19043 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19044 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19045 begin
19046 In_Spec_Expression := True;
19047 Preanalyze_And_Resolve (N, T);
19048 In_Spec_Expression := Save_In_Spec_Expression;
19049 end Preanalyze_Spec_Expression;
19051 ----------------------------------------
19052 -- Prepare_Private_Subtype_Completion --
19053 ----------------------------------------
19055 procedure Prepare_Private_Subtype_Completion
19056 (Id : Entity_Id;
19057 Related_Nod : Node_Id)
19059 Id_B : constant Entity_Id := Base_Type (Id);
19060 Full_B : Entity_Id := Full_View (Id_B);
19061 Full : Entity_Id;
19063 begin
19064 if Present (Full_B) then
19066 -- Get to the underlying full view if necessary
19068 if Is_Private_Type (Full_B)
19069 and then Present (Underlying_Full_View (Full_B))
19070 then
19071 Full_B := Underlying_Full_View (Full_B);
19072 end if;
19074 -- The Base_Type is already completed, we can complete the subtype
19075 -- now. We have to create a new entity with the same name, Thus we
19076 -- can't use Create_Itype.
19078 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19079 Set_Is_Itype (Full);
19080 Set_Associated_Node_For_Itype (Full, Related_Nod);
19081 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19082 end if;
19084 -- The parent subtype may be private, but the base might not, in some
19085 -- nested instances. In that case, the subtype does not need to be
19086 -- exchanged. It would still be nice to make private subtypes and their
19087 -- bases consistent at all times ???
19089 if Is_Private_Type (Id_B) then
19090 Append_Elmt (Id, Private_Dependents (Id_B));
19091 end if;
19092 end Prepare_Private_Subtype_Completion;
19094 ---------------------------
19095 -- Process_Discriminants --
19096 ---------------------------
19098 procedure Process_Discriminants
19099 (N : Node_Id;
19100 Prev : Entity_Id := Empty)
19102 Elist : constant Elist_Id := New_Elmt_List;
19103 Id : Node_Id;
19104 Discr : Node_Id;
19105 Discr_Number : Uint;
19106 Discr_Type : Entity_Id;
19107 Default_Present : Boolean := False;
19108 Default_Not_Present : Boolean := False;
19110 begin
19111 -- A composite type other than an array type can have discriminants.
19112 -- On entry, the current scope is the composite type.
19114 -- The discriminants are initially entered into the scope of the type
19115 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19116 -- use, as explained at the end of this procedure.
19118 Discr := First (Discriminant_Specifications (N));
19119 while Present (Discr) loop
19120 Enter_Name (Defining_Identifier (Discr));
19122 -- For navigation purposes we add a reference to the discriminant
19123 -- in the entity for the type. If the current declaration is a
19124 -- completion, place references on the partial view. Otherwise the
19125 -- type is the current scope.
19127 if Present (Prev) then
19129 -- The references go on the partial view, if present. If the
19130 -- partial view has discriminants, the references have been
19131 -- generated already.
19133 if not Has_Discriminants (Prev) then
19134 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19135 end if;
19136 else
19137 Generate_Reference
19138 (Current_Scope, Defining_Identifier (Discr), 'd');
19139 end if;
19141 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19142 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19144 -- Ada 2005 (AI-254)
19146 if Present (Access_To_Subprogram_Definition
19147 (Discriminant_Type (Discr)))
19148 and then Protected_Present (Access_To_Subprogram_Definition
19149 (Discriminant_Type (Discr)))
19150 then
19151 Discr_Type :=
19152 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19153 end if;
19155 else
19156 Find_Type (Discriminant_Type (Discr));
19157 Discr_Type := Etype (Discriminant_Type (Discr));
19159 if Error_Posted (Discriminant_Type (Discr)) then
19160 Discr_Type := Any_Type;
19161 end if;
19162 end if;
19164 -- Handling of discriminants that are access types
19166 if Is_Access_Type (Discr_Type) then
19168 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19169 -- limited record types
19171 if Ada_Version < Ada_2005 then
19172 Check_Access_Discriminant_Requires_Limited
19173 (Discr, Discriminant_Type (Discr));
19174 end if;
19176 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19177 Error_Msg_N
19178 ("(Ada 83) access discriminant not allowed", Discr);
19179 end if;
19181 -- If not access type, must be a discrete type
19183 elsif not Is_Discrete_Type (Discr_Type) then
19184 Error_Msg_N
19185 ("discriminants must have a discrete or access type",
19186 Discriminant_Type (Discr));
19187 end if;
19189 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19191 -- If a discriminant specification includes the assignment compound
19192 -- delimiter followed by an expression, the expression is the default
19193 -- expression of the discriminant; the default expression must be of
19194 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19195 -- a default expression, we do the special preanalysis, since this
19196 -- expression does not freeze (see section "Handling of Default and
19197 -- Per-Object Expressions" in spec of package Sem).
19199 if Present (Expression (Discr)) then
19200 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19202 -- Legaity checks
19204 if Nkind (N) = N_Formal_Type_Declaration then
19205 Error_Msg_N
19206 ("discriminant defaults not allowed for formal type",
19207 Expression (Discr));
19209 -- Flag an error for a tagged type with defaulted discriminants,
19210 -- excluding limited tagged types when compiling for Ada 2012
19211 -- (see AI05-0214).
19213 elsif Is_Tagged_Type (Current_Scope)
19214 and then (not Is_Limited_Type (Current_Scope)
19215 or else Ada_Version < Ada_2012)
19216 and then Comes_From_Source (N)
19217 then
19218 -- Note: see similar test in Check_Or_Process_Discriminants, to
19219 -- handle the (illegal) case of the completion of an untagged
19220 -- view with discriminants with defaults by a tagged full view.
19221 -- We skip the check if Discr does not come from source, to
19222 -- account for the case of an untagged derived type providing
19223 -- defaults for a renamed discriminant from a private untagged
19224 -- ancestor with a tagged full view (ACATS B460006).
19226 if Ada_Version >= Ada_2012 then
19227 Error_Msg_N
19228 ("discriminants of nonlimited tagged type cannot have"
19229 & " defaults",
19230 Expression (Discr));
19231 else
19232 Error_Msg_N
19233 ("discriminants of tagged type cannot have defaults",
19234 Expression (Discr));
19235 end if;
19237 else
19238 Default_Present := True;
19239 Append_Elmt (Expression (Discr), Elist);
19241 -- Tag the defining identifiers for the discriminants with
19242 -- their corresponding default expressions from the tree.
19244 Set_Discriminant_Default_Value
19245 (Defining_Identifier (Discr), Expression (Discr));
19246 end if;
19248 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19249 -- gets set unless we can be sure that no range check is required.
19251 if (GNATprove_Mode or not Expander_Active)
19252 and then not
19253 Is_In_Range
19254 (Expression (Discr), Discr_Type, Assume_Valid => True)
19255 then
19256 Set_Do_Range_Check (Expression (Discr));
19257 end if;
19259 -- No default discriminant value given
19261 else
19262 Default_Not_Present := True;
19263 end if;
19265 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19266 -- Discr_Type but with the null-exclusion attribute
19268 if Ada_Version >= Ada_2005 then
19270 -- Ada 2005 (AI-231): Static checks
19272 if Can_Never_Be_Null (Discr_Type) then
19273 Null_Exclusion_Static_Checks (Discr);
19275 elsif Is_Access_Type (Discr_Type)
19276 and then Null_Exclusion_Present (Discr)
19278 -- No need to check itypes because in their case this check
19279 -- was done at their point of creation
19281 and then not Is_Itype (Discr_Type)
19282 then
19283 if Can_Never_Be_Null (Discr_Type) then
19284 Error_Msg_NE
19285 ("`NOT NULL` not allowed (& already excludes null)",
19286 Discr,
19287 Discr_Type);
19288 end if;
19290 Set_Etype (Defining_Identifier (Discr),
19291 Create_Null_Excluding_Itype
19292 (T => Discr_Type,
19293 Related_Nod => Discr));
19295 -- Check for improper null exclusion if the type is otherwise
19296 -- legal for a discriminant.
19298 elsif Null_Exclusion_Present (Discr)
19299 and then Is_Discrete_Type (Discr_Type)
19300 then
19301 Error_Msg_N
19302 ("null exclusion can only apply to an access type", Discr);
19303 end if;
19305 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19306 -- can't have defaults. Synchronized types, or types that are
19307 -- explicitly limited are fine, but special tests apply to derived
19308 -- types in generics: in a generic body we have to assume the
19309 -- worst, and therefore defaults are not allowed if the parent is
19310 -- a generic formal private type (see ACATS B370001).
19312 if Is_Access_Type (Discr_Type) and then Default_Present then
19313 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19314 or else Is_Limited_Record (Current_Scope)
19315 or else Is_Concurrent_Type (Current_Scope)
19316 or else Is_Concurrent_Record_Type (Current_Scope)
19317 or else Ekind (Current_Scope) = E_Limited_Private_Type
19318 then
19319 if not Is_Derived_Type (Current_Scope)
19320 or else not Is_Generic_Type (Etype (Current_Scope))
19321 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19322 or else Limited_Present
19323 (Type_Definition (Parent (Current_Scope)))
19324 then
19325 null;
19327 else
19328 Error_Msg_N
19329 ("access discriminants of nonlimited types cannot "
19330 & "have defaults", Expression (Discr));
19331 end if;
19333 elsif Present (Expression (Discr)) then
19334 Error_Msg_N
19335 ("(Ada 2005) access discriminants of nonlimited types "
19336 & "cannot have defaults", Expression (Discr));
19337 end if;
19338 end if;
19339 end if;
19341 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19342 -- This check is relevant only when SPARK_Mode is on as it is not a
19343 -- standard Ada legality rule.
19345 if SPARK_Mode = On
19346 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19347 then
19348 Error_Msg_N ("discriminant cannot be volatile", Discr);
19349 end if;
19351 Next (Discr);
19352 end loop;
19354 -- An element list consisting of the default expressions of the
19355 -- discriminants is constructed in the above loop and used to set
19356 -- the Discriminant_Constraint attribute for the type. If an object
19357 -- is declared of this (record or task) type without any explicit
19358 -- discriminant constraint given, this element list will form the
19359 -- actual parameters for the corresponding initialization procedure
19360 -- for the type.
19362 Set_Discriminant_Constraint (Current_Scope, Elist);
19363 Set_Stored_Constraint (Current_Scope, No_Elist);
19365 -- Default expressions must be provided either for all or for none
19366 -- of the discriminants of a discriminant part. (RM 3.7.1)
19368 if Default_Present and then Default_Not_Present then
19369 Error_Msg_N
19370 ("incomplete specification of defaults for discriminants", N);
19371 end if;
19373 -- The use of the name of a discriminant is not allowed in default
19374 -- expressions of a discriminant part if the specification of the
19375 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19377 -- To detect this, the discriminant names are entered initially with an
19378 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19379 -- attempt to use a void entity (for example in an expression that is
19380 -- type-checked) produces the error message: premature usage. Now after
19381 -- completing the semantic analysis of the discriminant part, we can set
19382 -- the Ekind of all the discriminants appropriately.
19384 Discr := First (Discriminant_Specifications (N));
19385 Discr_Number := Uint_1;
19386 while Present (Discr) loop
19387 Id := Defining_Identifier (Discr);
19388 Set_Ekind (Id, E_Discriminant);
19389 Init_Component_Location (Id);
19390 Init_Esize (Id);
19391 Set_Discriminant_Number (Id, Discr_Number);
19393 -- Make sure this is always set, even in illegal programs
19395 Set_Corresponding_Discriminant (Id, Empty);
19397 -- Initialize the Original_Record_Component to the entity itself.
19398 -- Inherit_Components will propagate the right value to
19399 -- discriminants in derived record types.
19401 Set_Original_Record_Component (Id, Id);
19403 -- Create the discriminal for the discriminant
19405 Build_Discriminal (Id);
19407 Next (Discr);
19408 Discr_Number := Discr_Number + 1;
19409 end loop;
19411 Set_Has_Discriminants (Current_Scope);
19412 end Process_Discriminants;
19414 -----------------------
19415 -- Process_Full_View --
19416 -----------------------
19418 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19419 procedure Collect_Implemented_Interfaces
19420 (Typ : Entity_Id;
19421 Ifaces : Elist_Id);
19422 -- Ada 2005: Gather all the interfaces that Typ directly or
19423 -- inherently implements. Duplicate entries are not added to
19424 -- the list Ifaces.
19426 ------------------------------------
19427 -- Collect_Implemented_Interfaces --
19428 ------------------------------------
19430 procedure Collect_Implemented_Interfaces
19431 (Typ : Entity_Id;
19432 Ifaces : Elist_Id)
19434 Iface : Entity_Id;
19435 Iface_Elmt : Elmt_Id;
19437 begin
19438 -- Abstract interfaces are only associated with tagged record types
19440 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19441 return;
19442 end if;
19444 -- Recursively climb to the ancestors
19446 if Etype (Typ) /= Typ
19448 -- Protect the frontend against wrong cyclic declarations like:
19450 -- type B is new A with private;
19451 -- type C is new A with private;
19452 -- private
19453 -- type B is new C with null record;
19454 -- type C is new B with null record;
19456 and then Etype (Typ) /= Priv_T
19457 and then Etype (Typ) /= Full_T
19458 then
19459 -- Keep separate the management of private type declarations
19461 if Ekind (Typ) = E_Record_Type_With_Private then
19463 -- Handle the following illegal usage:
19464 -- type Private_Type is tagged private;
19465 -- private
19466 -- type Private_Type is new Type_Implementing_Iface;
19468 if Present (Full_View (Typ))
19469 and then Etype (Typ) /= Full_View (Typ)
19470 then
19471 if Is_Interface (Etype (Typ)) then
19472 Append_Unique_Elmt (Etype (Typ), Ifaces);
19473 end if;
19475 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19476 end if;
19478 -- Non-private types
19480 else
19481 if Is_Interface (Etype (Typ)) then
19482 Append_Unique_Elmt (Etype (Typ), Ifaces);
19483 end if;
19485 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19486 end if;
19487 end if;
19489 -- Handle entities in the list of abstract interfaces
19491 if Present (Interfaces (Typ)) then
19492 Iface_Elmt := First_Elmt (Interfaces (Typ));
19493 while Present (Iface_Elmt) loop
19494 Iface := Node (Iface_Elmt);
19496 pragma Assert (Is_Interface (Iface));
19498 if not Contain_Interface (Iface, Ifaces) then
19499 Append_Elmt (Iface, Ifaces);
19500 Collect_Implemented_Interfaces (Iface, Ifaces);
19501 end if;
19503 Next_Elmt (Iface_Elmt);
19504 end loop;
19505 end if;
19506 end Collect_Implemented_Interfaces;
19508 -- Local variables
19510 Full_Indic : Node_Id;
19511 Full_Parent : Entity_Id;
19512 Priv_Parent : Entity_Id;
19514 -- Start of processing for Process_Full_View
19516 begin
19517 -- First some sanity checks that must be done after semantic
19518 -- decoration of the full view and thus cannot be placed with other
19519 -- similar checks in Find_Type_Name
19521 if not Is_Limited_Type (Priv_T)
19522 and then (Is_Limited_Type (Full_T)
19523 or else Is_Limited_Composite (Full_T))
19524 then
19525 if In_Instance then
19526 null;
19527 else
19528 Error_Msg_N
19529 ("completion of nonlimited type cannot be limited", Full_T);
19530 Explain_Limited_Type (Full_T, Full_T);
19531 end if;
19533 elsif Is_Abstract_Type (Full_T)
19534 and then not Is_Abstract_Type (Priv_T)
19535 then
19536 Error_Msg_N
19537 ("completion of nonabstract type cannot be abstract", Full_T);
19539 elsif Is_Tagged_Type (Priv_T)
19540 and then Is_Limited_Type (Priv_T)
19541 and then not Is_Limited_Type (Full_T)
19542 then
19543 -- If pragma CPP_Class was applied to the private declaration
19544 -- propagate the limitedness to the full-view
19546 if Is_CPP_Class (Priv_T) then
19547 Set_Is_Limited_Record (Full_T);
19549 -- GNAT allow its own definition of Limited_Controlled to disobey
19550 -- this rule in order in ease the implementation. This test is safe
19551 -- because Root_Controlled is defined in a child of System that
19552 -- normal programs are not supposed to use.
19554 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19555 Set_Is_Limited_Composite (Full_T);
19556 else
19557 Error_Msg_N
19558 ("completion of limited tagged type must be limited", Full_T);
19559 end if;
19561 elsif Is_Generic_Type (Priv_T) then
19562 Error_Msg_N ("generic type cannot have a completion", Full_T);
19563 end if;
19565 -- Check that ancestor interfaces of private and full views are
19566 -- consistent. We omit this check for synchronized types because
19567 -- they are performed on the corresponding record type when frozen.
19569 if Ada_Version >= Ada_2005
19570 and then Is_Tagged_Type (Priv_T)
19571 and then Is_Tagged_Type (Full_T)
19572 and then not Is_Concurrent_Type (Full_T)
19573 then
19574 declare
19575 Iface : Entity_Id;
19576 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19577 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19579 begin
19580 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19581 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19583 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19584 -- an interface type if and only if the full type is descendant
19585 -- of the interface type (AARM 7.3 (7.3/2)).
19587 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19589 if Present (Iface) then
19590 Error_Msg_NE
19591 ("interface in partial view& not implemented by full type "
19592 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19593 end if;
19595 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19597 if Present (Iface) then
19598 Error_Msg_NE
19599 ("interface & not implemented by partial view "
19600 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19601 end if;
19602 end;
19603 end if;
19605 if Is_Tagged_Type (Priv_T)
19606 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19607 and then Is_Derived_Type (Full_T)
19608 then
19609 Priv_Parent := Etype (Priv_T);
19611 -- The full view of a private extension may have been transformed
19612 -- into an unconstrained derived type declaration and a subtype
19613 -- declaration (see build_derived_record_type for details).
19615 if Nkind (N) = N_Subtype_Declaration then
19616 Full_Indic := Subtype_Indication (N);
19617 Full_Parent := Etype (Base_Type (Full_T));
19618 else
19619 Full_Indic := Subtype_Indication (Type_Definition (N));
19620 Full_Parent := Etype (Full_T);
19621 end if;
19623 -- Check that the parent type of the full type is a descendant of
19624 -- the ancestor subtype given in the private extension. If either
19625 -- entity has an Etype equal to Any_Type then we had some previous
19626 -- error situation [7.3(8)].
19628 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19629 return;
19631 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19632 -- any order. Therefore we don't have to check that its parent must
19633 -- be a descendant of the parent of the private type declaration.
19635 elsif Is_Interface (Priv_Parent)
19636 and then Is_Interface (Full_Parent)
19637 then
19638 null;
19640 -- Ada 2005 (AI-251): If the parent of the private type declaration
19641 -- is an interface there is no need to check that it is an ancestor
19642 -- of the associated full type declaration. The required tests for
19643 -- this case are performed by Build_Derived_Record_Type.
19645 elsif not Is_Interface (Base_Type (Priv_Parent))
19646 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19647 then
19648 Error_Msg_N
19649 ("parent of full type must descend from parent of private "
19650 & "extension", Full_Indic);
19652 -- First check a formal restriction, and then proceed with checking
19653 -- Ada rules. Since the formal restriction is not a serious error, we
19654 -- don't prevent further error detection for this check, hence the
19655 -- ELSE.
19657 else
19658 -- In formal mode, when completing a private extension the type
19659 -- named in the private part must be exactly the same as that
19660 -- named in the visible part.
19662 if Priv_Parent /= Full_Parent then
19663 Error_Msg_Name_1 := Chars (Priv_Parent);
19664 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19665 end if;
19667 -- Check the rules of 7.3(10): if the private extension inherits
19668 -- known discriminants, then the full type must also inherit those
19669 -- discriminants from the same (ancestor) type, and the parent
19670 -- subtype of the full type must be constrained if and only if
19671 -- the ancestor subtype of the private extension is constrained.
19673 if No (Discriminant_Specifications (Parent (Priv_T)))
19674 and then not Has_Unknown_Discriminants (Priv_T)
19675 and then Has_Discriminants (Base_Type (Priv_Parent))
19676 then
19677 declare
19678 Priv_Indic : constant Node_Id :=
19679 Subtype_Indication (Parent (Priv_T));
19681 Priv_Constr : constant Boolean :=
19682 Is_Constrained (Priv_Parent)
19683 or else
19684 Nkind (Priv_Indic) = N_Subtype_Indication
19685 or else
19686 Is_Constrained (Entity (Priv_Indic));
19688 Full_Constr : constant Boolean :=
19689 Is_Constrained (Full_Parent)
19690 or else
19691 Nkind (Full_Indic) = N_Subtype_Indication
19692 or else
19693 Is_Constrained (Entity (Full_Indic));
19695 Priv_Discr : Entity_Id;
19696 Full_Discr : Entity_Id;
19698 begin
19699 Priv_Discr := First_Discriminant (Priv_Parent);
19700 Full_Discr := First_Discriminant (Full_Parent);
19701 while Present (Priv_Discr) and then Present (Full_Discr) loop
19702 if Original_Record_Component (Priv_Discr) =
19703 Original_Record_Component (Full_Discr)
19704 or else
19705 Corresponding_Discriminant (Priv_Discr) =
19706 Corresponding_Discriminant (Full_Discr)
19707 then
19708 null;
19709 else
19710 exit;
19711 end if;
19713 Next_Discriminant (Priv_Discr);
19714 Next_Discriminant (Full_Discr);
19715 end loop;
19717 if Present (Priv_Discr) or else Present (Full_Discr) then
19718 Error_Msg_N
19719 ("full view must inherit discriminants of the parent "
19720 & "type used in the private extension", Full_Indic);
19722 elsif Priv_Constr and then not Full_Constr then
19723 Error_Msg_N
19724 ("parent subtype of full type must be constrained",
19725 Full_Indic);
19727 elsif Full_Constr and then not Priv_Constr then
19728 Error_Msg_N
19729 ("parent subtype of full type must be unconstrained",
19730 Full_Indic);
19731 end if;
19732 end;
19734 -- Check the rules of 7.3(12): if a partial view has neither
19735 -- known or unknown discriminants, then the full type
19736 -- declaration shall define a definite subtype.
19738 elsif not Has_Unknown_Discriminants (Priv_T)
19739 and then not Has_Discriminants (Priv_T)
19740 and then not Is_Constrained (Full_T)
19741 then
19742 Error_Msg_N
19743 ("full view must define a constrained type if partial view "
19744 & "has no discriminants", Full_T);
19745 end if;
19747 -- ??????? Do we implement the following properly ?????
19748 -- If the ancestor subtype of a private extension has constrained
19749 -- discriminants, then the parent subtype of the full view shall
19750 -- impose a statically matching constraint on those discriminants
19751 -- [7.3(13)].
19752 end if;
19754 else
19755 -- For untagged types, verify that a type without discriminants is
19756 -- not completed with an unconstrained type. A separate error message
19757 -- is produced if the full type has defaulted discriminants.
19759 if Is_Definite_Subtype (Priv_T)
19760 and then not Is_Definite_Subtype (Full_T)
19761 then
19762 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19763 Error_Msg_NE
19764 ("full view of& not compatible with declaration#",
19765 Full_T, Priv_T);
19767 if not Is_Tagged_Type (Full_T) then
19768 Error_Msg_N
19769 ("\one is constrained, the other unconstrained", Full_T);
19770 end if;
19771 end if;
19772 end if;
19774 -- AI-419: verify that the use of "limited" is consistent
19776 declare
19777 Orig_Decl : constant Node_Id := Original_Node (N);
19779 begin
19780 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19781 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19782 and then Nkind
19783 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19784 then
19785 if not Limited_Present (Parent (Priv_T))
19786 and then not Synchronized_Present (Parent (Priv_T))
19787 and then Limited_Present (Type_Definition (Orig_Decl))
19788 then
19789 Error_Msg_N
19790 ("full view of non-limited extension cannot be limited", N);
19792 -- Conversely, if the partial view carries the limited keyword,
19793 -- the full view must as well, even if it may be redundant.
19795 elsif Limited_Present (Parent (Priv_T))
19796 and then not Limited_Present (Type_Definition (Orig_Decl))
19797 then
19798 Error_Msg_N
19799 ("full view of limited extension must be explicitly limited",
19801 end if;
19802 end if;
19803 end;
19805 -- Ada 2005 (AI-443): A synchronized private extension must be
19806 -- completed by a task or protected type.
19808 if Ada_Version >= Ada_2005
19809 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19810 and then Synchronized_Present (Parent (Priv_T))
19811 and then not Is_Concurrent_Type (Full_T)
19812 then
19813 Error_Msg_N ("full view of synchronized extension must " &
19814 "be synchronized type", N);
19815 end if;
19817 -- Ada 2005 AI-363: if the full view has discriminants with
19818 -- defaults, it is illegal to declare constrained access subtypes
19819 -- whose designated type is the current type. This allows objects
19820 -- of the type that are declared in the heap to be unconstrained.
19822 if not Has_Unknown_Discriminants (Priv_T)
19823 and then not Has_Discriminants (Priv_T)
19824 and then Has_Discriminants (Full_T)
19825 and then
19826 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19827 then
19828 Set_Has_Constrained_Partial_View (Full_T);
19829 Set_Has_Constrained_Partial_View (Priv_T);
19830 end if;
19832 -- Create a full declaration for all its subtypes recorded in
19833 -- Private_Dependents and swap them similarly to the base type. These
19834 -- are subtypes that have been define before the full declaration of
19835 -- the private type. We also swap the entry in Private_Dependents list
19836 -- so we can properly restore the private view on exit from the scope.
19838 declare
19839 Priv_Elmt : Elmt_Id;
19840 Priv_Scop : Entity_Id;
19841 Priv : Entity_Id;
19842 Full : Entity_Id;
19844 begin
19845 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19846 while Present (Priv_Elmt) loop
19847 Priv := Node (Priv_Elmt);
19848 Priv_Scop := Scope (Priv);
19850 if Ekind_In (Priv, E_Private_Subtype,
19851 E_Limited_Private_Subtype,
19852 E_Record_Subtype_With_Private)
19853 then
19854 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19855 Set_Is_Itype (Full);
19856 Set_Parent (Full, Parent (Priv));
19857 Set_Associated_Node_For_Itype (Full, N);
19859 -- Now we need to complete the private subtype, but since the
19860 -- base type has already been swapped, we must also swap the
19861 -- subtypes (and thus, reverse the arguments in the call to
19862 -- Complete_Private_Subtype). Also note that we may need to
19863 -- re-establish the scope of the private subtype.
19865 Copy_And_Swap (Priv, Full);
19867 if not In_Open_Scopes (Priv_Scop) then
19868 Push_Scope (Priv_Scop);
19870 else
19871 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19873 Priv_Scop := Empty;
19874 end if;
19876 Complete_Private_Subtype (Full, Priv, Full_T, N);
19878 if Present (Priv_Scop) then
19879 Pop_Scope;
19880 end if;
19882 Replace_Elmt (Priv_Elmt, Full);
19883 end if;
19885 Next_Elmt (Priv_Elmt);
19886 end loop;
19887 end;
19889 -- If the private view was tagged, copy the new primitive operations
19890 -- from the private view to the full view.
19892 if Is_Tagged_Type (Full_T) then
19893 declare
19894 Disp_Typ : Entity_Id;
19895 Full_List : Elist_Id;
19896 Prim : Entity_Id;
19897 Prim_Elmt : Elmt_Id;
19898 Priv_List : Elist_Id;
19900 function Contains
19901 (E : Entity_Id;
19902 L : Elist_Id) return Boolean;
19903 -- Determine whether list L contains element E
19905 --------------
19906 -- Contains --
19907 --------------
19909 function Contains
19910 (E : Entity_Id;
19911 L : Elist_Id) return Boolean
19913 List_Elmt : Elmt_Id;
19915 begin
19916 List_Elmt := First_Elmt (L);
19917 while Present (List_Elmt) loop
19918 if Node (List_Elmt) = E then
19919 return True;
19920 end if;
19922 Next_Elmt (List_Elmt);
19923 end loop;
19925 return False;
19926 end Contains;
19928 -- Start of processing
19930 begin
19931 if Is_Tagged_Type (Priv_T) then
19932 Priv_List := Primitive_Operations (Priv_T);
19933 Prim_Elmt := First_Elmt (Priv_List);
19935 -- In the case of a concurrent type completing a private tagged
19936 -- type, primitives may have been declared in between the two
19937 -- views. These subprograms need to be wrapped the same way
19938 -- entries and protected procedures are handled because they
19939 -- cannot be directly shared by the two views.
19941 if Is_Concurrent_Type (Full_T) then
19942 declare
19943 Conc_Typ : constant Entity_Id :=
19944 Corresponding_Record_Type (Full_T);
19945 Curr_Nod : Node_Id := Parent (Conc_Typ);
19946 Wrap_Spec : Node_Id;
19948 begin
19949 while Present (Prim_Elmt) loop
19950 Prim := Node (Prim_Elmt);
19952 if Comes_From_Source (Prim)
19953 and then not Is_Abstract_Subprogram (Prim)
19954 then
19955 Wrap_Spec :=
19956 Make_Subprogram_Declaration (Sloc (Prim),
19957 Specification =>
19958 Build_Wrapper_Spec
19959 (Subp_Id => Prim,
19960 Obj_Typ => Conc_Typ,
19961 Formals =>
19962 Parameter_Specifications
19963 (Parent (Prim))));
19965 Insert_After (Curr_Nod, Wrap_Spec);
19966 Curr_Nod := Wrap_Spec;
19968 Analyze (Wrap_Spec);
19970 -- Remove the wrapper from visibility to avoid
19971 -- spurious conflict with the wrapped entity.
19973 Set_Is_Immediately_Visible
19974 (Defining_Entity (Specification (Wrap_Spec)),
19975 False);
19976 end if;
19978 Next_Elmt (Prim_Elmt);
19979 end loop;
19981 return;
19982 end;
19984 -- For non-concurrent types, transfer explicit primitives, but
19985 -- omit those inherited from the parent of the private view
19986 -- since they will be re-inherited later on.
19988 else
19989 Full_List := Primitive_Operations (Full_T);
19991 while Present (Prim_Elmt) loop
19992 Prim := Node (Prim_Elmt);
19994 if Comes_From_Source (Prim)
19995 and then not Contains (Prim, Full_List)
19996 then
19997 Append_Elmt (Prim, Full_List);
19998 end if;
20000 Next_Elmt (Prim_Elmt);
20001 end loop;
20002 end if;
20004 -- Untagged private view
20006 else
20007 Full_List := Primitive_Operations (Full_T);
20009 -- In this case the partial view is untagged, so here we locate
20010 -- all of the earlier primitives that need to be treated as
20011 -- dispatching (those that appear between the two views). Note
20012 -- that these additional operations must all be new operations
20013 -- (any earlier operations that override inherited operations
20014 -- of the full view will already have been inserted in the
20015 -- primitives list, marked by Check_Operation_From_Private_View
20016 -- as dispatching. Note that implicit "/=" operators are
20017 -- excluded from being added to the primitives list since they
20018 -- shouldn't be treated as dispatching (tagged "/=" is handled
20019 -- specially).
20021 Prim := Next_Entity (Full_T);
20022 while Present (Prim) and then Prim /= Priv_T loop
20023 if Ekind_In (Prim, E_Procedure, E_Function) then
20024 Disp_Typ := Find_Dispatching_Type (Prim);
20026 if Disp_Typ = Full_T
20027 and then (Chars (Prim) /= Name_Op_Ne
20028 or else Comes_From_Source (Prim))
20029 then
20030 Check_Controlling_Formals (Full_T, Prim);
20032 if not Is_Dispatching_Operation (Prim) then
20033 Append_Elmt (Prim, Full_List);
20034 Set_Is_Dispatching_Operation (Prim, True);
20035 Set_DT_Position_Value (Prim, No_Uint);
20036 end if;
20038 elsif Is_Dispatching_Operation (Prim)
20039 and then Disp_Typ /= Full_T
20040 then
20042 -- Verify that it is not otherwise controlled by a
20043 -- formal or a return value of type T.
20045 Check_Controlling_Formals (Disp_Typ, Prim);
20046 end if;
20047 end if;
20049 Next_Entity (Prim);
20050 end loop;
20051 end if;
20053 -- For the tagged case, the two views can share the same primitive
20054 -- operations list and the same class-wide type. Update attributes
20055 -- of the class-wide type which depend on the full declaration.
20057 if Is_Tagged_Type (Priv_T) then
20058 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20059 Set_Class_Wide_Type
20060 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20062 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20063 end if;
20064 end;
20065 end if;
20067 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20069 if Known_To_Have_Preelab_Init (Priv_T) then
20071 -- Case where there is a pragma Preelaborable_Initialization. We
20072 -- always allow this in predefined units, which is cheating a bit,
20073 -- but it means we don't have to struggle to meet the requirements in
20074 -- the RM for having Preelaborable Initialization. Otherwise we
20075 -- require that the type meets the RM rules. But we can't check that
20076 -- yet, because of the rule about overriding Initialize, so we simply
20077 -- set a flag that will be checked at freeze time.
20079 if not In_Predefined_Unit (Full_T) then
20080 Set_Must_Have_Preelab_Init (Full_T);
20081 end if;
20082 end if;
20084 -- If pragma CPP_Class was applied to the private type declaration,
20085 -- propagate it now to the full type declaration.
20087 if Is_CPP_Class (Priv_T) then
20088 Set_Is_CPP_Class (Full_T);
20089 Set_Convention (Full_T, Convention_CPP);
20091 -- Check that components of imported CPP types do not have default
20092 -- expressions.
20094 Check_CPP_Type_Has_No_Defaults (Full_T);
20095 end if;
20097 -- If the private view has user specified stream attributes, then so has
20098 -- the full view.
20100 -- Why the test, how could these flags be already set in Full_T ???
20102 if Has_Specified_Stream_Read (Priv_T) then
20103 Set_Has_Specified_Stream_Read (Full_T);
20104 end if;
20106 if Has_Specified_Stream_Write (Priv_T) then
20107 Set_Has_Specified_Stream_Write (Full_T);
20108 end if;
20110 if Has_Specified_Stream_Input (Priv_T) then
20111 Set_Has_Specified_Stream_Input (Full_T);
20112 end if;
20114 if Has_Specified_Stream_Output (Priv_T) then
20115 Set_Has_Specified_Stream_Output (Full_T);
20116 end if;
20118 -- Propagate the attributes related to pragma Default_Initial_Condition
20119 -- from the private to the full view. Note that both flags are mutually
20120 -- exclusive.
20122 if Has_Default_Init_Cond (Priv_T)
20123 or else Has_Inherited_Default_Init_Cond (Priv_T)
20124 then
20125 Propagate_Default_Init_Cond_Attributes
20126 (From_Typ => Priv_T,
20127 To_Typ => Full_T,
20128 Private_To_Full_View => True);
20130 -- In the case where the full view is derived from another private type,
20131 -- the attributes related to pragma Default_Initial_Condition must be
20132 -- propagated from the full to the private view to maintain consistency
20133 -- of views.
20135 -- package Pack is
20136 -- type Parent_Typ is private
20137 -- with Default_Initial_Condition ...;
20138 -- private
20139 -- type Parent_Typ is ...;
20140 -- end Pack;
20142 -- with Pack; use Pack;
20143 -- package Pack_2 is
20144 -- type Deriv_Typ is private; -- must inherit
20145 -- private
20146 -- type Deriv_Typ is new Parent_Typ; -- must inherit
20147 -- end Pack_2;
20149 elsif Has_Default_Init_Cond (Full_T)
20150 or else Has_Inherited_Default_Init_Cond (Full_T)
20151 then
20152 Propagate_Default_Init_Cond_Attributes
20153 (From_Typ => Full_T,
20154 To_Typ => Priv_T,
20155 Private_To_Full_View => True);
20156 end if;
20158 if Is_Ghost_Entity (Priv_T) then
20160 -- The Ghost policy in effect at the point of declaration and at the
20161 -- point of completion must match (SPARK RM 6.9(14)).
20163 Check_Ghost_Completion (Priv_T, Full_T);
20165 -- Propagate the attributes related to pragma Ghost from the private
20166 -- to the full view.
20168 Mark_Full_View_As_Ghost (Priv_T, Full_T);
20169 end if;
20171 -- Propagate invariant-related attributes from the private view to the
20172 -- full view and its base type.
20174 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20175 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20177 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20178 -- in the full view without advertising the inheritance in the partial
20179 -- view. This can only occur when the partial view has no parent type
20180 -- and the full view has an interface as a parent. Any other scenarios
20181 -- are illegal because implemented interfaces must match between the
20182 -- two views.
20184 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20185 declare
20186 Full_Par : constant Entity_Id := Etype (Full_T);
20187 Priv_Par : constant Entity_Id := Etype (Priv_T);
20189 begin
20190 if not Is_Interface (Priv_Par)
20191 and then Is_Interface (Full_Par)
20192 and then Has_Inheritable_Invariants (Full_Par)
20193 then
20194 Error_Msg_N
20195 ("hidden inheritance of class-wide type invariants not "
20196 & "allowed", N);
20197 end if;
20198 end;
20199 end if;
20201 -- Propagate predicates to full type, and predicate function if already
20202 -- defined. It is not clear that this can actually happen? the partial
20203 -- view cannot be frozen yet, and the predicate function has not been
20204 -- built. Still it is a cheap check and seems safer to make it.
20206 if Has_Predicates (Priv_T) then
20207 Set_Has_Predicates (Full_T);
20209 if Present (Predicate_Function (Priv_T)) then
20210 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20211 end if;
20212 end if;
20213 end Process_Full_View;
20215 -----------------------------------
20216 -- Process_Incomplete_Dependents --
20217 -----------------------------------
20219 procedure Process_Incomplete_Dependents
20220 (N : Node_Id;
20221 Full_T : Entity_Id;
20222 Inc_T : Entity_Id)
20224 Inc_Elmt : Elmt_Id;
20225 Priv_Dep : Entity_Id;
20226 New_Subt : Entity_Id;
20228 Disc_Constraint : Elist_Id;
20230 begin
20231 if No (Private_Dependents (Inc_T)) then
20232 return;
20233 end if;
20235 -- Itypes that may be generated by the completion of an incomplete
20236 -- subtype are not used by the back-end and not attached to the tree.
20237 -- They are created only for constraint-checking purposes.
20239 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20240 while Present (Inc_Elmt) loop
20241 Priv_Dep := Node (Inc_Elmt);
20243 if Ekind (Priv_Dep) = E_Subprogram_Type then
20245 -- An Access_To_Subprogram type may have a return type or a
20246 -- parameter type that is incomplete. Replace with the full view.
20248 if Etype (Priv_Dep) = Inc_T then
20249 Set_Etype (Priv_Dep, Full_T);
20250 end if;
20252 declare
20253 Formal : Entity_Id;
20255 begin
20256 Formal := First_Formal (Priv_Dep);
20257 while Present (Formal) loop
20258 if Etype (Formal) = Inc_T then
20259 Set_Etype (Formal, Full_T);
20260 end if;
20262 Next_Formal (Formal);
20263 end loop;
20264 end;
20266 elsif Is_Overloadable (Priv_Dep) then
20268 -- If a subprogram in the incomplete dependents list is primitive
20269 -- for a tagged full type then mark it as a dispatching operation,
20270 -- check whether it overrides an inherited subprogram, and check
20271 -- restrictions on its controlling formals. Note that a protected
20272 -- operation is never dispatching: only its wrapper operation
20273 -- (which has convention Ada) is.
20275 if Is_Tagged_Type (Full_T)
20276 and then Is_Primitive (Priv_Dep)
20277 and then Convention (Priv_Dep) /= Convention_Protected
20278 then
20279 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20280 Set_Is_Dispatching_Operation (Priv_Dep);
20281 Check_Controlling_Formals (Full_T, Priv_Dep);
20282 end if;
20284 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20286 -- Can happen during processing of a body before the completion
20287 -- of a TA type. Ignore, because spec is also on dependent list.
20289 return;
20291 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20292 -- corresponding subtype of the full view.
20294 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
20295 Set_Subtype_Indication
20296 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20297 Set_Etype (Priv_Dep, Full_T);
20298 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20299 Set_Analyzed (Parent (Priv_Dep), False);
20301 -- Reanalyze the declaration, suppressing the call to
20302 -- Enter_Name to avoid duplicate names.
20304 Analyze_Subtype_Declaration
20305 (N => Parent (Priv_Dep),
20306 Skip => True);
20308 -- Dependent is a subtype
20310 else
20311 -- We build a new subtype indication using the full view of the
20312 -- incomplete parent. The discriminant constraints have been
20313 -- elaborated already at the point of the subtype declaration.
20315 New_Subt := Create_Itype (E_Void, N);
20317 if Has_Discriminants (Full_T) then
20318 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20319 else
20320 Disc_Constraint := No_Elist;
20321 end if;
20323 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20324 Set_Full_View (Priv_Dep, New_Subt);
20325 end if;
20327 Next_Elmt (Inc_Elmt);
20328 end loop;
20329 end Process_Incomplete_Dependents;
20331 --------------------------------
20332 -- Process_Range_Expr_In_Decl --
20333 --------------------------------
20335 procedure Process_Range_Expr_In_Decl
20336 (R : Node_Id;
20337 T : Entity_Id;
20338 Subtyp : Entity_Id := Empty;
20339 Check_List : List_Id := Empty_List;
20340 R_Check_Off : Boolean := False;
20341 In_Iter_Schm : Boolean := False)
20343 Lo, Hi : Node_Id;
20344 R_Checks : Check_Result;
20345 Insert_Node : Node_Id;
20346 Def_Id : Entity_Id;
20348 begin
20349 Analyze_And_Resolve (R, Base_Type (T));
20351 if Nkind (R) = N_Range then
20353 -- In SPARK, all ranges should be static, with the exception of the
20354 -- discrete type definition of a loop parameter specification.
20356 if not In_Iter_Schm
20357 and then not Is_OK_Static_Range (R)
20358 then
20359 Check_SPARK_05_Restriction ("range should be static", R);
20360 end if;
20362 Lo := Low_Bound (R);
20363 Hi := High_Bound (R);
20365 -- Validity checks on the range of a quantified expression are
20366 -- delayed until the construct is transformed into a loop.
20368 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20369 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20370 then
20371 null;
20373 -- We need to ensure validity of the bounds here, because if we
20374 -- go ahead and do the expansion, then the expanded code will get
20375 -- analyzed with range checks suppressed and we miss the check.
20377 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20378 -- the temporaries generated by routine Remove_Side_Effects by means
20379 -- of validity checks must use the same names. When a range appears
20380 -- in the parent of a generic, the range is processed with checks
20381 -- disabled as part of the generic context and with checks enabled
20382 -- for code generation purposes. This leads to link issues as the
20383 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20384 -- template sees the temporaries generated by Remove_Side_Effects.
20386 else
20387 Validity_Check_Range (R, Subtyp);
20388 end if;
20390 -- If there were errors in the declaration, try and patch up some
20391 -- common mistakes in the bounds. The cases handled are literals
20392 -- which are Integer where the expected type is Real and vice versa.
20393 -- These corrections allow the compilation process to proceed further
20394 -- along since some basic assumptions of the format of the bounds
20395 -- are guaranteed.
20397 if Etype (R) = Any_Type then
20398 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20399 Rewrite (Lo,
20400 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20402 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20403 Rewrite (Hi,
20404 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20406 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20407 Rewrite (Lo,
20408 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20410 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20411 Rewrite (Hi,
20412 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20413 end if;
20415 Set_Etype (Lo, T);
20416 Set_Etype (Hi, T);
20417 end if;
20419 -- If the bounds of the range have been mistakenly given as string
20420 -- literals (perhaps in place of character literals), then an error
20421 -- has already been reported, but we rewrite the string literal as a
20422 -- bound of the range's type to avoid blowups in later processing
20423 -- that looks at static values.
20425 if Nkind (Lo) = N_String_Literal then
20426 Rewrite (Lo,
20427 Make_Attribute_Reference (Sloc (Lo),
20428 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20429 Attribute_Name => Name_First));
20430 Analyze_And_Resolve (Lo);
20431 end if;
20433 if Nkind (Hi) = N_String_Literal then
20434 Rewrite (Hi,
20435 Make_Attribute_Reference (Sloc (Hi),
20436 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20437 Attribute_Name => Name_First));
20438 Analyze_And_Resolve (Hi);
20439 end if;
20441 -- If bounds aren't scalar at this point then exit, avoiding
20442 -- problems with further processing of the range in this procedure.
20444 if not Is_Scalar_Type (Etype (Lo)) then
20445 return;
20446 end if;
20448 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20449 -- then range of the base type. Here we check whether the bounds
20450 -- are in the range of the subtype itself. Note that if the bounds
20451 -- represent the null range the Constraint_Error exception should
20452 -- not be raised.
20454 -- ??? The following code should be cleaned up as follows
20456 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20457 -- is done in the call to Range_Check (R, T); below
20459 -- 2. The use of R_Check_Off should be investigated and possibly
20460 -- removed, this would clean up things a bit.
20462 if Is_Null_Range (Lo, Hi) then
20463 null;
20465 else
20466 -- Capture values of bounds and generate temporaries for them
20467 -- if needed, before applying checks, since checks may cause
20468 -- duplication of the expression without forcing evaluation.
20470 -- The forced evaluation removes side effects from expressions,
20471 -- which should occur also in GNATprove mode. Otherwise, we end up
20472 -- with unexpected insertions of actions at places where this is
20473 -- not supposed to occur, e.g. on default parameters of a call.
20475 if Expander_Active or GNATprove_Mode then
20477 -- Call Force_Evaluation to create declarations as needed to
20478 -- deal with side effects, and also create typ_FIRST/LAST
20479 -- entities for bounds if we have a subtype name.
20481 -- Note: we do this transformation even if expansion is not
20482 -- active if we are in GNATprove_Mode since the transformation
20483 -- is in general required to ensure that the resulting tree has
20484 -- proper Ada semantics.
20486 Force_Evaluation
20487 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20488 Force_Evaluation
20489 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
20490 end if;
20492 -- We use a flag here instead of suppressing checks on the type
20493 -- because the type we check against isn't necessarily the place
20494 -- where we put the check.
20496 if not R_Check_Off then
20497 R_Checks := Get_Range_Checks (R, T);
20499 -- Look up tree to find an appropriate insertion point. We
20500 -- can't just use insert_actions because later processing
20501 -- depends on the insertion node. Prior to Ada 2012 the
20502 -- insertion point could only be a declaration or a loop, but
20503 -- quantified expressions can appear within any context in an
20504 -- expression, and the insertion point can be any statement,
20505 -- pragma, or declaration.
20507 Insert_Node := Parent (R);
20508 while Present (Insert_Node) loop
20509 exit when
20510 Nkind (Insert_Node) in N_Declaration
20511 and then
20512 not Nkind_In
20513 (Insert_Node, N_Component_Declaration,
20514 N_Loop_Parameter_Specification,
20515 N_Function_Specification,
20516 N_Procedure_Specification);
20518 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20519 or else Nkind (Insert_Node) in
20520 N_Statement_Other_Than_Procedure_Call
20521 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20522 N_Pragma);
20524 Insert_Node := Parent (Insert_Node);
20525 end loop;
20527 -- Why would Type_Decl not be present??? Without this test,
20528 -- short regression tests fail.
20530 if Present (Insert_Node) then
20532 -- Case of loop statement. Verify that the range is part
20533 -- of the subtype indication of the iteration scheme.
20535 if Nkind (Insert_Node) = N_Loop_Statement then
20536 declare
20537 Indic : Node_Id;
20539 begin
20540 Indic := Parent (R);
20541 while Present (Indic)
20542 and then Nkind (Indic) /= N_Subtype_Indication
20543 loop
20544 Indic := Parent (Indic);
20545 end loop;
20547 if Present (Indic) then
20548 Def_Id := Etype (Subtype_Mark (Indic));
20550 Insert_Range_Checks
20551 (R_Checks,
20552 Insert_Node,
20553 Def_Id,
20554 Sloc (Insert_Node),
20556 Do_Before => True);
20557 end if;
20558 end;
20560 -- Insertion before a declaration. If the declaration
20561 -- includes discriminants, the list of applicable checks
20562 -- is given by the caller.
20564 elsif Nkind (Insert_Node) in N_Declaration then
20565 Def_Id := Defining_Identifier (Insert_Node);
20567 if (Ekind (Def_Id) = E_Record_Type
20568 and then Depends_On_Discriminant (R))
20569 or else
20570 (Ekind (Def_Id) = E_Protected_Type
20571 and then Has_Discriminants (Def_Id))
20572 then
20573 Append_Range_Checks
20574 (R_Checks,
20575 Check_List, Def_Id, Sloc (Insert_Node), R);
20577 else
20578 Insert_Range_Checks
20579 (R_Checks,
20580 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20582 end if;
20584 -- Insertion before a statement. Range appears in the
20585 -- context of a quantified expression. Insertion will
20586 -- take place when expression is expanded.
20588 else
20589 null;
20590 end if;
20591 end if;
20592 end if;
20593 end if;
20595 -- Case of other than an explicit N_Range node
20597 -- The forced evaluation removes side effects from expressions, which
20598 -- should occur also in GNATprove mode. Otherwise, we end up with
20599 -- unexpected insertions of actions at places where this is not
20600 -- supposed to occur, e.g. on default parameters of a call.
20602 elsif Expander_Active or GNATprove_Mode then
20603 Get_Index_Bounds (R, Lo, Hi);
20604 Force_Evaluation (Lo);
20605 Force_Evaluation (Hi);
20606 end if;
20607 end Process_Range_Expr_In_Decl;
20609 --------------------------------------
20610 -- Process_Real_Range_Specification --
20611 --------------------------------------
20613 procedure Process_Real_Range_Specification (Def : Node_Id) is
20614 Spec : constant Node_Id := Real_Range_Specification (Def);
20615 Lo : Node_Id;
20616 Hi : Node_Id;
20617 Err : Boolean := False;
20619 procedure Analyze_Bound (N : Node_Id);
20620 -- Analyze and check one bound
20622 -------------------
20623 -- Analyze_Bound --
20624 -------------------
20626 procedure Analyze_Bound (N : Node_Id) is
20627 begin
20628 Analyze_And_Resolve (N, Any_Real);
20630 if not Is_OK_Static_Expression (N) then
20631 Flag_Non_Static_Expr
20632 ("bound in real type definition is not static!", N);
20633 Err := True;
20634 end if;
20635 end Analyze_Bound;
20637 -- Start of processing for Process_Real_Range_Specification
20639 begin
20640 if Present (Spec) then
20641 Lo := Low_Bound (Spec);
20642 Hi := High_Bound (Spec);
20643 Analyze_Bound (Lo);
20644 Analyze_Bound (Hi);
20646 -- If error, clear away junk range specification
20648 if Err then
20649 Set_Real_Range_Specification (Def, Empty);
20650 end if;
20651 end if;
20652 end Process_Real_Range_Specification;
20654 ---------------------
20655 -- Process_Subtype --
20656 ---------------------
20658 function Process_Subtype
20659 (S : Node_Id;
20660 Related_Nod : Node_Id;
20661 Related_Id : Entity_Id := Empty;
20662 Suffix : Character := ' ') return Entity_Id
20664 P : Node_Id;
20665 Def_Id : Entity_Id;
20666 Error_Node : Node_Id;
20667 Full_View_Id : Entity_Id;
20668 Subtype_Mark_Id : Entity_Id;
20670 May_Have_Null_Exclusion : Boolean;
20672 procedure Check_Incomplete (T : Node_Id);
20673 -- Called to verify that an incomplete type is not used prematurely
20675 ----------------------
20676 -- Check_Incomplete --
20677 ----------------------
20679 procedure Check_Incomplete (T : Node_Id) is
20680 begin
20681 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20683 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20684 and then
20685 not (Ada_Version >= Ada_2005
20686 and then
20687 (Nkind (Parent (T)) = N_Subtype_Declaration
20688 or else (Nkind (Parent (T)) = N_Subtype_Indication
20689 and then Nkind (Parent (Parent (T))) =
20690 N_Subtype_Declaration)))
20691 then
20692 Error_Msg_N ("invalid use of type before its full declaration", T);
20693 end if;
20694 end Check_Incomplete;
20696 -- Start of processing for Process_Subtype
20698 begin
20699 -- Case of no constraints present
20701 if Nkind (S) /= N_Subtype_Indication then
20702 Find_Type (S);
20703 Check_Incomplete (S);
20704 P := Parent (S);
20706 -- Ada 2005 (AI-231): Static check
20708 if Ada_Version >= Ada_2005
20709 and then Present (P)
20710 and then Null_Exclusion_Present (P)
20711 and then Nkind (P) /= N_Access_To_Object_Definition
20712 and then not Is_Access_Type (Entity (S))
20713 then
20714 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20715 end if;
20717 -- The following is ugly, can't we have a range or even a flag???
20719 May_Have_Null_Exclusion :=
20720 Nkind_In (P, N_Access_Definition,
20721 N_Access_Function_Definition,
20722 N_Access_Procedure_Definition,
20723 N_Access_To_Object_Definition,
20724 N_Allocator,
20725 N_Component_Definition)
20726 or else
20727 Nkind_In (P, N_Derived_Type_Definition,
20728 N_Discriminant_Specification,
20729 N_Formal_Object_Declaration,
20730 N_Object_Declaration,
20731 N_Object_Renaming_Declaration,
20732 N_Parameter_Specification,
20733 N_Subtype_Declaration);
20735 -- Create an Itype that is a duplicate of Entity (S) but with the
20736 -- null-exclusion attribute.
20738 if May_Have_Null_Exclusion
20739 and then Is_Access_Type (Entity (S))
20740 and then Null_Exclusion_Present (P)
20742 -- No need to check the case of an access to object definition.
20743 -- It is correct to define double not-null pointers.
20745 -- Example:
20746 -- type Not_Null_Int_Ptr is not null access Integer;
20747 -- type Acc is not null access Not_Null_Int_Ptr;
20749 and then Nkind (P) /= N_Access_To_Object_Definition
20750 then
20751 if Can_Never_Be_Null (Entity (S)) then
20752 case Nkind (Related_Nod) is
20753 when N_Full_Type_Declaration =>
20754 if Nkind (Type_Definition (Related_Nod))
20755 in N_Array_Type_Definition
20756 then
20757 Error_Node :=
20758 Subtype_Indication
20759 (Component_Definition
20760 (Type_Definition (Related_Nod)));
20761 else
20762 Error_Node :=
20763 Subtype_Indication (Type_Definition (Related_Nod));
20764 end if;
20766 when N_Subtype_Declaration =>
20767 Error_Node := Subtype_Indication (Related_Nod);
20769 when N_Object_Declaration =>
20770 Error_Node := Object_Definition (Related_Nod);
20772 when N_Component_Declaration =>
20773 Error_Node :=
20774 Subtype_Indication (Component_Definition (Related_Nod));
20776 when N_Allocator =>
20777 Error_Node := Expression (Related_Nod);
20779 when others =>
20780 pragma Assert (False);
20781 Error_Node := Related_Nod;
20782 end case;
20784 Error_Msg_NE
20785 ("`NOT NULL` not allowed (& already excludes null)",
20786 Error_Node,
20787 Entity (S));
20788 end if;
20790 Set_Etype (S,
20791 Create_Null_Excluding_Itype
20792 (T => Entity (S),
20793 Related_Nod => P));
20794 Set_Entity (S, Etype (S));
20795 end if;
20797 return Entity (S);
20799 -- Case of constraint present, so that we have an N_Subtype_Indication
20800 -- node (this node is created only if constraints are present).
20802 else
20803 Find_Type (Subtype_Mark (S));
20805 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20806 and then not
20807 (Nkind (Parent (S)) = N_Subtype_Declaration
20808 and then Is_Itype (Defining_Identifier (Parent (S))))
20809 then
20810 Check_Incomplete (Subtype_Mark (S));
20811 end if;
20813 P := Parent (S);
20814 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20816 -- Explicit subtype declaration case
20818 if Nkind (P) = N_Subtype_Declaration then
20819 Def_Id := Defining_Identifier (P);
20821 -- Explicit derived type definition case
20823 elsif Nkind (P) = N_Derived_Type_Definition then
20824 Def_Id := Defining_Identifier (Parent (P));
20826 -- Implicit case, the Def_Id must be created as an implicit type.
20827 -- The one exception arises in the case of concurrent types, array
20828 -- and access types, where other subsidiary implicit types may be
20829 -- created and must appear before the main implicit type. In these
20830 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20831 -- has not yet been called to create Def_Id.
20833 else
20834 if Is_Array_Type (Subtype_Mark_Id)
20835 or else Is_Concurrent_Type (Subtype_Mark_Id)
20836 or else Is_Access_Type (Subtype_Mark_Id)
20837 then
20838 Def_Id := Empty;
20840 -- For the other cases, we create a new unattached Itype,
20841 -- and set the indication to ensure it gets attached later.
20843 else
20844 Def_Id :=
20845 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20846 end if;
20847 end if;
20849 -- If the kind of constraint is invalid for this kind of type,
20850 -- then give an error, and then pretend no constraint was given.
20852 if not Is_Valid_Constraint_Kind
20853 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20854 then
20855 Error_Msg_N
20856 ("incorrect constraint for this kind of type", Constraint (S));
20858 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20860 -- Set Ekind of orphan itype, to prevent cascaded errors
20862 if Present (Def_Id) then
20863 Set_Ekind (Def_Id, Ekind (Any_Type));
20864 end if;
20866 -- Make recursive call, having got rid of the bogus constraint
20868 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20869 end if;
20871 -- Remaining processing depends on type. Select on Base_Type kind to
20872 -- ensure getting to the concrete type kind in the case of a private
20873 -- subtype (needed when only doing semantic analysis).
20875 case Ekind (Base_Type (Subtype_Mark_Id)) is
20876 when Access_Kind =>
20878 -- If this is a constraint on a class-wide type, discard it.
20879 -- There is currently no way to express a partial discriminant
20880 -- constraint on a type with unknown discriminants. This is
20881 -- a pathology that the ACATS wisely decides not to test.
20883 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20884 if Comes_From_Source (S) then
20885 Error_Msg_N
20886 ("constraint on class-wide type ignored??",
20887 Constraint (S));
20888 end if;
20890 if Nkind (P) = N_Subtype_Declaration then
20891 Set_Subtype_Indication (P,
20892 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20893 end if;
20895 return Subtype_Mark_Id;
20896 end if;
20898 Constrain_Access (Def_Id, S, Related_Nod);
20900 if Expander_Active
20901 and then Is_Itype (Designated_Type (Def_Id))
20902 and then Nkind (Related_Nod) = N_Subtype_Declaration
20903 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20904 then
20905 Build_Itype_Reference
20906 (Designated_Type (Def_Id), Related_Nod);
20907 end if;
20909 when Array_Kind =>
20910 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20912 when Decimal_Fixed_Point_Kind =>
20913 Constrain_Decimal (Def_Id, S);
20915 when Enumeration_Kind =>
20916 Constrain_Enumeration (Def_Id, S);
20917 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20919 when Ordinary_Fixed_Point_Kind =>
20920 Constrain_Ordinary_Fixed (Def_Id, S);
20922 when Float_Kind =>
20923 Constrain_Float (Def_Id, S);
20925 when Integer_Kind =>
20926 Constrain_Integer (Def_Id, S);
20927 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20929 when E_Record_Type |
20930 E_Record_Subtype |
20931 Class_Wide_Kind |
20932 E_Incomplete_Type =>
20933 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20935 if Ekind (Def_Id) = E_Incomplete_Type then
20936 Set_Private_Dependents (Def_Id, New_Elmt_List);
20937 end if;
20939 when Private_Kind =>
20940 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20942 -- The base type may be private but Def_Id may be a full view
20943 -- in an instance.
20945 if Is_Private_Type (Def_Id) then
20946 Set_Private_Dependents (Def_Id, New_Elmt_List);
20947 end if;
20949 -- In case of an invalid constraint prevent further processing
20950 -- since the type constructed is missing expected fields.
20952 if Etype (Def_Id) = Any_Type then
20953 return Def_Id;
20954 end if;
20956 -- If the full view is that of a task with discriminants,
20957 -- we must constrain both the concurrent type and its
20958 -- corresponding record type. Otherwise we will just propagate
20959 -- the constraint to the full view, if available.
20961 if Present (Full_View (Subtype_Mark_Id))
20962 and then Has_Discriminants (Subtype_Mark_Id)
20963 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20964 then
20965 Full_View_Id :=
20966 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20968 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20969 Constrain_Concurrent (Full_View_Id, S,
20970 Related_Nod, Related_Id, Suffix);
20971 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20972 Set_Full_View (Def_Id, Full_View_Id);
20974 -- Introduce an explicit reference to the private subtype,
20975 -- to prevent scope anomalies in gigi if first use appears
20976 -- in a nested context, e.g. a later function body.
20977 -- Should this be generated in other contexts than a full
20978 -- type declaration?
20980 if Is_Itype (Def_Id)
20981 and then
20982 Nkind (Parent (P)) = N_Full_Type_Declaration
20983 then
20984 Build_Itype_Reference (Def_Id, Parent (P));
20985 end if;
20987 else
20988 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20989 end if;
20991 when Concurrent_Kind =>
20992 Constrain_Concurrent (Def_Id, S,
20993 Related_Nod, Related_Id, Suffix);
20995 when others =>
20996 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20997 end case;
20999 -- Size and Convention are always inherited from the base type
21001 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21002 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21004 return Def_Id;
21005 end if;
21006 end Process_Subtype;
21008 --------------------------------------------
21009 -- Propagate_Default_Init_Cond_Attributes --
21010 --------------------------------------------
21012 procedure Propagate_Default_Init_Cond_Attributes
21013 (From_Typ : Entity_Id;
21014 To_Typ : Entity_Id;
21015 Parent_To_Derivation : Boolean := False;
21016 Private_To_Full_View : Boolean := False)
21018 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
21019 -- Remove the default initial condition procedure (if any) from the
21020 -- Subprograms_For_Type chain of type Typ.
21022 ----------------------------------------
21023 -- Remove_Default_Init_Cond_Procedure --
21024 ----------------------------------------
21026 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
21027 Subps : constant Elist_Id := Subprograms_For_Type (Typ);
21028 Subp_Elmt : Elmt_Id;
21029 Subp_Id : Entity_Id;
21031 begin
21032 if Present (Subps) then
21033 Subp_Elmt := First_Elmt (Subps);
21034 while Present (Subp_Elmt) loop
21035 Subp_Id := Node (Subp_Elmt);
21037 if Is_Default_Init_Cond_Procedure (Subp_Id) then
21038 Remove_Elmt (Subps, Subp_Elmt);
21039 exit;
21040 end if;
21042 Next_Elmt (Subp_Elmt);
21043 end loop;
21044 end if;
21045 end Remove_Default_Init_Cond_Procedure;
21047 -- Local variables
21049 Inherit_Procedure : Boolean := False;
21051 -- Start of processing for Propagate_Default_Init_Cond_Attributes
21053 begin
21054 if Has_Default_Init_Cond (From_Typ) then
21056 -- A derived type inherits the attributes from its parent type
21058 if Parent_To_Derivation then
21059 Set_Has_Inherited_Default_Init_Cond (To_Typ);
21061 -- A full view shares the attributes with its private view
21063 else
21064 Set_Has_Default_Init_Cond (To_Typ);
21065 end if;
21067 Inherit_Procedure := True;
21069 -- Due to the order of expansion, a derived private type is processed
21070 -- by two routines which both attempt to set the attributes related
21071 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
21072 -- Process_Full_View.
21074 -- package Pack is
21075 -- type Parent_Typ is private
21076 -- with Default_Initial_Condition ...;
21077 -- private
21078 -- type Parent_Typ is ...;
21079 -- end Pack;
21081 -- with Pack; use Pack;
21082 -- package Pack_2 is
21083 -- type Deriv_Typ is private
21084 -- with Default_Initial_Condition ...;
21085 -- private
21086 -- type Deriv_Typ is new Parent_Typ;
21087 -- end Pack_2;
21089 -- When Build_Derived_Type operates, it sets the attributes on the
21090 -- full view without taking into account that the private view may
21091 -- define its own default initial condition procedure. This becomes
21092 -- apparent in Process_Full_View which must undo some of the work by
21093 -- Build_Derived_Type and propagate the attributes from the private
21094 -- to the full view.
21096 if Private_To_Full_View then
21097 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
21098 Remove_Default_Init_Cond_Procedure (To_Typ);
21099 end if;
21101 -- A type must inherit the default initial condition procedure from a
21102 -- parent type when the parent itself is inheriting the procedure or
21103 -- when it is defining one. This circuitry is also used when dealing
21104 -- with the private / full view of a type.
21106 elsif Has_Inherited_Default_Init_Cond (From_Typ)
21107 or (Parent_To_Derivation
21108 and Present (Get_Pragma
21109 (From_Typ, Pragma_Default_Initial_Condition)))
21110 then
21111 Set_Has_Inherited_Default_Init_Cond (To_Typ);
21112 Inherit_Procedure := True;
21113 end if;
21115 if Inherit_Procedure
21116 and then No (Default_Init_Cond_Procedure (To_Typ))
21117 then
21118 Set_Default_Init_Cond_Procedure
21119 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
21120 end if;
21121 end Propagate_Default_Init_Cond_Attributes;
21123 -----------------------------
21124 -- Record_Type_Declaration --
21125 -----------------------------
21127 procedure Record_Type_Declaration
21128 (T : Entity_Id;
21129 N : Node_Id;
21130 Prev : Entity_Id)
21132 Def : constant Node_Id := Type_Definition (N);
21133 Is_Tagged : Boolean;
21134 Tag_Comp : Entity_Id;
21136 begin
21137 -- These flags must be initialized before calling Process_Discriminants
21138 -- because this routine makes use of them.
21140 Set_Ekind (T, E_Record_Type);
21141 Set_Etype (T, T);
21142 Init_Size_Align (T);
21143 Set_Interfaces (T, No_Elist);
21144 Set_Stored_Constraint (T, No_Elist);
21145 Set_Default_SSO (T);
21147 -- Normal case
21149 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21150 if Limited_Present (Def) then
21151 Check_SPARK_05_Restriction ("limited is not allowed", N);
21152 end if;
21154 if Abstract_Present (Def) then
21155 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21156 end if;
21158 -- The flag Is_Tagged_Type might have already been set by
21159 -- Find_Type_Name if it detected an error for declaration T. This
21160 -- arises in the case of private tagged types where the full view
21161 -- omits the word tagged.
21163 Is_Tagged :=
21164 Tagged_Present (Def)
21165 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21167 Set_Is_Limited_Record (T, Limited_Present (Def));
21169 if Is_Tagged then
21170 Set_Is_Tagged_Type (T, True);
21171 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21172 end if;
21174 -- Type is abstract if full declaration carries keyword, or if
21175 -- previous partial view did.
21177 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21178 or else Abstract_Present (Def));
21180 else
21181 Check_SPARK_05_Restriction ("interface is not allowed", N);
21183 Is_Tagged := True;
21184 Analyze_Interface_Declaration (T, Def);
21186 if Present (Discriminant_Specifications (N)) then
21187 Error_Msg_N
21188 ("interface types cannot have discriminants",
21189 Defining_Identifier
21190 (First (Discriminant_Specifications (N))));
21191 end if;
21192 end if;
21194 -- First pass: if there are self-referential access components,
21195 -- create the required anonymous access type declarations, and if
21196 -- need be an incomplete type declaration for T itself.
21198 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21200 if Ada_Version >= Ada_2005
21201 and then Present (Interface_List (Def))
21202 then
21203 Check_Interfaces (N, Def);
21205 declare
21206 Ifaces_List : Elist_Id;
21208 begin
21209 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21210 -- already in the parents.
21212 Collect_Interfaces
21213 (T => T,
21214 Ifaces_List => Ifaces_List,
21215 Exclude_Parents => True);
21217 Set_Interfaces (T, Ifaces_List);
21218 end;
21219 end if;
21221 -- Records constitute a scope for the component declarations within.
21222 -- The scope is created prior to the processing of these declarations.
21223 -- Discriminants are processed first, so that they are visible when
21224 -- processing the other components. The Ekind of the record type itself
21225 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21227 -- Enter record scope
21229 Push_Scope (T);
21231 -- If an incomplete or private type declaration was already given for
21232 -- the type, then this scope already exists, and the discriminants have
21233 -- been declared within. We must verify that the full declaration
21234 -- matches the incomplete one.
21236 Check_Or_Process_Discriminants (N, T, Prev);
21238 Set_Is_Constrained (T, not Has_Discriminants (T));
21239 Set_Has_Delayed_Freeze (T, True);
21241 -- For tagged types add a manually analyzed component corresponding
21242 -- to the component _tag, the corresponding piece of tree will be
21243 -- expanded as part of the freezing actions if it is not a CPP_Class.
21245 if Is_Tagged then
21247 -- Do not add the tag unless we are in expansion mode
21249 if Expander_Active then
21250 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21251 Enter_Name (Tag_Comp);
21253 Set_Ekind (Tag_Comp, E_Component);
21254 Set_Is_Tag (Tag_Comp);
21255 Set_Is_Aliased (Tag_Comp);
21256 Set_Etype (Tag_Comp, RTE (RE_Tag));
21257 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21258 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21259 Init_Component_Location (Tag_Comp);
21261 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21262 -- implemented interfaces.
21264 if Has_Interfaces (T) then
21265 Add_Interface_Tag_Components (N, T);
21266 end if;
21267 end if;
21269 Make_Class_Wide_Type (T);
21270 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21271 end if;
21273 -- We must suppress range checks when processing record components in
21274 -- the presence of discriminants, since we don't want spurious checks to
21275 -- be generated during their analysis, but Suppress_Range_Checks flags
21276 -- must be reset the after processing the record definition.
21278 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21279 -- couldn't we just use the normal range check suppression method here.
21280 -- That would seem cleaner ???
21282 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21283 Set_Kill_Range_Checks (T, True);
21284 Record_Type_Definition (Def, Prev);
21285 Set_Kill_Range_Checks (T, False);
21286 else
21287 Record_Type_Definition (Def, Prev);
21288 end if;
21290 -- Exit from record scope
21292 End_Scope;
21294 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21295 -- the implemented interfaces and associate them an aliased entity.
21297 if Is_Tagged
21298 and then not Is_Empty_List (Interface_List (Def))
21299 then
21300 Derive_Progenitor_Subprograms (T, T);
21301 end if;
21303 Check_Function_Writable_Actuals (N);
21304 end Record_Type_Declaration;
21306 ----------------------------
21307 -- Record_Type_Definition --
21308 ----------------------------
21310 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21311 Component : Entity_Id;
21312 Ctrl_Components : Boolean := False;
21313 Final_Storage_Only : Boolean;
21314 T : Entity_Id;
21316 begin
21317 if Ekind (Prev_T) = E_Incomplete_Type then
21318 T := Full_View (Prev_T);
21319 else
21320 T := Prev_T;
21321 end if;
21323 -- In SPARK, tagged types and type extensions may only be declared in
21324 -- the specification of library unit packages.
21326 if Present (Def) and then Is_Tagged_Type (T) then
21327 declare
21328 Typ : Node_Id;
21329 Ctxt : Node_Id;
21331 begin
21332 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21333 Typ := Parent (Def);
21334 else
21335 pragma Assert
21336 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21337 Typ := Parent (Parent (Def));
21338 end if;
21340 Ctxt := Parent (Typ);
21342 if Nkind (Ctxt) = N_Package_Body
21343 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21344 then
21345 Check_SPARK_05_Restriction
21346 ("type should be defined in package specification", Typ);
21348 elsif Nkind (Ctxt) /= N_Package_Specification
21349 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21350 then
21351 Check_SPARK_05_Restriction
21352 ("type should be defined in library unit package", Typ);
21353 end if;
21354 end;
21355 end if;
21357 Final_Storage_Only := not Is_Controlled_Active (T);
21359 -- Ada 2005: Check whether an explicit Limited is present in a derived
21360 -- type declaration.
21362 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21363 and then Limited_Present (Parent (Def))
21364 then
21365 Set_Is_Limited_Record (T);
21366 end if;
21368 -- If the component list of a record type is defined by the reserved
21369 -- word null and there is no discriminant part, then the record type has
21370 -- no components and all records of the type are null records (RM 3.7)
21371 -- This procedure is also called to process the extension part of a
21372 -- record extension, in which case the current scope may have inherited
21373 -- components.
21375 if No (Def)
21376 or else No (Component_List (Def))
21377 or else Null_Present (Component_List (Def))
21378 then
21379 if not Is_Tagged_Type (T) then
21380 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21381 end if;
21383 else
21384 Analyze_Declarations (Component_Items (Component_List (Def)));
21386 if Present (Variant_Part (Component_List (Def))) then
21387 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21388 Analyze (Variant_Part (Component_List (Def)));
21389 end if;
21390 end if;
21392 -- After completing the semantic analysis of the record definition,
21393 -- record components, both new and inherited, are accessible. Set their
21394 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21395 -- whose Ekind may be void.
21397 Component := First_Entity (Current_Scope);
21398 while Present (Component) loop
21399 if Ekind (Component) = E_Void
21400 and then not Is_Itype (Component)
21401 then
21402 Set_Ekind (Component, E_Component);
21403 Init_Component_Location (Component);
21404 end if;
21406 Propagate_Concurrent_Flags (T, Etype (Component));
21408 if Ekind (Component) /= E_Component then
21409 null;
21411 -- Do not set Has_Controlled_Component on a class-wide equivalent
21412 -- type. See Make_CW_Equivalent_Type.
21414 elsif not Is_Class_Wide_Equivalent_Type (T)
21415 and then (Has_Controlled_Component (Etype (Component))
21416 or else (Chars (Component) /= Name_uParent
21417 and then Is_Controlled_Active
21418 (Etype (Component))))
21419 then
21420 Set_Has_Controlled_Component (T, True);
21421 Final_Storage_Only :=
21422 Final_Storage_Only
21423 and then Finalize_Storage_Only (Etype (Component));
21424 Ctrl_Components := True;
21425 end if;
21427 Next_Entity (Component);
21428 end loop;
21430 -- A Type is Finalize_Storage_Only only if all its controlled components
21431 -- are also.
21433 if Ctrl_Components then
21434 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21435 end if;
21437 -- Place reference to end record on the proper entity, which may
21438 -- be a partial view.
21440 if Present (Def) then
21441 Process_End_Label (Def, 'e', Prev_T);
21442 end if;
21443 end Record_Type_Definition;
21445 ------------------------
21446 -- Replace_Components --
21447 ------------------------
21449 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21450 function Process (N : Node_Id) return Traverse_Result;
21452 -------------
21453 -- Process --
21454 -------------
21456 function Process (N : Node_Id) return Traverse_Result is
21457 Comp : Entity_Id;
21459 begin
21460 if Nkind (N) = N_Discriminant_Specification then
21461 Comp := First_Discriminant (Typ);
21462 while Present (Comp) loop
21463 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21464 Set_Defining_Identifier (N, Comp);
21465 exit;
21466 end if;
21468 Next_Discriminant (Comp);
21469 end loop;
21471 elsif Nkind (N) = N_Component_Declaration then
21472 Comp := First_Component (Typ);
21473 while Present (Comp) loop
21474 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21475 Set_Defining_Identifier (N, Comp);
21476 exit;
21477 end if;
21479 Next_Component (Comp);
21480 end loop;
21481 end if;
21483 return OK;
21484 end Process;
21486 procedure Replace is new Traverse_Proc (Process);
21488 -- Start of processing for Replace_Components
21490 begin
21491 Replace (Decl);
21492 end Replace_Components;
21494 -------------------------------
21495 -- Set_Completion_Referenced --
21496 -------------------------------
21498 procedure Set_Completion_Referenced (E : Entity_Id) is
21499 begin
21500 -- If in main unit, mark entity that is a completion as referenced,
21501 -- warnings go on the partial view when needed.
21503 if In_Extended_Main_Source_Unit (E) then
21504 Set_Referenced (E);
21505 end if;
21506 end Set_Completion_Referenced;
21508 ---------------------
21509 -- Set_Default_SSO --
21510 ---------------------
21512 procedure Set_Default_SSO (T : Entity_Id) is
21513 begin
21514 case Opt.Default_SSO is
21515 when ' ' =>
21516 null;
21517 when 'L' =>
21518 Set_SSO_Set_Low_By_Default (T, True);
21519 when 'H' =>
21520 Set_SSO_Set_High_By_Default (T, True);
21521 when others =>
21522 raise Program_Error;
21523 end case;
21524 end Set_Default_SSO;
21526 ---------------------
21527 -- Set_Fixed_Range --
21528 ---------------------
21530 -- The range for fixed-point types is complicated by the fact that we
21531 -- do not know the exact end points at the time of the declaration. This
21532 -- is true for three reasons:
21534 -- A size clause may affect the fudging of the end-points.
21535 -- A small clause may affect the values of the end-points.
21536 -- We try to include the end-points if it does not affect the size.
21538 -- This means that the actual end-points must be established at the
21539 -- point when the type is frozen. Meanwhile, we first narrow the range
21540 -- as permitted (so that it will fit if necessary in a small specified
21541 -- size), and then build a range subtree with these narrowed bounds.
21542 -- Set_Fixed_Range constructs the range from real literal values, and
21543 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21545 -- The parent of this range is set to point to the entity so that it is
21546 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21547 -- other scalar types, which are just pointers to the range in the
21548 -- original tree, this would otherwise be an orphan).
21550 -- The tree is left unanalyzed. When the type is frozen, the processing
21551 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21552 -- analyzed, and uses this as an indication that it should complete
21553 -- work on the range (it will know the final small and size values).
21555 procedure Set_Fixed_Range
21556 (E : Entity_Id;
21557 Loc : Source_Ptr;
21558 Lo : Ureal;
21559 Hi : Ureal)
21561 S : constant Node_Id :=
21562 Make_Range (Loc,
21563 Low_Bound => Make_Real_Literal (Loc, Lo),
21564 High_Bound => Make_Real_Literal (Loc, Hi));
21565 begin
21566 Set_Scalar_Range (E, S);
21567 Set_Parent (S, E);
21569 -- Before the freeze point, the bounds of a fixed point are universal
21570 -- and carry the corresponding type.
21572 Set_Etype (Low_Bound (S), Universal_Real);
21573 Set_Etype (High_Bound (S), Universal_Real);
21574 end Set_Fixed_Range;
21576 ----------------------------------
21577 -- Set_Scalar_Range_For_Subtype --
21578 ----------------------------------
21580 procedure Set_Scalar_Range_For_Subtype
21581 (Def_Id : Entity_Id;
21582 R : Node_Id;
21583 Subt : Entity_Id)
21585 Kind : constant Entity_Kind := Ekind (Def_Id);
21587 begin
21588 -- Defend against previous error
21590 if Nkind (R) = N_Error then
21591 return;
21592 end if;
21594 Set_Scalar_Range (Def_Id, R);
21596 -- We need to link the range into the tree before resolving it so
21597 -- that types that are referenced, including importantly the subtype
21598 -- itself, are properly frozen (Freeze_Expression requires that the
21599 -- expression be properly linked into the tree). Of course if it is
21600 -- already linked in, then we do not disturb the current link.
21602 if No (Parent (R)) then
21603 Set_Parent (R, Def_Id);
21604 end if;
21606 -- Reset the kind of the subtype during analysis of the range, to
21607 -- catch possible premature use in the bounds themselves.
21609 Set_Ekind (Def_Id, E_Void);
21610 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21611 Set_Ekind (Def_Id, Kind);
21612 end Set_Scalar_Range_For_Subtype;
21614 --------------------------------------------------------
21615 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21616 --------------------------------------------------------
21618 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21619 (E : Entity_Id)
21621 begin
21622 -- Make sure set if encountered during Expand_To_Stored_Constraint
21624 Set_Stored_Constraint (E, No_Elist);
21626 -- Give it the right value
21628 if Is_Constrained (E) and then Has_Discriminants (E) then
21629 Set_Stored_Constraint (E,
21630 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21631 end if;
21632 end Set_Stored_Constraint_From_Discriminant_Constraint;
21634 -------------------------------------
21635 -- Signed_Integer_Type_Declaration --
21636 -------------------------------------
21638 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21639 Implicit_Base : Entity_Id;
21640 Base_Typ : Entity_Id;
21641 Lo_Val : Uint;
21642 Hi_Val : Uint;
21643 Errs : Boolean := False;
21644 Lo : Node_Id;
21645 Hi : Node_Id;
21647 function Can_Derive_From (E : Entity_Id) return Boolean;
21648 -- Determine whether given bounds allow derivation from specified type
21650 procedure Check_Bound (Expr : Node_Id);
21651 -- Check bound to make sure it is integral and static. If not, post
21652 -- appropriate error message and set Errs flag
21654 ---------------------
21655 -- Can_Derive_From --
21656 ---------------------
21658 -- Note we check both bounds against both end values, to deal with
21659 -- strange types like ones with a range of 0 .. -12341234.
21661 function Can_Derive_From (E : Entity_Id) return Boolean is
21662 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21663 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21664 begin
21665 return Lo <= Lo_Val and then Lo_Val <= Hi
21666 and then
21667 Lo <= Hi_Val and then Hi_Val <= Hi;
21668 end Can_Derive_From;
21670 -----------------
21671 -- Check_Bound --
21672 -----------------
21674 procedure Check_Bound (Expr : Node_Id) is
21675 begin
21676 -- If a range constraint is used as an integer type definition, each
21677 -- bound of the range must be defined by a static expression of some
21678 -- integer type, but the two bounds need not have the same integer
21679 -- type (Negative bounds are allowed.) (RM 3.5.4)
21681 if not Is_Integer_Type (Etype (Expr)) then
21682 Error_Msg_N
21683 ("integer type definition bounds must be of integer type", Expr);
21684 Errs := True;
21686 elsif not Is_OK_Static_Expression (Expr) then
21687 Flag_Non_Static_Expr
21688 ("non-static expression used for integer type bound!", Expr);
21689 Errs := True;
21691 -- The bounds are folded into literals, and we set their type to be
21692 -- universal, to avoid typing difficulties: we cannot set the type
21693 -- of the literal to the new type, because this would be a forward
21694 -- reference for the back end, and if the original type is user-
21695 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21697 else
21698 if Is_Entity_Name (Expr) then
21699 Fold_Uint (Expr, Expr_Value (Expr), True);
21700 end if;
21702 Set_Etype (Expr, Universal_Integer);
21703 end if;
21704 end Check_Bound;
21706 -- Start of processing for Signed_Integer_Type_Declaration
21708 begin
21709 -- Create an anonymous base type
21711 Implicit_Base :=
21712 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21714 -- Analyze and check the bounds, they can be of any integer type
21716 Lo := Low_Bound (Def);
21717 Hi := High_Bound (Def);
21719 -- Arbitrarily use Integer as the type if either bound had an error
21721 if Hi = Error or else Lo = Error then
21722 Base_Typ := Any_Integer;
21723 Set_Error_Posted (T, True);
21725 -- Here both bounds are OK expressions
21727 else
21728 Analyze_And_Resolve (Lo, Any_Integer);
21729 Analyze_And_Resolve (Hi, Any_Integer);
21731 Check_Bound (Lo);
21732 Check_Bound (Hi);
21734 if Errs then
21735 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21736 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21737 end if;
21739 -- Find type to derive from
21741 Lo_Val := Expr_Value (Lo);
21742 Hi_Val := Expr_Value (Hi);
21744 if Can_Derive_From (Standard_Short_Short_Integer) then
21745 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21747 elsif Can_Derive_From (Standard_Short_Integer) then
21748 Base_Typ := Base_Type (Standard_Short_Integer);
21750 elsif Can_Derive_From (Standard_Integer) then
21751 Base_Typ := Base_Type (Standard_Integer);
21753 elsif Can_Derive_From (Standard_Long_Integer) then
21754 Base_Typ := Base_Type (Standard_Long_Integer);
21756 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21757 Check_Restriction (No_Long_Long_Integers, Def);
21758 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21760 else
21761 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21762 Error_Msg_N ("integer type definition bounds out of range", Def);
21763 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21764 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21765 end if;
21766 end if;
21768 -- Complete both implicit base and declared first subtype entities. The
21769 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21770 -- are not clobbered when the signed integer type acts as a full view of
21771 -- a private type.
21773 Set_Etype (Implicit_Base, Base_Typ);
21774 Set_Size_Info (Implicit_Base, Base_Typ);
21775 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21776 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21777 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21779 Set_Ekind (T, E_Signed_Integer_Subtype);
21780 Set_Etype (T, Implicit_Base);
21781 Set_Size_Info (T, Implicit_Base);
21782 Inherit_Rep_Item_Chain (T, Implicit_Base);
21783 Set_Scalar_Range (T, Def);
21784 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21785 Set_Is_Constrained (T);
21786 end Signed_Integer_Type_Declaration;
21788 end Sem_Ch3;