aix: Fix building fat library for AIX
[official-gcc.git] / gcc / expmed.cc
blob20f3a36f38cc14e32860834a32de381c02843e05
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2024 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Work around tree-optimization/91825. */
22 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "backend.h"
28 #include "target.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "predict.h"
32 #include "memmodel.h"
33 #include "tm_p.h"
34 #include "optabs.h"
35 #include "expmed.h"
36 #include "regs.h"
37 #include "emit-rtl.h"
38 #include "diagnostic-core.h"
39 #include "fold-const.h"
40 #include "stor-layout.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "expr.h"
44 #include "langhooks.h"
45 #include "tree-vector-builder.h"
46 #include "recog.h"
48 struct target_expmed default_target_expmed;
49 #if SWITCHABLE_TARGET
50 struct target_expmed *this_target_expmed = &default_target_expmed;
51 #endif
53 static bool store_integral_bit_field (rtx, opt_scalar_int_mode,
54 unsigned HOST_WIDE_INT,
55 unsigned HOST_WIDE_INT,
56 poly_uint64, poly_uint64,
57 machine_mode, rtx, bool, bool);
58 static void store_fixed_bit_field (rtx, opt_scalar_int_mode,
59 unsigned HOST_WIDE_INT,
60 unsigned HOST_WIDE_INT,
61 poly_uint64, poly_uint64,
62 rtx, scalar_int_mode, bool);
63 static void store_fixed_bit_field_1 (rtx, scalar_int_mode,
64 unsigned HOST_WIDE_INT,
65 unsigned HOST_WIDE_INT,
66 rtx, scalar_int_mode, bool);
67 static void store_split_bit_field (rtx, opt_scalar_int_mode,
68 unsigned HOST_WIDE_INT,
69 unsigned HOST_WIDE_INT,
70 poly_uint64, poly_uint64,
71 rtx, scalar_int_mode, bool);
72 static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode,
73 unsigned HOST_WIDE_INT,
74 unsigned HOST_WIDE_INT, int, rtx,
75 machine_mode, machine_mode, bool, bool);
76 static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode,
77 unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT, rtx, int, bool);
79 static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode,
80 unsigned HOST_WIDE_INT,
81 unsigned HOST_WIDE_INT, rtx, int, bool);
82 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
83 static rtx extract_split_bit_field (rtx, opt_scalar_int_mode,
84 unsigned HOST_WIDE_INT,
85 unsigned HOST_WIDE_INT, int, bool);
86 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
87 static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
88 static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
90 /* Return a constant integer mask value of mode MODE with BITSIZE ones
91 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
92 The mask is truncated if necessary to the width of mode MODE. The
93 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
95 static inline rtx
96 mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement)
98 return immed_wide_int_const
99 (wi::shifted_mask (bitpos, bitsize, complement,
100 GET_MODE_PRECISION (mode)), mode);
103 /* Test whether a value is zero of a power of two. */
104 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
105 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
107 struct init_expmed_rtl
109 rtx reg;
110 rtx plus;
111 rtx neg;
112 rtx mult;
113 rtx sdiv;
114 rtx udiv;
115 rtx sdiv_32;
116 rtx smod_32;
117 rtx wide_mult;
118 rtx wide_lshr;
119 rtx wide_trunc;
120 rtx shift;
121 rtx shift_mult;
122 rtx shift_add;
123 rtx shift_sub0;
124 rtx shift_sub1;
125 rtx zext;
126 rtx trunc;
128 rtx pow2[MAX_BITS_PER_WORD];
129 rtx cint[MAX_BITS_PER_WORD];
132 static void
133 init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode,
134 scalar_int_mode from_mode, bool speed)
136 int to_size, from_size;
137 rtx which;
139 to_size = GET_MODE_PRECISION (to_mode);
140 from_size = GET_MODE_PRECISION (from_mode);
142 /* Most partial integers have a precision less than the "full"
143 integer it requires for storage. In case one doesn't, for
144 comparison purposes here, reduce the bit size by one in that
145 case. */
146 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
147 && pow2p_hwi (to_size))
148 to_size --;
149 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
150 && pow2p_hwi (from_size))
151 from_size --;
153 /* Assume cost of zero-extend and sign-extend is the same. */
154 which = (to_size < from_size ? all->trunc : all->zext);
156 PUT_MODE (all->reg, from_mode);
157 set_convert_cost (to_mode, from_mode, speed,
158 set_src_cost (which, to_mode, speed));
159 /* Restore all->reg's mode. */
160 PUT_MODE (all->reg, to_mode);
163 static void
164 init_expmed_one_mode (struct init_expmed_rtl *all,
165 machine_mode mode, int speed)
167 int m, n, mode_bitsize;
168 machine_mode mode_from;
170 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
172 PUT_MODE (all->reg, mode);
173 PUT_MODE (all->plus, mode);
174 PUT_MODE (all->neg, mode);
175 PUT_MODE (all->mult, mode);
176 PUT_MODE (all->sdiv, mode);
177 PUT_MODE (all->udiv, mode);
178 PUT_MODE (all->sdiv_32, mode);
179 PUT_MODE (all->smod_32, mode);
180 PUT_MODE (all->wide_trunc, mode);
181 PUT_MODE (all->shift, mode);
182 PUT_MODE (all->shift_mult, mode);
183 PUT_MODE (all->shift_add, mode);
184 PUT_MODE (all->shift_sub0, mode);
185 PUT_MODE (all->shift_sub1, mode);
186 PUT_MODE (all->zext, mode);
187 PUT_MODE (all->trunc, mode);
189 set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
190 set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
191 set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
192 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
193 set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
195 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
196 <= 2 * add_cost (speed, mode)));
197 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
198 <= 4 * add_cost (speed, mode)));
200 set_shift_cost (speed, mode, 0, 0);
202 int cost = add_cost (speed, mode);
203 set_shiftadd_cost (speed, mode, 0, cost);
204 set_shiftsub0_cost (speed, mode, 0, cost);
205 set_shiftsub1_cost (speed, mode, 0, cost);
208 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
209 for (m = 1; m < n; m++)
211 XEXP (all->shift, 1) = all->cint[m];
212 XEXP (all->shift_mult, 1) = all->pow2[m];
214 set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
215 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
216 speed));
217 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
218 speed));
219 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
220 speed));
223 scalar_int_mode int_mode_to;
224 if (is_a <scalar_int_mode> (mode, &int_mode_to))
226 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
227 mode_from = (machine_mode)(mode_from + 1))
228 init_expmed_one_conv (all, int_mode_to,
229 as_a <scalar_int_mode> (mode_from), speed);
231 scalar_int_mode wider_mode;
232 if (GET_MODE_CLASS (int_mode_to) == MODE_INT
233 && GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode))
235 PUT_MODE (all->reg, mode);
236 PUT_MODE (all->zext, wider_mode);
237 PUT_MODE (all->wide_mult, wider_mode);
238 PUT_MODE (all->wide_lshr, wider_mode);
239 XEXP (all->wide_lshr, 1)
240 = gen_int_shift_amount (wider_mode, mode_bitsize);
242 set_mul_widen_cost (speed, wider_mode,
243 set_src_cost (all->wide_mult, wider_mode, speed));
244 set_mul_highpart_cost (speed, int_mode_to,
245 set_src_cost (all->wide_trunc,
246 int_mode_to, speed));
251 void
252 init_expmed (void)
254 struct init_expmed_rtl all;
255 machine_mode mode = QImode;
256 int m, speed;
258 memset (&all, 0, sizeof all);
259 for (m = 1; m < MAX_BITS_PER_WORD; m++)
261 all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
262 all.cint[m] = GEN_INT (m);
265 /* Avoid using hard regs in ways which may be unsupported. */
266 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
267 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
268 all.neg = gen_rtx_NEG (mode, all.reg);
269 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
270 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
271 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
272 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
273 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
274 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
275 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
276 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
277 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
278 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
279 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
280 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
281 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
282 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
283 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
285 for (speed = 0; speed < 2; speed++)
287 crtl->maybe_hot_insn_p = speed;
288 set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
290 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
291 mode = (machine_mode)(mode + 1))
292 init_expmed_one_mode (&all, mode, speed);
294 if (MIN_MODE_PARTIAL_INT != VOIDmode)
295 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
296 mode = (machine_mode)(mode + 1))
297 init_expmed_one_mode (&all, mode, speed);
299 if (MIN_MODE_VECTOR_INT != VOIDmode)
300 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
301 mode = (machine_mode)(mode + 1))
302 init_expmed_one_mode (&all, mode, speed);
305 if (alg_hash_used_p ())
307 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
308 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
310 else
311 set_alg_hash_used_p (true);
312 default_rtl_profile ();
314 ggc_free (all.trunc);
315 ggc_free (all.shift_sub1);
316 ggc_free (all.shift_sub0);
317 ggc_free (all.shift_add);
318 ggc_free (all.shift_mult);
319 ggc_free (all.shift);
320 ggc_free (all.wide_trunc);
321 ggc_free (all.wide_lshr);
322 ggc_free (all.wide_mult);
323 ggc_free (all.zext);
324 ggc_free (all.smod_32);
325 ggc_free (all.sdiv_32);
326 ggc_free (all.udiv);
327 ggc_free (all.sdiv);
328 ggc_free (all.mult);
329 ggc_free (all.neg);
330 ggc_free (all.plus);
331 ggc_free (all.reg);
334 /* Return an rtx representing minus the value of X.
335 MODE is the intended mode of the result,
336 useful if X is a CONST_INT. */
339 negate_rtx (machine_mode mode, rtx x)
341 rtx result = simplify_unary_operation (NEG, mode, x, mode);
343 if (result == 0)
344 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
346 return result;
349 /* Whether reverse storage order is supported on the target. */
350 static int reverse_storage_order_supported = -1;
352 /* Check whether reverse storage order is supported on the target. */
354 static void
355 check_reverse_storage_order_support (void)
357 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
359 reverse_storage_order_supported = 0;
360 sorry ("reverse scalar storage order");
362 else
363 reverse_storage_order_supported = 1;
366 /* Whether reverse FP storage order is supported on the target. */
367 static int reverse_float_storage_order_supported = -1;
369 /* Check whether reverse FP storage order is supported on the target. */
371 static void
372 check_reverse_float_storage_order_support (void)
374 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
376 reverse_float_storage_order_supported = 0;
377 sorry ("reverse floating-point scalar storage order");
379 else
380 reverse_float_storage_order_supported = 1;
383 /* Return an rtx representing value of X with reverse storage order.
384 MODE is the intended mode of the result,
385 useful if X is a CONST_INT. */
388 flip_storage_order (machine_mode mode, rtx x)
390 scalar_int_mode int_mode;
391 rtx result;
393 if (mode == QImode)
394 return x;
396 if (COMPLEX_MODE_P (mode))
398 rtx real = read_complex_part (x, false);
399 rtx imag = read_complex_part (x, true);
401 real = flip_storage_order (GET_MODE_INNER (mode), real);
402 imag = flip_storage_order (GET_MODE_INNER (mode), imag);
404 return gen_rtx_CONCAT (mode, real, imag);
407 if (UNLIKELY (reverse_storage_order_supported < 0))
408 check_reverse_storage_order_support ();
410 if (!is_a <scalar_int_mode> (mode, &int_mode))
412 if (FLOAT_MODE_P (mode)
413 && UNLIKELY (reverse_float_storage_order_supported < 0))
414 check_reverse_float_storage_order_support ();
416 if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode)
417 || !targetm.scalar_mode_supported_p (int_mode))
419 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
420 return x;
422 x = gen_lowpart (int_mode, x);
425 result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
426 if (result == 0)
427 result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
429 if (int_mode != mode)
430 result = gen_lowpart (mode, result);
432 return result;
435 /* If MODE is set, adjust bitfield memory MEM so that it points to the
436 first unit of mode MODE that contains a bitfield of size BITSIZE at
437 bit position BITNUM. If MODE is not set, return a BLKmode reference
438 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
439 of the field within the new memory. */
441 static rtx
442 narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode,
443 unsigned HOST_WIDE_INT bitsize,
444 unsigned HOST_WIDE_INT bitnum,
445 unsigned HOST_WIDE_INT *new_bitnum)
447 scalar_int_mode imode;
448 if (mode.exists (&imode))
450 unsigned int unit = GET_MODE_BITSIZE (imode);
451 *new_bitnum = bitnum % unit;
452 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
453 return adjust_bitfield_address (mem, imode, offset);
455 else
457 *new_bitnum = bitnum % BITS_PER_UNIT;
458 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
459 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
460 / BITS_PER_UNIT);
461 return adjust_bitfield_address_size (mem, BLKmode, offset, size);
465 /* The caller wants to perform insertion or extraction PATTERN on a
466 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
467 BITREGION_START and BITREGION_END are as for store_bit_field
468 and FIELDMODE is the natural mode of the field.
470 Search for a mode that is compatible with the memory access
471 restrictions and (where applicable) with a register insertion or
472 extraction. Return the new memory on success, storing the adjusted
473 bit position in *NEW_BITNUM. Return null otherwise. */
475 static rtx
476 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
477 rtx op0, HOST_WIDE_INT bitsize,
478 HOST_WIDE_INT bitnum,
479 poly_uint64 bitregion_start,
480 poly_uint64 bitregion_end,
481 machine_mode fieldmode,
482 unsigned HOST_WIDE_INT *new_bitnum)
484 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
485 bitregion_end, MEM_ALIGN (op0),
486 MEM_VOLATILE_P (op0));
487 scalar_int_mode best_mode;
488 if (iter.next_mode (&best_mode))
490 /* We can use a memory in BEST_MODE. See whether this is true for
491 any wider modes. All other things being equal, we prefer to
492 use the widest mode possible because it tends to expose more
493 CSE opportunities. */
494 if (!iter.prefer_smaller_modes ())
496 /* Limit the search to the mode required by the corresponding
497 register insertion or extraction instruction, if any. */
498 scalar_int_mode limit_mode = word_mode;
499 extraction_insn insn;
500 if (get_best_reg_extraction_insn (&insn, pattern,
501 GET_MODE_BITSIZE (best_mode),
502 fieldmode))
503 limit_mode = insn.field_mode;
505 scalar_int_mode wider_mode;
506 while (iter.next_mode (&wider_mode)
507 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
508 best_mode = wider_mode;
510 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
511 new_bitnum);
513 return NULL_RTX;
516 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
517 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
518 offset is then BITNUM / BITS_PER_UNIT. */
520 static bool
521 lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize,
522 machine_mode struct_mode)
524 poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode);
525 if (BYTES_BIG_ENDIAN)
526 return (multiple_p (bitnum, BITS_PER_UNIT)
527 && (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode))
528 || multiple_p (bitnum + bitsize,
529 regsize * BITS_PER_UNIT)));
530 else
531 return multiple_p (bitnum, regsize * BITS_PER_UNIT);
534 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
535 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
536 Return false if the access would touch memory outside the range
537 BITREGION_START to BITREGION_END for conformance to the C++ memory
538 model. */
540 static bool
541 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
542 unsigned HOST_WIDE_INT bitnum,
543 scalar_int_mode fieldmode,
544 poly_uint64 bitregion_start,
545 poly_uint64 bitregion_end)
547 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
549 /* -fstrict-volatile-bitfields must be enabled and we must have a
550 volatile MEM. */
551 if (!MEM_P (op0)
552 || !MEM_VOLATILE_P (op0)
553 || flag_strict_volatile_bitfields <= 0)
554 return false;
556 /* The bit size must not be larger than the field mode, and
557 the field mode must not be larger than a word. */
558 if (bitsize > modesize || modesize > BITS_PER_WORD)
559 return false;
561 /* Check for cases of unaligned fields that must be split. */
562 if (bitnum % modesize + bitsize > modesize)
563 return false;
565 /* The memory must be sufficiently aligned for a MODESIZE access.
566 This condition guarantees, that the memory access will not
567 touch anything after the end of the structure. */
568 if (MEM_ALIGN (op0) < modesize)
569 return false;
571 /* Check for cases where the C++ memory model applies. */
572 if (maybe_ne (bitregion_end, 0U)
573 && (maybe_lt (bitnum - bitnum % modesize, bitregion_start)
574 || maybe_gt (bitnum - bitnum % modesize + modesize - 1,
575 bitregion_end)))
576 return false;
578 return true;
581 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
582 bit number BITNUM can be treated as a simple value of mode MODE.
583 Store the byte offset in *BYTENUM if so. */
585 static bool
586 simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum,
587 machine_mode mode, poly_uint64 *bytenum)
589 return (MEM_P (op0)
590 && multiple_p (bitnum, BITS_PER_UNIT, bytenum)
591 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
592 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0))
593 || (multiple_p (bitnum, GET_MODE_ALIGNMENT (mode))
594 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
597 /* Try to use instruction INSV to store VALUE into a field of OP0.
598 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
599 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
600 are as for store_bit_field. */
602 static bool
603 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
604 opt_scalar_int_mode op0_mode,
605 unsigned HOST_WIDE_INT bitsize,
606 unsigned HOST_WIDE_INT bitnum,
607 rtx value, scalar_int_mode value_mode)
609 class expand_operand ops[4];
610 rtx value1;
611 rtx xop0 = op0;
612 rtx_insn *last = get_last_insn ();
613 bool copy_back = false;
615 scalar_int_mode op_mode = insv->field_mode;
616 unsigned int unit = GET_MODE_BITSIZE (op_mode);
617 if (bitsize == 0 || bitsize > unit)
618 return false;
620 if (MEM_P (xop0))
621 /* Get a reference to the first byte of the field. */
622 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
623 &bitnum);
624 else
626 /* Convert from counting within OP0 to counting in OP_MODE. */
627 if (BYTES_BIG_ENDIAN)
628 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
630 /* If xop0 is a register, we need it in OP_MODE
631 to make it acceptable to the format of insv. */
632 if (GET_CODE (xop0) == SUBREG)
634 /* If such a SUBREG can't be created, give up. */
635 if (!validate_subreg (op_mode, GET_MODE (SUBREG_REG (xop0)),
636 SUBREG_REG (xop0), SUBREG_BYTE (xop0)))
637 return false;
638 /* We can't just change the mode, because this might clobber op0,
639 and we will need the original value of op0 if insv fails. */
640 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0),
641 SUBREG_BYTE (xop0));
643 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
644 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
647 /* If the destination is a paradoxical subreg such that we need a
648 truncate to the inner mode, perform the insertion on a temporary and
649 truncate the result to the original destination. Note that we can't
650 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
651 X) 0)) is (reg:N X). */
652 if (GET_CODE (xop0) == SUBREG
653 && REG_P (SUBREG_REG (xop0))
654 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
655 op_mode))
657 rtx tem = gen_reg_rtx (op_mode);
658 emit_move_insn (tem, xop0);
659 xop0 = tem;
660 copy_back = true;
663 /* There are similar overflow check at the start of store_bit_field_1,
664 but that only check the situation where the field lies completely
665 outside the register, while there do have situation where the field
666 lies partialy in the register, we need to adjust bitsize for this
667 partial overflow situation. Without this fix, pr48335-2.c on big-endian
668 will broken on those arch support bit insert instruction, like arm, aarch64
669 etc. */
670 if (bitsize + bitnum > unit && bitnum < unit)
672 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
673 "destination object, data truncated into %wu-bit",
674 bitsize, unit - bitnum);
675 bitsize = unit - bitnum;
678 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
679 "backwards" from the size of the unit we are inserting into.
680 Otherwise, we count bits from the most significant on a
681 BYTES/BITS_BIG_ENDIAN machine. */
683 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
684 bitnum = unit - bitsize - bitnum;
686 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
687 value1 = value;
688 if (value_mode != op_mode)
690 if (GET_MODE_BITSIZE (value_mode) >= bitsize)
692 rtx tmp;
693 /* Optimization: Don't bother really extending VALUE
694 if it has all the bits we will actually use. However,
695 if we must narrow it, be sure we do it correctly. */
697 if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode))
699 tmp = simplify_subreg (op_mode, value1, value_mode, 0);
700 if (! tmp)
701 tmp = simplify_gen_subreg (op_mode,
702 force_reg (value_mode, value1),
703 value_mode, 0);
705 else
707 if (targetm.mode_rep_extended (op_mode, value_mode) != UNKNOWN)
708 tmp = simplify_gen_unary (TRUNCATE, op_mode,
709 value1, value_mode);
710 else
712 tmp = gen_lowpart_if_possible (op_mode, value1);
713 if (! tmp)
714 tmp = gen_lowpart (op_mode, force_reg (value_mode, value1));
717 value1 = tmp;
719 else if (CONST_INT_P (value))
720 value1 = gen_int_mode (INTVAL (value), op_mode);
721 else
722 /* Parse phase is supposed to make VALUE's data type
723 match that of the component reference, which is a type
724 at least as wide as the field; so VALUE should have
725 a mode that corresponds to that type. */
726 gcc_assert (CONSTANT_P (value));
729 create_fixed_operand (&ops[0], xop0);
730 create_integer_operand (&ops[1], bitsize);
731 create_integer_operand (&ops[2], bitnum);
732 create_input_operand (&ops[3], value1, op_mode);
733 if (maybe_expand_insn (insv->icode, 4, ops))
735 if (copy_back)
736 convert_move (op0, xop0, true);
737 return true;
739 delete_insns_since (last);
740 return false;
743 /* A subroutine of store_bit_field, with the same arguments. Return true
744 if the operation could be implemented.
746 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
747 no other way of implementing the operation. If FALLBACK_P is false,
748 return false instead.
750 if UNDEFINED_P is true then STR_RTX is undefined and may be set using
751 a subreg instead. */
753 static bool
754 store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
755 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
756 machine_mode fieldmode,
757 rtx value, bool reverse, bool fallback_p, bool undefined_p)
759 rtx op0 = str_rtx;
761 while (GET_CODE (op0) == SUBREG)
763 bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT;
764 op0 = SUBREG_REG (op0);
767 /* No action is needed if the target is a register and if the field
768 lies completely outside that register. This can occur if the source
769 code contains an out-of-bounds access to a small array. */
770 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
771 return true;
773 /* Use vec_set patterns for inserting parts of vectors whenever
774 available. */
775 machine_mode outermode = GET_MODE (op0);
776 scalar_mode innermode = GET_MODE_INNER (outermode);
777 poly_uint64 pos;
778 if (VECTOR_MODE_P (outermode)
779 && !MEM_P (op0)
780 && optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing
781 && fieldmode == innermode
782 && known_eq (bitsize, GET_MODE_PRECISION (innermode))
783 && multiple_p (bitnum, GET_MODE_PRECISION (innermode), &pos))
785 class expand_operand ops[3];
786 enum insn_code icode = optab_handler (vec_set_optab, outermode);
788 create_fixed_operand (&ops[0], op0);
789 create_input_operand (&ops[1], value, innermode);
790 create_integer_operand (&ops[2], pos);
791 if (maybe_expand_insn (icode, 3, ops))
792 return true;
795 /* If the target is a register, overwriting the entire object, or storing
796 a full-word or multi-word field can be done with just a SUBREG. */
797 if (!MEM_P (op0)
798 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)))
800 /* Use the subreg machinery either to narrow OP0 to the required
801 words or to cope with mode punning between equal-sized modes.
802 In the latter case, use subreg on the rhs side, not lhs. */
803 rtx sub;
804 poly_uint64 bytenum;
805 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0));
806 if (known_eq (bitnum, 0U)
807 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
809 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
810 if (sub)
812 if (reverse)
813 sub = flip_storage_order (GET_MODE (op0), sub);
814 emit_move_insn (op0, sub);
815 return true;
818 else if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum)
819 && (undefined_p
820 || (multiple_p (bitnum, regsize * BITS_PER_UNIT)
821 && multiple_p (bitsize, regsize * BITS_PER_UNIT)))
822 && known_ge (GET_MODE_BITSIZE (GET_MODE (op0)), bitsize))
824 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0), bytenum);
825 if (sub)
827 if (reverse)
828 value = flip_storage_order (fieldmode, value);
829 emit_move_insn (sub, value);
830 return true;
835 /* If the target is memory, storing any naturally aligned field can be
836 done with a simple store. For targets that support fast unaligned
837 memory, any naturally sized, unit aligned field can be done directly. */
838 poly_uint64 bytenum;
839 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode, &bytenum))
841 op0 = adjust_bitfield_address (op0, fieldmode, bytenum);
842 if (reverse)
843 value = flip_storage_order (fieldmode, value);
844 emit_move_insn (op0, value);
845 return true;
848 /* It's possible we'll need to handle other cases here for
849 polynomial bitnum and bitsize. */
851 /* From here on we need to be looking at a fixed-size insertion. */
852 unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant ();
853 unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant ();
855 /* Make sure we are playing with integral modes. Pun with subregs
856 if we aren't. This must come after the entire register case above,
857 since that case is valid for any mode. The following cases are only
858 valid for integral modes. */
859 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
860 scalar_int_mode imode;
861 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
863 if (MEM_P (op0))
864 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
865 0, MEM_SIZE (op0));
866 else if (!op0_mode.exists ())
868 if (ibitnum == 0
869 && known_eq (ibitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
870 && MEM_P (value)
871 && !reverse)
873 value = adjust_address (value, GET_MODE (op0), 0);
874 emit_move_insn (op0, value);
875 return true;
877 if (!fallback_p)
878 return false;
879 rtx temp = assign_stack_temp (GET_MODE (op0),
880 GET_MODE_SIZE (GET_MODE (op0)));
881 emit_move_insn (temp, op0);
882 store_bit_field_1 (temp, bitsize, bitnum, 0, 0, fieldmode, value,
883 reverse, fallback_p, undefined_p);
884 emit_move_insn (op0, temp);
885 return true;
887 else
888 op0 = gen_lowpart (op0_mode.require (), op0);
891 return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum,
892 bitregion_start, bitregion_end,
893 fieldmode, value, reverse, fallback_p);
896 /* Subroutine of store_bit_field_1, with the same arguments, except
897 that BITSIZE and BITNUM are constant. Handle cases specific to
898 integral modes. If OP0_MODE is defined, it is the mode of OP0,
899 otherwise OP0 is a BLKmode MEM. */
901 static bool
902 store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
903 unsigned HOST_WIDE_INT bitsize,
904 unsigned HOST_WIDE_INT bitnum,
905 poly_uint64 bitregion_start,
906 poly_uint64 bitregion_end,
907 machine_mode fieldmode,
908 rtx value, bool reverse, bool fallback_p)
910 /* Storing an lsb-aligned field in a register
911 can be done with a movstrict instruction. */
913 if (!MEM_P (op0)
914 && !reverse
915 && lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ())
916 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode))
917 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
919 class expand_operand ops[2];
920 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
921 rtx arg0 = op0;
922 unsigned HOST_WIDE_INT subreg_off;
924 if (GET_CODE (arg0) == SUBREG)
926 /* Else we've got some float mode source being extracted into
927 a different float mode destination -- this combination of
928 subregs results in Severe Tire Damage. */
929 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
930 || GET_MODE_CLASS (fieldmode) == MODE_INT
931 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
932 arg0 = SUBREG_REG (arg0);
935 subreg_off = bitnum / BITS_PER_UNIT;
936 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off)
937 /* STRICT_LOW_PART must have a non-paradoxical subreg as
938 operand. */
939 && !paradoxical_subreg_p (fieldmode, GET_MODE (arg0)))
941 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
943 create_fixed_operand (&ops[0], arg0);
944 /* Shrink the source operand to FIELDMODE. */
945 create_convert_operand_to (&ops[1], value, fieldmode, false);
946 if (maybe_expand_insn (icode, 2, ops))
947 return true;
951 /* Handle fields bigger than a word. */
953 if (bitsize > BITS_PER_WORD)
955 /* Here we transfer the words of the field
956 in the order least significant first.
957 This is because the most significant word is the one which may
958 be less than full.
959 However, only do that if the value is not BLKmode. */
961 const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
962 const int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
963 rtx_insn *last;
965 /* This is the mode we must force value to, so that there will be enough
966 subwords to extract. Note that fieldmode will often (always?) be
967 VOIDmode, because that is what store_field uses to indicate that this
968 is a bit field, but passing VOIDmode to operand_subword_force
969 is not allowed.
971 The mode must be fixed-size, since insertions into variable-sized
972 objects are meant to be handled before calling this function. */
973 fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value));
974 if (value_mode == VOIDmode)
975 value_mode = smallest_int_mode_for_size (nwords * BITS_PER_WORD);
977 last = get_last_insn ();
978 for (int i = 0; i < nwords; i++)
980 /* Number of bits to be stored in this iteration, i.e. BITS_PER_WORD
981 except maybe for the last iteration. */
982 const unsigned HOST_WIDE_INT new_bitsize
983 = MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
984 /* Bit offset from the starting bit number in the target. */
985 const unsigned int bit_offset
986 = backwards ^ reverse
987 ? MAX ((int) bitsize - (i + 1) * BITS_PER_WORD, 0)
988 : i * BITS_PER_WORD;
989 /* Starting word number in the value. */
990 const unsigned int wordnum
991 = backwards
992 ? GET_MODE_SIZE (value_mode) / UNITS_PER_WORD - (i + 1)
993 : i;
994 /* The chunk of the value in word_mode. We use bit-field extraction
995 in BLKmode to handle unaligned memory references and to shift the
996 last chunk right on big-endian machines if need be. */
997 rtx value_word
998 = fieldmode == BLKmode
999 ? extract_bit_field (value, new_bitsize, wordnum * BITS_PER_WORD,
1000 1, NULL_RTX, word_mode, word_mode, false,
1001 NULL)
1002 : operand_subword_force (value, wordnum, value_mode);
1004 if (!store_bit_field_1 (op0, new_bitsize,
1005 bitnum + bit_offset,
1006 bitregion_start, bitregion_end,
1007 word_mode,
1008 value_word, reverse, fallback_p, false))
1010 delete_insns_since (last);
1011 return false;
1014 return true;
1017 /* If VALUE has a floating-point or complex mode, access it as an
1018 integer of the corresponding size. This can occur on a machine
1019 with 64 bit registers that uses SFmode for float. It can also
1020 occur for unaligned float or complex fields. */
1021 rtx orig_value = value;
1022 scalar_int_mode value_mode;
1023 if (GET_MODE (value) == VOIDmode)
1024 /* By this point we've dealt with values that are bigger than a word,
1025 so word_mode is a conservatively correct choice. */
1026 value_mode = word_mode;
1027 else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode))
1029 value_mode = int_mode_for_mode (GET_MODE (value)).require ();
1030 value = gen_reg_rtx (value_mode);
1031 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
1034 /* If OP0 is a multi-word register, narrow it to the affected word.
1035 If the region spans two words, defer to store_split_bit_field.
1036 Don't do this if op0 is a single hard register wider than word
1037 such as a float or vector register. */
1038 if (!MEM_P (op0)
1039 && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD
1040 && (!REG_P (op0)
1041 || !HARD_REGISTER_P (op0)
1042 || hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1))
1044 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1046 if (!fallback_p)
1047 return false;
1049 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1050 bitregion_start, bitregion_end,
1051 value, value_mode, reverse);
1052 return true;
1054 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
1055 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1056 gcc_assert (op0);
1057 op0_mode = word_mode;
1058 bitnum %= BITS_PER_WORD;
1061 /* From here on we can assume that the field to be stored in fits
1062 within a word. If the destination is a register, it too fits
1063 in a word. */
1065 extraction_insn insv;
1066 if (!MEM_P (op0)
1067 && !reverse
1068 && get_best_reg_extraction_insn (&insv, EP_insv,
1069 GET_MODE_BITSIZE (op0_mode.require ()),
1070 fieldmode)
1071 && store_bit_field_using_insv (&insv, op0, op0_mode,
1072 bitsize, bitnum, value, value_mode))
1073 return true;
1075 /* If OP0 is a memory, try copying it to a register and seeing if a
1076 cheap register alternative is available. */
1077 if (MEM_P (op0) && !reverse)
1079 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
1080 fieldmode)
1081 && store_bit_field_using_insv (&insv, op0, op0_mode,
1082 bitsize, bitnum, value, value_mode))
1083 return true;
1085 rtx_insn *last = get_last_insn ();
1087 /* Try loading part of OP0 into a register, inserting the bitfield
1088 into that, and then copying the result back to OP0. */
1089 unsigned HOST_WIDE_INT bitpos;
1090 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
1091 bitregion_start, bitregion_end,
1092 fieldmode, &bitpos);
1093 if (xop0)
1095 rtx tempreg = copy_to_reg (xop0);
1096 if (store_bit_field_1 (tempreg, bitsize, bitpos,
1097 bitregion_start, bitregion_end,
1098 fieldmode, orig_value, reverse, false, false))
1100 emit_move_insn (xop0, tempreg);
1101 return true;
1103 delete_insns_since (last);
1107 if (!fallback_p)
1108 return false;
1110 store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start,
1111 bitregion_end, value, value_mode, reverse);
1112 return true;
1115 /* Generate code to store value from rtx VALUE
1116 into a bit-field within structure STR_RTX
1117 containing BITSIZE bits starting at bit BITNUM.
1119 BITREGION_START is bitpos of the first bitfield in this region.
1120 BITREGION_END is the bitpos of the ending bitfield in this region.
1121 These two fields are 0, if the C++ memory model does not apply,
1122 or we are not interested in keeping track of bitfield regions.
1124 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1126 If REVERSE is true, the store is to be done in reverse order.
1128 If UNDEFINED_P is true then STR_RTX is currently undefined. */
1130 void
1131 store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1132 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1133 machine_mode fieldmode,
1134 rtx value, bool reverse, bool undefined_p)
1136 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1137 unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0;
1138 scalar_int_mode int_mode;
1139 if (bitsize.is_constant (&ibitsize)
1140 && bitnum.is_constant (&ibitnum)
1141 && is_a <scalar_int_mode> (fieldmode, &int_mode)
1142 && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, int_mode,
1143 bitregion_start, bitregion_end))
1145 /* Storing of a full word can be done with a simple store.
1146 We know here that the field can be accessed with one single
1147 instruction. For targets that support unaligned memory,
1148 an unaligned access may be necessary. */
1149 if (ibitsize == GET_MODE_BITSIZE (int_mode))
1151 str_rtx = adjust_bitfield_address (str_rtx, int_mode,
1152 ibitnum / BITS_PER_UNIT);
1153 if (reverse)
1154 value = flip_storage_order (int_mode, value);
1155 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
1156 emit_move_insn (str_rtx, value);
1158 else
1160 rtx temp;
1162 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize,
1163 ibitnum, &ibitnum);
1164 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
1165 temp = copy_to_reg (str_rtx);
1166 if (!store_bit_field_1 (temp, ibitsize, ibitnum, 0, 0,
1167 int_mode, value, reverse, true, undefined_p))
1168 gcc_unreachable ();
1170 emit_move_insn (str_rtx, temp);
1173 return;
1176 /* Under the C++0x memory model, we must not touch bits outside the
1177 bit region. Adjust the address to start at the beginning of the
1178 bit region. */
1179 if (MEM_P (str_rtx) && maybe_ne (bitregion_start, 0U))
1181 scalar_int_mode best_mode;
1182 machine_mode addr_mode = VOIDmode;
1184 poly_uint64 offset = exact_div (bitregion_start, BITS_PER_UNIT);
1185 bitnum -= bitregion_start;
1186 poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize);
1187 bitregion_end -= bitregion_start;
1188 bitregion_start = 0;
1189 if (bitsize.is_constant (&ibitsize)
1190 && bitnum.is_constant (&ibitnum)
1191 && get_best_mode (ibitsize, ibitnum,
1192 bitregion_start, bitregion_end,
1193 MEM_ALIGN (str_rtx), INT_MAX,
1194 MEM_VOLATILE_P (str_rtx), &best_mode))
1195 addr_mode = best_mode;
1196 str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode,
1197 offset, size);
1200 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1201 bitregion_start, bitregion_end,
1202 fieldmode, value, reverse, true, undefined_p))
1203 gcc_unreachable ();
1206 /* Use shifts and boolean operations to store VALUE into a bit field of
1207 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1208 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1209 the mode of VALUE.
1211 If REVERSE is true, the store is to be done in reverse order. */
1213 static void
1214 store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1215 unsigned HOST_WIDE_INT bitsize,
1216 unsigned HOST_WIDE_INT bitnum,
1217 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1218 rtx value, scalar_int_mode value_mode, bool reverse)
1220 /* There is a case not handled here:
1221 a structure with a known alignment of just a halfword
1222 and a field split across two aligned halfwords within the structure.
1223 Or likewise a structure with a known alignment of just a byte
1224 and a field split across two bytes.
1225 Such cases are not supposed to be able to occur. */
1227 scalar_int_mode best_mode;
1228 if (MEM_P (op0))
1230 unsigned int max_bitsize = BITS_PER_WORD;
1231 scalar_int_mode imode;
1232 if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize)
1233 max_bitsize = GET_MODE_BITSIZE (imode);
1235 if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1236 MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0),
1237 &best_mode))
1239 /* The only way this should occur is if the field spans word
1240 boundaries. */
1241 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1242 bitregion_start, bitregion_end,
1243 value, value_mode, reverse);
1244 return;
1247 op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum);
1249 else
1250 best_mode = op0_mode.require ();
1252 store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum,
1253 value, value_mode, reverse);
1256 /* Helper function for store_fixed_bit_field, stores
1257 the bit field always using MODE, which is the mode of OP0. The other
1258 arguments are as for store_fixed_bit_field. */
1260 static void
1261 store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode,
1262 unsigned HOST_WIDE_INT bitsize,
1263 unsigned HOST_WIDE_INT bitnum,
1264 rtx value, scalar_int_mode value_mode, bool reverse)
1266 rtx temp;
1267 int all_zero = 0;
1268 int all_one = 0;
1270 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1271 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1273 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1274 /* BITNUM is the distance between our msb
1275 and that of the containing datum.
1276 Convert it to the distance from the lsb. */
1277 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1279 /* Now BITNUM is always the distance between our lsb
1280 and that of OP0. */
1282 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1283 we must first convert its mode to MODE. */
1285 if (CONST_INT_P (value))
1287 unsigned HOST_WIDE_INT v = UINTVAL (value);
1289 if (bitsize < HOST_BITS_PER_WIDE_INT)
1290 v &= (HOST_WIDE_INT_1U << bitsize) - 1;
1292 if (v == 0)
1293 all_zero = 1;
1294 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1295 && v == (HOST_WIDE_INT_1U << bitsize) - 1)
1296 || (bitsize == HOST_BITS_PER_WIDE_INT
1297 && v == HOST_WIDE_INT_M1U))
1298 all_one = 1;
1300 value = lshift_value (mode, v, bitnum);
1302 else
1304 int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize
1305 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1307 if (value_mode != mode)
1308 value = convert_to_mode (mode, value, 1);
1310 if (must_and)
1311 value = expand_binop (mode, and_optab, value,
1312 mask_rtx (mode, 0, bitsize, 0),
1313 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1314 if (bitnum > 0)
1315 value = expand_shift (LSHIFT_EXPR, mode, value,
1316 bitnum, NULL_RTX, 1);
1319 if (reverse)
1320 value = flip_storage_order (mode, value);
1322 /* Now clear the chosen bits in OP0,
1323 except that if VALUE is -1 we need not bother. */
1324 /* We keep the intermediates in registers to allow CSE to combine
1325 consecutive bitfield assignments. */
1327 temp = force_reg (mode, op0);
1329 if (! all_one)
1331 rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
1332 if (reverse)
1333 mask = flip_storage_order (mode, mask);
1334 temp = expand_binop (mode, and_optab, temp, mask,
1335 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1336 temp = force_reg (mode, temp);
1339 /* Now logical-or VALUE into OP0, unless it is zero. */
1341 if (! all_zero)
1343 temp = expand_binop (mode, ior_optab, temp, value,
1344 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1345 temp = force_reg (mode, temp);
1348 if (op0 != temp)
1350 op0 = copy_rtx (op0);
1351 emit_move_insn (op0, temp);
1355 /* Store a bit field that is split across multiple accessible memory objects.
1357 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1358 BITSIZE is the field width; BITPOS the position of its first bit
1359 (within the word).
1360 VALUE is the value to store, which has mode VALUE_MODE.
1361 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1362 a BLKmode MEM.
1364 If REVERSE is true, the store is to be done in reverse order.
1366 This does not yet handle fields wider than BITS_PER_WORD. */
1368 static void
1369 store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1370 unsigned HOST_WIDE_INT bitsize,
1371 unsigned HOST_WIDE_INT bitpos,
1372 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1373 rtx value, scalar_int_mode value_mode, bool reverse)
1375 unsigned int unit, total_bits, bitsdone = 0;
1377 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1378 much at a time. */
1379 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1380 unit = BITS_PER_WORD;
1381 else
1382 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1384 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1385 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1386 again, and we will mutually recurse forever. */
1387 if (MEM_P (op0) && op0_mode.exists ())
1388 unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ()));
1390 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1391 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1392 that VALUE might be a floating-point constant. */
1393 if (CONSTANT_P (value) && !CONST_INT_P (value))
1395 rtx word = gen_lowpart_common (word_mode, value);
1397 if (word && (value != word))
1398 value = word;
1399 else
1400 value = gen_lowpart_common (word_mode, force_reg (value_mode, value));
1401 value_mode = word_mode;
1404 total_bits = GET_MODE_BITSIZE (value_mode);
1406 while (bitsdone < bitsize)
1408 unsigned HOST_WIDE_INT thissize;
1409 unsigned HOST_WIDE_INT thispos;
1410 unsigned HOST_WIDE_INT offset;
1411 rtx part;
1413 offset = (bitpos + bitsdone) / unit;
1414 thispos = (bitpos + bitsdone) % unit;
1416 /* When region of bytes we can touch is restricted, decrease
1417 UNIT close to the end of the region as needed. If op0 is a REG
1418 or SUBREG of REG, don't do this, as there can't be data races
1419 on a register and we can expand shorter code in some cases. */
1420 if (maybe_ne (bitregion_end, 0U)
1421 && unit > BITS_PER_UNIT
1422 && maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1)
1423 && !REG_P (op0)
1424 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1426 unit = unit / 2;
1427 continue;
1430 /* THISSIZE must not overrun a word boundary. Otherwise,
1431 store_fixed_bit_field will call us again, and we will mutually
1432 recurse forever. */
1433 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1434 thissize = MIN (thissize, unit - thispos);
1436 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
1438 /* Fetch successively less significant portions. */
1439 if (CONST_INT_P (value))
1440 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1441 >> (bitsize - bitsdone - thissize))
1442 & ((HOST_WIDE_INT_1 << thissize) - 1));
1443 /* Likewise, but the source is little-endian. */
1444 else if (reverse)
1445 part = extract_fixed_bit_field (word_mode, value, value_mode,
1446 thissize,
1447 bitsize - bitsdone - thissize,
1448 NULL_RTX, 1, false);
1449 else
1450 /* The args are chosen so that the last part includes the
1451 lsb. Give extract_bit_field the value it needs (with
1452 endianness compensation) to fetch the piece we want. */
1453 part = extract_fixed_bit_field (word_mode, value, value_mode,
1454 thissize,
1455 total_bits - bitsize + bitsdone,
1456 NULL_RTX, 1, false);
1458 else
1460 /* Fetch successively more significant portions. */
1461 if (CONST_INT_P (value))
1462 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1463 >> bitsdone)
1464 & ((HOST_WIDE_INT_1 << thissize) - 1));
1465 /* Likewise, but the source is big-endian. */
1466 else if (reverse)
1467 part = extract_fixed_bit_field (word_mode, value, value_mode,
1468 thissize,
1469 total_bits - bitsdone - thissize,
1470 NULL_RTX, 1, false);
1471 else
1472 part = extract_fixed_bit_field (word_mode, value, value_mode,
1473 thissize, bitsdone, NULL_RTX,
1474 1, false);
1477 /* If OP0 is a register, then handle OFFSET here. */
1478 rtx op0_piece = op0;
1479 opt_scalar_int_mode op0_piece_mode = op0_mode;
1480 if (SUBREG_P (op0) || REG_P (op0))
1482 scalar_int_mode imode;
1483 if (op0_mode.exists (&imode)
1484 && GET_MODE_SIZE (imode) < UNITS_PER_WORD)
1486 if (offset)
1487 op0_piece = const0_rtx;
1489 else
1491 op0_piece = operand_subword_force (op0,
1492 offset * unit / BITS_PER_WORD,
1493 GET_MODE (op0));
1494 op0_piece_mode = word_mode;
1496 offset &= BITS_PER_WORD / unit - 1;
1499 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1500 it is just an out-of-bounds access. Ignore it. */
1501 if (op0_piece != const0_rtx)
1502 store_fixed_bit_field (op0_piece, op0_piece_mode, thissize,
1503 offset * unit + thispos, bitregion_start,
1504 bitregion_end, part, word_mode, reverse);
1505 bitsdone += thissize;
1509 /* A subroutine of extract_bit_field_1 that converts return value X
1510 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1511 to extract_bit_field. */
1513 static rtx
1514 convert_extracted_bit_field (rtx x, machine_mode mode,
1515 machine_mode tmode, bool unsignedp)
1517 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1518 return x;
1520 /* If the x mode is not a scalar integral, first convert to the
1521 integer mode of that size and then access it as a floating-point
1522 value via a SUBREG. */
1523 if (!SCALAR_INT_MODE_P (tmode))
1525 scalar_int_mode int_mode = int_mode_for_mode (tmode).require ();
1526 x = convert_to_mode (int_mode, x, unsignedp);
1527 x = force_reg (int_mode, x);
1528 return gen_lowpart (tmode, x);
1531 return convert_to_mode (tmode, x, unsignedp);
1534 /* Try to use an ext(z)v pattern to extract a field from OP0.
1535 Return the extracted value on success, otherwise return null.
1536 EXTV describes the extraction instruction to use. If OP0_MODE
1537 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1538 The other arguments are as for extract_bit_field. */
1540 static rtx
1541 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1542 opt_scalar_int_mode op0_mode,
1543 unsigned HOST_WIDE_INT bitsize,
1544 unsigned HOST_WIDE_INT bitnum,
1545 int unsignedp, rtx target,
1546 machine_mode mode, machine_mode tmode)
1548 class expand_operand ops[4];
1549 rtx spec_target = target;
1550 rtx spec_target_subreg = 0;
1551 scalar_int_mode ext_mode = extv->field_mode;
1552 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1554 if (bitsize == 0 || unit < bitsize)
1555 return NULL_RTX;
1557 if (MEM_P (op0))
1558 /* Get a reference to the first byte of the field. */
1559 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1560 &bitnum);
1561 else
1563 /* Convert from counting within OP0 to counting in EXT_MODE. */
1564 if (BYTES_BIG_ENDIAN)
1565 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
1567 /* If op0 is a register, we need it in EXT_MODE to make it
1568 acceptable to the format of ext(z)v. */
1569 if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode)
1570 return NULL_RTX;
1571 if (REG_P (op0) && op0_mode.require () != ext_mode)
1572 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1575 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1576 "backwards" from the size of the unit we are extracting from.
1577 Otherwise, we count bits from the most significant on a
1578 BYTES/BITS_BIG_ENDIAN machine. */
1580 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1581 bitnum = unit - bitsize - bitnum;
1583 if (target == 0)
1584 target = spec_target = gen_reg_rtx (tmode);
1586 if (GET_MODE (target) != ext_mode)
1588 rtx temp;
1589 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1590 between the mode of the extraction (word_mode) and the target
1591 mode. Instead, create a temporary and use convert_move to set
1592 the target. */
1593 if (REG_P (target)
1594 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode)
1595 && (temp = gen_lowpart_if_possible (ext_mode, target)))
1597 target = temp;
1598 if (partial_subreg_p (GET_MODE (spec_target), ext_mode))
1599 spec_target_subreg = target;
1601 else
1602 target = gen_reg_rtx (ext_mode);
1605 create_output_operand (&ops[0], target, ext_mode);
1606 create_fixed_operand (&ops[1], op0);
1607 create_integer_operand (&ops[2], bitsize);
1608 create_integer_operand (&ops[3], bitnum);
1609 if (maybe_expand_insn (extv->icode, 4, ops))
1611 target = ops[0].value;
1612 if (target == spec_target)
1613 return target;
1614 if (target == spec_target_subreg)
1615 return spec_target;
1616 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1618 return NULL_RTX;
1621 /* See whether it would be valid to extract the part of OP0 with
1622 mode OP0_MODE described by BITNUM and BITSIZE into a value of
1623 mode MODE using a subreg operation.
1624 Return the subreg if so, otherwise return null. */
1626 static rtx
1627 extract_bit_field_as_subreg (machine_mode mode, rtx op0,
1628 machine_mode op0_mode,
1629 poly_uint64 bitsize, poly_uint64 bitnum)
1631 poly_uint64 bytenum;
1632 if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum)
1633 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
1634 && lowpart_bit_field_p (bitnum, bitsize, op0_mode)
1635 && TRULY_NOOP_TRUNCATION_MODES_P (mode, op0_mode))
1636 return simplify_gen_subreg (mode, op0, op0_mode, bytenum);
1637 return NULL_RTX;
1640 /* A subroutine of extract_bit_field, with the same arguments.
1641 If UNSIGNEDP is -1, the result need not be sign or zero extended.
1642 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1643 if we can find no other means of implementing the operation.
1644 if FALLBACK_P is false, return NULL instead. */
1646 static rtx
1647 extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1648 int unsignedp, rtx target, machine_mode mode,
1649 machine_mode tmode, bool reverse, bool fallback_p,
1650 rtx *alt_rtl)
1652 rtx op0 = str_rtx;
1653 machine_mode mode1;
1655 if (tmode == VOIDmode)
1656 tmode = mode;
1658 while (GET_CODE (op0) == SUBREG)
1660 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1661 op0 = SUBREG_REG (op0);
1664 /* If we have an out-of-bounds access to a register, just return an
1665 uninitialized register of the required mode. This can occur if the
1666 source code contains an out-of-bounds access to a small array. */
1667 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
1668 return gen_reg_rtx (tmode);
1670 if (REG_P (op0)
1671 && mode == GET_MODE (op0)
1672 && known_eq (bitnum, 0U)
1673 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
1675 if (reverse)
1676 op0 = flip_storage_order (mode, op0);
1677 /* We're trying to extract a full register from itself. */
1678 return op0;
1681 /* First try to check for vector from vector extractions. */
1682 if (VECTOR_MODE_P (GET_MODE (op0))
1683 && !MEM_P (op0)
1684 && VECTOR_MODE_P (tmode)
1685 && known_eq (bitsize, GET_MODE_PRECISION (tmode))
1686 && maybe_gt (GET_MODE_SIZE (GET_MODE (op0)), GET_MODE_SIZE (tmode)))
1688 machine_mode new_mode = GET_MODE (op0);
1689 if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
1691 scalar_mode inner_mode = GET_MODE_INNER (tmode);
1692 poly_uint64 nunits;
1693 if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0)),
1694 GET_MODE_UNIT_BITSIZE (tmode), &nunits)
1695 || !related_vector_mode (tmode, inner_mode,
1696 nunits).exists (&new_mode)
1697 || maybe_ne (GET_MODE_SIZE (new_mode),
1698 GET_MODE_SIZE (GET_MODE (op0))))
1699 new_mode = VOIDmode;
1701 poly_uint64 pos;
1702 if (new_mode != VOIDmode
1703 && (convert_optab_handler (vec_extract_optab, new_mode, tmode)
1704 != CODE_FOR_nothing)
1705 && multiple_p (bitnum, GET_MODE_BITSIZE (tmode), &pos))
1707 class expand_operand ops[3];
1708 machine_mode outermode = new_mode;
1709 machine_mode innermode = tmode;
1710 enum insn_code icode
1711 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1713 if (new_mode != GET_MODE (op0))
1714 op0 = gen_lowpart (new_mode, op0);
1715 create_output_operand (&ops[0], target, innermode);
1716 ops[0].target = 1;
1717 create_input_operand (&ops[1], op0, outermode);
1718 create_integer_operand (&ops[2], pos);
1719 if (maybe_expand_insn (icode, 3, ops))
1721 if (alt_rtl && ops[0].target)
1722 *alt_rtl = target;
1723 target = ops[0].value;
1724 if (GET_MODE (target) != mode)
1725 return gen_lowpart (tmode, target);
1726 return target;
1731 /* See if we can get a better vector mode before extracting. */
1732 if (VECTOR_MODE_P (GET_MODE (op0))
1733 && !MEM_P (op0)
1734 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1736 machine_mode new_mode;
1738 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1739 new_mode = MIN_MODE_VECTOR_FLOAT;
1740 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1741 new_mode = MIN_MODE_VECTOR_FRACT;
1742 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1743 new_mode = MIN_MODE_VECTOR_UFRACT;
1744 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1745 new_mode = MIN_MODE_VECTOR_ACCUM;
1746 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1747 new_mode = MIN_MODE_VECTOR_UACCUM;
1748 else
1749 new_mode = MIN_MODE_VECTOR_INT;
1751 FOR_EACH_MODE_FROM (new_mode, new_mode)
1752 if (known_eq (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (GET_MODE (op0)))
1753 && known_eq (GET_MODE_UNIT_SIZE (new_mode), GET_MODE_SIZE (tmode))
1754 && known_eq (bitsize, GET_MODE_UNIT_PRECISION (new_mode))
1755 && multiple_p (bitnum, GET_MODE_UNIT_PRECISION (new_mode))
1756 && targetm.vector_mode_supported_p (new_mode)
1757 && targetm.modes_tieable_p (GET_MODE (op0), new_mode))
1758 break;
1759 if (new_mode != VOIDmode)
1760 op0 = gen_lowpart (new_mode, op0);
1763 /* Use vec_extract patterns for extracting parts of vectors whenever
1764 available. If that fails, see whether the current modes and bitregion
1765 give a natural subreg. */
1766 machine_mode outermode = GET_MODE (op0);
1767 if (VECTOR_MODE_P (outermode) && !MEM_P (op0))
1769 scalar_mode innermode = GET_MODE_INNER (outermode);
1771 enum insn_code icode
1772 = convert_optab_handler (vec_extract_optab, outermode, innermode);
1774 poly_uint64 pos;
1775 if (icode != CODE_FOR_nothing
1776 && known_eq (bitsize, GET_MODE_PRECISION (innermode))
1777 && multiple_p (bitnum, GET_MODE_PRECISION (innermode), &pos))
1779 class expand_operand ops[3];
1781 create_output_operand (&ops[0], target,
1782 insn_data[icode].operand[0].mode);
1783 ops[0].target = 1;
1784 create_input_operand (&ops[1], op0, outermode);
1785 create_integer_operand (&ops[2], pos);
1786 if (maybe_expand_insn (icode, 3, ops))
1788 if (alt_rtl && ops[0].target)
1789 *alt_rtl = target;
1790 target = ops[0].value;
1791 if (GET_MODE (target) != mode)
1792 return gen_lowpart (tmode, target);
1793 return target;
1796 /* Using subregs is useful if we're extracting one register vector
1797 from a multi-register vector. extract_bit_field_as_subreg checks
1798 for valid bitsize and bitnum, so we don't need to do that here. */
1799 if (VECTOR_MODE_P (mode))
1801 rtx sub = extract_bit_field_as_subreg (mode, op0, outermode,
1802 bitsize, bitnum);
1803 if (sub)
1804 return sub;
1808 /* Make sure we are playing with integral modes. Pun with subregs
1809 if we aren't. */
1810 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
1811 scalar_int_mode imode;
1812 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
1814 if (MEM_P (op0))
1815 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
1816 0, MEM_SIZE (op0));
1817 else if (op0_mode.exists (&imode))
1819 op0 = gen_lowpart (imode, op0);
1821 /* If we got a SUBREG, force it into a register since we
1822 aren't going to be able to do another SUBREG on it. */
1823 if (GET_CODE (op0) == SUBREG)
1824 op0 = force_reg (imode, op0);
1826 else
1828 poly_int64 size = GET_MODE_SIZE (GET_MODE (op0));
1829 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1830 emit_move_insn (mem, op0);
1831 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1835 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1836 If that's wrong, the solution is to test for it and set TARGET to 0
1837 if needed. */
1839 /* Get the mode of the field to use for atomic access or subreg
1840 conversion. */
1841 if (!SCALAR_INT_MODE_P (tmode)
1842 || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1))
1843 mode1 = mode;
1844 gcc_assert (mode1 != BLKmode);
1846 /* Extraction of a full MODE1 value can be done with a subreg as long
1847 as the least significant bit of the value is the least significant
1848 bit of either OP0 or a word of OP0. */
1849 if (!MEM_P (op0) && !reverse && op0_mode.exists (&imode))
1851 rtx sub = extract_bit_field_as_subreg (mode1, op0, imode,
1852 bitsize, bitnum);
1853 if (sub)
1854 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1857 /* Extraction of a full MODE1 value can be done with a load as long as
1858 the field is on a byte boundary and is sufficiently aligned. */
1859 poly_uint64 bytenum;
1860 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1, &bytenum))
1862 op0 = adjust_bitfield_address (op0, mode1, bytenum);
1863 if (reverse)
1864 op0 = flip_storage_order (mode1, op0);
1865 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1868 /* If we have a memory source and a non-constant bit offset, restrict
1869 the memory to the referenced bytes. This is a worst-case fallback
1870 but is useful for things like vector booleans. */
1871 if (MEM_P (op0) && !bitnum.is_constant ())
1873 bytenum = bits_to_bytes_round_down (bitnum);
1874 bitnum = num_trailing_bits (bitnum);
1875 poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize);
1876 op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize);
1877 op0_mode = opt_scalar_int_mode ();
1880 /* It's possible we'll need to handle other cases here for
1881 polynomial bitnum and bitsize. */
1883 /* From here on we need to be looking at a fixed-size insertion. */
1884 return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (),
1885 bitnum.to_constant (), unsignedp,
1886 target, mode, tmode, reverse, fallback_p);
1889 /* Subroutine of extract_bit_field_1, with the same arguments, except
1890 that BITSIZE and BITNUM are constant. Handle cases specific to
1891 integral modes. If OP0_MODE is defined, it is the mode of OP0,
1892 otherwise OP0 is a BLKmode MEM. */
1894 static rtx
1895 extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1896 unsigned HOST_WIDE_INT bitsize,
1897 unsigned HOST_WIDE_INT bitnum, int unsignedp,
1898 rtx target, machine_mode mode, machine_mode tmode,
1899 bool reverse, bool fallback_p)
1901 /* Handle fields bigger than a word. */
1903 if (bitsize > BITS_PER_WORD)
1905 /* Here we transfer the words of the field
1906 in the order least significant first.
1907 This is because the most significant word is the one which may
1908 be less than full. */
1910 const bool backwards = WORDS_BIG_ENDIAN;
1911 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1912 unsigned int i;
1913 rtx_insn *last;
1915 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1916 target = gen_reg_rtx (mode);
1918 /* In case we're about to clobber a base register or something
1919 (see gcc.c-torture/execute/20040625-1.c). */
1920 if (reg_mentioned_p (target, op0))
1921 target = gen_reg_rtx (mode);
1923 /* Indicate for flow that the entire target reg is being set. */
1924 emit_clobber (target);
1926 /* The mode must be fixed-size, since extract_bit_field_1 handles
1927 extractions from variable-sized objects before calling this
1928 function. */
1929 unsigned int target_size
1930 = GET_MODE_SIZE (GET_MODE (target)).to_constant ();
1931 last = get_last_insn ();
1932 for (i = 0; i < nwords; i++)
1934 /* If I is 0, use the low-order word in both field and target;
1935 if I is 1, use the next to lowest word; and so on. */
1936 /* Word number in TARGET to use. */
1937 unsigned int wordnum
1938 = (backwards ? target_size / UNITS_PER_WORD - i - 1 : i);
1939 /* Offset from start of field in OP0. */
1940 unsigned int bit_offset = (backwards ^ reverse
1941 ? MAX ((int) bitsize - ((int) i + 1)
1942 * BITS_PER_WORD,
1944 : (int) i * BITS_PER_WORD);
1945 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1946 rtx result_part
1947 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1948 bitsize - i * BITS_PER_WORD),
1949 bitnum + bit_offset,
1950 (unsignedp ? 1 : -1), target_part,
1951 mode, word_mode, reverse, fallback_p, NULL);
1953 gcc_assert (target_part);
1954 if (!result_part)
1956 delete_insns_since (last);
1957 return NULL;
1960 if (result_part != target_part)
1961 emit_move_insn (target_part, result_part);
1964 if (unsignedp)
1966 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1967 need to be zero'd out. */
1968 if (target_size > nwords * UNITS_PER_WORD)
1970 unsigned int i, total_words;
1972 total_words = target_size / UNITS_PER_WORD;
1973 for (i = nwords; i < total_words; i++)
1974 emit_move_insn
1975 (operand_subword (target,
1976 backwards ? total_words - i - 1 : i,
1977 1, VOIDmode),
1978 const0_rtx);
1980 return target;
1983 /* Signed bit field: sign-extend with two arithmetic shifts. */
1984 target = expand_shift (LSHIFT_EXPR, mode, target,
1985 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1986 return expand_shift (RSHIFT_EXPR, mode, target,
1987 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1990 /* If OP0 is a multi-word register, narrow it to the affected word.
1991 If the region spans two words, defer to extract_split_bit_field. */
1992 if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD)
1994 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
1996 if (!fallback_p)
1997 return NULL_RTX;
1998 target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
1999 unsignedp, reverse);
2000 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
2002 /* If OP0 is a hard register, copy it to a pseudo before calling
2003 simplify_gen_subreg. */
2004 if (REG_P (op0) && HARD_REGISTER_P (op0))
2005 op0 = copy_to_reg (op0);
2006 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
2007 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
2008 op0_mode = word_mode;
2009 bitnum %= BITS_PER_WORD;
2012 /* From here on we know the desired field is smaller than a word.
2013 If OP0 is a register, it too fits within a word. */
2014 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
2015 extraction_insn extv;
2016 if (!MEM_P (op0)
2017 && !reverse
2018 /* ??? We could limit the structure size to the part of OP0 that
2019 contains the field, with appropriate checks for endianness
2020 and TARGET_TRULY_NOOP_TRUNCATION. */
2021 && get_best_reg_extraction_insn (&extv, pattern,
2022 GET_MODE_BITSIZE (op0_mode.require ()),
2023 tmode))
2025 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
2026 bitsize, bitnum,
2027 unsignedp, target, mode,
2028 tmode);
2029 if (result)
2030 return result;
2033 /* If OP0 is a memory, try copying it to a register and seeing if a
2034 cheap register alternative is available. */
2035 if (MEM_P (op0) & !reverse)
2037 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
2038 tmode))
2040 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
2041 bitsize, bitnum,
2042 unsignedp, target, mode,
2043 tmode);
2044 if (result)
2045 return result;
2048 rtx_insn *last = get_last_insn ();
2050 /* Try loading part of OP0 into a register and extracting the
2051 bitfield from that. */
2052 unsigned HOST_WIDE_INT bitpos;
2053 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
2054 0, 0, tmode, &bitpos);
2055 if (xop0)
2057 xop0 = copy_to_reg (xop0);
2058 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
2059 unsignedp, target,
2060 mode, tmode, reverse, false, NULL);
2061 if (result)
2062 return result;
2063 delete_insns_since (last);
2067 if (!fallback_p)
2068 return NULL;
2070 /* Find a correspondingly-sized integer field, so we can apply
2071 shifts and masks to it. */
2072 scalar_int_mode int_mode;
2073 if (!int_mode_for_mode (tmode).exists (&int_mode))
2074 /* If this fails, we should probably push op0 out to memory and then
2075 do a load. */
2076 int_mode = int_mode_for_mode (mode).require ();
2078 target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize,
2079 bitnum, target, unsignedp, reverse);
2081 /* Complex values must be reversed piecewise, so we need to undo the global
2082 reversal, convert to the complex mode and reverse again. */
2083 if (reverse && COMPLEX_MODE_P (tmode))
2085 target = flip_storage_order (int_mode, target);
2086 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
2087 target = flip_storage_order (tmode, target);
2089 else
2090 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
2092 return target;
2095 /* Generate code to extract a byte-field from STR_RTX
2096 containing BITSIZE bits, starting at BITNUM,
2097 and put it in TARGET if possible (if TARGET is nonzero).
2098 Regardless of TARGET, we return the rtx for where the value is placed.
2100 STR_RTX is the structure containing the byte (a REG or MEM).
2101 UNSIGNEDP is nonzero if this is an unsigned bit field.
2102 MODE is the natural mode of the field value once extracted.
2103 TMODE is the mode the caller would like the value to have;
2104 but the value may be returned with type MODE instead.
2106 If REVERSE is true, the extraction is to be done in reverse order.
2108 If a TARGET is specified and we can store in it at no extra cost,
2109 we do so, and return TARGET.
2110 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
2111 if they are equally easy.
2113 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
2114 then *ALT_RTL is set to TARGET (before legitimziation). */
2117 extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
2118 int unsignedp, rtx target, machine_mode mode,
2119 machine_mode tmode, bool reverse, rtx *alt_rtl)
2121 machine_mode mode1;
2123 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
2124 if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx)), 0))
2125 mode1 = GET_MODE (str_rtx);
2126 else if (target && maybe_ne (GET_MODE_BITSIZE (GET_MODE (target)), 0))
2127 mode1 = GET_MODE (target);
2128 else
2129 mode1 = tmode;
2131 unsigned HOST_WIDE_INT ibitsize, ibitnum;
2132 scalar_int_mode int_mode;
2133 if (bitsize.is_constant (&ibitsize)
2134 && bitnum.is_constant (&ibitnum)
2135 && is_a <scalar_int_mode> (mode1, &int_mode)
2136 && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum,
2137 int_mode, 0, 0))
2139 /* Extraction of a full INT_MODE value can be done with a simple load.
2140 We know here that the field can be accessed with one single
2141 instruction. For targets that support unaligned memory,
2142 an unaligned access may be necessary. */
2143 if (ibitsize == GET_MODE_BITSIZE (int_mode))
2145 rtx result = adjust_bitfield_address (str_rtx, int_mode,
2146 ibitnum / BITS_PER_UNIT);
2147 if (reverse)
2148 result = flip_storage_order (int_mode, result);
2149 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
2150 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
2153 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, ibitnum,
2154 &ibitnum);
2155 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
2156 str_rtx = copy_to_reg (str_rtx);
2157 return extract_bit_field_1 (str_rtx, ibitsize, ibitnum, unsignedp,
2158 target, mode, tmode, reverse, true, alt_rtl);
2161 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
2162 target, mode, tmode, reverse, true, alt_rtl);
2165 /* Use shifts and boolean operations to extract a field of BITSIZE bits
2166 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2167 otherwise OP0 is a BLKmode MEM.
2169 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
2170 If REVERSE is true, the extraction is to be done in reverse order.
2172 If TARGET is nonzero, attempts to store the value there
2173 and return TARGET, but this is not guaranteed.
2174 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2176 static rtx
2177 extract_fixed_bit_field (machine_mode tmode, rtx op0,
2178 opt_scalar_int_mode op0_mode,
2179 unsigned HOST_WIDE_INT bitsize,
2180 unsigned HOST_WIDE_INT bitnum, rtx target,
2181 int unsignedp, bool reverse)
2183 scalar_int_mode mode;
2184 if (MEM_P (op0))
2186 if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
2187 BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode))
2188 /* The only way this should occur is if the field spans word
2189 boundaries. */
2190 return extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
2191 unsignedp, reverse);
2193 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
2195 else
2196 mode = op0_mode.require ();
2198 return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum,
2199 target, unsignedp, reverse);
2202 /* Helper function for extract_fixed_bit_field, extracts
2203 the bit field always using MODE, which is the mode of OP0.
2204 If UNSIGNEDP is -1, the result need not be sign or zero extended.
2205 The other arguments are as for extract_fixed_bit_field. */
2207 static rtx
2208 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode,
2209 unsigned HOST_WIDE_INT bitsize,
2210 unsigned HOST_WIDE_INT bitnum, rtx target,
2211 int unsignedp, bool reverse)
2213 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2214 for invalid input, such as extract equivalent of f5 from
2215 gcc.dg/pr48335-2.c. */
2217 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2218 /* BITNUM is the distance between our msb and that of OP0.
2219 Convert it to the distance from the lsb. */
2220 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
2222 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2223 We have reduced the big-endian case to the little-endian case. */
2224 if (reverse)
2225 op0 = flip_storage_order (mode, op0);
2227 if (unsignedp)
2229 if (bitnum)
2231 /* If the field does not already start at the lsb,
2232 shift it so it does. */
2233 /* Maybe propagate the target for the shift. */
2234 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2235 if (tmode != mode)
2236 subtarget = 0;
2237 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
2239 /* Convert the value to the desired mode. TMODE must also be a
2240 scalar integer for this conversion to make sense, since we
2241 shouldn't reinterpret the bits. */
2242 scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode);
2243 if (mode != new_mode)
2244 op0 = convert_to_mode (new_mode, op0, 1);
2246 /* Unless the msb of the field used to be the msb when we shifted,
2247 mask out the upper bits. */
2249 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize
2250 && unsignedp != -1)
2251 return expand_binop (new_mode, and_optab, op0,
2252 mask_rtx (new_mode, 0, bitsize, 0),
2253 target, 1, OPTAB_LIB_WIDEN);
2254 return op0;
2257 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2258 then arithmetic-shift its lsb to the lsb of the word. */
2259 op0 = force_reg (mode, op0);
2261 /* Find the narrowest integer mode that contains the field. */
2263 opt_scalar_int_mode mode_iter;
2264 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2265 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum)
2266 break;
2268 mode = mode_iter.require ();
2269 op0 = convert_to_mode (mode, op0, 0);
2271 if (mode != tmode)
2272 target = 0;
2274 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
2276 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
2277 /* Maybe propagate the target for the shift. */
2278 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
2279 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
2282 return expand_shift (RSHIFT_EXPR, mode, op0,
2283 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
2286 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2287 VALUE << BITPOS. */
2289 static rtx
2290 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
2291 int bitpos)
2293 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
2296 /* Extract a bit field that is split across two words
2297 and return an RTX for the result.
2299 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2300 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2301 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2302 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2303 a BLKmode MEM.
2305 If REVERSE is true, the extraction is to be done in reverse order. */
2307 static rtx
2308 extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
2309 unsigned HOST_WIDE_INT bitsize,
2310 unsigned HOST_WIDE_INT bitpos, int unsignedp,
2311 bool reverse)
2313 unsigned int unit;
2314 unsigned int bitsdone = 0;
2315 rtx result = NULL_RTX;
2316 int first = 1;
2318 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2319 much at a time. */
2320 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2321 unit = BITS_PER_WORD;
2322 else
2323 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2325 while (bitsdone < bitsize)
2327 unsigned HOST_WIDE_INT thissize;
2328 rtx part;
2329 unsigned HOST_WIDE_INT thispos;
2330 unsigned HOST_WIDE_INT offset;
2332 offset = (bitpos + bitsdone) / unit;
2333 thispos = (bitpos + bitsdone) % unit;
2335 /* THISSIZE must not overrun a word boundary. Otherwise,
2336 extract_fixed_bit_field will call us again, and we will mutually
2337 recurse forever. */
2338 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2339 thissize = MIN (thissize, unit - thispos);
2341 /* If OP0 is a register, then handle OFFSET here. */
2342 rtx op0_piece = op0;
2343 opt_scalar_int_mode op0_piece_mode = op0_mode;
2344 if (SUBREG_P (op0) || REG_P (op0))
2346 op0_piece = operand_subword_force (op0, offset, op0_mode.require ());
2347 op0_piece_mode = word_mode;
2348 offset = 0;
2351 /* Extract the parts in bit-counting order,
2352 whose meaning is determined by BYTES_PER_UNIT.
2353 OFFSET is in UNITs, and UNIT is in bits. */
2354 part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode,
2355 thissize, offset * unit + thispos,
2356 0, 1, reverse);
2357 bitsdone += thissize;
2359 /* Shift this part into place for the result. */
2360 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
2362 if (bitsize != bitsdone)
2363 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2364 bitsize - bitsdone, 0, 1);
2366 else
2368 if (bitsdone != thissize)
2369 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2370 bitsdone - thissize, 0, 1);
2373 if (first)
2374 result = part;
2375 else
2376 /* Combine the parts with bitwise or. This works
2377 because we extracted each part as an unsigned bit field. */
2378 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2379 OPTAB_LIB_WIDEN);
2381 first = 0;
2384 /* Unsigned bit field: we are done. */
2385 if (unsignedp)
2386 return result;
2387 /* Signed bit field: sign-extend with two arithmetic shifts. */
2388 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2389 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2390 return expand_shift (RSHIFT_EXPR, word_mode, result,
2391 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2394 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2395 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2396 MODE, fill the upper bits with zeros. Fail if the layout of either
2397 mode is unknown (as for CC modes) or if the extraction would involve
2398 unprofitable mode punning. Return the value on success, otherwise
2399 return null.
2401 This is different from gen_lowpart* in these respects:
2403 - the returned value must always be considered an rvalue
2405 - when MODE is wider than SRC_MODE, the extraction involves
2406 a zero extension
2408 - when MODE is smaller than SRC_MODE, the extraction involves
2409 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
2411 In other words, this routine performs a computation, whereas the
2412 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2413 operations. */
2416 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2418 scalar_int_mode int_mode, src_int_mode;
2420 if (mode == src_mode)
2421 return src;
2423 if (CONSTANT_P (src))
2425 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2426 fails, it will happily create (subreg (symbol_ref)) or similar
2427 invalid SUBREGs. */
2428 poly_uint64 byte = subreg_lowpart_offset (mode, src_mode);
2429 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2430 if (ret)
2431 return ret;
2433 if (GET_MODE (src) == VOIDmode
2434 || !validate_subreg (mode, src_mode, src, byte))
2435 return NULL_RTX;
2437 src = force_reg (GET_MODE (src), src);
2438 return gen_rtx_SUBREG (mode, src, byte);
2441 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2442 return NULL_RTX;
2444 if (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (src_mode))
2445 && targetm.modes_tieable_p (mode, src_mode))
2447 rtx x = gen_lowpart_common (mode, src);
2448 if (x)
2449 return x;
2452 if (!int_mode_for_mode (src_mode).exists (&src_int_mode)
2453 || !int_mode_for_mode (mode).exists (&int_mode))
2454 return NULL_RTX;
2456 if (!targetm.modes_tieable_p (src_int_mode, src_mode))
2457 return NULL_RTX;
2458 if (!targetm.modes_tieable_p (int_mode, mode))
2459 return NULL_RTX;
2461 src = gen_lowpart (src_int_mode, src);
2462 if (!validate_subreg (int_mode, src_int_mode, src,
2463 subreg_lowpart_offset (int_mode, src_int_mode)))
2464 return NULL_RTX;
2466 src = convert_modes (int_mode, src_int_mode, src, true);
2467 src = gen_lowpart (mode, src);
2468 return src;
2471 /* Add INC into TARGET. */
2473 void
2474 expand_inc (rtx target, rtx inc)
2476 rtx value = expand_binop (GET_MODE (target), add_optab,
2477 target, inc,
2478 target, 0, OPTAB_LIB_WIDEN);
2479 if (value != target)
2480 emit_move_insn (target, value);
2483 /* Subtract DEC from TARGET. */
2485 void
2486 expand_dec (rtx target, rtx dec)
2488 rtx value = expand_binop (GET_MODE (target), sub_optab,
2489 target, dec,
2490 target, 0, OPTAB_LIB_WIDEN);
2491 if (value != target)
2492 emit_move_insn (target, value);
2495 /* Output a shift instruction for expression code CODE,
2496 with SHIFTED being the rtx for the value to shift,
2497 and AMOUNT the rtx for the amount to shift by.
2498 Store the result in the rtx TARGET, if that is convenient.
2499 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2500 Return the rtx for where the value is.
2501 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2502 in which case 0 is returned. */
2504 static rtx
2505 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2506 rtx amount, rtx target, int unsignedp, bool may_fail = false)
2508 rtx op1, temp = 0;
2509 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2510 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2511 optab lshift_optab = ashl_optab;
2512 optab rshift_arith_optab = ashr_optab;
2513 optab rshift_uns_optab = lshr_optab;
2514 optab lrotate_optab = rotl_optab;
2515 optab rrotate_optab = rotr_optab;
2516 machine_mode op1_mode;
2517 scalar_mode scalar_mode = GET_MODE_INNER (mode);
2518 int attempt;
2519 bool speed = optimize_insn_for_speed_p ();
2521 op1 = amount;
2522 op1_mode = GET_MODE (op1);
2524 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2525 shift amount is a vector, use the vector/vector shift patterns. */
2526 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2528 lshift_optab = vashl_optab;
2529 rshift_arith_optab = vashr_optab;
2530 rshift_uns_optab = vlshr_optab;
2531 lrotate_optab = vrotl_optab;
2532 rrotate_optab = vrotr_optab;
2535 /* Previously detected shift-counts computed by NEGATE_EXPR
2536 and shifted in the other direction; but that does not work
2537 on all machines. */
2539 if (SHIFT_COUNT_TRUNCATED)
2541 if (CONST_INT_P (op1)
2542 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2543 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2544 op1 = gen_int_shift_amount (mode,
2545 (unsigned HOST_WIDE_INT) INTVAL (op1)
2546 % GET_MODE_BITSIZE (scalar_mode));
2547 else if (GET_CODE (op1) == SUBREG
2548 && subreg_lowpart_p (op1)
2549 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2550 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2551 op1 = SUBREG_REG (op1);
2554 /* Canonicalize rotates by constant amount. We may canonicalize
2555 to reduce the immediate or if the ISA can rotate by constants
2556 in only on direction. */
2557 if (rotate && reverse_rotate_by_imm_p (scalar_mode, left, op1))
2559 op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode)
2560 - INTVAL (op1)));
2561 left = !left;
2562 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2565 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2566 Note that this is not the case for bigger values. For instance a rotation
2567 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2568 0x04030201 (bswapsi). */
2569 if (rotate
2570 && CONST_INT_P (op1)
2571 && INTVAL (op1) == BITS_PER_UNIT
2572 && GET_MODE_SIZE (scalar_mode) == 2
2573 && optab_handler (bswap_optab, mode) != CODE_FOR_nothing)
2574 return expand_unop (mode, bswap_optab, shifted, NULL_RTX, unsignedp);
2576 if (op1 == const0_rtx)
2577 return shifted;
2579 /* Check whether its cheaper to implement a left shift by a constant
2580 bit count by a sequence of additions. */
2581 if (code == LSHIFT_EXPR
2582 && CONST_INT_P (op1)
2583 && INTVAL (op1) > 0
2584 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2585 && INTVAL (op1) < MAX_BITS_PER_WORD
2586 && (shift_cost (speed, mode, INTVAL (op1))
2587 > INTVAL (op1) * add_cost (speed, mode))
2588 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2590 int i;
2591 for (i = 0; i < INTVAL (op1); i++)
2593 temp = force_reg (mode, shifted);
2594 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2595 unsignedp, OPTAB_LIB_WIDEN);
2597 return shifted;
2600 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2602 enum optab_methods methods;
2604 if (attempt == 0)
2605 methods = OPTAB_DIRECT;
2606 else if (attempt == 1)
2607 methods = OPTAB_WIDEN;
2608 else
2609 methods = OPTAB_LIB_WIDEN;
2611 if (rotate)
2613 /* Widening does not work for rotation. */
2614 if (methods == OPTAB_WIDEN)
2615 continue;
2616 else if (methods == OPTAB_LIB_WIDEN)
2618 /* If we have been unable to open-code this by a rotation,
2619 do it as the IOR of two shifts. I.e., to rotate A
2620 by N bits, compute
2621 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2622 where C is the bitsize of A.
2624 It is theoretically possible that the target machine might
2625 not be able to perform either shift and hence we would
2626 be making two libcalls rather than just the one for the
2627 shift (similarly if IOR could not be done). We will allow
2628 this extremely unlikely lossage to avoid complicating the
2629 code below. */
2631 rtx subtarget = target == shifted ? 0 : target;
2632 rtx new_amount, other_amount;
2633 rtx temp1;
2635 new_amount = op1;
2636 if (op1 == const0_rtx)
2637 return shifted;
2638 else if (CONST_INT_P (op1))
2639 other_amount = gen_int_shift_amount
2640 (mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2641 else
2643 other_amount
2644 = simplify_gen_unary (NEG, GET_MODE (op1),
2645 op1, GET_MODE (op1));
2646 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2647 other_amount
2648 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2649 gen_int_mode (mask, GET_MODE (op1)));
2652 shifted = force_reg (mode, shifted);
2654 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2655 mode, shifted, new_amount, 0, 1);
2656 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2657 mode, shifted, other_amount,
2658 subtarget, 1);
2659 return expand_binop (mode, ior_optab, temp, temp1, target,
2660 unsignedp, methods);
2663 temp = expand_binop (mode,
2664 left ? lrotate_optab : rrotate_optab,
2665 shifted, op1, target, unsignedp, methods);
2667 else if (unsignedp)
2668 temp = expand_binop (mode,
2669 left ? lshift_optab : rshift_uns_optab,
2670 shifted, op1, target, unsignedp, methods);
2672 /* Do arithmetic shifts.
2673 Also, if we are going to widen the operand, we can just as well
2674 use an arithmetic right-shift instead of a logical one. */
2675 if (temp == 0 && ! rotate
2676 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2678 enum optab_methods methods1 = methods;
2680 /* If trying to widen a log shift to an arithmetic shift,
2681 don't accept an arithmetic shift of the same size. */
2682 if (unsignedp)
2683 methods1 = OPTAB_MUST_WIDEN;
2685 /* Arithmetic shift */
2687 temp = expand_binop (mode,
2688 left ? lshift_optab : rshift_arith_optab,
2689 shifted, op1, target, unsignedp, methods1);
2692 /* We used to try extzv here for logical right shifts, but that was
2693 only useful for one machine, the VAX, and caused poor code
2694 generation there for lshrdi3, so the code was deleted and a
2695 define_expand for lshrsi3 was added to vax.md. */
2698 gcc_assert (temp != NULL_RTX || may_fail);
2699 return temp;
2702 /* Output a shift instruction for expression code CODE,
2703 with SHIFTED being the rtx for the value to shift,
2704 and AMOUNT the amount to shift by.
2705 Store the result in the rtx TARGET, if that is convenient.
2706 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2707 Return the rtx for where the value is. */
2710 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2711 poly_int64 amount, rtx target, int unsignedp)
2713 return expand_shift_1 (code, mode, shifted,
2714 gen_int_shift_amount (mode, amount),
2715 target, unsignedp);
2718 /* Likewise, but return 0 if that cannot be done. */
2721 maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2722 int amount, rtx target, int unsignedp)
2724 return expand_shift_1 (code, mode,
2725 shifted, GEN_INT (amount), target, unsignedp, true);
2728 /* Output a shift instruction for expression code CODE,
2729 with SHIFTED being the rtx for the value to shift,
2730 and AMOUNT the tree for the amount to shift by.
2731 Store the result in the rtx TARGET, if that is convenient.
2732 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2733 Return the rtx for where the value is. */
2736 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2737 tree amount, rtx target, int unsignedp)
2739 return expand_shift_1 (code, mode,
2740 shifted, expand_normal (amount), target, unsignedp);
2744 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2745 const struct mult_cost *, machine_mode mode);
2746 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2747 const struct algorithm *, enum mult_variant);
2748 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2749 static rtx extract_high_half (scalar_int_mode, rtx);
2750 static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int);
2751 static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx,
2752 int, int);
2753 /* Compute and return the best algorithm for multiplying by T.
2754 The algorithm must cost less than cost_limit
2755 If retval.cost >= COST_LIMIT, no algorithm was found and all
2756 other field of the returned struct are undefined.
2757 MODE is the machine mode of the multiplication. */
2759 static void
2760 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2761 const struct mult_cost *cost_limit, machine_mode mode)
2763 int m;
2764 struct algorithm *alg_in, *best_alg;
2765 struct mult_cost best_cost;
2766 struct mult_cost new_limit;
2767 int op_cost, op_latency;
2768 unsigned HOST_WIDE_INT orig_t = t;
2769 unsigned HOST_WIDE_INT q;
2770 int maxm, hash_index;
2771 bool cache_hit = false;
2772 enum alg_code cache_alg = alg_zero;
2773 bool speed = optimize_insn_for_speed_p ();
2774 scalar_int_mode imode;
2775 struct alg_hash_entry *entry_ptr;
2777 /* Indicate that no algorithm is yet found. If no algorithm
2778 is found, this value will be returned and indicate failure. */
2779 alg_out->cost.cost = cost_limit->cost + 1;
2780 alg_out->cost.latency = cost_limit->latency + 1;
2782 if (cost_limit->cost < 0
2783 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2784 return;
2786 /* Be prepared for vector modes. */
2787 imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode));
2789 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2791 /* Restrict the bits of "t" to the multiplication's mode. */
2792 t &= GET_MODE_MASK (imode);
2794 /* t == 1 can be done in zero cost. */
2795 if (t == 1)
2797 alg_out->ops = 1;
2798 alg_out->cost.cost = 0;
2799 alg_out->cost.latency = 0;
2800 alg_out->op[0] = alg_m;
2801 return;
2804 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2805 fail now. */
2806 if (t == 0)
2808 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2809 return;
2810 else
2812 alg_out->ops = 1;
2813 alg_out->cost.cost = zero_cost (speed);
2814 alg_out->cost.latency = zero_cost (speed);
2815 alg_out->op[0] = alg_zero;
2816 return;
2820 /* We'll be needing a couple extra algorithm structures now. */
2822 alg_in = XALLOCA (struct algorithm);
2823 best_alg = XALLOCA (struct algorithm);
2824 best_cost = *cost_limit;
2826 /* Compute the hash index. */
2827 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2829 /* See if we already know what to do for T. */
2830 entry_ptr = alg_hash_entry_ptr (hash_index);
2831 if (entry_ptr->t == t
2832 && entry_ptr->mode == mode
2833 && entry_ptr->speed == speed
2834 && entry_ptr->alg != alg_unknown)
2836 cache_alg = entry_ptr->alg;
2838 if (cache_alg == alg_impossible)
2840 /* The cache tells us that it's impossible to synthesize
2841 multiplication by T within entry_ptr->cost. */
2842 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2843 /* COST_LIMIT is at least as restrictive as the one
2844 recorded in the hash table, in which case we have no
2845 hope of synthesizing a multiplication. Just
2846 return. */
2847 return;
2849 /* If we get here, COST_LIMIT is less restrictive than the
2850 one recorded in the hash table, so we may be able to
2851 synthesize a multiplication. Proceed as if we didn't
2852 have the cache entry. */
2854 else
2856 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2857 /* The cached algorithm shows that this multiplication
2858 requires more cost than COST_LIMIT. Just return. This
2859 way, we don't clobber this cache entry with
2860 alg_impossible but retain useful information. */
2861 return;
2863 cache_hit = true;
2865 switch (cache_alg)
2867 case alg_shift:
2868 goto do_alg_shift;
2870 case alg_add_t_m2:
2871 case alg_sub_t_m2:
2872 goto do_alg_addsub_t_m2;
2874 case alg_add_factor:
2875 case alg_sub_factor:
2876 goto do_alg_addsub_factor;
2878 case alg_add_t2_m:
2879 goto do_alg_add_t2_m;
2881 case alg_sub_t2_m:
2882 goto do_alg_sub_t2_m;
2884 default:
2885 gcc_unreachable ();
2890 /* If we have a group of zero bits at the low-order part of T, try
2891 multiplying by the remaining bits and then doing a shift. */
2893 if ((t & 1) == 0)
2895 do_alg_shift:
2896 m = ctz_or_zero (t); /* m = number of low zero bits */
2897 if (m < maxm)
2899 q = t >> m;
2900 /* The function expand_shift will choose between a shift and
2901 a sequence of additions, so the observed cost is given as
2902 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2903 op_cost = m * add_cost (speed, mode);
2904 if (shift_cost (speed, mode, m) < op_cost)
2905 op_cost = shift_cost (speed, mode, m);
2906 new_limit.cost = best_cost.cost - op_cost;
2907 new_limit.latency = best_cost.latency - op_cost;
2908 synth_mult (alg_in, q, &new_limit, mode);
2910 alg_in->cost.cost += op_cost;
2911 alg_in->cost.latency += op_cost;
2912 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2914 best_cost = alg_in->cost;
2915 std::swap (alg_in, best_alg);
2916 best_alg->log[best_alg->ops] = m;
2917 best_alg->op[best_alg->ops] = alg_shift;
2920 /* See if treating ORIG_T as a signed number yields a better
2921 sequence. Try this sequence only for a negative ORIG_T
2922 as it would be useless for a non-negative ORIG_T. */
2923 if ((HOST_WIDE_INT) orig_t < 0)
2925 /* Shift ORIG_T as follows because a right shift of a
2926 negative-valued signed type is implementation
2927 defined. */
2928 q = ~(~orig_t >> m);
2929 /* The function expand_shift will choose between a shift
2930 and a sequence of additions, so the observed cost is
2931 given as MIN (m * add_cost(speed, mode),
2932 shift_cost(speed, mode, m)). */
2933 op_cost = m * add_cost (speed, mode);
2934 if (shift_cost (speed, mode, m) < op_cost)
2935 op_cost = shift_cost (speed, mode, m);
2936 new_limit.cost = best_cost.cost - op_cost;
2937 new_limit.latency = best_cost.latency - op_cost;
2938 synth_mult (alg_in, q, &new_limit, mode);
2940 alg_in->cost.cost += op_cost;
2941 alg_in->cost.latency += op_cost;
2942 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2944 best_cost = alg_in->cost;
2945 std::swap (alg_in, best_alg);
2946 best_alg->log[best_alg->ops] = m;
2947 best_alg->op[best_alg->ops] = alg_shift;
2951 if (cache_hit)
2952 goto done;
2955 /* If we have an odd number, add or subtract one. */
2956 if ((t & 1) != 0)
2958 unsigned HOST_WIDE_INT w;
2960 do_alg_addsub_t_m2:
2961 for (w = 1; (w & t) != 0; w <<= 1)
2963 /* If T was -1, then W will be zero after the loop. This is another
2964 case where T ends with ...111. Handling this with (T + 1) and
2965 subtract 1 produces slightly better code and results in algorithm
2966 selection much faster than treating it like the ...0111 case
2967 below. */
2968 if (w == 0
2969 || (w > 2
2970 /* Reject the case where t is 3.
2971 Thus we prefer addition in that case. */
2972 && t != 3))
2974 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2976 op_cost = add_cost (speed, mode);
2977 new_limit.cost = best_cost.cost - op_cost;
2978 new_limit.latency = best_cost.latency - op_cost;
2979 synth_mult (alg_in, t + 1, &new_limit, mode);
2981 alg_in->cost.cost += op_cost;
2982 alg_in->cost.latency += op_cost;
2983 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2985 best_cost = alg_in->cost;
2986 std::swap (alg_in, best_alg);
2987 best_alg->log[best_alg->ops] = 0;
2988 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2991 else
2993 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2995 op_cost = add_cost (speed, mode);
2996 new_limit.cost = best_cost.cost - op_cost;
2997 new_limit.latency = best_cost.latency - op_cost;
2998 synth_mult (alg_in, t - 1, &new_limit, mode);
3000 alg_in->cost.cost += op_cost;
3001 alg_in->cost.latency += op_cost;
3002 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3004 best_cost = alg_in->cost;
3005 std::swap (alg_in, best_alg);
3006 best_alg->log[best_alg->ops] = 0;
3007 best_alg->op[best_alg->ops] = alg_add_t_m2;
3011 /* We may be able to calculate a * -7, a * -15, a * -31, etc
3012 quickly with a - a * n for some appropriate constant n. */
3013 m = exact_log2 (-orig_t + 1);
3014 if (m >= 0 && m < maxm)
3016 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
3017 /* If the target has a cheap shift-and-subtract insn use
3018 that in preference to a shift insn followed by a sub insn.
3019 Assume that the shift-and-sub is "atomic" with a latency
3020 equal to it's cost, otherwise assume that on superscalar
3021 hardware the shift may be executed concurrently with the
3022 earlier steps in the algorithm. */
3023 if (shiftsub1_cost (speed, mode, m) <= op_cost)
3025 op_cost = shiftsub1_cost (speed, mode, m);
3026 op_latency = op_cost;
3028 else
3029 op_latency = add_cost (speed, mode);
3031 new_limit.cost = best_cost.cost - op_cost;
3032 new_limit.latency = best_cost.latency - op_latency;
3033 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
3034 &new_limit, mode);
3036 alg_in->cost.cost += op_cost;
3037 alg_in->cost.latency += op_latency;
3038 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3040 best_cost = alg_in->cost;
3041 std::swap (alg_in, best_alg);
3042 best_alg->log[best_alg->ops] = m;
3043 best_alg->op[best_alg->ops] = alg_sub_t_m2;
3047 if (cache_hit)
3048 goto done;
3051 /* Look for factors of t of the form
3052 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
3053 If we find such a factor, we can multiply by t using an algorithm that
3054 multiplies by q, shift the result by m and add/subtract it to itself.
3056 We search for large factors first and loop down, even if large factors
3057 are less probable than small; if we find a large factor we will find a
3058 good sequence quickly, and therefore be able to prune (by decreasing
3059 COST_LIMIT) the search. */
3061 do_alg_addsub_factor:
3062 for (m = floor_log2 (t - 1); m >= 2; m--)
3064 unsigned HOST_WIDE_INT d;
3066 d = (HOST_WIDE_INT_1U << m) + 1;
3067 if (t % d == 0 && t > d && m < maxm
3068 && (!cache_hit || cache_alg == alg_add_factor))
3070 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
3071 if (shiftadd_cost (speed, mode, m) <= op_cost)
3072 op_cost = shiftadd_cost (speed, mode, m);
3074 op_latency = op_cost;
3077 new_limit.cost = best_cost.cost - op_cost;
3078 new_limit.latency = best_cost.latency - op_latency;
3079 synth_mult (alg_in, t / d, &new_limit, mode);
3081 alg_in->cost.cost += op_cost;
3082 alg_in->cost.latency += op_latency;
3083 if (alg_in->cost.latency < op_cost)
3084 alg_in->cost.latency = op_cost;
3085 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3087 best_cost = alg_in->cost;
3088 std::swap (alg_in, best_alg);
3089 best_alg->log[best_alg->ops] = m;
3090 best_alg->op[best_alg->ops] = alg_add_factor;
3092 /* Other factors will have been taken care of in the recursion. */
3093 break;
3096 d = (HOST_WIDE_INT_1U << m) - 1;
3097 if (t % d == 0 && t > d && m < maxm
3098 && (!cache_hit || cache_alg == alg_sub_factor))
3100 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
3101 if (shiftsub0_cost (speed, mode, m) <= op_cost)
3102 op_cost = shiftsub0_cost (speed, mode, m);
3104 op_latency = op_cost;
3106 new_limit.cost = best_cost.cost - op_cost;
3107 new_limit.latency = best_cost.latency - op_latency;
3108 synth_mult (alg_in, t / d, &new_limit, mode);
3110 alg_in->cost.cost += op_cost;
3111 alg_in->cost.latency += op_latency;
3112 if (alg_in->cost.latency < op_cost)
3113 alg_in->cost.latency = op_cost;
3114 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3116 best_cost = alg_in->cost;
3117 std::swap (alg_in, best_alg);
3118 best_alg->log[best_alg->ops] = m;
3119 best_alg->op[best_alg->ops] = alg_sub_factor;
3121 break;
3124 if (cache_hit)
3125 goto done;
3127 /* Try shift-and-add (load effective address) instructions,
3128 i.e. do a*3, a*5, a*9. */
3129 if ((t & 1) != 0)
3131 do_alg_add_t2_m:
3132 q = t - 1;
3133 m = ctz_hwi (q);
3134 if (q && m < maxm)
3136 op_cost = shiftadd_cost (speed, mode, m);
3137 new_limit.cost = best_cost.cost - op_cost;
3138 new_limit.latency = best_cost.latency - op_cost;
3139 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
3141 alg_in->cost.cost += op_cost;
3142 alg_in->cost.latency += op_cost;
3143 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3145 best_cost = alg_in->cost;
3146 std::swap (alg_in, best_alg);
3147 best_alg->log[best_alg->ops] = m;
3148 best_alg->op[best_alg->ops] = alg_add_t2_m;
3151 if (cache_hit)
3152 goto done;
3154 do_alg_sub_t2_m:
3155 q = t + 1;
3156 m = ctz_hwi (q);
3157 if (q && m < maxm)
3159 op_cost = shiftsub0_cost (speed, mode, m);
3160 new_limit.cost = best_cost.cost - op_cost;
3161 new_limit.latency = best_cost.latency - op_cost;
3162 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
3164 alg_in->cost.cost += op_cost;
3165 alg_in->cost.latency += op_cost;
3166 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3168 best_cost = alg_in->cost;
3169 std::swap (alg_in, best_alg);
3170 best_alg->log[best_alg->ops] = m;
3171 best_alg->op[best_alg->ops] = alg_sub_t2_m;
3174 if (cache_hit)
3175 goto done;
3178 done:
3179 /* If best_cost has not decreased, we have not found any algorithm. */
3180 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
3182 /* We failed to find an algorithm. Record alg_impossible for
3183 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3184 we are asked to find an algorithm for T within the same or
3185 lower COST_LIMIT, we can immediately return to the
3186 caller. */
3187 entry_ptr->t = t;
3188 entry_ptr->mode = mode;
3189 entry_ptr->speed = speed;
3190 entry_ptr->alg = alg_impossible;
3191 entry_ptr->cost = *cost_limit;
3192 return;
3195 /* Cache the result. */
3196 if (!cache_hit)
3198 entry_ptr->t = t;
3199 entry_ptr->mode = mode;
3200 entry_ptr->speed = speed;
3201 entry_ptr->alg = best_alg->op[best_alg->ops];
3202 entry_ptr->cost.cost = best_cost.cost;
3203 entry_ptr->cost.latency = best_cost.latency;
3206 /* If we are getting a too long sequence for `struct algorithm'
3207 to record, make this search fail. */
3208 if (best_alg->ops == MAX_BITS_PER_WORD)
3209 return;
3211 /* Copy the algorithm from temporary space to the space at alg_out.
3212 We avoid using structure assignment because the majority of
3213 best_alg is normally undefined, and this is a critical function. */
3214 alg_out->ops = best_alg->ops + 1;
3215 alg_out->cost = best_cost;
3216 memcpy (alg_out->op, best_alg->op,
3217 alg_out->ops * sizeof *alg_out->op);
3218 memcpy (alg_out->log, best_alg->log,
3219 alg_out->ops * sizeof *alg_out->log);
3222 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3223 Try three variations:
3225 - a shift/add sequence based on VAL itself
3226 - a shift/add sequence based on -VAL, followed by a negation
3227 - a shift/add sequence based on VAL - 1, followed by an addition.
3229 Return true if the cheapest of these cost less than MULT_COST,
3230 describing the algorithm in *ALG and final fixup in *VARIANT. */
3232 bool
3233 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
3234 struct algorithm *alg, enum mult_variant *variant,
3235 int mult_cost)
3237 struct algorithm alg2;
3238 struct mult_cost limit;
3239 int op_cost;
3240 bool speed = optimize_insn_for_speed_p ();
3242 /* Fail quickly for impossible bounds. */
3243 if (mult_cost < 0)
3244 return false;
3246 /* Ensure that mult_cost provides a reasonable upper bound.
3247 Any constant multiplication can be performed with less
3248 than 2 * bits additions. */
3249 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
3250 if (mult_cost > op_cost)
3251 mult_cost = op_cost;
3253 *variant = basic_variant;
3254 limit.cost = mult_cost;
3255 limit.latency = mult_cost;
3256 synth_mult (alg, val, &limit, mode);
3258 /* This works only if the inverted value actually fits in an
3259 `unsigned int' */
3260 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
3262 op_cost = neg_cost (speed, mode);
3263 if (MULT_COST_LESS (&alg->cost, mult_cost))
3265 limit.cost = alg->cost.cost - op_cost;
3266 limit.latency = alg->cost.latency - op_cost;
3268 else
3270 limit.cost = mult_cost - op_cost;
3271 limit.latency = mult_cost - op_cost;
3274 synth_mult (&alg2, -val, &limit, mode);
3275 alg2.cost.cost += op_cost;
3276 alg2.cost.latency += op_cost;
3277 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3278 *alg = alg2, *variant = negate_variant;
3281 /* This proves very useful for division-by-constant. */
3282 op_cost = add_cost (speed, mode);
3283 if (MULT_COST_LESS (&alg->cost, mult_cost))
3285 limit.cost = alg->cost.cost - op_cost;
3286 limit.latency = alg->cost.latency - op_cost;
3288 else
3290 limit.cost = mult_cost - op_cost;
3291 limit.latency = mult_cost - op_cost;
3294 if (val != HOST_WIDE_INT_MIN
3295 || GET_MODE_UNIT_PRECISION (mode) == HOST_BITS_PER_WIDE_INT)
3297 synth_mult (&alg2, val - HOST_WIDE_INT_1U, &limit, mode);
3298 alg2.cost.cost += op_cost;
3299 alg2.cost.latency += op_cost;
3300 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
3301 *alg = alg2, *variant = add_variant;
3304 return MULT_COST_LESS (&alg->cost, mult_cost);
3307 /* A subroutine of expand_mult, used for constant multiplications.
3308 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3309 convenient. Use the shift/add sequence described by ALG and apply
3310 the final fixup specified by VARIANT. */
3312 static rtx
3313 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
3314 rtx target, const struct algorithm *alg,
3315 enum mult_variant variant)
3317 unsigned HOST_WIDE_INT val_so_far;
3318 rtx_insn *insn;
3319 rtx accum, tem;
3320 int opno;
3321 machine_mode nmode;
3323 /* Avoid referencing memory over and over and invalid sharing
3324 on SUBREGs. */
3325 op0 = force_reg (mode, op0);
3327 /* ACCUM starts out either as OP0 or as a zero, depending on
3328 the first operation. */
3330 if (alg->op[0] == alg_zero)
3332 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
3333 val_so_far = 0;
3335 else if (alg->op[0] == alg_m)
3337 accum = copy_to_mode_reg (mode, op0);
3338 val_so_far = 1;
3340 else
3341 gcc_unreachable ();
3343 for (opno = 1; opno < alg->ops; opno++)
3345 int log = alg->log[opno];
3346 rtx shift_subtarget = optimize ? 0 : accum;
3347 rtx add_target
3348 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
3349 && !optimize)
3350 ? target : 0;
3351 rtx accum_target = optimize ? 0 : accum;
3352 rtx accum_inner;
3354 switch (alg->op[opno])
3356 case alg_shift:
3357 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3358 /* REG_EQUAL note will be attached to the following insn. */
3359 emit_move_insn (accum, tem);
3360 val_so_far <<= log;
3361 break;
3363 case alg_add_t_m2:
3364 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3365 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3366 add_target ? add_target : accum_target);
3367 val_so_far += HOST_WIDE_INT_1U << log;
3368 break;
3370 case alg_sub_t_m2:
3371 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3372 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3373 add_target ? add_target : accum_target);
3374 val_so_far -= HOST_WIDE_INT_1U << log;
3375 break;
3377 case alg_add_t2_m:
3378 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3379 log, shift_subtarget, 0);
3380 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3381 add_target ? add_target : accum_target);
3382 val_so_far = (val_so_far << log) + 1;
3383 break;
3385 case alg_sub_t2_m:
3386 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3387 log, shift_subtarget, 0);
3388 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3389 add_target ? add_target : accum_target);
3390 val_so_far = (val_so_far << log) - 1;
3391 break;
3393 case alg_add_factor:
3394 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3395 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3396 add_target ? add_target : accum_target);
3397 val_so_far += val_so_far << log;
3398 break;
3400 case alg_sub_factor:
3401 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3402 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3403 (add_target
3404 ? add_target : (optimize ? 0 : tem)));
3405 val_so_far = (val_so_far << log) - val_so_far;
3406 break;
3408 default:
3409 gcc_unreachable ();
3412 if (SCALAR_INT_MODE_P (mode))
3414 /* Write a REG_EQUAL note on the last insn so that we can cse
3415 multiplication sequences. Note that if ACCUM is a SUBREG,
3416 we've set the inner register and must properly indicate that. */
3417 tem = op0, nmode = mode;
3418 accum_inner = accum;
3419 if (GET_CODE (accum) == SUBREG)
3421 accum_inner = SUBREG_REG (accum);
3422 nmode = GET_MODE (accum_inner);
3423 tem = gen_lowpart (nmode, op0);
3426 /* Don't add a REG_EQUAL note if tem is a paradoxical SUBREG.
3427 In that case, only the low bits of accum would be guaranteed to
3428 be equal to the content of the REG_EQUAL note, the upper bits
3429 can be anything. */
3430 if (!paradoxical_subreg_p (tem))
3432 insn = get_last_insn ();
3433 wide_int wval_so_far
3434 = wi::uhwi (val_so_far,
3435 GET_MODE_PRECISION (as_a <scalar_mode> (nmode)));
3436 rtx c = immed_wide_int_const (wval_so_far, nmode);
3437 set_dst_reg_note (insn, REG_EQUAL, gen_rtx_MULT (nmode, tem, c),
3438 accum_inner);
3443 if (variant == negate_variant)
3445 val_so_far = -val_so_far;
3446 accum = expand_unop (mode, neg_optab, accum, target, 0);
3448 else if (variant == add_variant)
3450 val_so_far = val_so_far + 1;
3451 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3454 /* Compare only the bits of val and val_so_far that are significant
3455 in the result mode, to avoid sign-/zero-extension confusion. */
3456 nmode = GET_MODE_INNER (mode);
3457 val &= GET_MODE_MASK (nmode);
3458 val_so_far &= GET_MODE_MASK (nmode);
3459 gcc_assert (val == (HOST_WIDE_INT) val_so_far);
3461 return accum;
3464 /* Perform a multiplication and return an rtx for the result.
3465 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3466 TARGET is a suggestion for where to store the result (an rtx).
3468 We check specially for a constant integer as OP1.
3469 If you want this check for OP0 as well, then before calling
3470 you should swap the two operands if OP0 would be constant. */
3473 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3474 int unsignedp, bool no_libcall)
3476 enum mult_variant variant;
3477 struct algorithm algorithm;
3478 rtx scalar_op1;
3479 int max_cost;
3480 bool speed = optimize_insn_for_speed_p ();
3481 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3483 if (CONSTANT_P (op0))
3484 std::swap (op0, op1);
3486 /* For vectors, there are several simplifications that can be made if
3487 all elements of the vector constant are identical. */
3488 scalar_op1 = unwrap_const_vec_duplicate (op1);
3490 if (INTEGRAL_MODE_P (mode))
3492 rtx fake_reg;
3493 HOST_WIDE_INT coeff;
3494 bool is_neg;
3495 int mode_bitsize;
3497 if (op1 == CONST0_RTX (mode))
3498 return op1;
3499 if (op1 == CONST1_RTX (mode))
3500 return op0;
3501 if (op1 == CONSTM1_RTX (mode))
3502 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3503 op0, target, 0);
3505 if (do_trapv)
3506 goto skip_synth;
3508 /* If mode is integer vector mode, check if the backend supports
3509 vector lshift (by scalar or vector) at all. If not, we can't use
3510 synthetized multiply. */
3511 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3512 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3513 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3514 goto skip_synth;
3516 /* These are the operations that are potentially turned into
3517 a sequence of shifts and additions. */
3518 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3520 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3521 less than or equal in size to `unsigned int' this doesn't matter.
3522 If the mode is larger than `unsigned int', then synth_mult works
3523 only if the constant value exactly fits in an `unsigned int' without
3524 any truncation. This means that multiplying by negative values does
3525 not work; results are off by 2^32 on a 32 bit machine. */
3526 if (CONST_INT_P (scalar_op1))
3528 coeff = INTVAL (scalar_op1);
3529 is_neg = coeff < 0;
3531 #if TARGET_SUPPORTS_WIDE_INT
3532 else if (CONST_WIDE_INT_P (scalar_op1))
3533 #else
3534 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3535 #endif
3537 int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
3538 /* Perfect power of 2 (other than 1, which is handled above). */
3539 if (shift > 0)
3540 return expand_shift (LSHIFT_EXPR, mode, op0,
3541 shift, target, unsignedp);
3542 else
3543 goto skip_synth;
3545 else
3546 goto skip_synth;
3548 /* We used to test optimize here, on the grounds that it's better to
3549 produce a smaller program when -O is not used. But this causes
3550 such a terrible slowdown sometimes that it seems better to always
3551 use synth_mult. */
3553 /* Special case powers of two. */
3554 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3555 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3556 return expand_shift (LSHIFT_EXPR, mode, op0,
3557 floor_log2 (coeff), target, unsignedp);
3559 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3561 /* Attempt to handle multiplication of DImode values by negative
3562 coefficients, by performing the multiplication by a positive
3563 multiplier and then inverting the result. */
3564 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3566 /* Its safe to use -coeff even for INT_MIN, as the
3567 result is interpreted as an unsigned coefficient.
3568 Exclude cost of op0 from max_cost to match the cost
3569 calculation of the synth_mult. */
3570 coeff = -(unsigned HOST_WIDE_INT) coeff;
3571 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3572 mode, speed)
3573 - neg_cost (speed, mode));
3574 if (max_cost <= 0)
3575 goto skip_synth;
3577 /* Special case powers of two. */
3578 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3580 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3581 floor_log2 (coeff), target, unsignedp);
3582 return expand_unop (mode, neg_optab, temp, target, 0);
3585 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3586 max_cost))
3588 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3589 &algorithm, variant);
3590 return expand_unop (mode, neg_optab, temp, target, 0);
3592 goto skip_synth;
3595 /* Exclude cost of op0 from max_cost to match the cost
3596 calculation of the synth_mult. */
3597 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
3598 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3599 return expand_mult_const (mode, op0, coeff, target,
3600 &algorithm, variant);
3602 skip_synth:
3604 /* Expand x*2.0 as x+x. */
3605 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
3606 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
3608 op0 = force_reg (GET_MODE (op0), op0);
3609 return expand_binop (mode, add_optab, op0, op0,
3610 target, unsignedp,
3611 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3614 /* This used to use umul_optab if unsigned, but for non-widening multiply
3615 there is no difference between signed and unsigned. */
3616 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3617 op0, op1, target, unsignedp,
3618 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3619 gcc_assert (op0 || no_libcall);
3620 return op0;
3623 /* Return a cost estimate for multiplying a register by the given
3624 COEFFicient in the given MODE and SPEED. */
3627 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3629 int max_cost;
3630 struct algorithm algorithm;
3631 enum mult_variant variant;
3633 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3634 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3635 mode, speed);
3636 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3637 return algorithm.cost.cost;
3638 else
3639 return max_cost;
3642 /* Perform a widening multiplication and return an rtx for the result.
3643 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3644 TARGET is a suggestion for where to store the result (an rtx).
3645 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3646 or smul_widen_optab.
3648 We check specially for a constant integer as OP1, comparing the
3649 cost of a widening multiply against the cost of a sequence of shifts
3650 and adds. */
3653 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3654 int unsignedp, optab this_optab)
3656 bool speed = optimize_insn_for_speed_p ();
3657 rtx cop1;
3659 if (CONST_INT_P (op1)
3660 && GET_MODE (op0) != VOIDmode
3661 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3662 this_optab == umul_widen_optab))
3663 && CONST_INT_P (cop1)
3664 && (INTVAL (cop1) >= 0
3665 || HWI_COMPUTABLE_MODE_P (mode)))
3667 HOST_WIDE_INT coeff = INTVAL (cop1);
3668 int max_cost;
3669 enum mult_variant variant;
3670 struct algorithm algorithm;
3672 if (coeff == 0)
3673 return CONST0_RTX (mode);
3675 /* Special case powers of two. */
3676 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3678 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3679 return expand_shift (LSHIFT_EXPR, mode, op0,
3680 floor_log2 (coeff), target, unsignedp);
3683 /* Exclude cost of op0 from max_cost to match the cost
3684 calculation of the synth_mult. */
3685 max_cost = mul_widen_cost (speed, mode);
3686 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3687 max_cost))
3689 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3690 return expand_mult_const (mode, op0, coeff, target,
3691 &algorithm, variant);
3694 return expand_binop (mode, this_optab, op0, op1, target,
3695 unsignedp, OPTAB_LIB_WIDEN);
3698 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3699 replace division by D, and put the least significant N bits of the result
3700 in *MULTIPLIER_PTR and return the most significant bit.
3702 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3703 needed precision is in PRECISION (should be <= N).
3705 PRECISION should be as small as possible so this function can choose
3706 multiplier more freely.
3708 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3709 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3711 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3712 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3714 unsigned HOST_WIDE_INT
3715 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3716 unsigned HOST_WIDE_INT *multiplier_ptr,
3717 int *post_shift_ptr, int *lgup_ptr)
3719 int lgup, post_shift;
3720 int pow, pow2;
3722 /* lgup = ceil(log2(divisor)); */
3723 lgup = ceil_log2 (d);
3725 gcc_assert (lgup <= n);
3727 pow = n + lgup;
3728 pow2 = n + lgup - precision;
3730 /* mlow = 2^(N + lgup)/d */
3731 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3732 wide_int mlow = wi::udiv_trunc (val, d);
3734 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3735 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3736 wide_int mhigh = wi::udiv_trunc (val, d);
3738 /* If precision == N, then mlow, mhigh exceed 2^N
3739 (but they do not exceed 2^(N+1)). */
3741 /* Reduce to lowest terms. */
3742 for (post_shift = lgup; post_shift > 0; post_shift--)
3744 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3745 HOST_BITS_PER_WIDE_INT);
3746 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3747 HOST_BITS_PER_WIDE_INT);
3748 if (ml_lo >= mh_lo)
3749 break;
3751 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3752 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3755 *post_shift_ptr = post_shift;
3756 *lgup_ptr = lgup;
3757 if (n < HOST_BITS_PER_WIDE_INT)
3759 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
3760 *multiplier_ptr = mhigh.to_uhwi () & mask;
3761 return mhigh.to_uhwi () > mask;
3763 else
3765 *multiplier_ptr = mhigh.to_uhwi ();
3766 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3770 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3771 congruent to 1 (mod 2**N). */
3773 static unsigned HOST_WIDE_INT
3774 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3776 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3778 /* The algorithm notes that the choice y = x satisfies
3779 x*y == 1 mod 2^3, since x is assumed odd.
3780 Each iteration doubles the number of bits of significance in y. */
3782 unsigned HOST_WIDE_INT mask;
3783 unsigned HOST_WIDE_INT y = x;
3784 int nbit = 3;
3786 mask = (n == HOST_BITS_PER_WIDE_INT
3787 ? HOST_WIDE_INT_M1U
3788 : (HOST_WIDE_INT_1U << n) - 1);
3790 while (nbit < n)
3792 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3793 nbit *= 2;
3795 return y;
3798 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3799 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3800 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3801 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3802 become signed.
3804 The result is put in TARGET if that is convenient.
3806 MODE is the mode of operation. */
3809 expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0,
3810 rtx op1, rtx target, int unsignedp)
3812 rtx tem;
3813 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3815 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3816 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3817 tem = expand_and (mode, tem, op1, NULL_RTX);
3818 adj_operand
3819 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3820 adj_operand);
3822 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3823 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3824 tem = expand_and (mode, tem, op0, NULL_RTX);
3825 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3826 target);
3828 return target;
3831 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3833 static rtx
3834 extract_high_half (scalar_int_mode mode, rtx op)
3836 if (mode == word_mode)
3837 return gen_highpart (mode, op);
3839 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3841 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3842 GET_MODE_BITSIZE (mode), 0, 1);
3843 return convert_modes (mode, wider_mode, op, 0);
3846 /* Like expmed_mult_highpart, but only consider using a multiplication
3847 optab. OP1 is an rtx for the constant operand. */
3849 static rtx
3850 expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1,
3851 rtx target, int unsignedp, int max_cost)
3853 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3854 optab moptab;
3855 rtx tem;
3856 int size;
3857 bool speed = optimize_insn_for_speed_p ();
3859 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3861 size = GET_MODE_BITSIZE (mode);
3863 /* Firstly, try using a multiplication insn that only generates the needed
3864 high part of the product, and in the sign flavor of unsignedp. */
3865 if (mul_highpart_cost (speed, mode) < max_cost)
3867 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3868 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3869 unsignedp, OPTAB_DIRECT);
3870 if (tem)
3871 return tem;
3874 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3875 Need to adjust the result after the multiplication. */
3876 if (size - 1 < BITS_PER_WORD
3877 && (mul_highpart_cost (speed, mode)
3878 + 2 * shift_cost (speed, mode, size-1)
3879 + 4 * add_cost (speed, mode) < max_cost))
3881 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3882 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3883 unsignedp, OPTAB_DIRECT);
3884 if (tem)
3885 /* We used the wrong signedness. Adjust the result. */
3886 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3887 tem, unsignedp);
3890 /* Try widening multiplication. */
3891 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3892 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3893 && mul_widen_cost (speed, wider_mode) < max_cost)
3895 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3896 unsignedp, OPTAB_WIDEN);
3897 if (tem)
3898 return extract_high_half (mode, tem);
3901 /* Try widening the mode and perform a non-widening multiplication. */
3902 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3903 && size - 1 < BITS_PER_WORD
3904 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3905 < max_cost))
3907 rtx_insn *insns;
3908 rtx wop0, wop1;
3910 /* We need to widen the operands, for example to ensure the
3911 constant multiplier is correctly sign or zero extended.
3912 Use a sequence to clean-up any instructions emitted by
3913 the conversions if things don't work out. */
3914 start_sequence ();
3915 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3916 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3917 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3918 unsignedp, OPTAB_WIDEN);
3919 insns = get_insns ();
3920 end_sequence ();
3922 if (tem)
3924 emit_insn (insns);
3925 return extract_high_half (mode, tem);
3929 /* Try widening multiplication of opposite signedness, and adjust. */
3930 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3931 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3932 && size - 1 < BITS_PER_WORD
3933 && (mul_widen_cost (speed, wider_mode)
3934 + 2 * shift_cost (speed, mode, size-1)
3935 + 4 * add_cost (speed, mode) < max_cost))
3937 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3938 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3939 if (tem != 0)
3941 tem = extract_high_half (mode, tem);
3942 /* We used the wrong signedness. Adjust the result. */
3943 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3944 target, unsignedp);
3948 return 0;
3951 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3952 putting the high half of the result in TARGET if that is convenient,
3953 and return where the result is. If the operation cannot be performed,
3954 0 is returned.
3956 MODE is the mode of operation and result.
3958 UNSIGNEDP nonzero means unsigned multiply.
3960 MAX_COST is the total allowed cost for the expanded RTL. */
3962 static rtx
3963 expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1,
3964 rtx target, int unsignedp, int max_cost)
3966 unsigned HOST_WIDE_INT cnst1;
3967 int extra_cost;
3968 bool sign_adjust = false;
3969 enum mult_variant variant;
3970 struct algorithm alg;
3971 rtx tem;
3972 bool speed = optimize_insn_for_speed_p ();
3974 /* We can't support modes wider than HOST_BITS_PER_INT. */
3975 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3977 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3979 /* We can't optimize modes wider than BITS_PER_WORD.
3980 ??? We might be able to perform double-word arithmetic if
3981 mode == word_mode, however all the cost calculations in
3982 synth_mult etc. assume single-word operations. */
3983 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
3984 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3985 return expmed_mult_highpart_optab (mode, op0, op1, target,
3986 unsignedp, max_cost);
3988 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3990 /* Check whether we try to multiply by a negative constant. */
3991 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3993 sign_adjust = true;
3994 extra_cost += add_cost (speed, mode);
3997 /* See whether shift/add multiplication is cheap enough. */
3998 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3999 max_cost - extra_cost))
4001 /* See whether the specialized multiplication optabs are
4002 cheaper than the shift/add version. */
4003 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
4004 alg.cost.cost + extra_cost);
4005 if (tem)
4006 return tem;
4008 tem = convert_to_mode (wider_mode, op0, unsignedp);
4009 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
4010 tem = extract_high_half (mode, tem);
4012 /* Adjust result for signedness. */
4013 if (sign_adjust)
4014 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
4016 return tem;
4018 return expmed_mult_highpart_optab (mode, op0, op1, target,
4019 unsignedp, max_cost);
4023 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
4025 static rtx
4026 expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
4028 rtx result, temp, shift;
4029 rtx_code_label *label;
4030 int logd;
4031 int prec = GET_MODE_PRECISION (mode);
4033 logd = floor_log2 (d);
4034 result = gen_reg_rtx (mode);
4036 /* Avoid conditional branches when they're expensive. */
4037 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
4038 && optimize_insn_for_speed_p ())
4040 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
4041 mode, 0, -1);
4042 if (signmask)
4044 HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
4045 signmask = force_reg (mode, signmask);
4046 shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd);
4048 /* Use the rtx_cost of a LSHIFTRT instruction to determine
4049 which instruction sequence to use. If logical right shifts
4050 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
4051 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
4053 temp = gen_rtx_LSHIFTRT (mode, result, shift);
4054 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
4055 || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
4056 > COSTS_N_INSNS (2)))
4058 temp = expand_binop (mode, xor_optab, op0, signmask,
4059 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4060 temp = expand_binop (mode, sub_optab, temp, signmask,
4061 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4062 temp = expand_binop (mode, and_optab, temp,
4063 gen_int_mode (masklow, mode),
4064 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4065 temp = expand_binop (mode, xor_optab, temp, signmask,
4066 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4067 temp = expand_binop (mode, sub_optab, temp, signmask,
4068 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4070 else
4072 signmask = expand_binop (mode, lshr_optab, signmask, shift,
4073 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4074 signmask = force_reg (mode, signmask);
4076 temp = expand_binop (mode, add_optab, op0, signmask,
4077 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4078 temp = expand_binop (mode, and_optab, temp,
4079 gen_int_mode (masklow, mode),
4080 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4081 temp = expand_binop (mode, sub_optab, temp, signmask,
4082 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4084 return temp;
4088 /* Mask contains the mode's signbit and the significant bits of the
4089 modulus. By including the signbit in the operation, many targets
4090 can avoid an explicit compare operation in the following comparison
4091 against zero. */
4092 wide_int mask = wi::mask (logd, false, prec);
4093 mask = wi::set_bit (mask, prec - 1);
4095 temp = expand_binop (mode, and_optab, op0,
4096 immed_wide_int_const (mask, mode),
4097 result, 1, OPTAB_LIB_WIDEN);
4098 if (temp != result)
4099 emit_move_insn (result, temp);
4101 label = gen_label_rtx ();
4102 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
4104 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
4105 0, OPTAB_LIB_WIDEN);
4107 mask = wi::mask (logd, true, prec);
4108 temp = expand_binop (mode, ior_optab, temp,
4109 immed_wide_int_const (mask, mode),
4110 result, 1, OPTAB_LIB_WIDEN);
4111 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
4112 0, OPTAB_LIB_WIDEN);
4113 if (temp != result)
4114 emit_move_insn (result, temp);
4115 emit_label (label);
4116 return result;
4119 /* Expand signed division of OP0 by a power of two D in mode MODE.
4120 This routine is only called for positive values of D. */
4122 static rtx
4123 expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
4125 rtx temp;
4126 rtx_code_label *label;
4127 int logd;
4129 logd = floor_log2 (d);
4131 if (d == 2
4132 && BRANCH_COST (optimize_insn_for_speed_p (),
4133 false) >= 1)
4135 temp = gen_reg_rtx (mode);
4136 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
4137 if (temp != NULL_RTX)
4139 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4140 0, OPTAB_LIB_WIDEN);
4141 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4145 if (HAVE_conditional_move
4146 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
4148 rtx temp2;
4150 start_sequence ();
4151 temp2 = copy_to_mode_reg (mode, op0);
4152 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
4153 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4154 temp = force_reg (mode, temp);
4156 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
4157 temp2 = emit_conditional_move (temp2, { LT, temp2, const0_rtx, mode },
4158 temp, temp2, mode, 0);
4159 if (temp2)
4161 rtx_insn *seq = get_insns ();
4162 end_sequence ();
4163 emit_insn (seq);
4164 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
4166 end_sequence ();
4169 if (BRANCH_COST (optimize_insn_for_speed_p (),
4170 false) >= 2)
4172 int ushift = GET_MODE_BITSIZE (mode) - logd;
4174 temp = gen_reg_rtx (mode);
4175 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
4176 if (temp != NULL_RTX)
4178 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
4179 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
4180 > COSTS_N_INSNS (1))
4181 temp = expand_binop (mode, and_optab, temp,
4182 gen_int_mode (d - 1, mode),
4183 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4184 else
4185 temp = expand_shift (RSHIFT_EXPR, mode, temp,
4186 ushift, NULL_RTX, 1);
4187 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4188 0, OPTAB_LIB_WIDEN);
4189 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4193 label = gen_label_rtx ();
4194 temp = copy_to_mode_reg (mode, op0);
4195 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
4196 expand_inc (temp, gen_int_mode (d - 1, mode));
4197 emit_label (label);
4198 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4201 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
4202 if that is convenient, and returning where the result is.
4203 You may request either the quotient or the remainder as the result;
4204 specify REM_FLAG nonzero to get the remainder.
4206 CODE is the expression code for which kind of division this is;
4207 it controls how rounding is done. MODE is the machine mode to use.
4208 UNSIGNEDP nonzero means do unsigned division. */
4210 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4211 and then correct it by or'ing in missing high bits
4212 if result of ANDI is nonzero.
4213 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4214 This could optimize to a bfexts instruction.
4215 But C doesn't use these operations, so their optimizations are
4216 left for later. */
4217 /* ??? For modulo, we don't actually need the highpart of the first product,
4218 the low part will do nicely. And for small divisors, the second multiply
4219 can also be a low-part only multiply or even be completely left out.
4220 E.g. to calculate the remainder of a division by 3 with a 32 bit
4221 multiply, multiply with 0x55555556 and extract the upper two bits;
4222 the result is exact for inputs up to 0x1fffffff.
4223 The input range can be reduced by using cross-sum rules.
4224 For odd divisors >= 3, the following table gives right shift counts
4225 so that if a number is shifted by an integer multiple of the given
4226 amount, the remainder stays the same:
4227 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4228 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4229 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4230 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4231 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4233 Cross-sum rules for even numbers can be derived by leaving as many bits
4234 to the right alone as the divisor has zeros to the right.
4235 E.g. if x is an unsigned 32 bit number:
4236 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4240 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
4241 rtx op0, rtx op1, rtx target, int unsignedp,
4242 enum optab_methods methods)
4244 machine_mode compute_mode;
4245 rtx tquotient;
4246 rtx quotient = 0, remainder = 0;
4247 rtx_insn *last;
4248 rtx_insn *insn;
4249 optab optab1, optab2;
4250 int op1_is_constant, op1_is_pow2 = 0;
4251 int max_cost, extra_cost;
4252 static HOST_WIDE_INT last_div_const = 0;
4253 bool speed = optimize_insn_for_speed_p ();
4255 op1_is_constant = CONST_INT_P (op1);
4256 if (op1_is_constant)
4258 wide_int ext_op1 = rtx_mode_t (op1, mode);
4259 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4260 || (! unsignedp
4261 && wi::popcount (wi::neg (ext_op1)) == 1));
4265 This is the structure of expand_divmod:
4267 First comes code to fix up the operands so we can perform the operations
4268 correctly and efficiently.
4270 Second comes a switch statement with code specific for each rounding mode.
4271 For some special operands this code emits all RTL for the desired
4272 operation, for other cases, it generates only a quotient and stores it in
4273 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4274 to indicate that it has not done anything.
4276 Last comes code that finishes the operation. If QUOTIENT is set and
4277 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4278 QUOTIENT is not set, it is computed using trunc rounding.
4280 We try to generate special code for division and remainder when OP1 is a
4281 constant. If |OP1| = 2**n we can use shifts and some other fast
4282 operations. For other values of OP1, we compute a carefully selected
4283 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4284 by m.
4286 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4287 half of the product. Different strategies for generating the product are
4288 implemented in expmed_mult_highpart.
4290 If what we actually want is the remainder, we generate that by another
4291 by-constant multiplication and a subtraction. */
4293 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4294 code below will malfunction if we are, so check here and handle
4295 the special case if so. */
4296 if (op1 == const1_rtx)
4297 return rem_flag ? const0_rtx : op0;
4299 /* When dividing by -1, we could get an overflow.
4300 negv_optab can handle overflows. */
4301 if (! unsignedp && op1 == constm1_rtx)
4303 if (rem_flag)
4304 return const0_rtx;
4305 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
4306 ? negv_optab : neg_optab, op0, target, 0);
4309 if (target
4310 /* Don't use the function value register as a target
4311 since we have to read it as well as write it,
4312 and function-inlining gets confused by this. */
4313 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
4314 /* Don't clobber an operand while doing a multi-step calculation. */
4315 || ((rem_flag || op1_is_constant)
4316 && (reg_mentioned_p (target, op0)
4317 || (MEM_P (op0) && MEM_P (target))))
4318 || reg_mentioned_p (target, op1)
4319 || (MEM_P (op1) && MEM_P (target))))
4320 target = 0;
4322 /* Get the mode in which to perform this computation. Normally it will
4323 be MODE, but sometimes we can't do the desired operation in MODE.
4324 If so, pick a wider mode in which we can do the operation. Convert
4325 to that mode at the start to avoid repeated conversions.
4327 First see what operations we need. These depend on the expression
4328 we are evaluating. (We assume that divxx3 insns exist under the
4329 same conditions that modxx3 insns and that these insns don't normally
4330 fail. If these assumptions are not correct, we may generate less
4331 efficient code in some cases.)
4333 Then see if we find a mode in which we can open-code that operation
4334 (either a division, modulus, or shift). Finally, check for the smallest
4335 mode for which we can do the operation with a library call. */
4337 /* We might want to refine this now that we have division-by-constant
4338 optimization. Since expmed_mult_highpart tries so many variants, it is
4339 not straightforward to generalize this. Maybe we should make an array
4340 of possible modes in init_expmed? Save this for GCC 2.7. */
4342 optab1 = (op1_is_pow2
4343 ? (unsignedp ? lshr_optab : ashr_optab)
4344 : (unsignedp ? udiv_optab : sdiv_optab));
4345 optab2 = (op1_is_pow2 ? optab1
4346 : (unsignedp ? udivmod_optab : sdivmod_optab));
4348 if (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN)
4350 FOR_EACH_MODE_FROM (compute_mode, mode)
4351 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4352 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
4353 break;
4355 if (compute_mode == VOIDmode && methods == OPTAB_LIB_WIDEN)
4356 FOR_EACH_MODE_FROM (compute_mode, mode)
4357 if (optab_libfunc (optab1, compute_mode)
4358 || optab_libfunc (optab2, compute_mode))
4359 break;
4361 else
4362 compute_mode = mode;
4364 /* If we still couldn't find a mode, use MODE, but expand_binop will
4365 probably die. */
4366 if (compute_mode == VOIDmode)
4367 compute_mode = mode;
4369 if (target && GET_MODE (target) == compute_mode)
4370 tquotient = target;
4371 else
4372 tquotient = gen_reg_rtx (compute_mode);
4374 #if 0
4375 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4376 (mode), and thereby get better code when OP1 is a constant. Do that
4377 later. It will require going over all usages of SIZE below. */
4378 size = GET_MODE_BITSIZE (mode);
4379 #endif
4381 /* Only deduct something for a REM if the last divide done was
4382 for a different constant. Then set the constant of the last
4383 divide. */
4384 max_cost = (unsignedp
4385 ? udiv_cost (speed, compute_mode)
4386 : sdiv_cost (speed, compute_mode));
4387 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4388 && INTVAL (op1) == last_div_const))
4389 max_cost -= (mul_cost (speed, compute_mode)
4390 + add_cost (speed, compute_mode));
4392 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4394 /* Now convert to the best mode to use. */
4395 if (compute_mode != mode)
4397 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4398 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4400 /* convert_modes may have placed op1 into a register, so we
4401 must recompute the following. */
4402 op1_is_constant = CONST_INT_P (op1);
4403 if (op1_is_constant)
4405 wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
4406 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4407 || (! unsignedp
4408 && wi::popcount (wi::neg (ext_op1)) == 1));
4410 else
4411 op1_is_pow2 = 0;
4414 /* If one of the operands is a volatile MEM, copy it into a register. */
4416 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4417 op0 = force_reg (compute_mode, op0);
4418 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4419 op1 = force_reg (compute_mode, op1);
4421 /* If we need the remainder or if OP1 is constant, we need to
4422 put OP0 in a register in case it has any queued subexpressions. */
4423 if (rem_flag || op1_is_constant)
4424 op0 = force_reg (compute_mode, op0);
4426 last = get_last_insn ();
4428 /* Promote floor rounding to trunc rounding for unsigned operations. */
4429 if (unsignedp)
4431 if (code == FLOOR_DIV_EXPR)
4432 code = TRUNC_DIV_EXPR;
4433 if (code == FLOOR_MOD_EXPR)
4434 code = TRUNC_MOD_EXPR;
4435 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4436 code = TRUNC_DIV_EXPR;
4439 if (op1 != const0_rtx)
4440 switch (code)
4442 case TRUNC_MOD_EXPR:
4443 case TRUNC_DIV_EXPR:
4444 if (op1_is_constant)
4446 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4447 int size = GET_MODE_BITSIZE (int_mode);
4448 if (unsignedp)
4450 unsigned HOST_WIDE_INT mh, ml;
4451 int pre_shift, post_shift;
4452 int dummy;
4453 wide_int wd = rtx_mode_t (op1, int_mode);
4454 unsigned HOST_WIDE_INT d = wd.to_uhwi ();
4456 if (wi::popcount (wd) == 1)
4458 pre_shift = floor_log2 (d);
4459 if (rem_flag)
4461 unsigned HOST_WIDE_INT mask
4462 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4463 remainder
4464 = expand_binop (int_mode, and_optab, op0,
4465 gen_int_mode (mask, int_mode),
4466 remainder, 1, methods);
4467 if (remainder)
4468 return gen_lowpart (mode, remainder);
4470 quotient = expand_shift (RSHIFT_EXPR, int_mode, op0,
4471 pre_shift, tquotient, 1);
4473 else if (size <= HOST_BITS_PER_WIDE_INT)
4475 if (d >= (HOST_WIDE_INT_1U << (size - 1)))
4477 /* Most significant bit of divisor is set; emit an scc
4478 insn. */
4479 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4480 int_mode, 1, 1);
4482 else
4484 /* Find a suitable multiplier and right shift count
4485 instead of multiplying with D. */
4487 mh = choose_multiplier (d, size, size,
4488 &ml, &post_shift, &dummy);
4490 /* If the suggested multiplier is more than SIZE bits,
4491 we can do better for even divisors, using an
4492 initial right shift. */
4493 if (mh != 0 && (d & 1) == 0)
4495 pre_shift = ctz_or_zero (d);
4496 mh = choose_multiplier (d >> pre_shift, size,
4497 size - pre_shift,
4498 &ml, &post_shift, &dummy);
4499 gcc_assert (!mh);
4501 else
4502 pre_shift = 0;
4504 if (mh != 0)
4506 rtx t1, t2, t3, t4;
4508 if (post_shift - 1 >= BITS_PER_WORD)
4509 goto fail1;
4511 extra_cost
4512 = (shift_cost (speed, int_mode, post_shift - 1)
4513 + shift_cost (speed, int_mode, 1)
4514 + 2 * add_cost (speed, int_mode));
4515 t1 = expmed_mult_highpart
4516 (int_mode, op0, gen_int_mode (ml, int_mode),
4517 NULL_RTX, 1, max_cost - extra_cost);
4518 if (t1 == 0)
4519 goto fail1;
4520 t2 = force_operand (gen_rtx_MINUS (int_mode,
4521 op0, t1),
4522 NULL_RTX);
4523 t3 = expand_shift (RSHIFT_EXPR, int_mode,
4524 t2, 1, NULL_RTX, 1);
4525 t4 = force_operand (gen_rtx_PLUS (int_mode,
4526 t1, t3),
4527 NULL_RTX);
4528 quotient = expand_shift
4529 (RSHIFT_EXPR, int_mode, t4,
4530 post_shift - 1, tquotient, 1);
4532 else
4534 rtx t1, t2;
4536 if (pre_shift >= BITS_PER_WORD
4537 || post_shift >= BITS_PER_WORD)
4538 goto fail1;
4540 t1 = expand_shift
4541 (RSHIFT_EXPR, int_mode, op0,
4542 pre_shift, NULL_RTX, 1);
4543 extra_cost
4544 = (shift_cost (speed, int_mode, pre_shift)
4545 + shift_cost (speed, int_mode, post_shift));
4546 t2 = expmed_mult_highpart
4547 (int_mode, t1,
4548 gen_int_mode (ml, int_mode),
4549 NULL_RTX, 1, max_cost - extra_cost);
4550 if (t2 == 0)
4551 goto fail1;
4552 quotient = expand_shift
4553 (RSHIFT_EXPR, int_mode, t2,
4554 post_shift, tquotient, 1);
4558 else /* Too wide mode to use tricky code */
4559 break;
4561 insn = get_last_insn ();
4562 if (insn != last)
4563 set_dst_reg_note (insn, REG_EQUAL,
4564 gen_rtx_UDIV (int_mode, op0, op1),
4565 quotient);
4567 else /* TRUNC_DIV, signed */
4569 unsigned HOST_WIDE_INT ml;
4570 int lgup, post_shift;
4571 rtx mlr;
4572 HOST_WIDE_INT d = INTVAL (op1);
4573 unsigned HOST_WIDE_INT abs_d;
4575 /* Not prepared to handle division/remainder by
4576 0xffffffffffffffff8000000000000000 etc. */
4577 if (d == HOST_WIDE_INT_MIN && size > HOST_BITS_PER_WIDE_INT)
4578 break;
4580 /* Since d might be INT_MIN, we have to cast to
4581 unsigned HOST_WIDE_INT before negating to avoid
4582 undefined signed overflow. */
4583 abs_d = (d >= 0
4584 ? (unsigned HOST_WIDE_INT) d
4585 : - (unsigned HOST_WIDE_INT) d);
4587 /* n rem d = n rem -d */
4588 if (rem_flag && d < 0)
4590 d = abs_d;
4591 op1 = gen_int_mode (abs_d, int_mode);
4594 if (d == 1)
4595 quotient = op0;
4596 else if (d == -1)
4597 quotient = expand_unop (int_mode, neg_optab, op0,
4598 tquotient, 0);
4599 else if (size <= HOST_BITS_PER_WIDE_INT
4600 && abs_d == HOST_WIDE_INT_1U << (size - 1))
4602 /* This case is not handled correctly below. */
4603 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4604 int_mode, 1, 1);
4605 if (quotient == 0)
4606 goto fail1;
4608 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4609 && (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
4610 && (rem_flag
4611 ? smod_pow2_cheap (speed, int_mode)
4612 : sdiv_pow2_cheap (speed, int_mode))
4613 /* We assume that cheap metric is true if the
4614 optab has an expander for this mode. */
4615 && ((optab_handler ((rem_flag ? smod_optab
4616 : sdiv_optab),
4617 int_mode)
4618 != CODE_FOR_nothing)
4619 || (optab_handler (sdivmod_optab, int_mode)
4620 != CODE_FOR_nothing)))
4622 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4624 if (rem_flag)
4626 remainder = expand_smod_pow2 (int_mode, op0, d);
4627 if (remainder)
4628 return gen_lowpart (mode, remainder);
4631 if (sdiv_pow2_cheap (speed, int_mode)
4632 && ((optab_handler (sdiv_optab, int_mode)
4633 != CODE_FOR_nothing)
4634 || (optab_handler (sdivmod_optab, int_mode)
4635 != CODE_FOR_nothing)))
4636 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4637 int_mode, op0,
4638 gen_int_mode (abs_d,
4639 int_mode),
4640 NULL_RTX, 0);
4641 else
4642 quotient = expand_sdiv_pow2 (int_mode, op0, abs_d);
4644 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4645 negate the quotient. */
4646 if (d < 0)
4648 insn = get_last_insn ();
4649 if (insn != last
4650 && abs_d < (HOST_WIDE_INT_1U
4651 << (HOST_BITS_PER_WIDE_INT - 1)))
4652 set_dst_reg_note (insn, REG_EQUAL,
4653 gen_rtx_DIV (int_mode, op0,
4654 gen_int_mode
4655 (abs_d,
4656 int_mode)),
4657 quotient);
4659 quotient = expand_unop (int_mode, neg_optab,
4660 quotient, quotient, 0);
4663 else if (size <= HOST_BITS_PER_WIDE_INT)
4665 choose_multiplier (abs_d, size, size - 1,
4666 &ml, &post_shift, &lgup);
4667 if (ml < HOST_WIDE_INT_1U << (size - 1))
4669 rtx t1, t2, t3;
4671 if (post_shift >= BITS_PER_WORD
4672 || size - 1 >= BITS_PER_WORD)
4673 goto fail1;
4675 extra_cost = (shift_cost (speed, int_mode, post_shift)
4676 + shift_cost (speed, int_mode, size - 1)
4677 + add_cost (speed, int_mode));
4678 t1 = expmed_mult_highpart
4679 (int_mode, op0, gen_int_mode (ml, int_mode),
4680 NULL_RTX, 0, max_cost - extra_cost);
4681 if (t1 == 0)
4682 goto fail1;
4683 t2 = expand_shift
4684 (RSHIFT_EXPR, int_mode, t1,
4685 post_shift, NULL_RTX, 0);
4686 t3 = expand_shift
4687 (RSHIFT_EXPR, int_mode, op0,
4688 size - 1, NULL_RTX, 0);
4689 if (d < 0)
4690 quotient
4691 = force_operand (gen_rtx_MINUS (int_mode, t3, t2),
4692 tquotient);
4693 else
4694 quotient
4695 = force_operand (gen_rtx_MINUS (int_mode, t2, t3),
4696 tquotient);
4698 else
4700 rtx t1, t2, t3, t4;
4702 if (post_shift >= BITS_PER_WORD
4703 || size - 1 >= BITS_PER_WORD)
4704 goto fail1;
4706 ml |= HOST_WIDE_INT_M1U << (size - 1);
4707 mlr = gen_int_mode (ml, int_mode);
4708 extra_cost = (shift_cost (speed, int_mode, post_shift)
4709 + shift_cost (speed, int_mode, size - 1)
4710 + 2 * add_cost (speed, int_mode));
4711 t1 = expmed_mult_highpart (int_mode, op0, mlr,
4712 NULL_RTX, 0,
4713 max_cost - extra_cost);
4714 if (t1 == 0)
4715 goto fail1;
4716 t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0),
4717 NULL_RTX);
4718 t3 = expand_shift
4719 (RSHIFT_EXPR, int_mode, t2,
4720 post_shift, NULL_RTX, 0);
4721 t4 = expand_shift
4722 (RSHIFT_EXPR, int_mode, op0,
4723 size - 1, NULL_RTX, 0);
4724 if (d < 0)
4725 quotient
4726 = force_operand (gen_rtx_MINUS (int_mode, t4, t3),
4727 tquotient);
4728 else
4729 quotient
4730 = force_operand (gen_rtx_MINUS (int_mode, t3, t4),
4731 tquotient);
4734 else /* Too wide mode to use tricky code */
4735 break;
4737 insn = get_last_insn ();
4738 if (insn != last)
4739 set_dst_reg_note (insn, REG_EQUAL,
4740 gen_rtx_DIV (int_mode, op0, op1),
4741 quotient);
4743 break;
4745 fail1:
4746 delete_insns_since (last);
4747 break;
4749 case FLOOR_DIV_EXPR:
4750 case FLOOR_MOD_EXPR:
4751 /* We will come here only for signed operations. */
4752 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
4754 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4755 int size = GET_MODE_BITSIZE (int_mode);
4756 unsigned HOST_WIDE_INT mh, ml;
4757 int pre_shift, lgup, post_shift;
4758 HOST_WIDE_INT d = INTVAL (op1);
4760 if (d > 0)
4762 /* We could just as easily deal with negative constants here,
4763 but it does not seem worth the trouble for GCC 2.6. */
4764 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4766 pre_shift = floor_log2 (d);
4767 if (rem_flag)
4769 unsigned HOST_WIDE_INT mask
4770 = (HOST_WIDE_INT_1U << pre_shift) - 1;
4771 remainder = expand_binop
4772 (int_mode, and_optab, op0,
4773 gen_int_mode (mask, int_mode),
4774 remainder, 0, methods);
4775 if (remainder)
4776 return gen_lowpart (mode, remainder);
4778 quotient = expand_shift
4779 (RSHIFT_EXPR, int_mode, op0,
4780 pre_shift, tquotient, 0);
4782 else
4784 rtx t1, t2, t3, t4;
4786 mh = choose_multiplier (d, size, size - 1,
4787 &ml, &post_shift, &lgup);
4788 gcc_assert (!mh);
4790 if (post_shift < BITS_PER_WORD
4791 && size - 1 < BITS_PER_WORD)
4793 t1 = expand_shift
4794 (RSHIFT_EXPR, int_mode, op0,
4795 size - 1, NULL_RTX, 0);
4796 t2 = expand_binop (int_mode, xor_optab, op0, t1,
4797 NULL_RTX, 0, OPTAB_WIDEN);
4798 extra_cost = (shift_cost (speed, int_mode, post_shift)
4799 + shift_cost (speed, int_mode, size - 1)
4800 + 2 * add_cost (speed, int_mode));
4801 t3 = expmed_mult_highpart
4802 (int_mode, t2, gen_int_mode (ml, int_mode),
4803 NULL_RTX, 1, max_cost - extra_cost);
4804 if (t3 != 0)
4806 t4 = expand_shift
4807 (RSHIFT_EXPR, int_mode, t3,
4808 post_shift, NULL_RTX, 1);
4809 quotient = expand_binop (int_mode, xor_optab,
4810 t4, t1, tquotient, 0,
4811 OPTAB_WIDEN);
4816 else
4818 rtx nsign, t1, t2, t3, t4;
4819 t1 = force_operand (gen_rtx_PLUS (int_mode,
4820 op0, constm1_rtx), NULL_RTX);
4821 t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX,
4822 0, OPTAB_WIDEN);
4823 nsign = expand_shift (RSHIFT_EXPR, int_mode, t2,
4824 size - 1, NULL_RTX, 0);
4825 t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign),
4826 NULL_RTX);
4827 t4 = expand_divmod (0, TRUNC_DIV_EXPR, int_mode, t3, op1,
4828 NULL_RTX, 0);
4829 if (t4)
4831 rtx t5;
4832 t5 = expand_unop (int_mode, one_cmpl_optab, nsign,
4833 NULL_RTX, 0);
4834 quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5),
4835 tquotient);
4840 if (quotient != 0)
4841 break;
4842 delete_insns_since (last);
4844 /* Try using an instruction that produces both the quotient and
4845 remainder, using truncation. We can easily compensate the quotient
4846 or remainder to get floor rounding, once we have the remainder.
4847 Notice that we compute also the final remainder value here,
4848 and return the result right away. */
4849 if (target == 0 || GET_MODE (target) != compute_mode)
4850 target = gen_reg_rtx (compute_mode);
4852 if (rem_flag)
4854 remainder
4855 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4856 quotient = gen_reg_rtx (compute_mode);
4858 else
4860 quotient
4861 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4862 remainder = gen_reg_rtx (compute_mode);
4865 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4866 quotient, remainder, 0))
4868 /* This could be computed with a branch-less sequence.
4869 Save that for later. */
4870 rtx tem;
4871 rtx_code_label *label = gen_label_rtx ();
4872 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4873 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4874 NULL_RTX, 0, OPTAB_WIDEN);
4875 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4876 expand_dec (quotient, const1_rtx);
4877 expand_inc (remainder, op1);
4878 emit_label (label);
4879 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4882 /* No luck with division elimination or divmod. Have to do it
4883 by conditionally adjusting op0 *and* the result. */
4885 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4886 rtx adjusted_op0;
4887 rtx tem;
4889 quotient = gen_reg_rtx (compute_mode);
4890 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4891 label1 = gen_label_rtx ();
4892 label2 = gen_label_rtx ();
4893 label3 = gen_label_rtx ();
4894 label4 = gen_label_rtx ();
4895 label5 = gen_label_rtx ();
4896 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4897 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4898 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4899 quotient, 0, methods);
4900 if (tem != quotient)
4901 emit_move_insn (quotient, tem);
4902 emit_jump_insn (targetm.gen_jump (label5));
4903 emit_barrier ();
4904 emit_label (label1);
4905 expand_inc (adjusted_op0, const1_rtx);
4906 emit_jump_insn (targetm.gen_jump (label4));
4907 emit_barrier ();
4908 emit_label (label2);
4909 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4910 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4911 quotient, 0, methods);
4912 if (tem != quotient)
4913 emit_move_insn (quotient, tem);
4914 emit_jump_insn (targetm.gen_jump (label5));
4915 emit_barrier ();
4916 emit_label (label3);
4917 expand_dec (adjusted_op0, const1_rtx);
4918 emit_label (label4);
4919 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4920 quotient, 0, methods);
4921 if (tem != quotient)
4922 emit_move_insn (quotient, tem);
4923 expand_dec (quotient, const1_rtx);
4924 emit_label (label5);
4926 break;
4928 case CEIL_DIV_EXPR:
4929 case CEIL_MOD_EXPR:
4930 if (unsignedp)
4932 if (op1_is_constant
4933 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4934 && (HWI_COMPUTABLE_MODE_P (compute_mode)
4935 || INTVAL (op1) >= 0))
4937 scalar_int_mode int_mode
4938 = as_a <scalar_int_mode> (compute_mode);
4939 rtx t1, t2, t3;
4940 unsigned HOST_WIDE_INT d = INTVAL (op1);
4941 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
4942 floor_log2 (d), tquotient, 1);
4943 t2 = expand_binop (int_mode, and_optab, op0,
4944 gen_int_mode (d - 1, int_mode),
4945 NULL_RTX, 1, methods);
4946 t3 = gen_reg_rtx (int_mode);
4947 t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1);
4948 if (t3 == 0)
4950 rtx_code_label *lab;
4951 lab = gen_label_rtx ();
4952 do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab);
4953 expand_inc (t1, const1_rtx);
4954 emit_label (lab);
4955 quotient = t1;
4957 else
4958 quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3),
4959 tquotient);
4960 break;
4963 /* Try using an instruction that produces both the quotient and
4964 remainder, using truncation. We can easily compensate the
4965 quotient or remainder to get ceiling rounding, once we have the
4966 remainder. Notice that we compute also the final remainder
4967 value here, and return the result right away. */
4968 if (target == 0 || GET_MODE (target) != compute_mode)
4969 target = gen_reg_rtx (compute_mode);
4971 if (rem_flag)
4973 remainder = (REG_P (target)
4974 ? target : gen_reg_rtx (compute_mode));
4975 quotient = gen_reg_rtx (compute_mode);
4977 else
4979 quotient = (REG_P (target)
4980 ? target : gen_reg_rtx (compute_mode));
4981 remainder = gen_reg_rtx (compute_mode);
4984 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4985 remainder, 1))
4987 /* This could be computed with a branch-less sequence.
4988 Save that for later. */
4989 rtx_code_label *label = gen_label_rtx ();
4990 do_cmp_and_jump (remainder, const0_rtx, EQ,
4991 compute_mode, label);
4992 expand_inc (quotient, const1_rtx);
4993 expand_dec (remainder, op1);
4994 emit_label (label);
4995 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4998 /* No luck with division elimination or divmod. Have to do it
4999 by conditionally adjusting op0 *and* the result. */
5001 rtx_code_label *label1, *label2;
5002 rtx adjusted_op0, tem;
5004 quotient = gen_reg_rtx (compute_mode);
5005 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
5006 label1 = gen_label_rtx ();
5007 label2 = gen_label_rtx ();
5008 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
5009 compute_mode, label1);
5010 emit_move_insn (quotient, const0_rtx);
5011 emit_jump_insn (targetm.gen_jump (label2));
5012 emit_barrier ();
5013 emit_label (label1);
5014 expand_dec (adjusted_op0, const1_rtx);
5015 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
5016 quotient, 1, methods);
5017 if (tem != quotient)
5018 emit_move_insn (quotient, tem);
5019 expand_inc (quotient, const1_rtx);
5020 emit_label (label2);
5023 else /* signed */
5025 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
5026 && INTVAL (op1) >= 0)
5028 /* This is extremely similar to the code for the unsigned case
5029 above. For 2.7 we should merge these variants, but for
5030 2.6.1 I don't want to touch the code for unsigned since that
5031 get used in C. The signed case will only be used by other
5032 languages (Ada). */
5034 rtx t1, t2, t3;
5035 unsigned HOST_WIDE_INT d = INTVAL (op1);
5036 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
5037 floor_log2 (d), tquotient, 0);
5038 t2 = expand_binop (compute_mode, and_optab, op0,
5039 gen_int_mode (d - 1, compute_mode),
5040 NULL_RTX, 1, methods);
5041 t3 = gen_reg_rtx (compute_mode);
5042 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
5043 compute_mode, 1, 1);
5044 if (t3 == 0)
5046 rtx_code_label *lab;
5047 lab = gen_label_rtx ();
5048 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
5049 expand_inc (t1, const1_rtx);
5050 emit_label (lab);
5051 quotient = t1;
5053 else
5054 quotient = force_operand (gen_rtx_PLUS (compute_mode,
5055 t1, t3),
5056 tquotient);
5057 break;
5060 /* Try using an instruction that produces both the quotient and
5061 remainder, using truncation. We can easily compensate the
5062 quotient or remainder to get ceiling rounding, once we have the
5063 remainder. Notice that we compute also the final remainder
5064 value here, and return the result right away. */
5065 if (target == 0 || GET_MODE (target) != compute_mode)
5066 target = gen_reg_rtx (compute_mode);
5067 if (rem_flag)
5069 remainder= (REG_P (target)
5070 ? target : gen_reg_rtx (compute_mode));
5071 quotient = gen_reg_rtx (compute_mode);
5073 else
5075 quotient = (REG_P (target)
5076 ? target : gen_reg_rtx (compute_mode));
5077 remainder = gen_reg_rtx (compute_mode);
5080 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
5081 remainder, 0))
5083 /* This could be computed with a branch-less sequence.
5084 Save that for later. */
5085 rtx tem;
5086 rtx_code_label *label = gen_label_rtx ();
5087 do_cmp_and_jump (remainder, const0_rtx, EQ,
5088 compute_mode, label);
5089 tem = expand_binop (compute_mode, xor_optab, op0, op1,
5090 NULL_RTX, 0, OPTAB_WIDEN);
5091 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
5092 expand_inc (quotient, const1_rtx);
5093 expand_dec (remainder, op1);
5094 emit_label (label);
5095 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5098 /* No luck with division elimination or divmod. Have to do it
5099 by conditionally adjusting op0 *and* the result. */
5101 rtx_code_label *label1, *label2, *label3, *label4, *label5;
5102 rtx adjusted_op0;
5103 rtx tem;
5105 quotient = gen_reg_rtx (compute_mode);
5106 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
5107 label1 = gen_label_rtx ();
5108 label2 = gen_label_rtx ();
5109 label3 = gen_label_rtx ();
5110 label4 = gen_label_rtx ();
5111 label5 = gen_label_rtx ();
5112 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
5113 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
5114 compute_mode, label1);
5115 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5116 quotient, 0, methods);
5117 if (tem != quotient)
5118 emit_move_insn (quotient, tem);
5119 emit_jump_insn (targetm.gen_jump (label5));
5120 emit_barrier ();
5121 emit_label (label1);
5122 expand_dec (adjusted_op0, const1_rtx);
5123 emit_jump_insn (targetm.gen_jump (label4));
5124 emit_barrier ();
5125 emit_label (label2);
5126 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
5127 compute_mode, label3);
5128 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5129 quotient, 0, methods);
5130 if (tem != quotient)
5131 emit_move_insn (quotient, tem);
5132 emit_jump_insn (targetm.gen_jump (label5));
5133 emit_barrier ();
5134 emit_label (label3);
5135 expand_inc (adjusted_op0, const1_rtx);
5136 emit_label (label4);
5137 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
5138 quotient, 0, methods);
5139 if (tem != quotient)
5140 emit_move_insn (quotient, tem);
5141 expand_inc (quotient, const1_rtx);
5142 emit_label (label5);
5145 break;
5147 case EXACT_DIV_EXPR:
5148 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
5150 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5151 int size = GET_MODE_BITSIZE (int_mode);
5152 HOST_WIDE_INT d = INTVAL (op1);
5153 unsigned HOST_WIDE_INT ml;
5154 int pre_shift;
5155 rtx t1;
5157 pre_shift = ctz_or_zero (d);
5158 ml = invert_mod2n (d >> pre_shift, size);
5159 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
5160 pre_shift, NULL_RTX, unsignedp);
5161 quotient = expand_mult (int_mode, t1, gen_int_mode (ml, int_mode),
5162 NULL_RTX, 1);
5164 insn = get_last_insn ();
5165 set_dst_reg_note (insn, REG_EQUAL,
5166 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
5167 int_mode, op0, op1),
5168 quotient);
5170 break;
5172 case ROUND_DIV_EXPR:
5173 case ROUND_MOD_EXPR:
5174 if (unsignedp)
5176 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5177 rtx tem;
5178 rtx_code_label *label;
5179 label = gen_label_rtx ();
5180 quotient = gen_reg_rtx (int_mode);
5181 remainder = gen_reg_rtx (int_mode);
5182 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
5184 rtx tem;
5185 quotient = expand_binop (int_mode, udiv_optab, op0, op1,
5186 quotient, 1, methods);
5187 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 1);
5188 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5189 remainder, 1, methods);
5191 tem = plus_constant (int_mode, op1, -1);
5192 tem = expand_shift (RSHIFT_EXPR, int_mode, tem, 1, NULL_RTX, 1);
5193 do_cmp_and_jump (remainder, tem, LEU, int_mode, label);
5194 expand_inc (quotient, const1_rtx);
5195 expand_dec (remainder, op1);
5196 emit_label (label);
5198 else
5200 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5201 int size = GET_MODE_BITSIZE (int_mode);
5202 rtx abs_rem, abs_op1, tem, mask;
5203 rtx_code_label *label;
5204 label = gen_label_rtx ();
5205 quotient = gen_reg_rtx (int_mode);
5206 remainder = gen_reg_rtx (int_mode);
5207 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
5209 rtx tem;
5210 quotient = expand_binop (int_mode, sdiv_optab, op0, op1,
5211 quotient, 0, methods);
5212 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 0);
5213 remainder = expand_binop (int_mode, sub_optab, op0, tem,
5214 remainder, 0, methods);
5216 abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0);
5217 abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0);
5218 tem = expand_shift (LSHIFT_EXPR, int_mode, abs_rem,
5219 1, NULL_RTX, 1);
5220 do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label);
5221 tem = expand_binop (int_mode, xor_optab, op0, op1,
5222 NULL_RTX, 0, OPTAB_WIDEN);
5223 mask = expand_shift (RSHIFT_EXPR, int_mode, tem,
5224 size - 1, NULL_RTX, 0);
5225 tem = expand_binop (int_mode, xor_optab, mask, const1_rtx,
5226 NULL_RTX, 0, OPTAB_WIDEN);
5227 tem = expand_binop (int_mode, sub_optab, tem, mask,
5228 NULL_RTX, 0, OPTAB_WIDEN);
5229 expand_inc (quotient, tem);
5230 tem = expand_binop (int_mode, xor_optab, mask, op1,
5231 NULL_RTX, 0, OPTAB_WIDEN);
5232 tem = expand_binop (int_mode, sub_optab, tem, mask,
5233 NULL_RTX, 0, OPTAB_WIDEN);
5234 expand_dec (remainder, tem);
5235 emit_label (label);
5237 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5239 default:
5240 gcc_unreachable ();
5243 if (quotient == 0)
5245 if (target && GET_MODE (target) != compute_mode)
5246 target = 0;
5248 if (rem_flag)
5250 /* Try to produce the remainder without producing the quotient.
5251 If we seem to have a divmod pattern that does not require widening,
5252 don't try widening here. We should really have a WIDEN argument
5253 to expand_twoval_binop, since what we'd really like to do here is
5254 1) try a mod insn in compute_mode
5255 2) try a divmod insn in compute_mode
5256 3) try a div insn in compute_mode and multiply-subtract to get
5257 remainder
5258 4) try the same things with widening allowed. */
5259 remainder
5260 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5261 op0, op1, target,
5262 unsignedp,
5263 ((optab_handler (optab2, compute_mode)
5264 != CODE_FOR_nothing)
5265 ? OPTAB_DIRECT : OPTAB_WIDEN));
5266 if (remainder == 0)
5268 /* No luck there. Can we do remainder and divide at once
5269 without a library call? */
5270 remainder = gen_reg_rtx (compute_mode);
5271 if (! expand_twoval_binop ((unsignedp
5272 ? udivmod_optab
5273 : sdivmod_optab),
5274 op0, op1,
5275 NULL_RTX, remainder, unsignedp))
5276 remainder = 0;
5279 if (remainder)
5280 return gen_lowpart (mode, remainder);
5283 /* Produce the quotient. Try a quotient insn, but not a library call.
5284 If we have a divmod in this mode, use it in preference to widening
5285 the div (for this test we assume it will not fail). Note that optab2
5286 is set to the one of the two optabs that the call below will use. */
5287 quotient
5288 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
5289 op0, op1, rem_flag ? NULL_RTX : target,
5290 unsignedp,
5291 ((optab_handler (optab2, compute_mode)
5292 != CODE_FOR_nothing)
5293 ? OPTAB_DIRECT : OPTAB_WIDEN));
5295 if (quotient == 0)
5297 /* No luck there. Try a quotient-and-remainder insn,
5298 keeping the quotient alone. */
5299 quotient = gen_reg_rtx (compute_mode);
5300 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
5301 op0, op1,
5302 quotient, NULL_RTX, unsignedp))
5304 quotient = 0;
5305 if (! rem_flag)
5306 /* Still no luck. If we are not computing the remainder,
5307 use a library call for the quotient. */
5308 quotient = sign_expand_binop (compute_mode,
5309 udiv_optab, sdiv_optab,
5310 op0, op1, target,
5311 unsignedp, methods);
5316 if (rem_flag)
5318 if (target && GET_MODE (target) != compute_mode)
5319 target = 0;
5321 if (quotient == 0)
5323 /* No divide instruction either. Use library for remainder. */
5324 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5325 op0, op1, target,
5326 unsignedp, methods);
5327 /* No remainder function. Try a quotient-and-remainder
5328 function, keeping the remainder. */
5329 if (!remainder
5330 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
5332 remainder = gen_reg_rtx (compute_mode);
5333 if (!expand_twoval_binop_libfunc
5334 (unsignedp ? udivmod_optab : sdivmod_optab,
5335 op0, op1,
5336 NULL_RTX, remainder,
5337 unsignedp ? UMOD : MOD))
5338 remainder = NULL_RTX;
5341 else
5343 /* We divided. Now finish doing X - Y * (X / Y). */
5344 remainder = expand_mult (compute_mode, quotient, op1,
5345 NULL_RTX, unsignedp);
5346 remainder = expand_binop (compute_mode, sub_optab, op0,
5347 remainder, target, unsignedp,
5348 methods);
5352 if (methods != OPTAB_LIB_WIDEN
5353 && (rem_flag ? remainder : quotient) == NULL_RTX)
5354 return NULL_RTX;
5356 return gen_lowpart (mode, rem_flag ? remainder : quotient);
5359 /* Return a tree node with data type TYPE, describing the value of X.
5360 Usually this is an VAR_DECL, if there is no obvious better choice.
5361 X may be an expression, however we only support those expressions
5362 generated by loop.c. */
5364 tree
5365 make_tree (tree type, rtx x)
5367 tree t;
5369 switch (GET_CODE (x))
5371 case CONST_INT:
5372 case CONST_WIDE_INT:
5373 t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type)));
5374 return t;
5376 case CONST_DOUBLE:
5377 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5378 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5379 t = wide_int_to_tree (type,
5380 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5381 HOST_BITS_PER_WIDE_INT * 2));
5382 else
5383 t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
5385 return t;
5387 case CONST_VECTOR:
5389 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5390 unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x);
5391 tree itype = TREE_TYPE (type);
5393 /* Build a tree with vector elements. */
5394 tree_vector_builder elts (type, npatterns, nelts_per_pattern);
5395 unsigned int count = elts.encoded_nelts ();
5396 for (unsigned int i = 0; i < count; ++i)
5398 rtx elt = CONST_VECTOR_ELT (x, i);
5399 elts.quick_push (make_tree (itype, elt));
5402 return elts.build ();
5405 case PLUS:
5406 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5407 make_tree (type, XEXP (x, 1)));
5409 case MINUS:
5410 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5411 make_tree (type, XEXP (x, 1)));
5413 case NEG:
5414 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5416 case MULT:
5417 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5418 make_tree (type, XEXP (x, 1)));
5420 case ASHIFT:
5421 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5422 make_tree (type, XEXP (x, 1)));
5424 case LSHIFTRT:
5425 t = unsigned_type_for (type);
5426 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5427 make_tree (t, XEXP (x, 0)),
5428 make_tree (type, XEXP (x, 1))));
5430 case ASHIFTRT:
5431 t = signed_type_for (type);
5432 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5433 make_tree (t, XEXP (x, 0)),
5434 make_tree (type, XEXP (x, 1))));
5436 case DIV:
5437 if (TREE_CODE (type) != REAL_TYPE)
5438 t = signed_type_for (type);
5439 else
5440 t = type;
5442 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5443 make_tree (t, XEXP (x, 0)),
5444 make_tree (t, XEXP (x, 1))));
5445 case UDIV:
5446 t = unsigned_type_for (type);
5447 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5448 make_tree (t, XEXP (x, 0)),
5449 make_tree (t, XEXP (x, 1))));
5451 case SIGN_EXTEND:
5452 case ZERO_EXTEND:
5453 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5454 GET_CODE (x) == ZERO_EXTEND);
5455 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5457 case CONST:
5458 return make_tree (type, XEXP (x, 0));
5460 case SYMBOL_REF:
5461 t = SYMBOL_REF_DECL (x);
5462 if (t)
5463 return fold_convert (type, build_fold_addr_expr (t));
5464 /* fall through. */
5466 default:
5467 if (CONST_POLY_INT_P (x))
5468 return wide_int_to_tree (t, const_poly_int_value (x));
5470 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5472 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5473 address mode to pointer mode. */
5474 if (POINTER_TYPE_P (type))
5475 x = convert_memory_address_addr_space
5476 (SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5478 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5479 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5480 t->decl_with_rtl.rtl = x;
5482 return t;
5486 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5487 and returning TARGET.
5489 If TARGET is 0, a pseudo-register or constant is returned. */
5492 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5494 rtx tem = 0;
5496 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5497 tem = simplify_binary_operation (AND, mode, op0, op1);
5498 if (tem == 0)
5499 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5501 if (target == 0)
5502 target = tem;
5503 else if (tem != target)
5504 emit_move_insn (target, tem);
5505 return target;
5508 /* Helper function for emit_store_flag. */
5510 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5511 machine_mode mode, machine_mode compare_mode,
5512 int unsignedp, rtx x, rtx y, int normalizep,
5513 machine_mode target_mode)
5515 class expand_operand ops[4];
5516 rtx op0, comparison, subtarget;
5517 rtx_insn *last;
5518 scalar_int_mode result_mode = targetm.cstore_mode (icode);
5519 scalar_int_mode int_target_mode;
5521 last = get_last_insn ();
5522 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5523 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5524 if (!x || !y)
5526 delete_insns_since (last);
5527 return NULL_RTX;
5530 if (target_mode == VOIDmode)
5531 int_target_mode = result_mode;
5532 else
5533 int_target_mode = as_a <scalar_int_mode> (target_mode);
5534 if (!target)
5535 target = gen_reg_rtx (int_target_mode);
5537 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5539 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5540 create_fixed_operand (&ops[1], comparison);
5541 create_fixed_operand (&ops[2], x);
5542 create_fixed_operand (&ops[3], y);
5543 if (!maybe_expand_insn (icode, 4, ops))
5545 delete_insns_since (last);
5546 return NULL_RTX;
5548 subtarget = ops[0].value;
5550 /* If we are converting to a wider mode, first convert to
5551 INT_TARGET_MODE, then normalize. This produces better combining
5552 opportunities on machines that have a SIGN_EXTRACT when we are
5553 testing a single bit. This mostly benefits the 68k.
5555 If STORE_FLAG_VALUE does not have the sign bit set when
5556 interpreted in MODE, we can do this conversion as unsigned, which
5557 is usually more efficient. */
5558 if (GET_MODE_PRECISION (int_target_mode) > GET_MODE_PRECISION (result_mode))
5560 gcc_assert (GET_MODE_PRECISION (result_mode) != 1
5561 || STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1);
5563 bool unsignedp = (STORE_FLAG_VALUE >= 0);
5564 convert_move (target, subtarget, unsignedp);
5566 op0 = target;
5567 result_mode = int_target_mode;
5569 else
5570 op0 = subtarget;
5572 /* If we want to keep subexpressions around, don't reuse our last
5573 target. */
5574 if (optimize)
5575 subtarget = 0;
5577 /* Now normalize to the proper value in MODE. Sometimes we don't
5578 have to do anything. */
5579 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5581 /* STORE_FLAG_VALUE might be the most negative number, so write
5582 the comparison this way to avoid a compiler-time warning. */
5583 else if (- normalizep == STORE_FLAG_VALUE)
5584 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5586 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5587 it hard to use a value of just the sign bit due to ANSI integer
5588 constant typing rules. */
5589 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5590 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5591 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5592 normalizep == 1);
5593 else
5595 gcc_assert (STORE_FLAG_VALUE & 1);
5597 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5598 if (normalizep == -1)
5599 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5602 /* If we were converting to a smaller mode, do the conversion now. */
5603 if (int_target_mode != result_mode)
5605 convert_move (target, op0, 0);
5606 return target;
5608 else
5609 return op0;
5613 /* A subroutine of emit_store_flag only including "tricks" that do not
5614 need a recursive call. These are kept separate to avoid infinite
5615 loops. */
5617 static rtx
5618 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5619 machine_mode mode, int unsignedp, int normalizep,
5620 machine_mode target_mode)
5622 rtx subtarget;
5623 enum insn_code icode;
5624 machine_mode compare_mode;
5625 enum mode_class mclass;
5626 enum rtx_code scode;
5628 if (unsignedp)
5629 code = unsigned_condition (code);
5630 scode = swap_condition (code);
5632 /* If one operand is constant, make it the second one. Only do this
5633 if the other operand is not constant as well. */
5635 if (swap_commutative_operands_p (op0, op1))
5637 std::swap (op0, op1);
5638 code = swap_condition (code);
5641 if (mode == VOIDmode)
5642 mode = GET_MODE (op0);
5644 if (CONST_SCALAR_INT_P (op1))
5645 canonicalize_comparison (mode, &code, &op1);
5647 /* For some comparisons with 1 and -1, we can convert this to
5648 comparisons with zero. This will often produce more opportunities for
5649 store-flag insns. */
5651 switch (code)
5653 case LT:
5654 if (op1 == const1_rtx)
5655 op1 = const0_rtx, code = LE;
5656 break;
5657 case LE:
5658 if (op1 == constm1_rtx)
5659 op1 = const0_rtx, code = LT;
5660 break;
5661 case GE:
5662 if (op1 == const1_rtx)
5663 op1 = const0_rtx, code = GT;
5664 break;
5665 case GT:
5666 if (op1 == constm1_rtx)
5667 op1 = const0_rtx, code = GE;
5668 break;
5669 case GEU:
5670 if (op1 == const1_rtx)
5671 op1 = const0_rtx, code = NE;
5672 break;
5673 case LTU:
5674 if (op1 == const1_rtx)
5675 op1 = const0_rtx, code = EQ;
5676 break;
5677 default:
5678 break;
5681 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5682 complement of A (for GE) and shifting the sign bit to the low bit. */
5683 scalar_int_mode int_mode;
5684 if (op1 == const0_rtx && (code == LT || code == GE)
5685 && is_int_mode (mode, &int_mode)
5686 && (normalizep || STORE_FLAG_VALUE == 1
5687 || val_signbit_p (int_mode, STORE_FLAG_VALUE)))
5689 scalar_int_mode int_target_mode;
5690 subtarget = target;
5692 if (!target)
5693 int_target_mode = int_mode;
5694 else
5696 /* If the result is to be wider than OP0, it is best to convert it
5697 first. If it is to be narrower, it is *incorrect* to convert it
5698 first. */
5699 int_target_mode = as_a <scalar_int_mode> (target_mode);
5700 if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (int_mode))
5702 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5703 int_mode = int_target_mode;
5707 if (int_target_mode != int_mode)
5708 subtarget = 0;
5710 if (code == GE)
5711 op0 = expand_unop (int_mode, one_cmpl_optab, op0,
5712 ((STORE_FLAG_VALUE == 1 || normalizep)
5713 ? 0 : subtarget), 0);
5715 if (STORE_FLAG_VALUE == 1 || normalizep)
5716 /* If we are supposed to produce a 0/1 value, we want to do
5717 a logical shift from the sign bit to the low-order bit; for
5718 a -1/0 value, we do an arithmetic shift. */
5719 op0 = expand_shift (RSHIFT_EXPR, int_mode, op0,
5720 GET_MODE_BITSIZE (int_mode) - 1,
5721 subtarget, normalizep != -1);
5723 if (int_mode != int_target_mode)
5724 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5726 return op0;
5729 /* Next try expanding this via the backend's cstore<mode>4. */
5730 mclass = GET_MODE_CLASS (mode);
5731 FOR_EACH_WIDER_MODE_FROM (compare_mode, mode)
5733 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5734 icode = optab_handler (cstore_optab, optab_mode);
5735 if (icode != CODE_FOR_nothing)
5737 do_pending_stack_adjust ();
5738 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5739 unsignedp, op0, op1, normalizep, target_mode);
5740 if (tem)
5741 return tem;
5743 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5745 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5746 unsignedp, op1, op0, normalizep, target_mode);
5747 if (tem)
5748 return tem;
5750 break;
5754 /* If we are comparing a double-word integer with zero or -1, we can
5755 convert the comparison into one involving a single word. */
5756 if (is_int_mode (mode, &int_mode)
5757 && GET_MODE_BITSIZE (int_mode) == BITS_PER_WORD * 2
5758 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5760 rtx tem;
5761 if ((code == EQ || code == NE)
5762 && (op1 == const0_rtx || op1 == constm1_rtx))
5764 rtx op00, op01;
5766 /* Do a logical OR or AND of the two words and compare the
5767 result. */
5768 op00 = simplify_gen_subreg (word_mode, op0, int_mode, 0);
5769 op01 = simplify_gen_subreg (word_mode, op0, int_mode, UNITS_PER_WORD);
5770 tem = expand_binop (word_mode,
5771 op1 == const0_rtx ? ior_optab : and_optab,
5772 op00, op01, NULL_RTX, unsignedp,
5773 OPTAB_DIRECT);
5775 if (tem != 0)
5776 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5777 unsignedp, normalizep);
5779 else if ((code == LT || code == GE) && op1 == const0_rtx)
5781 rtx op0h;
5783 /* If testing the sign bit, can just test on high word. */
5784 op0h = simplify_gen_subreg (word_mode, op0, int_mode,
5785 subreg_highpart_offset (word_mode,
5786 int_mode));
5787 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5788 unsignedp, normalizep);
5790 else
5791 tem = NULL_RTX;
5793 if (tem)
5795 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5796 return tem;
5797 if (!target)
5798 target = gen_reg_rtx (target_mode);
5800 convert_move (target, tem,
5801 !val_signbit_known_set_p (word_mode,
5802 (normalizep ? normalizep
5803 : STORE_FLAG_VALUE)));
5804 return target;
5808 return 0;
5811 /* Subroutine of emit_store_flag that handles cases in which the operands
5812 are scalar integers. SUBTARGET is the target to use for temporary
5813 operations and TRUEVAL is the value to store when the condition is
5814 true. All other arguments are as for emit_store_flag. */
5817 emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0,
5818 rtx op1, scalar_int_mode mode, int unsignedp,
5819 int normalizep, rtx trueval)
5821 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5822 rtx_insn *last = get_last_insn ();
5824 /* If this is an equality comparison of integers, we can try to exclusive-or
5825 (or subtract) the two operands and use a recursive call to try the
5826 comparison with zero. Don't do any of these cases if branches are
5827 very cheap. */
5829 if ((code == EQ || code == NE) && op1 != const0_rtx)
5831 rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5832 OPTAB_WIDEN);
5834 if (tem == 0)
5835 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5836 OPTAB_WIDEN);
5837 if (tem != 0)
5838 tem = emit_store_flag (target, code, tem, const0_rtx,
5839 mode, unsignedp, normalizep);
5840 if (tem != 0)
5841 return tem;
5843 delete_insns_since (last);
5846 /* For integer comparisons, try the reverse comparison. However, for
5847 small X and if we'd have anyway to extend, implementing "X != 0"
5848 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5849 rtx_code rcode = reverse_condition (code);
5850 if (can_compare_p (rcode, mode, ccp_store_flag)
5851 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5852 && code == NE
5853 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5854 && op1 == const0_rtx))
5856 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5857 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5859 /* Again, for the reverse comparison, use either an addition or a XOR. */
5860 if (want_add
5861 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5862 optimize_insn_for_speed_p ()) == 0)
5864 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5865 STORE_FLAG_VALUE, target_mode);
5866 if (tem != 0)
5867 tem = expand_binop (target_mode, add_optab, tem,
5868 gen_int_mode (normalizep, target_mode),
5869 target, 0, OPTAB_WIDEN);
5870 if (tem != 0)
5871 return tem;
5873 else if (!want_add
5874 && rtx_cost (trueval, mode, XOR, 1,
5875 optimize_insn_for_speed_p ()) == 0)
5877 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5878 normalizep, target_mode);
5879 if (tem != 0)
5880 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5881 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5882 if (tem != 0)
5883 return tem;
5886 delete_insns_since (last);
5889 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5890 the constant zero. Reject all other comparisons at this point. Only
5891 do LE and GT if branches are expensive since they are expensive on
5892 2-operand machines. */
5894 if (op1 != const0_rtx
5895 || (code != EQ && code != NE
5896 && (BRANCH_COST (optimize_insn_for_speed_p (),
5897 false) <= 1 || (code != LE && code != GT))))
5898 return 0;
5900 /* Try to put the result of the comparison in the sign bit. Assume we can't
5901 do the necessary operation below. */
5903 rtx tem = 0;
5905 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5906 the sign bit set. */
5908 if (code == LE)
5910 /* This is destructive, so SUBTARGET can't be OP0. */
5911 if (rtx_equal_p (subtarget, op0))
5912 subtarget = 0;
5914 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5915 OPTAB_WIDEN);
5916 if (tem)
5917 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5918 OPTAB_WIDEN);
5921 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5922 number of bits in the mode of OP0, minus one. */
5924 if (code == GT)
5926 if (rtx_equal_p (subtarget, op0))
5927 subtarget = 0;
5929 tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0,
5930 GET_MODE_BITSIZE (mode) - 1,
5931 subtarget, 0);
5932 if (tem)
5933 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5934 OPTAB_WIDEN);
5937 if (code == EQ || code == NE)
5939 /* For EQ or NE, one way to do the comparison is to apply an operation
5940 that converts the operand into a positive number if it is nonzero
5941 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5942 for NE we negate. This puts the result in the sign bit. Then we
5943 normalize with a shift, if needed.
5945 Two operations that can do the above actions are ABS and FFS, so try
5946 them. If that doesn't work, and MODE is smaller than a full word,
5947 we can use zero-extension to the wider mode (an unsigned conversion)
5948 as the operation. */
5950 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5951 that is compensated by the subsequent overflow when subtracting
5952 one / negating. */
5954 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5955 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5956 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5957 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5958 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5960 tem = convert_modes (word_mode, mode, op0, 1);
5961 mode = word_mode;
5964 if (tem != 0)
5966 if (code == EQ)
5967 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5968 0, OPTAB_WIDEN);
5969 else
5970 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5973 /* If we couldn't do it that way, for NE we can "or" the two's complement
5974 of the value with itself. For EQ, we take the one's complement of
5975 that "or", which is an extra insn, so we only handle EQ if branches
5976 are expensive. */
5978 if (tem == 0
5979 && (code == NE
5980 || BRANCH_COST (optimize_insn_for_speed_p (),
5981 false) > 1))
5983 if (rtx_equal_p (subtarget, op0))
5984 subtarget = 0;
5986 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5987 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5988 OPTAB_WIDEN);
5990 if (tem && code == EQ)
5991 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5995 if (tem && normalizep)
5996 tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem,
5997 GET_MODE_BITSIZE (mode) - 1,
5998 subtarget, normalizep == 1);
6000 if (tem)
6002 if (!target)
6004 else if (GET_MODE (tem) != target_mode)
6006 convert_move (target, tem, 0);
6007 tem = target;
6009 else if (!subtarget)
6011 emit_move_insn (target, tem);
6012 tem = target;
6015 else
6016 delete_insns_since (last);
6018 return tem;
6021 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
6022 and storing in TARGET. Normally return TARGET.
6023 Return 0 if that cannot be done.
6025 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
6026 it is VOIDmode, they cannot both be CONST_INT.
6028 UNSIGNEDP is for the case where we have to widen the operands
6029 to perform the operation. It says to use zero-extension.
6031 NORMALIZEP is 1 if we should convert the result to be either zero
6032 or one. Normalize is -1 if we should convert the result to be
6033 either zero or -1. If NORMALIZEP is zero, the result will be left
6034 "raw" out of the scc insn. */
6037 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
6038 machine_mode mode, int unsignedp, int normalizep)
6040 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
6041 enum rtx_code rcode;
6042 rtx subtarget;
6043 rtx tem, trueval;
6044 rtx_insn *last;
6046 /* If we compare constants, we shouldn't use a store-flag operation,
6047 but a constant load. We can get there via the vanilla route that
6048 usually generates a compare-branch sequence, but will in this case
6049 fold the comparison to a constant, and thus elide the branch. */
6050 if (CONSTANT_P (op0) && CONSTANT_P (op1))
6051 return NULL_RTX;
6053 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
6054 target_mode);
6055 if (tem)
6056 return tem;
6058 /* If we reached here, we can't do this with a scc insn, however there
6059 are some comparisons that can be done in other ways. Don't do any
6060 of these cases if branches are very cheap. */
6061 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
6062 return 0;
6064 /* See what we need to return. We can only return a 1, -1, or the
6065 sign bit. */
6067 if (normalizep == 0)
6069 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6070 normalizep = STORE_FLAG_VALUE;
6072 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
6074 else
6075 return 0;
6078 last = get_last_insn ();
6080 /* If optimizing, use different pseudo registers for each insn, instead
6081 of reusing the same pseudo. This leads to better CSE, but slows
6082 down the compiler, since there are more pseudos. */
6083 subtarget = (!optimize
6084 && (target_mode == mode)) ? target : NULL_RTX;
6085 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
6087 /* For floating-point comparisons, try the reverse comparison or try
6088 changing the "orderedness" of the comparison. */
6089 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
6091 enum rtx_code first_code;
6092 bool and_them;
6094 rcode = reverse_condition_maybe_unordered (code);
6095 if (can_compare_p (rcode, mode, ccp_store_flag)
6096 && (code == ORDERED || code == UNORDERED
6097 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6098 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6100 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
6101 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
6103 /* For the reverse comparison, use either an addition or a XOR. */
6104 if (want_add
6105 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
6106 optimize_insn_for_speed_p ()) == 0)
6108 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
6109 STORE_FLAG_VALUE, target_mode);
6110 if (tem)
6111 return expand_binop (target_mode, add_optab, tem,
6112 gen_int_mode (normalizep, target_mode),
6113 target, 0, OPTAB_WIDEN);
6115 else if (!want_add
6116 && rtx_cost (trueval, mode, XOR, 1,
6117 optimize_insn_for_speed_p ()) == 0)
6119 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
6120 normalizep, target_mode);
6121 if (tem)
6122 return expand_binop (target_mode, xor_optab, tem, trueval,
6123 target, INTVAL (trueval) >= 0,
6124 OPTAB_WIDEN);
6128 delete_insns_since (last);
6130 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
6131 if (code == ORDERED || code == UNORDERED)
6132 return 0;
6134 and_them = split_comparison (code, mode, &first_code, &code);
6136 /* If there are no NaNs, the first comparison should always fall through.
6137 Effectively change the comparison to the other one. */
6138 if (!HONOR_NANS (mode))
6140 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
6141 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
6142 target_mode);
6145 if (!HAVE_conditional_move)
6146 return 0;
6148 /* Do not turn a trapping comparison into a non-trapping one. */
6149 if ((code != EQ && code != NE && code != UNEQ && code != LTGT)
6150 && flag_trapping_math)
6151 return 0;
6153 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
6154 conditional move. */
6155 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
6156 normalizep, target_mode);
6157 if (tem == 0)
6158 return 0;
6160 if (and_them)
6161 tem = emit_conditional_move (target, { code, op0, op1, mode },
6162 tem, const0_rtx, GET_MODE (tem), 0);
6163 else
6164 tem = emit_conditional_move (target, { code, op0, op1, mode },
6165 trueval, tem, GET_MODE (tem), 0);
6167 if (tem == 0)
6168 delete_insns_since (last);
6169 return tem;
6172 /* The remaining tricks only apply to integer comparisons. */
6174 scalar_int_mode int_mode;
6175 if (is_int_mode (mode, &int_mode))
6176 return emit_store_flag_int (target, subtarget, code, op0, op1, int_mode,
6177 unsignedp, normalizep, trueval);
6179 return 0;
6182 /* Like emit_store_flag, but always succeeds. */
6185 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
6186 machine_mode mode, int unsignedp, int normalizep)
6188 rtx tem;
6189 rtx_code_label *label;
6190 rtx trueval, falseval;
6192 /* First see if emit_store_flag can do the job. */
6193 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
6194 if (tem != 0)
6195 return tem;
6197 /* If one operand is constant, make it the second one. Only do this
6198 if the other operand is not constant as well. */
6199 if (swap_commutative_operands_p (op0, op1))
6201 std::swap (op0, op1);
6202 code = swap_condition (code);
6205 if (mode == VOIDmode)
6206 mode = GET_MODE (op0);
6208 if (!target)
6209 target = gen_reg_rtx (word_mode);
6211 /* If this failed, we have to do this with set/compare/jump/set code.
6212 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6213 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
6214 if (code == NE
6215 && GET_MODE_CLASS (mode) == MODE_INT
6216 && REG_P (target)
6217 && op0 == target
6218 && op1 == const0_rtx)
6220 label = gen_label_rtx ();
6221 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
6222 NULL_RTX, NULL, label,
6223 profile_probability::uninitialized ());
6224 emit_move_insn (target, trueval);
6225 emit_label (label);
6226 return target;
6229 if (!REG_P (target)
6230 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
6231 target = gen_reg_rtx (GET_MODE (target));
6233 /* Jump in the right direction if the target cannot implement CODE
6234 but can jump on its reverse condition. */
6235 falseval = const0_rtx;
6236 if (! can_compare_p (code, mode, ccp_jump)
6237 && (! FLOAT_MODE_P (mode)
6238 || code == ORDERED || code == UNORDERED
6239 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6240 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6242 enum rtx_code rcode;
6243 if (FLOAT_MODE_P (mode))
6244 rcode = reverse_condition_maybe_unordered (code);
6245 else
6246 rcode = reverse_condition (code);
6248 /* Canonicalize to UNORDERED for the libcall. */
6249 if (can_compare_p (rcode, mode, ccp_jump)
6250 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
6252 falseval = trueval;
6253 trueval = const0_rtx;
6254 code = rcode;
6258 emit_move_insn (target, trueval);
6259 label = gen_label_rtx ();
6260 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
6261 label, profile_probability::uninitialized ());
6263 emit_move_insn (target, falseval);
6264 emit_label (label);
6266 return target;
6269 /* Helper function for canonicalize_cmp_for_target. Swap between inclusive
6270 and exclusive ranges in order to create an equivalent comparison. See
6271 canonicalize_cmp_for_target for the possible cases. */
6273 static enum rtx_code
6274 equivalent_cmp_code (enum rtx_code code)
6276 switch (code)
6278 case GT:
6279 return GE;
6280 case GE:
6281 return GT;
6282 case LT:
6283 return LE;
6284 case LE:
6285 return LT;
6286 case GTU:
6287 return GEU;
6288 case GEU:
6289 return GTU;
6290 case LTU:
6291 return LEU;
6292 case LEU:
6293 return LTU;
6295 default:
6296 return code;
6300 /* Choose the more appropiate immediate in scalar integer comparisons. The
6301 purpose of this is to end up with an immediate which can be loaded into a
6302 register in fewer moves, if possible.
6304 For each integer comparison there exists an equivalent choice:
6305 i) a > b or a >= b + 1
6306 ii) a <= b or a < b + 1
6307 iii) a >= b or a > b - 1
6308 iv) a < b or a <= b - 1
6310 MODE is the mode of the first operand.
6311 CODE points to the comparison code.
6312 IMM points to the rtx containing the immediate. *IMM must satisfy
6313 CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P
6314 on exit. */
6316 void
6317 canonicalize_comparison (machine_mode mode, enum rtx_code *code, rtx *imm)
6319 if (!SCALAR_INT_MODE_P (mode))
6320 return;
6322 int to_add = 0;
6323 enum signop sgn = unsigned_condition_p (*code) ? UNSIGNED : SIGNED;
6325 /* Extract the immediate value from the rtx. */
6326 wide_int imm_val = rtx_mode_t (*imm, mode);
6328 if (*code == GT || *code == GTU || *code == LE || *code == LEU)
6329 to_add = 1;
6330 else if (*code == GE || *code == GEU || *code == LT || *code == LTU)
6331 to_add = -1;
6332 else
6333 return;
6335 /* Check for overflow/underflow in the case of signed values and
6336 wrapping around in the case of unsigned values. If any occur
6337 cancel the optimization. */
6338 wi::overflow_type overflow = wi::OVF_NONE;
6339 wide_int imm_modif;
6341 if (to_add == 1)
6342 imm_modif = wi::add (imm_val, 1, sgn, &overflow);
6343 else
6344 imm_modif = wi::sub (imm_val, 1, sgn, &overflow);
6346 if (overflow)
6347 return;
6349 /* The following creates a pseudo; if we cannot do that, bail out. */
6350 if (!can_create_pseudo_p ())
6351 return;
6353 rtx reg = gen_rtx_REG (mode, LAST_VIRTUAL_REGISTER + 1);
6354 rtx new_imm = immed_wide_int_const (imm_modif, mode);
6356 rtx_insn *old_rtx = gen_move_insn (reg, *imm);
6357 rtx_insn *new_rtx = gen_move_insn (reg, new_imm);
6359 /* Update the immediate and the code. */
6360 if (insn_cost (old_rtx, true) > insn_cost (new_rtx, true))
6362 *code = equivalent_cmp_code (*code);
6363 *imm = new_imm;
6369 /* Perform possibly multi-word comparison and conditional jump to LABEL
6370 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6371 now a thin wrapper around do_compare_rtx_and_jump. */
6373 static void
6374 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
6375 rtx_code_label *label)
6377 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
6378 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
6379 NULL, label, profile_probability::uninitialized ());