2014-09-18 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / resource.c
blob6acc71846b85395e024a49a7fe6c6bd2eeb746f3
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "flags.h"
31 #include "output.h"
32 #include "resource.h"
33 #include "except.h"
34 #include "insn-attr.h"
35 #include "params.h"
36 #include "df.h"
38 /* This structure is used to record liveness information at the targets or
39 fallthrough insns of branches. We will most likely need the information
40 at targets again, so save them in a hash table rather than recomputing them
41 each time. */
43 struct target_info
45 int uid; /* INSN_UID of target. */
46 struct target_info *next; /* Next info for same hash bucket. */
47 HARD_REG_SET live_regs; /* Registers live at target. */
48 int block; /* Basic block number containing target. */
49 int bb_tick; /* Generation count of basic block info. */
52 #define TARGET_HASH_PRIME 257
54 /* Indicates what resources are required at the beginning of the epilogue. */
55 static struct resources start_of_epilogue_needs;
57 /* Indicates what resources are required at function end. */
58 static struct resources end_of_function_needs;
60 /* Define the hash table itself. */
61 static struct target_info **target_hash_table = NULL;
63 /* For each basic block, we maintain a generation number of its basic
64 block info, which is updated each time we move an insn from the
65 target of a jump. This is the generation number indexed by block
66 number. */
68 static int *bb_ticks;
70 /* Marks registers possibly live at the current place being scanned by
71 mark_target_live_regs. Also used by update_live_status. */
73 static HARD_REG_SET current_live_regs;
75 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
76 Also only used by the next two functions. */
78 static HARD_REG_SET pending_dead_regs;
80 static void update_live_status (rtx, const_rtx, void *);
81 static int find_basic_block (rtx_insn *, int);
82 static rtx_insn *next_insn_no_annul (rtx_insn *);
83 static rtx_insn *find_dead_or_set_registers (rtx_insn *, struct resources*,
84 rtx *, int, struct resources,
85 struct resources);
87 /* Utility function called from mark_target_live_regs via note_stores.
88 It deadens any CLOBBERed registers and livens any SET registers. */
90 static void
91 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
93 int first_regno, last_regno;
94 int i;
96 if (!REG_P (dest)
97 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
98 return;
100 if (GET_CODE (dest) == SUBREG)
102 first_regno = subreg_regno (dest);
103 last_regno = first_regno + subreg_nregs (dest);
106 else
108 first_regno = REGNO (dest);
109 last_regno = END_HARD_REGNO (dest);
112 if (GET_CODE (x) == CLOBBER)
113 for (i = first_regno; i < last_regno; i++)
114 CLEAR_HARD_REG_BIT (current_live_regs, i);
115 else
116 for (i = first_regno; i < last_regno; i++)
118 SET_HARD_REG_BIT (current_live_regs, i);
119 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
123 /* Find the number of the basic block with correct live register
124 information that starts closest to INSN. Return -1 if we couldn't
125 find such a basic block or the beginning is more than
126 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
127 an unlimited search.
129 The delay slot filling code destroys the control-flow graph so,
130 instead of finding the basic block containing INSN, we search
131 backwards toward a BARRIER where the live register information is
132 correct. */
134 static int
135 find_basic_block (rtx_insn *insn, int search_limit)
137 /* Scan backwards to the previous BARRIER. Then see if we can find a
138 label that starts a basic block. Return the basic block number. */
139 for (insn = prev_nonnote_insn (insn);
140 insn && !BARRIER_P (insn) && search_limit != 0;
141 insn = prev_nonnote_insn (insn), --search_limit)
144 /* The closest BARRIER is too far away. */
145 if (search_limit == 0)
146 return -1;
148 /* The start of the function. */
149 else if (insn == 0)
150 return ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index;
152 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
153 anything other than a CODE_LABEL or note, we can't find this code. */
154 for (insn = next_nonnote_insn (insn);
155 insn && LABEL_P (insn);
156 insn = next_nonnote_insn (insn))
157 if (BLOCK_FOR_INSN (insn))
158 return BLOCK_FOR_INSN (insn)->index;
160 return -1;
163 /* Similar to next_insn, but ignores insns in the delay slots of
164 an annulled branch. */
166 static rtx_insn *
167 next_insn_no_annul (rtx_insn *insn)
169 if (insn)
171 /* If INSN is an annulled branch, skip any insns from the target
172 of the branch. */
173 if (JUMP_P (insn)
174 && INSN_ANNULLED_BRANCH_P (insn)
175 && NEXT_INSN (PREV_INSN (insn)) != insn)
177 rtx_insn *next = NEXT_INSN (insn);
179 while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next))
180 && INSN_FROM_TARGET_P (next))
182 insn = next;
183 next = NEXT_INSN (insn);
187 insn = NEXT_INSN (insn);
188 if (insn && NONJUMP_INSN_P (insn)
189 && GET_CODE (PATTERN (insn)) == SEQUENCE)
190 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
193 return insn;
196 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
197 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
198 is TRUE, resources used by the called routine will be included for
199 CALL_INSNs. */
201 void
202 mark_referenced_resources (rtx x, struct resources *res,
203 bool include_delayed_effects)
205 enum rtx_code code = GET_CODE (x);
206 int i, j;
207 unsigned int r;
208 const char *format_ptr;
210 /* Handle leaf items for which we set resource flags. Also, special-case
211 CALL, SET and CLOBBER operators. */
212 switch (code)
214 case CONST:
215 CASE_CONST_ANY:
216 case PC:
217 case SYMBOL_REF:
218 case LABEL_REF:
219 return;
221 case SUBREG:
222 if (!REG_P (SUBREG_REG (x)))
223 mark_referenced_resources (SUBREG_REG (x), res, false);
224 else
226 unsigned int regno = subreg_regno (x);
227 unsigned int last_regno = regno + subreg_nregs (x);
229 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
230 for (r = regno; r < last_regno; r++)
231 SET_HARD_REG_BIT (res->regs, r);
233 return;
235 case REG:
236 gcc_assert (HARD_REGISTER_P (x));
237 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
238 return;
240 case MEM:
241 /* If this memory shouldn't change, it really isn't referencing
242 memory. */
243 if (! MEM_READONLY_P (x))
244 res->memory = 1;
245 res->volatil |= MEM_VOLATILE_P (x);
247 /* Mark registers used to access memory. */
248 mark_referenced_resources (XEXP (x, 0), res, false);
249 return;
251 case CC0:
252 res->cc = 1;
253 return;
255 case UNSPEC_VOLATILE:
256 case TRAP_IF:
257 case ASM_INPUT:
258 /* Traditional asm's are always volatile. */
259 res->volatil = 1;
260 break;
262 case ASM_OPERANDS:
263 res->volatil |= MEM_VOLATILE_P (x);
265 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
266 We can not just fall through here since then we would be confused
267 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
268 traditional asms unlike their normal usage. */
270 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
271 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
272 return;
274 case CALL:
275 /* The first operand will be a (MEM (xxx)) but doesn't really reference
276 memory. The second operand may be referenced, though. */
277 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
278 mark_referenced_resources (XEXP (x, 1), res, false);
279 return;
281 case SET:
282 /* Usually, the first operand of SET is set, not referenced. But
283 registers used to access memory are referenced. SET_DEST is
284 also referenced if it is a ZERO_EXTRACT. */
286 mark_referenced_resources (SET_SRC (x), res, false);
288 x = SET_DEST (x);
289 if (GET_CODE (x) == ZERO_EXTRACT
290 || GET_CODE (x) == STRICT_LOW_PART)
291 mark_referenced_resources (x, res, false);
292 else if (GET_CODE (x) == SUBREG)
293 x = SUBREG_REG (x);
294 if (MEM_P (x))
295 mark_referenced_resources (XEXP (x, 0), res, false);
296 return;
298 case CLOBBER:
299 return;
301 case CALL_INSN:
302 if (include_delayed_effects)
304 /* A CALL references memory, the frame pointer if it exists, the
305 stack pointer, any global registers and any registers given in
306 USE insns immediately in front of the CALL.
308 However, we may have moved some of the parameter loading insns
309 into the delay slot of this CALL. If so, the USE's for them
310 don't count and should be skipped. */
311 rtx_insn *insn = PREV_INSN (as_a <rtx_insn *> (x));
312 rtx_sequence *sequence = 0;
313 int seq_size = 0;
314 int i;
316 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
317 if (NEXT_INSN (insn) != x)
319 sequence = as_a <rtx_sequence *> (PATTERN (NEXT_INSN (insn)));
320 seq_size = sequence->len ();
321 gcc_assert (GET_CODE (sequence) == SEQUENCE);
324 res->memory = 1;
325 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
326 if (frame_pointer_needed)
328 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
329 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
330 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
331 #endif
334 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
335 if (global_regs[i])
336 SET_HARD_REG_BIT (res->regs, i);
338 /* Check for a REG_SETJMP. If it exists, then we must
339 assume that this call can need any register.
341 This is done to be more conservative about how we handle setjmp.
342 We assume that they both use and set all registers. Using all
343 registers ensures that a register will not be considered dead
344 just because it crosses a setjmp call. A register should be
345 considered dead only if the setjmp call returns nonzero. */
346 if (find_reg_note (x, REG_SETJMP, NULL))
347 SET_HARD_REG_SET (res->regs);
350 rtx link;
352 for (link = CALL_INSN_FUNCTION_USAGE (x);
353 link;
354 link = XEXP (link, 1))
355 if (GET_CODE (XEXP (link, 0)) == USE)
357 for (i = 1; i < seq_size; i++)
359 rtx slot_pat = PATTERN (sequence->element (i));
360 if (GET_CODE (slot_pat) == SET
361 && rtx_equal_p (SET_DEST (slot_pat),
362 XEXP (XEXP (link, 0), 0)))
363 break;
365 if (i >= seq_size)
366 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
367 res, false);
372 /* ... fall through to other INSN processing ... */
374 case INSN:
375 case JUMP_INSN:
377 if (GET_CODE (PATTERN (x)) == COND_EXEC)
378 /* In addition to the usual references, also consider all outputs
379 as referenced, to compensate for mark_set_resources treating
380 them as killed. This is similar to ZERO_EXTRACT / STRICT_LOW_PART
381 handling, execpt that we got a partial incidence instead of a partial
382 width. */
383 mark_set_resources (x, res, 0,
384 include_delayed_effects
385 ? MARK_SRC_DEST_CALL : MARK_SRC_DEST);
387 #ifdef INSN_REFERENCES_ARE_DELAYED
388 if (! include_delayed_effects
389 && INSN_REFERENCES_ARE_DELAYED (as_a <rtx_insn *> (x)))
390 return;
391 #endif
393 /* No special processing, just speed up. */
394 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
395 return;
397 default:
398 break;
401 /* Process each sub-expression and flag what it needs. */
402 format_ptr = GET_RTX_FORMAT (code);
403 for (i = 0; i < GET_RTX_LENGTH (code); i++)
404 switch (*format_ptr++)
406 case 'e':
407 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
408 break;
410 case 'E':
411 for (j = 0; j < XVECLEN (x, i); j++)
412 mark_referenced_resources (XVECEXP (x, i, j), res,
413 include_delayed_effects);
414 break;
418 /* A subroutine of mark_target_live_regs. Search forward from TARGET
419 looking for registers that are set before they are used. These are dead.
420 Stop after passing a few conditional jumps, and/or a small
421 number of unconditional branches. */
423 static rtx_insn *
424 find_dead_or_set_registers (rtx_insn *target, struct resources *res,
425 rtx *jump_target, int jump_count,
426 struct resources set, struct resources needed)
428 HARD_REG_SET scratch;
429 rtx_insn *insn;
430 rtx_insn *next_insn;
431 rtx_insn *jump_insn = 0;
432 int i;
434 for (insn = target; insn; insn = next_insn)
436 rtx_insn *this_jump_insn = insn;
438 next_insn = NEXT_INSN (insn);
440 /* If this instruction can throw an exception, then we don't
441 know where we might end up next. That means that we have to
442 assume that whatever we have already marked as live really is
443 live. */
444 if (can_throw_internal (insn))
445 break;
447 switch (GET_CODE (insn))
449 case CODE_LABEL:
450 /* After a label, any pending dead registers that weren't yet
451 used can be made dead. */
452 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
453 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
454 CLEAR_HARD_REG_SET (pending_dead_regs);
456 continue;
458 case BARRIER:
459 case NOTE:
460 continue;
462 case INSN:
463 if (GET_CODE (PATTERN (insn)) == USE)
465 /* If INSN is a USE made by update_block, we care about the
466 underlying insn. Any registers set by the underlying insn
467 are live since the insn is being done somewhere else. */
468 if (INSN_P (XEXP (PATTERN (insn), 0)))
469 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
470 MARK_SRC_DEST_CALL);
472 /* All other USE insns are to be ignored. */
473 continue;
475 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
476 continue;
477 else if (rtx_sequence *seq =
478 dyn_cast <rtx_sequence *> (PATTERN (insn)))
480 /* An unconditional jump can be used to fill the delay slot
481 of a call, so search for a JUMP_INSN in any position. */
482 for (i = 0; i < seq->len (); i++)
484 this_jump_insn = seq->insn (i);
485 if (JUMP_P (this_jump_insn))
486 break;
490 default:
491 break;
494 if (JUMP_P (this_jump_insn))
496 if (jump_count++ < 10)
498 if (any_uncondjump_p (this_jump_insn)
499 || ANY_RETURN_P (PATTERN (this_jump_insn)))
501 rtx lab_or_return = JUMP_LABEL (this_jump_insn);
502 if (ANY_RETURN_P (lab_or_return))
503 next_insn = NULL;
504 else
505 next_insn = as_a <rtx_insn *> (lab_or_return);
506 if (jump_insn == 0)
508 jump_insn = insn;
509 if (jump_target)
510 *jump_target = JUMP_LABEL (this_jump_insn);
513 else if (any_condjump_p (this_jump_insn))
515 struct resources target_set, target_res;
516 struct resources fallthrough_res;
518 /* We can handle conditional branches here by following
519 both paths, and then IOR the results of the two paths
520 together, which will give us registers that are dead
521 on both paths. Since this is expensive, we give it
522 a much higher cost than unconditional branches. The
523 cost was chosen so that we will follow at most 1
524 conditional branch. */
526 jump_count += 4;
527 if (jump_count >= 10)
528 break;
530 mark_referenced_resources (insn, &needed, true);
532 /* For an annulled branch, mark_set_resources ignores slots
533 filled by instructions from the target. This is correct
534 if the branch is not taken. Since we are following both
535 paths from the branch, we must also compute correct info
536 if the branch is taken. We do this by inverting all of
537 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
538 and then inverting the INSN_FROM_TARGET_P bits again. */
540 if (GET_CODE (PATTERN (insn)) == SEQUENCE
541 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
543 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
544 for (i = 1; i < seq->len (); i++)
545 INSN_FROM_TARGET_P (seq->element (i))
546 = ! INSN_FROM_TARGET_P (seq->element (i));
548 target_set = set;
549 mark_set_resources (insn, &target_set, 0,
550 MARK_SRC_DEST_CALL);
552 for (i = 1; i < seq->len (); i++)
553 INSN_FROM_TARGET_P (seq->element (i))
554 = ! INSN_FROM_TARGET_P (seq->element (i));
556 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
558 else
560 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
561 target_set = set;
564 target_res = *res;
565 COPY_HARD_REG_SET (scratch, target_set.regs);
566 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
567 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
569 fallthrough_res = *res;
570 COPY_HARD_REG_SET (scratch, set.regs);
571 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
572 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
574 if (!ANY_RETURN_P (JUMP_LABEL (this_jump_insn)))
575 find_dead_or_set_registers (JUMP_LABEL_AS_INSN (this_jump_insn),
576 &target_res, 0, jump_count,
577 target_set, needed);
578 find_dead_or_set_registers (next_insn,
579 &fallthrough_res, 0, jump_count,
580 set, needed);
581 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
582 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
583 break;
585 else
586 break;
588 else
590 /* Don't try this optimization if we expired our jump count
591 above, since that would mean there may be an infinite loop
592 in the function being compiled. */
593 jump_insn = 0;
594 break;
598 mark_referenced_resources (insn, &needed, true);
599 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
601 COPY_HARD_REG_SET (scratch, set.regs);
602 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
603 AND_COMPL_HARD_REG_SET (res->regs, scratch);
606 return jump_insn;
609 /* Given X, a part of an insn, and a pointer to a `struct resource',
610 RES, indicate which resources are modified by the insn. If
611 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
612 set by the called routine.
614 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
615 objects are being referenced instead of set.
617 We never mark the insn as modifying the condition code unless it explicitly
618 SETs CC0 even though this is not totally correct. The reason for this is
619 that we require a SET of CC0 to immediately precede the reference to CC0.
620 So if some other insn sets CC0 as a side-effect, we know it cannot affect
621 our computation and thus may be placed in a delay slot. */
623 void
624 mark_set_resources (rtx x, struct resources *res, int in_dest,
625 enum mark_resource_type mark_type)
627 enum rtx_code code;
628 int i, j;
629 unsigned int r;
630 const char *format_ptr;
632 restart:
634 code = GET_CODE (x);
636 switch (code)
638 case NOTE:
639 case BARRIER:
640 case CODE_LABEL:
641 case USE:
642 CASE_CONST_ANY:
643 case LABEL_REF:
644 case SYMBOL_REF:
645 case CONST:
646 case PC:
647 /* These don't set any resources. */
648 return;
650 case CC0:
651 if (in_dest)
652 res->cc = 1;
653 return;
655 case CALL_INSN:
656 /* Called routine modifies the condition code, memory, any registers
657 that aren't saved across calls, global registers and anything
658 explicitly CLOBBERed immediately after the CALL_INSN. */
660 if (mark_type == MARK_SRC_DEST_CALL)
662 rtx_call_insn *call_insn = as_a <rtx_call_insn *> (x);
663 rtx link;
664 HARD_REG_SET regs;
666 res->cc = res->memory = 1;
668 get_call_reg_set_usage (call_insn, &regs, regs_invalidated_by_call);
669 IOR_HARD_REG_SET (res->regs, regs);
671 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
672 link; link = XEXP (link, 1))
673 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
674 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
675 MARK_SRC_DEST);
677 /* Check for a REG_SETJMP. If it exists, then we must
678 assume that this call can clobber any register. */
679 if (find_reg_note (call_insn, REG_SETJMP, NULL))
680 SET_HARD_REG_SET (res->regs);
683 /* ... and also what its RTL says it modifies, if anything. */
685 case JUMP_INSN:
686 case INSN:
688 /* An insn consisting of just a CLOBBER (or USE) is just for flow
689 and doesn't actually do anything, so we ignore it. */
691 #ifdef INSN_SETS_ARE_DELAYED
692 if (mark_type != MARK_SRC_DEST_CALL
693 && INSN_SETS_ARE_DELAYED (as_a <rtx_insn *> (x)))
694 return;
695 #endif
697 x = PATTERN (x);
698 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
699 goto restart;
700 return;
702 case SET:
703 /* If the source of a SET is a CALL, this is actually done by
704 the called routine. So only include it if we are to include the
705 effects of the calling routine. */
707 mark_set_resources (SET_DEST (x), res,
708 (mark_type == MARK_SRC_DEST_CALL
709 || GET_CODE (SET_SRC (x)) != CALL),
710 mark_type);
712 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
713 return;
715 case CLOBBER:
716 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
717 return;
719 case SEQUENCE:
721 rtx_sequence *seq = as_a <rtx_sequence *> (x);
722 rtx control = seq->element (0);
723 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
725 mark_set_resources (control, res, 0, mark_type);
726 for (i = seq->len () - 1; i >= 0; --i)
728 rtx elt = seq->element (i);
729 if (!annul_p && INSN_FROM_TARGET_P (elt))
730 mark_set_resources (elt, res, 0, mark_type);
733 return;
735 case POST_INC:
736 case PRE_INC:
737 case POST_DEC:
738 case PRE_DEC:
739 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
740 return;
742 case PRE_MODIFY:
743 case POST_MODIFY:
744 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
745 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
746 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
747 return;
749 case SIGN_EXTRACT:
750 case ZERO_EXTRACT:
751 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
752 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
753 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
754 return;
756 case MEM:
757 if (in_dest)
759 res->memory = 1;
760 res->volatil |= MEM_VOLATILE_P (x);
763 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
764 return;
766 case SUBREG:
767 if (in_dest)
769 if (!REG_P (SUBREG_REG (x)))
770 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
771 else
773 unsigned int regno = subreg_regno (x);
774 unsigned int last_regno = regno + subreg_nregs (x);
776 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
777 for (r = regno; r < last_regno; r++)
778 SET_HARD_REG_BIT (res->regs, r);
781 return;
783 case REG:
784 if (in_dest)
786 gcc_assert (HARD_REGISTER_P (x));
787 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
789 return;
791 case UNSPEC_VOLATILE:
792 case ASM_INPUT:
793 /* Traditional asm's are always volatile. */
794 res->volatil = 1;
795 return;
797 case TRAP_IF:
798 res->volatil = 1;
799 break;
801 case ASM_OPERANDS:
802 res->volatil |= MEM_VOLATILE_P (x);
804 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
805 We can not just fall through here since then we would be confused
806 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
807 traditional asms unlike their normal usage. */
809 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
810 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
811 MARK_SRC_DEST);
812 return;
814 default:
815 break;
818 /* Process each sub-expression and flag what it needs. */
819 format_ptr = GET_RTX_FORMAT (code);
820 for (i = 0; i < GET_RTX_LENGTH (code); i++)
821 switch (*format_ptr++)
823 case 'e':
824 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
825 break;
827 case 'E':
828 for (j = 0; j < XVECLEN (x, i); j++)
829 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
830 break;
834 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
836 static bool
837 return_insn_p (const_rtx insn)
839 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
840 return true;
842 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
843 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
845 return false;
848 /* Set the resources that are live at TARGET.
850 If TARGET is zero, we refer to the end of the current function and can
851 return our precomputed value.
853 Otherwise, we try to find out what is live by consulting the basic block
854 information. This is tricky, because we must consider the actions of
855 reload and jump optimization, which occur after the basic block information
856 has been computed.
858 Accordingly, we proceed as follows::
860 We find the previous BARRIER and look at all immediately following labels
861 (with no intervening active insns) to see if any of them start a basic
862 block. If we hit the start of the function first, we use block 0.
864 Once we have found a basic block and a corresponding first insn, we can
865 accurately compute the live status (by starting at a label following a
866 BARRIER, we are immune to actions taken by reload and jump.) Then we
867 scan all insns between that point and our target. For each CLOBBER (or
868 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
869 registers are dead. For a SET, mark them as live.
871 We have to be careful when using REG_DEAD notes because they are not
872 updated by such things as find_equiv_reg. So keep track of registers
873 marked as dead that haven't been assigned to, and mark them dead at the
874 next CODE_LABEL since reload and jump won't propagate values across labels.
876 If we cannot find the start of a basic block (should be a very rare
877 case, if it can happen at all), mark everything as potentially live.
879 Next, scan forward from TARGET looking for things set or clobbered
880 before they are used. These are not live.
882 Because we can be called many times on the same target, save our results
883 in a hash table indexed by INSN_UID. This is only done if the function
884 init_resource_info () was invoked before we are called. */
886 void
887 mark_target_live_regs (rtx_insn *insns, rtx target_maybe_return, struct resources *res)
889 int b = -1;
890 unsigned int i;
891 struct target_info *tinfo = NULL;
892 rtx_insn *insn;
893 rtx jump_insn = 0;
894 rtx jump_target;
895 HARD_REG_SET scratch;
896 struct resources set, needed;
898 /* Handle end of function. */
899 if (target_maybe_return == 0 || ANY_RETURN_P (target_maybe_return))
901 *res = end_of_function_needs;
902 return;
905 /* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an
906 instruction. */
907 rtx_insn *target = as_a <rtx_insn *> (target_maybe_return);
909 /* Handle return insn. */
910 if (return_insn_p (target))
912 *res = end_of_function_needs;
913 mark_referenced_resources (target, res, false);
914 return;
917 /* We have to assume memory is needed, but the CC isn't. */
918 res->memory = 1;
919 res->volatil = 0;
920 res->cc = 0;
922 /* See if we have computed this value already. */
923 if (target_hash_table != NULL)
925 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
926 tinfo; tinfo = tinfo->next)
927 if (tinfo->uid == INSN_UID (target))
928 break;
930 /* Start by getting the basic block number. If we have saved
931 information, we can get it from there unless the insn at the
932 start of the basic block has been deleted. */
933 if (tinfo && tinfo->block != -1
934 && ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, tinfo->block))->deleted ())
935 b = tinfo->block;
938 if (b == -1)
939 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
941 if (target_hash_table != NULL)
943 if (tinfo)
945 /* If the information is up-to-date, use it. Otherwise, we will
946 update it below. */
947 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
949 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
950 return;
953 else
955 /* Allocate a place to put our results and chain it into the
956 hash table. */
957 tinfo = XNEW (struct target_info);
958 tinfo->uid = INSN_UID (target);
959 tinfo->block = b;
960 tinfo->next
961 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
962 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
966 CLEAR_HARD_REG_SET (pending_dead_regs);
968 /* If we found a basic block, get the live registers from it and update
969 them with anything set or killed between its start and the insn before
970 TARGET; this custom life analysis is really about registers so we need
971 to use the LR problem. Otherwise, we must assume everything is live. */
972 if (b != -1)
974 regset regs_live = DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun, b));
975 rtx_insn *start_insn, *stop_insn;
977 /* Compute hard regs live at start of block. */
978 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
980 /* Get starting and ending insn, handling the case where each might
981 be a SEQUENCE. */
982 start_insn = (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index ?
983 insns : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, b)));
984 stop_insn = target;
986 if (NONJUMP_INSN_P (start_insn)
987 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
988 start_insn = as_a <rtx_sequence *> (PATTERN (start_insn))->insn (0);
990 if (NONJUMP_INSN_P (stop_insn)
991 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
992 stop_insn = next_insn (PREV_INSN (stop_insn));
994 for (insn = start_insn; insn != stop_insn;
995 insn = next_insn_no_annul (insn))
997 rtx link;
998 rtx_insn *real_insn = insn;
999 enum rtx_code code = GET_CODE (insn);
1001 if (DEBUG_INSN_P (insn))
1002 continue;
1004 /* If this insn is from the target of a branch, it isn't going to
1005 be used in the sequel. If it is used in both cases, this
1006 test will not be true. */
1007 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1008 && INSN_FROM_TARGET_P (insn))
1009 continue;
1011 /* If this insn is a USE made by update_block, we care about the
1012 underlying insn. */
1013 if (code == INSN
1014 && GET_CODE (PATTERN (insn)) == USE
1015 && INSN_P (XEXP (PATTERN (insn), 0)))
1016 real_insn = as_a <rtx_insn *> (XEXP (PATTERN (insn), 0));
1018 if (CALL_P (real_insn))
1020 /* Values in call-clobbered registers survive a COND_EXEC CALL
1021 if that is not executed; this matters for resoure use because
1022 they may be used by a complementarily (or more strictly)
1023 predicated instruction, or if the CALL is NORETURN. */
1024 if (GET_CODE (PATTERN (real_insn)) != COND_EXEC)
1026 HARD_REG_SET regs_invalidated_by_this_call;
1027 get_call_reg_set_usage (real_insn,
1028 &regs_invalidated_by_this_call,
1029 regs_invalidated_by_call);
1030 /* CALL clobbers all call-used regs that aren't fixed except
1031 sp, ap, and fp. Do this before setting the result of the
1032 call live. */
1033 AND_COMPL_HARD_REG_SET (current_live_regs,
1034 regs_invalidated_by_this_call);
1037 /* A CALL_INSN sets any global register live, since it may
1038 have been modified by the call. */
1039 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1040 if (global_regs[i])
1041 SET_HARD_REG_BIT (current_live_regs, i);
1044 /* Mark anything killed in an insn to be deadened at the next
1045 label. Ignore USE insns; the only REG_DEAD notes will be for
1046 parameters. But they might be early. A CALL_INSN will usually
1047 clobber registers used for parameters. It isn't worth bothering
1048 with the unlikely case when it won't. */
1049 if ((NONJUMP_INSN_P (real_insn)
1050 && GET_CODE (PATTERN (real_insn)) != USE
1051 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1052 || JUMP_P (real_insn)
1053 || CALL_P (real_insn))
1055 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1056 if (REG_NOTE_KIND (link) == REG_DEAD
1057 && REG_P (XEXP (link, 0))
1058 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1059 add_to_hard_reg_set (&pending_dead_regs,
1060 GET_MODE (XEXP (link, 0)),
1061 REGNO (XEXP (link, 0)));
1063 note_stores (PATTERN (real_insn), update_live_status, NULL);
1065 /* If any registers were unused after this insn, kill them.
1066 These notes will always be accurate. */
1067 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1068 if (REG_NOTE_KIND (link) == REG_UNUSED
1069 && REG_P (XEXP (link, 0))
1070 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1071 remove_from_hard_reg_set (&current_live_regs,
1072 GET_MODE (XEXP (link, 0)),
1073 REGNO (XEXP (link, 0)));
1076 else if (LABEL_P (real_insn))
1078 basic_block bb;
1080 /* A label clobbers the pending dead registers since neither
1081 reload nor jump will propagate a value across a label. */
1082 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1083 CLEAR_HARD_REG_SET (pending_dead_regs);
1085 /* We must conservatively assume that all registers that used
1086 to be live here still are. The fallthrough edge may have
1087 left a live register uninitialized. */
1088 bb = BLOCK_FOR_INSN (real_insn);
1089 if (bb)
1091 HARD_REG_SET extra_live;
1093 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1094 IOR_HARD_REG_SET (current_live_regs, extra_live);
1098 /* The beginning of the epilogue corresponds to the end of the
1099 RTL chain when there are no epilogue insns. Certain resources
1100 are implicitly required at that point. */
1101 else if (NOTE_P (real_insn)
1102 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1103 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1106 COPY_HARD_REG_SET (res->regs, current_live_regs);
1107 if (tinfo != NULL)
1109 tinfo->block = b;
1110 tinfo->bb_tick = bb_ticks[b];
1113 else
1114 /* We didn't find the start of a basic block. Assume everything
1115 in use. This should happen only extremely rarely. */
1116 SET_HARD_REG_SET (res->regs);
1118 CLEAR_RESOURCE (&set);
1119 CLEAR_RESOURCE (&needed);
1121 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1122 set, needed);
1124 /* If we hit an unconditional branch, we have another way of finding out
1125 what is live: we can see what is live at the branch target and include
1126 anything used but not set before the branch. We add the live
1127 resources found using the test below to those found until now. */
1129 if (jump_insn)
1131 struct resources new_resources;
1132 rtx_insn *stop_insn = next_active_insn (jump_insn);
1134 if (!ANY_RETURN_P (jump_target))
1135 jump_target = next_active_insn (jump_target);
1136 mark_target_live_regs (insns, jump_target, &new_resources);
1137 CLEAR_RESOURCE (&set);
1138 CLEAR_RESOURCE (&needed);
1140 /* Include JUMP_INSN in the needed registers. */
1141 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1143 mark_referenced_resources (insn, &needed, true);
1145 COPY_HARD_REG_SET (scratch, needed.regs);
1146 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1147 IOR_HARD_REG_SET (new_resources.regs, scratch);
1149 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1152 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1155 if (tinfo != NULL)
1157 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1161 /* Initialize the resources required by mark_target_live_regs ().
1162 This should be invoked before the first call to mark_target_live_regs. */
1164 void
1165 init_resource_info (rtx_insn *epilogue_insn)
1167 int i;
1168 basic_block bb;
1170 /* Indicate what resources are required to be valid at the end of the current
1171 function. The condition code never is and memory always is.
1172 The stack pointer is needed unless EXIT_IGNORE_STACK is true
1173 and there is an epilogue that restores the original stack pointer
1174 from the frame pointer. Registers used to return the function value
1175 are needed. Registers holding global variables are needed. */
1177 end_of_function_needs.cc = 0;
1178 end_of_function_needs.memory = 1;
1179 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1181 if (frame_pointer_needed)
1183 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1184 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1185 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1186 #endif
1188 if (!(frame_pointer_needed
1189 && EXIT_IGNORE_STACK
1190 && epilogue_insn
1191 && !crtl->sp_is_unchanging))
1192 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1194 if (crtl->return_rtx != 0)
1195 mark_referenced_resources (crtl->return_rtx,
1196 &end_of_function_needs, true);
1198 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1199 if (global_regs[i]
1200 #ifdef EPILOGUE_USES
1201 || EPILOGUE_USES (i)
1202 #endif
1204 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1206 /* The registers required to be live at the end of the function are
1207 represented in the flow information as being dead just prior to
1208 reaching the end of the function. For example, the return of a value
1209 might be represented by a USE of the return register immediately
1210 followed by an unconditional jump to the return label where the
1211 return label is the end of the RTL chain. The end of the RTL chain
1212 is then taken to mean that the return register is live.
1214 This sequence is no longer maintained when epilogue instructions are
1215 added to the RTL chain. To reconstruct the original meaning, the
1216 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1217 point where these registers become live (start_of_epilogue_needs).
1218 If epilogue instructions are present, the registers set by those
1219 instructions won't have been processed by flow. Thus, those
1220 registers are additionally required at the end of the RTL chain
1221 (end_of_function_needs). */
1223 start_of_epilogue_needs = end_of_function_needs;
1225 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1227 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1228 MARK_SRC_DEST_CALL);
1229 if (return_insn_p (epilogue_insn))
1230 break;
1233 /* Allocate and initialize the tables used by mark_target_live_regs. */
1234 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1235 bb_ticks = XCNEWVEC (int, last_basic_block_for_fn (cfun));
1237 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1238 FOR_EACH_BB_FN (bb, cfun)
1239 if (LABEL_P (BB_HEAD (bb)))
1240 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1243 /* Free up the resources allocated to mark_target_live_regs (). This
1244 should be invoked after the last call to mark_target_live_regs (). */
1246 void
1247 free_resource_info (void)
1249 basic_block bb;
1251 if (target_hash_table != NULL)
1253 int i;
1255 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1257 struct target_info *ti = target_hash_table[i];
1259 while (ti)
1261 struct target_info *next = ti->next;
1262 free (ti);
1263 ti = next;
1267 free (target_hash_table);
1268 target_hash_table = NULL;
1271 if (bb_ticks != NULL)
1273 free (bb_ticks);
1274 bb_ticks = NULL;
1277 FOR_EACH_BB_FN (bb, cfun)
1278 if (LABEL_P (BB_HEAD (bb)))
1279 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1282 /* Clear any hashed information that we have stored for INSN. */
1284 void
1285 clear_hashed_info_for_insn (rtx_insn *insn)
1287 struct target_info *tinfo;
1289 if (target_hash_table != NULL)
1291 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1292 tinfo; tinfo = tinfo->next)
1293 if (tinfo->uid == INSN_UID (insn))
1294 break;
1296 if (tinfo)
1297 tinfo->block = -1;
1301 /* Increment the tick count for the basic block that contains INSN. */
1303 void
1304 incr_ticks_for_insn (rtx_insn *insn)
1306 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1308 if (b != -1)
1309 bb_ticks[b]++;
1312 /* Add TRIAL to the set of resources used at the end of the current
1313 function. */
1314 void
1315 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1317 mark_referenced_resources (trial, &end_of_function_needs,
1318 include_delayed_effects);