1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Contracts
; use Contracts
;
30 with Debug
; use Debug
;
31 with Elists
; use Elists
;
32 with Einfo
; use Einfo
;
33 with Errout
; use Errout
;
34 with Eval_Fat
; use Eval_Fat
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Disp
; use Exp_Disp
;
38 with Exp_Dist
; use Exp_Dist
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Fname
; use Fname
;
42 with Freeze
; use Freeze
;
43 with Ghost
; use Ghost
;
44 with Itypes
; use Itypes
;
45 with Layout
; use Layout
;
47 with Lib
.Xref
; use Lib
.Xref
;
48 with Namet
; use Namet
;
49 with Nmake
; use Nmake
;
51 with Restrict
; use Restrict
;
52 with Rident
; use Rident
;
53 with Rtsfind
; use Rtsfind
;
55 with Sem_Aux
; use Sem_Aux
;
56 with Sem_Case
; use Sem_Case
;
57 with Sem_Cat
; use Sem_Cat
;
58 with Sem_Ch6
; use Sem_Ch6
;
59 with Sem_Ch7
; use Sem_Ch7
;
60 with Sem_Ch8
; use Sem_Ch8
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Dim
; use Sem_Dim
;
63 with Sem_Disp
; use Sem_Disp
;
64 with Sem_Dist
; use Sem_Dist
;
65 with Sem_Elim
; use Sem_Elim
;
66 with Sem_Eval
; use Sem_Eval
;
67 with Sem_Mech
; use Sem_Mech
;
68 with Sem_Res
; use Sem_Res
;
69 with Sem_Smem
; use Sem_Smem
;
70 with Sem_Type
; use Sem_Type
;
71 with Sem_Util
; use Sem_Util
;
72 with Sem_Warn
; use Sem_Warn
;
73 with Stand
; use Stand
;
74 with Sinfo
; use Sinfo
;
75 with Sinput
; use Sinput
;
76 with Snames
; use Snames
;
77 with Targparm
; use Targparm
;
78 with Tbuild
; use Tbuild
;
79 with Ttypes
; use Ttypes
;
80 with Uintp
; use Uintp
;
81 with Urealp
; use Urealp
;
83 package body Sem_Ch3
is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
94 procedure Build_Derived_Type
96 Parent_Type
: Entity_Id
;
97 Derived_Type
: Entity_Id
;
98 Is_Completion
: Boolean;
99 Derive_Subps
: Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
121 Parent_Type
: Entity_Id
;
122 Derived_Type
: Entity_Id
);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
129 Parent_Type
: Entity_Id
;
130 Derived_Type
: Entity_Id
);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
137 Parent_Type
: Entity_Id
;
138 Derived_Type
: Entity_Id
);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
145 Parent_Type
: Entity_Id
;
146 Derived_Type
: Entity_Id
);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
153 Parent_Type
: Entity_Id
;
154 Derived_Type
: Entity_Id
);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
160 Parent_Type
: Entity_Id
;
161 Derived_Type
: Entity_Id
;
162 Is_Completion
: Boolean;
163 Derive_Subps
: Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
170 Parent_Type
: Entity_Id
;
171 Derived_Type
: Entity_Id
;
172 Derive_Subps
: Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal
(Discrim
: Entity_Id
);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
194 Derived_Def
: Boolean := False) return Elist_Id
;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
209 Related_Nod
: Node_Id
;
210 For_Access
: Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
231 Der_T
: Entity_Id
) return Node_Id
;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
249 procedure Check_Access_Discriminant_Requires_Limited
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
260 Comp_List
: Node_Id
);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression
(E
: Node_Id
);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression
(E
: Node_Id
);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
288 Prev
: Entity_Id
:= Empty
);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
295 procedure Check_Real_Bound
(Bound
: Node_Id
);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
309 Ifaces
: Elist_Id
) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
314 Parent_Type
: Entity_Id
;
315 Derived_Type
: Entity_Id
;
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
337 Constraints
: Elist_Id
);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
349 Constrained_Typ
: Entity_Id
;
350 Related_Node
: Node_Id
;
352 Constraints
: Elist_Id
) return Entity_Id
;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id
: in out Entity_Id
;
364 Related_Nod
: Node_Id
);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id
: in out Entity_Id
;
372 Related_Nod
: Node_Id
;
373 Related_Id
: Entity_Id
;
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id
: in out Entity_Id
;
389 Related_Nod
: Node_Id
;
390 Related_Id
: Entity_Id
;
392 -- Apply list of discriminant constraints to an unconstrained concurrent
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt
: Entity_Id
;
411 Corr_Rec
: Entity_Id
;
412 Related_Nod
: Node_Id
) return Entity_Id
;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
423 Related_Nod
: Node_Id
;
424 For_Access
: Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
432 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
443 Related_Nod
: Node_Id
;
444 Related_Id
: Entity_Id
;
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
474 Full_Base
: Entity_Id
;
475 Related_Nod
: Node_Id
);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type
: Entity_Id
;
482 Tagged_Type
: Entity_Id
);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
493 Parent_Type
: Entity_Id
;
494 Derived_Type
: Entity_Id
);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
501 Is_Completion
: Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
517 Constraint
: Elist_Id
) return Elist_Id
;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
524 Related_Nod
: Node_Id
) return Entity_Id
;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
539 Parent_Base
: Entity_Id
;
540 Derived_Base
: Entity_Id
;
542 Inherit_Discr
: Boolean;
543 Discs
: Elist_Id
) return Elist_Id
;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
591 Constraint_Kind
: Node_Kind
) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Prepare_Private_Subtype_Completion
610 Related_Nod
: Node_Id
);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
616 procedure Process_Incomplete_Dependents
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
630 -- Full_T is N's defining identifier.
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
643 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
649 procedure Propagate_Default_Init_Cond_Attributes
650 (From_Typ
: Entity_Id
;
652 Parent_To_Derivation
: Boolean := False;
653 Private_To_Full_View
: Boolean := False);
654 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
655 -- all attributes related to pragma Default_Initial_Condition from From_Typ
656 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
657 -- the creation of a derived type. Flag Private_To_Full_View should be set
658 -- when processing both views of a private type.
660 procedure Record_Type_Declaration
664 -- Process a record type declaration (for both untagged and tagged
665 -- records). Parameters T and N are exactly like in procedure
666 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
667 -- for this routine. If this is the completion of an incomplete type
668 -- declaration, Prev is the entity of the incomplete declaration, used for
669 -- cross-referencing. Otherwise Prev = T.
671 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
672 -- This routine is used to process the actual record type definition (both
673 -- for untagged and tagged records). Def is a record type definition node.
674 -- This procedure analyzes the components in this record type definition.
675 -- Prev_T is the entity for the enclosing record type. It is provided so
676 -- that its Has_Task flag can be set if any of the component have Has_Task
677 -- set. If the declaration is the completion of an incomplete type
678 -- declaration, Prev_T is the original incomplete type, whose full view is
681 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
682 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
683 -- build a copy of the declaration tree of the parent, and we create
684 -- independently the list of components for the derived type. Semantic
685 -- information uses the component entities, but record representation
686 -- clauses are validated on the declaration tree. This procedure replaces
687 -- discriminants and components in the declaration with those that have
688 -- been created by Inherit_Components.
690 procedure Set_Fixed_Range
695 -- Build a range node with the given bounds and set it as the Scalar_Range
696 -- of the given fixed-point type entity. Loc is the source location used
697 -- for the constructed range. See body for further details.
699 procedure Set_Scalar_Range_For_Subtype
703 -- This routine is used to set the scalar range field for a subtype given
704 -- Def_Id, the entity for the subtype, and R, the range expression for the
705 -- scalar range. Subt provides the parent subtype to be used to analyze,
706 -- resolve, and check the given range.
708 procedure Set_Default_SSO
(T
: Entity_Id
);
709 -- T is the entity for an array or record being declared. This procedure
710 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
711 -- to the setting of Opt.Default_SSO.
713 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
714 -- Create a new signed integer entity, and apply the constraint to obtain
715 -- the required first named subtype of this type.
717 procedure Set_Stored_Constraint_From_Discriminant_Constraint
719 -- E is some record type. This routine computes E's Stored_Constraint
720 -- from its Discriminant_Constraint.
722 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
723 -- Check that an entity in a list of progenitors is an interface,
724 -- emit error otherwise.
726 -----------------------
727 -- Access_Definition --
728 -----------------------
730 function Access_Definition
731 (Related_Nod
: Node_Id
;
732 N
: Node_Id
) return Entity_Id
734 Anon_Type
: Entity_Id
;
735 Anon_Scope
: Entity_Id
;
736 Desig_Type
: Entity_Id
;
737 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
740 Check_SPARK_05_Restriction
("access type is not allowed", N
);
742 if Is_Entry
(Current_Scope
)
743 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
745 Error_Msg_N
("task entries cannot have access parameters", N
);
749 -- Ada 2005: For an object declaration the corresponding anonymous
750 -- type is declared in the current scope.
752 -- If the access definition is the return type of another access to
753 -- function, scope is the current one, because it is the one of the
754 -- current type declaration, except for the pathological case below.
756 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
757 N_Access_Function_Definition
)
759 Anon_Scope
:= Current_Scope
;
761 -- A pathological case: function returning access functions that
762 -- return access functions, etc. Each anonymous access type created
763 -- is in the enclosing scope of the outermost function.
770 while Nkind_In
(Par
, N_Access_Function_Definition
,
776 if Nkind
(Par
) = N_Function_Specification
then
777 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
781 -- For the anonymous function result case, retrieve the scope of the
782 -- function specification's associated entity rather than using the
783 -- current scope. The current scope will be the function itself if the
784 -- formal part is currently being analyzed, but will be the parent scope
785 -- in the case of a parameterless function, and we always want to use
786 -- the function's parent scope. Finally, if the function is a child
787 -- unit, we must traverse the tree to retrieve the proper entity.
789 elsif Nkind
(Related_Nod
) = N_Function_Specification
790 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
792 -- If the current scope is a protected type, the anonymous access
793 -- is associated with one of the protected operations, and must
794 -- be available in the scope that encloses the protected declaration.
795 -- Otherwise the type is in the scope enclosing the subprogram.
797 -- If the function has formals, The return type of a subprogram
798 -- declaration is analyzed in the scope of the subprogram (see
799 -- Process_Formals) and thus the protected type, if present, is
800 -- the scope of the current function scope.
802 if Ekind
(Current_Scope
) = E_Protected_Type
then
803 Enclosing_Prot_Type
:= Current_Scope
;
805 elsif Ekind
(Current_Scope
) = E_Function
806 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
808 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
811 if Present
(Enclosing_Prot_Type
) then
812 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
815 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
818 -- For an access type definition, if the current scope is a child
819 -- unit it is the scope of the type.
821 elsif Is_Compilation_Unit
(Current_Scope
) then
822 Anon_Scope
:= Current_Scope
;
824 -- For access formals, access components, and access discriminants, the
825 -- scope is that of the enclosing declaration,
828 Anon_Scope
:= Scope
(Current_Scope
);
833 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
836 and then Ada_Version
>= Ada_2005
838 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
841 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
842 -- the corresponding semantic routine
844 if Present
(Access_To_Subprogram_Definition
(N
)) then
846 -- Compiler runtime units are compiled in Ada 2005 mode when building
847 -- the runtime library but must also be compilable in Ada 95 mode
848 -- (when bootstrapping the compiler).
850 Check_Compiler_Unit
("anonymous access to subprogram", N
);
852 Access_Subprogram_Declaration
853 (T_Name
=> Anon_Type
,
854 T_Def
=> Access_To_Subprogram_Definition
(N
));
856 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
858 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
860 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
863 Set_Can_Use_Internal_Rep
864 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
866 -- If the anonymous access is associated with a protected operation,
867 -- create a reference to it after the enclosing protected definition
868 -- because the itype will be used in the subsequent bodies.
870 -- If the anonymous access itself is protected, a full type
871 -- declaratiton will be created for it, so that the equivalent
872 -- record type can be constructed. For further details, see
873 -- Replace_Anonymous_Access_To_Protected-Subprogram.
875 if Ekind
(Current_Scope
) = E_Protected_Type
876 and then not Protected_Present
(Access_To_Subprogram_Definition
(N
))
878 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
884 Find_Type
(Subtype_Mark
(N
));
885 Desig_Type
:= Entity
(Subtype_Mark
(N
));
887 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
888 Set_Etype
(Anon_Type
, Anon_Type
);
890 -- Make sure the anonymous access type has size and alignment fields
891 -- set, as required by gigi. This is necessary in the case of the
892 -- Task_Body_Procedure.
894 if not Has_Private_Component
(Desig_Type
) then
895 Layout_Type
(Anon_Type
);
898 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
899 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
900 -- the null value is allowed. In Ada 95 the null value is never allowed.
902 if Ada_Version
>= Ada_2005
then
903 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
905 Set_Can_Never_Be_Null
(Anon_Type
, True);
908 -- The anonymous access type is as public as the discriminated type or
909 -- subprogram that defines it. It is imported (for back-end purposes)
910 -- if the designated type is.
912 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
914 -- Ada 2005 (AI-231): Propagate the access-constant attribute
916 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
918 -- The context is either a subprogram declaration, object declaration,
919 -- or an access discriminant, in a private or a full type declaration.
920 -- In the case of a subprogram, if the designated type is incomplete,
921 -- the operation will be a primitive operation of the full type, to be
922 -- updated subsequently. If the type is imported through a limited_with
923 -- clause, the subprogram is not a primitive operation of the type
924 -- (which is declared elsewhere in some other scope).
926 if Ekind
(Desig_Type
) = E_Incomplete_Type
927 and then not From_Limited_With
(Desig_Type
)
928 and then Is_Overloadable
(Current_Scope
)
930 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
931 Set_Has_Delayed_Freeze
(Current_Scope
);
934 -- Ada 2005: If the designated type is an interface that may contain
935 -- tasks, create a Master entity for the declaration. This must be done
936 -- before expansion of the full declaration, because the declaration may
937 -- include an expression that is an allocator, whose expansion needs the
938 -- proper Master for the created tasks.
940 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
942 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
944 Build_Class_Wide_Master
(Anon_Type
);
946 -- Similarly, if the type is an anonymous access that designates
947 -- tasks, create a master entity for it in the current context.
949 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
951 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
952 Build_Master_Renaming
(Anon_Type
);
956 -- For a private component of a protected type, it is imperative that
957 -- the back-end elaborate the type immediately after the protected
958 -- declaration, because this type will be used in the declarations
959 -- created for the component within each protected body, so we must
960 -- create an itype reference for it now.
962 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
963 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
965 -- Similarly, if the access definition is the return result of a
966 -- function, create an itype reference for it because it will be used
967 -- within the function body. For a regular function that is not a
968 -- compilation unit, insert reference after the declaration. For a
969 -- protected operation, insert it after the enclosing protected type
970 -- declaration. In either case, do not create a reference for a type
971 -- obtained through a limited_with clause, because this would introduce
972 -- semantic dependencies.
974 -- Similarly, do not create a reference if the designated type is a
975 -- generic formal, because no use of it will reach the backend.
977 elsif Nkind
(Related_Nod
) = N_Function_Specification
978 and then not From_Limited_With
(Desig_Type
)
979 and then not Is_Generic_Type
(Desig_Type
)
981 if Present
(Enclosing_Prot_Type
) then
982 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
984 elsif Is_List_Member
(Parent
(Related_Nod
))
985 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
987 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
990 -- Finally, create an itype reference for an object declaration of an
991 -- anonymous access type. This is strictly necessary only for deferred
992 -- constants, but in any case will avoid out-of-scope problems in the
995 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
996 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
1000 end Access_Definition
;
1002 -----------------------------------
1003 -- Access_Subprogram_Declaration --
1004 -----------------------------------
1006 procedure Access_Subprogram_Declaration
1007 (T_Name
: Entity_Id
;
1010 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
1011 -- Check that type T_Name is not used, directly or recursively, as a
1012 -- parameter or a return type in Def. Def is either a subtype, an
1013 -- access_definition, or an access_to_subprogram_definition.
1015 -------------------------------
1016 -- Check_For_Premature_Usage --
1017 -------------------------------
1019 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1023 -- Check for a subtype mark
1025 if Nkind
(Def
) in N_Has_Etype
then
1026 if Etype
(Def
) = T_Name
then
1028 ("type& cannot be used before end of its declaration", Def
);
1031 -- If this is not a subtype, then this is an access_definition
1033 elsif Nkind
(Def
) = N_Access_Definition
then
1034 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1035 Check_For_Premature_Usage
1036 (Access_To_Subprogram_Definition
(Def
));
1038 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1041 -- The only cases left are N_Access_Function_Definition and
1042 -- N_Access_Procedure_Definition.
1045 if Present
(Parameter_Specifications
(Def
)) then
1046 Param
:= First
(Parameter_Specifications
(Def
));
1047 while Present
(Param
) loop
1048 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1049 Param
:= Next
(Param
);
1053 if Nkind
(Def
) = N_Access_Function_Definition
then
1054 Check_For_Premature_Usage
(Result_Definition
(Def
));
1057 end Check_For_Premature_Usage
;
1061 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1064 Desig_Type
: constant Entity_Id
:=
1065 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1067 -- Start of processing for Access_Subprogram_Declaration
1070 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1072 -- Associate the Itype node with the inner full-type declaration or
1073 -- subprogram spec or entry body. This is required to handle nested
1074 -- anonymous declarations. For example:
1077 -- (X : access procedure
1078 -- (Y : access procedure
1081 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1082 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1083 N_Private_Type_Declaration
,
1084 N_Private_Extension_Declaration
,
1085 N_Procedure_Specification
,
1086 N_Function_Specification
,
1090 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1091 N_Object_Renaming_Declaration
,
1092 N_Formal_Object_Declaration
,
1093 N_Formal_Type_Declaration
,
1094 N_Task_Type_Declaration
,
1095 N_Protected_Type_Declaration
))
1097 D_Ityp
:= Parent
(D_Ityp
);
1098 pragma Assert
(D_Ityp
/= Empty
);
1101 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1103 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1104 N_Function_Specification
)
1106 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1108 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1109 N_Object_Declaration
,
1110 N_Object_Renaming_Declaration
,
1111 N_Formal_Type_Declaration
)
1113 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1116 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1117 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1119 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1122 if Present
(Access_To_Subprogram_Definition
(Acc
))
1124 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1128 Replace_Anonymous_Access_To_Protected_Subprogram
1134 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1139 Analyze
(Result_Definition
(T_Def
));
1142 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1145 -- If a null exclusion is imposed on the result type, then
1146 -- create a null-excluding itype (an access subtype) and use
1147 -- it as the function's Etype.
1149 if Is_Access_Type
(Typ
)
1150 and then Null_Exclusion_In_Return_Present
(T_Def
)
1152 Set_Etype
(Desig_Type
,
1153 Create_Null_Excluding_Itype
1155 Related_Nod
=> T_Def
,
1156 Scope_Id
=> Current_Scope
));
1159 if From_Limited_With
(Typ
) then
1161 -- AI05-151: Incomplete types are allowed in all basic
1162 -- declarations, including access to subprograms.
1164 if Ada_Version
>= Ada_2012
then
1169 ("illegal use of incomplete type&",
1170 Result_Definition
(T_Def
), Typ
);
1173 elsif Ekind
(Current_Scope
) = E_Package
1174 and then In_Private_Part
(Current_Scope
)
1176 if Ekind
(Typ
) = E_Incomplete_Type
then
1177 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1179 elsif Is_Class_Wide_Type
(Typ
)
1180 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1183 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1187 Set_Etype
(Desig_Type
, Typ
);
1192 if not (Is_Type
(Etype
(Desig_Type
))) then
1194 ("expect type in function specification",
1195 Result_Definition
(T_Def
));
1199 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1202 if Present
(Formals
) then
1203 Push_Scope
(Desig_Type
);
1205 -- Some special tests here. These special tests can be removed
1206 -- if and when Itypes always have proper parent pointers to their
1209 -- Special test 1) Link defining_identifier of formals. Required by
1210 -- First_Formal to provide its functionality.
1216 F
:= First
(Formals
);
1218 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1219 -- when it is part of an unconstrained type and subtype expansion
1220 -- is disabled. To avoid back-end problems with shared profiles,
1221 -- use previous subprogram type as the designated type, and then
1222 -- remove scope added above.
1224 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1226 Set_Etype
(T_Name
, T_Name
);
1227 Init_Size_Align
(T_Name
);
1228 Set_Directly_Designated_Type
(T_Name
,
1229 Scope
(Defining_Identifier
(F
)));
1234 while Present
(F
) loop
1235 if No
(Parent
(Defining_Identifier
(F
))) then
1236 Set_Parent
(Defining_Identifier
(F
), F
);
1243 Process_Formals
(Formals
, Parent
(T_Def
));
1245 -- Special test 2) End_Scope requires that the parent pointer be set
1246 -- to something reasonable, but Itypes don't have parent pointers. So
1247 -- we set it and then unset it ???
1249 Set_Parent
(Desig_Type
, T_Name
);
1251 Set_Parent
(Desig_Type
, Empty
);
1254 -- Check for premature usage of the type being defined
1256 Check_For_Premature_Usage
(T_Def
);
1258 -- The return type and/or any parameter type may be incomplete. Mark the
1259 -- subprogram_type as depending on the incomplete type, so that it can
1260 -- be updated when the full type declaration is seen. This only applies
1261 -- to incomplete types declared in some enclosing scope, not to limited
1262 -- views from other packages.
1264 -- Prior to Ada 2012, access to functions can only have in_parameters.
1266 if Present
(Formals
) then
1267 Formal
:= First_Formal
(Desig_Type
);
1268 while Present
(Formal
) loop
1269 if Ekind
(Formal
) /= E_In_Parameter
1270 and then Nkind
(T_Def
) = N_Access_Function_Definition
1271 and then Ada_Version
< Ada_2012
1273 Error_Msg_N
("functions can only have IN parameters", Formal
);
1276 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1277 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1279 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1280 Set_Has_Delayed_Freeze
(Desig_Type
);
1283 Next_Formal
(Formal
);
1287 -- Check whether an indirect call without actuals may be possible. This
1288 -- is used when resolving calls whose result is then indexed.
1290 May_Need_Actuals
(Desig_Type
);
1292 -- If the return type is incomplete, this is legal as long as the type
1293 -- is declared in the current scope and will be completed in it (rather
1294 -- than being part of limited view).
1296 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1297 and then not Has_Delayed_Freeze
(Desig_Type
)
1298 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1300 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1301 Set_Has_Delayed_Freeze
(Desig_Type
);
1304 Check_Delayed_Subprogram
(Desig_Type
);
1306 if Protected_Present
(T_Def
) then
1307 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1308 Set_Convention
(Desig_Type
, Convention_Protected
);
1310 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1313 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1315 Set_Etype
(T_Name
, T_Name
);
1316 Init_Size_Align
(T_Name
);
1317 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1319 Generate_Reference_To_Formals
(T_Name
);
1321 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1323 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1325 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1326 end Access_Subprogram_Declaration
;
1328 ----------------------------
1329 -- Access_Type_Declaration --
1330 ----------------------------
1332 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1333 P
: constant Node_Id
:= Parent
(Def
);
1334 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1336 Full_Desig
: Entity_Id
;
1339 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1341 -- Check for permissible use of incomplete type
1343 if Nkind
(S
) /= N_Subtype_Indication
then
1346 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
1347 Set_Directly_Designated_Type
(T
, Entity
(S
));
1349 -- If the designated type is a limited view, we cannot tell if
1350 -- the full view contains tasks, and there is no way to handle
1351 -- that full view in a client. We create a master entity for the
1352 -- scope, which will be used when a client determines that one
1355 if From_Limited_With
(Entity
(S
))
1356 and then not Is_Class_Wide_Type
(Entity
(S
))
1358 Set_Ekind
(T
, E_Access_Type
);
1359 Build_Master_Entity
(T
);
1360 Build_Master_Renaming
(T
);
1364 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1367 -- If the access definition is of the form: ACCESS NOT NULL ..
1368 -- the subtype indication must be of an access type. Create
1369 -- a null-excluding subtype of it.
1371 if Null_Excluding_Subtype
(Def
) then
1372 if not Is_Access_Type
(Entity
(S
)) then
1373 Error_Msg_N
("null exclusion must apply to access type", Def
);
1377 Loc
: constant Source_Ptr
:= Sloc
(S
);
1379 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1383 Make_Subtype_Declaration
(Loc
,
1384 Defining_Identifier
=> Nam
,
1385 Subtype_Indication
=>
1386 New_Occurrence_Of
(Entity
(S
), Loc
));
1387 Set_Null_Exclusion_Present
(Decl
);
1388 Insert_Before
(Parent
(Def
), Decl
);
1390 Set_Entity
(S
, Nam
);
1396 Set_Directly_Designated_Type
(T
,
1397 Process_Subtype
(S
, P
, T
, 'P'));
1400 if All_Present
(Def
) or Constant_Present
(Def
) then
1401 Set_Ekind
(T
, E_General_Access_Type
);
1403 Set_Ekind
(T
, E_Access_Type
);
1406 Full_Desig
:= Designated_Type
(T
);
1408 if Base_Type
(Full_Desig
) = T
then
1409 Error_Msg_N
("access type cannot designate itself", S
);
1411 -- In Ada 2005, the type may have a limited view through some unit in
1412 -- its own context, allowing the following circularity that cannot be
1413 -- detected earlier.
1415 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1418 ("access type cannot designate its own class-wide type", S
);
1420 -- Clean up indication of tagged status to prevent cascaded errors
1422 Set_Is_Tagged_Type
(T
, False);
1427 -- If the type has appeared already in a with_type clause, it is frozen
1428 -- and the pointer size is already set. Else, initialize.
1430 if not From_Limited_With
(T
) then
1431 Init_Size_Align
(T
);
1434 -- Note that Has_Task is always false, since the access type itself
1435 -- is not a task type. See Einfo for more description on this point.
1436 -- Exactly the same consideration applies to Has_Controlled_Component
1437 -- and to Has_Protected.
1439 Set_Has_Task
(T
, False);
1440 Set_Has_Protected
(T
, False);
1441 Set_Has_Timing_Event
(T
, False);
1442 Set_Has_Controlled_Component
(T
, False);
1444 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1445 -- problems where an incomplete view of this entity has been previously
1446 -- established by a limited with and an overlaid version of this field
1447 -- (Stored_Constraint) was initialized for the incomplete view.
1449 -- This reset is performed in most cases except where the access type
1450 -- has been created for the purposes of allocating or deallocating a
1451 -- build-in-place object. Such access types have explicitly set pools
1452 -- and finalization masters.
1454 if No
(Associated_Storage_Pool
(T
)) then
1455 Set_Finalization_Master
(T
, Empty
);
1458 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1461 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1462 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1463 end Access_Type_Declaration
;
1465 ----------------------------------
1466 -- Add_Interface_Tag_Components --
1467 ----------------------------------
1469 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1470 Loc
: constant Source_Ptr
:= Sloc
(N
);
1474 procedure Add_Tag
(Iface
: Entity_Id
);
1475 -- Add tag for one of the progenitor interfaces
1481 procedure Add_Tag
(Iface
: Entity_Id
) is
1488 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1490 -- This is a reasonable place to propagate predicates
1492 if Has_Predicates
(Iface
) then
1493 Set_Has_Predicates
(Typ
);
1497 Make_Component_Definition
(Loc
,
1498 Aliased_Present
=> True,
1499 Subtype_Indication
=>
1500 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1502 Tag
:= Make_Temporary
(Loc
, 'V');
1505 Make_Component_Declaration
(Loc
,
1506 Defining_Identifier
=> Tag
,
1507 Component_Definition
=> Def
);
1509 Analyze_Component_Declaration
(Decl
);
1511 Set_Analyzed
(Decl
);
1512 Set_Ekind
(Tag
, E_Component
);
1514 Set_Is_Aliased
(Tag
);
1515 Set_Related_Type
(Tag
, Iface
);
1516 Init_Component_Location
(Tag
);
1518 pragma Assert
(Is_Frozen
(Iface
));
1520 Set_DT_Entry_Count
(Tag
,
1521 DT_Entry_Count
(First_Entity
(Iface
)));
1523 if No
(Last_Tag
) then
1526 Insert_After
(Last_Tag
, Decl
);
1531 -- If the ancestor has discriminants we need to give special support
1532 -- to store the offset_to_top value of the secondary dispatch tables.
1533 -- For this purpose we add a supplementary component just after the
1534 -- field that contains the tag associated with each secondary DT.
1536 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1538 Make_Component_Definition
(Loc
,
1539 Subtype_Indication
=>
1540 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1542 Offset
:= Make_Temporary
(Loc
, 'V');
1545 Make_Component_Declaration
(Loc
,
1546 Defining_Identifier
=> Offset
,
1547 Component_Definition
=> Def
);
1549 Analyze_Component_Declaration
(Decl
);
1551 Set_Analyzed
(Decl
);
1552 Set_Ekind
(Offset
, E_Component
);
1553 Set_Is_Aliased
(Offset
);
1554 Set_Related_Type
(Offset
, Iface
);
1555 Init_Component_Location
(Offset
);
1556 Insert_After
(Last_Tag
, Decl
);
1567 -- Start of processing for Add_Interface_Tag_Components
1570 if not RTE_Available
(RE_Interface_Tag
) then
1572 ("(Ada 2005) interface types not supported by this run-time!",
1577 if Ekind
(Typ
) /= E_Record_Type
1578 or else (Is_Concurrent_Record_Type
(Typ
)
1579 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1580 or else (not Is_Concurrent_Record_Type
(Typ
)
1581 and then No
(Interfaces
(Typ
))
1582 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1587 -- Find the current last tag
1589 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1590 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1592 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1593 Ext
:= Type_Definition
(N
);
1598 if not (Present
(Component_List
(Ext
))) then
1599 Set_Null_Present
(Ext
, False);
1601 Set_Component_List
(Ext
,
1602 Make_Component_List
(Loc
,
1603 Component_Items
=> L
,
1604 Null_Present
=> False));
1606 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1607 L
:= Component_Items
1609 (Record_Extension_Part
1610 (Type_Definition
(N
))));
1612 L
:= Component_Items
1614 (Type_Definition
(N
)));
1617 -- Find the last tag component
1620 while Present
(Comp
) loop
1621 if Nkind
(Comp
) = N_Component_Declaration
1622 and then Is_Tag
(Defining_Identifier
(Comp
))
1631 -- At this point L references the list of components and Last_Tag
1632 -- references the current last tag (if any). Now we add the tag
1633 -- corresponding with all the interfaces that are not implemented
1636 if Present
(Interfaces
(Typ
)) then
1637 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1638 while Present
(Elmt
) loop
1639 Add_Tag
(Node
(Elmt
));
1643 end Add_Interface_Tag_Components
;
1645 -------------------------------------
1646 -- Add_Internal_Interface_Entities --
1647 -------------------------------------
1649 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1652 Iface_Elmt
: Elmt_Id
;
1653 Iface_Prim
: Entity_Id
;
1654 Ifaces_List
: Elist_Id
;
1655 New_Subp
: Entity_Id
:= Empty
;
1657 Restore_Scope
: Boolean := False;
1660 pragma Assert
(Ada_Version
>= Ada_2005
1661 and then Is_Record_Type
(Tagged_Type
)
1662 and then Is_Tagged_Type
(Tagged_Type
)
1663 and then Has_Interfaces
(Tagged_Type
)
1664 and then not Is_Interface
(Tagged_Type
));
1666 -- Ensure that the internal entities are added to the scope of the type
1668 if Scope
(Tagged_Type
) /= Current_Scope
then
1669 Push_Scope
(Scope
(Tagged_Type
));
1670 Restore_Scope
:= True;
1673 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1675 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1676 while Present
(Iface_Elmt
) loop
1677 Iface
:= Node
(Iface_Elmt
);
1679 -- Originally we excluded here from this processing interfaces that
1680 -- are parents of Tagged_Type because their primitives are located
1681 -- in the primary dispatch table (and hence no auxiliary internal
1682 -- entities are required to handle secondary dispatch tables in such
1683 -- case). However, these auxiliary entities are also required to
1684 -- handle derivations of interfaces in formals of generics (see
1685 -- Derive_Subprograms).
1687 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1688 while Present
(Elmt
) loop
1689 Iface_Prim
:= Node
(Elmt
);
1691 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1693 Find_Primitive_Covering_Interface
1694 (Tagged_Type
=> Tagged_Type
,
1695 Iface_Prim
=> Iface_Prim
);
1697 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1701 pragma Assert
(Present
(Prim
));
1703 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1704 -- differs from the name of the interface primitive then it is
1705 -- a private primitive inherited from a parent type. In such
1706 -- case, given that Tagged_Type covers the interface, the
1707 -- inherited private primitive becomes visible. For such
1708 -- purpose we add a new entity that renames the inherited
1709 -- private primitive.
1711 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1712 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1714 (New_Subp
=> New_Subp
,
1715 Parent_Subp
=> Iface_Prim
,
1716 Derived_Type
=> Tagged_Type
,
1717 Parent_Type
=> Iface
);
1718 Set_Alias
(New_Subp
, Prim
);
1719 Set_Is_Abstract_Subprogram
1720 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1724 (New_Subp
=> New_Subp
,
1725 Parent_Subp
=> Iface_Prim
,
1726 Derived_Type
=> Tagged_Type
,
1727 Parent_Type
=> Iface
);
1729 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1730 -- associated with interface types. These entities are
1731 -- only registered in the list of primitives of its
1732 -- corresponding tagged type because they are only used
1733 -- to fill the contents of the secondary dispatch tables.
1734 -- Therefore they are removed from the homonym chains.
1736 Set_Is_Hidden
(New_Subp
);
1737 Set_Is_Internal
(New_Subp
);
1738 Set_Alias
(New_Subp
, Prim
);
1739 Set_Is_Abstract_Subprogram
1740 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1741 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1743 -- If the returned type is an interface then propagate it to
1744 -- the returned type. Needed by the thunk to generate the code
1745 -- which displaces "this" to reference the corresponding
1746 -- secondary dispatch table in the returned object.
1748 if Is_Interface
(Etype
(Iface_Prim
)) then
1749 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1752 -- Internal entities associated with interface types are only
1753 -- registered in the list of primitives of the tagged type.
1754 -- They are only used to fill the contents of the secondary
1755 -- dispatch tables. Therefore they are not needed in the
1758 Remove_Homonym
(New_Subp
);
1760 -- Hidden entities associated with interfaces must have set
1761 -- the Has_Delay_Freeze attribute to ensure that, in case
1762 -- of locally defined tagged types (or compiling with static
1763 -- dispatch tables generation disabled) the corresponding
1764 -- entry of the secondary dispatch table is filled when such
1765 -- an entity is frozen. This is an expansion activity that must
1766 -- be suppressed for ASIS because it leads to gigi elaboration
1767 -- issues in annotate mode.
1769 if not ASIS_Mode
then
1770 Set_Has_Delayed_Freeze
(New_Subp
);
1778 Next_Elmt
(Iface_Elmt
);
1781 if Restore_Scope
then
1784 end Add_Internal_Interface_Entities
;
1786 -----------------------------------
1787 -- Analyze_Component_Declaration --
1788 -----------------------------------
1790 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1791 Loc
: constant Source_Ptr
:= Sloc
(Component_Definition
(N
));
1792 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1793 E
: constant Node_Id
:= Expression
(N
);
1794 Typ
: constant Node_Id
:=
1795 Subtype_Indication
(Component_Definition
(N
));
1799 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1800 -- Determines whether a constraint uses the discriminant of a record
1801 -- type thus becoming a per-object constraint (POC).
1803 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1804 -- Typ is the type of the current component, check whether this type is
1805 -- a limited type. Used to validate declaration against that of
1806 -- enclosing record.
1812 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1814 -- Prevent cascaded errors
1816 if Error_Posted
(Constr
) then
1820 case Nkind
(Constr
) is
1821 when N_Attribute_Reference
=>
1822 return Attribute_Name
(Constr
) = Name_Access
1823 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1825 when N_Discriminant_Association
=>
1826 return Denotes_Discriminant
(Expression
(Constr
));
1828 when N_Identifier
=>
1829 return Denotes_Discriminant
(Constr
);
1831 when N_Index_Or_Discriminant_Constraint
=>
1836 IDC
:= First
(Constraints
(Constr
));
1837 while Present
(IDC
) loop
1839 -- One per-object constraint is sufficient
1841 if Contains_POC
(IDC
) then
1852 return Denotes_Discriminant
(Low_Bound
(Constr
))
1854 Denotes_Discriminant
(High_Bound
(Constr
));
1856 when N_Range_Constraint
=>
1857 return Denotes_Discriminant
(Range_Expression
(Constr
));
1865 ----------------------
1866 -- Is_Known_Limited --
1867 ----------------------
1869 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1870 P
: constant Entity_Id
:= Etype
(Typ
);
1871 R
: constant Entity_Id
:= Root_Type
(Typ
);
1874 if Is_Limited_Record
(Typ
) then
1877 -- If the root type is limited (and not a limited interface)
1878 -- so is the current type
1880 elsif Is_Limited_Record
(R
)
1881 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1885 -- Else the type may have a limited interface progenitor, but a
1886 -- limited record parent.
1888 elsif R
/= P
and then Is_Limited_Record
(P
) then
1894 end Is_Known_Limited
;
1896 -- Start of processing for Analyze_Component_Declaration
1899 Generate_Definition
(Id
);
1902 if Present
(Typ
) then
1903 T
:= Find_Type_Of_Object
1904 (Subtype_Indication
(Component_Definition
(N
)), N
);
1906 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1907 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1910 -- Ada 2005 (AI-230): Access Definition case
1913 pragma Assert
(Present
1914 (Access_Definition
(Component_Definition
(N
))));
1916 T
:= Access_Definition
1918 N
=> Access_Definition
(Component_Definition
(N
)));
1919 Set_Is_Local_Anonymous_Access
(T
);
1921 -- Ada 2005 (AI-254)
1923 if Present
(Access_To_Subprogram_Definition
1924 (Access_Definition
(Component_Definition
(N
))))
1925 and then Protected_Present
(Access_To_Subprogram_Definition
1927 (Component_Definition
(N
))))
1929 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1933 -- If the subtype is a constrained subtype of the enclosing record,
1934 -- (which must have a partial view) the back-end does not properly
1935 -- handle the recursion. Rewrite the component declaration with an
1936 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1937 -- the tree directly because side effects have already been removed from
1938 -- discriminant constraints.
1940 if Ekind
(T
) = E_Access_Subtype
1941 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1942 and then Comes_From_Source
(T
)
1943 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1944 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1947 (Subtype_Indication
(Component_Definition
(N
)),
1948 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1949 T
:= Find_Type_Of_Object
1950 (Subtype_Indication
(Component_Definition
(N
)), N
);
1953 -- If the component declaration includes a default expression, then we
1954 -- check that the component is not of a limited type (RM 3.7(5)),
1955 -- and do the special preanalysis of the expression (see section on
1956 -- "Handling of Default and Per-Object Expressions" in the spec of
1960 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1961 Preanalyze_Default_Expression
(E
, T
);
1962 Check_Initialization
(T
, E
);
1964 if Ada_Version
>= Ada_2005
1965 and then Ekind
(T
) = E_Anonymous_Access_Type
1966 and then Etype
(E
) /= Any_Type
1968 -- Check RM 3.9.2(9): "if the expected type for an expression is
1969 -- an anonymous access-to-specific tagged type, then the object
1970 -- designated by the expression shall not be dynamically tagged
1971 -- unless it is a controlling operand in a call on a dispatching
1974 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
1976 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
1978 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
1982 ("access to specific tagged type required (RM 3.9.2(9))", E
);
1985 -- (Ada 2005: AI-230): Accessibility check for anonymous
1988 if Type_Access_Level
(Etype
(E
)) >
1989 Deepest_Type_Access_Level
(T
)
1992 ("expression has deeper access level than component " &
1993 "(RM 3.10.2 (12.2))", E
);
1996 -- The initialization expression is a reference to an access
1997 -- discriminant. The type of the discriminant is always deeper
1998 -- than any access type.
2000 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
2001 and then Is_Entity_Name
(E
)
2002 and then Ekind
(Entity
(E
)) = E_In_Parameter
2003 and then Present
(Discriminal_Link
(Entity
(E
)))
2006 ("discriminant has deeper accessibility level than target",
2012 -- The parent type may be a private view with unknown discriminants,
2013 -- and thus unconstrained. Regular components must be constrained.
2015 if not Is_Definite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2016 if Is_Class_Wide_Type
(T
) then
2018 ("class-wide subtype with unknown discriminants" &
2019 " in component declaration",
2020 Subtype_Indication
(Component_Definition
(N
)));
2023 ("unconstrained subtype in component declaration",
2024 Subtype_Indication
(Component_Definition
(N
)));
2027 -- Components cannot be abstract, except for the special case of
2028 -- the _Parent field (case of extending an abstract tagged type)
2030 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2031 Error_Msg_N
("type of a component cannot be abstract", N
);
2035 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2037 -- The component declaration may have a per-object constraint, set
2038 -- the appropriate flag in the defining identifier of the subtype.
2040 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2042 Sindic
: constant Node_Id
:=
2043 Subtype_Indication
(Component_Definition
(N
));
2045 if Nkind
(Sindic
) = N_Subtype_Indication
2046 and then Present
(Constraint
(Sindic
))
2047 and then Contains_POC
(Constraint
(Sindic
))
2049 Set_Has_Per_Object_Constraint
(Id
);
2054 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2055 -- out some static checks.
2057 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2058 Null_Exclusion_Static_Checks
(N
);
2061 -- If this component is private (or depends on a private type), flag the
2062 -- record type to indicate that some operations are not available.
2064 P
:= Private_Component
(T
);
2068 -- Check for circular definitions
2070 if P
= Any_Type
then
2071 Set_Etype
(Id
, Any_Type
);
2073 -- There is a gap in the visibility of operations only if the
2074 -- component type is not defined in the scope of the record type.
2076 elsif Scope
(P
) = Scope
(Current_Scope
) then
2079 elsif Is_Limited_Type
(P
) then
2080 Set_Is_Limited_Composite
(Current_Scope
);
2083 Set_Is_Private_Composite
(Current_Scope
);
2088 and then Is_Limited_Type
(T
)
2089 and then Chars
(Id
) /= Name_uParent
2090 and then Is_Tagged_Type
(Current_Scope
)
2092 if Is_Derived_Type
(Current_Scope
)
2093 and then not Is_Known_Limited
(Current_Scope
)
2096 ("extension of nonlimited type cannot have limited components",
2099 if Is_Interface
(Root_Type
(Current_Scope
)) then
2101 ("\limitedness is not inherited from limited interface", N
);
2102 Error_Msg_N
("\add LIMITED to type indication", N
);
2105 Explain_Limited_Type
(T
, N
);
2106 Set_Etype
(Id
, Any_Type
);
2107 Set_Is_Limited_Composite
(Current_Scope
, False);
2109 elsif not Is_Derived_Type
(Current_Scope
)
2110 and then not Is_Limited_Record
(Current_Scope
)
2111 and then not Is_Concurrent_Type
(Current_Scope
)
2114 ("nonlimited tagged type cannot have limited components", N
);
2115 Explain_Limited_Type
(T
, N
);
2116 Set_Etype
(Id
, Any_Type
);
2117 Set_Is_Limited_Composite
(Current_Scope
, False);
2121 -- If the component is an unconstrained task or protected type with
2122 -- discriminants, the component and the enclosing record are limited
2123 -- and the component is constrained by its default values. Compute
2124 -- its actual subtype, else it may be allocated the maximum size by
2125 -- the backend, and possibly overflow.
2127 if Is_Concurrent_Type
(T
)
2128 and then not Is_Constrained
(T
)
2129 and then Has_Discriminants
(T
)
2130 and then not Has_Discriminants
(Current_Scope
)
2133 Act_T
: constant Entity_Id
:= Build_Default_Subtype
(T
, N
);
2136 Set_Etype
(Id
, Act_T
);
2138 -- Rewrite component definition to use the constrained subtype
2140 Rewrite
(Component_Definition
(N
),
2141 Make_Component_Definition
(Loc
,
2142 Subtype_Indication
=> New_Occurrence_Of
(Act_T
, Loc
)));
2146 Set_Original_Record_Component
(Id
, Id
);
2148 if Has_Aspects
(N
) then
2149 Analyze_Aspect_Specifications
(N
, Id
);
2152 Analyze_Dimension
(N
);
2153 end Analyze_Component_Declaration
;
2155 --------------------------
2156 -- Analyze_Declarations --
2157 --------------------------
2159 procedure Analyze_Declarations
(L
: List_Id
) is
2162 procedure Adjust_Decl
;
2163 -- Adjust Decl not to include implicit label declarations, since these
2164 -- have strange Sloc values that result in elaboration check problems.
2165 -- (They have the sloc of the label as found in the source, and that
2166 -- is ahead of the current declarative part).
2168 procedure Check_Entry_Contracts
;
2169 -- Perform a pre-analysis of the pre- and postconditions of an entry
2170 -- declaration. This must be done before full resolution and creation
2171 -- of the parameter block, etc. to catch illegal uses within the
2172 -- contract expression. Full analysis of the expression is done when
2173 -- the contract is processed.
2175 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2176 -- Determine whether Body_Decl denotes the body of a late controlled
2177 -- primitive (either Initialize, Adjust or Finalize). If this is the
2178 -- case, add a proper spec if the body lacks one. The spec is inserted
2179 -- before Body_Decl and immediately analyzed.
2181 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2182 -- Spec_Id is the entity of a package that may define abstract states.
2183 -- If the states have visible refinement, remove the visibility of each
2184 -- constituent at the end of the package body declarations.
2190 procedure Adjust_Decl
is
2192 while Present
(Prev
(Decl
))
2193 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2199 ---------------------------
2200 -- Check_Entry_Contracts --
2201 ---------------------------
2203 procedure Check_Entry_Contracts
is
2209 Ent
:= First_Entity
(Current_Scope
);
2210 while Present
(Ent
) loop
2212 -- This only concerns entries with pre/postconditions
2214 if Ekind
(Ent
) = E_Entry
2215 and then Present
(Contract
(Ent
))
2216 and then Present
(Pre_Post_Conditions
(Contract
(Ent
)))
2218 ASN
:= Pre_Post_Conditions
(Contract
(Ent
));
2220 Install_Formals
(Ent
);
2222 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2223 -- is performed on a copy of the pragma expression, to prevent
2224 -- modifying the original expression.
2226 while Present
(ASN
) loop
2227 if Nkind
(ASN
) = N_Pragma
then
2231 (First
(Pragma_Argument_Associations
(ASN
))));
2232 Set_Parent
(Exp
, ASN
);
2234 -- ??? why not Preanalyze_Assert_Expression
2239 ASN
:= Next_Pragma
(ASN
);
2247 end Check_Entry_Contracts
;
2249 --------------------------------------
2250 -- Handle_Late_Controlled_Primitive --
2251 --------------------------------------
2253 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2254 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2255 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2256 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2257 Params
: constant List_Id
:=
2258 Parameter_Specifications
(Body_Spec
);
2260 Spec_Id
: Entity_Id
;
2264 -- Consider only procedure bodies whose name matches one of the three
2265 -- controlled primitives.
2267 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2268 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2274 -- A controlled primitive must have exactly one formal which is not
2275 -- an anonymous access type.
2277 elsif List_Length
(Params
) /= 1 then
2281 Typ
:= Parameter_Type
(First
(Params
));
2283 if Nkind
(Typ
) = N_Access_Definition
then
2289 -- The type of the formal must be derived from [Limited_]Controlled
2291 if not Is_Controlled
(Entity
(Typ
)) then
2295 -- Check whether a specification exists for this body. We do not
2296 -- analyze the spec of the body in full, because it will be analyzed
2297 -- again when the body is properly analyzed, and we cannot create
2298 -- duplicate entries in the formals chain. We look for an explicit
2299 -- specification because the body may be an overriding operation and
2300 -- an inherited spec may be present.
2302 Spec_Id
:= Current_Entity
(Body_Id
);
2304 while Present
(Spec_Id
) loop
2305 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2306 and then Scope
(Spec_Id
) = Current_Scope
2307 and then Present
(First_Formal
(Spec_Id
))
2308 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2309 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2310 and then Comes_From_Source
(Spec_Id
)
2315 Spec_Id
:= Homonym
(Spec_Id
);
2318 -- At this point the body is known to be a late controlled primitive.
2319 -- Generate a matching spec and insert it before the body. Note the
2320 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2321 -- tree in this case.
2323 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2325 -- Ensure that the subprogram declaration does not inherit the null
2326 -- indicator from the body as we now have a proper spec/body pair.
2328 Set_Null_Present
(Spec
, False);
2330 -- Ensure that the freeze node is inserted after the declaration of
2331 -- the primitive since its expansion will freeze the primitive.
2333 Decl
:= Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
2335 Insert_Before_And_Analyze
(Body_Decl
, Decl
);
2336 end Handle_Late_Controlled_Primitive
;
2338 --------------------------------
2339 -- Remove_Visible_Refinements --
2340 --------------------------------
2342 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2343 State_Elmt
: Elmt_Id
;
2345 if Present
(Abstract_States
(Spec_Id
)) then
2346 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2347 while Present
(State_Elmt
) loop
2348 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2349 Next_Elmt
(State_Elmt
);
2352 end Remove_Visible_Refinements
;
2356 Context
: Node_Id
:= Empty
;
2357 Freeze_From
: Entity_Id
:= Empty
;
2358 Next_Decl
: Node_Id
;
2360 Body_Seen
: Boolean := False;
2361 -- Flag set when the first body [stub] is encountered
2363 -- Start of processing for Analyze_Declarations
2366 if Restriction_Check_Required
(SPARK_05
) then
2367 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2371 while Present
(Decl
) loop
2373 -- Package spec cannot contain a package declaration in SPARK
2375 if Nkind
(Decl
) = N_Package_Declaration
2376 and then Nkind
(Parent
(L
)) = N_Package_Specification
2378 Check_SPARK_05_Restriction
2379 ("package specification cannot contain a package declaration",
2383 -- Complete analysis of declaration
2386 Next_Decl
:= Next
(Decl
);
2388 if No
(Freeze_From
) then
2389 Freeze_From
:= First_Entity
(Current_Scope
);
2392 -- At the end of a declarative part, freeze remaining entities
2393 -- declared in it. The end of the visible declarations of package
2394 -- specification is not the end of a declarative part if private
2395 -- declarations are present. The end of a package declaration is a
2396 -- freezing point only if it a library package. A task definition or
2397 -- protected type definition is not a freeze point either. Finally,
2398 -- we do not freeze entities in generic scopes, because there is no
2399 -- code generated for them and freeze nodes will be generated for
2402 -- The end of a package instantiation is not a freeze point, but
2403 -- for now we make it one, because the generic body is inserted
2404 -- (currently) immediately after. Generic instantiations will not
2405 -- be a freeze point once delayed freezing of bodies is implemented.
2406 -- (This is needed in any case for early instantiations ???).
2408 if No
(Next_Decl
) then
2409 if Nkind
(Parent
(L
)) = N_Component_List
then
2412 elsif Nkind_In
(Parent
(L
), N_Protected_Definition
,
2415 Check_Entry_Contracts
;
2417 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2418 if Nkind
(Parent
(L
)) = N_Package_Body
then
2419 Freeze_From
:= First_Entity
(Current_Scope
);
2422 -- There may have been several freezing points previously,
2423 -- for example object declarations or subprogram bodies, but
2424 -- at the end of a declarative part we check freezing from
2425 -- the beginning, even though entities may already be frozen,
2426 -- in order to perform visibility checks on delayed aspects.
2429 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2430 Freeze_From
:= Last_Entity
(Current_Scope
);
2432 elsif Scope
(Current_Scope
) /= Standard_Standard
2433 and then not Is_Child_Unit
(Current_Scope
)
2434 and then No
(Generic_Parent
(Parent
(L
)))
2438 elsif L
/= Visible_Declarations
(Parent
(L
))
2439 or else No
(Private_Declarations
(Parent
(L
)))
2440 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2443 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2444 Freeze_From
:= Last_Entity
(Current_Scope
);
2446 -- At the end of the visible declarations the expressions in
2447 -- aspects of all entities declared so far must be resolved.
2448 -- The entities themselves might be frozen later, and the
2449 -- generated pragmas and attribute definition clauses analyzed
2450 -- in full at that point, but name resolution must take place
2452 -- In addition to being the proper semantics, this is mandatory
2453 -- within generic units, because global name capture requires
2454 -- those expressions to be analyzed, given that the generated
2455 -- pragmas do not appear in the original generic tree.
2457 elsif Serious_Errors_Detected
= 0 then
2462 E
:= First_Entity
(Current_Scope
);
2463 while Present
(E
) loop
2464 Resolve_Aspect_Expressions
(E
);
2470 -- If next node is a body then freeze all types before the body.
2471 -- An exception occurs for some expander-generated bodies. If these
2472 -- are generated at places where in general language rules would not
2473 -- allow a freeze point, then we assume that the expander has
2474 -- explicitly checked that all required types are properly frozen,
2475 -- and we do not cause general freezing here. This special circuit
2476 -- is used when the encountered body is marked as having already
2479 -- In all other cases (bodies that come from source, and expander
2480 -- generated bodies that have not been analyzed yet), freeze all
2481 -- types now. Note that in the latter case, the expander must take
2482 -- care to attach the bodies at a proper place in the tree so as to
2483 -- not cause unwanted freezing at that point.
2485 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
) then
2487 -- When a controlled type is frozen, the expander generates stream
2488 -- and controlled type support routines. If the freeze is caused
2489 -- by the stand alone body of Initialize, Adjust and Finalize, the
2490 -- expander will end up using the wrong version of these routines
2491 -- as the body has not been processed yet. To remedy this, detect
2492 -- a late controlled primitive and create a proper spec for it.
2493 -- This ensures that the primitive will override its inherited
2494 -- counterpart before the freeze takes place.
2496 -- If the declaration we just processed is a body, do not attempt
2497 -- to examine Next_Decl as the late primitive idiom can only apply
2498 -- to the first encountered body.
2500 -- The spec of the late primitive is not generated in ASIS mode to
2501 -- ensure a consistent list of primitives that indicates the true
2502 -- semantic structure of the program (which is not relevant when
2503 -- generating executable code.
2505 -- ??? a cleaner approach may be possible and/or this solution
2506 -- could be extended to general-purpose late primitives, TBD.
2508 if not ASIS_Mode
and then not Body_Seen
and then not Is_Body
(Decl
)
2512 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2513 Handle_Late_Controlled_Primitive
(Next_Decl
);
2518 Freeze_All
(Freeze_From
, Decl
);
2519 Freeze_From
:= Last_Entity
(Current_Scope
);
2525 -- Analyze the contracts of packages and their bodies
2528 Context
:= Parent
(L
);
2530 if Nkind
(Context
) = N_Package_Specification
then
2532 -- When a package has private declarations, its contract must be
2533 -- analyzed at the end of the said declarations. This way both the
2534 -- analysis and freeze actions are properly synchronized in case
2535 -- of private type use within the contract.
2537 if L
= Private_Declarations
(Context
) then
2538 Analyze_Package_Contract
(Defining_Entity
(Context
));
2540 -- Build the bodies of the default initial condition procedures
2541 -- for all types subject to pragma Default_Initial_Condition.
2542 -- From a purely Ada stand point, this is a freezing activity,
2543 -- however freezing is not available under GNATprove_Mode. To
2544 -- accomodate both scenarios, the bodies are build at the end
2545 -- of private declaration analysis.
2547 Build_Default_Init_Cond_Procedure_Bodies
(L
);
2549 -- Otherwise the contract is analyzed at the end of the visible
2552 elsif L
= Visible_Declarations
(Context
)
2553 and then No
(Private_Declarations
(Context
))
2555 Analyze_Package_Contract
(Defining_Entity
(Context
));
2558 elsif Nkind
(Context
) = N_Package_Body
then
2559 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2562 -- Analyze the contracts of various constructs now due to the delayed
2563 -- visibility needs of their aspects and pragmas.
2565 Analyze_Contracts
(L
);
2567 if Nkind
(Context
) = N_Package_Body
then
2569 -- Ensure that all abstract states and objects declared in the
2570 -- state space of a package body are utilized as constituents.
2572 Check_Unused_Body_States
(Defining_Entity
(Context
));
2574 -- State refinements are visible up to the end of the package body
2575 -- declarations. Hide the state refinements from visibility to
2576 -- restore the original state conditions.
2578 Remove_Visible_Refinements
(Corresponding_Spec
(Context
));
2581 -- Verify that all abstract states found in any package declared in
2582 -- the input declarative list have proper refinements. The check is
2583 -- performed only when the context denotes a block, entry, package,
2584 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2586 Check_State_Refinements
(Context
);
2588 end Analyze_Declarations
;
2590 -----------------------------------
2591 -- Analyze_Full_Type_Declaration --
2592 -----------------------------------
2594 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2595 Def
: constant Node_Id
:= Type_Definition
(N
);
2596 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2600 Is_Remote
: constant Boolean :=
2601 (Is_Remote_Types
(Current_Scope
)
2602 or else Is_Remote_Call_Interface
(Current_Scope
))
2603 and then not (In_Private_Part
(Current_Scope
)
2604 or else In_Package_Body
(Current_Scope
));
2606 procedure Check_Nonoverridable_Aspects
;
2607 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2608 -- be overridden, and can only be confirmed on derivation.
2610 procedure Check_Ops_From_Incomplete_Type
;
2611 -- If there is a tagged incomplete partial view of the type, traverse
2612 -- the primitives of the incomplete view and change the type of any
2613 -- controlling formals and result to indicate the full view. The
2614 -- primitives will be added to the full type's primitive operations
2615 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2616 -- is called from Process_Incomplete_Dependents).
2618 ----------------------------------
2619 -- Check_Nonoverridable_Aspects --
2620 ----------------------------------
2622 procedure Check_Nonoverridable_Aspects
is
2623 Prev_Aspects
: constant List_Id
:=
2624 Aspect_Specifications
(Parent
(Def_Id
));
2625 Par_Type
: Entity_Id
;
2627 function Has_Aspect_Spec
2629 Aspect_Name
: Name_Id
) return Boolean;
2630 -- Check whether a list of aspect specifications includes an entry
2631 -- for a specific aspect. The list is either that of a partial or
2634 ---------------------
2635 -- Has_Aspect_Spec --
2636 ---------------------
2638 function Has_Aspect_Spec
2640 Aspect_Name
: Name_Id
) return Boolean
2644 Spec
:= First
(Specs
);
2645 while Present
(Spec
) loop
2646 if Chars
(Identifier
(Spec
)) = Aspect_Name
then
2652 end Has_Aspect_Spec
;
2654 -- Start of processing for Check_Nonoverridable_Aspects
2658 -- Get parent type of derived type. Note that Prev is the entity
2659 -- in the partial declaration, but its contents are now those of
2660 -- full view, while Def_Id reflects the partial view.
2662 if Is_Private_Type
(Def_Id
) then
2663 Par_Type
:= Etype
(Full_View
(Def_Id
));
2665 Par_Type
:= Etype
(Def_Id
);
2668 -- If there is an inherited Implicit_Dereference, verify that it is
2669 -- made explicit in the partial view.
2671 if Has_Discriminants
(Base_Type
(Par_Type
))
2672 and then Nkind
(Parent
(Prev
)) = N_Full_Type_Declaration
2673 and then Present
(Discriminant_Specifications
(Parent
(Prev
)))
2674 and then Present
(Get_Reference_Discriminant
(Par_Type
))
2677 not Has_Aspect_Spec
(Prev_Aspects
, Name_Implicit_Dereference
)
2680 ("type does not inherit implicit dereference", Prev
);
2683 -- If one of the views has the aspect specified, verify that it
2684 -- is consistent with that of the parent.
2687 Par_Discr
: constant Entity_Id
:=
2688 Get_Reference_Discriminant
(Par_Type
);
2689 Cur_Discr
: constant Entity_Id
:=
2690 Get_Reference_Discriminant
(Prev
);
2692 if Corresponding_Discriminant
(Cur_Discr
) /= Par_Discr
then
2693 Error_Msg_N
("aspect incosistent with that of parent", N
);
2699 -- TBD : other nonoverridable aspects.
2700 end Check_Nonoverridable_Aspects
;
2702 ------------------------------------
2703 -- Check_Ops_From_Incomplete_Type --
2704 ------------------------------------
2706 procedure Check_Ops_From_Incomplete_Type
is
2713 and then Ekind
(Prev
) = E_Incomplete_Type
2714 and then Is_Tagged_Type
(Prev
)
2715 and then Is_Tagged_Type
(T
)
2717 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
2718 while Present
(Elmt
) loop
2721 Formal
:= First_Formal
(Op
);
2722 while Present
(Formal
) loop
2723 if Etype
(Formal
) = Prev
then
2724 Set_Etype
(Formal
, T
);
2727 Next_Formal
(Formal
);
2730 if Etype
(Op
) = Prev
then
2737 end Check_Ops_From_Incomplete_Type
;
2739 -- Start of processing for Analyze_Full_Type_Declaration
2742 Prev
:= Find_Type_Name
(N
);
2744 -- The full view, if present, now points to the current type. If there
2745 -- is an incomplete partial view, set a link to it, to simplify the
2746 -- retrieval of primitive operations of the type.
2748 -- Ada 2005 (AI-50217): If the type was previously decorated when
2749 -- imported through a LIMITED WITH clause, it appears as incomplete
2750 -- but has no full view.
2752 if Ekind
(Prev
) = E_Incomplete_Type
2753 and then Present
(Full_View
(Prev
))
2755 T
:= Full_View
(Prev
);
2756 Set_Incomplete_View
(N
, Parent
(Prev
));
2761 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2763 -- We set the flag Is_First_Subtype here. It is needed to set the
2764 -- corresponding flag for the Implicit class-wide-type created
2765 -- during tagged types processing.
2767 Set_Is_First_Subtype
(T
, True);
2769 -- Only composite types other than array types are allowed to have
2774 -- For derived types, the rule will be checked once we've figured
2775 -- out the parent type.
2777 when N_Derived_Type_Definition
=>
2780 -- For record types, discriminants are allowed, unless we are in
2783 when N_Record_Definition
=>
2784 if Present
(Discriminant_Specifications
(N
)) then
2785 Check_SPARK_05_Restriction
2786 ("discriminant type is not allowed",
2788 (First
(Discriminant_Specifications
(N
))));
2792 if Present
(Discriminant_Specifications
(N
)) then
2794 ("elementary or array type cannot have discriminants",
2796 (First
(Discriminant_Specifications
(N
))));
2800 -- Elaborate the type definition according to kind, and generate
2801 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2802 -- already done (this happens during the reanalysis that follows a call
2803 -- to the high level optimizer).
2805 if not Analyzed
(T
) then
2809 when N_Access_To_Subprogram_Definition
=>
2810 Access_Subprogram_Declaration
(T
, Def
);
2812 -- If this is a remote access to subprogram, we must create the
2813 -- equivalent fat pointer type, and related subprograms.
2816 Process_Remote_AST_Declaration
(N
);
2819 -- Validate categorization rule against access type declaration
2820 -- usually a violation in Pure unit, Shared_Passive unit.
2822 Validate_Access_Type_Declaration
(T
, N
);
2824 when N_Access_To_Object_Definition
=>
2825 Access_Type_Declaration
(T
, Def
);
2827 -- Validate categorization rule against access type declaration
2828 -- usually a violation in Pure unit, Shared_Passive unit.
2830 Validate_Access_Type_Declaration
(T
, N
);
2832 -- If we are in a Remote_Call_Interface package and define a
2833 -- RACW, then calling stubs and specific stream attributes
2837 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2839 Add_RACW_Features
(Def_Id
);
2842 when N_Array_Type_Definition
=>
2843 Array_Type_Declaration
(T
, Def
);
2845 when N_Derived_Type_Definition
=>
2846 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2848 when N_Enumeration_Type_Definition
=>
2849 Enumeration_Type_Declaration
(T
, Def
);
2851 when N_Floating_Point_Definition
=>
2852 Floating_Point_Type_Declaration
(T
, Def
);
2854 when N_Decimal_Fixed_Point_Definition
=>
2855 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2857 when N_Ordinary_Fixed_Point_Definition
=>
2858 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2860 when N_Signed_Integer_Type_Definition
=>
2861 Signed_Integer_Type_Declaration
(T
, Def
);
2863 when N_Modular_Type_Definition
=>
2864 Modular_Type_Declaration
(T
, Def
);
2866 when N_Record_Definition
=>
2867 Record_Type_Declaration
(T
, N
, Prev
);
2869 -- If declaration has a parse error, nothing to elaborate.
2875 raise Program_Error
;
2880 if Etype
(T
) = Any_Type
then
2884 -- Controlled type is not allowed in SPARK
2886 if Is_Visibly_Controlled
(T
) then
2887 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
2890 -- A type declared within a Ghost region is automatically Ghost
2891 -- (SPARK RM 6.9(2)).
2893 if Ghost_Mode
> None
then
2894 Set_Is_Ghost_Entity
(T
);
2897 -- Some common processing for all types
2899 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2900 Check_Ops_From_Incomplete_Type
;
2902 -- Both the declared entity, and its anonymous base type if one was
2903 -- created, need freeze nodes allocated.
2906 B
: constant Entity_Id
:= Base_Type
(T
);
2909 -- In the case where the base type differs from the first subtype, we
2910 -- pre-allocate a freeze node, and set the proper link to the first
2911 -- subtype. Freeze_Entity will use this preallocated freeze node when
2912 -- it freezes the entity.
2914 -- This does not apply if the base type is a generic type, whose
2915 -- declaration is independent of the current derived definition.
2917 if B
/= T
and then not Is_Generic_Type
(B
) then
2918 Ensure_Freeze_Node
(B
);
2919 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2922 -- A type that is imported through a limited_with clause cannot
2923 -- generate any code, and thus need not be frozen. However, an access
2924 -- type with an imported designated type needs a finalization list,
2925 -- which may be referenced in some other package that has non-limited
2926 -- visibility on the designated type. Thus we must create the
2927 -- finalization list at the point the access type is frozen, to
2928 -- prevent unsatisfied references at link time.
2930 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
2931 Set_Has_Delayed_Freeze
(T
);
2935 -- Case where T is the full declaration of some private type which has
2936 -- been swapped in Defining_Identifier (N).
2938 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2939 Process_Full_View
(N
, T
, Def_Id
);
2941 -- Record the reference. The form of this is a little strange, since
2942 -- the full declaration has been swapped in. So the first parameter
2943 -- here represents the entity to which a reference is made which is
2944 -- the "real" entity, i.e. the one swapped in, and the second
2945 -- parameter provides the reference location.
2947 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2948 -- since we don't want a complaint about the full type being an
2949 -- unwanted reference to the private type
2952 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
2954 Set_Has_Pragma_Unreferenced
(T
, False);
2955 Generate_Reference
(T
, T
, 'c');
2956 Set_Has_Pragma_Unreferenced
(T
, B
);
2959 Set_Completion_Referenced
(Def_Id
);
2961 -- For completion of incomplete type, process incomplete dependents
2962 -- and always mark the full type as referenced (it is the incomplete
2963 -- type that we get for any real reference).
2965 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2966 Process_Incomplete_Dependents
(N
, T
, Prev
);
2967 Generate_Reference
(Prev
, Def_Id
, 'c');
2968 Set_Completion_Referenced
(Def_Id
);
2970 -- If not private type or incomplete type completion, this is a real
2971 -- definition of a new entity, so record it.
2974 Generate_Definition
(Def_Id
);
2977 -- Propagate any pending access types whose finalization masters need to
2978 -- be fully initialized from the partial to the full view. Guard against
2979 -- an illegal full view that remains unanalyzed.
2981 if Is_Type
(Def_Id
) and then Is_Incomplete_Or_Private_Type
(Prev
) then
2982 Set_Pending_Access_Types
(Def_Id
, Pending_Access_Types
(Prev
));
2985 if Chars
(Scope
(Def_Id
)) = Name_System
2986 and then Chars
(Def_Id
) = Name_Address
2987 and then Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(N
)))
2989 Set_Is_Descendant_Of_Address
(Def_Id
);
2990 Set_Is_Descendant_Of_Address
(Base_Type
(Def_Id
));
2991 Set_Is_Descendant_Of_Address
(Prev
);
2994 Set_Optimize_Alignment_Flags
(Def_Id
);
2995 Check_Eliminated
(Def_Id
);
2997 -- If the declaration is a completion and aspects are present, apply
2998 -- them to the entity for the type which is currently the partial
2999 -- view, but which is the one that will be frozen.
3001 if Has_Aspects
(N
) then
3003 -- In most cases the partial view is a private type, and both views
3004 -- appear in different declarative parts. In the unusual case where
3005 -- the partial view is incomplete, perform the analysis on the
3006 -- full view, to prevent freezing anomalies with the corresponding
3007 -- class-wide type, which otherwise might be frozen before the
3008 -- dispatch table is built.
3011 and then Ekind
(Prev
) /= E_Incomplete_Type
3013 Analyze_Aspect_Specifications
(N
, Prev
);
3018 Analyze_Aspect_Specifications
(N
, Def_Id
);
3022 if Is_Derived_Type
(Prev
)
3023 and then Def_Id
/= Prev
3025 Check_Nonoverridable_Aspects
;
3027 end Analyze_Full_Type_Declaration
;
3029 ----------------------------------
3030 -- Analyze_Incomplete_Type_Decl --
3031 ----------------------------------
3033 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
3034 F
: constant Boolean := Is_Pure
(Current_Scope
);
3038 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
3040 Generate_Definition
(Defining_Identifier
(N
));
3042 -- Process an incomplete declaration. The identifier must not have been
3043 -- declared already in the scope. However, an incomplete declaration may
3044 -- appear in the private part of a package, for a private type that has
3045 -- already been declared.
3047 -- In this case, the discriminants (if any) must match
3049 T
:= Find_Type_Name
(N
);
3051 Set_Ekind
(T
, E_Incomplete_Type
);
3052 Init_Size_Align
(T
);
3053 Set_Is_First_Subtype
(T
, True);
3056 -- An incomplete type declared within a Ghost region is automatically
3057 -- Ghost (SPARK RM 6.9(2)).
3059 if Ghost_Mode
> None
then
3060 Set_Is_Ghost_Entity
(T
);
3063 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3064 -- incomplete types.
3066 if Tagged_Present
(N
) then
3067 Set_Is_Tagged_Type
(T
, True);
3068 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
3069 Make_Class_Wide_Type
(T
);
3070 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
3073 Set_Stored_Constraint
(T
, No_Elist
);
3075 if Present
(Discriminant_Specifications
(N
)) then
3077 Process_Discriminants
(N
);
3081 -- If the type has discriminants, nontrivial subtypes may be declared
3082 -- before the full view of the type. The full views of those subtypes
3083 -- will be built after the full view of the type.
3085 Set_Private_Dependents
(T
, New_Elmt_List
);
3087 end Analyze_Incomplete_Type_Decl
;
3089 -----------------------------------
3090 -- Analyze_Interface_Declaration --
3091 -----------------------------------
3093 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
3094 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
3097 Set_Is_Tagged_Type
(T
);
3098 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
3100 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
3101 or else Task_Present
(Def
)
3102 or else Protected_Present
(Def
)
3103 or else Synchronized_Present
(Def
));
3105 -- Type is abstract if full declaration carries keyword, or if previous
3106 -- partial view did.
3108 Set_Is_Abstract_Type
(T
);
3109 Set_Is_Interface
(T
);
3111 -- Type is a limited interface if it includes the keyword limited, task,
3112 -- protected, or synchronized.
3114 Set_Is_Limited_Interface
3115 (T
, Limited_Present
(Def
)
3116 or else Protected_Present
(Def
)
3117 or else Synchronized_Present
(Def
)
3118 or else Task_Present
(Def
));
3120 Set_Interfaces
(T
, New_Elmt_List
);
3121 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
3123 -- Complete the decoration of the class-wide entity if it was already
3124 -- built (i.e. during the creation of the limited view)
3126 if Present
(CW
) then
3127 Set_Is_Interface
(CW
);
3128 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
3131 -- Check runtime support for synchronized interfaces
3133 if (Is_Task_Interface
(T
)
3134 or else Is_Protected_Interface
(T
)
3135 or else Is_Synchronized_Interface
(T
))
3136 and then not RTE_Available
(RE_Select_Specific_Data
)
3138 Error_Msg_CRT
("synchronized interfaces", T
);
3140 end Analyze_Interface_Declaration
;
3142 -----------------------------
3143 -- Analyze_Itype_Reference --
3144 -----------------------------
3146 -- Nothing to do. This node is placed in the tree only for the benefit of
3147 -- back end processing, and has no effect on the semantic processing.
3149 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
3151 pragma Assert
(Is_Itype
(Itype
(N
)));
3153 end Analyze_Itype_Reference
;
3155 --------------------------------
3156 -- Analyze_Number_Declaration --
3157 --------------------------------
3159 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
3160 E
: constant Node_Id
:= Expression
(N
);
3161 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3162 Index
: Interp_Index
;
3167 Generate_Definition
(Id
);
3170 -- A number declared within a Ghost region is automatically Ghost
3171 -- (SPARK RM 6.9(2)).
3173 if Ghost_Mode
> None
then
3174 Set_Is_Ghost_Entity
(Id
);
3177 -- This is an optimization of a common case of an integer literal
3179 if Nkind
(E
) = N_Integer_Literal
then
3180 Set_Is_Static_Expression
(E
, True);
3181 Set_Etype
(E
, Universal_Integer
);
3183 Set_Etype
(Id
, Universal_Integer
);
3184 Set_Ekind
(Id
, E_Named_Integer
);
3185 Set_Is_Frozen
(Id
, True);
3189 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3191 -- Process expression, replacing error by integer zero, to avoid
3192 -- cascaded errors or aborts further along in the processing
3194 -- Replace Error by integer zero, which seems least likely to cause
3198 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
3199 Set_Error_Posted
(E
);
3204 -- Verify that the expression is static and numeric. If
3205 -- the expression is overloaded, we apply the preference
3206 -- rule that favors root numeric types.
3208 if not Is_Overloaded
(E
) then
3210 if Has_Dynamic_Predicate_Aspect
(T
) then
3212 ("subtype has dynamic predicate, "
3213 & "not allowed in number declaration", N
);
3219 Get_First_Interp
(E
, Index
, It
);
3220 while Present
(It
.Typ
) loop
3221 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3222 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3224 if T
= Any_Type
then
3227 elsif It
.Typ
= Universal_Real
3229 It
.Typ
= Universal_Integer
3231 -- Choose universal interpretation over any other
3238 Get_Next_Interp
(Index
, It
);
3242 if Is_Integer_Type
(T
) then
3244 Set_Etype
(Id
, Universal_Integer
);
3245 Set_Ekind
(Id
, E_Named_Integer
);
3247 elsif Is_Real_Type
(T
) then
3249 -- Because the real value is converted to universal_real, this is a
3250 -- legal context for a universal fixed expression.
3252 if T
= Universal_Fixed
then
3254 Loc
: constant Source_Ptr
:= Sloc
(N
);
3255 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3257 New_Occurrence_Of
(Universal_Real
, Loc
),
3258 Expression
=> Relocate_Node
(E
));
3265 elsif T
= Any_Fixed
then
3266 Error_Msg_N
("illegal context for mixed mode operation", E
);
3268 -- Expression is of the form : universal_fixed * integer. Try to
3269 -- resolve as universal_real.
3271 T
:= Universal_Real
;
3276 Set_Etype
(Id
, Universal_Real
);
3277 Set_Ekind
(Id
, E_Named_Real
);
3280 Wrong_Type
(E
, Any_Numeric
);
3284 Set_Ekind
(Id
, E_Constant
);
3285 Set_Never_Set_In_Source
(Id
, True);
3286 Set_Is_True_Constant
(Id
, True);
3290 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3291 Set_Etype
(E
, Etype
(Id
));
3294 if not Is_OK_Static_Expression
(E
) then
3295 Flag_Non_Static_Expr
3296 ("non-static expression used in number declaration!", E
);
3297 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3298 Set_Etype
(E
, Any_Type
);
3301 Analyze_Dimension
(N
);
3302 end Analyze_Number_Declaration
;
3304 --------------------------------
3305 -- Analyze_Object_Declaration --
3306 --------------------------------
3308 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3309 Loc
: constant Source_Ptr
:= Sloc
(N
);
3310 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3314 E
: Node_Id
:= Expression
(N
);
3315 -- E is set to Expression (N) throughout this routine. When
3316 -- Expression (N) is modified, E is changed accordingly.
3318 Prev_Entity
: Entity_Id
:= Empty
;
3320 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3321 -- This function is called when a non-generic library level object of a
3322 -- task type is declared. Its function is to count the static number of
3323 -- tasks declared within the type (it is only called if Has_Task is set
3324 -- for T). As a side effect, if an array of tasks with non-static bounds
3325 -- or a variant record type is encountered, Check_Restriction is called
3326 -- indicating the count is unknown.
3328 function Delayed_Aspect_Present
return Boolean;
3329 -- If the declaration has an expression that is an aggregate, and it
3330 -- has aspects that require delayed analysis, the resolution of the
3331 -- aggregate must be deferred to the freeze point of the objet. This
3332 -- special processing was created for address clauses, but it must
3333 -- also apply to Alignment. This must be done before the aspect
3334 -- specifications are analyzed because we must handle the aggregate
3335 -- before the analysis of the object declaration is complete.
3337 -- Any other relevant delayed aspects on object declarations ???
3343 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3349 if Is_Task_Type
(T
) then
3352 elsif Is_Record_Type
(T
) then
3353 if Has_Discriminants
(T
) then
3354 Check_Restriction
(Max_Tasks
, N
);
3359 C
:= First_Component
(T
);
3360 while Present
(C
) loop
3361 V
:= V
+ Count_Tasks
(Etype
(C
));
3368 elsif Is_Array_Type
(T
) then
3369 X
:= First_Index
(T
);
3370 V
:= Count_Tasks
(Component_Type
(T
));
3371 while Present
(X
) loop
3374 if not Is_OK_Static_Subtype
(C
) then
3375 Check_Restriction
(Max_Tasks
, N
);
3378 V
:= V
* (UI_Max
(Uint_0
,
3379 Expr_Value
(Type_High_Bound
(C
)) -
3380 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3393 ----------------------------
3394 -- Delayed_Aspect_Present --
3395 ----------------------------
3397 function Delayed_Aspect_Present
return Boolean is
3402 if Present
(Aspect_Specifications
(N
)) then
3403 A
:= First
(Aspect_Specifications
(N
));
3404 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3405 while Present
(A
) loop
3406 if A_Id
= Aspect_Alignment
or else A_Id
= Aspect_Address
then
3415 end Delayed_Aspect_Present
;
3419 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
3420 Related_Id
: Entity_Id
;
3422 -- Start of processing for Analyze_Object_Declaration
3425 -- There are three kinds of implicit types generated by an
3426 -- object declaration:
3428 -- 1. Those generated by the original Object Definition
3430 -- 2. Those generated by the Expression
3432 -- 3. Those used to constrain the Object Definition with the
3433 -- expression constraints when the definition is unconstrained.
3435 -- They must be generated in this order to avoid order of elaboration
3436 -- issues. Thus the first step (after entering the name) is to analyze
3437 -- the object definition.
3439 if Constant_Present
(N
) then
3440 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3442 if Present
(Prev_Entity
)
3444 -- If the homograph is an implicit subprogram, it is overridden
3445 -- by the current declaration.
3447 ((Is_Overloadable
(Prev_Entity
)
3448 and then Is_Inherited_Operation
(Prev_Entity
))
3450 -- The current object is a discriminal generated for an entry
3451 -- family index. Even though the index is a constant, in this
3452 -- particular context there is no true constant redeclaration.
3453 -- Enter_Name will handle the visibility.
3456 (Is_Discriminal
(Id
)
3457 and then Ekind
(Discriminal_Link
(Id
)) =
3458 E_Entry_Index_Parameter
)
3460 -- The current object is the renaming for a generic declared
3461 -- within the instance.
3464 (Ekind
(Prev_Entity
) = E_Package
3465 and then Nkind
(Parent
(Prev_Entity
)) =
3466 N_Package_Renaming_Declaration
3467 and then not Comes_From_Source
(Prev_Entity
)
3469 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
)))
3471 -- The entity may be a homonym of a private component of the
3472 -- enclosing protected object, for which we create a local
3473 -- renaming declaration. The declaration is legal, even if
3474 -- useless when it just captures that component.
3477 (Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
3478 and then Nkind
(Parent
(Prev_Entity
)) =
3479 N_Object_Renaming_Declaration
))
3481 Prev_Entity
:= Empty
;
3485 -- The object declaration is Ghost when it is subject to pragma Ghost or
3486 -- completes a deferred Ghost constant. Set the mode now to ensure that
3487 -- any nodes generated during analysis and expansion are properly marked
3490 Set_Ghost_Mode
(N
, Prev_Entity
);
3492 if Present
(Prev_Entity
) then
3493 Constant_Redeclaration
(Id
, N
, T
);
3495 Generate_Reference
(Prev_Entity
, Id
, 'c');
3496 Set_Completion_Referenced
(Id
);
3498 if Error_Posted
(N
) then
3500 -- Type mismatch or illegal redeclaration; do not analyze
3501 -- expression to avoid cascaded errors.
3503 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3505 Set_Ekind
(Id
, E_Variable
);
3509 -- In the normal case, enter identifier at the start to catch premature
3510 -- usage in the initialization expression.
3513 Generate_Definition
(Id
);
3516 Mark_Coextensions
(N
, Object_Definition
(N
));
3518 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3520 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
3522 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3523 and then Protected_Present
3524 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3526 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
3529 if Error_Posted
(Id
) then
3531 Set_Ekind
(Id
, E_Variable
);
3536 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3537 -- out some static checks.
3539 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
3541 -- In case of aggregates we must also take care of the correct
3542 -- initialization of nested aggregates bug this is done at the
3543 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
3545 if Present
(Expression
(N
))
3546 and then Nkind
(Expression
(N
)) = N_Aggregate
3552 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
3554 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
3555 Null_Exclusion_Static_Checks
(N
);
3556 Set_Etype
(Id
, Save_Typ
);
3561 -- Object is marked pure if it is in a pure scope
3563 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3565 -- If deferred constant, make sure context is appropriate. We detect
3566 -- a deferred constant as a constant declaration with no expression.
3567 -- A deferred constant can appear in a package body if its completion
3568 -- is by means of an interface pragma.
3570 if Constant_Present
(N
) and then No
(E
) then
3572 -- A deferred constant may appear in the declarative part of the
3573 -- following constructs:
3577 -- extended return statements
3580 -- subprogram bodies
3583 -- When declared inside a package spec, a deferred constant must be
3584 -- completed by a full constant declaration or pragma Import. In all
3585 -- other cases, the only proper completion is pragma Import. Extended
3586 -- return statements are flagged as invalid contexts because they do
3587 -- not have a declarative part and so cannot accommodate the pragma.
3589 if Ekind
(Current_Scope
) = E_Return_Statement
then
3591 ("invalid context for deferred constant declaration (RM 7.4)",
3594 ("\declaration requires an initialization expression",
3596 Set_Constant_Present
(N
, False);
3598 -- In Ada 83, deferred constant must be of private type
3600 elsif not Is_Private_Type
(T
) then
3601 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
3603 ("(Ada 83) deferred constant must be private type", N
);
3607 -- If not a deferred constant, then the object declaration freezes
3608 -- its type, unless the object is of an anonymous type and has delayed
3609 -- aspects. In that case the type is frozen when the object itself is.
3612 Check_Fully_Declared
(T
, N
);
3614 if Has_Delayed_Aspects
(Id
)
3615 and then Is_Array_Type
(T
)
3616 and then Is_Itype
(T
)
3618 Set_Has_Delayed_Freeze
(T
);
3620 Freeze_Before
(N
, T
);
3624 -- If the object was created by a constrained array definition, then
3625 -- set the link in both the anonymous base type and anonymous subtype
3626 -- that are built to represent the array type to point to the object.
3628 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
3629 N_Constrained_Array_Definition
3631 Set_Related_Array_Object
(T
, Id
);
3632 Set_Related_Array_Object
(Base_Type
(T
), Id
);
3635 -- Special checks for protected objects not at library level
3637 if Has_Protected
(T
) and then not Is_Library_Level_Entity
(Id
) then
3638 Check_Restriction
(No_Local_Protected_Objects
, Id
);
3640 -- Protected objects with interrupt handlers must be at library level
3642 -- Ada 2005: This test is not needed (and the corresponding clause
3643 -- in the RM is removed) because accessibility checks are sufficient
3644 -- to make handlers not at the library level illegal.
3646 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3647 -- applies to the '95 version of the language as well.
3649 if Is_Protected_Type
(T
)
3650 and then Has_Interrupt_Handler
(T
)
3651 and then Ada_Version
< Ada_95
3654 ("interrupt object can only be declared at library level", Id
);
3658 -- Check for violation of No_Local_Timing_Events
3660 if Has_Timing_Event
(T
) and then not Is_Library_Level_Entity
(Id
) then
3661 Check_Restriction
(No_Local_Timing_Events
, Id
);
3664 -- The actual subtype of the object is the nominal subtype, unless
3665 -- the nominal one is unconstrained and obtained from the expression.
3669 -- These checks should be performed before the initialization expression
3670 -- is considered, so that the Object_Definition node is still the same
3671 -- as in source code.
3673 -- In SPARK, the nominal subtype is always given by a subtype mark
3674 -- and must not be unconstrained. (The only exception to this is the
3675 -- acceptance of declarations of constants of type String.)
3677 if not Nkind_In
(Object_Definition
(N
), N_Expanded_Name
, N_Identifier
)
3679 Check_SPARK_05_Restriction
3680 ("subtype mark required", Object_Definition
(N
));
3682 elsif Is_Array_Type
(T
)
3683 and then not Is_Constrained
(T
)
3684 and then T
/= Standard_String
3686 Check_SPARK_05_Restriction
3687 ("subtype mark of constrained type expected",
3688 Object_Definition
(N
));
3691 -- There are no aliased objects in SPARK
3693 if Aliased_Present
(N
) then
3694 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
3697 -- Process initialization expression if present and not in error
3699 if Present
(E
) and then E
/= Error
then
3701 -- Generate an error in case of CPP class-wide object initialization.
3702 -- Required because otherwise the expansion of the class-wide
3703 -- assignment would try to use 'size to initialize the object
3704 -- (primitive that is not available in CPP tagged types).
3706 if Is_Class_Wide_Type
(Act_T
)
3708 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
3710 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
3712 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
3715 ("predefined assignment not available for 'C'P'P tagged types",
3719 Mark_Coextensions
(N
, E
);
3722 -- In case of errors detected in the analysis of the expression,
3723 -- decorate it with the expected type to avoid cascaded errors
3725 if No
(Etype
(E
)) then
3729 -- If an initialization expression is present, then we set the
3730 -- Is_True_Constant flag. It will be reset if this is a variable
3731 -- and it is indeed modified.
3733 Set_Is_True_Constant
(Id
, True);
3735 -- If we are analyzing a constant declaration, set its completion
3736 -- flag after analyzing and resolving the expression.
3738 if Constant_Present
(N
) then
3739 Set_Has_Completion
(Id
);
3742 -- Set type and resolve (type may be overridden later on). Note:
3743 -- Ekind (Id) must still be E_Void at this point so that incorrect
3744 -- early usage within E is properly diagnosed.
3748 -- If the expression is an aggregate we must look ahead to detect
3749 -- the possible presence of an address clause, and defer resolution
3750 -- and expansion of the aggregate to the freeze point of the entity.
3752 -- This is not always legal because the aggregate may contain other
3753 -- references that need freezing, e.g. references to other entities
3754 -- with address clauses. In any case, when compiling with -gnatI the
3755 -- presence of the address clause must be ignored.
3757 if Comes_From_Source
(N
)
3758 and then Expander_Active
3759 and then Nkind
(E
) = N_Aggregate
3761 ((Present
(Following_Address_Clause
(N
))
3762 and then not Ignore_Rep_Clauses
)
3763 or else Delayed_Aspect_Present
)
3771 -- No further action needed if E is a call to an inlined function
3772 -- which returns an unconstrained type and it has been expanded into
3773 -- a procedure call. In that case N has been replaced by an object
3774 -- declaration without initializing expression and it has been
3775 -- analyzed (see Expand_Inlined_Call).
3777 if Back_End_Inlining
3778 and then Expander_Active
3779 and then Nkind
(E
) = N_Function_Call
3780 and then Nkind
(Name
(E
)) in N_Has_Entity
3781 and then Is_Inlined
(Entity
(Name
(E
)))
3782 and then not Is_Constrained
(Etype
(E
))
3783 and then Analyzed
(N
)
3784 and then No
(Expression
(N
))
3786 Ghost_Mode
:= Save_Ghost_Mode
;
3790 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3791 -- node (which was marked already-analyzed), we need to set the type
3792 -- to something other than Any_Access in order to keep gigi happy.
3794 if Etype
(E
) = Any_Access
then
3798 -- If the object is an access to variable, the initialization
3799 -- expression cannot be an access to constant.
3801 if Is_Access_Type
(T
)
3802 and then not Is_Access_Constant
(T
)
3803 and then Is_Access_Type
(Etype
(E
))
3804 and then Is_Access_Constant
(Etype
(E
))
3807 ("access to variable cannot be initialized with an "
3808 & "access-to-constant expression", E
);
3811 if not Assignment_OK
(N
) then
3812 Check_Initialization
(T
, E
);
3815 Check_Unset_Reference
(E
);
3817 -- If this is a variable, then set current value. If this is a
3818 -- declared constant of a scalar type with a static expression,
3819 -- indicate that it is always valid.
3821 if not Constant_Present
(N
) then
3822 if Compile_Time_Known_Value
(E
) then
3823 Set_Current_Value
(Id
, E
);
3826 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
3827 Set_Is_Known_Valid
(Id
);
3830 -- Deal with setting of null flags
3832 if Is_Access_Type
(T
) then
3833 if Known_Non_Null
(E
) then
3834 Set_Is_Known_Non_Null
(Id
, True);
3835 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
3836 Set_Is_Known_Null
(Id
, True);
3840 -- Check incorrect use of dynamically tagged expressions
3842 if Is_Tagged_Type
(T
) then
3843 Check_Dynamically_Tagged_Expression
3849 Apply_Scalar_Range_Check
(E
, T
);
3850 Apply_Static_Length_Check
(E
, T
);
3852 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
3853 and then Comes_From_Source
(Original_Node
(N
))
3855 -- Only call test if needed
3857 and then Restriction_Check_Required
(SPARK_05
)
3858 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
3860 Check_SPARK_05_Restriction
3861 ("initialization expression is not appropriate", E
);
3864 -- A formal parameter of a specific tagged type whose related
3865 -- subprogram is subject to pragma Extensions_Visible with value
3866 -- "False" cannot be implicitly converted to a class-wide type by
3867 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
3868 -- not consider internally generated expressions.
3870 if Is_Class_Wide_Type
(T
)
3871 and then Comes_From_Source
(E
)
3872 and then Is_EVF_Expression
(E
)
3875 ("formal parameter cannot be implicitly converted to "
3876 & "class-wide type when Extensions_Visible is False", E
);
3880 -- If the No_Streams restriction is set, check that the type of the
3881 -- object is not, and does not contain, any subtype derived from
3882 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3883 -- Has_Stream just for efficiency reasons. There is no point in
3884 -- spending time on a Has_Stream check if the restriction is not set.
3886 if Restriction_Check_Required
(No_Streams
) then
3887 if Has_Stream
(T
) then
3888 Check_Restriction
(No_Streams
, N
);
3892 -- Deal with predicate check before we start to do major rewriting. It
3893 -- is OK to initialize and then check the initialized value, since the
3894 -- object goes out of scope if we get a predicate failure. Note that we
3895 -- do this in the analyzer and not the expander because the analyzer
3896 -- does some substantial rewriting in some cases.
3898 -- We need a predicate check if the type has predicates that are not
3899 -- ignored, and if either there is an initializing expression, or for
3900 -- default initialization when we have at least one case of an explicit
3901 -- default initial value and then this is not an internal declaration
3902 -- whose initialization comes later (as for an aggregate expansion).
3904 if not Suppress_Assignment_Checks
(N
)
3905 and then Present
(Predicate_Function
(T
))
3906 and then not Predicates_Ignored
(T
)
3907 and then not No_Initialization
(N
)
3911 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
3913 -- If the type has a static predicate and the expression is known at
3914 -- compile time, see if the expression satisfies the predicate.
3917 Check_Expression_Against_Static_Predicate
(E
, T
);
3920 -- If the type is a null record and there is no explicit initial
3921 -- expression, no predicate check applies.
3923 if No
(E
) and then Is_Null_Record_Type
(T
) then
3928 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
3932 -- Case of unconstrained type
3934 if not Is_Definite_Subtype
(T
) then
3936 -- In SPARK, a declaration of unconstrained type is allowed
3937 -- only for constants of type string.
3939 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
3940 Check_SPARK_05_Restriction
3941 ("declaration of object of unconstrained type not allowed", N
);
3944 -- Nothing to do in deferred constant case
3946 if Constant_Present
(N
) and then No
(E
) then
3949 -- Case of no initialization present
3952 if No_Initialization
(N
) then
3955 elsif Is_Class_Wide_Type
(T
) then
3957 ("initialization required in class-wide declaration ", N
);
3961 ("unconstrained subtype not allowed (need initialization)",
3962 Object_Definition
(N
));
3964 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
3966 ("\provide initial value or explicit discriminant values",
3967 Object_Definition
(N
));
3970 ("\or give default discriminant values for type&",
3971 Object_Definition
(N
), T
);
3973 elsif Is_Array_Type
(T
) then
3975 ("\provide initial value or explicit array bounds",
3976 Object_Definition
(N
));
3980 -- Case of initialization present but in error. Set initial
3981 -- expression as absent (but do not make above complaints)
3983 elsif E
= Error
then
3984 Set_Expression
(N
, Empty
);
3987 -- Case of initialization present
3990 -- Check restrictions in Ada 83
3992 if not Constant_Present
(N
) then
3994 -- Unconstrained variables not allowed in Ada 83 mode
3996 if Ada_Version
= Ada_83
3997 and then Comes_From_Source
(Object_Definition
(N
))
4000 ("(Ada 83) unconstrained variable not allowed",
4001 Object_Definition
(N
));
4005 -- Now we constrain the variable from the initializing expression
4007 -- If the expression is an aggregate, it has been expanded into
4008 -- individual assignments. Retrieve the actual type from the
4009 -- expanded construct.
4011 if Is_Array_Type
(T
)
4012 and then No_Initialization
(N
)
4013 and then Nkind
(Original_Node
(E
)) = N_Aggregate
4017 -- In case of class-wide interface object declarations we delay
4018 -- the generation of the equivalent record type declarations until
4019 -- its expansion because there are cases in they are not required.
4021 elsif Is_Interface
(T
) then
4024 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4025 -- we should prevent the generation of another Itype with the
4026 -- same name as the one already generated, or we end up with
4027 -- two identical types in GNATprove.
4029 elsif GNATprove_Mode
then
4032 -- If the type is an unchecked union, no subtype can be built from
4033 -- the expression. Rewrite declaration as a renaming, which the
4034 -- back-end can handle properly. This is a rather unusual case,
4035 -- because most unchecked_union declarations have default values
4036 -- for discriminants and are thus not indefinite.
4038 elsif Is_Unchecked_Union
(T
) then
4039 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
4040 Set_Ekind
(Id
, E_Constant
);
4042 Set_Ekind
(Id
, E_Variable
);
4045 -- An object declared within a Ghost region is automatically
4046 -- Ghost (SPARK RM 6.9(2)).
4048 if Ghost_Mode
> None
then
4049 Set_Is_Ghost_Entity
(Id
);
4051 -- The Ghost policy in effect at the point of declaration
4052 -- and at the point of completion must match
4053 -- (SPARK RM 6.9(14)).
4055 if Present
(Prev_Entity
)
4056 and then Is_Ghost_Entity
(Prev_Entity
)
4058 Check_Ghost_Completion
(Prev_Entity
, Id
);
4063 Make_Object_Renaming_Declaration
(Loc
,
4064 Defining_Identifier
=> Id
,
4065 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4068 Set_Renamed_Object
(Id
, E
);
4069 Freeze_Before
(N
, T
);
4072 Ghost_Mode
:= Save_Ghost_Mode
;
4076 -- Ensure that the generated subtype has a unique external name
4077 -- when the related object is public. This guarantees that the
4078 -- subtype and its bounds will not be affected by switches or
4079 -- pragmas that may offset the internal counter due to extra
4082 if Is_Public
(Id
) then
4085 Related_Id
:= Empty
;
4088 Expand_Subtype_From_Expr
4091 Subtype_Indic
=> Object_Definition
(N
),
4093 Related_Id
=> Related_Id
);
4095 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
4098 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
4100 if Aliased_Present
(N
) then
4101 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4104 Freeze_Before
(N
, Act_T
);
4105 Freeze_Before
(N
, T
);
4108 elsif Is_Array_Type
(T
)
4109 and then No_Initialization
(N
)
4110 and then (Nkind
(Original_Node
(E
)) = N_Aggregate
4111 or else (Nkind
(Original_Node
(E
)) = N_Qualified_Expression
4112 and then Nkind
(Original_Node
(Expression
4113 (Original_Node
(E
)))) = N_Aggregate
))
4115 if not Is_Entity_Name
(Object_Definition
(N
)) then
4117 Check_Compile_Time_Size
(Act_T
);
4119 if Aliased_Present
(N
) then
4120 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4124 -- When the given object definition and the aggregate are specified
4125 -- independently, and their lengths might differ do a length check.
4126 -- This cannot happen if the aggregate is of the form (others =>...)
4128 if not Is_Constrained
(T
) then
4131 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
4133 -- Aggregate is statically illegal. Place back in declaration
4135 Set_Expression
(N
, E
);
4136 Set_No_Initialization
(N
, False);
4138 elsif T
= Etype
(E
) then
4141 elsif Nkind
(E
) = N_Aggregate
4142 and then Present
(Component_Associations
(E
))
4143 and then Present
(Choices
(First
(Component_Associations
(E
))))
4144 and then Nkind
(First
4145 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
4150 Apply_Length_Check
(E
, T
);
4153 -- If the type is limited unconstrained with defaulted discriminants and
4154 -- there is no expression, then the object is constrained by the
4155 -- defaults, so it is worthwhile building the corresponding subtype.
4157 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
4158 and then not Is_Constrained
(T
)
4159 and then Has_Discriminants
(T
)
4162 Act_T
:= Build_Default_Subtype
(T
, N
);
4164 -- Ada 2005: A limited object may be initialized by means of an
4165 -- aggregate. If the type has default discriminants it has an
4166 -- unconstrained nominal type, Its actual subtype will be obtained
4167 -- from the aggregate, and not from the default discriminants.
4172 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
4174 elsif Nkind
(E
) = N_Function_Call
4175 and then Constant_Present
(N
)
4176 and then Has_Unconstrained_Elements
(Etype
(E
))
4178 -- The back-end has problems with constants of a discriminated type
4179 -- with defaults, if the initial value is a function call. We
4180 -- generate an intermediate temporary that will receive a reference
4181 -- to the result of the call. The initialization expression then
4182 -- becomes a dereference of that temporary.
4184 Remove_Side_Effects
(E
);
4186 -- If this is a constant declaration of an unconstrained type and
4187 -- the initialization is an aggregate, we can use the subtype of the
4188 -- aggregate for the declared entity because it is immutable.
4190 elsif not Is_Constrained
(T
)
4191 and then Has_Discriminants
(T
)
4192 and then Constant_Present
(N
)
4193 and then not Has_Unchecked_Union
(T
)
4194 and then Nkind
(E
) = N_Aggregate
4199 -- Check No_Wide_Characters restriction
4201 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
4203 -- Indicate this is not set in source. Certainly true for constants, and
4204 -- true for variables so far (will be reset for a variable if and when
4205 -- we encounter a modification in the source).
4207 Set_Never_Set_In_Source
(Id
);
4209 -- Now establish the proper kind and type of the object
4211 if Constant_Present
(N
) then
4212 Set_Ekind
(Id
, E_Constant
);
4213 Set_Is_True_Constant
(Id
);
4216 Set_Ekind
(Id
, E_Variable
);
4218 -- A variable is set as shared passive if it appears in a shared
4219 -- passive package, and is at the outer level. This is not done for
4220 -- entities generated during expansion, because those are always
4221 -- manipulated locally.
4223 if Is_Shared_Passive
(Current_Scope
)
4224 and then Is_Library_Level_Entity
(Id
)
4225 and then Comes_From_Source
(Id
)
4227 Set_Is_Shared_Passive
(Id
);
4228 Check_Shared_Var
(Id
, T
, N
);
4231 -- Set Has_Initial_Value if initializing expression present. Note
4232 -- that if there is no initializing expression, we leave the state
4233 -- of this flag unchanged (usually it will be False, but notably in
4234 -- the case of exception choice variables, it will already be true).
4237 Set_Has_Initial_Value
(Id
);
4241 -- Initialize alignment and size and capture alignment setting
4243 Init_Alignment
(Id
);
4245 Set_Optimize_Alignment_Flags
(Id
);
4247 -- An object declared within a Ghost region is automatically Ghost
4248 -- (SPARK RM 6.9(2)).
4250 if Ghost_Mode
> None
4251 or else (Present
(Prev_Entity
) and then Is_Ghost_Entity
(Prev_Entity
))
4253 Set_Is_Ghost_Entity
(Id
);
4255 -- The Ghost policy in effect at the point of declaration and at the
4256 -- point of completion must match (SPARK RM 6.9(14)).
4258 if Present
(Prev_Entity
) and then Is_Ghost_Entity
(Prev_Entity
) then
4259 Check_Ghost_Completion
(Prev_Entity
, Id
);
4263 -- Deal with aliased case
4265 if Aliased_Present
(N
) then
4266 Set_Is_Aliased
(Id
);
4268 -- If the object is aliased and the type is unconstrained with
4269 -- defaulted discriminants and there is no expression, then the
4270 -- object is constrained by the defaults, so it is worthwhile
4271 -- building the corresponding subtype.
4273 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4274 -- unconstrained, then only establish an actual subtype if the
4275 -- nominal subtype is indefinite. In definite cases the object is
4276 -- unconstrained in Ada 2005.
4279 and then Is_Record_Type
(T
)
4280 and then not Is_Constrained
(T
)
4281 and then Has_Discriminants
(T
)
4282 and then (Ada_Version
< Ada_2005
4283 or else not Is_Definite_Subtype
(T
))
4285 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4289 -- Now we can set the type of the object
4291 Set_Etype
(Id
, Act_T
);
4293 -- Non-constant object is marked to be treated as volatile if type is
4294 -- volatile and we clear the Current_Value setting that may have been
4295 -- set above. Doing so for constants isn't required and might interfere
4296 -- with possible uses of the object as a static expression in contexts
4297 -- incompatible with volatility (e.g. as a case-statement alternative).
4299 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4300 Set_Treat_As_Volatile
(Id
);
4301 Set_Current_Value
(Id
, Empty
);
4304 -- Deal with controlled types
4306 if Has_Controlled_Component
(Etype
(Id
))
4307 or else Is_Controlled
(Etype
(Id
))
4309 if not Is_Library_Level_Entity
(Id
) then
4310 Check_Restriction
(No_Nested_Finalization
, N
);
4312 Validate_Controlled_Object
(Id
);
4316 if Has_Task
(Etype
(Id
)) then
4317 Check_Restriction
(No_Tasking
, N
);
4319 -- Deal with counting max tasks
4321 -- Nothing to do if inside a generic
4323 if Inside_A_Generic
then
4326 -- If library level entity, then count tasks
4328 elsif Is_Library_Level_Entity
(Id
) then
4329 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4331 -- If not library level entity, then indicate we don't know max
4332 -- tasks and also check task hierarchy restriction and blocking
4333 -- operation (since starting a task is definitely blocking).
4336 Check_Restriction
(Max_Tasks
, N
);
4337 Check_Restriction
(No_Task_Hierarchy
, N
);
4338 Check_Potentially_Blocking_Operation
(N
);
4341 -- A rather specialized test. If we see two tasks being declared
4342 -- of the same type in the same object declaration, and the task
4343 -- has an entry with an address clause, we know that program error
4344 -- will be raised at run time since we can't have two tasks with
4345 -- entries at the same address.
4347 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4352 E
:= First_Entity
(Etype
(Id
));
4353 while Present
(E
) loop
4354 if Ekind
(E
) = E_Entry
4355 and then Present
(Get_Attribute_Definition_Clause
4356 (E
, Attribute_Address
))
4358 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4360 ("more than one task with same entry address<<", N
);
4361 Error_Msg_N
("\Program_Error [<<", N
);
4363 Make_Raise_Program_Error
(Loc
,
4364 Reason
=> PE_Duplicated_Entry_Address
));
4374 -- Some simple constant-propagation: if the expression is a constant
4375 -- string initialized with a literal, share the literal. This avoids
4379 and then Is_Entity_Name
(E
)
4380 and then Ekind
(Entity
(E
)) = E_Constant
4381 and then Base_Type
(Etype
(E
)) = Standard_String
4384 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4386 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4387 Rewrite
(E
, New_Copy
(Val
));
4392 -- Another optimization: if the nominal subtype is unconstrained and
4393 -- the expression is a function call that returns an unconstrained
4394 -- type, rewrite the declaration as a renaming of the result of the
4395 -- call. The exceptions below are cases where the copy is expected,
4396 -- either by the back end (Aliased case) or by the semantics, as for
4397 -- initializing controlled types or copying tags for class-wide types.
4400 and then Nkind
(E
) = N_Explicit_Dereference
4401 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4402 and then not Is_Library_Level_Entity
(Id
)
4403 and then not Is_Constrained
(Underlying_Type
(T
))
4404 and then not Is_Aliased
(Id
)
4405 and then not Is_Class_Wide_Type
(T
)
4406 and then not Is_Controlled_Active
(T
)
4407 and then not Has_Controlled_Component
(Base_Type
(T
))
4408 and then Expander_Active
4411 Make_Object_Renaming_Declaration
(Loc
,
4412 Defining_Identifier
=> Id
,
4413 Access_Definition
=> Empty
,
4414 Subtype_Mark
=> New_Occurrence_Of
4415 (Base_Type
(Etype
(Id
)), Loc
),
4418 Set_Renamed_Object
(Id
, E
);
4420 -- Force generation of debugging information for the constant and for
4421 -- the renamed function call.
4423 Set_Debug_Info_Needed
(Id
);
4424 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4427 if Present
(Prev_Entity
)
4428 and then Is_Frozen
(Prev_Entity
)
4429 and then not Error_Posted
(Id
)
4431 Error_Msg_N
("full constant declaration appears too late", N
);
4434 Check_Eliminated
(Id
);
4436 -- Deal with setting In_Private_Part flag if in private part
4438 if Ekind
(Scope
(Id
)) = E_Package
4439 and then In_Private_Part
(Scope
(Id
))
4441 Set_In_Private_Part
(Id
);
4445 -- Initialize the refined state of a variable here because this is a
4446 -- common destination for legal and illegal object declarations.
4448 if Ekind
(Id
) = E_Variable
then
4449 Set_Encapsulating_State
(Id
, Empty
);
4452 if Has_Aspects
(N
) then
4453 Analyze_Aspect_Specifications
(N
, Id
);
4456 Analyze_Dimension
(N
);
4458 -- Verify whether the object declaration introduces an illegal hidden
4459 -- state within a package subject to a null abstract state.
4461 if Ekind
(Id
) = E_Variable
then
4462 Check_No_Hidden_State
(Id
);
4465 Ghost_Mode
:= Save_Ghost_Mode
;
4466 end Analyze_Object_Declaration
;
4468 ---------------------------
4469 -- Analyze_Others_Choice --
4470 ---------------------------
4472 -- Nothing to do for the others choice node itself, the semantic analysis
4473 -- of the others choice will occur as part of the processing of the parent
4475 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4476 pragma Warnings
(Off
, N
);
4479 end Analyze_Others_Choice
;
4481 -------------------------------------------
4482 -- Analyze_Private_Extension_Declaration --
4483 -------------------------------------------
4485 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4486 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4487 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4489 Iface_Elmt
: Elmt_Id
;
4490 Parent_Base
: Entity_Id
;
4491 Parent_Type
: Entity_Id
;
4494 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4496 if Is_Non_Empty_List
(Interface_List
(N
)) then
4502 Intf
:= First
(Interface_List
(N
));
4503 while Present
(Intf
) loop
4504 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4506 Diagnose_Interface
(Intf
, T
);
4512 Generate_Definition
(T
);
4514 -- For other than Ada 2012, just enter the name in the current scope
4516 if Ada_Version
< Ada_2012
then
4519 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4520 -- case of private type that completes an incomplete type.
4527 Prev
:= Find_Type_Name
(N
);
4529 pragma Assert
(Prev
= T
4530 or else (Ekind
(Prev
) = E_Incomplete_Type
4531 and then Present
(Full_View
(Prev
))
4532 and then Full_View
(Prev
) = T
));
4536 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
4537 Parent_Base
:= Base_Type
(Parent_Type
);
4539 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
4540 Set_Ekind
(T
, Ekind
(Parent_Type
));
4541 Set_Etype
(T
, Any_Type
);
4544 elsif not Is_Tagged_Type
(Parent_Type
) then
4546 ("parent of type extension must be a tagged type ", Indic
);
4549 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
4550 Error_Msg_N
("premature derivation of incomplete type", Indic
);
4553 elsif Is_Concurrent_Type
(Parent_Type
) then
4555 ("parent type of a private extension cannot be a synchronized "
4556 & "tagged type (RM 3.9.1 (3/1))", N
);
4558 Set_Etype
(T
, Any_Type
);
4559 Set_Ekind
(T
, E_Limited_Private_Type
);
4560 Set_Private_Dependents
(T
, New_Elmt_List
);
4561 Set_Error_Posted
(T
);
4565 -- Perhaps the parent type should be changed to the class-wide type's
4566 -- specific type in this case to prevent cascading errors ???
4568 if Is_Class_Wide_Type
(Parent_Type
) then
4570 ("parent of type extension must not be a class-wide type", Indic
);
4574 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
4575 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
4576 or else In_Private_Part
(Current_Scope
)
4578 Error_Msg_N
("invalid context for private extension", N
);
4581 -- Set common attributes
4583 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
4584 Set_Scope
(T
, Current_Scope
);
4585 Set_Ekind
(T
, E_Record_Type_With_Private
);
4586 Init_Size_Align
(T
);
4587 Set_Default_SSO
(T
);
4589 Set_Etype
(T
, Parent_Base
);
4590 Propagate_Concurrent_Flags
(T
, Parent_Base
);
4592 Set_Convention
(T
, Convention
(Parent_Type
));
4593 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
4594 Set_Is_First_Subtype
(T
);
4595 Make_Class_Wide_Type
(T
);
4597 if Unknown_Discriminants_Present
(N
) then
4598 Set_Discriminant_Constraint
(T
, No_Elist
);
4601 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
4603 -- A private extension inherits any class-wide invariants coming from a
4604 -- parent type or an interface. Note that the invariant procedure of the
4605 -- parent type should not be inherited because the private extension may
4606 -- define invariants of its own.
4608 if Has_Inheritable_Invariants
(Parent_Type
) then
4609 Set_Has_Inherited_Invariants
(T
);
4611 elsif Present
(Interfaces
(T
)) then
4612 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
4613 while Present
(Iface_Elmt
) loop
4614 Iface
:= Node
(Iface_Elmt
);
4616 if Has_Inheritable_Invariants
(Iface
) then
4617 Set_Has_Inherited_Invariants
(T
);
4621 Next_Elmt
(Iface_Elmt
);
4625 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4626 -- synchronized formal derived type.
4628 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
4629 Set_Is_Limited_Record
(T
);
4631 -- Formal derived type case
4633 if Is_Generic_Type
(T
) then
4635 -- The parent must be a tagged limited type or a synchronized
4638 if (not Is_Tagged_Type
(Parent_Type
)
4639 or else not Is_Limited_Type
(Parent_Type
))
4641 (not Is_Interface
(Parent_Type
)
4642 or else not Is_Synchronized_Interface
(Parent_Type
))
4645 ("parent type of & must be tagged limited or synchronized",
4649 -- The progenitors (if any) must be limited or synchronized
4652 if Present
(Interfaces
(T
)) then
4653 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
4654 while Present
(Iface_Elmt
) loop
4655 Iface
:= Node
(Iface_Elmt
);
4657 if not Is_Limited_Interface
(Iface
)
4658 and then not Is_Synchronized_Interface
(Iface
)
4661 ("progenitor & must be limited or synchronized",
4665 Next_Elmt
(Iface_Elmt
);
4669 -- Regular derived extension, the parent must be a limited or
4670 -- synchronized interface.
4673 if not Is_Interface
(Parent_Type
)
4674 or else (not Is_Limited_Interface
(Parent_Type
)
4675 and then not Is_Synchronized_Interface
(Parent_Type
))
4678 ("parent type of & must be limited interface", N
, T
);
4682 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4683 -- extension with a synchronized parent must be explicitly declared
4684 -- synchronized, because the full view will be a synchronized type.
4685 -- This must be checked before the check for limited types below,
4686 -- to ensure that types declared limited are not allowed to extend
4687 -- synchronized interfaces.
4689 elsif Is_Interface
(Parent_Type
)
4690 and then Is_Synchronized_Interface
(Parent_Type
)
4691 and then not Synchronized_Present
(N
)
4694 ("private extension of& must be explicitly synchronized",
4697 elsif Limited_Present
(N
) then
4698 Set_Is_Limited_Record
(T
);
4700 if not Is_Limited_Type
(Parent_Type
)
4702 (not Is_Interface
(Parent_Type
)
4703 or else not Is_Limited_Interface
(Parent_Type
))
4705 Error_Msg_NE
("parent type& of limited extension must be limited",
4711 if Has_Aspects
(N
) then
4712 Analyze_Aspect_Specifications
(N
, T
);
4714 end Analyze_Private_Extension_Declaration
;
4716 ---------------------------------
4717 -- Analyze_Subtype_Declaration --
4718 ---------------------------------
4720 procedure Analyze_Subtype_Declaration
4722 Skip
: Boolean := False)
4724 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
4725 R_Checks
: Check_Result
;
4729 Generate_Definition
(Id
);
4730 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4731 Init_Size_Align
(Id
);
4733 -- The following guard condition on Enter_Name is to handle cases where
4734 -- the defining identifier has already been entered into the scope but
4735 -- the declaration as a whole needs to be analyzed.
4737 -- This case in particular happens for derived enumeration types. The
4738 -- derived enumeration type is processed as an inserted enumeration type
4739 -- declaration followed by a rewritten subtype declaration. The defining
4740 -- identifier, however, is entered into the name scope very early in the
4741 -- processing of the original type declaration and therefore needs to be
4742 -- avoided here, when the created subtype declaration is analyzed. (See
4743 -- Build_Derived_Types)
4745 -- This also happens when the full view of a private type is derived
4746 -- type with constraints. In this case the entity has been introduced
4747 -- in the private declaration.
4749 -- Finally this happens in some complex cases when validity checks are
4750 -- enabled, where the same subtype declaration may be analyzed twice.
4751 -- This can happen if the subtype is created by the pre-analysis of
4752 -- an attribute tht gives the range of a loop statement, and the loop
4753 -- itself appears within an if_statement that will be rewritten during
4757 or else (Present
(Etype
(Id
))
4758 and then (Is_Private_Type
(Etype
(Id
))
4759 or else Is_Task_Type
(Etype
(Id
))
4760 or else Is_Rewrite_Substitution
(N
)))
4764 elsif Current_Entity
(Id
) = Id
then
4771 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
4773 -- Class-wide equivalent types of records with unknown discriminants
4774 -- involve the generation of an itype which serves as the private view
4775 -- of a constrained record subtype. In such cases the base type of the
4776 -- current subtype we are processing is the private itype. Use the full
4777 -- of the private itype when decorating various attributes.
4780 and then Is_Private_Type
(T
)
4781 and then Present
(Full_View
(T
))
4786 -- Inherit common attributes
4788 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
4789 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
4790 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
4791 Set_Convention
(Id
, Convention
(T
));
4793 -- If ancestor has predicates then so does the subtype, and in addition
4794 -- we must delay the freeze to properly arrange predicate inheritance.
4796 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4797 -- in which T = ID, so the above tests and assignments do nothing???
4799 if Has_Predicates
(T
)
4800 or else (Present
(Ancestor_Subtype
(T
))
4801 and then Has_Predicates
(Ancestor_Subtype
(T
)))
4803 Set_Has_Predicates
(Id
);
4804 Set_Has_Delayed_Freeze
(Id
);
4806 -- Generated subtypes inherit the predicate function from the parent
4807 -- (no aspects to examine on the generated declaration).
4809 if not Comes_From_Source
(N
) then
4810 Set_Ekind
(Id
, Ekind
(T
));
4812 if Present
(Predicate_Function
(T
)) then
4813 Set_Predicate_Function
(Id
, Predicate_Function
(T
));
4815 elsif Present
(Ancestor_Subtype
(T
))
4816 and then Has_Predicates
(Ancestor_Subtype
(T
))
4817 and then Present
(Predicate_Function
(Ancestor_Subtype
(T
)))
4819 Set_Predicate_Function
(Id
,
4820 Predicate_Function
(Ancestor_Subtype
(T
)));
4825 -- Subtype of Boolean cannot have a constraint in SPARK
4827 if Is_Boolean_Type
(T
)
4828 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
4830 Check_SPARK_05_Restriction
4831 ("subtype of Boolean cannot have constraint", N
);
4834 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
4836 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
4842 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
4843 One_Cstr
:= First
(Constraints
(Cstr
));
4844 while Present
(One_Cstr
) loop
4846 -- Index or discriminant constraint in SPARK must be a
4850 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
4852 Check_SPARK_05_Restriction
4853 ("subtype mark required", One_Cstr
);
4855 -- String subtype must have a lower bound of 1 in SPARK.
4856 -- Note that we do not need to test for the non-static case
4857 -- here, since that was already taken care of in
4858 -- Process_Range_Expr_In_Decl.
4860 elsif Base_Type
(T
) = Standard_String
then
4861 Get_Index_Bounds
(One_Cstr
, Low
, High
);
4863 if Is_OK_Static_Expression
(Low
)
4864 and then Expr_Value
(Low
) /= 1
4866 Check_SPARK_05_Restriction
4867 ("String subtype must have lower bound of 1", N
);
4877 -- In the case where there is no constraint given in the subtype
4878 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4879 -- semantic attributes must be established here.
4881 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
4882 Set_Etype
(Id
, Base_Type
(T
));
4884 -- Subtype of unconstrained array without constraint is not allowed
4887 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
4888 Check_SPARK_05_Restriction
4889 ("subtype of unconstrained array must have constraint", N
);
4894 Set_Ekind
(Id
, E_Array_Subtype
);
4895 Copy_Array_Subtype_Attributes
(Id
, T
);
4897 when Decimal_Fixed_Point_Kind
=>
4898 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
4899 Set_Digits_Value
(Id
, Digits_Value
(T
));
4900 Set_Delta_Value
(Id
, Delta_Value
(T
));
4901 Set_Scale_Value
(Id
, Scale_Value
(T
));
4902 Set_Small_Value
(Id
, Small_Value
(T
));
4903 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4904 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
4905 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4906 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4907 Set_RM_Size
(Id
, RM_Size
(T
));
4909 when Enumeration_Kind
=>
4910 Set_Ekind
(Id
, E_Enumeration_Subtype
);
4911 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
4912 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4913 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
4914 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4915 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4916 Set_RM_Size
(Id
, RM_Size
(T
));
4917 Inherit_Predicate_Flags
(Id
, T
);
4919 when Ordinary_Fixed_Point_Kind
=>
4920 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
4921 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4922 Set_Small_Value
(Id
, Small_Value
(T
));
4923 Set_Delta_Value
(Id
, Delta_Value
(T
));
4924 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4925 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4926 Set_RM_Size
(Id
, RM_Size
(T
));
4929 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
4930 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4931 Set_Digits_Value
(Id
, Digits_Value
(T
));
4932 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4934 -- If the floating point type has dimensions, these will be
4935 -- inherited subsequently when Analyze_Dimensions is called.
4937 when Signed_Integer_Kind
=>
4938 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
4939 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4940 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4941 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4942 Set_RM_Size
(Id
, RM_Size
(T
));
4943 Inherit_Predicate_Flags
(Id
, T
);
4945 when Modular_Integer_Kind
=>
4946 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
4947 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
4948 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4949 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
4950 Set_RM_Size
(Id
, RM_Size
(T
));
4951 Inherit_Predicate_Flags
(Id
, T
);
4953 when Class_Wide_Kind
=>
4954 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
4955 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
4956 Set_Cloned_Subtype
(Id
, T
);
4957 Set_Is_Tagged_Type
(Id
, True);
4958 Set_Has_Unknown_Discriminants
4960 Set_No_Tagged_Streams_Pragma
4961 (Id
, No_Tagged_Streams_Pragma
(T
));
4963 if Ekind
(T
) = E_Class_Wide_Subtype
then
4964 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
4967 when E_Record_Type | E_Record_Subtype
=>
4968 Set_Ekind
(Id
, E_Record_Subtype
);
4970 if Ekind
(T
) = E_Record_Subtype
4971 and then Present
(Cloned_Subtype
(T
))
4973 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
4975 Set_Cloned_Subtype
(Id
, T
);
4978 Set_First_Entity
(Id
, First_Entity
(T
));
4979 Set_Last_Entity
(Id
, Last_Entity
(T
));
4980 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
4981 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
4982 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
4983 Set_Has_Implicit_Dereference
4984 (Id
, Has_Implicit_Dereference
(T
));
4985 Set_Has_Unknown_Discriminants
4986 (Id
, Has_Unknown_Discriminants
(T
));
4988 if Has_Discriminants
(T
) then
4989 Set_Discriminant_Constraint
4990 (Id
, Discriminant_Constraint
(T
));
4991 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
4993 elsif Has_Unknown_Discriminants
(Id
) then
4994 Set_Discriminant_Constraint
(Id
, No_Elist
);
4997 if Is_Tagged_Type
(T
) then
4998 Set_Is_Tagged_Type
(Id
, True);
4999 Set_No_Tagged_Streams_Pragma
5000 (Id
, No_Tagged_Streams_Pragma
(T
));
5001 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
5002 Set_Direct_Primitive_Operations
5003 (Id
, Direct_Primitive_Operations
(T
));
5004 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5006 if Is_Interface
(T
) then
5007 Set_Is_Interface
(Id
);
5008 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
5012 when Private_Kind
=>
5013 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
5014 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5015 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5016 Set_First_Entity
(Id
, First_Entity
(T
));
5017 Set_Last_Entity
(Id
, Last_Entity
(T
));
5018 Set_Private_Dependents
(Id
, New_Elmt_List
);
5019 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
5020 Set_Has_Implicit_Dereference
5021 (Id
, Has_Implicit_Dereference
(T
));
5022 Set_Has_Unknown_Discriminants
5023 (Id
, Has_Unknown_Discriminants
(T
));
5024 Set_Known_To_Have_Preelab_Init
5025 (Id
, Known_To_Have_Preelab_Init
(T
));
5027 if Is_Tagged_Type
(T
) then
5028 Set_Is_Tagged_Type
(Id
);
5029 Set_No_Tagged_Streams_Pragma
(Id
,
5030 No_Tagged_Streams_Pragma
(T
));
5031 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
5032 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5033 Set_Direct_Primitive_Operations
(Id
,
5034 Direct_Primitive_Operations
(T
));
5037 -- In general the attributes of the subtype of a private type
5038 -- are the attributes of the partial view of parent. However,
5039 -- the full view may be a discriminated type, and the subtype
5040 -- must share the discriminant constraint to generate correct
5041 -- calls to initialization procedures.
5043 if Has_Discriminants
(T
) then
5044 Set_Discriminant_Constraint
5045 (Id
, Discriminant_Constraint
(T
));
5046 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5048 elsif Present
(Full_View
(T
))
5049 and then Has_Discriminants
(Full_View
(T
))
5051 Set_Discriminant_Constraint
5052 (Id
, Discriminant_Constraint
(Full_View
(T
)));
5053 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5055 -- This would seem semantically correct, but apparently
5056 -- generates spurious errors about missing components ???
5058 -- Set_Has_Discriminants (Id);
5061 Prepare_Private_Subtype_Completion
(Id
, N
);
5063 -- If this is the subtype of a constrained private type with
5064 -- discriminants that has got a full view and we also have
5065 -- built a completion just above, show that the completion
5066 -- is a clone of the full view to the back-end.
5068 if Has_Discriminants
(T
)
5069 and then not Has_Unknown_Discriminants
(T
)
5070 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
5071 and then Present
(Full_View
(T
))
5072 and then Present
(Full_View
(Id
))
5074 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
5078 Set_Ekind
(Id
, E_Access_Subtype
);
5079 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5080 Set_Is_Access_Constant
5081 (Id
, Is_Access_Constant
(T
));
5082 Set_Directly_Designated_Type
5083 (Id
, Designated_Type
(T
));
5084 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
5086 -- A Pure library_item must not contain the declaration of a
5087 -- named access type, except within a subprogram, generic
5088 -- subprogram, task unit, or protected unit, or if it has
5089 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5091 if Comes_From_Source
(Id
)
5092 and then In_Pure_Unit
5093 and then not In_Subprogram_Task_Protected_Unit
5094 and then not No_Pool_Assigned
(Id
)
5097 ("named access types not allowed in pure unit", N
);
5100 when Concurrent_Kind
=>
5101 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
5102 Set_Corresponding_Record_Type
(Id
,
5103 Corresponding_Record_Type
(T
));
5104 Set_First_Entity
(Id
, First_Entity
(T
));
5105 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
5106 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5107 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5108 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5109 Set_Last_Entity
(Id
, Last_Entity
(T
));
5111 if Is_Tagged_Type
(T
) then
5112 Set_No_Tagged_Streams_Pragma
5113 (Id
, No_Tagged_Streams_Pragma
(T
));
5116 if Has_Discriminants
(T
) then
5117 Set_Discriminant_Constraint
5118 (Id
, Discriminant_Constraint
(T
));
5119 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5122 when Incomplete_Kind
=>
5123 if Ada_Version
>= Ada_2005
then
5125 -- In Ada 2005 an incomplete type can be explicitly tagged:
5126 -- propagate indication. Note that we also have to include
5127 -- subtypes for Ada 2012 extended use of incomplete types.
5129 Set_Ekind
(Id
, E_Incomplete_Subtype
);
5130 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5131 Set_Private_Dependents
(Id
, New_Elmt_List
);
5133 if Is_Tagged_Type
(Id
) then
5134 Set_No_Tagged_Streams_Pragma
5135 (Id
, No_Tagged_Streams_Pragma
(T
));
5136 Set_Direct_Primitive_Operations
(Id
, New_Elmt_List
);
5139 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5140 -- incomplete type visible through a limited with clause.
5142 if From_Limited_With
(T
)
5143 and then Present
(Non_Limited_View
(T
))
5145 Set_From_Limited_With
(Id
);
5146 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
5148 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5149 -- to the private dependents of the original incomplete
5150 -- type for future transformation.
5153 Append_Elmt
(Id
, Private_Dependents
(T
));
5156 -- If the subtype name denotes an incomplete type an error
5157 -- was already reported by Process_Subtype.
5160 Set_Etype
(Id
, Any_Type
);
5164 raise Program_Error
;
5168 if Etype
(Id
) = Any_Type
then
5172 -- Some common processing on all types
5174 Set_Size_Info
(Id
, T
);
5175 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
5177 -- If the parent type is a generic actual, so is the subtype. This may
5178 -- happen in a nested instance. Why Comes_From_Source test???
5180 if not Comes_From_Source
(N
) then
5181 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
5184 -- If this is a subtype declaration for an actual in an instance,
5185 -- inherit static and dynamic predicates if any.
5187 -- If declaration has no aspect specifications, inherit predicate
5188 -- info as well. Unclear how to handle the case of both specified
5189 -- and inherited predicates ??? Other inherited aspects, such as
5190 -- invariants, should be OK, but the combination with later pragmas
5191 -- may also require special merging.
5193 if Has_Predicates
(T
)
5194 and then Present
(Predicate_Function
(T
))
5196 ((In_Instance
and then not Comes_From_Source
(N
))
5197 or else No
(Aspect_Specifications
(N
)))
5199 Set_Subprograms_For_Type
(Id
, Subprograms_For_Type
(T
));
5201 if Has_Static_Predicate
(T
) then
5202 Set_Has_Static_Predicate
(Id
);
5203 Set_Static_Discrete_Predicate
(Id
, Static_Discrete_Predicate
(T
));
5207 -- Propagate invariant-related attributes from the base type to the
5210 Propagate_Invariant_Attributes
(Id
, From_Typ
=> Base_Type
(T
));
5212 -- Remaining processing depends on characteristics of base type
5216 Set_Is_Immediately_Visible
(Id
, True);
5217 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
5218 Set_Is_Descendant_Of_Address
(Id
, Is_Descendant_Of_Address
(T
));
5220 if Is_Interface
(T
) then
5221 Set_Is_Interface
(Id
);
5224 if Present
(Generic_Parent_Type
(N
))
5226 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
5227 N_Formal_Type_Declaration
5228 or else Nkind
(Formal_Type_Definition
5229 (Parent
(Generic_Parent_Type
(N
)))) /=
5230 N_Formal_Private_Type_Definition
)
5232 if Is_Tagged_Type
(Id
) then
5234 -- If this is a generic actual subtype for a synchronized type,
5235 -- the primitive operations are those of the corresponding record
5236 -- for which there is a separate subtype declaration.
5238 if Is_Concurrent_Type
(Id
) then
5240 elsif Is_Class_Wide_Type
(Id
) then
5241 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
5243 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
5246 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
5247 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
5251 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
5252 Conditional_Delay
(Id
, Full_View
(T
));
5254 -- The subtypes of components or subcomponents of protected types
5255 -- do not need freeze nodes, which would otherwise appear in the
5256 -- wrong scope (before the freeze node for the protected type). The
5257 -- proper subtypes are those of the subcomponents of the corresponding
5260 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
5261 and then Present
(Scope
(Scope
(Id
))) -- error defense
5262 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
5264 Conditional_Delay
(Id
, T
);
5267 -- Check that Constraint_Error is raised for a scalar subtype indication
5268 -- when the lower or upper bound of a non-null range lies outside the
5269 -- range of the type mark.
5271 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5272 if Is_Scalar_Type
(Etype
(Id
))
5273 and then Scalar_Range
(Id
) /=
5275 (Etype
(Subtype_Mark
(Subtype_Indication
(N
))))
5279 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
5281 -- In the array case, check compatibility for each index
5283 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5285 -- This really should be a subprogram that finds the indications
5289 Subt_Index
: Node_Id
:= First_Index
(Id
);
5290 Target_Index
: Node_Id
:=
5292 (Subtype_Mark
(Subtype_Indication
(N
))));
5293 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5296 while Present
(Subt_Index
) loop
5297 if ((Nkind
(Subt_Index
) = N_Identifier
5298 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5299 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5301 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5304 Target_Typ
: constant Entity_Id
:=
5305 Etype
(Target_Index
);
5309 (Scalar_Range
(Etype
(Subt_Index
)),
5312 Defining_Identifier
(N
));
5314 -- Reset Has_Dynamic_Range_Check on the subtype to
5315 -- prevent elision of the index check due to a dynamic
5316 -- check generated for a preceding index (needed since
5317 -- Insert_Range_Checks tries to avoid generating
5318 -- redundant checks on a given declaration).
5320 Set_Has_Dynamic_Range_Check
(N
, False);
5326 Sloc
(Defining_Identifier
(N
)));
5328 -- Record whether this index involved a dynamic check
5331 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5335 Next_Index
(Subt_Index
);
5336 Next_Index
(Target_Index
);
5339 -- Finally, mark whether the subtype involves dynamic checks
5341 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5346 Set_Optimize_Alignment_Flags
(Id
);
5347 Check_Eliminated
(Id
);
5350 if Has_Aspects
(N
) then
5351 Analyze_Aspect_Specifications
(N
, Id
);
5354 Analyze_Dimension
(N
);
5356 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5357 -- indications on composite types where the constraints are dynamic.
5358 -- Note that object declarations and aggregates generate implicit
5359 -- subtype declarations, which this covers. One special case is that the
5360 -- implicitly generated "=" for discriminated types includes an
5361 -- offending subtype declaration, which is harmless, so we ignore it
5364 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5366 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
5368 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
5369 and then not (Is_Internal
(Id
)
5370 and then Is_TSS
(Scope
(Id
),
5371 TSS_Composite_Equality
))
5372 and then not Within_Init_Proc
5373 and then not All_Composite_Constraints_Static
(Cstr
)
5375 Check_Restriction
(No_Dynamic_Sized_Objects
, Cstr
);
5379 end Analyze_Subtype_Declaration
;
5381 --------------------------------
5382 -- Analyze_Subtype_Indication --
5383 --------------------------------
5385 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5386 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5387 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5394 Set_Etype
(N
, Etype
(R
));
5395 Resolve
(R
, Entity
(T
));
5397 Set_Error_Posted
(R
);
5398 Set_Error_Posted
(T
);
5400 end Analyze_Subtype_Indication
;
5402 --------------------------
5403 -- Analyze_Variant_Part --
5404 --------------------------
5406 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5407 Discr_Name
: Node_Id
;
5408 Discr_Type
: Entity_Id
;
5410 procedure Process_Variant
(A
: Node_Id
);
5411 -- Analyze declarations for a single variant
5413 package Analyze_Variant_Choices
is
5414 new Generic_Analyze_Choices
(Process_Variant
);
5415 use Analyze_Variant_Choices
;
5417 ---------------------
5418 -- Process_Variant --
5419 ---------------------
5421 procedure Process_Variant
(A
: Node_Id
) is
5422 CL
: constant Node_Id
:= Component_List
(A
);
5424 if not Null_Present
(CL
) then
5425 Analyze_Declarations
(Component_Items
(CL
));
5427 if Present
(Variant_Part
(CL
)) then
5428 Analyze
(Variant_Part
(CL
));
5431 end Process_Variant
;
5433 -- Start of processing for Analyze_Variant_Part
5436 Discr_Name
:= Name
(N
);
5437 Analyze
(Discr_Name
);
5439 -- If Discr_Name bad, get out (prevent cascaded errors)
5441 if Etype
(Discr_Name
) = Any_Type
then
5445 -- Check invalid discriminant in variant part
5447 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5448 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5451 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5453 if not Is_Discrete_Type
(Discr_Type
) then
5455 ("discriminant in a variant part must be of a discrete type",
5460 -- Now analyze the choices, which also analyzes the declarations that
5461 -- are associated with each choice.
5463 Analyze_Choices
(Variants
(N
), Discr_Type
);
5465 -- Note: we used to instantiate and call Check_Choices here to check
5466 -- that the choices covered the discriminant, but it's too early to do
5467 -- that because of statically predicated subtypes, whose analysis may
5468 -- be deferred to their freeze point which may be as late as the freeze
5469 -- point of the containing record. So this call is now to be found in
5470 -- Freeze_Record_Declaration.
5472 end Analyze_Variant_Part
;
5474 ----------------------------
5475 -- Array_Type_Declaration --
5476 ----------------------------
5478 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
5479 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
5480 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
5481 Element_Type
: Entity_Id
;
5482 Implicit_Base
: Entity_Id
;
5484 Related_Id
: Entity_Id
:= Empty
;
5486 P
: constant Node_Id
:= Parent
(Def
);
5490 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5491 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
5493 Index
:= First
(Subtype_Marks
(Def
));
5496 -- Find proper names for the implicit types which may be public. In case
5497 -- of anonymous arrays we use the name of the first object of that type
5501 Related_Id
:= Defining_Identifier
(P
);
5507 while Present
(Index
) loop
5510 -- Test for odd case of trying to index a type by the type itself
5512 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
5513 Error_Msg_N
("type& cannot be indexed by itself", Index
);
5514 Set_Entity
(Index
, Standard_Boolean
);
5515 Set_Etype
(Index
, Standard_Boolean
);
5518 -- Check SPARK restriction requiring a subtype mark
5520 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
5521 Check_SPARK_05_Restriction
("subtype mark required", Index
);
5524 -- Add a subtype declaration for each index of private array type
5525 -- declaration whose etype is also private. For example:
5528 -- type Index is private;
5530 -- type Table is array (Index) of ...
5533 -- This is currently required by the expander for the internally
5534 -- generated equality subprogram of records with variant parts in
5535 -- which the etype of some component is such private type.
5537 if Ekind
(Current_Scope
) = E_Package
5538 and then In_Private_Part
(Current_Scope
)
5539 and then Has_Private_Declaration
(Etype
(Index
))
5542 Loc
: constant Source_Ptr
:= Sloc
(Def
);
5547 New_E
:= Make_Temporary
(Loc
, 'T');
5548 Set_Is_Internal
(New_E
);
5551 Make_Subtype_Declaration
(Loc
,
5552 Defining_Identifier
=> New_E
,
5553 Subtype_Indication
=>
5554 New_Occurrence_Of
(Etype
(Index
), Loc
));
5556 Insert_Before
(Parent
(Def
), Decl
);
5558 Set_Etype
(Index
, New_E
);
5560 -- If the index is a range the Entity attribute is not
5561 -- available. Example:
5564 -- type T is private;
5566 -- type T is new Natural;
5567 -- Table : array (T(1) .. T(10)) of Boolean;
5570 if Nkind
(Index
) /= N_Range
then
5571 Set_Entity
(Index
, New_E
);
5576 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
5578 -- Check error of subtype with predicate for index type
5580 Bad_Predicated_Subtype_Use
5581 ("subtype& has predicate, not allowed as index subtype",
5582 Index
, Etype
(Index
));
5584 -- Move to next index
5587 Nb_Index
:= Nb_Index
+ 1;
5590 -- Process subtype indication if one is present
5592 if Present
(Component_Typ
) then
5593 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
5595 Set_Etype
(Component_Typ
, Element_Type
);
5597 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
5598 Check_SPARK_05_Restriction
5599 ("subtype mark required", Component_Typ
);
5602 -- Ada 2005 (AI-230): Access Definition case
5604 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
5606 -- Indicate that the anonymous access type is created by the
5607 -- array type declaration.
5609 Element_Type
:= Access_Definition
5611 N
=> Access_Definition
(Component_Def
));
5612 Set_Is_Local_Anonymous_Access
(Element_Type
);
5614 -- Propagate the parent. This field is needed if we have to generate
5615 -- the master_id associated with an anonymous access to task type
5616 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5618 Set_Parent
(Element_Type
, Parent
(T
));
5620 -- Ada 2005 (AI-230): In case of components that are anonymous access
5621 -- types the level of accessibility depends on the enclosing type
5624 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
5626 -- Ada 2005 (AI-254)
5629 CD
: constant Node_Id
:=
5630 Access_To_Subprogram_Definition
5631 (Access_Definition
(Component_Def
));
5633 if Present
(CD
) and then Protected_Present
(CD
) then
5635 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
5640 -- Constrained array case
5643 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
5646 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5648 -- Establish Implicit_Base as unconstrained base type
5650 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
5652 Set_Etype
(Implicit_Base
, Implicit_Base
);
5653 Set_Scope
(Implicit_Base
, Current_Scope
);
5654 Set_Has_Delayed_Freeze
(Implicit_Base
);
5655 Set_Default_SSO
(Implicit_Base
);
5657 -- The constrained array type is a subtype of the unconstrained one
5659 Set_Ekind
(T
, E_Array_Subtype
);
5660 Init_Size_Align
(T
);
5661 Set_Etype
(T
, Implicit_Base
);
5662 Set_Scope
(T
, Current_Scope
);
5663 Set_Is_Constrained
(T
);
5665 First
(Discrete_Subtype_Definitions
(Def
)));
5666 Set_Has_Delayed_Freeze
(T
);
5668 -- Complete setup of implicit base type
5670 Set_Component_Size
(Implicit_Base
, Uint_0
);
5671 Set_Component_Type
(Implicit_Base
, Element_Type
);
5672 Set_Finalize_Storage_Only
5674 Finalize_Storage_Only
(Element_Type
));
5675 Set_First_Index
(Implicit_Base
, First_Index
(T
));
5676 Set_Has_Controlled_Component
5678 Has_Controlled_Component
(Element_Type
)
5679 or else Is_Controlled_Active
(Element_Type
));
5680 Set_Packed_Array_Impl_Type
5681 (Implicit_Base
, Empty
);
5683 Propagate_Concurrent_Flags
(Implicit_Base
, Element_Type
);
5685 -- Inherit the "ghostness" from the constrained array type
5687 if Ghost_Mode
> None
or else Is_Ghost_Entity
(T
) then
5688 Set_Is_Ghost_Entity
(Implicit_Base
);
5691 -- Unconstrained array case
5694 Set_Ekind
(T
, E_Array_Type
);
5695 Init_Size_Align
(T
);
5697 Set_Scope
(T
, Current_Scope
);
5698 Set_Component_Size
(T
, Uint_0
);
5699 Set_Is_Constrained
(T
, False);
5700 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
5701 Set_Has_Delayed_Freeze
(T
, True);
5702 Propagate_Concurrent_Flags
(T
, Element_Type
);
5703 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
5706 Is_Controlled_Active
(Element_Type
));
5707 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
5709 Set_Default_SSO
(T
);
5712 -- Common attributes for both cases
5714 Set_Component_Type
(Base_Type
(T
), Element_Type
);
5715 Set_Packed_Array_Impl_Type
(T
, Empty
);
5717 if Aliased_Present
(Component_Definition
(Def
)) then
5718 Check_SPARK_05_Restriction
5719 ("aliased is not allowed", Component_Definition
(Def
));
5720 Set_Has_Aliased_Components
(Etype
(T
));
5723 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5724 -- array type to ensure that objects of this type are initialized.
5726 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
5727 Set_Can_Never_Be_Null
(T
);
5729 if Null_Exclusion_Present
(Component_Definition
(Def
))
5731 -- No need to check itypes because in their case this check was
5732 -- done at their point of creation
5734 and then not Is_Itype
(Element_Type
)
5737 ("`NOT NULL` not allowed (null already excluded)",
5738 Subtype_Indication
(Component_Definition
(Def
)));
5742 Priv
:= Private_Component
(Element_Type
);
5744 if Present
(Priv
) then
5746 -- Check for circular definitions
5748 if Priv
= Any_Type
then
5749 Set_Component_Type
(Etype
(T
), Any_Type
);
5751 -- There is a gap in the visibility of operations on the composite
5752 -- type only if the component type is defined in a different scope.
5754 elsif Scope
(Priv
) = Current_Scope
then
5757 elsif Is_Limited_Type
(Priv
) then
5758 Set_Is_Limited_Composite
(Etype
(T
));
5759 Set_Is_Limited_Composite
(T
);
5761 Set_Is_Private_Composite
(Etype
(T
));
5762 Set_Is_Private_Composite
(T
);
5766 -- A syntax error in the declaration itself may lead to an empty index
5767 -- list, in which case do a minimal patch.
5769 if No
(First_Index
(T
)) then
5770 Error_Msg_N
("missing index definition in array type declaration", T
);
5773 Indexes
: constant List_Id
:=
5774 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
5776 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
5777 Set_First_Index
(T
, First
(Indexes
));
5782 -- Create a concatenation operator for the new type. Internal array
5783 -- types created for packed entities do not need such, they are
5784 -- compatible with the user-defined type.
5786 if Number_Dimensions
(T
) = 1
5787 and then not Is_Packed_Array_Impl_Type
(T
)
5789 New_Concatenation_Op
(T
);
5792 -- In the case of an unconstrained array the parser has already verified
5793 -- that all the indexes are unconstrained but we still need to make sure
5794 -- that the element type is constrained.
5796 if not Is_Definite_Subtype
(Element_Type
) then
5798 ("unconstrained element type in array declaration",
5799 Subtype_Indication
(Component_Def
));
5801 elsif Is_Abstract_Type
(Element_Type
) then
5803 ("the type of a component cannot be abstract",
5804 Subtype_Indication
(Component_Def
));
5807 -- There may be an invariant declared for the component type, but
5808 -- the construction of the component invariant checking procedure
5809 -- takes place during expansion.
5810 end Array_Type_Declaration
;
5812 ------------------------------------------------------
5813 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5814 ------------------------------------------------------
5816 function Replace_Anonymous_Access_To_Protected_Subprogram
5817 (N
: Node_Id
) return Entity_Id
5819 Loc
: constant Source_Ptr
:= Sloc
(N
);
5821 Curr_Scope
: constant Scope_Stack_Entry
:=
5822 Scope_Stack
.Table
(Scope_Stack
.Last
);
5824 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5827 -- Access definition in declaration
5830 -- Object definition or formal definition with an access definition
5833 -- Declaration of anonymous access to subprogram type
5836 -- Original specification in access to subprogram
5841 Set_Is_Internal
(Anon
);
5844 when N_Component_Declaration |
5845 N_Unconstrained_Array_Definition |
5846 N_Constrained_Array_Definition
=>
5847 Comp
:= Component_Definition
(N
);
5848 Acc
:= Access_Definition
(Comp
);
5850 when N_Discriminant_Specification
=>
5851 Comp
:= Discriminant_Type
(N
);
5854 when N_Parameter_Specification
=>
5855 Comp
:= Parameter_Type
(N
);
5858 when N_Access_Function_Definition
=>
5859 Comp
:= Result_Definition
(N
);
5862 when N_Object_Declaration
=>
5863 Comp
:= Object_Definition
(N
);
5866 when N_Function_Specification
=>
5867 Comp
:= Result_Definition
(N
);
5871 raise Program_Error
;
5874 Spec
:= Access_To_Subprogram_Definition
(Acc
);
5877 Make_Full_Type_Declaration
(Loc
,
5878 Defining_Identifier
=> Anon
,
5879 Type_Definition
=> Copy_Separate_Tree
(Spec
));
5881 Mark_Rewrite_Insertion
(Decl
);
5883 -- In ASIS mode, analyze the profile on the original node, because
5884 -- the separate copy does not provide enough links to recover the
5885 -- original tree. Analysis is limited to type annotations, within
5886 -- a temporary scope that serves as an anonymous subprogram to collect
5887 -- otherwise useless temporaries and itypes.
5891 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
5894 if Nkind
(Spec
) = N_Access_Function_Definition
then
5895 Set_Ekind
(Typ
, E_Function
);
5897 Set_Ekind
(Typ
, E_Procedure
);
5900 Set_Parent
(Typ
, N
);
5901 Set_Scope
(Typ
, Current_Scope
);
5904 -- Nothing to do if procedure is parameterless
5906 if Present
(Parameter_Specifications
(Spec
)) then
5907 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
5910 if Nkind
(Spec
) = N_Access_Function_Definition
then
5912 Def
: constant Node_Id
:= Result_Definition
(Spec
);
5915 -- The result might itself be an anonymous access type, so
5918 if Nkind
(Def
) = N_Access_Definition
then
5919 if Present
(Access_To_Subprogram_Definition
(Def
)) then
5922 Replace_Anonymous_Access_To_Protected_Subprogram
5925 Find_Type
(Subtype_Mark
(Def
));
5938 -- Insert the new declaration in the nearest enclosing scope. If the
5939 -- parent is a body and N is its return type, the declaration belongs
5940 -- in the enclosing scope. Likewise if N is the type of a parameter.
5944 if Nkind
(N
) = N_Function_Specification
5945 and then Nkind
(P
) = N_Subprogram_Body
5948 elsif Nkind
(N
) = N_Parameter_Specification
5949 and then Nkind
(P
) in N_Subprogram_Specification
5950 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
5952 P
:= Parent
(Parent
(P
));
5955 while Present
(P
) and then not Has_Declarations
(P
) loop
5959 pragma Assert
(Present
(P
));
5961 if Nkind
(P
) = N_Package_Specification
then
5962 Prepend
(Decl
, Visible_Declarations
(P
));
5964 Prepend
(Decl
, Declarations
(P
));
5967 -- Replace the anonymous type with an occurrence of the new declaration.
5968 -- In all cases the rewritten node does not have the null-exclusion
5969 -- attribute because (if present) it was already inherited by the
5970 -- anonymous entity (Anon). Thus, in case of components we do not
5971 -- inherit this attribute.
5973 if Nkind
(N
) = N_Parameter_Specification
then
5974 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5975 Set_Etype
(Defining_Identifier
(N
), Anon
);
5976 Set_Null_Exclusion_Present
(N
, False);
5978 elsif Nkind
(N
) = N_Object_Declaration
then
5979 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5980 Set_Etype
(Defining_Identifier
(N
), Anon
);
5982 elsif Nkind
(N
) = N_Access_Function_Definition
then
5983 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5985 elsif Nkind
(N
) = N_Function_Specification
then
5986 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
5987 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
5991 Make_Component_Definition
(Loc
,
5992 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
5995 Mark_Rewrite_Insertion
(Comp
);
5997 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
)
5998 or else (Nkind
(Parent
(N
)) = N_Full_Type_Declaration
5999 and then not Is_Type
(Current_Scope
))
6002 -- Declaration can be analyzed in the current scope.
6007 -- Temporarily remove the current scope (record or subprogram) from
6008 -- the stack to add the new declarations to the enclosing scope.
6009 -- The anonymous entity is an Itype with the proper attributes.
6011 Scope_Stack
.Decrement_Last
;
6013 Set_Is_Itype
(Anon
);
6014 Set_Associated_Node_For_Itype
(Anon
, N
);
6015 Scope_Stack
.Append
(Curr_Scope
);
6018 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
6019 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
6021 end Replace_Anonymous_Access_To_Protected_Subprogram
;
6023 -------------------------------
6024 -- Build_Derived_Access_Type --
6025 -------------------------------
6027 procedure Build_Derived_Access_Type
6029 Parent_Type
: Entity_Id
;
6030 Derived_Type
: Entity_Id
)
6032 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
6034 Desig_Type
: Entity_Id
;
6036 Discr_Con_Elist
: Elist_Id
;
6037 Discr_Con_El
: Elmt_Id
;
6041 -- Set the designated type so it is available in case this is an access
6042 -- to a self-referential type, e.g. a standard list type with a next
6043 -- pointer. Will be reset after subtype is built.
6045 Set_Directly_Designated_Type
6046 (Derived_Type
, Designated_Type
(Parent_Type
));
6048 Subt
:= Process_Subtype
(S
, N
);
6050 if Nkind
(S
) /= N_Subtype_Indication
6051 and then Subt
/= Base_Type
(Subt
)
6053 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
6056 if Ekind
(Derived_Type
) = E_Access_Subtype
then
6058 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6059 Ibase
: constant Entity_Id
:=
6060 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
6061 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
6062 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
6065 Copy_Node
(Pbase
, Ibase
);
6067 -- Restore Itype status after Copy_Node
6069 Set_Is_Itype
(Ibase
);
6070 Set_Associated_Node_For_Itype
(Ibase
, N
);
6072 Set_Chars
(Ibase
, Svg_Chars
);
6073 Set_Next_Entity
(Ibase
, Svg_Next_E
);
6074 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
6075 Set_Scope
(Ibase
, Scope
(Derived_Type
));
6076 Set_Freeze_Node
(Ibase
, Empty
);
6077 Set_Is_Frozen
(Ibase
, False);
6078 Set_Comes_From_Source
(Ibase
, False);
6079 Set_Is_First_Subtype
(Ibase
, False);
6081 Set_Etype
(Ibase
, Pbase
);
6082 Set_Etype
(Derived_Type
, Ibase
);
6086 Set_Directly_Designated_Type
6087 (Derived_Type
, Designated_Type
(Subt
));
6089 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
6090 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
6091 Set_Size_Info
(Derived_Type
, Parent_Type
);
6092 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
6093 Set_Depends_On_Private
(Derived_Type
,
6094 Has_Private_Component
(Derived_Type
));
6095 Conditional_Delay
(Derived_Type
, Subt
);
6097 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6098 -- that it is not redundant.
6100 if Null_Exclusion_Present
(Type_Definition
(N
)) then
6101 Set_Can_Never_Be_Null
(Derived_Type
);
6103 elsif Can_Never_Be_Null
(Parent_Type
) then
6104 Set_Can_Never_Be_Null
(Derived_Type
);
6107 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6108 -- the root type for this information.
6110 -- Apply range checks to discriminants for derived record case
6111 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6113 Desig_Type
:= Designated_Type
(Derived_Type
);
6115 if Is_Composite_Type
(Desig_Type
)
6116 and then (not Is_Array_Type
(Desig_Type
))
6117 and then Has_Discriminants
(Desig_Type
)
6118 and then Base_Type
(Desig_Type
) /= Desig_Type
6120 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
6121 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
6123 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
6124 while Present
(Discr_Con_El
) loop
6125 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
6126 Next_Elmt
(Discr_Con_El
);
6127 Next_Discriminant
(Discr
);
6130 end Build_Derived_Access_Type
;
6132 ------------------------------
6133 -- Build_Derived_Array_Type --
6134 ------------------------------
6136 procedure Build_Derived_Array_Type
6138 Parent_Type
: Entity_Id
;
6139 Derived_Type
: Entity_Id
)
6141 Loc
: constant Source_Ptr
:= Sloc
(N
);
6142 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6143 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6144 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6145 Implicit_Base
: Entity_Id
;
6146 New_Indic
: Node_Id
;
6148 procedure Make_Implicit_Base
;
6149 -- If the parent subtype is constrained, the derived type is a subtype
6150 -- of an implicit base type derived from the parent base.
6152 ------------------------
6153 -- Make_Implicit_Base --
6154 ------------------------
6156 procedure Make_Implicit_Base
is
6159 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6161 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6162 Set_Etype
(Implicit_Base
, Parent_Base
);
6164 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
6165 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
6167 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
6169 -- Inherit the "ghostness" from the parent base type
6171 if Ghost_Mode
> None
or else Is_Ghost_Entity
(Parent_Base
) then
6172 Set_Is_Ghost_Entity
(Implicit_Base
);
6174 end Make_Implicit_Base
;
6176 -- Start of processing for Build_Derived_Array_Type
6179 if not Is_Constrained
(Parent_Type
) then
6180 if Nkind
(Indic
) /= N_Subtype_Indication
then
6181 Set_Ekind
(Derived_Type
, E_Array_Type
);
6183 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6184 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
6186 Set_Has_Delayed_Freeze
(Derived_Type
, True);
6190 Set_Etype
(Derived_Type
, Implicit_Base
);
6193 Make_Subtype_Declaration
(Loc
,
6194 Defining_Identifier
=> Derived_Type
,
6195 Subtype_Indication
=>
6196 Make_Subtype_Indication
(Loc
,
6197 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6198 Constraint
=> Constraint
(Indic
)));
6200 Rewrite
(N
, New_Indic
);
6205 if Nkind
(Indic
) /= N_Subtype_Indication
then
6208 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
6209 Set_Etype
(Derived_Type
, Implicit_Base
);
6210 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6213 Error_Msg_N
("illegal constraint on constrained type", Indic
);
6217 -- If parent type is not a derived type itself, and is declared in
6218 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6219 -- the new type's concatenation operator since Derive_Subprograms
6220 -- will not inherit the parent's operator. If the parent type is
6221 -- unconstrained, the operator is of the unconstrained base type.
6223 if Number_Dimensions
(Parent_Type
) = 1
6224 and then not Is_Limited_Type
(Parent_Type
)
6225 and then not Is_Derived_Type
(Parent_Type
)
6226 and then not Is_Package_Or_Generic_Package
6227 (Scope
(Base_Type
(Parent_Type
)))
6229 if not Is_Constrained
(Parent_Type
)
6230 and then Is_Constrained
(Derived_Type
)
6232 New_Concatenation_Op
(Implicit_Base
);
6234 New_Concatenation_Op
(Derived_Type
);
6237 end Build_Derived_Array_Type
;
6239 -----------------------------------
6240 -- Build_Derived_Concurrent_Type --
6241 -----------------------------------
6243 procedure Build_Derived_Concurrent_Type
6245 Parent_Type
: Entity_Id
;
6246 Derived_Type
: Entity_Id
)
6248 Loc
: constant Source_Ptr
:= Sloc
(N
);
6250 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
6251 Corr_Decl
: Node_Id
;
6252 Corr_Decl_Needed
: Boolean;
6253 -- If the derived type has fewer discriminants than its parent, the
6254 -- corresponding record is also a derived type, in order to account for
6255 -- the bound discriminants. We create a full type declaration for it in
6258 Constraint_Present
: constant Boolean :=
6259 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6260 N_Subtype_Indication
;
6262 D_Constraint
: Node_Id
;
6263 New_Constraint
: Elist_Id
;
6264 Old_Disc
: Entity_Id
;
6265 New_Disc
: Entity_Id
;
6269 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6270 Corr_Decl_Needed
:= False;
6273 if Present
(Discriminant_Specifications
(N
))
6274 and then Constraint_Present
6276 Old_Disc
:= First_Discriminant
(Parent_Type
);
6277 New_Disc
:= First
(Discriminant_Specifications
(N
));
6278 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
6279 Next_Discriminant
(Old_Disc
);
6284 if Present
(Old_Disc
) and then Expander_Active
then
6286 -- The new type has fewer discriminants, so we need to create a new
6287 -- corresponding record, which is derived from the corresponding
6288 -- record of the parent, and has a stored constraint that captures
6289 -- the values of the discriminant constraints. The corresponding
6290 -- record is needed only if expander is active and code generation is
6293 -- The type declaration for the derived corresponding record has the
6294 -- same discriminant part and constraints as the current declaration.
6295 -- Copy the unanalyzed tree to build declaration.
6297 Corr_Decl_Needed
:= True;
6298 New_N
:= Copy_Separate_Tree
(N
);
6301 Make_Full_Type_Declaration
(Loc
,
6302 Defining_Identifier
=> Corr_Record
,
6303 Discriminant_Specifications
=>
6304 Discriminant_Specifications
(New_N
),
6306 Make_Derived_Type_Definition
(Loc
,
6307 Subtype_Indication
=>
6308 Make_Subtype_Indication
(Loc
,
6311 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6314 (Subtype_Indication
(Type_Definition
(New_N
))))));
6317 -- Copy Storage_Size and Relative_Deadline variables if task case
6319 if Is_Task_Type
(Parent_Type
) then
6320 Set_Storage_Size_Variable
(Derived_Type
,
6321 Storage_Size_Variable
(Parent_Type
));
6322 Set_Relative_Deadline_Variable
(Derived_Type
,
6323 Relative_Deadline_Variable
(Parent_Type
));
6326 if Present
(Discriminant_Specifications
(N
)) then
6327 Push_Scope
(Derived_Type
);
6328 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6330 if Constraint_Present
then
6332 Expand_To_Stored_Constraint
6334 Build_Discriminant_Constraints
6336 Subtype_Indication
(Type_Definition
(N
)), True));
6341 elsif Constraint_Present
then
6343 -- Build constrained subtype, copying the constraint, and derive
6344 -- from it to create a derived constrained type.
6347 Loc
: constant Source_Ptr
:= Sloc
(N
);
6348 Anon
: constant Entity_Id
:=
6349 Make_Defining_Identifier
(Loc
,
6350 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6355 Make_Subtype_Declaration
(Loc
,
6356 Defining_Identifier
=> Anon
,
6357 Subtype_Indication
=>
6358 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6359 Insert_Before
(N
, Decl
);
6362 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6363 New_Occurrence_Of
(Anon
, Loc
));
6364 Set_Analyzed
(Derived_Type
, False);
6370 -- By default, operations and private data are inherited from parent.
6371 -- However, in the presence of bound discriminants, a new corresponding
6372 -- record will be created, see below.
6374 Set_Has_Discriminants
6375 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6376 Set_Corresponding_Record_Type
6377 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6379 -- Is_Constrained is set according the parent subtype, but is set to
6380 -- False if the derived type is declared with new discriminants.
6384 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6385 and then not Present
(Discriminant_Specifications
(N
)));
6387 if Constraint_Present
then
6388 if not Has_Discriminants
(Parent_Type
) then
6389 Error_Msg_N
("untagged parent must have discriminants", N
);
6391 elsif Present
(Discriminant_Specifications
(N
)) then
6393 -- Verify that new discriminants are used to constrain old ones
6398 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6400 Old_Disc
:= First_Discriminant
(Parent_Type
);
6402 while Present
(D_Constraint
) loop
6403 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6405 -- Positional constraint. If it is a reference to a new
6406 -- discriminant, it constrains the corresponding old one.
6408 if Nkind
(D_Constraint
) = N_Identifier
then
6409 New_Disc
:= First_Discriminant
(Derived_Type
);
6410 while Present
(New_Disc
) loop
6411 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6412 Next_Discriminant
(New_Disc
);
6415 if Present
(New_Disc
) then
6416 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6420 Next_Discriminant
(Old_Disc
);
6422 -- if this is a named constraint, search by name for the old
6423 -- discriminants constrained by the new one.
6425 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6427 -- Find new discriminant with that name
6429 New_Disc
:= First_Discriminant
(Derived_Type
);
6430 while Present
(New_Disc
) loop
6432 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6433 Next_Discriminant
(New_Disc
);
6436 if Present
(New_Disc
) then
6438 -- Verify that new discriminant renames some discriminant
6439 -- of the parent type, and associate the new discriminant
6440 -- with one or more old ones that it renames.
6446 Selector
:= First
(Selector_Names
(D_Constraint
));
6447 while Present
(Selector
) loop
6448 Old_Disc
:= First_Discriminant
(Parent_Type
);
6449 while Present
(Old_Disc
) loop
6450 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6451 Next_Discriminant
(Old_Disc
);
6454 if Present
(Old_Disc
) then
6455 Set_Corresponding_Discriminant
6456 (New_Disc
, Old_Disc
);
6465 Next
(D_Constraint
);
6468 New_Disc
:= First_Discriminant
(Derived_Type
);
6469 while Present
(New_Disc
) loop
6470 if No
(Corresponding_Discriminant
(New_Disc
)) then
6472 ("new discriminant& must constrain old one", N
, New_Disc
);
6475 Subtypes_Statically_Compatible
6477 Etype
(Corresponding_Discriminant
(New_Disc
)))
6480 ("& not statically compatible with parent discriminant",
6484 Next_Discriminant
(New_Disc
);
6488 elsif Present
(Discriminant_Specifications
(N
)) then
6490 ("missing discriminant constraint in untagged derivation", N
);
6493 -- The entity chain of the derived type includes the new discriminants
6494 -- but shares operations with the parent.
6496 if Present
(Discriminant_Specifications
(N
)) then
6497 Old_Disc
:= First_Discriminant
(Parent_Type
);
6498 while Present
(Old_Disc
) loop
6499 if No
(Next_Entity
(Old_Disc
))
6500 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
6503 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
6507 Next_Discriminant
(Old_Disc
);
6511 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
6512 if Has_Discriminants
(Parent_Type
) then
6513 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6514 Set_Discriminant_Constraint
(
6515 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
6519 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
6521 Set_Has_Completion
(Derived_Type
);
6523 if Corr_Decl_Needed
then
6524 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
6525 Insert_After
(N
, Corr_Decl
);
6526 Analyze
(Corr_Decl
);
6527 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
6529 end Build_Derived_Concurrent_Type
;
6531 ------------------------------------
6532 -- Build_Derived_Enumeration_Type --
6533 ------------------------------------
6535 procedure Build_Derived_Enumeration_Type
6537 Parent_Type
: Entity_Id
;
6538 Derived_Type
: Entity_Id
)
6540 Loc
: constant Source_Ptr
:= Sloc
(N
);
6541 Def
: constant Node_Id
:= Type_Definition
(N
);
6542 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6543 Implicit_Base
: Entity_Id
;
6544 Literal
: Entity_Id
;
6545 New_Lit
: Entity_Id
;
6546 Literals_List
: List_Id
;
6547 Type_Decl
: Node_Id
;
6549 Rang_Expr
: Node_Id
;
6552 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6553 -- not have explicit literals lists we need to process types derived
6554 -- from them specially. This is handled by Derived_Standard_Character.
6555 -- If the parent type is a generic type, there are no literals either,
6556 -- and we construct the same skeletal representation as for the generic
6559 if Is_Standard_Character_Type
(Parent_Type
) then
6560 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
6562 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
6568 if Nkind
(Indic
) /= N_Subtype_Indication
then
6570 Make_Attribute_Reference
(Loc
,
6571 Attribute_Name
=> Name_First
,
6572 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6573 Set_Etype
(Lo
, Derived_Type
);
6576 Make_Attribute_Reference
(Loc
,
6577 Attribute_Name
=> Name_Last
,
6578 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
6579 Set_Etype
(Hi
, Derived_Type
);
6581 Set_Scalar_Range
(Derived_Type
,
6587 -- Analyze subtype indication and verify compatibility
6588 -- with parent type.
6590 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
6591 Base_Type
(Parent_Type
)
6594 ("illegal constraint for formal discrete type", N
);
6600 -- If a constraint is present, analyze the bounds to catch
6601 -- premature usage of the derived literals.
6603 if Nkind
(Indic
) = N_Subtype_Indication
6604 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
6606 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
6607 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
6610 -- Introduce an implicit base type for the derived type even if there
6611 -- is no constraint attached to it, since this seems closer to the
6612 -- Ada semantics. Build a full type declaration tree for the derived
6613 -- type using the implicit base type as the defining identifier. The
6614 -- build a subtype declaration tree which applies the constraint (if
6615 -- any) have it replace the derived type declaration.
6617 Literal
:= First_Literal
(Parent_Type
);
6618 Literals_List
:= New_List
;
6619 while Present
(Literal
)
6620 and then Ekind
(Literal
) = E_Enumeration_Literal
6622 -- Literals of the derived type have the same representation as
6623 -- those of the parent type, but this representation can be
6624 -- overridden by an explicit representation clause. Indicate
6625 -- that there is no explicit representation given yet. These
6626 -- derived literals are implicit operations of the new type,
6627 -- and can be overridden by explicit ones.
6629 if Nkind
(Literal
) = N_Defining_Character_Literal
then
6631 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
6633 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
6636 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
6637 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
6638 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
6639 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
6640 Set_Alias
(New_Lit
, Literal
);
6641 Set_Is_Known_Valid
(New_Lit
, True);
6643 Append
(New_Lit
, Literals_List
);
6644 Next_Literal
(Literal
);
6648 Make_Defining_Identifier
(Sloc
(Derived_Type
),
6649 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
6651 -- Indicate the proper nature of the derived type. This must be done
6652 -- before analysis of the literals, to recognize cases when a literal
6653 -- may be hidden by a previous explicit function definition (cf.
6656 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
6657 Set_Etype
(Derived_Type
, Implicit_Base
);
6660 Make_Full_Type_Declaration
(Loc
,
6661 Defining_Identifier
=> Implicit_Base
,
6662 Discriminant_Specifications
=> No_List
,
6664 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
6666 Mark_Rewrite_Insertion
(Type_Decl
);
6667 Insert_Before
(N
, Type_Decl
);
6668 Analyze
(Type_Decl
);
6670 -- The anonymous base now has a full declaration, but this base
6671 -- is not a first subtype.
6673 Set_Is_First_Subtype
(Implicit_Base
, False);
6675 -- After the implicit base is analyzed its Etype needs to be changed
6676 -- to reflect the fact that it is derived from the parent type which
6677 -- was ignored during analysis. We also set the size at this point.
6679 Set_Etype
(Implicit_Base
, Parent_Type
);
6681 Set_Size_Info
(Implicit_Base
, Parent_Type
);
6682 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
6683 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
6685 -- Copy other flags from parent type
6687 Set_Has_Non_Standard_Rep
6688 (Implicit_Base
, Has_Non_Standard_Rep
6690 Set_Has_Pragma_Ordered
6691 (Implicit_Base
, Has_Pragma_Ordered
6693 Set_Has_Delayed_Freeze
(Implicit_Base
);
6695 -- Process the subtype indication including a validation check on the
6696 -- constraint, if any. If a constraint is given, its bounds must be
6697 -- implicitly converted to the new type.
6699 if Nkind
(Indic
) = N_Subtype_Indication
then
6701 R
: constant Node_Id
:=
6702 Range_Expression
(Constraint
(Indic
));
6705 if Nkind
(R
) = N_Range
then
6706 Hi
:= Build_Scalar_Bound
6707 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
6708 Lo
:= Build_Scalar_Bound
6709 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
6712 -- Constraint is a Range attribute. Replace with explicit
6713 -- mention of the bounds of the prefix, which must be a
6716 Analyze
(Prefix
(R
));
6718 Convert_To
(Implicit_Base
,
6719 Make_Attribute_Reference
(Loc
,
6720 Attribute_Name
=> Name_Last
,
6722 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6725 Convert_To
(Implicit_Base
,
6726 Make_Attribute_Reference
(Loc
,
6727 Attribute_Name
=> Name_First
,
6729 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
6736 (Type_High_Bound
(Parent_Type
),
6737 Parent_Type
, Implicit_Base
);
6740 (Type_Low_Bound
(Parent_Type
),
6741 Parent_Type
, Implicit_Base
);
6749 -- If we constructed a default range for the case where no range
6750 -- was given, then the expressions in the range must not freeze
6751 -- since they do not correspond to expressions in the source.
6753 if Nkind
(Indic
) /= N_Subtype_Indication
then
6754 Set_Must_Not_Freeze
(Lo
);
6755 Set_Must_Not_Freeze
(Hi
);
6756 Set_Must_Not_Freeze
(Rang_Expr
);
6760 Make_Subtype_Declaration
(Loc
,
6761 Defining_Identifier
=> Derived_Type
,
6762 Subtype_Indication
=>
6763 Make_Subtype_Indication
(Loc
,
6764 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6766 Make_Range_Constraint
(Loc
,
6767 Range_Expression
=> Rang_Expr
))));
6771 -- Propagate the aspects from the original type declaration to the
6772 -- declaration of the implicit base.
6774 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
6776 -- Apply a range check. Since this range expression doesn't have an
6777 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6780 if Nkind
(Indic
) = N_Subtype_Indication
then
6782 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
6783 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
6786 end Build_Derived_Enumeration_Type
;
6788 --------------------------------
6789 -- Build_Derived_Numeric_Type --
6790 --------------------------------
6792 procedure Build_Derived_Numeric_Type
6794 Parent_Type
: Entity_Id
;
6795 Derived_Type
: Entity_Id
)
6797 Loc
: constant Source_Ptr
:= Sloc
(N
);
6798 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6799 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6800 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6801 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
6802 N_Subtype_Indication
;
6803 Implicit_Base
: Entity_Id
;
6809 -- Process the subtype indication including a validation check on
6810 -- the constraint if any.
6812 Discard_Node
(Process_Subtype
(Indic
, N
));
6814 -- Introduce an implicit base type for the derived type even if there
6815 -- is no constraint attached to it, since this seems closer to the Ada
6819 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6821 Set_Etype
(Implicit_Base
, Parent_Base
);
6822 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6823 Set_Size_Info
(Implicit_Base
, Parent_Base
);
6824 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
6825 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
6826 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6828 -- Set RM Size for discrete type or decimal fixed-point type
6829 -- Ordinary fixed-point is excluded, why???
6831 if Is_Discrete_Type
(Parent_Base
)
6832 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
6834 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
6837 Set_Has_Delayed_Freeze
(Implicit_Base
);
6839 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
6840 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
6842 Set_Scalar_Range
(Implicit_Base
,
6847 if Has_Infinities
(Parent_Base
) then
6848 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
6851 -- The Derived_Type, which is the entity of the declaration, is a
6852 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6853 -- absence of an explicit constraint.
6855 Set_Etype
(Derived_Type
, Implicit_Base
);
6857 -- If we did not have a constraint, then the Ekind is set from the
6858 -- parent type (otherwise Process_Subtype has set the bounds)
6860 if No_Constraint
then
6861 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
6864 -- If we did not have a range constraint, then set the range from the
6865 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6867 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
6868 Set_Scalar_Range
(Derived_Type
,
6870 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
6871 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
6872 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6874 if Has_Infinities
(Parent_Type
) then
6875 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
6878 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
6881 Set_Is_Descendant_Of_Address
(Derived_Type
,
6882 Is_Descendant_Of_Address
(Parent_Type
));
6883 Set_Is_Descendant_Of_Address
(Implicit_Base
,
6884 Is_Descendant_Of_Address
(Parent_Type
));
6886 -- Set remaining type-specific fields, depending on numeric type
6888 if Is_Modular_Integer_Type
(Parent_Type
) then
6889 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
6891 Set_Non_Binary_Modulus
6892 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
6895 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
6897 elsif Is_Floating_Point_Type
(Parent_Type
) then
6899 -- Digits of base type is always copied from the digits value of
6900 -- the parent base type, but the digits of the derived type will
6901 -- already have been set if there was a constraint present.
6903 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6904 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
6906 if No_Constraint
then
6907 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
6910 elsif Is_Fixed_Point_Type
(Parent_Type
) then
6912 -- Small of base type and derived type are always copied from the
6913 -- parent base type, since smalls never change. The delta of the
6914 -- base type is also copied from the parent base type. However the
6915 -- delta of the derived type will have been set already if a
6916 -- constraint was present.
6918 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
6919 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
6920 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
6922 if No_Constraint
then
6923 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
6926 -- The scale and machine radix in the decimal case are always
6927 -- copied from the parent base type.
6929 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
6930 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
6931 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
6933 Set_Machine_Radix_10
6934 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
6935 Set_Machine_Radix_10
6936 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
6938 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
6940 if No_Constraint
then
6941 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
6944 -- the analysis of the subtype_indication sets the
6945 -- digits value of the derived type.
6952 if Is_Integer_Type
(Parent_Type
) then
6953 Set_Has_Shift_Operator
6954 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
6957 -- The type of the bounds is that of the parent type, and they
6958 -- must be converted to the derived type.
6960 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
6962 -- The implicit_base should be frozen when the derived type is frozen,
6963 -- but note that it is used in the conversions of the bounds. For fixed
6964 -- types we delay the determination of the bounds until the proper
6965 -- freezing point. For other numeric types this is rejected by GCC, for
6966 -- reasons that are currently unclear (???), so we choose to freeze the
6967 -- implicit base now. In the case of integers and floating point types
6968 -- this is harmless because subsequent representation clauses cannot
6969 -- affect anything, but it is still baffling that we cannot use the
6970 -- same mechanism for all derived numeric types.
6972 -- There is a further complication: actually some representation
6973 -- clauses can affect the implicit base type. For example, attribute
6974 -- definition clauses for stream-oriented attributes need to set the
6975 -- corresponding TSS entries on the base type, and this normally
6976 -- cannot be done after the base type is frozen, so the circuitry in
6977 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6978 -- and not use Set_TSS in this case.
6980 -- There are also consequences for the case of delayed representation
6981 -- aspects for some cases. For example, a Size aspect is delayed and
6982 -- should not be evaluated to the freeze point. This early freezing
6983 -- means that the size attribute evaluation happens too early???
6985 if Is_Fixed_Point_Type
(Parent_Type
) then
6986 Conditional_Delay
(Implicit_Base
, Parent_Type
);
6988 Freeze_Before
(N
, Implicit_Base
);
6990 end Build_Derived_Numeric_Type
;
6992 --------------------------------
6993 -- Build_Derived_Private_Type --
6994 --------------------------------
6996 procedure Build_Derived_Private_Type
6998 Parent_Type
: Entity_Id
;
6999 Derived_Type
: Entity_Id
;
7000 Is_Completion
: Boolean;
7001 Derive_Subps
: Boolean := True)
7003 Loc
: constant Source_Ptr
:= Sloc
(N
);
7004 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
7005 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
7006 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
7007 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
7010 procedure Build_Full_Derivation
;
7011 -- Build full derivation, i.e. derive from the full view
7013 procedure Copy_And_Build
;
7014 -- Copy derived type declaration, replace parent with its full view,
7015 -- and build derivation
7017 ---------------------------
7018 -- Build_Full_Derivation --
7019 ---------------------------
7021 procedure Build_Full_Derivation
is
7023 -- If parent scope is not open, install the declarations
7025 if not In_Open_Scopes
(Par_Scope
) then
7026 Install_Private_Declarations
(Par_Scope
);
7027 Install_Visible_Declarations
(Par_Scope
);
7029 Uninstall_Declarations
(Par_Scope
);
7031 -- If parent scope is open and in another unit, and parent has a
7032 -- completion, then the derivation is taking place in the visible
7033 -- part of a child unit. In that case retrieve the full view of
7034 -- the parent momentarily.
7036 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
7037 Full_P
:= Full_View
(Parent_Type
);
7038 Exchange_Declarations
(Parent_Type
);
7040 Exchange_Declarations
(Full_P
);
7042 -- Otherwise it is a local derivation
7047 end Build_Full_Derivation
;
7049 --------------------
7050 -- Copy_And_Build --
7051 --------------------
7053 procedure Copy_And_Build
is
7054 Full_Parent
: Entity_Id
:= Parent_Type
;
7057 -- If the parent is itself derived from another private type,
7058 -- installing the private declarations has not affected its
7059 -- privacy status, so use its own full view explicitly.
7061 if Is_Private_Type
(Full_Parent
)
7062 and then Present
(Full_View
(Full_Parent
))
7064 Full_Parent
:= Full_View
(Full_Parent
);
7067 -- And its underlying full view if necessary
7069 if Is_Private_Type
(Full_Parent
)
7070 and then Present
(Underlying_Full_View
(Full_Parent
))
7072 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
7075 -- For record, access and most enumeration types, derivation from
7076 -- the full view requires a fully-fledged declaration. In the other
7077 -- cases, just use an itype.
7079 if Ekind
(Full_Parent
) in Record_Kind
7080 or else Ekind
(Full_Parent
) in Access_Kind
7082 (Ekind
(Full_Parent
) in Enumeration_Kind
7083 and then not Is_Standard_Character_Type
(Full_Parent
)
7084 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
7086 -- Copy and adjust declaration to provide a completion for what
7087 -- is originally a private declaration. Indicate that full view
7088 -- is internally generated.
7090 Set_Comes_From_Source
(Full_N
, False);
7091 Set_Comes_From_Source
(Full_Der
, False);
7092 Set_Parent
(Full_Der
, Full_N
);
7093 Set_Defining_Identifier
(Full_N
, Full_Der
);
7095 -- If there are no constraints, adjust the subtype mark
7097 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
7098 N_Subtype_Indication
7100 Set_Subtype_Indication
7101 (Type_Definition
(Full_N
),
7102 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
7105 Insert_After
(N
, Full_N
);
7107 -- Build full view of derived type from full view of parent which
7108 -- is now installed. Subprograms have been derived on the partial
7109 -- view, the completion does not derive them anew.
7111 if Ekind
(Full_Parent
) in Record_Kind
then
7113 -- If parent type is tagged, the completion inherits the proper
7114 -- primitive operations.
7116 if Is_Tagged_Type
(Parent_Type
) then
7117 Build_Derived_Record_Type
7118 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
7120 Build_Derived_Record_Type
7121 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
7126 (Full_N
, Full_Parent
, Full_Der
,
7127 Is_Completion
=> False, Derive_Subps
=> False);
7130 -- The full declaration has been introduced into the tree and
7131 -- processed in the step above. It should not be analyzed again
7132 -- (when encountered later in the current list of declarations)
7133 -- to prevent spurious name conflicts. The full entity remains
7136 Set_Analyzed
(Full_N
);
7140 Make_Defining_Identifier
(Sloc
(Derived_Type
),
7141 Chars
=> Chars
(Derived_Type
));
7142 Set_Is_Itype
(Full_Der
);
7143 Set_Associated_Node_For_Itype
(Full_Der
, N
);
7144 Set_Parent
(Full_Der
, N
);
7146 (N
, Full_Parent
, Full_Der
,
7147 Is_Completion
=> False, Derive_Subps
=> False);
7150 Set_Has_Private_Declaration
(Full_Der
);
7151 Set_Has_Private_Declaration
(Derived_Type
);
7153 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
7154 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
7155 Set_Has_Size_Clause
(Full_Der
, False);
7156 Set_Has_Alignment_Clause
(Full_Der
, False);
7157 Set_Has_Delayed_Freeze
(Full_Der
);
7158 Set_Is_Frozen
(Full_Der
, False);
7159 Set_Freeze_Node
(Full_Der
, Empty
);
7160 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
7161 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
7163 -- The convention on the base type may be set in the private part
7164 -- and not propagated to the subtype until later, so we obtain the
7165 -- convention from the base type of the parent.
7167 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
7170 -- Start of processing for Build_Derived_Private_Type
7173 if Is_Tagged_Type
(Parent_Type
) then
7174 Full_P
:= Full_View
(Parent_Type
);
7176 -- A type extension of a type with unknown discriminants is an
7177 -- indefinite type that the back-end cannot handle directly.
7178 -- We treat it as a private type, and build a completion that is
7179 -- derived from the full view of the parent, and hopefully has
7180 -- known discriminants.
7182 -- If the full view of the parent type has an underlying record view,
7183 -- use it to generate the underlying record view of this derived type
7184 -- (required for chains of derivations with unknown discriminants).
7186 -- Minor optimization: we avoid the generation of useless underlying
7187 -- record view entities if the private type declaration has unknown
7188 -- discriminants but its corresponding full view has no
7191 if Has_Unknown_Discriminants
(Parent_Type
)
7192 and then Present
(Full_P
)
7193 and then (Has_Discriminants
(Full_P
)
7194 or else Present
(Underlying_Record_View
(Full_P
)))
7195 and then not In_Open_Scopes
(Par_Scope
)
7196 and then Expander_Active
7199 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7200 New_Ext
: constant Node_Id
:=
7202 (Record_Extension_Part
(Type_Definition
(N
)));
7206 Build_Derived_Record_Type
7207 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7209 -- Build anonymous completion, as a derivation from the full
7210 -- view of the parent. This is not a completion in the usual
7211 -- sense, because the current type is not private.
7214 Make_Full_Type_Declaration
(Loc
,
7215 Defining_Identifier
=> Full_Der
,
7217 Make_Derived_Type_Definition
(Loc
,
7218 Subtype_Indication
=>
7220 (Subtype_Indication
(Type_Definition
(N
))),
7221 Record_Extension_Part
=> New_Ext
));
7223 -- If the parent type has an underlying record view, use it
7224 -- here to build the new underlying record view.
7226 if Present
(Underlying_Record_View
(Full_P
)) then
7228 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
7230 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
7231 Underlying_Record_View
(Full_P
));
7234 Install_Private_Declarations
(Par_Scope
);
7235 Install_Visible_Declarations
(Par_Scope
);
7236 Insert_Before
(N
, Decl
);
7238 -- Mark entity as an underlying record view before analysis,
7239 -- to avoid generating the list of its primitive operations
7240 -- (which is not really required for this entity) and thus
7241 -- prevent spurious errors associated with missing overriding
7242 -- of abstract primitives (overridden only for Derived_Type).
7244 Set_Ekind
(Full_Der
, E_Record_Type
);
7245 Set_Is_Underlying_Record_View
(Full_Der
);
7246 Set_Default_SSO
(Full_Der
);
7250 pragma Assert
(Has_Discriminants
(Full_Der
)
7251 and then not Has_Unknown_Discriminants
(Full_Der
));
7253 Uninstall_Declarations
(Par_Scope
);
7255 -- Freeze the underlying record view, to prevent generation of
7256 -- useless dispatching information, which is simply shared with
7257 -- the real derived type.
7259 Set_Is_Frozen
(Full_Der
);
7261 -- If the derived type has access discriminants, create
7262 -- references to their anonymous types now, to prevent
7263 -- back-end problems when their first use is in generated
7264 -- bodies of primitives.
7270 E
:= First_Entity
(Full_Der
);
7272 while Present
(E
) loop
7273 if Ekind
(E
) = E_Discriminant
7274 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
7276 Build_Itype_Reference
(Etype
(E
), Decl
);
7283 -- Set up links between real entity and underlying record view
7285 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
7286 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
7289 -- If discriminants are known, build derived record
7292 Build_Derived_Record_Type
7293 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7298 elsif Has_Discriminants
(Parent_Type
) then
7300 -- Build partial view of derived type from partial view of parent.
7301 -- This must be done before building the full derivation because the
7302 -- second derivation will modify the discriminants of the first and
7303 -- the discriminants are chained with the rest of the components in
7304 -- the full derivation.
7306 Build_Derived_Record_Type
7307 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7309 -- Build the full derivation if this is not the anonymous derived
7310 -- base type created by Build_Derived_Record_Type in the constrained
7311 -- case (see point 5. of its head comment) since we build it for the
7312 -- derived subtype. And skip it for protected types altogether, as
7313 -- gigi does not use these types directly.
7315 if Present
(Full_View
(Parent_Type
))
7316 and then not Is_Itype
(Derived_Type
)
7317 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7320 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7322 Last_Discr
: Entity_Id
;
7325 -- If this is not a completion, construct the implicit full
7326 -- view by deriving from the full view of the parent type.
7327 -- But if this is a completion, the derived private type
7328 -- being built is a full view and the full derivation can
7329 -- only be its underlying full view.
7331 Build_Full_Derivation
;
7333 if not Is_Completion
then
7334 Set_Full_View
(Derived_Type
, Full_Der
);
7336 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7339 if not Is_Base_Type
(Derived_Type
) then
7340 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7343 -- Copy the discriminant list from full view to the partial
7344 -- view (base type and its subtype). Gigi requires that the
7345 -- partial and full views have the same discriminants.
7347 -- Note that since the partial view points to discriminants
7348 -- in the full view, their scope will be that of the full
7349 -- view. This might cause some front end problems and need
7352 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7353 Set_First_Entity
(Der_Base
, Discr
);
7356 Last_Discr
:= Discr
;
7357 Next_Discriminant
(Discr
);
7358 exit when No
(Discr
);
7361 Set_Last_Entity
(Der_Base
, Last_Discr
);
7362 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7363 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7365 Set_Stored_Constraint
7366 (Full_Der
, Stored_Constraint
(Derived_Type
));
7370 elsif Present
(Full_View
(Parent_Type
))
7371 and then Has_Discriminants
(Full_View
(Parent_Type
))
7373 if Has_Unknown_Discriminants
(Parent_Type
)
7374 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7375 N_Subtype_Indication
7378 ("cannot constrain type with unknown discriminants",
7379 Subtype_Indication
(Type_Definition
(N
)));
7383 -- If this is not a completion, construct the implicit full view by
7384 -- deriving from the full view of the parent type. But if this is a
7385 -- completion, the derived private type being built is a full view
7386 -- and the full derivation can only be its underlying full view.
7388 Build_Full_Derivation
;
7390 if not Is_Completion
then
7391 Set_Full_View
(Derived_Type
, Full_Der
);
7393 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7396 -- In any case, the primitive operations are inherited from the
7397 -- parent type, not from the internal full view.
7399 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7401 if Derive_Subps
then
7402 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7405 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7407 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7410 -- Untagged type, No discriminants on either view
7412 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7413 N_Subtype_Indication
7416 ("illegal constraint on type without discriminants", N
);
7419 if Present
(Discriminant_Specifications
(N
))
7420 and then Present
(Full_View
(Parent_Type
))
7421 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7423 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7426 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7427 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7428 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7429 Set_Disable_Controlled
(Derived_Type
, Disable_Controlled
7431 Set_Has_Controlled_Component
7432 (Derived_Type
, Has_Controlled_Component
7435 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7437 if not Is_Controlled_Active
(Parent_Type
) then
7438 Set_Finalize_Storage_Only
7439 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7442 -- If this is not a completion, construct the implicit full view by
7443 -- deriving from the full view of the parent type.
7445 -- ??? If the parent is untagged private and its completion is
7446 -- tagged, this mechanism will not work because we cannot derive from
7447 -- the tagged full view unless we have an extension.
7449 if Present
(Full_View
(Parent_Type
))
7450 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7451 and then not Is_Completion
7453 Build_Full_Derivation
;
7454 Set_Full_View
(Derived_Type
, Full_Der
);
7458 Set_Has_Unknown_Discriminants
(Derived_Type
,
7459 Has_Unknown_Discriminants
(Parent_Type
));
7461 if Is_Private_Type
(Derived_Type
) then
7462 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7465 -- If the parent base type is in scope, add the derived type to its
7466 -- list of private dependents, because its full view may become
7467 -- visible subsequently (in a nested private part, a body, or in a
7468 -- further child unit).
7470 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7471 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
7473 -- Check for unusual case where a type completed by a private
7474 -- derivation occurs within a package nested in a child unit, and
7475 -- the parent is declared in an ancestor.
7477 if Is_Child_Unit
(Scope
(Current_Scope
))
7478 and then Is_Completion
7479 and then In_Private_Part
(Current_Scope
)
7480 and then Scope
(Parent_Type
) /= Current_Scope
7482 -- Note that if the parent has a completion in the private part,
7483 -- (which is itself a derivation from some other private type)
7484 -- it is that completion that is visible, there is no full view
7485 -- available, and no special processing is needed.
7487 and then Present
(Full_View
(Parent_Type
))
7489 -- In this case, the full view of the parent type will become
7490 -- visible in the body of the enclosing child, and only then will
7491 -- the current type be possibly non-private. Build an underlying
7492 -- full view that will be installed when the enclosing child body
7495 if Present
(Underlying_Full_View
(Derived_Type
)) then
7496 Full_Der
:= Underlying_Full_View
(Derived_Type
);
7498 Build_Full_Derivation
;
7499 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7502 -- The full view will be used to swap entities on entry/exit to
7503 -- the body, and must appear in the entity list for the package.
7505 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
7508 end Build_Derived_Private_Type
;
7510 -------------------------------
7511 -- Build_Derived_Record_Type --
7512 -------------------------------
7516 -- Ideally we would like to use the same model of type derivation for
7517 -- tagged and untagged record types. Unfortunately this is not quite
7518 -- possible because the semantics of representation clauses is different
7519 -- for tagged and untagged records under inheritance. Consider the
7522 -- type R (...) is [tagged] record ... end record;
7523 -- type T (...) is new R (...) [with ...];
7525 -- The representation clauses for T can specify a completely different
7526 -- record layout from R's. Hence the same component can be placed in two
7527 -- very different positions in objects of type T and R. If R and T are
7528 -- tagged types, representation clauses for T can only specify the layout
7529 -- of non inherited components, thus components that are common in R and T
7530 -- have the same position in objects of type R and T.
7532 -- This has two implications. The first is that the entire tree for R's
7533 -- declaration needs to be copied for T in the untagged case, so that T
7534 -- can be viewed as a record type of its own with its own representation
7535 -- clauses. The second implication is the way we handle discriminants.
7536 -- Specifically, in the untagged case we need a way to communicate to Gigi
7537 -- what are the real discriminants in the record, while for the semantics
7538 -- we need to consider those introduced by the user to rename the
7539 -- discriminants in the parent type. This is handled by introducing the
7540 -- notion of stored discriminants. See below for more.
7542 -- Fortunately the way regular components are inherited can be handled in
7543 -- the same way in tagged and untagged types.
7545 -- To complicate things a bit more the private view of a private extension
7546 -- cannot be handled in the same way as the full view (for one thing the
7547 -- semantic rules are somewhat different). We will explain what differs
7550 -- 2. DISCRIMINANTS UNDER INHERITANCE
7552 -- The semantic rules governing the discriminants of derived types are
7555 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7556 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7558 -- If parent type has discriminants, then the discriminants that are
7559 -- declared in the derived type are [3.4 (11)]:
7561 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7564 -- o Otherwise, each discriminant of the parent type (implicitly declared
7565 -- in the same order with the same specifications). In this case, the
7566 -- discriminants are said to be "inherited", or if unknown in the parent
7567 -- are also unknown in the derived type.
7569 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7571 -- o The parent subtype must be constrained;
7573 -- o If the parent type is not a tagged type, then each discriminant of
7574 -- the derived type must be used in the constraint defining a parent
7575 -- subtype. [Implementation note: This ensures that the new discriminant
7576 -- can share storage with an existing discriminant.]
7578 -- For the derived type each discriminant of the parent type is either
7579 -- inherited, constrained to equal some new discriminant of the derived
7580 -- type, or constrained to the value of an expression.
7582 -- When inherited or constrained to equal some new discriminant, the
7583 -- parent discriminant and the discriminant of the derived type are said
7586 -- If a discriminant of the parent type is constrained to a specific value
7587 -- in the derived type definition, then the discriminant is said to be
7588 -- "specified" by that derived type definition.
7590 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7592 -- We have spoken about stored discriminants in point 1 (introduction)
7593 -- above. There are two sort of stored discriminants: implicit and
7594 -- explicit. As long as the derived type inherits the same discriminants as
7595 -- the root record type, stored discriminants are the same as regular
7596 -- discriminants, and are said to be implicit. However, if any discriminant
7597 -- in the root type was renamed in the derived type, then the derived
7598 -- type will contain explicit stored discriminants. Explicit stored
7599 -- discriminants are discriminants in addition to the semantically visible
7600 -- discriminants defined for the derived type. Stored discriminants are
7601 -- used by Gigi to figure out what are the physical discriminants in
7602 -- objects of the derived type (see precise definition in einfo.ads).
7603 -- As an example, consider the following:
7605 -- type R (D1, D2, D3 : Int) is record ... end record;
7606 -- type T1 is new R;
7607 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7608 -- type T3 is new T2;
7609 -- type T4 (Y : Int) is new T3 (Y, 99);
7611 -- The following table summarizes the discriminants and stored
7612 -- discriminants in R and T1 through T4.
7614 -- Type Discrim Stored Discrim Comment
7615 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7616 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7617 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7618 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7619 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7621 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7622 -- find the corresponding discriminant in the parent type, while
7623 -- Original_Record_Component (abbreviated ORC below), the actual physical
7624 -- component that is renamed. Finally the field Is_Completely_Hidden
7625 -- (abbreviated ICH below) is set for all explicit stored discriminants
7626 -- (see einfo.ads for more info). For the above example this gives:
7628 -- Discrim CD ORC ICH
7629 -- ^^^^^^^ ^^ ^^^ ^^^
7630 -- D1 in R empty itself no
7631 -- D2 in R empty itself no
7632 -- D3 in R empty itself no
7634 -- D1 in T1 D1 in R itself no
7635 -- D2 in T1 D2 in R itself no
7636 -- D3 in T1 D3 in R itself no
7638 -- X1 in T2 D3 in T1 D3 in T2 no
7639 -- X2 in T2 D1 in T1 D1 in T2 no
7640 -- D1 in T2 empty itself yes
7641 -- D2 in T2 empty itself yes
7642 -- D3 in T2 empty itself yes
7644 -- X1 in T3 X1 in T2 D3 in T3 no
7645 -- X2 in T3 X2 in T2 D1 in T3 no
7646 -- D1 in T3 empty itself yes
7647 -- D2 in T3 empty itself yes
7648 -- D3 in T3 empty itself yes
7650 -- Y in T4 X1 in T3 D3 in T3 no
7651 -- D1 in T3 empty itself yes
7652 -- D2 in T3 empty itself yes
7653 -- D3 in T3 empty itself yes
7655 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7657 -- Type derivation for tagged types is fairly straightforward. If no
7658 -- discriminants are specified by the derived type, these are inherited
7659 -- from the parent. No explicit stored discriminants are ever necessary.
7660 -- The only manipulation that is done to the tree is that of adding a
7661 -- _parent field with parent type and constrained to the same constraint
7662 -- specified for the parent in the derived type definition. For instance:
7664 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7665 -- type T1 is new R with null record;
7666 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7668 -- are changed into:
7670 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7671 -- _parent : R (D1, D2, D3);
7674 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7675 -- _parent : T1 (X2, 88, X1);
7678 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7679 -- ORC and ICH fields are:
7681 -- Discrim CD ORC ICH
7682 -- ^^^^^^^ ^^ ^^^ ^^^
7683 -- D1 in R empty itself no
7684 -- D2 in R empty itself no
7685 -- D3 in R empty itself no
7687 -- D1 in T1 D1 in R D1 in R no
7688 -- D2 in T1 D2 in R D2 in R no
7689 -- D3 in T1 D3 in R D3 in R no
7691 -- X1 in T2 D3 in T1 D3 in R no
7692 -- X2 in T2 D1 in T1 D1 in R no
7694 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7696 -- Regardless of whether we dealing with a tagged or untagged type
7697 -- we will transform all derived type declarations of the form
7699 -- type T is new R (...) [with ...];
7701 -- subtype S is R (...);
7702 -- type T is new S [with ...];
7704 -- type BT is new R [with ...];
7705 -- subtype T is BT (...);
7707 -- That is, the base derived type is constrained only if it has no
7708 -- discriminants. The reason for doing this is that GNAT's semantic model
7709 -- assumes that a base type with discriminants is unconstrained.
7711 -- Note that, strictly speaking, the above transformation is not always
7712 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7714 -- procedure B34011A is
7715 -- type REC (D : integer := 0) is record
7720 -- type T6 is new Rec;
7721 -- function F return T6;
7726 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7729 -- The definition of Q6.U is illegal. However transforming Q6.U into
7731 -- type BaseU is new T6;
7732 -- subtype U is BaseU (Q6.F.I)
7734 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7735 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7736 -- the transformation described above.
7738 -- There is another instance where the above transformation is incorrect.
7742 -- type Base (D : Integer) is tagged null record;
7743 -- procedure P (X : Base);
7745 -- type Der is new Base (2) with null record;
7746 -- procedure P (X : Der);
7749 -- Then the above transformation turns this into
7751 -- type Der_Base is new Base with null record;
7752 -- -- procedure P (X : Base) is implicitly inherited here
7753 -- -- as procedure P (X : Der_Base).
7755 -- subtype Der is Der_Base (2);
7756 -- procedure P (X : Der);
7757 -- -- The overriding of P (X : Der_Base) is illegal since we
7758 -- -- have a parameter conformance problem.
7760 -- To get around this problem, after having semantically processed Der_Base
7761 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7762 -- Discriminant_Constraint from Der so that when parameter conformance is
7763 -- checked when P is overridden, no semantic errors are flagged.
7765 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7767 -- Regardless of whether we are dealing with a tagged or untagged type
7768 -- we will transform all derived type declarations of the form
7770 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7771 -- type T is new R [with ...];
7773 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7775 -- The reason for such transformation is that it allows us to implement a
7776 -- very clean form of component inheritance as explained below.
7778 -- Note that this transformation is not achieved by direct tree rewriting
7779 -- and manipulation, but rather by redoing the semantic actions that the
7780 -- above transformation will entail. This is done directly in routine
7781 -- Inherit_Components.
7783 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7785 -- In both tagged and untagged derived types, regular non discriminant
7786 -- components are inherited in the derived type from the parent type. In
7787 -- the absence of discriminants component, inheritance is straightforward
7788 -- as components can simply be copied from the parent.
7790 -- If the parent has discriminants, inheriting components constrained with
7791 -- these discriminants requires caution. Consider the following example:
7793 -- type R (D1, D2 : Positive) is [tagged] record
7794 -- S : String (D1 .. D2);
7797 -- type T1 is new R [with null record];
7798 -- type T2 (X : positive) is new R (1, X) [with null record];
7800 -- As explained in 6. above, T1 is rewritten as
7801 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7802 -- which makes the treatment for T1 and T2 identical.
7804 -- What we want when inheriting S, is that references to D1 and D2 in R are
7805 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7806 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7807 -- with either discriminant references in the derived type or expressions.
7808 -- This replacement is achieved as follows: before inheriting R's
7809 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7810 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7811 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7812 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7813 -- by String (1 .. X).
7815 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7817 -- We explain here the rules governing private type extensions relevant to
7818 -- type derivation. These rules are explained on the following example:
7820 -- type D [(...)] is new A [(...)] with private; <-- partial view
7821 -- type D [(...)] is new P [(...)] with null record; <-- full view
7823 -- Type A is called the ancestor subtype of the private extension.
7824 -- Type P is the parent type of the full view of the private extension. It
7825 -- must be A or a type derived from A.
7827 -- The rules concerning the discriminants of private type extensions are
7830 -- o If a private extension inherits known discriminants from the ancestor
7831 -- subtype, then the full view must also inherit its discriminants from
7832 -- the ancestor subtype and the parent subtype of the full view must be
7833 -- constrained if and only if the ancestor subtype is constrained.
7835 -- o If a partial view has unknown discriminants, then the full view may
7836 -- define a definite or an indefinite subtype, with or without
7839 -- o If a partial view has neither known nor unknown discriminants, then
7840 -- the full view must define a definite subtype.
7842 -- o If the ancestor subtype of a private extension has constrained
7843 -- discriminants, then the parent subtype of the full view must impose a
7844 -- statically matching constraint on those discriminants.
7846 -- This means that only the following forms of private extensions are
7849 -- type D is new A with private; <-- partial view
7850 -- type D is new P with null record; <-- full view
7852 -- If A has no discriminants than P has no discriminants, otherwise P must
7853 -- inherit A's discriminants.
7855 -- type D is new A (...) with private; <-- partial view
7856 -- type D is new P (:::) with null record; <-- full view
7858 -- P must inherit A's discriminants and (...) and (:::) must statically
7861 -- subtype A is R (...);
7862 -- type D is new A with private; <-- partial view
7863 -- type D is new P with null record; <-- full view
7865 -- P must have inherited R's discriminants and must be derived from A or
7866 -- any of its subtypes.
7868 -- type D (..) is new A with private; <-- partial view
7869 -- type D (..) is new P [(:::)] with null record; <-- full view
7871 -- No specific constraints on P's discriminants or constraint (:::).
7872 -- Note that A can be unconstrained, but the parent subtype P must either
7873 -- be constrained or (:::) must be present.
7875 -- type D (..) is new A [(...)] with private; <-- partial view
7876 -- type D (..) is new P [(:::)] with null record; <-- full view
7878 -- P's constraints on A's discriminants must statically match those
7879 -- imposed by (...).
7881 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7883 -- The full view of a private extension is handled exactly as described
7884 -- above. The model chose for the private view of a private extension is
7885 -- the same for what concerns discriminants (i.e. they receive the same
7886 -- treatment as in the tagged case). However, the private view of the
7887 -- private extension always inherits the components of the parent base,
7888 -- without replacing any discriminant reference. Strictly speaking this is
7889 -- incorrect. However, Gigi never uses this view to generate code so this
7890 -- is a purely semantic issue. In theory, a set of transformations similar
7891 -- to those given in 5. and 6. above could be applied to private views of
7892 -- private extensions to have the same model of component inheritance as
7893 -- for non private extensions. However, this is not done because it would
7894 -- further complicate private type processing. Semantically speaking, this
7895 -- leaves us in an uncomfortable situation. As an example consider:
7898 -- type R (D : integer) is tagged record
7899 -- S : String (1 .. D);
7901 -- procedure P (X : R);
7902 -- type T is new R (1) with private;
7904 -- type T is new R (1) with null record;
7907 -- This is transformed into:
7910 -- type R (D : integer) is tagged record
7911 -- S : String (1 .. D);
7913 -- procedure P (X : R);
7914 -- type T is new R (1) with private;
7916 -- type BaseT is new R with null record;
7917 -- subtype T is BaseT (1);
7920 -- (strictly speaking the above is incorrect Ada)
7922 -- From the semantic standpoint the private view of private extension T
7923 -- should be flagged as constrained since one can clearly have
7927 -- in a unit withing Pack. However, when deriving subprograms for the
7928 -- private view of private extension T, T must be seen as unconstrained
7929 -- since T has discriminants (this is a constraint of the current
7930 -- subprogram derivation model). Thus, when processing the private view of
7931 -- a private extension such as T, we first mark T as unconstrained, we
7932 -- process it, we perform program derivation and just before returning from
7933 -- Build_Derived_Record_Type we mark T as constrained.
7935 -- ??? Are there are other uncomfortable cases that we will have to
7938 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7940 -- Types that are derived from a visible record type and have a private
7941 -- extension present other peculiarities. They behave mostly like private
7942 -- types, but if they have primitive operations defined, these will not
7943 -- have the proper signatures for further inheritance, because other
7944 -- primitive operations will use the implicit base that we define for
7945 -- private derivations below. This affect subprogram inheritance (see
7946 -- Derive_Subprograms for details). We also derive the implicit base from
7947 -- the base type of the full view, so that the implicit base is a record
7948 -- type and not another private type, This avoids infinite loops.
7950 procedure Build_Derived_Record_Type
7952 Parent_Type
: Entity_Id
;
7953 Derived_Type
: Entity_Id
;
7954 Derive_Subps
: Boolean := True)
7956 Discriminant_Specs
: constant Boolean :=
7957 Present
(Discriminant_Specifications
(N
));
7958 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
7959 Loc
: constant Source_Ptr
:= Sloc
(N
);
7960 Private_Extension
: constant Boolean :=
7961 Nkind
(N
) = N_Private_Extension_Declaration
;
7962 Assoc_List
: Elist_Id
;
7963 Constraint_Present
: Boolean;
7965 Discrim
: Entity_Id
;
7967 Inherit_Discrims
: Boolean := False;
7968 Last_Discrim
: Entity_Id
;
7969 New_Base
: Entity_Id
;
7971 New_Discrs
: Elist_Id
;
7972 New_Indic
: Node_Id
;
7973 Parent_Base
: Entity_Id
;
7974 Save_Etype
: Entity_Id
;
7975 Save_Discr_Constr
: Elist_Id
;
7976 Save_Next_Entity
: Entity_Id
;
7979 Discs
: Elist_Id
:= New_Elmt_List
;
7980 -- An empty Discs list means that there were no constraints in the
7981 -- subtype indication or that there was an error processing it.
7984 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
7985 and then Present
(Full_View
(Parent_Type
))
7986 and then Has_Discriminants
(Parent_Type
)
7988 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
7990 Parent_Base
:= Base_Type
(Parent_Type
);
7993 -- AI05-0115 : if this is a derivation from a private type in some
7994 -- other scope that may lead to invisible components for the derived
7995 -- type, mark it accordingly.
7997 if Is_Private_Type
(Parent_Type
) then
7998 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
8001 elsif In_Open_Scopes
(Scope
(Parent_Type
))
8002 and then In_Private_Part
(Scope
(Parent_Type
))
8007 Set_Has_Private_Ancestor
(Derived_Type
);
8011 Set_Has_Private_Ancestor
8012 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
8015 -- Before we start the previously documented transformations, here is
8016 -- little fix for size and alignment of tagged types. Normally when we
8017 -- derive type D from type P, we copy the size and alignment of P as the
8018 -- default for D, and in the absence of explicit representation clauses
8019 -- for D, the size and alignment are indeed the same as the parent.
8021 -- But this is wrong for tagged types, since fields may be added, and
8022 -- the default size may need to be larger, and the default alignment may
8023 -- need to be larger.
8025 -- We therefore reset the size and alignment fields in the tagged case.
8026 -- Note that the size and alignment will in any case be at least as
8027 -- large as the parent type (since the derived type has a copy of the
8028 -- parent type in the _parent field)
8030 -- The type is also marked as being tagged here, which is needed when
8031 -- processing components with a self-referential anonymous access type
8032 -- in the call to Check_Anonymous_Access_Components below. Note that
8033 -- this flag is also set later on for completeness.
8036 Set_Is_Tagged_Type
(Derived_Type
);
8037 Init_Size_Align
(Derived_Type
);
8040 -- STEP 0a: figure out what kind of derived type declaration we have
8042 if Private_Extension
then
8044 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
8045 Set_Default_SSO
(Derived_Type
);
8048 Type_Def
:= Type_Definition
(N
);
8050 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8051 -- Parent_Base can be a private type or private extension. However,
8052 -- for tagged types with an extension the newly added fields are
8053 -- visible and hence the Derived_Type is always an E_Record_Type.
8054 -- (except that the parent may have its own private fields).
8055 -- For untagged types we preserve the Ekind of the Parent_Base.
8057 if Present
(Record_Extension_Part
(Type_Def
)) then
8058 Set_Ekind
(Derived_Type
, E_Record_Type
);
8059 Set_Default_SSO
(Derived_Type
);
8061 -- Create internal access types for components with anonymous
8064 if Ada_Version
>= Ada_2005
then
8065 Check_Anonymous_Access_Components
8066 (N
, Derived_Type
, Derived_Type
,
8067 Component_List
(Record_Extension_Part
(Type_Def
)));
8071 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8075 -- Indic can either be an N_Identifier if the subtype indication
8076 -- contains no constraint or an N_Subtype_Indication if the subtype
8077 -- indication has a constraint.
8079 Indic
:= Subtype_Indication
(Type_Def
);
8080 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
8082 -- Check that the type has visible discriminants. The type may be
8083 -- a private type with unknown discriminants whose full view has
8084 -- discriminants which are invisible.
8086 if Constraint_Present
then
8087 if not Has_Discriminants
(Parent_Base
)
8089 (Has_Unknown_Discriminants
(Parent_Base
)
8090 and then Is_Private_Type
(Parent_Base
))
8093 ("invalid constraint: type has no discriminant",
8094 Constraint
(Indic
));
8096 Constraint_Present
:= False;
8097 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8099 elsif Is_Constrained
(Parent_Type
) then
8101 ("invalid constraint: parent type is already constrained",
8102 Constraint
(Indic
));
8104 Constraint_Present
:= False;
8105 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8109 -- STEP 0b: If needed, apply transformation given in point 5. above
8111 if not Private_Extension
8112 and then Has_Discriminants
(Parent_Type
)
8113 and then not Discriminant_Specs
8114 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
8116 -- First, we must analyze the constraint (see comment in point 5.)
8117 -- The constraint may come from the subtype indication of the full
8120 if Constraint_Present
then
8121 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8123 -- If there is no explicit constraint, there might be one that is
8124 -- inherited from a constrained parent type. In that case verify that
8125 -- it conforms to the constraint in the partial view. In perverse
8126 -- cases the parent subtypes of the partial and full view can have
8127 -- different constraints.
8129 elsif Present
(Stored_Constraint
(Parent_Type
)) then
8130 New_Discrs
:= Stored_Constraint
(Parent_Type
);
8133 New_Discrs
:= No_Elist
;
8136 if Has_Discriminants
(Derived_Type
)
8137 and then Has_Private_Declaration
(Derived_Type
)
8138 and then Present
(Discriminant_Constraint
(Derived_Type
))
8139 and then Present
(New_Discrs
)
8141 -- Verify that constraints of the full view statically match
8142 -- those given in the partial view.
8148 C1
:= First_Elmt
(New_Discrs
);
8149 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
8150 while Present
(C1
) and then Present
(C2
) loop
8151 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8153 (Is_OK_Static_Expression
(Node
(C1
))
8154 and then Is_OK_Static_Expression
(Node
(C2
))
8156 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
8161 if Constraint_Present
then
8163 ("constraint not conformant to previous declaration",
8167 ("constraint of full view is incompatible "
8168 & "with partial view", N
);
8178 -- Insert and analyze the declaration for the unconstrained base type
8180 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
8183 Make_Full_Type_Declaration
(Loc
,
8184 Defining_Identifier
=> New_Base
,
8186 Make_Derived_Type_Definition
(Loc
,
8187 Abstract_Present
=> Abstract_Present
(Type_Def
),
8188 Limited_Present
=> Limited_Present
(Type_Def
),
8189 Subtype_Indication
=>
8190 New_Occurrence_Of
(Parent_Base
, Loc
),
8191 Record_Extension_Part
=>
8192 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
8193 Interface_List
=> Interface_List
(Type_Def
)));
8195 Set_Parent
(New_Decl
, Parent
(N
));
8196 Mark_Rewrite_Insertion
(New_Decl
);
8197 Insert_Before
(N
, New_Decl
);
8199 -- In the extension case, make sure ancestor is frozen appropriately
8200 -- (see also non-discriminated case below).
8202 if Present
(Record_Extension_Part
(Type_Def
))
8203 or else Is_Interface
(Parent_Base
)
8205 Freeze_Before
(New_Decl
, Parent_Type
);
8208 -- Note that this call passes False for the Derive_Subps parameter
8209 -- because subprogram derivation is deferred until after creating
8210 -- the subtype (see below).
8213 (New_Decl
, Parent_Base
, New_Base
,
8214 Is_Completion
=> False, Derive_Subps
=> False);
8216 -- ??? This needs re-examination to determine whether the
8217 -- above call can simply be replaced by a call to Analyze.
8219 Set_Analyzed
(New_Decl
);
8221 -- Insert and analyze the declaration for the constrained subtype
8223 if Constraint_Present
then
8225 Make_Subtype_Indication
(Loc
,
8226 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8227 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
8231 Constr_List
: constant List_Id
:= New_List
;
8236 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
8237 while Present
(C
) loop
8240 -- It is safe here to call New_Copy_Tree since we called
8241 -- Force_Evaluation on each constraint previously
8242 -- in Build_Discriminant_Constraints.
8244 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
8250 Make_Subtype_Indication
(Loc
,
8251 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8253 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
8258 Make_Subtype_Declaration
(Loc
,
8259 Defining_Identifier
=> Derived_Type
,
8260 Subtype_Indication
=> New_Indic
));
8264 -- Derivation of subprograms must be delayed until the full subtype
8265 -- has been established, to ensure proper overriding of subprograms
8266 -- inherited by full types. If the derivations occurred as part of
8267 -- the call to Build_Derived_Type above, then the check for type
8268 -- conformance would fail because earlier primitive subprograms
8269 -- could still refer to the full type prior the change to the new
8270 -- subtype and hence would not match the new base type created here.
8271 -- Subprograms are not derived, however, when Derive_Subps is False
8272 -- (since otherwise there could be redundant derivations).
8274 if Derive_Subps
then
8275 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8278 -- For tagged types the Discriminant_Constraint of the new base itype
8279 -- is inherited from the first subtype so that no subtype conformance
8280 -- problem arise when the first subtype overrides primitive
8281 -- operations inherited by the implicit base type.
8284 Set_Discriminant_Constraint
8285 (New_Base
, Discriminant_Constraint
(Derived_Type
));
8291 -- If we get here Derived_Type will have no discriminants or it will be
8292 -- a discriminated unconstrained base type.
8294 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8298 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8299 -- The declaration of a specific descendant of an interface type
8300 -- freezes the interface type (RM 13.14).
8302 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
8303 Freeze_Before
(N
, Parent_Type
);
8306 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8307 -- cannot be declared at a deeper level than its parent type is
8308 -- removed. The check on derivation within a generic body is also
8309 -- relaxed, but there's a restriction that a derived tagged type
8310 -- cannot be declared in a generic body if it's derived directly
8311 -- or indirectly from a formal type of that generic.
8313 if Ada_Version
>= Ada_2005
then
8314 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
8316 Ancestor_Type
: Entity_Id
;
8319 -- Check to see if any ancestor of the derived type is a
8322 Ancestor_Type
:= Parent_Type
;
8323 while not Is_Generic_Type
(Ancestor_Type
)
8324 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8326 Ancestor_Type
:= Etype
(Ancestor_Type
);
8329 -- If the derived type does have a formal type as an
8330 -- ancestor, then it's an error if the derived type is
8331 -- declared within the body of the generic unit that
8332 -- declares the formal type in its generic formal part. It's
8333 -- sufficient to check whether the ancestor type is declared
8334 -- inside the same generic body as the derived type (such as
8335 -- within a nested generic spec), in which case the
8336 -- derivation is legal. If the formal type is declared
8337 -- outside of that generic body, then it's guaranteed that
8338 -- the derived type is declared within the generic body of
8339 -- the generic unit declaring the formal type.
8341 if Is_Generic_Type
(Ancestor_Type
)
8342 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8343 Enclosing_Generic_Body
(Derived_Type
)
8346 ("parent type of& must not be descendant of formal type"
8347 & " of an enclosing generic body",
8348 Indic
, Derived_Type
);
8353 elsif Type_Access_Level
(Derived_Type
) /=
8354 Type_Access_Level
(Parent_Type
)
8355 and then not Is_Generic_Type
(Derived_Type
)
8357 if Is_Controlled
(Parent_Type
) then
8359 ("controlled type must be declared at the library level",
8363 ("type extension at deeper accessibility level than parent",
8369 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8372 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8375 ("parent type of& must not be outside generic body"
8377 Indic
, Derived_Type
);
8383 -- Ada 2005 (AI-251)
8385 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8387 -- "The declaration of a specific descendant of an interface type
8388 -- freezes the interface type" (RM 13.14).
8393 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8394 Iface
:= First
(Interface_List
(Type_Def
));
8395 while Present
(Iface
) loop
8396 Freeze_Before
(N
, Etype
(Iface
));
8403 -- STEP 1b : preliminary cleanup of the full view of private types
8405 -- If the type is already marked as having discriminants, then it's the
8406 -- completion of a private type or private extension and we need to
8407 -- retain the discriminants from the partial view if the current
8408 -- declaration has Discriminant_Specifications so that we can verify
8409 -- conformance. However, we must remove any existing components that
8410 -- were inherited from the parent (and attached in Copy_And_Swap)
8411 -- because the full type inherits all appropriate components anyway, and
8412 -- we do not want the partial view's components interfering.
8414 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8415 Discrim
:= First_Discriminant
(Derived_Type
);
8417 Last_Discrim
:= Discrim
;
8418 Next_Discriminant
(Discrim
);
8419 exit when No
(Discrim
);
8422 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8424 -- In all other cases wipe out the list of inherited components (even
8425 -- inherited discriminants), it will be properly rebuilt here.
8428 Set_First_Entity
(Derived_Type
, Empty
);
8429 Set_Last_Entity
(Derived_Type
, Empty
);
8432 -- STEP 1c: Initialize some flags for the Derived_Type
8434 -- The following flags must be initialized here so that
8435 -- Process_Discriminants can check that discriminants of tagged types do
8436 -- not have a default initial value and that access discriminants are
8437 -- only specified for limited records. For completeness, these flags are
8438 -- also initialized along with all the other flags below.
8440 -- AI-419: Limitedness is not inherited from an interface parent, so to
8441 -- be limited in that case the type must be explicitly declared as
8442 -- limited. However, task and protected interfaces are always limited.
8444 if Limited_Present
(Type_Def
) then
8445 Set_Is_Limited_Record
(Derived_Type
);
8447 elsif Is_Limited_Record
(Parent_Type
)
8448 or else (Present
(Full_View
(Parent_Type
))
8449 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8451 if not Is_Interface
(Parent_Type
)
8452 or else Is_Synchronized_Interface
(Parent_Type
)
8453 or else Is_Protected_Interface
(Parent_Type
)
8454 or else Is_Task_Interface
(Parent_Type
)
8456 Set_Is_Limited_Record
(Derived_Type
);
8460 -- STEP 2a: process discriminants of derived type if any
8462 Push_Scope
(Derived_Type
);
8464 if Discriminant_Specs
then
8465 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8467 -- The following call initializes fields Has_Discriminants and
8468 -- Discriminant_Constraint, unless we are processing the completion
8469 -- of a private type declaration.
8471 Check_Or_Process_Discriminants
(N
, Derived_Type
);
8473 -- For untagged types, the constraint on the Parent_Type must be
8474 -- present and is used to rename the discriminants.
8476 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
8477 Error_Msg_N
("untagged parent must have discriminants", Indic
);
8479 elsif not Is_Tagged
and then not Constraint_Present
then
8481 ("discriminant constraint needed for derived untagged records",
8484 -- Otherwise the parent subtype must be constrained unless we have a
8485 -- private extension.
8487 elsif not Constraint_Present
8488 and then not Private_Extension
8489 and then not Is_Constrained
(Parent_Type
)
8492 ("unconstrained type not allowed in this context", Indic
);
8494 elsif Constraint_Present
then
8495 -- The following call sets the field Corresponding_Discriminant
8496 -- for the discriminants in the Derived_Type.
8498 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
8500 -- For untagged types all new discriminants must rename
8501 -- discriminants in the parent. For private extensions new
8502 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8504 Discrim
:= First_Discriminant
(Derived_Type
);
8505 while Present
(Discrim
) loop
8507 and then No
(Corresponding_Discriminant
(Discrim
))
8510 ("new discriminants must constrain old ones", Discrim
);
8512 elsif Private_Extension
8513 and then Present
(Corresponding_Discriminant
(Discrim
))
8516 ("only static constraints allowed for parent"
8517 & " discriminants in the partial view", Indic
);
8521 -- If a new discriminant is used in the constraint, then its
8522 -- subtype must be statically compatible with the parent
8523 -- discriminant's subtype (3.7(15)).
8525 -- However, if the record contains an array constrained by
8526 -- the discriminant but with some different bound, the compiler
8527 -- attemps to create a smaller range for the discriminant type.
8528 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8529 -- the discriminant type is a scalar type, the check must use
8530 -- the original discriminant type in the parent declaration.
8533 Corr_Disc
: constant Entity_Id
:=
8534 Corresponding_Discriminant
(Discrim
);
8535 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
8536 Corr_Type
: Entity_Id
;
8539 if Present
(Corr_Disc
) then
8540 if Is_Scalar_Type
(Disc_Type
) then
8542 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
8544 Corr_Type
:= Etype
(Corr_Disc
);
8548 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
8551 ("subtype must be compatible "
8552 & "with parent discriminant",
8558 Next_Discriminant
(Discrim
);
8561 -- Check whether the constraints of the full view statically
8562 -- match those imposed by the parent subtype [7.3(13)].
8564 if Present
(Stored_Constraint
(Derived_Type
)) then
8569 C1
:= First_Elmt
(Discs
);
8570 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
8571 while Present
(C1
) and then Present
(C2
) loop
8573 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8576 ("not conformant with previous declaration",
8587 -- STEP 2b: No new discriminants, inherit discriminants if any
8590 if Private_Extension
then
8591 Set_Has_Unknown_Discriminants
8593 Has_Unknown_Discriminants
(Parent_Type
)
8594 or else Unknown_Discriminants_Present
(N
));
8596 -- The partial view of the parent may have unknown discriminants,
8597 -- but if the full view has discriminants and the parent type is
8598 -- in scope they must be inherited.
8600 elsif Has_Unknown_Discriminants
(Parent_Type
)
8602 (not Has_Discriminants
(Parent_Type
)
8603 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
8605 Set_Has_Unknown_Discriminants
(Derived_Type
);
8608 if not Has_Unknown_Discriminants
(Derived_Type
)
8609 and then not Has_Unknown_Discriminants
(Parent_Base
)
8610 and then Has_Discriminants
(Parent_Type
)
8612 Inherit_Discrims
:= True;
8613 Set_Has_Discriminants
8614 (Derived_Type
, True);
8615 Set_Discriminant_Constraint
8616 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
8619 -- The following test is true for private types (remember
8620 -- transformation 5. is not applied to those) and in an error
8623 if Constraint_Present
then
8624 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8627 -- For now mark a new derived type as constrained only if it has no
8628 -- discriminants. At the end of Build_Derived_Record_Type we properly
8629 -- set this flag in the case of private extensions. See comments in
8630 -- point 9. just before body of Build_Derived_Record_Type.
8634 not (Inherit_Discrims
8635 or else Has_Unknown_Discriminants
(Derived_Type
)));
8638 -- STEP 3: initialize fields of derived type
8640 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
8641 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
8643 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8644 -- but cannot be interfaces
8646 if not Private_Extension
8647 and then Ekind
(Derived_Type
) /= E_Private_Type
8648 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
8650 if Interface_Present
(Type_Def
) then
8651 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
8654 Set_Interfaces
(Derived_Type
, No_Elist
);
8657 -- Fields inherited from the Parent_Type
8659 Set_Has_Specified_Layout
8660 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
8661 Set_Is_Limited_Composite
8662 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
8663 Set_Is_Private_Composite
8664 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
8666 if Is_Tagged_Type
(Parent_Type
) then
8667 Set_No_Tagged_Streams_Pragma
8668 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
8671 -- Fields inherited from the Parent_Base
8673 Set_Has_Controlled_Component
8674 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
8675 Set_Has_Non_Standard_Rep
8676 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8677 Set_Has_Primitive_Operations
8678 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
8680 -- Fields inherited from the Parent_Base in the non-private case
8682 if Ekind
(Derived_Type
) = E_Record_Type
then
8683 Set_Has_Complex_Representation
8684 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
8687 -- Fields inherited from the Parent_Base for record types
8689 if Is_Record_Type
(Derived_Type
) then
8691 Parent_Full
: Entity_Id
;
8694 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8695 -- Parent_Base can be a private type or private extension. Go
8696 -- to the full view here to get the E_Record_Type specific flags.
8698 if Present
(Full_View
(Parent_Base
)) then
8699 Parent_Full
:= Full_View
(Parent_Base
);
8701 Parent_Full
:= Parent_Base
;
8704 Set_OK_To_Reorder_Components
8705 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
8709 -- Set fields for private derived types
8711 if Is_Private_Type
(Derived_Type
) then
8712 Set_Depends_On_Private
(Derived_Type
, True);
8713 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
8715 -- Inherit fields from non private record types. If this is the
8716 -- completion of a derivation from a private type, the parent itself
8717 -- is private, and the attributes come from its full view, which must
8721 if Is_Private_Type
(Parent_Base
)
8722 and then not Is_Record_Type
(Parent_Base
)
8724 Set_Component_Alignment
8725 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
8727 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
8729 Set_Component_Alignment
8730 (Derived_Type
, Component_Alignment
(Parent_Base
));
8732 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
8736 -- Set fields for tagged types
8739 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
8741 -- All tagged types defined in Ada.Finalization are controlled
8743 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
8744 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
8745 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
8747 Set_Is_Controlled
(Derived_Type
);
8749 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
8752 -- Minor optimization: there is no need to generate the class-wide
8753 -- entity associated with an underlying record view.
8755 if not Is_Underlying_Record_View
(Derived_Type
) then
8756 Make_Class_Wide_Type
(Derived_Type
);
8759 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
8761 if Has_Discriminants
(Derived_Type
)
8762 and then Constraint_Present
8764 Set_Stored_Constraint
8765 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
8768 if Ada_Version
>= Ada_2005
then
8770 Ifaces_List
: Elist_Id
;
8773 -- Checks rules 3.9.4 (13/2 and 14/2)
8775 if Comes_From_Source
(Derived_Type
)
8776 and then not Is_Private_Type
(Derived_Type
)
8777 and then Is_Interface
(Parent_Type
)
8778 and then not Is_Interface
(Derived_Type
)
8780 if Is_Task_Interface
(Parent_Type
) then
8782 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8785 elsif Is_Protected_Interface
(Parent_Type
) then
8787 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8792 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8794 Check_Interfaces
(N
, Type_Def
);
8796 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8797 -- not already in the parents.
8801 Ifaces_List
=> Ifaces_List
,
8802 Exclude_Parents
=> True);
8804 Set_Interfaces
(Derived_Type
, Ifaces_List
);
8806 -- If the derived type is the anonymous type created for
8807 -- a declaration whose parent has a constraint, propagate
8808 -- the interface list to the source type. This must be done
8809 -- prior to the completion of the analysis of the source type
8810 -- because the components in the extension may contain current
8811 -- instances whose legality depends on some ancestor.
8813 if Is_Itype
(Derived_Type
) then
8815 Def
: constant Node_Id
:=
8816 Associated_Node_For_Itype
(Derived_Type
);
8819 and then Nkind
(Def
) = N_Full_Type_Declaration
8822 (Defining_Identifier
(Def
), Ifaces_List
);
8827 -- A derived type inherits any class-wide invariants coming
8828 -- from a parent type or an interface. Note that the invariant
8829 -- procedure of the parent type should not be inherited because
8830 -- the derived type may define invariants of its own.
8832 if Ada_Version
>= Ada_2012
8833 and then not Is_Interface
(Derived_Type
)
8835 if Has_Inherited_Invariants
(Parent_Type
)
8836 or else Has_Inheritable_Invariants
(Parent_Type
)
8838 Set_Has_Inherited_Invariants
(Derived_Type
);
8840 elsif not Is_Empty_Elmt_List
(Ifaces_List
) then
8843 Iface_Elmt
: Elmt_Id
;
8846 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
8847 while Present
(Iface_Elmt
) loop
8848 Iface
:= Node
(Iface_Elmt
);
8850 if Has_Inheritable_Invariants
(Iface
) then
8851 Set_Has_Inherited_Invariants
(Derived_Type
);
8855 Next_Elmt
(Iface_Elmt
);
8861 -- A type extension is automatically Ghost when one of its
8862 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8863 -- also inherited when the parent type is Ghost, but this is
8864 -- done in Build_Derived_Type as the mechanism also handles
8865 -- untagged derivations.
8867 if Implements_Ghost_Interface
(Derived_Type
) then
8868 Set_Is_Ghost_Entity
(Derived_Type
);
8874 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
8875 Set_Has_Non_Standard_Rep
8876 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
8879 -- STEP 4: Inherit components from the parent base and constrain them.
8880 -- Apply the second transformation described in point 6. above.
8882 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
8883 or else not Has_Discriminants
(Parent_Type
)
8884 or else not Is_Constrained
(Parent_Type
)
8888 Constrs
:= Discriminant_Constraint
(Parent_Type
);
8893 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
8895 -- STEP 5a: Copy the parent record declaration for untagged types
8897 if not Is_Tagged
then
8899 -- Discriminant_Constraint (Derived_Type) has been properly
8900 -- constructed. Save it and temporarily set it to Empty because we
8901 -- do not want the call to New_Copy_Tree below to mess this list.
8903 if Has_Discriminants
(Derived_Type
) then
8904 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
8905 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
8907 Save_Discr_Constr
:= No_Elist
;
8910 -- Save the Etype field of Derived_Type. It is correctly set now,
8911 -- but the call to New_Copy tree may remap it to point to itself,
8912 -- which is not what we want. Ditto for the Next_Entity field.
8914 Save_Etype
:= Etype
(Derived_Type
);
8915 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
8917 -- Assoc_List maps all stored discriminants in the Parent_Base to
8918 -- stored discriminants in the Derived_Type. It is fundamental that
8919 -- no types or itypes with discriminants other than the stored
8920 -- discriminants appear in the entities declared inside
8921 -- Derived_Type, since the back end cannot deal with it.
8925 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
8927 -- Restore the fields saved prior to the New_Copy_Tree call
8928 -- and compute the stored constraint.
8930 Set_Etype
(Derived_Type
, Save_Etype
);
8931 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
8933 if Has_Discriminants
(Derived_Type
) then
8934 Set_Discriminant_Constraint
8935 (Derived_Type
, Save_Discr_Constr
);
8936 Set_Stored_Constraint
8937 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
8938 Replace_Components
(Derived_Type
, New_Decl
);
8939 Set_Has_Implicit_Dereference
8940 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
8943 -- Insert the new derived type declaration
8945 Rewrite
(N
, New_Decl
);
8947 -- STEP 5b: Complete the processing for record extensions in generics
8949 -- There is no completion for record extensions declared in the
8950 -- parameter part of a generic, so we need to complete processing for
8951 -- these generic record extensions here. The Record_Type_Definition call
8952 -- will change the Ekind of the components from E_Void to E_Component.
8954 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
8955 Record_Type_Definition
(Empty
, Derived_Type
);
8957 -- STEP 5c: Process the record extension for non private tagged types
8959 elsif not Private_Extension
then
8960 Expand_Record_Extension
(Derived_Type
, Type_Def
);
8962 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8963 -- derived type to propagate some semantic information. This led
8964 -- to other ASIS failures and has been removed.
8966 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8967 -- implemented interfaces if we are in expansion mode
8970 and then Has_Interfaces
(Derived_Type
)
8972 Add_Interface_Tag_Components
(N
, Derived_Type
);
8975 -- Analyze the record extension
8977 Record_Type_Definition
8978 (Record_Extension_Part
(Type_Def
), Derived_Type
);
8983 -- Nothing else to do if there is an error in the derivation.
8984 -- An unusual case: the full view may be derived from a type in an
8985 -- instance, when the partial view was used illegally as an actual
8986 -- in that instance, leading to a circular definition.
8988 if Etype
(Derived_Type
) = Any_Type
8989 or else Etype
(Parent_Type
) = Derived_Type
8994 -- Set delayed freeze and then derive subprograms, we need to do
8995 -- this in this order so that derived subprograms inherit the
8996 -- derived freeze if necessary.
8998 Set_Has_Delayed_Freeze
(Derived_Type
);
9000 if Derive_Subps
then
9001 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9004 -- If we have a private extension which defines a constrained derived
9005 -- type mark as constrained here after we have derived subprograms. See
9006 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9008 if Private_Extension
and then Inherit_Discrims
then
9009 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
9010 Set_Is_Constrained
(Derived_Type
, True);
9011 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
9013 elsif Is_Constrained
(Parent_Type
) then
9015 (Derived_Type
, True);
9016 Set_Discriminant_Constraint
9017 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
9021 -- Update the class-wide type, which shares the now-completed entity
9022 -- list with its specific type. In case of underlying record views,
9023 -- we do not generate the corresponding class wide entity.
9026 and then not Is_Underlying_Record_View
(Derived_Type
)
9029 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
9031 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
9034 Check_Function_Writable_Actuals
(N
);
9035 end Build_Derived_Record_Type
;
9037 ------------------------
9038 -- Build_Derived_Type --
9039 ------------------------
9041 procedure Build_Derived_Type
9043 Parent_Type
: Entity_Id
;
9044 Derived_Type
: Entity_Id
;
9045 Is_Completion
: Boolean;
9046 Derive_Subps
: Boolean := True)
9048 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
9051 -- Set common attributes
9053 Set_Scope
(Derived_Type
, Current_Scope
);
9055 Set_Etype
(Derived_Type
, Parent_Base
);
9056 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
9057 Propagate_Concurrent_Flags
(Derived_Type
, Parent_Base
);
9059 Set_Size_Info
(Derived_Type
, Parent_Type
);
9060 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
9061 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
9062 Set_Disable_Controlled
(Derived_Type
, Disable_Controlled
(Parent_Type
));
9064 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
9065 Set_Is_Volatile
(Derived_Type
, Is_Volatile
(Parent_Type
));
9067 if Is_Tagged_Type
(Derived_Type
) then
9068 Set_No_Tagged_Streams_Pragma
9069 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
9072 -- If the parent has primitive routines, set the derived type link
9074 if Has_Primitive_Operations
(Parent_Type
) then
9075 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
9078 -- If the parent type is a private subtype, the convention on the base
9079 -- type may be set in the private part, and not propagated to the
9080 -- subtype until later, so we obtain the convention from the base type.
9082 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
9084 -- Set SSO default for record or array type
9086 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
9087 and then Is_Base_Type
(Derived_Type
)
9089 Set_Default_SSO
(Derived_Type
);
9092 -- Propagate invariant information. The new type has invariants if
9093 -- they are inherited from the parent type, and these invariants can
9094 -- be further inherited, so both flags are set.
9096 -- We similarly inherit predicates
9098 if Has_Predicates
(Parent_Type
) then
9099 Set_Has_Predicates
(Derived_Type
);
9102 -- The derived type inherits the representation clauses of the parent
9104 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
9106 -- Propagate the attributes related to pragma Default_Initial_Condition
9107 -- from the parent type to the private extension. A derived type always
9108 -- inherits the default initial condition flag from the parent type. If
9109 -- the derived type carries its own Default_Initial_Condition pragma,
9110 -- the flag is later reset in Analyze_Pragma. Note that both flags are
9111 -- mutually exclusive.
9113 Propagate_Default_Init_Cond_Attributes
9114 (From_Typ
=> Parent_Type
,
9115 To_Typ
=> Derived_Type
,
9116 Parent_To_Derivation
=> True);
9118 -- If the parent type has delayed rep aspects, then mark the derived
9119 -- type as possibly inheriting a delayed rep aspect.
9121 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
9122 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
9125 -- Propagate the attributes related to pragma Ghost from the parent type
9126 -- to the derived type or type extension (SPARK RM 6.9(9)).
9128 if Is_Ghost_Entity
(Parent_Type
) then
9129 Set_Is_Ghost_Entity
(Derived_Type
);
9132 -- Type dependent processing
9134 case Ekind
(Parent_Type
) is
9135 when Numeric_Kind
=>
9136 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
9139 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
9143 | Class_Wide_Kind
=>
9144 Build_Derived_Record_Type
9145 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
9148 when Enumeration_Kind
=>
9149 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
9152 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
9154 when Incomplete_Or_Private_Kind
=>
9155 Build_Derived_Private_Type
9156 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
9158 -- For discriminated types, the derivation includes deriving
9159 -- primitive operations. For others it is done below.
9161 if Is_Tagged_Type
(Parent_Type
)
9162 or else Has_Discriminants
(Parent_Type
)
9163 or else (Present
(Full_View
(Parent_Type
))
9164 and then Has_Discriminants
(Full_View
(Parent_Type
)))
9169 when Concurrent_Kind
=>
9170 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
9173 raise Program_Error
;
9176 -- Nothing more to do if some error occurred
9178 if Etype
(Derived_Type
) = Any_Type
then
9182 -- Set delayed freeze and then derive subprograms, we need to do this
9183 -- in this order so that derived subprograms inherit the derived freeze
9186 Set_Has_Delayed_Freeze
(Derived_Type
);
9188 if Derive_Subps
then
9189 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9192 Set_Has_Primitive_Operations
9193 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
9194 end Build_Derived_Type
;
9196 -----------------------
9197 -- Build_Discriminal --
9198 -----------------------
9200 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
9201 D_Minal
: Entity_Id
;
9202 CR_Disc
: Entity_Id
;
9205 -- A discriminal has the same name as the discriminant
9207 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9209 Set_Ekind
(D_Minal
, E_In_Parameter
);
9210 Set_Mechanism
(D_Minal
, Default_Mechanism
);
9211 Set_Etype
(D_Minal
, Etype
(Discrim
));
9212 Set_Scope
(D_Minal
, Current_Scope
);
9213 Set_Parent
(D_Minal
, Parent
(Discrim
));
9215 Set_Discriminal
(Discrim
, D_Minal
);
9216 Set_Discriminal_Link
(D_Minal
, Discrim
);
9218 -- For task types, build at once the discriminants of the corresponding
9219 -- record, which are needed if discriminants are used in entry defaults
9220 -- and in family bounds.
9222 if Is_Concurrent_Type
(Current_Scope
)
9224 Is_Limited_Type
(Current_Scope
)
9226 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9228 Set_Ekind
(CR_Disc
, E_In_Parameter
);
9229 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
9230 Set_Etype
(CR_Disc
, Etype
(Discrim
));
9231 Set_Scope
(CR_Disc
, Current_Scope
);
9232 Set_Discriminal_Link
(CR_Disc
, Discrim
);
9233 Set_CR_Discriminant
(Discrim
, CR_Disc
);
9235 end Build_Discriminal
;
9237 ------------------------------------
9238 -- Build_Discriminant_Constraints --
9239 ------------------------------------
9241 function Build_Discriminant_Constraints
9244 Derived_Def
: Boolean := False) return Elist_Id
9246 C
: constant Node_Id
:= Constraint
(Def
);
9247 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
9249 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
9250 -- Saves the expression corresponding to a given discriminant in T
9252 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
9253 -- Return the Position number within array Discr_Expr of a discriminant
9254 -- D within the discriminant list of the discriminated type T.
9256 procedure Process_Discriminant_Expression
9259 -- If this is a discriminant constraint on a partial view, do not
9260 -- generate an overflow check on the discriminant expression. The check
9261 -- will be generated when constraining the full view. Otherwise the
9262 -- backend creates duplicate symbols for the temporaries corresponding
9263 -- to the expressions to be checked, causing spurious assembler errors.
9269 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
9273 Disc
:= First_Discriminant
(T
);
9274 for J
in Discr_Expr
'Range loop
9279 Next_Discriminant
(Disc
);
9282 -- Note: Since this function is called on discriminants that are
9283 -- known to belong to the discriminated type, falling through the
9284 -- loop with no match signals an internal compiler error.
9286 raise Program_Error
;
9289 -------------------------------------
9290 -- Process_Discriminant_Expression --
9291 -------------------------------------
9293 procedure Process_Discriminant_Expression
9297 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
9300 -- If this is a discriminant constraint on a partial view, do
9301 -- not generate an overflow on the discriminant expression. The
9302 -- check will be generated when constraining the full view.
9304 if Is_Private_Type
(T
)
9305 and then Present
(Full_View
(T
))
9307 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
9309 Analyze_And_Resolve
(Expr
, BDT
);
9311 end Process_Discriminant_Expression
;
9313 -- Declarations local to Build_Discriminant_Constraints
9317 Elist
: constant Elist_Id
:= New_Elmt_List
;
9325 Discrim_Present
: Boolean := False;
9327 -- Start of processing for Build_Discriminant_Constraints
9330 -- The following loop will process positional associations only.
9331 -- For a positional association, the (single) discriminant is
9332 -- implicitly specified by position, in textual order (RM 3.7.2).
9334 Discr
:= First_Discriminant
(T
);
9335 Constr
:= First
(Constraints
(C
));
9336 for D
in Discr_Expr
'Range loop
9337 exit when Nkind
(Constr
) = N_Discriminant_Association
;
9340 Error_Msg_N
("too few discriminants given in constraint", C
);
9341 return New_Elmt_List
;
9343 elsif Nkind
(Constr
) = N_Range
9344 or else (Nkind
(Constr
) = N_Attribute_Reference
9345 and then Attribute_Name
(Constr
) = Name_Range
)
9348 ("a range is not a valid discriminant constraint", Constr
);
9349 Discr_Expr
(D
) := Error
;
9352 Process_Discriminant_Expression
(Constr
, Discr
);
9353 Discr_Expr
(D
) := Constr
;
9356 Next_Discriminant
(Discr
);
9360 if No
(Discr
) and then Present
(Constr
) then
9361 Error_Msg_N
("too many discriminants given in constraint", Constr
);
9362 return New_Elmt_List
;
9365 -- Named associations can be given in any order, but if both positional
9366 -- and named associations are used in the same discriminant constraint,
9367 -- then positional associations must occur first, at their normal
9368 -- position. Hence once a named association is used, the rest of the
9369 -- discriminant constraint must use only named associations.
9371 while Present
(Constr
) loop
9373 -- Positional association forbidden after a named association
9375 if Nkind
(Constr
) /= N_Discriminant_Association
then
9376 Error_Msg_N
("positional association follows named one", Constr
);
9377 return New_Elmt_List
;
9379 -- Otherwise it is a named association
9382 -- E records the type of the discriminants in the named
9383 -- association. All the discriminants specified in the same name
9384 -- association must have the same type.
9388 -- Search the list of discriminants in T to see if the simple name
9389 -- given in the constraint matches any of them.
9391 Id
:= First
(Selector_Names
(Constr
));
9392 while Present
(Id
) loop
9395 -- If Original_Discriminant is present, we are processing a
9396 -- generic instantiation and this is an instance node. We need
9397 -- to find the name of the corresponding discriminant in the
9398 -- actual record type T and not the name of the discriminant in
9399 -- the generic formal. Example:
9402 -- type G (D : int) is private;
9404 -- subtype W is G (D => 1);
9406 -- type Rec (X : int) is record ... end record;
9407 -- package Q is new P (G => Rec);
9409 -- At the point of the instantiation, formal type G is Rec
9410 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9411 -- which really looks like "subtype W is Rec (D => 1);" at
9412 -- the point of instantiation, we want to find the discriminant
9413 -- that corresponds to D in Rec, i.e. X.
9415 if Present
(Original_Discriminant
(Id
))
9416 and then In_Instance
9418 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9422 Discr
:= First_Discriminant
(T
);
9423 while Present
(Discr
) loop
9424 if Chars
(Discr
) = Chars
(Id
) then
9429 Next_Discriminant
(Discr
);
9433 Error_Msg_N
("& does not match any discriminant", Id
);
9434 return New_Elmt_List
;
9436 -- If the parent type is a generic formal, preserve the
9437 -- name of the discriminant for subsequent instances.
9438 -- see comment at the beginning of this if statement.
9440 elsif Is_Generic_Type
(Root_Type
(T
)) then
9441 Set_Original_Discriminant
(Id
, Discr
);
9445 Position
:= Pos_Of_Discr
(T
, Discr
);
9447 if Present
(Discr_Expr
(Position
)) then
9448 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9451 -- Each discriminant specified in the same named association
9452 -- must be associated with a separate copy of the
9453 -- corresponding expression.
9455 if Present
(Next
(Id
)) then
9456 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9457 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9459 Expr
:= Expression
(Constr
);
9462 Discr_Expr
(Position
) := Expr
;
9463 Process_Discriminant_Expression
(Expr
, Discr
);
9466 -- A discriminant association with more than one discriminant
9467 -- name is only allowed if the named discriminants are all of
9468 -- the same type (RM 3.7.1(8)).
9471 E
:= Base_Type
(Etype
(Discr
));
9473 elsif Base_Type
(Etype
(Discr
)) /= E
then
9475 ("all discriminants in an association " &
9476 "must have the same type", Id
);
9486 -- A discriminant constraint must provide exactly one value for each
9487 -- discriminant of the type (RM 3.7.1(8)).
9489 for J
in Discr_Expr
'Range loop
9490 if No
(Discr_Expr
(J
)) then
9491 Error_Msg_N
("too few discriminants given in constraint", C
);
9492 return New_Elmt_List
;
9496 -- Determine if there are discriminant expressions in the constraint
9498 for J
in Discr_Expr
'Range loop
9499 if Denotes_Discriminant
9500 (Discr_Expr
(J
), Check_Concurrent
=> True)
9502 Discrim_Present
:= True;
9506 -- Build an element list consisting of the expressions given in the
9507 -- discriminant constraint and apply the appropriate checks. The list
9508 -- is constructed after resolving any named discriminant associations
9509 -- and therefore the expressions appear in the textual order of the
9512 Discr
:= First_Discriminant
(T
);
9513 for J
in Discr_Expr
'Range loop
9514 if Discr_Expr
(J
) /= Error
then
9515 Append_Elmt
(Discr_Expr
(J
), Elist
);
9517 -- If any of the discriminant constraints is given by a
9518 -- discriminant and we are in a derived type declaration we
9519 -- have a discriminant renaming. Establish link between new
9520 -- and old discriminant.
9522 if Denotes_Discriminant
(Discr_Expr
(J
)) then
9524 Set_Corresponding_Discriminant
9525 (Entity
(Discr_Expr
(J
)), Discr
);
9528 -- Force the evaluation of non-discriminant expressions.
9529 -- If we have found a discriminant in the constraint 3.4(26)
9530 -- and 3.8(18) demand that no range checks are performed are
9531 -- after evaluation. If the constraint is for a component
9532 -- definition that has a per-object constraint, expressions are
9533 -- evaluated but not checked either. In all other cases perform
9537 if Discrim_Present
then
9540 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
9542 Has_Per_Object_Constraint
9543 (Defining_Identifier
(Parent
(Parent
(Def
))))
9547 elsif Is_Access_Type
(Etype
(Discr
)) then
9548 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
9551 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
9554 Force_Evaluation
(Discr_Expr
(J
));
9557 -- Check that the designated type of an access discriminant's
9558 -- expression is not a class-wide type unless the discriminant's
9559 -- designated type is also class-wide.
9561 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
9562 and then not Is_Class_Wide_Type
9563 (Designated_Type
(Etype
(Discr
)))
9564 and then Etype
(Discr_Expr
(J
)) /= Any_Type
9565 and then Is_Class_Wide_Type
9566 (Designated_Type
(Etype
(Discr_Expr
(J
))))
9568 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
9570 elsif Is_Access_Type
(Etype
(Discr
))
9571 and then not Is_Access_Constant
(Etype
(Discr
))
9572 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
9573 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
9576 ("constraint for discriminant& must be access to variable",
9581 Next_Discriminant
(Discr
);
9585 end Build_Discriminant_Constraints
;
9587 ---------------------------------
9588 -- Build_Discriminated_Subtype --
9589 ---------------------------------
9591 procedure Build_Discriminated_Subtype
9595 Related_Nod
: Node_Id
;
9596 For_Access
: Boolean := False)
9598 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
9599 Constrained
: constant Boolean :=
9601 and then not Is_Empty_Elmt_List
(Elist
)
9602 and then not Is_Class_Wide_Type
(T
))
9603 or else Is_Constrained
(T
);
9606 if Ekind
(T
) = E_Record_Type
then
9608 Set_Ekind
(Def_Id
, E_Private_Subtype
);
9609 Set_Is_For_Access_Subtype
(Def_Id
, True);
9611 Set_Ekind
(Def_Id
, E_Record_Subtype
);
9614 -- Inherit preelaboration flag from base, for types for which it
9615 -- may have been set: records, private types, protected types.
9617 Set_Known_To_Have_Preelab_Init
9618 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9620 elsif Ekind
(T
) = E_Task_Type
then
9621 Set_Ekind
(Def_Id
, E_Task_Subtype
);
9623 elsif Ekind
(T
) = E_Protected_Type
then
9624 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
9625 Set_Known_To_Have_Preelab_Init
9626 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9628 elsif Is_Private_Type
(T
) then
9629 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
9630 Set_Known_To_Have_Preelab_Init
9631 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
9633 -- Private subtypes may have private dependents
9635 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
9637 elsif Is_Class_Wide_Type
(T
) then
9638 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
9641 -- Incomplete type. Attach subtype to list of dependents, to be
9642 -- completed with full view of parent type, unless is it the
9643 -- designated subtype of a record component within an init_proc.
9644 -- This last case arises for a component of an access type whose
9645 -- designated type is incomplete (e.g. a Taft Amendment type).
9646 -- The designated subtype is within an inner scope, and needs no
9647 -- elaboration, because only the access type is needed in the
9648 -- initialization procedure.
9650 Set_Ekind
(Def_Id
, Ekind
(T
));
9652 if For_Access
and then Within_Init_Proc
then
9655 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
9659 Set_Etype
(Def_Id
, T
);
9660 Init_Size_Align
(Def_Id
);
9661 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
9662 Set_Is_Constrained
(Def_Id
, Constrained
);
9664 Set_First_Entity
(Def_Id
, First_Entity
(T
));
9665 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
9666 Set_Has_Implicit_Dereference
9667 (Def_Id
, Has_Implicit_Dereference
(T
));
9669 -- If the subtype is the completion of a private declaration, there may
9670 -- have been representation clauses for the partial view, and they must
9671 -- be preserved. Build_Derived_Type chains the inherited clauses with
9672 -- the ones appearing on the extension. If this comes from a subtype
9673 -- declaration, all clauses are inherited.
9675 if No
(First_Rep_Item
(Def_Id
)) then
9676 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
9679 if Is_Tagged_Type
(T
) then
9680 Set_Is_Tagged_Type
(Def_Id
);
9681 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
9682 Make_Class_Wide_Type
(Def_Id
);
9685 Set_Stored_Constraint
(Def_Id
, No_Elist
);
9688 Set_Discriminant_Constraint
(Def_Id
, Elist
);
9689 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
9692 if Is_Tagged_Type
(T
) then
9694 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9695 -- concurrent record type (which has the list of primitive
9698 if Ada_Version
>= Ada_2005
9699 and then Is_Concurrent_Type
(T
)
9701 Set_Corresponding_Record_Type
(Def_Id
,
9702 Corresponding_Record_Type
(T
));
9704 Set_Direct_Primitive_Operations
(Def_Id
,
9705 Direct_Primitive_Operations
(T
));
9708 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
9711 -- Subtypes introduced by component declarations do not need to be
9712 -- marked as delayed, and do not get freeze nodes, because the semantics
9713 -- verifies that the parents of the subtypes are frozen before the
9714 -- enclosing record is frozen.
9716 if not Is_Type
(Scope
(Def_Id
)) then
9717 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
9719 if Is_Private_Type
(T
)
9720 and then Present
(Full_View
(T
))
9722 Conditional_Delay
(Def_Id
, Full_View
(T
));
9724 Conditional_Delay
(Def_Id
, T
);
9728 if Is_Record_Type
(T
) then
9729 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
9732 and then not Is_Empty_Elmt_List
(Elist
)
9733 and then not For_Access
9735 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
9736 elsif not For_Access
then
9737 Set_Cloned_Subtype
(Def_Id
, T
);
9740 end Build_Discriminated_Subtype
;
9742 ---------------------------
9743 -- Build_Itype_Reference --
9744 ---------------------------
9746 procedure Build_Itype_Reference
9750 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
9753 -- Itype references are only created for use by the back-end
9755 if Inside_A_Generic
then
9758 Set_Itype
(IR
, Ityp
);
9759 Insert_After
(Nod
, IR
);
9761 end Build_Itype_Reference
;
9763 ------------------------
9764 -- Build_Scalar_Bound --
9765 ------------------------
9767 function Build_Scalar_Bound
9770 Der_T
: Entity_Id
) return Node_Id
9772 New_Bound
: Entity_Id
;
9775 -- Note: not clear why this is needed, how can the original bound
9776 -- be unanalyzed at this point? and if it is, what business do we
9777 -- have messing around with it? and why is the base type of the
9778 -- parent type the right type for the resolution. It probably is
9779 -- not. It is OK for the new bound we are creating, but not for
9780 -- the old one??? Still if it never happens, no problem.
9782 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
9784 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
9785 New_Bound
:= New_Copy
(Bound
);
9786 Set_Etype
(New_Bound
, Der_T
);
9787 Set_Analyzed
(New_Bound
);
9789 elsif Is_Entity_Name
(Bound
) then
9790 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
9792 -- The following is almost certainly wrong. What business do we have
9793 -- relocating a node (Bound) that is presumably still attached to
9794 -- the tree elsewhere???
9797 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
9800 Set_Etype
(New_Bound
, Der_T
);
9802 end Build_Scalar_Bound
;
9804 --------------------------------
9805 -- Build_Underlying_Full_View --
9806 --------------------------------
9808 procedure Build_Underlying_Full_View
9813 Loc
: constant Source_Ptr
:= Sloc
(N
);
9814 Subt
: constant Entity_Id
:=
9815 Make_Defining_Identifier
9816 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
9823 procedure Set_Discriminant_Name
(Id
: Node_Id
);
9824 -- If the derived type has discriminants, they may rename discriminants
9825 -- of the parent. When building the full view of the parent, we need to
9826 -- recover the names of the original discriminants if the constraint is
9827 -- given by named associations.
9829 ---------------------------
9830 -- Set_Discriminant_Name --
9831 ---------------------------
9833 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
9837 Set_Original_Discriminant
(Id
, Empty
);
9839 if Has_Discriminants
(Typ
) then
9840 Disc
:= First_Discriminant
(Typ
);
9841 while Present
(Disc
) loop
9842 if Chars
(Disc
) = Chars
(Id
)
9843 and then Present
(Corresponding_Discriminant
(Disc
))
9845 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
9847 Next_Discriminant
(Disc
);
9850 end Set_Discriminant_Name
;
9852 -- Start of processing for Build_Underlying_Full_View
9855 if Nkind
(N
) = N_Full_Type_Declaration
then
9856 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
9858 elsif Nkind
(N
) = N_Subtype_Declaration
then
9859 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
9861 elsif Nkind
(N
) = N_Component_Declaration
then
9864 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
9867 raise Program_Error
;
9870 C
:= First
(Constraints
(Constr
));
9871 while Present
(C
) loop
9872 if Nkind
(C
) = N_Discriminant_Association
then
9873 Id
:= First
(Selector_Names
(C
));
9874 while Present
(Id
) loop
9875 Set_Discriminant_Name
(Id
);
9884 Make_Subtype_Declaration
(Loc
,
9885 Defining_Identifier
=> Subt
,
9886 Subtype_Indication
=>
9887 Make_Subtype_Indication
(Loc
,
9888 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
9889 Constraint
=> New_Copy_Tree
(Constr
)));
9891 -- If this is a component subtype for an outer itype, it is not
9892 -- a list member, so simply set the parent link for analysis: if
9893 -- the enclosing type does not need to be in a declarative list,
9894 -- neither do the components.
9896 if Is_List_Member
(N
)
9897 and then Nkind
(N
) /= N_Component_Declaration
9899 Insert_Before
(N
, Indic
);
9901 Set_Parent
(Indic
, Parent
(N
));
9905 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
9906 end Build_Underlying_Full_View
;
9908 -------------------------------
9909 -- Check_Abstract_Overriding --
9910 -------------------------------
9912 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
9913 Alias_Subp
: Entity_Id
;
9919 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
9920 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9921 -- which has pragma Implemented already set. Check whether Subp's entity
9922 -- kind conforms to the implementation kind of the overridden routine.
9924 procedure Check_Pragma_Implemented
9926 Iface_Subp
: Entity_Id
);
9927 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9928 -- Iface_Subp and both entities have pragma Implemented already set on
9929 -- them. Check whether the two implementation kinds are conforming.
9931 procedure Inherit_Pragma_Implemented
9933 Iface_Subp
: Entity_Id
);
9934 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9935 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9936 -- Propagate the implementation kind of Iface_Subp to Subp.
9938 ------------------------------
9939 -- Check_Pragma_Implemented --
9940 ------------------------------
9942 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
9943 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
9944 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
9945 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
9946 Contr_Typ
: Entity_Id
;
9947 Impl_Subp
: Entity_Id
;
9950 -- Subp must have an alias since it is a hidden entity used to link
9951 -- an interface subprogram to its overriding counterpart.
9953 pragma Assert
(Present
(Subp_Alias
));
9955 -- Handle aliases to synchronized wrappers
9957 Impl_Subp
:= Subp_Alias
;
9959 if Is_Primitive_Wrapper
(Impl_Subp
) then
9960 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
9963 -- Extract the type of the controlling formal
9965 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
9967 if Is_Concurrent_Record_Type
(Contr_Typ
) then
9968 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
9971 -- An interface subprogram whose implementation kind is By_Entry must
9972 -- be implemented by an entry.
9974 if Impl_Kind
= Name_By_Entry
9975 and then Ekind
(Impl_Subp
) /= E_Entry
9977 Error_Msg_Node_2
:= Iface_Alias
;
9979 ("type & must implement abstract subprogram & with an entry",
9980 Subp_Alias
, Contr_Typ
);
9982 elsif Impl_Kind
= Name_By_Protected_Procedure
then
9984 -- An interface subprogram whose implementation kind is By_
9985 -- Protected_Procedure cannot be implemented by a primitive
9986 -- procedure of a task type.
9988 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
9989 Error_Msg_Node_2
:= Contr_Typ
;
9991 ("interface subprogram & cannot be implemented by a " &
9992 "primitive procedure of task type &", Subp_Alias
,
9995 -- An interface subprogram whose implementation kind is By_
9996 -- Protected_Procedure must be implemented by a procedure.
9998 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
9999 Error_Msg_Node_2
:= Iface_Alias
;
10001 ("type & must implement abstract subprogram & with a " &
10002 "procedure", Subp_Alias
, Contr_Typ
);
10004 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
10005 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
10007 Error_Msg_Name_1
:= Impl_Kind
;
10009 ("overriding operation& must have synchronization%",
10013 -- If primitive has Optional synchronization, overriding operation
10014 -- must match if it has an explicit synchronization..
10016 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
10017 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
10019 Error_Msg_Name_1
:= Impl_Kind
;
10021 ("overriding operation& must have syncrhonization%",
10024 end Check_Pragma_Implemented
;
10026 ------------------------------
10027 -- Check_Pragma_Implemented --
10028 ------------------------------
10030 procedure Check_Pragma_Implemented
10032 Iface_Subp
: Entity_Id
)
10034 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
10035 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
10038 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10039 -- and overriding subprogram are different. In general this is an
10040 -- error except when the implementation kind of the overridden
10041 -- subprograms is By_Any or Optional.
10043 if Iface_Kind
/= Subp_Kind
10044 and then Iface_Kind
/= Name_By_Any
10045 and then Iface_Kind
/= Name_Optional
10047 if Iface_Kind
= Name_By_Entry
then
10049 ("incompatible implementation kind, overridden subprogram " &
10050 "is marked By_Entry", Subp
);
10053 ("incompatible implementation kind, overridden subprogram " &
10054 "is marked By_Protected_Procedure", Subp
);
10057 end Check_Pragma_Implemented
;
10059 --------------------------------
10060 -- Inherit_Pragma_Implemented --
10061 --------------------------------
10063 procedure Inherit_Pragma_Implemented
10065 Iface_Subp
: Entity_Id
)
10067 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
10068 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
10069 Impl_Prag
: Node_Id
;
10072 -- Since the implementation kind is stored as a representation item
10073 -- rather than a flag, create a pragma node.
10077 Chars
=> Name_Implemented
,
10078 Pragma_Argument_Associations
=> New_List
(
10079 Make_Pragma_Argument_Association
(Loc
,
10080 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
10082 Make_Pragma_Argument_Association
(Loc
,
10083 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
10085 -- The pragma doesn't need to be analyzed because it is internally
10086 -- built. It is safe to directly register it as a rep item since we
10087 -- are only interested in the characters of the implementation kind.
10089 Record_Rep_Item
(Subp
, Impl_Prag
);
10090 end Inherit_Pragma_Implemented
;
10092 -- Start of processing for Check_Abstract_Overriding
10095 Op_List
:= Primitive_Operations
(T
);
10097 -- Loop to check primitive operations
10099 Elmt
:= First_Elmt
(Op_List
);
10100 while Present
(Elmt
) loop
10101 Subp
:= Node
(Elmt
);
10102 Alias_Subp
:= Alias
(Subp
);
10104 -- Inherited subprograms are identified by the fact that they do not
10105 -- come from source, and the associated source location is the
10106 -- location of the first subtype of the derived type.
10108 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10109 -- subprograms that "require overriding".
10111 -- Special exception, do not complain about failure to override the
10112 -- stream routines _Input and _Output, as well as the primitive
10113 -- operations used in dispatching selects since we always provide
10114 -- automatic overridings for these subprograms.
10116 -- The partial view of T may have been a private extension, for
10117 -- which inherited functions dispatching on result are abstract.
10118 -- If the full view is a null extension, there is no need for
10119 -- overriding in Ada 2005, but wrappers need to be built for them
10120 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10122 if Is_Null_Extension
(T
)
10123 and then Has_Controlling_Result
(Subp
)
10124 and then Ada_Version
>= Ada_2005
10125 and then Present
(Alias_Subp
)
10126 and then not Comes_From_Source
(Subp
)
10127 and then not Is_Abstract_Subprogram
(Alias_Subp
)
10128 and then not Is_Access_Type
(Etype
(Subp
))
10132 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10133 -- processing because this check is done with the aliased
10136 elsif Present
(Interface_Alias
(Subp
)) then
10139 elsif (Is_Abstract_Subprogram
(Subp
)
10140 or else Requires_Overriding
(Subp
)
10142 (Has_Controlling_Result
(Subp
)
10143 and then Present
(Alias_Subp
)
10144 and then not Comes_From_Source
(Subp
)
10145 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
10146 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
10147 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
10148 and then not Is_Abstract_Type
(T
)
10149 and then not Is_Predefined_Interface_Primitive
(Subp
)
10151 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10152 -- with abstract interface types because the check will be done
10153 -- with the aliased entity (otherwise we generate a duplicated
10156 and then not Present
(Interface_Alias
(Subp
))
10158 if Present
(Alias_Subp
) then
10160 -- Only perform the check for a derived subprogram when the
10161 -- type has an explicit record extension. This avoids incorrect
10162 -- flagging of abstract subprograms for the case of a type
10163 -- without an extension that is derived from a formal type
10164 -- with a tagged actual (can occur within a private part).
10166 -- Ada 2005 (AI-391): In the case of an inherited function with
10167 -- a controlling result of the type, the rule does not apply if
10168 -- the type is a null extension (unless the parent function
10169 -- itself is abstract, in which case the function must still be
10170 -- be overridden). The expander will generate an overriding
10171 -- wrapper function calling the parent subprogram (see
10172 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10174 Type_Def
:= Type_Definition
(Parent
(T
));
10176 if Nkind
(Type_Def
) = N_Derived_Type_Definition
10177 and then Present
(Record_Extension_Part
(Type_Def
))
10179 (Ada_Version
< Ada_2005
10180 or else not Is_Null_Extension
(T
)
10181 or else Ekind
(Subp
) = E_Procedure
10182 or else not Has_Controlling_Result
(Subp
)
10183 or else Is_Abstract_Subprogram
(Alias_Subp
)
10184 or else Requires_Overriding
(Subp
)
10185 or else Is_Access_Type
(Etype
(Subp
)))
10187 -- Avoid reporting error in case of abstract predefined
10188 -- primitive inherited from interface type because the
10189 -- body of internally generated predefined primitives
10190 -- of tagged types are generated later by Freeze_Type
10192 if Is_Interface
(Root_Type
(T
))
10193 and then Is_Abstract_Subprogram
(Subp
)
10194 and then Is_Predefined_Dispatching_Operation
(Subp
)
10195 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
10199 -- A null extension is not obliged to override an inherited
10200 -- procedure subject to pragma Extensions_Visible with value
10201 -- False and at least one controlling OUT parameter
10202 -- (SPARK RM 6.1.7(6)).
10204 elsif Is_Null_Extension
(T
)
10205 and then Is_EVF_Procedure
(Subp
)
10211 ("type must be declared abstract or & overridden",
10214 -- Traverse the whole chain of aliased subprograms to
10215 -- complete the error notification. This is especially
10216 -- useful for traceability of the chain of entities when
10217 -- the subprogram corresponds with an interface
10218 -- subprogram (which may be defined in another package).
10220 if Present
(Alias_Subp
) then
10226 while Present
(Alias
(E
)) loop
10228 -- Avoid reporting redundant errors on entities
10229 -- inherited from interfaces
10231 if Sloc
(E
) /= Sloc
(T
) then
10232 Error_Msg_Sloc
:= Sloc
(E
);
10234 ("\& has been inherited #", T
, Subp
);
10240 Error_Msg_Sloc
:= Sloc
(E
);
10242 -- AI05-0068: report if there is an overriding
10243 -- non-abstract subprogram that is invisible.
10246 and then not Is_Abstract_Subprogram
(E
)
10249 ("\& subprogram# is not visible",
10252 -- Clarify the case where a non-null extension must
10253 -- override inherited procedure subject to pragma
10254 -- Extensions_Visible with value False and at least
10255 -- one controlling OUT param.
10257 elsif Is_EVF_Procedure
(E
) then
10259 ("\& # is subject to Extensions_Visible False",
10264 ("\& has been inherited from subprogram #",
10271 -- Ada 2005 (AI-345): Protected or task type implementing
10272 -- abstract interfaces.
10274 elsif Is_Concurrent_Record_Type
(T
)
10275 and then Present
(Interfaces
(T
))
10277 -- There is no need to check here RM 9.4(11.9/3) since we
10278 -- are processing the corresponding record type and the
10279 -- mode of the overriding subprograms was verified by
10280 -- Check_Conformance when the corresponding concurrent
10281 -- type declaration was analyzed.
10284 ("interface subprogram & must be overridden", T
, Subp
);
10286 -- Examine primitive operations of synchronized type to find
10287 -- homonyms that have the wrong profile.
10293 Prim
:= First_Entity
(Corresponding_Concurrent_Type
(T
));
10294 while Present
(Prim
) loop
10295 if Chars
(Prim
) = Chars
(Subp
) then
10297 ("profile is not type conformant with prefixed "
10298 & "view profile of inherited operation&",
10302 Next_Entity
(Prim
);
10308 Error_Msg_Node_2
:= T
;
10310 ("abstract subprogram& not allowed for type&", Subp
);
10312 -- Also post unconditional warning on the type (unconditional
10313 -- so that if there are more than one of these cases, we get
10314 -- them all, and not just the first one).
10316 Error_Msg_Node_2
:= Subp
;
10317 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
10320 -- A subprogram subject to pragma Extensions_Visible with value
10321 -- "True" cannot override a subprogram subject to the same pragma
10322 -- with value "False" (SPARK RM 6.1.7(5)).
10324 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
10325 and then Present
(Overridden_Operation
(Subp
))
10326 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
10327 Extensions_Visible_False
10329 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
10331 ("subprogram & with Extensions_Visible True cannot override "
10332 & "subprogram # with Extensions_Visible False", Subp
);
10335 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10337 -- Subp is an expander-generated procedure which maps an interface
10338 -- alias to a protected wrapper. The interface alias is flagged by
10339 -- pragma Implemented. Ensure that Subp is a procedure when the
10340 -- implementation kind is By_Protected_Procedure or an entry when
10343 if Ada_Version
>= Ada_2012
10344 and then Is_Hidden
(Subp
)
10345 and then Present
(Interface_Alias
(Subp
))
10346 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
10348 Check_Pragma_Implemented
(Subp
);
10351 -- Subp is an interface primitive which overrides another interface
10352 -- primitive marked with pragma Implemented.
10354 if Ada_Version
>= Ada_2012
10355 and then Present
(Overridden_Operation
(Subp
))
10356 and then Has_Rep_Pragma
10357 (Overridden_Operation
(Subp
), Name_Implemented
)
10359 -- If the overriding routine is also marked by Implemented, check
10360 -- that the two implementation kinds are conforming.
10362 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10363 Check_Pragma_Implemented
10365 Iface_Subp
=> Overridden_Operation
(Subp
));
10367 -- Otherwise the overriding routine inherits the implementation
10368 -- kind from the overridden subprogram.
10371 Inherit_Pragma_Implemented
10373 Iface_Subp
=> Overridden_Operation
(Subp
));
10377 -- If the operation is a wrapper for a synchronized primitive, it
10378 -- may be called indirectly through a dispatching select. We assume
10379 -- that it will be referenced elsewhere indirectly, and suppress
10380 -- warnings about an unused entity.
10382 if Is_Primitive_Wrapper
(Subp
)
10383 and then Present
(Wrapped_Entity
(Subp
))
10385 Set_Referenced
(Wrapped_Entity
(Subp
));
10390 end Check_Abstract_Overriding
;
10392 ------------------------------------------------
10393 -- Check_Access_Discriminant_Requires_Limited --
10394 ------------------------------------------------
10396 procedure Check_Access_Discriminant_Requires_Limited
10401 -- A discriminant_specification for an access discriminant shall appear
10402 -- only in the declaration for a task or protected type, or for a type
10403 -- with the reserved word 'limited' in its definition or in one of its
10404 -- ancestors (RM 3.7(10)).
10406 -- AI-0063: The proper condition is that type must be immutably limited,
10407 -- or else be a partial view.
10409 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10410 if Is_Limited_View
(Current_Scope
)
10412 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10413 and then Limited_Present
(Parent
(Current_Scope
)))
10419 ("access discriminants allowed only for limited types", Loc
);
10422 end Check_Access_Discriminant_Requires_Limited
;
10424 -----------------------------------
10425 -- Check_Aliased_Component_Types --
10426 -----------------------------------
10428 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10432 -- ??? Also need to check components of record extensions, but not
10433 -- components of protected types (which are always limited).
10435 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10436 -- types to be unconstrained. This is safe because it is illegal to
10437 -- create access subtypes to such types with explicit discriminant
10440 if not Is_Limited_Type
(T
) then
10441 if Ekind
(T
) = E_Record_Type
then
10442 C
:= First_Component
(T
);
10443 while Present
(C
) loop
10445 and then Has_Discriminants
(Etype
(C
))
10446 and then not Is_Constrained
(Etype
(C
))
10447 and then not In_Instance_Body
10448 and then Ada_Version
< Ada_2005
10451 ("aliased component must be constrained (RM 3.6(11))",
10455 Next_Component
(C
);
10458 elsif Ekind
(T
) = E_Array_Type
then
10459 if Has_Aliased_Components
(T
)
10460 and then Has_Discriminants
(Component_Type
(T
))
10461 and then not Is_Constrained
(Component_Type
(T
))
10462 and then not In_Instance_Body
10463 and then Ada_Version
< Ada_2005
10466 ("aliased component type must be constrained (RM 3.6(11))",
10471 end Check_Aliased_Component_Types
;
10473 ---------------------------------------
10474 -- Check_Anonymous_Access_Components --
10475 ---------------------------------------
10477 procedure Check_Anonymous_Access_Components
10478 (Typ_Decl
: Node_Id
;
10481 Comp_List
: Node_Id
)
10483 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
10484 Anon_Access
: Entity_Id
;
10487 Comp_Def
: Node_Id
;
10489 Type_Def
: Node_Id
;
10491 procedure Build_Incomplete_Type_Declaration
;
10492 -- If the record type contains components that include an access to the
10493 -- current record, then create an incomplete type declaration for the
10494 -- record, to be used as the designated type of the anonymous access.
10495 -- This is done only once, and only if there is no previous partial
10496 -- view of the type.
10498 function Designates_T
(Subt
: Node_Id
) return Boolean;
10499 -- Check whether a node designates the enclosing record type, or 'Class
10502 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
10503 -- Check whether an access definition includes a reference to
10504 -- the enclosing record type. The reference can be a subtype mark
10505 -- in the access definition itself, a 'Class attribute reference, or
10506 -- recursively a reference appearing in a parameter specification
10507 -- or result definition of an access_to_subprogram definition.
10509 --------------------------------------
10510 -- Build_Incomplete_Type_Declaration --
10511 --------------------------------------
10513 procedure Build_Incomplete_Type_Declaration
is
10518 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10519 -- it's "is new ... with record" or else "is tagged record ...".
10521 Is_Tagged
: constant Boolean :=
10522 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
10524 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
10526 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
10527 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
10530 -- If there is a previous partial view, no need to create a new one
10531 -- If the partial view, given by Prev, is incomplete, If Prev is
10532 -- a private declaration, full declaration is flagged accordingly.
10534 if Prev
/= Typ
then
10536 Make_Class_Wide_Type
(Prev
);
10537 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
10538 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10543 elsif Has_Private_Declaration
(Typ
) then
10545 -- If we refer to T'Class inside T, and T is the completion of a
10546 -- private type, then make sure the class-wide type exists.
10549 Make_Class_Wide_Type
(Typ
);
10554 -- If there was a previous anonymous access type, the incomplete
10555 -- type declaration will have been created already.
10557 elsif Present
(Current_Entity
(Typ
))
10558 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
10559 and then Full_View
(Current_Entity
(Typ
)) = Typ
10562 and then Comes_From_Source
(Current_Entity
(Typ
))
10563 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
10565 Make_Class_Wide_Type
(Typ
);
10567 ("incomplete view of tagged type should be declared tagged??",
10568 Parent
(Current_Entity
(Typ
)));
10573 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
10574 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
10576 -- Type has already been inserted into the current scope. Remove
10577 -- it, and add incomplete declaration for type, so that subsequent
10578 -- anonymous access types can use it. The entity is unchained from
10579 -- the homonym list and from immediate visibility. After analysis,
10580 -- the entity in the incomplete declaration becomes immediately
10581 -- visible in the record declaration that follows.
10583 H
:= Current_Entity
(Typ
);
10586 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
10589 and then Homonym
(H
) /= Typ
10591 H
:= Homonym
(Typ
);
10594 Set_Homonym
(H
, Homonym
(Typ
));
10597 Insert_Before
(Typ_Decl
, Decl
);
10599 Set_Full_View
(Inc_T
, Typ
);
10603 -- Create a common class-wide type for both views, and set the
10604 -- Etype of the class-wide type to the full view.
10606 Make_Class_Wide_Type
(Inc_T
);
10607 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
10608 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10611 end Build_Incomplete_Type_Declaration
;
10617 function Designates_T
(Subt
: Node_Id
) return Boolean is
10618 Type_Id
: constant Name_Id
:= Chars
(Typ
);
10620 function Names_T
(Nam
: Node_Id
) return Boolean;
10621 -- The record type has not been introduced in the current scope
10622 -- yet, so we must examine the name of the type itself, either
10623 -- an identifier T, or an expanded name of the form P.T, where
10624 -- P denotes the current scope.
10630 function Names_T
(Nam
: Node_Id
) return Boolean is
10632 if Nkind
(Nam
) = N_Identifier
then
10633 return Chars
(Nam
) = Type_Id
;
10635 elsif Nkind
(Nam
) = N_Selected_Component
then
10636 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
10637 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
10638 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
10640 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
10641 return Chars
(Selector_Name
(Prefix
(Nam
))) =
10642 Chars
(Current_Scope
);
10656 -- Start of processing for Designates_T
10659 if Nkind
(Subt
) = N_Identifier
then
10660 return Chars
(Subt
) = Type_Id
;
10662 -- Reference can be through an expanded name which has not been
10663 -- analyzed yet, and which designates enclosing scopes.
10665 elsif Nkind
(Subt
) = N_Selected_Component
then
10666 if Names_T
(Subt
) then
10669 -- Otherwise it must denote an entity that is already visible.
10670 -- The access definition may name a subtype of the enclosing
10671 -- type, if there is a previous incomplete declaration for it.
10674 Find_Selected_Component
(Subt
);
10676 Is_Entity_Name
(Subt
)
10677 and then Scope
(Entity
(Subt
)) = Current_Scope
10679 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
10681 (Is_Class_Wide_Type
(Entity
(Subt
))
10683 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
10687 -- A reference to the current type may appear as the prefix of
10688 -- a 'Class attribute.
10690 elsif Nkind
(Subt
) = N_Attribute_Reference
10691 and then Attribute_Name
(Subt
) = Name_Class
10693 return Names_T
(Prefix
(Subt
));
10704 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
10705 Param_Spec
: Node_Id
;
10707 Acc_Subprg
: constant Node_Id
:=
10708 Access_To_Subprogram_Definition
(Acc_Def
);
10711 if No
(Acc_Subprg
) then
10712 return Designates_T
(Subtype_Mark
(Acc_Def
));
10715 -- Component is an access_to_subprogram: examine its formals,
10716 -- and result definition in the case of an access_to_function.
10718 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
10719 while Present
(Param_Spec
) loop
10720 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
10721 and then Mentions_T
(Parameter_Type
(Param_Spec
))
10725 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
10732 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
10733 if Nkind
(Result_Definition
(Acc_Subprg
)) =
10734 N_Access_Definition
10736 return Mentions_T
(Result_Definition
(Acc_Subprg
));
10738 return Designates_T
(Result_Definition
(Acc_Subprg
));
10745 -- Start of processing for Check_Anonymous_Access_Components
10748 if No
(Comp_List
) then
10752 Comp
:= First
(Component_Items
(Comp_List
));
10753 while Present
(Comp
) loop
10754 if Nkind
(Comp
) = N_Component_Declaration
10756 (Access_Definition
(Component_Definition
(Comp
)))
10758 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
10760 Comp_Def
:= Component_Definition
(Comp
);
10762 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
10764 Build_Incomplete_Type_Declaration
;
10765 Anon_Access
:= Make_Temporary
(Loc
, 'S');
10767 -- Create a declaration for the anonymous access type: either
10768 -- an access_to_object or an access_to_subprogram.
10770 if Present
(Acc_Def
) then
10771 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
10773 Make_Access_Function_Definition
(Loc
,
10774 Parameter_Specifications
=>
10775 Parameter_Specifications
(Acc_Def
),
10776 Result_Definition
=> Result_Definition
(Acc_Def
));
10779 Make_Access_Procedure_Definition
(Loc
,
10780 Parameter_Specifications
=>
10781 Parameter_Specifications
(Acc_Def
));
10786 Make_Access_To_Object_Definition
(Loc
,
10787 Subtype_Indication
=>
10789 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
10791 Set_Constant_Present
10792 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
10794 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
10797 Set_Null_Exclusion_Present
10799 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
10802 Make_Full_Type_Declaration
(Loc
,
10803 Defining_Identifier
=> Anon_Access
,
10804 Type_Definition
=> Type_Def
);
10806 Insert_Before
(Typ_Decl
, Decl
);
10809 -- If an access to subprogram, create the extra formals
10811 if Present
(Acc_Def
) then
10812 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
10814 -- If an access to object, preserve entity of designated type,
10815 -- for ASIS use, before rewriting the component definition.
10822 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
10824 -- If the access definition is to the current record,
10825 -- the visible entity at this point is an incomplete
10826 -- type. Retrieve the full view to simplify ASIS queries
10828 if Ekind
(Desig
) = E_Incomplete_Type
then
10829 Desig
:= Full_View
(Desig
);
10833 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
10838 Make_Component_Definition
(Loc
,
10839 Subtype_Indication
=>
10840 New_Occurrence_Of
(Anon_Access
, Loc
)));
10842 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
10843 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
10845 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
10848 Set_Is_Local_Anonymous_Access
(Anon_Access
);
10854 if Present
(Variant_Part
(Comp_List
)) then
10858 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
10859 while Present
(V
) loop
10860 Check_Anonymous_Access_Components
10861 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
10862 Next_Non_Pragma
(V
);
10866 end Check_Anonymous_Access_Components
;
10868 ----------------------
10869 -- Check_Completion --
10870 ----------------------
10872 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
10875 procedure Post_Error
;
10876 -- Post error message for lack of completion for entity E
10882 procedure Post_Error
is
10883 procedure Missing_Body
;
10884 -- Output missing body message
10890 procedure Missing_Body
is
10892 -- Spec is in same unit, so we can post on spec
10894 if In_Same_Source_Unit
(Body_Id
, E
) then
10895 Error_Msg_N
("missing body for &", E
);
10897 -- Spec is in a separate unit, so we have to post on the body
10900 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
10904 -- Start of processing for Post_Error
10907 if not Comes_From_Source
(E
) then
10908 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
10910 -- It may be an anonymous protected type created for a
10911 -- single variable. Post error on variable, if present.
10917 Var
:= First_Entity
(Current_Scope
);
10918 while Present
(Var
) loop
10919 exit when Etype
(Var
) = E
10920 and then Comes_From_Source
(Var
);
10925 if Present
(Var
) then
10932 -- If a generated entity has no completion, then either previous
10933 -- semantic errors have disabled the expansion phase, or else we had
10934 -- missing subunits, or else we are compiling without expansion,
10935 -- or else something is very wrong.
10937 if not Comes_From_Source
(E
) then
10939 (Serious_Errors_Detected
> 0
10940 or else Configurable_Run_Time_Violations
> 0
10941 or else Subunits_Missing
10942 or else not Expander_Active
);
10945 -- Here for source entity
10948 -- Here if no body to post the error message, so we post the error
10949 -- on the declaration that has no completion. This is not really
10950 -- the right place to post it, think about this later ???
10952 if No
(Body_Id
) then
10953 if Is_Type
(E
) then
10955 ("missing full declaration for }", Parent
(E
), E
);
10957 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
10960 -- Package body has no completion for a declaration that appears
10961 -- in the corresponding spec. Post error on the body, with a
10962 -- reference to the non-completed declaration.
10965 Error_Msg_Sloc
:= Sloc
(E
);
10967 if Is_Type
(E
) then
10968 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
10970 elsif Is_Overloadable
(E
)
10971 and then Current_Entity_In_Scope
(E
) /= E
10973 -- It may be that the completion is mistyped and appears as
10974 -- a distinct overloading of the entity.
10977 Candidate
: constant Entity_Id
:=
10978 Current_Entity_In_Scope
(E
);
10979 Decl
: constant Node_Id
:=
10980 Unit_Declaration_Node
(Candidate
);
10983 if Is_Overloadable
(Candidate
)
10984 and then Ekind
(Candidate
) = Ekind
(E
)
10985 and then Nkind
(Decl
) = N_Subprogram_Body
10986 and then Acts_As_Spec
(Decl
)
10988 Check_Type_Conformant
(Candidate
, E
);
11004 Pack_Id
: constant Entity_Id
:= Current_Scope
;
11006 -- Start of processing for Check_Completion
11009 E
:= First_Entity
(Pack_Id
);
11010 while Present
(E
) loop
11011 if Is_Intrinsic_Subprogram
(E
) then
11014 -- The following situation requires special handling: a child unit
11015 -- that appears in the context clause of the body of its parent:
11017 -- procedure Parent.Child (...);
11019 -- with Parent.Child;
11020 -- package body Parent is
11022 -- Here Parent.Child appears as a local entity, but should not be
11023 -- flagged as requiring completion, because it is a compilation
11026 -- Ignore missing completion for a subprogram that does not come from
11027 -- source (including the _Call primitive operation of RAS types,
11028 -- which has to have the flag Comes_From_Source for other purposes):
11029 -- we assume that the expander will provide the missing completion.
11030 -- In case of previous errors, other expansion actions that provide
11031 -- bodies for null procedures with not be invoked, so inhibit message
11034 -- Note that E_Operator is not in the list that follows, because
11035 -- this kind is reserved for predefined operators, that are
11036 -- intrinsic and do not need completion.
11038 elsif Ekind_In
(E
, E_Function
,
11040 E_Generic_Function
,
11041 E_Generic_Procedure
)
11043 if Has_Completion
(E
) then
11046 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
11049 elsif Is_Subprogram
(E
)
11050 and then (not Comes_From_Source
(E
)
11051 or else Chars
(E
) = Name_uCall
)
11056 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
11060 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
11061 and then Null_Present
(Parent
(E
))
11062 and then Serious_Errors_Detected
> 0
11070 elsif Is_Entry
(E
) then
11071 if not Has_Completion
(E
) and then
11072 (Ekind
(Scope
(E
)) = E_Protected_Object
11073 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
11078 elsif Is_Package_Or_Generic_Package
(E
) then
11079 if Unit_Requires_Body
(E
) then
11080 if not Has_Completion
(E
)
11081 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
11087 elsif not Is_Child_Unit
(E
) then
11088 May_Need_Implicit_Body
(E
);
11091 -- A formal incomplete type (Ada 2012) does not require a completion;
11092 -- other incomplete type declarations do.
11094 elsif Ekind
(E
) = E_Incomplete_Type
11095 and then No
(Underlying_Type
(E
))
11096 and then not Is_Generic_Type
(E
)
11100 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
11101 and then not Has_Completion
(E
)
11105 -- A single task declared in the current scope is a constant, verify
11106 -- that the body of its anonymous type is in the same scope. If the
11107 -- task is defined elsewhere, this may be a renaming declaration for
11108 -- which no completion is needed.
11110 elsif Ekind
(E
) = E_Constant
11111 and then Ekind
(Etype
(E
)) = E_Task_Type
11112 and then not Has_Completion
(Etype
(E
))
11113 and then Scope
(Etype
(E
)) = Current_Scope
11117 elsif Ekind
(E
) = E_Protected_Object
11118 and then not Has_Completion
(Etype
(E
))
11122 elsif Ekind
(E
) = E_Record_Type
then
11123 if Is_Tagged_Type
(E
) then
11124 Check_Abstract_Overriding
(E
);
11125 Check_Conventions
(E
);
11128 Check_Aliased_Component_Types
(E
);
11130 elsif Ekind
(E
) = E_Array_Type
then
11131 Check_Aliased_Component_Types
(E
);
11137 end Check_Completion
;
11139 ------------------------------------
11140 -- Check_CPP_Type_Has_No_Defaults --
11141 ------------------------------------
11143 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
11144 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
11149 -- Obtain the component list
11151 if Nkind
(Tdef
) = N_Record_Definition
then
11152 Clist
:= Component_List
(Tdef
);
11153 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
11154 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
11157 -- Check all components to ensure no default expressions
11159 if Present
(Clist
) then
11160 Comp
:= First
(Component_Items
(Clist
));
11161 while Present
(Comp
) loop
11162 if Present
(Expression
(Comp
)) then
11164 ("component of imported 'C'P'P type cannot have "
11165 & "default expression", Expression
(Comp
));
11171 end Check_CPP_Type_Has_No_Defaults
;
11173 ----------------------------
11174 -- Check_Delta_Expression --
11175 ----------------------------
11177 procedure Check_Delta_Expression
(E
: Node_Id
) is
11179 if not (Is_Real_Type
(Etype
(E
))) then
11180 Wrong_Type
(E
, Any_Real
);
11182 elsif not Is_OK_Static_Expression
(E
) then
11183 Flag_Non_Static_Expr
11184 ("non-static expression used for delta value!", E
);
11186 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
11187 Error_Msg_N
("delta expression must be positive", E
);
11193 -- If any of above errors occurred, then replace the incorrect
11194 -- expression by the real 0.1, which should prevent further errors.
11197 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
11198 Analyze_And_Resolve
(E
, Standard_Float
);
11199 end Check_Delta_Expression
;
11201 -----------------------------
11202 -- Check_Digits_Expression --
11203 -----------------------------
11205 procedure Check_Digits_Expression
(E
: Node_Id
) is
11207 if not (Is_Integer_Type
(Etype
(E
))) then
11208 Wrong_Type
(E
, Any_Integer
);
11210 elsif not Is_OK_Static_Expression
(E
) then
11211 Flag_Non_Static_Expr
11212 ("non-static expression used for digits value!", E
);
11214 elsif Expr_Value
(E
) <= 0 then
11215 Error_Msg_N
("digits value must be greater than zero", E
);
11221 -- If any of above errors occurred, then replace the incorrect
11222 -- expression by the integer 1, which should prevent further errors.
11224 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
11225 Analyze_And_Resolve
(E
, Standard_Integer
);
11227 end Check_Digits_Expression
;
11229 --------------------------
11230 -- Check_Initialization --
11231 --------------------------
11233 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
11235 -- Special processing for limited types
11237 if Is_Limited_Type
(T
)
11238 and then not In_Instance
11239 and then not In_Inlined_Body
11241 if not OK_For_Limited_Init
(T
, Exp
) then
11243 -- In GNAT mode, this is just a warning, to allow it to be evilly
11244 -- turned off. Otherwise it is a real error.
11248 ("??cannot initialize entities of limited type!", Exp
);
11250 elsif Ada_Version
< Ada_2005
then
11252 -- The side effect removal machinery may generate illegal Ada
11253 -- code to avoid the usage of access types and 'reference in
11254 -- SPARK mode. Since this is legal code with respect to theorem
11255 -- proving, do not emit the error.
11258 and then Nkind
(Exp
) = N_Function_Call
11259 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11260 and then not Comes_From_Source
11261 (Defining_Identifier
(Parent
(Exp
)))
11267 ("cannot initialize entities of limited type", Exp
);
11268 Explain_Limited_Type
(T
, Exp
);
11272 -- Specialize error message according to kind of illegal
11273 -- initial expression.
11275 if Nkind
(Exp
) = N_Type_Conversion
11276 and then Nkind
(Expression
(Exp
)) = N_Function_Call
11279 ("illegal context for call"
11280 & " to function with limited result", Exp
);
11284 ("initialization of limited object requires aggregate "
11285 & "or function call", Exp
);
11291 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11292 -- set unless we can be sure that no range check is required.
11294 if (GNATprove_Mode
or not Expander_Active
)
11295 and then Is_Scalar_Type
(T
)
11296 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
11298 Set_Do_Range_Check
(Exp
);
11300 end Check_Initialization
;
11302 ----------------------
11303 -- Check_Interfaces --
11304 ----------------------
11306 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
11307 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
11310 Iface_Def
: Node_Id
;
11311 Iface_Typ
: Entity_Id
;
11312 Parent_Node
: Node_Id
;
11314 Is_Task
: Boolean := False;
11315 -- Set True if parent type or any progenitor is a task interface
11317 Is_Protected
: Boolean := False;
11318 -- Set True if parent type or any progenitor is a protected interface
11320 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
11321 -- Check that a progenitor is compatible with declaration. If an error
11322 -- message is output, it is posted on Error_Node.
11328 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
11329 Iface_Id
: constant Entity_Id
:=
11330 Defining_Identifier
(Parent
(Iface_Def
));
11331 Type_Def
: Node_Id
;
11334 if Nkind
(N
) = N_Private_Extension_Declaration
then
11337 Type_Def
:= Type_Definition
(N
);
11340 if Is_Task_Interface
(Iface_Id
) then
11343 elsif Is_Protected_Interface
(Iface_Id
) then
11344 Is_Protected
:= True;
11347 if Is_Synchronized_Interface
(Iface_Id
) then
11349 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11350 -- extension derived from a synchronized interface must explicitly
11351 -- be declared synchronized, because the full view will be a
11352 -- synchronized type.
11354 if Nkind
(N
) = N_Private_Extension_Declaration
then
11355 if not Synchronized_Present
(N
) then
11357 ("private extension of& must be explicitly synchronized",
11361 -- However, by 3.9.4(16/2), a full type that is a record extension
11362 -- is never allowed to derive from a synchronized interface (note
11363 -- that interfaces must be excluded from this check, because those
11364 -- are represented by derived type definitions in some cases).
11366 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11367 and then not Interface_Present
(Type_Definition
(N
))
11369 Error_Msg_N
("record extension cannot derive from synchronized "
11370 & "interface", Error_Node
);
11374 -- Check that the characteristics of the progenitor are compatible
11375 -- with the explicit qualifier in the declaration.
11376 -- The check only applies to qualifiers that come from source.
11377 -- Limited_Present also appears in the declaration of corresponding
11378 -- records, and the check does not apply to them.
11380 if Limited_Present
(Type_Def
)
11382 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11384 if Is_Limited_Interface
(Parent_Type
)
11385 and then not Is_Limited_Interface
(Iface_Id
)
11388 ("progenitor & must be limited interface",
11389 Error_Node
, Iface_Id
);
11392 (Task_Present
(Iface_Def
)
11393 or else Protected_Present
(Iface_Def
)
11394 or else Synchronized_Present
(Iface_Def
))
11395 and then Nkind
(N
) /= N_Private_Extension_Declaration
11396 and then not Error_Posted
(N
)
11399 ("progenitor & must be limited interface",
11400 Error_Node
, Iface_Id
);
11403 -- Protected interfaces can only inherit from limited, synchronized
11404 -- or protected interfaces.
11406 elsif Nkind
(N
) = N_Full_Type_Declaration
11407 and then Protected_Present
(Type_Def
)
11409 if Limited_Present
(Iface_Def
)
11410 or else Synchronized_Present
(Iface_Def
)
11411 or else Protected_Present
(Iface_Def
)
11415 elsif Task_Present
(Iface_Def
) then
11416 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11417 & "from task interface", Error_Node
);
11420 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11421 & "from non-limited interface", Error_Node
);
11424 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11425 -- limited and synchronized.
11427 elsif Synchronized_Present
(Type_Def
) then
11428 if Limited_Present
(Iface_Def
)
11429 or else Synchronized_Present
(Iface_Def
)
11433 elsif Protected_Present
(Iface_Def
)
11434 and then Nkind
(N
) /= N_Private_Extension_Declaration
11436 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11437 & "from protected interface", Error_Node
);
11439 elsif Task_Present
(Iface_Def
)
11440 and then Nkind
(N
) /= N_Private_Extension_Declaration
11442 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11443 & "from task interface", Error_Node
);
11445 elsif not Is_Limited_Interface
(Iface_Id
) then
11446 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11447 & "from non-limited interface", Error_Node
);
11450 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11451 -- synchronized or task interfaces.
11453 elsif Nkind
(N
) = N_Full_Type_Declaration
11454 and then Task_Present
(Type_Def
)
11456 if Limited_Present
(Iface_Def
)
11457 or else Synchronized_Present
(Iface_Def
)
11458 or else Task_Present
(Iface_Def
)
11462 elsif Protected_Present
(Iface_Def
) then
11463 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11464 & "protected interface", Error_Node
);
11467 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11468 & "non-limited interface", Error_Node
);
11473 -- Start of processing for Check_Interfaces
11476 if Is_Interface
(Parent_Type
) then
11477 if Is_Task_Interface
(Parent_Type
) then
11480 elsif Is_Protected_Interface
(Parent_Type
) then
11481 Is_Protected
:= True;
11485 if Nkind
(N
) = N_Private_Extension_Declaration
then
11487 -- Check that progenitors are compatible with declaration
11489 Iface
:= First
(Interface_List
(Def
));
11490 while Present
(Iface
) loop
11491 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11493 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11494 Iface_Def
:= Type_Definition
(Parent_Node
);
11496 if not Is_Interface
(Iface_Typ
) then
11497 Diagnose_Interface
(Iface
, Iface_Typ
);
11499 Check_Ifaces
(Iface_Def
, Iface
);
11505 if Is_Task
and Is_Protected
then
11507 ("type cannot derive from task and protected interface", N
);
11513 -- Full type declaration of derived type.
11514 -- Check compatibility with parent if it is interface type
11516 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11517 and then Is_Interface
(Parent_Type
)
11519 Parent_Node
:= Parent
(Parent_Type
);
11521 -- More detailed checks for interface varieties
11524 (Iface_Def
=> Type_Definition
(Parent_Node
),
11525 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
11528 Iface
:= First
(Interface_List
(Def
));
11529 while Present
(Iface
) loop
11530 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11532 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11533 Iface_Def
:= Type_Definition
(Parent_Node
);
11535 if not Is_Interface
(Iface_Typ
) then
11536 Diagnose_Interface
(Iface
, Iface_Typ
);
11539 -- "The declaration of a specific descendant of an interface
11540 -- type freezes the interface type" RM 13.14
11542 Freeze_Before
(N
, Iface_Typ
);
11543 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
11549 if Is_Task
and Is_Protected
then
11551 ("type cannot derive from task and protected interface", N
);
11553 end Check_Interfaces
;
11555 ------------------------------------
11556 -- Check_Or_Process_Discriminants --
11557 ------------------------------------
11559 -- If an incomplete or private type declaration was already given for the
11560 -- type, the discriminants may have already been processed if they were
11561 -- present on the incomplete declaration. In this case a full conformance
11562 -- check has been performed in Find_Type_Name, and we then recheck here
11563 -- some properties that can't be checked on the partial view alone.
11564 -- Otherwise we call Process_Discriminants.
11566 procedure Check_Or_Process_Discriminants
11569 Prev
: Entity_Id
:= Empty
)
11572 if Has_Discriminants
(T
) then
11574 -- Discriminants are already set on T if they were already present
11575 -- on the partial view. Make them visible to component declarations.
11579 -- Discriminant on T (full view) referencing expr on partial view
11581 Prev_D
: Entity_Id
;
11582 -- Entity of corresponding discriminant on partial view
11585 -- Discriminant specification for full view, expression is
11586 -- the syntactic copy on full view (which has been checked for
11587 -- conformance with partial view), only used here to post error
11591 D
:= First_Discriminant
(T
);
11592 New_D
:= First
(Discriminant_Specifications
(N
));
11593 while Present
(D
) loop
11594 Prev_D
:= Current_Entity
(D
);
11595 Set_Current_Entity
(D
);
11596 Set_Is_Immediately_Visible
(D
);
11597 Set_Homonym
(D
, Prev_D
);
11599 -- Handle the case where there is an untagged partial view and
11600 -- the full view is tagged: must disallow discriminants with
11601 -- defaults, unless compiling for Ada 2012, which allows a
11602 -- limited tagged type to have defaulted discriminants (see
11603 -- AI05-0214). However, suppress error here if it was already
11604 -- reported on the default expression of the partial view.
11606 if Is_Tagged_Type
(T
)
11607 and then Present
(Expression
(Parent
(D
)))
11608 and then (not Is_Limited_Type
(Current_Scope
)
11609 or else Ada_Version
< Ada_2012
)
11610 and then not Error_Posted
(Expression
(Parent
(D
)))
11612 if Ada_Version
>= Ada_2012
then
11614 ("discriminants of nonlimited tagged type cannot have "
11616 Expression
(New_D
));
11619 ("discriminants of tagged type cannot have defaults",
11620 Expression
(New_D
));
11624 -- Ada 2005 (AI-230): Access discriminant allowed in
11625 -- non-limited record types.
11627 if Ada_Version
< Ada_2005
then
11629 -- This restriction gets applied to the full type here. It
11630 -- has already been applied earlier to the partial view.
11632 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
11635 Next_Discriminant
(D
);
11640 elsif Present
(Discriminant_Specifications
(N
)) then
11641 Process_Discriminants
(N
, Prev
);
11643 end Check_Or_Process_Discriminants
;
11645 ----------------------
11646 -- Check_Real_Bound --
11647 ----------------------
11649 procedure Check_Real_Bound
(Bound
: Node_Id
) is
11651 if not Is_Real_Type
(Etype
(Bound
)) then
11653 ("bound in real type definition must be of real type", Bound
);
11655 elsif not Is_OK_Static_Expression
(Bound
) then
11656 Flag_Non_Static_Expr
11657 ("non-static expression used for real type bound!", Bound
);
11664 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
11666 Resolve
(Bound
, Standard_Float
);
11667 end Check_Real_Bound
;
11669 ------------------------------
11670 -- Complete_Private_Subtype --
11671 ------------------------------
11673 procedure Complete_Private_Subtype
11676 Full_Base
: Entity_Id
;
11677 Related_Nod
: Node_Id
)
11679 Save_Next_Entity
: Entity_Id
;
11680 Save_Homonym
: Entity_Id
;
11683 -- Set semantic attributes for (implicit) private subtype completion.
11684 -- If the full type has no discriminants, then it is a copy of the
11685 -- full view of the base. Otherwise, it is a subtype of the base with
11686 -- a possible discriminant constraint. Save and restore the original
11687 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11688 -- not corrupt the entity chain.
11690 -- Note that the type of the full view is the same entity as the type
11691 -- of the partial view. In this fashion, the subtype has access to the
11692 -- correct view of the parent.
11694 Save_Next_Entity
:= Next_Entity
(Full
);
11695 Save_Homonym
:= Homonym
(Priv
);
11697 case Ekind
(Full_Base
) is
11698 when E_Record_Type |
11704 Copy_Node
(Priv
, Full
);
11706 Set_Has_Discriminants
11707 (Full
, Has_Discriminants
(Full_Base
));
11708 Set_Has_Unknown_Discriminants
11709 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11710 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
11711 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
11713 -- If the underlying base type is constrained, we know that the
11714 -- full view of the subtype is constrained as well (the converse
11715 -- is not necessarily true).
11717 if Is_Constrained
(Full_Base
) then
11718 Set_Is_Constrained
(Full
);
11722 Copy_Node
(Full_Base
, Full
);
11724 Set_Chars
(Full
, Chars
(Priv
));
11725 Conditional_Delay
(Full
, Priv
);
11726 Set_Sloc
(Full
, Sloc
(Priv
));
11729 Set_Next_Entity
(Full
, Save_Next_Entity
);
11730 Set_Homonym
(Full
, Save_Homonym
);
11731 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
11733 -- Set common attributes for all subtypes: kind, convention, etc.
11735 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
11736 Set_Convention
(Full
, Convention
(Full_Base
));
11738 -- The Etype of the full view is inconsistent. Gigi needs to see the
11739 -- structural full view, which is what the current scheme gives: the
11740 -- Etype of the full view is the etype of the full base. However, if the
11741 -- full base is a derived type, the full view then looks like a subtype
11742 -- of the parent, not a subtype of the full base. If instead we write:
11744 -- Set_Etype (Full, Full_Base);
11746 -- then we get inconsistencies in the front-end (confusion between
11747 -- views). Several outstanding bugs are related to this ???
11749 Set_Is_First_Subtype
(Full
, False);
11750 Set_Scope
(Full
, Scope
(Priv
));
11751 Set_Size_Info
(Full
, Full_Base
);
11752 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
11753 Set_Is_Itype
(Full
);
11755 -- A subtype of a private-type-without-discriminants, whose full-view
11756 -- has discriminants with default expressions, is not constrained.
11758 if not Has_Discriminants
(Priv
) then
11759 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
11761 if Has_Discriminants
(Full_Base
) then
11762 Set_Discriminant_Constraint
11763 (Full
, Discriminant_Constraint
(Full_Base
));
11765 -- The partial view may have been indefinite, the full view
11768 Set_Has_Unknown_Discriminants
11769 (Full
, Has_Unknown_Discriminants
(Full_Base
));
11773 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
11774 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
11776 -- Freeze the private subtype entity if its parent is delayed, and not
11777 -- already frozen. We skip this processing if the type is an anonymous
11778 -- subtype of a record component, or is the corresponding record of a
11779 -- protected type, since these are processed when the enclosing type
11782 if not Is_Type
(Scope
(Full
)) then
11783 Set_Has_Delayed_Freeze
(Full
,
11784 Has_Delayed_Freeze
(Full_Base
)
11785 and then (not Is_Frozen
(Full_Base
)));
11788 Set_Freeze_Node
(Full
, Empty
);
11789 Set_Is_Frozen
(Full
, False);
11790 Set_Full_View
(Priv
, Full
);
11792 if Has_Discriminants
(Full
) then
11793 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
11794 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
11796 if Has_Unknown_Discriminants
(Full
) then
11797 Set_Discriminant_Constraint
(Full
, No_Elist
);
11801 if Ekind
(Full_Base
) = E_Record_Type
11802 and then Has_Discriminants
(Full_Base
)
11803 and then Has_Discriminants
(Priv
) -- might not, if errors
11804 and then not Has_Unknown_Discriminants
(Priv
)
11805 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
11807 Create_Constrained_Components
11808 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
11810 -- If the full base is itself derived from private, build a congruent
11811 -- subtype of its underlying type, for use by the back end. For a
11812 -- constrained record component, the declaration cannot be placed on
11813 -- the component list, but it must nevertheless be built an analyzed, to
11814 -- supply enough information for Gigi to compute the size of component.
11816 elsif Ekind
(Full_Base
) in Private_Kind
11817 and then Is_Derived_Type
(Full_Base
)
11818 and then Has_Discriminants
(Full_Base
)
11819 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
11821 if not Is_Itype
(Priv
)
11823 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
11825 Build_Underlying_Full_View
11826 (Parent
(Priv
), Full
, Etype
(Full_Base
));
11828 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
11829 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
11832 elsif Is_Record_Type
(Full_Base
) then
11834 -- Show Full is simply a renaming of Full_Base
11836 Set_Cloned_Subtype
(Full
, Full_Base
);
11839 -- It is unsafe to share the bounds of a scalar type, because the Itype
11840 -- is elaborated on demand, and if a bound is non-static then different
11841 -- orders of elaboration in different units will lead to different
11842 -- external symbols.
11844 if Is_Scalar_Type
(Full_Base
) then
11845 Set_Scalar_Range
(Full
,
11846 Make_Range
(Sloc
(Related_Nod
),
11848 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
11850 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
11852 -- This completion inherits the bounds of the full parent, but if
11853 -- the parent is an unconstrained floating point type, so is the
11856 if Is_Floating_Point_Type
(Full_Base
) then
11857 Set_Includes_Infinities
11858 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
11862 -- ??? It seems that a lot of fields are missing that should be copied
11863 -- from Full_Base to Full. Here are some that are introduced in a
11864 -- non-disruptive way but a cleanup is necessary.
11866 if Is_Tagged_Type
(Full_Base
) then
11867 Set_Is_Tagged_Type
(Full
);
11868 Set_Direct_Primitive_Operations
11869 (Full
, Direct_Primitive_Operations
(Full_Base
));
11870 Set_No_Tagged_Streams_Pragma
11871 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
11873 -- Inherit class_wide type of full_base in case the partial view was
11874 -- not tagged. Otherwise it has already been created when the private
11875 -- subtype was analyzed.
11877 if No
(Class_Wide_Type
(Full
)) then
11878 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
11881 -- If this is a subtype of a protected or task type, constrain its
11882 -- corresponding record, unless this is a subtype without constraints,
11883 -- i.e. a simple renaming as with an actual subtype in an instance.
11885 elsif Is_Concurrent_Type
(Full_Base
) then
11886 if Has_Discriminants
(Full
)
11887 and then Present
(Corresponding_Record_Type
(Full_Base
))
11889 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
11891 Set_Corresponding_Record_Type
(Full
,
11892 Constrain_Corresponding_Record
11893 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
11896 Set_Corresponding_Record_Type
(Full
,
11897 Corresponding_Record_Type
(Full_Base
));
11901 -- Link rep item chain, and also setting of Has_Predicates from private
11902 -- subtype to full subtype, since we will need these on the full subtype
11903 -- to create the predicate function. Note that the full subtype may
11904 -- already have rep items, inherited from the full view of the base
11905 -- type, so we must be sure not to overwrite these entries.
11910 Next_Item
: Node_Id
;
11913 Item
:= First_Rep_Item
(Full
);
11915 -- If no existing rep items on full type, we can just link directly
11916 -- to the list of items on the private type, if any exist.. Same if
11917 -- the rep items are only those inherited from the base
11920 or else Nkind
(Item
) /= N_Aspect_Specification
11921 or else Entity
(Item
) = Full_Base
)
11922 and then Present
(First_Rep_Item
(Priv
))
11924 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
11926 -- Otherwise, search to the end of items currently linked to the full
11927 -- subtype and append the private items to the end. However, if Priv
11928 -- and Full already have the same list of rep items, then the append
11929 -- is not done, as that would create a circularity.
11931 elsif Item
/= First_Rep_Item
(Priv
) then
11934 Next_Item
:= Next_Rep_Item
(Item
);
11935 exit when No
(Next_Item
);
11938 -- If the private view has aspect specifications, the full view
11939 -- inherits them. Since these aspects may already have been
11940 -- attached to the full view during derivation, do not append
11941 -- them if already present.
11943 if Item
= First_Rep_Item
(Priv
) then
11949 -- And link the private type items at the end of the chain
11952 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
11957 -- Make sure Has_Predicates is set on full type if it is set on the
11958 -- private type. Note that it may already be set on the full type and
11959 -- if so, we don't want to unset it. Similarly, propagate information
11960 -- about delayed aspects, because the corresponding pragmas must be
11961 -- analyzed when one of the views is frozen. This last step is needed
11962 -- in particular when the full type is a scalar type for which an
11963 -- anonymous base type is constructed.
11965 -- The predicate functions are generated either at the freeze point
11966 -- of the type or at the end of the visible part, and we must avoid
11967 -- generating them twice.
11969 if Has_Predicates
(Priv
) then
11970 Set_Has_Predicates
(Full
);
11972 if Present
(Predicate_Function
(Priv
))
11973 and then No
(Predicate_Function
(Full
))
11975 Set_Predicate_Function
(Full
, Predicate_Function
(Priv
));
11979 if Has_Delayed_Aspects
(Priv
) then
11980 Set_Has_Delayed_Aspects
(Full
);
11982 end Complete_Private_Subtype
;
11984 ----------------------------
11985 -- Constant_Redeclaration --
11986 ----------------------------
11988 procedure Constant_Redeclaration
11993 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
11994 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
11997 procedure Check_Possible_Deferred_Completion
11998 (Prev_Id
: Entity_Id
;
11999 Prev_Obj_Def
: Node_Id
;
12000 Curr_Obj_Def
: Node_Id
);
12001 -- Determine whether the two object definitions describe the partial
12002 -- and the full view of a constrained deferred constant. Generate
12003 -- a subtype for the full view and verify that it statically matches
12004 -- the subtype of the partial view.
12006 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
12007 -- If deferred constant is an access type initialized with an allocator,
12008 -- check whether there is an illegal recursion in the definition,
12009 -- through a default value of some record subcomponent. This is normally
12010 -- detected when generating init procs, but requires this additional
12011 -- mechanism when expansion is disabled.
12013 ----------------------------------------
12014 -- Check_Possible_Deferred_Completion --
12015 ----------------------------------------
12017 procedure Check_Possible_Deferred_Completion
12018 (Prev_Id
: Entity_Id
;
12019 Prev_Obj_Def
: Node_Id
;
12020 Curr_Obj_Def
: Node_Id
)
12023 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
12024 and then Present
(Constraint
(Prev_Obj_Def
))
12025 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
12026 and then Present
(Constraint
(Curr_Obj_Def
))
12029 Loc
: constant Source_Ptr
:= Sloc
(N
);
12030 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
12031 Decl
: constant Node_Id
:=
12032 Make_Subtype_Declaration
(Loc
,
12033 Defining_Identifier
=> Def_Id
,
12034 Subtype_Indication
=>
12035 Relocate_Node
(Curr_Obj_Def
));
12038 Insert_Before_And_Analyze
(N
, Decl
);
12039 Set_Etype
(Id
, Def_Id
);
12041 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
12042 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
12043 Error_Msg_N
("subtype does not statically match deferred "
12044 & "declaration #", N
);
12048 end Check_Possible_Deferred_Completion
;
12050 ---------------------------------
12051 -- Check_Recursive_Declaration --
12052 ---------------------------------
12054 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
12058 if Is_Record_Type
(Typ
) then
12059 Comp
:= First_Component
(Typ
);
12060 while Present
(Comp
) loop
12061 if Comes_From_Source
(Comp
) then
12062 if Present
(Expression
(Parent
(Comp
)))
12063 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
12064 and then Entity
(Expression
(Parent
(Comp
))) = Prev
12066 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
12068 ("illegal circularity with declaration for & #",
12072 elsif Is_Record_Type
(Etype
(Comp
)) then
12073 Check_Recursive_Declaration
(Etype
(Comp
));
12077 Next_Component
(Comp
);
12080 end Check_Recursive_Declaration
;
12082 -- Start of processing for Constant_Redeclaration
12085 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
12086 if Nkind
(Object_Definition
12087 (Parent
(Prev
))) = N_Subtype_Indication
12089 -- Find type of new declaration. The constraints of the two
12090 -- views must match statically, but there is no point in
12091 -- creating an itype for the full view.
12093 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
12094 Find_Type
(Subtype_Mark
(Obj_Def
));
12095 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
12098 Find_Type
(Obj_Def
);
12099 New_T
:= Entity
(Obj_Def
);
12105 -- The full view may impose a constraint, even if the partial
12106 -- view does not, so construct the subtype.
12108 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
12113 -- Current declaration is illegal, diagnosed below in Enter_Name
12119 -- If previous full declaration or a renaming declaration exists, or if
12120 -- a homograph is present, let Enter_Name handle it, either with an
12121 -- error or with the removal of an overridden implicit subprogram.
12122 -- The previous one is a full declaration if it has an expression
12123 -- (which in the case of an aggregate is indicated by the Init flag).
12125 if Ekind
(Prev
) /= E_Constant
12126 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
12127 or else Present
(Expression
(Parent
(Prev
)))
12128 or else Has_Init_Expression
(Parent
(Prev
))
12129 or else Present
(Full_View
(Prev
))
12133 -- Verify that types of both declarations match, or else that both types
12134 -- are anonymous access types whose designated subtypes statically match
12135 -- (as allowed in Ada 2005 by AI-385).
12137 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
12139 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
12140 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
12141 or else Is_Access_Constant
(Etype
(New_T
)) /=
12142 Is_Access_Constant
(Etype
(Prev
))
12143 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
12144 Can_Never_Be_Null
(Etype
(Prev
))
12145 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
12146 Null_Exclusion_Present
(Parent
(Id
))
12147 or else not Subtypes_Statically_Match
12148 (Designated_Type
(Etype
(Prev
)),
12149 Designated_Type
(Etype
(New_T
))))
12151 Error_Msg_Sloc
:= Sloc
(Prev
);
12152 Error_Msg_N
("type does not match declaration#", N
);
12153 Set_Full_View
(Prev
, Id
);
12154 Set_Etype
(Id
, Any_Type
);
12156 -- A deferred constant whose type is an anonymous array is always
12157 -- illegal (unless imported). A detailed error message might be
12158 -- helpful for Ada beginners.
12160 if Nkind
(Object_Definition
(Parent
(Prev
)))
12161 = N_Constrained_Array_Definition
12162 and then Nkind
(Object_Definition
(N
))
12163 = N_Constrained_Array_Definition
12165 Error_Msg_N
("\each anonymous array is a distinct type", N
);
12166 Error_Msg_N
("a deferred constant must have a named type",
12167 Object_Definition
(Parent
(Prev
)));
12171 Null_Exclusion_Present
(Parent
(Prev
))
12172 and then not Null_Exclusion_Present
(N
)
12174 Error_Msg_Sloc
:= Sloc
(Prev
);
12175 Error_Msg_N
("null-exclusion does not match declaration#", N
);
12176 Set_Full_View
(Prev
, Id
);
12177 Set_Etype
(Id
, Any_Type
);
12179 -- If so, process the full constant declaration
12182 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12183 -- the deferred declaration is constrained, then the subtype defined
12184 -- by the subtype_indication in the full declaration shall match it
12187 Check_Possible_Deferred_Completion
12189 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
12190 Curr_Obj_Def
=> Obj_Def
);
12192 Set_Full_View
(Prev
, Id
);
12193 Set_Is_Public
(Id
, Is_Public
(Prev
));
12194 Set_Is_Internal
(Id
);
12195 Append_Entity
(Id
, Current_Scope
);
12197 -- Check ALIASED present if present before (RM 7.4(7))
12199 if Is_Aliased
(Prev
)
12200 and then not Aliased_Present
(N
)
12202 Error_Msg_Sloc
:= Sloc
(Prev
);
12203 Error_Msg_N
("ALIASED required (see declaration #)", N
);
12206 -- Check that placement is in private part and that the incomplete
12207 -- declaration appeared in the visible part.
12209 if Ekind
(Current_Scope
) = E_Package
12210 and then not In_Private_Part
(Current_Scope
)
12212 Error_Msg_Sloc
:= Sloc
(Prev
);
12214 ("full constant for declaration # must be in private part", N
);
12216 elsif Ekind
(Current_Scope
) = E_Package
12218 List_Containing
(Parent
(Prev
)) /=
12219 Visible_Declarations
(Package_Specification
(Current_Scope
))
12222 ("deferred constant must be declared in visible part",
12226 if Is_Access_Type
(T
)
12227 and then Nkind
(Expression
(N
)) = N_Allocator
12229 Check_Recursive_Declaration
(Designated_Type
(T
));
12232 -- A deferred constant is a visible entity. If type has invariants,
12233 -- verify that the initial value satisfies them.
12235 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
12237 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
12240 end Constant_Redeclaration
;
12242 ----------------------
12243 -- Constrain_Access --
12244 ----------------------
12246 procedure Constrain_Access
12247 (Def_Id
: in out Entity_Id
;
12249 Related_Nod
: Node_Id
)
12251 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12252 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
12253 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
12254 Constraint_OK
: Boolean := True;
12257 if Is_Array_Type
(Desig_Type
) then
12258 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
12260 elsif (Is_Record_Type
(Desig_Type
)
12261 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
12262 and then not Is_Constrained
(Desig_Type
)
12264 -- ??? The following code is a temporary bypass to ignore a
12265 -- discriminant constraint on access type if it is constraining
12266 -- the current record. Avoid creating the implicit subtype of the
12267 -- record we are currently compiling since right now, we cannot
12268 -- handle these. For now, just return the access type itself.
12270 if Desig_Type
= Current_Scope
12271 and then No
(Def_Id
)
12273 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
12274 Def_Id
:= Entity
(Subtype_Mark
(S
));
12276 -- This call added to ensure that the constraint is analyzed
12277 -- (needed for a B test). Note that we still return early from
12278 -- this procedure to avoid recursive processing. ???
12280 Constrain_Discriminated_Type
12281 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
12285 -- Enforce rule that the constraint is illegal if there is an
12286 -- unconstrained view of the designated type. This means that the
12287 -- partial view (either a private type declaration or a derivation
12288 -- from a private type) has no discriminants. (Defect Report
12289 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12291 -- Rule updated for Ada 2005: The private type is said to have
12292 -- a constrained partial view, given that objects of the type
12293 -- can be declared. Furthermore, the rule applies to all access
12294 -- types, unlike the rule concerning default discriminants (see
12297 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
12298 and then Has_Private_Declaration
(Desig_Type
)
12299 and then In_Open_Scopes
(Scope
(Desig_Type
))
12300 and then Has_Discriminants
(Desig_Type
)
12303 Pack
: constant Node_Id
:=
12304 Unit_Declaration_Node
(Scope
(Desig_Type
));
12309 if Nkind
(Pack
) = N_Package_Declaration
then
12310 Decls
:= Visible_Declarations
(Specification
(Pack
));
12311 Decl
:= First
(Decls
);
12312 while Present
(Decl
) loop
12313 if (Nkind
(Decl
) = N_Private_Type_Declaration
12314 and then Chars
(Defining_Identifier
(Decl
)) =
12315 Chars
(Desig_Type
))
12318 (Nkind
(Decl
) = N_Full_Type_Declaration
12320 Chars
(Defining_Identifier
(Decl
)) =
12322 and then Is_Derived_Type
(Desig_Type
)
12324 Has_Private_Declaration
(Etype
(Desig_Type
)))
12326 if No
(Discriminant_Specifications
(Decl
)) then
12328 ("cannot constrain access type if designated "
12329 & "type has constrained partial view", S
);
12341 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
12342 For_Access
=> True);
12344 elsif Is_Concurrent_Type
(Desig_Type
)
12345 and then not Is_Constrained
(Desig_Type
)
12347 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
12350 Error_Msg_N
("invalid constraint on access type", S
);
12352 -- We simply ignore an invalid constraint
12354 Desig_Subtype
:= Desig_Type
;
12355 Constraint_OK
:= False;
12358 if No
(Def_Id
) then
12359 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
12361 Set_Ekind
(Def_Id
, E_Access_Subtype
);
12364 if Constraint_OK
then
12365 Set_Etype
(Def_Id
, Base_Type
(T
));
12367 if Is_Private_Type
(Desig_Type
) then
12368 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
12371 Set_Etype
(Def_Id
, Any_Type
);
12374 Set_Size_Info
(Def_Id
, T
);
12375 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
12376 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
12377 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12378 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12380 Conditional_Delay
(Def_Id
, T
);
12382 -- AI-363 : Subtypes of general access types whose designated types have
12383 -- default discriminants are disallowed. In instances, the rule has to
12384 -- be checked against the actual, of which T is the subtype. In a
12385 -- generic body, the rule is checked assuming that the actual type has
12386 -- defaulted discriminants.
12388 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12389 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12390 and then Has_Defaulted_Discriminants
(Desig_Type
)
12392 if Ada_Version
< Ada_2005
then
12394 ("access subtype of general access type would not " &
12395 "be allowed in Ada 2005?y?", S
);
12398 ("access subtype of general access type not allowed", S
);
12401 Error_Msg_N
("\discriminants have defaults", S
);
12403 elsif Is_Access_Type
(T
)
12404 and then Is_Generic_Type
(Desig_Type
)
12405 and then Has_Discriminants
(Desig_Type
)
12406 and then In_Package_Body
(Current_Scope
)
12408 if Ada_Version
< Ada_2005
then
12410 ("access subtype would not be allowed in generic body "
12411 & "in Ada 2005?y?", S
);
12414 ("access subtype not allowed in generic body", S
);
12418 ("\designated type is a discriminated formal", S
);
12421 end Constrain_Access
;
12423 ---------------------
12424 -- Constrain_Array --
12425 ---------------------
12427 procedure Constrain_Array
12428 (Def_Id
: in out Entity_Id
;
12430 Related_Nod
: Node_Id
;
12431 Related_Id
: Entity_Id
;
12432 Suffix
: Character)
12434 C
: constant Node_Id
:= Constraint
(SI
);
12435 Number_Of_Constraints
: Nat
:= 0;
12438 Constraint_OK
: Boolean := True;
12441 T
:= Entity
(Subtype_Mark
(SI
));
12443 if Is_Access_Type
(T
) then
12444 T
:= Designated_Type
(T
);
12447 -- If an index constraint follows a subtype mark in a subtype indication
12448 -- then the type or subtype denoted by the subtype mark must not already
12449 -- impose an index constraint. The subtype mark must denote either an
12450 -- unconstrained array type or an access type whose designated type
12451 -- is such an array type... (RM 3.6.1)
12453 if Is_Constrained
(T
) then
12454 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
12455 Constraint_OK
:= False;
12458 S
:= First
(Constraints
(C
));
12459 while Present
(S
) loop
12460 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
12464 -- In either case, the index constraint must provide a discrete
12465 -- range for each index of the array type and the type of each
12466 -- discrete range must be the same as that of the corresponding
12467 -- index. (RM 3.6.1)
12469 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
12470 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
12471 Constraint_OK
:= False;
12474 S
:= First
(Constraints
(C
));
12475 Index
:= First_Index
(T
);
12478 -- Apply constraints to each index type
12480 for J
in 1 .. Number_Of_Constraints
loop
12481 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
12489 if No
(Def_Id
) then
12491 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
12492 Set_Parent
(Def_Id
, Related_Nod
);
12495 Set_Ekind
(Def_Id
, E_Array_Subtype
);
12498 Set_Size_Info
(Def_Id
, (T
));
12499 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12500 Set_Etype
(Def_Id
, Base_Type
(T
));
12502 if Constraint_OK
then
12503 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
12505 Set_First_Index
(Def_Id
, First_Index
(T
));
12508 Set_Is_Constrained
(Def_Id
, True);
12509 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
12510 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12512 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
12513 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
12515 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12516 -- We need to initialize the attribute because if Def_Id is previously
12517 -- analyzed through a limited_with clause, it will have the attributes
12518 -- of an incomplete type, one of which is an Elist that overlaps the
12519 -- Packed_Array_Impl_Type field.
12521 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
12523 -- Build a freeze node if parent still needs one. Also make sure that
12524 -- the Depends_On_Private status is set because the subtype will need
12525 -- reprocessing at the time the base type does, and also we must set a
12526 -- conditional delay.
12528 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
12529 Conditional_Delay
(Def_Id
, T
);
12530 end Constrain_Array
;
12532 ------------------------------
12533 -- Constrain_Component_Type --
12534 ------------------------------
12536 function Constrain_Component_Type
12538 Constrained_Typ
: Entity_Id
;
12539 Related_Node
: Node_Id
;
12541 Constraints
: Elist_Id
) return Entity_Id
12543 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
12544 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
12546 function Build_Constrained_Array_Type
12547 (Old_Type
: Entity_Id
) return Entity_Id
;
12548 -- If Old_Type is an array type, one of whose indexes is constrained
12549 -- by a discriminant, build an Itype whose constraint replaces the
12550 -- discriminant with its value in the constraint.
12552 function Build_Constrained_Discriminated_Type
12553 (Old_Type
: Entity_Id
) return Entity_Id
;
12554 -- Ditto for record components
12556 function Build_Constrained_Access_Type
12557 (Old_Type
: Entity_Id
) return Entity_Id
;
12558 -- Ditto for access types. Makes use of previous two functions, to
12559 -- constrain designated type.
12561 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
12562 -- T is an array or discriminated type, C is a list of constraints
12563 -- that apply to T. This routine builds the constrained subtype.
12565 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
12566 -- Returns True if Expr is a discriminant
12568 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
12569 -- Find the value of discriminant Discrim in Constraint
12571 -----------------------------------
12572 -- Build_Constrained_Access_Type --
12573 -----------------------------------
12575 function Build_Constrained_Access_Type
12576 (Old_Type
: Entity_Id
) return Entity_Id
12578 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
12580 Desig_Subtype
: Entity_Id
;
12584 -- if the original access type was not embedded in the enclosing
12585 -- type definition, there is no need to produce a new access
12586 -- subtype. In fact every access type with an explicit constraint
12587 -- generates an itype whose scope is the enclosing record.
12589 if not Is_Type
(Scope
(Old_Type
)) then
12592 elsif Is_Array_Type
(Desig_Type
) then
12593 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
12595 elsif Has_Discriminants
(Desig_Type
) then
12597 -- This may be an access type to an enclosing record type for
12598 -- which we are constructing the constrained components. Return
12599 -- the enclosing record subtype. This is not always correct,
12600 -- but avoids infinite recursion. ???
12602 Desig_Subtype
:= Any_Type
;
12604 for J
in reverse 0 .. Scope_Stack
.Last
loop
12605 Scop
:= Scope_Stack
.Table
(J
).Entity
;
12608 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
12610 Desig_Subtype
:= Scop
;
12613 exit when not Is_Type
(Scop
);
12616 if Desig_Subtype
= Any_Type
then
12618 Build_Constrained_Discriminated_Type
(Desig_Type
);
12625 if Desig_Subtype
/= Desig_Type
then
12627 -- The Related_Node better be here or else we won't be able
12628 -- to attach new itypes to a node in the tree.
12630 pragma Assert
(Present
(Related_Node
));
12632 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
12634 Set_Etype
(Itype
, Base_Type
(Old_Type
));
12635 Set_Size_Info
(Itype
, (Old_Type
));
12636 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
12637 Set_Depends_On_Private
(Itype
, Has_Private_Component
12639 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
12642 -- The new itype needs freezing when it depends on a not frozen
12643 -- type and the enclosing subtype needs freezing.
12645 if Has_Delayed_Freeze
(Constrained_Typ
)
12646 and then not Is_Frozen
(Constrained_Typ
)
12648 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
12656 end Build_Constrained_Access_Type
;
12658 ----------------------------------
12659 -- Build_Constrained_Array_Type --
12660 ----------------------------------
12662 function Build_Constrained_Array_Type
12663 (Old_Type
: Entity_Id
) return Entity_Id
12667 Old_Index
: Node_Id
;
12668 Range_Node
: Node_Id
;
12669 Constr_List
: List_Id
;
12671 Need_To_Create_Itype
: Boolean := False;
12674 Old_Index
:= First_Index
(Old_Type
);
12675 while Present
(Old_Index
) loop
12676 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12678 if Is_Discriminant
(Lo_Expr
)
12680 Is_Discriminant
(Hi_Expr
)
12682 Need_To_Create_Itype
:= True;
12685 Next_Index
(Old_Index
);
12688 if Need_To_Create_Itype
then
12689 Constr_List
:= New_List
;
12691 Old_Index
:= First_Index
(Old_Type
);
12692 while Present
(Old_Index
) loop
12693 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
12695 if Is_Discriminant
(Lo_Expr
) then
12696 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
12699 if Is_Discriminant
(Hi_Expr
) then
12700 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
12705 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
12707 Append
(Range_Node
, To
=> Constr_List
);
12709 Next_Index
(Old_Index
);
12712 return Build_Subtype
(Old_Type
, Constr_List
);
12717 end Build_Constrained_Array_Type
;
12719 ------------------------------------------
12720 -- Build_Constrained_Discriminated_Type --
12721 ------------------------------------------
12723 function Build_Constrained_Discriminated_Type
12724 (Old_Type
: Entity_Id
) return Entity_Id
12727 Constr_List
: List_Id
;
12728 Old_Constraint
: Elmt_Id
;
12730 Need_To_Create_Itype
: Boolean := False;
12733 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12734 while Present
(Old_Constraint
) loop
12735 Expr
:= Node
(Old_Constraint
);
12737 if Is_Discriminant
(Expr
) then
12738 Need_To_Create_Itype
:= True;
12741 Next_Elmt
(Old_Constraint
);
12744 if Need_To_Create_Itype
then
12745 Constr_List
:= New_List
;
12747 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
12748 while Present
(Old_Constraint
) loop
12749 Expr
:= Node
(Old_Constraint
);
12751 if Is_Discriminant
(Expr
) then
12752 Expr
:= Get_Discr_Value
(Expr
);
12755 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
12757 Next_Elmt
(Old_Constraint
);
12760 return Build_Subtype
(Old_Type
, Constr_List
);
12765 end Build_Constrained_Discriminated_Type
;
12767 -------------------
12768 -- Build_Subtype --
12769 -------------------
12771 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
12773 Subtyp_Decl
: Node_Id
;
12774 Def_Id
: Entity_Id
;
12775 Btyp
: Entity_Id
:= Base_Type
(T
);
12778 -- The Related_Node better be here or else we won't be able to
12779 -- attach new itypes to a node in the tree.
12781 pragma Assert
(Present
(Related_Node
));
12783 -- If the view of the component's type is incomplete or private
12784 -- with unknown discriminants, then the constraint must be applied
12785 -- to the full type.
12787 if Has_Unknown_Discriminants
(Btyp
)
12788 and then Present
(Underlying_Type
(Btyp
))
12790 Btyp
:= Underlying_Type
(Btyp
);
12794 Make_Subtype_Indication
(Loc
,
12795 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
12796 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
12798 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
12801 Make_Subtype_Declaration
(Loc
,
12802 Defining_Identifier
=> Def_Id
,
12803 Subtype_Indication
=> Indic
);
12805 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
12807 -- Itypes must be analyzed with checks off (see package Itypes)
12809 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
12814 ---------------------
12815 -- Get_Discr_Value --
12816 ---------------------
12818 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
12823 -- The discriminant may be declared for the type, in which case we
12824 -- find it by iterating over the list of discriminants. If the
12825 -- discriminant is inherited from a parent type, it appears as the
12826 -- corresponding discriminant of the current type. This will be the
12827 -- case when constraining an inherited component whose constraint is
12828 -- given by a discriminant of the parent.
12830 D
:= First_Discriminant
(Typ
);
12831 E
:= First_Elmt
(Constraints
);
12833 while Present
(D
) loop
12834 if D
= Entity
(Discrim
)
12835 or else D
= CR_Discriminant
(Entity
(Discrim
))
12836 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
12841 Next_Discriminant
(D
);
12845 -- The Corresponding_Discriminant mechanism is incomplete, because
12846 -- the correspondence between new and old discriminants is not one
12847 -- to one: one new discriminant can constrain several old ones. In
12848 -- that case, scan sequentially the stored_constraint, the list of
12849 -- discriminants of the parents, and the constraints.
12851 -- Previous code checked for the present of the Stored_Constraint
12852 -- list for the derived type, but did not use it at all. Should it
12853 -- be present when the component is a discriminated task type?
12855 if Is_Derived_Type
(Typ
)
12856 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
12858 D
:= First_Discriminant
(Etype
(Typ
));
12859 E
:= First_Elmt
(Constraints
);
12860 while Present
(D
) loop
12861 if D
= Entity
(Discrim
) then
12865 Next_Discriminant
(D
);
12870 -- Something is wrong if we did not find the value
12872 raise Program_Error
;
12873 end Get_Discr_Value
;
12875 ---------------------
12876 -- Is_Discriminant --
12877 ---------------------
12879 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
12880 Discrim_Scope
: Entity_Id
;
12883 if Denotes_Discriminant
(Expr
) then
12884 Discrim_Scope
:= Scope
(Entity
(Expr
));
12886 -- Either we have a reference to one of Typ's discriminants,
12888 pragma Assert
(Discrim_Scope
= Typ
12890 -- or to the discriminants of the parent type, in the case
12891 -- of a derivation of a tagged type with variants.
12893 or else Discrim_Scope
= Etype
(Typ
)
12894 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
12896 -- or same as above for the case where the discriminants
12897 -- were declared in Typ's private view.
12899 or else (Is_Private_Type
(Discrim_Scope
)
12900 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12902 -- or else we are deriving from the full view and the
12903 -- discriminant is declared in the private entity.
12905 or else (Is_Private_Type
(Typ
)
12906 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
12908 -- Or we are constrained the corresponding record of a
12909 -- synchronized type that completes a private declaration.
12911 or else (Is_Concurrent_Record_Type
(Typ
)
12913 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
12915 -- or we have a class-wide type, in which case make sure the
12916 -- discriminant found belongs to the root type.
12918 or else (Is_Class_Wide_Type
(Typ
)
12919 and then Etype
(Typ
) = Discrim_Scope
));
12924 -- In all other cases we have something wrong
12927 end Is_Discriminant
;
12929 -- Start of processing for Constrain_Component_Type
12932 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
12933 and then Comes_From_Source
(Parent
(Comp
))
12934 and then Comes_From_Source
12935 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12938 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
12940 return Compon_Type
;
12942 elsif Is_Array_Type
(Compon_Type
) then
12943 return Build_Constrained_Array_Type
(Compon_Type
);
12945 elsif Has_Discriminants
(Compon_Type
) then
12946 return Build_Constrained_Discriminated_Type
(Compon_Type
);
12948 elsif Is_Access_Type
(Compon_Type
) then
12949 return Build_Constrained_Access_Type
(Compon_Type
);
12952 return Compon_Type
;
12954 end Constrain_Component_Type
;
12956 --------------------------
12957 -- Constrain_Concurrent --
12958 --------------------------
12960 -- For concurrent types, the associated record value type carries the same
12961 -- discriminants, so when we constrain a concurrent type, we must constrain
12962 -- the corresponding record type as well.
12964 procedure Constrain_Concurrent
12965 (Def_Id
: in out Entity_Id
;
12967 Related_Nod
: Node_Id
;
12968 Related_Id
: Entity_Id
;
12969 Suffix
: Character)
12971 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12972 -- case of a private subtype (needed when only doing semantic analysis).
12974 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
12978 if Is_Access_Type
(T_Ent
) then
12979 T_Ent
:= Designated_Type
(T_Ent
);
12982 T_Val
:= Corresponding_Record_Type
(T_Ent
);
12984 if Present
(T_Val
) then
12986 if No
(Def_Id
) then
12987 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12989 -- Elaborate itype now, as it may be used in a subsequent
12990 -- synchronized operation in another scope.
12992 if Nkind
(Related_Nod
) = N_Full_Type_Declaration
then
12993 Build_Itype_Reference
(Def_Id
, Related_Nod
);
12997 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
12999 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
13000 Set_Corresponding_Record_Type
(Def_Id
,
13001 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
13004 -- If there is no associated record, expansion is disabled and this
13005 -- is a generic context. Create a subtype in any case, so that
13006 -- semantic analysis can proceed.
13008 if No
(Def_Id
) then
13009 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
13012 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
13014 end Constrain_Concurrent
;
13016 ------------------------------------
13017 -- Constrain_Corresponding_Record --
13018 ------------------------------------
13020 function Constrain_Corresponding_Record
13021 (Prot_Subt
: Entity_Id
;
13022 Corr_Rec
: Entity_Id
;
13023 Related_Nod
: Node_Id
) return Entity_Id
13025 T_Sub
: constant Entity_Id
:=
13026 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
13029 Set_Etype
(T_Sub
, Corr_Rec
);
13030 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
13031 Set_Is_Constrained
(T_Sub
, True);
13032 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
13033 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
13035 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
13036 Set_Discriminant_Constraint
13037 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
13038 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
13039 Create_Constrained_Components
13040 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
13043 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
13045 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
13046 Conditional_Delay
(T_Sub
, Corr_Rec
);
13049 -- This is a component subtype: it will be frozen in the context of
13050 -- the enclosing record's init_proc, so that discriminant references
13051 -- are resolved to discriminals. (Note: we used to skip freezing
13052 -- altogether in that case, which caused errors downstream for
13053 -- components of a bit packed array type).
13055 Set_Has_Delayed_Freeze
(T_Sub
);
13059 end Constrain_Corresponding_Record
;
13061 -----------------------
13062 -- Constrain_Decimal --
13063 -----------------------
13065 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
13066 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13067 C
: constant Node_Id
:= Constraint
(S
);
13068 Loc
: constant Source_Ptr
:= Sloc
(C
);
13069 Range_Expr
: Node_Id
;
13070 Digits_Expr
: Node_Id
;
13075 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
13077 if Nkind
(C
) = N_Range_Constraint
then
13078 Range_Expr
:= Range_Expression
(C
);
13079 Digits_Val
:= Digits_Value
(T
);
13082 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
13084 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13086 Digits_Expr
:= Digits_Expression
(C
);
13087 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
13089 Check_Digits_Expression
(Digits_Expr
);
13090 Digits_Val
:= Expr_Value
(Digits_Expr
);
13092 if Digits_Val
> Digits_Value
(T
) then
13094 ("digits expression is incompatible with subtype", C
);
13095 Digits_Val
:= Digits_Value
(T
);
13098 if Present
(Range_Constraint
(C
)) then
13099 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
13101 Range_Expr
:= Empty
;
13105 Set_Etype
(Def_Id
, Base_Type
(T
));
13106 Set_Size_Info
(Def_Id
, (T
));
13107 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13108 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13109 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
13110 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13111 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
13112 Set_Digits_Value
(Def_Id
, Digits_Val
);
13114 -- Manufacture range from given digits value if no range present
13116 if No
(Range_Expr
) then
13117 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
13121 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
13123 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
13126 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
13127 Set_Discrete_RM_Size
(Def_Id
);
13129 -- Unconditionally delay the freeze, since we cannot set size
13130 -- information in all cases correctly until the freeze point.
13132 Set_Has_Delayed_Freeze
(Def_Id
);
13133 end Constrain_Decimal
;
13135 ----------------------------------
13136 -- Constrain_Discriminated_Type --
13137 ----------------------------------
13139 procedure Constrain_Discriminated_Type
13140 (Def_Id
: Entity_Id
;
13142 Related_Nod
: Node_Id
;
13143 For_Access
: Boolean := False)
13145 E
: Entity_Id
:= Entity
(Subtype_Mark
(S
));
13148 procedure Fixup_Bad_Constraint
;
13149 -- Called after finding a bad constraint, and after having posted an
13150 -- appropriate error message. The goal is to leave type Def_Id in as
13151 -- reasonable state as possible.
13153 --------------------------
13154 -- Fixup_Bad_Constraint --
13155 --------------------------
13157 procedure Fixup_Bad_Constraint
is
13159 -- Set a reasonable Ekind for the entity. For an incomplete type,
13160 -- we can't do much, but for other types, we can set the proper
13161 -- corresponding subtype kind.
13163 if Ekind
(T
) = E_Incomplete_Type
then
13164 Set_Ekind
(Def_Id
, Ekind
(T
));
13166 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
13169 -- Set Etype to the known type, to reduce chances of cascaded errors
13171 Set_Etype
(Def_Id
, E
);
13172 Set_Error_Posted
(Def_Id
);
13173 end Fixup_Bad_Constraint
;
13178 Constr
: Elist_Id
:= New_Elmt_List
;
13180 -- Start of processing for Constrain_Discriminated_Type
13183 C
:= Constraint
(S
);
13185 -- A discriminant constraint is only allowed in a subtype indication,
13186 -- after a subtype mark. This subtype mark must denote either a type
13187 -- with discriminants, or an access type whose designated type is a
13188 -- type with discriminants. A discriminant constraint specifies the
13189 -- values of these discriminants (RM 3.7.2(5)).
13191 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
13193 if Is_Access_Type
(T
) then
13194 T
:= Designated_Type
(T
);
13197 -- In an instance it may be necessary to retrieve the full view of a
13198 -- type with unknown discriminants, or a full view with defaulted
13199 -- discriminants. In other contexts the constraint is illegal.
13202 and then Is_Private_Type
(T
)
13203 and then Present
(Full_View
(T
))
13205 (Has_Unknown_Discriminants
(T
)
13207 (not Has_Discriminants
(T
)
13208 and then Has_Discriminants
(Full_View
(T
))
13209 and then Present
(Discriminant_Default_Value
13210 (First_Discriminant
(Full_View
(T
))))))
13212 T
:= Full_View
(T
);
13213 E
:= Full_View
(E
);
13216 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13217 -- generating an error for access-to-incomplete subtypes.
13219 if Ada_Version
>= Ada_2005
13220 and then Ekind
(T
) = E_Incomplete_Type
13221 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
13222 and then not Is_Itype
(Def_Id
)
13224 -- A little sanity check: emit an error message if the type has
13225 -- discriminants to begin with. Type T may be a regular incomplete
13226 -- type or imported via a limited with clause.
13228 if Has_Discriminants
(T
)
13229 or else (From_Limited_With
(T
)
13230 and then Present
(Non_Limited_View
(T
))
13231 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
13232 N_Full_Type_Declaration
13233 and then Present
(Discriminant_Specifications
13234 (Parent
(Non_Limited_View
(T
)))))
13237 ("(Ada 2005) incomplete subtype may not be constrained", C
);
13239 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13242 Fixup_Bad_Constraint
;
13245 -- Check that the type has visible discriminants. The type may be
13246 -- a private type with unknown discriminants whose full view has
13247 -- discriminants which are invisible.
13249 elsif not Has_Discriminants
(T
)
13251 (Has_Unknown_Discriminants
(T
)
13252 and then Is_Private_Type
(T
))
13254 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13255 Fixup_Bad_Constraint
;
13258 elsif Is_Constrained
(E
)
13259 or else (Ekind
(E
) = E_Class_Wide_Subtype
13260 and then Present
(Discriminant_Constraint
(E
)))
13262 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
13263 Fixup_Bad_Constraint
;
13267 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13268 -- applies to the base type.
13270 T
:= Base_Type
(T
);
13272 Constr
:= Build_Discriminant_Constraints
(T
, S
);
13274 -- If the list returned was empty we had an error in building the
13275 -- discriminant constraint. We have also already signalled an error
13276 -- in the incomplete type case
13278 if Is_Empty_Elmt_List
(Constr
) then
13279 Fixup_Bad_Constraint
;
13283 Build_Discriminated_Subtype
(T
, Def_Id
, Constr
, Related_Nod
, For_Access
);
13284 end Constrain_Discriminated_Type
;
13286 ---------------------------
13287 -- Constrain_Enumeration --
13288 ---------------------------
13290 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
13291 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13292 C
: constant Node_Id
:= Constraint
(S
);
13295 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13297 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
13299 Set_Etype
(Def_Id
, Base_Type
(T
));
13300 Set_Size_Info
(Def_Id
, (T
));
13301 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13302 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13304 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13306 Set_Discrete_RM_Size
(Def_Id
);
13307 end Constrain_Enumeration
;
13309 ----------------------
13310 -- Constrain_Float --
13311 ----------------------
13313 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
13314 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13320 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
13322 Set_Etype
(Def_Id
, Base_Type
(T
));
13323 Set_Size_Info
(Def_Id
, (T
));
13324 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13326 -- Process the constraint
13328 C
:= Constraint
(S
);
13330 -- Digits constraint present
13332 if Nkind
(C
) = N_Digits_Constraint
then
13334 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13335 Check_Restriction
(No_Obsolescent_Features
, C
);
13337 if Warn_On_Obsolescent_Feature
then
13339 ("subtype digits constraint is an " &
13340 "obsolescent feature (RM J.3(8))?j?", C
);
13343 D
:= Digits_Expression
(C
);
13344 Analyze_And_Resolve
(D
, Any_Integer
);
13345 Check_Digits_Expression
(D
);
13346 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
13348 -- Check that digits value is in range. Obviously we can do this
13349 -- at compile time, but it is strictly a runtime check, and of
13350 -- course there is an ACVC test that checks this.
13352 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
13353 Error_Msg_Uint_1
:= Digits_Value
(T
);
13354 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
13356 Make_Raise_Constraint_Error
(Sloc
(D
),
13357 Reason
=> CE_Range_Check_Failed
);
13358 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13361 C
:= Range_Constraint
(C
);
13363 -- No digits constraint present
13366 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
13369 -- Range constraint present
13371 if Nkind
(C
) = N_Range_Constraint
then
13372 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13374 -- No range constraint present
13377 pragma Assert
(No
(C
));
13378 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13381 Set_Is_Constrained
(Def_Id
);
13382 end Constrain_Float
;
13384 ---------------------
13385 -- Constrain_Index --
13386 ---------------------
13388 procedure Constrain_Index
13391 Related_Nod
: Node_Id
;
13392 Related_Id
: Entity_Id
;
13393 Suffix
: Character;
13394 Suffix_Index
: Nat
)
13396 Def_Id
: Entity_Id
;
13397 R
: Node_Id
:= Empty
;
13398 T
: constant Entity_Id
:= Etype
(Index
);
13402 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13403 Set_Etype
(Def_Id
, Base_Type
(T
));
13405 if Nkind
(S
) = N_Range
13407 (Nkind
(S
) = N_Attribute_Reference
13408 and then Attribute_Name
(S
) = Name_Range
)
13410 -- A Range attribute will be transformed into N_Range by Resolve
13416 Process_Range_Expr_In_Decl
(R
, T
);
13418 if not Error_Posted
(S
)
13420 (Nkind
(S
) /= N_Range
13421 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
13422 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
13424 if Base_Type
(T
) /= Any_Type
13425 and then Etype
(Low_Bound
(S
)) /= Any_Type
13426 and then Etype
(High_Bound
(S
)) /= Any_Type
13428 Error_Msg_N
("range expected", S
);
13432 elsif Nkind
(S
) = N_Subtype_Indication
then
13434 -- The parser has verified that this is a discrete indication
13436 Resolve_Discrete_Subtype_Indication
(S
, T
);
13437 Bad_Predicated_Subtype_Use
13438 ("subtype& has predicate, not allowed in index constraint",
13439 S
, Entity
(Subtype_Mark
(S
)));
13441 R
:= Range_Expression
(Constraint
(S
));
13443 -- Capture values of bounds and generate temporaries for them if
13444 -- needed, since checks may cause duplication of the expressions
13445 -- which must not be reevaluated.
13447 -- The forced evaluation removes side effects from expressions, which
13448 -- should occur also in GNATprove mode. Otherwise, we end up with
13449 -- unexpected insertions of actions at places where this is not
13450 -- supposed to occur, e.g. on default parameters of a call.
13452 if Expander_Active
or GNATprove_Mode
then
13454 (Low_Bound
(R
), Related_Id
=> Def_Id
, Is_Low_Bound
=> True);
13456 (High_Bound
(R
), Related_Id
=> Def_Id
, Is_High_Bound
=> True);
13459 elsif Nkind
(S
) = N_Discriminant_Association
then
13461 -- Syntactically valid in subtype indication
13463 Error_Msg_N
("invalid index constraint", S
);
13464 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13467 -- Subtype_Mark case, no anonymous subtypes to construct
13472 if Is_Entity_Name
(S
) then
13473 if not Is_Type
(Entity
(S
)) then
13474 Error_Msg_N
("expect subtype mark for index constraint", S
);
13476 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
13477 Wrong_Type
(S
, Base_Type
(T
));
13479 -- Check error of subtype with predicate in index constraint
13482 Bad_Predicated_Subtype_Use
13483 ("subtype& has predicate, not allowed in index constraint",
13490 Error_Msg_N
("invalid index constraint", S
);
13491 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13496 -- Complete construction of the Itype
13498 if Is_Modular_Integer_Type
(T
) then
13499 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13501 elsif Is_Integer_Type
(T
) then
13502 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13505 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13506 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13507 Set_First_Literal
(Def_Id
, First_Literal
(T
));
13510 Set_Size_Info
(Def_Id
, (T
));
13511 Set_RM_Size
(Def_Id
, RM_Size
(T
));
13512 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13514 Set_Scalar_Range
(Def_Id
, R
);
13516 Set_Etype
(S
, Def_Id
);
13517 Set_Discrete_RM_Size
(Def_Id
);
13518 end Constrain_Index
;
13520 -----------------------
13521 -- Constrain_Integer --
13522 -----------------------
13524 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
13525 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13526 C
: constant Node_Id
:= Constraint
(S
);
13529 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13531 if Is_Modular_Integer_Type
(T
) then
13532 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13534 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13537 Set_Etype
(Def_Id
, Base_Type
(T
));
13538 Set_Size_Info
(Def_Id
, (T
));
13539 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13540 Set_Discrete_RM_Size
(Def_Id
);
13541 end Constrain_Integer
;
13543 ------------------------------
13544 -- Constrain_Ordinary_Fixed --
13545 ------------------------------
13547 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
13548 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13554 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
13555 Set_Etype
(Def_Id
, Base_Type
(T
));
13556 Set_Size_Info
(Def_Id
, (T
));
13557 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13558 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13560 -- Process the constraint
13562 C
:= Constraint
(S
);
13564 -- Delta constraint present
13566 if Nkind
(C
) = N_Delta_Constraint
then
13568 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
13569 Check_Restriction
(No_Obsolescent_Features
, C
);
13571 if Warn_On_Obsolescent_Feature
then
13573 ("subtype delta constraint is an " &
13574 "obsolescent feature (RM J.3(7))?j?");
13577 D
:= Delta_Expression
(C
);
13578 Analyze_And_Resolve
(D
, Any_Real
);
13579 Check_Delta_Expression
(D
);
13580 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
13582 -- Check that delta value is in range. Obviously we can do this
13583 -- at compile time, but it is strictly a runtime check, and of
13584 -- course there is an ACVC test that checks this.
13586 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
13587 Error_Msg_N
("??delta value is too small", D
);
13589 Make_Raise_Constraint_Error
(Sloc
(D
),
13590 Reason
=> CE_Range_Check_Failed
);
13591 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13594 C
:= Range_Constraint
(C
);
13596 -- No delta constraint present
13599 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13602 -- Range constraint present
13604 if Nkind
(C
) = N_Range_Constraint
then
13605 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13607 -- No range constraint present
13610 pragma Assert
(No
(C
));
13611 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13614 Set_Discrete_RM_Size
(Def_Id
);
13616 -- Unconditionally delay the freeze, since we cannot set size
13617 -- information in all cases correctly until the freeze point.
13619 Set_Has_Delayed_Freeze
(Def_Id
);
13620 end Constrain_Ordinary_Fixed
;
13622 -----------------------
13623 -- Contain_Interface --
13624 -----------------------
13626 function Contain_Interface
13627 (Iface
: Entity_Id
;
13628 Ifaces
: Elist_Id
) return Boolean
13630 Iface_Elmt
: Elmt_Id
;
13633 if Present
(Ifaces
) then
13634 Iface_Elmt
:= First_Elmt
(Ifaces
);
13635 while Present
(Iface_Elmt
) loop
13636 if Node
(Iface_Elmt
) = Iface
then
13640 Next_Elmt
(Iface_Elmt
);
13645 end Contain_Interface
;
13647 ---------------------------
13648 -- Convert_Scalar_Bounds --
13649 ---------------------------
13651 procedure Convert_Scalar_Bounds
13653 Parent_Type
: Entity_Id
;
13654 Derived_Type
: Entity_Id
;
13657 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
13664 -- Defend against previous errors
13666 if No
(Scalar_Range
(Derived_Type
)) then
13667 Check_Error_Detected
;
13671 Lo
:= Build_Scalar_Bound
13672 (Type_Low_Bound
(Derived_Type
),
13673 Parent_Type
, Implicit_Base
);
13675 Hi
:= Build_Scalar_Bound
13676 (Type_High_Bound
(Derived_Type
),
13677 Parent_Type
, Implicit_Base
);
13684 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
13686 Set_Parent
(Rng
, N
);
13687 Set_Scalar_Range
(Derived_Type
, Rng
);
13689 -- Analyze the bounds
13691 Analyze_And_Resolve
(Lo
, Implicit_Base
);
13692 Analyze_And_Resolve
(Hi
, Implicit_Base
);
13694 -- Analyze the range itself, except that we do not analyze it if
13695 -- the bounds are real literals, and we have a fixed-point type.
13696 -- The reason for this is that we delay setting the bounds in this
13697 -- case till we know the final Small and Size values (see circuit
13698 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13700 if Is_Fixed_Point_Type
(Parent_Type
)
13701 and then Nkind
(Lo
) = N_Real_Literal
13702 and then Nkind
(Hi
) = N_Real_Literal
13706 -- Here we do the analysis of the range
13708 -- Note: we do this manually, since if we do a normal Analyze and
13709 -- Resolve call, there are problems with the conversions used for
13710 -- the derived type range.
13713 Set_Etype
(Rng
, Implicit_Base
);
13714 Set_Analyzed
(Rng
, True);
13716 end Convert_Scalar_Bounds
;
13718 -------------------
13719 -- Copy_And_Swap --
13720 -------------------
13722 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
13724 -- Initialize new full declaration entity by copying the pertinent
13725 -- fields of the corresponding private declaration entity.
13727 -- We temporarily set Ekind to a value appropriate for a type to
13728 -- avoid assert failures in Einfo from checking for setting type
13729 -- attributes on something that is not a type. Ekind (Priv) is an
13730 -- appropriate choice, since it allowed the attributes to be set
13731 -- in the first place. This Ekind value will be modified later.
13733 Set_Ekind
(Full
, Ekind
(Priv
));
13735 -- Also set Etype temporarily to Any_Type, again, in the absence
13736 -- of errors, it will be properly reset, and if there are errors,
13737 -- then we want a value of Any_Type to remain.
13739 Set_Etype
(Full
, Any_Type
);
13741 -- Now start copying attributes
13743 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
13745 if Has_Discriminants
(Full
) then
13746 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
13747 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
13750 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
13751 Set_Homonym
(Full
, Homonym
(Priv
));
13752 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
13753 Set_Is_Public
(Full
, Is_Public
(Priv
));
13754 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
13755 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
13756 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
13757 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
13758 Set_Has_Pragma_Unreferenced_Objects
13759 (Full
, Has_Pragma_Unreferenced_Objects
13762 Conditional_Delay
(Full
, Priv
);
13764 if Is_Tagged_Type
(Full
) then
13765 Set_Direct_Primitive_Operations
13766 (Full
, Direct_Primitive_Operations
(Priv
));
13767 Set_No_Tagged_Streams_Pragma
13768 (Full
, No_Tagged_Streams_Pragma
(Priv
));
13770 if Is_Base_Type
(Priv
) then
13771 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
13775 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
13776 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
13777 Set_Scope
(Full
, Scope
(Priv
));
13778 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
13779 Set_First_Entity
(Full
, First_Entity
(Priv
));
13780 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
13782 -- If access types have been recorded for later handling, keep them in
13783 -- the full view so that they get handled when the full view freeze
13784 -- node is expanded.
13786 if Present
(Freeze_Node
(Priv
))
13787 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
13789 Ensure_Freeze_Node
(Full
);
13790 Set_Access_Types_To_Process
13791 (Freeze_Node
(Full
),
13792 Access_Types_To_Process
(Freeze_Node
(Priv
)));
13795 -- Swap the two entities. Now Private is the full type entity and Full
13796 -- is the private one. They will be swapped back at the end of the
13797 -- private part. This swapping ensures that the entity that is visible
13798 -- in the private part is the full declaration.
13800 Exchange_Entities
(Priv
, Full
);
13801 Append_Entity
(Full
, Scope
(Full
));
13804 -------------------------------------
13805 -- Copy_Array_Base_Type_Attributes --
13806 -------------------------------------
13808 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
13810 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
13811 Set_Component_Type
(T1
, Component_Type
(T2
));
13812 Set_Component_Size
(T1
, Component_Size
(T2
));
13813 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
13814 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
13815 Propagate_Concurrent_Flags
(T1
, T2
);
13816 Set_Is_Packed
(T1
, Is_Packed
(T2
));
13817 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
13818 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
13819 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
13820 end Copy_Array_Base_Type_Attributes
;
13822 -----------------------------------
13823 -- Copy_Array_Subtype_Attributes --
13824 -----------------------------------
13826 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
13828 Set_Size_Info
(T1
, T2
);
13830 Set_First_Index
(T1
, First_Index
(T2
));
13831 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
13832 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
13833 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
13834 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
13835 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
13836 Inherit_Rep_Item_Chain
(T1
, T2
);
13837 Set_Convention
(T1
, Convention
(T2
));
13838 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
13839 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
13840 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
13841 end Copy_Array_Subtype_Attributes
;
13843 -----------------------------------
13844 -- Create_Constrained_Components --
13845 -----------------------------------
13847 procedure Create_Constrained_Components
13849 Decl_Node
: Node_Id
;
13851 Constraints
: Elist_Id
)
13853 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
13854 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
13855 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
13856 Assoc_List
: constant List_Id
:= New_List
;
13857 Discr_Val
: Elmt_Id
;
13861 Is_Static
: Boolean := True;
13863 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
13864 -- Collect parent type components that do not appear in a variant part
13866 procedure Create_All_Components
;
13867 -- Iterate over Comp_List to create the components of the subtype
13869 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
13870 -- Creates a new component from Old_Compon, copying all the fields from
13871 -- it, including its Etype, inserts the new component in the Subt entity
13872 -- chain and returns the new component.
13874 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
13875 -- If true, and discriminants are static, collect only components from
13876 -- variants selected by discriminant values.
13878 ------------------------------
13879 -- Collect_Fixed_Components --
13880 ------------------------------
13882 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
13884 -- Build association list for discriminants, and find components of the
13885 -- variant part selected by the values of the discriminants.
13887 Old_C
:= First_Discriminant
(Typ
);
13888 Discr_Val
:= First_Elmt
(Constraints
);
13889 while Present
(Old_C
) loop
13890 Append_To
(Assoc_List
,
13891 Make_Component_Association
(Loc
,
13892 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
13893 Expression
=> New_Copy
(Node
(Discr_Val
))));
13895 Next_Elmt
(Discr_Val
);
13896 Next_Discriminant
(Old_C
);
13899 -- The tag and the possible parent component are unconditionally in
13902 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
13903 Old_C
:= First_Component
(Typ
);
13904 while Present
(Old_C
) loop
13905 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
13906 Append_Elmt
(Old_C
, Comp_List
);
13909 Next_Component
(Old_C
);
13912 end Collect_Fixed_Components
;
13914 ---------------------------
13915 -- Create_All_Components --
13916 ---------------------------
13918 procedure Create_All_Components
is
13922 Comp
:= First_Elmt
(Comp_List
);
13923 while Present
(Comp
) loop
13924 Old_C
:= Node
(Comp
);
13925 New_C
:= Create_Component
(Old_C
);
13929 Constrain_Component_Type
13930 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
13931 Set_Is_Public
(New_C
, Is_Public
(Subt
));
13935 end Create_All_Components
;
13937 ----------------------
13938 -- Create_Component --
13939 ----------------------
13941 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
13942 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
13945 if Ekind
(Old_Compon
) = E_Discriminant
13946 and then Is_Completely_Hidden
(Old_Compon
)
13948 -- This is a shadow discriminant created for a discriminant of
13949 -- the parent type, which needs to be present in the subtype.
13950 -- Give the shadow discriminant an internal name that cannot
13951 -- conflict with that of visible components.
13953 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
13956 -- Set the parent so we have a proper link for freezing etc. This is
13957 -- not a real parent pointer, since of course our parent does not own
13958 -- up to us and reference us, we are an illegitimate child of the
13959 -- original parent.
13961 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
13963 -- If the old component's Esize was already determined and is a
13964 -- static value, then the new component simply inherits it. Otherwise
13965 -- the old component's size may require run-time determination, but
13966 -- the new component's size still might be statically determinable
13967 -- (if, for example it has a static constraint). In that case we want
13968 -- Layout_Type to recompute the component's size, so we reset its
13969 -- size and positional fields.
13971 if Frontend_Layout_On_Target
13972 and then not Known_Static_Esize
(Old_Compon
)
13974 Set_Esize
(New_Compon
, Uint_0
);
13975 Init_Normalized_First_Bit
(New_Compon
);
13976 Init_Normalized_Position
(New_Compon
);
13977 Init_Normalized_Position_Max
(New_Compon
);
13980 -- We do not want this node marked as Comes_From_Source, since
13981 -- otherwise it would get first class status and a separate cross-
13982 -- reference line would be generated. Illegitimate children do not
13983 -- rate such recognition.
13985 Set_Comes_From_Source
(New_Compon
, False);
13987 -- But it is a real entity, and a birth certificate must be properly
13988 -- registered by entering it into the entity list.
13990 Enter_Name
(New_Compon
);
13993 end Create_Component
;
13995 -----------------------
13996 -- Is_Variant_Record --
13997 -----------------------
13999 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
14001 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
14002 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
14003 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
14006 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
14007 end Is_Variant_Record
;
14009 -- Start of processing for Create_Constrained_Components
14012 pragma Assert
(Subt
/= Base_Type
(Subt
));
14013 pragma Assert
(Typ
= Base_Type
(Typ
));
14015 Set_First_Entity
(Subt
, Empty
);
14016 Set_Last_Entity
(Subt
, Empty
);
14018 -- Check whether constraint is fully static, in which case we can
14019 -- optimize the list of components.
14021 Discr_Val
:= First_Elmt
(Constraints
);
14022 while Present
(Discr_Val
) loop
14023 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
14024 Is_Static
:= False;
14028 Next_Elmt
(Discr_Val
);
14031 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
14035 -- Inherit the discriminants of the parent type
14037 Add_Discriminants
: declare
14043 Old_C
:= First_Discriminant
(Typ
);
14045 while Present
(Old_C
) loop
14046 Num_Disc
:= Num_Disc
+ 1;
14047 New_C
:= Create_Component
(Old_C
);
14048 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14049 Next_Discriminant
(Old_C
);
14052 -- For an untagged derived subtype, the number of discriminants may
14053 -- be smaller than the number of inherited discriminants, because
14054 -- several of them may be renamed by a single new discriminant or
14055 -- constrained. In this case, add the hidden discriminants back into
14056 -- the subtype, because they need to be present if the optimizer of
14057 -- the GCC 4.x back-end decides to break apart assignments between
14058 -- objects using the parent view into member-wise assignments.
14062 if Is_Derived_Type
(Typ
)
14063 and then not Is_Tagged_Type
(Typ
)
14065 Old_C
:= First_Stored_Discriminant
(Typ
);
14067 while Present
(Old_C
) loop
14068 Num_Gird
:= Num_Gird
+ 1;
14069 Next_Stored_Discriminant
(Old_C
);
14073 if Num_Gird
> Num_Disc
then
14075 -- Find out multiple uses of new discriminants, and add hidden
14076 -- components for the extra renamed discriminants. We recognize
14077 -- multiple uses through the Corresponding_Discriminant of a
14078 -- new discriminant: if it constrains several old discriminants,
14079 -- this field points to the last one in the parent type. The
14080 -- stored discriminants of the derived type have the same name
14081 -- as those of the parent.
14085 New_Discr
: Entity_Id
;
14086 Old_Discr
: Entity_Id
;
14089 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
14090 Old_Discr
:= First_Stored_Discriminant
(Typ
);
14091 while Present
(Constr
) loop
14092 if Is_Entity_Name
(Node
(Constr
))
14093 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
14095 New_Discr
:= Entity
(Node
(Constr
));
14097 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
14100 -- The new discriminant has been used to rename a
14101 -- subsequent old discriminant. Introduce a shadow
14102 -- component for the current old discriminant.
14104 New_C
:= Create_Component
(Old_Discr
);
14105 Set_Original_Record_Component
(New_C
, Old_Discr
);
14109 -- The constraint has eliminated the old discriminant.
14110 -- Introduce a shadow component.
14112 New_C
:= Create_Component
(Old_Discr
);
14113 Set_Original_Record_Component
(New_C
, Old_Discr
);
14116 Next_Elmt
(Constr
);
14117 Next_Stored_Discriminant
(Old_Discr
);
14121 end Add_Discriminants
;
14124 and then Is_Variant_Record
(Typ
)
14126 Collect_Fixed_Components
(Typ
);
14128 Gather_Components
(
14130 Component_List
(Type_Definition
(Parent
(Typ
))),
14131 Governed_By
=> Assoc_List
,
14133 Report_Errors
=> Errors
);
14134 pragma Assert
(not Errors
);
14136 Create_All_Components
;
14138 -- If the subtype declaration is created for a tagged type derivation
14139 -- with constraints, we retrieve the record definition of the parent
14140 -- type to select the components of the proper variant.
14143 and then Is_Tagged_Type
(Typ
)
14144 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
14146 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
14147 and then Is_Variant_Record
(Parent_Type
)
14149 Collect_Fixed_Components
(Typ
);
14153 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
14154 Governed_By
=> Assoc_List
,
14156 Report_Errors
=> Errors
);
14158 -- Note: previously there was a check at this point that no errors
14159 -- were detected. As a consequence of AI05-220 there may be an error
14160 -- if an inherited discriminant that controls a variant has a non-
14161 -- static constraint.
14163 -- If the tagged derivation has a type extension, collect all the
14164 -- new components therein.
14166 if Present
(Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
14168 Old_C
:= First_Component
(Typ
);
14169 while Present
(Old_C
) loop
14170 if Original_Record_Component
(Old_C
) = Old_C
14171 and then Chars
(Old_C
) /= Name_uTag
14172 and then Chars
(Old_C
) /= Name_uParent
14174 Append_Elmt
(Old_C
, Comp_List
);
14177 Next_Component
(Old_C
);
14181 Create_All_Components
;
14184 -- If discriminants are not static, or if this is a multi-level type
14185 -- extension, we have to include all components of the parent type.
14187 Old_C
:= First_Component
(Typ
);
14188 while Present
(Old_C
) loop
14189 New_C
:= Create_Component
(Old_C
);
14193 Constrain_Component_Type
14194 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
14195 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14197 Next_Component
(Old_C
);
14202 end Create_Constrained_Components
;
14204 ------------------------------------------
14205 -- Decimal_Fixed_Point_Type_Declaration --
14206 ------------------------------------------
14208 procedure Decimal_Fixed_Point_Type_Declaration
14212 Loc
: constant Source_Ptr
:= Sloc
(Def
);
14213 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
14214 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
14215 Implicit_Base
: Entity_Id
;
14222 Check_SPARK_05_Restriction
14223 ("decimal fixed point type is not allowed", Def
);
14224 Check_Restriction
(No_Fixed_Point
, Def
);
14226 -- Create implicit base type
14229 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
14230 Set_Etype
(Implicit_Base
, Implicit_Base
);
14232 -- Analyze and process delta expression
14234 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
14236 Check_Delta_Expression
(Delta_Expr
);
14237 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
14239 -- Check delta is power of 10, and determine scale value from it
14245 Scale_Val
:= Uint_0
;
14248 if Val
< Ureal_1
then
14249 while Val
< Ureal_1
loop
14250 Val
:= Val
* Ureal_10
;
14251 Scale_Val
:= Scale_Val
+ 1;
14254 if Scale_Val
> 18 then
14255 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
14256 Scale_Val
:= UI_From_Int
(+18);
14260 while Val
> Ureal_1
loop
14261 Val
:= Val
/ Ureal_10
;
14262 Scale_Val
:= Scale_Val
- 1;
14265 if Scale_Val
< -18 then
14266 Error_Msg_N
("scale is less than minimum value of -18", Def
);
14267 Scale_Val
:= UI_From_Int
(-18);
14271 if Val
/= Ureal_1
then
14272 Error_Msg_N
("delta expression must be a power of 10", Def
);
14273 Delta_Val
:= Ureal_10
** (-Scale_Val
);
14277 -- Set delta, scale and small (small = delta for decimal type)
14279 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
14280 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
14281 Set_Small_Value
(Implicit_Base
, Delta_Val
);
14283 -- Analyze and process digits expression
14285 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
14286 Check_Digits_Expression
(Digs_Expr
);
14287 Digs_Val
:= Expr_Value
(Digs_Expr
);
14289 if Digs_Val
> 18 then
14290 Digs_Val
:= UI_From_Int
(+18);
14291 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
14294 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
14295 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
14297 -- Set range of base type from digits value for now. This will be
14298 -- expanded to represent the true underlying base range by Freeze.
14300 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
14302 -- Note: We leave size as zero for now, size will be set at freeze
14303 -- time. We have to do this for ordinary fixed-point, because the size
14304 -- depends on the specified small, and we might as well do the same for
14305 -- decimal fixed-point.
14307 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
14309 -- If there are bounds given in the declaration use them as the
14310 -- bounds of the first named subtype.
14312 if Present
(Real_Range_Specification
(Def
)) then
14314 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14315 Low
: constant Node_Id
:= Low_Bound
(RRS
);
14316 High
: constant Node_Id
:= High_Bound
(RRS
);
14321 Analyze_And_Resolve
(Low
, Any_Real
);
14322 Analyze_And_Resolve
(High
, Any_Real
);
14323 Check_Real_Bound
(Low
);
14324 Check_Real_Bound
(High
);
14325 Low_Val
:= Expr_Value_R
(Low
);
14326 High_Val
:= Expr_Value_R
(High
);
14328 if Low_Val
< (-Bound_Val
) then
14330 ("range low bound too small for digits value", Low
);
14331 Low_Val
:= -Bound_Val
;
14334 if High_Val
> Bound_Val
then
14336 ("range high bound too large for digits value", High
);
14337 High_Val
:= Bound_Val
;
14340 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
14343 -- If no explicit range, use range that corresponds to given
14344 -- digits value. This will end up as the final range for the
14348 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
14351 -- Complete entity for first subtype. The inheritance of the rep item
14352 -- chain ensures that SPARK-related pragmas are not clobbered when the
14353 -- decimal fixed point type acts as a full view of a private type.
14355 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
14356 Set_Etype
(T
, Implicit_Base
);
14357 Set_Size_Info
(T
, Implicit_Base
);
14358 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
14359 Set_Digits_Value
(T
, Digs_Val
);
14360 Set_Delta_Value
(T
, Delta_Val
);
14361 Set_Small_Value
(T
, Delta_Val
);
14362 Set_Scale_Value
(T
, Scale_Val
);
14363 Set_Is_Constrained
(T
);
14364 end Decimal_Fixed_Point_Type_Declaration
;
14366 -----------------------------------
14367 -- Derive_Progenitor_Subprograms --
14368 -----------------------------------
14370 procedure Derive_Progenitor_Subprograms
14371 (Parent_Type
: Entity_Id
;
14372 Tagged_Type
: Entity_Id
)
14377 Iface_Elmt
: Elmt_Id
;
14378 Iface_Subp
: Entity_Id
;
14379 New_Subp
: Entity_Id
:= Empty
;
14380 Prim_Elmt
: Elmt_Id
;
14385 pragma Assert
(Ada_Version
>= Ada_2005
14386 and then Is_Record_Type
(Tagged_Type
)
14387 and then Is_Tagged_Type
(Tagged_Type
)
14388 and then Has_Interfaces
(Tagged_Type
));
14390 -- Step 1: Transfer to the full-view primitives associated with the
14391 -- partial-view that cover interface primitives. Conceptually this
14392 -- work should be done later by Process_Full_View; done here to
14393 -- simplify its implementation at later stages. It can be safely
14394 -- done here because interfaces must be visible in the partial and
14395 -- private view (RM 7.3(7.3/2)).
14397 -- Small optimization: This work is only required if the parent may
14398 -- have entities whose Alias attribute reference an interface primitive.
14399 -- Such a situation may occur if the parent is an abstract type and the
14400 -- primitive has not been yet overridden or if the parent is a generic
14401 -- formal type covering interfaces.
14403 -- If the tagged type is not abstract, it cannot have abstract
14404 -- primitives (the only entities in the list of primitives of
14405 -- non-abstract tagged types that can reference abstract primitives
14406 -- through its Alias attribute are the internal entities that have
14407 -- attribute Interface_Alias, and these entities are generated later
14408 -- by Add_Internal_Interface_Entities).
14410 if In_Private_Part
(Current_Scope
)
14411 and then (Is_Abstract_Type
(Parent_Type
)
14413 Is_Generic_Type
(Parent_Type
))
14415 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14416 while Present
(Elmt
) loop
14417 Subp
:= Node
(Elmt
);
14419 -- At this stage it is not possible to have entities in the list
14420 -- of primitives that have attribute Interface_Alias.
14422 pragma Assert
(No
(Interface_Alias
(Subp
)));
14424 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
14426 if Is_Interface
(Typ
) then
14427 E
:= Find_Primitive_Covering_Interface
14428 (Tagged_Type
=> Tagged_Type
,
14429 Iface_Prim
=> Subp
);
14432 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
14434 Replace_Elmt
(Elmt
, E
);
14435 Remove_Homonym
(Subp
);
14443 -- Step 2: Add primitives of progenitors that are not implemented by
14444 -- parents of Tagged_Type.
14446 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
14447 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
14448 while Present
(Iface_Elmt
) loop
14449 Iface
:= Node
(Iface_Elmt
);
14451 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
14452 while Present
(Prim_Elmt
) loop
14453 Iface_Subp
:= Node
(Prim_Elmt
);
14455 -- Exclude derivation of predefined primitives except those
14456 -- that come from source, or are inherited from one that comes
14457 -- from source. Required to catch declarations of equality
14458 -- operators of interfaces. For example:
14460 -- type Iface is interface;
14461 -- function "=" (Left, Right : Iface) return Boolean;
14463 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
14464 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
14466 E
:= Find_Primitive_Covering_Interface
14467 (Tagged_Type
=> Tagged_Type
,
14468 Iface_Prim
=> Iface_Subp
);
14470 -- If not found we derive a new primitive leaving its alias
14471 -- attribute referencing the interface primitive.
14475 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14477 -- Ada 2012 (AI05-0197): If the covering primitive's name
14478 -- differs from the name of the interface primitive then it
14479 -- is a private primitive inherited from a parent type. In
14480 -- such case, given that Tagged_Type covers the interface,
14481 -- the inherited private primitive becomes visible. For such
14482 -- purpose we add a new entity that renames the inherited
14483 -- private primitive.
14485 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
14486 pragma Assert
(Has_Suffix
(E
, 'P'));
14488 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14489 Set_Alias
(New_Subp
, E
);
14490 Set_Is_Abstract_Subprogram
(New_Subp
,
14491 Is_Abstract_Subprogram
(E
));
14493 -- Propagate to the full view interface entities associated
14494 -- with the partial view.
14496 elsif In_Private_Part
(Current_Scope
)
14497 and then Present
(Alias
(E
))
14498 and then Alias
(E
) = Iface_Subp
14500 List_Containing
(Parent
(E
)) /=
14501 Private_Declarations
14503 (Unit_Declaration_Node
(Current_Scope
)))
14505 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
14509 Next_Elmt
(Prim_Elmt
);
14512 Next_Elmt
(Iface_Elmt
);
14515 end Derive_Progenitor_Subprograms
;
14517 -----------------------
14518 -- Derive_Subprogram --
14519 -----------------------
14521 procedure Derive_Subprogram
14522 (New_Subp
: out Entity_Id
;
14523 Parent_Subp
: Entity_Id
;
14524 Derived_Type
: Entity_Id
;
14525 Parent_Type
: Entity_Id
;
14526 Actual_Subp
: Entity_Id
:= Empty
)
14528 Formal
: Entity_Id
;
14529 -- Formal parameter of parent primitive operation
14531 Formal_Of_Actual
: Entity_Id
;
14532 -- Formal parameter of actual operation, when the derivation is to
14533 -- create a renaming for a primitive operation of an actual in an
14536 New_Formal
: Entity_Id
;
14537 -- Formal of inherited operation
14539 Visible_Subp
: Entity_Id
:= Parent_Subp
;
14541 function Is_Private_Overriding
return Boolean;
14542 -- If Subp is a private overriding of a visible operation, the inherited
14543 -- operation derives from the overridden op (even though its body is the
14544 -- overriding one) and the inherited operation is visible now. See
14545 -- sem_disp to see the full details of the handling of the overridden
14546 -- subprogram, which is removed from the list of primitive operations of
14547 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14548 -- and used to diagnose abstract operations that need overriding in the
14551 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
14552 -- When the type is an anonymous access type, create a new access type
14553 -- designating the derived type.
14555 procedure Set_Derived_Name
;
14556 -- This procedure sets the appropriate Chars name for New_Subp. This
14557 -- is normally just a copy of the parent name. An exception arises for
14558 -- type support subprograms, where the name is changed to reflect the
14559 -- name of the derived type, e.g. if type foo is derived from type bar,
14560 -- then a procedure barDA is derived with a name fooDA.
14562 ---------------------------
14563 -- Is_Private_Overriding --
14564 ---------------------------
14566 function Is_Private_Overriding
return Boolean is
14570 -- If the parent is not a dispatching operation there is no
14571 -- need to investigate overridings
14573 if not Is_Dispatching_Operation
(Parent_Subp
) then
14577 -- The visible operation that is overridden is a homonym of the
14578 -- parent subprogram. We scan the homonym chain to find the one
14579 -- whose alias is the subprogram we are deriving.
14581 Prev
:= Current_Entity
(Parent_Subp
);
14582 while Present
(Prev
) loop
14583 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
14584 and then Alias
(Prev
) = Parent_Subp
14585 and then Scope
(Parent_Subp
) = Scope
(Prev
)
14586 and then not Is_Hidden
(Prev
)
14588 Visible_Subp
:= Prev
;
14592 Prev
:= Homonym
(Prev
);
14596 end Is_Private_Overriding
;
14602 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
14603 Id_Type
: constant Entity_Id
:= Etype
(Id
);
14604 Acc_Type
: Entity_Id
;
14605 Par
: constant Node_Id
:= Parent
(Derived_Type
);
14608 -- When the type is an anonymous access type, create a new access
14609 -- type designating the derived type. This itype must be elaborated
14610 -- at the point of the derivation, not on subsequent calls that may
14611 -- be out of the proper scope for Gigi, so we insert a reference to
14612 -- it after the derivation.
14614 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
14616 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
14619 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
14620 and then Present
(Full_View
(Desig_Typ
))
14621 and then not Is_Private_Type
(Parent_Type
)
14623 Desig_Typ
:= Full_View
(Desig_Typ
);
14626 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
14628 -- Ada 2005 (AI-251): Handle also derivations of abstract
14629 -- interface primitives.
14631 or else (Is_Interface
(Desig_Typ
)
14632 and then not Is_Class_Wide_Type
(Desig_Typ
))
14634 Acc_Type
:= New_Copy
(Id_Type
);
14635 Set_Etype
(Acc_Type
, Acc_Type
);
14636 Set_Scope
(Acc_Type
, New_Subp
);
14638 -- Set size of anonymous access type. If we have an access
14639 -- to an unconstrained array, this is a fat pointer, so it
14640 -- is sizes at twice addtress size.
14642 if Is_Array_Type
(Desig_Typ
)
14643 and then not Is_Constrained
(Desig_Typ
)
14645 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
14647 -- Other cases use a thin pointer
14650 Init_Size
(Acc_Type
, System_Address_Size
);
14653 -- Set remaining characterstics of anonymous access type
14655 Init_Alignment
(Acc_Type
);
14656 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
14658 Set_Etype
(New_Id
, Acc_Type
);
14659 Set_Scope
(New_Id
, New_Subp
);
14661 -- Create a reference to it
14663 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
14666 Set_Etype
(New_Id
, Id_Type
);
14670 -- In Ada2012, a formal may have an incomplete type but the type
14671 -- derivation that inherits the primitive follows the full view.
14673 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
14675 (Ekind
(Id_Type
) = E_Record_Type_With_Private
14676 and then Present
(Full_View
(Id_Type
))
14678 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
14680 (Ada_Version
>= Ada_2012
14681 and then Ekind
(Id_Type
) = E_Incomplete_Type
14682 and then Full_View
(Id_Type
) = Parent_Type
)
14684 -- Constraint checks on formals are generated during expansion,
14685 -- based on the signature of the original subprogram. The bounds
14686 -- of the derived type are not relevant, and thus we can use
14687 -- the base type for the formals. However, the return type may be
14688 -- used in a context that requires that the proper static bounds
14689 -- be used (a case statement, for example) and for those cases
14690 -- we must use the derived type (first subtype), not its base.
14692 -- If the derived_type_definition has no constraints, we know that
14693 -- the derived type has the same constraints as the first subtype
14694 -- of the parent, and we can also use it rather than its base,
14695 -- which can lead to more efficient code.
14697 if Etype
(Id
) = Parent_Type
then
14698 if Is_Scalar_Type
(Parent_Type
)
14700 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
14702 Set_Etype
(New_Id
, Derived_Type
);
14704 elsif Nkind
(Par
) = N_Full_Type_Declaration
14706 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
14709 (Subtype_Indication
(Type_Definition
(Par
)))
14711 Set_Etype
(New_Id
, Derived_Type
);
14714 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14718 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
14722 Set_Etype
(New_Id
, Etype
(Id
));
14726 ----------------------
14727 -- Set_Derived_Name --
14728 ----------------------
14730 procedure Set_Derived_Name
is
14731 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
14733 if Nm
= TSS_Null
then
14734 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
14736 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
14738 end Set_Derived_Name
;
14740 -- Start of processing for Derive_Subprogram
14743 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
14744 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
14746 -- Check whether the inherited subprogram is a private operation that
14747 -- should be inherited but not yet made visible. Such subprograms can
14748 -- become visible at a later point (e.g., the private part of a public
14749 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14750 -- following predicate is true, then this is not such a private
14751 -- operation and the subprogram simply inherits the name of the parent
14752 -- subprogram. Note the special check for the names of controlled
14753 -- operations, which are currently exempted from being inherited with
14754 -- a hidden name because they must be findable for generation of
14755 -- implicit run-time calls.
14757 if not Is_Hidden
(Parent_Subp
)
14758 or else Is_Internal
(Parent_Subp
)
14759 or else Is_Private_Overriding
14760 or else Is_Internal_Name
(Chars
(Parent_Subp
))
14761 or else Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14767 -- An inherited dispatching equality will be overridden by an internally
14768 -- generated one, or by an explicit one, so preserve its name and thus
14769 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14770 -- private operation it may become invisible if the full view has
14771 -- progenitors, and the dispatch table will be malformed.
14772 -- We check that the type is limited to handle the anomalous declaration
14773 -- of Limited_Controlled, which is derived from a non-limited type, and
14774 -- which is handled specially elsewhere as well.
14776 elsif Chars
(Parent_Subp
) = Name_Op_Eq
14777 and then Is_Dispatching_Operation
(Parent_Subp
)
14778 and then Etype
(Parent_Subp
) = Standard_Boolean
14779 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
14781 Etype
(First_Formal
(Parent_Subp
)) =
14782 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
14786 -- If parent is hidden, this can be a regular derivation if the
14787 -- parent is immediately visible in a non-instantiating context,
14788 -- or if we are in the private part of an instance. This test
14789 -- should still be refined ???
14791 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14792 -- operation as a non-visible operation in cases where the parent
14793 -- subprogram might not be visible now, but was visible within the
14794 -- original generic, so it would be wrong to make the inherited
14795 -- subprogram non-visible now. (Not clear if this test is fully
14796 -- correct; are there any cases where we should declare the inherited
14797 -- operation as not visible to avoid it being overridden, e.g., when
14798 -- the parent type is a generic actual with private primitives ???)
14800 -- (they should be treated the same as other private inherited
14801 -- subprograms, but it's not clear how to do this cleanly). ???
14803 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
14804 and then Is_Immediately_Visible
(Parent_Subp
)
14805 and then not In_Instance
)
14806 or else In_Instance_Not_Visible
14810 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14811 -- overrides an interface primitive because interface primitives
14812 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14814 elsif Ada_Version
>= Ada_2005
14815 and then Is_Dispatching_Operation
(Parent_Subp
)
14816 and then Covers_Some_Interface
(Parent_Subp
)
14820 -- Otherwise, the type is inheriting a private operation, so enter it
14821 -- with a special name so it can't be overridden.
14824 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
14827 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
14829 if Present
(Actual_Subp
) then
14830 Replace_Type
(Actual_Subp
, New_Subp
);
14832 Replace_Type
(Parent_Subp
, New_Subp
);
14835 Conditional_Delay
(New_Subp
, Parent_Subp
);
14837 -- If we are creating a renaming for a primitive operation of an
14838 -- actual of a generic derived type, we must examine the signature
14839 -- of the actual primitive, not that of the generic formal, which for
14840 -- example may be an interface. However the name and initial value
14841 -- of the inherited operation are those of the formal primitive.
14843 Formal
:= First_Formal
(Parent_Subp
);
14845 if Present
(Actual_Subp
) then
14846 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
14848 Formal_Of_Actual
:= Empty
;
14851 while Present
(Formal
) loop
14852 New_Formal
:= New_Copy
(Formal
);
14854 -- Normally we do not go copying parents, but in the case of
14855 -- formals, we need to link up to the declaration (which is the
14856 -- parameter specification), and it is fine to link up to the
14857 -- original formal's parameter specification in this case.
14859 Set_Parent
(New_Formal
, Parent
(Formal
));
14860 Append_Entity
(New_Formal
, New_Subp
);
14862 if Present
(Formal_Of_Actual
) then
14863 Replace_Type
(Formal_Of_Actual
, New_Formal
);
14864 Next_Formal
(Formal_Of_Actual
);
14866 Replace_Type
(Formal
, New_Formal
);
14869 Next_Formal
(Formal
);
14872 -- If this derivation corresponds to a tagged generic actual, then
14873 -- primitive operations rename those of the actual. Otherwise the
14874 -- primitive operations rename those of the parent type, If the parent
14875 -- renames an intrinsic operator, so does the new subprogram. We except
14876 -- concatenation, which is always properly typed, and does not get
14877 -- expanded as other intrinsic operations.
14879 if No
(Actual_Subp
) then
14880 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
14881 Set_Is_Intrinsic_Subprogram
(New_Subp
);
14883 if Present
(Alias
(Parent_Subp
))
14884 and then Chars
(Parent_Subp
) /= Name_Op_Concat
14886 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
14888 Set_Alias
(New_Subp
, Parent_Subp
);
14892 Set_Alias
(New_Subp
, Parent_Subp
);
14896 Set_Alias
(New_Subp
, Actual_Subp
);
14899 -- Inherit the "ghostness" from the parent subprogram
14901 if Is_Ghost_Entity
(Alias
(New_Subp
)) then
14902 Set_Is_Ghost_Entity
(New_Subp
);
14905 -- Derived subprograms of a tagged type must inherit the convention
14906 -- of the parent subprogram (a requirement of AI-117). Derived
14907 -- subprograms of untagged types simply get convention Ada by default.
14909 -- If the derived type is a tagged generic formal type with unknown
14910 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14912 -- However, if the type is derived from a generic formal, the further
14913 -- inherited subprogram has the convention of the non-generic ancestor.
14914 -- Otherwise there would be no way to override the operation.
14915 -- (This is subject to forthcoming ARG discussions).
14917 if Is_Tagged_Type
(Derived_Type
) then
14918 if Is_Generic_Type
(Derived_Type
)
14919 and then Has_Unknown_Discriminants
(Derived_Type
)
14921 Set_Convention
(New_Subp
, Convention_Intrinsic
);
14924 if Is_Generic_Type
(Parent_Type
)
14925 and then Has_Unknown_Discriminants
(Parent_Type
)
14927 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
14929 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
14934 -- Predefined controlled operations retain their name even if the parent
14935 -- is hidden (see above), but they are not primitive operations if the
14936 -- ancestor is not visible, for example if the parent is a private
14937 -- extension completed with a controlled extension. Note that a full
14938 -- type that is controlled can break privacy: the flag Is_Controlled is
14939 -- set on both views of the type.
14941 if Is_Controlled
(Parent_Type
)
14942 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
14945 and then Is_Hidden
(Parent_Subp
)
14946 and then not Is_Visibly_Controlled
(Parent_Type
)
14948 Set_Is_Hidden
(New_Subp
);
14951 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
14952 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
14954 if Ekind
(Parent_Subp
) = E_Procedure
then
14955 Set_Is_Valued_Procedure
14956 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
14958 Set_Has_Controlling_Result
14959 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
14962 -- No_Return must be inherited properly. If this is overridden in the
14963 -- case of a dispatching operation, then a check is made in Sem_Disp
14964 -- that the overriding operation is also No_Return (no such check is
14965 -- required for the case of non-dispatching operation.
14967 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
14969 -- A derived function with a controlling result is abstract. If the
14970 -- Derived_Type is a nonabstract formal generic derived type, then
14971 -- inherited operations are not abstract: the required check is done at
14972 -- instantiation time. If the derivation is for a generic actual, the
14973 -- function is not abstract unless the actual is.
14975 if Is_Generic_Type
(Derived_Type
)
14976 and then not Is_Abstract_Type
(Derived_Type
)
14980 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14981 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14983 -- A subprogram subject to pragma Extensions_Visible with value False
14984 -- requires overriding if the subprogram has at least one controlling
14985 -- OUT parameter (SPARK RM 6.1.7(6)).
14987 elsif Ada_Version
>= Ada_2005
14988 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
14989 or else (Is_Tagged_Type
(Derived_Type
)
14990 and then Etype
(New_Subp
) = Derived_Type
14991 and then not Is_Null_Extension
(Derived_Type
))
14992 or else (Is_Tagged_Type
(Derived_Type
)
14993 and then Ekind
(Etype
(New_Subp
)) =
14994 E_Anonymous_Access_Type
14995 and then Designated_Type
(Etype
(New_Subp
)) =
14997 and then not Is_Null_Extension
(Derived_Type
))
14998 or else (Comes_From_Source
(Alias
(New_Subp
))
14999 and then Is_EVF_Procedure
(Alias
(New_Subp
))))
15000 and then No
(Actual_Subp
)
15002 if not Is_Tagged_Type
(Derived_Type
)
15003 or else Is_Abstract_Type
(Derived_Type
)
15004 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
15006 Set_Is_Abstract_Subprogram
(New_Subp
);
15008 Set_Requires_Overriding
(New_Subp
);
15011 elsif Ada_Version
< Ada_2005
15012 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
15013 or else (Is_Tagged_Type
(Derived_Type
)
15014 and then Etype
(New_Subp
) = Derived_Type
15015 and then No
(Actual_Subp
)))
15017 Set_Is_Abstract_Subprogram
(New_Subp
);
15019 -- AI05-0097 : an inherited operation that dispatches on result is
15020 -- abstract if the derived type is abstract, even if the parent type
15021 -- is concrete and the derived type is a null extension.
15023 elsif Has_Controlling_Result
(Alias
(New_Subp
))
15024 and then Is_Abstract_Type
(Etype
(New_Subp
))
15026 Set_Is_Abstract_Subprogram
(New_Subp
);
15028 -- Finally, if the parent type is abstract we must verify that all
15029 -- inherited operations are either non-abstract or overridden, or that
15030 -- the derived type itself is abstract (this check is performed at the
15031 -- end of a package declaration, in Check_Abstract_Overriding). A
15032 -- private overriding in the parent type will not be visible in the
15033 -- derivation if we are not in an inner package or in a child unit of
15034 -- the parent type, in which case the abstractness of the inherited
15035 -- operation is carried to the new subprogram.
15037 elsif Is_Abstract_Type
(Parent_Type
)
15038 and then not In_Open_Scopes
(Scope
(Parent_Type
))
15039 and then Is_Private_Overriding
15040 and then Is_Abstract_Subprogram
(Visible_Subp
)
15042 if No
(Actual_Subp
) then
15043 Set_Alias
(New_Subp
, Visible_Subp
);
15044 Set_Is_Abstract_Subprogram
(New_Subp
, True);
15047 -- If this is a derivation for an instance of a formal derived
15048 -- type, abstractness comes from the primitive operation of the
15049 -- actual, not from the operation inherited from the ancestor.
15051 Set_Is_Abstract_Subprogram
15052 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
15056 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
15058 -- Check for case of a derived subprogram for the instantiation of a
15059 -- formal derived tagged type, if so mark the subprogram as dispatching
15060 -- and inherit the dispatching attributes of the actual subprogram. The
15061 -- derived subprogram is effectively renaming of the actual subprogram,
15062 -- so it needs to have the same attributes as the actual.
15064 if Present
(Actual_Subp
)
15065 and then Is_Dispatching_Operation
(Actual_Subp
)
15067 Set_Is_Dispatching_Operation
(New_Subp
);
15069 if Present
(DTC_Entity
(Actual_Subp
)) then
15070 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
15071 Set_DT_Position_Value
(New_Subp
, DT_Position
(Actual_Subp
));
15075 -- Indicate that a derived subprogram does not require a body and that
15076 -- it does not require processing of default expressions.
15078 Set_Has_Completion
(New_Subp
);
15079 Set_Default_Expressions_Processed
(New_Subp
);
15081 if Ekind
(New_Subp
) = E_Function
then
15082 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
15084 end Derive_Subprogram
;
15086 ------------------------
15087 -- Derive_Subprograms --
15088 ------------------------
15090 procedure Derive_Subprograms
15091 (Parent_Type
: Entity_Id
;
15092 Derived_Type
: Entity_Id
;
15093 Generic_Actual
: Entity_Id
:= Empty
)
15095 Op_List
: constant Elist_Id
:=
15096 Collect_Primitive_Operations
(Parent_Type
);
15098 function Check_Derived_Type
return Boolean;
15099 -- Check that all the entities derived from Parent_Type are found in
15100 -- the list of primitives of Derived_Type exactly in the same order.
15102 procedure Derive_Interface_Subprogram
15103 (New_Subp
: out Entity_Id
;
15105 Actual_Subp
: Entity_Id
);
15106 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15107 -- (which is an interface primitive). If Generic_Actual is present then
15108 -- Actual_Subp is the actual subprogram corresponding with the generic
15109 -- subprogram Subp.
15111 function Check_Derived_Type
return Boolean is
15115 New_Subp
: Entity_Id
;
15120 -- Traverse list of entities in the current scope searching for
15121 -- an incomplete type whose full-view is derived type
15123 E
:= First_Entity
(Scope
(Derived_Type
));
15124 while Present
(E
) and then E
/= Derived_Type
loop
15125 if Ekind
(E
) = E_Incomplete_Type
15126 and then Present
(Full_View
(E
))
15127 and then Full_View
(E
) = Derived_Type
15129 -- Disable this test if Derived_Type completes an incomplete
15130 -- type because in such case more primitives can be added
15131 -- later to the list of primitives of Derived_Type by routine
15132 -- Process_Incomplete_Dependents
15137 E
:= Next_Entity
(E
);
15140 List
:= Collect_Primitive_Operations
(Derived_Type
);
15141 Elmt
:= First_Elmt
(List
);
15143 Op_Elmt
:= First_Elmt
(Op_List
);
15144 while Present
(Op_Elmt
) loop
15145 Subp
:= Node
(Op_Elmt
);
15146 New_Subp
:= Node
(Elmt
);
15148 -- At this early stage Derived_Type has no entities with attribute
15149 -- Interface_Alias. In addition, such primitives are always
15150 -- located at the end of the list of primitives of Parent_Type.
15151 -- Therefore, if found we can safely stop processing pending
15154 exit when Present
(Interface_Alias
(Subp
));
15156 -- Handle hidden entities
15158 if not Is_Predefined_Dispatching_Operation
(Subp
)
15159 and then Is_Hidden
(Subp
)
15161 if Present
(New_Subp
)
15162 and then Primitive_Names_Match
(Subp
, New_Subp
)
15168 if not Present
(New_Subp
)
15169 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
15170 or else not Primitive_Names_Match
(Subp
, New_Subp
)
15178 Next_Elmt
(Op_Elmt
);
15182 end Check_Derived_Type
;
15184 ---------------------------------
15185 -- Derive_Interface_Subprogram --
15186 ---------------------------------
15188 procedure Derive_Interface_Subprogram
15189 (New_Subp
: out Entity_Id
;
15191 Actual_Subp
: Entity_Id
)
15193 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
15194 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
15197 pragma Assert
(Is_Interface
(Iface_Type
));
15200 (New_Subp
=> New_Subp
,
15201 Parent_Subp
=> Iface_Subp
,
15202 Derived_Type
=> Derived_Type
,
15203 Parent_Type
=> Iface_Type
,
15204 Actual_Subp
=> Actual_Subp
);
15206 -- Given that this new interface entity corresponds with a primitive
15207 -- of the parent that was not overridden we must leave it associated
15208 -- with its parent primitive to ensure that it will share the same
15209 -- dispatch table slot when overridden. We must set the Alias to Subp
15210 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15211 -- (in case we inherited Subp from Iface_Type via a nonabstract
15212 -- generic formal type).
15214 if No
(Actual_Subp
) then
15215 Set_Alias
(New_Subp
, Subp
);
15218 T
: Entity_Id
:= Find_Dispatching_Type
(Subp
);
15220 while Etype
(T
) /= T
loop
15221 if Is_Generic_Type
(T
) and then not Is_Abstract_Type
(T
) then
15222 Set_Is_Abstract_Subprogram
(New_Subp
, False);
15230 -- For instantiations this is not needed since the previous call to
15231 -- Derive_Subprogram leaves the entity well decorated.
15234 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
15237 end Derive_Interface_Subprogram
;
15241 Alias_Subp
: Entity_Id
;
15242 Act_List
: Elist_Id
;
15243 Act_Elmt
: Elmt_Id
;
15244 Act_Subp
: Entity_Id
:= Empty
;
15246 Need_Search
: Boolean := False;
15247 New_Subp
: Entity_Id
:= Empty
;
15248 Parent_Base
: Entity_Id
;
15251 -- Start of processing for Derive_Subprograms
15254 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
15255 and then Has_Discriminants
(Parent_Type
)
15256 and then Present
(Full_View
(Parent_Type
))
15258 Parent_Base
:= Full_View
(Parent_Type
);
15260 Parent_Base
:= Parent_Type
;
15263 if Present
(Generic_Actual
) then
15264 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
15265 Act_Elmt
:= First_Elmt
(Act_List
);
15267 Act_List
:= No_Elist
;
15268 Act_Elmt
:= No_Elmt
;
15271 -- Derive primitives inherited from the parent. Note that if the generic
15272 -- actual is present, this is not really a type derivation, it is a
15273 -- completion within an instance.
15275 -- Case 1: Derived_Type does not implement interfaces
15277 if not Is_Tagged_Type
(Derived_Type
)
15278 or else (not Has_Interfaces
(Derived_Type
)
15279 and then not (Present
(Generic_Actual
)
15280 and then Has_Interfaces
(Generic_Actual
)))
15282 Elmt
:= First_Elmt
(Op_List
);
15283 while Present
(Elmt
) loop
15284 Subp
:= Node
(Elmt
);
15286 -- Literals are derived earlier in the process of building the
15287 -- derived type, and are skipped here.
15289 if Ekind
(Subp
) = E_Enumeration_Literal
then
15292 -- The actual is a direct descendant and the common primitive
15293 -- operations appear in the same order.
15295 -- If the generic parent type is present, the derived type is an
15296 -- instance of a formal derived type, and within the instance its
15297 -- operations are those of the actual. We derive from the formal
15298 -- type but make the inherited operations aliases of the
15299 -- corresponding operations of the actual.
15302 pragma Assert
(No
(Node
(Act_Elmt
))
15303 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
15306 (Subp
, Node
(Act_Elmt
),
15307 Skip_Controlling_Formals
=> True)));
15310 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
15312 if Present
(Act_Elmt
) then
15313 Next_Elmt
(Act_Elmt
);
15320 -- Case 2: Derived_Type implements interfaces
15323 -- If the parent type has no predefined primitives we remove
15324 -- predefined primitives from the list of primitives of generic
15325 -- actual to simplify the complexity of this algorithm.
15327 if Present
(Generic_Actual
) then
15329 Has_Predefined_Primitives
: Boolean := False;
15332 -- Check if the parent type has predefined primitives
15334 Elmt
:= First_Elmt
(Op_List
);
15335 while Present
(Elmt
) loop
15336 Subp
:= Node
(Elmt
);
15338 if Is_Predefined_Dispatching_Operation
(Subp
)
15339 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
15341 Has_Predefined_Primitives
:= True;
15348 -- Remove predefined primitives of Generic_Actual. We must use
15349 -- an auxiliary list because in case of tagged types the value
15350 -- returned by Collect_Primitive_Operations is the value stored
15351 -- in its Primitive_Operations attribute (and we don't want to
15352 -- modify its current contents).
15354 if not Has_Predefined_Primitives
then
15356 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
15359 Elmt
:= First_Elmt
(Act_List
);
15360 while Present
(Elmt
) loop
15361 Subp
:= Node
(Elmt
);
15363 if not Is_Predefined_Dispatching_Operation
(Subp
)
15364 or else Comes_From_Source
(Subp
)
15366 Append_Elmt
(Subp
, Aux_List
);
15372 Act_List
:= Aux_List
;
15376 Act_Elmt
:= First_Elmt
(Act_List
);
15377 Act_Subp
:= Node
(Act_Elmt
);
15381 -- Stage 1: If the generic actual is not present we derive the
15382 -- primitives inherited from the parent type. If the generic parent
15383 -- type is present, the derived type is an instance of a formal
15384 -- derived type, and within the instance its operations are those of
15385 -- the actual. We derive from the formal type but make the inherited
15386 -- operations aliases of the corresponding operations of the actual.
15388 Elmt
:= First_Elmt
(Op_List
);
15389 while Present
(Elmt
) loop
15390 Subp
:= Node
(Elmt
);
15391 Alias_Subp
:= Ultimate_Alias
(Subp
);
15393 -- Do not derive internal entities of the parent that link
15394 -- interface primitives with their covering primitive. These
15395 -- entities will be added to this type when frozen.
15397 if Present
(Interface_Alias
(Subp
)) then
15401 -- If the generic actual is present find the corresponding
15402 -- operation in the generic actual. If the parent type is a
15403 -- direct ancestor of the derived type then, even if it is an
15404 -- interface, the operations are inherited from the primary
15405 -- dispatch table and are in the proper order. If we detect here
15406 -- that primitives are not in the same order we traverse the list
15407 -- of primitive operations of the actual to find the one that
15408 -- implements the interface primitive.
15412 (Present
(Generic_Actual
)
15413 and then Present
(Act_Subp
)
15415 (Primitive_Names_Match
(Subp
, Act_Subp
)
15417 Type_Conformant
(Subp
, Act_Subp
,
15418 Skip_Controlling_Formals
=> True)))
15420 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
15421 Use_Full_View
=> True));
15423 -- Remember that we need searching for all pending primitives
15425 Need_Search
:= True;
15427 -- Handle entities associated with interface primitives
15429 if Present
(Alias_Subp
)
15430 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15431 and then not Is_Predefined_Dispatching_Operation
(Subp
)
15433 -- Search for the primitive in the homonym chain
15436 Find_Primitive_Covering_Interface
15437 (Tagged_Type
=> Generic_Actual
,
15438 Iface_Prim
=> Alias_Subp
);
15440 -- Previous search may not locate primitives covering
15441 -- interfaces defined in generics units or instantiations.
15442 -- (it fails if the covering primitive has formals whose
15443 -- type is also defined in generics or instantiations).
15444 -- In such case we search in the list of primitives of the
15445 -- generic actual for the internal entity that links the
15446 -- interface primitive and the covering primitive.
15449 and then Is_Generic_Type
(Parent_Type
)
15451 -- This code has been designed to handle only generic
15452 -- formals that implement interfaces that are defined
15453 -- in a generic unit or instantiation. If this code is
15454 -- needed for other cases we must review it because
15455 -- (given that it relies on Original_Location to locate
15456 -- the primitive of Generic_Actual that covers the
15457 -- interface) it could leave linked through attribute
15458 -- Alias entities of unrelated instantiations).
15462 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
15464 Instantiation_Depth
15465 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
15468 Iface_Prim_Loc
: constant Source_Ptr
:=
15469 Original_Location
(Sloc
(Alias_Subp
));
15476 First_Elmt
(Primitive_Operations
(Generic_Actual
));
15478 Search
: while Present
(Elmt
) loop
15479 Prim
:= Node
(Elmt
);
15481 if Present
(Interface_Alias
(Prim
))
15482 and then Original_Location
15483 (Sloc
(Interface_Alias
(Prim
))) =
15486 Act_Subp
:= Alias
(Prim
);
15495 pragma Assert
(Present
(Act_Subp
)
15496 or else Is_Abstract_Type
(Generic_Actual
)
15497 or else Serious_Errors_Detected
> 0);
15499 -- Handle predefined primitives plus the rest of user-defined
15503 Act_Elmt
:= First_Elmt
(Act_List
);
15504 while Present
(Act_Elmt
) loop
15505 Act_Subp
:= Node
(Act_Elmt
);
15507 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
15508 and then Type_Conformant
15510 Skip_Controlling_Formals
=> True)
15511 and then No
(Interface_Alias
(Act_Subp
));
15513 Next_Elmt
(Act_Elmt
);
15516 if No
(Act_Elmt
) then
15522 -- Case 1: If the parent is a limited interface then it has the
15523 -- predefined primitives of synchronized interfaces. However, the
15524 -- actual type may be a non-limited type and hence it does not
15525 -- have such primitives.
15527 if Present
(Generic_Actual
)
15528 and then not Present
(Act_Subp
)
15529 and then Is_Limited_Interface
(Parent_Base
)
15530 and then Is_Predefined_Interface_Primitive
(Subp
)
15534 -- Case 2: Inherit entities associated with interfaces that were
15535 -- not covered by the parent type. We exclude here null interface
15536 -- primitives because they do not need special management.
15538 -- We also exclude interface operations that are renamings. If the
15539 -- subprogram is an explicit renaming of an interface primitive,
15540 -- it is a regular primitive operation, and the presence of its
15541 -- alias is not relevant: it has to be derived like any other
15544 elsif Present
(Alias
(Subp
))
15545 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
15546 N_Subprogram_Renaming_Declaration
15547 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15549 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
15550 and then Null_Present
(Parent
(Alias_Subp
)))
15552 -- If this is an abstract private type then we transfer the
15553 -- derivation of the interface primitive from the partial view
15554 -- to the full view. This is safe because all the interfaces
15555 -- must be visible in the partial view. Done to avoid adding
15556 -- a new interface derivation to the private part of the
15557 -- enclosing package; otherwise this new derivation would be
15558 -- decorated as hidden when the analysis of the enclosing
15559 -- package completes.
15561 if Is_Abstract_Type
(Derived_Type
)
15562 and then In_Private_Part
(Current_Scope
)
15563 and then Has_Private_Declaration
(Derived_Type
)
15566 Partial_View
: Entity_Id
;
15571 Partial_View
:= First_Entity
(Current_Scope
);
15573 exit when No
(Partial_View
)
15574 or else (Has_Private_Declaration
(Partial_View
)
15576 Full_View
(Partial_View
) = Derived_Type
);
15578 Next_Entity
(Partial_View
);
15581 -- If the partial view was not found then the source code
15582 -- has errors and the derivation is not needed.
15584 if Present
(Partial_View
) then
15586 First_Elmt
(Primitive_Operations
(Partial_View
));
15587 while Present
(Elmt
) loop
15588 Ent
:= Node
(Elmt
);
15590 if Present
(Alias
(Ent
))
15591 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
15594 (Ent
, Primitive_Operations
(Derived_Type
));
15601 -- If the interface primitive was not found in the
15602 -- partial view then this interface primitive was
15603 -- overridden. We add a derivation to activate in
15604 -- Derive_Progenitor_Subprograms the machinery to
15608 Derive_Interface_Subprogram
15609 (New_Subp
=> New_Subp
,
15611 Actual_Subp
=> Act_Subp
);
15616 Derive_Interface_Subprogram
15617 (New_Subp
=> New_Subp
,
15619 Actual_Subp
=> Act_Subp
);
15622 -- Case 3: Common derivation
15626 (New_Subp
=> New_Subp
,
15627 Parent_Subp
=> Subp
,
15628 Derived_Type
=> Derived_Type
,
15629 Parent_Type
=> Parent_Base
,
15630 Actual_Subp
=> Act_Subp
);
15633 -- No need to update Act_Elm if we must search for the
15634 -- corresponding operation in the generic actual
15637 and then Present
(Act_Elmt
)
15639 Next_Elmt
(Act_Elmt
);
15640 Act_Subp
:= Node
(Act_Elmt
);
15647 -- Inherit additional operations from progenitors. If the derived
15648 -- type is a generic actual, there are not new primitive operations
15649 -- for the type because it has those of the actual, and therefore
15650 -- nothing needs to be done. The renamings generated above are not
15651 -- primitive operations, and their purpose is simply to make the
15652 -- proper operations visible within an instantiation.
15654 if No
(Generic_Actual
) then
15655 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
15659 -- Final check: Direct descendants must have their primitives in the
15660 -- same order. We exclude from this test untagged types and instances
15661 -- of formal derived types. We skip this test if we have already
15662 -- reported serious errors in the sources.
15664 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
15665 or else Present
(Generic_Actual
)
15666 or else Serious_Errors_Detected
> 0
15667 or else Check_Derived_Type
);
15668 end Derive_Subprograms
;
15670 --------------------------------
15671 -- Derived_Standard_Character --
15672 --------------------------------
15674 procedure Derived_Standard_Character
15676 Parent_Type
: Entity_Id
;
15677 Derived_Type
: Entity_Id
)
15679 Loc
: constant Source_Ptr
:= Sloc
(N
);
15680 Def
: constant Node_Id
:= Type_Definition
(N
);
15681 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15682 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
15683 Implicit_Base
: constant Entity_Id
:=
15685 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
15691 Discard_Node
(Process_Subtype
(Indic
, N
));
15693 Set_Etype
(Implicit_Base
, Parent_Base
);
15694 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
15695 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
15697 Set_Is_Character_Type
(Implicit_Base
, True);
15698 Set_Has_Delayed_Freeze
(Implicit_Base
);
15700 -- The bounds of the implicit base are the bounds of the parent base.
15701 -- Note that their type is the parent base.
15703 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
15704 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
15706 Set_Scalar_Range
(Implicit_Base
,
15709 High_Bound
=> Hi
));
15711 Conditional_Delay
(Derived_Type
, Parent_Type
);
15713 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
15714 Set_Etype
(Derived_Type
, Implicit_Base
);
15715 Set_Size_Info
(Derived_Type
, Parent_Type
);
15717 if Unknown_RM_Size
(Derived_Type
) then
15718 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
15721 Set_Is_Character_Type
(Derived_Type
, True);
15723 if Nkind
(Indic
) /= N_Subtype_Indication
then
15725 -- If no explicit constraint, the bounds are those
15726 -- of the parent type.
15728 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
15729 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
15730 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
15733 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
15735 -- Because the implicit base is used in the conversion of the bounds, we
15736 -- have to freeze it now. This is similar to what is done for numeric
15737 -- types, and it equally suspicious, but otherwise a non-static bound
15738 -- will have a reference to an unfrozen type, which is rejected by Gigi
15739 -- (???). This requires specific care for definition of stream
15740 -- attributes. For details, see comments at the end of
15741 -- Build_Derived_Numeric_Type.
15743 Freeze_Before
(N
, Implicit_Base
);
15744 end Derived_Standard_Character
;
15746 ------------------------------
15747 -- Derived_Type_Declaration --
15748 ------------------------------
15750 procedure Derived_Type_Declaration
15753 Is_Completion
: Boolean)
15755 Parent_Type
: Entity_Id
;
15757 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
15758 -- Check whether the parent type is a generic formal, or derives
15759 -- directly or indirectly from one.
15761 ------------------------
15762 -- Comes_From_Generic --
15763 ------------------------
15765 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
15767 if Is_Generic_Type
(Typ
) then
15770 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
15773 elsif Is_Private_Type
(Typ
)
15774 and then Present
(Full_View
(Typ
))
15775 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
15779 elsif Is_Generic_Actual_Type
(Typ
) then
15785 end Comes_From_Generic
;
15789 Def
: constant Node_Id
:= Type_Definition
(N
);
15790 Iface_Def
: Node_Id
;
15791 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
15792 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
15793 Parent_Node
: Node_Id
;
15796 -- Start of processing for Derived_Type_Declaration
15799 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
15801 -- Ada 2005 (AI-251): In case of interface derivation check that the
15802 -- parent is also an interface.
15804 if Interface_Present
(Def
) then
15805 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
15807 if not Is_Interface
(Parent_Type
) then
15808 Diagnose_Interface
(Indic
, Parent_Type
);
15811 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
15812 Iface_Def
:= Type_Definition
(Parent_Node
);
15814 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15815 -- other limited interfaces.
15817 if Limited_Present
(Def
) then
15818 if Limited_Present
(Iface_Def
) then
15821 elsif Protected_Present
(Iface_Def
) then
15823 ("descendant of & must be declared as a protected "
15824 & "interface", N
, Parent_Type
);
15826 elsif Synchronized_Present
(Iface_Def
) then
15828 ("descendant of & must be declared as a synchronized "
15829 & "interface", N
, Parent_Type
);
15831 elsif Task_Present
(Iface_Def
) then
15833 ("descendant of & must be declared as a task interface",
15838 ("(Ada 2005) limited interface cannot inherit from "
15839 & "non-limited interface", Indic
);
15842 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15843 -- from non-limited or limited interfaces.
15845 elsif not Protected_Present
(Def
)
15846 and then not Synchronized_Present
(Def
)
15847 and then not Task_Present
(Def
)
15849 if Limited_Present
(Iface_Def
) then
15852 elsif Protected_Present
(Iface_Def
) then
15854 ("descendant of & must be declared as a protected "
15855 & "interface", N
, Parent_Type
);
15857 elsif Synchronized_Present
(Iface_Def
) then
15859 ("descendant of & must be declared as a synchronized "
15860 & "interface", N
, Parent_Type
);
15862 elsif Task_Present
(Iface_Def
) then
15864 ("descendant of & must be declared as a task interface",
15873 if Is_Tagged_Type
(Parent_Type
)
15874 and then Is_Concurrent_Type
(Parent_Type
)
15875 and then not Is_Interface
(Parent_Type
)
15878 ("parent type of a record extension cannot be a synchronized "
15879 & "tagged type (RM 3.9.1 (3/1))", N
);
15880 Set_Etype
(T
, Any_Type
);
15884 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15887 if Is_Tagged_Type
(Parent_Type
)
15888 and then Is_Non_Empty_List
(Interface_List
(Def
))
15895 Intf
:= First
(Interface_List
(Def
));
15896 while Present
(Intf
) loop
15897 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
15899 if not Is_Interface
(T
) then
15900 Diagnose_Interface
(Intf
, T
);
15902 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15903 -- a limited type from having a nonlimited progenitor.
15905 elsif (Limited_Present
(Def
)
15906 or else (not Is_Interface
(Parent_Type
)
15907 and then Is_Limited_Type
(Parent_Type
)))
15908 and then not Is_Limited_Interface
(T
)
15911 ("progenitor interface& of limited type must be limited",
15920 if Parent_Type
= Any_Type
15921 or else Etype
(Parent_Type
) = Any_Type
15922 or else (Is_Class_Wide_Type
(Parent_Type
)
15923 and then Etype
(Parent_Type
) = T
)
15925 -- If Parent_Type is undefined or illegal, make new type into a
15926 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15927 -- errors. If this is a self-definition, emit error now.
15929 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
15930 Error_Msg_N
("type cannot be used in its own definition", Indic
);
15933 Set_Ekind
(T
, Ekind
(Parent_Type
));
15934 Set_Etype
(T
, Any_Type
);
15935 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
15937 if Is_Tagged_Type
(T
)
15938 and then Is_Record_Type
(T
)
15940 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
15946 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15947 -- an interface is special because the list of interfaces in the full
15948 -- view can be given in any order. For example:
15950 -- type A is interface;
15951 -- type B is interface and A;
15952 -- type D is new B with private;
15954 -- type D is new A and B with null record; -- 1 --
15956 -- In this case we perform the following transformation of -1-:
15958 -- type D is new B and A with null record;
15960 -- If the parent of the full-view covers the parent of the partial-view
15961 -- we have two possible cases:
15963 -- 1) They have the same parent
15964 -- 2) The parent of the full-view implements some further interfaces
15966 -- In both cases we do not need to perform the transformation. In the
15967 -- first case the source program is correct and the transformation is
15968 -- not needed; in the second case the source program does not fulfill
15969 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15972 -- This transformation not only simplifies the rest of the analysis of
15973 -- this type declaration but also simplifies the correct generation of
15974 -- the object layout to the expander.
15976 if In_Private_Part
(Current_Scope
)
15977 and then Is_Interface
(Parent_Type
)
15981 Partial_View
: Entity_Id
;
15982 Partial_View_Parent
: Entity_Id
;
15983 New_Iface
: Node_Id
;
15986 -- Look for the associated private type declaration
15988 Partial_View
:= First_Entity
(Current_Scope
);
15990 exit when No
(Partial_View
)
15991 or else (Has_Private_Declaration
(Partial_View
)
15992 and then Full_View
(Partial_View
) = T
);
15994 Next_Entity
(Partial_View
);
15997 -- If the partial view was not found then the source code has
15998 -- errors and the transformation is not needed.
16000 if Present
(Partial_View
) then
16001 Partial_View_Parent
:= Etype
(Partial_View
);
16003 -- If the parent of the full-view covers the parent of the
16004 -- partial-view we have nothing else to do.
16006 if Interface_Present_In_Ancestor
16007 (Parent_Type
, Partial_View_Parent
)
16011 -- Traverse the list of interfaces of the full-view to look
16012 -- for the parent of the partial-view and perform the tree
16016 Iface
:= First
(Interface_List
(Def
));
16017 while Present
(Iface
) loop
16018 if Etype
(Iface
) = Etype
(Partial_View
) then
16019 Rewrite
(Subtype_Indication
(Def
),
16020 New_Copy
(Subtype_Indication
16021 (Parent
(Partial_View
))));
16024 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
16025 Append
(New_Iface
, Interface_List
(Def
));
16027 -- Analyze the transformed code
16029 Derived_Type_Declaration
(T
, N
, Is_Completion
);
16040 -- Only composite types other than array types are allowed to have
16043 if Present
(Discriminant_Specifications
(N
)) then
16044 if (Is_Elementary_Type
(Parent_Type
)
16046 Is_Array_Type
(Parent_Type
))
16047 and then not Error_Posted
(N
)
16050 ("elementary or array type cannot have discriminants",
16051 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
16052 Set_Has_Discriminants
(T
, False);
16054 -- The type is allowed to have discriminants
16057 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
16061 -- In Ada 83, a derived type defined in a package specification cannot
16062 -- be used for further derivation until the end of its visible part.
16063 -- Note that derivation in the private part of the package is allowed.
16065 if Ada_Version
= Ada_83
16066 and then Is_Derived_Type
(Parent_Type
)
16067 and then In_Visible_Part
(Scope
(Parent_Type
))
16069 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
16071 ("(Ada 83): premature use of type for derivation", Indic
);
16075 -- Check for early use of incomplete or private type
16077 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
16078 Error_Msg_N
("premature derivation of incomplete type", Indic
);
16081 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
16082 and then not Comes_From_Generic
(Parent_Type
))
16083 or else Has_Private_Component
(Parent_Type
)
16085 -- The ancestor type of a formal type can be incomplete, in which
16086 -- case only the operations of the partial view are available in the
16087 -- generic. Subsequent checks may be required when the full view is
16088 -- analyzed to verify that a derivation from a tagged type has an
16091 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
16094 elsif No
(Underlying_Type
(Parent_Type
))
16095 or else Has_Private_Component
(Parent_Type
)
16098 ("premature derivation of derived or private type", Indic
);
16100 -- Flag the type itself as being in error, this prevents some
16101 -- nasty problems with subsequent uses of the malformed type.
16103 Set_Error_Posted
(T
);
16105 -- Check that within the immediate scope of an untagged partial
16106 -- view it's illegal to derive from the partial view if the
16107 -- full view is tagged. (7.3(7))
16109 -- We verify that the Parent_Type is a partial view by checking
16110 -- that it is not a Full_Type_Declaration (i.e. a private type or
16111 -- private extension declaration), to distinguish a partial view
16112 -- from a derivation from a private type which also appears as
16113 -- E_Private_Type. If the parent base type is not declared in an
16114 -- enclosing scope there is no need to check.
16116 elsif Present
(Full_View
(Parent_Type
))
16117 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
16118 and then not Is_Tagged_Type
(Parent_Type
)
16119 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
16120 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
16123 ("premature derivation from type with tagged full view",
16128 -- Check that form of derivation is appropriate
16130 Taggd
:= Is_Tagged_Type
(Parent_Type
);
16132 -- Set the parent type to the class-wide type's specific type in this
16133 -- case to prevent cascading errors
16135 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
16136 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
16137 Set_Etype
(T
, Etype
(Parent_Type
));
16141 if Present
(Extension
) and then not Taggd
then
16143 ("type derived from untagged type cannot have extension", Indic
);
16145 elsif No
(Extension
) and then Taggd
then
16147 -- If this declaration is within a private part (or body) of a
16148 -- generic instantiation then the derivation is allowed (the parent
16149 -- type can only appear tagged in this case if it's a generic actual
16150 -- type, since it would otherwise have been rejected in the analysis
16151 -- of the generic template).
16153 if not Is_Generic_Actual_Type
(Parent_Type
)
16154 or else In_Visible_Part
(Scope
(Parent_Type
))
16156 if Is_Class_Wide_Type
(Parent_Type
) then
16158 ("parent type must not be a class-wide type", Indic
);
16160 -- Use specific type to prevent cascaded errors.
16162 Parent_Type
:= Etype
(Parent_Type
);
16166 ("type derived from tagged type must have extension", Indic
);
16171 -- AI-443: Synchronized formal derived types require a private
16172 -- extension. There is no point in checking the ancestor type or
16173 -- the progenitors since the construct is wrong to begin with.
16175 if Ada_Version
>= Ada_2005
16176 and then Is_Generic_Type
(T
)
16177 and then Present
(Original_Node
(N
))
16180 Decl
: constant Node_Id
:= Original_Node
(N
);
16183 if Nkind
(Decl
) = N_Formal_Type_Declaration
16184 and then Nkind
(Formal_Type_Definition
(Decl
)) =
16185 N_Formal_Derived_Type_Definition
16186 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
16187 and then No
(Extension
)
16189 -- Avoid emitting a duplicate error message
16191 and then not Error_Posted
(Indic
)
16194 ("synchronized derived type must have extension", N
);
16199 if Null_Exclusion_Present
(Def
)
16200 and then not Is_Access_Type
(Parent_Type
)
16202 Error_Msg_N
("null exclusion can only apply to an access type", N
);
16205 -- Avoid deriving parent primitives of underlying record views
16207 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
16208 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
16210 -- AI-419: The parent type of an explicitly limited derived type must
16211 -- be a limited type or a limited interface.
16213 if Limited_Present
(Def
) then
16214 Set_Is_Limited_Record
(T
);
16216 if Is_Interface
(T
) then
16217 Set_Is_Limited_Interface
(T
);
16220 if not Is_Limited_Type
(Parent_Type
)
16222 (not Is_Interface
(Parent_Type
)
16223 or else not Is_Limited_Interface
(Parent_Type
))
16225 -- AI05-0096: a derivation in the private part of an instance is
16226 -- legal if the generic formal is untagged limited, and the actual
16229 if Is_Generic_Actual_Type
(Parent_Type
)
16230 and then In_Private_Part
(Current_Scope
)
16233 (Generic_Parent_Type
(Parent
(Parent_Type
)))
16239 ("parent type& of limited type must be limited",
16245 -- In SPARK, there are no derived type definitions other than type
16246 -- extensions of tagged record types.
16248 if No
(Extension
) then
16249 Check_SPARK_05_Restriction
16250 ("derived type is not allowed", Original_Node
(N
));
16252 end Derived_Type_Declaration
;
16254 ------------------------
16255 -- Diagnose_Interface --
16256 ------------------------
16258 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
16260 if not Is_Interface
(E
) and then E
/= Any_Type
then
16261 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
16263 end Diagnose_Interface
;
16265 ----------------------------------
16266 -- Enumeration_Type_Declaration --
16267 ----------------------------------
16269 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16276 -- Create identifier node representing lower bound
16278 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16279 L
:= First
(Literals
(Def
));
16280 Set_Chars
(B_Node
, Chars
(L
));
16281 Set_Entity
(B_Node
, L
);
16282 Set_Etype
(B_Node
, T
);
16283 Set_Is_Static_Expression
(B_Node
, True);
16285 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
16286 Set_Low_Bound
(R_Node
, B_Node
);
16288 Set_Ekind
(T
, E_Enumeration_Type
);
16289 Set_First_Literal
(T
, L
);
16291 Set_Is_Constrained
(T
);
16295 -- Loop through literals of enumeration type setting pos and rep values
16296 -- except that if the Ekind is already set, then it means the literal
16297 -- was already constructed (case of a derived type declaration and we
16298 -- should not disturb the Pos and Rep values.
16300 while Present
(L
) loop
16301 if Ekind
(L
) /= E_Enumeration_Literal
then
16302 Set_Ekind
(L
, E_Enumeration_Literal
);
16303 Set_Enumeration_Pos
(L
, Ev
);
16304 Set_Enumeration_Rep
(L
, Ev
);
16305 Set_Is_Known_Valid
(L
, True);
16309 New_Overloaded_Entity
(L
);
16310 Generate_Definition
(L
);
16311 Set_Convention
(L
, Convention_Intrinsic
);
16313 -- Case of character literal
16315 if Nkind
(L
) = N_Defining_Character_Literal
then
16316 Set_Is_Character_Type
(T
, True);
16318 -- Check violation of No_Wide_Characters
16320 if Restriction_Check_Required
(No_Wide_Characters
) then
16321 Get_Name_String
(Chars
(L
));
16323 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
16324 Check_Restriction
(No_Wide_Characters
, L
);
16333 -- Now create a node representing upper bound
16335 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16336 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
16337 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
16338 Set_Etype
(B_Node
, T
);
16339 Set_Is_Static_Expression
(B_Node
, True);
16341 Set_High_Bound
(R_Node
, B_Node
);
16343 -- Initialize various fields of the type. Some of this information
16344 -- may be overwritten later through rep.clauses.
16346 Set_Scalar_Range
(T
, R_Node
);
16347 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
16348 Set_Enum_Esize
(T
);
16349 Set_Enum_Pos_To_Rep
(T
, Empty
);
16351 -- Set Discard_Names if configuration pragma set, or if there is
16352 -- a parameterless pragma in the current declarative region
16354 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
16355 Set_Discard_Names
(T
);
16358 -- Process end label if there is one
16360 if Present
(Def
) then
16361 Process_End_Label
(Def
, 'e', T
);
16363 end Enumeration_Type_Declaration
;
16365 ---------------------------------
16366 -- Expand_To_Stored_Constraint --
16367 ---------------------------------
16369 function Expand_To_Stored_Constraint
16371 Constraint
: Elist_Id
) return Elist_Id
16373 Explicitly_Discriminated_Type
: Entity_Id
;
16374 Expansion
: Elist_Id
;
16375 Discriminant
: Entity_Id
;
16377 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
16378 -- Find the nearest type that actually specifies discriminants
16380 ---------------------------------
16381 -- Type_With_Explicit_Discrims --
16382 ---------------------------------
16384 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
16385 Typ
: constant E
:= Base_Type
(Id
);
16388 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
16389 if Present
(Full_View
(Typ
)) then
16390 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
16394 if Has_Discriminants
(Typ
) then
16399 if Etype
(Typ
) = Typ
then
16401 elsif Has_Discriminants
(Typ
) then
16404 return Type_With_Explicit_Discrims
(Etype
(Typ
));
16407 end Type_With_Explicit_Discrims
;
16409 -- Start of processing for Expand_To_Stored_Constraint
16412 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
16416 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
16418 if No
(Explicitly_Discriminated_Type
) then
16422 Expansion
:= New_Elmt_List
;
16425 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
16426 while Present
(Discriminant
) loop
16428 (Get_Discriminant_Value
16429 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
16431 Next_Stored_Discriminant
(Discriminant
);
16435 end Expand_To_Stored_Constraint
;
16437 ---------------------------
16438 -- Find_Hidden_Interface --
16439 ---------------------------
16441 function Find_Hidden_Interface
16443 Dest
: Elist_Id
) return Entity_Id
16446 Iface_Elmt
: Elmt_Id
;
16449 if Present
(Src
) and then Present
(Dest
) then
16450 Iface_Elmt
:= First_Elmt
(Src
);
16451 while Present
(Iface_Elmt
) loop
16452 Iface
:= Node
(Iface_Elmt
);
16454 if Is_Interface
(Iface
)
16455 and then not Contain_Interface
(Iface
, Dest
)
16460 Next_Elmt
(Iface_Elmt
);
16465 end Find_Hidden_Interface
;
16467 --------------------
16468 -- Find_Type_Name --
16469 --------------------
16471 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
16472 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
16473 New_Id
: Entity_Id
;
16475 Prev_Par
: Node_Id
;
16477 procedure Check_Duplicate_Aspects
;
16478 -- Check that aspects specified in a completion have not been specified
16479 -- already in the partial view.
16481 procedure Tag_Mismatch
;
16482 -- Diagnose a tagged partial view whose full view is untagged. We post
16483 -- the message on the full view, with a reference to the previous
16484 -- partial view. The partial view can be private or incomplete, and
16485 -- these are handled in a different manner, so we determine the position
16486 -- of the error message from the respective slocs of both.
16488 -----------------------------
16489 -- Check_Duplicate_Aspects --
16490 -----------------------------
16492 procedure Check_Duplicate_Aspects
is
16493 function Get_Partial_View_Aspect
(Asp
: Node_Id
) return Node_Id
;
16494 -- Return the corresponding aspect of the partial view which matches
16495 -- the aspect id of Asp. Return Empty is no such aspect exists.
16497 -----------------------------
16498 -- Get_Partial_View_Aspect --
16499 -----------------------------
16501 function Get_Partial_View_Aspect
(Asp
: Node_Id
) return Node_Id
is
16502 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp
);
16503 Prev_Asps
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
16504 Prev_Asp
: Node_Id
;
16507 if Present
(Prev_Asps
) then
16508 Prev_Asp
:= First
(Prev_Asps
);
16509 while Present
(Prev_Asp
) loop
16510 if Get_Aspect_Id
(Prev_Asp
) = Asp_Id
then
16519 end Get_Partial_View_Aspect
;
16523 Full_Asps
: constant List_Id
:= Aspect_Specifications
(N
);
16524 Full_Asp
: Node_Id
;
16525 Part_Asp
: Node_Id
;
16527 -- Start of processing for Check_Duplicate_Aspects
16530 if Present
(Full_Asps
) then
16531 Full_Asp
:= First
(Full_Asps
);
16532 while Present
(Full_Asp
) loop
16533 Part_Asp
:= Get_Partial_View_Aspect
(Full_Asp
);
16535 -- An aspect and its class-wide counterpart are two distinct
16536 -- aspects and may apply to both views of an entity.
16538 if Present
(Part_Asp
)
16539 and then Class_Present
(Part_Asp
) = Class_Present
(Full_Asp
)
16542 ("aspect already specified in private declaration",
16549 if Has_Discriminants
(Prev
)
16550 and then not Has_Unknown_Discriminants
(Prev
)
16551 and then Get_Aspect_Id
(Full_Asp
) =
16552 Aspect_Implicit_Dereference
16555 ("cannot specify aspect if partial view has known "
16556 & "discriminants", Full_Asp
);
16562 end Check_Duplicate_Aspects
;
16568 procedure Tag_Mismatch
is
16570 if Sloc
(Prev
) < Sloc
(Id
) then
16571 if Ada_Version
>= Ada_2012
16572 and then Nkind
(N
) = N_Private_Type_Declaration
16575 ("declaration of private } must be a tagged type ", Id
, Prev
);
16578 ("full declaration of } must be a tagged type ", Id
, Prev
);
16582 if Ada_Version
>= Ada_2012
16583 and then Nkind
(N
) = N_Private_Type_Declaration
16586 ("declaration of private } must be a tagged type ", Prev
, Id
);
16589 ("full declaration of } must be a tagged type ", Prev
, Id
);
16594 -- Start of processing for Find_Type_Name
16597 -- Find incomplete declaration, if one was given
16599 Prev
:= Current_Entity_In_Scope
(Id
);
16601 -- New type declaration
16607 -- Previous declaration exists
16610 Prev_Par
:= Parent
(Prev
);
16612 -- Error if not incomplete/private case except if previous
16613 -- declaration is implicit, etc. Enter_Name will emit error if
16616 if not Is_Incomplete_Or_Private_Type
(Prev
) then
16620 -- Check invalid completion of private or incomplete type
16622 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
16623 N_Task_Type_Declaration
,
16624 N_Protected_Type_Declaration
)
16626 (Ada_Version
< Ada_2012
16627 or else not Is_Incomplete_Type
(Prev
)
16628 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
16629 N_Private_Extension_Declaration
))
16631 -- Completion must be a full type declarations (RM 7.3(4))
16633 Error_Msg_Sloc
:= Sloc
(Prev
);
16634 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
16636 -- Set scope of Id to avoid cascaded errors. Entity is never
16637 -- examined again, except when saving globals in generics.
16639 Set_Scope
(Id
, Current_Scope
);
16642 -- If this is a repeated incomplete declaration, no further
16643 -- checks are possible.
16645 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
16649 -- Case of full declaration of incomplete type
16651 elsif Ekind
(Prev
) = E_Incomplete_Type
16652 and then (Ada_Version
< Ada_2012
16653 or else No
(Full_View
(Prev
))
16654 or else not Is_Private_Type
(Full_View
(Prev
)))
16656 -- Indicate that the incomplete declaration has a matching full
16657 -- declaration. The defining occurrence of the incomplete
16658 -- declaration remains the visible one, and the procedure
16659 -- Get_Full_View dereferences it whenever the type is used.
16661 if Present
(Full_View
(Prev
)) then
16662 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16665 Set_Full_View
(Prev
, Id
);
16666 Append_Entity
(Id
, Current_Scope
);
16667 Set_Is_Public
(Id
, Is_Public
(Prev
));
16668 Set_Is_Internal
(Id
);
16671 -- If the incomplete view is tagged, a class_wide type has been
16672 -- created already. Use it for the private type as well, in order
16673 -- to prevent multiple incompatible class-wide types that may be
16674 -- created for self-referential anonymous access components.
16676 if Is_Tagged_Type
(Prev
)
16677 and then Present
(Class_Wide_Type
(Prev
))
16679 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
16680 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
16682 -- Type of the class-wide type is the current Id. Previously
16683 -- this was not done for private declarations because of order-
16684 -- of-elaboration issues in the back end, but gigi now handles
16687 Set_Etype
(Class_Wide_Type
(Id
), Id
);
16690 -- Case of full declaration of private type
16693 -- If the private type was a completion of an incomplete type then
16694 -- update Prev to reference the private type
16696 if Ada_Version
>= Ada_2012
16697 and then Ekind
(Prev
) = E_Incomplete_Type
16698 and then Present
(Full_View
(Prev
))
16699 and then Is_Private_Type
(Full_View
(Prev
))
16701 Prev
:= Full_View
(Prev
);
16702 Prev_Par
:= Parent
(Prev
);
16705 if Nkind
(N
) = N_Full_Type_Declaration
16707 (Type_Definition
(N
), N_Record_Definition
,
16708 N_Derived_Type_Definition
)
16709 and then Interface_Present
(Type_Definition
(N
))
16712 ("completion of private type cannot be an interface", N
);
16715 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
16716 if Etype
(Prev
) /= Prev
then
16718 -- Prev is a private subtype or a derived type, and needs
16721 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
16724 elsif Ekind
(Prev
) = E_Private_Type
16725 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16726 N_Protected_Type_Declaration
)
16729 ("completion of nonlimited type cannot be limited", N
);
16731 elsif Ekind
(Prev
) = E_Record_Type_With_Private
16732 and then Nkind_In
(N
, N_Task_Type_Declaration
,
16733 N_Protected_Type_Declaration
)
16735 if not Is_Limited_Record
(Prev
) then
16737 ("completion of nonlimited type cannot be limited", N
);
16739 elsif No
(Interface_List
(N
)) then
16741 ("completion of tagged private type must be tagged",
16746 -- Ada 2005 (AI-251): Private extension declaration of a task
16747 -- type or a protected type. This case arises when covering
16748 -- interface types.
16750 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16751 N_Protected_Type_Declaration
)
16755 elsif Nkind
(N
) /= N_Full_Type_Declaration
16756 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
16759 ("full view of private extension must be an extension", N
);
16761 elsif not (Abstract_Present
(Parent
(Prev
)))
16762 and then Abstract_Present
(Type_Definition
(N
))
16765 ("full view of non-abstract extension cannot be abstract", N
);
16768 if not In_Private_Part
(Current_Scope
) then
16770 ("declaration of full view must appear in private part", N
);
16773 if Ada_Version
>= Ada_2012
then
16774 Check_Duplicate_Aspects
;
16777 Copy_And_Swap
(Prev
, Id
);
16778 Set_Has_Private_Declaration
(Prev
);
16779 Set_Has_Private_Declaration
(Id
);
16781 -- AI12-0133: Indicate whether we have a partial view with
16782 -- unknown discriminants, in which case initialization of objects
16783 -- of the type do not receive an invariant check.
16785 Set_Partial_View_Has_Unknown_Discr
16786 (Prev
, Has_Unknown_Discriminants
(Id
));
16788 -- Preserve aspect and iterator flags that may have been set on
16789 -- the partial view.
16791 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
16792 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
16794 -- If no error, propagate freeze_node from private to full view.
16795 -- It may have been generated for an early operational item.
16797 if Present
(Freeze_Node
(Id
))
16798 and then Serious_Errors_Detected
= 0
16799 and then No
(Full_View
(Id
))
16801 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
16802 Set_Freeze_Node
(Id
, Empty
);
16803 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
16806 Set_Full_View
(Id
, Prev
);
16810 -- Verify that full declaration conforms to partial one
16812 if Is_Incomplete_Or_Private_Type
(Prev
)
16813 and then Present
(Discriminant_Specifications
(Prev_Par
))
16815 if Present
(Discriminant_Specifications
(N
)) then
16816 if Ekind
(Prev
) = E_Incomplete_Type
then
16817 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
16819 Check_Discriminant_Conformance
(N
, Prev
, Id
);
16824 ("missing discriminants in full type declaration", N
);
16826 -- To avoid cascaded errors on subsequent use, share the
16827 -- discriminants of the partial view.
16829 Set_Discriminant_Specifications
(N
,
16830 Discriminant_Specifications
(Prev_Par
));
16834 -- A prior untagged partial view can have an associated class-wide
16835 -- type due to use of the class attribute, and in this case the full
16836 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16837 -- of incomplete tagged declarations, but we check for it.
16840 and then (Is_Tagged_Type
(Prev
)
16841 or else Present
(Class_Wide_Type
(Prev
)))
16843 -- Ada 2012 (AI05-0162): A private type may be the completion of
16844 -- an incomplete type.
16846 if Ada_Version
>= Ada_2012
16847 and then Is_Incomplete_Type
(Prev
)
16848 and then Nkind_In
(N
, N_Private_Type_Declaration
,
16849 N_Private_Extension_Declaration
)
16851 -- No need to check private extensions since they are tagged
16853 if Nkind
(N
) = N_Private_Type_Declaration
16854 and then not Tagged_Present
(N
)
16859 -- The full declaration is either a tagged type (including
16860 -- a synchronized type that implements interfaces) or a
16861 -- type extension, otherwise this is an error.
16863 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
16864 N_Protected_Type_Declaration
)
16866 if No
(Interface_List
(N
)) and then not Error_Posted
(N
) then
16870 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
16872 -- Indicate that the previous declaration (tagged incomplete
16873 -- or private declaration) requires the same on the full one.
16875 if not Tagged_Present
(Type_Definition
(N
)) then
16877 Set_Is_Tagged_Type
(Id
);
16880 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
16881 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
16883 ("full declaration of } must be a record extension",
16886 -- Set some attributes to produce a usable full view
16888 Set_Is_Tagged_Type
(Id
);
16897 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
16898 and then Present
(Premature_Use
(Parent
(Prev
)))
16900 Error_Msg_Sloc
:= Sloc
(N
);
16902 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
16907 end Find_Type_Name
;
16909 -------------------------
16910 -- Find_Type_Of_Object --
16911 -------------------------
16913 function Find_Type_Of_Object
16914 (Obj_Def
: Node_Id
;
16915 Related_Nod
: Node_Id
) return Entity_Id
16917 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
16918 P
: Node_Id
:= Parent
(Obj_Def
);
16923 -- If the parent is a component_definition node we climb to the
16924 -- component_declaration node
16926 if Nkind
(P
) = N_Component_Definition
then
16930 -- Case of an anonymous array subtype
16932 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
16933 N_Unconstrained_Array_Definition
)
16936 Array_Type_Declaration
(T
, Obj_Def
);
16938 -- Create an explicit subtype whenever possible
16940 elsif Nkind
(P
) /= N_Component_Declaration
16941 and then Def_Kind
= N_Subtype_Indication
16943 -- Base name of subtype on object name, which will be unique in
16944 -- the current scope.
16946 -- If this is a duplicate declaration, return base type, to avoid
16947 -- generating duplicate anonymous types.
16949 if Error_Posted
(P
) then
16950 Analyze
(Subtype_Mark
(Obj_Def
));
16951 return Entity
(Subtype_Mark
(Obj_Def
));
16956 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
16958 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
16960 Insert_Action
(Obj_Def
,
16961 Make_Subtype_Declaration
(Sloc
(P
),
16962 Defining_Identifier
=> T
,
16963 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
16965 -- This subtype may need freezing, and this will not be done
16966 -- automatically if the object declaration is not in declarative
16967 -- part. Since this is an object declaration, the type cannot always
16968 -- be frozen here. Deferred constants do not freeze their type
16969 -- (which often enough will be private).
16971 if Nkind
(P
) = N_Object_Declaration
16972 and then Constant_Present
(P
)
16973 and then No
(Expression
(P
))
16977 -- Here we freeze the base type of object type to catch premature use
16978 -- of discriminated private type without a full view.
16981 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
16984 -- Ada 2005 AI-406: the object definition in an object declaration
16985 -- can be an access definition.
16987 elsif Def_Kind
= N_Access_Definition
then
16988 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
16990 Set_Is_Local_Anonymous_Access
16992 V
=> (Ada_Version
< Ada_2012
)
16993 or else (Nkind
(P
) /= N_Object_Declaration
)
16994 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
16996 -- Otherwise, the object definition is just a subtype_mark
16999 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
17001 -- If expansion is disabled an object definition that is an aggregate
17002 -- will not get expanded and may lead to scoping problems in the back
17003 -- end, if the object is referenced in an inner scope. In that case
17004 -- create an itype reference for the object definition now. This
17005 -- may be redundant in some cases, but harmless.
17008 and then Nkind
(Related_Nod
) = N_Object_Declaration
17011 Build_Itype_Reference
(T
, Related_Nod
);
17016 end Find_Type_Of_Object
;
17018 --------------------------------
17019 -- Find_Type_Of_Subtype_Indic --
17020 --------------------------------
17022 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
17026 -- Case of subtype mark with a constraint
17028 if Nkind
(S
) = N_Subtype_Indication
then
17029 Find_Type
(Subtype_Mark
(S
));
17030 Typ
:= Entity
(Subtype_Mark
(S
));
17033 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
17036 ("incorrect constraint for this kind of type", Constraint
(S
));
17037 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
17040 -- Otherwise we have a subtype mark without a constraint
17042 elsif Error_Posted
(S
) then
17043 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
17051 -- Check No_Wide_Characters restriction
17053 Check_Wide_Character_Restriction
(Typ
, S
);
17056 end Find_Type_Of_Subtype_Indic
;
17058 -------------------------------------
17059 -- Floating_Point_Type_Declaration --
17060 -------------------------------------
17062 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
17063 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
17064 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
17066 Base_Typ
: Entity_Id
;
17067 Implicit_Base
: Entity_Id
;
17070 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
17071 -- Find if given digits value, and possibly a specified range, allows
17072 -- derivation from specified type
17074 function Find_Base_Type
return Entity_Id
;
17075 -- Find a predefined base type that Def can derive from, or generate
17076 -- an error and substitute Long_Long_Float if none exists.
17078 ---------------------
17079 -- Can_Derive_From --
17080 ---------------------
17082 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
17083 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
17086 -- Check specified "digits" constraint
17088 if Digs_Val
> Digits_Value
(E
) then
17092 -- Check for matching range, if specified
17094 if Present
(Spec
) then
17095 if Expr_Value_R
(Type_Low_Bound
(E
)) >
17096 Expr_Value_R
(Low_Bound
(Spec
))
17101 if Expr_Value_R
(Type_High_Bound
(E
)) <
17102 Expr_Value_R
(High_Bound
(Spec
))
17109 end Can_Derive_From
;
17111 --------------------
17112 -- Find_Base_Type --
17113 --------------------
17115 function Find_Base_Type
return Entity_Id
is
17116 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
17119 -- Iterate over the predefined types in order, returning the first
17120 -- one that Def can derive from.
17122 while Present
(Choice
) loop
17123 if Can_Derive_From
(Node
(Choice
)) then
17124 return Node
(Choice
);
17127 Next_Elmt
(Choice
);
17130 -- If we can't derive from any existing type, use Long_Long_Float
17131 -- and give appropriate message explaining the problem.
17133 if Digs_Val
> Max_Digs_Val
then
17134 -- It might be the case that there is a type with the requested
17135 -- range, just not the combination of digits and range.
17138 ("no predefined type has requested range and precision",
17139 Real_Range_Specification
(Def
));
17143 ("range too large for any predefined type",
17144 Real_Range_Specification
(Def
));
17147 return Standard_Long_Long_Float
;
17148 end Find_Base_Type
;
17150 -- Start of processing for Floating_Point_Type_Declaration
17153 Check_Restriction
(No_Floating_Point
, Def
);
17155 -- Create an implicit base type
17158 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
17160 -- Analyze and verify digits value
17162 Analyze_And_Resolve
(Digs
, Any_Integer
);
17163 Check_Digits_Expression
(Digs
);
17164 Digs_Val
:= Expr_Value
(Digs
);
17166 -- Process possible range spec and find correct type to derive from
17168 Process_Real_Range_Specification
(Def
);
17170 -- Check that requested number of digits is not too high.
17172 if Digs_Val
> Max_Digs_Val
then
17174 -- The check for Max_Base_Digits may be somewhat expensive, as it
17175 -- requires reading System, so only do it when necessary.
17178 Max_Base_Digits
: constant Uint
:=
17181 (Parent
(RTE
(RE_Max_Base_Digits
))));
17184 if Digs_Val
> Max_Base_Digits
then
17185 Error_Msg_Uint_1
:= Max_Base_Digits
;
17186 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
17188 elsif No
(Real_Range_Specification
(Def
)) then
17189 Error_Msg_Uint_1
:= Max_Digs_Val
;
17190 Error_Msg_N
("types with more than ^ digits need range spec "
17191 & "(RM 3.5.7(6))", Digs
);
17196 -- Find a suitable type to derive from or complain and use a substitute
17198 Base_Typ
:= Find_Base_Type
;
17200 -- If there are bounds given in the declaration use them as the bounds
17201 -- of the type, otherwise use the bounds of the predefined base type
17202 -- that was chosen based on the Digits value.
17204 if Present
(Real_Range_Specification
(Def
)) then
17205 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
17206 Set_Is_Constrained
(T
);
17208 -- The bounds of this range must be converted to machine numbers
17209 -- in accordance with RM 4.9(38).
17211 Bound
:= Type_Low_Bound
(T
);
17213 if Nkind
(Bound
) = N_Real_Literal
then
17215 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17216 Set_Is_Machine_Number
(Bound
);
17219 Bound
:= Type_High_Bound
(T
);
17221 if Nkind
(Bound
) = N_Real_Literal
then
17223 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17224 Set_Is_Machine_Number
(Bound
);
17228 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
17231 -- Complete definition of implicit base and declared first subtype. The
17232 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17233 -- are not clobbered when the floating point type acts as a full view of
17236 Set_Etype
(Implicit_Base
, Base_Typ
);
17237 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
17238 Set_Size_Info
(Implicit_Base
, Base_Typ
);
17239 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
17240 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
17241 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
17242 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
17244 Set_Ekind
(T
, E_Floating_Point_Subtype
);
17245 Set_Etype
(T
, Implicit_Base
);
17246 Set_Size_Info
(T
, Implicit_Base
);
17247 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
17248 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
17249 Set_Digits_Value
(T
, Digs_Val
);
17250 end Floating_Point_Type_Declaration
;
17252 ----------------------------
17253 -- Get_Discriminant_Value --
17254 ----------------------------
17256 -- This is the situation:
17258 -- There is a non-derived type
17260 -- type T0 (Dx, Dy, Dz...)
17262 -- There are zero or more levels of derivation, with each derivation
17263 -- either purely inheriting the discriminants, or defining its own.
17265 -- type Ti is new Ti-1
17267 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17269 -- subtype Ti is ...
17271 -- The subtype issue is avoided by the use of Original_Record_Component,
17272 -- and the fact that derived subtypes also derive the constraints.
17274 -- This chain leads back from
17276 -- Typ_For_Constraint
17278 -- Typ_For_Constraint has discriminants, and the value for each
17279 -- discriminant is given by its corresponding Elmt of Constraints.
17281 -- Discriminant is some discriminant in this hierarchy
17283 -- We need to return its value
17285 -- We do this by recursively searching each level, and looking for
17286 -- Discriminant. Once we get to the bottom, we start backing up
17287 -- returning the value for it which may in turn be a discriminant
17288 -- further up, so on the backup we continue the substitution.
17290 function Get_Discriminant_Value
17291 (Discriminant
: Entity_Id
;
17292 Typ_For_Constraint
: Entity_Id
;
17293 Constraint
: Elist_Id
) return Node_Id
17295 function Root_Corresponding_Discriminant
17296 (Discr
: Entity_Id
) return Entity_Id
;
17297 -- Given a discriminant, traverse the chain of inherited discriminants
17298 -- and return the topmost discriminant.
17300 function Search_Derivation_Levels
17302 Discrim_Values
: Elist_Id
;
17303 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
17304 -- This is the routine that performs the recursive search of levels
17305 -- as described above.
17307 -------------------------------------
17308 -- Root_Corresponding_Discriminant --
17309 -------------------------------------
17311 function Root_Corresponding_Discriminant
17312 (Discr
: Entity_Id
) return Entity_Id
17318 while Present
(Corresponding_Discriminant
(D
)) loop
17319 D
:= Corresponding_Discriminant
(D
);
17323 end Root_Corresponding_Discriminant
;
17325 ------------------------------
17326 -- Search_Derivation_Levels --
17327 ------------------------------
17329 function Search_Derivation_Levels
17331 Discrim_Values
: Elist_Id
;
17332 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
17336 Result
: Node_Or_Entity_Id
;
17337 Result_Entity
: Node_Id
;
17340 -- If inappropriate type, return Error, this happens only in
17341 -- cascaded error situations, and we want to avoid a blow up.
17343 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
17347 -- Look deeper if possible. Use Stored_Constraints only for
17348 -- untagged types. For tagged types use the given constraint.
17349 -- This asymmetry needs explanation???
17351 if not Stored_Discrim_Values
17352 and then Present
(Stored_Constraint
(Ti
))
17353 and then not Is_Tagged_Type
(Ti
)
17356 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
17359 Td
: constant Entity_Id
:= Etype
(Ti
);
17363 Result
:= Discriminant
;
17366 if Present
(Stored_Constraint
(Ti
)) then
17368 Search_Derivation_Levels
17369 (Td
, Stored_Constraint
(Ti
), True);
17372 Search_Derivation_Levels
17373 (Td
, Discrim_Values
, Stored_Discrim_Values
);
17379 -- Extra underlying places to search, if not found above. For
17380 -- concurrent types, the relevant discriminant appears in the
17381 -- corresponding record. For a type derived from a private type
17382 -- without discriminant, the full view inherits the discriminants
17383 -- of the full view of the parent.
17385 if Result
= Discriminant
then
17386 if Is_Concurrent_Type
(Ti
)
17387 and then Present
(Corresponding_Record_Type
(Ti
))
17390 Search_Derivation_Levels
(
17391 Corresponding_Record_Type
(Ti
),
17393 Stored_Discrim_Values
);
17395 elsif Is_Private_Type
(Ti
)
17396 and then not Has_Discriminants
(Ti
)
17397 and then Present
(Full_View
(Ti
))
17398 and then Etype
(Full_View
(Ti
)) /= Ti
17401 Search_Derivation_Levels
(
17404 Stored_Discrim_Values
);
17408 -- If Result is not a (reference to a) discriminant, return it,
17409 -- otherwise set Result_Entity to the discriminant.
17411 if Nkind
(Result
) = N_Defining_Identifier
then
17412 pragma Assert
(Result
= Discriminant
);
17413 Result_Entity
:= Result
;
17416 if not Denotes_Discriminant
(Result
) then
17420 Result_Entity
:= Entity
(Result
);
17423 -- See if this level of derivation actually has discriminants because
17424 -- tagged derivations can add them, hence the lower levels need not
17427 if not Has_Discriminants
(Ti
) then
17431 -- Scan Ti's discriminants for Result_Entity, and return its
17432 -- corresponding value, if any.
17434 Result_Entity
:= Original_Record_Component
(Result_Entity
);
17436 Assoc
:= First_Elmt
(Discrim_Values
);
17438 if Stored_Discrim_Values
then
17439 Disc
:= First_Stored_Discriminant
(Ti
);
17441 Disc
:= First_Discriminant
(Ti
);
17444 while Present
(Disc
) loop
17445 pragma Assert
(Present
(Assoc
));
17447 if Original_Record_Component
(Disc
) = Result_Entity
then
17448 return Node
(Assoc
);
17453 if Stored_Discrim_Values
then
17454 Next_Stored_Discriminant
(Disc
);
17456 Next_Discriminant
(Disc
);
17460 -- Could not find it
17463 end Search_Derivation_Levels
;
17467 Result
: Node_Or_Entity_Id
;
17469 -- Start of processing for Get_Discriminant_Value
17472 -- ??? This routine is a gigantic mess and will be deleted. For the
17473 -- time being just test for the trivial case before calling recurse.
17475 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
17481 D
:= First_Discriminant
(Typ_For_Constraint
);
17482 E
:= First_Elmt
(Constraint
);
17483 while Present
(D
) loop
17484 if Chars
(D
) = Chars
(Discriminant
) then
17488 Next_Discriminant
(D
);
17494 Result
:= Search_Derivation_Levels
17495 (Typ_For_Constraint
, Constraint
, False);
17497 -- ??? hack to disappear when this routine is gone
17499 if Nkind
(Result
) = N_Defining_Identifier
then
17505 D
:= First_Discriminant
(Typ_For_Constraint
);
17506 E
:= First_Elmt
(Constraint
);
17507 while Present
(D
) loop
17508 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
17512 Next_Discriminant
(D
);
17518 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
17520 end Get_Discriminant_Value
;
17522 --------------------------
17523 -- Has_Range_Constraint --
17524 --------------------------
17526 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
17527 C
: constant Node_Id
:= Constraint
(N
);
17530 if Nkind
(C
) = N_Range_Constraint
then
17533 elsif Nkind
(C
) = N_Digits_Constraint
then
17535 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
17536 or else Present
(Range_Constraint
(C
));
17538 elsif Nkind
(C
) = N_Delta_Constraint
then
17539 return Present
(Range_Constraint
(C
));
17544 end Has_Range_Constraint
;
17546 ------------------------
17547 -- Inherit_Components --
17548 ------------------------
17550 function Inherit_Components
17552 Parent_Base
: Entity_Id
;
17553 Derived_Base
: Entity_Id
;
17554 Is_Tagged
: Boolean;
17555 Inherit_Discr
: Boolean;
17556 Discs
: Elist_Id
) return Elist_Id
17558 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
17560 procedure Inherit_Component
17561 (Old_C
: Entity_Id
;
17562 Plain_Discrim
: Boolean := False;
17563 Stored_Discrim
: Boolean := False);
17564 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17565 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17566 -- True, Old_C is a stored discriminant. If they are both false then
17567 -- Old_C is a regular component.
17569 -----------------------
17570 -- Inherit_Component --
17571 -----------------------
17573 procedure Inherit_Component
17574 (Old_C
: Entity_Id
;
17575 Plain_Discrim
: Boolean := False;
17576 Stored_Discrim
: Boolean := False)
17578 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
17579 -- Id denotes the entity of an access discriminant or anonymous
17580 -- access component. Set the type of Id to either the same type of
17581 -- Old_C or create a new one depending on whether the parent and
17582 -- the child types are in the same scope.
17584 ------------------------
17585 -- Set_Anonymous_Type --
17586 ------------------------
17588 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
17589 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
17592 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
17593 Set_Etype
(Id
, Old_Typ
);
17595 -- The parent and the derived type are in two different scopes.
17596 -- Reuse the type of the original discriminant / component by
17597 -- copying it in order to preserve all attributes.
17601 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
17604 Set_Etype
(Id
, Typ
);
17606 -- Since we do not generate component declarations for
17607 -- inherited components, associate the itype with the
17610 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
17611 Set_Scope
(Typ
, Derived_Base
);
17614 end Set_Anonymous_Type
;
17616 -- Local variables and constants
17618 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
17620 Corr_Discrim
: Entity_Id
;
17621 Discrim
: Entity_Id
;
17623 -- Start of processing for Inherit_Component
17626 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
17628 Set_Parent
(New_C
, Parent
(Old_C
));
17630 -- Regular discriminants and components must be inserted in the scope
17631 -- of the Derived_Base. Do it here.
17633 if not Stored_Discrim
then
17634 Enter_Name
(New_C
);
17637 -- For tagged types the Original_Record_Component must point to
17638 -- whatever this field was pointing to in the parent type. This has
17639 -- already been achieved by the call to New_Copy above.
17641 if not Is_Tagged
then
17642 Set_Original_Record_Component
(New_C
, New_C
);
17645 -- Set the proper type of an access discriminant
17647 if Ekind
(New_C
) = E_Discriminant
17648 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
17650 Set_Anonymous_Type
(New_C
);
17653 -- If we have inherited a component then see if its Etype contains
17654 -- references to Parent_Base discriminants. In this case, replace
17655 -- these references with the constraints given in Discs. We do not
17656 -- do this for the partial view of private types because this is
17657 -- not needed (only the components of the full view will be used
17658 -- for code generation) and cause problem. We also avoid this
17659 -- transformation in some error situations.
17661 if Ekind
(New_C
) = E_Component
then
17663 -- Set the proper type of an anonymous access component
17665 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
17666 Set_Anonymous_Type
(New_C
);
17668 elsif (Is_Private_Type
(Derived_Base
)
17669 and then not Is_Generic_Type
(Derived_Base
))
17670 or else (Is_Empty_Elmt_List
(Discs
)
17671 and then not Expander_Active
)
17673 Set_Etype
(New_C
, Etype
(Old_C
));
17676 -- The current component introduces a circularity of the
17679 -- limited with Pack_2;
17680 -- package Pack_1 is
17681 -- type T_1 is tagged record
17682 -- Comp : access Pack_2.T_2;
17688 -- package Pack_2 is
17689 -- type T_2 is new Pack_1.T_1 with ...;
17694 Constrain_Component_Type
17695 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
17699 -- In derived tagged types it is illegal to reference a non
17700 -- discriminant component in the parent type. To catch this, mark
17701 -- these components with an Ekind of E_Void. This will be reset in
17702 -- Record_Type_Definition after processing the record extension of
17703 -- the derived type.
17705 -- If the declaration is a private extension, there is no further
17706 -- record extension to process, and the components retain their
17707 -- current kind, because they are visible at this point.
17709 if Is_Tagged
and then Ekind
(New_C
) = E_Component
17710 and then Nkind
(N
) /= N_Private_Extension_Declaration
17712 Set_Ekind
(New_C
, E_Void
);
17715 if Plain_Discrim
then
17716 Set_Corresponding_Discriminant
(New_C
, Old_C
);
17717 Build_Discriminal
(New_C
);
17719 -- If we are explicitly inheriting a stored discriminant it will be
17720 -- completely hidden.
17722 elsif Stored_Discrim
then
17723 Set_Corresponding_Discriminant
(New_C
, Empty
);
17724 Set_Discriminal
(New_C
, Empty
);
17725 Set_Is_Completely_Hidden
(New_C
);
17727 -- Set the Original_Record_Component of each discriminant in the
17728 -- derived base to point to the corresponding stored that we just
17731 Discrim
:= First_Discriminant
(Derived_Base
);
17732 while Present
(Discrim
) loop
17733 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
17735 -- Corr_Discrim could be missing in an error situation
17737 if Present
(Corr_Discrim
)
17738 and then Original_Record_Component
(Corr_Discrim
) = Old_C
17740 Set_Original_Record_Component
(Discrim
, New_C
);
17743 Next_Discriminant
(Discrim
);
17746 Append_Entity
(New_C
, Derived_Base
);
17749 if not Is_Tagged
then
17750 Append_Elmt
(Old_C
, Assoc_List
);
17751 Append_Elmt
(New_C
, Assoc_List
);
17753 end Inherit_Component
;
17755 -- Variables local to Inherit_Component
17757 Loc
: constant Source_Ptr
:= Sloc
(N
);
17759 Parent_Discrim
: Entity_Id
;
17760 Stored_Discrim
: Entity_Id
;
17762 Component
: Entity_Id
;
17764 -- Start of processing for Inherit_Components
17767 if not Is_Tagged
then
17768 Append_Elmt
(Parent_Base
, Assoc_List
);
17769 Append_Elmt
(Derived_Base
, Assoc_List
);
17772 -- Inherit parent discriminants if needed
17774 if Inherit_Discr
then
17775 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
17776 while Present
(Parent_Discrim
) loop
17777 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
17778 Next_Discriminant
(Parent_Discrim
);
17782 -- Create explicit stored discrims for untagged types when necessary
17784 if not Has_Unknown_Discriminants
(Derived_Base
)
17785 and then Has_Discriminants
(Parent_Base
)
17786 and then not Is_Tagged
17789 or else First_Discriminant
(Parent_Base
) /=
17790 First_Stored_Discriminant
(Parent_Base
))
17792 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
17793 while Present
(Stored_Discrim
) loop
17794 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
17795 Next_Stored_Discriminant
(Stored_Discrim
);
17799 -- See if we can apply the second transformation for derived types, as
17800 -- explained in point 6. in the comments above Build_Derived_Record_Type
17801 -- This is achieved by appending Derived_Base discriminants into Discs,
17802 -- which has the side effect of returning a non empty Discs list to the
17803 -- caller of Inherit_Components, which is what we want. This must be
17804 -- done for private derived types if there are explicit stored
17805 -- discriminants, to ensure that we can retrieve the values of the
17806 -- constraints provided in the ancestors.
17809 and then Is_Empty_Elmt_List
(Discs
)
17810 and then Present
(First_Discriminant
(Derived_Base
))
17812 (not Is_Private_Type
(Derived_Base
)
17813 or else Is_Completely_Hidden
17814 (First_Stored_Discriminant
(Derived_Base
))
17815 or else Is_Generic_Type
(Derived_Base
))
17817 D
:= First_Discriminant
(Derived_Base
);
17818 while Present
(D
) loop
17819 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
17820 Next_Discriminant
(D
);
17824 -- Finally, inherit non-discriminant components unless they are not
17825 -- visible because defined or inherited from the full view of the
17826 -- parent. Don't inherit the _parent field of the parent type.
17828 Component
:= First_Entity
(Parent_Base
);
17829 while Present
(Component
) loop
17831 -- Ada 2005 (AI-251): Do not inherit components associated with
17832 -- secondary tags of the parent.
17834 if Ekind
(Component
) = E_Component
17835 and then Present
(Related_Type
(Component
))
17839 elsif Ekind
(Component
) /= E_Component
17840 or else Chars
(Component
) = Name_uParent
17844 -- If the derived type is within the parent type's declarative
17845 -- region, then the components can still be inherited even though
17846 -- they aren't visible at this point. This can occur for cases
17847 -- such as within public child units where the components must
17848 -- become visible upon entering the child unit's private part.
17850 elsif not Is_Visible_Component
(Component
)
17851 and then not In_Open_Scopes
(Scope
(Parent_Base
))
17855 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
17856 E_Limited_Private_Type
)
17861 Inherit_Component
(Component
);
17864 Next_Entity
(Component
);
17867 -- For tagged derived types, inherited discriminants cannot be used in
17868 -- component declarations of the record extension part. To achieve this
17869 -- we mark the inherited discriminants as not visible.
17871 if Is_Tagged
and then Inherit_Discr
then
17872 D
:= First_Discriminant
(Derived_Base
);
17873 while Present
(D
) loop
17874 Set_Is_Immediately_Visible
(D
, False);
17875 Next_Discriminant
(D
);
17880 end Inherit_Components
;
17882 -----------------------------
17883 -- Inherit_Predicate_Flags --
17884 -----------------------------
17886 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
17888 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
17889 Set_Has_Static_Predicate_Aspect
17890 (Subt
, Has_Static_Predicate_Aspect
(Par
));
17891 Set_Has_Dynamic_Predicate_Aspect
17892 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
17893 end Inherit_Predicate_Flags
;
17895 ----------------------
17896 -- Is_EVF_Procedure --
17897 ----------------------
17899 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
17900 Formal
: Entity_Id
;
17903 -- Examine the formals of an Extensions_Visible False procedure looking
17904 -- for a controlling OUT parameter.
17906 if Ekind
(Subp
) = E_Procedure
17907 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
17909 Formal
:= First_Formal
(Subp
);
17910 while Present
(Formal
) loop
17911 if Ekind
(Formal
) = E_Out_Parameter
17912 and then Is_Controlling_Formal
(Formal
)
17917 Next_Formal
(Formal
);
17922 end Is_EVF_Procedure
;
17924 -----------------------
17925 -- Is_Null_Extension --
17926 -----------------------
17928 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
17929 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
17930 Comp_List
: Node_Id
;
17934 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
17935 or else not Is_Tagged_Type
(T
)
17936 or else Nkind
(Type_Definition
(Type_Decl
)) /=
17937 N_Derived_Type_Definition
17938 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
17944 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
17946 if Present
(Discriminant_Specifications
(Type_Decl
)) then
17949 elsif Present
(Comp_List
)
17950 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
17952 Comp
:= First
(Component_Items
(Comp_List
));
17954 -- Only user-defined components are relevant. The component list
17955 -- may also contain a parent component and internal components
17956 -- corresponding to secondary tags, but these do not determine
17957 -- whether this is a null extension.
17959 while Present
(Comp
) loop
17960 if Comes_From_Source
(Comp
) then
17972 end Is_Null_Extension
;
17974 ------------------------------
17975 -- Is_Valid_Constraint_Kind --
17976 ------------------------------
17978 function Is_Valid_Constraint_Kind
17979 (T_Kind
: Type_Kind
;
17980 Constraint_Kind
: Node_Kind
) return Boolean
17984 when Enumeration_Kind |
17986 return Constraint_Kind
= N_Range_Constraint
;
17988 when Decimal_Fixed_Point_Kind
=>
17989 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17990 N_Range_Constraint
);
17992 when Ordinary_Fixed_Point_Kind
=>
17993 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
17994 N_Range_Constraint
);
17997 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
17998 N_Range_Constraint
);
18005 E_Incomplete_Type |
18008 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
18011 return True; -- Error will be detected later
18013 end Is_Valid_Constraint_Kind
;
18015 --------------------------
18016 -- Is_Visible_Component --
18017 --------------------------
18019 function Is_Visible_Component
18021 N
: Node_Id
:= Empty
) return Boolean
18023 Original_Comp
: Entity_Id
:= Empty
;
18024 Original_Type
: Entity_Id
;
18025 Type_Scope
: Entity_Id
;
18027 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
18028 -- Check whether parent type of inherited component is declared locally,
18029 -- possibly within a nested package or instance. The current scope is
18030 -- the derived record itself.
18032 -------------------
18033 -- Is_Local_Type --
18034 -------------------
18036 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
18040 Scop
:= Scope
(Typ
);
18041 while Present
(Scop
)
18042 and then Scop
/= Standard_Standard
18044 if Scop
= Scope
(Current_Scope
) then
18048 Scop
:= Scope
(Scop
);
18054 -- Start of processing for Is_Visible_Component
18057 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
18058 Original_Comp
:= Original_Record_Component
(C
);
18061 if No
(Original_Comp
) then
18063 -- Premature usage, or previous error
18068 Original_Type
:= Scope
(Original_Comp
);
18069 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
18072 -- This test only concerns tagged types
18074 if not Is_Tagged_Type
(Original_Type
) then
18077 -- If it is _Parent or _Tag, there is no visibility issue
18079 elsif not Comes_From_Source
(Original_Comp
) then
18082 -- Discriminants are visible unless the (private) type has unknown
18083 -- discriminants. If the discriminant reference is inserted for a
18084 -- discriminant check on a full view it is also visible.
18086 elsif Ekind
(Original_Comp
) = E_Discriminant
18088 (not Has_Unknown_Discriminants
(Original_Type
)
18089 or else (Present
(N
)
18090 and then Nkind
(N
) = N_Selected_Component
18091 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
18092 and then not Comes_From_Source
(Prefix
(N
))))
18096 -- In the body of an instantiation, no need to check for the visibility
18099 elsif In_Instance_Body
then
18102 -- If the component has been declared in an ancestor which is currently
18103 -- a private type, then it is not visible. The same applies if the
18104 -- component's containing type is not in an open scope and the original
18105 -- component's enclosing type is a visible full view of a private type
18106 -- (which can occur in cases where an attempt is being made to reference
18107 -- a component in a sibling package that is inherited from a visible
18108 -- component of a type in an ancestor package; the component in the
18109 -- sibling package should not be visible even though the component it
18110 -- inherited from is visible). This does not apply however in the case
18111 -- where the scope of the type is a private child unit, or when the
18112 -- parent comes from a local package in which the ancestor is currently
18113 -- visible. The latter suppression of visibility is needed for cases
18114 -- that are tested in B730006.
18116 elsif Is_Private_Type
(Original_Type
)
18118 (not Is_Private_Descendant
(Type_Scope
)
18119 and then not In_Open_Scopes
(Type_Scope
)
18120 and then Has_Private_Declaration
(Original_Type
))
18122 -- If the type derives from an entity in a formal package, there
18123 -- are no additional visible components.
18125 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
18126 N_Formal_Package_Declaration
18130 -- if we are not in the private part of the current package, there
18131 -- are no additional visible components.
18133 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
18134 and then not In_Private_Part
(Scope
(Current_Scope
))
18139 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
18140 and then In_Open_Scopes
(Scope
(Original_Type
))
18141 and then Is_Local_Type
(Type_Scope
);
18144 -- There is another weird way in which a component may be invisible when
18145 -- the private and the full view are not derived from the same ancestor.
18146 -- Here is an example :
18148 -- type A1 is tagged record F1 : integer; end record;
18149 -- type A2 is new A1 with record F2 : integer; end record;
18150 -- type T is new A1 with private;
18152 -- type T is new A2 with null record;
18154 -- In this case, the full view of T inherits F1 and F2 but the private
18155 -- view inherits only F1
18159 Ancestor
: Entity_Id
:= Scope
(C
);
18163 if Ancestor
= Original_Type
then
18166 -- The ancestor may have a partial view of the original type,
18167 -- but if the full view is in scope, as in a child body, the
18168 -- component is visible.
18170 elsif In_Private_Part
(Scope
(Original_Type
))
18171 and then Full_View
(Ancestor
) = Original_Type
18175 elsif Ancestor
= Etype
(Ancestor
) then
18177 -- No further ancestors to examine
18182 Ancestor
:= Etype
(Ancestor
);
18186 end Is_Visible_Component
;
18188 --------------------------
18189 -- Make_Class_Wide_Type --
18190 --------------------------
18192 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
18193 CW_Type
: Entity_Id
;
18195 Next_E
: Entity_Id
;
18198 if Present
(Class_Wide_Type
(T
)) then
18200 -- The class-wide type is a partially decorated entity created for a
18201 -- unanalyzed tagged type referenced through a limited with clause.
18202 -- When the tagged type is analyzed, its class-wide type needs to be
18203 -- redecorated. Note that we reuse the entity created by Decorate_
18204 -- Tagged_Type in order to preserve all links.
18206 if Materialize_Entity
(Class_Wide_Type
(T
)) then
18207 CW_Type
:= Class_Wide_Type
(T
);
18208 Set_Materialize_Entity
(CW_Type
, False);
18210 -- The class wide type can have been defined by the partial view, in
18211 -- which case everything is already done.
18217 -- Default case, we need to create a new class-wide type
18221 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
18224 -- Inherit root type characteristics
18226 CW_Name
:= Chars
(CW_Type
);
18227 Next_E
:= Next_Entity
(CW_Type
);
18228 Copy_Node
(T
, CW_Type
);
18229 Set_Comes_From_Source
(CW_Type
, False);
18230 Set_Chars
(CW_Type
, CW_Name
);
18231 Set_Parent
(CW_Type
, Parent
(T
));
18232 Set_Next_Entity
(CW_Type
, Next_E
);
18234 -- Ensure we have a new freeze node for the class-wide type. The partial
18235 -- view may have freeze action of its own, requiring a proper freeze
18236 -- node, and the same freeze node cannot be shared between the two
18239 Set_Has_Delayed_Freeze
(CW_Type
);
18240 Set_Freeze_Node
(CW_Type
, Empty
);
18242 -- Customize the class-wide type: It has no prim. op., it cannot be
18243 -- abstract and its Etype points back to the specific root type.
18245 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
18246 Set_Is_Tagged_Type
(CW_Type
, True);
18247 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
18248 Set_Is_Abstract_Type
(CW_Type
, False);
18249 Set_Is_Constrained
(CW_Type
, False);
18250 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
18251 Set_Default_SSO
(CW_Type
);
18253 if Ekind
(T
) = E_Class_Wide_Subtype
then
18254 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
18256 Set_Etype
(CW_Type
, T
);
18259 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
18261 -- If this is the class_wide type of a constrained subtype, it does
18262 -- not have discriminants.
18264 Set_Has_Discriminants
(CW_Type
,
18265 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
18267 Set_Has_Unknown_Discriminants
(CW_Type
, True);
18268 Set_Class_Wide_Type
(T
, CW_Type
);
18269 Set_Equivalent_Type
(CW_Type
, Empty
);
18271 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18273 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
18275 -- Inherit the "ghostness" from the root tagged type
18277 if Ghost_Mode
> None
or else Is_Ghost_Entity
(T
) then
18278 Set_Is_Ghost_Entity
(CW_Type
);
18280 end Make_Class_Wide_Type
;
18286 procedure Make_Index
18288 Related_Nod
: Node_Id
;
18289 Related_Id
: Entity_Id
:= Empty
;
18290 Suffix_Index
: Nat
:= 1;
18291 In_Iter_Schm
: Boolean := False)
18295 Def_Id
: Entity_Id
:= Empty
;
18296 Found
: Boolean := False;
18299 -- For a discrete range used in a constrained array definition and
18300 -- defined by a range, an implicit conversion to the predefined type
18301 -- INTEGER is assumed if each bound is either a numeric literal, a named
18302 -- number, or an attribute, and the type of both bounds (prior to the
18303 -- implicit conversion) is the type universal_integer. Otherwise, both
18304 -- bounds must be of the same discrete type, other than universal
18305 -- integer; this type must be determinable independently of the
18306 -- context, but using the fact that the type must be discrete and that
18307 -- both bounds must have the same type.
18309 -- Character literals also have a universal type in the absence of
18310 -- of additional context, and are resolved to Standard_Character.
18312 if Nkind
(N
) = N_Range
then
18314 -- The index is given by a range constraint. The bounds are known
18315 -- to be of a consistent type.
18317 if not Is_Overloaded
(N
) then
18320 -- For universal bounds, choose the specific predefined type
18322 if T
= Universal_Integer
then
18323 T
:= Standard_Integer
;
18325 elsif T
= Any_Character
then
18326 Ambiguous_Character
(Low_Bound
(N
));
18328 T
:= Standard_Character
;
18331 -- The node may be overloaded because some user-defined operators
18332 -- are available, but if a universal interpretation exists it is
18333 -- also the selected one.
18335 elsif Universal_Interpretation
(N
) = Universal_Integer
then
18336 T
:= Standard_Integer
;
18342 Ind
: Interp_Index
;
18346 Get_First_Interp
(N
, Ind
, It
);
18347 while Present
(It
.Typ
) loop
18348 if Is_Discrete_Type
(It
.Typ
) then
18351 and then not Covers
(It
.Typ
, T
)
18352 and then not Covers
(T
, It
.Typ
)
18354 Error_Msg_N
("ambiguous bounds in discrete range", N
);
18362 Get_Next_Interp
(Ind
, It
);
18365 if T
= Any_Type
then
18366 Error_Msg_N
("discrete type required for range", N
);
18367 Set_Etype
(N
, Any_Type
);
18370 elsif T
= Universal_Integer
then
18371 T
:= Standard_Integer
;
18376 if not Is_Discrete_Type
(T
) then
18377 Error_Msg_N
("discrete type required for range", N
);
18378 Set_Etype
(N
, Any_Type
);
18382 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
18383 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
18384 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
18385 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18386 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18388 -- The type of the index will be the type of the prefix, as long
18389 -- as the upper bound is 'Last of the same type.
18391 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
18393 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
18394 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
18395 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
18396 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
18403 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
18405 elsif Nkind
(N
) = N_Subtype_Indication
then
18407 -- The index is given by a subtype with a range constraint
18409 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
18411 if not Is_Discrete_Type
(T
) then
18412 Error_Msg_N
("discrete type required for range", N
);
18413 Set_Etype
(N
, Any_Type
);
18417 R
:= Range_Expression
(Constraint
(N
));
18420 Process_Range_Expr_In_Decl
18421 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
18423 elsif Nkind
(N
) = N_Attribute_Reference
then
18425 -- Catch beginner's error (use of attribute other than 'Range)
18427 if Attribute_Name
(N
) /= Name_Range
then
18428 Error_Msg_N
("expect attribute ''Range", N
);
18429 Set_Etype
(N
, Any_Type
);
18433 -- If the node denotes the range of a type mark, that is also the
18434 -- resulting type, and we do not need to create an Itype for it.
18436 if Is_Entity_Name
(Prefix
(N
))
18437 and then Comes_From_Source
(N
)
18438 and then Is_Type
(Entity
(Prefix
(N
)))
18439 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
18441 Def_Id
:= Entity
(Prefix
(N
));
18444 Analyze_And_Resolve
(N
);
18448 -- If none of the above, must be a subtype. We convert this to a
18449 -- range attribute reference because in the case of declared first
18450 -- named subtypes, the types in the range reference can be different
18451 -- from the type of the entity. A range attribute normalizes the
18452 -- reference and obtains the correct types for the bounds.
18454 -- This transformation is in the nature of an expansion, is only
18455 -- done if expansion is active. In particular, it is not done on
18456 -- formal generic types, because we need to retain the name of the
18457 -- original index for instantiation purposes.
18460 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
18461 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
18462 Set_Etype
(N
, Any_Integer
);
18466 -- The type mark may be that of an incomplete type. It is only
18467 -- now that we can get the full view, previous analysis does
18468 -- not look specifically for a type mark.
18470 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
18471 Set_Etype
(N
, Entity
(N
));
18472 Def_Id
:= Entity
(N
);
18474 if not Is_Discrete_Type
(Def_Id
) then
18475 Error_Msg_N
("discrete type required for index", N
);
18476 Set_Etype
(N
, Any_Type
);
18481 if Expander_Active
then
18483 Make_Attribute_Reference
(Sloc
(N
),
18484 Attribute_Name
=> Name_Range
,
18485 Prefix
=> Relocate_Node
(N
)));
18487 -- The original was a subtype mark that does not freeze. This
18488 -- means that the rewritten version must not freeze either.
18490 Set_Must_Not_Freeze
(N
);
18491 Set_Must_Not_Freeze
(Prefix
(N
));
18492 Analyze_And_Resolve
(N
);
18496 -- If expander is inactive, type is legal, nothing else to construct
18503 if not Is_Discrete_Type
(T
) then
18504 Error_Msg_N
("discrete type required for range", N
);
18505 Set_Etype
(N
, Any_Type
);
18508 elsif T
= Any_Type
then
18509 Set_Etype
(N
, Any_Type
);
18513 -- We will now create the appropriate Itype to describe the range, but
18514 -- first a check. If we originally had a subtype, then we just label
18515 -- the range with this subtype. Not only is there no need to construct
18516 -- a new subtype, but it is wrong to do so for two reasons:
18518 -- 1. A legality concern, if we have a subtype, it must not freeze,
18519 -- and the Itype would cause freezing incorrectly
18521 -- 2. An efficiency concern, if we created an Itype, it would not be
18522 -- recognized as the same type for the purposes of eliminating
18523 -- checks in some circumstances.
18525 -- We signal this case by setting the subtype entity in Def_Id
18527 if No
(Def_Id
) then
18529 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
18530 Set_Etype
(Def_Id
, Base_Type
(T
));
18532 if Is_Signed_Integer_Type
(T
) then
18533 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
18535 elsif Is_Modular_Integer_Type
(T
) then
18536 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
18539 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
18540 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
18541 Set_First_Literal
(Def_Id
, First_Literal
(T
));
18544 Set_Size_Info
(Def_Id
, (T
));
18545 Set_RM_Size
(Def_Id
, RM_Size
(T
));
18546 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
18548 Set_Scalar_Range
(Def_Id
, R
);
18549 Conditional_Delay
(Def_Id
, T
);
18551 if Nkind
(N
) = N_Subtype_Indication
then
18552 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
18555 -- In the subtype indication case, if the immediate parent of the
18556 -- new subtype is non-static, then the subtype we create is non-
18557 -- static, even if its bounds are static.
18559 if Nkind
(N
) = N_Subtype_Indication
18560 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
18562 Set_Is_Non_Static_Subtype
(Def_Id
);
18566 -- Final step is to label the index with this constructed type
18568 Set_Etype
(N
, Def_Id
);
18571 ------------------------------
18572 -- Modular_Type_Declaration --
18573 ------------------------------
18575 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
18576 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
18579 procedure Set_Modular_Size
(Bits
: Int
);
18580 -- Sets RM_Size to Bits, and Esize to normal word size above this
18582 ----------------------
18583 -- Set_Modular_Size --
18584 ----------------------
18586 procedure Set_Modular_Size
(Bits
: Int
) is
18588 Set_RM_Size
(T
, UI_From_Int
(Bits
));
18593 elsif Bits
<= 16 then
18594 Init_Esize
(T
, 16);
18596 elsif Bits
<= 32 then
18597 Init_Esize
(T
, 32);
18600 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
18603 if not Non_Binary_Modulus
(T
) and then Esize
(T
) = RM_Size
(T
) then
18604 Set_Is_Known_Valid
(T
);
18606 end Set_Modular_Size
;
18608 -- Start of processing for Modular_Type_Declaration
18611 -- If the mod expression is (exactly) 2 * literal, where literal is
18612 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18614 if Warn_On_Suspicious_Modulus_Value
18615 and then Nkind
(Mod_Expr
) = N_Op_Multiply
18616 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
18617 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
18618 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
18619 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
18622 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
18625 -- Proceed with analysis of mod expression
18627 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
18629 Set_Ekind
(T
, E_Modular_Integer_Type
);
18630 Init_Alignment
(T
);
18631 Set_Is_Constrained
(T
);
18633 if not Is_OK_Static_Expression
(Mod_Expr
) then
18634 Flag_Non_Static_Expr
18635 ("non-static expression used for modular type bound!", Mod_Expr
);
18636 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18638 M_Val
:= Expr_Value
(Mod_Expr
);
18642 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
18643 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
18646 if M_Val
> 2 ** Standard_Long_Integer_Size
then
18647 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
18650 Set_Modulus
(T
, M_Val
);
18652 -- Create bounds for the modular type based on the modulus given in
18653 -- the type declaration and then analyze and resolve those bounds.
18655 Set_Scalar_Range
(T
,
18656 Make_Range
(Sloc
(Mod_Expr
),
18657 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
18658 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
18660 -- Properly analyze the literals for the range. We do this manually
18661 -- because we can't go calling Resolve, since we are resolving these
18662 -- bounds with the type, and this type is certainly not complete yet.
18664 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
18665 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
18666 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
18667 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
18669 -- Loop through powers of two to find number of bits required
18671 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
18675 if M_Val
= 2 ** Bits
then
18676 Set_Modular_Size
(Bits
);
18681 elsif M_Val
< 2 ** Bits
then
18682 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
18683 Set_Non_Binary_Modulus
(T
);
18685 if Bits
> System_Max_Nonbinary_Modulus_Power
then
18686 Error_Msg_Uint_1
:=
18687 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
18689 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
18690 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18694 -- In the nonbinary case, set size as per RM 13.3(55)
18696 Set_Modular_Size
(Bits
);
18703 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18704 -- so we just signal an error and set the maximum size.
18706 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
18707 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
18709 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
18710 Init_Alignment
(T
);
18712 end Modular_Type_Declaration
;
18714 --------------------------
18715 -- New_Concatenation_Op --
18716 --------------------------
18718 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
18719 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
18722 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
18723 -- Create abbreviated declaration for the formal of a predefined
18724 -- Operator 'Op' of type 'Typ'
18726 --------------------
18727 -- Make_Op_Formal --
18728 --------------------
18730 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
18731 Formal
: Entity_Id
;
18733 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
18734 Set_Etype
(Formal
, Typ
);
18735 Set_Mechanism
(Formal
, Default_Mechanism
);
18737 end Make_Op_Formal
;
18739 -- Start of processing for New_Concatenation_Op
18742 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
18744 Set_Ekind
(Op
, E_Operator
);
18745 Set_Scope
(Op
, Current_Scope
);
18746 Set_Etype
(Op
, Typ
);
18747 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
18748 Set_Is_Immediately_Visible
(Op
);
18749 Set_Is_Intrinsic_Subprogram
(Op
);
18750 Set_Has_Completion
(Op
);
18751 Append_Entity
(Op
, Current_Scope
);
18753 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
18755 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18756 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
18757 end New_Concatenation_Op
;
18759 -------------------------
18760 -- OK_For_Limited_Init --
18761 -------------------------
18763 -- ???Check all calls of this, and compare the conditions under which it's
18766 function OK_For_Limited_Init
18768 Exp
: Node_Id
) return Boolean
18771 return Is_CPP_Constructor_Call
(Exp
)
18772 or else (Ada_Version
>= Ada_2005
18773 and then not Debug_Flag_Dot_L
18774 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
18775 end OK_For_Limited_Init
;
18777 -------------------------------
18778 -- OK_For_Limited_Init_In_05 --
18779 -------------------------------
18781 function OK_For_Limited_Init_In_05
18783 Exp
: Node_Id
) return Boolean
18786 -- An object of a limited interface type can be initialized with any
18787 -- expression of a nonlimited descendant type. However this does not
18788 -- apply if this is a view conversion of some other expression. This
18789 -- is checked below.
18791 if Is_Class_Wide_Type
(Typ
)
18792 and then Is_Limited_Interface
(Typ
)
18793 and then not Is_Limited_Type
(Etype
(Exp
))
18794 and then Nkind
(Exp
) /= N_Type_Conversion
18799 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18800 -- case of limited aggregates (including extension aggregates), and
18801 -- function calls. The function call may have been given in prefixed
18802 -- notation, in which case the original node is an indexed component.
18803 -- If the function is parameterless, the original node was an explicit
18804 -- dereference. The function may also be parameterless, in which case
18805 -- the source node is just an identifier.
18807 -- A branch of a conditional expression may have been removed if the
18808 -- condition is statically known. This happens during expansion, and
18809 -- thus will not happen if previous errors were encountered. The check
18810 -- will have been performed on the chosen branch, which replaces the
18811 -- original conditional expression.
18817 case Nkind
(Original_Node
(Exp
)) is
18818 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op
=>
18821 when N_Identifier
=>
18822 return Present
(Entity
(Original_Node
(Exp
)))
18823 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
18825 when N_Qualified_Expression
=>
18827 OK_For_Limited_Init_In_05
18828 (Typ
, Expression
(Original_Node
(Exp
)));
18830 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18831 -- with a function call, the expander has rewritten the call into an
18832 -- N_Type_Conversion node to force displacement of the pointer to
18833 -- reference the component containing the secondary dispatch table.
18834 -- Otherwise a type conversion is not a legal context.
18835 -- A return statement for a build-in-place function returning a
18836 -- synchronized type also introduces an unchecked conversion.
18838 when N_Type_Conversion |
18839 N_Unchecked_Type_Conversion
=>
18840 return not Comes_From_Source
(Exp
)
18842 OK_For_Limited_Init_In_05
18843 (Typ
, Expression
(Original_Node
(Exp
)));
18845 when N_Indexed_Component |
18846 N_Selected_Component |
18847 N_Explicit_Dereference
=>
18848 return Nkind
(Exp
) = N_Function_Call
;
18850 -- A use of 'Input is a function call, hence allowed. Normally the
18851 -- attribute will be changed to a call, but the attribute by itself
18852 -- can occur with -gnatc.
18854 when N_Attribute_Reference
=>
18855 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
18857 -- For a case expression, all dependent expressions must be legal
18859 when N_Case_Expression
=>
18864 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
18865 while Present
(Alt
) loop
18866 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
18876 -- For an if expression, all dependent expressions must be legal
18878 when N_If_Expression
=>
18880 Then_Expr
: constant Node_Id
:=
18881 Next
(First
(Expressions
(Original_Node
(Exp
))));
18882 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
18884 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
18886 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
18892 end OK_For_Limited_Init_In_05
;
18894 -------------------------------------------
18895 -- Ordinary_Fixed_Point_Type_Declaration --
18896 -------------------------------------------
18898 procedure Ordinary_Fixed_Point_Type_Declaration
18902 Loc
: constant Source_Ptr
:= Sloc
(Def
);
18903 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
18904 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
18905 Implicit_Base
: Entity_Id
;
18912 Check_Restriction
(No_Fixed_Point
, Def
);
18914 -- Create implicit base type
18917 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
18918 Set_Etype
(Implicit_Base
, Implicit_Base
);
18920 -- Analyze and process delta expression
18922 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
18924 Check_Delta_Expression
(Delta_Expr
);
18925 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
18927 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
18929 -- Compute default small from given delta, which is the largest power
18930 -- of two that does not exceed the given delta value.
18940 if Delta_Val
< Ureal_1
then
18941 while Delta_Val
< Tmp
loop
18942 Tmp
:= Tmp
/ Ureal_2
;
18943 Scale
:= Scale
+ 1;
18948 Tmp
:= Tmp
* Ureal_2
;
18949 exit when Tmp
> Delta_Val
;
18950 Scale
:= Scale
- 1;
18954 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
18957 Set_Small_Value
(Implicit_Base
, Small_Val
);
18959 -- If no range was given, set a dummy range
18961 if RRS
<= Empty_Or_Error
then
18962 Low_Val
:= -Small_Val
;
18963 High_Val
:= Small_Val
;
18965 -- Otherwise analyze and process given range
18969 Low
: constant Node_Id
:= Low_Bound
(RRS
);
18970 High
: constant Node_Id
:= High_Bound
(RRS
);
18973 Analyze_And_Resolve
(Low
, Any_Real
);
18974 Analyze_And_Resolve
(High
, Any_Real
);
18975 Check_Real_Bound
(Low
);
18976 Check_Real_Bound
(High
);
18978 -- Obtain and set the range
18980 Low_Val
:= Expr_Value_R
(Low
);
18981 High_Val
:= Expr_Value_R
(High
);
18983 if Low_Val
> High_Val
then
18984 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
18989 -- The range for both the implicit base and the declared first subtype
18990 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18991 -- set a temporary range in place. Note that the bounds of the base
18992 -- type will be widened to be symmetrical and to fill the available
18993 -- bits when the type is frozen.
18995 -- We could do this with all discrete types, and probably should, but
18996 -- we absolutely have to do it for fixed-point, since the end-points
18997 -- of the range and the size are determined by the small value, which
18998 -- could be reset before the freeze point.
19000 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
19001 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
19003 -- Complete definition of first subtype. The inheritance of the rep item
19004 -- chain ensures that SPARK-related pragmas are not clobbered when the
19005 -- ordinary fixed point type acts as a full view of a private type.
19007 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
19008 Set_Etype
(T
, Implicit_Base
);
19009 Init_Size_Align
(T
);
19010 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
19011 Set_Small_Value
(T
, Small_Val
);
19012 Set_Delta_Value
(T
, Delta_Val
);
19013 Set_Is_Constrained
(T
);
19014 end Ordinary_Fixed_Point_Type_Declaration
;
19016 ----------------------------------
19017 -- Preanalyze_Assert_Expression --
19018 ----------------------------------
19020 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19022 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
19023 Preanalyze_Spec_Expression
(N
, T
);
19024 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
19025 end Preanalyze_Assert_Expression
;
19027 -----------------------------------
19028 -- Preanalyze_Default_Expression --
19029 -----------------------------------
19031 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19032 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
19034 In_Default_Expr
:= True;
19035 Preanalyze_Spec_Expression
(N
, T
);
19036 In_Default_Expr
:= Save_In_Default_Expr
;
19037 end Preanalyze_Default_Expression
;
19039 --------------------------------
19040 -- Preanalyze_Spec_Expression --
19041 --------------------------------
19043 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19044 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
19046 In_Spec_Expression
:= True;
19047 Preanalyze_And_Resolve
(N
, T
);
19048 In_Spec_Expression
:= Save_In_Spec_Expression
;
19049 end Preanalyze_Spec_Expression
;
19051 ----------------------------------------
19052 -- Prepare_Private_Subtype_Completion --
19053 ----------------------------------------
19055 procedure Prepare_Private_Subtype_Completion
19057 Related_Nod
: Node_Id
)
19059 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
19060 Full_B
: Entity_Id
:= Full_View
(Id_B
);
19064 if Present
(Full_B
) then
19066 -- Get to the underlying full view if necessary
19068 if Is_Private_Type
(Full_B
)
19069 and then Present
(Underlying_Full_View
(Full_B
))
19071 Full_B
:= Underlying_Full_View
(Full_B
);
19074 -- The Base_Type is already completed, we can complete the subtype
19075 -- now. We have to create a new entity with the same name, Thus we
19076 -- can't use Create_Itype.
19078 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
19079 Set_Is_Itype
(Full
);
19080 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
19081 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
19084 -- The parent subtype may be private, but the base might not, in some
19085 -- nested instances. In that case, the subtype does not need to be
19086 -- exchanged. It would still be nice to make private subtypes and their
19087 -- bases consistent at all times ???
19089 if Is_Private_Type
(Id_B
) then
19090 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
19092 end Prepare_Private_Subtype_Completion
;
19094 ---------------------------
19095 -- Process_Discriminants --
19096 ---------------------------
19098 procedure Process_Discriminants
19100 Prev
: Entity_Id
:= Empty
)
19102 Elist
: constant Elist_Id
:= New_Elmt_List
;
19105 Discr_Number
: Uint
;
19106 Discr_Type
: Entity_Id
;
19107 Default_Present
: Boolean := False;
19108 Default_Not_Present
: Boolean := False;
19111 -- A composite type other than an array type can have discriminants.
19112 -- On entry, the current scope is the composite type.
19114 -- The discriminants are initially entered into the scope of the type
19115 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19116 -- use, as explained at the end of this procedure.
19118 Discr
:= First
(Discriminant_Specifications
(N
));
19119 while Present
(Discr
) loop
19120 Enter_Name
(Defining_Identifier
(Discr
));
19122 -- For navigation purposes we add a reference to the discriminant
19123 -- in the entity for the type. If the current declaration is a
19124 -- completion, place references on the partial view. Otherwise the
19125 -- type is the current scope.
19127 if Present
(Prev
) then
19129 -- The references go on the partial view, if present. If the
19130 -- partial view has discriminants, the references have been
19131 -- generated already.
19133 if not Has_Discriminants
(Prev
) then
19134 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
19138 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
19141 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
19142 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
19144 -- Ada 2005 (AI-254)
19146 if Present
(Access_To_Subprogram_Definition
19147 (Discriminant_Type
(Discr
)))
19148 and then Protected_Present
(Access_To_Subprogram_Definition
19149 (Discriminant_Type
(Discr
)))
19152 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
19156 Find_Type
(Discriminant_Type
(Discr
));
19157 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
19159 if Error_Posted
(Discriminant_Type
(Discr
)) then
19160 Discr_Type
:= Any_Type
;
19164 -- Handling of discriminants that are access types
19166 if Is_Access_Type
(Discr_Type
) then
19168 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19169 -- limited record types
19171 if Ada_Version
< Ada_2005
then
19172 Check_Access_Discriminant_Requires_Limited
19173 (Discr
, Discriminant_Type
(Discr
));
19176 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
19178 ("(Ada 83) access discriminant not allowed", Discr
);
19181 -- If not access type, must be a discrete type
19183 elsif not Is_Discrete_Type
(Discr_Type
) then
19185 ("discriminants must have a discrete or access type",
19186 Discriminant_Type
(Discr
));
19189 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
19191 -- If a discriminant specification includes the assignment compound
19192 -- delimiter followed by an expression, the expression is the default
19193 -- expression of the discriminant; the default expression must be of
19194 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19195 -- a default expression, we do the special preanalysis, since this
19196 -- expression does not freeze (see section "Handling of Default and
19197 -- Per-Object Expressions" in spec of package Sem).
19199 if Present
(Expression
(Discr
)) then
19200 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
19204 if Nkind
(N
) = N_Formal_Type_Declaration
then
19206 ("discriminant defaults not allowed for formal type",
19207 Expression
(Discr
));
19209 -- Flag an error for a tagged type with defaulted discriminants,
19210 -- excluding limited tagged types when compiling for Ada 2012
19211 -- (see AI05-0214).
19213 elsif Is_Tagged_Type
(Current_Scope
)
19214 and then (not Is_Limited_Type
(Current_Scope
)
19215 or else Ada_Version
< Ada_2012
)
19216 and then Comes_From_Source
(N
)
19218 -- Note: see similar test in Check_Or_Process_Discriminants, to
19219 -- handle the (illegal) case of the completion of an untagged
19220 -- view with discriminants with defaults by a tagged full view.
19221 -- We skip the check if Discr does not come from source, to
19222 -- account for the case of an untagged derived type providing
19223 -- defaults for a renamed discriminant from a private untagged
19224 -- ancestor with a tagged full view (ACATS B460006).
19226 if Ada_Version
>= Ada_2012
then
19228 ("discriminants of nonlimited tagged type cannot have"
19230 Expression
(Discr
));
19233 ("discriminants of tagged type cannot have defaults",
19234 Expression
(Discr
));
19238 Default_Present
:= True;
19239 Append_Elmt
(Expression
(Discr
), Elist
);
19241 -- Tag the defining identifiers for the discriminants with
19242 -- their corresponding default expressions from the tree.
19244 Set_Discriminant_Default_Value
19245 (Defining_Identifier
(Discr
), Expression
(Discr
));
19248 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19249 -- gets set unless we can be sure that no range check is required.
19251 if (GNATprove_Mode
or not Expander_Active
)
19254 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
19256 Set_Do_Range_Check
(Expression
(Discr
));
19259 -- No default discriminant value given
19262 Default_Not_Present
:= True;
19265 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19266 -- Discr_Type but with the null-exclusion attribute
19268 if Ada_Version
>= Ada_2005
then
19270 -- Ada 2005 (AI-231): Static checks
19272 if Can_Never_Be_Null
(Discr_Type
) then
19273 Null_Exclusion_Static_Checks
(Discr
);
19275 elsif Is_Access_Type
(Discr_Type
)
19276 and then Null_Exclusion_Present
(Discr
)
19278 -- No need to check itypes because in their case this check
19279 -- was done at their point of creation
19281 and then not Is_Itype
(Discr_Type
)
19283 if Can_Never_Be_Null
(Discr_Type
) then
19285 ("`NOT NULL` not allowed (& already excludes null)",
19290 Set_Etype
(Defining_Identifier
(Discr
),
19291 Create_Null_Excluding_Itype
19293 Related_Nod
=> Discr
));
19295 -- Check for improper null exclusion if the type is otherwise
19296 -- legal for a discriminant.
19298 elsif Null_Exclusion_Present
(Discr
)
19299 and then Is_Discrete_Type
(Discr_Type
)
19302 ("null exclusion can only apply to an access type", Discr
);
19305 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19306 -- can't have defaults. Synchronized types, or types that are
19307 -- explicitly limited are fine, but special tests apply to derived
19308 -- types in generics: in a generic body we have to assume the
19309 -- worst, and therefore defaults are not allowed if the parent is
19310 -- a generic formal private type (see ACATS B370001).
19312 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
19313 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
19314 or else Is_Limited_Record
(Current_Scope
)
19315 or else Is_Concurrent_Type
(Current_Scope
)
19316 or else Is_Concurrent_Record_Type
(Current_Scope
)
19317 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
19319 if not Is_Derived_Type
(Current_Scope
)
19320 or else not Is_Generic_Type
(Etype
(Current_Scope
))
19321 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
19322 or else Limited_Present
19323 (Type_Definition
(Parent
(Current_Scope
)))
19329 ("access discriminants of nonlimited types cannot "
19330 & "have defaults", Expression
(Discr
));
19333 elsif Present
(Expression
(Discr
)) then
19335 ("(Ada 2005) access discriminants of nonlimited types "
19336 & "cannot have defaults", Expression
(Discr
));
19341 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19342 -- This check is relevant only when SPARK_Mode is on as it is not a
19343 -- standard Ada legality rule.
19346 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
19348 Error_Msg_N
("discriminant cannot be volatile", Discr
);
19354 -- An element list consisting of the default expressions of the
19355 -- discriminants is constructed in the above loop and used to set
19356 -- the Discriminant_Constraint attribute for the type. If an object
19357 -- is declared of this (record or task) type without any explicit
19358 -- discriminant constraint given, this element list will form the
19359 -- actual parameters for the corresponding initialization procedure
19362 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
19363 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
19365 -- Default expressions must be provided either for all or for none
19366 -- of the discriminants of a discriminant part. (RM 3.7.1)
19368 if Default_Present
and then Default_Not_Present
then
19370 ("incomplete specification of defaults for discriminants", N
);
19373 -- The use of the name of a discriminant is not allowed in default
19374 -- expressions of a discriminant part if the specification of the
19375 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19377 -- To detect this, the discriminant names are entered initially with an
19378 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19379 -- attempt to use a void entity (for example in an expression that is
19380 -- type-checked) produces the error message: premature usage. Now after
19381 -- completing the semantic analysis of the discriminant part, we can set
19382 -- the Ekind of all the discriminants appropriately.
19384 Discr
:= First
(Discriminant_Specifications
(N
));
19385 Discr_Number
:= Uint_1
;
19386 while Present
(Discr
) loop
19387 Id
:= Defining_Identifier
(Discr
);
19388 Set_Ekind
(Id
, E_Discriminant
);
19389 Init_Component_Location
(Id
);
19391 Set_Discriminant_Number
(Id
, Discr_Number
);
19393 -- Make sure this is always set, even in illegal programs
19395 Set_Corresponding_Discriminant
(Id
, Empty
);
19397 -- Initialize the Original_Record_Component to the entity itself.
19398 -- Inherit_Components will propagate the right value to
19399 -- discriminants in derived record types.
19401 Set_Original_Record_Component
(Id
, Id
);
19403 -- Create the discriminal for the discriminant
19405 Build_Discriminal
(Id
);
19408 Discr_Number
:= Discr_Number
+ 1;
19411 Set_Has_Discriminants
(Current_Scope
);
19412 end Process_Discriminants
;
19414 -----------------------
19415 -- Process_Full_View --
19416 -----------------------
19418 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
19419 procedure Collect_Implemented_Interfaces
19421 Ifaces
: Elist_Id
);
19422 -- Ada 2005: Gather all the interfaces that Typ directly or
19423 -- inherently implements. Duplicate entries are not added to
19424 -- the list Ifaces.
19426 ------------------------------------
19427 -- Collect_Implemented_Interfaces --
19428 ------------------------------------
19430 procedure Collect_Implemented_Interfaces
19435 Iface_Elmt
: Elmt_Id
;
19438 -- Abstract interfaces are only associated with tagged record types
19440 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
19444 -- Recursively climb to the ancestors
19446 if Etype
(Typ
) /= Typ
19448 -- Protect the frontend against wrong cyclic declarations like:
19450 -- type B is new A with private;
19451 -- type C is new A with private;
19453 -- type B is new C with null record;
19454 -- type C is new B with null record;
19456 and then Etype
(Typ
) /= Priv_T
19457 and then Etype
(Typ
) /= Full_T
19459 -- Keep separate the management of private type declarations
19461 if Ekind
(Typ
) = E_Record_Type_With_Private
then
19463 -- Handle the following illegal usage:
19464 -- type Private_Type is tagged private;
19466 -- type Private_Type is new Type_Implementing_Iface;
19468 if Present
(Full_View
(Typ
))
19469 and then Etype
(Typ
) /= Full_View
(Typ
)
19471 if Is_Interface
(Etype
(Typ
)) then
19472 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19475 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19478 -- Non-private types
19481 if Is_Interface
(Etype
(Typ
)) then
19482 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
19485 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
19489 -- Handle entities in the list of abstract interfaces
19491 if Present
(Interfaces
(Typ
)) then
19492 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
19493 while Present
(Iface_Elmt
) loop
19494 Iface
:= Node
(Iface_Elmt
);
19496 pragma Assert
(Is_Interface
(Iface
));
19498 if not Contain_Interface
(Iface
, Ifaces
) then
19499 Append_Elmt
(Iface
, Ifaces
);
19500 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
19503 Next_Elmt
(Iface_Elmt
);
19506 end Collect_Implemented_Interfaces
;
19510 Full_Indic
: Node_Id
;
19511 Full_Parent
: Entity_Id
;
19512 Priv_Parent
: Entity_Id
;
19514 -- Start of processing for Process_Full_View
19517 -- First some sanity checks that must be done after semantic
19518 -- decoration of the full view and thus cannot be placed with other
19519 -- similar checks in Find_Type_Name
19521 if not Is_Limited_Type
(Priv_T
)
19522 and then (Is_Limited_Type
(Full_T
)
19523 or else Is_Limited_Composite
(Full_T
))
19525 if In_Instance
then
19529 ("completion of nonlimited type cannot be limited", Full_T
);
19530 Explain_Limited_Type
(Full_T
, Full_T
);
19533 elsif Is_Abstract_Type
(Full_T
)
19534 and then not Is_Abstract_Type
(Priv_T
)
19537 ("completion of nonabstract type cannot be abstract", Full_T
);
19539 elsif Is_Tagged_Type
(Priv_T
)
19540 and then Is_Limited_Type
(Priv_T
)
19541 and then not Is_Limited_Type
(Full_T
)
19543 -- If pragma CPP_Class was applied to the private declaration
19544 -- propagate the limitedness to the full-view
19546 if Is_CPP_Class
(Priv_T
) then
19547 Set_Is_Limited_Record
(Full_T
);
19549 -- GNAT allow its own definition of Limited_Controlled to disobey
19550 -- this rule in order in ease the implementation. This test is safe
19551 -- because Root_Controlled is defined in a child of System that
19552 -- normal programs are not supposed to use.
19554 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
19555 Set_Is_Limited_Composite
(Full_T
);
19558 ("completion of limited tagged type must be limited", Full_T
);
19561 elsif Is_Generic_Type
(Priv_T
) then
19562 Error_Msg_N
("generic type cannot have a completion", Full_T
);
19565 -- Check that ancestor interfaces of private and full views are
19566 -- consistent. We omit this check for synchronized types because
19567 -- they are performed on the corresponding record type when frozen.
19569 if Ada_Version
>= Ada_2005
19570 and then Is_Tagged_Type
(Priv_T
)
19571 and then Is_Tagged_Type
(Full_T
)
19572 and then not Is_Concurrent_Type
(Full_T
)
19576 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19577 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
19580 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
19581 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
19583 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19584 -- an interface type if and only if the full type is descendant
19585 -- of the interface type (AARM 7.3 (7.3/2)).
19587 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
19589 if Present
(Iface
) then
19591 ("interface in partial view& not implemented by full type "
19592 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19595 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
19597 if Present
(Iface
) then
19599 ("interface & not implemented by partial view "
19600 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
19605 if Is_Tagged_Type
(Priv_T
)
19606 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19607 and then Is_Derived_Type
(Full_T
)
19609 Priv_Parent
:= Etype
(Priv_T
);
19611 -- The full view of a private extension may have been transformed
19612 -- into an unconstrained derived type declaration and a subtype
19613 -- declaration (see build_derived_record_type for details).
19615 if Nkind
(N
) = N_Subtype_Declaration
then
19616 Full_Indic
:= Subtype_Indication
(N
);
19617 Full_Parent
:= Etype
(Base_Type
(Full_T
));
19619 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
19620 Full_Parent
:= Etype
(Full_T
);
19623 -- Check that the parent type of the full type is a descendant of
19624 -- the ancestor subtype given in the private extension. If either
19625 -- entity has an Etype equal to Any_Type then we had some previous
19626 -- error situation [7.3(8)].
19628 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
19631 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19632 -- any order. Therefore we don't have to check that its parent must
19633 -- be a descendant of the parent of the private type declaration.
19635 elsif Is_Interface
(Priv_Parent
)
19636 and then Is_Interface
(Full_Parent
)
19640 -- Ada 2005 (AI-251): If the parent of the private type declaration
19641 -- is an interface there is no need to check that it is an ancestor
19642 -- of the associated full type declaration. The required tests for
19643 -- this case are performed by Build_Derived_Record_Type.
19645 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
19646 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
19649 ("parent of full type must descend from parent of private "
19650 & "extension", Full_Indic
);
19652 -- First check a formal restriction, and then proceed with checking
19653 -- Ada rules. Since the formal restriction is not a serious error, we
19654 -- don't prevent further error detection for this check, hence the
19658 -- In formal mode, when completing a private extension the type
19659 -- named in the private part must be exactly the same as that
19660 -- named in the visible part.
19662 if Priv_Parent
/= Full_Parent
then
19663 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
19664 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
19667 -- Check the rules of 7.3(10): if the private extension inherits
19668 -- known discriminants, then the full type must also inherit those
19669 -- discriminants from the same (ancestor) type, and the parent
19670 -- subtype of the full type must be constrained if and only if
19671 -- the ancestor subtype of the private extension is constrained.
19673 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
19674 and then not Has_Unknown_Discriminants
(Priv_T
)
19675 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
19678 Priv_Indic
: constant Node_Id
:=
19679 Subtype_Indication
(Parent
(Priv_T
));
19681 Priv_Constr
: constant Boolean :=
19682 Is_Constrained
(Priv_Parent
)
19684 Nkind
(Priv_Indic
) = N_Subtype_Indication
19686 Is_Constrained
(Entity
(Priv_Indic
));
19688 Full_Constr
: constant Boolean :=
19689 Is_Constrained
(Full_Parent
)
19691 Nkind
(Full_Indic
) = N_Subtype_Indication
19693 Is_Constrained
(Entity
(Full_Indic
));
19695 Priv_Discr
: Entity_Id
;
19696 Full_Discr
: Entity_Id
;
19699 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
19700 Full_Discr
:= First_Discriminant
(Full_Parent
);
19701 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
19702 if Original_Record_Component
(Priv_Discr
) =
19703 Original_Record_Component
(Full_Discr
)
19705 Corresponding_Discriminant
(Priv_Discr
) =
19706 Corresponding_Discriminant
(Full_Discr
)
19713 Next_Discriminant
(Priv_Discr
);
19714 Next_Discriminant
(Full_Discr
);
19717 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
19719 ("full view must inherit discriminants of the parent "
19720 & "type used in the private extension", Full_Indic
);
19722 elsif Priv_Constr
and then not Full_Constr
then
19724 ("parent subtype of full type must be constrained",
19727 elsif Full_Constr
and then not Priv_Constr
then
19729 ("parent subtype of full type must be unconstrained",
19734 -- Check the rules of 7.3(12): if a partial view has neither
19735 -- known or unknown discriminants, then the full type
19736 -- declaration shall define a definite subtype.
19738 elsif not Has_Unknown_Discriminants
(Priv_T
)
19739 and then not Has_Discriminants
(Priv_T
)
19740 and then not Is_Constrained
(Full_T
)
19743 ("full view must define a constrained type if partial view "
19744 & "has no discriminants", Full_T
);
19747 -- ??????? Do we implement the following properly ?????
19748 -- If the ancestor subtype of a private extension has constrained
19749 -- discriminants, then the parent subtype of the full view shall
19750 -- impose a statically matching constraint on those discriminants
19755 -- For untagged types, verify that a type without discriminants is
19756 -- not completed with an unconstrained type. A separate error message
19757 -- is produced if the full type has defaulted discriminants.
19759 if Is_Definite_Subtype
(Priv_T
)
19760 and then not Is_Definite_Subtype
(Full_T
)
19762 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
19764 ("full view of& not compatible with declaration#",
19767 if not Is_Tagged_Type
(Full_T
) then
19769 ("\one is constrained, the other unconstrained", Full_T
);
19774 -- AI-419: verify that the use of "limited" is consistent
19777 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
19780 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19781 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
19783 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
19785 if not Limited_Present
(Parent
(Priv_T
))
19786 and then not Synchronized_Present
(Parent
(Priv_T
))
19787 and then Limited_Present
(Type_Definition
(Orig_Decl
))
19790 ("full view of non-limited extension cannot be limited", N
);
19792 -- Conversely, if the partial view carries the limited keyword,
19793 -- the full view must as well, even if it may be redundant.
19795 elsif Limited_Present
(Parent
(Priv_T
))
19796 and then not Limited_Present
(Type_Definition
(Orig_Decl
))
19799 ("full view of limited extension must be explicitly limited",
19805 -- Ada 2005 (AI-443): A synchronized private extension must be
19806 -- completed by a task or protected type.
19808 if Ada_Version
>= Ada_2005
19809 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
19810 and then Synchronized_Present
(Parent
(Priv_T
))
19811 and then not Is_Concurrent_Type
(Full_T
)
19813 Error_Msg_N
("full view of synchronized extension must " &
19814 "be synchronized type", N
);
19817 -- Ada 2005 AI-363: if the full view has discriminants with
19818 -- defaults, it is illegal to declare constrained access subtypes
19819 -- whose designated type is the current type. This allows objects
19820 -- of the type that are declared in the heap to be unconstrained.
19822 if not Has_Unknown_Discriminants
(Priv_T
)
19823 and then not Has_Discriminants
(Priv_T
)
19824 and then Has_Discriminants
(Full_T
)
19826 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
19828 Set_Has_Constrained_Partial_View
(Full_T
);
19829 Set_Has_Constrained_Partial_View
(Priv_T
);
19832 -- Create a full declaration for all its subtypes recorded in
19833 -- Private_Dependents and swap them similarly to the base type. These
19834 -- are subtypes that have been define before the full declaration of
19835 -- the private type. We also swap the entry in Private_Dependents list
19836 -- so we can properly restore the private view on exit from the scope.
19839 Priv_Elmt
: Elmt_Id
;
19840 Priv_Scop
: Entity_Id
;
19845 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
19846 while Present
(Priv_Elmt
) loop
19847 Priv
:= Node
(Priv_Elmt
);
19848 Priv_Scop
:= Scope
(Priv
);
19850 if Ekind_In
(Priv
, E_Private_Subtype
,
19851 E_Limited_Private_Subtype
,
19852 E_Record_Subtype_With_Private
)
19854 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
19855 Set_Is_Itype
(Full
);
19856 Set_Parent
(Full
, Parent
(Priv
));
19857 Set_Associated_Node_For_Itype
(Full
, N
);
19859 -- Now we need to complete the private subtype, but since the
19860 -- base type has already been swapped, we must also swap the
19861 -- subtypes (and thus, reverse the arguments in the call to
19862 -- Complete_Private_Subtype). Also note that we may need to
19863 -- re-establish the scope of the private subtype.
19865 Copy_And_Swap
(Priv
, Full
);
19867 if not In_Open_Scopes
(Priv_Scop
) then
19868 Push_Scope
(Priv_Scop
);
19871 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19873 Priv_Scop
:= Empty
;
19876 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
19878 if Present
(Priv_Scop
) then
19882 Replace_Elmt
(Priv_Elmt
, Full
);
19885 Next_Elmt
(Priv_Elmt
);
19889 -- If the private view was tagged, copy the new primitive operations
19890 -- from the private view to the full view.
19892 if Is_Tagged_Type
(Full_T
) then
19894 Disp_Typ
: Entity_Id
;
19895 Full_List
: Elist_Id
;
19897 Prim_Elmt
: Elmt_Id
;
19898 Priv_List
: Elist_Id
;
19902 L
: Elist_Id
) return Boolean;
19903 -- Determine whether list L contains element E
19911 L
: Elist_Id
) return Boolean
19913 List_Elmt
: Elmt_Id
;
19916 List_Elmt
:= First_Elmt
(L
);
19917 while Present
(List_Elmt
) loop
19918 if Node
(List_Elmt
) = E
then
19922 Next_Elmt
(List_Elmt
);
19928 -- Start of processing
19931 if Is_Tagged_Type
(Priv_T
) then
19932 Priv_List
:= Primitive_Operations
(Priv_T
);
19933 Prim_Elmt
:= First_Elmt
(Priv_List
);
19935 -- In the case of a concurrent type completing a private tagged
19936 -- type, primitives may have been declared in between the two
19937 -- views. These subprograms need to be wrapped the same way
19938 -- entries and protected procedures are handled because they
19939 -- cannot be directly shared by the two views.
19941 if Is_Concurrent_Type
(Full_T
) then
19943 Conc_Typ
: constant Entity_Id
:=
19944 Corresponding_Record_Type
(Full_T
);
19945 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
19946 Wrap_Spec
: Node_Id
;
19949 while Present
(Prim_Elmt
) loop
19950 Prim
:= Node
(Prim_Elmt
);
19952 if Comes_From_Source
(Prim
)
19953 and then not Is_Abstract_Subprogram
(Prim
)
19956 Make_Subprogram_Declaration
(Sloc
(Prim
),
19960 Obj_Typ
=> Conc_Typ
,
19962 Parameter_Specifications
19965 Insert_After
(Curr_Nod
, Wrap_Spec
);
19966 Curr_Nod
:= Wrap_Spec
;
19968 Analyze
(Wrap_Spec
);
19970 -- Remove the wrapper from visibility to avoid
19971 -- spurious conflict with the wrapped entity.
19973 Set_Is_Immediately_Visible
19974 (Defining_Entity
(Specification
(Wrap_Spec
)),
19978 Next_Elmt
(Prim_Elmt
);
19984 -- For non-concurrent types, transfer explicit primitives, but
19985 -- omit those inherited from the parent of the private view
19986 -- since they will be re-inherited later on.
19989 Full_List
:= Primitive_Operations
(Full_T
);
19991 while Present
(Prim_Elmt
) loop
19992 Prim
:= Node
(Prim_Elmt
);
19994 if Comes_From_Source
(Prim
)
19995 and then not Contains
(Prim
, Full_List
)
19997 Append_Elmt
(Prim
, Full_List
);
20000 Next_Elmt
(Prim_Elmt
);
20004 -- Untagged private view
20007 Full_List
:= Primitive_Operations
(Full_T
);
20009 -- In this case the partial view is untagged, so here we locate
20010 -- all of the earlier primitives that need to be treated as
20011 -- dispatching (those that appear between the two views). Note
20012 -- that these additional operations must all be new operations
20013 -- (any earlier operations that override inherited operations
20014 -- of the full view will already have been inserted in the
20015 -- primitives list, marked by Check_Operation_From_Private_View
20016 -- as dispatching. Note that implicit "/=" operators are
20017 -- excluded from being added to the primitives list since they
20018 -- shouldn't be treated as dispatching (tagged "/=" is handled
20021 Prim
:= Next_Entity
(Full_T
);
20022 while Present
(Prim
) and then Prim
/= Priv_T
loop
20023 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
20024 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
20026 if Disp_Typ
= Full_T
20027 and then (Chars
(Prim
) /= Name_Op_Ne
20028 or else Comes_From_Source
(Prim
))
20030 Check_Controlling_Formals
(Full_T
, Prim
);
20032 if not Is_Dispatching_Operation
(Prim
) then
20033 Append_Elmt
(Prim
, Full_List
);
20034 Set_Is_Dispatching_Operation
(Prim
, True);
20035 Set_DT_Position_Value
(Prim
, No_Uint
);
20038 elsif Is_Dispatching_Operation
(Prim
)
20039 and then Disp_Typ
/= Full_T
20042 -- Verify that it is not otherwise controlled by a
20043 -- formal or a return value of type T.
20045 Check_Controlling_Formals
(Disp_Typ
, Prim
);
20049 Next_Entity
(Prim
);
20053 -- For the tagged case, the two views can share the same primitive
20054 -- operations list and the same class-wide type. Update attributes
20055 -- of the class-wide type which depend on the full declaration.
20057 if Is_Tagged_Type
(Priv_T
) then
20058 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
20059 Set_Class_Wide_Type
20060 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
20062 Propagate_Concurrent_Flags
(Class_Wide_Type
(Priv_T
), Full_T
);
20067 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20069 if Known_To_Have_Preelab_Init
(Priv_T
) then
20071 -- Case where there is a pragma Preelaborable_Initialization. We
20072 -- always allow this in predefined units, which is cheating a bit,
20073 -- but it means we don't have to struggle to meet the requirements in
20074 -- the RM for having Preelaborable Initialization. Otherwise we
20075 -- require that the type meets the RM rules. But we can't check that
20076 -- yet, because of the rule about overriding Initialize, so we simply
20077 -- set a flag that will be checked at freeze time.
20079 if not In_Predefined_Unit
(Full_T
) then
20080 Set_Must_Have_Preelab_Init
(Full_T
);
20084 -- If pragma CPP_Class was applied to the private type declaration,
20085 -- propagate it now to the full type declaration.
20087 if Is_CPP_Class
(Priv_T
) then
20088 Set_Is_CPP_Class
(Full_T
);
20089 Set_Convention
(Full_T
, Convention_CPP
);
20091 -- Check that components of imported CPP types do not have default
20094 Check_CPP_Type_Has_No_Defaults
(Full_T
);
20097 -- If the private view has user specified stream attributes, then so has
20100 -- Why the test, how could these flags be already set in Full_T ???
20102 if Has_Specified_Stream_Read
(Priv_T
) then
20103 Set_Has_Specified_Stream_Read
(Full_T
);
20106 if Has_Specified_Stream_Write
(Priv_T
) then
20107 Set_Has_Specified_Stream_Write
(Full_T
);
20110 if Has_Specified_Stream_Input
(Priv_T
) then
20111 Set_Has_Specified_Stream_Input
(Full_T
);
20114 if Has_Specified_Stream_Output
(Priv_T
) then
20115 Set_Has_Specified_Stream_Output
(Full_T
);
20118 -- Propagate the attributes related to pragma Default_Initial_Condition
20119 -- from the private to the full view. Note that both flags are mutually
20122 if Has_Default_Init_Cond
(Priv_T
)
20123 or else Has_Inherited_Default_Init_Cond
(Priv_T
)
20125 Propagate_Default_Init_Cond_Attributes
20126 (From_Typ
=> Priv_T
,
20128 Private_To_Full_View
=> True);
20130 -- In the case where the full view is derived from another private type,
20131 -- the attributes related to pragma Default_Initial_Condition must be
20132 -- propagated from the full to the private view to maintain consistency
20136 -- type Parent_Typ is private
20137 -- with Default_Initial_Condition ...;
20139 -- type Parent_Typ is ...;
20142 -- with Pack; use Pack;
20143 -- package Pack_2 is
20144 -- type Deriv_Typ is private; -- must inherit
20146 -- type Deriv_Typ is new Parent_Typ; -- must inherit
20149 elsif Has_Default_Init_Cond
(Full_T
)
20150 or else Has_Inherited_Default_Init_Cond
(Full_T
)
20152 Propagate_Default_Init_Cond_Attributes
20153 (From_Typ
=> Full_T
,
20155 Private_To_Full_View
=> True);
20158 if Is_Ghost_Entity
(Priv_T
) then
20160 -- The Ghost policy in effect at the point of declaration and at the
20161 -- point of completion must match (SPARK RM 6.9(14)).
20163 Check_Ghost_Completion
(Priv_T
, Full_T
);
20165 -- Propagate the attributes related to pragma Ghost from the private
20166 -- to the full view.
20168 Mark_Full_View_As_Ghost
(Priv_T
, Full_T
);
20171 -- Propagate invariant-related attributes from the private view to the
20172 -- full view and its base type.
20174 Propagate_Invariant_Attributes
(Full_T
, From_Typ
=> Priv_T
);
20175 Propagate_Invariant_Attributes
(Base_Type
(Full_T
), From_Typ
=> Priv_T
);
20177 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20178 -- in the full view without advertising the inheritance in the partial
20179 -- view. This can only occur when the partial view has no parent type
20180 -- and the full view has an interface as a parent. Any other scenarios
20181 -- are illegal because implemented interfaces must match between the
20184 if Is_Tagged_Type
(Priv_T
) and then Is_Tagged_Type
(Full_T
) then
20186 Full_Par
: constant Entity_Id
:= Etype
(Full_T
);
20187 Priv_Par
: constant Entity_Id
:= Etype
(Priv_T
);
20190 if not Is_Interface
(Priv_Par
)
20191 and then Is_Interface
(Full_Par
)
20192 and then Has_Inheritable_Invariants
(Full_Par
)
20195 ("hidden inheritance of class-wide type invariants not "
20201 -- Propagate predicates to full type, and predicate function if already
20202 -- defined. It is not clear that this can actually happen? the partial
20203 -- view cannot be frozen yet, and the predicate function has not been
20204 -- built. Still it is a cheap check and seems safer to make it.
20206 if Has_Predicates
(Priv_T
) then
20207 Set_Has_Predicates
(Full_T
);
20209 if Present
(Predicate_Function
(Priv_T
)) then
20210 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
20213 end Process_Full_View
;
20215 -----------------------------------
20216 -- Process_Incomplete_Dependents --
20217 -----------------------------------
20219 procedure Process_Incomplete_Dependents
20221 Full_T
: Entity_Id
;
20224 Inc_Elmt
: Elmt_Id
;
20225 Priv_Dep
: Entity_Id
;
20226 New_Subt
: Entity_Id
;
20228 Disc_Constraint
: Elist_Id
;
20231 if No
(Private_Dependents
(Inc_T
)) then
20235 -- Itypes that may be generated by the completion of an incomplete
20236 -- subtype are not used by the back-end and not attached to the tree.
20237 -- They are created only for constraint-checking purposes.
20239 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
20240 while Present
(Inc_Elmt
) loop
20241 Priv_Dep
:= Node
(Inc_Elmt
);
20243 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
20245 -- An Access_To_Subprogram type may have a return type or a
20246 -- parameter type that is incomplete. Replace with the full view.
20248 if Etype
(Priv_Dep
) = Inc_T
then
20249 Set_Etype
(Priv_Dep
, Full_T
);
20253 Formal
: Entity_Id
;
20256 Formal
:= First_Formal
(Priv_Dep
);
20257 while Present
(Formal
) loop
20258 if Etype
(Formal
) = Inc_T
then
20259 Set_Etype
(Formal
, Full_T
);
20262 Next_Formal
(Formal
);
20266 elsif Is_Overloadable
(Priv_Dep
) then
20268 -- If a subprogram in the incomplete dependents list is primitive
20269 -- for a tagged full type then mark it as a dispatching operation,
20270 -- check whether it overrides an inherited subprogram, and check
20271 -- restrictions on its controlling formals. Note that a protected
20272 -- operation is never dispatching: only its wrapper operation
20273 -- (which has convention Ada) is.
20275 if Is_Tagged_Type
(Full_T
)
20276 and then Is_Primitive
(Priv_Dep
)
20277 and then Convention
(Priv_Dep
) /= Convention_Protected
20279 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
20280 Set_Is_Dispatching_Operation
(Priv_Dep
);
20281 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
20284 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
20286 -- Can happen during processing of a body before the completion
20287 -- of a TA type. Ignore, because spec is also on dependent list.
20291 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20292 -- corresponding subtype of the full view.
20294 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
20295 Set_Subtype_Indication
20296 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
20297 Set_Etype
(Priv_Dep
, Full_T
);
20298 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
20299 Set_Analyzed
(Parent
(Priv_Dep
), False);
20301 -- Reanalyze the declaration, suppressing the call to
20302 -- Enter_Name to avoid duplicate names.
20304 Analyze_Subtype_Declaration
20305 (N
=> Parent
(Priv_Dep
),
20308 -- Dependent is a subtype
20311 -- We build a new subtype indication using the full view of the
20312 -- incomplete parent. The discriminant constraints have been
20313 -- elaborated already at the point of the subtype declaration.
20315 New_Subt
:= Create_Itype
(E_Void
, N
);
20317 if Has_Discriminants
(Full_T
) then
20318 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
20320 Disc_Constraint
:= No_Elist
;
20323 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
20324 Set_Full_View
(Priv_Dep
, New_Subt
);
20327 Next_Elmt
(Inc_Elmt
);
20329 end Process_Incomplete_Dependents
;
20331 --------------------------------
20332 -- Process_Range_Expr_In_Decl --
20333 --------------------------------
20335 procedure Process_Range_Expr_In_Decl
20338 Subtyp
: Entity_Id
:= Empty
;
20339 Check_List
: List_Id
:= Empty_List
;
20340 R_Check_Off
: Boolean := False;
20341 In_Iter_Schm
: Boolean := False)
20344 R_Checks
: Check_Result
;
20345 Insert_Node
: Node_Id
;
20346 Def_Id
: Entity_Id
;
20349 Analyze_And_Resolve
(R
, Base_Type
(T
));
20351 if Nkind
(R
) = N_Range
then
20353 -- In SPARK, all ranges should be static, with the exception of the
20354 -- discrete type definition of a loop parameter specification.
20356 if not In_Iter_Schm
20357 and then not Is_OK_Static_Range
(R
)
20359 Check_SPARK_05_Restriction
("range should be static", R
);
20362 Lo
:= Low_Bound
(R
);
20363 Hi
:= High_Bound
(R
);
20365 -- Validity checks on the range of a quantified expression are
20366 -- delayed until the construct is transformed into a loop.
20368 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
20369 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
20373 -- We need to ensure validity of the bounds here, because if we
20374 -- go ahead and do the expansion, then the expanded code will get
20375 -- analyzed with range checks suppressed and we miss the check.
20377 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20378 -- the temporaries generated by routine Remove_Side_Effects by means
20379 -- of validity checks must use the same names. When a range appears
20380 -- in the parent of a generic, the range is processed with checks
20381 -- disabled as part of the generic context and with checks enabled
20382 -- for code generation purposes. This leads to link issues as the
20383 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20384 -- template sees the temporaries generated by Remove_Side_Effects.
20387 Validity_Check_Range
(R
, Subtyp
);
20390 -- If there were errors in the declaration, try and patch up some
20391 -- common mistakes in the bounds. The cases handled are literals
20392 -- which are Integer where the expected type is Real and vice versa.
20393 -- These corrections allow the compilation process to proceed further
20394 -- along since some basic assumptions of the format of the bounds
20397 if Etype
(R
) = Any_Type
then
20398 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20400 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
20402 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20404 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
20406 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20408 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
20410 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20412 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
20419 -- If the bounds of the range have been mistakenly given as string
20420 -- literals (perhaps in place of character literals), then an error
20421 -- has already been reported, but we rewrite the string literal as a
20422 -- bound of the range's type to avoid blowups in later processing
20423 -- that looks at static values.
20425 if Nkind
(Lo
) = N_String_Literal
then
20427 Make_Attribute_Reference
(Sloc
(Lo
),
20428 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
20429 Attribute_Name
=> Name_First
));
20430 Analyze_And_Resolve
(Lo
);
20433 if Nkind
(Hi
) = N_String_Literal
then
20435 Make_Attribute_Reference
(Sloc
(Hi
),
20436 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
20437 Attribute_Name
=> Name_First
));
20438 Analyze_And_Resolve
(Hi
);
20441 -- If bounds aren't scalar at this point then exit, avoiding
20442 -- problems with further processing of the range in this procedure.
20444 if not Is_Scalar_Type
(Etype
(Lo
)) then
20448 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20449 -- then range of the base type. Here we check whether the bounds
20450 -- are in the range of the subtype itself. Note that if the bounds
20451 -- represent the null range the Constraint_Error exception should
20454 -- ??? The following code should be cleaned up as follows
20456 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20457 -- is done in the call to Range_Check (R, T); below
20459 -- 2. The use of R_Check_Off should be investigated and possibly
20460 -- removed, this would clean up things a bit.
20462 if Is_Null_Range
(Lo
, Hi
) then
20466 -- Capture values of bounds and generate temporaries for them
20467 -- if needed, before applying checks, since checks may cause
20468 -- duplication of the expression without forcing evaluation.
20470 -- The forced evaluation removes side effects from expressions,
20471 -- which should occur also in GNATprove mode. Otherwise, we end up
20472 -- with unexpected insertions of actions at places where this is
20473 -- not supposed to occur, e.g. on default parameters of a call.
20475 if Expander_Active
or GNATprove_Mode
then
20477 -- Call Force_Evaluation to create declarations as needed to
20478 -- deal with side effects, and also create typ_FIRST/LAST
20479 -- entities for bounds if we have a subtype name.
20481 -- Note: we do this transformation even if expansion is not
20482 -- active if we are in GNATprove_Mode since the transformation
20483 -- is in general required to ensure that the resulting tree has
20484 -- proper Ada semantics.
20487 (Lo
, Related_Id
=> Subtyp
, Is_Low_Bound
=> True);
20489 (Hi
, Related_Id
=> Subtyp
, Is_High_Bound
=> True);
20492 -- We use a flag here instead of suppressing checks on the type
20493 -- because the type we check against isn't necessarily the place
20494 -- where we put the check.
20496 if not R_Check_Off
then
20497 R_Checks
:= Get_Range_Checks
(R
, T
);
20499 -- Look up tree to find an appropriate insertion point. We
20500 -- can't just use insert_actions because later processing
20501 -- depends on the insertion node. Prior to Ada 2012 the
20502 -- insertion point could only be a declaration or a loop, but
20503 -- quantified expressions can appear within any context in an
20504 -- expression, and the insertion point can be any statement,
20505 -- pragma, or declaration.
20507 Insert_Node
:= Parent
(R
);
20508 while Present
(Insert_Node
) loop
20510 Nkind
(Insert_Node
) in N_Declaration
20513 (Insert_Node
, N_Component_Declaration
,
20514 N_Loop_Parameter_Specification
,
20515 N_Function_Specification
,
20516 N_Procedure_Specification
);
20518 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
20519 or else Nkind
(Insert_Node
) in
20520 N_Statement_Other_Than_Procedure_Call
20521 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
20524 Insert_Node
:= Parent
(Insert_Node
);
20527 -- Why would Type_Decl not be present??? Without this test,
20528 -- short regression tests fail.
20530 if Present
(Insert_Node
) then
20532 -- Case of loop statement. Verify that the range is part
20533 -- of the subtype indication of the iteration scheme.
20535 if Nkind
(Insert_Node
) = N_Loop_Statement
then
20540 Indic
:= Parent
(R
);
20541 while Present
(Indic
)
20542 and then Nkind
(Indic
) /= N_Subtype_Indication
20544 Indic
:= Parent
(Indic
);
20547 if Present
(Indic
) then
20548 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
20550 Insert_Range_Checks
20554 Sloc
(Insert_Node
),
20556 Do_Before
=> True);
20560 -- Insertion before a declaration. If the declaration
20561 -- includes discriminants, the list of applicable checks
20562 -- is given by the caller.
20564 elsif Nkind
(Insert_Node
) in N_Declaration
then
20565 Def_Id
:= Defining_Identifier
(Insert_Node
);
20567 if (Ekind
(Def_Id
) = E_Record_Type
20568 and then Depends_On_Discriminant
(R
))
20570 (Ekind
(Def_Id
) = E_Protected_Type
20571 and then Has_Discriminants
(Def_Id
))
20573 Append_Range_Checks
20575 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
20578 Insert_Range_Checks
20580 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
20584 -- Insertion before a statement. Range appears in the
20585 -- context of a quantified expression. Insertion will
20586 -- take place when expression is expanded.
20595 -- Case of other than an explicit N_Range node
20597 -- The forced evaluation removes side effects from expressions, which
20598 -- should occur also in GNATprove mode. Otherwise, we end up with
20599 -- unexpected insertions of actions at places where this is not
20600 -- supposed to occur, e.g. on default parameters of a call.
20602 elsif Expander_Active
or GNATprove_Mode
then
20603 Get_Index_Bounds
(R
, Lo
, Hi
);
20604 Force_Evaluation
(Lo
);
20605 Force_Evaluation
(Hi
);
20607 end Process_Range_Expr_In_Decl
;
20609 --------------------------------------
20610 -- Process_Real_Range_Specification --
20611 --------------------------------------
20613 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
20614 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
20617 Err
: Boolean := False;
20619 procedure Analyze_Bound
(N
: Node_Id
);
20620 -- Analyze and check one bound
20622 -------------------
20623 -- Analyze_Bound --
20624 -------------------
20626 procedure Analyze_Bound
(N
: Node_Id
) is
20628 Analyze_And_Resolve
(N
, Any_Real
);
20630 if not Is_OK_Static_Expression
(N
) then
20631 Flag_Non_Static_Expr
20632 ("bound in real type definition is not static!", N
);
20637 -- Start of processing for Process_Real_Range_Specification
20640 if Present
(Spec
) then
20641 Lo
:= Low_Bound
(Spec
);
20642 Hi
:= High_Bound
(Spec
);
20643 Analyze_Bound
(Lo
);
20644 Analyze_Bound
(Hi
);
20646 -- If error, clear away junk range specification
20649 Set_Real_Range_Specification
(Def
, Empty
);
20652 end Process_Real_Range_Specification
;
20654 ---------------------
20655 -- Process_Subtype --
20656 ---------------------
20658 function Process_Subtype
20660 Related_Nod
: Node_Id
;
20661 Related_Id
: Entity_Id
:= Empty
;
20662 Suffix
: Character := ' ') return Entity_Id
20665 Def_Id
: Entity_Id
;
20666 Error_Node
: Node_Id
;
20667 Full_View_Id
: Entity_Id
;
20668 Subtype_Mark_Id
: Entity_Id
;
20670 May_Have_Null_Exclusion
: Boolean;
20672 procedure Check_Incomplete
(T
: Node_Id
);
20673 -- Called to verify that an incomplete type is not used prematurely
20675 ----------------------
20676 -- Check_Incomplete --
20677 ----------------------
20679 procedure Check_Incomplete
(T
: Node_Id
) is
20681 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20683 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
20685 not (Ada_Version
>= Ada_2005
20687 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
20688 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
20689 and then Nkind
(Parent
(Parent
(T
))) =
20690 N_Subtype_Declaration
)))
20692 Error_Msg_N
("invalid use of type before its full declaration", T
);
20694 end Check_Incomplete
;
20696 -- Start of processing for Process_Subtype
20699 -- Case of no constraints present
20701 if Nkind
(S
) /= N_Subtype_Indication
then
20703 Check_Incomplete
(S
);
20706 -- Ada 2005 (AI-231): Static check
20708 if Ada_Version
>= Ada_2005
20709 and then Present
(P
)
20710 and then Null_Exclusion_Present
(P
)
20711 and then Nkind
(P
) /= N_Access_To_Object_Definition
20712 and then not Is_Access_Type
(Entity
(S
))
20714 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
20717 -- The following is ugly, can't we have a range or even a flag???
20719 May_Have_Null_Exclusion
:=
20720 Nkind_In
(P
, N_Access_Definition
,
20721 N_Access_Function_Definition
,
20722 N_Access_Procedure_Definition
,
20723 N_Access_To_Object_Definition
,
20725 N_Component_Definition
)
20727 Nkind_In
(P
, N_Derived_Type_Definition
,
20728 N_Discriminant_Specification
,
20729 N_Formal_Object_Declaration
,
20730 N_Object_Declaration
,
20731 N_Object_Renaming_Declaration
,
20732 N_Parameter_Specification
,
20733 N_Subtype_Declaration
);
20735 -- Create an Itype that is a duplicate of Entity (S) but with the
20736 -- null-exclusion attribute.
20738 if May_Have_Null_Exclusion
20739 and then Is_Access_Type
(Entity
(S
))
20740 and then Null_Exclusion_Present
(P
)
20742 -- No need to check the case of an access to object definition.
20743 -- It is correct to define double not-null pointers.
20746 -- type Not_Null_Int_Ptr is not null access Integer;
20747 -- type Acc is not null access Not_Null_Int_Ptr;
20749 and then Nkind
(P
) /= N_Access_To_Object_Definition
20751 if Can_Never_Be_Null
(Entity
(S
)) then
20752 case Nkind
(Related_Nod
) is
20753 when N_Full_Type_Declaration
=>
20754 if Nkind
(Type_Definition
(Related_Nod
))
20755 in N_Array_Type_Definition
20759 (Component_Definition
20760 (Type_Definition
(Related_Nod
)));
20763 Subtype_Indication
(Type_Definition
(Related_Nod
));
20766 when N_Subtype_Declaration
=>
20767 Error_Node
:= Subtype_Indication
(Related_Nod
);
20769 when N_Object_Declaration
=>
20770 Error_Node
:= Object_Definition
(Related_Nod
);
20772 when N_Component_Declaration
=>
20774 Subtype_Indication
(Component_Definition
(Related_Nod
));
20776 when N_Allocator
=>
20777 Error_Node
:= Expression
(Related_Nod
);
20780 pragma Assert
(False);
20781 Error_Node
:= Related_Nod
;
20785 ("`NOT NULL` not allowed (& already excludes null)",
20791 Create_Null_Excluding_Itype
20793 Related_Nod
=> P
));
20794 Set_Entity
(S
, Etype
(S
));
20799 -- Case of constraint present, so that we have an N_Subtype_Indication
20800 -- node (this node is created only if constraints are present).
20803 Find_Type
(Subtype_Mark
(S
));
20805 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
20807 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
20808 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
20810 Check_Incomplete
(Subtype_Mark
(S
));
20814 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
20816 -- Explicit subtype declaration case
20818 if Nkind
(P
) = N_Subtype_Declaration
then
20819 Def_Id
:= Defining_Identifier
(P
);
20821 -- Explicit derived type definition case
20823 elsif Nkind
(P
) = N_Derived_Type_Definition
then
20824 Def_Id
:= Defining_Identifier
(Parent
(P
));
20826 -- Implicit case, the Def_Id must be created as an implicit type.
20827 -- The one exception arises in the case of concurrent types, array
20828 -- and access types, where other subsidiary implicit types may be
20829 -- created and must appear before the main implicit type. In these
20830 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20831 -- has not yet been called to create Def_Id.
20834 if Is_Array_Type
(Subtype_Mark_Id
)
20835 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
20836 or else Is_Access_Type
(Subtype_Mark_Id
)
20840 -- For the other cases, we create a new unattached Itype,
20841 -- and set the indication to ensure it gets attached later.
20845 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20849 -- If the kind of constraint is invalid for this kind of type,
20850 -- then give an error, and then pretend no constraint was given.
20852 if not Is_Valid_Constraint_Kind
20853 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
20856 ("incorrect constraint for this kind of type", Constraint
(S
));
20858 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
20860 -- Set Ekind of orphan itype, to prevent cascaded errors
20862 if Present
(Def_Id
) then
20863 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
20866 -- Make recursive call, having got rid of the bogus constraint
20868 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
20871 -- Remaining processing depends on type. Select on Base_Type kind to
20872 -- ensure getting to the concrete type kind in the case of a private
20873 -- subtype (needed when only doing semantic analysis).
20875 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
20876 when Access_Kind
=>
20878 -- If this is a constraint on a class-wide type, discard it.
20879 -- There is currently no way to express a partial discriminant
20880 -- constraint on a type with unknown discriminants. This is
20881 -- a pathology that the ACATS wisely decides not to test.
20883 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
20884 if Comes_From_Source
(S
) then
20886 ("constraint on class-wide type ignored??",
20890 if Nkind
(P
) = N_Subtype_Declaration
then
20891 Set_Subtype_Indication
(P
,
20892 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
20895 return Subtype_Mark_Id
;
20898 Constrain_Access
(Def_Id
, S
, Related_Nod
);
20901 and then Is_Itype
(Designated_Type
(Def_Id
))
20902 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
20903 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
20905 Build_Itype_Reference
20906 (Designated_Type
(Def_Id
), Related_Nod
);
20910 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
20912 when Decimal_Fixed_Point_Kind
=>
20913 Constrain_Decimal
(Def_Id
, S
);
20915 when Enumeration_Kind
=>
20916 Constrain_Enumeration
(Def_Id
, S
);
20917 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20919 when Ordinary_Fixed_Point_Kind
=>
20920 Constrain_Ordinary_Fixed
(Def_Id
, S
);
20923 Constrain_Float
(Def_Id
, S
);
20925 when Integer_Kind
=>
20926 Constrain_Integer
(Def_Id
, S
);
20927 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
20929 when E_Record_Type |
20932 E_Incomplete_Type
=>
20933 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20935 if Ekind
(Def_Id
) = E_Incomplete_Type
then
20936 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20939 when Private_Kind
=>
20940 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
20942 -- The base type may be private but Def_Id may be a full view
20945 if Is_Private_Type
(Def_Id
) then
20946 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
20949 -- In case of an invalid constraint prevent further processing
20950 -- since the type constructed is missing expected fields.
20952 if Etype
(Def_Id
) = Any_Type
then
20956 -- If the full view is that of a task with discriminants,
20957 -- we must constrain both the concurrent type and its
20958 -- corresponding record type. Otherwise we will just propagate
20959 -- the constraint to the full view, if available.
20961 if Present
(Full_View
(Subtype_Mark_Id
))
20962 and then Has_Discriminants
(Subtype_Mark_Id
)
20963 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
20966 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
20968 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
20969 Constrain_Concurrent
(Full_View_Id
, S
,
20970 Related_Nod
, Related_Id
, Suffix
);
20971 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
20972 Set_Full_View
(Def_Id
, Full_View_Id
);
20974 -- Introduce an explicit reference to the private subtype,
20975 -- to prevent scope anomalies in gigi if first use appears
20976 -- in a nested context, e.g. a later function body.
20977 -- Should this be generated in other contexts than a full
20978 -- type declaration?
20980 if Is_Itype
(Def_Id
)
20982 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
20984 Build_Itype_Reference
(Def_Id
, Parent
(P
));
20988 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
20991 when Concurrent_Kind
=>
20992 Constrain_Concurrent
(Def_Id
, S
,
20993 Related_Nod
, Related_Id
, Suffix
);
20996 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
20999 -- Size and Convention are always inherited from the base type
21001 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
21002 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
21006 end Process_Subtype
;
21008 --------------------------------------------
21009 -- Propagate_Default_Init_Cond_Attributes --
21010 --------------------------------------------
21012 procedure Propagate_Default_Init_Cond_Attributes
21013 (From_Typ
: Entity_Id
;
21014 To_Typ
: Entity_Id
;
21015 Parent_To_Derivation
: Boolean := False;
21016 Private_To_Full_View
: Boolean := False)
21018 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
);
21019 -- Remove the default initial condition procedure (if any) from the
21020 -- Subprograms_For_Type chain of type Typ.
21022 ----------------------------------------
21023 -- Remove_Default_Init_Cond_Procedure --
21024 ----------------------------------------
21026 procedure Remove_Default_Init_Cond_Procedure
(Typ
: Entity_Id
) is
21027 Subps
: constant Elist_Id
:= Subprograms_For_Type
(Typ
);
21028 Subp_Elmt
: Elmt_Id
;
21029 Subp_Id
: Entity_Id
;
21032 if Present
(Subps
) then
21033 Subp_Elmt
:= First_Elmt
(Subps
);
21034 while Present
(Subp_Elmt
) loop
21035 Subp_Id
:= Node
(Subp_Elmt
);
21037 if Is_Default_Init_Cond_Procedure
(Subp_Id
) then
21038 Remove_Elmt
(Subps
, Subp_Elmt
);
21042 Next_Elmt
(Subp_Elmt
);
21045 end Remove_Default_Init_Cond_Procedure
;
21049 Inherit_Procedure
: Boolean := False;
21051 -- Start of processing for Propagate_Default_Init_Cond_Attributes
21054 if Has_Default_Init_Cond
(From_Typ
) then
21056 -- A derived type inherits the attributes from its parent type
21058 if Parent_To_Derivation
then
21059 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
21061 -- A full view shares the attributes with its private view
21064 Set_Has_Default_Init_Cond
(To_Typ
);
21067 Inherit_Procedure
:= True;
21069 -- Due to the order of expansion, a derived private type is processed
21070 -- by two routines which both attempt to set the attributes related
21071 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
21072 -- Process_Full_View.
21075 -- type Parent_Typ is private
21076 -- with Default_Initial_Condition ...;
21078 -- type Parent_Typ is ...;
21081 -- with Pack; use Pack;
21082 -- package Pack_2 is
21083 -- type Deriv_Typ is private
21084 -- with Default_Initial_Condition ...;
21086 -- type Deriv_Typ is new Parent_Typ;
21089 -- When Build_Derived_Type operates, it sets the attributes on the
21090 -- full view without taking into account that the private view may
21091 -- define its own default initial condition procedure. This becomes
21092 -- apparent in Process_Full_View which must undo some of the work by
21093 -- Build_Derived_Type and propagate the attributes from the private
21094 -- to the full view.
21096 if Private_To_Full_View
then
21097 Set_Has_Inherited_Default_Init_Cond
(To_Typ
, False);
21098 Remove_Default_Init_Cond_Procedure
(To_Typ
);
21101 -- A type must inherit the default initial condition procedure from a
21102 -- parent type when the parent itself is inheriting the procedure or
21103 -- when it is defining one. This circuitry is also used when dealing
21104 -- with the private / full view of a type.
21106 elsif Has_Inherited_Default_Init_Cond
(From_Typ
)
21107 or (Parent_To_Derivation
21108 and Present
(Get_Pragma
21109 (From_Typ
, Pragma_Default_Initial_Condition
)))
21111 Set_Has_Inherited_Default_Init_Cond
(To_Typ
);
21112 Inherit_Procedure
:= True;
21115 if Inherit_Procedure
21116 and then No
(Default_Init_Cond_Procedure
(To_Typ
))
21118 Set_Default_Init_Cond_Procedure
21119 (To_Typ
, Default_Init_Cond_Procedure
(From_Typ
));
21121 end Propagate_Default_Init_Cond_Attributes
;
21123 -----------------------------
21124 -- Record_Type_Declaration --
21125 -----------------------------
21127 procedure Record_Type_Declaration
21132 Def
: constant Node_Id
:= Type_Definition
(N
);
21133 Is_Tagged
: Boolean;
21134 Tag_Comp
: Entity_Id
;
21137 -- These flags must be initialized before calling Process_Discriminants
21138 -- because this routine makes use of them.
21140 Set_Ekind
(T
, E_Record_Type
);
21142 Init_Size_Align
(T
);
21143 Set_Interfaces
(T
, No_Elist
);
21144 Set_Stored_Constraint
(T
, No_Elist
);
21145 Set_Default_SSO
(T
);
21149 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
21150 if Limited_Present
(Def
) then
21151 Check_SPARK_05_Restriction
("limited is not allowed", N
);
21154 if Abstract_Present
(Def
) then
21155 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
21158 -- The flag Is_Tagged_Type might have already been set by
21159 -- Find_Type_Name if it detected an error for declaration T. This
21160 -- arises in the case of private tagged types where the full view
21161 -- omits the word tagged.
21164 Tagged_Present
(Def
)
21165 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
21167 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
21170 Set_Is_Tagged_Type
(T
, True);
21171 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
21174 -- Type is abstract if full declaration carries keyword, or if
21175 -- previous partial view did.
21177 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
21178 or else Abstract_Present
(Def
));
21181 Check_SPARK_05_Restriction
("interface is not allowed", N
);
21184 Analyze_Interface_Declaration
(T
, Def
);
21186 if Present
(Discriminant_Specifications
(N
)) then
21188 ("interface types cannot have discriminants",
21189 Defining_Identifier
21190 (First
(Discriminant_Specifications
(N
))));
21194 -- First pass: if there are self-referential access components,
21195 -- create the required anonymous access type declarations, and if
21196 -- need be an incomplete type declaration for T itself.
21198 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
21200 if Ada_Version
>= Ada_2005
21201 and then Present
(Interface_List
(Def
))
21203 Check_Interfaces
(N
, Def
);
21206 Ifaces_List
: Elist_Id
;
21209 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21210 -- already in the parents.
21214 Ifaces_List
=> Ifaces_List
,
21215 Exclude_Parents
=> True);
21217 Set_Interfaces
(T
, Ifaces_List
);
21221 -- Records constitute a scope for the component declarations within.
21222 -- The scope is created prior to the processing of these declarations.
21223 -- Discriminants are processed first, so that they are visible when
21224 -- processing the other components. The Ekind of the record type itself
21225 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21227 -- Enter record scope
21231 -- If an incomplete or private type declaration was already given for
21232 -- the type, then this scope already exists, and the discriminants have
21233 -- been declared within. We must verify that the full declaration
21234 -- matches the incomplete one.
21236 Check_Or_Process_Discriminants
(N
, T
, Prev
);
21238 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
21239 Set_Has_Delayed_Freeze
(T
, True);
21241 -- For tagged types add a manually analyzed component corresponding
21242 -- to the component _tag, the corresponding piece of tree will be
21243 -- expanded as part of the freezing actions if it is not a CPP_Class.
21247 -- Do not add the tag unless we are in expansion mode
21249 if Expander_Active
then
21250 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
21251 Enter_Name
(Tag_Comp
);
21253 Set_Ekind
(Tag_Comp
, E_Component
);
21254 Set_Is_Tag
(Tag_Comp
);
21255 Set_Is_Aliased
(Tag_Comp
);
21256 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
21257 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
21258 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
21259 Init_Component_Location
(Tag_Comp
);
21261 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21262 -- implemented interfaces.
21264 if Has_Interfaces
(T
) then
21265 Add_Interface_Tag_Components
(N
, T
);
21269 Make_Class_Wide_Type
(T
);
21270 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
21273 -- We must suppress range checks when processing record components in
21274 -- the presence of discriminants, since we don't want spurious checks to
21275 -- be generated during their analysis, but Suppress_Range_Checks flags
21276 -- must be reset the after processing the record definition.
21278 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21279 -- couldn't we just use the normal range check suppression method here.
21280 -- That would seem cleaner ???
21282 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
21283 Set_Kill_Range_Checks
(T
, True);
21284 Record_Type_Definition
(Def
, Prev
);
21285 Set_Kill_Range_Checks
(T
, False);
21287 Record_Type_Definition
(Def
, Prev
);
21290 -- Exit from record scope
21294 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21295 -- the implemented interfaces and associate them an aliased entity.
21298 and then not Is_Empty_List
(Interface_List
(Def
))
21300 Derive_Progenitor_Subprograms
(T
, T
);
21303 Check_Function_Writable_Actuals
(N
);
21304 end Record_Type_Declaration
;
21306 ----------------------------
21307 -- Record_Type_Definition --
21308 ----------------------------
21310 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
21311 Component
: Entity_Id
;
21312 Ctrl_Components
: Boolean := False;
21313 Final_Storage_Only
: Boolean;
21317 if Ekind
(Prev_T
) = E_Incomplete_Type
then
21318 T
:= Full_View
(Prev_T
);
21323 -- In SPARK, tagged types and type extensions may only be declared in
21324 -- the specification of library unit packages.
21326 if Present
(Def
) and then Is_Tagged_Type
(T
) then
21332 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
21333 Typ
:= Parent
(Def
);
21336 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
21337 Typ
:= Parent
(Parent
(Def
));
21340 Ctxt
:= Parent
(Typ
);
21342 if Nkind
(Ctxt
) = N_Package_Body
21343 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
21345 Check_SPARK_05_Restriction
21346 ("type should be defined in package specification", Typ
);
21348 elsif Nkind
(Ctxt
) /= N_Package_Specification
21349 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
21351 Check_SPARK_05_Restriction
21352 ("type should be defined in library unit package", Typ
);
21357 Final_Storage_Only
:= not Is_Controlled_Active
(T
);
21359 -- Ada 2005: Check whether an explicit Limited is present in a derived
21360 -- type declaration.
21362 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
21363 and then Limited_Present
(Parent
(Def
))
21365 Set_Is_Limited_Record
(T
);
21368 -- If the component list of a record type is defined by the reserved
21369 -- word null and there is no discriminant part, then the record type has
21370 -- no components and all records of the type are null records (RM 3.7)
21371 -- This procedure is also called to process the extension part of a
21372 -- record extension, in which case the current scope may have inherited
21376 or else No
(Component_List
(Def
))
21377 or else Null_Present
(Component_List
(Def
))
21379 if not Is_Tagged_Type
(T
) then
21380 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
21384 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
21386 if Present
(Variant_Part
(Component_List
(Def
))) then
21387 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
21388 Analyze
(Variant_Part
(Component_List
(Def
)));
21392 -- After completing the semantic analysis of the record definition,
21393 -- record components, both new and inherited, are accessible. Set their
21394 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21395 -- whose Ekind may be void.
21397 Component
:= First_Entity
(Current_Scope
);
21398 while Present
(Component
) loop
21399 if Ekind
(Component
) = E_Void
21400 and then not Is_Itype
(Component
)
21402 Set_Ekind
(Component
, E_Component
);
21403 Init_Component_Location
(Component
);
21406 Propagate_Concurrent_Flags
(T
, Etype
(Component
));
21408 if Ekind
(Component
) /= E_Component
then
21411 -- Do not set Has_Controlled_Component on a class-wide equivalent
21412 -- type. See Make_CW_Equivalent_Type.
21414 elsif not Is_Class_Wide_Equivalent_Type
(T
)
21415 and then (Has_Controlled_Component
(Etype
(Component
))
21416 or else (Chars
(Component
) /= Name_uParent
21417 and then Is_Controlled_Active
21418 (Etype
(Component
))))
21420 Set_Has_Controlled_Component
(T
, True);
21421 Final_Storage_Only
:=
21423 and then Finalize_Storage_Only
(Etype
(Component
));
21424 Ctrl_Components
:= True;
21427 Next_Entity
(Component
);
21430 -- A Type is Finalize_Storage_Only only if all its controlled components
21433 if Ctrl_Components
then
21434 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
21437 -- Place reference to end record on the proper entity, which may
21438 -- be a partial view.
21440 if Present
(Def
) then
21441 Process_End_Label
(Def
, 'e', Prev_T
);
21443 end Record_Type_Definition
;
21445 ------------------------
21446 -- Replace_Components --
21447 ------------------------
21449 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
21450 function Process
(N
: Node_Id
) return Traverse_Result
;
21456 function Process
(N
: Node_Id
) return Traverse_Result
is
21460 if Nkind
(N
) = N_Discriminant_Specification
then
21461 Comp
:= First_Discriminant
(Typ
);
21462 while Present
(Comp
) loop
21463 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21464 Set_Defining_Identifier
(N
, Comp
);
21468 Next_Discriminant
(Comp
);
21471 elsif Nkind
(N
) = N_Component_Declaration
then
21472 Comp
:= First_Component
(Typ
);
21473 while Present
(Comp
) loop
21474 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21475 Set_Defining_Identifier
(N
, Comp
);
21479 Next_Component
(Comp
);
21486 procedure Replace
is new Traverse_Proc
(Process
);
21488 -- Start of processing for Replace_Components
21492 end Replace_Components
;
21494 -------------------------------
21495 -- Set_Completion_Referenced --
21496 -------------------------------
21498 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
21500 -- If in main unit, mark entity that is a completion as referenced,
21501 -- warnings go on the partial view when needed.
21503 if In_Extended_Main_Source_Unit
(E
) then
21504 Set_Referenced
(E
);
21506 end Set_Completion_Referenced
;
21508 ---------------------
21509 -- Set_Default_SSO --
21510 ---------------------
21512 procedure Set_Default_SSO
(T
: Entity_Id
) is
21514 case Opt
.Default_SSO
is
21518 Set_SSO_Set_Low_By_Default
(T
, True);
21520 Set_SSO_Set_High_By_Default
(T
, True);
21522 raise Program_Error
;
21524 end Set_Default_SSO
;
21526 ---------------------
21527 -- Set_Fixed_Range --
21528 ---------------------
21530 -- The range for fixed-point types is complicated by the fact that we
21531 -- do not know the exact end points at the time of the declaration. This
21532 -- is true for three reasons:
21534 -- A size clause may affect the fudging of the end-points.
21535 -- A small clause may affect the values of the end-points.
21536 -- We try to include the end-points if it does not affect the size.
21538 -- This means that the actual end-points must be established at the
21539 -- point when the type is frozen. Meanwhile, we first narrow the range
21540 -- as permitted (so that it will fit if necessary in a small specified
21541 -- size), and then build a range subtree with these narrowed bounds.
21542 -- Set_Fixed_Range constructs the range from real literal values, and
21543 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21545 -- The parent of this range is set to point to the entity so that it is
21546 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21547 -- other scalar types, which are just pointers to the range in the
21548 -- original tree, this would otherwise be an orphan).
21550 -- The tree is left unanalyzed. When the type is frozen, the processing
21551 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21552 -- analyzed, and uses this as an indication that it should complete
21553 -- work on the range (it will know the final small and size values).
21555 procedure Set_Fixed_Range
21561 S
: constant Node_Id
:=
21563 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
21564 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
21566 Set_Scalar_Range
(E
, S
);
21569 -- Before the freeze point, the bounds of a fixed point are universal
21570 -- and carry the corresponding type.
21572 Set_Etype
(Low_Bound
(S
), Universal_Real
);
21573 Set_Etype
(High_Bound
(S
), Universal_Real
);
21574 end Set_Fixed_Range
;
21576 ----------------------------------
21577 -- Set_Scalar_Range_For_Subtype --
21578 ----------------------------------
21580 procedure Set_Scalar_Range_For_Subtype
21581 (Def_Id
: Entity_Id
;
21585 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
21588 -- Defend against previous error
21590 if Nkind
(R
) = N_Error
then
21594 Set_Scalar_Range
(Def_Id
, R
);
21596 -- We need to link the range into the tree before resolving it so
21597 -- that types that are referenced, including importantly the subtype
21598 -- itself, are properly frozen (Freeze_Expression requires that the
21599 -- expression be properly linked into the tree). Of course if it is
21600 -- already linked in, then we do not disturb the current link.
21602 if No
(Parent
(R
)) then
21603 Set_Parent
(R
, Def_Id
);
21606 -- Reset the kind of the subtype during analysis of the range, to
21607 -- catch possible premature use in the bounds themselves.
21609 Set_Ekind
(Def_Id
, E_Void
);
21610 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
21611 Set_Ekind
(Def_Id
, Kind
);
21612 end Set_Scalar_Range_For_Subtype
;
21614 --------------------------------------------------------
21615 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21616 --------------------------------------------------------
21618 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21622 -- Make sure set if encountered during Expand_To_Stored_Constraint
21624 Set_Stored_Constraint
(E
, No_Elist
);
21626 -- Give it the right value
21628 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
21629 Set_Stored_Constraint
(E
,
21630 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
21632 end Set_Stored_Constraint_From_Discriminant_Constraint
;
21634 -------------------------------------
21635 -- Signed_Integer_Type_Declaration --
21636 -------------------------------------
21638 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
21639 Implicit_Base
: Entity_Id
;
21640 Base_Typ
: Entity_Id
;
21643 Errs
: Boolean := False;
21647 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
21648 -- Determine whether given bounds allow derivation from specified type
21650 procedure Check_Bound
(Expr
: Node_Id
);
21651 -- Check bound to make sure it is integral and static. If not, post
21652 -- appropriate error message and set Errs flag
21654 ---------------------
21655 -- Can_Derive_From --
21656 ---------------------
21658 -- Note we check both bounds against both end values, to deal with
21659 -- strange types like ones with a range of 0 .. -12341234.
21661 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
21662 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
21663 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
21665 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
21667 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
21668 end Can_Derive_From
;
21674 procedure Check_Bound
(Expr
: Node_Id
) is
21676 -- If a range constraint is used as an integer type definition, each
21677 -- bound of the range must be defined by a static expression of some
21678 -- integer type, but the two bounds need not have the same integer
21679 -- type (Negative bounds are allowed.) (RM 3.5.4)
21681 if not Is_Integer_Type
(Etype
(Expr
)) then
21683 ("integer type definition bounds must be of integer type", Expr
);
21686 elsif not Is_OK_Static_Expression
(Expr
) then
21687 Flag_Non_Static_Expr
21688 ("non-static expression used for integer type bound!", Expr
);
21691 -- The bounds are folded into literals, and we set their type to be
21692 -- universal, to avoid typing difficulties: we cannot set the type
21693 -- of the literal to the new type, because this would be a forward
21694 -- reference for the back end, and if the original type is user-
21695 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21698 if Is_Entity_Name
(Expr
) then
21699 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
21702 Set_Etype
(Expr
, Universal_Integer
);
21706 -- Start of processing for Signed_Integer_Type_Declaration
21709 -- Create an anonymous base type
21712 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
21714 -- Analyze and check the bounds, they can be of any integer type
21716 Lo
:= Low_Bound
(Def
);
21717 Hi
:= High_Bound
(Def
);
21719 -- Arbitrarily use Integer as the type if either bound had an error
21721 if Hi
= Error
or else Lo
= Error
then
21722 Base_Typ
:= Any_Integer
;
21723 Set_Error_Posted
(T
, True);
21725 -- Here both bounds are OK expressions
21728 Analyze_And_Resolve
(Lo
, Any_Integer
);
21729 Analyze_And_Resolve
(Hi
, Any_Integer
);
21735 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21736 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21739 -- Find type to derive from
21741 Lo_Val
:= Expr_Value
(Lo
);
21742 Hi_Val
:= Expr_Value
(Hi
);
21744 if Can_Derive_From
(Standard_Short_Short_Integer
) then
21745 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
21747 elsif Can_Derive_From
(Standard_Short_Integer
) then
21748 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
21750 elsif Can_Derive_From
(Standard_Integer
) then
21751 Base_Typ
:= Base_Type
(Standard_Integer
);
21753 elsif Can_Derive_From
(Standard_Long_Integer
) then
21754 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
21756 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
21757 Check_Restriction
(No_Long_Long_Integers
, Def
);
21758 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21761 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
21762 Error_Msg_N
("integer type definition bounds out of range", Def
);
21763 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
21764 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
21768 -- Complete both implicit base and declared first subtype entities. The
21769 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21770 -- are not clobbered when the signed integer type acts as a full view of
21773 Set_Etype
(Implicit_Base
, Base_Typ
);
21774 Set_Size_Info
(Implicit_Base
, Base_Typ
);
21775 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
21776 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
21777 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
21779 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
21780 Set_Etype
(T
, Implicit_Base
);
21781 Set_Size_Info
(T
, Implicit_Base
);
21782 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
21783 Set_Scalar_Range
(T
, Def
);
21784 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
21785 Set_Is_Constrained
(T
);
21786 end Signed_Integer_Type_Declaration
;